]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/core: Introduce 'struct sched_domain_shared'
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
265#ifdef CONFIG_SCHED_DEBUG
266 WARN_ON_ONCE(!entity_is_task(se));
267#endif
268 return container_of(se, struct task_struct, se);
269}
270
b758149c
PZ
271/* Walk up scheduling entities hierarchy */
272#define for_each_sched_entity(se) \
273 for (; se; se = se->parent)
274
275static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
276{
277 return p->se.cfs_rq;
278}
279
280/* runqueue on which this entity is (to be) queued */
281static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
282{
283 return se->cfs_rq;
284}
285
286/* runqueue "owned" by this group */
287static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
288{
289 return grp->my_q;
290}
291
3d4b47b4
PZ
292static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (!cfs_rq->on_list) {
67e86250
PT
295 /*
296 * Ensure we either appear before our parent (if already
297 * enqueued) or force our parent to appear after us when it is
298 * enqueued. The fact that we always enqueue bottom-up
299 * reduces this to two cases.
300 */
301 if (cfs_rq->tg->parent &&
302 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
303 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 } else {
306 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 307 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 308 }
3d4b47b4
PZ
309
310 cfs_rq->on_list = 1;
311 }
312}
313
314static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315{
316 if (cfs_rq->on_list) {
317 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 cfs_rq->on_list = 0;
319 }
320}
321
b758149c
PZ
322/* Iterate thr' all leaf cfs_rq's on a runqueue */
323#define for_each_leaf_cfs_rq(rq, cfs_rq) \
324 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325
326/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 327static inline struct cfs_rq *
b758149c
PZ
328is_same_group(struct sched_entity *se, struct sched_entity *pse)
329{
330 if (se->cfs_rq == pse->cfs_rq)
fed14d45 331 return se->cfs_rq;
b758149c 332
fed14d45 333 return NULL;
b758149c
PZ
334}
335
336static inline struct sched_entity *parent_entity(struct sched_entity *se)
337{
338 return se->parent;
339}
340
464b7527
PZ
341static void
342find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343{
344 int se_depth, pse_depth;
345
346 /*
347 * preemption test can be made between sibling entities who are in the
348 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
349 * both tasks until we find their ancestors who are siblings of common
350 * parent.
351 */
352
353 /* First walk up until both entities are at same depth */
fed14d45
PZ
354 se_depth = (*se)->depth;
355 pse_depth = (*pse)->depth;
464b7527
PZ
356
357 while (se_depth > pse_depth) {
358 se_depth--;
359 *se = parent_entity(*se);
360 }
361
362 while (pse_depth > se_depth) {
363 pse_depth--;
364 *pse = parent_entity(*pse);
365 }
366
367 while (!is_same_group(*se, *pse)) {
368 *se = parent_entity(*se);
369 *pse = parent_entity(*pse);
370 }
371}
372
8f48894f
PZ
373#else /* !CONFIG_FAIR_GROUP_SCHED */
374
375static inline struct task_struct *task_of(struct sched_entity *se)
376{
377 return container_of(se, struct task_struct, se);
378}
bf0f6f24 379
62160e3f
IM
380static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381{
382 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
383}
384
385#define entity_is_task(se) 1
386
b758149c
PZ
387#define for_each_sched_entity(se) \
388 for (; se; se = NULL)
bf0f6f24 389
b758149c 390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 391{
b758149c 392 return &task_rq(p)->cfs;
bf0f6f24
IM
393}
394
b758149c
PZ
395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396{
397 struct task_struct *p = task_of(se);
398 struct rq *rq = task_rq(p);
399
400 return &rq->cfs;
401}
402
403/* runqueue "owned" by this group */
404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
405{
406 return NULL;
407}
408
3d4b47b4
PZ
409static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
410{
411}
412
413static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
414{
415}
416
b758149c
PZ
417#define for_each_leaf_cfs_rq(rq, cfs_rq) \
418 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419
b758149c
PZ
420static inline struct sched_entity *parent_entity(struct sched_entity *se)
421{
422 return NULL;
423}
424
464b7527
PZ
425static inline void
426find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427{
428}
429
b758149c
PZ
430#endif /* CONFIG_FAIR_GROUP_SCHED */
431
6c16a6dc 432static __always_inline
9dbdb155 433void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
434
435/**************************************************************
436 * Scheduling class tree data structure manipulation methods:
437 */
438
1bf08230 439static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 440{
1bf08230 441 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 442 if (delta > 0)
1bf08230 443 max_vruntime = vruntime;
02e0431a 444
1bf08230 445 return max_vruntime;
02e0431a
PZ
446}
447
0702e3eb 448static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
449{
450 s64 delta = (s64)(vruntime - min_vruntime);
451 if (delta < 0)
452 min_vruntime = vruntime;
453
454 return min_vruntime;
455}
456
54fdc581
FC
457static inline int entity_before(struct sched_entity *a,
458 struct sched_entity *b)
459{
460 return (s64)(a->vruntime - b->vruntime) < 0;
461}
462
1af5f730
PZ
463static void update_min_vruntime(struct cfs_rq *cfs_rq)
464{
465 u64 vruntime = cfs_rq->min_vruntime;
466
de58af87
PZ
467 if (cfs_rq->curr)
468 vruntime = cfs_rq->curr->vruntime;
469
1af5f730
PZ
470 if (cfs_rq->rb_leftmost) {
471 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
472 struct sched_entity,
473 run_node);
474
de58af87
PZ
475 if (!cfs_rq->curr)
476 vruntime = se->vruntime;
477 else
478 vruntime = min_vruntime(vruntime, se->vruntime);
1af5f730
PZ
479 }
480
1bf08230 481 /* ensure we never gain time by being placed backwards. */
1af5f730 482 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
483#ifndef CONFIG_64BIT
484 smp_wmb();
485 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
486#endif
1af5f730
PZ
487}
488
bf0f6f24
IM
489/*
490 * Enqueue an entity into the rb-tree:
491 */
0702e3eb 492static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
493{
494 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
495 struct rb_node *parent = NULL;
496 struct sched_entity *entry;
bf0f6f24
IM
497 int leftmost = 1;
498
499 /*
500 * Find the right place in the rbtree:
501 */
502 while (*link) {
503 parent = *link;
504 entry = rb_entry(parent, struct sched_entity, run_node);
505 /*
506 * We dont care about collisions. Nodes with
507 * the same key stay together.
508 */
2bd2d6f2 509 if (entity_before(se, entry)) {
bf0f6f24
IM
510 link = &parent->rb_left;
511 } else {
512 link = &parent->rb_right;
513 leftmost = 0;
514 }
515 }
516
517 /*
518 * Maintain a cache of leftmost tree entries (it is frequently
519 * used):
520 */
1af5f730 521 if (leftmost)
57cb499d 522 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
523
524 rb_link_node(&se->run_node, parent, link);
525 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
526}
527
0702e3eb 528static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 529{
3fe69747
PZ
530 if (cfs_rq->rb_leftmost == &se->run_node) {
531 struct rb_node *next_node;
3fe69747
PZ
532
533 next_node = rb_next(&se->run_node);
534 cfs_rq->rb_leftmost = next_node;
3fe69747 535 }
e9acbff6 536
bf0f6f24 537 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
538}
539
029632fb 540struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 541{
f4b6755f
PZ
542 struct rb_node *left = cfs_rq->rb_leftmost;
543
544 if (!left)
545 return NULL;
546
547 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
548}
549
ac53db59
RR
550static struct sched_entity *__pick_next_entity(struct sched_entity *se)
551{
552 struct rb_node *next = rb_next(&se->run_node);
553
554 if (!next)
555 return NULL;
556
557 return rb_entry(next, struct sched_entity, run_node);
558}
559
560#ifdef CONFIG_SCHED_DEBUG
029632fb 561struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 562{
7eee3e67 563 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 564
70eee74b
BS
565 if (!last)
566 return NULL;
7eee3e67
IM
567
568 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
569}
570
bf0f6f24
IM
571/**************************************************************
572 * Scheduling class statistics methods:
573 */
574
acb4a848 575int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 576 void __user *buffer, size_t *lenp,
b2be5e96
PZ
577 loff_t *ppos)
578{
8d65af78 579 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 580 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
581
582 if (ret || !write)
583 return ret;
584
585 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
586 sysctl_sched_min_granularity);
587
acb4a848
CE
588#define WRT_SYSCTL(name) \
589 (normalized_sysctl_##name = sysctl_##name / (factor))
590 WRT_SYSCTL(sched_min_granularity);
591 WRT_SYSCTL(sched_latency);
592 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
593#undef WRT_SYSCTL
594
b2be5e96
PZ
595 return 0;
596}
597#endif
647e7cac 598
a7be37ac 599/*
f9c0b095 600 * delta /= w
a7be37ac 601 */
9dbdb155 602static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 603{
f9c0b095 604 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 605 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
606
607 return delta;
608}
609
647e7cac
IM
610/*
611 * The idea is to set a period in which each task runs once.
612 *
532b1858 613 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
614 * this period because otherwise the slices get too small.
615 *
616 * p = (nr <= nl) ? l : l*nr/nl
617 */
4d78e7b6
PZ
618static u64 __sched_period(unsigned long nr_running)
619{
8e2b0bf3
BF
620 if (unlikely(nr_running > sched_nr_latency))
621 return nr_running * sysctl_sched_min_granularity;
622 else
623 return sysctl_sched_latency;
4d78e7b6
PZ
624}
625
647e7cac
IM
626/*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
f9c0b095 630 * s = p*P[w/rw]
647e7cac 631 */
6d0f0ebd 632static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 633{
0a582440 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 635
0a582440 636 for_each_sched_entity(se) {
6272d68c 637 struct load_weight *load;
3104bf03 638 struct load_weight lw;
6272d68c
LM
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
f9c0b095 642
0a582440 643 if (unlikely(!se->on_rq)) {
3104bf03 644 lw = cfs_rq->load;
0a582440
MG
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
9dbdb155 649 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
650 }
651 return slice;
bf0f6f24
IM
652}
653
647e7cac 654/*
660cc00f 655 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 656 *
f9c0b095 657 * vs = s/w
647e7cac 658 */
f9c0b095 659static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 660{
f9c0b095 661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
662}
663
a75cdaa9 664#ifdef CONFIG_SMP
772bd008 665static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
666static unsigned long task_h_load(struct task_struct *p);
667
9d89c257
YD
668/*
669 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
670 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
671 * dependent on this value.
9d89c257
YD
672 */
673#define LOAD_AVG_PERIOD 32
674#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 675#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 676
540247fb
YD
677/* Give new sched_entity start runnable values to heavy its load in infant time */
678void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 679{
540247fb 680 struct sched_avg *sa = &se->avg;
a75cdaa9 681
9d89c257
YD
682 sa->last_update_time = 0;
683 /*
684 * sched_avg's period_contrib should be strictly less then 1024, so
685 * we give it 1023 to make sure it is almost a period (1024us), and
686 * will definitely be update (after enqueue).
687 */
688 sa->period_contrib = 1023;
540247fb 689 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 690 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
691 /*
692 * At this point, util_avg won't be used in select_task_rq_fair anyway
693 */
694 sa->util_avg = 0;
695 sa->util_sum = 0;
9d89c257 696 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 697}
7ea241af 698
7dc603c9
PZ
699static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
700static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 701static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
702static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
703
2b8c41da
YD
704/*
705 * With new tasks being created, their initial util_avgs are extrapolated
706 * based on the cfs_rq's current util_avg:
707 *
708 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
709 *
710 * However, in many cases, the above util_avg does not give a desired
711 * value. Moreover, the sum of the util_avgs may be divergent, such
712 * as when the series is a harmonic series.
713 *
714 * To solve this problem, we also cap the util_avg of successive tasks to
715 * only 1/2 of the left utilization budget:
716 *
717 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
718 *
719 * where n denotes the nth task.
720 *
721 * For example, a simplest series from the beginning would be like:
722 *
723 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
724 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
725 *
726 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
727 * if util_avg > util_avg_cap.
728 */
729void post_init_entity_util_avg(struct sched_entity *se)
730{
731 struct cfs_rq *cfs_rq = cfs_rq_of(se);
732 struct sched_avg *sa = &se->avg;
172895e6 733 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 734 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
735
736 if (cap > 0) {
737 if (cfs_rq->avg.util_avg != 0) {
738 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
739 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
740
741 if (sa->util_avg > cap)
742 sa->util_avg = cap;
743 } else {
744 sa->util_avg = cap;
745 }
746 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
747 }
7dc603c9
PZ
748
749 if (entity_is_task(se)) {
750 struct task_struct *p = task_of(se);
751 if (p->sched_class != &fair_sched_class) {
752 /*
753 * For !fair tasks do:
754 *
755 update_cfs_rq_load_avg(now, cfs_rq, false);
756 attach_entity_load_avg(cfs_rq, se);
757 switched_from_fair(rq, p);
758 *
759 * such that the next switched_to_fair() has the
760 * expected state.
761 */
762 se->avg.last_update_time = now;
763 return;
764 }
765 }
766
7c3edd2c 767 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 768 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 769 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
770}
771
7dc603c9 772#else /* !CONFIG_SMP */
540247fb 773void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
774{
775}
2b8c41da
YD
776void post_init_entity_util_avg(struct sched_entity *se)
777{
778}
3d30544f
PZ
779static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
780{
781}
7dc603c9 782#endif /* CONFIG_SMP */
a75cdaa9 783
bf0f6f24 784/*
9dbdb155 785 * Update the current task's runtime statistics.
bf0f6f24 786 */
b7cc0896 787static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 788{
429d43bc 789 struct sched_entity *curr = cfs_rq->curr;
78becc27 790 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 791 u64 delta_exec;
bf0f6f24
IM
792
793 if (unlikely(!curr))
794 return;
795
9dbdb155
PZ
796 delta_exec = now - curr->exec_start;
797 if (unlikely((s64)delta_exec <= 0))
34f28ecd 798 return;
bf0f6f24 799
8ebc91d9 800 curr->exec_start = now;
d842de87 801
9dbdb155
PZ
802 schedstat_set(curr->statistics.exec_max,
803 max(delta_exec, curr->statistics.exec_max));
804
805 curr->sum_exec_runtime += delta_exec;
ae92882e 806 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
807
808 curr->vruntime += calc_delta_fair(delta_exec, curr);
809 update_min_vruntime(cfs_rq);
810
d842de87
SV
811 if (entity_is_task(curr)) {
812 struct task_struct *curtask = task_of(curr);
813
f977bb49 814 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 815 cpuacct_charge(curtask, delta_exec);
f06febc9 816 account_group_exec_runtime(curtask, delta_exec);
d842de87 817 }
ec12cb7f
PT
818
819 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
820}
821
6e998916
SG
822static void update_curr_fair(struct rq *rq)
823{
824 update_curr(cfs_rq_of(&rq->curr->se));
825}
826
bf0f6f24 827static inline void
5870db5b 828update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 829{
4fa8d299
JP
830 u64 wait_start, prev_wait_start;
831
832 if (!schedstat_enabled())
833 return;
834
835 wait_start = rq_clock(rq_of(cfs_rq));
836 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
837
838 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
839 likely(wait_start > prev_wait_start))
840 wait_start -= prev_wait_start;
3ea94de1 841
4fa8d299 842 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
843}
844
4fa8d299 845static inline void
3ea94de1
JP
846update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
847{
848 struct task_struct *p;
cb251765
MG
849 u64 delta;
850
4fa8d299
JP
851 if (!schedstat_enabled())
852 return;
853
854 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
855
856 if (entity_is_task(se)) {
857 p = task_of(se);
858 if (task_on_rq_migrating(p)) {
859 /*
860 * Preserve migrating task's wait time so wait_start
861 * time stamp can be adjusted to accumulate wait time
862 * prior to migration.
863 */
4fa8d299 864 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
865 return;
866 }
867 trace_sched_stat_wait(p, delta);
868 }
869
4fa8d299
JP
870 schedstat_set(se->statistics.wait_max,
871 max(schedstat_val(se->statistics.wait_max), delta));
872 schedstat_inc(se->statistics.wait_count);
873 schedstat_add(se->statistics.wait_sum, delta);
874 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 875}
3ea94de1 876
4fa8d299 877static inline void
1a3d027c
JP
878update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
879{
880 struct task_struct *tsk = NULL;
4fa8d299
JP
881 u64 sleep_start, block_start;
882
883 if (!schedstat_enabled())
884 return;
885
886 sleep_start = schedstat_val(se->statistics.sleep_start);
887 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
888
889 if (entity_is_task(se))
890 tsk = task_of(se);
891
4fa8d299
JP
892 if (sleep_start) {
893 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
894
895 if ((s64)delta < 0)
896 delta = 0;
897
4fa8d299
JP
898 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
899 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 900
4fa8d299
JP
901 schedstat_set(se->statistics.sleep_start, 0);
902 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
903
904 if (tsk) {
905 account_scheduler_latency(tsk, delta >> 10, 1);
906 trace_sched_stat_sleep(tsk, delta);
907 }
908 }
4fa8d299
JP
909 if (block_start) {
910 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
911
912 if ((s64)delta < 0)
913 delta = 0;
914
4fa8d299
JP
915 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
916 schedstat_set(se->statistics.block_max, delta);
1a3d027c 917
4fa8d299
JP
918 schedstat_set(se->statistics.block_start, 0);
919 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
920
921 if (tsk) {
922 if (tsk->in_iowait) {
4fa8d299
JP
923 schedstat_add(se->statistics.iowait_sum, delta);
924 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
925 trace_sched_stat_iowait(tsk, delta);
926 }
927
928 trace_sched_stat_blocked(tsk, delta);
929
930 /*
931 * Blocking time is in units of nanosecs, so shift by
932 * 20 to get a milliseconds-range estimation of the
933 * amount of time that the task spent sleeping:
934 */
935 if (unlikely(prof_on == SLEEP_PROFILING)) {
936 profile_hits(SLEEP_PROFILING,
937 (void *)get_wchan(tsk),
938 delta >> 20);
939 }
940 account_scheduler_latency(tsk, delta >> 10, 0);
941 }
942 }
943}
944
bf0f6f24
IM
945/*
946 * Task is being enqueued - update stats:
947 */
cb251765 948static inline void
1a3d027c 949update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 950{
4fa8d299
JP
951 if (!schedstat_enabled())
952 return;
953
bf0f6f24
IM
954 /*
955 * Are we enqueueing a waiting task? (for current tasks
956 * a dequeue/enqueue event is a NOP)
957 */
429d43bc 958 if (se != cfs_rq->curr)
5870db5b 959 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
960
961 if (flags & ENQUEUE_WAKEUP)
962 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
963}
964
bf0f6f24 965static inline void
cb251765 966update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 967{
4fa8d299
JP
968
969 if (!schedstat_enabled())
970 return;
971
bf0f6f24
IM
972 /*
973 * Mark the end of the wait period if dequeueing a
974 * waiting task:
975 */
429d43bc 976 if (se != cfs_rq->curr)
9ef0a961 977 update_stats_wait_end(cfs_rq, se);
cb251765 978
4fa8d299
JP
979 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
980 struct task_struct *tsk = task_of(se);
cb251765 981
4fa8d299
JP
982 if (tsk->state & TASK_INTERRUPTIBLE)
983 schedstat_set(se->statistics.sleep_start,
984 rq_clock(rq_of(cfs_rq)));
985 if (tsk->state & TASK_UNINTERRUPTIBLE)
986 schedstat_set(se->statistics.block_start,
987 rq_clock(rq_of(cfs_rq)));
cb251765 988 }
1a3d027c
JP
989}
990
bf0f6f24
IM
991/*
992 * We are picking a new current task - update its stats:
993 */
994static inline void
79303e9e 995update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
996{
997 /*
998 * We are starting a new run period:
999 */
78becc27 1000 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1001}
1002
bf0f6f24
IM
1003/**************************************************
1004 * Scheduling class queueing methods:
1005 */
1006
cbee9f88
PZ
1007#ifdef CONFIG_NUMA_BALANCING
1008/*
598f0ec0
MG
1009 * Approximate time to scan a full NUMA task in ms. The task scan period is
1010 * calculated based on the tasks virtual memory size and
1011 * numa_balancing_scan_size.
cbee9f88 1012 */
598f0ec0
MG
1013unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1014unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1015
1016/* Portion of address space to scan in MB */
1017unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1018
4b96a29b
PZ
1019/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1020unsigned int sysctl_numa_balancing_scan_delay = 1000;
1021
598f0ec0
MG
1022static unsigned int task_nr_scan_windows(struct task_struct *p)
1023{
1024 unsigned long rss = 0;
1025 unsigned long nr_scan_pages;
1026
1027 /*
1028 * Calculations based on RSS as non-present and empty pages are skipped
1029 * by the PTE scanner and NUMA hinting faults should be trapped based
1030 * on resident pages
1031 */
1032 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1033 rss = get_mm_rss(p->mm);
1034 if (!rss)
1035 rss = nr_scan_pages;
1036
1037 rss = round_up(rss, nr_scan_pages);
1038 return rss / nr_scan_pages;
1039}
1040
1041/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1042#define MAX_SCAN_WINDOW 2560
1043
1044static unsigned int task_scan_min(struct task_struct *p)
1045{
316c1608 1046 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1047 unsigned int scan, floor;
1048 unsigned int windows = 1;
1049
64192658
KT
1050 if (scan_size < MAX_SCAN_WINDOW)
1051 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1052 floor = 1000 / windows;
1053
1054 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1055 return max_t(unsigned int, floor, scan);
1056}
1057
1058static unsigned int task_scan_max(struct task_struct *p)
1059{
1060 unsigned int smin = task_scan_min(p);
1061 unsigned int smax;
1062
1063 /* Watch for min being lower than max due to floor calculations */
1064 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1065 return max(smin, smax);
1066}
1067
0ec8aa00
PZ
1068static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1069{
1070 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1071 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1072}
1073
1074static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1075{
1076 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1077 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1078}
1079
8c8a743c
PZ
1080struct numa_group {
1081 atomic_t refcount;
1082
1083 spinlock_t lock; /* nr_tasks, tasks */
1084 int nr_tasks;
e29cf08b 1085 pid_t gid;
4142c3eb 1086 int active_nodes;
8c8a743c
PZ
1087
1088 struct rcu_head rcu;
989348b5 1089 unsigned long total_faults;
4142c3eb 1090 unsigned long max_faults_cpu;
7e2703e6
RR
1091 /*
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1095 */
50ec8a40 1096 unsigned long *faults_cpu;
989348b5 1097 unsigned long faults[0];
8c8a743c
PZ
1098};
1099
be1e4e76
RR
1100/* Shared or private faults. */
1101#define NR_NUMA_HINT_FAULT_TYPES 2
1102
1103/* Memory and CPU locality */
1104#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1105
1106/* Averaged statistics, and temporary buffers. */
1107#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1108
e29cf08b
MG
1109pid_t task_numa_group_id(struct task_struct *p)
1110{
1111 return p->numa_group ? p->numa_group->gid : 0;
1112}
1113
44dba3d5
IM
1114/*
1115 * The averaged statistics, shared & private, memory & cpu,
1116 * occupy the first half of the array. The second half of the
1117 * array is for current counters, which are averaged into the
1118 * first set by task_numa_placement.
1119 */
1120static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1121{
44dba3d5 1122 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1123}
1124
1125static inline unsigned long task_faults(struct task_struct *p, int nid)
1126{
44dba3d5 1127 if (!p->numa_faults)
ac8e895b
MG
1128 return 0;
1129
44dba3d5
IM
1130 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1131 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1132}
1133
83e1d2cd
MG
1134static inline unsigned long group_faults(struct task_struct *p, int nid)
1135{
1136 if (!p->numa_group)
1137 return 0;
1138
44dba3d5
IM
1139 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1140 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1141}
1142
20e07dea
RR
1143static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1144{
44dba3d5
IM
1145 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1146 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1147}
1148
4142c3eb
RR
1149/*
1150 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1151 * considered part of a numa group's pseudo-interleaving set. Migrations
1152 * between these nodes are slowed down, to allow things to settle down.
1153 */
1154#define ACTIVE_NODE_FRACTION 3
1155
1156static bool numa_is_active_node(int nid, struct numa_group *ng)
1157{
1158 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1159}
1160
6c6b1193
RR
1161/* Handle placement on systems where not all nodes are directly connected. */
1162static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1163 int maxdist, bool task)
1164{
1165 unsigned long score = 0;
1166 int node;
1167
1168 /*
1169 * All nodes are directly connected, and the same distance
1170 * from each other. No need for fancy placement algorithms.
1171 */
1172 if (sched_numa_topology_type == NUMA_DIRECT)
1173 return 0;
1174
1175 /*
1176 * This code is called for each node, introducing N^2 complexity,
1177 * which should be ok given the number of nodes rarely exceeds 8.
1178 */
1179 for_each_online_node(node) {
1180 unsigned long faults;
1181 int dist = node_distance(nid, node);
1182
1183 /*
1184 * The furthest away nodes in the system are not interesting
1185 * for placement; nid was already counted.
1186 */
1187 if (dist == sched_max_numa_distance || node == nid)
1188 continue;
1189
1190 /*
1191 * On systems with a backplane NUMA topology, compare groups
1192 * of nodes, and move tasks towards the group with the most
1193 * memory accesses. When comparing two nodes at distance
1194 * "hoplimit", only nodes closer by than "hoplimit" are part
1195 * of each group. Skip other nodes.
1196 */
1197 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1198 dist > maxdist)
1199 continue;
1200
1201 /* Add up the faults from nearby nodes. */
1202 if (task)
1203 faults = task_faults(p, node);
1204 else
1205 faults = group_faults(p, node);
1206
1207 /*
1208 * On systems with a glueless mesh NUMA topology, there are
1209 * no fixed "groups of nodes". Instead, nodes that are not
1210 * directly connected bounce traffic through intermediate
1211 * nodes; a numa_group can occupy any set of nodes.
1212 * The further away a node is, the less the faults count.
1213 * This seems to result in good task placement.
1214 */
1215 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1216 faults *= (sched_max_numa_distance - dist);
1217 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1218 }
1219
1220 score += faults;
1221 }
1222
1223 return score;
1224}
1225
83e1d2cd
MG
1226/*
1227 * These return the fraction of accesses done by a particular task, or
1228 * task group, on a particular numa node. The group weight is given a
1229 * larger multiplier, in order to group tasks together that are almost
1230 * evenly spread out between numa nodes.
1231 */
7bd95320
RR
1232static inline unsigned long task_weight(struct task_struct *p, int nid,
1233 int dist)
83e1d2cd 1234{
7bd95320 1235 unsigned long faults, total_faults;
83e1d2cd 1236
44dba3d5 1237 if (!p->numa_faults)
83e1d2cd
MG
1238 return 0;
1239
1240 total_faults = p->total_numa_faults;
1241
1242 if (!total_faults)
1243 return 0;
1244
7bd95320 1245 faults = task_faults(p, nid);
6c6b1193
RR
1246 faults += score_nearby_nodes(p, nid, dist, true);
1247
7bd95320 1248 return 1000 * faults / total_faults;
83e1d2cd
MG
1249}
1250
7bd95320
RR
1251static inline unsigned long group_weight(struct task_struct *p, int nid,
1252 int dist)
83e1d2cd 1253{
7bd95320
RR
1254 unsigned long faults, total_faults;
1255
1256 if (!p->numa_group)
1257 return 0;
1258
1259 total_faults = p->numa_group->total_faults;
1260
1261 if (!total_faults)
83e1d2cd
MG
1262 return 0;
1263
7bd95320 1264 faults = group_faults(p, nid);
6c6b1193
RR
1265 faults += score_nearby_nodes(p, nid, dist, false);
1266
7bd95320 1267 return 1000 * faults / total_faults;
83e1d2cd
MG
1268}
1269
10f39042
RR
1270bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1271 int src_nid, int dst_cpu)
1272{
1273 struct numa_group *ng = p->numa_group;
1274 int dst_nid = cpu_to_node(dst_cpu);
1275 int last_cpupid, this_cpupid;
1276
1277 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1278
1279 /*
1280 * Multi-stage node selection is used in conjunction with a periodic
1281 * migration fault to build a temporal task<->page relation. By using
1282 * a two-stage filter we remove short/unlikely relations.
1283 *
1284 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1285 * a task's usage of a particular page (n_p) per total usage of this
1286 * page (n_t) (in a given time-span) to a probability.
1287 *
1288 * Our periodic faults will sample this probability and getting the
1289 * same result twice in a row, given these samples are fully
1290 * independent, is then given by P(n)^2, provided our sample period
1291 * is sufficiently short compared to the usage pattern.
1292 *
1293 * This quadric squishes small probabilities, making it less likely we
1294 * act on an unlikely task<->page relation.
1295 */
1296 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1297 if (!cpupid_pid_unset(last_cpupid) &&
1298 cpupid_to_nid(last_cpupid) != dst_nid)
1299 return false;
1300
1301 /* Always allow migrate on private faults */
1302 if (cpupid_match_pid(p, last_cpupid))
1303 return true;
1304
1305 /* A shared fault, but p->numa_group has not been set up yet. */
1306 if (!ng)
1307 return true;
1308
1309 /*
4142c3eb
RR
1310 * Destination node is much more heavily used than the source
1311 * node? Allow migration.
10f39042 1312 */
4142c3eb
RR
1313 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1314 ACTIVE_NODE_FRACTION)
10f39042
RR
1315 return true;
1316
1317 /*
4142c3eb
RR
1318 * Distribute memory according to CPU & memory use on each node,
1319 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1320 *
1321 * faults_cpu(dst) 3 faults_cpu(src)
1322 * --------------- * - > ---------------
1323 * faults_mem(dst) 4 faults_mem(src)
10f39042 1324 */
4142c3eb
RR
1325 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1326 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1327}
1328
e6628d5b 1329static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1330static unsigned long source_load(int cpu, int type);
1331static unsigned long target_load(int cpu, int type);
ced549fa 1332static unsigned long capacity_of(int cpu);
58d081b5
MG
1333static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1334
fb13c7ee 1335/* Cached statistics for all CPUs within a node */
58d081b5 1336struct numa_stats {
fb13c7ee 1337 unsigned long nr_running;
58d081b5 1338 unsigned long load;
fb13c7ee
MG
1339
1340 /* Total compute capacity of CPUs on a node */
5ef20ca1 1341 unsigned long compute_capacity;
fb13c7ee
MG
1342
1343 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1344 unsigned long task_capacity;
1b6a7495 1345 int has_free_capacity;
58d081b5 1346};
e6628d5b 1347
fb13c7ee
MG
1348/*
1349 * XXX borrowed from update_sg_lb_stats
1350 */
1351static void update_numa_stats(struct numa_stats *ns, int nid)
1352{
83d7f242
RR
1353 int smt, cpu, cpus = 0;
1354 unsigned long capacity;
fb13c7ee
MG
1355
1356 memset(ns, 0, sizeof(*ns));
1357 for_each_cpu(cpu, cpumask_of_node(nid)) {
1358 struct rq *rq = cpu_rq(cpu);
1359
1360 ns->nr_running += rq->nr_running;
1361 ns->load += weighted_cpuload(cpu);
ced549fa 1362 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1363
1364 cpus++;
fb13c7ee
MG
1365 }
1366
5eca82a9
PZ
1367 /*
1368 * If we raced with hotplug and there are no CPUs left in our mask
1369 * the @ns structure is NULL'ed and task_numa_compare() will
1370 * not find this node attractive.
1371 *
1b6a7495
NP
1372 * We'll either bail at !has_free_capacity, or we'll detect a huge
1373 * imbalance and bail there.
5eca82a9
PZ
1374 */
1375 if (!cpus)
1376 return;
1377
83d7f242
RR
1378 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1379 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1380 capacity = cpus / smt; /* cores */
1381
1382 ns->task_capacity = min_t(unsigned, capacity,
1383 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1384 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1385}
1386
58d081b5
MG
1387struct task_numa_env {
1388 struct task_struct *p;
e6628d5b 1389
58d081b5
MG
1390 int src_cpu, src_nid;
1391 int dst_cpu, dst_nid;
e6628d5b 1392
58d081b5 1393 struct numa_stats src_stats, dst_stats;
e6628d5b 1394
40ea2b42 1395 int imbalance_pct;
7bd95320 1396 int dist;
fb13c7ee
MG
1397
1398 struct task_struct *best_task;
1399 long best_imp;
58d081b5
MG
1400 int best_cpu;
1401};
1402
fb13c7ee
MG
1403static void task_numa_assign(struct task_numa_env *env,
1404 struct task_struct *p, long imp)
1405{
1406 if (env->best_task)
1407 put_task_struct(env->best_task);
bac78573
ON
1408 if (p)
1409 get_task_struct(p);
fb13c7ee
MG
1410
1411 env->best_task = p;
1412 env->best_imp = imp;
1413 env->best_cpu = env->dst_cpu;
1414}
1415
28a21745 1416static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1417 struct task_numa_env *env)
1418{
e4991b24
RR
1419 long imb, old_imb;
1420 long orig_src_load, orig_dst_load;
28a21745
RR
1421 long src_capacity, dst_capacity;
1422
1423 /*
1424 * The load is corrected for the CPU capacity available on each node.
1425 *
1426 * src_load dst_load
1427 * ------------ vs ---------
1428 * src_capacity dst_capacity
1429 */
1430 src_capacity = env->src_stats.compute_capacity;
1431 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1432
1433 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1434 if (dst_load < src_load)
1435 swap(dst_load, src_load);
e63da036
RR
1436
1437 /* Is the difference below the threshold? */
e4991b24
RR
1438 imb = dst_load * src_capacity * 100 -
1439 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1440 if (imb <= 0)
1441 return false;
1442
1443 /*
1444 * The imbalance is above the allowed threshold.
e4991b24 1445 * Compare it with the old imbalance.
e63da036 1446 */
28a21745 1447 orig_src_load = env->src_stats.load;
e4991b24 1448 orig_dst_load = env->dst_stats.load;
28a21745 1449
e4991b24
RR
1450 if (orig_dst_load < orig_src_load)
1451 swap(orig_dst_load, orig_src_load);
e63da036 1452
e4991b24
RR
1453 old_imb = orig_dst_load * src_capacity * 100 -
1454 orig_src_load * dst_capacity * env->imbalance_pct;
1455
1456 /* Would this change make things worse? */
1457 return (imb > old_imb);
e63da036
RR
1458}
1459
fb13c7ee
MG
1460/*
1461 * This checks if the overall compute and NUMA accesses of the system would
1462 * be improved if the source tasks was migrated to the target dst_cpu taking
1463 * into account that it might be best if task running on the dst_cpu should
1464 * be exchanged with the source task
1465 */
887c290e
RR
1466static void task_numa_compare(struct task_numa_env *env,
1467 long taskimp, long groupimp)
fb13c7ee
MG
1468{
1469 struct rq *src_rq = cpu_rq(env->src_cpu);
1470 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1471 struct task_struct *cur;
28a21745 1472 long src_load, dst_load;
fb13c7ee 1473 long load;
1c5d3eb3 1474 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1475 long moveimp = imp;
7bd95320 1476 int dist = env->dist;
fb13c7ee
MG
1477
1478 rcu_read_lock();
bac78573
ON
1479 cur = task_rcu_dereference(&dst_rq->curr);
1480 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1481 cur = NULL;
1482
7af68335
PZ
1483 /*
1484 * Because we have preemption enabled we can get migrated around and
1485 * end try selecting ourselves (current == env->p) as a swap candidate.
1486 */
1487 if (cur == env->p)
1488 goto unlock;
1489
fb13c7ee
MG
1490 /*
1491 * "imp" is the fault differential for the source task between the
1492 * source and destination node. Calculate the total differential for
1493 * the source task and potential destination task. The more negative
1494 * the value is, the more rmeote accesses that would be expected to
1495 * be incurred if the tasks were swapped.
1496 */
1497 if (cur) {
1498 /* Skip this swap candidate if cannot move to the source cpu */
1499 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1500 goto unlock;
1501
887c290e
RR
1502 /*
1503 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1504 * in any group then look only at task weights.
887c290e 1505 */
ca28aa53 1506 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1507 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1508 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1509 /*
1510 * Add some hysteresis to prevent swapping the
1511 * tasks within a group over tiny differences.
1512 */
1513 if (cur->numa_group)
1514 imp -= imp/16;
887c290e 1515 } else {
ca28aa53
RR
1516 /*
1517 * Compare the group weights. If a task is all by
1518 * itself (not part of a group), use the task weight
1519 * instead.
1520 */
ca28aa53 1521 if (cur->numa_group)
7bd95320
RR
1522 imp += group_weight(cur, env->src_nid, dist) -
1523 group_weight(cur, env->dst_nid, dist);
ca28aa53 1524 else
7bd95320
RR
1525 imp += task_weight(cur, env->src_nid, dist) -
1526 task_weight(cur, env->dst_nid, dist);
887c290e 1527 }
fb13c7ee
MG
1528 }
1529
0132c3e1 1530 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1531 goto unlock;
1532
1533 if (!cur) {
1534 /* Is there capacity at our destination? */
b932c03c 1535 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1536 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1537 goto unlock;
1538
1539 goto balance;
1540 }
1541
1542 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1543 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1544 dst_rq->nr_running == 1)
fb13c7ee
MG
1545 goto assign;
1546
1547 /*
1548 * In the overloaded case, try and keep the load balanced.
1549 */
1550balance:
e720fff6
PZ
1551 load = task_h_load(env->p);
1552 dst_load = env->dst_stats.load + load;
1553 src_load = env->src_stats.load - load;
fb13c7ee 1554
0132c3e1
RR
1555 if (moveimp > imp && moveimp > env->best_imp) {
1556 /*
1557 * If the improvement from just moving env->p direction is
1558 * better than swapping tasks around, check if a move is
1559 * possible. Store a slightly smaller score than moveimp,
1560 * so an actually idle CPU will win.
1561 */
1562 if (!load_too_imbalanced(src_load, dst_load, env)) {
1563 imp = moveimp - 1;
1564 cur = NULL;
1565 goto assign;
1566 }
1567 }
1568
1569 if (imp <= env->best_imp)
1570 goto unlock;
1571
fb13c7ee 1572 if (cur) {
e720fff6
PZ
1573 load = task_h_load(cur);
1574 dst_load -= load;
1575 src_load += load;
fb13c7ee
MG
1576 }
1577
28a21745 1578 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1579 goto unlock;
1580
ba7e5a27
RR
1581 /*
1582 * One idle CPU per node is evaluated for a task numa move.
1583 * Call select_idle_sibling to maybe find a better one.
1584 */
1585 if (!cur)
772bd008
MR
1586 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1587 env->dst_cpu);
ba7e5a27 1588
fb13c7ee
MG
1589assign:
1590 task_numa_assign(env, cur, imp);
1591unlock:
1592 rcu_read_unlock();
1593}
1594
887c290e
RR
1595static void task_numa_find_cpu(struct task_numa_env *env,
1596 long taskimp, long groupimp)
2c8a50aa
MG
1597{
1598 int cpu;
1599
1600 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1601 /* Skip this CPU if the source task cannot migrate */
1602 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1603 continue;
1604
1605 env->dst_cpu = cpu;
887c290e 1606 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1607 }
1608}
1609
6f9aad0b
RR
1610/* Only move tasks to a NUMA node less busy than the current node. */
1611static bool numa_has_capacity(struct task_numa_env *env)
1612{
1613 struct numa_stats *src = &env->src_stats;
1614 struct numa_stats *dst = &env->dst_stats;
1615
1616 if (src->has_free_capacity && !dst->has_free_capacity)
1617 return false;
1618
1619 /*
1620 * Only consider a task move if the source has a higher load
1621 * than the destination, corrected for CPU capacity on each node.
1622 *
1623 * src->load dst->load
1624 * --------------------- vs ---------------------
1625 * src->compute_capacity dst->compute_capacity
1626 */
44dcb04f
SD
1627 if (src->load * dst->compute_capacity * env->imbalance_pct >
1628
1629 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1630 return true;
1631
1632 return false;
1633}
1634
58d081b5
MG
1635static int task_numa_migrate(struct task_struct *p)
1636{
58d081b5
MG
1637 struct task_numa_env env = {
1638 .p = p,
fb13c7ee 1639
58d081b5 1640 .src_cpu = task_cpu(p),
b32e86b4 1641 .src_nid = task_node(p),
fb13c7ee
MG
1642
1643 .imbalance_pct = 112,
1644
1645 .best_task = NULL,
1646 .best_imp = 0,
4142c3eb 1647 .best_cpu = -1,
58d081b5
MG
1648 };
1649 struct sched_domain *sd;
887c290e 1650 unsigned long taskweight, groupweight;
7bd95320 1651 int nid, ret, dist;
887c290e 1652 long taskimp, groupimp;
e6628d5b 1653
58d081b5 1654 /*
fb13c7ee
MG
1655 * Pick the lowest SD_NUMA domain, as that would have the smallest
1656 * imbalance and would be the first to start moving tasks about.
1657 *
1658 * And we want to avoid any moving of tasks about, as that would create
1659 * random movement of tasks -- counter the numa conditions we're trying
1660 * to satisfy here.
58d081b5
MG
1661 */
1662 rcu_read_lock();
fb13c7ee 1663 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1664 if (sd)
1665 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1666 rcu_read_unlock();
1667
46a73e8a
RR
1668 /*
1669 * Cpusets can break the scheduler domain tree into smaller
1670 * balance domains, some of which do not cross NUMA boundaries.
1671 * Tasks that are "trapped" in such domains cannot be migrated
1672 * elsewhere, so there is no point in (re)trying.
1673 */
1674 if (unlikely(!sd)) {
de1b301a 1675 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1676 return -EINVAL;
1677 }
1678
2c8a50aa 1679 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1680 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1681 taskweight = task_weight(p, env.src_nid, dist);
1682 groupweight = group_weight(p, env.src_nid, dist);
1683 update_numa_stats(&env.src_stats, env.src_nid);
1684 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1685 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1686 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1687
a43455a1 1688 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1689 if (numa_has_capacity(&env))
1690 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1691
9de05d48
RR
1692 /*
1693 * Look at other nodes in these cases:
1694 * - there is no space available on the preferred_nid
1695 * - the task is part of a numa_group that is interleaved across
1696 * multiple NUMA nodes; in order to better consolidate the group,
1697 * we need to check other locations.
1698 */
4142c3eb 1699 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1700 for_each_online_node(nid) {
1701 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1702 continue;
58d081b5 1703
7bd95320 1704 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1705 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1706 dist != env.dist) {
1707 taskweight = task_weight(p, env.src_nid, dist);
1708 groupweight = group_weight(p, env.src_nid, dist);
1709 }
7bd95320 1710
83e1d2cd 1711 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1712 taskimp = task_weight(p, nid, dist) - taskweight;
1713 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1714 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1715 continue;
1716
7bd95320 1717 env.dist = dist;
2c8a50aa
MG
1718 env.dst_nid = nid;
1719 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1720 if (numa_has_capacity(&env))
1721 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1722 }
1723 }
1724
68d1b02a
RR
1725 /*
1726 * If the task is part of a workload that spans multiple NUMA nodes,
1727 * and is migrating into one of the workload's active nodes, remember
1728 * this node as the task's preferred numa node, so the workload can
1729 * settle down.
1730 * A task that migrated to a second choice node will be better off
1731 * trying for a better one later. Do not set the preferred node here.
1732 */
db015dae 1733 if (p->numa_group) {
4142c3eb
RR
1734 struct numa_group *ng = p->numa_group;
1735
db015dae
RR
1736 if (env.best_cpu == -1)
1737 nid = env.src_nid;
1738 else
1739 nid = env.dst_nid;
1740
4142c3eb 1741 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1742 sched_setnuma(p, env.dst_nid);
1743 }
1744
1745 /* No better CPU than the current one was found. */
1746 if (env.best_cpu == -1)
1747 return -EAGAIN;
0ec8aa00 1748
04bb2f94
RR
1749 /*
1750 * Reset the scan period if the task is being rescheduled on an
1751 * alternative node to recheck if the tasks is now properly placed.
1752 */
1753 p->numa_scan_period = task_scan_min(p);
1754
fb13c7ee 1755 if (env.best_task == NULL) {
286549dc
MG
1756 ret = migrate_task_to(p, env.best_cpu);
1757 if (ret != 0)
1758 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1759 return ret;
1760 }
1761
1762 ret = migrate_swap(p, env.best_task);
286549dc
MG
1763 if (ret != 0)
1764 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1765 put_task_struct(env.best_task);
1766 return ret;
e6628d5b
MG
1767}
1768
6b9a7460
MG
1769/* Attempt to migrate a task to a CPU on the preferred node. */
1770static void numa_migrate_preferred(struct task_struct *p)
1771{
5085e2a3
RR
1772 unsigned long interval = HZ;
1773
2739d3ee 1774 /* This task has no NUMA fault statistics yet */
44dba3d5 1775 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1776 return;
1777
2739d3ee 1778 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1779 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1780 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1781
1782 /* Success if task is already running on preferred CPU */
de1b301a 1783 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1784 return;
1785
1786 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1787 task_numa_migrate(p);
6b9a7460
MG
1788}
1789
20e07dea 1790/*
4142c3eb 1791 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1792 * tracking the nodes from which NUMA hinting faults are triggered. This can
1793 * be different from the set of nodes where the workload's memory is currently
1794 * located.
20e07dea 1795 */
4142c3eb 1796static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1797{
1798 unsigned long faults, max_faults = 0;
4142c3eb 1799 int nid, active_nodes = 0;
20e07dea
RR
1800
1801 for_each_online_node(nid) {
1802 faults = group_faults_cpu(numa_group, nid);
1803 if (faults > max_faults)
1804 max_faults = faults;
1805 }
1806
1807 for_each_online_node(nid) {
1808 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1809 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1810 active_nodes++;
20e07dea 1811 }
4142c3eb
RR
1812
1813 numa_group->max_faults_cpu = max_faults;
1814 numa_group->active_nodes = active_nodes;
20e07dea
RR
1815}
1816
04bb2f94
RR
1817/*
1818 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1819 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1820 * period will be for the next scan window. If local/(local+remote) ratio is
1821 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1822 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1823 */
1824#define NUMA_PERIOD_SLOTS 10
a22b4b01 1825#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1826
1827/*
1828 * Increase the scan period (slow down scanning) if the majority of
1829 * our memory is already on our local node, or if the majority of
1830 * the page accesses are shared with other processes.
1831 * Otherwise, decrease the scan period.
1832 */
1833static void update_task_scan_period(struct task_struct *p,
1834 unsigned long shared, unsigned long private)
1835{
1836 unsigned int period_slot;
1837 int ratio;
1838 int diff;
1839
1840 unsigned long remote = p->numa_faults_locality[0];
1841 unsigned long local = p->numa_faults_locality[1];
1842
1843 /*
1844 * If there were no record hinting faults then either the task is
1845 * completely idle or all activity is areas that are not of interest
074c2381
MG
1846 * to automatic numa balancing. Related to that, if there were failed
1847 * migration then it implies we are migrating too quickly or the local
1848 * node is overloaded. In either case, scan slower
04bb2f94 1849 */
074c2381 1850 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1851 p->numa_scan_period = min(p->numa_scan_period_max,
1852 p->numa_scan_period << 1);
1853
1854 p->mm->numa_next_scan = jiffies +
1855 msecs_to_jiffies(p->numa_scan_period);
1856
1857 return;
1858 }
1859
1860 /*
1861 * Prepare to scale scan period relative to the current period.
1862 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1863 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1864 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1865 */
1866 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1867 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1868 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1869 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1870 if (!slot)
1871 slot = 1;
1872 diff = slot * period_slot;
1873 } else {
1874 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1875
1876 /*
1877 * Scale scan rate increases based on sharing. There is an
1878 * inverse relationship between the degree of sharing and
1879 * the adjustment made to the scanning period. Broadly
1880 * speaking the intent is that there is little point
1881 * scanning faster if shared accesses dominate as it may
1882 * simply bounce migrations uselessly
1883 */
2847c90e 1884 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1885 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1886 }
1887
1888 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1889 task_scan_min(p), task_scan_max(p));
1890 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1891}
1892
7e2703e6
RR
1893/*
1894 * Get the fraction of time the task has been running since the last
1895 * NUMA placement cycle. The scheduler keeps similar statistics, but
1896 * decays those on a 32ms period, which is orders of magnitude off
1897 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1898 * stats only if the task is so new there are no NUMA statistics yet.
1899 */
1900static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1901{
1902 u64 runtime, delta, now;
1903 /* Use the start of this time slice to avoid calculations. */
1904 now = p->se.exec_start;
1905 runtime = p->se.sum_exec_runtime;
1906
1907 if (p->last_task_numa_placement) {
1908 delta = runtime - p->last_sum_exec_runtime;
1909 *period = now - p->last_task_numa_placement;
1910 } else {
9d89c257
YD
1911 delta = p->se.avg.load_sum / p->se.load.weight;
1912 *period = LOAD_AVG_MAX;
7e2703e6
RR
1913 }
1914
1915 p->last_sum_exec_runtime = runtime;
1916 p->last_task_numa_placement = now;
1917
1918 return delta;
1919}
1920
54009416
RR
1921/*
1922 * Determine the preferred nid for a task in a numa_group. This needs to
1923 * be done in a way that produces consistent results with group_weight,
1924 * otherwise workloads might not converge.
1925 */
1926static int preferred_group_nid(struct task_struct *p, int nid)
1927{
1928 nodemask_t nodes;
1929 int dist;
1930
1931 /* Direct connections between all NUMA nodes. */
1932 if (sched_numa_topology_type == NUMA_DIRECT)
1933 return nid;
1934
1935 /*
1936 * On a system with glueless mesh NUMA topology, group_weight
1937 * scores nodes according to the number of NUMA hinting faults on
1938 * both the node itself, and on nearby nodes.
1939 */
1940 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1941 unsigned long score, max_score = 0;
1942 int node, max_node = nid;
1943
1944 dist = sched_max_numa_distance;
1945
1946 for_each_online_node(node) {
1947 score = group_weight(p, node, dist);
1948 if (score > max_score) {
1949 max_score = score;
1950 max_node = node;
1951 }
1952 }
1953 return max_node;
1954 }
1955
1956 /*
1957 * Finding the preferred nid in a system with NUMA backplane
1958 * interconnect topology is more involved. The goal is to locate
1959 * tasks from numa_groups near each other in the system, and
1960 * untangle workloads from different sides of the system. This requires
1961 * searching down the hierarchy of node groups, recursively searching
1962 * inside the highest scoring group of nodes. The nodemask tricks
1963 * keep the complexity of the search down.
1964 */
1965 nodes = node_online_map;
1966 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1967 unsigned long max_faults = 0;
81907478 1968 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1969 int a, b;
1970
1971 /* Are there nodes at this distance from each other? */
1972 if (!find_numa_distance(dist))
1973 continue;
1974
1975 for_each_node_mask(a, nodes) {
1976 unsigned long faults = 0;
1977 nodemask_t this_group;
1978 nodes_clear(this_group);
1979
1980 /* Sum group's NUMA faults; includes a==b case. */
1981 for_each_node_mask(b, nodes) {
1982 if (node_distance(a, b) < dist) {
1983 faults += group_faults(p, b);
1984 node_set(b, this_group);
1985 node_clear(b, nodes);
1986 }
1987 }
1988
1989 /* Remember the top group. */
1990 if (faults > max_faults) {
1991 max_faults = faults;
1992 max_group = this_group;
1993 /*
1994 * subtle: at the smallest distance there is
1995 * just one node left in each "group", the
1996 * winner is the preferred nid.
1997 */
1998 nid = a;
1999 }
2000 }
2001 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2002 if (!max_faults)
2003 break;
54009416
RR
2004 nodes = max_group;
2005 }
2006 return nid;
2007}
2008
cbee9f88
PZ
2009static void task_numa_placement(struct task_struct *p)
2010{
83e1d2cd
MG
2011 int seq, nid, max_nid = -1, max_group_nid = -1;
2012 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2013 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2014 unsigned long total_faults;
2015 u64 runtime, period;
7dbd13ed 2016 spinlock_t *group_lock = NULL;
cbee9f88 2017
7e5a2c17
JL
2018 /*
2019 * The p->mm->numa_scan_seq field gets updated without
2020 * exclusive access. Use READ_ONCE() here to ensure
2021 * that the field is read in a single access:
2022 */
316c1608 2023 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2024 if (p->numa_scan_seq == seq)
2025 return;
2026 p->numa_scan_seq = seq;
598f0ec0 2027 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2028
7e2703e6
RR
2029 total_faults = p->numa_faults_locality[0] +
2030 p->numa_faults_locality[1];
2031 runtime = numa_get_avg_runtime(p, &period);
2032
7dbd13ed
MG
2033 /* If the task is part of a group prevent parallel updates to group stats */
2034 if (p->numa_group) {
2035 group_lock = &p->numa_group->lock;
60e69eed 2036 spin_lock_irq(group_lock);
7dbd13ed
MG
2037 }
2038
688b7585
MG
2039 /* Find the node with the highest number of faults */
2040 for_each_online_node(nid) {
44dba3d5
IM
2041 /* Keep track of the offsets in numa_faults array */
2042 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2043 unsigned long faults = 0, group_faults = 0;
44dba3d5 2044 int priv;
745d6147 2045
be1e4e76 2046 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2047 long diff, f_diff, f_weight;
8c8a743c 2048
44dba3d5
IM
2049 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2050 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2051 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2052 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2053
ac8e895b 2054 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2055 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2056 fault_types[priv] += p->numa_faults[membuf_idx];
2057 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2058
7e2703e6
RR
2059 /*
2060 * Normalize the faults_from, so all tasks in a group
2061 * count according to CPU use, instead of by the raw
2062 * number of faults. Tasks with little runtime have
2063 * little over-all impact on throughput, and thus their
2064 * faults are less important.
2065 */
2066 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2067 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2068 (total_faults + 1);
44dba3d5
IM
2069 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2070 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2071
44dba3d5
IM
2072 p->numa_faults[mem_idx] += diff;
2073 p->numa_faults[cpu_idx] += f_diff;
2074 faults += p->numa_faults[mem_idx];
83e1d2cd 2075 p->total_numa_faults += diff;
8c8a743c 2076 if (p->numa_group) {
44dba3d5
IM
2077 /*
2078 * safe because we can only change our own group
2079 *
2080 * mem_idx represents the offset for a given
2081 * nid and priv in a specific region because it
2082 * is at the beginning of the numa_faults array.
2083 */
2084 p->numa_group->faults[mem_idx] += diff;
2085 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2086 p->numa_group->total_faults += diff;
44dba3d5 2087 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2088 }
ac8e895b
MG
2089 }
2090
688b7585
MG
2091 if (faults > max_faults) {
2092 max_faults = faults;
2093 max_nid = nid;
2094 }
83e1d2cd
MG
2095
2096 if (group_faults > max_group_faults) {
2097 max_group_faults = group_faults;
2098 max_group_nid = nid;
2099 }
2100 }
2101
04bb2f94
RR
2102 update_task_scan_period(p, fault_types[0], fault_types[1]);
2103
7dbd13ed 2104 if (p->numa_group) {
4142c3eb 2105 numa_group_count_active_nodes(p->numa_group);
60e69eed 2106 spin_unlock_irq(group_lock);
54009416 2107 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2108 }
2109
bb97fc31
RR
2110 if (max_faults) {
2111 /* Set the new preferred node */
2112 if (max_nid != p->numa_preferred_nid)
2113 sched_setnuma(p, max_nid);
2114
2115 if (task_node(p) != p->numa_preferred_nid)
2116 numa_migrate_preferred(p);
3a7053b3 2117 }
cbee9f88
PZ
2118}
2119
8c8a743c
PZ
2120static inline int get_numa_group(struct numa_group *grp)
2121{
2122 return atomic_inc_not_zero(&grp->refcount);
2123}
2124
2125static inline void put_numa_group(struct numa_group *grp)
2126{
2127 if (atomic_dec_and_test(&grp->refcount))
2128 kfree_rcu(grp, rcu);
2129}
2130
3e6a9418
MG
2131static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2132 int *priv)
8c8a743c
PZ
2133{
2134 struct numa_group *grp, *my_grp;
2135 struct task_struct *tsk;
2136 bool join = false;
2137 int cpu = cpupid_to_cpu(cpupid);
2138 int i;
2139
2140 if (unlikely(!p->numa_group)) {
2141 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2142 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2143
2144 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2145 if (!grp)
2146 return;
2147
2148 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2149 grp->active_nodes = 1;
2150 grp->max_faults_cpu = 0;
8c8a743c 2151 spin_lock_init(&grp->lock);
e29cf08b 2152 grp->gid = p->pid;
50ec8a40 2153 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2154 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2155 nr_node_ids;
8c8a743c 2156
be1e4e76 2157 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2158 grp->faults[i] = p->numa_faults[i];
8c8a743c 2159
989348b5 2160 grp->total_faults = p->total_numa_faults;
83e1d2cd 2161
8c8a743c
PZ
2162 grp->nr_tasks++;
2163 rcu_assign_pointer(p->numa_group, grp);
2164 }
2165
2166 rcu_read_lock();
316c1608 2167 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2168
2169 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2170 goto no_join;
8c8a743c
PZ
2171
2172 grp = rcu_dereference(tsk->numa_group);
2173 if (!grp)
3354781a 2174 goto no_join;
8c8a743c
PZ
2175
2176 my_grp = p->numa_group;
2177 if (grp == my_grp)
3354781a 2178 goto no_join;
8c8a743c
PZ
2179
2180 /*
2181 * Only join the other group if its bigger; if we're the bigger group,
2182 * the other task will join us.
2183 */
2184 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2185 goto no_join;
8c8a743c
PZ
2186
2187 /*
2188 * Tie-break on the grp address.
2189 */
2190 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2191 goto no_join;
8c8a743c 2192
dabe1d99
RR
2193 /* Always join threads in the same process. */
2194 if (tsk->mm == current->mm)
2195 join = true;
2196
2197 /* Simple filter to avoid false positives due to PID collisions */
2198 if (flags & TNF_SHARED)
2199 join = true;
8c8a743c 2200
3e6a9418
MG
2201 /* Update priv based on whether false sharing was detected */
2202 *priv = !join;
2203
dabe1d99 2204 if (join && !get_numa_group(grp))
3354781a 2205 goto no_join;
8c8a743c 2206
8c8a743c
PZ
2207 rcu_read_unlock();
2208
2209 if (!join)
2210 return;
2211
60e69eed
MG
2212 BUG_ON(irqs_disabled());
2213 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2214
be1e4e76 2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2216 my_grp->faults[i] -= p->numa_faults[i];
2217 grp->faults[i] += p->numa_faults[i];
8c8a743c 2218 }
989348b5
MG
2219 my_grp->total_faults -= p->total_numa_faults;
2220 grp->total_faults += p->total_numa_faults;
8c8a743c 2221
8c8a743c
PZ
2222 my_grp->nr_tasks--;
2223 grp->nr_tasks++;
2224
2225 spin_unlock(&my_grp->lock);
60e69eed 2226 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2227
2228 rcu_assign_pointer(p->numa_group, grp);
2229
2230 put_numa_group(my_grp);
3354781a
PZ
2231 return;
2232
2233no_join:
2234 rcu_read_unlock();
2235 return;
8c8a743c
PZ
2236}
2237
2238void task_numa_free(struct task_struct *p)
2239{
2240 struct numa_group *grp = p->numa_group;
44dba3d5 2241 void *numa_faults = p->numa_faults;
e9dd685c
SR
2242 unsigned long flags;
2243 int i;
8c8a743c
PZ
2244
2245 if (grp) {
e9dd685c 2246 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2247 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2248 grp->faults[i] -= p->numa_faults[i];
989348b5 2249 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2250
8c8a743c 2251 grp->nr_tasks--;
e9dd685c 2252 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2253 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2254 put_numa_group(grp);
2255 }
2256
44dba3d5 2257 p->numa_faults = NULL;
82727018 2258 kfree(numa_faults);
8c8a743c
PZ
2259}
2260
cbee9f88
PZ
2261/*
2262 * Got a PROT_NONE fault for a page on @node.
2263 */
58b46da3 2264void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2265{
2266 struct task_struct *p = current;
6688cc05 2267 bool migrated = flags & TNF_MIGRATED;
58b46da3 2268 int cpu_node = task_node(current);
792568ec 2269 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2270 struct numa_group *ng;
ac8e895b 2271 int priv;
cbee9f88 2272
2a595721 2273 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2274 return;
2275
9ff1d9ff
MG
2276 /* for example, ksmd faulting in a user's mm */
2277 if (!p->mm)
2278 return;
2279
f809ca9a 2280 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2281 if (unlikely(!p->numa_faults)) {
2282 int size = sizeof(*p->numa_faults) *
be1e4e76 2283 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2284
44dba3d5
IM
2285 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2286 if (!p->numa_faults)
f809ca9a 2287 return;
745d6147 2288
83e1d2cd 2289 p->total_numa_faults = 0;
04bb2f94 2290 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2291 }
cbee9f88 2292
8c8a743c
PZ
2293 /*
2294 * First accesses are treated as private, otherwise consider accesses
2295 * to be private if the accessing pid has not changed
2296 */
2297 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2298 priv = 1;
2299 } else {
2300 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2301 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2302 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2303 }
2304
792568ec
RR
2305 /*
2306 * If a workload spans multiple NUMA nodes, a shared fault that
2307 * occurs wholly within the set of nodes that the workload is
2308 * actively using should be counted as local. This allows the
2309 * scan rate to slow down when a workload has settled down.
2310 */
4142c3eb
RR
2311 ng = p->numa_group;
2312 if (!priv && !local && ng && ng->active_nodes > 1 &&
2313 numa_is_active_node(cpu_node, ng) &&
2314 numa_is_active_node(mem_node, ng))
792568ec
RR
2315 local = 1;
2316
cbee9f88 2317 task_numa_placement(p);
f809ca9a 2318
2739d3ee
RR
2319 /*
2320 * Retry task to preferred node migration periodically, in case it
2321 * case it previously failed, or the scheduler moved us.
2322 */
2323 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2324 numa_migrate_preferred(p);
2325
b32e86b4
IM
2326 if (migrated)
2327 p->numa_pages_migrated += pages;
074c2381
MG
2328 if (flags & TNF_MIGRATE_FAIL)
2329 p->numa_faults_locality[2] += pages;
b32e86b4 2330
44dba3d5
IM
2331 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2332 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2333 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2334}
2335
6e5fb223
PZ
2336static void reset_ptenuma_scan(struct task_struct *p)
2337{
7e5a2c17
JL
2338 /*
2339 * We only did a read acquisition of the mmap sem, so
2340 * p->mm->numa_scan_seq is written to without exclusive access
2341 * and the update is not guaranteed to be atomic. That's not
2342 * much of an issue though, since this is just used for
2343 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2344 * expensive, to avoid any form of compiler optimizations:
2345 */
316c1608 2346 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2347 p->mm->numa_scan_offset = 0;
2348}
2349
cbee9f88
PZ
2350/*
2351 * The expensive part of numa migration is done from task_work context.
2352 * Triggered from task_tick_numa().
2353 */
2354void task_numa_work(struct callback_head *work)
2355{
2356 unsigned long migrate, next_scan, now = jiffies;
2357 struct task_struct *p = current;
2358 struct mm_struct *mm = p->mm;
51170840 2359 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2360 struct vm_area_struct *vma;
9f40604c 2361 unsigned long start, end;
598f0ec0 2362 unsigned long nr_pte_updates = 0;
4620f8c1 2363 long pages, virtpages;
cbee9f88
PZ
2364
2365 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2366
2367 work->next = work; /* protect against double add */
2368 /*
2369 * Who cares about NUMA placement when they're dying.
2370 *
2371 * NOTE: make sure not to dereference p->mm before this check,
2372 * exit_task_work() happens _after_ exit_mm() so we could be called
2373 * without p->mm even though we still had it when we enqueued this
2374 * work.
2375 */
2376 if (p->flags & PF_EXITING)
2377 return;
2378
930aa174 2379 if (!mm->numa_next_scan) {
7e8d16b6
MG
2380 mm->numa_next_scan = now +
2381 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2382 }
2383
cbee9f88
PZ
2384 /*
2385 * Enforce maximal scan/migration frequency..
2386 */
2387 migrate = mm->numa_next_scan;
2388 if (time_before(now, migrate))
2389 return;
2390
598f0ec0
MG
2391 if (p->numa_scan_period == 0) {
2392 p->numa_scan_period_max = task_scan_max(p);
2393 p->numa_scan_period = task_scan_min(p);
2394 }
cbee9f88 2395
fb003b80 2396 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2397 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2398 return;
2399
19a78d11
PZ
2400 /*
2401 * Delay this task enough that another task of this mm will likely win
2402 * the next time around.
2403 */
2404 p->node_stamp += 2 * TICK_NSEC;
2405
9f40604c
MG
2406 start = mm->numa_scan_offset;
2407 pages = sysctl_numa_balancing_scan_size;
2408 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2409 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2410 if (!pages)
2411 return;
cbee9f88 2412
4620f8c1 2413
6e5fb223 2414 down_read(&mm->mmap_sem);
9f40604c 2415 vma = find_vma(mm, start);
6e5fb223
PZ
2416 if (!vma) {
2417 reset_ptenuma_scan(p);
9f40604c 2418 start = 0;
6e5fb223
PZ
2419 vma = mm->mmap;
2420 }
9f40604c 2421 for (; vma; vma = vma->vm_next) {
6b79c57b 2422 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2423 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2424 continue;
6b79c57b 2425 }
6e5fb223 2426
4591ce4f
MG
2427 /*
2428 * Shared library pages mapped by multiple processes are not
2429 * migrated as it is expected they are cache replicated. Avoid
2430 * hinting faults in read-only file-backed mappings or the vdso
2431 * as migrating the pages will be of marginal benefit.
2432 */
2433 if (!vma->vm_mm ||
2434 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2435 continue;
2436
3c67f474
MG
2437 /*
2438 * Skip inaccessible VMAs to avoid any confusion between
2439 * PROT_NONE and NUMA hinting ptes
2440 */
2441 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2442 continue;
4591ce4f 2443
9f40604c
MG
2444 do {
2445 start = max(start, vma->vm_start);
2446 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2447 end = min(end, vma->vm_end);
4620f8c1 2448 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2449
2450 /*
4620f8c1
RR
2451 * Try to scan sysctl_numa_balancing_size worth of
2452 * hpages that have at least one present PTE that
2453 * is not already pte-numa. If the VMA contains
2454 * areas that are unused or already full of prot_numa
2455 * PTEs, scan up to virtpages, to skip through those
2456 * areas faster.
598f0ec0
MG
2457 */
2458 if (nr_pte_updates)
2459 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2460 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2461
9f40604c 2462 start = end;
4620f8c1 2463 if (pages <= 0 || virtpages <= 0)
9f40604c 2464 goto out;
3cf1962c
RR
2465
2466 cond_resched();
9f40604c 2467 } while (end != vma->vm_end);
cbee9f88 2468 }
6e5fb223 2469
9f40604c 2470out:
6e5fb223 2471 /*
c69307d5
PZ
2472 * It is possible to reach the end of the VMA list but the last few
2473 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2474 * would find the !migratable VMA on the next scan but not reset the
2475 * scanner to the start so check it now.
6e5fb223
PZ
2476 */
2477 if (vma)
9f40604c 2478 mm->numa_scan_offset = start;
6e5fb223
PZ
2479 else
2480 reset_ptenuma_scan(p);
2481 up_read(&mm->mmap_sem);
51170840
RR
2482
2483 /*
2484 * Make sure tasks use at least 32x as much time to run other code
2485 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2486 * Usually update_task_scan_period slows down scanning enough; on an
2487 * overloaded system we need to limit overhead on a per task basis.
2488 */
2489 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2490 u64 diff = p->se.sum_exec_runtime - runtime;
2491 p->node_stamp += 32 * diff;
2492 }
cbee9f88
PZ
2493}
2494
2495/*
2496 * Drive the periodic memory faults..
2497 */
2498void task_tick_numa(struct rq *rq, struct task_struct *curr)
2499{
2500 struct callback_head *work = &curr->numa_work;
2501 u64 period, now;
2502
2503 /*
2504 * We don't care about NUMA placement if we don't have memory.
2505 */
2506 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2507 return;
2508
2509 /*
2510 * Using runtime rather than walltime has the dual advantage that
2511 * we (mostly) drive the selection from busy threads and that the
2512 * task needs to have done some actual work before we bother with
2513 * NUMA placement.
2514 */
2515 now = curr->se.sum_exec_runtime;
2516 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2517
25b3e5a3 2518 if (now > curr->node_stamp + period) {
4b96a29b 2519 if (!curr->node_stamp)
598f0ec0 2520 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2521 curr->node_stamp += period;
cbee9f88
PZ
2522
2523 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2524 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2525 task_work_add(curr, work, true);
2526 }
2527 }
2528}
2529#else
2530static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2531{
2532}
0ec8aa00
PZ
2533
2534static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2535{
2536}
2537
2538static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2539{
2540}
cbee9f88
PZ
2541#endif /* CONFIG_NUMA_BALANCING */
2542
30cfdcfc
DA
2543static void
2544account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2545{
2546 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2547 if (!parent_entity(se))
029632fb 2548 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2549#ifdef CONFIG_SMP
0ec8aa00
PZ
2550 if (entity_is_task(se)) {
2551 struct rq *rq = rq_of(cfs_rq);
2552
2553 account_numa_enqueue(rq, task_of(se));
2554 list_add(&se->group_node, &rq->cfs_tasks);
2555 }
367456c7 2556#endif
30cfdcfc 2557 cfs_rq->nr_running++;
30cfdcfc
DA
2558}
2559
2560static void
2561account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2562{
2563 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2564 if (!parent_entity(se))
029632fb 2565 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2566#ifdef CONFIG_SMP
0ec8aa00
PZ
2567 if (entity_is_task(se)) {
2568 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2569 list_del_init(&se->group_node);
0ec8aa00 2570 }
bfdb198c 2571#endif
30cfdcfc 2572 cfs_rq->nr_running--;
30cfdcfc
DA
2573}
2574
3ff6dcac
YZ
2575#ifdef CONFIG_FAIR_GROUP_SCHED
2576# ifdef CONFIG_SMP
ea1dc6fc 2577static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2578{
ea1dc6fc 2579 long tg_weight, load, shares;
cf5f0acf
PZ
2580
2581 /*
ea1dc6fc
PZ
2582 * This really should be: cfs_rq->avg.load_avg, but instead we use
2583 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2584 * the shares for small weight interactive tasks.
cf5f0acf 2585 */
ea1dc6fc 2586 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2587
ea1dc6fc 2588 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2589
ea1dc6fc
PZ
2590 /* Ensure tg_weight >= load */
2591 tg_weight -= cfs_rq->tg_load_avg_contrib;
2592 tg_weight += load;
3ff6dcac 2593
3ff6dcac 2594 shares = (tg->shares * load);
cf5f0acf
PZ
2595 if (tg_weight)
2596 shares /= tg_weight;
3ff6dcac
YZ
2597
2598 if (shares < MIN_SHARES)
2599 shares = MIN_SHARES;
2600 if (shares > tg->shares)
2601 shares = tg->shares;
2602
2603 return shares;
2604}
3ff6dcac 2605# else /* CONFIG_SMP */
6d5ab293 2606static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2607{
2608 return tg->shares;
2609}
3ff6dcac 2610# endif /* CONFIG_SMP */
ea1dc6fc 2611
2069dd75
PZ
2612static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2613 unsigned long weight)
2614{
19e5eebb
PT
2615 if (se->on_rq) {
2616 /* commit outstanding execution time */
2617 if (cfs_rq->curr == se)
2618 update_curr(cfs_rq);
2069dd75 2619 account_entity_dequeue(cfs_rq, se);
19e5eebb 2620 }
2069dd75
PZ
2621
2622 update_load_set(&se->load, weight);
2623
2624 if (se->on_rq)
2625 account_entity_enqueue(cfs_rq, se);
2626}
2627
82958366
PT
2628static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2629
6d5ab293 2630static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2631{
2632 struct task_group *tg;
2633 struct sched_entity *se;
3ff6dcac 2634 long shares;
2069dd75 2635
2069dd75
PZ
2636 tg = cfs_rq->tg;
2637 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2638 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2639 return;
3ff6dcac
YZ
2640#ifndef CONFIG_SMP
2641 if (likely(se->load.weight == tg->shares))
2642 return;
2643#endif
6d5ab293 2644 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2645
2646 reweight_entity(cfs_rq_of(se), se, shares);
2647}
2648#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2649static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2650{
2651}
2652#endif /* CONFIG_FAIR_GROUP_SCHED */
2653
141965c7 2654#ifdef CONFIG_SMP
5b51f2f8
PT
2655/* Precomputed fixed inverse multiplies for multiplication by y^n */
2656static const u32 runnable_avg_yN_inv[] = {
2657 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2658 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2659 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2660 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2661 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2662 0x85aac367, 0x82cd8698,
2663};
2664
2665/*
2666 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2667 * over-estimates when re-combining.
2668 */
2669static const u32 runnable_avg_yN_sum[] = {
2670 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2671 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2672 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2673};
2674
7b20b916
YD
2675/*
2676 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2677 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2678 * were generated:
2679 */
2680static const u32 __accumulated_sum_N32[] = {
2681 0, 23371, 35056, 40899, 43820, 45281,
2682 46011, 46376, 46559, 46650, 46696, 46719,
2683};
2684
9d85f21c
PT
2685/*
2686 * Approximate:
2687 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2688 */
2689static __always_inline u64 decay_load(u64 val, u64 n)
2690{
5b51f2f8
PT
2691 unsigned int local_n;
2692
2693 if (!n)
2694 return val;
2695 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2696 return 0;
2697
2698 /* after bounds checking we can collapse to 32-bit */
2699 local_n = n;
2700
2701 /*
2702 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2703 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2704 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2705 *
2706 * To achieve constant time decay_load.
2707 */
2708 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2709 val >>= local_n / LOAD_AVG_PERIOD;
2710 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2711 }
2712
9d89c257
YD
2713 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2714 return val;
5b51f2f8
PT
2715}
2716
2717/*
2718 * For updates fully spanning n periods, the contribution to runnable
2719 * average will be: \Sum 1024*y^n
2720 *
2721 * We can compute this reasonably efficiently by combining:
2722 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2723 */
2724static u32 __compute_runnable_contrib(u64 n)
2725{
2726 u32 contrib = 0;
2727
2728 if (likely(n <= LOAD_AVG_PERIOD))
2729 return runnable_avg_yN_sum[n];
2730 else if (unlikely(n >= LOAD_AVG_MAX_N))
2731 return LOAD_AVG_MAX;
2732
7b20b916
YD
2733 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2734 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2735 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2736 contrib = decay_load(contrib, n);
2737 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2738}
2739
54a21385 2740#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2741
9d85f21c
PT
2742/*
2743 * We can represent the historical contribution to runnable average as the
2744 * coefficients of a geometric series. To do this we sub-divide our runnable
2745 * history into segments of approximately 1ms (1024us); label the segment that
2746 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2747 *
2748 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2749 * p0 p1 p2
2750 * (now) (~1ms ago) (~2ms ago)
2751 *
2752 * Let u_i denote the fraction of p_i that the entity was runnable.
2753 *
2754 * We then designate the fractions u_i as our co-efficients, yielding the
2755 * following representation of historical load:
2756 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2757 *
2758 * We choose y based on the with of a reasonably scheduling period, fixing:
2759 * y^32 = 0.5
2760 *
2761 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2762 * approximately half as much as the contribution to load within the last ms
2763 * (u_0).
2764 *
2765 * When a period "rolls over" and we have new u_0`, multiplying the previous
2766 * sum again by y is sufficient to update:
2767 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2768 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2769 */
9d89c257
YD
2770static __always_inline int
2771__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2772 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2773{
e0f5f3af 2774 u64 delta, scaled_delta, periods;
9d89c257 2775 u32 contrib;
6115c793 2776 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2777 unsigned long scale_freq, scale_cpu;
9d85f21c 2778
9d89c257 2779 delta = now - sa->last_update_time;
9d85f21c
PT
2780 /*
2781 * This should only happen when time goes backwards, which it
2782 * unfortunately does during sched clock init when we swap over to TSC.
2783 */
2784 if ((s64)delta < 0) {
9d89c257 2785 sa->last_update_time = now;
9d85f21c
PT
2786 return 0;
2787 }
2788
2789 /*
2790 * Use 1024ns as the unit of measurement since it's a reasonable
2791 * approximation of 1us and fast to compute.
2792 */
2793 delta >>= 10;
2794 if (!delta)
2795 return 0;
9d89c257 2796 sa->last_update_time = now;
9d85f21c 2797
6f2b0452
DE
2798 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2799 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2800
9d85f21c 2801 /* delta_w is the amount already accumulated against our next period */
9d89c257 2802 delta_w = sa->period_contrib;
9d85f21c 2803 if (delta + delta_w >= 1024) {
9d85f21c
PT
2804 decayed = 1;
2805
9d89c257
YD
2806 /* how much left for next period will start over, we don't know yet */
2807 sa->period_contrib = 0;
2808
9d85f21c
PT
2809 /*
2810 * Now that we know we're crossing a period boundary, figure
2811 * out how much from delta we need to complete the current
2812 * period and accrue it.
2813 */
2814 delta_w = 1024 - delta_w;
54a21385 2815 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2816 if (weight) {
e0f5f3af
DE
2817 sa->load_sum += weight * scaled_delta_w;
2818 if (cfs_rq) {
2819 cfs_rq->runnable_load_sum +=
2820 weight * scaled_delta_w;
2821 }
13962234 2822 }
36ee28e4 2823 if (running)
006cdf02 2824 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2825
2826 delta -= delta_w;
2827
2828 /* Figure out how many additional periods this update spans */
2829 periods = delta / 1024;
2830 delta %= 1024;
2831
9d89c257 2832 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2833 if (cfs_rq) {
2834 cfs_rq->runnable_load_sum =
2835 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2836 }
9d89c257 2837 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2838
2839 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2840 contrib = __compute_runnable_contrib(periods);
54a21385 2841 contrib = cap_scale(contrib, scale_freq);
13962234 2842 if (weight) {
9d89c257 2843 sa->load_sum += weight * contrib;
13962234
YD
2844 if (cfs_rq)
2845 cfs_rq->runnable_load_sum += weight * contrib;
2846 }
36ee28e4 2847 if (running)
006cdf02 2848 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2849 }
2850
2851 /* Remainder of delta accrued against u_0` */
54a21385 2852 scaled_delta = cap_scale(delta, scale_freq);
13962234 2853 if (weight) {
e0f5f3af 2854 sa->load_sum += weight * scaled_delta;
13962234 2855 if (cfs_rq)
e0f5f3af 2856 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2857 }
36ee28e4 2858 if (running)
006cdf02 2859 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2860
9d89c257 2861 sa->period_contrib += delta;
9ee474f5 2862
9d89c257
YD
2863 if (decayed) {
2864 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2865 if (cfs_rq) {
2866 cfs_rq->runnable_load_avg =
2867 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2868 }
006cdf02 2869 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2870 }
aff3e498 2871
9d89c257 2872 return decayed;
9ee474f5
PT
2873}
2874
c566e8e9 2875#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2876/**
2877 * update_tg_load_avg - update the tg's load avg
2878 * @cfs_rq: the cfs_rq whose avg changed
2879 * @force: update regardless of how small the difference
2880 *
2881 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2882 * However, because tg->load_avg is a global value there are performance
2883 * considerations.
2884 *
2885 * In order to avoid having to look at the other cfs_rq's, we use a
2886 * differential update where we store the last value we propagated. This in
2887 * turn allows skipping updates if the differential is 'small'.
2888 *
2889 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2890 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2891 */
9d89c257 2892static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2893{
9d89c257 2894 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2895
aa0b7ae0
WL
2896 /*
2897 * No need to update load_avg for root_task_group as it is not used.
2898 */
2899 if (cfs_rq->tg == &root_task_group)
2900 return;
2901
9d89c257
YD
2902 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2903 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2904 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2905 }
8165e145 2906}
f5f9739d 2907
ad936d86
BP
2908/*
2909 * Called within set_task_rq() right before setting a task's cpu. The
2910 * caller only guarantees p->pi_lock is held; no other assumptions,
2911 * including the state of rq->lock, should be made.
2912 */
2913void set_task_rq_fair(struct sched_entity *se,
2914 struct cfs_rq *prev, struct cfs_rq *next)
2915{
2916 if (!sched_feat(ATTACH_AGE_LOAD))
2917 return;
2918
2919 /*
2920 * We are supposed to update the task to "current" time, then its up to
2921 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2922 * getting what current time is, so simply throw away the out-of-date
2923 * time. This will result in the wakee task is less decayed, but giving
2924 * the wakee more load sounds not bad.
2925 */
2926 if (se->avg.last_update_time && prev) {
2927 u64 p_last_update_time;
2928 u64 n_last_update_time;
2929
2930#ifndef CONFIG_64BIT
2931 u64 p_last_update_time_copy;
2932 u64 n_last_update_time_copy;
2933
2934 do {
2935 p_last_update_time_copy = prev->load_last_update_time_copy;
2936 n_last_update_time_copy = next->load_last_update_time_copy;
2937
2938 smp_rmb();
2939
2940 p_last_update_time = prev->avg.last_update_time;
2941 n_last_update_time = next->avg.last_update_time;
2942
2943 } while (p_last_update_time != p_last_update_time_copy ||
2944 n_last_update_time != n_last_update_time_copy);
2945#else
2946 p_last_update_time = prev->avg.last_update_time;
2947 n_last_update_time = next->avg.last_update_time;
2948#endif
2949 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2950 &se->avg, 0, 0, NULL);
2951 se->avg.last_update_time = n_last_update_time;
2952 }
2953}
6e83125c 2954#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2955static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2956#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2957
a2c6c91f
SM
2958static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2959{
2960 struct rq *rq = rq_of(cfs_rq);
2961 int cpu = cpu_of(rq);
2962
2963 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2964 unsigned long max = rq->cpu_capacity_orig;
2965
2966 /*
2967 * There are a few boundary cases this might miss but it should
2968 * get called often enough that that should (hopefully) not be
2969 * a real problem -- added to that it only calls on the local
2970 * CPU, so if we enqueue remotely we'll miss an update, but
2971 * the next tick/schedule should update.
2972 *
2973 * It will not get called when we go idle, because the idle
2974 * thread is a different class (!fair), nor will the utilization
2975 * number include things like RT tasks.
2976 *
2977 * As is, the util number is not freq-invariant (we'd have to
2978 * implement arch_scale_freq_capacity() for that).
2979 *
2980 * See cpu_util().
2981 */
2982 cpufreq_update_util(rq_clock(rq),
2983 min(cfs_rq->avg.util_avg, max), max);
2984 }
2985}
2986
89741892
PZ
2987/*
2988 * Unsigned subtract and clamp on underflow.
2989 *
2990 * Explicitly do a load-store to ensure the intermediate value never hits
2991 * memory. This allows lockless observations without ever seeing the negative
2992 * values.
2993 */
2994#define sub_positive(_ptr, _val) do { \
2995 typeof(_ptr) ptr = (_ptr); \
2996 typeof(*ptr) val = (_val); \
2997 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2998 res = var - val; \
2999 if (res > var) \
3000 res = 0; \
3001 WRITE_ONCE(*ptr, res); \
3002} while (0)
3003
3d30544f
PZ
3004/**
3005 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3006 * @now: current time, as per cfs_rq_clock_task()
3007 * @cfs_rq: cfs_rq to update
3008 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3009 *
3010 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3011 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3012 * post_init_entity_util_avg().
3013 *
3014 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3015 *
7c3edd2c
PZ
3016 * Returns true if the load decayed or we removed load.
3017 *
3018 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3019 * call update_tg_load_avg() when this function returns true.
3d30544f 3020 */
a2c6c91f
SM
3021static inline int
3022update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3023{
9d89c257 3024 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3025 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3026
9d89c257 3027 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3028 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3029 sub_positive(&sa->load_avg, r);
3030 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3031 removed_load = 1;
8165e145 3032 }
2dac754e 3033
9d89c257
YD
3034 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3035 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3036 sub_positive(&sa->util_avg, r);
3037 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3038 removed_util = 1;
9d89c257 3039 }
36ee28e4 3040
a2c6c91f 3041 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3042 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3043
9d89c257
YD
3044#ifndef CONFIG_64BIT
3045 smp_wmb();
3046 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3047#endif
36ee28e4 3048
a2c6c91f
SM
3049 if (update_freq && (decayed || removed_util))
3050 cfs_rq_util_change(cfs_rq);
21e96f88 3051
41e0d37f 3052 return decayed || removed_load;
21e96f88
SM
3053}
3054
3055/* Update task and its cfs_rq load average */
3056static inline void update_load_avg(struct sched_entity *se, int update_tg)
3057{
3058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3059 u64 now = cfs_rq_clock_task(cfs_rq);
3060 struct rq *rq = rq_of(cfs_rq);
3061 int cpu = cpu_of(rq);
3062
3063 /*
3064 * Track task load average for carrying it to new CPU after migrated, and
3065 * track group sched_entity load average for task_h_load calc in migration
3066 */
3067 __update_load_avg(now, cpu, &se->avg,
3068 se->on_rq * scale_load_down(se->load.weight),
3069 cfs_rq->curr == se, NULL);
3070
a2c6c91f 3071 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3072 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3073}
3074
3d30544f
PZ
3075/**
3076 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3077 * @cfs_rq: cfs_rq to attach to
3078 * @se: sched_entity to attach
3079 *
3080 * Must call update_cfs_rq_load_avg() before this, since we rely on
3081 * cfs_rq->avg.last_update_time being current.
3082 */
a05e8c51
BP
3083static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3084{
a9280514
PZ
3085 if (!sched_feat(ATTACH_AGE_LOAD))
3086 goto skip_aging;
3087
6efdb105
BP
3088 /*
3089 * If we got migrated (either between CPUs or between cgroups) we'll
3090 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3091 *
3092 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3093 */
3094 if (se->avg.last_update_time) {
3095 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3096 &se->avg, 0, 0, NULL);
3097
3098 /*
3099 * XXX: we could have just aged the entire load away if we've been
3100 * absent from the fair class for too long.
3101 */
3102 }
3103
a9280514 3104skip_aging:
a05e8c51
BP
3105 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3106 cfs_rq->avg.load_avg += se->avg.load_avg;
3107 cfs_rq->avg.load_sum += se->avg.load_sum;
3108 cfs_rq->avg.util_avg += se->avg.util_avg;
3109 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3110
3111 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3112}
3113
3d30544f
PZ
3114/**
3115 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3116 * @cfs_rq: cfs_rq to detach from
3117 * @se: sched_entity to detach
3118 *
3119 * Must call update_cfs_rq_load_avg() before this, since we rely on
3120 * cfs_rq->avg.last_update_time being current.
3121 */
a05e8c51
BP
3122static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3123{
3124 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3125 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3126 cfs_rq->curr == se, NULL);
3127
89741892
PZ
3128 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3129 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3130 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3131 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3132
3133 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3134}
3135
9d89c257
YD
3136/* Add the load generated by se into cfs_rq's load average */
3137static inline void
3138enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3139{
9d89c257
YD
3140 struct sched_avg *sa = &se->avg;
3141 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3142 int migrated, decayed;
9ee474f5 3143
a05e8c51
BP
3144 migrated = !sa->last_update_time;
3145 if (!migrated) {
9d89c257 3146 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3147 se->on_rq * scale_load_down(se->load.weight),
3148 cfs_rq->curr == se, NULL);
aff3e498 3149 }
c566e8e9 3150
a2c6c91f 3151 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3152
13962234
YD
3153 cfs_rq->runnable_load_avg += sa->load_avg;
3154 cfs_rq->runnable_load_sum += sa->load_sum;
3155
a05e8c51
BP
3156 if (migrated)
3157 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3158
9d89c257
YD
3159 if (decayed || migrated)
3160 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3161}
3162
13962234
YD
3163/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3164static inline void
3165dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3166{
3167 update_load_avg(se, 1);
3168
3169 cfs_rq->runnable_load_avg =
3170 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3171 cfs_rq->runnable_load_sum =
a05e8c51 3172 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3173}
3174
9d89c257 3175#ifndef CONFIG_64BIT
0905f04e
YD
3176static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3177{
9d89c257 3178 u64 last_update_time_copy;
0905f04e 3179 u64 last_update_time;
9ee474f5 3180
9d89c257
YD
3181 do {
3182 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3183 smp_rmb();
3184 last_update_time = cfs_rq->avg.last_update_time;
3185 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3186
3187 return last_update_time;
3188}
9d89c257 3189#else
0905f04e
YD
3190static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3191{
3192 return cfs_rq->avg.last_update_time;
3193}
9d89c257
YD
3194#endif
3195
0905f04e
YD
3196/*
3197 * Task first catches up with cfs_rq, and then subtract
3198 * itself from the cfs_rq (task must be off the queue now).
3199 */
3200void remove_entity_load_avg(struct sched_entity *se)
3201{
3202 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3203 u64 last_update_time;
3204
3205 /*
7dc603c9
PZ
3206 * tasks cannot exit without having gone through wake_up_new_task() ->
3207 * post_init_entity_util_avg() which will have added things to the
3208 * cfs_rq, so we can remove unconditionally.
3209 *
3210 * Similarly for groups, they will have passed through
3211 * post_init_entity_util_avg() before unregister_sched_fair_group()
3212 * calls this.
0905f04e 3213 */
0905f04e
YD
3214
3215 last_update_time = cfs_rq_last_update_time(cfs_rq);
3216
13962234 3217 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3218 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3219 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3220}
642dbc39 3221
7ea241af
YD
3222static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3223{
3224 return cfs_rq->runnable_load_avg;
3225}
3226
3227static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3228{
3229 return cfs_rq->avg.load_avg;
3230}
3231
6e83125c
PZ
3232static int idle_balance(struct rq *this_rq);
3233
38033c37
PZ
3234#else /* CONFIG_SMP */
3235
01011473
PZ
3236static inline int
3237update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3238{
3239 return 0;
3240}
3241
536bd00c
RW
3242static inline void update_load_avg(struct sched_entity *se, int not_used)
3243{
3244 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3245 struct rq *rq = rq_of(cfs_rq);
3246
3247 cpufreq_trigger_update(rq_clock(rq));
3248}
3249
9d89c257
YD
3250static inline void
3251enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3252static inline void
3253dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3254static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3255
a05e8c51
BP
3256static inline void
3257attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3258static inline void
3259detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3260
6e83125c
PZ
3261static inline int idle_balance(struct rq *rq)
3262{
3263 return 0;
3264}
3265
38033c37 3266#endif /* CONFIG_SMP */
9d85f21c 3267
ddc97297
PZ
3268static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3269{
3270#ifdef CONFIG_SCHED_DEBUG
3271 s64 d = se->vruntime - cfs_rq->min_vruntime;
3272
3273 if (d < 0)
3274 d = -d;
3275
3276 if (d > 3*sysctl_sched_latency)
ae92882e 3277 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3278#endif
3279}
3280
aeb73b04
PZ
3281static void
3282place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3283{
1af5f730 3284 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3285
2cb8600e
PZ
3286 /*
3287 * The 'current' period is already promised to the current tasks,
3288 * however the extra weight of the new task will slow them down a
3289 * little, place the new task so that it fits in the slot that
3290 * stays open at the end.
3291 */
94dfb5e7 3292 if (initial && sched_feat(START_DEBIT))
f9c0b095 3293 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3294
a2e7a7eb 3295 /* sleeps up to a single latency don't count. */
5ca9880c 3296 if (!initial) {
a2e7a7eb 3297 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3298
a2e7a7eb
MG
3299 /*
3300 * Halve their sleep time's effect, to allow
3301 * for a gentler effect of sleepers:
3302 */
3303 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3304 thresh >>= 1;
51e0304c 3305
a2e7a7eb 3306 vruntime -= thresh;
aeb73b04
PZ
3307 }
3308
b5d9d734 3309 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3310 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3311}
3312
d3d9dc33
PT
3313static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3314
cb251765
MG
3315static inline void check_schedstat_required(void)
3316{
3317#ifdef CONFIG_SCHEDSTATS
3318 if (schedstat_enabled())
3319 return;
3320
3321 /* Force schedstat enabled if a dependent tracepoint is active */
3322 if (trace_sched_stat_wait_enabled() ||
3323 trace_sched_stat_sleep_enabled() ||
3324 trace_sched_stat_iowait_enabled() ||
3325 trace_sched_stat_blocked_enabled() ||
3326 trace_sched_stat_runtime_enabled()) {
eda8dca5 3327 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3328 "stat_blocked and stat_runtime require the "
3329 "kernel parameter schedstats=enabled or "
3330 "kernel.sched_schedstats=1\n");
3331 }
3332#endif
3333}
3334
b5179ac7
PZ
3335
3336/*
3337 * MIGRATION
3338 *
3339 * dequeue
3340 * update_curr()
3341 * update_min_vruntime()
3342 * vruntime -= min_vruntime
3343 *
3344 * enqueue
3345 * update_curr()
3346 * update_min_vruntime()
3347 * vruntime += min_vruntime
3348 *
3349 * this way the vruntime transition between RQs is done when both
3350 * min_vruntime are up-to-date.
3351 *
3352 * WAKEUP (remote)
3353 *
59efa0ba 3354 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3355 * vruntime -= min_vruntime
3356 *
3357 * enqueue
3358 * update_curr()
3359 * update_min_vruntime()
3360 * vruntime += min_vruntime
3361 *
3362 * this way we don't have the most up-to-date min_vruntime on the originating
3363 * CPU and an up-to-date min_vruntime on the destination CPU.
3364 */
3365
bf0f6f24 3366static void
88ec22d3 3367enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3368{
2f950354
PZ
3369 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3370 bool curr = cfs_rq->curr == se;
3371
88ec22d3 3372 /*
2f950354
PZ
3373 * If we're the current task, we must renormalise before calling
3374 * update_curr().
88ec22d3 3375 */
2f950354 3376 if (renorm && curr)
88ec22d3
PZ
3377 se->vruntime += cfs_rq->min_vruntime;
3378
2f950354
PZ
3379 update_curr(cfs_rq);
3380
bf0f6f24 3381 /*
2f950354
PZ
3382 * Otherwise, renormalise after, such that we're placed at the current
3383 * moment in time, instead of some random moment in the past. Being
3384 * placed in the past could significantly boost this task to the
3385 * fairness detriment of existing tasks.
bf0f6f24 3386 */
2f950354
PZ
3387 if (renorm && !curr)
3388 se->vruntime += cfs_rq->min_vruntime;
3389
9d89c257 3390 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3391 account_entity_enqueue(cfs_rq, se);
3392 update_cfs_shares(cfs_rq);
bf0f6f24 3393
1a3d027c 3394 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3395 place_entity(cfs_rq, se, 0);
bf0f6f24 3396
cb251765 3397 check_schedstat_required();
4fa8d299
JP
3398 update_stats_enqueue(cfs_rq, se, flags);
3399 check_spread(cfs_rq, se);
2f950354 3400 if (!curr)
83b699ed 3401 __enqueue_entity(cfs_rq, se);
2069dd75 3402 se->on_rq = 1;
3d4b47b4 3403
d3d9dc33 3404 if (cfs_rq->nr_running == 1) {
3d4b47b4 3405 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3406 check_enqueue_throttle(cfs_rq);
3407 }
bf0f6f24
IM
3408}
3409
2c13c919 3410static void __clear_buddies_last(struct sched_entity *se)
2002c695 3411{
2c13c919
RR
3412 for_each_sched_entity(se) {
3413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3414 if (cfs_rq->last != se)
2c13c919 3415 break;
f1044799
PZ
3416
3417 cfs_rq->last = NULL;
2c13c919
RR
3418 }
3419}
2002c695 3420
2c13c919
RR
3421static void __clear_buddies_next(struct sched_entity *se)
3422{
3423 for_each_sched_entity(se) {
3424 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3425 if (cfs_rq->next != se)
2c13c919 3426 break;
f1044799
PZ
3427
3428 cfs_rq->next = NULL;
2c13c919 3429 }
2002c695
PZ
3430}
3431
ac53db59
RR
3432static void __clear_buddies_skip(struct sched_entity *se)
3433{
3434 for_each_sched_entity(se) {
3435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3436 if (cfs_rq->skip != se)
ac53db59 3437 break;
f1044799
PZ
3438
3439 cfs_rq->skip = NULL;
ac53db59
RR
3440 }
3441}
3442
a571bbea
PZ
3443static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3444{
2c13c919
RR
3445 if (cfs_rq->last == se)
3446 __clear_buddies_last(se);
3447
3448 if (cfs_rq->next == se)
3449 __clear_buddies_next(se);
ac53db59
RR
3450
3451 if (cfs_rq->skip == se)
3452 __clear_buddies_skip(se);
a571bbea
PZ
3453}
3454
6c16a6dc 3455static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3456
bf0f6f24 3457static void
371fd7e7 3458dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3459{
a2a2d680
DA
3460 /*
3461 * Update run-time statistics of the 'current'.
3462 */
3463 update_curr(cfs_rq);
13962234 3464 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3465
4fa8d299 3466 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3467
2002c695 3468 clear_buddies(cfs_rq, se);
4793241b 3469
83b699ed 3470 if (se != cfs_rq->curr)
30cfdcfc 3471 __dequeue_entity(cfs_rq, se);
17bc14b7 3472 se->on_rq = 0;
30cfdcfc 3473 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3474
3475 /*
3476 * Normalize the entity after updating the min_vruntime because the
3477 * update can refer to the ->curr item and we need to reflect this
3478 * movement in our normalized position.
3479 */
371fd7e7 3480 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3481 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3482
d8b4986d
PT
3483 /* return excess runtime on last dequeue */
3484 return_cfs_rq_runtime(cfs_rq);
3485
1e876231 3486 update_min_vruntime(cfs_rq);
17bc14b7 3487 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3488}
3489
3490/*
3491 * Preempt the current task with a newly woken task if needed:
3492 */
7c92e54f 3493static void
2e09bf55 3494check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3495{
11697830 3496 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3497 struct sched_entity *se;
3498 s64 delta;
11697830 3499
6d0f0ebd 3500 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3501 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3502 if (delta_exec > ideal_runtime) {
8875125e 3503 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3504 /*
3505 * The current task ran long enough, ensure it doesn't get
3506 * re-elected due to buddy favours.
3507 */
3508 clear_buddies(cfs_rq, curr);
f685ceac
MG
3509 return;
3510 }
3511
3512 /*
3513 * Ensure that a task that missed wakeup preemption by a
3514 * narrow margin doesn't have to wait for a full slice.
3515 * This also mitigates buddy induced latencies under load.
3516 */
f685ceac
MG
3517 if (delta_exec < sysctl_sched_min_granularity)
3518 return;
3519
f4cfb33e
WX
3520 se = __pick_first_entity(cfs_rq);
3521 delta = curr->vruntime - se->vruntime;
f685ceac 3522
f4cfb33e
WX
3523 if (delta < 0)
3524 return;
d7d82944 3525
f4cfb33e 3526 if (delta > ideal_runtime)
8875125e 3527 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3528}
3529
83b699ed 3530static void
8494f412 3531set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3532{
83b699ed
SV
3533 /* 'current' is not kept within the tree. */
3534 if (se->on_rq) {
3535 /*
3536 * Any task has to be enqueued before it get to execute on
3537 * a CPU. So account for the time it spent waiting on the
3538 * runqueue.
3539 */
4fa8d299 3540 update_stats_wait_end(cfs_rq, se);
83b699ed 3541 __dequeue_entity(cfs_rq, se);
9d89c257 3542 update_load_avg(se, 1);
83b699ed
SV
3543 }
3544
79303e9e 3545 update_stats_curr_start(cfs_rq, se);
429d43bc 3546 cfs_rq->curr = se;
4fa8d299 3547
eba1ed4b
IM
3548 /*
3549 * Track our maximum slice length, if the CPU's load is at
3550 * least twice that of our own weight (i.e. dont track it
3551 * when there are only lesser-weight tasks around):
3552 */
cb251765 3553 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3554 schedstat_set(se->statistics.slice_max,
3555 max((u64)schedstat_val(se->statistics.slice_max),
3556 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3557 }
4fa8d299 3558
4a55b450 3559 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3560}
3561
3f3a4904
PZ
3562static int
3563wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3564
ac53db59
RR
3565/*
3566 * Pick the next process, keeping these things in mind, in this order:
3567 * 1) keep things fair between processes/task groups
3568 * 2) pick the "next" process, since someone really wants that to run
3569 * 3) pick the "last" process, for cache locality
3570 * 4) do not run the "skip" process, if something else is available
3571 */
678d5718
PZ
3572static struct sched_entity *
3573pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3574{
678d5718
PZ
3575 struct sched_entity *left = __pick_first_entity(cfs_rq);
3576 struct sched_entity *se;
3577
3578 /*
3579 * If curr is set we have to see if its left of the leftmost entity
3580 * still in the tree, provided there was anything in the tree at all.
3581 */
3582 if (!left || (curr && entity_before(curr, left)))
3583 left = curr;
3584
3585 se = left; /* ideally we run the leftmost entity */
f4b6755f 3586
ac53db59
RR
3587 /*
3588 * Avoid running the skip buddy, if running something else can
3589 * be done without getting too unfair.
3590 */
3591 if (cfs_rq->skip == se) {
678d5718
PZ
3592 struct sched_entity *second;
3593
3594 if (se == curr) {
3595 second = __pick_first_entity(cfs_rq);
3596 } else {
3597 second = __pick_next_entity(se);
3598 if (!second || (curr && entity_before(curr, second)))
3599 second = curr;
3600 }
3601
ac53db59
RR
3602 if (second && wakeup_preempt_entity(second, left) < 1)
3603 se = second;
3604 }
aa2ac252 3605
f685ceac
MG
3606 /*
3607 * Prefer last buddy, try to return the CPU to a preempted task.
3608 */
3609 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3610 se = cfs_rq->last;
3611
ac53db59
RR
3612 /*
3613 * Someone really wants this to run. If it's not unfair, run it.
3614 */
3615 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3616 se = cfs_rq->next;
3617
f685ceac 3618 clear_buddies(cfs_rq, se);
4793241b
PZ
3619
3620 return se;
aa2ac252
PZ
3621}
3622
678d5718 3623static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3624
ab6cde26 3625static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3626{
3627 /*
3628 * If still on the runqueue then deactivate_task()
3629 * was not called and update_curr() has to be done:
3630 */
3631 if (prev->on_rq)
b7cc0896 3632 update_curr(cfs_rq);
bf0f6f24 3633
d3d9dc33
PT
3634 /* throttle cfs_rqs exceeding runtime */
3635 check_cfs_rq_runtime(cfs_rq);
3636
4fa8d299 3637 check_spread(cfs_rq, prev);
cb251765 3638
30cfdcfc 3639 if (prev->on_rq) {
4fa8d299 3640 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3641 /* Put 'current' back into the tree. */
3642 __enqueue_entity(cfs_rq, prev);
9d85f21c 3643 /* in !on_rq case, update occurred at dequeue */
9d89c257 3644 update_load_avg(prev, 0);
30cfdcfc 3645 }
429d43bc 3646 cfs_rq->curr = NULL;
bf0f6f24
IM
3647}
3648
8f4d37ec
PZ
3649static void
3650entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3651{
bf0f6f24 3652 /*
30cfdcfc 3653 * Update run-time statistics of the 'current'.
bf0f6f24 3654 */
30cfdcfc 3655 update_curr(cfs_rq);
bf0f6f24 3656
9d85f21c
PT
3657 /*
3658 * Ensure that runnable average is periodically updated.
3659 */
9d89c257 3660 update_load_avg(curr, 1);
bf0bd948 3661 update_cfs_shares(cfs_rq);
9d85f21c 3662
8f4d37ec
PZ
3663#ifdef CONFIG_SCHED_HRTICK
3664 /*
3665 * queued ticks are scheduled to match the slice, so don't bother
3666 * validating it and just reschedule.
3667 */
983ed7a6 3668 if (queued) {
8875125e 3669 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3670 return;
3671 }
8f4d37ec
PZ
3672 /*
3673 * don't let the period tick interfere with the hrtick preemption
3674 */
3675 if (!sched_feat(DOUBLE_TICK) &&
3676 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3677 return;
3678#endif
3679
2c2efaed 3680 if (cfs_rq->nr_running > 1)
2e09bf55 3681 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3682}
3683
ab84d31e
PT
3684
3685/**************************************************
3686 * CFS bandwidth control machinery
3687 */
3688
3689#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3690
3691#ifdef HAVE_JUMP_LABEL
c5905afb 3692static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3693
3694static inline bool cfs_bandwidth_used(void)
3695{
c5905afb 3696 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3697}
3698
1ee14e6c 3699void cfs_bandwidth_usage_inc(void)
029632fb 3700{
1ee14e6c
BS
3701 static_key_slow_inc(&__cfs_bandwidth_used);
3702}
3703
3704void cfs_bandwidth_usage_dec(void)
3705{
3706 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3707}
3708#else /* HAVE_JUMP_LABEL */
3709static bool cfs_bandwidth_used(void)
3710{
3711 return true;
3712}
3713
1ee14e6c
BS
3714void cfs_bandwidth_usage_inc(void) {}
3715void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3716#endif /* HAVE_JUMP_LABEL */
3717
ab84d31e
PT
3718/*
3719 * default period for cfs group bandwidth.
3720 * default: 0.1s, units: nanoseconds
3721 */
3722static inline u64 default_cfs_period(void)
3723{
3724 return 100000000ULL;
3725}
ec12cb7f
PT
3726
3727static inline u64 sched_cfs_bandwidth_slice(void)
3728{
3729 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3730}
3731
a9cf55b2
PT
3732/*
3733 * Replenish runtime according to assigned quota and update expiration time.
3734 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3735 * additional synchronization around rq->lock.
3736 *
3737 * requires cfs_b->lock
3738 */
029632fb 3739void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3740{
3741 u64 now;
3742
3743 if (cfs_b->quota == RUNTIME_INF)
3744 return;
3745
3746 now = sched_clock_cpu(smp_processor_id());
3747 cfs_b->runtime = cfs_b->quota;
3748 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3749}
3750
029632fb
PZ
3751static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3752{
3753 return &tg->cfs_bandwidth;
3754}
3755
f1b17280
PT
3756/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3757static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3758{
3759 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3760 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3761
78becc27 3762 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3763}
3764
85dac906
PT
3765/* returns 0 on failure to allocate runtime */
3766static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3767{
3768 struct task_group *tg = cfs_rq->tg;
3769 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3770 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3771
3772 /* note: this is a positive sum as runtime_remaining <= 0 */
3773 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3774
3775 raw_spin_lock(&cfs_b->lock);
3776 if (cfs_b->quota == RUNTIME_INF)
3777 amount = min_amount;
58088ad0 3778 else {
77a4d1a1 3779 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3780
3781 if (cfs_b->runtime > 0) {
3782 amount = min(cfs_b->runtime, min_amount);
3783 cfs_b->runtime -= amount;
3784 cfs_b->idle = 0;
3785 }
ec12cb7f 3786 }
a9cf55b2 3787 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3788 raw_spin_unlock(&cfs_b->lock);
3789
3790 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3791 /*
3792 * we may have advanced our local expiration to account for allowed
3793 * spread between our sched_clock and the one on which runtime was
3794 * issued.
3795 */
3796 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3797 cfs_rq->runtime_expires = expires;
85dac906
PT
3798
3799 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3800}
3801
a9cf55b2
PT
3802/*
3803 * Note: This depends on the synchronization provided by sched_clock and the
3804 * fact that rq->clock snapshots this value.
3805 */
3806static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3807{
a9cf55b2 3808 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3809
3810 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3811 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3812 return;
3813
a9cf55b2
PT
3814 if (cfs_rq->runtime_remaining < 0)
3815 return;
3816
3817 /*
3818 * If the local deadline has passed we have to consider the
3819 * possibility that our sched_clock is 'fast' and the global deadline
3820 * has not truly expired.
3821 *
3822 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3823 * whether the global deadline has advanced. It is valid to compare
3824 * cfs_b->runtime_expires without any locks since we only care about
3825 * exact equality, so a partial write will still work.
a9cf55b2
PT
3826 */
3827
51f2176d 3828 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3829 /* extend local deadline, drift is bounded above by 2 ticks */
3830 cfs_rq->runtime_expires += TICK_NSEC;
3831 } else {
3832 /* global deadline is ahead, expiration has passed */
3833 cfs_rq->runtime_remaining = 0;
3834 }
3835}
3836
9dbdb155 3837static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3838{
3839 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3840 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3841 expire_cfs_rq_runtime(cfs_rq);
3842
3843 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3844 return;
3845
85dac906
PT
3846 /*
3847 * if we're unable to extend our runtime we resched so that the active
3848 * hierarchy can be throttled
3849 */
3850 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3851 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3852}
3853
6c16a6dc 3854static __always_inline
9dbdb155 3855void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3856{
56f570e5 3857 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3858 return;
3859
3860 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3861}
3862
85dac906
PT
3863static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3864{
56f570e5 3865 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3866}
3867
64660c86
PT
3868/* check whether cfs_rq, or any parent, is throttled */
3869static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3870{
56f570e5 3871 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3872}
3873
3874/*
3875 * Ensure that neither of the group entities corresponding to src_cpu or
3876 * dest_cpu are members of a throttled hierarchy when performing group
3877 * load-balance operations.
3878 */
3879static inline int throttled_lb_pair(struct task_group *tg,
3880 int src_cpu, int dest_cpu)
3881{
3882 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3883
3884 src_cfs_rq = tg->cfs_rq[src_cpu];
3885 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3886
3887 return throttled_hierarchy(src_cfs_rq) ||
3888 throttled_hierarchy(dest_cfs_rq);
3889}
3890
3891/* updated child weight may affect parent so we have to do this bottom up */
3892static int tg_unthrottle_up(struct task_group *tg, void *data)
3893{
3894 struct rq *rq = data;
3895 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3896
3897 cfs_rq->throttle_count--;
64660c86 3898 if (!cfs_rq->throttle_count) {
f1b17280 3899 /* adjust cfs_rq_clock_task() */
78becc27 3900 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3901 cfs_rq->throttled_clock_task;
64660c86 3902 }
64660c86
PT
3903
3904 return 0;
3905}
3906
3907static int tg_throttle_down(struct task_group *tg, void *data)
3908{
3909 struct rq *rq = data;
3910 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3911
82958366
PT
3912 /* group is entering throttled state, stop time */
3913 if (!cfs_rq->throttle_count)
78becc27 3914 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3915 cfs_rq->throttle_count++;
3916
3917 return 0;
3918}
3919
d3d9dc33 3920static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3921{
3922 struct rq *rq = rq_of(cfs_rq);
3923 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3924 struct sched_entity *se;
3925 long task_delta, dequeue = 1;
77a4d1a1 3926 bool empty;
85dac906
PT
3927
3928 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3929
f1b17280 3930 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3931 rcu_read_lock();
3932 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3933 rcu_read_unlock();
85dac906
PT
3934
3935 task_delta = cfs_rq->h_nr_running;
3936 for_each_sched_entity(se) {
3937 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3938 /* throttled entity or throttle-on-deactivate */
3939 if (!se->on_rq)
3940 break;
3941
3942 if (dequeue)
3943 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3944 qcfs_rq->h_nr_running -= task_delta;
3945
3946 if (qcfs_rq->load.weight)
3947 dequeue = 0;
3948 }
3949
3950 if (!se)
72465447 3951 sub_nr_running(rq, task_delta);
85dac906
PT
3952
3953 cfs_rq->throttled = 1;
78becc27 3954 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3955 raw_spin_lock(&cfs_b->lock);
d49db342 3956 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3957
c06f04c7
BS
3958 /*
3959 * Add to the _head_ of the list, so that an already-started
3960 * distribute_cfs_runtime will not see us
3961 */
3962 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3963
3964 /*
3965 * If we're the first throttled task, make sure the bandwidth
3966 * timer is running.
3967 */
3968 if (empty)
3969 start_cfs_bandwidth(cfs_b);
3970
85dac906
PT
3971 raw_spin_unlock(&cfs_b->lock);
3972}
3973
029632fb 3974void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3975{
3976 struct rq *rq = rq_of(cfs_rq);
3977 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3978 struct sched_entity *se;
3979 int enqueue = 1;
3980 long task_delta;
3981
22b958d8 3982 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3983
3984 cfs_rq->throttled = 0;
1a55af2e
FW
3985
3986 update_rq_clock(rq);
3987
671fd9da 3988 raw_spin_lock(&cfs_b->lock);
78becc27 3989 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3990 list_del_rcu(&cfs_rq->throttled_list);
3991 raw_spin_unlock(&cfs_b->lock);
3992
64660c86
PT
3993 /* update hierarchical throttle state */
3994 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3995
671fd9da
PT
3996 if (!cfs_rq->load.weight)
3997 return;
3998
3999 task_delta = cfs_rq->h_nr_running;
4000 for_each_sched_entity(se) {
4001 if (se->on_rq)
4002 enqueue = 0;
4003
4004 cfs_rq = cfs_rq_of(se);
4005 if (enqueue)
4006 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4007 cfs_rq->h_nr_running += task_delta;
4008
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
4011 }
4012
4013 if (!se)
72465447 4014 add_nr_running(rq, task_delta);
671fd9da
PT
4015
4016 /* determine whether we need to wake up potentially idle cpu */
4017 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4018 resched_curr(rq);
671fd9da
PT
4019}
4020
4021static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4022 u64 remaining, u64 expires)
4023{
4024 struct cfs_rq *cfs_rq;
c06f04c7
BS
4025 u64 runtime;
4026 u64 starting_runtime = remaining;
671fd9da
PT
4027
4028 rcu_read_lock();
4029 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4030 throttled_list) {
4031 struct rq *rq = rq_of(cfs_rq);
4032
4033 raw_spin_lock(&rq->lock);
4034 if (!cfs_rq_throttled(cfs_rq))
4035 goto next;
4036
4037 runtime = -cfs_rq->runtime_remaining + 1;
4038 if (runtime > remaining)
4039 runtime = remaining;
4040 remaining -= runtime;
4041
4042 cfs_rq->runtime_remaining += runtime;
4043 cfs_rq->runtime_expires = expires;
4044
4045 /* we check whether we're throttled above */
4046 if (cfs_rq->runtime_remaining > 0)
4047 unthrottle_cfs_rq(cfs_rq);
4048
4049next:
4050 raw_spin_unlock(&rq->lock);
4051
4052 if (!remaining)
4053 break;
4054 }
4055 rcu_read_unlock();
4056
c06f04c7 4057 return starting_runtime - remaining;
671fd9da
PT
4058}
4059
58088ad0
PT
4060/*
4061 * Responsible for refilling a task_group's bandwidth and unthrottling its
4062 * cfs_rqs as appropriate. If there has been no activity within the last
4063 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4064 * used to track this state.
4065 */
4066static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4067{
671fd9da 4068 u64 runtime, runtime_expires;
51f2176d 4069 int throttled;
58088ad0 4070
58088ad0
PT
4071 /* no need to continue the timer with no bandwidth constraint */
4072 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4073 goto out_deactivate;
58088ad0 4074
671fd9da 4075 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4076 cfs_b->nr_periods += overrun;
671fd9da 4077
51f2176d
BS
4078 /*
4079 * idle depends on !throttled (for the case of a large deficit), and if
4080 * we're going inactive then everything else can be deferred
4081 */
4082 if (cfs_b->idle && !throttled)
4083 goto out_deactivate;
a9cf55b2
PT
4084
4085 __refill_cfs_bandwidth_runtime(cfs_b);
4086
671fd9da
PT
4087 if (!throttled) {
4088 /* mark as potentially idle for the upcoming period */
4089 cfs_b->idle = 1;
51f2176d 4090 return 0;
671fd9da
PT
4091 }
4092
e8da1b18
NR
4093 /* account preceding periods in which throttling occurred */
4094 cfs_b->nr_throttled += overrun;
4095
671fd9da 4096 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4097
4098 /*
c06f04c7
BS
4099 * This check is repeated as we are holding onto the new bandwidth while
4100 * we unthrottle. This can potentially race with an unthrottled group
4101 * trying to acquire new bandwidth from the global pool. This can result
4102 * in us over-using our runtime if it is all used during this loop, but
4103 * only by limited amounts in that extreme case.
671fd9da 4104 */
c06f04c7
BS
4105 while (throttled && cfs_b->runtime > 0) {
4106 runtime = cfs_b->runtime;
671fd9da
PT
4107 raw_spin_unlock(&cfs_b->lock);
4108 /* we can't nest cfs_b->lock while distributing bandwidth */
4109 runtime = distribute_cfs_runtime(cfs_b, runtime,
4110 runtime_expires);
4111 raw_spin_lock(&cfs_b->lock);
4112
4113 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4114
4115 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4116 }
58088ad0 4117
671fd9da
PT
4118 /*
4119 * While we are ensured activity in the period following an
4120 * unthrottle, this also covers the case in which the new bandwidth is
4121 * insufficient to cover the existing bandwidth deficit. (Forcing the
4122 * timer to remain active while there are any throttled entities.)
4123 */
4124 cfs_b->idle = 0;
58088ad0 4125
51f2176d
BS
4126 return 0;
4127
4128out_deactivate:
51f2176d 4129 return 1;
58088ad0 4130}
d3d9dc33 4131
d8b4986d
PT
4132/* a cfs_rq won't donate quota below this amount */
4133static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4134/* minimum remaining period time to redistribute slack quota */
4135static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4136/* how long we wait to gather additional slack before distributing */
4137static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4138
db06e78c
BS
4139/*
4140 * Are we near the end of the current quota period?
4141 *
4142 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4143 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4144 * migrate_hrtimers, base is never cleared, so we are fine.
4145 */
d8b4986d
PT
4146static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4147{
4148 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4149 u64 remaining;
4150
4151 /* if the call-back is running a quota refresh is already occurring */
4152 if (hrtimer_callback_running(refresh_timer))
4153 return 1;
4154
4155 /* is a quota refresh about to occur? */
4156 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4157 if (remaining < min_expire)
4158 return 1;
4159
4160 return 0;
4161}
4162
4163static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4164{
4165 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4166
4167 /* if there's a quota refresh soon don't bother with slack */
4168 if (runtime_refresh_within(cfs_b, min_left))
4169 return;
4170
4cfafd30
PZ
4171 hrtimer_start(&cfs_b->slack_timer,
4172 ns_to_ktime(cfs_bandwidth_slack_period),
4173 HRTIMER_MODE_REL);
d8b4986d
PT
4174}
4175
4176/* we know any runtime found here is valid as update_curr() precedes return */
4177static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4178{
4179 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4180 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4181
4182 if (slack_runtime <= 0)
4183 return;
4184
4185 raw_spin_lock(&cfs_b->lock);
4186 if (cfs_b->quota != RUNTIME_INF &&
4187 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4188 cfs_b->runtime += slack_runtime;
4189
4190 /* we are under rq->lock, defer unthrottling using a timer */
4191 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4192 !list_empty(&cfs_b->throttled_cfs_rq))
4193 start_cfs_slack_bandwidth(cfs_b);
4194 }
4195 raw_spin_unlock(&cfs_b->lock);
4196
4197 /* even if it's not valid for return we don't want to try again */
4198 cfs_rq->runtime_remaining -= slack_runtime;
4199}
4200
4201static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4202{
56f570e5
PT
4203 if (!cfs_bandwidth_used())
4204 return;
4205
fccfdc6f 4206 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4207 return;
4208
4209 __return_cfs_rq_runtime(cfs_rq);
4210}
4211
4212/*
4213 * This is done with a timer (instead of inline with bandwidth return) since
4214 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4215 */
4216static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4217{
4218 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4219 u64 expires;
4220
4221 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4222 raw_spin_lock(&cfs_b->lock);
4223 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4224 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4225 return;
db06e78c 4226 }
d8b4986d 4227
c06f04c7 4228 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4229 runtime = cfs_b->runtime;
c06f04c7 4230
d8b4986d
PT
4231 expires = cfs_b->runtime_expires;
4232 raw_spin_unlock(&cfs_b->lock);
4233
4234 if (!runtime)
4235 return;
4236
4237 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4238
4239 raw_spin_lock(&cfs_b->lock);
4240 if (expires == cfs_b->runtime_expires)
c06f04c7 4241 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4242 raw_spin_unlock(&cfs_b->lock);
4243}
4244
d3d9dc33
PT
4245/*
4246 * When a group wakes up we want to make sure that its quota is not already
4247 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4248 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4249 */
4250static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4251{
56f570e5
PT
4252 if (!cfs_bandwidth_used())
4253 return;
4254
d3d9dc33
PT
4255 /* an active group must be handled by the update_curr()->put() path */
4256 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4257 return;
4258
4259 /* ensure the group is not already throttled */
4260 if (cfs_rq_throttled(cfs_rq))
4261 return;
4262
4263 /* update runtime allocation */
4264 account_cfs_rq_runtime(cfs_rq, 0);
4265 if (cfs_rq->runtime_remaining <= 0)
4266 throttle_cfs_rq(cfs_rq);
4267}
4268
55e16d30
PZ
4269static void sync_throttle(struct task_group *tg, int cpu)
4270{
4271 struct cfs_rq *pcfs_rq, *cfs_rq;
4272
4273 if (!cfs_bandwidth_used())
4274 return;
4275
4276 if (!tg->parent)
4277 return;
4278
4279 cfs_rq = tg->cfs_rq[cpu];
4280 pcfs_rq = tg->parent->cfs_rq[cpu];
4281
4282 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4283 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4284}
4285
d3d9dc33 4286/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4287static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4288{
56f570e5 4289 if (!cfs_bandwidth_used())
678d5718 4290 return false;
56f570e5 4291
d3d9dc33 4292 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4293 return false;
d3d9dc33
PT
4294
4295 /*
4296 * it's possible for a throttled entity to be forced into a running
4297 * state (e.g. set_curr_task), in this case we're finished.
4298 */
4299 if (cfs_rq_throttled(cfs_rq))
678d5718 4300 return true;
d3d9dc33
PT
4301
4302 throttle_cfs_rq(cfs_rq);
678d5718 4303 return true;
d3d9dc33 4304}
029632fb 4305
029632fb
PZ
4306static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4307{
4308 struct cfs_bandwidth *cfs_b =
4309 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4310
029632fb
PZ
4311 do_sched_cfs_slack_timer(cfs_b);
4312
4313 return HRTIMER_NORESTART;
4314}
4315
4316static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4317{
4318 struct cfs_bandwidth *cfs_b =
4319 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4320 int overrun;
4321 int idle = 0;
4322
51f2176d 4323 raw_spin_lock(&cfs_b->lock);
029632fb 4324 for (;;) {
77a4d1a1 4325 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4326 if (!overrun)
4327 break;
4328
4329 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4330 }
4cfafd30
PZ
4331 if (idle)
4332 cfs_b->period_active = 0;
51f2176d 4333 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4334
4335 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4336}
4337
4338void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4339{
4340 raw_spin_lock_init(&cfs_b->lock);
4341 cfs_b->runtime = 0;
4342 cfs_b->quota = RUNTIME_INF;
4343 cfs_b->period = ns_to_ktime(default_cfs_period());
4344
4345 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4346 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4347 cfs_b->period_timer.function = sched_cfs_period_timer;
4348 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4349 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4350}
4351
4352static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4353{
4354 cfs_rq->runtime_enabled = 0;
4355 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4356}
4357
77a4d1a1 4358void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4359{
4cfafd30 4360 lockdep_assert_held(&cfs_b->lock);
029632fb 4361
4cfafd30
PZ
4362 if (!cfs_b->period_active) {
4363 cfs_b->period_active = 1;
4364 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4365 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4366 }
029632fb
PZ
4367}
4368
4369static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4370{
7f1a169b
TH
4371 /* init_cfs_bandwidth() was not called */
4372 if (!cfs_b->throttled_cfs_rq.next)
4373 return;
4374
029632fb
PZ
4375 hrtimer_cancel(&cfs_b->period_timer);
4376 hrtimer_cancel(&cfs_b->slack_timer);
4377}
4378
0e59bdae
KT
4379static void __maybe_unused update_runtime_enabled(struct rq *rq)
4380{
4381 struct cfs_rq *cfs_rq;
4382
4383 for_each_leaf_cfs_rq(rq, cfs_rq) {
4384 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4385
4386 raw_spin_lock(&cfs_b->lock);
4387 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4388 raw_spin_unlock(&cfs_b->lock);
4389 }
4390}
4391
38dc3348 4392static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4393{
4394 struct cfs_rq *cfs_rq;
4395
4396 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4397 if (!cfs_rq->runtime_enabled)
4398 continue;
4399
4400 /*
4401 * clock_task is not advancing so we just need to make sure
4402 * there's some valid quota amount
4403 */
51f2176d 4404 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4405 /*
4406 * Offline rq is schedulable till cpu is completely disabled
4407 * in take_cpu_down(), so we prevent new cfs throttling here.
4408 */
4409 cfs_rq->runtime_enabled = 0;
4410
029632fb
PZ
4411 if (cfs_rq_throttled(cfs_rq))
4412 unthrottle_cfs_rq(cfs_rq);
4413 }
4414}
4415
4416#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4417static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4418{
78becc27 4419 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4420}
4421
9dbdb155 4422static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4423static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4424static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4425static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4426static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4427
4428static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4429{
4430 return 0;
4431}
64660c86
PT
4432
4433static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4434{
4435 return 0;
4436}
4437
4438static inline int throttled_lb_pair(struct task_group *tg,
4439 int src_cpu, int dest_cpu)
4440{
4441 return 0;
4442}
029632fb
PZ
4443
4444void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4445
4446#ifdef CONFIG_FAIR_GROUP_SCHED
4447static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4448#endif
4449
029632fb
PZ
4450static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4451{
4452 return NULL;
4453}
4454static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4455static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4456static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4457
4458#endif /* CONFIG_CFS_BANDWIDTH */
4459
bf0f6f24
IM
4460/**************************************************
4461 * CFS operations on tasks:
4462 */
4463
8f4d37ec
PZ
4464#ifdef CONFIG_SCHED_HRTICK
4465static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4466{
8f4d37ec
PZ
4467 struct sched_entity *se = &p->se;
4468 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4469
4470 WARN_ON(task_rq(p) != rq);
4471
8bf46a39 4472 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4473 u64 slice = sched_slice(cfs_rq, se);
4474 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4475 s64 delta = slice - ran;
4476
4477 if (delta < 0) {
4478 if (rq->curr == p)
8875125e 4479 resched_curr(rq);
8f4d37ec
PZ
4480 return;
4481 }
31656519 4482 hrtick_start(rq, delta);
8f4d37ec
PZ
4483 }
4484}
a4c2f00f
PZ
4485
4486/*
4487 * called from enqueue/dequeue and updates the hrtick when the
4488 * current task is from our class and nr_running is low enough
4489 * to matter.
4490 */
4491static void hrtick_update(struct rq *rq)
4492{
4493 struct task_struct *curr = rq->curr;
4494
b39e66ea 4495 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4496 return;
4497
4498 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4499 hrtick_start_fair(rq, curr);
4500}
55e12e5e 4501#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4502static inline void
4503hrtick_start_fair(struct rq *rq, struct task_struct *p)
4504{
4505}
a4c2f00f
PZ
4506
4507static inline void hrtick_update(struct rq *rq)
4508{
4509}
8f4d37ec
PZ
4510#endif
4511
bf0f6f24
IM
4512/*
4513 * The enqueue_task method is called before nr_running is
4514 * increased. Here we update the fair scheduling stats and
4515 * then put the task into the rbtree:
4516 */
ea87bb78 4517static void
371fd7e7 4518enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4519{
4520 struct cfs_rq *cfs_rq;
62fb1851 4521 struct sched_entity *se = &p->se;
bf0f6f24
IM
4522
4523 for_each_sched_entity(se) {
62fb1851 4524 if (se->on_rq)
bf0f6f24
IM
4525 break;
4526 cfs_rq = cfs_rq_of(se);
88ec22d3 4527 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4528
4529 /*
4530 * end evaluation on encountering a throttled cfs_rq
4531 *
4532 * note: in the case of encountering a throttled cfs_rq we will
4533 * post the final h_nr_running increment below.
e210bffd 4534 */
85dac906
PT
4535 if (cfs_rq_throttled(cfs_rq))
4536 break;
953bfcd1 4537 cfs_rq->h_nr_running++;
85dac906 4538
88ec22d3 4539 flags = ENQUEUE_WAKEUP;
bf0f6f24 4540 }
8f4d37ec 4541
2069dd75 4542 for_each_sched_entity(se) {
0f317143 4543 cfs_rq = cfs_rq_of(se);
953bfcd1 4544 cfs_rq->h_nr_running++;
2069dd75 4545
85dac906
PT
4546 if (cfs_rq_throttled(cfs_rq))
4547 break;
4548
9d89c257 4549 update_load_avg(se, 1);
17bc14b7 4550 update_cfs_shares(cfs_rq);
2069dd75
PZ
4551 }
4552
cd126afe 4553 if (!se)
72465447 4554 add_nr_running(rq, 1);
cd126afe 4555
a4c2f00f 4556 hrtick_update(rq);
bf0f6f24
IM
4557}
4558
2f36825b
VP
4559static void set_next_buddy(struct sched_entity *se);
4560
bf0f6f24
IM
4561/*
4562 * The dequeue_task method is called before nr_running is
4563 * decreased. We remove the task from the rbtree and
4564 * update the fair scheduling stats:
4565 */
371fd7e7 4566static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4567{
4568 struct cfs_rq *cfs_rq;
62fb1851 4569 struct sched_entity *se = &p->se;
2f36825b 4570 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4571
4572 for_each_sched_entity(se) {
4573 cfs_rq = cfs_rq_of(se);
371fd7e7 4574 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4575
4576 /*
4577 * end evaluation on encountering a throttled cfs_rq
4578 *
4579 * note: in the case of encountering a throttled cfs_rq we will
4580 * post the final h_nr_running decrement below.
4581 */
4582 if (cfs_rq_throttled(cfs_rq))
4583 break;
953bfcd1 4584 cfs_rq->h_nr_running--;
2069dd75 4585
bf0f6f24 4586 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4587 if (cfs_rq->load.weight) {
754bd598
KK
4588 /* Avoid re-evaluating load for this entity: */
4589 se = parent_entity(se);
2f36825b
VP
4590 /*
4591 * Bias pick_next to pick a task from this cfs_rq, as
4592 * p is sleeping when it is within its sched_slice.
4593 */
754bd598
KK
4594 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4595 set_next_buddy(se);
bf0f6f24 4596 break;
2f36825b 4597 }
371fd7e7 4598 flags |= DEQUEUE_SLEEP;
bf0f6f24 4599 }
8f4d37ec 4600
2069dd75 4601 for_each_sched_entity(se) {
0f317143 4602 cfs_rq = cfs_rq_of(se);
953bfcd1 4603 cfs_rq->h_nr_running--;
2069dd75 4604
85dac906
PT
4605 if (cfs_rq_throttled(cfs_rq))
4606 break;
4607
9d89c257 4608 update_load_avg(se, 1);
17bc14b7 4609 update_cfs_shares(cfs_rq);
2069dd75
PZ
4610 }
4611
cd126afe 4612 if (!se)
72465447 4613 sub_nr_running(rq, 1);
cd126afe 4614
a4c2f00f 4615 hrtick_update(rq);
bf0f6f24
IM
4616}
4617
e7693a36 4618#ifdef CONFIG_SMP
9fd81dd5 4619#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4620/*
4621 * per rq 'load' arrray crap; XXX kill this.
4622 */
4623
4624/*
d937cdc5 4625 * The exact cpuload calculated at every tick would be:
3289bdb4 4626 *
d937cdc5
PZ
4627 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4628 *
4629 * If a cpu misses updates for n ticks (as it was idle) and update gets
4630 * called on the n+1-th tick when cpu may be busy, then we have:
4631 *
4632 * load_n = (1 - 1/2^i)^n * load_0
4633 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4634 *
4635 * decay_load_missed() below does efficient calculation of
3289bdb4 4636 *
d937cdc5
PZ
4637 * load' = (1 - 1/2^i)^n * load
4638 *
4639 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4640 * This allows us to precompute the above in said factors, thereby allowing the
4641 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4642 * fixed_power_int())
3289bdb4 4643 *
d937cdc5 4644 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4645 */
4646#define DEGRADE_SHIFT 7
d937cdc5
PZ
4647
4648static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4649static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4650 { 0, 0, 0, 0, 0, 0, 0, 0 },
4651 { 64, 32, 8, 0, 0, 0, 0, 0 },
4652 { 96, 72, 40, 12, 1, 0, 0, 0 },
4653 { 112, 98, 75, 43, 15, 1, 0, 0 },
4654 { 120, 112, 98, 76, 45, 16, 2, 0 }
4655};
3289bdb4
PZ
4656
4657/*
4658 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4659 * would be when CPU is idle and so we just decay the old load without
4660 * adding any new load.
4661 */
4662static unsigned long
4663decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4664{
4665 int j = 0;
4666
4667 if (!missed_updates)
4668 return load;
4669
4670 if (missed_updates >= degrade_zero_ticks[idx])
4671 return 0;
4672
4673 if (idx == 1)
4674 return load >> missed_updates;
4675
4676 while (missed_updates) {
4677 if (missed_updates % 2)
4678 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4679
4680 missed_updates >>= 1;
4681 j++;
4682 }
4683 return load;
4684}
9fd81dd5 4685#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4686
59543275 4687/**
cee1afce 4688 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4689 * @this_rq: The rq to update statistics for
4690 * @this_load: The current load
4691 * @pending_updates: The number of missed updates
59543275 4692 *
3289bdb4 4693 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4694 * scheduler tick (TICK_NSEC).
4695 *
4696 * This function computes a decaying average:
4697 *
4698 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4699 *
4700 * Because of NOHZ it might not get called on every tick which gives need for
4701 * the @pending_updates argument.
4702 *
4703 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4704 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4705 * = A * (A * load[i]_n-2 + B) + B
4706 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4707 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4708 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4709 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4710 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4711 *
4712 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4713 * any change in load would have resulted in the tick being turned back on.
4714 *
4715 * For regular NOHZ, this reduces to:
4716 *
4717 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4718 *
4719 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4720 * term.
3289bdb4 4721 */
1f41906a
FW
4722static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4723 unsigned long pending_updates)
3289bdb4 4724{
9fd81dd5 4725 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4726 int i, scale;
4727
4728 this_rq->nr_load_updates++;
4729
4730 /* Update our load: */
4731 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4732 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4733 unsigned long old_load, new_load;
4734
4735 /* scale is effectively 1 << i now, and >> i divides by scale */
4736
7400d3bb 4737 old_load = this_rq->cpu_load[i];
9fd81dd5 4738#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4739 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4740 if (tickless_load) {
4741 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4742 /*
4743 * old_load can never be a negative value because a
4744 * decayed tickless_load cannot be greater than the
4745 * original tickless_load.
4746 */
4747 old_load += tickless_load;
4748 }
9fd81dd5 4749#endif
3289bdb4
PZ
4750 new_load = this_load;
4751 /*
4752 * Round up the averaging division if load is increasing. This
4753 * prevents us from getting stuck on 9 if the load is 10, for
4754 * example.
4755 */
4756 if (new_load > old_load)
4757 new_load += scale - 1;
4758
4759 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4760 }
4761
4762 sched_avg_update(this_rq);
4763}
4764
7ea241af
YD
4765/* Used instead of source_load when we know the type == 0 */
4766static unsigned long weighted_cpuload(const int cpu)
4767{
4768 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4769}
4770
3289bdb4 4771#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4772/*
4773 * There is no sane way to deal with nohz on smp when using jiffies because the
4774 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4775 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4776 *
4777 * Therefore we need to avoid the delta approach from the regular tick when
4778 * possible since that would seriously skew the load calculation. This is why we
4779 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4780 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4781 * loop exit, nohz_idle_balance, nohz full exit...)
4782 *
4783 * This means we might still be one tick off for nohz periods.
4784 */
4785
4786static void cpu_load_update_nohz(struct rq *this_rq,
4787 unsigned long curr_jiffies,
4788 unsigned long load)
be68a682
FW
4789{
4790 unsigned long pending_updates;
4791
4792 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4793 if (pending_updates) {
4794 this_rq->last_load_update_tick = curr_jiffies;
4795 /*
4796 * In the regular NOHZ case, we were idle, this means load 0.
4797 * In the NOHZ_FULL case, we were non-idle, we should consider
4798 * its weighted load.
4799 */
1f41906a 4800 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4801 }
4802}
4803
3289bdb4
PZ
4804/*
4805 * Called from nohz_idle_balance() to update the load ratings before doing the
4806 * idle balance.
4807 */
cee1afce 4808static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4809{
3289bdb4
PZ
4810 /*
4811 * bail if there's load or we're actually up-to-date.
4812 */
be68a682 4813 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4814 return;
4815
1f41906a 4816 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4817}
4818
4819/*
1f41906a
FW
4820 * Record CPU load on nohz entry so we know the tickless load to account
4821 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4822 * than other cpu_load[idx] but it should be fine as cpu_load readers
4823 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4824 */
1f41906a 4825void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4826{
4827 struct rq *this_rq = this_rq();
1f41906a
FW
4828
4829 /*
4830 * This is all lockless but should be fine. If weighted_cpuload changes
4831 * concurrently we'll exit nohz. And cpu_load write can race with
4832 * cpu_load_update_idle() but both updater would be writing the same.
4833 */
4834 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4835}
4836
4837/*
4838 * Account the tickless load in the end of a nohz frame.
4839 */
4840void cpu_load_update_nohz_stop(void)
4841{
316c1608 4842 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4843 struct rq *this_rq = this_rq();
4844 unsigned long load;
3289bdb4
PZ
4845
4846 if (curr_jiffies == this_rq->last_load_update_tick)
4847 return;
4848
1f41906a 4849 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4850 raw_spin_lock(&this_rq->lock);
b52fad2d 4851 update_rq_clock(this_rq);
1f41906a 4852 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4853 raw_spin_unlock(&this_rq->lock);
4854}
1f41906a
FW
4855#else /* !CONFIG_NO_HZ_COMMON */
4856static inline void cpu_load_update_nohz(struct rq *this_rq,
4857 unsigned long curr_jiffies,
4858 unsigned long load) { }
4859#endif /* CONFIG_NO_HZ_COMMON */
4860
4861static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4862{
9fd81dd5 4863#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4864 /* See the mess around cpu_load_update_nohz(). */
4865 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4866#endif
1f41906a
FW
4867 cpu_load_update(this_rq, load, 1);
4868}
3289bdb4
PZ
4869
4870/*
4871 * Called from scheduler_tick()
4872 */
cee1afce 4873void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4874{
7ea241af 4875 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4876
4877 if (tick_nohz_tick_stopped())
4878 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4879 else
4880 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4881}
4882
029632fb
PZ
4883/*
4884 * Return a low guess at the load of a migration-source cpu weighted
4885 * according to the scheduling class and "nice" value.
4886 *
4887 * We want to under-estimate the load of migration sources, to
4888 * balance conservatively.
4889 */
4890static unsigned long source_load(int cpu, int type)
4891{
4892 struct rq *rq = cpu_rq(cpu);
4893 unsigned long total = weighted_cpuload(cpu);
4894
4895 if (type == 0 || !sched_feat(LB_BIAS))
4896 return total;
4897
4898 return min(rq->cpu_load[type-1], total);
4899}
4900
4901/*
4902 * Return a high guess at the load of a migration-target cpu weighted
4903 * according to the scheduling class and "nice" value.
4904 */
4905static unsigned long target_load(int cpu, int type)
4906{
4907 struct rq *rq = cpu_rq(cpu);
4908 unsigned long total = weighted_cpuload(cpu);
4909
4910 if (type == 0 || !sched_feat(LB_BIAS))
4911 return total;
4912
4913 return max(rq->cpu_load[type-1], total);
4914}
4915
ced549fa 4916static unsigned long capacity_of(int cpu)
029632fb 4917{
ced549fa 4918 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4919}
4920
ca6d75e6
VG
4921static unsigned long capacity_orig_of(int cpu)
4922{
4923 return cpu_rq(cpu)->cpu_capacity_orig;
4924}
4925
029632fb
PZ
4926static unsigned long cpu_avg_load_per_task(int cpu)
4927{
4928 struct rq *rq = cpu_rq(cpu);
316c1608 4929 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4930 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4931
4932 if (nr_running)
b92486cb 4933 return load_avg / nr_running;
029632fb
PZ
4934
4935 return 0;
4936}
4937
bb3469ac 4938#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4939/*
4940 * effective_load() calculates the load change as seen from the root_task_group
4941 *
4942 * Adding load to a group doesn't make a group heavier, but can cause movement
4943 * of group shares between cpus. Assuming the shares were perfectly aligned one
4944 * can calculate the shift in shares.
cf5f0acf
PZ
4945 *
4946 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4947 * on this @cpu and results in a total addition (subtraction) of @wg to the
4948 * total group weight.
4949 *
4950 * Given a runqueue weight distribution (rw_i) we can compute a shares
4951 * distribution (s_i) using:
4952 *
4953 * s_i = rw_i / \Sum rw_j (1)
4954 *
4955 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4956 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4957 * shares distribution (s_i):
4958 *
4959 * rw_i = { 2, 4, 1, 0 }
4960 * s_i = { 2/7, 4/7, 1/7, 0 }
4961 *
4962 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4963 * task used to run on and the CPU the waker is running on), we need to
4964 * compute the effect of waking a task on either CPU and, in case of a sync
4965 * wakeup, compute the effect of the current task going to sleep.
4966 *
4967 * So for a change of @wl to the local @cpu with an overall group weight change
4968 * of @wl we can compute the new shares distribution (s'_i) using:
4969 *
4970 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4971 *
4972 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4973 * differences in waking a task to CPU 0. The additional task changes the
4974 * weight and shares distributions like:
4975 *
4976 * rw'_i = { 3, 4, 1, 0 }
4977 * s'_i = { 3/8, 4/8, 1/8, 0 }
4978 *
4979 * We can then compute the difference in effective weight by using:
4980 *
4981 * dw_i = S * (s'_i - s_i) (3)
4982 *
4983 * Where 'S' is the group weight as seen by its parent.
4984 *
4985 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4986 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4987 * 4/7) times the weight of the group.
f5bfb7d9 4988 */
2069dd75 4989static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4990{
4be9daaa 4991 struct sched_entity *se = tg->se[cpu];
f1d239f7 4992
9722c2da 4993 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4994 return wl;
4995
4be9daaa 4996 for_each_sched_entity(se) {
7dd49125
PZ
4997 struct cfs_rq *cfs_rq = se->my_q;
4998 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4999
7dd49125 5000 tg = cfs_rq->tg;
bb3469ac 5001
cf5f0acf
PZ
5002 /*
5003 * W = @wg + \Sum rw_j
5004 */
7dd49125
PZ
5005 W = wg + atomic_long_read(&tg->load_avg);
5006
5007 /* Ensure \Sum rw_j >= rw_i */
5008 W -= cfs_rq->tg_load_avg_contrib;
5009 W += w;
4be9daaa 5010
cf5f0acf
PZ
5011 /*
5012 * w = rw_i + @wl
5013 */
7dd49125 5014 w += wl;
940959e9 5015
cf5f0acf
PZ
5016 /*
5017 * wl = S * s'_i; see (2)
5018 */
5019 if (W > 0 && w < W)
ab522e33 5020 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5021 else
ab522e33 5022 wl = scale_load_down(tg->shares);
940959e9 5023
cf5f0acf
PZ
5024 /*
5025 * Per the above, wl is the new se->load.weight value; since
5026 * those are clipped to [MIN_SHARES, ...) do so now. See
5027 * calc_cfs_shares().
5028 */
977dda7c
PT
5029 if (wl < MIN_SHARES)
5030 wl = MIN_SHARES;
cf5f0acf
PZ
5031
5032 /*
5033 * wl = dw_i = S * (s'_i - s_i); see (3)
5034 */
9d89c257 5035 wl -= se->avg.load_avg;
cf5f0acf
PZ
5036
5037 /*
5038 * Recursively apply this logic to all parent groups to compute
5039 * the final effective load change on the root group. Since
5040 * only the @tg group gets extra weight, all parent groups can
5041 * only redistribute existing shares. @wl is the shift in shares
5042 * resulting from this level per the above.
5043 */
4be9daaa 5044 wg = 0;
4be9daaa 5045 }
bb3469ac 5046
4be9daaa 5047 return wl;
bb3469ac
PZ
5048}
5049#else
4be9daaa 5050
58d081b5 5051static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5052{
83378269 5053 return wl;
bb3469ac 5054}
4be9daaa 5055
bb3469ac
PZ
5056#endif
5057
c58d25f3
PZ
5058static void record_wakee(struct task_struct *p)
5059{
5060 /*
5061 * Only decay a single time; tasks that have less then 1 wakeup per
5062 * jiffy will not have built up many flips.
5063 */
5064 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5065 current->wakee_flips >>= 1;
5066 current->wakee_flip_decay_ts = jiffies;
5067 }
5068
5069 if (current->last_wakee != p) {
5070 current->last_wakee = p;
5071 current->wakee_flips++;
5072 }
5073}
5074
63b0e9ed
MG
5075/*
5076 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5077 *
63b0e9ed 5078 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5079 * at a frequency roughly N times higher than one of its wakees.
5080 *
5081 * In order to determine whether we should let the load spread vs consolidating
5082 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5083 * partner, and a factor of lls_size higher frequency in the other.
5084 *
5085 * With both conditions met, we can be relatively sure that the relationship is
5086 * non-monogamous, with partner count exceeding socket size.
5087 *
5088 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5089 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5090 * socket size.
63b0e9ed 5091 */
62470419
MW
5092static int wake_wide(struct task_struct *p)
5093{
63b0e9ed
MG
5094 unsigned int master = current->wakee_flips;
5095 unsigned int slave = p->wakee_flips;
7d9ffa89 5096 int factor = this_cpu_read(sd_llc_size);
62470419 5097
63b0e9ed
MG
5098 if (master < slave)
5099 swap(master, slave);
5100 if (slave < factor || master < slave * factor)
5101 return 0;
5102 return 1;
62470419
MW
5103}
5104
772bd008
MR
5105static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5106 int prev_cpu, int sync)
098fb9db 5107{
e37b6a7b 5108 s64 this_load, load;
bd61c98f 5109 s64 this_eff_load, prev_eff_load;
772bd008 5110 int idx, this_cpu;
c88d5910 5111 struct task_group *tg;
83378269 5112 unsigned long weight;
b3137bc8 5113 int balanced;
098fb9db 5114
c88d5910
PZ
5115 idx = sd->wake_idx;
5116 this_cpu = smp_processor_id();
c88d5910
PZ
5117 load = source_load(prev_cpu, idx);
5118 this_load = target_load(this_cpu, idx);
098fb9db 5119
b3137bc8
MG
5120 /*
5121 * If sync wakeup then subtract the (maximum possible)
5122 * effect of the currently running task from the load
5123 * of the current CPU:
5124 */
83378269
PZ
5125 if (sync) {
5126 tg = task_group(current);
9d89c257 5127 weight = current->se.avg.load_avg;
83378269 5128
c88d5910 5129 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5130 load += effective_load(tg, prev_cpu, 0, -weight);
5131 }
b3137bc8 5132
83378269 5133 tg = task_group(p);
9d89c257 5134 weight = p->se.avg.load_avg;
b3137bc8 5135
71a29aa7
PZ
5136 /*
5137 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5138 * due to the sync cause above having dropped this_load to 0, we'll
5139 * always have an imbalance, but there's really nothing you can do
5140 * about that, so that's good too.
71a29aa7
PZ
5141 *
5142 * Otherwise check if either cpus are near enough in load to allow this
5143 * task to be woken on this_cpu.
5144 */
bd61c98f
VG
5145 this_eff_load = 100;
5146 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5147
bd61c98f
VG
5148 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5149 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5150
bd61c98f 5151 if (this_load > 0) {
e51fd5e2
PZ
5152 this_eff_load *= this_load +
5153 effective_load(tg, this_cpu, weight, weight);
5154
e51fd5e2 5155 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5156 }
e51fd5e2 5157
bd61c98f 5158 balanced = this_eff_load <= prev_eff_load;
098fb9db 5159
ae92882e 5160 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5161
05bfb65f
VG
5162 if (!balanced)
5163 return 0;
098fb9db 5164
ae92882e
JP
5165 schedstat_inc(sd->ttwu_move_affine);
5166 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5167
5168 return 1;
098fb9db
IM
5169}
5170
aaee1203
PZ
5171/*
5172 * find_idlest_group finds and returns the least busy CPU group within the
5173 * domain.
5174 */
5175static struct sched_group *
78e7ed53 5176find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5177 int this_cpu, int sd_flag)
e7693a36 5178{
b3bd3de6 5179 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5180 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5181 int load_idx = sd->forkexec_idx;
aaee1203 5182 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5183
c44f2a02
VG
5184 if (sd_flag & SD_BALANCE_WAKE)
5185 load_idx = sd->wake_idx;
5186
aaee1203
PZ
5187 do {
5188 unsigned long load, avg_load;
5189 int local_group;
5190 int i;
e7693a36 5191
aaee1203
PZ
5192 /* Skip over this group if it has no CPUs allowed */
5193 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5194 tsk_cpus_allowed(p)))
aaee1203
PZ
5195 continue;
5196
5197 local_group = cpumask_test_cpu(this_cpu,
5198 sched_group_cpus(group));
5199
5200 /* Tally up the load of all CPUs in the group */
5201 avg_load = 0;
5202
5203 for_each_cpu(i, sched_group_cpus(group)) {
5204 /* Bias balancing toward cpus of our domain */
5205 if (local_group)
5206 load = source_load(i, load_idx);
5207 else
5208 load = target_load(i, load_idx);
5209
5210 avg_load += load;
5211 }
5212
63b2ca30 5213 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5214 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5215
5216 if (local_group) {
5217 this_load = avg_load;
aaee1203
PZ
5218 } else if (avg_load < min_load) {
5219 min_load = avg_load;
5220 idlest = group;
5221 }
5222 } while (group = group->next, group != sd->groups);
5223
5224 if (!idlest || 100*this_load < imbalance*min_load)
5225 return NULL;
5226 return idlest;
5227}
5228
5229/*
5230 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5231 */
5232static int
5233find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5234{
5235 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5236 unsigned int min_exit_latency = UINT_MAX;
5237 u64 latest_idle_timestamp = 0;
5238 int least_loaded_cpu = this_cpu;
5239 int shallowest_idle_cpu = -1;
aaee1203
PZ
5240 int i;
5241
eaecf41f
MR
5242 /* Check if we have any choice: */
5243 if (group->group_weight == 1)
5244 return cpumask_first(sched_group_cpus(group));
5245
aaee1203 5246 /* Traverse only the allowed CPUs */
fa17b507 5247 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5248 if (idle_cpu(i)) {
5249 struct rq *rq = cpu_rq(i);
5250 struct cpuidle_state *idle = idle_get_state(rq);
5251 if (idle && idle->exit_latency < min_exit_latency) {
5252 /*
5253 * We give priority to a CPU whose idle state
5254 * has the smallest exit latency irrespective
5255 * of any idle timestamp.
5256 */
5257 min_exit_latency = idle->exit_latency;
5258 latest_idle_timestamp = rq->idle_stamp;
5259 shallowest_idle_cpu = i;
5260 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5261 rq->idle_stamp > latest_idle_timestamp) {
5262 /*
5263 * If equal or no active idle state, then
5264 * the most recently idled CPU might have
5265 * a warmer cache.
5266 */
5267 latest_idle_timestamp = rq->idle_stamp;
5268 shallowest_idle_cpu = i;
5269 }
9f96742a 5270 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5271 load = weighted_cpuload(i);
5272 if (load < min_load || (load == min_load && i == this_cpu)) {
5273 min_load = load;
5274 least_loaded_cpu = i;
5275 }
e7693a36
GH
5276 }
5277 }
5278
83a0a96a 5279 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5280}
e7693a36 5281
a50bde51
PZ
5282/*
5283 * Try and locate an idle CPU in the sched_domain.
5284 */
772bd008 5285static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5286{
99bd5e2f 5287 struct sched_domain *sd;
37407ea7 5288 struct sched_group *sg;
a50bde51 5289
e0a79f52
MG
5290 if (idle_cpu(target))
5291 return target;
99bd5e2f
SS
5292
5293 /*
e0a79f52 5294 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5295 */
772bd008
MR
5296 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5297 return prev;
a50bde51
PZ
5298
5299 /*
d4335581
MF
5300 * Otherwise, iterate the domains and find an eligible idle cpu.
5301 *
5302 * A completely idle sched group at higher domains is more
5303 * desirable than an idle group at a lower level, because lower
5304 * domains have smaller groups and usually share hardware
5305 * resources which causes tasks to contend on them, e.g. x86
5306 * hyperthread siblings in the lowest domain (SMT) can contend
5307 * on the shared cpu pipeline.
5308 *
5309 * However, while we prefer idle groups at higher domains
5310 * finding an idle cpu at the lowest domain is still better than
5311 * returning 'target', which we've already established, isn't
5312 * idle.
a50bde51 5313 */
518cd623 5314 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5315 for_each_lower_domain(sd) {
37407ea7
LT
5316 sg = sd->groups;
5317 do {
772bd008
MR
5318 int i;
5319
37407ea7
LT
5320 if (!cpumask_intersects(sched_group_cpus(sg),
5321 tsk_cpus_allowed(p)))
5322 goto next;
5323
d4335581 5324 /* Ensure the entire group is idle */
37407ea7 5325 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5326 if (i == target || !idle_cpu(i))
37407ea7
LT
5327 goto next;
5328 }
970e1789 5329
d4335581
MF
5330 /*
5331 * It doesn't matter which cpu we pick, the
5332 * whole group is idle.
5333 */
37407ea7
LT
5334 target = cpumask_first_and(sched_group_cpus(sg),
5335 tsk_cpus_allowed(p));
5336 goto done;
5337next:
5338 sg = sg->next;
5339 } while (sg != sd->groups);
5340 }
5341done:
a50bde51
PZ
5342 return target;
5343}
231678b7 5344
8bb5b00c 5345/*
9e91d61d 5346 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5347 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5348 * compare the utilization with the capacity of the CPU that is available for
5349 * CFS task (ie cpu_capacity).
231678b7
DE
5350 *
5351 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5352 * recent utilization of currently non-runnable tasks on a CPU. It represents
5353 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5354 * capacity_orig is the cpu_capacity available at the highest frequency
5355 * (arch_scale_freq_capacity()).
5356 * The utilization of a CPU converges towards a sum equal to or less than the
5357 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5358 * the running time on this CPU scaled by capacity_curr.
5359 *
5360 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5361 * higher than capacity_orig because of unfortunate rounding in
5362 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5363 * the average stabilizes with the new running time. We need to check that the
5364 * utilization stays within the range of [0..capacity_orig] and cap it if
5365 * necessary. Without utilization capping, a group could be seen as overloaded
5366 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5367 * available capacity. We allow utilization to overshoot capacity_curr (but not
5368 * capacity_orig) as it useful for predicting the capacity required after task
5369 * migrations (scheduler-driven DVFS).
8bb5b00c 5370 */
9e91d61d 5371static int cpu_util(int cpu)
8bb5b00c 5372{
9e91d61d 5373 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5374 unsigned long capacity = capacity_orig_of(cpu);
5375
231678b7 5376 return (util >= capacity) ? capacity : util;
8bb5b00c 5377}
a50bde51 5378
3273163c
MR
5379static inline int task_util(struct task_struct *p)
5380{
5381 return p->se.avg.util_avg;
5382}
5383
5384/*
5385 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5386 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5387 *
5388 * In that case WAKE_AFFINE doesn't make sense and we'll let
5389 * BALANCE_WAKE sort things out.
5390 */
5391static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5392{
5393 long min_cap, max_cap;
5394
5395 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5396 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5397
5398 /* Minimum capacity is close to max, no need to abort wake_affine */
5399 if (max_cap - min_cap < max_cap >> 3)
5400 return 0;
5401
5402 return min_cap * 1024 < task_util(p) * capacity_margin;
5403}
5404
aaee1203 5405/*
de91b9cb
MR
5406 * select_task_rq_fair: Select target runqueue for the waking task in domains
5407 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5408 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5409 *
de91b9cb
MR
5410 * Balances load by selecting the idlest cpu in the idlest group, or under
5411 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5412 *
de91b9cb 5413 * Returns the target cpu number.
aaee1203
PZ
5414 *
5415 * preempt must be disabled.
5416 */
0017d735 5417static int
ac66f547 5418select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5419{
29cd8bae 5420 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5421 int cpu = smp_processor_id();
63b0e9ed 5422 int new_cpu = prev_cpu;
99bd5e2f 5423 int want_affine = 0;
5158f4e4 5424 int sync = wake_flags & WF_SYNC;
c88d5910 5425
c58d25f3
PZ
5426 if (sd_flag & SD_BALANCE_WAKE) {
5427 record_wakee(p);
3273163c
MR
5428 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5429 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5430 }
aaee1203 5431
dce840a0 5432 rcu_read_lock();
aaee1203 5433 for_each_domain(cpu, tmp) {
e4f42888 5434 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5435 break;
e4f42888 5436
fe3bcfe1 5437 /*
99bd5e2f
SS
5438 * If both cpu and prev_cpu are part of this domain,
5439 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5440 */
99bd5e2f
SS
5441 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5442 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5443 affine_sd = tmp;
29cd8bae 5444 break;
f03542a7 5445 }
29cd8bae 5446
f03542a7 5447 if (tmp->flags & sd_flag)
29cd8bae 5448 sd = tmp;
63b0e9ed
MG
5449 else if (!want_affine)
5450 break;
29cd8bae
PZ
5451 }
5452
63b0e9ed
MG
5453 if (affine_sd) {
5454 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5455 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5456 new_cpu = cpu;
8b911acd 5457 }
e7693a36 5458
63b0e9ed
MG
5459 if (!sd) {
5460 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5461 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5462
5463 } else while (sd) {
aaee1203 5464 struct sched_group *group;
c88d5910 5465 int weight;
098fb9db 5466
0763a660 5467 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5468 sd = sd->child;
5469 continue;
5470 }
098fb9db 5471
c44f2a02 5472 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5473 if (!group) {
5474 sd = sd->child;
5475 continue;
5476 }
4ae7d5ce 5477
d7c33c49 5478 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5479 if (new_cpu == -1 || new_cpu == cpu) {
5480 /* Now try balancing at a lower domain level of cpu */
5481 sd = sd->child;
5482 continue;
e7693a36 5483 }
aaee1203
PZ
5484
5485 /* Now try balancing at a lower domain level of new_cpu */
5486 cpu = new_cpu;
669c55e9 5487 weight = sd->span_weight;
aaee1203
PZ
5488 sd = NULL;
5489 for_each_domain(cpu, tmp) {
669c55e9 5490 if (weight <= tmp->span_weight)
aaee1203 5491 break;
0763a660 5492 if (tmp->flags & sd_flag)
aaee1203
PZ
5493 sd = tmp;
5494 }
5495 /* while loop will break here if sd == NULL */
e7693a36 5496 }
dce840a0 5497 rcu_read_unlock();
e7693a36 5498
c88d5910 5499 return new_cpu;
e7693a36 5500}
0a74bef8
PT
5501
5502/*
5503 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5504 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5505 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5506 */
5a4fd036 5507static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5508{
59efa0ba
PZ
5509 /*
5510 * As blocked tasks retain absolute vruntime the migration needs to
5511 * deal with this by subtracting the old and adding the new
5512 * min_vruntime -- the latter is done by enqueue_entity() when placing
5513 * the task on the new runqueue.
5514 */
5515 if (p->state == TASK_WAKING) {
5516 struct sched_entity *se = &p->se;
5517 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5518 u64 min_vruntime;
5519
5520#ifndef CONFIG_64BIT
5521 u64 min_vruntime_copy;
5522
5523 do {
5524 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5525 smp_rmb();
5526 min_vruntime = cfs_rq->min_vruntime;
5527 } while (min_vruntime != min_vruntime_copy);
5528#else
5529 min_vruntime = cfs_rq->min_vruntime;
5530#endif
5531
5532 se->vruntime -= min_vruntime;
5533 }
5534
aff3e498 5535 /*
9d89c257
YD
5536 * We are supposed to update the task to "current" time, then its up to date
5537 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5538 * what current time is, so simply throw away the out-of-date time. This
5539 * will result in the wakee task is less decayed, but giving the wakee more
5540 * load sounds not bad.
aff3e498 5541 */
9d89c257
YD
5542 remove_entity_load_avg(&p->se);
5543
5544 /* Tell new CPU we are migrated */
5545 p->se.avg.last_update_time = 0;
3944a927
BS
5546
5547 /* We have migrated, no longer consider this task hot */
9d89c257 5548 p->se.exec_start = 0;
0a74bef8 5549}
12695578
YD
5550
5551static void task_dead_fair(struct task_struct *p)
5552{
5553 remove_entity_load_avg(&p->se);
5554}
e7693a36
GH
5555#endif /* CONFIG_SMP */
5556
e52fb7c0
PZ
5557static unsigned long
5558wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5559{
5560 unsigned long gran = sysctl_sched_wakeup_granularity;
5561
5562 /*
e52fb7c0
PZ
5563 * Since its curr running now, convert the gran from real-time
5564 * to virtual-time in his units.
13814d42
MG
5565 *
5566 * By using 'se' instead of 'curr' we penalize light tasks, so
5567 * they get preempted easier. That is, if 'se' < 'curr' then
5568 * the resulting gran will be larger, therefore penalizing the
5569 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5570 * be smaller, again penalizing the lighter task.
5571 *
5572 * This is especially important for buddies when the leftmost
5573 * task is higher priority than the buddy.
0bbd3336 5574 */
f4ad9bd2 5575 return calc_delta_fair(gran, se);
0bbd3336
PZ
5576}
5577
464b7527
PZ
5578/*
5579 * Should 'se' preempt 'curr'.
5580 *
5581 * |s1
5582 * |s2
5583 * |s3
5584 * g
5585 * |<--->|c
5586 *
5587 * w(c, s1) = -1
5588 * w(c, s2) = 0
5589 * w(c, s3) = 1
5590 *
5591 */
5592static int
5593wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5594{
5595 s64 gran, vdiff = curr->vruntime - se->vruntime;
5596
5597 if (vdiff <= 0)
5598 return -1;
5599
e52fb7c0 5600 gran = wakeup_gran(curr, se);
464b7527
PZ
5601 if (vdiff > gran)
5602 return 1;
5603
5604 return 0;
5605}
5606
02479099
PZ
5607static void set_last_buddy(struct sched_entity *se)
5608{
69c80f3e
VP
5609 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5610 return;
5611
5612 for_each_sched_entity(se)
5613 cfs_rq_of(se)->last = se;
02479099
PZ
5614}
5615
5616static void set_next_buddy(struct sched_entity *se)
5617{
69c80f3e
VP
5618 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5619 return;
5620
5621 for_each_sched_entity(se)
5622 cfs_rq_of(se)->next = se;
02479099
PZ
5623}
5624
ac53db59
RR
5625static void set_skip_buddy(struct sched_entity *se)
5626{
69c80f3e
VP
5627 for_each_sched_entity(se)
5628 cfs_rq_of(se)->skip = se;
ac53db59
RR
5629}
5630
bf0f6f24
IM
5631/*
5632 * Preempt the current task with a newly woken task if needed:
5633 */
5a9b86f6 5634static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5635{
5636 struct task_struct *curr = rq->curr;
8651a86c 5637 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5638 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5639 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5640 int next_buddy_marked = 0;
bf0f6f24 5641
4ae7d5ce
IM
5642 if (unlikely(se == pse))
5643 return;
5644
5238cdd3 5645 /*
163122b7 5646 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5647 * unconditionally check_prempt_curr() after an enqueue (which may have
5648 * lead to a throttle). This both saves work and prevents false
5649 * next-buddy nomination below.
5650 */
5651 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5652 return;
5653
2f36825b 5654 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5655 set_next_buddy(pse);
2f36825b
VP
5656 next_buddy_marked = 1;
5657 }
57fdc26d 5658
aec0a514
BR
5659 /*
5660 * We can come here with TIF_NEED_RESCHED already set from new task
5661 * wake up path.
5238cdd3
PT
5662 *
5663 * Note: this also catches the edge-case of curr being in a throttled
5664 * group (e.g. via set_curr_task), since update_curr() (in the
5665 * enqueue of curr) will have resulted in resched being set. This
5666 * prevents us from potentially nominating it as a false LAST_BUDDY
5667 * below.
aec0a514
BR
5668 */
5669 if (test_tsk_need_resched(curr))
5670 return;
5671
a2f5c9ab
DH
5672 /* Idle tasks are by definition preempted by non-idle tasks. */
5673 if (unlikely(curr->policy == SCHED_IDLE) &&
5674 likely(p->policy != SCHED_IDLE))
5675 goto preempt;
5676
91c234b4 5677 /*
a2f5c9ab
DH
5678 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5679 * is driven by the tick):
91c234b4 5680 */
8ed92e51 5681 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5682 return;
bf0f6f24 5683
464b7527 5684 find_matching_se(&se, &pse);
9bbd7374 5685 update_curr(cfs_rq_of(se));
002f128b 5686 BUG_ON(!pse);
2f36825b
VP
5687 if (wakeup_preempt_entity(se, pse) == 1) {
5688 /*
5689 * Bias pick_next to pick the sched entity that is
5690 * triggering this preemption.
5691 */
5692 if (!next_buddy_marked)
5693 set_next_buddy(pse);
3a7e73a2 5694 goto preempt;
2f36825b 5695 }
464b7527 5696
3a7e73a2 5697 return;
a65ac745 5698
3a7e73a2 5699preempt:
8875125e 5700 resched_curr(rq);
3a7e73a2
PZ
5701 /*
5702 * Only set the backward buddy when the current task is still
5703 * on the rq. This can happen when a wakeup gets interleaved
5704 * with schedule on the ->pre_schedule() or idle_balance()
5705 * point, either of which can * drop the rq lock.
5706 *
5707 * Also, during early boot the idle thread is in the fair class,
5708 * for obvious reasons its a bad idea to schedule back to it.
5709 */
5710 if (unlikely(!se->on_rq || curr == rq->idle))
5711 return;
5712
5713 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5714 set_last_buddy(se);
bf0f6f24
IM
5715}
5716
606dba2e 5717static struct task_struct *
e7904a28 5718pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5719{
5720 struct cfs_rq *cfs_rq = &rq->cfs;
5721 struct sched_entity *se;
678d5718 5722 struct task_struct *p;
37e117c0 5723 int new_tasks;
678d5718 5724
6e83125c 5725again:
678d5718
PZ
5726#ifdef CONFIG_FAIR_GROUP_SCHED
5727 if (!cfs_rq->nr_running)
38033c37 5728 goto idle;
678d5718 5729
3f1d2a31 5730 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5731 goto simple;
5732
5733 /*
5734 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5735 * likely that a next task is from the same cgroup as the current.
5736 *
5737 * Therefore attempt to avoid putting and setting the entire cgroup
5738 * hierarchy, only change the part that actually changes.
5739 */
5740
5741 do {
5742 struct sched_entity *curr = cfs_rq->curr;
5743
5744 /*
5745 * Since we got here without doing put_prev_entity() we also
5746 * have to consider cfs_rq->curr. If it is still a runnable
5747 * entity, update_curr() will update its vruntime, otherwise
5748 * forget we've ever seen it.
5749 */
54d27365
BS
5750 if (curr) {
5751 if (curr->on_rq)
5752 update_curr(cfs_rq);
5753 else
5754 curr = NULL;
678d5718 5755
54d27365
BS
5756 /*
5757 * This call to check_cfs_rq_runtime() will do the
5758 * throttle and dequeue its entity in the parent(s).
5759 * Therefore the 'simple' nr_running test will indeed
5760 * be correct.
5761 */
5762 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5763 goto simple;
5764 }
678d5718
PZ
5765
5766 se = pick_next_entity(cfs_rq, curr);
5767 cfs_rq = group_cfs_rq(se);
5768 } while (cfs_rq);
5769
5770 p = task_of(se);
5771
5772 /*
5773 * Since we haven't yet done put_prev_entity and if the selected task
5774 * is a different task than we started out with, try and touch the
5775 * least amount of cfs_rqs.
5776 */
5777 if (prev != p) {
5778 struct sched_entity *pse = &prev->se;
5779
5780 while (!(cfs_rq = is_same_group(se, pse))) {
5781 int se_depth = se->depth;
5782 int pse_depth = pse->depth;
5783
5784 if (se_depth <= pse_depth) {
5785 put_prev_entity(cfs_rq_of(pse), pse);
5786 pse = parent_entity(pse);
5787 }
5788 if (se_depth >= pse_depth) {
5789 set_next_entity(cfs_rq_of(se), se);
5790 se = parent_entity(se);
5791 }
5792 }
5793
5794 put_prev_entity(cfs_rq, pse);
5795 set_next_entity(cfs_rq, se);
5796 }
5797
5798 if (hrtick_enabled(rq))
5799 hrtick_start_fair(rq, p);
5800
5801 return p;
5802simple:
5803 cfs_rq = &rq->cfs;
5804#endif
bf0f6f24 5805
36ace27e 5806 if (!cfs_rq->nr_running)
38033c37 5807 goto idle;
bf0f6f24 5808
3f1d2a31 5809 put_prev_task(rq, prev);
606dba2e 5810
bf0f6f24 5811 do {
678d5718 5812 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5813 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5814 cfs_rq = group_cfs_rq(se);
5815 } while (cfs_rq);
5816
8f4d37ec 5817 p = task_of(se);
678d5718 5818
b39e66ea
MG
5819 if (hrtick_enabled(rq))
5820 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5821
5822 return p;
38033c37
PZ
5823
5824idle:
cbce1a68
PZ
5825 /*
5826 * This is OK, because current is on_cpu, which avoids it being picked
5827 * for load-balance and preemption/IRQs are still disabled avoiding
5828 * further scheduler activity on it and we're being very careful to
5829 * re-start the picking loop.
5830 */
e7904a28 5831 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5832 new_tasks = idle_balance(rq);
e7904a28 5833 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5834 /*
5835 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5836 * possible for any higher priority task to appear. In that case we
5837 * must re-start the pick_next_entity() loop.
5838 */
e4aa358b 5839 if (new_tasks < 0)
37e117c0
PZ
5840 return RETRY_TASK;
5841
e4aa358b 5842 if (new_tasks > 0)
38033c37 5843 goto again;
38033c37
PZ
5844
5845 return NULL;
bf0f6f24
IM
5846}
5847
5848/*
5849 * Account for a descheduled task:
5850 */
31ee529c 5851static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5852{
5853 struct sched_entity *se = &prev->se;
5854 struct cfs_rq *cfs_rq;
5855
5856 for_each_sched_entity(se) {
5857 cfs_rq = cfs_rq_of(se);
ab6cde26 5858 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5859 }
5860}
5861
ac53db59
RR
5862/*
5863 * sched_yield() is very simple
5864 *
5865 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5866 */
5867static void yield_task_fair(struct rq *rq)
5868{
5869 struct task_struct *curr = rq->curr;
5870 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5871 struct sched_entity *se = &curr->se;
5872
5873 /*
5874 * Are we the only task in the tree?
5875 */
5876 if (unlikely(rq->nr_running == 1))
5877 return;
5878
5879 clear_buddies(cfs_rq, se);
5880
5881 if (curr->policy != SCHED_BATCH) {
5882 update_rq_clock(rq);
5883 /*
5884 * Update run-time statistics of the 'current'.
5885 */
5886 update_curr(cfs_rq);
916671c0
MG
5887 /*
5888 * Tell update_rq_clock() that we've just updated,
5889 * so we don't do microscopic update in schedule()
5890 * and double the fastpath cost.
5891 */
9edfbfed 5892 rq_clock_skip_update(rq, true);
ac53db59
RR
5893 }
5894
5895 set_skip_buddy(se);
5896}
5897
d95f4122
MG
5898static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5899{
5900 struct sched_entity *se = &p->se;
5901
5238cdd3
PT
5902 /* throttled hierarchies are not runnable */
5903 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5904 return false;
5905
5906 /* Tell the scheduler that we'd really like pse to run next. */
5907 set_next_buddy(se);
5908
d95f4122
MG
5909 yield_task_fair(rq);
5910
5911 return true;
5912}
5913
681f3e68 5914#ifdef CONFIG_SMP
bf0f6f24 5915/**************************************************
e9c84cb8
PZ
5916 * Fair scheduling class load-balancing methods.
5917 *
5918 * BASICS
5919 *
5920 * The purpose of load-balancing is to achieve the same basic fairness the
5921 * per-cpu scheduler provides, namely provide a proportional amount of compute
5922 * time to each task. This is expressed in the following equation:
5923 *
5924 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5925 *
5926 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5927 * W_i,0 is defined as:
5928 *
5929 * W_i,0 = \Sum_j w_i,j (2)
5930 *
5931 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5932 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5933 *
5934 * The weight average is an exponential decay average of the instantaneous
5935 * weight:
5936 *
5937 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5938 *
ced549fa 5939 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5940 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5941 * can also include other factors [XXX].
5942 *
5943 * To achieve this balance we define a measure of imbalance which follows
5944 * directly from (1):
5945 *
ced549fa 5946 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5947 *
5948 * We them move tasks around to minimize the imbalance. In the continuous
5949 * function space it is obvious this converges, in the discrete case we get
5950 * a few fun cases generally called infeasible weight scenarios.
5951 *
5952 * [XXX expand on:
5953 * - infeasible weights;
5954 * - local vs global optima in the discrete case. ]
5955 *
5956 *
5957 * SCHED DOMAINS
5958 *
5959 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5960 * for all i,j solution, we create a tree of cpus that follows the hardware
5961 * topology where each level pairs two lower groups (or better). This results
5962 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5963 * tree to only the first of the previous level and we decrease the frequency
5964 * of load-balance at each level inv. proportional to the number of cpus in
5965 * the groups.
5966 *
5967 * This yields:
5968 *
5969 * log_2 n 1 n
5970 * \Sum { --- * --- * 2^i } = O(n) (5)
5971 * i = 0 2^i 2^i
5972 * `- size of each group
5973 * | | `- number of cpus doing load-balance
5974 * | `- freq
5975 * `- sum over all levels
5976 *
5977 * Coupled with a limit on how many tasks we can migrate every balance pass,
5978 * this makes (5) the runtime complexity of the balancer.
5979 *
5980 * An important property here is that each CPU is still (indirectly) connected
5981 * to every other cpu in at most O(log n) steps:
5982 *
5983 * The adjacency matrix of the resulting graph is given by:
5984 *
97a7142f 5985 * log_2 n
e9c84cb8
PZ
5986 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5987 * k = 0
5988 *
5989 * And you'll find that:
5990 *
5991 * A^(log_2 n)_i,j != 0 for all i,j (7)
5992 *
5993 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5994 * The task movement gives a factor of O(m), giving a convergence complexity
5995 * of:
5996 *
5997 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5998 *
5999 *
6000 * WORK CONSERVING
6001 *
6002 * In order to avoid CPUs going idle while there's still work to do, new idle
6003 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6004 * tree itself instead of relying on other CPUs to bring it work.
6005 *
6006 * This adds some complexity to both (5) and (8) but it reduces the total idle
6007 * time.
6008 *
6009 * [XXX more?]
6010 *
6011 *
6012 * CGROUPS
6013 *
6014 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6015 *
6016 * s_k,i
6017 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6018 * S_k
6019 *
6020 * Where
6021 *
6022 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6023 *
6024 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6025 *
6026 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6027 * property.
6028 *
6029 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6030 * rewrite all of this once again.]
97a7142f 6031 */
bf0f6f24 6032
ed387b78
HS
6033static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6034
0ec8aa00
PZ
6035enum fbq_type { regular, remote, all };
6036
ddcdf6e7 6037#define LBF_ALL_PINNED 0x01
367456c7 6038#define LBF_NEED_BREAK 0x02
6263322c
PZ
6039#define LBF_DST_PINNED 0x04
6040#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6041
6042struct lb_env {
6043 struct sched_domain *sd;
6044
ddcdf6e7 6045 struct rq *src_rq;
85c1e7da 6046 int src_cpu;
ddcdf6e7
PZ
6047
6048 int dst_cpu;
6049 struct rq *dst_rq;
6050
88b8dac0
SV
6051 struct cpumask *dst_grpmask;
6052 int new_dst_cpu;
ddcdf6e7 6053 enum cpu_idle_type idle;
bd939f45 6054 long imbalance;
b9403130
MW
6055 /* The set of CPUs under consideration for load-balancing */
6056 struct cpumask *cpus;
6057
ddcdf6e7 6058 unsigned int flags;
367456c7
PZ
6059
6060 unsigned int loop;
6061 unsigned int loop_break;
6062 unsigned int loop_max;
0ec8aa00
PZ
6063
6064 enum fbq_type fbq_type;
163122b7 6065 struct list_head tasks;
ddcdf6e7
PZ
6066};
6067
029632fb
PZ
6068/*
6069 * Is this task likely cache-hot:
6070 */
5d5e2b1b 6071static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6072{
6073 s64 delta;
6074
e5673f28
KT
6075 lockdep_assert_held(&env->src_rq->lock);
6076
029632fb
PZ
6077 if (p->sched_class != &fair_sched_class)
6078 return 0;
6079
6080 if (unlikely(p->policy == SCHED_IDLE))
6081 return 0;
6082
6083 /*
6084 * Buddy candidates are cache hot:
6085 */
5d5e2b1b 6086 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6087 (&p->se == cfs_rq_of(&p->se)->next ||
6088 &p->se == cfs_rq_of(&p->se)->last))
6089 return 1;
6090
6091 if (sysctl_sched_migration_cost == -1)
6092 return 1;
6093 if (sysctl_sched_migration_cost == 0)
6094 return 0;
6095
5d5e2b1b 6096 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6097
6098 return delta < (s64)sysctl_sched_migration_cost;
6099}
6100
3a7053b3 6101#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6102/*
2a1ed24c
SD
6103 * Returns 1, if task migration degrades locality
6104 * Returns 0, if task migration improves locality i.e migration preferred.
6105 * Returns -1, if task migration is not affected by locality.
c1ceac62 6106 */
2a1ed24c 6107static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6108{
b1ad065e 6109 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6110 unsigned long src_faults, dst_faults;
3a7053b3
MG
6111 int src_nid, dst_nid;
6112
2a595721 6113 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6114 return -1;
6115
c3b9bc5b 6116 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6117 return -1;
7a0f3083
MG
6118
6119 src_nid = cpu_to_node(env->src_cpu);
6120 dst_nid = cpu_to_node(env->dst_cpu);
6121
83e1d2cd 6122 if (src_nid == dst_nid)
2a1ed24c 6123 return -1;
7a0f3083 6124
2a1ed24c
SD
6125 /* Migrating away from the preferred node is always bad. */
6126 if (src_nid == p->numa_preferred_nid) {
6127 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6128 return 1;
6129 else
6130 return -1;
6131 }
b1ad065e 6132
c1ceac62
RR
6133 /* Encourage migration to the preferred node. */
6134 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6135 return 0;
b1ad065e 6136
c1ceac62
RR
6137 if (numa_group) {
6138 src_faults = group_faults(p, src_nid);
6139 dst_faults = group_faults(p, dst_nid);
6140 } else {
6141 src_faults = task_faults(p, src_nid);
6142 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6143 }
6144
c1ceac62 6145 return dst_faults < src_faults;
7a0f3083
MG
6146}
6147
3a7053b3 6148#else
2a1ed24c 6149static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6150 struct lb_env *env)
6151{
2a1ed24c 6152 return -1;
7a0f3083 6153}
3a7053b3
MG
6154#endif
6155
1e3c88bd
PZ
6156/*
6157 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6158 */
6159static
8e45cb54 6160int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6161{
2a1ed24c 6162 int tsk_cache_hot;
e5673f28
KT
6163
6164 lockdep_assert_held(&env->src_rq->lock);
6165
1e3c88bd
PZ
6166 /*
6167 * We do not migrate tasks that are:
d3198084 6168 * 1) throttled_lb_pair, or
1e3c88bd 6169 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6170 * 3) running (obviously), or
6171 * 4) are cache-hot on their current CPU.
1e3c88bd 6172 */
d3198084
JK
6173 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6174 return 0;
6175
ddcdf6e7 6176 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6177 int cpu;
88b8dac0 6178
ae92882e 6179 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6180
6263322c
PZ
6181 env->flags |= LBF_SOME_PINNED;
6182
88b8dac0
SV
6183 /*
6184 * Remember if this task can be migrated to any other cpu in
6185 * our sched_group. We may want to revisit it if we couldn't
6186 * meet load balance goals by pulling other tasks on src_cpu.
6187 *
6188 * Also avoid computing new_dst_cpu if we have already computed
6189 * one in current iteration.
6190 */
6263322c 6191 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6192 return 0;
6193
e02e60c1
JK
6194 /* Prevent to re-select dst_cpu via env's cpus */
6195 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6196 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6197 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6198 env->new_dst_cpu = cpu;
6199 break;
6200 }
88b8dac0 6201 }
e02e60c1 6202
1e3c88bd
PZ
6203 return 0;
6204 }
88b8dac0
SV
6205
6206 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6207 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6208
ddcdf6e7 6209 if (task_running(env->src_rq, p)) {
ae92882e 6210 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6211 return 0;
6212 }
6213
6214 /*
6215 * Aggressive migration if:
3a7053b3
MG
6216 * 1) destination numa is preferred
6217 * 2) task is cache cold, or
6218 * 3) too many balance attempts have failed.
1e3c88bd 6219 */
2a1ed24c
SD
6220 tsk_cache_hot = migrate_degrades_locality(p, env);
6221 if (tsk_cache_hot == -1)
6222 tsk_cache_hot = task_hot(p, env);
3a7053b3 6223
2a1ed24c 6224 if (tsk_cache_hot <= 0 ||
7a96c231 6225 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6226 if (tsk_cache_hot == 1) {
ae92882e
JP
6227 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6228 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6229 }
1e3c88bd
PZ
6230 return 1;
6231 }
6232
ae92882e 6233 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6234 return 0;
1e3c88bd
PZ
6235}
6236
897c395f 6237/*
163122b7
KT
6238 * detach_task() -- detach the task for the migration specified in env
6239 */
6240static void detach_task(struct task_struct *p, struct lb_env *env)
6241{
6242 lockdep_assert_held(&env->src_rq->lock);
6243
163122b7 6244 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6245 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6246 set_task_cpu(p, env->dst_cpu);
6247}
6248
897c395f 6249/*
e5673f28 6250 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6251 * part of active balancing operations within "domain".
897c395f 6252 *
e5673f28 6253 * Returns a task if successful and NULL otherwise.
897c395f 6254 */
e5673f28 6255static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6256{
6257 struct task_struct *p, *n;
897c395f 6258
e5673f28
KT
6259 lockdep_assert_held(&env->src_rq->lock);
6260
367456c7 6261 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6262 if (!can_migrate_task(p, env))
6263 continue;
897c395f 6264
163122b7 6265 detach_task(p, env);
e5673f28 6266
367456c7 6267 /*
e5673f28 6268 * Right now, this is only the second place where
163122b7 6269 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6270 * so we can safely collect stats here rather than
163122b7 6271 * inside detach_tasks().
367456c7 6272 */
ae92882e 6273 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6274 return p;
897c395f 6275 }
e5673f28 6276 return NULL;
897c395f
PZ
6277}
6278
eb95308e
PZ
6279static const unsigned int sched_nr_migrate_break = 32;
6280
5d6523eb 6281/*
163122b7
KT
6282 * detach_tasks() -- tries to detach up to imbalance weighted load from
6283 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6284 *
163122b7 6285 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6286 */
163122b7 6287static int detach_tasks(struct lb_env *env)
1e3c88bd 6288{
5d6523eb
PZ
6289 struct list_head *tasks = &env->src_rq->cfs_tasks;
6290 struct task_struct *p;
367456c7 6291 unsigned long load;
163122b7
KT
6292 int detached = 0;
6293
6294 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6295
bd939f45 6296 if (env->imbalance <= 0)
5d6523eb 6297 return 0;
1e3c88bd 6298
5d6523eb 6299 while (!list_empty(tasks)) {
985d3a4c
YD
6300 /*
6301 * We don't want to steal all, otherwise we may be treated likewise,
6302 * which could at worst lead to a livelock crash.
6303 */
6304 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6305 break;
6306
5d6523eb 6307 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6308
367456c7
PZ
6309 env->loop++;
6310 /* We've more or less seen every task there is, call it quits */
5d6523eb 6311 if (env->loop > env->loop_max)
367456c7 6312 break;
5d6523eb
PZ
6313
6314 /* take a breather every nr_migrate tasks */
367456c7 6315 if (env->loop > env->loop_break) {
eb95308e 6316 env->loop_break += sched_nr_migrate_break;
8e45cb54 6317 env->flags |= LBF_NEED_BREAK;
ee00e66f 6318 break;
a195f004 6319 }
1e3c88bd 6320
d3198084 6321 if (!can_migrate_task(p, env))
367456c7
PZ
6322 goto next;
6323
6324 load = task_h_load(p);
5d6523eb 6325
eb95308e 6326 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6327 goto next;
6328
bd939f45 6329 if ((load / 2) > env->imbalance)
367456c7 6330 goto next;
1e3c88bd 6331
163122b7
KT
6332 detach_task(p, env);
6333 list_add(&p->se.group_node, &env->tasks);
6334
6335 detached++;
bd939f45 6336 env->imbalance -= load;
1e3c88bd
PZ
6337
6338#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6339 /*
6340 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6341 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6342 * the critical section.
6343 */
5d6523eb 6344 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6345 break;
1e3c88bd
PZ
6346#endif
6347
ee00e66f
PZ
6348 /*
6349 * We only want to steal up to the prescribed amount of
6350 * weighted load.
6351 */
bd939f45 6352 if (env->imbalance <= 0)
ee00e66f 6353 break;
367456c7
PZ
6354
6355 continue;
6356next:
5d6523eb 6357 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6358 }
5d6523eb 6359
1e3c88bd 6360 /*
163122b7
KT
6361 * Right now, this is one of only two places we collect this stat
6362 * so we can safely collect detach_one_task() stats here rather
6363 * than inside detach_one_task().
1e3c88bd 6364 */
ae92882e 6365 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6366
163122b7
KT
6367 return detached;
6368}
6369
6370/*
6371 * attach_task() -- attach the task detached by detach_task() to its new rq.
6372 */
6373static void attach_task(struct rq *rq, struct task_struct *p)
6374{
6375 lockdep_assert_held(&rq->lock);
6376
6377 BUG_ON(task_rq(p) != rq);
163122b7 6378 activate_task(rq, p, 0);
3ea94de1 6379 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6380 check_preempt_curr(rq, p, 0);
6381}
6382
6383/*
6384 * attach_one_task() -- attaches the task returned from detach_one_task() to
6385 * its new rq.
6386 */
6387static void attach_one_task(struct rq *rq, struct task_struct *p)
6388{
6389 raw_spin_lock(&rq->lock);
6390 attach_task(rq, p);
6391 raw_spin_unlock(&rq->lock);
6392}
6393
6394/*
6395 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6396 * new rq.
6397 */
6398static void attach_tasks(struct lb_env *env)
6399{
6400 struct list_head *tasks = &env->tasks;
6401 struct task_struct *p;
6402
6403 raw_spin_lock(&env->dst_rq->lock);
6404
6405 while (!list_empty(tasks)) {
6406 p = list_first_entry(tasks, struct task_struct, se.group_node);
6407 list_del_init(&p->se.group_node);
1e3c88bd 6408
163122b7
KT
6409 attach_task(env->dst_rq, p);
6410 }
6411
6412 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6413}
6414
230059de 6415#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6416static void update_blocked_averages(int cpu)
9e3081ca 6417{
9e3081ca 6418 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6419 struct cfs_rq *cfs_rq;
6420 unsigned long flags;
9e3081ca 6421
48a16753
PT
6422 raw_spin_lock_irqsave(&rq->lock, flags);
6423 update_rq_clock(rq);
9d89c257 6424
9763b67f
PZ
6425 /*
6426 * Iterates the task_group tree in a bottom up fashion, see
6427 * list_add_leaf_cfs_rq() for details.
6428 */
64660c86 6429 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6430 /* throttled entities do not contribute to load */
6431 if (throttled_hierarchy(cfs_rq))
6432 continue;
48a16753 6433
a2c6c91f 6434 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6435 update_tg_load_avg(cfs_rq, 0);
6436 }
48a16753 6437 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6438}
6439
9763b67f 6440/*
68520796 6441 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6442 * This needs to be done in a top-down fashion because the load of a child
6443 * group is a fraction of its parents load.
6444 */
68520796 6445static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6446{
68520796
VD
6447 struct rq *rq = rq_of(cfs_rq);
6448 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6449 unsigned long now = jiffies;
68520796 6450 unsigned long load;
a35b6466 6451
68520796 6452 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6453 return;
6454
68520796
VD
6455 cfs_rq->h_load_next = NULL;
6456 for_each_sched_entity(se) {
6457 cfs_rq = cfs_rq_of(se);
6458 cfs_rq->h_load_next = se;
6459 if (cfs_rq->last_h_load_update == now)
6460 break;
6461 }
a35b6466 6462
68520796 6463 if (!se) {
7ea241af 6464 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6465 cfs_rq->last_h_load_update = now;
6466 }
6467
6468 while ((se = cfs_rq->h_load_next) != NULL) {
6469 load = cfs_rq->h_load;
7ea241af
YD
6470 load = div64_ul(load * se->avg.load_avg,
6471 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6472 cfs_rq = group_cfs_rq(se);
6473 cfs_rq->h_load = load;
6474 cfs_rq->last_h_load_update = now;
6475 }
9763b67f
PZ
6476}
6477
367456c7 6478static unsigned long task_h_load(struct task_struct *p)
230059de 6479{
367456c7 6480 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6481
68520796 6482 update_cfs_rq_h_load(cfs_rq);
9d89c257 6483 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6484 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6485}
6486#else
48a16753 6487static inline void update_blocked_averages(int cpu)
9e3081ca 6488{
6c1d47c0
VG
6489 struct rq *rq = cpu_rq(cpu);
6490 struct cfs_rq *cfs_rq = &rq->cfs;
6491 unsigned long flags;
6492
6493 raw_spin_lock_irqsave(&rq->lock, flags);
6494 update_rq_clock(rq);
a2c6c91f 6495 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6496 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6497}
6498
367456c7 6499static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6500{
9d89c257 6501 return p->se.avg.load_avg;
1e3c88bd 6502}
230059de 6503#endif
1e3c88bd 6504
1e3c88bd 6505/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6506
6507enum group_type {
6508 group_other = 0,
6509 group_imbalanced,
6510 group_overloaded,
6511};
6512
1e3c88bd
PZ
6513/*
6514 * sg_lb_stats - stats of a sched_group required for load_balancing
6515 */
6516struct sg_lb_stats {
6517 unsigned long avg_load; /*Avg load across the CPUs of the group */
6518 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6519 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6520 unsigned long load_per_task;
63b2ca30 6521 unsigned long group_capacity;
9e91d61d 6522 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6523 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6524 unsigned int idle_cpus;
6525 unsigned int group_weight;
caeb178c 6526 enum group_type group_type;
ea67821b 6527 int group_no_capacity;
0ec8aa00
PZ
6528#ifdef CONFIG_NUMA_BALANCING
6529 unsigned int nr_numa_running;
6530 unsigned int nr_preferred_running;
6531#endif
1e3c88bd
PZ
6532};
6533
56cf515b
JK
6534/*
6535 * sd_lb_stats - Structure to store the statistics of a sched_domain
6536 * during load balancing.
6537 */
6538struct sd_lb_stats {
6539 struct sched_group *busiest; /* Busiest group in this sd */
6540 struct sched_group *local; /* Local group in this sd */
6541 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6542 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6543 unsigned long avg_load; /* Average load across all groups in sd */
6544
56cf515b 6545 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6546 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6547};
6548
147c5fc2
PZ
6549static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6550{
6551 /*
6552 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6553 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6554 * We must however clear busiest_stat::avg_load because
6555 * update_sd_pick_busiest() reads this before assignment.
6556 */
6557 *sds = (struct sd_lb_stats){
6558 .busiest = NULL,
6559 .local = NULL,
6560 .total_load = 0UL,
63b2ca30 6561 .total_capacity = 0UL,
147c5fc2
PZ
6562 .busiest_stat = {
6563 .avg_load = 0UL,
caeb178c
RR
6564 .sum_nr_running = 0,
6565 .group_type = group_other,
147c5fc2
PZ
6566 },
6567 };
6568}
6569
1e3c88bd
PZ
6570/**
6571 * get_sd_load_idx - Obtain the load index for a given sched domain.
6572 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6573 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6574 *
6575 * Return: The load index.
1e3c88bd
PZ
6576 */
6577static inline int get_sd_load_idx(struct sched_domain *sd,
6578 enum cpu_idle_type idle)
6579{
6580 int load_idx;
6581
6582 switch (idle) {
6583 case CPU_NOT_IDLE:
6584 load_idx = sd->busy_idx;
6585 break;
6586
6587 case CPU_NEWLY_IDLE:
6588 load_idx = sd->newidle_idx;
6589 break;
6590 default:
6591 load_idx = sd->idle_idx;
6592 break;
6593 }
6594
6595 return load_idx;
6596}
6597
ced549fa 6598static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6599{
6600 struct rq *rq = cpu_rq(cpu);
b5b4860d 6601 u64 total, used, age_stamp, avg;
cadefd3d 6602 s64 delta;
1e3c88bd 6603
b654f7de
PZ
6604 /*
6605 * Since we're reading these variables without serialization make sure
6606 * we read them once before doing sanity checks on them.
6607 */
316c1608
JL
6608 age_stamp = READ_ONCE(rq->age_stamp);
6609 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6610 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6611
cadefd3d
PZ
6612 if (unlikely(delta < 0))
6613 delta = 0;
6614
6615 total = sched_avg_period() + delta;
aa483808 6616
b5b4860d 6617 used = div_u64(avg, total);
1e3c88bd 6618
b5b4860d
VG
6619 if (likely(used < SCHED_CAPACITY_SCALE))
6620 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6621
b5b4860d 6622 return 1;
1e3c88bd
PZ
6623}
6624
ced549fa 6625static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6626{
8cd5601c 6627 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6628 struct sched_group *sdg = sd->groups;
6629
ca6d75e6 6630 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6631
ced549fa 6632 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6633 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6634
ced549fa
NP
6635 if (!capacity)
6636 capacity = 1;
1e3c88bd 6637
ced549fa
NP
6638 cpu_rq(cpu)->cpu_capacity = capacity;
6639 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6640}
6641
63b2ca30 6642void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6643{
6644 struct sched_domain *child = sd->child;
6645 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6646 unsigned long capacity;
4ec4412e
VG
6647 unsigned long interval;
6648
6649 interval = msecs_to_jiffies(sd->balance_interval);
6650 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6651 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6652
6653 if (!child) {
ced549fa 6654 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6655 return;
6656 }
6657
dc7ff76e 6658 capacity = 0;
1e3c88bd 6659
74a5ce20
PZ
6660 if (child->flags & SD_OVERLAP) {
6661 /*
6662 * SD_OVERLAP domains cannot assume that child groups
6663 * span the current group.
6664 */
6665
863bffc8 6666 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6667 struct sched_group_capacity *sgc;
9abf24d4 6668 struct rq *rq = cpu_rq(cpu);
863bffc8 6669
9abf24d4 6670 /*
63b2ca30 6671 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6672 * gets here before we've attached the domains to the
6673 * runqueues.
6674 *
ced549fa
NP
6675 * Use capacity_of(), which is set irrespective of domains
6676 * in update_cpu_capacity().
9abf24d4 6677 *
dc7ff76e 6678 * This avoids capacity from being 0 and
9abf24d4 6679 * causing divide-by-zero issues on boot.
9abf24d4
SD
6680 */
6681 if (unlikely(!rq->sd)) {
ced549fa 6682 capacity += capacity_of(cpu);
9abf24d4
SD
6683 continue;
6684 }
863bffc8 6685
63b2ca30 6686 sgc = rq->sd->groups->sgc;
63b2ca30 6687 capacity += sgc->capacity;
863bffc8 6688 }
74a5ce20
PZ
6689 } else {
6690 /*
6691 * !SD_OVERLAP domains can assume that child groups
6692 * span the current group.
97a7142f 6693 */
74a5ce20
PZ
6694
6695 group = child->groups;
6696 do {
63b2ca30 6697 capacity += group->sgc->capacity;
74a5ce20
PZ
6698 group = group->next;
6699 } while (group != child->groups);
6700 }
1e3c88bd 6701
63b2ca30 6702 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6703}
6704
9d5efe05 6705/*
ea67821b
VG
6706 * Check whether the capacity of the rq has been noticeably reduced by side
6707 * activity. The imbalance_pct is used for the threshold.
6708 * Return true is the capacity is reduced
9d5efe05
SV
6709 */
6710static inline int
ea67821b 6711check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6712{
ea67821b
VG
6713 return ((rq->cpu_capacity * sd->imbalance_pct) <
6714 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6715}
6716
30ce5dab
PZ
6717/*
6718 * Group imbalance indicates (and tries to solve) the problem where balancing
6719 * groups is inadequate due to tsk_cpus_allowed() constraints.
6720 *
6721 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6722 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6723 * Something like:
6724 *
6725 * { 0 1 2 3 } { 4 5 6 7 }
6726 * * * * *
6727 *
6728 * If we were to balance group-wise we'd place two tasks in the first group and
6729 * two tasks in the second group. Clearly this is undesired as it will overload
6730 * cpu 3 and leave one of the cpus in the second group unused.
6731 *
6732 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6733 * by noticing the lower domain failed to reach balance and had difficulty
6734 * moving tasks due to affinity constraints.
30ce5dab
PZ
6735 *
6736 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6737 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6738 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6739 * to create an effective group imbalance.
6740 *
6741 * This is a somewhat tricky proposition since the next run might not find the
6742 * group imbalance and decide the groups need to be balanced again. A most
6743 * subtle and fragile situation.
6744 */
6745
6263322c 6746static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6747{
63b2ca30 6748 return group->sgc->imbalance;
30ce5dab
PZ
6749}
6750
b37d9316 6751/*
ea67821b
VG
6752 * group_has_capacity returns true if the group has spare capacity that could
6753 * be used by some tasks.
6754 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6755 * smaller than the number of CPUs or if the utilization is lower than the
6756 * available capacity for CFS tasks.
ea67821b
VG
6757 * For the latter, we use a threshold to stabilize the state, to take into
6758 * account the variance of the tasks' load and to return true if the available
6759 * capacity in meaningful for the load balancer.
6760 * As an example, an available capacity of 1% can appear but it doesn't make
6761 * any benefit for the load balance.
b37d9316 6762 */
ea67821b
VG
6763static inline bool
6764group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6765{
ea67821b
VG
6766 if (sgs->sum_nr_running < sgs->group_weight)
6767 return true;
c61037e9 6768
ea67821b 6769 if ((sgs->group_capacity * 100) >
9e91d61d 6770 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6771 return true;
b37d9316 6772
ea67821b
VG
6773 return false;
6774}
6775
6776/*
6777 * group_is_overloaded returns true if the group has more tasks than it can
6778 * handle.
6779 * group_is_overloaded is not equals to !group_has_capacity because a group
6780 * with the exact right number of tasks, has no more spare capacity but is not
6781 * overloaded so both group_has_capacity and group_is_overloaded return
6782 * false.
6783 */
6784static inline bool
6785group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6786{
6787 if (sgs->sum_nr_running <= sgs->group_weight)
6788 return false;
b37d9316 6789
ea67821b 6790 if ((sgs->group_capacity * 100) <
9e91d61d 6791 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6792 return true;
b37d9316 6793
ea67821b 6794 return false;
b37d9316
PZ
6795}
6796
79a89f92
LY
6797static inline enum
6798group_type group_classify(struct sched_group *group,
6799 struct sg_lb_stats *sgs)
caeb178c 6800{
ea67821b 6801 if (sgs->group_no_capacity)
caeb178c
RR
6802 return group_overloaded;
6803
6804 if (sg_imbalanced(group))
6805 return group_imbalanced;
6806
6807 return group_other;
6808}
6809
1e3c88bd
PZ
6810/**
6811 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6812 * @env: The load balancing environment.
1e3c88bd 6813 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6814 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6815 * @local_group: Does group contain this_cpu.
1e3c88bd 6816 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6817 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6818 */
bd939f45
PZ
6819static inline void update_sg_lb_stats(struct lb_env *env,
6820 struct sched_group *group, int load_idx,
4486edd1
TC
6821 int local_group, struct sg_lb_stats *sgs,
6822 bool *overload)
1e3c88bd 6823{
30ce5dab 6824 unsigned long load;
a426f99c 6825 int i, nr_running;
1e3c88bd 6826
b72ff13c
PZ
6827 memset(sgs, 0, sizeof(*sgs));
6828
b9403130 6829 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6830 struct rq *rq = cpu_rq(i);
6831
1e3c88bd 6832 /* Bias balancing toward cpus of our domain */
6263322c 6833 if (local_group)
04f733b4 6834 load = target_load(i, load_idx);
6263322c 6835 else
1e3c88bd 6836 load = source_load(i, load_idx);
1e3c88bd
PZ
6837
6838 sgs->group_load += load;
9e91d61d 6839 sgs->group_util += cpu_util(i);
65fdac08 6840 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6841
a426f99c
WL
6842 nr_running = rq->nr_running;
6843 if (nr_running > 1)
4486edd1
TC
6844 *overload = true;
6845
0ec8aa00
PZ
6846#ifdef CONFIG_NUMA_BALANCING
6847 sgs->nr_numa_running += rq->nr_numa_running;
6848 sgs->nr_preferred_running += rq->nr_preferred_running;
6849#endif
1e3c88bd 6850 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6851 /*
6852 * No need to call idle_cpu() if nr_running is not 0
6853 */
6854 if (!nr_running && idle_cpu(i))
aae6d3dd 6855 sgs->idle_cpus++;
1e3c88bd
PZ
6856 }
6857
63b2ca30
NP
6858 /* Adjust by relative CPU capacity of the group */
6859 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6860 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6861
dd5feea1 6862 if (sgs->sum_nr_running)
38d0f770 6863 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6864
aae6d3dd 6865 sgs->group_weight = group->group_weight;
b37d9316 6866
ea67821b 6867 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6868 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6869}
6870
532cb4c4
MN
6871/**
6872 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6873 * @env: The load balancing environment.
532cb4c4
MN
6874 * @sds: sched_domain statistics
6875 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6876 * @sgs: sched_group statistics
532cb4c4
MN
6877 *
6878 * Determine if @sg is a busier group than the previously selected
6879 * busiest group.
e69f6186
YB
6880 *
6881 * Return: %true if @sg is a busier group than the previously selected
6882 * busiest group. %false otherwise.
532cb4c4 6883 */
bd939f45 6884static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6885 struct sd_lb_stats *sds,
6886 struct sched_group *sg,
bd939f45 6887 struct sg_lb_stats *sgs)
532cb4c4 6888{
caeb178c 6889 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6890
caeb178c 6891 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6892 return true;
6893
caeb178c
RR
6894 if (sgs->group_type < busiest->group_type)
6895 return false;
6896
6897 if (sgs->avg_load <= busiest->avg_load)
6898 return false;
6899
6900 /* This is the busiest node in its class. */
6901 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6902 return true;
6903
1f621e02
SD
6904 /* No ASYM_PACKING if target cpu is already busy */
6905 if (env->idle == CPU_NOT_IDLE)
6906 return true;
532cb4c4
MN
6907 /*
6908 * ASYM_PACKING needs to move all the work to the lowest
6909 * numbered CPUs in the group, therefore mark all groups
6910 * higher than ourself as busy.
6911 */
caeb178c 6912 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6913 if (!sds->busiest)
6914 return true;
6915
1f621e02
SD
6916 /* Prefer to move from highest possible cpu's work */
6917 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6918 return true;
6919 }
6920
6921 return false;
6922}
6923
0ec8aa00
PZ
6924#ifdef CONFIG_NUMA_BALANCING
6925static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6926{
6927 if (sgs->sum_nr_running > sgs->nr_numa_running)
6928 return regular;
6929 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6930 return remote;
6931 return all;
6932}
6933
6934static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6935{
6936 if (rq->nr_running > rq->nr_numa_running)
6937 return regular;
6938 if (rq->nr_running > rq->nr_preferred_running)
6939 return remote;
6940 return all;
6941}
6942#else
6943static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6944{
6945 return all;
6946}
6947
6948static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6949{
6950 return regular;
6951}
6952#endif /* CONFIG_NUMA_BALANCING */
6953
1e3c88bd 6954/**
461819ac 6955 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6956 * @env: The load balancing environment.
1e3c88bd
PZ
6957 * @sds: variable to hold the statistics for this sched_domain.
6958 */
0ec8aa00 6959static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6960{
bd939f45
PZ
6961 struct sched_domain *child = env->sd->child;
6962 struct sched_group *sg = env->sd->groups;
56cf515b 6963 struct sg_lb_stats tmp_sgs;
1e3c88bd 6964 int load_idx, prefer_sibling = 0;
4486edd1 6965 bool overload = false;
1e3c88bd
PZ
6966
6967 if (child && child->flags & SD_PREFER_SIBLING)
6968 prefer_sibling = 1;
6969
bd939f45 6970 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6971
6972 do {
56cf515b 6973 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6974 int local_group;
6975
bd939f45 6976 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6977 if (local_group) {
6978 sds->local = sg;
6979 sgs = &sds->local_stat;
b72ff13c
PZ
6980
6981 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6982 time_after_eq(jiffies, sg->sgc->next_update))
6983 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6984 }
1e3c88bd 6985
4486edd1
TC
6986 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6987 &overload);
1e3c88bd 6988
b72ff13c
PZ
6989 if (local_group)
6990 goto next_group;
6991
1e3c88bd
PZ
6992 /*
6993 * In case the child domain prefers tasks go to siblings
ea67821b 6994 * first, lower the sg capacity so that we'll try
75dd321d
NR
6995 * and move all the excess tasks away. We lower the capacity
6996 * of a group only if the local group has the capacity to fit
ea67821b
VG
6997 * these excess tasks. The extra check prevents the case where
6998 * you always pull from the heaviest group when it is already
6999 * under-utilized (possible with a large weight task outweighs
7000 * the tasks on the system).
1e3c88bd 7001 */
b72ff13c 7002 if (prefer_sibling && sds->local &&
ea67821b
VG
7003 group_has_capacity(env, &sds->local_stat) &&
7004 (sgs->sum_nr_running > 1)) {
7005 sgs->group_no_capacity = 1;
79a89f92 7006 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7007 }
1e3c88bd 7008
b72ff13c 7009 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7010 sds->busiest = sg;
56cf515b 7011 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7012 }
7013
b72ff13c
PZ
7014next_group:
7015 /* Now, start updating sd_lb_stats */
7016 sds->total_load += sgs->group_load;
63b2ca30 7017 sds->total_capacity += sgs->group_capacity;
b72ff13c 7018
532cb4c4 7019 sg = sg->next;
bd939f45 7020 } while (sg != env->sd->groups);
0ec8aa00
PZ
7021
7022 if (env->sd->flags & SD_NUMA)
7023 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7024
7025 if (!env->sd->parent) {
7026 /* update overload indicator if we are at root domain */
7027 if (env->dst_rq->rd->overload != overload)
7028 env->dst_rq->rd->overload = overload;
7029 }
7030
532cb4c4
MN
7031}
7032
532cb4c4
MN
7033/**
7034 * check_asym_packing - Check to see if the group is packed into the
7035 * sched doman.
7036 *
7037 * This is primarily intended to used at the sibling level. Some
7038 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7039 * case of POWER7, it can move to lower SMT modes only when higher
7040 * threads are idle. When in lower SMT modes, the threads will
7041 * perform better since they share less core resources. Hence when we
7042 * have idle threads, we want them to be the higher ones.
7043 *
7044 * This packing function is run on idle threads. It checks to see if
7045 * the busiest CPU in this domain (core in the P7 case) has a higher
7046 * CPU number than the packing function is being run on. Here we are
7047 * assuming lower CPU number will be equivalent to lower a SMT thread
7048 * number.
7049 *
e69f6186 7050 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7051 * this CPU. The amount of the imbalance is returned in *imbalance.
7052 *
cd96891d 7053 * @env: The load balancing environment.
532cb4c4 7054 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7055 */
bd939f45 7056static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7057{
7058 int busiest_cpu;
7059
bd939f45 7060 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7061 return 0;
7062
1f621e02
SD
7063 if (env->idle == CPU_NOT_IDLE)
7064 return 0;
7065
532cb4c4
MN
7066 if (!sds->busiest)
7067 return 0;
7068
7069 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7070 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7071 return 0;
7072
bd939f45 7073 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7074 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7075 SCHED_CAPACITY_SCALE);
bd939f45 7076
532cb4c4 7077 return 1;
1e3c88bd
PZ
7078}
7079
7080/**
7081 * fix_small_imbalance - Calculate the minor imbalance that exists
7082 * amongst the groups of a sched_domain, during
7083 * load balancing.
cd96891d 7084 * @env: The load balancing environment.
1e3c88bd 7085 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7086 */
bd939f45
PZ
7087static inline
7088void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7089{
63b2ca30 7090 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7091 unsigned int imbn = 2;
dd5feea1 7092 unsigned long scaled_busy_load_per_task;
56cf515b 7093 struct sg_lb_stats *local, *busiest;
1e3c88bd 7094
56cf515b
JK
7095 local = &sds->local_stat;
7096 busiest = &sds->busiest_stat;
1e3c88bd 7097
56cf515b
JK
7098 if (!local->sum_nr_running)
7099 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7100 else if (busiest->load_per_task > local->load_per_task)
7101 imbn = 1;
dd5feea1 7102
56cf515b 7103 scaled_busy_load_per_task =
ca8ce3d0 7104 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7105 busiest->group_capacity;
56cf515b 7106
3029ede3
VD
7107 if (busiest->avg_load + scaled_busy_load_per_task >=
7108 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7109 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7110 return;
7111 }
7112
7113 /*
7114 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7115 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7116 * moving them.
7117 */
7118
63b2ca30 7119 capa_now += busiest->group_capacity *
56cf515b 7120 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7121 capa_now += local->group_capacity *
56cf515b 7122 min(local->load_per_task, local->avg_load);
ca8ce3d0 7123 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7124
7125 /* Amount of load we'd subtract */
a2cd4260 7126 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7127 capa_move += busiest->group_capacity *
56cf515b 7128 min(busiest->load_per_task,
a2cd4260 7129 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7130 }
1e3c88bd
PZ
7131
7132 /* Amount of load we'd add */
63b2ca30 7133 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7134 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7135 tmp = (busiest->avg_load * busiest->group_capacity) /
7136 local->group_capacity;
56cf515b 7137 } else {
ca8ce3d0 7138 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7139 local->group_capacity;
56cf515b 7140 }
63b2ca30 7141 capa_move += local->group_capacity *
3ae11c90 7142 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7143 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7144
7145 /* Move if we gain throughput */
63b2ca30 7146 if (capa_move > capa_now)
56cf515b 7147 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7148}
7149
7150/**
7151 * calculate_imbalance - Calculate the amount of imbalance present within the
7152 * groups of a given sched_domain during load balance.
bd939f45 7153 * @env: load balance environment
1e3c88bd 7154 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7155 */
bd939f45 7156static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7157{
dd5feea1 7158 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7159 struct sg_lb_stats *local, *busiest;
7160
7161 local = &sds->local_stat;
56cf515b 7162 busiest = &sds->busiest_stat;
dd5feea1 7163
caeb178c 7164 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7165 /*
7166 * In the group_imb case we cannot rely on group-wide averages
7167 * to ensure cpu-load equilibrium, look at wider averages. XXX
7168 */
56cf515b
JK
7169 busiest->load_per_task =
7170 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7171 }
7172
1e3c88bd 7173 /*
885e542c
DE
7174 * Avg load of busiest sg can be less and avg load of local sg can
7175 * be greater than avg load across all sgs of sd because avg load
7176 * factors in sg capacity and sgs with smaller group_type are
7177 * skipped when updating the busiest sg:
1e3c88bd 7178 */
b1885550
VD
7179 if (busiest->avg_load <= sds->avg_load ||
7180 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7181 env->imbalance = 0;
7182 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7183 }
7184
9a5d9ba6
PZ
7185 /*
7186 * If there aren't any idle cpus, avoid creating some.
7187 */
7188 if (busiest->group_type == group_overloaded &&
7189 local->group_type == group_overloaded) {
1be0eb2a 7190 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7191 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7192 load_above_capacity -= busiest->group_capacity;
26656215 7193 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7194 load_above_capacity /= busiest->group_capacity;
7195 } else
ea67821b 7196 load_above_capacity = ~0UL;
dd5feea1
SS
7197 }
7198
7199 /*
7200 * We're trying to get all the cpus to the average_load, so we don't
7201 * want to push ourselves above the average load, nor do we wish to
7202 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7203 * we also don't want to reduce the group load below the group
7204 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7205 */
30ce5dab 7206 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7207
7208 /* How much load to actually move to equalise the imbalance */
56cf515b 7209 env->imbalance = min(
63b2ca30
NP
7210 max_pull * busiest->group_capacity,
7211 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7212 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7213
7214 /*
7215 * if *imbalance is less than the average load per runnable task
25985edc 7216 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7217 * a think about bumping its value to force at least one task to be
7218 * moved
7219 */
56cf515b 7220 if (env->imbalance < busiest->load_per_task)
bd939f45 7221 return fix_small_imbalance(env, sds);
1e3c88bd 7222}
fab47622 7223
1e3c88bd
PZ
7224/******* find_busiest_group() helpers end here *********************/
7225
7226/**
7227 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7228 * if there is an imbalance.
1e3c88bd
PZ
7229 *
7230 * Also calculates the amount of weighted load which should be moved
7231 * to restore balance.
7232 *
cd96891d 7233 * @env: The load balancing environment.
1e3c88bd 7234 *
e69f6186 7235 * Return: - The busiest group if imbalance exists.
1e3c88bd 7236 */
56cf515b 7237static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7238{
56cf515b 7239 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7240 struct sd_lb_stats sds;
7241
147c5fc2 7242 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7243
7244 /*
7245 * Compute the various statistics relavent for load balancing at
7246 * this level.
7247 */
23f0d209 7248 update_sd_lb_stats(env, &sds);
56cf515b
JK
7249 local = &sds.local_stat;
7250 busiest = &sds.busiest_stat;
1e3c88bd 7251
ea67821b 7252 /* ASYM feature bypasses nice load balance check */
1f621e02 7253 if (check_asym_packing(env, &sds))
532cb4c4
MN
7254 return sds.busiest;
7255
cc57aa8f 7256 /* There is no busy sibling group to pull tasks from */
56cf515b 7257 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7258 goto out_balanced;
7259
ca8ce3d0
NP
7260 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7261 / sds.total_capacity;
b0432d8f 7262
866ab43e
PZ
7263 /*
7264 * If the busiest group is imbalanced the below checks don't
30ce5dab 7265 * work because they assume all things are equal, which typically
866ab43e
PZ
7266 * isn't true due to cpus_allowed constraints and the like.
7267 */
caeb178c 7268 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7269 goto force_balance;
7270
cc57aa8f 7271 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7272 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7273 busiest->group_no_capacity)
fab47622
NR
7274 goto force_balance;
7275
cc57aa8f 7276 /*
9c58c79a 7277 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7278 * don't try and pull any tasks.
7279 */
56cf515b 7280 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7281 goto out_balanced;
7282
cc57aa8f
PZ
7283 /*
7284 * Don't pull any tasks if this group is already above the domain
7285 * average load.
7286 */
56cf515b 7287 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7288 goto out_balanced;
7289
bd939f45 7290 if (env->idle == CPU_IDLE) {
aae6d3dd 7291 /*
43f4d666
VG
7292 * This cpu is idle. If the busiest group is not overloaded
7293 * and there is no imbalance between this and busiest group
7294 * wrt idle cpus, it is balanced. The imbalance becomes
7295 * significant if the diff is greater than 1 otherwise we
7296 * might end up to just move the imbalance on another group
aae6d3dd 7297 */
43f4d666
VG
7298 if ((busiest->group_type != group_overloaded) &&
7299 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7300 goto out_balanced;
c186fafe
PZ
7301 } else {
7302 /*
7303 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7304 * imbalance_pct to be conservative.
7305 */
56cf515b
JK
7306 if (100 * busiest->avg_load <=
7307 env->sd->imbalance_pct * local->avg_load)
c186fafe 7308 goto out_balanced;
aae6d3dd 7309 }
1e3c88bd 7310
fab47622 7311force_balance:
1e3c88bd 7312 /* Looks like there is an imbalance. Compute it */
bd939f45 7313 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7314 return sds.busiest;
7315
7316out_balanced:
bd939f45 7317 env->imbalance = 0;
1e3c88bd
PZ
7318 return NULL;
7319}
7320
7321/*
7322 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7323 */
bd939f45 7324static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7325 struct sched_group *group)
1e3c88bd
PZ
7326{
7327 struct rq *busiest = NULL, *rq;
ced549fa 7328 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7329 int i;
7330
6906a408 7331 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7332 unsigned long capacity, wl;
0ec8aa00
PZ
7333 enum fbq_type rt;
7334
7335 rq = cpu_rq(i);
7336 rt = fbq_classify_rq(rq);
1e3c88bd 7337
0ec8aa00
PZ
7338 /*
7339 * We classify groups/runqueues into three groups:
7340 * - regular: there are !numa tasks
7341 * - remote: there are numa tasks that run on the 'wrong' node
7342 * - all: there is no distinction
7343 *
7344 * In order to avoid migrating ideally placed numa tasks,
7345 * ignore those when there's better options.
7346 *
7347 * If we ignore the actual busiest queue to migrate another
7348 * task, the next balance pass can still reduce the busiest
7349 * queue by moving tasks around inside the node.
7350 *
7351 * If we cannot move enough load due to this classification
7352 * the next pass will adjust the group classification and
7353 * allow migration of more tasks.
7354 *
7355 * Both cases only affect the total convergence complexity.
7356 */
7357 if (rt > env->fbq_type)
7358 continue;
7359
ced549fa 7360 capacity = capacity_of(i);
9d5efe05 7361
6e40f5bb 7362 wl = weighted_cpuload(i);
1e3c88bd 7363
6e40f5bb
TG
7364 /*
7365 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7366 * which is not scaled with the cpu capacity.
6e40f5bb 7367 */
ea67821b
VG
7368
7369 if (rq->nr_running == 1 && wl > env->imbalance &&
7370 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7371 continue;
7372
6e40f5bb
TG
7373 /*
7374 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7375 * the weighted_cpuload() scaled with the cpu capacity, so
7376 * that the load can be moved away from the cpu that is
7377 * potentially running at a lower capacity.
95a79b80 7378 *
ced549fa 7379 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7380 * multiplication to rid ourselves of the division works out
ced549fa
NP
7381 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7382 * our previous maximum.
6e40f5bb 7383 */
ced549fa 7384 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7385 busiest_load = wl;
ced549fa 7386 busiest_capacity = capacity;
1e3c88bd
PZ
7387 busiest = rq;
7388 }
7389 }
7390
7391 return busiest;
7392}
7393
7394/*
7395 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7396 * so long as it is large enough.
7397 */
7398#define MAX_PINNED_INTERVAL 512
7399
7400/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7401DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7402
bd939f45 7403static int need_active_balance(struct lb_env *env)
1af3ed3d 7404{
bd939f45
PZ
7405 struct sched_domain *sd = env->sd;
7406
7407 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7408
7409 /*
7410 * ASYM_PACKING needs to force migrate tasks from busy but
7411 * higher numbered CPUs in order to pack all tasks in the
7412 * lowest numbered CPUs.
7413 */
bd939f45 7414 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7415 return 1;
1af3ed3d
PZ
7416 }
7417
1aaf90a4
VG
7418 /*
7419 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7420 * It's worth migrating the task if the src_cpu's capacity is reduced
7421 * because of other sched_class or IRQs if more capacity stays
7422 * available on dst_cpu.
7423 */
7424 if ((env->idle != CPU_NOT_IDLE) &&
7425 (env->src_rq->cfs.h_nr_running == 1)) {
7426 if ((check_cpu_capacity(env->src_rq, sd)) &&
7427 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7428 return 1;
7429 }
7430
1af3ed3d
PZ
7431 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7432}
7433
969c7921
TH
7434static int active_load_balance_cpu_stop(void *data);
7435
23f0d209
JK
7436static int should_we_balance(struct lb_env *env)
7437{
7438 struct sched_group *sg = env->sd->groups;
7439 struct cpumask *sg_cpus, *sg_mask;
7440 int cpu, balance_cpu = -1;
7441
7442 /*
7443 * In the newly idle case, we will allow all the cpu's
7444 * to do the newly idle load balance.
7445 */
7446 if (env->idle == CPU_NEWLY_IDLE)
7447 return 1;
7448
7449 sg_cpus = sched_group_cpus(sg);
7450 sg_mask = sched_group_mask(sg);
7451 /* Try to find first idle cpu */
7452 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7453 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7454 continue;
7455
7456 balance_cpu = cpu;
7457 break;
7458 }
7459
7460 if (balance_cpu == -1)
7461 balance_cpu = group_balance_cpu(sg);
7462
7463 /*
7464 * First idle cpu or the first cpu(busiest) in this sched group
7465 * is eligible for doing load balancing at this and above domains.
7466 */
b0cff9d8 7467 return balance_cpu == env->dst_cpu;
23f0d209
JK
7468}
7469
1e3c88bd
PZ
7470/*
7471 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7472 * tasks if there is an imbalance.
7473 */
7474static int load_balance(int this_cpu, struct rq *this_rq,
7475 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7476 int *continue_balancing)
1e3c88bd 7477{
88b8dac0 7478 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7479 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7480 struct sched_group *group;
1e3c88bd
PZ
7481 struct rq *busiest;
7482 unsigned long flags;
4ba29684 7483 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7484
8e45cb54
PZ
7485 struct lb_env env = {
7486 .sd = sd,
ddcdf6e7
PZ
7487 .dst_cpu = this_cpu,
7488 .dst_rq = this_rq,
88b8dac0 7489 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7490 .idle = idle,
eb95308e 7491 .loop_break = sched_nr_migrate_break,
b9403130 7492 .cpus = cpus,
0ec8aa00 7493 .fbq_type = all,
163122b7 7494 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7495 };
7496
cfc03118
JK
7497 /*
7498 * For NEWLY_IDLE load_balancing, we don't need to consider
7499 * other cpus in our group
7500 */
e02e60c1 7501 if (idle == CPU_NEWLY_IDLE)
cfc03118 7502 env.dst_grpmask = NULL;
cfc03118 7503
1e3c88bd
PZ
7504 cpumask_copy(cpus, cpu_active_mask);
7505
ae92882e 7506 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
7507
7508redo:
23f0d209
JK
7509 if (!should_we_balance(&env)) {
7510 *continue_balancing = 0;
1e3c88bd 7511 goto out_balanced;
23f0d209 7512 }
1e3c88bd 7513
23f0d209 7514 group = find_busiest_group(&env);
1e3c88bd 7515 if (!group) {
ae92882e 7516 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
7517 goto out_balanced;
7518 }
7519
b9403130 7520 busiest = find_busiest_queue(&env, group);
1e3c88bd 7521 if (!busiest) {
ae92882e 7522 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
7523 goto out_balanced;
7524 }
7525
78feefc5 7526 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7527
ae92882e 7528 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 7529
1aaf90a4
VG
7530 env.src_cpu = busiest->cpu;
7531 env.src_rq = busiest;
7532
1e3c88bd
PZ
7533 ld_moved = 0;
7534 if (busiest->nr_running > 1) {
7535 /*
7536 * Attempt to move tasks. If find_busiest_group has found
7537 * an imbalance but busiest->nr_running <= 1, the group is
7538 * still unbalanced. ld_moved simply stays zero, so it is
7539 * correctly treated as an imbalance.
7540 */
8e45cb54 7541 env.flags |= LBF_ALL_PINNED;
c82513e5 7542 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7543
5d6523eb 7544more_balance:
163122b7 7545 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7546
7547 /*
7548 * cur_ld_moved - load moved in current iteration
7549 * ld_moved - cumulative load moved across iterations
7550 */
163122b7 7551 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7552
7553 /*
163122b7
KT
7554 * We've detached some tasks from busiest_rq. Every
7555 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7556 * unlock busiest->lock, and we are able to be sure
7557 * that nobody can manipulate the tasks in parallel.
7558 * See task_rq_lock() family for the details.
1e3c88bd 7559 */
163122b7
KT
7560
7561 raw_spin_unlock(&busiest->lock);
7562
7563 if (cur_ld_moved) {
7564 attach_tasks(&env);
7565 ld_moved += cur_ld_moved;
7566 }
7567
1e3c88bd 7568 local_irq_restore(flags);
88b8dac0 7569
f1cd0858
JK
7570 if (env.flags & LBF_NEED_BREAK) {
7571 env.flags &= ~LBF_NEED_BREAK;
7572 goto more_balance;
7573 }
7574
88b8dac0
SV
7575 /*
7576 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7577 * us and move them to an alternate dst_cpu in our sched_group
7578 * where they can run. The upper limit on how many times we
7579 * iterate on same src_cpu is dependent on number of cpus in our
7580 * sched_group.
7581 *
7582 * This changes load balance semantics a bit on who can move
7583 * load to a given_cpu. In addition to the given_cpu itself
7584 * (or a ilb_cpu acting on its behalf where given_cpu is
7585 * nohz-idle), we now have balance_cpu in a position to move
7586 * load to given_cpu. In rare situations, this may cause
7587 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7588 * _independently_ and at _same_ time to move some load to
7589 * given_cpu) causing exceess load to be moved to given_cpu.
7590 * This however should not happen so much in practice and
7591 * moreover subsequent load balance cycles should correct the
7592 * excess load moved.
7593 */
6263322c 7594 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7595
7aff2e3a
VD
7596 /* Prevent to re-select dst_cpu via env's cpus */
7597 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7598
78feefc5 7599 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7600 env.dst_cpu = env.new_dst_cpu;
6263322c 7601 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7602 env.loop = 0;
7603 env.loop_break = sched_nr_migrate_break;
e02e60c1 7604
88b8dac0
SV
7605 /*
7606 * Go back to "more_balance" rather than "redo" since we
7607 * need to continue with same src_cpu.
7608 */
7609 goto more_balance;
7610 }
1e3c88bd 7611
6263322c
PZ
7612 /*
7613 * We failed to reach balance because of affinity.
7614 */
7615 if (sd_parent) {
63b2ca30 7616 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7617
afdeee05 7618 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7619 *group_imbalance = 1;
6263322c
PZ
7620 }
7621
1e3c88bd 7622 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7623 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7624 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7625 if (!cpumask_empty(cpus)) {
7626 env.loop = 0;
7627 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7628 goto redo;
bbf18b19 7629 }
afdeee05 7630 goto out_all_pinned;
1e3c88bd
PZ
7631 }
7632 }
7633
7634 if (!ld_moved) {
ae92882e 7635 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
7636 /*
7637 * Increment the failure counter only on periodic balance.
7638 * We do not want newidle balance, which can be very
7639 * frequent, pollute the failure counter causing
7640 * excessive cache_hot migrations and active balances.
7641 */
7642 if (idle != CPU_NEWLY_IDLE)
7643 sd->nr_balance_failed++;
1e3c88bd 7644
bd939f45 7645 if (need_active_balance(&env)) {
1e3c88bd
PZ
7646 raw_spin_lock_irqsave(&busiest->lock, flags);
7647
969c7921
TH
7648 /* don't kick the active_load_balance_cpu_stop,
7649 * if the curr task on busiest cpu can't be
7650 * moved to this_cpu
1e3c88bd
PZ
7651 */
7652 if (!cpumask_test_cpu(this_cpu,
fa17b507 7653 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7654 raw_spin_unlock_irqrestore(&busiest->lock,
7655 flags);
8e45cb54 7656 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7657 goto out_one_pinned;
7658 }
7659
969c7921
TH
7660 /*
7661 * ->active_balance synchronizes accesses to
7662 * ->active_balance_work. Once set, it's cleared
7663 * only after active load balance is finished.
7664 */
1e3c88bd
PZ
7665 if (!busiest->active_balance) {
7666 busiest->active_balance = 1;
7667 busiest->push_cpu = this_cpu;
7668 active_balance = 1;
7669 }
7670 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7671
bd939f45 7672 if (active_balance) {
969c7921
TH
7673 stop_one_cpu_nowait(cpu_of(busiest),
7674 active_load_balance_cpu_stop, busiest,
7675 &busiest->active_balance_work);
bd939f45 7676 }
1e3c88bd 7677
d02c0711 7678 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7679 sd->nr_balance_failed = sd->cache_nice_tries+1;
7680 }
7681 } else
7682 sd->nr_balance_failed = 0;
7683
7684 if (likely(!active_balance)) {
7685 /* We were unbalanced, so reset the balancing interval */
7686 sd->balance_interval = sd->min_interval;
7687 } else {
7688 /*
7689 * If we've begun active balancing, start to back off. This
7690 * case may not be covered by the all_pinned logic if there
7691 * is only 1 task on the busy runqueue (because we don't call
163122b7 7692 * detach_tasks).
1e3c88bd
PZ
7693 */
7694 if (sd->balance_interval < sd->max_interval)
7695 sd->balance_interval *= 2;
7696 }
7697
1e3c88bd
PZ
7698 goto out;
7699
7700out_balanced:
afdeee05
VG
7701 /*
7702 * We reach balance although we may have faced some affinity
7703 * constraints. Clear the imbalance flag if it was set.
7704 */
7705 if (sd_parent) {
7706 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7707
7708 if (*group_imbalance)
7709 *group_imbalance = 0;
7710 }
7711
7712out_all_pinned:
7713 /*
7714 * We reach balance because all tasks are pinned at this level so
7715 * we can't migrate them. Let the imbalance flag set so parent level
7716 * can try to migrate them.
7717 */
ae92882e 7718 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
7719
7720 sd->nr_balance_failed = 0;
7721
7722out_one_pinned:
7723 /* tune up the balancing interval */
8e45cb54 7724 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7725 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7726 (sd->balance_interval < sd->max_interval))
7727 sd->balance_interval *= 2;
7728
46e49b38 7729 ld_moved = 0;
1e3c88bd 7730out:
1e3c88bd
PZ
7731 return ld_moved;
7732}
7733
52a08ef1
JL
7734static inline unsigned long
7735get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7736{
7737 unsigned long interval = sd->balance_interval;
7738
7739 if (cpu_busy)
7740 interval *= sd->busy_factor;
7741
7742 /* scale ms to jiffies */
7743 interval = msecs_to_jiffies(interval);
7744 interval = clamp(interval, 1UL, max_load_balance_interval);
7745
7746 return interval;
7747}
7748
7749static inline void
31851a98 7750update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7751{
7752 unsigned long interval, next;
7753
31851a98
LY
7754 /* used by idle balance, so cpu_busy = 0 */
7755 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7756 next = sd->last_balance + interval;
7757
7758 if (time_after(*next_balance, next))
7759 *next_balance = next;
7760}
7761
1e3c88bd
PZ
7762/*
7763 * idle_balance is called by schedule() if this_cpu is about to become
7764 * idle. Attempts to pull tasks from other CPUs.
7765 */
6e83125c 7766static int idle_balance(struct rq *this_rq)
1e3c88bd 7767{
52a08ef1
JL
7768 unsigned long next_balance = jiffies + HZ;
7769 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7770 struct sched_domain *sd;
7771 int pulled_task = 0;
9bd721c5 7772 u64 curr_cost = 0;
1e3c88bd 7773
6e83125c
PZ
7774 /*
7775 * We must set idle_stamp _before_ calling idle_balance(), such that we
7776 * measure the duration of idle_balance() as idle time.
7777 */
7778 this_rq->idle_stamp = rq_clock(this_rq);
7779
4486edd1
TC
7780 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7781 !this_rq->rd->overload) {
52a08ef1
JL
7782 rcu_read_lock();
7783 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7784 if (sd)
31851a98 7785 update_next_balance(sd, &next_balance);
52a08ef1
JL
7786 rcu_read_unlock();
7787
6e83125c 7788 goto out;
52a08ef1 7789 }
1e3c88bd 7790
f492e12e
PZ
7791 raw_spin_unlock(&this_rq->lock);
7792
48a16753 7793 update_blocked_averages(this_cpu);
dce840a0 7794 rcu_read_lock();
1e3c88bd 7795 for_each_domain(this_cpu, sd) {
23f0d209 7796 int continue_balancing = 1;
9bd721c5 7797 u64 t0, domain_cost;
1e3c88bd
PZ
7798
7799 if (!(sd->flags & SD_LOAD_BALANCE))
7800 continue;
7801
52a08ef1 7802 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7803 update_next_balance(sd, &next_balance);
9bd721c5 7804 break;
52a08ef1 7805 }
9bd721c5 7806
f492e12e 7807 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7808 t0 = sched_clock_cpu(this_cpu);
7809
f492e12e 7810 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7811 sd, CPU_NEWLY_IDLE,
7812 &continue_balancing);
9bd721c5
JL
7813
7814 domain_cost = sched_clock_cpu(this_cpu) - t0;
7815 if (domain_cost > sd->max_newidle_lb_cost)
7816 sd->max_newidle_lb_cost = domain_cost;
7817
7818 curr_cost += domain_cost;
f492e12e 7819 }
1e3c88bd 7820
31851a98 7821 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7822
7823 /*
7824 * Stop searching for tasks to pull if there are
7825 * now runnable tasks on this rq.
7826 */
7827 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7828 break;
1e3c88bd 7829 }
dce840a0 7830 rcu_read_unlock();
f492e12e
PZ
7831
7832 raw_spin_lock(&this_rq->lock);
7833
0e5b5337
JL
7834 if (curr_cost > this_rq->max_idle_balance_cost)
7835 this_rq->max_idle_balance_cost = curr_cost;
7836
e5fc6611 7837 /*
0e5b5337
JL
7838 * While browsing the domains, we released the rq lock, a task could
7839 * have been enqueued in the meantime. Since we're not going idle,
7840 * pretend we pulled a task.
e5fc6611 7841 */
0e5b5337 7842 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7843 pulled_task = 1;
e5fc6611 7844
52a08ef1
JL
7845out:
7846 /* Move the next balance forward */
7847 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7848 this_rq->next_balance = next_balance;
9bd721c5 7849
e4aa358b 7850 /* Is there a task of a high priority class? */
46383648 7851 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7852 pulled_task = -1;
7853
38c6ade2 7854 if (pulled_task)
6e83125c
PZ
7855 this_rq->idle_stamp = 0;
7856
3c4017c1 7857 return pulled_task;
1e3c88bd
PZ
7858}
7859
7860/*
969c7921
TH
7861 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7862 * running tasks off the busiest CPU onto idle CPUs. It requires at
7863 * least 1 task to be running on each physical CPU where possible, and
7864 * avoids physical / logical imbalances.
1e3c88bd 7865 */
969c7921 7866static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7867{
969c7921
TH
7868 struct rq *busiest_rq = data;
7869 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7870 int target_cpu = busiest_rq->push_cpu;
969c7921 7871 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7872 struct sched_domain *sd;
e5673f28 7873 struct task_struct *p = NULL;
969c7921
TH
7874
7875 raw_spin_lock_irq(&busiest_rq->lock);
7876
7877 /* make sure the requested cpu hasn't gone down in the meantime */
7878 if (unlikely(busiest_cpu != smp_processor_id() ||
7879 !busiest_rq->active_balance))
7880 goto out_unlock;
1e3c88bd
PZ
7881
7882 /* Is there any task to move? */
7883 if (busiest_rq->nr_running <= 1)
969c7921 7884 goto out_unlock;
1e3c88bd
PZ
7885
7886 /*
7887 * This condition is "impossible", if it occurs
7888 * we need to fix it. Originally reported by
7889 * Bjorn Helgaas on a 128-cpu setup.
7890 */
7891 BUG_ON(busiest_rq == target_rq);
7892
1e3c88bd 7893 /* Search for an sd spanning us and the target CPU. */
dce840a0 7894 rcu_read_lock();
1e3c88bd
PZ
7895 for_each_domain(target_cpu, sd) {
7896 if ((sd->flags & SD_LOAD_BALANCE) &&
7897 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7898 break;
7899 }
7900
7901 if (likely(sd)) {
8e45cb54
PZ
7902 struct lb_env env = {
7903 .sd = sd,
ddcdf6e7
PZ
7904 .dst_cpu = target_cpu,
7905 .dst_rq = target_rq,
7906 .src_cpu = busiest_rq->cpu,
7907 .src_rq = busiest_rq,
8e45cb54
PZ
7908 .idle = CPU_IDLE,
7909 };
7910
ae92882e 7911 schedstat_inc(sd->alb_count);
1e3c88bd 7912
e5673f28 7913 p = detach_one_task(&env);
d02c0711 7914 if (p) {
ae92882e 7915 schedstat_inc(sd->alb_pushed);
d02c0711
SD
7916 /* Active balancing done, reset the failure counter. */
7917 sd->nr_balance_failed = 0;
7918 } else {
ae92882e 7919 schedstat_inc(sd->alb_failed);
d02c0711 7920 }
1e3c88bd 7921 }
dce840a0 7922 rcu_read_unlock();
969c7921
TH
7923out_unlock:
7924 busiest_rq->active_balance = 0;
e5673f28
KT
7925 raw_spin_unlock(&busiest_rq->lock);
7926
7927 if (p)
7928 attach_one_task(target_rq, p);
7929
7930 local_irq_enable();
7931
969c7921 7932 return 0;
1e3c88bd
PZ
7933}
7934
d987fc7f
MG
7935static inline int on_null_domain(struct rq *rq)
7936{
7937 return unlikely(!rcu_dereference_sched(rq->sd));
7938}
7939
3451d024 7940#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7941/*
7942 * idle load balancing details
83cd4fe2
VP
7943 * - When one of the busy CPUs notice that there may be an idle rebalancing
7944 * needed, they will kick the idle load balancer, which then does idle
7945 * load balancing for all the idle CPUs.
7946 */
1e3c88bd 7947static struct {
83cd4fe2 7948 cpumask_var_t idle_cpus_mask;
0b005cf5 7949 atomic_t nr_cpus;
83cd4fe2
VP
7950 unsigned long next_balance; /* in jiffy units */
7951} nohz ____cacheline_aligned;
1e3c88bd 7952
3dd0337d 7953static inline int find_new_ilb(void)
1e3c88bd 7954{
0b005cf5 7955 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7956
786d6dc7
SS
7957 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7958 return ilb;
7959
7960 return nr_cpu_ids;
1e3c88bd 7961}
1e3c88bd 7962
83cd4fe2
VP
7963/*
7964 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7965 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7966 * CPU (if there is one).
7967 */
0aeeeeba 7968static void nohz_balancer_kick(void)
83cd4fe2
VP
7969{
7970 int ilb_cpu;
7971
7972 nohz.next_balance++;
7973
3dd0337d 7974 ilb_cpu = find_new_ilb();
83cd4fe2 7975
0b005cf5
SS
7976 if (ilb_cpu >= nr_cpu_ids)
7977 return;
83cd4fe2 7978
cd490c5b 7979 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7980 return;
7981 /*
7982 * Use smp_send_reschedule() instead of resched_cpu().
7983 * This way we generate a sched IPI on the target cpu which
7984 * is idle. And the softirq performing nohz idle load balance
7985 * will be run before returning from the IPI.
7986 */
7987 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7988 return;
7989}
7990
20a5c8cc 7991void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7992{
7993 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7994 /*
7995 * Completely isolated CPUs don't ever set, so we must test.
7996 */
7997 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7998 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7999 atomic_dec(&nohz.nr_cpus);
8000 }
71325960
SS
8001 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8002 }
8003}
8004
69e1e811
SS
8005static inline void set_cpu_sd_state_busy(void)
8006{
8007 struct sched_domain *sd;
37dc6b50 8008 int cpu = smp_processor_id();
69e1e811 8009
69e1e811 8010 rcu_read_lock();
37dc6b50 8011 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8012
8013 if (!sd || !sd->nohz_idle)
8014 goto unlock;
8015 sd->nohz_idle = 0;
8016
63b2ca30 8017 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8018unlock:
69e1e811
SS
8019 rcu_read_unlock();
8020}
8021
8022void set_cpu_sd_state_idle(void)
8023{
8024 struct sched_domain *sd;
37dc6b50 8025 int cpu = smp_processor_id();
69e1e811 8026
69e1e811 8027 rcu_read_lock();
37dc6b50 8028 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8029
8030 if (!sd || sd->nohz_idle)
8031 goto unlock;
8032 sd->nohz_idle = 1;
8033
63b2ca30 8034 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8035unlock:
69e1e811
SS
8036 rcu_read_unlock();
8037}
8038
1e3c88bd 8039/*
c1cc017c 8040 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8041 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8042 */
c1cc017c 8043void nohz_balance_enter_idle(int cpu)
1e3c88bd 8044{
71325960
SS
8045 /*
8046 * If this cpu is going down, then nothing needs to be done.
8047 */
8048 if (!cpu_active(cpu))
8049 return;
8050
c1cc017c
AS
8051 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8052 return;
1e3c88bd 8053
d987fc7f
MG
8054 /*
8055 * If we're a completely isolated CPU, we don't play.
8056 */
8057 if (on_null_domain(cpu_rq(cpu)))
8058 return;
8059
c1cc017c
AS
8060 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8061 atomic_inc(&nohz.nr_cpus);
8062 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8063}
8064#endif
8065
8066static DEFINE_SPINLOCK(balancing);
8067
49c022e6
PZ
8068/*
8069 * Scale the max load_balance interval with the number of CPUs in the system.
8070 * This trades load-balance latency on larger machines for less cross talk.
8071 */
029632fb 8072void update_max_interval(void)
49c022e6
PZ
8073{
8074 max_load_balance_interval = HZ*num_online_cpus()/10;
8075}
8076
1e3c88bd
PZ
8077/*
8078 * It checks each scheduling domain to see if it is due to be balanced,
8079 * and initiates a balancing operation if so.
8080 *
b9b0853a 8081 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8082 */
f7ed0a89 8083static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8084{
23f0d209 8085 int continue_balancing = 1;
f7ed0a89 8086 int cpu = rq->cpu;
1e3c88bd 8087 unsigned long interval;
04f733b4 8088 struct sched_domain *sd;
1e3c88bd
PZ
8089 /* Earliest time when we have to do rebalance again */
8090 unsigned long next_balance = jiffies + 60*HZ;
8091 int update_next_balance = 0;
f48627e6
JL
8092 int need_serialize, need_decay = 0;
8093 u64 max_cost = 0;
1e3c88bd 8094
48a16753 8095 update_blocked_averages(cpu);
2069dd75 8096
dce840a0 8097 rcu_read_lock();
1e3c88bd 8098 for_each_domain(cpu, sd) {
f48627e6
JL
8099 /*
8100 * Decay the newidle max times here because this is a regular
8101 * visit to all the domains. Decay ~1% per second.
8102 */
8103 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8104 sd->max_newidle_lb_cost =
8105 (sd->max_newidle_lb_cost * 253) / 256;
8106 sd->next_decay_max_lb_cost = jiffies + HZ;
8107 need_decay = 1;
8108 }
8109 max_cost += sd->max_newidle_lb_cost;
8110
1e3c88bd
PZ
8111 if (!(sd->flags & SD_LOAD_BALANCE))
8112 continue;
8113
f48627e6
JL
8114 /*
8115 * Stop the load balance at this level. There is another
8116 * CPU in our sched group which is doing load balancing more
8117 * actively.
8118 */
8119 if (!continue_balancing) {
8120 if (need_decay)
8121 continue;
8122 break;
8123 }
8124
52a08ef1 8125 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8126
8127 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8128 if (need_serialize) {
8129 if (!spin_trylock(&balancing))
8130 goto out;
8131 }
8132
8133 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8134 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8135 /*
6263322c 8136 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8137 * env->dst_cpu, so we can't know our idle
8138 * state even if we migrated tasks. Update it.
1e3c88bd 8139 */
de5eb2dd 8140 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8141 }
8142 sd->last_balance = jiffies;
52a08ef1 8143 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8144 }
8145 if (need_serialize)
8146 spin_unlock(&balancing);
8147out:
8148 if (time_after(next_balance, sd->last_balance + interval)) {
8149 next_balance = sd->last_balance + interval;
8150 update_next_balance = 1;
8151 }
f48627e6
JL
8152 }
8153 if (need_decay) {
1e3c88bd 8154 /*
f48627e6
JL
8155 * Ensure the rq-wide value also decays but keep it at a
8156 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8157 */
f48627e6
JL
8158 rq->max_idle_balance_cost =
8159 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8160 }
dce840a0 8161 rcu_read_unlock();
1e3c88bd
PZ
8162
8163 /*
8164 * next_balance will be updated only when there is a need.
8165 * When the cpu is attached to null domain for ex, it will not be
8166 * updated.
8167 */
c5afb6a8 8168 if (likely(update_next_balance)) {
1e3c88bd 8169 rq->next_balance = next_balance;
c5afb6a8
VG
8170
8171#ifdef CONFIG_NO_HZ_COMMON
8172 /*
8173 * If this CPU has been elected to perform the nohz idle
8174 * balance. Other idle CPUs have already rebalanced with
8175 * nohz_idle_balance() and nohz.next_balance has been
8176 * updated accordingly. This CPU is now running the idle load
8177 * balance for itself and we need to update the
8178 * nohz.next_balance accordingly.
8179 */
8180 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8181 nohz.next_balance = rq->next_balance;
8182#endif
8183 }
1e3c88bd
PZ
8184}
8185
3451d024 8186#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8187/*
3451d024 8188 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8189 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8190 */
208cb16b 8191static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8192{
208cb16b 8193 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8194 struct rq *rq;
8195 int balance_cpu;
c5afb6a8
VG
8196 /* Earliest time when we have to do rebalance again */
8197 unsigned long next_balance = jiffies + 60*HZ;
8198 int update_next_balance = 0;
83cd4fe2 8199
1c792db7
SS
8200 if (idle != CPU_IDLE ||
8201 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8202 goto end;
83cd4fe2
VP
8203
8204 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8205 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8206 continue;
8207
8208 /*
8209 * If this cpu gets work to do, stop the load balancing
8210 * work being done for other cpus. Next load
8211 * balancing owner will pick it up.
8212 */
1c792db7 8213 if (need_resched())
83cd4fe2 8214 break;
83cd4fe2 8215
5ed4f1d9
VG
8216 rq = cpu_rq(balance_cpu);
8217
ed61bbc6
TC
8218 /*
8219 * If time for next balance is due,
8220 * do the balance.
8221 */
8222 if (time_after_eq(jiffies, rq->next_balance)) {
8223 raw_spin_lock_irq(&rq->lock);
8224 update_rq_clock(rq);
cee1afce 8225 cpu_load_update_idle(rq);
ed61bbc6
TC
8226 raw_spin_unlock_irq(&rq->lock);
8227 rebalance_domains(rq, CPU_IDLE);
8228 }
83cd4fe2 8229
c5afb6a8
VG
8230 if (time_after(next_balance, rq->next_balance)) {
8231 next_balance = rq->next_balance;
8232 update_next_balance = 1;
8233 }
83cd4fe2 8234 }
c5afb6a8
VG
8235
8236 /*
8237 * next_balance will be updated only when there is a need.
8238 * When the CPU is attached to null domain for ex, it will not be
8239 * updated.
8240 */
8241 if (likely(update_next_balance))
8242 nohz.next_balance = next_balance;
1c792db7
SS
8243end:
8244 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8245}
8246
8247/*
0b005cf5 8248 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8249 * of an idle cpu in the system.
0b005cf5 8250 * - This rq has more than one task.
1aaf90a4
VG
8251 * - This rq has at least one CFS task and the capacity of the CPU is
8252 * significantly reduced because of RT tasks or IRQs.
8253 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8254 * multiple busy cpu.
0b005cf5
SS
8255 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8256 * domain span are idle.
83cd4fe2 8257 */
1aaf90a4 8258static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8259{
8260 unsigned long now = jiffies;
0b005cf5 8261 struct sched_domain *sd;
63b2ca30 8262 struct sched_group_capacity *sgc;
4a725627 8263 int nr_busy, cpu = rq->cpu;
1aaf90a4 8264 bool kick = false;
83cd4fe2 8265
4a725627 8266 if (unlikely(rq->idle_balance))
1aaf90a4 8267 return false;
83cd4fe2 8268
1c792db7
SS
8269 /*
8270 * We may be recently in ticked or tickless idle mode. At the first
8271 * busy tick after returning from idle, we will update the busy stats.
8272 */
69e1e811 8273 set_cpu_sd_state_busy();
c1cc017c 8274 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8275
8276 /*
8277 * None are in tickless mode and hence no need for NOHZ idle load
8278 * balancing.
8279 */
8280 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8281 return false;
1c792db7
SS
8282
8283 if (time_before(now, nohz.next_balance))
1aaf90a4 8284 return false;
83cd4fe2 8285
0b005cf5 8286 if (rq->nr_running >= 2)
1aaf90a4 8287 return true;
83cd4fe2 8288
067491b7 8289 rcu_read_lock();
37dc6b50 8290 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8291 if (sd) {
63b2ca30
NP
8292 sgc = sd->groups->sgc;
8293 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8294
1aaf90a4
VG
8295 if (nr_busy > 1) {
8296 kick = true;
8297 goto unlock;
8298 }
8299
83cd4fe2 8300 }
37dc6b50 8301
1aaf90a4
VG
8302 sd = rcu_dereference(rq->sd);
8303 if (sd) {
8304 if ((rq->cfs.h_nr_running >= 1) &&
8305 check_cpu_capacity(rq, sd)) {
8306 kick = true;
8307 goto unlock;
8308 }
8309 }
37dc6b50 8310
1aaf90a4 8311 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8312 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8313 sched_domain_span(sd)) < cpu)) {
8314 kick = true;
8315 goto unlock;
8316 }
067491b7 8317
1aaf90a4 8318unlock:
067491b7 8319 rcu_read_unlock();
1aaf90a4 8320 return kick;
83cd4fe2
VP
8321}
8322#else
208cb16b 8323static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8324#endif
8325
8326/*
8327 * run_rebalance_domains is triggered when needed from the scheduler tick.
8328 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8329 */
1e3c88bd
PZ
8330static void run_rebalance_domains(struct softirq_action *h)
8331{
208cb16b 8332 struct rq *this_rq = this_rq();
6eb57e0d 8333 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8334 CPU_IDLE : CPU_NOT_IDLE;
8335
1e3c88bd 8336 /*
83cd4fe2 8337 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8338 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8339 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8340 * give the idle cpus a chance to load balance. Else we may
8341 * load balance only within the local sched_domain hierarchy
8342 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8343 */
208cb16b 8344 nohz_idle_balance(this_rq, idle);
d4573c3e 8345 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8346}
8347
1e3c88bd
PZ
8348/*
8349 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8350 */
7caff66f 8351void trigger_load_balance(struct rq *rq)
1e3c88bd 8352{
1e3c88bd 8353 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8354 if (unlikely(on_null_domain(rq)))
8355 return;
8356
8357 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8358 raise_softirq(SCHED_SOFTIRQ);
3451d024 8359#ifdef CONFIG_NO_HZ_COMMON
c726099e 8360 if (nohz_kick_needed(rq))
0aeeeeba 8361 nohz_balancer_kick();
83cd4fe2 8362#endif
1e3c88bd
PZ
8363}
8364
0bcdcf28
CE
8365static void rq_online_fair(struct rq *rq)
8366{
8367 update_sysctl();
0e59bdae
KT
8368
8369 update_runtime_enabled(rq);
0bcdcf28
CE
8370}
8371
8372static void rq_offline_fair(struct rq *rq)
8373{
8374 update_sysctl();
a4c96ae3
PB
8375
8376 /* Ensure any throttled groups are reachable by pick_next_task */
8377 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8378}
8379
55e12e5e 8380#endif /* CONFIG_SMP */
e1d1484f 8381
bf0f6f24
IM
8382/*
8383 * scheduler tick hitting a task of our scheduling class:
8384 */
8f4d37ec 8385static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8386{
8387 struct cfs_rq *cfs_rq;
8388 struct sched_entity *se = &curr->se;
8389
8390 for_each_sched_entity(se) {
8391 cfs_rq = cfs_rq_of(se);
8f4d37ec 8392 entity_tick(cfs_rq, se, queued);
bf0f6f24 8393 }
18bf2805 8394
b52da86e 8395 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8396 task_tick_numa(rq, curr);
bf0f6f24
IM
8397}
8398
8399/*
cd29fe6f
PZ
8400 * called on fork with the child task as argument from the parent's context
8401 * - child not yet on the tasklist
8402 * - preemption disabled
bf0f6f24 8403 */
cd29fe6f 8404static void task_fork_fair(struct task_struct *p)
bf0f6f24 8405{
4fc420c9
DN
8406 struct cfs_rq *cfs_rq;
8407 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8408 struct rq *rq = this_rq();
bf0f6f24 8409
e210bffd 8410 raw_spin_lock(&rq->lock);
861d034e
PZ
8411 update_rq_clock(rq);
8412
4fc420c9
DN
8413 cfs_rq = task_cfs_rq(current);
8414 curr = cfs_rq->curr;
e210bffd
PZ
8415 if (curr) {
8416 update_curr(cfs_rq);
b5d9d734 8417 se->vruntime = curr->vruntime;
e210bffd 8418 }
aeb73b04 8419 place_entity(cfs_rq, se, 1);
4d78e7b6 8420
cd29fe6f 8421 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8422 /*
edcb60a3
IM
8423 * Upon rescheduling, sched_class::put_prev_task() will place
8424 * 'current' within the tree based on its new key value.
8425 */
4d78e7b6 8426 swap(curr->vruntime, se->vruntime);
8875125e 8427 resched_curr(rq);
4d78e7b6 8428 }
bf0f6f24 8429
88ec22d3 8430 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8431 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8432}
8433
cb469845
SR
8434/*
8435 * Priority of the task has changed. Check to see if we preempt
8436 * the current task.
8437 */
da7a735e
PZ
8438static void
8439prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8440{
da0c1e65 8441 if (!task_on_rq_queued(p))
da7a735e
PZ
8442 return;
8443
cb469845
SR
8444 /*
8445 * Reschedule if we are currently running on this runqueue and
8446 * our priority decreased, or if we are not currently running on
8447 * this runqueue and our priority is higher than the current's
8448 */
da7a735e 8449 if (rq->curr == p) {
cb469845 8450 if (p->prio > oldprio)
8875125e 8451 resched_curr(rq);
cb469845 8452 } else
15afe09b 8453 check_preempt_curr(rq, p, 0);
cb469845
SR
8454}
8455
daa59407 8456static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8457{
8458 struct sched_entity *se = &p->se;
da7a735e
PZ
8459
8460 /*
daa59407
BP
8461 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8462 * the dequeue_entity(.flags=0) will already have normalized the
8463 * vruntime.
8464 */
8465 if (p->on_rq)
8466 return true;
8467
8468 /*
8469 * When !on_rq, vruntime of the task has usually NOT been normalized.
8470 * But there are some cases where it has already been normalized:
da7a735e 8471 *
daa59407
BP
8472 * - A forked child which is waiting for being woken up by
8473 * wake_up_new_task().
8474 * - A task which has been woken up by try_to_wake_up() and
8475 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8476 */
daa59407
BP
8477 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8478 return true;
8479
8480 return false;
8481}
8482
8483static void detach_task_cfs_rq(struct task_struct *p)
8484{
8485 struct sched_entity *se = &p->se;
8486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8487 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8488
8489 if (!vruntime_normalized(p)) {
da7a735e
PZ
8490 /*
8491 * Fix up our vruntime so that the current sleep doesn't
8492 * cause 'unlimited' sleep bonus.
8493 */
8494 place_entity(cfs_rq, se, 0);
8495 se->vruntime -= cfs_rq->min_vruntime;
8496 }
9ee474f5 8497
9d89c257 8498 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8499 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8500 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8501 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8502}
8503
daa59407 8504static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8505{
f36c019c 8506 struct sched_entity *se = &p->se;
daa59407 8507 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8508 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8509
8510#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8511 /*
8512 * Since the real-depth could have been changed (only FAIR
8513 * class maintain depth value), reset depth properly.
8514 */
8515 se->depth = se->parent ? se->parent->depth + 1 : 0;
8516#endif
7855a35a 8517
6efdb105 8518 /* Synchronize task with its cfs_rq */
7c3edd2c 8519 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8520 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8521 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8522
8523 if (!vruntime_normalized(p))
8524 se->vruntime += cfs_rq->min_vruntime;
8525}
6efdb105 8526
daa59407
BP
8527static void switched_from_fair(struct rq *rq, struct task_struct *p)
8528{
8529 detach_task_cfs_rq(p);
8530}
8531
8532static void switched_to_fair(struct rq *rq, struct task_struct *p)
8533{
8534 attach_task_cfs_rq(p);
7855a35a 8535
daa59407 8536 if (task_on_rq_queued(p)) {
7855a35a 8537 /*
daa59407
BP
8538 * We were most likely switched from sched_rt, so
8539 * kick off the schedule if running, otherwise just see
8540 * if we can still preempt the current task.
7855a35a 8541 */
daa59407
BP
8542 if (rq->curr == p)
8543 resched_curr(rq);
8544 else
8545 check_preempt_curr(rq, p, 0);
7855a35a 8546 }
cb469845
SR
8547}
8548
83b699ed
SV
8549/* Account for a task changing its policy or group.
8550 *
8551 * This routine is mostly called to set cfs_rq->curr field when a task
8552 * migrates between groups/classes.
8553 */
8554static void set_curr_task_fair(struct rq *rq)
8555{
8556 struct sched_entity *se = &rq->curr->se;
8557
ec12cb7f
PT
8558 for_each_sched_entity(se) {
8559 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8560
8561 set_next_entity(cfs_rq, se);
8562 /* ensure bandwidth has been allocated on our new cfs_rq */
8563 account_cfs_rq_runtime(cfs_rq, 0);
8564 }
83b699ed
SV
8565}
8566
029632fb
PZ
8567void init_cfs_rq(struct cfs_rq *cfs_rq)
8568{
8569 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8570 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8571#ifndef CONFIG_64BIT
8572 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8573#endif
141965c7 8574#ifdef CONFIG_SMP
9d89c257
YD
8575 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8576 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8577#endif
029632fb
PZ
8578}
8579
810b3817 8580#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8581static void task_set_group_fair(struct task_struct *p)
8582{
8583 struct sched_entity *se = &p->se;
8584
8585 set_task_rq(p, task_cpu(p));
8586 se->depth = se->parent ? se->parent->depth + 1 : 0;
8587}
8588
bc54da21 8589static void task_move_group_fair(struct task_struct *p)
810b3817 8590{
daa59407 8591 detach_task_cfs_rq(p);
b2b5ce02 8592 set_task_rq(p, task_cpu(p));
6efdb105
BP
8593
8594#ifdef CONFIG_SMP
8595 /* Tell se's cfs_rq has been changed -- migrated */
8596 p->se.avg.last_update_time = 0;
8597#endif
daa59407 8598 attach_task_cfs_rq(p);
810b3817 8599}
029632fb 8600
ea86cb4b
VG
8601static void task_change_group_fair(struct task_struct *p, int type)
8602{
8603 switch (type) {
8604 case TASK_SET_GROUP:
8605 task_set_group_fair(p);
8606 break;
8607
8608 case TASK_MOVE_GROUP:
8609 task_move_group_fair(p);
8610 break;
8611 }
8612}
8613
029632fb
PZ
8614void free_fair_sched_group(struct task_group *tg)
8615{
8616 int i;
8617
8618 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8619
8620 for_each_possible_cpu(i) {
8621 if (tg->cfs_rq)
8622 kfree(tg->cfs_rq[i]);
6fe1f348 8623 if (tg->se)
029632fb
PZ
8624 kfree(tg->se[i]);
8625 }
8626
8627 kfree(tg->cfs_rq);
8628 kfree(tg->se);
8629}
8630
8631int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8632{
029632fb 8633 struct sched_entity *se;
b7fa30c9
PZ
8634 struct cfs_rq *cfs_rq;
8635 struct rq *rq;
029632fb
PZ
8636 int i;
8637
8638 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8639 if (!tg->cfs_rq)
8640 goto err;
8641 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8642 if (!tg->se)
8643 goto err;
8644
8645 tg->shares = NICE_0_LOAD;
8646
8647 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8648
8649 for_each_possible_cpu(i) {
b7fa30c9
PZ
8650 rq = cpu_rq(i);
8651
029632fb
PZ
8652 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8653 GFP_KERNEL, cpu_to_node(i));
8654 if (!cfs_rq)
8655 goto err;
8656
8657 se = kzalloc_node(sizeof(struct sched_entity),
8658 GFP_KERNEL, cpu_to_node(i));
8659 if (!se)
8660 goto err_free_rq;
8661
8662 init_cfs_rq(cfs_rq);
8663 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8664 init_entity_runnable_average(se);
029632fb
PZ
8665 }
8666
8667 return 1;
8668
8669err_free_rq:
8670 kfree(cfs_rq);
8671err:
8672 return 0;
8673}
8674
8663e24d
PZ
8675void online_fair_sched_group(struct task_group *tg)
8676{
8677 struct sched_entity *se;
8678 struct rq *rq;
8679 int i;
8680
8681 for_each_possible_cpu(i) {
8682 rq = cpu_rq(i);
8683 se = tg->se[i];
8684
8685 raw_spin_lock_irq(&rq->lock);
8686 post_init_entity_util_avg(se);
55e16d30 8687 sync_throttle(tg, i);
8663e24d
PZ
8688 raw_spin_unlock_irq(&rq->lock);
8689 }
8690}
8691
6fe1f348 8692void unregister_fair_sched_group(struct task_group *tg)
029632fb 8693{
029632fb 8694 unsigned long flags;
6fe1f348
PZ
8695 struct rq *rq;
8696 int cpu;
029632fb 8697
6fe1f348
PZ
8698 for_each_possible_cpu(cpu) {
8699 if (tg->se[cpu])
8700 remove_entity_load_avg(tg->se[cpu]);
029632fb 8701
6fe1f348
PZ
8702 /*
8703 * Only empty task groups can be destroyed; so we can speculatively
8704 * check on_list without danger of it being re-added.
8705 */
8706 if (!tg->cfs_rq[cpu]->on_list)
8707 continue;
8708
8709 rq = cpu_rq(cpu);
8710
8711 raw_spin_lock_irqsave(&rq->lock, flags);
8712 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8713 raw_spin_unlock_irqrestore(&rq->lock, flags);
8714 }
029632fb
PZ
8715}
8716
8717void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8718 struct sched_entity *se, int cpu,
8719 struct sched_entity *parent)
8720{
8721 struct rq *rq = cpu_rq(cpu);
8722
8723 cfs_rq->tg = tg;
8724 cfs_rq->rq = rq;
029632fb
PZ
8725 init_cfs_rq_runtime(cfs_rq);
8726
8727 tg->cfs_rq[cpu] = cfs_rq;
8728 tg->se[cpu] = se;
8729
8730 /* se could be NULL for root_task_group */
8731 if (!se)
8732 return;
8733
fed14d45 8734 if (!parent) {
029632fb 8735 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8736 se->depth = 0;
8737 } else {
029632fb 8738 se->cfs_rq = parent->my_q;
fed14d45
PZ
8739 se->depth = parent->depth + 1;
8740 }
029632fb
PZ
8741
8742 se->my_q = cfs_rq;
0ac9b1c2
PT
8743 /* guarantee group entities always have weight */
8744 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8745 se->parent = parent;
8746}
8747
8748static DEFINE_MUTEX(shares_mutex);
8749
8750int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8751{
8752 int i;
8753 unsigned long flags;
8754
8755 /*
8756 * We can't change the weight of the root cgroup.
8757 */
8758 if (!tg->se[0])
8759 return -EINVAL;
8760
8761 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8762
8763 mutex_lock(&shares_mutex);
8764 if (tg->shares == shares)
8765 goto done;
8766
8767 tg->shares = shares;
8768 for_each_possible_cpu(i) {
8769 struct rq *rq = cpu_rq(i);
8770 struct sched_entity *se;
8771
8772 se = tg->se[i];
8773 /* Propagate contribution to hierarchy */
8774 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8775
8776 /* Possible calls to update_curr() need rq clock */
8777 update_rq_clock(rq);
17bc14b7 8778 for_each_sched_entity(se)
029632fb
PZ
8779 update_cfs_shares(group_cfs_rq(se));
8780 raw_spin_unlock_irqrestore(&rq->lock, flags);
8781 }
8782
8783done:
8784 mutex_unlock(&shares_mutex);
8785 return 0;
8786}
8787#else /* CONFIG_FAIR_GROUP_SCHED */
8788
8789void free_fair_sched_group(struct task_group *tg) { }
8790
8791int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8792{
8793 return 1;
8794}
8795
8663e24d
PZ
8796void online_fair_sched_group(struct task_group *tg) { }
8797
6fe1f348 8798void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8799
8800#endif /* CONFIG_FAIR_GROUP_SCHED */
8801
810b3817 8802
6d686f45 8803static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8804{
8805 struct sched_entity *se = &task->se;
0d721cea
PW
8806 unsigned int rr_interval = 0;
8807
8808 /*
8809 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8810 * idle runqueue:
8811 */
0d721cea 8812 if (rq->cfs.load.weight)
a59f4e07 8813 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8814
8815 return rr_interval;
8816}
8817
bf0f6f24
IM
8818/*
8819 * All the scheduling class methods:
8820 */
029632fb 8821const struct sched_class fair_sched_class = {
5522d5d5 8822 .next = &idle_sched_class,
bf0f6f24
IM
8823 .enqueue_task = enqueue_task_fair,
8824 .dequeue_task = dequeue_task_fair,
8825 .yield_task = yield_task_fair,
d95f4122 8826 .yield_to_task = yield_to_task_fair,
bf0f6f24 8827
2e09bf55 8828 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8829
8830 .pick_next_task = pick_next_task_fair,
8831 .put_prev_task = put_prev_task_fair,
8832
681f3e68 8833#ifdef CONFIG_SMP
4ce72a2c 8834 .select_task_rq = select_task_rq_fair,
0a74bef8 8835 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8836
0bcdcf28
CE
8837 .rq_online = rq_online_fair,
8838 .rq_offline = rq_offline_fair,
88ec22d3 8839
12695578 8840 .task_dead = task_dead_fair,
c5b28038 8841 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8842#endif
bf0f6f24 8843
83b699ed 8844 .set_curr_task = set_curr_task_fair,
bf0f6f24 8845 .task_tick = task_tick_fair,
cd29fe6f 8846 .task_fork = task_fork_fair,
cb469845
SR
8847
8848 .prio_changed = prio_changed_fair,
da7a735e 8849 .switched_from = switched_from_fair,
cb469845 8850 .switched_to = switched_to_fair,
810b3817 8851
0d721cea
PW
8852 .get_rr_interval = get_rr_interval_fair,
8853
6e998916
SG
8854 .update_curr = update_curr_fair,
8855
810b3817 8856#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8857 .task_change_group = task_change_group_fair,
810b3817 8858#endif
bf0f6f24
IM
8859};
8860
8861#ifdef CONFIG_SCHED_DEBUG
029632fb 8862void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8863{
bf0f6f24
IM
8864 struct cfs_rq *cfs_rq;
8865
5973e5b9 8866 rcu_read_lock();
c3b64f1e 8867 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8868 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8869 rcu_read_unlock();
bf0f6f24 8870}
397f2378
SD
8871
8872#ifdef CONFIG_NUMA_BALANCING
8873void show_numa_stats(struct task_struct *p, struct seq_file *m)
8874{
8875 int node;
8876 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8877
8878 for_each_online_node(node) {
8879 if (p->numa_faults) {
8880 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8881 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8882 }
8883 if (p->numa_group) {
8884 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8885 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8886 }
8887 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8888 }
8889}
8890#endif /* CONFIG_NUMA_BALANCING */
8891#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8892
8893__init void init_sched_fair_class(void)
8894{
8895#ifdef CONFIG_SMP
8896 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8897
3451d024 8898#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8899 nohz.next_balance = jiffies;
029632fb 8900 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8901#endif
8902#endif /* SMP */
8903
8904}