]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched: Fix asymmetric scheduling for POWER7
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee
MG
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
887c290e
RR
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1209 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1210 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1213 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1214
e1dda8a7
RR
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
887c290e 1217 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
2c8a50aa
MG
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
58d081b5 1224
83e1d2cd 1225 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1229 continue;
1230
2c8a50aa
MG
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1233 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1234 }
1235 }
1236
fb13c7ee
MG
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
0ec8aa00
PZ
1241 sched_setnuma(p, env.dst_nid);
1242
04bb2f94
RR
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
fb13c7ee
MG
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
e6628d5b
MG
1257}
1258
6b9a7460
MG
1259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
2739d3ee
RR
1262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1264 return;
1265
2739d3ee
RR
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
1269 /* Success if task is already running on preferred CPU */
1270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1271 return;
1272
1273 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1274 task_numa_migrate(p);
6b9a7460
MG
1275}
1276
04bb2f94
RR
1277/*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284#define NUMA_PERIOD_SLOTS 10
1285#define NUMA_PERIOD_THRESHOLD 3
1286
1287/*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295{
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350}
1351
cbee9f88
PZ
1352static void task_numa_placement(struct task_struct *p)
1353{
83e1d2cd
MG
1354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1356 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1357 spinlock_t *group_lock = NULL;
cbee9f88 1358
2832bc19 1359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
598f0ec0 1363 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1364
7dbd13ed
MG
1365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
688b7585
MG
1371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
83e1d2cd 1373 unsigned long faults = 0, group_faults = 0;
ac8e895b 1374 int priv, i;
745d6147 1375
ac8e895b 1376 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1377 long diff;
1378
ac8e895b 1379 i = task_faults_idx(nid, priv);
8c8a743c 1380 diff = -p->numa_faults[i];
745d6147 1381
ac8e895b
MG
1382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1385 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1386 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1387
1388 faults += p->numa_faults[i];
8c8a743c 1389 diff += p->numa_faults[i];
83e1d2cd 1390 p->total_numa_faults += diff;
8c8a743c
PZ
1391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
989348b5
MG
1393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
8c8a743c 1396 }
ac8e895b
MG
1397 }
1398
688b7585
MG
1399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
83e1d2cd
MG
1403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
04bb2f94
RR
1410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
7dbd13ed
MG
1412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
1419
1420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
83e1d2cd
MG
1426 }
1427 }
7dbd13ed
MG
1428
1429 spin_unlock(group_lock);
688b7585
MG
1430 }
1431
6b9a7460 1432 /* Preferred node as the node with the most faults */
3a7053b3 1433 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1434 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1435 sched_setnuma(p, max_nid);
6b9a7460 1436 numa_migrate_preferred(p);
3a7053b3 1437 }
cbee9f88
PZ
1438}
1439
8c8a743c
PZ
1440static inline int get_numa_group(struct numa_group *grp)
1441{
1442 return atomic_inc_not_zero(&grp->refcount);
1443}
1444
1445static inline void put_numa_group(struct numa_group *grp)
1446{
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449}
1450
3e6a9418
MG
1451static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1452 int *priv)
8c8a743c
PZ
1453{
1454 struct numa_group *grp, *my_grp;
1455 struct task_struct *tsk;
1456 bool join = false;
1457 int cpu = cpupid_to_cpu(cpupid);
1458 int i;
1459
1460 if (unlikely(!p->numa_group)) {
1461 unsigned int size = sizeof(struct numa_group) +
989348b5 1462 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1463
1464 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1465 if (!grp)
1466 return;
1467
1468 atomic_set(&grp->refcount, 1);
1469 spin_lock_init(&grp->lock);
1470 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1471 grp->gid = p->pid;
8c8a743c
PZ
1472
1473 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1474 grp->faults[i] = p->numa_faults[i];
8c8a743c 1475
989348b5 1476 grp->total_faults = p->total_numa_faults;
83e1d2cd 1477
8c8a743c
PZ
1478 list_add(&p->numa_entry, &grp->task_list);
1479 grp->nr_tasks++;
1480 rcu_assign_pointer(p->numa_group, grp);
1481 }
1482
1483 rcu_read_lock();
1484 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1485
1486 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1487 goto no_join;
8c8a743c
PZ
1488
1489 grp = rcu_dereference(tsk->numa_group);
1490 if (!grp)
3354781a 1491 goto no_join;
8c8a743c
PZ
1492
1493 my_grp = p->numa_group;
1494 if (grp == my_grp)
3354781a 1495 goto no_join;
8c8a743c
PZ
1496
1497 /*
1498 * Only join the other group if its bigger; if we're the bigger group,
1499 * the other task will join us.
1500 */
1501 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1502 goto no_join;
8c8a743c
PZ
1503
1504 /*
1505 * Tie-break on the grp address.
1506 */
1507 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1508 goto no_join;
8c8a743c 1509
dabe1d99
RR
1510 /* Always join threads in the same process. */
1511 if (tsk->mm == current->mm)
1512 join = true;
1513
1514 /* Simple filter to avoid false positives due to PID collisions */
1515 if (flags & TNF_SHARED)
1516 join = true;
8c8a743c 1517
3e6a9418
MG
1518 /* Update priv based on whether false sharing was detected */
1519 *priv = !join;
1520
dabe1d99 1521 if (join && !get_numa_group(grp))
3354781a 1522 goto no_join;
8c8a743c 1523
8c8a743c
PZ
1524 rcu_read_unlock();
1525
1526 if (!join)
1527 return;
1528
989348b5
MG
1529 double_lock(&my_grp->lock, &grp->lock);
1530
8c8a743c 1531 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1532 my_grp->faults[i] -= p->numa_faults[i];
1533 grp->faults[i] += p->numa_faults[i];
8c8a743c 1534 }
989348b5
MG
1535 my_grp->total_faults -= p->total_numa_faults;
1536 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1537
1538 list_move(&p->numa_entry, &grp->task_list);
1539 my_grp->nr_tasks--;
1540 grp->nr_tasks++;
1541
1542 spin_unlock(&my_grp->lock);
1543 spin_unlock(&grp->lock);
1544
1545 rcu_assign_pointer(p->numa_group, grp);
1546
1547 put_numa_group(my_grp);
3354781a
PZ
1548 return;
1549
1550no_join:
1551 rcu_read_unlock();
1552 return;
8c8a743c
PZ
1553}
1554
1555void task_numa_free(struct task_struct *p)
1556{
1557 struct numa_group *grp = p->numa_group;
1558 int i;
82727018 1559 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1560
1561 if (grp) {
989348b5 1562 spin_lock(&grp->lock);
8c8a743c 1563 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1564 grp->faults[i] -= p->numa_faults[i];
1565 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1566
8c8a743c
PZ
1567 list_del(&p->numa_entry);
1568 grp->nr_tasks--;
1569 spin_unlock(&grp->lock);
1570 rcu_assign_pointer(p->numa_group, NULL);
1571 put_numa_group(grp);
1572 }
1573
82727018
RR
1574 p->numa_faults = NULL;
1575 p->numa_faults_buffer = NULL;
1576 kfree(numa_faults);
8c8a743c
PZ
1577}
1578
cbee9f88
PZ
1579/*
1580 * Got a PROT_NONE fault for a page on @node.
1581 */
6688cc05 1582void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1583{
1584 struct task_struct *p = current;
6688cc05 1585 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1586 int priv;
cbee9f88 1587
10e84b97 1588 if (!numabalancing_enabled)
1a687c2e
MG
1589 return;
1590
9ff1d9ff
MG
1591 /* for example, ksmd faulting in a user's mm */
1592 if (!p->mm)
1593 return;
1594
82727018
RR
1595 /* Do not worry about placement if exiting */
1596 if (p->state == TASK_DEAD)
1597 return;
1598
f809ca9a
MG
1599 /* Allocate buffer to track faults on a per-node basis */
1600 if (unlikely(!p->numa_faults)) {
ac8e895b 1601 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1602
745d6147
MG
1603 /* numa_faults and numa_faults_buffer share the allocation */
1604 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1605 if (!p->numa_faults)
1606 return;
745d6147
MG
1607
1608 BUG_ON(p->numa_faults_buffer);
ac8e895b 1609 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1610 p->total_numa_faults = 0;
04bb2f94 1611 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1612 }
cbee9f88 1613
8c8a743c
PZ
1614 /*
1615 * First accesses are treated as private, otherwise consider accesses
1616 * to be private if the accessing pid has not changed
1617 */
1618 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1619 priv = 1;
1620 } else {
1621 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1622 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1623 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1624 }
1625
cbee9f88 1626 task_numa_placement(p);
f809ca9a 1627
2739d3ee
RR
1628 /*
1629 * Retry task to preferred node migration periodically, in case it
1630 * case it previously failed, or the scheduler moved us.
1631 */
1632 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1633 numa_migrate_preferred(p);
1634
b32e86b4
IM
1635 if (migrated)
1636 p->numa_pages_migrated += pages;
1637
ac8e895b 1638 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1639 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1640}
1641
6e5fb223
PZ
1642static void reset_ptenuma_scan(struct task_struct *p)
1643{
1644 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1645 p->mm->numa_scan_offset = 0;
1646}
1647
cbee9f88
PZ
1648/*
1649 * The expensive part of numa migration is done from task_work context.
1650 * Triggered from task_tick_numa().
1651 */
1652void task_numa_work(struct callback_head *work)
1653{
1654 unsigned long migrate, next_scan, now = jiffies;
1655 struct task_struct *p = current;
1656 struct mm_struct *mm = p->mm;
6e5fb223 1657 struct vm_area_struct *vma;
9f40604c 1658 unsigned long start, end;
598f0ec0 1659 unsigned long nr_pte_updates = 0;
9f40604c 1660 long pages;
cbee9f88
PZ
1661
1662 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1663
1664 work->next = work; /* protect against double add */
1665 /*
1666 * Who cares about NUMA placement when they're dying.
1667 *
1668 * NOTE: make sure not to dereference p->mm before this check,
1669 * exit_task_work() happens _after_ exit_mm() so we could be called
1670 * without p->mm even though we still had it when we enqueued this
1671 * work.
1672 */
1673 if (p->flags & PF_EXITING)
1674 return;
1675
930aa174 1676 if (!mm->numa_next_scan) {
7e8d16b6
MG
1677 mm->numa_next_scan = now +
1678 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1679 }
1680
cbee9f88
PZ
1681 /*
1682 * Enforce maximal scan/migration frequency..
1683 */
1684 migrate = mm->numa_next_scan;
1685 if (time_before(now, migrate))
1686 return;
1687
598f0ec0
MG
1688 if (p->numa_scan_period == 0) {
1689 p->numa_scan_period_max = task_scan_max(p);
1690 p->numa_scan_period = task_scan_min(p);
1691 }
cbee9f88 1692
fb003b80 1693 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1694 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1695 return;
1696
19a78d11
PZ
1697 /*
1698 * Delay this task enough that another task of this mm will likely win
1699 * the next time around.
1700 */
1701 p->node_stamp += 2 * TICK_NSEC;
1702
9f40604c
MG
1703 start = mm->numa_scan_offset;
1704 pages = sysctl_numa_balancing_scan_size;
1705 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1706 if (!pages)
1707 return;
cbee9f88 1708
6e5fb223 1709 down_read(&mm->mmap_sem);
9f40604c 1710 vma = find_vma(mm, start);
6e5fb223
PZ
1711 if (!vma) {
1712 reset_ptenuma_scan(p);
9f40604c 1713 start = 0;
6e5fb223
PZ
1714 vma = mm->mmap;
1715 }
9f40604c 1716 for (; vma; vma = vma->vm_next) {
fc314724 1717 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1718 continue;
1719
4591ce4f
MG
1720 /*
1721 * Shared library pages mapped by multiple processes are not
1722 * migrated as it is expected they are cache replicated. Avoid
1723 * hinting faults in read-only file-backed mappings or the vdso
1724 * as migrating the pages will be of marginal benefit.
1725 */
1726 if (!vma->vm_mm ||
1727 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1728 continue;
1729
9f40604c
MG
1730 do {
1731 start = max(start, vma->vm_start);
1732 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1733 end = min(end, vma->vm_end);
598f0ec0
MG
1734 nr_pte_updates += change_prot_numa(vma, start, end);
1735
1736 /*
1737 * Scan sysctl_numa_balancing_scan_size but ensure that
1738 * at least one PTE is updated so that unused virtual
1739 * address space is quickly skipped.
1740 */
1741 if (nr_pte_updates)
1742 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1743
9f40604c
MG
1744 start = end;
1745 if (pages <= 0)
1746 goto out;
1747 } while (end != vma->vm_end);
cbee9f88 1748 }
6e5fb223 1749
9f40604c 1750out:
6e5fb223 1751 /*
c69307d5
PZ
1752 * It is possible to reach the end of the VMA list but the last few
1753 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1754 * would find the !migratable VMA on the next scan but not reset the
1755 * scanner to the start so check it now.
6e5fb223
PZ
1756 */
1757 if (vma)
9f40604c 1758 mm->numa_scan_offset = start;
6e5fb223
PZ
1759 else
1760 reset_ptenuma_scan(p);
1761 up_read(&mm->mmap_sem);
cbee9f88
PZ
1762}
1763
1764/*
1765 * Drive the periodic memory faults..
1766 */
1767void task_tick_numa(struct rq *rq, struct task_struct *curr)
1768{
1769 struct callback_head *work = &curr->numa_work;
1770 u64 period, now;
1771
1772 /*
1773 * We don't care about NUMA placement if we don't have memory.
1774 */
1775 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1776 return;
1777
1778 /*
1779 * Using runtime rather than walltime has the dual advantage that
1780 * we (mostly) drive the selection from busy threads and that the
1781 * task needs to have done some actual work before we bother with
1782 * NUMA placement.
1783 */
1784 now = curr->se.sum_exec_runtime;
1785 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1786
1787 if (now - curr->node_stamp > period) {
4b96a29b 1788 if (!curr->node_stamp)
598f0ec0 1789 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1790 curr->node_stamp += period;
cbee9f88
PZ
1791
1792 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1793 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1794 task_work_add(curr, work, true);
1795 }
1796 }
1797}
1798#else
1799static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1800{
1801}
0ec8aa00
PZ
1802
1803static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1804{
1805}
1806
1807static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1808{
1809}
cbee9f88
PZ
1810#endif /* CONFIG_NUMA_BALANCING */
1811
30cfdcfc
DA
1812static void
1813account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1814{
1815 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1816 if (!parent_entity(se))
029632fb 1817 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1818#ifdef CONFIG_SMP
0ec8aa00
PZ
1819 if (entity_is_task(se)) {
1820 struct rq *rq = rq_of(cfs_rq);
1821
1822 account_numa_enqueue(rq, task_of(se));
1823 list_add(&se->group_node, &rq->cfs_tasks);
1824 }
367456c7 1825#endif
30cfdcfc 1826 cfs_rq->nr_running++;
30cfdcfc
DA
1827}
1828
1829static void
1830account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1831{
1832 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1833 if (!parent_entity(se))
029632fb 1834 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1835 if (entity_is_task(se)) {
1836 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1837 list_del_init(&se->group_node);
0ec8aa00 1838 }
30cfdcfc 1839 cfs_rq->nr_running--;
30cfdcfc
DA
1840}
1841
3ff6dcac
YZ
1842#ifdef CONFIG_FAIR_GROUP_SCHED
1843# ifdef CONFIG_SMP
cf5f0acf
PZ
1844static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1845{
1846 long tg_weight;
1847
1848 /*
1849 * Use this CPU's actual weight instead of the last load_contribution
1850 * to gain a more accurate current total weight. See
1851 * update_cfs_rq_load_contribution().
1852 */
bf5b986e 1853 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1854 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1855 tg_weight += cfs_rq->load.weight;
1856
1857 return tg_weight;
1858}
1859
6d5ab293 1860static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1861{
cf5f0acf 1862 long tg_weight, load, shares;
3ff6dcac 1863
cf5f0acf 1864 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1865 load = cfs_rq->load.weight;
3ff6dcac 1866
3ff6dcac 1867 shares = (tg->shares * load);
cf5f0acf
PZ
1868 if (tg_weight)
1869 shares /= tg_weight;
3ff6dcac
YZ
1870
1871 if (shares < MIN_SHARES)
1872 shares = MIN_SHARES;
1873 if (shares > tg->shares)
1874 shares = tg->shares;
1875
1876 return shares;
1877}
3ff6dcac 1878# else /* CONFIG_SMP */
6d5ab293 1879static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1880{
1881 return tg->shares;
1882}
3ff6dcac 1883# endif /* CONFIG_SMP */
2069dd75
PZ
1884static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1885 unsigned long weight)
1886{
19e5eebb
PT
1887 if (se->on_rq) {
1888 /* commit outstanding execution time */
1889 if (cfs_rq->curr == se)
1890 update_curr(cfs_rq);
2069dd75 1891 account_entity_dequeue(cfs_rq, se);
19e5eebb 1892 }
2069dd75
PZ
1893
1894 update_load_set(&se->load, weight);
1895
1896 if (se->on_rq)
1897 account_entity_enqueue(cfs_rq, se);
1898}
1899
82958366
PT
1900static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1901
6d5ab293 1902static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1903{
1904 struct task_group *tg;
1905 struct sched_entity *se;
3ff6dcac 1906 long shares;
2069dd75 1907
2069dd75
PZ
1908 tg = cfs_rq->tg;
1909 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1910 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1911 return;
3ff6dcac
YZ
1912#ifndef CONFIG_SMP
1913 if (likely(se->load.weight == tg->shares))
1914 return;
1915#endif
6d5ab293 1916 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1917
1918 reweight_entity(cfs_rq_of(se), se, shares);
1919}
1920#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1921static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1922{
1923}
1924#endif /* CONFIG_FAIR_GROUP_SCHED */
1925
141965c7 1926#ifdef CONFIG_SMP
5b51f2f8
PT
1927/*
1928 * We choose a half-life close to 1 scheduling period.
1929 * Note: The tables below are dependent on this value.
1930 */
1931#define LOAD_AVG_PERIOD 32
1932#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1933#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1934
1935/* Precomputed fixed inverse multiplies for multiplication by y^n */
1936static const u32 runnable_avg_yN_inv[] = {
1937 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1938 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1939 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1940 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1941 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1942 0x85aac367, 0x82cd8698,
1943};
1944
1945/*
1946 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1947 * over-estimates when re-combining.
1948 */
1949static const u32 runnable_avg_yN_sum[] = {
1950 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1951 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1952 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1953};
1954
9d85f21c
PT
1955/*
1956 * Approximate:
1957 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1958 */
1959static __always_inline u64 decay_load(u64 val, u64 n)
1960{
5b51f2f8
PT
1961 unsigned int local_n;
1962
1963 if (!n)
1964 return val;
1965 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1966 return 0;
1967
1968 /* after bounds checking we can collapse to 32-bit */
1969 local_n = n;
1970
1971 /*
1972 * As y^PERIOD = 1/2, we can combine
1973 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1974 * With a look-up table which covers k^n (n<PERIOD)
1975 *
1976 * To achieve constant time decay_load.
1977 */
1978 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1979 val >>= local_n / LOAD_AVG_PERIOD;
1980 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1981 }
1982
5b51f2f8
PT
1983 val *= runnable_avg_yN_inv[local_n];
1984 /* We don't use SRR here since we always want to round down. */
1985 return val >> 32;
1986}
1987
1988/*
1989 * For updates fully spanning n periods, the contribution to runnable
1990 * average will be: \Sum 1024*y^n
1991 *
1992 * We can compute this reasonably efficiently by combining:
1993 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1994 */
1995static u32 __compute_runnable_contrib(u64 n)
1996{
1997 u32 contrib = 0;
1998
1999 if (likely(n <= LOAD_AVG_PERIOD))
2000 return runnable_avg_yN_sum[n];
2001 else if (unlikely(n >= LOAD_AVG_MAX_N))
2002 return LOAD_AVG_MAX;
2003
2004 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2005 do {
2006 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2007 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2008
2009 n -= LOAD_AVG_PERIOD;
2010 } while (n > LOAD_AVG_PERIOD);
2011
2012 contrib = decay_load(contrib, n);
2013 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2014}
2015
2016/*
2017 * We can represent the historical contribution to runnable average as the
2018 * coefficients of a geometric series. To do this we sub-divide our runnable
2019 * history into segments of approximately 1ms (1024us); label the segment that
2020 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2021 *
2022 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2023 * p0 p1 p2
2024 * (now) (~1ms ago) (~2ms ago)
2025 *
2026 * Let u_i denote the fraction of p_i that the entity was runnable.
2027 *
2028 * We then designate the fractions u_i as our co-efficients, yielding the
2029 * following representation of historical load:
2030 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2031 *
2032 * We choose y based on the with of a reasonably scheduling period, fixing:
2033 * y^32 = 0.5
2034 *
2035 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2036 * approximately half as much as the contribution to load within the last ms
2037 * (u_0).
2038 *
2039 * When a period "rolls over" and we have new u_0`, multiplying the previous
2040 * sum again by y is sufficient to update:
2041 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2042 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2043 */
2044static __always_inline int __update_entity_runnable_avg(u64 now,
2045 struct sched_avg *sa,
2046 int runnable)
2047{
5b51f2f8
PT
2048 u64 delta, periods;
2049 u32 runnable_contrib;
9d85f21c
PT
2050 int delta_w, decayed = 0;
2051
2052 delta = now - sa->last_runnable_update;
2053 /*
2054 * This should only happen when time goes backwards, which it
2055 * unfortunately does during sched clock init when we swap over to TSC.
2056 */
2057 if ((s64)delta < 0) {
2058 sa->last_runnable_update = now;
2059 return 0;
2060 }
2061
2062 /*
2063 * Use 1024ns as the unit of measurement since it's a reasonable
2064 * approximation of 1us and fast to compute.
2065 */
2066 delta >>= 10;
2067 if (!delta)
2068 return 0;
2069 sa->last_runnable_update = now;
2070
2071 /* delta_w is the amount already accumulated against our next period */
2072 delta_w = sa->runnable_avg_period % 1024;
2073 if (delta + delta_w >= 1024) {
2074 /* period roll-over */
2075 decayed = 1;
2076
2077 /*
2078 * Now that we know we're crossing a period boundary, figure
2079 * out how much from delta we need to complete the current
2080 * period and accrue it.
2081 */
2082 delta_w = 1024 - delta_w;
5b51f2f8
PT
2083 if (runnable)
2084 sa->runnable_avg_sum += delta_w;
2085 sa->runnable_avg_period += delta_w;
2086
2087 delta -= delta_w;
2088
2089 /* Figure out how many additional periods this update spans */
2090 periods = delta / 1024;
2091 delta %= 1024;
2092
2093 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2094 periods + 1);
2095 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2096 periods + 1);
2097
2098 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2099 runnable_contrib = __compute_runnable_contrib(periods);
2100 if (runnable)
2101 sa->runnable_avg_sum += runnable_contrib;
2102 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2103 }
2104
2105 /* Remainder of delta accrued against u_0` */
2106 if (runnable)
2107 sa->runnable_avg_sum += delta;
2108 sa->runnable_avg_period += delta;
2109
2110 return decayed;
2111}
2112
9ee474f5 2113/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2114static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2115{
2116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2117 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2118
2119 decays -= se->avg.decay_count;
2120 if (!decays)
aff3e498 2121 return 0;
9ee474f5
PT
2122
2123 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2124 se->avg.decay_count = 0;
aff3e498
PT
2125
2126 return decays;
9ee474f5
PT
2127}
2128
c566e8e9
PT
2129#ifdef CONFIG_FAIR_GROUP_SCHED
2130static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2131 int force_update)
2132{
2133 struct task_group *tg = cfs_rq->tg;
bf5b986e 2134 long tg_contrib;
c566e8e9
PT
2135
2136 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2137 tg_contrib -= cfs_rq->tg_load_contrib;
2138
bf5b986e
AS
2139 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2140 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2141 cfs_rq->tg_load_contrib += tg_contrib;
2142 }
2143}
8165e145 2144
bb17f655
PT
2145/*
2146 * Aggregate cfs_rq runnable averages into an equivalent task_group
2147 * representation for computing load contributions.
2148 */
2149static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2150 struct cfs_rq *cfs_rq)
2151{
2152 struct task_group *tg = cfs_rq->tg;
2153 long contrib;
2154
2155 /* The fraction of a cpu used by this cfs_rq */
2156 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2157 sa->runnable_avg_period + 1);
2158 contrib -= cfs_rq->tg_runnable_contrib;
2159
2160 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2161 atomic_add(contrib, &tg->runnable_avg);
2162 cfs_rq->tg_runnable_contrib += contrib;
2163 }
2164}
2165
8165e145
PT
2166static inline void __update_group_entity_contrib(struct sched_entity *se)
2167{
2168 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2169 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2170 int runnable_avg;
2171
8165e145
PT
2172 u64 contrib;
2173
2174 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2175 se->avg.load_avg_contrib = div_u64(contrib,
2176 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2177
2178 /*
2179 * For group entities we need to compute a correction term in the case
2180 * that they are consuming <1 cpu so that we would contribute the same
2181 * load as a task of equal weight.
2182 *
2183 * Explicitly co-ordinating this measurement would be expensive, but
2184 * fortunately the sum of each cpus contribution forms a usable
2185 * lower-bound on the true value.
2186 *
2187 * Consider the aggregate of 2 contributions. Either they are disjoint
2188 * (and the sum represents true value) or they are disjoint and we are
2189 * understating by the aggregate of their overlap.
2190 *
2191 * Extending this to N cpus, for a given overlap, the maximum amount we
2192 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2193 * cpus that overlap for this interval and w_i is the interval width.
2194 *
2195 * On a small machine; the first term is well-bounded which bounds the
2196 * total error since w_i is a subset of the period. Whereas on a
2197 * larger machine, while this first term can be larger, if w_i is the
2198 * of consequential size guaranteed to see n_i*w_i quickly converge to
2199 * our upper bound of 1-cpu.
2200 */
2201 runnable_avg = atomic_read(&tg->runnable_avg);
2202 if (runnable_avg < NICE_0_LOAD) {
2203 se->avg.load_avg_contrib *= runnable_avg;
2204 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2205 }
8165e145 2206}
c566e8e9
PT
2207#else
2208static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2209 int force_update) {}
bb17f655
PT
2210static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2211 struct cfs_rq *cfs_rq) {}
8165e145 2212static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2213#endif
2214
8165e145
PT
2215static inline void __update_task_entity_contrib(struct sched_entity *se)
2216{
2217 u32 contrib;
2218
2219 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2220 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2221 contrib /= (se->avg.runnable_avg_period + 1);
2222 se->avg.load_avg_contrib = scale_load(contrib);
2223}
2224
2dac754e
PT
2225/* Compute the current contribution to load_avg by se, return any delta */
2226static long __update_entity_load_avg_contrib(struct sched_entity *se)
2227{
2228 long old_contrib = se->avg.load_avg_contrib;
2229
8165e145
PT
2230 if (entity_is_task(se)) {
2231 __update_task_entity_contrib(se);
2232 } else {
bb17f655 2233 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2234 __update_group_entity_contrib(se);
2235 }
2dac754e
PT
2236
2237 return se->avg.load_avg_contrib - old_contrib;
2238}
2239
9ee474f5
PT
2240static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2241 long load_contrib)
2242{
2243 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2244 cfs_rq->blocked_load_avg -= load_contrib;
2245 else
2246 cfs_rq->blocked_load_avg = 0;
2247}
2248
f1b17280
PT
2249static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2250
9d85f21c 2251/* Update a sched_entity's runnable average */
9ee474f5
PT
2252static inline void update_entity_load_avg(struct sched_entity *se,
2253 int update_cfs_rq)
9d85f21c 2254{
2dac754e
PT
2255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2256 long contrib_delta;
f1b17280 2257 u64 now;
2dac754e 2258
f1b17280
PT
2259 /*
2260 * For a group entity we need to use their owned cfs_rq_clock_task() in
2261 * case they are the parent of a throttled hierarchy.
2262 */
2263 if (entity_is_task(se))
2264 now = cfs_rq_clock_task(cfs_rq);
2265 else
2266 now = cfs_rq_clock_task(group_cfs_rq(se));
2267
2268 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2269 return;
2270
2271 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2272
2273 if (!update_cfs_rq)
2274 return;
2275
2dac754e
PT
2276 if (se->on_rq)
2277 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2278 else
2279 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2280}
2281
2282/*
2283 * Decay the load contributed by all blocked children and account this so that
2284 * their contribution may appropriately discounted when they wake up.
2285 */
aff3e498 2286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2287{
f1b17280 2288 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2289 u64 decays;
2290
2291 decays = now - cfs_rq->last_decay;
aff3e498 2292 if (!decays && !force_update)
9ee474f5
PT
2293 return;
2294
2509940f
AS
2295 if (atomic_long_read(&cfs_rq->removed_load)) {
2296 unsigned long removed_load;
2297 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2298 subtract_blocked_load_contrib(cfs_rq, removed_load);
2299 }
9ee474f5 2300
aff3e498
PT
2301 if (decays) {
2302 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2303 decays);
2304 atomic64_add(decays, &cfs_rq->decay_counter);
2305 cfs_rq->last_decay = now;
2306 }
c566e8e9
PT
2307
2308 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2309}
18bf2805
BS
2310
2311static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2312{
78becc27 2313 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2314 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2315}
2dac754e
PT
2316
2317/* Add the load generated by se into cfs_rq's child load-average */
2318static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2319 struct sched_entity *se,
2320 int wakeup)
2dac754e 2321{
aff3e498
PT
2322 /*
2323 * We track migrations using entity decay_count <= 0, on a wake-up
2324 * migration we use a negative decay count to track the remote decays
2325 * accumulated while sleeping.
a75cdaa9
AS
2326 *
2327 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2328 * are seen by enqueue_entity_load_avg() as a migration with an already
2329 * constructed load_avg_contrib.
aff3e498
PT
2330 */
2331 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2332 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2333 if (se->avg.decay_count) {
2334 /*
2335 * In a wake-up migration we have to approximate the
2336 * time sleeping. This is because we can't synchronize
2337 * clock_task between the two cpus, and it is not
2338 * guaranteed to be read-safe. Instead, we can
2339 * approximate this using our carried decays, which are
2340 * explicitly atomically readable.
2341 */
2342 se->avg.last_runnable_update -= (-se->avg.decay_count)
2343 << 20;
2344 update_entity_load_avg(se, 0);
2345 /* Indicate that we're now synchronized and on-rq */
2346 se->avg.decay_count = 0;
2347 }
9ee474f5
PT
2348 wakeup = 0;
2349 } else {
282cf499
AS
2350 /*
2351 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2352 * would have made count negative); we must be careful to avoid
2353 * double-accounting blocked time after synchronizing decays.
2354 */
2355 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2356 << 20;
9ee474f5
PT
2357 }
2358
aff3e498
PT
2359 /* migrated tasks did not contribute to our blocked load */
2360 if (wakeup) {
9ee474f5 2361 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2362 update_entity_load_avg(se, 0);
2363 }
9ee474f5 2364
2dac754e 2365 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2366 /* we force update consideration on load-balancer moves */
2367 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2368}
2369
9ee474f5
PT
2370/*
2371 * Remove se's load from this cfs_rq child load-average, if the entity is
2372 * transitioning to a blocked state we track its projected decay using
2373 * blocked_load_avg.
2374 */
2dac754e 2375static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2376 struct sched_entity *se,
2377 int sleep)
2dac754e 2378{
9ee474f5 2379 update_entity_load_avg(se, 1);
aff3e498
PT
2380 /* we force update consideration on load-balancer moves */
2381 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2382
2dac754e 2383 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2384 if (sleep) {
2385 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2386 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2387 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2388}
642dbc39
VG
2389
2390/*
2391 * Update the rq's load with the elapsed running time before entering
2392 * idle. if the last scheduled task is not a CFS task, idle_enter will
2393 * be the only way to update the runnable statistic.
2394 */
2395void idle_enter_fair(struct rq *this_rq)
2396{
2397 update_rq_runnable_avg(this_rq, 1);
2398}
2399
2400/*
2401 * Update the rq's load with the elapsed idle time before a task is
2402 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2403 * be the only way to update the runnable statistic.
2404 */
2405void idle_exit_fair(struct rq *this_rq)
2406{
2407 update_rq_runnable_avg(this_rq, 0);
2408}
2409
9d85f21c 2410#else
9ee474f5
PT
2411static inline void update_entity_load_avg(struct sched_entity *se,
2412 int update_cfs_rq) {}
18bf2805 2413static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2414static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2415 struct sched_entity *se,
2416 int wakeup) {}
2dac754e 2417static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2418 struct sched_entity *se,
2419 int sleep) {}
aff3e498
PT
2420static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2421 int force_update) {}
9d85f21c
PT
2422#endif
2423
2396af69 2424static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2425{
bf0f6f24 2426#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2427 struct task_struct *tsk = NULL;
2428
2429 if (entity_is_task(se))
2430 tsk = task_of(se);
2431
41acab88 2432 if (se->statistics.sleep_start) {
78becc27 2433 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2434
2435 if ((s64)delta < 0)
2436 delta = 0;
2437
41acab88
LDM
2438 if (unlikely(delta > se->statistics.sleep_max))
2439 se->statistics.sleep_max = delta;
bf0f6f24 2440
8c79a045 2441 se->statistics.sleep_start = 0;
41acab88 2442 se->statistics.sum_sleep_runtime += delta;
9745512c 2443
768d0c27 2444 if (tsk) {
e414314c 2445 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2446 trace_sched_stat_sleep(tsk, delta);
2447 }
bf0f6f24 2448 }
41acab88 2449 if (se->statistics.block_start) {
78becc27 2450 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2451
2452 if ((s64)delta < 0)
2453 delta = 0;
2454
41acab88
LDM
2455 if (unlikely(delta > se->statistics.block_max))
2456 se->statistics.block_max = delta;
bf0f6f24 2457
8c79a045 2458 se->statistics.block_start = 0;
41acab88 2459 se->statistics.sum_sleep_runtime += delta;
30084fbd 2460
e414314c 2461 if (tsk) {
8f0dfc34 2462 if (tsk->in_iowait) {
41acab88
LDM
2463 se->statistics.iowait_sum += delta;
2464 se->statistics.iowait_count++;
768d0c27 2465 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2466 }
2467
b781a602
AV
2468 trace_sched_stat_blocked(tsk, delta);
2469
e414314c
PZ
2470 /*
2471 * Blocking time is in units of nanosecs, so shift by
2472 * 20 to get a milliseconds-range estimation of the
2473 * amount of time that the task spent sleeping:
2474 */
2475 if (unlikely(prof_on == SLEEP_PROFILING)) {
2476 profile_hits(SLEEP_PROFILING,
2477 (void *)get_wchan(tsk),
2478 delta >> 20);
2479 }
2480 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2481 }
bf0f6f24
IM
2482 }
2483#endif
2484}
2485
ddc97297
PZ
2486static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488#ifdef CONFIG_SCHED_DEBUG
2489 s64 d = se->vruntime - cfs_rq->min_vruntime;
2490
2491 if (d < 0)
2492 d = -d;
2493
2494 if (d > 3*sysctl_sched_latency)
2495 schedstat_inc(cfs_rq, nr_spread_over);
2496#endif
2497}
2498
aeb73b04
PZ
2499static void
2500place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2501{
1af5f730 2502 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2503
2cb8600e
PZ
2504 /*
2505 * The 'current' period is already promised to the current tasks,
2506 * however the extra weight of the new task will slow them down a
2507 * little, place the new task so that it fits in the slot that
2508 * stays open at the end.
2509 */
94dfb5e7 2510 if (initial && sched_feat(START_DEBIT))
f9c0b095 2511 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2512
a2e7a7eb 2513 /* sleeps up to a single latency don't count. */
5ca9880c 2514 if (!initial) {
a2e7a7eb 2515 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2516
a2e7a7eb
MG
2517 /*
2518 * Halve their sleep time's effect, to allow
2519 * for a gentler effect of sleepers:
2520 */
2521 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2522 thresh >>= 1;
51e0304c 2523
a2e7a7eb 2524 vruntime -= thresh;
aeb73b04
PZ
2525 }
2526
b5d9d734 2527 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2528 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2529}
2530
d3d9dc33
PT
2531static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2532
bf0f6f24 2533static void
88ec22d3 2534enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2535{
88ec22d3
PZ
2536 /*
2537 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2538 * through calling update_curr().
88ec22d3 2539 */
371fd7e7 2540 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2541 se->vruntime += cfs_rq->min_vruntime;
2542
bf0f6f24 2543 /*
a2a2d680 2544 * Update run-time statistics of the 'current'.
bf0f6f24 2545 */
b7cc0896 2546 update_curr(cfs_rq);
f269ae04 2547 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2548 account_entity_enqueue(cfs_rq, se);
2549 update_cfs_shares(cfs_rq);
bf0f6f24 2550
88ec22d3 2551 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2552 place_entity(cfs_rq, se, 0);
2396af69 2553 enqueue_sleeper(cfs_rq, se);
e9acbff6 2554 }
bf0f6f24 2555
d2417e5a 2556 update_stats_enqueue(cfs_rq, se);
ddc97297 2557 check_spread(cfs_rq, se);
83b699ed
SV
2558 if (se != cfs_rq->curr)
2559 __enqueue_entity(cfs_rq, se);
2069dd75 2560 se->on_rq = 1;
3d4b47b4 2561
d3d9dc33 2562 if (cfs_rq->nr_running == 1) {
3d4b47b4 2563 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2564 check_enqueue_throttle(cfs_rq);
2565 }
bf0f6f24
IM
2566}
2567
2c13c919 2568static void __clear_buddies_last(struct sched_entity *se)
2002c695 2569{
2c13c919
RR
2570 for_each_sched_entity(se) {
2571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2572 if (cfs_rq->last == se)
2573 cfs_rq->last = NULL;
2574 else
2575 break;
2576 }
2577}
2002c695 2578
2c13c919
RR
2579static void __clear_buddies_next(struct sched_entity *se)
2580{
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->next == se)
2584 cfs_rq->next = NULL;
2585 else
2586 break;
2587 }
2002c695
PZ
2588}
2589
ac53db59
RR
2590static void __clear_buddies_skip(struct sched_entity *se)
2591{
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->skip == se)
2595 cfs_rq->skip = NULL;
2596 else
2597 break;
2598 }
2599}
2600
a571bbea
PZ
2601static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602{
2c13c919
RR
2603 if (cfs_rq->last == se)
2604 __clear_buddies_last(se);
2605
2606 if (cfs_rq->next == se)
2607 __clear_buddies_next(se);
ac53db59
RR
2608
2609 if (cfs_rq->skip == se)
2610 __clear_buddies_skip(se);
a571bbea
PZ
2611}
2612
6c16a6dc 2613static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2614
bf0f6f24 2615static void
371fd7e7 2616dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2617{
a2a2d680
DA
2618 /*
2619 * Update run-time statistics of the 'current'.
2620 */
2621 update_curr(cfs_rq);
17bc14b7 2622 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2623
19b6a2e3 2624 update_stats_dequeue(cfs_rq, se);
371fd7e7 2625 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2626#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2627 if (entity_is_task(se)) {
2628 struct task_struct *tsk = task_of(se);
2629
2630 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2631 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2632 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2633 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2634 }
db36cc7d 2635#endif
67e9fb2a
PZ
2636 }
2637
2002c695 2638 clear_buddies(cfs_rq, se);
4793241b 2639
83b699ed 2640 if (se != cfs_rq->curr)
30cfdcfc 2641 __dequeue_entity(cfs_rq, se);
17bc14b7 2642 se->on_rq = 0;
30cfdcfc 2643 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2644
2645 /*
2646 * Normalize the entity after updating the min_vruntime because the
2647 * update can refer to the ->curr item and we need to reflect this
2648 * movement in our normalized position.
2649 */
371fd7e7 2650 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2651 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2652
d8b4986d
PT
2653 /* return excess runtime on last dequeue */
2654 return_cfs_rq_runtime(cfs_rq);
2655
1e876231 2656 update_min_vruntime(cfs_rq);
17bc14b7 2657 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2658}
2659
2660/*
2661 * Preempt the current task with a newly woken task if needed:
2662 */
7c92e54f 2663static void
2e09bf55 2664check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2665{
11697830 2666 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2667 struct sched_entity *se;
2668 s64 delta;
11697830 2669
6d0f0ebd 2670 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2671 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2672 if (delta_exec > ideal_runtime) {
bf0f6f24 2673 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2674 /*
2675 * The current task ran long enough, ensure it doesn't get
2676 * re-elected due to buddy favours.
2677 */
2678 clear_buddies(cfs_rq, curr);
f685ceac
MG
2679 return;
2680 }
2681
2682 /*
2683 * Ensure that a task that missed wakeup preemption by a
2684 * narrow margin doesn't have to wait for a full slice.
2685 * This also mitigates buddy induced latencies under load.
2686 */
f685ceac
MG
2687 if (delta_exec < sysctl_sched_min_granularity)
2688 return;
2689
f4cfb33e
WX
2690 se = __pick_first_entity(cfs_rq);
2691 delta = curr->vruntime - se->vruntime;
f685ceac 2692
f4cfb33e
WX
2693 if (delta < 0)
2694 return;
d7d82944 2695
f4cfb33e
WX
2696 if (delta > ideal_runtime)
2697 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2698}
2699
83b699ed 2700static void
8494f412 2701set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2702{
83b699ed
SV
2703 /* 'current' is not kept within the tree. */
2704 if (se->on_rq) {
2705 /*
2706 * Any task has to be enqueued before it get to execute on
2707 * a CPU. So account for the time it spent waiting on the
2708 * runqueue.
2709 */
2710 update_stats_wait_end(cfs_rq, se);
2711 __dequeue_entity(cfs_rq, se);
2712 }
2713
79303e9e 2714 update_stats_curr_start(cfs_rq, se);
429d43bc 2715 cfs_rq->curr = se;
eba1ed4b
IM
2716#ifdef CONFIG_SCHEDSTATS
2717 /*
2718 * Track our maximum slice length, if the CPU's load is at
2719 * least twice that of our own weight (i.e. dont track it
2720 * when there are only lesser-weight tasks around):
2721 */
495eca49 2722 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2723 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2724 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2725 }
2726#endif
4a55b450 2727 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2728}
2729
3f3a4904
PZ
2730static int
2731wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2732
ac53db59
RR
2733/*
2734 * Pick the next process, keeping these things in mind, in this order:
2735 * 1) keep things fair between processes/task groups
2736 * 2) pick the "next" process, since someone really wants that to run
2737 * 3) pick the "last" process, for cache locality
2738 * 4) do not run the "skip" process, if something else is available
2739 */
f4b6755f 2740static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2741{
ac53db59 2742 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2743 struct sched_entity *left = se;
f4b6755f 2744
ac53db59
RR
2745 /*
2746 * Avoid running the skip buddy, if running something else can
2747 * be done without getting too unfair.
2748 */
2749 if (cfs_rq->skip == se) {
2750 struct sched_entity *second = __pick_next_entity(se);
2751 if (second && wakeup_preempt_entity(second, left) < 1)
2752 se = second;
2753 }
aa2ac252 2754
f685ceac
MG
2755 /*
2756 * Prefer last buddy, try to return the CPU to a preempted task.
2757 */
2758 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2759 se = cfs_rq->last;
2760
ac53db59
RR
2761 /*
2762 * Someone really wants this to run. If it's not unfair, run it.
2763 */
2764 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2765 se = cfs_rq->next;
2766
f685ceac 2767 clear_buddies(cfs_rq, se);
4793241b
PZ
2768
2769 return se;
aa2ac252
PZ
2770}
2771
d3d9dc33
PT
2772static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2773
ab6cde26 2774static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2775{
2776 /*
2777 * If still on the runqueue then deactivate_task()
2778 * was not called and update_curr() has to be done:
2779 */
2780 if (prev->on_rq)
b7cc0896 2781 update_curr(cfs_rq);
bf0f6f24 2782
d3d9dc33
PT
2783 /* throttle cfs_rqs exceeding runtime */
2784 check_cfs_rq_runtime(cfs_rq);
2785
ddc97297 2786 check_spread(cfs_rq, prev);
30cfdcfc 2787 if (prev->on_rq) {
5870db5b 2788 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2789 /* Put 'current' back into the tree. */
2790 __enqueue_entity(cfs_rq, prev);
9d85f21c 2791 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2792 update_entity_load_avg(prev, 1);
30cfdcfc 2793 }
429d43bc 2794 cfs_rq->curr = NULL;
bf0f6f24
IM
2795}
2796
8f4d37ec
PZ
2797static void
2798entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2799{
bf0f6f24 2800 /*
30cfdcfc 2801 * Update run-time statistics of the 'current'.
bf0f6f24 2802 */
30cfdcfc 2803 update_curr(cfs_rq);
bf0f6f24 2804
9d85f21c
PT
2805 /*
2806 * Ensure that runnable average is periodically updated.
2807 */
9ee474f5 2808 update_entity_load_avg(curr, 1);
aff3e498 2809 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2810 update_cfs_shares(cfs_rq);
9d85f21c 2811
8f4d37ec
PZ
2812#ifdef CONFIG_SCHED_HRTICK
2813 /*
2814 * queued ticks are scheduled to match the slice, so don't bother
2815 * validating it and just reschedule.
2816 */
983ed7a6
HH
2817 if (queued) {
2818 resched_task(rq_of(cfs_rq)->curr);
2819 return;
2820 }
8f4d37ec
PZ
2821 /*
2822 * don't let the period tick interfere with the hrtick preemption
2823 */
2824 if (!sched_feat(DOUBLE_TICK) &&
2825 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2826 return;
2827#endif
2828
2c2efaed 2829 if (cfs_rq->nr_running > 1)
2e09bf55 2830 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2831}
2832
ab84d31e
PT
2833
2834/**************************************************
2835 * CFS bandwidth control machinery
2836 */
2837
2838#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2839
2840#ifdef HAVE_JUMP_LABEL
c5905afb 2841static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2842
2843static inline bool cfs_bandwidth_used(void)
2844{
c5905afb 2845 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2846}
2847
1ee14e6c 2848void cfs_bandwidth_usage_inc(void)
029632fb 2849{
1ee14e6c
BS
2850 static_key_slow_inc(&__cfs_bandwidth_used);
2851}
2852
2853void cfs_bandwidth_usage_dec(void)
2854{
2855 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2856}
2857#else /* HAVE_JUMP_LABEL */
2858static bool cfs_bandwidth_used(void)
2859{
2860 return true;
2861}
2862
1ee14e6c
BS
2863void cfs_bandwidth_usage_inc(void) {}
2864void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2865#endif /* HAVE_JUMP_LABEL */
2866
ab84d31e
PT
2867/*
2868 * default period for cfs group bandwidth.
2869 * default: 0.1s, units: nanoseconds
2870 */
2871static inline u64 default_cfs_period(void)
2872{
2873 return 100000000ULL;
2874}
ec12cb7f
PT
2875
2876static inline u64 sched_cfs_bandwidth_slice(void)
2877{
2878 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2879}
2880
a9cf55b2
PT
2881/*
2882 * Replenish runtime according to assigned quota and update expiration time.
2883 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2884 * additional synchronization around rq->lock.
2885 *
2886 * requires cfs_b->lock
2887 */
029632fb 2888void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2889{
2890 u64 now;
2891
2892 if (cfs_b->quota == RUNTIME_INF)
2893 return;
2894
2895 now = sched_clock_cpu(smp_processor_id());
2896 cfs_b->runtime = cfs_b->quota;
2897 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2898}
2899
029632fb
PZ
2900static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2901{
2902 return &tg->cfs_bandwidth;
2903}
2904
f1b17280
PT
2905/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2906static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2907{
2908 if (unlikely(cfs_rq->throttle_count))
2909 return cfs_rq->throttled_clock_task;
2910
78becc27 2911 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2912}
2913
85dac906
PT
2914/* returns 0 on failure to allocate runtime */
2915static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2916{
2917 struct task_group *tg = cfs_rq->tg;
2918 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2919 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2920
2921 /* note: this is a positive sum as runtime_remaining <= 0 */
2922 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2923
2924 raw_spin_lock(&cfs_b->lock);
2925 if (cfs_b->quota == RUNTIME_INF)
2926 amount = min_amount;
58088ad0 2927 else {
a9cf55b2
PT
2928 /*
2929 * If the bandwidth pool has become inactive, then at least one
2930 * period must have elapsed since the last consumption.
2931 * Refresh the global state and ensure bandwidth timer becomes
2932 * active.
2933 */
2934 if (!cfs_b->timer_active) {
2935 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2936 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2937 }
58088ad0
PT
2938
2939 if (cfs_b->runtime > 0) {
2940 amount = min(cfs_b->runtime, min_amount);
2941 cfs_b->runtime -= amount;
2942 cfs_b->idle = 0;
2943 }
ec12cb7f 2944 }
a9cf55b2 2945 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2946 raw_spin_unlock(&cfs_b->lock);
2947
2948 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2949 /*
2950 * we may have advanced our local expiration to account for allowed
2951 * spread between our sched_clock and the one on which runtime was
2952 * issued.
2953 */
2954 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2955 cfs_rq->runtime_expires = expires;
85dac906
PT
2956
2957 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2958}
2959
a9cf55b2
PT
2960/*
2961 * Note: This depends on the synchronization provided by sched_clock and the
2962 * fact that rq->clock snapshots this value.
2963 */
2964static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2965{
a9cf55b2 2966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2967
2968 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2969 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2970 return;
2971
a9cf55b2
PT
2972 if (cfs_rq->runtime_remaining < 0)
2973 return;
2974
2975 /*
2976 * If the local deadline has passed we have to consider the
2977 * possibility that our sched_clock is 'fast' and the global deadline
2978 * has not truly expired.
2979 *
2980 * Fortunately we can check determine whether this the case by checking
2981 * whether the global deadline has advanced.
2982 */
2983
2984 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2985 /* extend local deadline, drift is bounded above by 2 ticks */
2986 cfs_rq->runtime_expires += TICK_NSEC;
2987 } else {
2988 /* global deadline is ahead, expiration has passed */
2989 cfs_rq->runtime_remaining = 0;
2990 }
2991}
2992
2993static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2994 unsigned long delta_exec)
2995{
2996 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2997 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2998 expire_cfs_rq_runtime(cfs_rq);
2999
3000 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3001 return;
3002
85dac906
PT
3003 /*
3004 * if we're unable to extend our runtime we resched so that the active
3005 * hierarchy can be throttled
3006 */
3007 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3008 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3009}
3010
6c16a6dc
PZ
3011static __always_inline
3012void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3013{
56f570e5 3014 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3015 return;
3016
3017 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3018}
3019
85dac906
PT
3020static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3021{
56f570e5 3022 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3023}
3024
64660c86
PT
3025/* check whether cfs_rq, or any parent, is throttled */
3026static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3027{
56f570e5 3028 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3029}
3030
3031/*
3032 * Ensure that neither of the group entities corresponding to src_cpu or
3033 * dest_cpu are members of a throttled hierarchy when performing group
3034 * load-balance operations.
3035 */
3036static inline int throttled_lb_pair(struct task_group *tg,
3037 int src_cpu, int dest_cpu)
3038{
3039 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3040
3041 src_cfs_rq = tg->cfs_rq[src_cpu];
3042 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3043
3044 return throttled_hierarchy(src_cfs_rq) ||
3045 throttled_hierarchy(dest_cfs_rq);
3046}
3047
3048/* updated child weight may affect parent so we have to do this bottom up */
3049static int tg_unthrottle_up(struct task_group *tg, void *data)
3050{
3051 struct rq *rq = data;
3052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3053
3054 cfs_rq->throttle_count--;
3055#ifdef CONFIG_SMP
3056 if (!cfs_rq->throttle_count) {
f1b17280 3057 /* adjust cfs_rq_clock_task() */
78becc27 3058 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3059 cfs_rq->throttled_clock_task;
64660c86
PT
3060 }
3061#endif
3062
3063 return 0;
3064}
3065
3066static int tg_throttle_down(struct task_group *tg, void *data)
3067{
3068 struct rq *rq = data;
3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3070
82958366
PT
3071 /* group is entering throttled state, stop time */
3072 if (!cfs_rq->throttle_count)
78becc27 3073 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3074 cfs_rq->throttle_count++;
3075
3076 return 0;
3077}
3078
d3d9dc33 3079static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3080{
3081 struct rq *rq = rq_of(cfs_rq);
3082 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3083 struct sched_entity *se;
3084 long task_delta, dequeue = 1;
3085
3086 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3087
f1b17280 3088 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3089 rcu_read_lock();
3090 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3091 rcu_read_unlock();
85dac906
PT
3092
3093 task_delta = cfs_rq->h_nr_running;
3094 for_each_sched_entity(se) {
3095 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3096 /* throttled entity or throttle-on-deactivate */
3097 if (!se->on_rq)
3098 break;
3099
3100 if (dequeue)
3101 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3102 qcfs_rq->h_nr_running -= task_delta;
3103
3104 if (qcfs_rq->load.weight)
3105 dequeue = 0;
3106 }
3107
3108 if (!se)
3109 rq->nr_running -= task_delta;
3110
3111 cfs_rq->throttled = 1;
78becc27 3112 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3113 raw_spin_lock(&cfs_b->lock);
3114 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3115 if (!cfs_b->timer_active)
3116 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3117 raw_spin_unlock(&cfs_b->lock);
3118}
3119
029632fb 3120void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3121{
3122 struct rq *rq = rq_of(cfs_rq);
3123 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3124 struct sched_entity *se;
3125 int enqueue = 1;
3126 long task_delta;
3127
22b958d8 3128 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3129
3130 cfs_rq->throttled = 0;
1a55af2e
FW
3131
3132 update_rq_clock(rq);
3133
671fd9da 3134 raw_spin_lock(&cfs_b->lock);
78becc27 3135 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3136 list_del_rcu(&cfs_rq->throttled_list);
3137 raw_spin_unlock(&cfs_b->lock);
3138
64660c86
PT
3139 /* update hierarchical throttle state */
3140 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3141
671fd9da
PT
3142 if (!cfs_rq->load.weight)
3143 return;
3144
3145 task_delta = cfs_rq->h_nr_running;
3146 for_each_sched_entity(se) {
3147 if (se->on_rq)
3148 enqueue = 0;
3149
3150 cfs_rq = cfs_rq_of(se);
3151 if (enqueue)
3152 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3153 cfs_rq->h_nr_running += task_delta;
3154
3155 if (cfs_rq_throttled(cfs_rq))
3156 break;
3157 }
3158
3159 if (!se)
3160 rq->nr_running += task_delta;
3161
3162 /* determine whether we need to wake up potentially idle cpu */
3163 if (rq->curr == rq->idle && rq->cfs.nr_running)
3164 resched_task(rq->curr);
3165}
3166
3167static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3168 u64 remaining, u64 expires)
3169{
3170 struct cfs_rq *cfs_rq;
3171 u64 runtime = remaining;
3172
3173 rcu_read_lock();
3174 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3175 throttled_list) {
3176 struct rq *rq = rq_of(cfs_rq);
3177
3178 raw_spin_lock(&rq->lock);
3179 if (!cfs_rq_throttled(cfs_rq))
3180 goto next;
3181
3182 runtime = -cfs_rq->runtime_remaining + 1;
3183 if (runtime > remaining)
3184 runtime = remaining;
3185 remaining -= runtime;
3186
3187 cfs_rq->runtime_remaining += runtime;
3188 cfs_rq->runtime_expires = expires;
3189
3190 /* we check whether we're throttled above */
3191 if (cfs_rq->runtime_remaining > 0)
3192 unthrottle_cfs_rq(cfs_rq);
3193
3194next:
3195 raw_spin_unlock(&rq->lock);
3196
3197 if (!remaining)
3198 break;
3199 }
3200 rcu_read_unlock();
3201
3202 return remaining;
3203}
3204
58088ad0
PT
3205/*
3206 * Responsible for refilling a task_group's bandwidth and unthrottling its
3207 * cfs_rqs as appropriate. If there has been no activity within the last
3208 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3209 * used to track this state.
3210 */
3211static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3212{
671fd9da
PT
3213 u64 runtime, runtime_expires;
3214 int idle = 1, throttled;
58088ad0
PT
3215
3216 raw_spin_lock(&cfs_b->lock);
3217 /* no need to continue the timer with no bandwidth constraint */
3218 if (cfs_b->quota == RUNTIME_INF)
3219 goto out_unlock;
3220
671fd9da
PT
3221 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3222 /* idle depends on !throttled (for the case of a large deficit) */
3223 idle = cfs_b->idle && !throttled;
e8da1b18 3224 cfs_b->nr_periods += overrun;
671fd9da 3225
a9cf55b2
PT
3226 /* if we're going inactive then everything else can be deferred */
3227 if (idle)
3228 goto out_unlock;
3229
927b54fc
BS
3230 /*
3231 * if we have relooped after returning idle once, we need to update our
3232 * status as actually running, so that other cpus doing
3233 * __start_cfs_bandwidth will stop trying to cancel us.
3234 */
3235 cfs_b->timer_active = 1;
3236
a9cf55b2
PT
3237 __refill_cfs_bandwidth_runtime(cfs_b);
3238
671fd9da
PT
3239 if (!throttled) {
3240 /* mark as potentially idle for the upcoming period */
3241 cfs_b->idle = 1;
3242 goto out_unlock;
3243 }
3244
e8da1b18
NR
3245 /* account preceding periods in which throttling occurred */
3246 cfs_b->nr_throttled += overrun;
3247
671fd9da
PT
3248 /*
3249 * There are throttled entities so we must first use the new bandwidth
3250 * to unthrottle them before making it generally available. This
3251 * ensures that all existing debts will be paid before a new cfs_rq is
3252 * allowed to run.
3253 */
3254 runtime = cfs_b->runtime;
3255 runtime_expires = cfs_b->runtime_expires;
3256 cfs_b->runtime = 0;
3257
3258 /*
3259 * This check is repeated as we are holding onto the new bandwidth
3260 * while we unthrottle. This can potentially race with an unthrottled
3261 * group trying to acquire new bandwidth from the global pool.
3262 */
3263 while (throttled && runtime > 0) {
3264 raw_spin_unlock(&cfs_b->lock);
3265 /* we can't nest cfs_b->lock while distributing bandwidth */
3266 runtime = distribute_cfs_runtime(cfs_b, runtime,
3267 runtime_expires);
3268 raw_spin_lock(&cfs_b->lock);
3269
3270 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3271 }
58088ad0 3272
671fd9da
PT
3273 /* return (any) remaining runtime */
3274 cfs_b->runtime = runtime;
3275 /*
3276 * While we are ensured activity in the period following an
3277 * unthrottle, this also covers the case in which the new bandwidth is
3278 * insufficient to cover the existing bandwidth deficit. (Forcing the
3279 * timer to remain active while there are any throttled entities.)
3280 */
3281 cfs_b->idle = 0;
58088ad0
PT
3282out_unlock:
3283 if (idle)
3284 cfs_b->timer_active = 0;
3285 raw_spin_unlock(&cfs_b->lock);
3286
3287 return idle;
3288}
d3d9dc33 3289
d8b4986d
PT
3290/* a cfs_rq won't donate quota below this amount */
3291static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3292/* minimum remaining period time to redistribute slack quota */
3293static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3294/* how long we wait to gather additional slack before distributing */
3295static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3296
db06e78c
BS
3297/*
3298 * Are we near the end of the current quota period?
3299 *
3300 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3301 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3302 * migrate_hrtimers, base is never cleared, so we are fine.
3303 */
d8b4986d
PT
3304static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3305{
3306 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3307 u64 remaining;
3308
3309 /* if the call-back is running a quota refresh is already occurring */
3310 if (hrtimer_callback_running(refresh_timer))
3311 return 1;
3312
3313 /* is a quota refresh about to occur? */
3314 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3315 if (remaining < min_expire)
3316 return 1;
3317
3318 return 0;
3319}
3320
3321static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3322{
3323 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3324
3325 /* if there's a quota refresh soon don't bother with slack */
3326 if (runtime_refresh_within(cfs_b, min_left))
3327 return;
3328
3329 start_bandwidth_timer(&cfs_b->slack_timer,
3330 ns_to_ktime(cfs_bandwidth_slack_period));
3331}
3332
3333/* we know any runtime found here is valid as update_curr() precedes return */
3334static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3335{
3336 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3337 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3338
3339 if (slack_runtime <= 0)
3340 return;
3341
3342 raw_spin_lock(&cfs_b->lock);
3343 if (cfs_b->quota != RUNTIME_INF &&
3344 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3345 cfs_b->runtime += slack_runtime;
3346
3347 /* we are under rq->lock, defer unthrottling using a timer */
3348 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3349 !list_empty(&cfs_b->throttled_cfs_rq))
3350 start_cfs_slack_bandwidth(cfs_b);
3351 }
3352 raw_spin_unlock(&cfs_b->lock);
3353
3354 /* even if it's not valid for return we don't want to try again */
3355 cfs_rq->runtime_remaining -= slack_runtime;
3356}
3357
3358static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3359{
56f570e5
PT
3360 if (!cfs_bandwidth_used())
3361 return;
3362
fccfdc6f 3363 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3364 return;
3365
3366 __return_cfs_rq_runtime(cfs_rq);
3367}
3368
3369/*
3370 * This is done with a timer (instead of inline with bandwidth return) since
3371 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3372 */
3373static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3374{
3375 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3376 u64 expires;
3377
3378 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3379 raw_spin_lock(&cfs_b->lock);
3380 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3381 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3382 return;
db06e78c 3383 }
d8b4986d 3384
d8b4986d
PT
3385 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3386 runtime = cfs_b->runtime;
3387 cfs_b->runtime = 0;
3388 }
3389 expires = cfs_b->runtime_expires;
3390 raw_spin_unlock(&cfs_b->lock);
3391
3392 if (!runtime)
3393 return;
3394
3395 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3396
3397 raw_spin_lock(&cfs_b->lock);
3398 if (expires == cfs_b->runtime_expires)
3399 cfs_b->runtime = runtime;
3400 raw_spin_unlock(&cfs_b->lock);
3401}
3402
d3d9dc33
PT
3403/*
3404 * When a group wakes up we want to make sure that its quota is not already
3405 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3406 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3407 */
3408static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3409{
56f570e5
PT
3410 if (!cfs_bandwidth_used())
3411 return;
3412
d3d9dc33
PT
3413 /* an active group must be handled by the update_curr()->put() path */
3414 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3415 return;
3416
3417 /* ensure the group is not already throttled */
3418 if (cfs_rq_throttled(cfs_rq))
3419 return;
3420
3421 /* update runtime allocation */
3422 account_cfs_rq_runtime(cfs_rq, 0);
3423 if (cfs_rq->runtime_remaining <= 0)
3424 throttle_cfs_rq(cfs_rq);
3425}
3426
3427/* conditionally throttle active cfs_rq's from put_prev_entity() */
3428static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3429{
56f570e5
PT
3430 if (!cfs_bandwidth_used())
3431 return;
3432
d3d9dc33
PT
3433 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3434 return;
3435
3436 /*
3437 * it's possible for a throttled entity to be forced into a running
3438 * state (e.g. set_curr_task), in this case we're finished.
3439 */
3440 if (cfs_rq_throttled(cfs_rq))
3441 return;
3442
3443 throttle_cfs_rq(cfs_rq);
3444}
029632fb 3445
029632fb
PZ
3446static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3447{
3448 struct cfs_bandwidth *cfs_b =
3449 container_of(timer, struct cfs_bandwidth, slack_timer);
3450 do_sched_cfs_slack_timer(cfs_b);
3451
3452 return HRTIMER_NORESTART;
3453}
3454
3455static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3456{
3457 struct cfs_bandwidth *cfs_b =
3458 container_of(timer, struct cfs_bandwidth, period_timer);
3459 ktime_t now;
3460 int overrun;
3461 int idle = 0;
3462
3463 for (;;) {
3464 now = hrtimer_cb_get_time(timer);
3465 overrun = hrtimer_forward(timer, now, cfs_b->period);
3466
3467 if (!overrun)
3468 break;
3469
3470 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3471 }
3472
3473 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3474}
3475
3476void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3477{
3478 raw_spin_lock_init(&cfs_b->lock);
3479 cfs_b->runtime = 0;
3480 cfs_b->quota = RUNTIME_INF;
3481 cfs_b->period = ns_to_ktime(default_cfs_period());
3482
3483 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3484 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485 cfs_b->period_timer.function = sched_cfs_period_timer;
3486 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3487 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3488}
3489
3490static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3491{
3492 cfs_rq->runtime_enabled = 0;
3493 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3494}
3495
3496/* requires cfs_b->lock, may release to reprogram timer */
3497void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3498{
3499 /*
3500 * The timer may be active because we're trying to set a new bandwidth
3501 * period or because we're racing with the tear-down path
3502 * (timer_active==0 becomes visible before the hrtimer call-back
3503 * terminates). In either case we ensure that it's re-programmed
3504 */
927b54fc
BS
3505 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3506 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3507 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3508 raw_spin_unlock(&cfs_b->lock);
927b54fc 3509 cpu_relax();
029632fb
PZ
3510 raw_spin_lock(&cfs_b->lock);
3511 /* if someone else restarted the timer then we're done */
3512 if (cfs_b->timer_active)
3513 return;
3514 }
3515
3516 cfs_b->timer_active = 1;
3517 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3518}
3519
3520static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3521{
3522 hrtimer_cancel(&cfs_b->period_timer);
3523 hrtimer_cancel(&cfs_b->slack_timer);
3524}
3525
38dc3348 3526static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3527{
3528 struct cfs_rq *cfs_rq;
3529
3530 for_each_leaf_cfs_rq(rq, cfs_rq) {
3531 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3532
3533 if (!cfs_rq->runtime_enabled)
3534 continue;
3535
3536 /*
3537 * clock_task is not advancing so we just need to make sure
3538 * there's some valid quota amount
3539 */
3540 cfs_rq->runtime_remaining = cfs_b->quota;
3541 if (cfs_rq_throttled(cfs_rq))
3542 unthrottle_cfs_rq(cfs_rq);
3543 }
3544}
3545
3546#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3547static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3548{
78becc27 3549 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3550}
3551
3552static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3553 unsigned long delta_exec) {}
d3d9dc33
PT
3554static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3555static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3556static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3557
3558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3559{
3560 return 0;
3561}
64660c86
PT
3562
3563static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3564{
3565 return 0;
3566}
3567
3568static inline int throttled_lb_pair(struct task_group *tg,
3569 int src_cpu, int dest_cpu)
3570{
3571 return 0;
3572}
029632fb
PZ
3573
3574void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3575
3576#ifdef CONFIG_FAIR_GROUP_SCHED
3577static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3578#endif
3579
029632fb
PZ
3580static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3581{
3582 return NULL;
3583}
3584static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3585static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3586
3587#endif /* CONFIG_CFS_BANDWIDTH */
3588
bf0f6f24
IM
3589/**************************************************
3590 * CFS operations on tasks:
3591 */
3592
8f4d37ec
PZ
3593#ifdef CONFIG_SCHED_HRTICK
3594static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3595{
8f4d37ec
PZ
3596 struct sched_entity *se = &p->se;
3597 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3598
3599 WARN_ON(task_rq(p) != rq);
3600
b39e66ea 3601 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3602 u64 slice = sched_slice(cfs_rq, se);
3603 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3604 s64 delta = slice - ran;
3605
3606 if (delta < 0) {
3607 if (rq->curr == p)
3608 resched_task(p);
3609 return;
3610 }
3611
3612 /*
3613 * Don't schedule slices shorter than 10000ns, that just
3614 * doesn't make sense. Rely on vruntime for fairness.
3615 */
31656519 3616 if (rq->curr != p)
157124c1 3617 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3618
31656519 3619 hrtick_start(rq, delta);
8f4d37ec
PZ
3620 }
3621}
a4c2f00f
PZ
3622
3623/*
3624 * called from enqueue/dequeue and updates the hrtick when the
3625 * current task is from our class and nr_running is low enough
3626 * to matter.
3627 */
3628static void hrtick_update(struct rq *rq)
3629{
3630 struct task_struct *curr = rq->curr;
3631
b39e66ea 3632 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3633 return;
3634
3635 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3636 hrtick_start_fair(rq, curr);
3637}
55e12e5e 3638#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3639static inline void
3640hrtick_start_fair(struct rq *rq, struct task_struct *p)
3641{
3642}
a4c2f00f
PZ
3643
3644static inline void hrtick_update(struct rq *rq)
3645{
3646}
8f4d37ec
PZ
3647#endif
3648
bf0f6f24
IM
3649/*
3650 * The enqueue_task method is called before nr_running is
3651 * increased. Here we update the fair scheduling stats and
3652 * then put the task into the rbtree:
3653 */
ea87bb78 3654static void
371fd7e7 3655enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3656{
3657 struct cfs_rq *cfs_rq;
62fb1851 3658 struct sched_entity *se = &p->se;
bf0f6f24
IM
3659
3660 for_each_sched_entity(se) {
62fb1851 3661 if (se->on_rq)
bf0f6f24
IM
3662 break;
3663 cfs_rq = cfs_rq_of(se);
88ec22d3 3664 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3665
3666 /*
3667 * end evaluation on encountering a throttled cfs_rq
3668 *
3669 * note: in the case of encountering a throttled cfs_rq we will
3670 * post the final h_nr_running increment below.
3671 */
3672 if (cfs_rq_throttled(cfs_rq))
3673 break;
953bfcd1 3674 cfs_rq->h_nr_running++;
85dac906 3675
88ec22d3 3676 flags = ENQUEUE_WAKEUP;
bf0f6f24 3677 }
8f4d37ec 3678
2069dd75 3679 for_each_sched_entity(se) {
0f317143 3680 cfs_rq = cfs_rq_of(se);
953bfcd1 3681 cfs_rq->h_nr_running++;
2069dd75 3682
85dac906
PT
3683 if (cfs_rq_throttled(cfs_rq))
3684 break;
3685
17bc14b7 3686 update_cfs_shares(cfs_rq);
9ee474f5 3687 update_entity_load_avg(se, 1);
2069dd75
PZ
3688 }
3689
18bf2805
BS
3690 if (!se) {
3691 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3692 inc_nr_running(rq);
18bf2805 3693 }
a4c2f00f 3694 hrtick_update(rq);
bf0f6f24
IM
3695}
3696
2f36825b
VP
3697static void set_next_buddy(struct sched_entity *se);
3698
bf0f6f24
IM
3699/*
3700 * The dequeue_task method is called before nr_running is
3701 * decreased. We remove the task from the rbtree and
3702 * update the fair scheduling stats:
3703 */
371fd7e7 3704static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3705{
3706 struct cfs_rq *cfs_rq;
62fb1851 3707 struct sched_entity *se = &p->se;
2f36825b 3708 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3709
3710 for_each_sched_entity(se) {
3711 cfs_rq = cfs_rq_of(se);
371fd7e7 3712 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3713
3714 /*
3715 * end evaluation on encountering a throttled cfs_rq
3716 *
3717 * note: in the case of encountering a throttled cfs_rq we will
3718 * post the final h_nr_running decrement below.
3719 */
3720 if (cfs_rq_throttled(cfs_rq))
3721 break;
953bfcd1 3722 cfs_rq->h_nr_running--;
2069dd75 3723
bf0f6f24 3724 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3725 if (cfs_rq->load.weight) {
3726 /*
3727 * Bias pick_next to pick a task from this cfs_rq, as
3728 * p is sleeping when it is within its sched_slice.
3729 */
3730 if (task_sleep && parent_entity(se))
3731 set_next_buddy(parent_entity(se));
9598c82d
PT
3732
3733 /* avoid re-evaluating load for this entity */
3734 se = parent_entity(se);
bf0f6f24 3735 break;
2f36825b 3736 }
371fd7e7 3737 flags |= DEQUEUE_SLEEP;
bf0f6f24 3738 }
8f4d37ec 3739
2069dd75 3740 for_each_sched_entity(se) {
0f317143 3741 cfs_rq = cfs_rq_of(se);
953bfcd1 3742 cfs_rq->h_nr_running--;
2069dd75 3743
85dac906
PT
3744 if (cfs_rq_throttled(cfs_rq))
3745 break;
3746
17bc14b7 3747 update_cfs_shares(cfs_rq);
9ee474f5 3748 update_entity_load_avg(se, 1);
2069dd75
PZ
3749 }
3750
18bf2805 3751 if (!se) {
85dac906 3752 dec_nr_running(rq);
18bf2805
BS
3753 update_rq_runnable_avg(rq, 1);
3754 }
a4c2f00f 3755 hrtick_update(rq);
bf0f6f24
IM
3756}
3757
e7693a36 3758#ifdef CONFIG_SMP
029632fb
PZ
3759/* Used instead of source_load when we know the type == 0 */
3760static unsigned long weighted_cpuload(const int cpu)
3761{
b92486cb 3762 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3763}
3764
3765/*
3766 * Return a low guess at the load of a migration-source cpu weighted
3767 * according to the scheduling class and "nice" value.
3768 *
3769 * We want to under-estimate the load of migration sources, to
3770 * balance conservatively.
3771 */
3772static unsigned long source_load(int cpu, int type)
3773{
3774 struct rq *rq = cpu_rq(cpu);
3775 unsigned long total = weighted_cpuload(cpu);
3776
3777 if (type == 0 || !sched_feat(LB_BIAS))
3778 return total;
3779
3780 return min(rq->cpu_load[type-1], total);
3781}
3782
3783/*
3784 * Return a high guess at the load of a migration-target cpu weighted
3785 * according to the scheduling class and "nice" value.
3786 */
3787static unsigned long target_load(int cpu, int type)
3788{
3789 struct rq *rq = cpu_rq(cpu);
3790 unsigned long total = weighted_cpuload(cpu);
3791
3792 if (type == 0 || !sched_feat(LB_BIAS))
3793 return total;
3794
3795 return max(rq->cpu_load[type-1], total);
3796}
3797
3798static unsigned long power_of(int cpu)
3799{
3800 return cpu_rq(cpu)->cpu_power;
3801}
3802
3803static unsigned long cpu_avg_load_per_task(int cpu)
3804{
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3807 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3808
3809 if (nr_running)
b92486cb 3810 return load_avg / nr_running;
029632fb
PZ
3811
3812 return 0;
3813}
3814
62470419
MW
3815static void record_wakee(struct task_struct *p)
3816{
3817 /*
3818 * Rough decay (wiping) for cost saving, don't worry
3819 * about the boundary, really active task won't care
3820 * about the loss.
3821 */
3822 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3823 current->wakee_flips = 0;
3824 current->wakee_flip_decay_ts = jiffies;
3825 }
3826
3827 if (current->last_wakee != p) {
3828 current->last_wakee = p;
3829 current->wakee_flips++;
3830 }
3831}
098fb9db 3832
74f8e4b2 3833static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3834{
3835 struct sched_entity *se = &p->se;
3836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3837 u64 min_vruntime;
3838
3839#ifndef CONFIG_64BIT
3840 u64 min_vruntime_copy;
88ec22d3 3841
3fe1698b
PZ
3842 do {
3843 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3844 smp_rmb();
3845 min_vruntime = cfs_rq->min_vruntime;
3846 } while (min_vruntime != min_vruntime_copy);
3847#else
3848 min_vruntime = cfs_rq->min_vruntime;
3849#endif
88ec22d3 3850
3fe1698b 3851 se->vruntime -= min_vruntime;
62470419 3852 record_wakee(p);
88ec22d3
PZ
3853}
3854
bb3469ac 3855#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3856/*
3857 * effective_load() calculates the load change as seen from the root_task_group
3858 *
3859 * Adding load to a group doesn't make a group heavier, but can cause movement
3860 * of group shares between cpus. Assuming the shares were perfectly aligned one
3861 * can calculate the shift in shares.
cf5f0acf
PZ
3862 *
3863 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3864 * on this @cpu and results in a total addition (subtraction) of @wg to the
3865 * total group weight.
3866 *
3867 * Given a runqueue weight distribution (rw_i) we can compute a shares
3868 * distribution (s_i) using:
3869 *
3870 * s_i = rw_i / \Sum rw_j (1)
3871 *
3872 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3873 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3874 * shares distribution (s_i):
3875 *
3876 * rw_i = { 2, 4, 1, 0 }
3877 * s_i = { 2/7, 4/7, 1/7, 0 }
3878 *
3879 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3880 * task used to run on and the CPU the waker is running on), we need to
3881 * compute the effect of waking a task on either CPU and, in case of a sync
3882 * wakeup, compute the effect of the current task going to sleep.
3883 *
3884 * So for a change of @wl to the local @cpu with an overall group weight change
3885 * of @wl we can compute the new shares distribution (s'_i) using:
3886 *
3887 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3888 *
3889 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3890 * differences in waking a task to CPU 0. The additional task changes the
3891 * weight and shares distributions like:
3892 *
3893 * rw'_i = { 3, 4, 1, 0 }
3894 * s'_i = { 3/8, 4/8, 1/8, 0 }
3895 *
3896 * We can then compute the difference in effective weight by using:
3897 *
3898 * dw_i = S * (s'_i - s_i) (3)
3899 *
3900 * Where 'S' is the group weight as seen by its parent.
3901 *
3902 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3903 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3904 * 4/7) times the weight of the group.
f5bfb7d9 3905 */
2069dd75 3906static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3907{
4be9daaa 3908 struct sched_entity *se = tg->se[cpu];
f1d239f7 3909
58d081b5 3910 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3911 return wl;
3912
4be9daaa 3913 for_each_sched_entity(se) {
cf5f0acf 3914 long w, W;
4be9daaa 3915
977dda7c 3916 tg = se->my_q->tg;
bb3469ac 3917
cf5f0acf
PZ
3918 /*
3919 * W = @wg + \Sum rw_j
3920 */
3921 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3922
cf5f0acf
PZ
3923 /*
3924 * w = rw_i + @wl
3925 */
3926 w = se->my_q->load.weight + wl;
940959e9 3927
cf5f0acf
PZ
3928 /*
3929 * wl = S * s'_i; see (2)
3930 */
3931 if (W > 0 && w < W)
3932 wl = (w * tg->shares) / W;
977dda7c
PT
3933 else
3934 wl = tg->shares;
940959e9 3935
cf5f0acf
PZ
3936 /*
3937 * Per the above, wl is the new se->load.weight value; since
3938 * those are clipped to [MIN_SHARES, ...) do so now. See
3939 * calc_cfs_shares().
3940 */
977dda7c
PT
3941 if (wl < MIN_SHARES)
3942 wl = MIN_SHARES;
cf5f0acf
PZ
3943
3944 /*
3945 * wl = dw_i = S * (s'_i - s_i); see (3)
3946 */
977dda7c 3947 wl -= se->load.weight;
cf5f0acf
PZ
3948
3949 /*
3950 * Recursively apply this logic to all parent groups to compute
3951 * the final effective load change on the root group. Since
3952 * only the @tg group gets extra weight, all parent groups can
3953 * only redistribute existing shares. @wl is the shift in shares
3954 * resulting from this level per the above.
3955 */
4be9daaa 3956 wg = 0;
4be9daaa 3957 }
bb3469ac 3958
4be9daaa 3959 return wl;
bb3469ac
PZ
3960}
3961#else
4be9daaa 3962
58d081b5 3963static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3964{
83378269 3965 return wl;
bb3469ac 3966}
4be9daaa 3967
bb3469ac
PZ
3968#endif
3969
62470419
MW
3970static int wake_wide(struct task_struct *p)
3971{
7d9ffa89 3972 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3973
3974 /*
3975 * Yeah, it's the switching-frequency, could means many wakee or
3976 * rapidly switch, use factor here will just help to automatically
3977 * adjust the loose-degree, so bigger node will lead to more pull.
3978 */
3979 if (p->wakee_flips > factor) {
3980 /*
3981 * wakee is somewhat hot, it needs certain amount of cpu
3982 * resource, so if waker is far more hot, prefer to leave
3983 * it alone.
3984 */
3985 if (current->wakee_flips > (factor * p->wakee_flips))
3986 return 1;
3987 }
3988
3989 return 0;
3990}
3991
c88d5910 3992static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3993{
e37b6a7b 3994 s64 this_load, load;
c88d5910 3995 int idx, this_cpu, prev_cpu;
098fb9db 3996 unsigned long tl_per_task;
c88d5910 3997 struct task_group *tg;
83378269 3998 unsigned long weight;
b3137bc8 3999 int balanced;
098fb9db 4000
62470419
MW
4001 /*
4002 * If we wake multiple tasks be careful to not bounce
4003 * ourselves around too much.
4004 */
4005 if (wake_wide(p))
4006 return 0;
4007
c88d5910
PZ
4008 idx = sd->wake_idx;
4009 this_cpu = smp_processor_id();
4010 prev_cpu = task_cpu(p);
4011 load = source_load(prev_cpu, idx);
4012 this_load = target_load(this_cpu, idx);
098fb9db 4013
b3137bc8
MG
4014 /*
4015 * If sync wakeup then subtract the (maximum possible)
4016 * effect of the currently running task from the load
4017 * of the current CPU:
4018 */
83378269
PZ
4019 if (sync) {
4020 tg = task_group(current);
4021 weight = current->se.load.weight;
4022
c88d5910 4023 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4024 load += effective_load(tg, prev_cpu, 0, -weight);
4025 }
b3137bc8 4026
83378269
PZ
4027 tg = task_group(p);
4028 weight = p->se.load.weight;
b3137bc8 4029
71a29aa7
PZ
4030 /*
4031 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4032 * due to the sync cause above having dropped this_load to 0, we'll
4033 * always have an imbalance, but there's really nothing you can do
4034 * about that, so that's good too.
71a29aa7
PZ
4035 *
4036 * Otherwise check if either cpus are near enough in load to allow this
4037 * task to be woken on this_cpu.
4038 */
e37b6a7b
PT
4039 if (this_load > 0) {
4040 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4041
4042 this_eff_load = 100;
4043 this_eff_load *= power_of(prev_cpu);
4044 this_eff_load *= this_load +
4045 effective_load(tg, this_cpu, weight, weight);
4046
4047 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4048 prev_eff_load *= power_of(this_cpu);
4049 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4050
4051 balanced = this_eff_load <= prev_eff_load;
4052 } else
4053 balanced = true;
b3137bc8 4054
098fb9db 4055 /*
4ae7d5ce
IM
4056 * If the currently running task will sleep within
4057 * a reasonable amount of time then attract this newly
4058 * woken task:
098fb9db 4059 */
2fb7635c
PZ
4060 if (sync && balanced)
4061 return 1;
098fb9db 4062
41acab88 4063 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4064 tl_per_task = cpu_avg_load_per_task(this_cpu);
4065
c88d5910
PZ
4066 if (balanced ||
4067 (this_load <= load &&
4068 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4069 /*
4070 * This domain has SD_WAKE_AFFINE and
4071 * p is cache cold in this domain, and
4072 * there is no bad imbalance.
4073 */
c88d5910 4074 schedstat_inc(sd, ttwu_move_affine);
41acab88 4075 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4076
4077 return 1;
4078 }
4079 return 0;
4080}
4081
aaee1203
PZ
4082/*
4083 * find_idlest_group finds and returns the least busy CPU group within the
4084 * domain.
4085 */
4086static struct sched_group *
78e7ed53 4087find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4088 int this_cpu, int load_idx)
e7693a36 4089{
b3bd3de6 4090 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4091 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4092 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4093
aaee1203
PZ
4094 do {
4095 unsigned long load, avg_load;
4096 int local_group;
4097 int i;
e7693a36 4098
aaee1203
PZ
4099 /* Skip over this group if it has no CPUs allowed */
4100 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4101 tsk_cpus_allowed(p)))
aaee1203
PZ
4102 continue;
4103
4104 local_group = cpumask_test_cpu(this_cpu,
4105 sched_group_cpus(group));
4106
4107 /* Tally up the load of all CPUs in the group */
4108 avg_load = 0;
4109
4110 for_each_cpu(i, sched_group_cpus(group)) {
4111 /* Bias balancing toward cpus of our domain */
4112 if (local_group)
4113 load = source_load(i, load_idx);
4114 else
4115 load = target_load(i, load_idx);
4116
4117 avg_load += load;
4118 }
4119
4120 /* Adjust by relative CPU power of the group */
9c3f75cb 4121 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4122
4123 if (local_group) {
4124 this_load = avg_load;
aaee1203
PZ
4125 } else if (avg_load < min_load) {
4126 min_load = avg_load;
4127 idlest = group;
4128 }
4129 } while (group = group->next, group != sd->groups);
4130
4131 if (!idlest || 100*this_load < imbalance*min_load)
4132 return NULL;
4133 return idlest;
4134}
4135
4136/*
4137 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4138 */
4139static int
4140find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4141{
4142 unsigned long load, min_load = ULONG_MAX;
4143 int idlest = -1;
4144 int i;
4145
4146 /* Traverse only the allowed CPUs */
fa17b507 4147 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4148 load = weighted_cpuload(i);
4149
4150 if (load < min_load || (load == min_load && i == this_cpu)) {
4151 min_load = load;
4152 idlest = i;
e7693a36
GH
4153 }
4154 }
4155
aaee1203
PZ
4156 return idlest;
4157}
e7693a36 4158
a50bde51
PZ
4159/*
4160 * Try and locate an idle CPU in the sched_domain.
4161 */
99bd5e2f 4162static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4163{
99bd5e2f 4164 struct sched_domain *sd;
37407ea7 4165 struct sched_group *sg;
e0a79f52 4166 int i = task_cpu(p);
a50bde51 4167
e0a79f52
MG
4168 if (idle_cpu(target))
4169 return target;
99bd5e2f
SS
4170
4171 /*
e0a79f52 4172 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4173 */
e0a79f52
MG
4174 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4175 return i;
a50bde51
PZ
4176
4177 /*
37407ea7 4178 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4179 */
518cd623 4180 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4181 for_each_lower_domain(sd) {
37407ea7
LT
4182 sg = sd->groups;
4183 do {
4184 if (!cpumask_intersects(sched_group_cpus(sg),
4185 tsk_cpus_allowed(p)))
4186 goto next;
4187
4188 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4189 if (i == target || !idle_cpu(i))
37407ea7
LT
4190 goto next;
4191 }
970e1789 4192
37407ea7
LT
4193 target = cpumask_first_and(sched_group_cpus(sg),
4194 tsk_cpus_allowed(p));
4195 goto done;
4196next:
4197 sg = sg->next;
4198 } while (sg != sd->groups);
4199 }
4200done:
a50bde51
PZ
4201 return target;
4202}
4203
aaee1203
PZ
4204/*
4205 * sched_balance_self: balance the current task (running on cpu) in domains
4206 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4207 * SD_BALANCE_EXEC.
4208 *
4209 * Balance, ie. select the least loaded group.
4210 *
4211 * Returns the target CPU number, or the same CPU if no balancing is needed.
4212 *
4213 * preempt must be disabled.
4214 */
0017d735 4215static int
ac66f547 4216select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4217{
29cd8bae 4218 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4219 int cpu = smp_processor_id();
c88d5910 4220 int new_cpu = cpu;
99bd5e2f 4221 int want_affine = 0;
5158f4e4 4222 int sync = wake_flags & WF_SYNC;
c88d5910 4223
29baa747 4224 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4225 return prev_cpu;
4226
0763a660 4227 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4228 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4229 want_affine = 1;
4230 new_cpu = prev_cpu;
4231 }
aaee1203 4232
dce840a0 4233 rcu_read_lock();
aaee1203 4234 for_each_domain(cpu, tmp) {
e4f42888
PZ
4235 if (!(tmp->flags & SD_LOAD_BALANCE))
4236 continue;
4237
fe3bcfe1 4238 /*
99bd5e2f
SS
4239 * If both cpu and prev_cpu are part of this domain,
4240 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4241 */
99bd5e2f
SS
4242 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4243 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4244 affine_sd = tmp;
29cd8bae 4245 break;
f03542a7 4246 }
29cd8bae 4247
f03542a7 4248 if (tmp->flags & sd_flag)
29cd8bae
PZ
4249 sd = tmp;
4250 }
4251
8b911acd 4252 if (affine_sd) {
f03542a7 4253 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4254 prev_cpu = cpu;
4255
4256 new_cpu = select_idle_sibling(p, prev_cpu);
4257 goto unlock;
8b911acd 4258 }
e7693a36 4259
aaee1203 4260 while (sd) {
5158f4e4 4261 int load_idx = sd->forkexec_idx;
aaee1203 4262 struct sched_group *group;
c88d5910 4263 int weight;
098fb9db 4264
0763a660 4265 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4266 sd = sd->child;
4267 continue;
4268 }
098fb9db 4269
5158f4e4
PZ
4270 if (sd_flag & SD_BALANCE_WAKE)
4271 load_idx = sd->wake_idx;
098fb9db 4272
5158f4e4 4273 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4274 if (!group) {
4275 sd = sd->child;
4276 continue;
4277 }
4ae7d5ce 4278
d7c33c49 4279 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4280 if (new_cpu == -1 || new_cpu == cpu) {
4281 /* Now try balancing at a lower domain level of cpu */
4282 sd = sd->child;
4283 continue;
e7693a36 4284 }
aaee1203
PZ
4285
4286 /* Now try balancing at a lower domain level of new_cpu */
4287 cpu = new_cpu;
669c55e9 4288 weight = sd->span_weight;
aaee1203
PZ
4289 sd = NULL;
4290 for_each_domain(cpu, tmp) {
669c55e9 4291 if (weight <= tmp->span_weight)
aaee1203 4292 break;
0763a660 4293 if (tmp->flags & sd_flag)
aaee1203
PZ
4294 sd = tmp;
4295 }
4296 /* while loop will break here if sd == NULL */
e7693a36 4297 }
dce840a0
PZ
4298unlock:
4299 rcu_read_unlock();
e7693a36 4300
c88d5910 4301 return new_cpu;
e7693a36 4302}
0a74bef8
PT
4303
4304/*
4305 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4306 * cfs_rq_of(p) references at time of call are still valid and identify the
4307 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4308 * other assumptions, including the state of rq->lock, should be made.
4309 */
4310static void
4311migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4312{
aff3e498
PT
4313 struct sched_entity *se = &p->se;
4314 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4315
4316 /*
4317 * Load tracking: accumulate removed load so that it can be processed
4318 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4319 * to blocked load iff they have a positive decay-count. It can never
4320 * be negative here since on-rq tasks have decay-count == 0.
4321 */
4322 if (se->avg.decay_count) {
4323 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4324 atomic_long_add(se->avg.load_avg_contrib,
4325 &cfs_rq->removed_load);
aff3e498 4326 }
0a74bef8 4327}
e7693a36
GH
4328#endif /* CONFIG_SMP */
4329
e52fb7c0
PZ
4330static unsigned long
4331wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4332{
4333 unsigned long gran = sysctl_sched_wakeup_granularity;
4334
4335 /*
e52fb7c0
PZ
4336 * Since its curr running now, convert the gran from real-time
4337 * to virtual-time in his units.
13814d42
MG
4338 *
4339 * By using 'se' instead of 'curr' we penalize light tasks, so
4340 * they get preempted easier. That is, if 'se' < 'curr' then
4341 * the resulting gran will be larger, therefore penalizing the
4342 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4343 * be smaller, again penalizing the lighter task.
4344 *
4345 * This is especially important for buddies when the leftmost
4346 * task is higher priority than the buddy.
0bbd3336 4347 */
f4ad9bd2 4348 return calc_delta_fair(gran, se);
0bbd3336
PZ
4349}
4350
464b7527
PZ
4351/*
4352 * Should 'se' preempt 'curr'.
4353 *
4354 * |s1
4355 * |s2
4356 * |s3
4357 * g
4358 * |<--->|c
4359 *
4360 * w(c, s1) = -1
4361 * w(c, s2) = 0
4362 * w(c, s3) = 1
4363 *
4364 */
4365static int
4366wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4367{
4368 s64 gran, vdiff = curr->vruntime - se->vruntime;
4369
4370 if (vdiff <= 0)
4371 return -1;
4372
e52fb7c0 4373 gran = wakeup_gran(curr, se);
464b7527
PZ
4374 if (vdiff > gran)
4375 return 1;
4376
4377 return 0;
4378}
4379
02479099
PZ
4380static void set_last_buddy(struct sched_entity *se)
4381{
69c80f3e
VP
4382 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4383 return;
4384
4385 for_each_sched_entity(se)
4386 cfs_rq_of(se)->last = se;
02479099
PZ
4387}
4388
4389static void set_next_buddy(struct sched_entity *se)
4390{
69c80f3e
VP
4391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4392 return;
4393
4394 for_each_sched_entity(se)
4395 cfs_rq_of(se)->next = se;
02479099
PZ
4396}
4397
ac53db59
RR
4398static void set_skip_buddy(struct sched_entity *se)
4399{
69c80f3e
VP
4400 for_each_sched_entity(se)
4401 cfs_rq_of(se)->skip = se;
ac53db59
RR
4402}
4403
bf0f6f24
IM
4404/*
4405 * Preempt the current task with a newly woken task if needed:
4406 */
5a9b86f6 4407static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4408{
4409 struct task_struct *curr = rq->curr;
8651a86c 4410 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4411 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4412 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4413 int next_buddy_marked = 0;
bf0f6f24 4414
4ae7d5ce
IM
4415 if (unlikely(se == pse))
4416 return;
4417
5238cdd3 4418 /*
ddcdf6e7 4419 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4420 * unconditionally check_prempt_curr() after an enqueue (which may have
4421 * lead to a throttle). This both saves work and prevents false
4422 * next-buddy nomination below.
4423 */
4424 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4425 return;
4426
2f36825b 4427 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4428 set_next_buddy(pse);
2f36825b
VP
4429 next_buddy_marked = 1;
4430 }
57fdc26d 4431
aec0a514
BR
4432 /*
4433 * We can come here with TIF_NEED_RESCHED already set from new task
4434 * wake up path.
5238cdd3
PT
4435 *
4436 * Note: this also catches the edge-case of curr being in a throttled
4437 * group (e.g. via set_curr_task), since update_curr() (in the
4438 * enqueue of curr) will have resulted in resched being set. This
4439 * prevents us from potentially nominating it as a false LAST_BUDDY
4440 * below.
aec0a514
BR
4441 */
4442 if (test_tsk_need_resched(curr))
4443 return;
4444
a2f5c9ab
DH
4445 /* Idle tasks are by definition preempted by non-idle tasks. */
4446 if (unlikely(curr->policy == SCHED_IDLE) &&
4447 likely(p->policy != SCHED_IDLE))
4448 goto preempt;
4449
91c234b4 4450 /*
a2f5c9ab
DH
4451 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4452 * is driven by the tick):
91c234b4 4453 */
8ed92e51 4454 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4455 return;
bf0f6f24 4456
464b7527 4457 find_matching_se(&se, &pse);
9bbd7374 4458 update_curr(cfs_rq_of(se));
002f128b 4459 BUG_ON(!pse);
2f36825b
VP
4460 if (wakeup_preempt_entity(se, pse) == 1) {
4461 /*
4462 * Bias pick_next to pick the sched entity that is
4463 * triggering this preemption.
4464 */
4465 if (!next_buddy_marked)
4466 set_next_buddy(pse);
3a7e73a2 4467 goto preempt;
2f36825b 4468 }
464b7527 4469
3a7e73a2 4470 return;
a65ac745 4471
3a7e73a2
PZ
4472preempt:
4473 resched_task(curr);
4474 /*
4475 * Only set the backward buddy when the current task is still
4476 * on the rq. This can happen when a wakeup gets interleaved
4477 * with schedule on the ->pre_schedule() or idle_balance()
4478 * point, either of which can * drop the rq lock.
4479 *
4480 * Also, during early boot the idle thread is in the fair class,
4481 * for obvious reasons its a bad idea to schedule back to it.
4482 */
4483 if (unlikely(!se->on_rq || curr == rq->idle))
4484 return;
4485
4486 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4487 set_last_buddy(se);
bf0f6f24
IM
4488}
4489
fb8d4724 4490static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4491{
8f4d37ec 4492 struct task_struct *p;
bf0f6f24
IM
4493 struct cfs_rq *cfs_rq = &rq->cfs;
4494 struct sched_entity *se;
4495
36ace27e 4496 if (!cfs_rq->nr_running)
bf0f6f24
IM
4497 return NULL;
4498
4499 do {
9948f4b2 4500 se = pick_next_entity(cfs_rq);
f4b6755f 4501 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4502 cfs_rq = group_cfs_rq(se);
4503 } while (cfs_rq);
4504
8f4d37ec 4505 p = task_of(se);
b39e66ea
MG
4506 if (hrtick_enabled(rq))
4507 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4508
4509 return p;
bf0f6f24
IM
4510}
4511
4512/*
4513 * Account for a descheduled task:
4514 */
31ee529c 4515static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4516{
4517 struct sched_entity *se = &prev->se;
4518 struct cfs_rq *cfs_rq;
4519
4520 for_each_sched_entity(se) {
4521 cfs_rq = cfs_rq_of(se);
ab6cde26 4522 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4523 }
4524}
4525
ac53db59
RR
4526/*
4527 * sched_yield() is very simple
4528 *
4529 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4530 */
4531static void yield_task_fair(struct rq *rq)
4532{
4533 struct task_struct *curr = rq->curr;
4534 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4535 struct sched_entity *se = &curr->se;
4536
4537 /*
4538 * Are we the only task in the tree?
4539 */
4540 if (unlikely(rq->nr_running == 1))
4541 return;
4542
4543 clear_buddies(cfs_rq, se);
4544
4545 if (curr->policy != SCHED_BATCH) {
4546 update_rq_clock(rq);
4547 /*
4548 * Update run-time statistics of the 'current'.
4549 */
4550 update_curr(cfs_rq);
916671c0
MG
4551 /*
4552 * Tell update_rq_clock() that we've just updated,
4553 * so we don't do microscopic update in schedule()
4554 * and double the fastpath cost.
4555 */
4556 rq->skip_clock_update = 1;
ac53db59
RR
4557 }
4558
4559 set_skip_buddy(se);
4560}
4561
d95f4122
MG
4562static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4563{
4564 struct sched_entity *se = &p->se;
4565
5238cdd3
PT
4566 /* throttled hierarchies are not runnable */
4567 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4568 return false;
4569
4570 /* Tell the scheduler that we'd really like pse to run next. */
4571 set_next_buddy(se);
4572
d95f4122
MG
4573 yield_task_fair(rq);
4574
4575 return true;
4576}
4577
681f3e68 4578#ifdef CONFIG_SMP
bf0f6f24 4579/**************************************************
e9c84cb8
PZ
4580 * Fair scheduling class load-balancing methods.
4581 *
4582 * BASICS
4583 *
4584 * The purpose of load-balancing is to achieve the same basic fairness the
4585 * per-cpu scheduler provides, namely provide a proportional amount of compute
4586 * time to each task. This is expressed in the following equation:
4587 *
4588 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4589 *
4590 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4591 * W_i,0 is defined as:
4592 *
4593 * W_i,0 = \Sum_j w_i,j (2)
4594 *
4595 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4596 * is derived from the nice value as per prio_to_weight[].
4597 *
4598 * The weight average is an exponential decay average of the instantaneous
4599 * weight:
4600 *
4601 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4602 *
4603 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4604 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4605 * can also include other factors [XXX].
4606 *
4607 * To achieve this balance we define a measure of imbalance which follows
4608 * directly from (1):
4609 *
4610 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4611 *
4612 * We them move tasks around to minimize the imbalance. In the continuous
4613 * function space it is obvious this converges, in the discrete case we get
4614 * a few fun cases generally called infeasible weight scenarios.
4615 *
4616 * [XXX expand on:
4617 * - infeasible weights;
4618 * - local vs global optima in the discrete case. ]
4619 *
4620 *
4621 * SCHED DOMAINS
4622 *
4623 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4624 * for all i,j solution, we create a tree of cpus that follows the hardware
4625 * topology where each level pairs two lower groups (or better). This results
4626 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4627 * tree to only the first of the previous level and we decrease the frequency
4628 * of load-balance at each level inv. proportional to the number of cpus in
4629 * the groups.
4630 *
4631 * This yields:
4632 *
4633 * log_2 n 1 n
4634 * \Sum { --- * --- * 2^i } = O(n) (5)
4635 * i = 0 2^i 2^i
4636 * `- size of each group
4637 * | | `- number of cpus doing load-balance
4638 * | `- freq
4639 * `- sum over all levels
4640 *
4641 * Coupled with a limit on how many tasks we can migrate every balance pass,
4642 * this makes (5) the runtime complexity of the balancer.
4643 *
4644 * An important property here is that each CPU is still (indirectly) connected
4645 * to every other cpu in at most O(log n) steps:
4646 *
4647 * The adjacency matrix of the resulting graph is given by:
4648 *
4649 * log_2 n
4650 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4651 * k = 0
4652 *
4653 * And you'll find that:
4654 *
4655 * A^(log_2 n)_i,j != 0 for all i,j (7)
4656 *
4657 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4658 * The task movement gives a factor of O(m), giving a convergence complexity
4659 * of:
4660 *
4661 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4662 *
4663 *
4664 * WORK CONSERVING
4665 *
4666 * In order to avoid CPUs going idle while there's still work to do, new idle
4667 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4668 * tree itself instead of relying on other CPUs to bring it work.
4669 *
4670 * This adds some complexity to both (5) and (8) but it reduces the total idle
4671 * time.
4672 *
4673 * [XXX more?]
4674 *
4675 *
4676 * CGROUPS
4677 *
4678 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4679 *
4680 * s_k,i
4681 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4682 * S_k
4683 *
4684 * Where
4685 *
4686 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4687 *
4688 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4689 *
4690 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4691 * property.
4692 *
4693 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4694 * rewrite all of this once again.]
4695 */
bf0f6f24 4696
ed387b78
HS
4697static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4698
0ec8aa00
PZ
4699enum fbq_type { regular, remote, all };
4700
ddcdf6e7 4701#define LBF_ALL_PINNED 0x01
367456c7 4702#define LBF_NEED_BREAK 0x02
6263322c
PZ
4703#define LBF_DST_PINNED 0x04
4704#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4705
4706struct lb_env {
4707 struct sched_domain *sd;
4708
ddcdf6e7 4709 struct rq *src_rq;
85c1e7da 4710 int src_cpu;
ddcdf6e7
PZ
4711
4712 int dst_cpu;
4713 struct rq *dst_rq;
4714
88b8dac0
SV
4715 struct cpumask *dst_grpmask;
4716 int new_dst_cpu;
ddcdf6e7 4717 enum cpu_idle_type idle;
bd939f45 4718 long imbalance;
b9403130
MW
4719 /* The set of CPUs under consideration for load-balancing */
4720 struct cpumask *cpus;
4721
ddcdf6e7 4722 unsigned int flags;
367456c7
PZ
4723
4724 unsigned int loop;
4725 unsigned int loop_break;
4726 unsigned int loop_max;
0ec8aa00
PZ
4727
4728 enum fbq_type fbq_type;
ddcdf6e7
PZ
4729};
4730
1e3c88bd 4731/*
ddcdf6e7 4732 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4733 * Both runqueues must be locked.
4734 */
ddcdf6e7 4735static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4736{
ddcdf6e7
PZ
4737 deactivate_task(env->src_rq, p, 0);
4738 set_task_cpu(p, env->dst_cpu);
4739 activate_task(env->dst_rq, p, 0);
4740 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4741}
4742
029632fb
PZ
4743/*
4744 * Is this task likely cache-hot:
4745 */
4746static int
4747task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4748{
4749 s64 delta;
4750
4751 if (p->sched_class != &fair_sched_class)
4752 return 0;
4753
4754 if (unlikely(p->policy == SCHED_IDLE))
4755 return 0;
4756
4757 /*
4758 * Buddy candidates are cache hot:
4759 */
4760 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4761 (&p->se == cfs_rq_of(&p->se)->next ||
4762 &p->se == cfs_rq_of(&p->se)->last))
4763 return 1;
4764
4765 if (sysctl_sched_migration_cost == -1)
4766 return 1;
4767 if (sysctl_sched_migration_cost == 0)
4768 return 0;
4769
4770 delta = now - p->se.exec_start;
4771
4772 return delta < (s64)sysctl_sched_migration_cost;
4773}
4774
3a7053b3
MG
4775#ifdef CONFIG_NUMA_BALANCING
4776/* Returns true if the destination node has incurred more faults */
4777static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4778{
4779 int src_nid, dst_nid;
4780
4781 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4782 !(env->sd->flags & SD_NUMA)) {
4783 return false;
4784 }
4785
4786 src_nid = cpu_to_node(env->src_cpu);
4787 dst_nid = cpu_to_node(env->dst_cpu);
4788
83e1d2cd 4789 if (src_nid == dst_nid)
3a7053b3
MG
4790 return false;
4791
83e1d2cd
MG
4792 /* Always encourage migration to the preferred node. */
4793 if (dst_nid == p->numa_preferred_nid)
4794 return true;
4795
887c290e
RR
4796 /* If both task and group weight improve, this move is a winner. */
4797 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4798 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4799 return true;
4800
4801 return false;
4802}
7a0f3083
MG
4803
4804
4805static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4806{
4807 int src_nid, dst_nid;
4808
4809 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4810 return false;
4811
4812 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4813 return false;
4814
4815 src_nid = cpu_to_node(env->src_cpu);
4816 dst_nid = cpu_to_node(env->dst_cpu);
4817
83e1d2cd 4818 if (src_nid == dst_nid)
7a0f3083
MG
4819 return false;
4820
83e1d2cd
MG
4821 /* Migrating away from the preferred node is always bad. */
4822 if (src_nid == p->numa_preferred_nid)
4823 return true;
4824
887c290e
RR
4825 /* If either task or group weight get worse, don't do it. */
4826 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4827 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4828 return true;
4829
4830 return false;
4831}
4832
3a7053b3
MG
4833#else
4834static inline bool migrate_improves_locality(struct task_struct *p,
4835 struct lb_env *env)
4836{
4837 return false;
4838}
7a0f3083
MG
4839
4840static inline bool migrate_degrades_locality(struct task_struct *p,
4841 struct lb_env *env)
4842{
4843 return false;
4844}
3a7053b3
MG
4845#endif
4846
1e3c88bd
PZ
4847/*
4848 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4849 */
4850static
8e45cb54 4851int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4852{
4853 int tsk_cache_hot = 0;
4854 /*
4855 * We do not migrate tasks that are:
d3198084 4856 * 1) throttled_lb_pair, or
1e3c88bd 4857 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4858 * 3) running (obviously), or
4859 * 4) are cache-hot on their current CPU.
1e3c88bd 4860 */
d3198084
JK
4861 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4862 return 0;
4863
ddcdf6e7 4864 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4865 int cpu;
88b8dac0 4866
41acab88 4867 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4868
6263322c
PZ
4869 env->flags |= LBF_SOME_PINNED;
4870
88b8dac0
SV
4871 /*
4872 * Remember if this task can be migrated to any other cpu in
4873 * our sched_group. We may want to revisit it if we couldn't
4874 * meet load balance goals by pulling other tasks on src_cpu.
4875 *
4876 * Also avoid computing new_dst_cpu if we have already computed
4877 * one in current iteration.
4878 */
6263322c 4879 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4880 return 0;
4881
e02e60c1
JK
4882 /* Prevent to re-select dst_cpu via env's cpus */
4883 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4884 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4885 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4886 env->new_dst_cpu = cpu;
4887 break;
4888 }
88b8dac0 4889 }
e02e60c1 4890
1e3c88bd
PZ
4891 return 0;
4892 }
88b8dac0
SV
4893
4894 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4895 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4896
ddcdf6e7 4897 if (task_running(env->src_rq, p)) {
41acab88 4898 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4899 return 0;
4900 }
4901
4902 /*
4903 * Aggressive migration if:
3a7053b3
MG
4904 * 1) destination numa is preferred
4905 * 2) task is cache cold, or
4906 * 3) too many balance attempts have failed.
1e3c88bd 4907 */
78becc27 4908 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4909 if (!tsk_cache_hot)
4910 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4911
4912 if (migrate_improves_locality(p, env)) {
4913#ifdef CONFIG_SCHEDSTATS
4914 if (tsk_cache_hot) {
4915 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4916 schedstat_inc(p, se.statistics.nr_forced_migrations);
4917 }
4918#endif
4919 return 1;
4920 }
4921
1e3c88bd 4922 if (!tsk_cache_hot ||
8e45cb54 4923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4924
1e3c88bd 4925 if (tsk_cache_hot) {
8e45cb54 4926 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4927 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4928 }
4e2dcb73 4929
1e3c88bd
PZ
4930 return 1;
4931 }
4932
4e2dcb73
ZH
4933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4934 return 0;
1e3c88bd
PZ
4935}
4936
897c395f
PZ
4937/*
4938 * move_one_task tries to move exactly one task from busiest to this_rq, as
4939 * part of active balancing operations within "domain".
4940 * Returns 1 if successful and 0 otherwise.
4941 *
4942 * Called with both runqueues locked.
4943 */
8e45cb54 4944static int move_one_task(struct lb_env *env)
897c395f
PZ
4945{
4946 struct task_struct *p, *n;
897c395f 4947
367456c7 4948 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4949 if (!can_migrate_task(p, env))
4950 continue;
897c395f 4951
367456c7
PZ
4952 move_task(p, env);
4953 /*
4954 * Right now, this is only the second place move_task()
4955 * is called, so we can safely collect move_task()
4956 * stats here rather than inside move_task().
4957 */
4958 schedstat_inc(env->sd, lb_gained[env->idle]);
4959 return 1;
897c395f 4960 }
897c395f
PZ
4961 return 0;
4962}
4963
eb95308e
PZ
4964static const unsigned int sched_nr_migrate_break = 32;
4965
5d6523eb 4966/*
bd939f45 4967 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4968 * this_rq, as part of a balancing operation within domain "sd".
4969 * Returns 1 if successful and 0 otherwise.
4970 *
4971 * Called with both runqueues locked.
4972 */
4973static int move_tasks(struct lb_env *env)
1e3c88bd 4974{
5d6523eb
PZ
4975 struct list_head *tasks = &env->src_rq->cfs_tasks;
4976 struct task_struct *p;
367456c7
PZ
4977 unsigned long load;
4978 int pulled = 0;
1e3c88bd 4979
bd939f45 4980 if (env->imbalance <= 0)
5d6523eb 4981 return 0;
1e3c88bd 4982
5d6523eb
PZ
4983 while (!list_empty(tasks)) {
4984 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4985
367456c7
PZ
4986 env->loop++;
4987 /* We've more or less seen every task there is, call it quits */
5d6523eb 4988 if (env->loop > env->loop_max)
367456c7 4989 break;
5d6523eb
PZ
4990
4991 /* take a breather every nr_migrate tasks */
367456c7 4992 if (env->loop > env->loop_break) {
eb95308e 4993 env->loop_break += sched_nr_migrate_break;
8e45cb54 4994 env->flags |= LBF_NEED_BREAK;
ee00e66f 4995 break;
a195f004 4996 }
1e3c88bd 4997
d3198084 4998 if (!can_migrate_task(p, env))
367456c7
PZ
4999 goto next;
5000
5001 load = task_h_load(p);
5d6523eb 5002
eb95308e 5003 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5004 goto next;
5005
bd939f45 5006 if ((load / 2) > env->imbalance)
367456c7 5007 goto next;
1e3c88bd 5008
ddcdf6e7 5009 move_task(p, env);
ee00e66f 5010 pulled++;
bd939f45 5011 env->imbalance -= load;
1e3c88bd
PZ
5012
5013#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5014 /*
5015 * NEWIDLE balancing is a source of latency, so preemptible
5016 * kernels will stop after the first task is pulled to minimize
5017 * the critical section.
5018 */
5d6523eb 5019 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5020 break;
1e3c88bd
PZ
5021#endif
5022
ee00e66f
PZ
5023 /*
5024 * We only want to steal up to the prescribed amount of
5025 * weighted load.
5026 */
bd939f45 5027 if (env->imbalance <= 0)
ee00e66f 5028 break;
367456c7
PZ
5029
5030 continue;
5031next:
5d6523eb 5032 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5033 }
5d6523eb 5034
1e3c88bd 5035 /*
ddcdf6e7
PZ
5036 * Right now, this is one of only two places move_task() is called,
5037 * so we can safely collect move_task() stats here rather than
5038 * inside move_task().
1e3c88bd 5039 */
8e45cb54 5040 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5041
5d6523eb 5042 return pulled;
1e3c88bd
PZ
5043}
5044
230059de 5045#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5046/*
5047 * update tg->load_weight by folding this cpu's load_avg
5048 */
48a16753 5049static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5050{
48a16753
PT
5051 struct sched_entity *se = tg->se[cpu];
5052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5053
48a16753
PT
5054 /* throttled entities do not contribute to load */
5055 if (throttled_hierarchy(cfs_rq))
5056 return;
9e3081ca 5057
aff3e498 5058 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5059
82958366
PT
5060 if (se) {
5061 update_entity_load_avg(se, 1);
5062 /*
5063 * We pivot on our runnable average having decayed to zero for
5064 * list removal. This generally implies that all our children
5065 * have also been removed (modulo rounding error or bandwidth
5066 * control); however, such cases are rare and we can fix these
5067 * at enqueue.
5068 *
5069 * TODO: fix up out-of-order children on enqueue.
5070 */
5071 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5072 list_del_leaf_cfs_rq(cfs_rq);
5073 } else {
48a16753 5074 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5075 update_rq_runnable_avg(rq, rq->nr_running);
5076 }
9e3081ca
PZ
5077}
5078
48a16753 5079static void update_blocked_averages(int cpu)
9e3081ca 5080{
9e3081ca 5081 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5082 struct cfs_rq *cfs_rq;
5083 unsigned long flags;
9e3081ca 5084
48a16753
PT
5085 raw_spin_lock_irqsave(&rq->lock, flags);
5086 update_rq_clock(rq);
9763b67f
PZ
5087 /*
5088 * Iterates the task_group tree in a bottom up fashion, see
5089 * list_add_leaf_cfs_rq() for details.
5090 */
64660c86 5091 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5092 /*
5093 * Note: We may want to consider periodically releasing
5094 * rq->lock about these updates so that creating many task
5095 * groups does not result in continually extending hold time.
5096 */
5097 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5098 }
48a16753
PT
5099
5100 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5101}
5102
9763b67f 5103/*
68520796 5104 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5105 * This needs to be done in a top-down fashion because the load of a child
5106 * group is a fraction of its parents load.
5107 */
68520796 5108static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5109{
68520796
VD
5110 struct rq *rq = rq_of(cfs_rq);
5111 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5112 unsigned long now = jiffies;
68520796 5113 unsigned long load;
a35b6466 5114
68520796 5115 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5116 return;
5117
68520796
VD
5118 cfs_rq->h_load_next = NULL;
5119 for_each_sched_entity(se) {
5120 cfs_rq = cfs_rq_of(se);
5121 cfs_rq->h_load_next = se;
5122 if (cfs_rq->last_h_load_update == now)
5123 break;
5124 }
a35b6466 5125
68520796 5126 if (!se) {
7e3115ef 5127 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5128 cfs_rq->last_h_load_update = now;
5129 }
5130
5131 while ((se = cfs_rq->h_load_next) != NULL) {
5132 load = cfs_rq->h_load;
5133 load = div64_ul(load * se->avg.load_avg_contrib,
5134 cfs_rq->runnable_load_avg + 1);
5135 cfs_rq = group_cfs_rq(se);
5136 cfs_rq->h_load = load;
5137 cfs_rq->last_h_load_update = now;
5138 }
9763b67f
PZ
5139}
5140
367456c7 5141static unsigned long task_h_load(struct task_struct *p)
230059de 5142{
367456c7 5143 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5144
68520796 5145 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5146 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5147 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5148}
5149#else
48a16753 5150static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5151{
5152}
5153
367456c7 5154static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5155{
a003a25b 5156 return p->se.avg.load_avg_contrib;
1e3c88bd 5157}
230059de 5158#endif
1e3c88bd 5159
1e3c88bd 5160/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5161/*
5162 * sg_lb_stats - stats of a sched_group required for load_balancing
5163 */
5164struct sg_lb_stats {
5165 unsigned long avg_load; /*Avg load across the CPUs of the group */
5166 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5167 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5168 unsigned long load_per_task;
3ae11c90 5169 unsigned long group_power;
147c5fc2
PZ
5170 unsigned int sum_nr_running; /* Nr tasks running in the group */
5171 unsigned int group_capacity;
5172 unsigned int idle_cpus;
5173 unsigned int group_weight;
1e3c88bd 5174 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5175 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5176#ifdef CONFIG_NUMA_BALANCING
5177 unsigned int nr_numa_running;
5178 unsigned int nr_preferred_running;
5179#endif
1e3c88bd
PZ
5180};
5181
56cf515b
JK
5182/*
5183 * sd_lb_stats - Structure to store the statistics of a sched_domain
5184 * during load balancing.
5185 */
5186struct sd_lb_stats {
5187 struct sched_group *busiest; /* Busiest group in this sd */
5188 struct sched_group *local; /* Local group in this sd */
5189 unsigned long total_load; /* Total load of all groups in sd */
5190 unsigned long total_pwr; /* Total power of all groups in sd */
5191 unsigned long avg_load; /* Average load across all groups in sd */
5192
56cf515b 5193 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5194 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5195};
5196
147c5fc2
PZ
5197static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5198{
5199 /*
5200 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5201 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5202 * We must however clear busiest_stat::avg_load because
5203 * update_sd_pick_busiest() reads this before assignment.
5204 */
5205 *sds = (struct sd_lb_stats){
5206 .busiest = NULL,
5207 .local = NULL,
5208 .total_load = 0UL,
5209 .total_pwr = 0UL,
5210 .busiest_stat = {
5211 .avg_load = 0UL,
5212 },
5213 };
5214}
5215
1e3c88bd
PZ
5216/**
5217 * get_sd_load_idx - Obtain the load index for a given sched domain.
5218 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5219 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5220 *
5221 * Return: The load index.
1e3c88bd
PZ
5222 */
5223static inline int get_sd_load_idx(struct sched_domain *sd,
5224 enum cpu_idle_type idle)
5225{
5226 int load_idx;
5227
5228 switch (idle) {
5229 case CPU_NOT_IDLE:
5230 load_idx = sd->busy_idx;
5231 break;
5232
5233 case CPU_NEWLY_IDLE:
5234 load_idx = sd->newidle_idx;
5235 break;
5236 default:
5237 load_idx = sd->idle_idx;
5238 break;
5239 }
5240
5241 return load_idx;
5242}
5243
15f803c9 5244static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5245{
1399fa78 5246 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5247}
5248
5249unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5250{
5251 return default_scale_freq_power(sd, cpu);
5252}
5253
15f803c9 5254static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5255{
669c55e9 5256 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5257 unsigned long smt_gain = sd->smt_gain;
5258
5259 smt_gain /= weight;
5260
5261 return smt_gain;
5262}
5263
5264unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5265{
5266 return default_scale_smt_power(sd, cpu);
5267}
5268
15f803c9 5269static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5270{
5271 struct rq *rq = cpu_rq(cpu);
b654f7de 5272 u64 total, available, age_stamp, avg;
1e3c88bd 5273
b654f7de
PZ
5274 /*
5275 * Since we're reading these variables without serialization make sure
5276 * we read them once before doing sanity checks on them.
5277 */
5278 age_stamp = ACCESS_ONCE(rq->age_stamp);
5279 avg = ACCESS_ONCE(rq->rt_avg);
5280
78becc27 5281 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5282
b654f7de 5283 if (unlikely(total < avg)) {
aa483808
VP
5284 /* Ensures that power won't end up being negative */
5285 available = 0;
5286 } else {
b654f7de 5287 available = total - avg;
aa483808 5288 }
1e3c88bd 5289
1399fa78
NR
5290 if (unlikely((s64)total < SCHED_POWER_SCALE))
5291 total = SCHED_POWER_SCALE;
1e3c88bd 5292
1399fa78 5293 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5294
5295 return div_u64(available, total);
5296}
5297
5298static void update_cpu_power(struct sched_domain *sd, int cpu)
5299{
669c55e9 5300 unsigned long weight = sd->span_weight;
1399fa78 5301 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5302 struct sched_group *sdg = sd->groups;
5303
1e3c88bd
PZ
5304 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5305 if (sched_feat(ARCH_POWER))
5306 power *= arch_scale_smt_power(sd, cpu);
5307 else
5308 power *= default_scale_smt_power(sd, cpu);
5309
1399fa78 5310 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5311 }
5312
9c3f75cb 5313 sdg->sgp->power_orig = power;
9d5efe05
SV
5314
5315 if (sched_feat(ARCH_POWER))
5316 power *= arch_scale_freq_power(sd, cpu);
5317 else
5318 power *= default_scale_freq_power(sd, cpu);
5319
1399fa78 5320 power >>= SCHED_POWER_SHIFT;
9d5efe05 5321
1e3c88bd 5322 power *= scale_rt_power(cpu);
1399fa78 5323 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5324
5325 if (!power)
5326 power = 1;
5327
e51fd5e2 5328 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5329 sdg->sgp->power = power;
1e3c88bd
PZ
5330}
5331
029632fb 5332void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5333{
5334 struct sched_domain *child = sd->child;
5335 struct sched_group *group, *sdg = sd->groups;
863bffc8 5336 unsigned long power, power_orig;
4ec4412e
VG
5337 unsigned long interval;
5338
5339 interval = msecs_to_jiffies(sd->balance_interval);
5340 interval = clamp(interval, 1UL, max_load_balance_interval);
5341 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5342
5343 if (!child) {
5344 update_cpu_power(sd, cpu);
5345 return;
5346 }
5347
863bffc8 5348 power_orig = power = 0;
1e3c88bd 5349
74a5ce20
PZ
5350 if (child->flags & SD_OVERLAP) {
5351 /*
5352 * SD_OVERLAP domains cannot assume that child groups
5353 * span the current group.
5354 */
5355
863bffc8
PZ
5356 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5357 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5358
5359 power_orig += sg->sgp->power_orig;
5360 power += sg->sgp->power;
5361 }
74a5ce20
PZ
5362 } else {
5363 /*
5364 * !SD_OVERLAP domains can assume that child groups
5365 * span the current group.
5366 */
5367
5368 group = child->groups;
5369 do {
863bffc8 5370 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5371 power += group->sgp->power;
5372 group = group->next;
5373 } while (group != child->groups);
5374 }
1e3c88bd 5375
863bffc8
PZ
5376 sdg->sgp->power_orig = power_orig;
5377 sdg->sgp->power = power;
1e3c88bd
PZ
5378}
5379
9d5efe05
SV
5380/*
5381 * Try and fix up capacity for tiny siblings, this is needed when
5382 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5383 * which on its own isn't powerful enough.
5384 *
5385 * See update_sd_pick_busiest() and check_asym_packing().
5386 */
5387static inline int
5388fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5389{
5390 /*
1399fa78 5391 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5392 */
a6c75f2f 5393 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5394 return 0;
5395
5396 /*
5397 * If ~90% of the cpu_power is still there, we're good.
5398 */
9c3f75cb 5399 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5400 return 1;
5401
5402 return 0;
5403}
5404
30ce5dab
PZ
5405/*
5406 * Group imbalance indicates (and tries to solve) the problem where balancing
5407 * groups is inadequate due to tsk_cpus_allowed() constraints.
5408 *
5409 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5410 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5411 * Something like:
5412 *
5413 * { 0 1 2 3 } { 4 5 6 7 }
5414 * * * * *
5415 *
5416 * If we were to balance group-wise we'd place two tasks in the first group and
5417 * two tasks in the second group. Clearly this is undesired as it will overload
5418 * cpu 3 and leave one of the cpus in the second group unused.
5419 *
5420 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5421 * by noticing the lower domain failed to reach balance and had difficulty
5422 * moving tasks due to affinity constraints.
30ce5dab
PZ
5423 *
5424 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5425 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5426 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5427 * to create an effective group imbalance.
5428 *
5429 * This is a somewhat tricky proposition since the next run might not find the
5430 * group imbalance and decide the groups need to be balanced again. A most
5431 * subtle and fragile situation.
5432 */
5433
6263322c 5434static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5435{
6263322c 5436 return group->sgp->imbalance;
30ce5dab
PZ
5437}
5438
b37d9316
PZ
5439/*
5440 * Compute the group capacity.
5441 *
c61037e9
PZ
5442 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5443 * first dividing out the smt factor and computing the actual number of cores
5444 * and limit power unit capacity with that.
b37d9316
PZ
5445 */
5446static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5447{
c61037e9
PZ
5448 unsigned int capacity, smt, cpus;
5449 unsigned int power, power_orig;
5450
5451 power = group->sgp->power;
5452 power_orig = group->sgp->power_orig;
5453 cpus = group->group_weight;
b37d9316 5454
c61037e9
PZ
5455 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5456 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5457 capacity = cpus / smt; /* cores */
b37d9316 5458
c61037e9 5459 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5460 if (!capacity)
5461 capacity = fix_small_capacity(env->sd, group);
5462
5463 return capacity;
5464}
5465
1e3c88bd
PZ
5466/**
5467 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5468 * @env: The load balancing environment.
1e3c88bd 5469 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5470 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5471 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5472 * @sgs: variable to hold the statistics for this group.
5473 */
bd939f45
PZ
5474static inline void update_sg_lb_stats(struct lb_env *env,
5475 struct sched_group *group, int load_idx,
23f0d209 5476 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5477{
30ce5dab
PZ
5478 unsigned long nr_running;
5479 unsigned long load;
bd939f45 5480 int i;
1e3c88bd 5481
b72ff13c
PZ
5482 memset(sgs, 0, sizeof(*sgs));
5483
b9403130 5484 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5485 struct rq *rq = cpu_rq(i);
5486
e44bc5c5
PZ
5487 nr_running = rq->nr_running;
5488
1e3c88bd 5489 /* Bias balancing toward cpus of our domain */
6263322c 5490 if (local_group)
04f733b4 5491 load = target_load(i, load_idx);
6263322c 5492 else
1e3c88bd 5493 load = source_load(i, load_idx);
1e3c88bd
PZ
5494
5495 sgs->group_load += load;
e44bc5c5 5496 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5497#ifdef CONFIG_NUMA_BALANCING
5498 sgs->nr_numa_running += rq->nr_numa_running;
5499 sgs->nr_preferred_running += rq->nr_preferred_running;
5500#endif
1e3c88bd 5501 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5502 if (idle_cpu(i))
5503 sgs->idle_cpus++;
1e3c88bd
PZ
5504 }
5505
1e3c88bd 5506 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5507 sgs->group_power = group->sgp->power;
5508 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5509
dd5feea1 5510 if (sgs->sum_nr_running)
38d0f770 5511 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5512
aae6d3dd 5513 sgs->group_weight = group->group_weight;
fab47622 5514
b37d9316
PZ
5515 sgs->group_imb = sg_imbalanced(group);
5516 sgs->group_capacity = sg_capacity(env, group);
5517
fab47622
NR
5518 if (sgs->group_capacity > sgs->sum_nr_running)
5519 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5520}
5521
532cb4c4
MN
5522/**
5523 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5524 * @env: The load balancing environment.
532cb4c4
MN
5525 * @sds: sched_domain statistics
5526 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5527 * @sgs: sched_group statistics
532cb4c4
MN
5528 *
5529 * Determine if @sg is a busier group than the previously selected
5530 * busiest group.
e69f6186
YB
5531 *
5532 * Return: %true if @sg is a busier group than the previously selected
5533 * busiest group. %false otherwise.
532cb4c4 5534 */
bd939f45 5535static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5536 struct sd_lb_stats *sds,
5537 struct sched_group *sg,
bd939f45 5538 struct sg_lb_stats *sgs)
532cb4c4 5539{
56cf515b 5540 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5541 return false;
5542
5543 if (sgs->sum_nr_running > sgs->group_capacity)
5544 return true;
5545
5546 if (sgs->group_imb)
5547 return true;
5548
5549 /*
5550 * ASYM_PACKING needs to move all the work to the lowest
5551 * numbered CPUs in the group, therefore mark all groups
5552 * higher than ourself as busy.
5553 */
bd939f45
PZ
5554 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5555 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5556 if (!sds->busiest)
5557 return true;
5558
5559 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5560 return true;
5561 }
5562
5563 return false;
5564}
5565
0ec8aa00
PZ
5566#ifdef CONFIG_NUMA_BALANCING
5567static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5568{
5569 if (sgs->sum_nr_running > sgs->nr_numa_running)
5570 return regular;
5571 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5572 return remote;
5573 return all;
5574}
5575
5576static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5577{
5578 if (rq->nr_running > rq->nr_numa_running)
5579 return regular;
5580 if (rq->nr_running > rq->nr_preferred_running)
5581 return remote;
5582 return all;
5583}
5584#else
5585static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5586{
5587 return all;
5588}
5589
5590static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5591{
5592 return regular;
5593}
5594#endif /* CONFIG_NUMA_BALANCING */
5595
1e3c88bd 5596/**
461819ac 5597 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5598 * @env: The load balancing environment.
1e3c88bd
PZ
5599 * @sds: variable to hold the statistics for this sched_domain.
5600 */
0ec8aa00 5601static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5602{
bd939f45
PZ
5603 struct sched_domain *child = env->sd->child;
5604 struct sched_group *sg = env->sd->groups;
56cf515b 5605 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5606 int load_idx, prefer_sibling = 0;
5607
5608 if (child && child->flags & SD_PREFER_SIBLING)
5609 prefer_sibling = 1;
5610
bd939f45 5611 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5612
5613 do {
56cf515b 5614 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5615 int local_group;
5616
bd939f45 5617 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5618 if (local_group) {
5619 sds->local = sg;
5620 sgs = &sds->local_stat;
b72ff13c
PZ
5621
5622 if (env->idle != CPU_NEWLY_IDLE ||
5623 time_after_eq(jiffies, sg->sgp->next_update))
5624 update_group_power(env->sd, env->dst_cpu);
56cf515b 5625 }
1e3c88bd 5626
56cf515b 5627 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5628
b72ff13c
PZ
5629 if (local_group)
5630 goto next_group;
5631
1e3c88bd
PZ
5632 /*
5633 * In case the child domain prefers tasks go to siblings
532cb4c4 5634 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5635 * and move all the excess tasks away. We lower the capacity
5636 * of a group only if the local group has the capacity to fit
5637 * these excess tasks, i.e. nr_running < group_capacity. The
5638 * extra check prevents the case where you always pull from the
5639 * heaviest group when it is already under-utilized (possible
5640 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5641 */
b72ff13c
PZ
5642 if (prefer_sibling && sds->local &&
5643 sds->local_stat.group_has_capacity)
147c5fc2 5644 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5645
b72ff13c 5646 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5647 sds->busiest = sg;
56cf515b 5648 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5649 }
5650
b72ff13c
PZ
5651next_group:
5652 /* Now, start updating sd_lb_stats */
5653 sds->total_load += sgs->group_load;
5654 sds->total_pwr += sgs->group_power;
5655
532cb4c4 5656 sg = sg->next;
bd939f45 5657 } while (sg != env->sd->groups);
0ec8aa00
PZ
5658
5659 if (env->sd->flags & SD_NUMA)
5660 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5661}
5662
532cb4c4
MN
5663/**
5664 * check_asym_packing - Check to see if the group is packed into the
5665 * sched doman.
5666 *
5667 * This is primarily intended to used at the sibling level. Some
5668 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5669 * case of POWER7, it can move to lower SMT modes only when higher
5670 * threads are idle. When in lower SMT modes, the threads will
5671 * perform better since they share less core resources. Hence when we
5672 * have idle threads, we want them to be the higher ones.
5673 *
5674 * This packing function is run on idle threads. It checks to see if
5675 * the busiest CPU in this domain (core in the P7 case) has a higher
5676 * CPU number than the packing function is being run on. Here we are
5677 * assuming lower CPU number will be equivalent to lower a SMT thread
5678 * number.
5679 *
e69f6186 5680 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5681 * this CPU. The amount of the imbalance is returned in *imbalance.
5682 *
cd96891d 5683 * @env: The load balancing environment.
532cb4c4 5684 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5685 */
bd939f45 5686static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5687{
5688 int busiest_cpu;
5689
bd939f45 5690 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5691 return 0;
5692
5693 if (!sds->busiest)
5694 return 0;
5695
5696 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5697 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5698 return 0;
5699
bd939f45 5700 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5701 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5702 SCHED_POWER_SCALE);
bd939f45 5703
532cb4c4 5704 return 1;
1e3c88bd
PZ
5705}
5706
5707/**
5708 * fix_small_imbalance - Calculate the minor imbalance that exists
5709 * amongst the groups of a sched_domain, during
5710 * load balancing.
cd96891d 5711 * @env: The load balancing environment.
1e3c88bd 5712 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5713 */
bd939f45
PZ
5714static inline
5715void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5716{
5717 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5718 unsigned int imbn = 2;
dd5feea1 5719 unsigned long scaled_busy_load_per_task;
56cf515b 5720 struct sg_lb_stats *local, *busiest;
1e3c88bd 5721
56cf515b
JK
5722 local = &sds->local_stat;
5723 busiest = &sds->busiest_stat;
1e3c88bd 5724
56cf515b
JK
5725 if (!local->sum_nr_running)
5726 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5727 else if (busiest->load_per_task > local->load_per_task)
5728 imbn = 1;
dd5feea1 5729
56cf515b
JK
5730 scaled_busy_load_per_task =
5731 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5732 busiest->group_power;
56cf515b 5733
3029ede3
VD
5734 if (busiest->avg_load + scaled_busy_load_per_task >=
5735 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5736 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5737 return;
5738 }
5739
5740 /*
5741 * OK, we don't have enough imbalance to justify moving tasks,
5742 * however we may be able to increase total CPU power used by
5743 * moving them.
5744 */
5745
3ae11c90 5746 pwr_now += busiest->group_power *
56cf515b 5747 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5748 pwr_now += local->group_power *
56cf515b 5749 min(local->load_per_task, local->avg_load);
1399fa78 5750 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5751
5752 /* Amount of load we'd subtract */
56cf515b 5753 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5754 busiest->group_power;
56cf515b 5755 if (busiest->avg_load > tmp) {
3ae11c90 5756 pwr_move += busiest->group_power *
56cf515b
JK
5757 min(busiest->load_per_task,
5758 busiest->avg_load - tmp);
5759 }
1e3c88bd
PZ
5760
5761 /* Amount of load we'd add */
3ae11c90 5762 if (busiest->avg_load * busiest->group_power <
56cf515b 5763 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5764 tmp = (busiest->avg_load * busiest->group_power) /
5765 local->group_power;
56cf515b
JK
5766 } else {
5767 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5768 local->group_power;
56cf515b 5769 }
3ae11c90
PZ
5770 pwr_move += local->group_power *
5771 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5772 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5773
5774 /* Move if we gain throughput */
5775 if (pwr_move > pwr_now)
56cf515b 5776 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5777}
5778
5779/**
5780 * calculate_imbalance - Calculate the amount of imbalance present within the
5781 * groups of a given sched_domain during load balance.
bd939f45 5782 * @env: load balance environment
1e3c88bd 5783 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5784 */
bd939f45 5785static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5786{
dd5feea1 5787 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5788 struct sg_lb_stats *local, *busiest;
5789
5790 local = &sds->local_stat;
56cf515b 5791 busiest = &sds->busiest_stat;
dd5feea1 5792
56cf515b 5793 if (busiest->group_imb) {
30ce5dab
PZ
5794 /*
5795 * In the group_imb case we cannot rely on group-wide averages
5796 * to ensure cpu-load equilibrium, look at wider averages. XXX
5797 */
56cf515b
JK
5798 busiest->load_per_task =
5799 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5800 }
5801
1e3c88bd
PZ
5802 /*
5803 * In the presence of smp nice balancing, certain scenarios can have
5804 * max load less than avg load(as we skip the groups at or below
5805 * its cpu_power, while calculating max_load..)
5806 */
b1885550
VD
5807 if (busiest->avg_load <= sds->avg_load ||
5808 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5809 env->imbalance = 0;
5810 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5811 }
5812
56cf515b 5813 if (!busiest->group_imb) {
dd5feea1
SS
5814 /*
5815 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5816 * Except of course for the group_imb case, since then we might
5817 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5818 */
56cf515b
JK
5819 load_above_capacity =
5820 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5821
1399fa78 5822 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5823 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5824 }
5825
5826 /*
5827 * We're trying to get all the cpus to the average_load, so we don't
5828 * want to push ourselves above the average load, nor do we wish to
5829 * reduce the max loaded cpu below the average load. At the same time,
5830 * we also don't want to reduce the group load below the group capacity
5831 * (so that we can implement power-savings policies etc). Thus we look
5832 * for the minimum possible imbalance.
dd5feea1 5833 */
30ce5dab 5834 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5835
5836 /* How much load to actually move to equalise the imbalance */
56cf515b 5837 env->imbalance = min(
3ae11c90
PZ
5838 max_pull * busiest->group_power,
5839 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5840 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5841
5842 /*
5843 * if *imbalance is less than the average load per runnable task
25985edc 5844 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5845 * a think about bumping its value to force at least one task to be
5846 * moved
5847 */
56cf515b 5848 if (env->imbalance < busiest->load_per_task)
bd939f45 5849 return fix_small_imbalance(env, sds);
1e3c88bd 5850}
fab47622 5851
1e3c88bd
PZ
5852/******* find_busiest_group() helpers end here *********************/
5853
5854/**
5855 * find_busiest_group - Returns the busiest group within the sched_domain
5856 * if there is an imbalance. If there isn't an imbalance, and
5857 * the user has opted for power-savings, it returns a group whose
5858 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5859 * such a group exists.
5860 *
5861 * Also calculates the amount of weighted load which should be moved
5862 * to restore balance.
5863 *
cd96891d 5864 * @env: The load balancing environment.
1e3c88bd 5865 *
e69f6186 5866 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5867 * - If no imbalance and user has opted for power-savings balance,
5868 * return the least loaded group whose CPUs can be
5869 * put to idle by rebalancing its tasks onto our group.
5870 */
56cf515b 5871static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5872{
56cf515b 5873 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5874 struct sd_lb_stats sds;
5875
147c5fc2 5876 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5877
5878 /*
5879 * Compute the various statistics relavent for load balancing at
5880 * this level.
5881 */
23f0d209 5882 update_sd_lb_stats(env, &sds);
56cf515b
JK
5883 local = &sds.local_stat;
5884 busiest = &sds.busiest_stat;
1e3c88bd 5885
bd939f45
PZ
5886 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5887 check_asym_packing(env, &sds))
532cb4c4
MN
5888 return sds.busiest;
5889
cc57aa8f 5890 /* There is no busy sibling group to pull tasks from */
56cf515b 5891 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5892 goto out_balanced;
5893
1399fa78 5894 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5895
866ab43e
PZ
5896 /*
5897 * If the busiest group is imbalanced the below checks don't
30ce5dab 5898 * work because they assume all things are equal, which typically
866ab43e
PZ
5899 * isn't true due to cpus_allowed constraints and the like.
5900 */
56cf515b 5901 if (busiest->group_imb)
866ab43e
PZ
5902 goto force_balance;
5903
cc57aa8f 5904 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5905 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5906 !busiest->group_has_capacity)
fab47622
NR
5907 goto force_balance;
5908
cc57aa8f
PZ
5909 /*
5910 * If the local group is more busy than the selected busiest group
5911 * don't try and pull any tasks.
5912 */
56cf515b 5913 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5914 goto out_balanced;
5915
cc57aa8f
PZ
5916 /*
5917 * Don't pull any tasks if this group is already above the domain
5918 * average load.
5919 */
56cf515b 5920 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5921 goto out_balanced;
5922
bd939f45 5923 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5924 /*
5925 * This cpu is idle. If the busiest group load doesn't
5926 * have more tasks than the number of available cpu's and
5927 * there is no imbalance between this and busiest group
5928 * wrt to idle cpu's, it is balanced.
5929 */
56cf515b
JK
5930 if ((local->idle_cpus < busiest->idle_cpus) &&
5931 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5932 goto out_balanced;
c186fafe
PZ
5933 } else {
5934 /*
5935 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5936 * imbalance_pct to be conservative.
5937 */
56cf515b
JK
5938 if (100 * busiest->avg_load <=
5939 env->sd->imbalance_pct * local->avg_load)
c186fafe 5940 goto out_balanced;
aae6d3dd 5941 }
1e3c88bd 5942
fab47622 5943force_balance:
1e3c88bd 5944 /* Looks like there is an imbalance. Compute it */
bd939f45 5945 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5946 return sds.busiest;
5947
5948out_balanced:
bd939f45 5949 env->imbalance = 0;
1e3c88bd
PZ
5950 return NULL;
5951}
5952
5953/*
5954 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5955 */
bd939f45 5956static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5957 struct sched_group *group)
1e3c88bd
PZ
5958{
5959 struct rq *busiest = NULL, *rq;
95a79b80 5960 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5961 int i;
5962
6906a408 5963 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5964 unsigned long power, capacity, wl;
5965 enum fbq_type rt;
5966
5967 rq = cpu_rq(i);
5968 rt = fbq_classify_rq(rq);
1e3c88bd 5969
0ec8aa00
PZ
5970 /*
5971 * We classify groups/runqueues into three groups:
5972 * - regular: there are !numa tasks
5973 * - remote: there are numa tasks that run on the 'wrong' node
5974 * - all: there is no distinction
5975 *
5976 * In order to avoid migrating ideally placed numa tasks,
5977 * ignore those when there's better options.
5978 *
5979 * If we ignore the actual busiest queue to migrate another
5980 * task, the next balance pass can still reduce the busiest
5981 * queue by moving tasks around inside the node.
5982 *
5983 * If we cannot move enough load due to this classification
5984 * the next pass will adjust the group classification and
5985 * allow migration of more tasks.
5986 *
5987 * Both cases only affect the total convergence complexity.
5988 */
5989 if (rt > env->fbq_type)
5990 continue;
5991
5992 power = power_of(i);
5993 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 5994 if (!capacity)
bd939f45 5995 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5996
6e40f5bb 5997 wl = weighted_cpuload(i);
1e3c88bd 5998
6e40f5bb
TG
5999 /*
6000 * When comparing with imbalance, use weighted_cpuload()
6001 * which is not scaled with the cpu power.
6002 */
bd939f45 6003 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6004 continue;
6005
6e40f5bb
TG
6006 /*
6007 * For the load comparisons with the other cpu's, consider
6008 * the weighted_cpuload() scaled with the cpu power, so that
6009 * the load can be moved away from the cpu that is potentially
6010 * running at a lower capacity.
95a79b80
JK
6011 *
6012 * Thus we're looking for max(wl_i / power_i), crosswise
6013 * multiplication to rid ourselves of the division works out
6014 * to: wl_i * power_j > wl_j * power_i; where j is our
6015 * previous maximum.
6e40f5bb 6016 */
95a79b80
JK
6017 if (wl * busiest_power > busiest_load * power) {
6018 busiest_load = wl;
6019 busiest_power = power;
1e3c88bd
PZ
6020 busiest = rq;
6021 }
6022 }
6023
6024 return busiest;
6025}
6026
6027/*
6028 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6029 * so long as it is large enough.
6030 */
6031#define MAX_PINNED_INTERVAL 512
6032
6033/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6034DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6035
bd939f45 6036static int need_active_balance(struct lb_env *env)
1af3ed3d 6037{
bd939f45
PZ
6038 struct sched_domain *sd = env->sd;
6039
6040 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6041
6042 /*
6043 * ASYM_PACKING needs to force migrate tasks from busy but
6044 * higher numbered CPUs in order to pack all tasks in the
6045 * lowest numbered CPUs.
6046 */
bd939f45 6047 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6048 return 1;
1af3ed3d
PZ
6049 }
6050
6051 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6052}
6053
969c7921
TH
6054static int active_load_balance_cpu_stop(void *data);
6055
23f0d209
JK
6056static int should_we_balance(struct lb_env *env)
6057{
6058 struct sched_group *sg = env->sd->groups;
6059 struct cpumask *sg_cpus, *sg_mask;
6060 int cpu, balance_cpu = -1;
6061
6062 /*
6063 * In the newly idle case, we will allow all the cpu's
6064 * to do the newly idle load balance.
6065 */
6066 if (env->idle == CPU_NEWLY_IDLE)
6067 return 1;
6068
6069 sg_cpus = sched_group_cpus(sg);
6070 sg_mask = sched_group_mask(sg);
6071 /* Try to find first idle cpu */
6072 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6073 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6074 continue;
6075
6076 balance_cpu = cpu;
6077 break;
6078 }
6079
6080 if (balance_cpu == -1)
6081 balance_cpu = group_balance_cpu(sg);
6082
6083 /*
6084 * First idle cpu or the first cpu(busiest) in this sched group
6085 * is eligible for doing load balancing at this and above domains.
6086 */
b0cff9d8 6087 return balance_cpu == env->dst_cpu;
23f0d209
JK
6088}
6089
1e3c88bd
PZ
6090/*
6091 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6092 * tasks if there is an imbalance.
6093 */
6094static int load_balance(int this_cpu, struct rq *this_rq,
6095 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6096 int *continue_balancing)
1e3c88bd 6097{
88b8dac0 6098 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6099 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6100 struct sched_group *group;
1e3c88bd
PZ
6101 struct rq *busiest;
6102 unsigned long flags;
e6252c3e 6103 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6104
8e45cb54
PZ
6105 struct lb_env env = {
6106 .sd = sd,
ddcdf6e7
PZ
6107 .dst_cpu = this_cpu,
6108 .dst_rq = this_rq,
88b8dac0 6109 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6110 .idle = idle,
eb95308e 6111 .loop_break = sched_nr_migrate_break,
b9403130 6112 .cpus = cpus,
0ec8aa00 6113 .fbq_type = all,
8e45cb54
PZ
6114 };
6115
cfc03118
JK
6116 /*
6117 * For NEWLY_IDLE load_balancing, we don't need to consider
6118 * other cpus in our group
6119 */
e02e60c1 6120 if (idle == CPU_NEWLY_IDLE)
cfc03118 6121 env.dst_grpmask = NULL;
cfc03118 6122
1e3c88bd
PZ
6123 cpumask_copy(cpus, cpu_active_mask);
6124
1e3c88bd
PZ
6125 schedstat_inc(sd, lb_count[idle]);
6126
6127redo:
23f0d209
JK
6128 if (!should_we_balance(&env)) {
6129 *continue_balancing = 0;
1e3c88bd 6130 goto out_balanced;
23f0d209 6131 }
1e3c88bd 6132
23f0d209 6133 group = find_busiest_group(&env);
1e3c88bd
PZ
6134 if (!group) {
6135 schedstat_inc(sd, lb_nobusyg[idle]);
6136 goto out_balanced;
6137 }
6138
b9403130 6139 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6140 if (!busiest) {
6141 schedstat_inc(sd, lb_nobusyq[idle]);
6142 goto out_balanced;
6143 }
6144
78feefc5 6145 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6146
bd939f45 6147 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6148
6149 ld_moved = 0;
6150 if (busiest->nr_running > 1) {
6151 /*
6152 * Attempt to move tasks. If find_busiest_group has found
6153 * an imbalance but busiest->nr_running <= 1, the group is
6154 * still unbalanced. ld_moved simply stays zero, so it is
6155 * correctly treated as an imbalance.
6156 */
8e45cb54 6157 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6158 env.src_cpu = busiest->cpu;
6159 env.src_rq = busiest;
6160 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6161
5d6523eb 6162more_balance:
1e3c88bd 6163 local_irq_save(flags);
78feefc5 6164 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6165
6166 /*
6167 * cur_ld_moved - load moved in current iteration
6168 * ld_moved - cumulative load moved across iterations
6169 */
6170 cur_ld_moved = move_tasks(&env);
6171 ld_moved += cur_ld_moved;
78feefc5 6172 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6173 local_irq_restore(flags);
6174
6175 /*
6176 * some other cpu did the load balance for us.
6177 */
88b8dac0
SV
6178 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6179 resched_cpu(env.dst_cpu);
6180
f1cd0858
JK
6181 if (env.flags & LBF_NEED_BREAK) {
6182 env.flags &= ~LBF_NEED_BREAK;
6183 goto more_balance;
6184 }
6185
88b8dac0
SV
6186 /*
6187 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6188 * us and move them to an alternate dst_cpu in our sched_group
6189 * where they can run. The upper limit on how many times we
6190 * iterate on same src_cpu is dependent on number of cpus in our
6191 * sched_group.
6192 *
6193 * This changes load balance semantics a bit on who can move
6194 * load to a given_cpu. In addition to the given_cpu itself
6195 * (or a ilb_cpu acting on its behalf where given_cpu is
6196 * nohz-idle), we now have balance_cpu in a position to move
6197 * load to given_cpu. In rare situations, this may cause
6198 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6199 * _independently_ and at _same_ time to move some load to
6200 * given_cpu) causing exceess load to be moved to given_cpu.
6201 * This however should not happen so much in practice and
6202 * moreover subsequent load balance cycles should correct the
6203 * excess load moved.
6204 */
6263322c 6205 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6206
7aff2e3a
VD
6207 /* Prevent to re-select dst_cpu via env's cpus */
6208 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6209
78feefc5 6210 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6211 env.dst_cpu = env.new_dst_cpu;
6263322c 6212 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6213 env.loop = 0;
6214 env.loop_break = sched_nr_migrate_break;
e02e60c1 6215
88b8dac0
SV
6216 /*
6217 * Go back to "more_balance" rather than "redo" since we
6218 * need to continue with same src_cpu.
6219 */
6220 goto more_balance;
6221 }
1e3c88bd 6222
6263322c
PZ
6223 /*
6224 * We failed to reach balance because of affinity.
6225 */
6226 if (sd_parent) {
6227 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6228
6229 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6230 *group_imbalance = 1;
6231 } else if (*group_imbalance)
6232 *group_imbalance = 0;
6233 }
6234
1e3c88bd 6235 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6236 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6237 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6238 if (!cpumask_empty(cpus)) {
6239 env.loop = 0;
6240 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6241 goto redo;
bbf18b19 6242 }
1e3c88bd
PZ
6243 goto out_balanced;
6244 }
6245 }
6246
6247 if (!ld_moved) {
6248 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6249 /*
6250 * Increment the failure counter only on periodic balance.
6251 * We do not want newidle balance, which can be very
6252 * frequent, pollute the failure counter causing
6253 * excessive cache_hot migrations and active balances.
6254 */
6255 if (idle != CPU_NEWLY_IDLE)
6256 sd->nr_balance_failed++;
1e3c88bd 6257
bd939f45 6258 if (need_active_balance(&env)) {
1e3c88bd
PZ
6259 raw_spin_lock_irqsave(&busiest->lock, flags);
6260
969c7921
TH
6261 /* don't kick the active_load_balance_cpu_stop,
6262 * if the curr task on busiest cpu can't be
6263 * moved to this_cpu
1e3c88bd
PZ
6264 */
6265 if (!cpumask_test_cpu(this_cpu,
fa17b507 6266 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6267 raw_spin_unlock_irqrestore(&busiest->lock,
6268 flags);
8e45cb54 6269 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6270 goto out_one_pinned;
6271 }
6272
969c7921
TH
6273 /*
6274 * ->active_balance synchronizes accesses to
6275 * ->active_balance_work. Once set, it's cleared
6276 * only after active load balance is finished.
6277 */
1e3c88bd
PZ
6278 if (!busiest->active_balance) {
6279 busiest->active_balance = 1;
6280 busiest->push_cpu = this_cpu;
6281 active_balance = 1;
6282 }
6283 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6284
bd939f45 6285 if (active_balance) {
969c7921
TH
6286 stop_one_cpu_nowait(cpu_of(busiest),
6287 active_load_balance_cpu_stop, busiest,
6288 &busiest->active_balance_work);
bd939f45 6289 }
1e3c88bd
PZ
6290
6291 /*
6292 * We've kicked active balancing, reset the failure
6293 * counter.
6294 */
6295 sd->nr_balance_failed = sd->cache_nice_tries+1;
6296 }
6297 } else
6298 sd->nr_balance_failed = 0;
6299
6300 if (likely(!active_balance)) {
6301 /* We were unbalanced, so reset the balancing interval */
6302 sd->balance_interval = sd->min_interval;
6303 } else {
6304 /*
6305 * If we've begun active balancing, start to back off. This
6306 * case may not be covered by the all_pinned logic if there
6307 * is only 1 task on the busy runqueue (because we don't call
6308 * move_tasks).
6309 */
6310 if (sd->balance_interval < sd->max_interval)
6311 sd->balance_interval *= 2;
6312 }
6313
1e3c88bd
PZ
6314 goto out;
6315
6316out_balanced:
6317 schedstat_inc(sd, lb_balanced[idle]);
6318
6319 sd->nr_balance_failed = 0;
6320
6321out_one_pinned:
6322 /* tune up the balancing interval */
8e45cb54 6323 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6324 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6325 (sd->balance_interval < sd->max_interval))
6326 sd->balance_interval *= 2;
6327
46e49b38 6328 ld_moved = 0;
1e3c88bd 6329out:
1e3c88bd
PZ
6330 return ld_moved;
6331}
6332
1e3c88bd
PZ
6333/*
6334 * idle_balance is called by schedule() if this_cpu is about to become
6335 * idle. Attempts to pull tasks from other CPUs.
6336 */
029632fb 6337void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6338{
6339 struct sched_domain *sd;
6340 int pulled_task = 0;
6341 unsigned long next_balance = jiffies + HZ;
9bd721c5 6342 u64 curr_cost = 0;
1e3c88bd 6343
78becc27 6344 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6345
6346 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6347 return;
6348
f492e12e
PZ
6349 /*
6350 * Drop the rq->lock, but keep IRQ/preempt disabled.
6351 */
6352 raw_spin_unlock(&this_rq->lock);
6353
48a16753 6354 update_blocked_averages(this_cpu);
dce840a0 6355 rcu_read_lock();
1e3c88bd
PZ
6356 for_each_domain(this_cpu, sd) {
6357 unsigned long interval;
23f0d209 6358 int continue_balancing = 1;
9bd721c5 6359 u64 t0, domain_cost;
1e3c88bd
PZ
6360
6361 if (!(sd->flags & SD_LOAD_BALANCE))
6362 continue;
6363
9bd721c5
JL
6364 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6365 break;
6366
f492e12e 6367 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6368 t0 = sched_clock_cpu(this_cpu);
6369
1e3c88bd 6370 /* If we've pulled tasks over stop searching: */
f492e12e 6371 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6372 sd, CPU_NEWLY_IDLE,
6373 &continue_balancing);
9bd721c5
JL
6374
6375 domain_cost = sched_clock_cpu(this_cpu) - t0;
6376 if (domain_cost > sd->max_newidle_lb_cost)
6377 sd->max_newidle_lb_cost = domain_cost;
6378
6379 curr_cost += domain_cost;
f492e12e 6380 }
1e3c88bd
PZ
6381
6382 interval = msecs_to_jiffies(sd->balance_interval);
6383 if (time_after(next_balance, sd->last_balance + interval))
6384 next_balance = sd->last_balance + interval;
d5ad140b
NR
6385 if (pulled_task) {
6386 this_rq->idle_stamp = 0;
1e3c88bd 6387 break;
d5ad140b 6388 }
1e3c88bd 6389 }
dce840a0 6390 rcu_read_unlock();
f492e12e
PZ
6391
6392 raw_spin_lock(&this_rq->lock);
6393
1e3c88bd
PZ
6394 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6395 /*
6396 * We are going idle. next_balance may be set based on
6397 * a busy processor. So reset next_balance.
6398 */
6399 this_rq->next_balance = next_balance;
6400 }
9bd721c5
JL
6401
6402 if (curr_cost > this_rq->max_idle_balance_cost)
6403 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6404}
6405
6406/*
969c7921
TH
6407 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6408 * running tasks off the busiest CPU onto idle CPUs. It requires at
6409 * least 1 task to be running on each physical CPU where possible, and
6410 * avoids physical / logical imbalances.
1e3c88bd 6411 */
969c7921 6412static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6413{
969c7921
TH
6414 struct rq *busiest_rq = data;
6415 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6416 int target_cpu = busiest_rq->push_cpu;
969c7921 6417 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6418 struct sched_domain *sd;
969c7921
TH
6419
6420 raw_spin_lock_irq(&busiest_rq->lock);
6421
6422 /* make sure the requested cpu hasn't gone down in the meantime */
6423 if (unlikely(busiest_cpu != smp_processor_id() ||
6424 !busiest_rq->active_balance))
6425 goto out_unlock;
1e3c88bd
PZ
6426
6427 /* Is there any task to move? */
6428 if (busiest_rq->nr_running <= 1)
969c7921 6429 goto out_unlock;
1e3c88bd
PZ
6430
6431 /*
6432 * This condition is "impossible", if it occurs
6433 * we need to fix it. Originally reported by
6434 * Bjorn Helgaas on a 128-cpu setup.
6435 */
6436 BUG_ON(busiest_rq == target_rq);
6437
6438 /* move a task from busiest_rq to target_rq */
6439 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6440
6441 /* Search for an sd spanning us and the target CPU. */
dce840a0 6442 rcu_read_lock();
1e3c88bd
PZ
6443 for_each_domain(target_cpu, sd) {
6444 if ((sd->flags & SD_LOAD_BALANCE) &&
6445 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6446 break;
6447 }
6448
6449 if (likely(sd)) {
8e45cb54
PZ
6450 struct lb_env env = {
6451 .sd = sd,
ddcdf6e7
PZ
6452 .dst_cpu = target_cpu,
6453 .dst_rq = target_rq,
6454 .src_cpu = busiest_rq->cpu,
6455 .src_rq = busiest_rq,
8e45cb54
PZ
6456 .idle = CPU_IDLE,
6457 };
6458
1e3c88bd
PZ
6459 schedstat_inc(sd, alb_count);
6460
8e45cb54 6461 if (move_one_task(&env))
1e3c88bd
PZ
6462 schedstat_inc(sd, alb_pushed);
6463 else
6464 schedstat_inc(sd, alb_failed);
6465 }
dce840a0 6466 rcu_read_unlock();
1e3c88bd 6467 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6468out_unlock:
6469 busiest_rq->active_balance = 0;
6470 raw_spin_unlock_irq(&busiest_rq->lock);
6471 return 0;
1e3c88bd
PZ
6472}
6473
3451d024 6474#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6475/*
6476 * idle load balancing details
83cd4fe2
VP
6477 * - When one of the busy CPUs notice that there may be an idle rebalancing
6478 * needed, they will kick the idle load balancer, which then does idle
6479 * load balancing for all the idle CPUs.
6480 */
1e3c88bd 6481static struct {
83cd4fe2 6482 cpumask_var_t idle_cpus_mask;
0b005cf5 6483 atomic_t nr_cpus;
83cd4fe2
VP
6484 unsigned long next_balance; /* in jiffy units */
6485} nohz ____cacheline_aligned;
1e3c88bd 6486
8e7fbcbc 6487static inline int find_new_ilb(int call_cpu)
1e3c88bd 6488{
0b005cf5 6489 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6490
786d6dc7
SS
6491 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6492 return ilb;
6493
6494 return nr_cpu_ids;
1e3c88bd 6495}
1e3c88bd 6496
83cd4fe2
VP
6497/*
6498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6500 * CPU (if there is one).
6501 */
6502static void nohz_balancer_kick(int cpu)
6503{
6504 int ilb_cpu;
6505
6506 nohz.next_balance++;
6507
0b005cf5 6508 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6509
0b005cf5
SS
6510 if (ilb_cpu >= nr_cpu_ids)
6511 return;
83cd4fe2 6512
cd490c5b 6513 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6514 return;
6515 /*
6516 * Use smp_send_reschedule() instead of resched_cpu().
6517 * This way we generate a sched IPI on the target cpu which
6518 * is idle. And the softirq performing nohz idle load balance
6519 * will be run before returning from the IPI.
6520 */
6521 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6522 return;
6523}
6524
c1cc017c 6525static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6526{
6527 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6528 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6529 atomic_dec(&nohz.nr_cpus);
6530 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6531 }
6532}
6533
69e1e811
SS
6534static inline void set_cpu_sd_state_busy(void)
6535{
6536 struct sched_domain *sd;
69e1e811 6537
69e1e811 6538 rcu_read_lock();
424c93fe 6539 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6540
6541 if (!sd || !sd->nohz_idle)
6542 goto unlock;
6543 sd->nohz_idle = 0;
6544
6545 for (; sd; sd = sd->parent)
69e1e811 6546 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6547unlock:
69e1e811
SS
6548 rcu_read_unlock();
6549}
6550
6551void set_cpu_sd_state_idle(void)
6552{
6553 struct sched_domain *sd;
69e1e811 6554
69e1e811 6555 rcu_read_lock();
424c93fe 6556 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6557
6558 if (!sd || sd->nohz_idle)
6559 goto unlock;
6560 sd->nohz_idle = 1;
6561
6562 for (; sd; sd = sd->parent)
69e1e811 6563 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6564unlock:
69e1e811
SS
6565 rcu_read_unlock();
6566}
6567
1e3c88bd 6568/*
c1cc017c 6569 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6570 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6571 */
c1cc017c 6572void nohz_balance_enter_idle(int cpu)
1e3c88bd 6573{
71325960
SS
6574 /*
6575 * If this cpu is going down, then nothing needs to be done.
6576 */
6577 if (!cpu_active(cpu))
6578 return;
6579
c1cc017c
AS
6580 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6581 return;
1e3c88bd 6582
c1cc017c
AS
6583 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6584 atomic_inc(&nohz.nr_cpus);
6585 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6586}
71325960 6587
0db0628d 6588static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6589 unsigned long action, void *hcpu)
6590{
6591 switch (action & ~CPU_TASKS_FROZEN) {
6592 case CPU_DYING:
c1cc017c 6593 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6594 return NOTIFY_OK;
6595 default:
6596 return NOTIFY_DONE;
6597 }
6598}
1e3c88bd
PZ
6599#endif
6600
6601static DEFINE_SPINLOCK(balancing);
6602
49c022e6
PZ
6603/*
6604 * Scale the max load_balance interval with the number of CPUs in the system.
6605 * This trades load-balance latency on larger machines for less cross talk.
6606 */
029632fb 6607void update_max_interval(void)
49c022e6
PZ
6608{
6609 max_load_balance_interval = HZ*num_online_cpus()/10;
6610}
6611
1e3c88bd
PZ
6612/*
6613 * It checks each scheduling domain to see if it is due to be balanced,
6614 * and initiates a balancing operation if so.
6615 *
b9b0853a 6616 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6617 */
6618static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6619{
23f0d209 6620 int continue_balancing = 1;
1e3c88bd
PZ
6621 struct rq *rq = cpu_rq(cpu);
6622 unsigned long interval;
04f733b4 6623 struct sched_domain *sd;
1e3c88bd
PZ
6624 /* Earliest time when we have to do rebalance again */
6625 unsigned long next_balance = jiffies + 60*HZ;
6626 int update_next_balance = 0;
f48627e6
JL
6627 int need_serialize, need_decay = 0;
6628 u64 max_cost = 0;
1e3c88bd 6629
48a16753 6630 update_blocked_averages(cpu);
2069dd75 6631
dce840a0 6632 rcu_read_lock();
1e3c88bd 6633 for_each_domain(cpu, sd) {
f48627e6
JL
6634 /*
6635 * Decay the newidle max times here because this is a regular
6636 * visit to all the domains. Decay ~1% per second.
6637 */
6638 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6639 sd->max_newidle_lb_cost =
6640 (sd->max_newidle_lb_cost * 253) / 256;
6641 sd->next_decay_max_lb_cost = jiffies + HZ;
6642 need_decay = 1;
6643 }
6644 max_cost += sd->max_newidle_lb_cost;
6645
1e3c88bd
PZ
6646 if (!(sd->flags & SD_LOAD_BALANCE))
6647 continue;
6648
f48627e6
JL
6649 /*
6650 * Stop the load balance at this level. There is another
6651 * CPU in our sched group which is doing load balancing more
6652 * actively.
6653 */
6654 if (!continue_balancing) {
6655 if (need_decay)
6656 continue;
6657 break;
6658 }
6659
1e3c88bd
PZ
6660 interval = sd->balance_interval;
6661 if (idle != CPU_IDLE)
6662 interval *= sd->busy_factor;
6663
6664 /* scale ms to jiffies */
6665 interval = msecs_to_jiffies(interval);
49c022e6 6666 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6667
6668 need_serialize = sd->flags & SD_SERIALIZE;
6669
6670 if (need_serialize) {
6671 if (!spin_trylock(&balancing))
6672 goto out;
6673 }
6674
6675 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6676 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6677 /*
6263322c 6678 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6679 * env->dst_cpu, so we can't know our idle
6680 * state even if we migrated tasks. Update it.
1e3c88bd 6681 */
de5eb2dd 6682 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6683 }
6684 sd->last_balance = jiffies;
6685 }
6686 if (need_serialize)
6687 spin_unlock(&balancing);
6688out:
6689 if (time_after(next_balance, sd->last_balance + interval)) {
6690 next_balance = sd->last_balance + interval;
6691 update_next_balance = 1;
6692 }
f48627e6
JL
6693 }
6694 if (need_decay) {
1e3c88bd 6695 /*
f48627e6
JL
6696 * Ensure the rq-wide value also decays but keep it at a
6697 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6698 */
f48627e6
JL
6699 rq->max_idle_balance_cost =
6700 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6701 }
dce840a0 6702 rcu_read_unlock();
1e3c88bd
PZ
6703
6704 /*
6705 * next_balance will be updated only when there is a need.
6706 * When the cpu is attached to null domain for ex, it will not be
6707 * updated.
6708 */
6709 if (likely(update_next_balance))
6710 rq->next_balance = next_balance;
6711}
6712
3451d024 6713#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6714/*
3451d024 6715 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6716 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6717 */
83cd4fe2
VP
6718static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6719{
6720 struct rq *this_rq = cpu_rq(this_cpu);
6721 struct rq *rq;
6722 int balance_cpu;
6723
1c792db7
SS
6724 if (idle != CPU_IDLE ||
6725 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6726 goto end;
83cd4fe2
VP
6727
6728 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6729 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6730 continue;
6731
6732 /*
6733 * If this cpu gets work to do, stop the load balancing
6734 * work being done for other cpus. Next load
6735 * balancing owner will pick it up.
6736 */
1c792db7 6737 if (need_resched())
83cd4fe2 6738 break;
83cd4fe2 6739
5ed4f1d9
VG
6740 rq = cpu_rq(balance_cpu);
6741
6742 raw_spin_lock_irq(&rq->lock);
6743 update_rq_clock(rq);
6744 update_idle_cpu_load(rq);
6745 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6746
6747 rebalance_domains(balance_cpu, CPU_IDLE);
6748
83cd4fe2
VP
6749 if (time_after(this_rq->next_balance, rq->next_balance))
6750 this_rq->next_balance = rq->next_balance;
6751 }
6752 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6753end:
6754 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6755}
6756
6757/*
0b005cf5
SS
6758 * Current heuristic for kicking the idle load balancer in the presence
6759 * of an idle cpu is the system.
6760 * - This rq has more than one task.
6761 * - At any scheduler domain level, this cpu's scheduler group has multiple
6762 * busy cpu's exceeding the group's power.
6763 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6764 * domain span are idle.
83cd4fe2
VP
6765 */
6766static inline int nohz_kick_needed(struct rq *rq, int cpu)
6767{
6768 unsigned long now = jiffies;
0b005cf5 6769 struct sched_domain *sd;
83cd4fe2 6770
1c792db7 6771 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6772 return 0;
6773
1c792db7
SS
6774 /*
6775 * We may be recently in ticked or tickless idle mode. At the first
6776 * busy tick after returning from idle, we will update the busy stats.
6777 */
69e1e811 6778 set_cpu_sd_state_busy();
c1cc017c 6779 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6780
6781 /*
6782 * None are in tickless mode and hence no need for NOHZ idle load
6783 * balancing.
6784 */
6785 if (likely(!atomic_read(&nohz.nr_cpus)))
6786 return 0;
1c792db7
SS
6787
6788 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6789 return 0;
6790
0b005cf5
SS
6791 if (rq->nr_running >= 2)
6792 goto need_kick;
83cd4fe2 6793
067491b7 6794 rcu_read_lock();
0b005cf5
SS
6795 for_each_domain(cpu, sd) {
6796 struct sched_group *sg = sd->groups;
6797 struct sched_group_power *sgp = sg->sgp;
6798 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6799
0b005cf5 6800 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6801 goto need_kick_unlock;
0b005cf5 6802
2042abe7 6803 if (sd->flags & SD_ASYM_PACKING
0b005cf5
SS
6804 && (cpumask_first_and(nohz.idle_cpus_mask,
6805 sched_domain_span(sd)) < cpu))
067491b7 6806 goto need_kick_unlock;
0b005cf5
SS
6807
6808 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6809 break;
83cd4fe2 6810 }
067491b7 6811 rcu_read_unlock();
83cd4fe2 6812 return 0;
067491b7
PZ
6813
6814need_kick_unlock:
6815 rcu_read_unlock();
0b005cf5
SS
6816need_kick:
6817 return 1;
83cd4fe2
VP
6818}
6819#else
6820static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6821#endif
6822
6823/*
6824 * run_rebalance_domains is triggered when needed from the scheduler tick.
6825 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6826 */
1e3c88bd
PZ
6827static void run_rebalance_domains(struct softirq_action *h)
6828{
6829 int this_cpu = smp_processor_id();
6830 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6831 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6832 CPU_IDLE : CPU_NOT_IDLE;
6833
6834 rebalance_domains(this_cpu, idle);
6835
1e3c88bd 6836 /*
83cd4fe2 6837 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6838 * balancing on behalf of the other idle cpus whose ticks are
6839 * stopped.
6840 */
83cd4fe2 6841 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6842}
6843
6844static inline int on_null_domain(int cpu)
6845{
90a6501f 6846 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6847}
6848
6849/*
6850 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6851 */
029632fb 6852void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6853{
1e3c88bd
PZ
6854 /* Don't need to rebalance while attached to NULL domain */
6855 if (time_after_eq(jiffies, rq->next_balance) &&
6856 likely(!on_null_domain(cpu)))
6857 raise_softirq(SCHED_SOFTIRQ);
3451d024 6858#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6859 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6860 nohz_balancer_kick(cpu);
6861#endif
1e3c88bd
PZ
6862}
6863
0bcdcf28
CE
6864static void rq_online_fair(struct rq *rq)
6865{
6866 update_sysctl();
6867}
6868
6869static void rq_offline_fair(struct rq *rq)
6870{
6871 update_sysctl();
a4c96ae3
PB
6872
6873 /* Ensure any throttled groups are reachable by pick_next_task */
6874 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6875}
6876
55e12e5e 6877#endif /* CONFIG_SMP */
e1d1484f 6878
bf0f6f24
IM
6879/*
6880 * scheduler tick hitting a task of our scheduling class:
6881 */
8f4d37ec 6882static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6883{
6884 struct cfs_rq *cfs_rq;
6885 struct sched_entity *se = &curr->se;
6886
6887 for_each_sched_entity(se) {
6888 cfs_rq = cfs_rq_of(se);
8f4d37ec 6889 entity_tick(cfs_rq, se, queued);
bf0f6f24 6890 }
18bf2805 6891
10e84b97 6892 if (numabalancing_enabled)
cbee9f88 6893 task_tick_numa(rq, curr);
3d59eebc 6894
18bf2805 6895 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6896}
6897
6898/*
cd29fe6f
PZ
6899 * called on fork with the child task as argument from the parent's context
6900 * - child not yet on the tasklist
6901 * - preemption disabled
bf0f6f24 6902 */
cd29fe6f 6903static void task_fork_fair(struct task_struct *p)
bf0f6f24 6904{
4fc420c9
DN
6905 struct cfs_rq *cfs_rq;
6906 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6907 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6908 struct rq *rq = this_rq();
6909 unsigned long flags;
6910
05fa785c 6911 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6912
861d034e
PZ
6913 update_rq_clock(rq);
6914
4fc420c9
DN
6915 cfs_rq = task_cfs_rq(current);
6916 curr = cfs_rq->curr;
6917
6c9a27f5
DN
6918 /*
6919 * Not only the cpu but also the task_group of the parent might have
6920 * been changed after parent->se.parent,cfs_rq were copied to
6921 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6922 * of child point to valid ones.
6923 */
6924 rcu_read_lock();
6925 __set_task_cpu(p, this_cpu);
6926 rcu_read_unlock();
bf0f6f24 6927
7109c442 6928 update_curr(cfs_rq);
cd29fe6f 6929
b5d9d734
MG
6930 if (curr)
6931 se->vruntime = curr->vruntime;
aeb73b04 6932 place_entity(cfs_rq, se, 1);
4d78e7b6 6933
cd29fe6f 6934 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6935 /*
edcb60a3
IM
6936 * Upon rescheduling, sched_class::put_prev_task() will place
6937 * 'current' within the tree based on its new key value.
6938 */
4d78e7b6 6939 swap(curr->vruntime, se->vruntime);
aec0a514 6940 resched_task(rq->curr);
4d78e7b6 6941 }
bf0f6f24 6942
88ec22d3
PZ
6943 se->vruntime -= cfs_rq->min_vruntime;
6944
05fa785c 6945 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6946}
6947
cb469845
SR
6948/*
6949 * Priority of the task has changed. Check to see if we preempt
6950 * the current task.
6951 */
da7a735e
PZ
6952static void
6953prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6954{
da7a735e
PZ
6955 if (!p->se.on_rq)
6956 return;
6957
cb469845
SR
6958 /*
6959 * Reschedule if we are currently running on this runqueue and
6960 * our priority decreased, or if we are not currently running on
6961 * this runqueue and our priority is higher than the current's
6962 */
da7a735e 6963 if (rq->curr == p) {
cb469845
SR
6964 if (p->prio > oldprio)
6965 resched_task(rq->curr);
6966 } else
15afe09b 6967 check_preempt_curr(rq, p, 0);
cb469845
SR
6968}
6969
da7a735e
PZ
6970static void switched_from_fair(struct rq *rq, struct task_struct *p)
6971{
6972 struct sched_entity *se = &p->se;
6973 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6974
6975 /*
6976 * Ensure the task's vruntime is normalized, so that when its
6977 * switched back to the fair class the enqueue_entity(.flags=0) will
6978 * do the right thing.
6979 *
6980 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6981 * have normalized the vruntime, if it was !on_rq, then only when
6982 * the task is sleeping will it still have non-normalized vruntime.
6983 */
6984 if (!se->on_rq && p->state != TASK_RUNNING) {
6985 /*
6986 * Fix up our vruntime so that the current sleep doesn't
6987 * cause 'unlimited' sleep bonus.
6988 */
6989 place_entity(cfs_rq, se, 0);
6990 se->vruntime -= cfs_rq->min_vruntime;
6991 }
9ee474f5 6992
141965c7 6993#ifdef CONFIG_SMP
9ee474f5
PT
6994 /*
6995 * Remove our load from contribution when we leave sched_fair
6996 * and ensure we don't carry in an old decay_count if we
6997 * switch back.
6998 */
87e3c8ae
KT
6999 if (se->avg.decay_count) {
7000 __synchronize_entity_decay(se);
7001 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7002 }
7003#endif
da7a735e
PZ
7004}
7005
cb469845
SR
7006/*
7007 * We switched to the sched_fair class.
7008 */
da7a735e 7009static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7010{
da7a735e
PZ
7011 if (!p->se.on_rq)
7012 return;
7013
cb469845
SR
7014 /*
7015 * We were most likely switched from sched_rt, so
7016 * kick off the schedule if running, otherwise just see
7017 * if we can still preempt the current task.
7018 */
da7a735e 7019 if (rq->curr == p)
cb469845
SR
7020 resched_task(rq->curr);
7021 else
15afe09b 7022 check_preempt_curr(rq, p, 0);
cb469845
SR
7023}
7024
83b699ed
SV
7025/* Account for a task changing its policy or group.
7026 *
7027 * This routine is mostly called to set cfs_rq->curr field when a task
7028 * migrates between groups/classes.
7029 */
7030static void set_curr_task_fair(struct rq *rq)
7031{
7032 struct sched_entity *se = &rq->curr->se;
7033
ec12cb7f
PT
7034 for_each_sched_entity(se) {
7035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7036
7037 set_next_entity(cfs_rq, se);
7038 /* ensure bandwidth has been allocated on our new cfs_rq */
7039 account_cfs_rq_runtime(cfs_rq, 0);
7040 }
83b699ed
SV
7041}
7042
029632fb
PZ
7043void init_cfs_rq(struct cfs_rq *cfs_rq)
7044{
7045 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7046 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7047#ifndef CONFIG_64BIT
7048 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7049#endif
141965c7 7050#ifdef CONFIG_SMP
9ee474f5 7051 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7052 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7053#endif
029632fb
PZ
7054}
7055
810b3817 7056#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7057static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7058{
aff3e498 7059 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7060 /*
7061 * If the task was not on the rq at the time of this cgroup movement
7062 * it must have been asleep, sleeping tasks keep their ->vruntime
7063 * absolute on their old rq until wakeup (needed for the fair sleeper
7064 * bonus in place_entity()).
7065 *
7066 * If it was on the rq, we've just 'preempted' it, which does convert
7067 * ->vruntime to a relative base.
7068 *
7069 * Make sure both cases convert their relative position when migrating
7070 * to another cgroup's rq. This does somewhat interfere with the
7071 * fair sleeper stuff for the first placement, but who cares.
7072 */
7ceff013
DN
7073 /*
7074 * When !on_rq, vruntime of the task has usually NOT been normalized.
7075 * But there are some cases where it has already been normalized:
7076 *
7077 * - Moving a forked child which is waiting for being woken up by
7078 * wake_up_new_task().
62af3783
DN
7079 * - Moving a task which has been woken up by try_to_wake_up() and
7080 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7081 *
7082 * To prevent boost or penalty in the new cfs_rq caused by delta
7083 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7084 */
62af3783 7085 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7086 on_rq = 1;
7087
b2b5ce02
PZ
7088 if (!on_rq)
7089 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7090 set_task_rq(p, task_cpu(p));
aff3e498
PT
7091 if (!on_rq) {
7092 cfs_rq = cfs_rq_of(&p->se);
7093 p->se.vruntime += cfs_rq->min_vruntime;
7094#ifdef CONFIG_SMP
7095 /*
7096 * migrate_task_rq_fair() will have removed our previous
7097 * contribution, but we must synchronize for ongoing future
7098 * decay.
7099 */
7100 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7101 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7102#endif
7103 }
810b3817 7104}
029632fb
PZ
7105
7106void free_fair_sched_group(struct task_group *tg)
7107{
7108 int i;
7109
7110 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7111
7112 for_each_possible_cpu(i) {
7113 if (tg->cfs_rq)
7114 kfree(tg->cfs_rq[i]);
7115 if (tg->se)
7116 kfree(tg->se[i]);
7117 }
7118
7119 kfree(tg->cfs_rq);
7120 kfree(tg->se);
7121}
7122
7123int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7124{
7125 struct cfs_rq *cfs_rq;
7126 struct sched_entity *se;
7127 int i;
7128
7129 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7130 if (!tg->cfs_rq)
7131 goto err;
7132 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7133 if (!tg->se)
7134 goto err;
7135
7136 tg->shares = NICE_0_LOAD;
7137
7138 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7139
7140 for_each_possible_cpu(i) {
7141 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7142 GFP_KERNEL, cpu_to_node(i));
7143 if (!cfs_rq)
7144 goto err;
7145
7146 se = kzalloc_node(sizeof(struct sched_entity),
7147 GFP_KERNEL, cpu_to_node(i));
7148 if (!se)
7149 goto err_free_rq;
7150
7151 init_cfs_rq(cfs_rq);
7152 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7153 }
7154
7155 return 1;
7156
7157err_free_rq:
7158 kfree(cfs_rq);
7159err:
7160 return 0;
7161}
7162
7163void unregister_fair_sched_group(struct task_group *tg, int cpu)
7164{
7165 struct rq *rq = cpu_rq(cpu);
7166 unsigned long flags;
7167
7168 /*
7169 * Only empty task groups can be destroyed; so we can speculatively
7170 * check on_list without danger of it being re-added.
7171 */
7172 if (!tg->cfs_rq[cpu]->on_list)
7173 return;
7174
7175 raw_spin_lock_irqsave(&rq->lock, flags);
7176 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7177 raw_spin_unlock_irqrestore(&rq->lock, flags);
7178}
7179
7180void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7181 struct sched_entity *se, int cpu,
7182 struct sched_entity *parent)
7183{
7184 struct rq *rq = cpu_rq(cpu);
7185
7186 cfs_rq->tg = tg;
7187 cfs_rq->rq = rq;
029632fb
PZ
7188 init_cfs_rq_runtime(cfs_rq);
7189
7190 tg->cfs_rq[cpu] = cfs_rq;
7191 tg->se[cpu] = se;
7192
7193 /* se could be NULL for root_task_group */
7194 if (!se)
7195 return;
7196
7197 if (!parent)
7198 se->cfs_rq = &rq->cfs;
7199 else
7200 se->cfs_rq = parent->my_q;
7201
7202 se->my_q = cfs_rq;
0ac9b1c2
PT
7203 /* guarantee group entities always have weight */
7204 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7205 se->parent = parent;
7206}
7207
7208static DEFINE_MUTEX(shares_mutex);
7209
7210int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7211{
7212 int i;
7213 unsigned long flags;
7214
7215 /*
7216 * We can't change the weight of the root cgroup.
7217 */
7218 if (!tg->se[0])
7219 return -EINVAL;
7220
7221 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7222
7223 mutex_lock(&shares_mutex);
7224 if (tg->shares == shares)
7225 goto done;
7226
7227 tg->shares = shares;
7228 for_each_possible_cpu(i) {
7229 struct rq *rq = cpu_rq(i);
7230 struct sched_entity *se;
7231
7232 se = tg->se[i];
7233 /* Propagate contribution to hierarchy */
7234 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7235
7236 /* Possible calls to update_curr() need rq clock */
7237 update_rq_clock(rq);
17bc14b7 7238 for_each_sched_entity(se)
029632fb
PZ
7239 update_cfs_shares(group_cfs_rq(se));
7240 raw_spin_unlock_irqrestore(&rq->lock, flags);
7241 }
7242
7243done:
7244 mutex_unlock(&shares_mutex);
7245 return 0;
7246}
7247#else /* CONFIG_FAIR_GROUP_SCHED */
7248
7249void free_fair_sched_group(struct task_group *tg) { }
7250
7251int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7252{
7253 return 1;
7254}
7255
7256void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7257
7258#endif /* CONFIG_FAIR_GROUP_SCHED */
7259
810b3817 7260
6d686f45 7261static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7262{
7263 struct sched_entity *se = &task->se;
0d721cea
PW
7264 unsigned int rr_interval = 0;
7265
7266 /*
7267 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7268 * idle runqueue:
7269 */
0d721cea 7270 if (rq->cfs.load.weight)
a59f4e07 7271 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7272
7273 return rr_interval;
7274}
7275
bf0f6f24
IM
7276/*
7277 * All the scheduling class methods:
7278 */
029632fb 7279const struct sched_class fair_sched_class = {
5522d5d5 7280 .next = &idle_sched_class,
bf0f6f24
IM
7281 .enqueue_task = enqueue_task_fair,
7282 .dequeue_task = dequeue_task_fair,
7283 .yield_task = yield_task_fair,
d95f4122 7284 .yield_to_task = yield_to_task_fair,
bf0f6f24 7285
2e09bf55 7286 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7287
7288 .pick_next_task = pick_next_task_fair,
7289 .put_prev_task = put_prev_task_fair,
7290
681f3e68 7291#ifdef CONFIG_SMP
4ce72a2c 7292 .select_task_rq = select_task_rq_fair,
0a74bef8 7293 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7294
0bcdcf28
CE
7295 .rq_online = rq_online_fair,
7296 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7297
7298 .task_waking = task_waking_fair,
681f3e68 7299#endif
bf0f6f24 7300
83b699ed 7301 .set_curr_task = set_curr_task_fair,
bf0f6f24 7302 .task_tick = task_tick_fair,
cd29fe6f 7303 .task_fork = task_fork_fair,
cb469845
SR
7304
7305 .prio_changed = prio_changed_fair,
da7a735e 7306 .switched_from = switched_from_fair,
cb469845 7307 .switched_to = switched_to_fair,
810b3817 7308
0d721cea
PW
7309 .get_rr_interval = get_rr_interval_fair,
7310
810b3817 7311#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7312 .task_move_group = task_move_group_fair,
810b3817 7313#endif
bf0f6f24
IM
7314};
7315
7316#ifdef CONFIG_SCHED_DEBUG
029632fb 7317void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7318{
bf0f6f24
IM
7319 struct cfs_rq *cfs_rq;
7320
5973e5b9 7321 rcu_read_lock();
c3b64f1e 7322 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7323 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7324 rcu_read_unlock();
bf0f6f24
IM
7325}
7326#endif
029632fb
PZ
7327
7328__init void init_sched_fair_class(void)
7329{
7330#ifdef CONFIG_SMP
7331 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7332
3451d024 7333#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7334 nohz.next_balance = jiffies;
029632fb 7335 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7336 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7337#endif
7338#endif /* SMP */
7339
7340}