]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/cgroup: Fix/cleanup cgroup teardown/init
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
cb251765
MG
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780}
3ea94de1 781
bf0f6f24
IM
782/*
783 * Task is being enqueued - update stats:
784 */
cb251765
MG
785static inline void
786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 787{
bf0f6f24
IM
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
429d43bc 792 if (se != cfs_rq->curr)
5870db5b 793 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
794}
795
bf0f6f24 796static inline void
cb251765 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 798{
bf0f6f24
IM
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
429d43bc 803 if (se != cfs_rq->curr)
9ef0a961 804 update_stats_wait_end(cfs_rq, se);
cb251765
MG
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817}
818#else
819static inline void
820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821{
822}
823
824static inline void
825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827}
828
829static inline void
830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832}
833
834static inline void
835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836{
bf0f6f24 837}
cb251765 838#endif
bf0f6f24
IM
839
840/*
841 * We are picking a new current task - update its stats:
842 */
843static inline void
79303e9e 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
845{
846 /*
847 * We are starting a new run period:
848 */
78becc27 849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
850}
851
bf0f6f24
IM
852/**************************************************
853 * Scheduling class queueing methods:
854 */
855
cbee9f88
PZ
856#ifdef CONFIG_NUMA_BALANCING
857/*
598f0ec0
MG
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
cbee9f88 861 */
598f0ec0
MG
862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
864
865/* Portion of address space to scan in MB */
866unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 867
4b96a29b
PZ
868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
598f0ec0
MG
871static unsigned int task_nr_scan_windows(struct task_struct *p)
872{
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888}
889
890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891#define MAX_SCAN_WINDOW 2560
892
893static unsigned int task_scan_min(struct task_struct *p)
894{
316c1608 895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
64192658
KT
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905}
906
907static unsigned int task_scan_max(struct task_struct *p)
908{
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915}
916
0ec8aa00
PZ
917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918{
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921}
922
923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924{
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927}
928
8c8a743c
PZ
929struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
e29cf08b 934 pid_t gid;
4142c3eb 935 int active_nodes;
8c8a743c
PZ
936
937 struct rcu_head rcu;
989348b5 938 unsigned long total_faults;
4142c3eb 939 unsigned long max_faults_cpu;
7e2703e6
RR
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
50ec8a40 945 unsigned long *faults_cpu;
989348b5 946 unsigned long faults[0];
8c8a743c
PZ
947};
948
be1e4e76
RR
949/* Shared or private faults. */
950#define NR_NUMA_HINT_FAULT_TYPES 2
951
952/* Memory and CPU locality */
953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955/* Averaged statistics, and temporary buffers. */
956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
e29cf08b
MG
958pid_t task_numa_group_id(struct task_struct *p)
959{
960 return p->numa_group ? p->numa_group->gid : 0;
961}
962
44dba3d5
IM
963/*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 970{
44dba3d5 971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
972}
973
974static inline unsigned long task_faults(struct task_struct *p, int nid)
975{
44dba3d5 976 if (!p->numa_faults)
ac8e895b
MG
977 return 0;
978
44dba3d5
IM
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
981}
982
83e1d2cd
MG
983static inline unsigned long group_faults(struct task_struct *p, int nid)
984{
985 if (!p->numa_group)
986 return 0;
987
44dba3d5
IM
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
990}
991
20e07dea
RR
992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993{
44dba3d5
IM
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
996}
997
4142c3eb
RR
998/*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
6c6b1193
RR
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013{
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073}
1074
83e1d2cd
MG
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
7bd95320
RR
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
83e1d2cd 1083{
7bd95320 1084 unsigned long faults, total_faults;
83e1d2cd 1085
44dba3d5 1086 if (!p->numa_faults)
83e1d2cd
MG
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
7bd95320 1094 faults = task_faults(p, nid);
6c6b1193
RR
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
7bd95320 1097 return 1000 * faults / total_faults;
83e1d2cd
MG
1098}
1099
7bd95320
RR
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
83e1d2cd 1102{
7bd95320
RR
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
83e1d2cd
MG
1111 return 0;
1112
7bd95320 1113 faults = group_faults(p, nid);
6c6b1193
RR
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
7bd95320 1116 return 1000 * faults / total_faults;
83e1d2cd
MG
1117}
1118
10f39042
RR
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121{
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
4142c3eb
RR
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
10f39042 1161 */
4142c3eb
RR
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
10f39042
RR
1164 return true;
1165
1166 /*
4142c3eb
RR
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
10f39042 1173 */
4142c3eb
RR
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1176}
1177
e6628d5b 1178static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
ced549fa 1181static unsigned long capacity_of(int cpu);
58d081b5
MG
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
fb13c7ee 1184/* Cached statistics for all CPUs within a node */
58d081b5 1185struct numa_stats {
fb13c7ee 1186 unsigned long nr_running;
58d081b5 1187 unsigned long load;
fb13c7ee
MG
1188
1189 /* Total compute capacity of CPUs on a node */
5ef20ca1 1190 unsigned long compute_capacity;
fb13c7ee
MG
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1193 unsigned long task_capacity;
1b6a7495 1194 int has_free_capacity;
58d081b5 1195};
e6628d5b 1196
fb13c7ee
MG
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
83d7f242
RR
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
fb13c7ee
MG
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
ced549fa 1211 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1212
1213 cpus++;
fb13c7ee
MG
1214 }
1215
5eca82a9
PZ
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1b6a7495
NP
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
5eca82a9
PZ
1223 */
1224 if (!cpus)
1225 return;
1226
83d7f242
RR
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1234}
1235
58d081b5
MG
1236struct task_numa_env {
1237 struct task_struct *p;
e6628d5b 1238
58d081b5
MG
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
e6628d5b 1241
58d081b5 1242 struct numa_stats src_stats, dst_stats;
e6628d5b 1243
40ea2b42 1244 int imbalance_pct;
7bd95320 1245 int dist;
fb13c7ee
MG
1246
1247 struct task_struct *best_task;
1248 long best_imp;
58d081b5
MG
1249 int best_cpu;
1250};
1251
fb13c7ee
MG
1252static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254{
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
fb13c7ee
MG
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261}
1262
28a21745 1263static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1264 struct task_numa_env *env)
1265{
e4991b24
RR
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
28a21745
RR
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1279
1280 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
e63da036
RR
1283
1284 /* Is the difference below the threshold? */
e4991b24
RR
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
e4991b24 1292 * Compare it with the old imbalance.
e63da036 1293 */
28a21745 1294 orig_src_load = env->src_stats.load;
e4991b24 1295 orig_dst_load = env->dst_stats.load;
28a21745 1296
e4991b24
RR
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
e63da036 1299
e4991b24
RR
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
e63da036
RR
1305}
1306
fb13c7ee
MG
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
887c290e
RR
1313static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
fb13c7ee
MG
1315{
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
28a21745 1319 long src_load, dst_load;
fb13c7ee 1320 long load;
1c5d3eb3 1321 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1322 long moveimp = imp;
7bd95320 1323 int dist = env->dist;
1dff76b9 1324 bool assigned = false;
fb13c7ee
MG
1325
1326 rcu_read_lock();
1effd9f1
KT
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1dff76b9 1331 * No need to move the exiting task or idle task.
1effd9f1
KT
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1334 cur = NULL;
1dff76b9
GG
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1effd9f1 1348 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1349
7af68335
PZ
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
fb13c7ee
MG
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
887c290e
RR
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1371 * in any group then look only at task weights.
887c290e 1372 */
ca28aa53 1373 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
887c290e 1382 } else {
ca28aa53
RR
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
ca28aa53 1388 if (cur->numa_group)
7bd95320
RR
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
ca28aa53 1391 else
7bd95320
RR
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
887c290e 1394 }
fb13c7ee
MG
1395 }
1396
0132c3e1 1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
b932c03c 1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1403 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
fb13c7ee
MG
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417balance:
e720fff6
PZ
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
fb13c7ee 1421
0132c3e1
RR
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1dff76b9 1431 put_task_struct(cur);
0132c3e1
RR
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
fb13c7ee 1440 if (cur) {
e720fff6
PZ
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
fb13c7ee
MG
1444 }
1445
28a21745 1446 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1447 goto unlock;
1448
ba7e5a27
RR
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
fb13c7ee 1456assign:
1dff76b9 1457 assigned = true;
fb13c7ee
MG
1458 task_numa_assign(env, cur, imp);
1459unlock:
1460 rcu_read_unlock();
1dff76b9
GG
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
fb13c7ee
MG
1467}
1468
887c290e
RR
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
2c8a50aa
MG
1471{
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
887c290e 1480 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1481 }
1482}
1483
6f9aad0b
RR
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
44dcb04f
SD
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1504 return true;
1505
1506 return false;
1507}
1508
58d081b5
MG
1509static int task_numa_migrate(struct task_struct *p)
1510{
58d081b5
MG
1511 struct task_numa_env env = {
1512 .p = p,
fb13c7ee 1513
58d081b5 1514 .src_cpu = task_cpu(p),
b32e86b4 1515 .src_nid = task_node(p),
fb13c7ee
MG
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
4142c3eb 1521 .best_cpu = -1,
58d081b5
MG
1522 };
1523 struct sched_domain *sd;
887c290e 1524 unsigned long taskweight, groupweight;
7bd95320 1525 int nid, ret, dist;
887c290e 1526 long taskimp, groupimp;
e6628d5b 1527
58d081b5 1528 /*
fb13c7ee
MG
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
58d081b5
MG
1535 */
1536 rcu_read_lock();
fb13c7ee 1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1540 rcu_read_unlock();
1541
46a73e8a
RR
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
de1b301a 1549 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1550 return -EINVAL;
1551 }
1552
2c8a50aa 1553 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1560 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1561
a43455a1 1562 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1565
9de05d48
RR
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
4142c3eb 1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
58d081b5 1577
7bd95320 1578 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
7bd95320 1584
83e1d2cd 1585 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1588 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1589 continue;
1590
7bd95320 1591 env.dist = dist;
2c8a50aa
MG
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1596 }
1597 }
1598
68d1b02a
RR
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
db015dae 1607 if (p->numa_group) {
4142c3eb
RR
1608 struct numa_group *ng = p->numa_group;
1609
db015dae
RR
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
4142c3eb 1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
0ec8aa00 1622
04bb2f94
RR
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
fb13c7ee 1629 if (env.best_task == NULL) {
286549dc
MG
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
286549dc
MG
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1639 put_task_struct(env.best_task);
1640 return ret;
e6628d5b
MG
1641}
1642
6b9a7460
MG
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
5085e2a3
RR
1646 unsigned long interval = HZ;
1647
2739d3ee 1648 /* This task has no NUMA fault statistics yet */
44dba3d5 1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1650 return;
1651
2739d3ee 1652 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1655
1656 /* Success if task is already running on preferred CPU */
de1b301a 1657 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1661 task_numa_migrate(p);
6b9a7460
MG
1662}
1663
20e07dea 1664/*
4142c3eb 1665 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
20e07dea 1669 */
4142c3eb 1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1671{
1672 unsigned long faults, max_faults = 0;
4142c3eb 1673 int nid, active_nodes = 0;
20e07dea
RR
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
20e07dea 1685 }
4142c3eb
RR
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
20e07dea
RR
1689}
1690
04bb2f94
RR
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1697 */
1698#define NUMA_PERIOD_SLOTS 10
a22b4b01 1699#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709{
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
074c2381
MG
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
04bb2f94 1723 */
074c2381 1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
2847c90e 1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
7e2703e6
RR
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
9d89c257
YD
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
7e2703e6
RR
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793}
1794
54009416
RR
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
81907478 1842 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1876 if (!max_faults)
1877 break;
54009416
RR
1878 nodes = max_group;
1879 }
1880 return nid;
1881}
1882
cbee9f88
PZ
1883static void task_numa_placement(struct task_struct *p)
1884{
83e1d2cd
MG
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1887 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1888 unsigned long total_faults;
1889 u64 runtime, period;
7dbd13ed 1890 spinlock_t *group_lock = NULL;
cbee9f88 1891
7e5a2c17
JL
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
316c1608 1897 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
598f0ec0 1901 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1902
7e2703e6
RR
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
7dbd13ed
MG
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
60e69eed 1910 spin_lock_irq(group_lock);
7dbd13ed
MG
1911 }
1912
688b7585
MG
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
44dba3d5
IM
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1917 unsigned long faults = 0, group_faults = 0;
44dba3d5 1918 int priv;
745d6147 1919
be1e4e76 1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1921 long diff, f_diff, f_weight;
8c8a743c 1922
44dba3d5
IM
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1927
ac8e895b 1928 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1932
7e2703e6
RR
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1942 (total_faults + 1);
44dba3d5
IM
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1945
44dba3d5
IM
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
83e1d2cd 1949 p->total_numa_faults += diff;
8c8a743c 1950 if (p->numa_group) {
44dba3d5
IM
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1960 p->numa_group->total_faults += diff;
44dba3d5 1961 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1962 }
ac8e895b
MG
1963 }
1964
688b7585
MG
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
83e1d2cd
MG
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
04bb2f94
RR
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
7dbd13ed 1978 if (p->numa_group) {
4142c3eb 1979 numa_group_count_active_nodes(p->numa_group);
60e69eed 1980 spin_unlock_irq(group_lock);
54009416 1981 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1982 }
1983
bb97fc31
RR
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
3a7053b3 1991 }
cbee9f88
PZ
1992}
1993
8c8a743c
PZ
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996 return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003}
2004
3e6a9418
MG
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
8c8a743c
PZ
2007{
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2016 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
8c8a743c 2025 spin_lock_init(&grp->lock);
e29cf08b 2026 grp->gid = p->pid;
50ec8a40 2027 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
8c8a743c 2030
be1e4e76 2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2032 grp->faults[i] = p->numa_faults[i];
8c8a743c 2033
989348b5 2034 grp->total_faults = p->total_numa_faults;
83e1d2cd 2035
8c8a743c
PZ
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
316c1608 2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2044 goto no_join;
8c8a743c
PZ
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
3354781a 2048 goto no_join;
8c8a743c
PZ
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
3354781a 2052 goto no_join;
8c8a743c
PZ
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2059 goto no_join;
8c8a743c
PZ
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2065 goto no_join;
8c8a743c 2066
dabe1d99
RR
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
8c8a743c 2074
3e6a9418
MG
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
dabe1d99 2078 if (join && !get_numa_group(grp))
3354781a 2079 goto no_join;
8c8a743c 2080
8c8a743c
PZ
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
60e69eed
MG
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2088
be1e4e76 2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
8c8a743c 2092 }
989348b5
MG
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
8c8a743c 2095
8c8a743c
PZ
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
60e69eed 2100 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
3354781a
PZ
2105 return;
2106
2107no_join:
2108 rcu_read_unlock();
2109 return;
8c8a743c
PZ
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114 struct numa_group *grp = p->numa_group;
44dba3d5 2115 void *numa_faults = p->numa_faults;
e9dd685c
SR
2116 unsigned long flags;
2117 int i;
8c8a743c
PZ
2118
2119 if (grp) {
e9dd685c 2120 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2122 grp->faults[i] -= p->numa_faults[i];
989348b5 2123 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2124
8c8a743c 2125 grp->nr_tasks--;
e9dd685c 2126 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2127 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2128 put_numa_group(grp);
2129 }
2130
44dba3d5 2131 p->numa_faults = NULL;
82727018 2132 kfree(numa_faults);
8c8a743c
PZ
2133}
2134
cbee9f88
PZ
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
58b46da3 2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2139{
2140 struct task_struct *p = current;
6688cc05 2141 bool migrated = flags & TNF_MIGRATED;
58b46da3 2142 int cpu_node = task_node(current);
792568ec 2143 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2144 struct numa_group *ng;
ac8e895b 2145 int priv;
cbee9f88 2146
2a595721 2147 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2148 return;
2149
9ff1d9ff
MG
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
f809ca9a 2154 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
be1e4e76 2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2158
44dba3d5
IM
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
f809ca9a 2161 return;
745d6147 2162
83e1d2cd 2163 p->total_numa_faults = 0;
04bb2f94 2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2165 }
cbee9f88 2166
8c8a743c
PZ
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2175 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2176 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2177 }
2178
792568ec
RR
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
4142c3eb
RR
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
792568ec
RR
2189 local = 1;
2190
cbee9f88 2191 task_numa_placement(p);
f809ca9a 2192
2739d3ee
RR
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2198 numa_migrate_preferred(p);
2199
b32e86b4
IM
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
074c2381
MG
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
b32e86b4 2204
44dba3d5
IM
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2207 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2208}
2209
6e5fb223
PZ
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
7e5a2c17
JL
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
316c1608 2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2221 p->mm->numa_scan_offset = 0;
2222}
2223
cbee9f88
PZ
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
51170840 2233 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2234 struct vm_area_struct *vma;
9f40604c 2235 unsigned long start, end;
598f0ec0 2236 unsigned long nr_pte_updates = 0;
4620f8c1 2237 long pages, virtpages;
cbee9f88
PZ
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
930aa174 2253 if (!mm->numa_next_scan) {
7e8d16b6
MG
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2256 }
2257
cbee9f88
PZ
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
598f0ec0
MG
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
cbee9f88 2269
fb003b80 2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
19a78d11
PZ
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
9f40604c
MG
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2283 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2284 if (!pages)
2285 return;
cbee9f88 2286
4620f8c1 2287
6e5fb223 2288 down_read(&mm->mmap_sem);
9f40604c 2289 vma = find_vma(mm, start);
6e5fb223
PZ
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
9f40604c 2292 start = 0;
6e5fb223
PZ
2293 vma = mm->mmap;
2294 }
9f40604c 2295 for (; vma; vma = vma->vm_next) {
6b79c57b 2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2298 continue;
6b79c57b 2299 }
6e5fb223 2300
4591ce4f
MG
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
3c67f474
MG
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
4591ce4f 2317
9f40604c
MG
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
4620f8c1 2322 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2323
2324 /*
4620f8c1
RR
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
598f0ec0
MG
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2334 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2335
9f40604c 2336 start = end;
4620f8c1 2337 if (pages <= 0 || virtpages <= 0)
9f40604c 2338 goto out;
3cf1962c
RR
2339
2340 cond_resched();
9f40604c 2341 } while (end != vma->vm_end);
cbee9f88 2342 }
6e5fb223 2343
9f40604c 2344out:
6e5fb223 2345 /*
c69307d5
PZ
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
6e5fb223
PZ
2350 */
2351 if (vma)
9f40604c 2352 mm->numa_scan_offset = start;
6e5fb223
PZ
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
51170840
RR
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
cbee9f88
PZ
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
25b3e5a3 2392 if (now > curr->node_stamp + period) {
4b96a29b 2393 if (!curr->node_stamp)
598f0ec0 2394 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2395 curr->node_stamp += period;
cbee9f88
PZ
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
0ec8aa00
PZ
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
cbee9f88
PZ
2415#endif /* CONFIG_NUMA_BALANCING */
2416
30cfdcfc
DA
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2421 if (!parent_entity(se))
029632fb 2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2423#ifdef CONFIG_SMP
0ec8aa00
PZ
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
367456c7 2430#endif
30cfdcfc 2431 cfs_rq->nr_running++;
30cfdcfc
DA
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2438 if (!parent_entity(se))
029632fb 2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2442 list_del_init(&se->group_node);
0ec8aa00 2443 }
30cfdcfc 2444 cfs_rq->nr_running--;
30cfdcfc
DA
2445}
2446
3ff6dcac
YZ
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448# ifdef CONFIG_SMP
cf5f0acf
PZ
2449static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450{
2451 long tg_weight;
2452
2453 /*
9d89c257
YD
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2457 */
bf5b986e 2458 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2460 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2461
2462 return tg_weight;
2463}
2464
6d5ab293 2465static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2466{
cf5f0acf 2467 long tg_weight, load, shares;
3ff6dcac 2468
cf5f0acf 2469 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2470 load = cfs_rq->load.weight;
3ff6dcac 2471
3ff6dcac 2472 shares = (tg->shares * load);
cf5f0acf
PZ
2473 if (tg_weight)
2474 shares /= tg_weight;
3ff6dcac
YZ
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482}
3ff6dcac 2483# else /* CONFIG_SMP */
6d5ab293 2484static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2485{
2486 return tg->shares;
2487}
3ff6dcac 2488# endif /* CONFIG_SMP */
2069dd75
PZ
2489static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491{
19e5eebb
PT
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2069dd75 2496 account_entity_dequeue(cfs_rq, se);
19e5eebb 2497 }
2069dd75
PZ
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503}
2504
82958366
PT
2505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
6d5ab293 2507static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2508{
2509 struct task_group *tg;
2510 struct sched_entity *se;
3ff6dcac 2511 long shares;
2069dd75 2512
2069dd75
PZ
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2515 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2516 return;
3ff6dcac
YZ
2517#ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520#endif
6d5ab293 2521 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524}
2525#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2526static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2527{
2528}
2529#endif /* CONFIG_FAIR_GROUP_SCHED */
2530
141965c7 2531#ifdef CONFIG_SMP
5b51f2f8
PT
2532/* Precomputed fixed inverse multiplies for multiplication by y^n */
2533static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540};
2541
2542/*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550};
2551
9d85f21c
PT
2552/*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556static __always_inline u64 decay_load(u64 val, u64 n)
2557{
5b51f2f8
PT
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2578 }
2579
9d89c257
YD
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
5b51f2f8
PT
2582}
2583
2584/*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591static u32 __compute_runnable_contrib(u64 n)
2592{
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2610}
2611
006cdf02
PZ
2612#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613#error "load tracking assumes 2^10 as unit"
2614#endif
2615
54a21385 2616#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2617
9d85f21c
PT
2618/*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
9d89c257
YD
2646static __always_inline int
2647__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2649{
e0f5f3af 2650 u64 delta, scaled_delta, periods;
9d89c257 2651 u32 contrib;
6115c793 2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2653 unsigned long scale_freq, scale_cpu;
9d85f21c 2654
9d89c257 2655 delta = now - sa->last_update_time;
9d85f21c
PT
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
9d89c257 2661 sa->last_update_time = now;
9d85f21c
PT
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
9d89c257 2672 sa->last_update_time = now;
9d85f21c 2673
6f2b0452
DE
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
9d85f21c 2677 /* delta_w is the amount already accumulated against our next period */
9d89c257 2678 delta_w = sa->period_contrib;
9d85f21c 2679 if (delta + delta_w >= 1024) {
9d85f21c
PT
2680 decayed = 1;
2681
9d89c257
YD
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
9d85f21c
PT
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
54a21385 2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2692 if (weight) {
e0f5f3af
DE
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
13962234 2698 }
36ee28e4 2699 if (running)
006cdf02 2700 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
9d89c257 2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
9d89c257 2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2716 contrib = __compute_runnable_contrib(periods);
54a21385 2717 contrib = cap_scale(contrib, scale_freq);
13962234 2718 if (weight) {
9d89c257 2719 sa->load_sum += weight * contrib;
13962234
YD
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
36ee28e4 2723 if (running)
006cdf02 2724 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
54a21385 2728 scaled_delta = cap_scale(delta, scale_freq);
13962234 2729 if (weight) {
e0f5f3af 2730 sa->load_sum += weight * scaled_delta;
13962234 2731 if (cfs_rq)
e0f5f3af 2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2733 }
36ee28e4 2734 if (running)
006cdf02 2735 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2736
9d89c257 2737 sa->period_contrib += delta;
9ee474f5 2738
9d89c257
YD
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
006cdf02 2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2746 }
aff3e498 2747
9d89c257 2748 return decayed;
9ee474f5
PT
2749}
2750
c566e8e9 2751#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2752/*
9d89c257
YD
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
bb17f655 2755 */
9d89c257 2756static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2757{
9d89c257 2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2759
aa0b7ae0
WL
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
9d89c257
YD
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2769 }
8165e145 2770}
f5f9739d 2771
ad936d86
BP
2772/*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779{
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794#ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809#else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812#endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817}
6e83125c 2818#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2819static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2820#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2821
9d89c257 2822static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2823
9d89c257
YD
2824/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2826{
9d89c257 2827 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2828 int decayed, removed = 0;
2dac754e 2829
9d89c257 2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2834 removed = 1;
8165e145 2835 }
2dac754e 2836
9d89c257
YD
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2841 }
36ee28e4 2842
9d89c257 2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2845
9d89c257
YD
2846#ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849#endif
36ee28e4 2850
3e386d56 2851 return decayed || removed;
9ee474f5
PT
2852}
2853
9d89c257
YD
2854/* Update task and its cfs_rq load average */
2855static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2856{
2dac754e 2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2858 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2859 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2860
f1b17280 2861 /*
9d89c257
YD
2862 * Track task load average for carrying it to new CPU after migrated, and
2863 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2864 */
9d89c257 2865 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2866 se->on_rq * scale_load_down(se->load.weight),
2867 cfs_rq->curr == se, NULL);
f1b17280 2868
9d89c257
YD
2869 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2870 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2871}
2872
a05e8c51
BP
2873static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2874{
a9280514
PZ
2875 if (!sched_feat(ATTACH_AGE_LOAD))
2876 goto skip_aging;
2877
6efdb105
BP
2878 /*
2879 * If we got migrated (either between CPUs or between cgroups) we'll
2880 * have aged the average right before clearing @last_update_time.
2881 */
2882 if (se->avg.last_update_time) {
2883 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2884 &se->avg, 0, 0, NULL);
2885
2886 /*
2887 * XXX: we could have just aged the entire load away if we've been
2888 * absent from the fair class for too long.
2889 */
2890 }
2891
a9280514 2892skip_aging:
a05e8c51
BP
2893 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2894 cfs_rq->avg.load_avg += se->avg.load_avg;
2895 cfs_rq->avg.load_sum += se->avg.load_sum;
2896 cfs_rq->avg.util_avg += se->avg.util_avg;
2897 cfs_rq->avg.util_sum += se->avg.util_sum;
2898}
2899
2900static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2901{
2902 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2903 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2904 cfs_rq->curr == se, NULL);
2905
2906 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2907 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2908 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2909 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2910}
2911
9d89c257
YD
2912/* Add the load generated by se into cfs_rq's load average */
2913static inline void
2914enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2915{
9d89c257
YD
2916 struct sched_avg *sa = &se->avg;
2917 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2918 int migrated, decayed;
9ee474f5 2919
a05e8c51
BP
2920 migrated = !sa->last_update_time;
2921 if (!migrated) {
9d89c257 2922 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2923 se->on_rq * scale_load_down(se->load.weight),
2924 cfs_rq->curr == se, NULL);
aff3e498 2925 }
c566e8e9 2926
9d89c257 2927 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2928
13962234
YD
2929 cfs_rq->runnable_load_avg += sa->load_avg;
2930 cfs_rq->runnable_load_sum += sa->load_sum;
2931
a05e8c51
BP
2932 if (migrated)
2933 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2934
9d89c257
YD
2935 if (decayed || migrated)
2936 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2937}
2938
13962234
YD
2939/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2940static inline void
2941dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942{
2943 update_load_avg(se, 1);
2944
2945 cfs_rq->runnable_load_avg =
2946 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2947 cfs_rq->runnable_load_sum =
a05e8c51 2948 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2949}
2950
9d89c257 2951#ifndef CONFIG_64BIT
0905f04e
YD
2952static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2953{
9d89c257 2954 u64 last_update_time_copy;
0905f04e 2955 u64 last_update_time;
9ee474f5 2956
9d89c257
YD
2957 do {
2958 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2959 smp_rmb();
2960 last_update_time = cfs_rq->avg.last_update_time;
2961 } while (last_update_time != last_update_time_copy);
0905f04e
YD
2962
2963 return last_update_time;
2964}
9d89c257 2965#else
0905f04e
YD
2966static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2967{
2968 return cfs_rq->avg.last_update_time;
2969}
9d89c257
YD
2970#endif
2971
0905f04e
YD
2972/*
2973 * Task first catches up with cfs_rq, and then subtract
2974 * itself from the cfs_rq (task must be off the queue now).
2975 */
2976void remove_entity_load_avg(struct sched_entity *se)
2977{
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979 u64 last_update_time;
2980
2981 /*
2982 * Newly created task or never used group entity should not be removed
2983 * from its (source) cfs_rq
2984 */
2985 if (se->avg.last_update_time == 0)
2986 return;
2987
2988 last_update_time = cfs_rq_last_update_time(cfs_rq);
2989
13962234 2990 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2991 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2992 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2993}
642dbc39 2994
7ea241af
YD
2995static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2996{
2997 return cfs_rq->runnable_load_avg;
2998}
2999
3000static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3001{
3002 return cfs_rq->avg.load_avg;
3003}
3004
6e83125c
PZ
3005static int idle_balance(struct rq *this_rq);
3006
38033c37
PZ
3007#else /* CONFIG_SMP */
3008
9d89c257
YD
3009static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3010static inline void
3011enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3012static inline void
3013dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3014static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3015
a05e8c51
BP
3016static inline void
3017attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3018static inline void
3019detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3020
6e83125c
PZ
3021static inline int idle_balance(struct rq *rq)
3022{
3023 return 0;
3024}
3025
38033c37 3026#endif /* CONFIG_SMP */
9d85f21c 3027
2396af69 3028static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3029{
bf0f6f24 3030#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3031 struct task_struct *tsk = NULL;
3032
3033 if (entity_is_task(se))
3034 tsk = task_of(se);
3035
41acab88 3036 if (se->statistics.sleep_start) {
78becc27 3037 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3038
3039 if ((s64)delta < 0)
3040 delta = 0;
3041
41acab88
LDM
3042 if (unlikely(delta > se->statistics.sleep_max))
3043 se->statistics.sleep_max = delta;
bf0f6f24 3044
8c79a045 3045 se->statistics.sleep_start = 0;
41acab88 3046 se->statistics.sum_sleep_runtime += delta;
9745512c 3047
768d0c27 3048 if (tsk) {
e414314c 3049 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3050 trace_sched_stat_sleep(tsk, delta);
3051 }
bf0f6f24 3052 }
41acab88 3053 if (se->statistics.block_start) {
78becc27 3054 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3055
3056 if ((s64)delta < 0)
3057 delta = 0;
3058
41acab88
LDM
3059 if (unlikely(delta > se->statistics.block_max))
3060 se->statistics.block_max = delta;
bf0f6f24 3061
8c79a045 3062 se->statistics.block_start = 0;
41acab88 3063 se->statistics.sum_sleep_runtime += delta;
30084fbd 3064
e414314c 3065 if (tsk) {
8f0dfc34 3066 if (tsk->in_iowait) {
41acab88
LDM
3067 se->statistics.iowait_sum += delta;
3068 se->statistics.iowait_count++;
768d0c27 3069 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3070 }
3071
b781a602
AV
3072 trace_sched_stat_blocked(tsk, delta);
3073
e414314c
PZ
3074 /*
3075 * Blocking time is in units of nanosecs, so shift by
3076 * 20 to get a milliseconds-range estimation of the
3077 * amount of time that the task spent sleeping:
3078 */
3079 if (unlikely(prof_on == SLEEP_PROFILING)) {
3080 profile_hits(SLEEP_PROFILING,
3081 (void *)get_wchan(tsk),
3082 delta >> 20);
3083 }
3084 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3085 }
bf0f6f24
IM
3086 }
3087#endif
3088}
3089
ddc97297
PZ
3090static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3091{
3092#ifdef CONFIG_SCHED_DEBUG
3093 s64 d = se->vruntime - cfs_rq->min_vruntime;
3094
3095 if (d < 0)
3096 d = -d;
3097
3098 if (d > 3*sysctl_sched_latency)
3099 schedstat_inc(cfs_rq, nr_spread_over);
3100#endif
3101}
3102
aeb73b04
PZ
3103static void
3104place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3105{
1af5f730 3106 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3107
2cb8600e
PZ
3108 /*
3109 * The 'current' period is already promised to the current tasks,
3110 * however the extra weight of the new task will slow them down a
3111 * little, place the new task so that it fits in the slot that
3112 * stays open at the end.
3113 */
94dfb5e7 3114 if (initial && sched_feat(START_DEBIT))
f9c0b095 3115 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3116
a2e7a7eb 3117 /* sleeps up to a single latency don't count. */
5ca9880c 3118 if (!initial) {
a2e7a7eb 3119 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3120
a2e7a7eb
MG
3121 /*
3122 * Halve their sleep time's effect, to allow
3123 * for a gentler effect of sleepers:
3124 */
3125 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3126 thresh >>= 1;
51e0304c 3127
a2e7a7eb 3128 vruntime -= thresh;
aeb73b04
PZ
3129 }
3130
b5d9d734 3131 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3132 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3133}
3134
d3d9dc33
PT
3135static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3136
cb251765
MG
3137static inline void check_schedstat_required(void)
3138{
3139#ifdef CONFIG_SCHEDSTATS
3140 if (schedstat_enabled())
3141 return;
3142
3143 /* Force schedstat enabled if a dependent tracepoint is active */
3144 if (trace_sched_stat_wait_enabled() ||
3145 trace_sched_stat_sleep_enabled() ||
3146 trace_sched_stat_iowait_enabled() ||
3147 trace_sched_stat_blocked_enabled() ||
3148 trace_sched_stat_runtime_enabled()) {
3149 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3150 "stat_blocked and stat_runtime require the "
3151 "kernel parameter schedstats=enabled or "
3152 "kernel.sched_schedstats=1\n");
3153 }
3154#endif
3155}
3156
bf0f6f24 3157static void
88ec22d3 3158enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3159{
88ec22d3
PZ
3160 /*
3161 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3162 * through calling update_curr().
88ec22d3 3163 */
371fd7e7 3164 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3165 se->vruntime += cfs_rq->min_vruntime;
3166
bf0f6f24 3167 /*
a2a2d680 3168 * Update run-time statistics of the 'current'.
bf0f6f24 3169 */
b7cc0896 3170 update_curr(cfs_rq);
9d89c257 3171 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3172 account_entity_enqueue(cfs_rq, se);
3173 update_cfs_shares(cfs_rq);
bf0f6f24 3174
88ec22d3 3175 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3176 place_entity(cfs_rq, se, 0);
cb251765
MG
3177 if (schedstat_enabled())
3178 enqueue_sleeper(cfs_rq, se);
e9acbff6 3179 }
bf0f6f24 3180
cb251765
MG
3181 check_schedstat_required();
3182 if (schedstat_enabled()) {
3183 update_stats_enqueue(cfs_rq, se);
3184 check_spread(cfs_rq, se);
3185 }
83b699ed
SV
3186 if (se != cfs_rq->curr)
3187 __enqueue_entity(cfs_rq, se);
2069dd75 3188 se->on_rq = 1;
3d4b47b4 3189
d3d9dc33 3190 if (cfs_rq->nr_running == 1) {
3d4b47b4 3191 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3192 check_enqueue_throttle(cfs_rq);
3193 }
bf0f6f24
IM
3194}
3195
2c13c919 3196static void __clear_buddies_last(struct sched_entity *se)
2002c695 3197{
2c13c919
RR
3198 for_each_sched_entity(se) {
3199 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3200 if (cfs_rq->last != se)
2c13c919 3201 break;
f1044799
PZ
3202
3203 cfs_rq->last = NULL;
2c13c919
RR
3204 }
3205}
2002c695 3206
2c13c919
RR
3207static void __clear_buddies_next(struct sched_entity *se)
3208{
3209 for_each_sched_entity(se) {
3210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3211 if (cfs_rq->next != se)
2c13c919 3212 break;
f1044799
PZ
3213
3214 cfs_rq->next = NULL;
2c13c919 3215 }
2002c695
PZ
3216}
3217
ac53db59
RR
3218static void __clear_buddies_skip(struct sched_entity *se)
3219{
3220 for_each_sched_entity(se) {
3221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3222 if (cfs_rq->skip != se)
ac53db59 3223 break;
f1044799
PZ
3224
3225 cfs_rq->skip = NULL;
ac53db59
RR
3226 }
3227}
3228
a571bbea
PZ
3229static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3230{
2c13c919
RR
3231 if (cfs_rq->last == se)
3232 __clear_buddies_last(se);
3233
3234 if (cfs_rq->next == se)
3235 __clear_buddies_next(se);
ac53db59
RR
3236
3237 if (cfs_rq->skip == se)
3238 __clear_buddies_skip(se);
a571bbea
PZ
3239}
3240
6c16a6dc 3241static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3242
bf0f6f24 3243static void
371fd7e7 3244dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3245{
a2a2d680
DA
3246 /*
3247 * Update run-time statistics of the 'current'.
3248 */
3249 update_curr(cfs_rq);
13962234 3250 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3251
cb251765
MG
3252 if (schedstat_enabled())
3253 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3254
2002c695 3255 clear_buddies(cfs_rq, se);
4793241b 3256
83b699ed 3257 if (se != cfs_rq->curr)
30cfdcfc 3258 __dequeue_entity(cfs_rq, se);
17bc14b7 3259 se->on_rq = 0;
30cfdcfc 3260 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3261
3262 /*
3263 * Normalize the entity after updating the min_vruntime because the
3264 * update can refer to the ->curr item and we need to reflect this
3265 * movement in our normalized position.
3266 */
371fd7e7 3267 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3268 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3269
d8b4986d
PT
3270 /* return excess runtime on last dequeue */
3271 return_cfs_rq_runtime(cfs_rq);
3272
1e876231 3273 update_min_vruntime(cfs_rq);
17bc14b7 3274 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3275}
3276
3277/*
3278 * Preempt the current task with a newly woken task if needed:
3279 */
7c92e54f 3280static void
2e09bf55 3281check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3282{
11697830 3283 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3284 struct sched_entity *se;
3285 s64 delta;
11697830 3286
6d0f0ebd 3287 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3288 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3289 if (delta_exec > ideal_runtime) {
8875125e 3290 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3291 /*
3292 * The current task ran long enough, ensure it doesn't get
3293 * re-elected due to buddy favours.
3294 */
3295 clear_buddies(cfs_rq, curr);
f685ceac
MG
3296 return;
3297 }
3298
3299 /*
3300 * Ensure that a task that missed wakeup preemption by a
3301 * narrow margin doesn't have to wait for a full slice.
3302 * This also mitigates buddy induced latencies under load.
3303 */
f685ceac
MG
3304 if (delta_exec < sysctl_sched_min_granularity)
3305 return;
3306
f4cfb33e
WX
3307 se = __pick_first_entity(cfs_rq);
3308 delta = curr->vruntime - se->vruntime;
f685ceac 3309
f4cfb33e
WX
3310 if (delta < 0)
3311 return;
d7d82944 3312
f4cfb33e 3313 if (delta > ideal_runtime)
8875125e 3314 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3315}
3316
83b699ed 3317static void
8494f412 3318set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3319{
83b699ed
SV
3320 /* 'current' is not kept within the tree. */
3321 if (se->on_rq) {
3322 /*
3323 * Any task has to be enqueued before it get to execute on
3324 * a CPU. So account for the time it spent waiting on the
3325 * runqueue.
3326 */
cb251765
MG
3327 if (schedstat_enabled())
3328 update_stats_wait_end(cfs_rq, se);
83b699ed 3329 __dequeue_entity(cfs_rq, se);
9d89c257 3330 update_load_avg(se, 1);
83b699ed
SV
3331 }
3332
79303e9e 3333 update_stats_curr_start(cfs_rq, se);
429d43bc 3334 cfs_rq->curr = se;
eba1ed4b
IM
3335#ifdef CONFIG_SCHEDSTATS
3336 /*
3337 * Track our maximum slice length, if the CPU's load is at
3338 * least twice that of our own weight (i.e. dont track it
3339 * when there are only lesser-weight tasks around):
3340 */
cb251765 3341 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3342 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3343 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3344 }
3345#endif
4a55b450 3346 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3347}
3348
3f3a4904
PZ
3349static int
3350wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3351
ac53db59
RR
3352/*
3353 * Pick the next process, keeping these things in mind, in this order:
3354 * 1) keep things fair between processes/task groups
3355 * 2) pick the "next" process, since someone really wants that to run
3356 * 3) pick the "last" process, for cache locality
3357 * 4) do not run the "skip" process, if something else is available
3358 */
678d5718
PZ
3359static struct sched_entity *
3360pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3361{
678d5718
PZ
3362 struct sched_entity *left = __pick_first_entity(cfs_rq);
3363 struct sched_entity *se;
3364
3365 /*
3366 * If curr is set we have to see if its left of the leftmost entity
3367 * still in the tree, provided there was anything in the tree at all.
3368 */
3369 if (!left || (curr && entity_before(curr, left)))
3370 left = curr;
3371
3372 se = left; /* ideally we run the leftmost entity */
f4b6755f 3373
ac53db59
RR
3374 /*
3375 * Avoid running the skip buddy, if running something else can
3376 * be done without getting too unfair.
3377 */
3378 if (cfs_rq->skip == se) {
678d5718
PZ
3379 struct sched_entity *second;
3380
3381 if (se == curr) {
3382 second = __pick_first_entity(cfs_rq);
3383 } else {
3384 second = __pick_next_entity(se);
3385 if (!second || (curr && entity_before(curr, second)))
3386 second = curr;
3387 }
3388
ac53db59
RR
3389 if (second && wakeup_preempt_entity(second, left) < 1)
3390 se = second;
3391 }
aa2ac252 3392
f685ceac
MG
3393 /*
3394 * Prefer last buddy, try to return the CPU to a preempted task.
3395 */
3396 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3397 se = cfs_rq->last;
3398
ac53db59
RR
3399 /*
3400 * Someone really wants this to run. If it's not unfair, run it.
3401 */
3402 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3403 se = cfs_rq->next;
3404
f685ceac 3405 clear_buddies(cfs_rq, se);
4793241b
PZ
3406
3407 return se;
aa2ac252
PZ
3408}
3409
678d5718 3410static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3411
ab6cde26 3412static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3413{
3414 /*
3415 * If still on the runqueue then deactivate_task()
3416 * was not called and update_curr() has to be done:
3417 */
3418 if (prev->on_rq)
b7cc0896 3419 update_curr(cfs_rq);
bf0f6f24 3420
d3d9dc33
PT
3421 /* throttle cfs_rqs exceeding runtime */
3422 check_cfs_rq_runtime(cfs_rq);
3423
cb251765
MG
3424 if (schedstat_enabled()) {
3425 check_spread(cfs_rq, prev);
3426 if (prev->on_rq)
3427 update_stats_wait_start(cfs_rq, prev);
3428 }
3429
30cfdcfc 3430 if (prev->on_rq) {
30cfdcfc
DA
3431 /* Put 'current' back into the tree. */
3432 __enqueue_entity(cfs_rq, prev);
9d85f21c 3433 /* in !on_rq case, update occurred at dequeue */
9d89c257 3434 update_load_avg(prev, 0);
30cfdcfc 3435 }
429d43bc 3436 cfs_rq->curr = NULL;
bf0f6f24
IM
3437}
3438
8f4d37ec
PZ
3439static void
3440entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3441{
bf0f6f24 3442 /*
30cfdcfc 3443 * Update run-time statistics of the 'current'.
bf0f6f24 3444 */
30cfdcfc 3445 update_curr(cfs_rq);
bf0f6f24 3446
9d85f21c
PT
3447 /*
3448 * Ensure that runnable average is periodically updated.
3449 */
9d89c257 3450 update_load_avg(curr, 1);
bf0bd948 3451 update_cfs_shares(cfs_rq);
9d85f21c 3452
8f4d37ec
PZ
3453#ifdef CONFIG_SCHED_HRTICK
3454 /*
3455 * queued ticks are scheduled to match the slice, so don't bother
3456 * validating it and just reschedule.
3457 */
983ed7a6 3458 if (queued) {
8875125e 3459 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3460 return;
3461 }
8f4d37ec
PZ
3462 /*
3463 * don't let the period tick interfere with the hrtick preemption
3464 */
3465 if (!sched_feat(DOUBLE_TICK) &&
3466 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3467 return;
3468#endif
3469
2c2efaed 3470 if (cfs_rq->nr_running > 1)
2e09bf55 3471 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3472}
3473
ab84d31e
PT
3474
3475/**************************************************
3476 * CFS bandwidth control machinery
3477 */
3478
3479#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3480
3481#ifdef HAVE_JUMP_LABEL
c5905afb 3482static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3483
3484static inline bool cfs_bandwidth_used(void)
3485{
c5905afb 3486 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3487}
3488
1ee14e6c 3489void cfs_bandwidth_usage_inc(void)
029632fb 3490{
1ee14e6c
BS
3491 static_key_slow_inc(&__cfs_bandwidth_used);
3492}
3493
3494void cfs_bandwidth_usage_dec(void)
3495{
3496 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3497}
3498#else /* HAVE_JUMP_LABEL */
3499static bool cfs_bandwidth_used(void)
3500{
3501 return true;
3502}
3503
1ee14e6c
BS
3504void cfs_bandwidth_usage_inc(void) {}
3505void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3506#endif /* HAVE_JUMP_LABEL */
3507
ab84d31e
PT
3508/*
3509 * default period for cfs group bandwidth.
3510 * default: 0.1s, units: nanoseconds
3511 */
3512static inline u64 default_cfs_period(void)
3513{
3514 return 100000000ULL;
3515}
ec12cb7f
PT
3516
3517static inline u64 sched_cfs_bandwidth_slice(void)
3518{
3519 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3520}
3521
a9cf55b2
PT
3522/*
3523 * Replenish runtime according to assigned quota and update expiration time.
3524 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3525 * additional synchronization around rq->lock.
3526 *
3527 * requires cfs_b->lock
3528 */
029632fb 3529void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3530{
3531 u64 now;
3532
3533 if (cfs_b->quota == RUNTIME_INF)
3534 return;
3535
3536 now = sched_clock_cpu(smp_processor_id());
3537 cfs_b->runtime = cfs_b->quota;
3538 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3539}
3540
029632fb
PZ
3541static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3542{
3543 return &tg->cfs_bandwidth;
3544}
3545
f1b17280
PT
3546/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3547static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3548{
3549 if (unlikely(cfs_rq->throttle_count))
3550 return cfs_rq->throttled_clock_task;
3551
78becc27 3552 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3553}
3554
85dac906
PT
3555/* returns 0 on failure to allocate runtime */
3556static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3557{
3558 struct task_group *tg = cfs_rq->tg;
3559 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3560 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3561
3562 /* note: this is a positive sum as runtime_remaining <= 0 */
3563 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3564
3565 raw_spin_lock(&cfs_b->lock);
3566 if (cfs_b->quota == RUNTIME_INF)
3567 amount = min_amount;
58088ad0 3568 else {
77a4d1a1 3569 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3570
3571 if (cfs_b->runtime > 0) {
3572 amount = min(cfs_b->runtime, min_amount);
3573 cfs_b->runtime -= amount;
3574 cfs_b->idle = 0;
3575 }
ec12cb7f 3576 }
a9cf55b2 3577 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3578 raw_spin_unlock(&cfs_b->lock);
3579
3580 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3581 /*
3582 * we may have advanced our local expiration to account for allowed
3583 * spread between our sched_clock and the one on which runtime was
3584 * issued.
3585 */
3586 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3587 cfs_rq->runtime_expires = expires;
85dac906
PT
3588
3589 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3590}
3591
a9cf55b2
PT
3592/*
3593 * Note: This depends on the synchronization provided by sched_clock and the
3594 * fact that rq->clock snapshots this value.
3595 */
3596static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3597{
a9cf55b2 3598 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3599
3600 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3601 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3602 return;
3603
a9cf55b2
PT
3604 if (cfs_rq->runtime_remaining < 0)
3605 return;
3606
3607 /*
3608 * If the local deadline has passed we have to consider the
3609 * possibility that our sched_clock is 'fast' and the global deadline
3610 * has not truly expired.
3611 *
3612 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3613 * whether the global deadline has advanced. It is valid to compare
3614 * cfs_b->runtime_expires without any locks since we only care about
3615 * exact equality, so a partial write will still work.
a9cf55b2
PT
3616 */
3617
51f2176d 3618 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3619 /* extend local deadline, drift is bounded above by 2 ticks */
3620 cfs_rq->runtime_expires += TICK_NSEC;
3621 } else {
3622 /* global deadline is ahead, expiration has passed */
3623 cfs_rq->runtime_remaining = 0;
3624 }
3625}
3626
9dbdb155 3627static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3628{
3629 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3630 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3631 expire_cfs_rq_runtime(cfs_rq);
3632
3633 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3634 return;
3635
85dac906
PT
3636 /*
3637 * if we're unable to extend our runtime we resched so that the active
3638 * hierarchy can be throttled
3639 */
3640 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3641 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3642}
3643
6c16a6dc 3644static __always_inline
9dbdb155 3645void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3646{
56f570e5 3647 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3648 return;
3649
3650 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3651}
3652
85dac906
PT
3653static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3654{
56f570e5 3655 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3656}
3657
64660c86
PT
3658/* check whether cfs_rq, or any parent, is throttled */
3659static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3660{
56f570e5 3661 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3662}
3663
3664/*
3665 * Ensure that neither of the group entities corresponding to src_cpu or
3666 * dest_cpu are members of a throttled hierarchy when performing group
3667 * load-balance operations.
3668 */
3669static inline int throttled_lb_pair(struct task_group *tg,
3670 int src_cpu, int dest_cpu)
3671{
3672 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3673
3674 src_cfs_rq = tg->cfs_rq[src_cpu];
3675 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3676
3677 return throttled_hierarchy(src_cfs_rq) ||
3678 throttled_hierarchy(dest_cfs_rq);
3679}
3680
3681/* updated child weight may affect parent so we have to do this bottom up */
3682static int tg_unthrottle_up(struct task_group *tg, void *data)
3683{
3684 struct rq *rq = data;
3685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3686
3687 cfs_rq->throttle_count--;
3688#ifdef CONFIG_SMP
3689 if (!cfs_rq->throttle_count) {
f1b17280 3690 /* adjust cfs_rq_clock_task() */
78becc27 3691 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3692 cfs_rq->throttled_clock_task;
64660c86
PT
3693 }
3694#endif
3695
3696 return 0;
3697}
3698
3699static int tg_throttle_down(struct task_group *tg, void *data)
3700{
3701 struct rq *rq = data;
3702 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3703
82958366
PT
3704 /* group is entering throttled state, stop time */
3705 if (!cfs_rq->throttle_count)
78becc27 3706 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3707 cfs_rq->throttle_count++;
3708
3709 return 0;
3710}
3711
d3d9dc33 3712static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3713{
3714 struct rq *rq = rq_of(cfs_rq);
3715 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3716 struct sched_entity *se;
3717 long task_delta, dequeue = 1;
77a4d1a1 3718 bool empty;
85dac906
PT
3719
3720 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3721
f1b17280 3722 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3723 rcu_read_lock();
3724 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3725 rcu_read_unlock();
85dac906
PT
3726
3727 task_delta = cfs_rq->h_nr_running;
3728 for_each_sched_entity(se) {
3729 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3730 /* throttled entity or throttle-on-deactivate */
3731 if (!se->on_rq)
3732 break;
3733
3734 if (dequeue)
3735 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3736 qcfs_rq->h_nr_running -= task_delta;
3737
3738 if (qcfs_rq->load.weight)
3739 dequeue = 0;
3740 }
3741
3742 if (!se)
72465447 3743 sub_nr_running(rq, task_delta);
85dac906
PT
3744
3745 cfs_rq->throttled = 1;
78becc27 3746 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3747 raw_spin_lock(&cfs_b->lock);
d49db342 3748 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3749
c06f04c7
BS
3750 /*
3751 * Add to the _head_ of the list, so that an already-started
3752 * distribute_cfs_runtime will not see us
3753 */
3754 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3755
3756 /*
3757 * If we're the first throttled task, make sure the bandwidth
3758 * timer is running.
3759 */
3760 if (empty)
3761 start_cfs_bandwidth(cfs_b);
3762
85dac906
PT
3763 raw_spin_unlock(&cfs_b->lock);
3764}
3765
029632fb 3766void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3767{
3768 struct rq *rq = rq_of(cfs_rq);
3769 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3770 struct sched_entity *se;
3771 int enqueue = 1;
3772 long task_delta;
3773
22b958d8 3774 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3775
3776 cfs_rq->throttled = 0;
1a55af2e
FW
3777
3778 update_rq_clock(rq);
3779
671fd9da 3780 raw_spin_lock(&cfs_b->lock);
78becc27 3781 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3782 list_del_rcu(&cfs_rq->throttled_list);
3783 raw_spin_unlock(&cfs_b->lock);
3784
64660c86
PT
3785 /* update hierarchical throttle state */
3786 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3787
671fd9da
PT
3788 if (!cfs_rq->load.weight)
3789 return;
3790
3791 task_delta = cfs_rq->h_nr_running;
3792 for_each_sched_entity(se) {
3793 if (se->on_rq)
3794 enqueue = 0;
3795
3796 cfs_rq = cfs_rq_of(se);
3797 if (enqueue)
3798 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3799 cfs_rq->h_nr_running += task_delta;
3800
3801 if (cfs_rq_throttled(cfs_rq))
3802 break;
3803 }
3804
3805 if (!se)
72465447 3806 add_nr_running(rq, task_delta);
671fd9da
PT
3807
3808 /* determine whether we need to wake up potentially idle cpu */
3809 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3810 resched_curr(rq);
671fd9da
PT
3811}
3812
3813static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3814 u64 remaining, u64 expires)
3815{
3816 struct cfs_rq *cfs_rq;
c06f04c7
BS
3817 u64 runtime;
3818 u64 starting_runtime = remaining;
671fd9da
PT
3819
3820 rcu_read_lock();
3821 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3822 throttled_list) {
3823 struct rq *rq = rq_of(cfs_rq);
3824
3825 raw_spin_lock(&rq->lock);
3826 if (!cfs_rq_throttled(cfs_rq))
3827 goto next;
3828
3829 runtime = -cfs_rq->runtime_remaining + 1;
3830 if (runtime > remaining)
3831 runtime = remaining;
3832 remaining -= runtime;
3833
3834 cfs_rq->runtime_remaining += runtime;
3835 cfs_rq->runtime_expires = expires;
3836
3837 /* we check whether we're throttled above */
3838 if (cfs_rq->runtime_remaining > 0)
3839 unthrottle_cfs_rq(cfs_rq);
3840
3841next:
3842 raw_spin_unlock(&rq->lock);
3843
3844 if (!remaining)
3845 break;
3846 }
3847 rcu_read_unlock();
3848
c06f04c7 3849 return starting_runtime - remaining;
671fd9da
PT
3850}
3851
58088ad0
PT
3852/*
3853 * Responsible for refilling a task_group's bandwidth and unthrottling its
3854 * cfs_rqs as appropriate. If there has been no activity within the last
3855 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3856 * used to track this state.
3857 */
3858static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3859{
671fd9da 3860 u64 runtime, runtime_expires;
51f2176d 3861 int throttled;
58088ad0 3862
58088ad0
PT
3863 /* no need to continue the timer with no bandwidth constraint */
3864 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3865 goto out_deactivate;
58088ad0 3866
671fd9da 3867 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3868 cfs_b->nr_periods += overrun;
671fd9da 3869
51f2176d
BS
3870 /*
3871 * idle depends on !throttled (for the case of a large deficit), and if
3872 * we're going inactive then everything else can be deferred
3873 */
3874 if (cfs_b->idle && !throttled)
3875 goto out_deactivate;
a9cf55b2
PT
3876
3877 __refill_cfs_bandwidth_runtime(cfs_b);
3878
671fd9da
PT
3879 if (!throttled) {
3880 /* mark as potentially idle for the upcoming period */
3881 cfs_b->idle = 1;
51f2176d 3882 return 0;
671fd9da
PT
3883 }
3884
e8da1b18
NR
3885 /* account preceding periods in which throttling occurred */
3886 cfs_b->nr_throttled += overrun;
3887
671fd9da 3888 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3889
3890 /*
c06f04c7
BS
3891 * This check is repeated as we are holding onto the new bandwidth while
3892 * we unthrottle. This can potentially race with an unthrottled group
3893 * trying to acquire new bandwidth from the global pool. This can result
3894 * in us over-using our runtime if it is all used during this loop, but
3895 * only by limited amounts in that extreme case.
671fd9da 3896 */
c06f04c7
BS
3897 while (throttled && cfs_b->runtime > 0) {
3898 runtime = cfs_b->runtime;
671fd9da
PT
3899 raw_spin_unlock(&cfs_b->lock);
3900 /* we can't nest cfs_b->lock while distributing bandwidth */
3901 runtime = distribute_cfs_runtime(cfs_b, runtime,
3902 runtime_expires);
3903 raw_spin_lock(&cfs_b->lock);
3904
3905 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3906
3907 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3908 }
58088ad0 3909
671fd9da
PT
3910 /*
3911 * While we are ensured activity in the period following an
3912 * unthrottle, this also covers the case in which the new bandwidth is
3913 * insufficient to cover the existing bandwidth deficit. (Forcing the
3914 * timer to remain active while there are any throttled entities.)
3915 */
3916 cfs_b->idle = 0;
58088ad0 3917
51f2176d
BS
3918 return 0;
3919
3920out_deactivate:
51f2176d 3921 return 1;
58088ad0 3922}
d3d9dc33 3923
d8b4986d
PT
3924/* a cfs_rq won't donate quota below this amount */
3925static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3926/* minimum remaining period time to redistribute slack quota */
3927static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3928/* how long we wait to gather additional slack before distributing */
3929static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3930
db06e78c
BS
3931/*
3932 * Are we near the end of the current quota period?
3933 *
3934 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3935 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3936 * migrate_hrtimers, base is never cleared, so we are fine.
3937 */
d8b4986d
PT
3938static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3939{
3940 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3941 u64 remaining;
3942
3943 /* if the call-back is running a quota refresh is already occurring */
3944 if (hrtimer_callback_running(refresh_timer))
3945 return 1;
3946
3947 /* is a quota refresh about to occur? */
3948 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3949 if (remaining < min_expire)
3950 return 1;
3951
3952 return 0;
3953}
3954
3955static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3956{
3957 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3958
3959 /* if there's a quota refresh soon don't bother with slack */
3960 if (runtime_refresh_within(cfs_b, min_left))
3961 return;
3962
4cfafd30
PZ
3963 hrtimer_start(&cfs_b->slack_timer,
3964 ns_to_ktime(cfs_bandwidth_slack_period),
3965 HRTIMER_MODE_REL);
d8b4986d
PT
3966}
3967
3968/* we know any runtime found here is valid as update_curr() precedes return */
3969static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3970{
3971 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3972 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3973
3974 if (slack_runtime <= 0)
3975 return;
3976
3977 raw_spin_lock(&cfs_b->lock);
3978 if (cfs_b->quota != RUNTIME_INF &&
3979 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3980 cfs_b->runtime += slack_runtime;
3981
3982 /* we are under rq->lock, defer unthrottling using a timer */
3983 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3984 !list_empty(&cfs_b->throttled_cfs_rq))
3985 start_cfs_slack_bandwidth(cfs_b);
3986 }
3987 raw_spin_unlock(&cfs_b->lock);
3988
3989 /* even if it's not valid for return we don't want to try again */
3990 cfs_rq->runtime_remaining -= slack_runtime;
3991}
3992
3993static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3994{
56f570e5
PT
3995 if (!cfs_bandwidth_used())
3996 return;
3997
fccfdc6f 3998 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3999 return;
4000
4001 __return_cfs_rq_runtime(cfs_rq);
4002}
4003
4004/*
4005 * This is done with a timer (instead of inline with bandwidth return) since
4006 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4007 */
4008static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4009{
4010 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4011 u64 expires;
4012
4013 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4014 raw_spin_lock(&cfs_b->lock);
4015 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4016 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4017 return;
db06e78c 4018 }
d8b4986d 4019
c06f04c7 4020 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4021 runtime = cfs_b->runtime;
c06f04c7 4022
d8b4986d
PT
4023 expires = cfs_b->runtime_expires;
4024 raw_spin_unlock(&cfs_b->lock);
4025
4026 if (!runtime)
4027 return;
4028
4029 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4030
4031 raw_spin_lock(&cfs_b->lock);
4032 if (expires == cfs_b->runtime_expires)
c06f04c7 4033 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4034 raw_spin_unlock(&cfs_b->lock);
4035}
4036
d3d9dc33
PT
4037/*
4038 * When a group wakes up we want to make sure that its quota is not already
4039 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4040 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4041 */
4042static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4043{
56f570e5
PT
4044 if (!cfs_bandwidth_used())
4045 return;
4046
d3d9dc33
PT
4047 /* an active group must be handled by the update_curr()->put() path */
4048 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4049 return;
4050
4051 /* ensure the group is not already throttled */
4052 if (cfs_rq_throttled(cfs_rq))
4053 return;
4054
4055 /* update runtime allocation */
4056 account_cfs_rq_runtime(cfs_rq, 0);
4057 if (cfs_rq->runtime_remaining <= 0)
4058 throttle_cfs_rq(cfs_rq);
4059}
4060
4061/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4062static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4063{
56f570e5 4064 if (!cfs_bandwidth_used())
678d5718 4065 return false;
56f570e5 4066
d3d9dc33 4067 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4068 return false;
d3d9dc33
PT
4069
4070 /*
4071 * it's possible for a throttled entity to be forced into a running
4072 * state (e.g. set_curr_task), in this case we're finished.
4073 */
4074 if (cfs_rq_throttled(cfs_rq))
678d5718 4075 return true;
d3d9dc33
PT
4076
4077 throttle_cfs_rq(cfs_rq);
678d5718 4078 return true;
d3d9dc33 4079}
029632fb 4080
029632fb
PZ
4081static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4082{
4083 struct cfs_bandwidth *cfs_b =
4084 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4085
029632fb
PZ
4086 do_sched_cfs_slack_timer(cfs_b);
4087
4088 return HRTIMER_NORESTART;
4089}
4090
4091static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4092{
4093 struct cfs_bandwidth *cfs_b =
4094 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4095 int overrun;
4096 int idle = 0;
4097
51f2176d 4098 raw_spin_lock(&cfs_b->lock);
029632fb 4099 for (;;) {
77a4d1a1 4100 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4101 if (!overrun)
4102 break;
4103
4104 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4105 }
4cfafd30
PZ
4106 if (idle)
4107 cfs_b->period_active = 0;
51f2176d 4108 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4109
4110 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4111}
4112
4113void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4114{
4115 raw_spin_lock_init(&cfs_b->lock);
4116 cfs_b->runtime = 0;
4117 cfs_b->quota = RUNTIME_INF;
4118 cfs_b->period = ns_to_ktime(default_cfs_period());
4119
4120 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4121 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4122 cfs_b->period_timer.function = sched_cfs_period_timer;
4123 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4124 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4125}
4126
4127static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4128{
4129 cfs_rq->runtime_enabled = 0;
4130 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4131}
4132
77a4d1a1 4133void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4134{
4cfafd30 4135 lockdep_assert_held(&cfs_b->lock);
029632fb 4136
4cfafd30
PZ
4137 if (!cfs_b->period_active) {
4138 cfs_b->period_active = 1;
4139 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4140 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4141 }
029632fb
PZ
4142}
4143
4144static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4145{
7f1a169b
TH
4146 /* init_cfs_bandwidth() was not called */
4147 if (!cfs_b->throttled_cfs_rq.next)
4148 return;
4149
029632fb
PZ
4150 hrtimer_cancel(&cfs_b->period_timer);
4151 hrtimer_cancel(&cfs_b->slack_timer);
4152}
4153
0e59bdae
KT
4154static void __maybe_unused update_runtime_enabled(struct rq *rq)
4155{
4156 struct cfs_rq *cfs_rq;
4157
4158 for_each_leaf_cfs_rq(rq, cfs_rq) {
4159 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4160
4161 raw_spin_lock(&cfs_b->lock);
4162 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4163 raw_spin_unlock(&cfs_b->lock);
4164 }
4165}
4166
38dc3348 4167static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4168{
4169 struct cfs_rq *cfs_rq;
4170
4171 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4172 if (!cfs_rq->runtime_enabled)
4173 continue;
4174
4175 /*
4176 * clock_task is not advancing so we just need to make sure
4177 * there's some valid quota amount
4178 */
51f2176d 4179 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4180 /*
4181 * Offline rq is schedulable till cpu is completely disabled
4182 * in take_cpu_down(), so we prevent new cfs throttling here.
4183 */
4184 cfs_rq->runtime_enabled = 0;
4185
029632fb
PZ
4186 if (cfs_rq_throttled(cfs_rq))
4187 unthrottle_cfs_rq(cfs_rq);
4188 }
4189}
4190
4191#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4192static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4193{
78becc27 4194 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4195}
4196
9dbdb155 4197static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4198static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4199static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4200static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4201
4202static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4203{
4204 return 0;
4205}
64660c86
PT
4206
4207static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4208{
4209 return 0;
4210}
4211
4212static inline int throttled_lb_pair(struct task_group *tg,
4213 int src_cpu, int dest_cpu)
4214{
4215 return 0;
4216}
029632fb
PZ
4217
4218void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4219
4220#ifdef CONFIG_FAIR_GROUP_SCHED
4221static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4222#endif
4223
029632fb
PZ
4224static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4225{
4226 return NULL;
4227}
4228static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4229static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4230static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4231
4232#endif /* CONFIG_CFS_BANDWIDTH */
4233
bf0f6f24
IM
4234/**************************************************
4235 * CFS operations on tasks:
4236 */
4237
8f4d37ec
PZ
4238#ifdef CONFIG_SCHED_HRTICK
4239static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4240{
8f4d37ec
PZ
4241 struct sched_entity *se = &p->se;
4242 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4243
4244 WARN_ON(task_rq(p) != rq);
4245
b39e66ea 4246 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4247 u64 slice = sched_slice(cfs_rq, se);
4248 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4249 s64 delta = slice - ran;
4250
4251 if (delta < 0) {
4252 if (rq->curr == p)
8875125e 4253 resched_curr(rq);
8f4d37ec
PZ
4254 return;
4255 }
31656519 4256 hrtick_start(rq, delta);
8f4d37ec
PZ
4257 }
4258}
a4c2f00f
PZ
4259
4260/*
4261 * called from enqueue/dequeue and updates the hrtick when the
4262 * current task is from our class and nr_running is low enough
4263 * to matter.
4264 */
4265static void hrtick_update(struct rq *rq)
4266{
4267 struct task_struct *curr = rq->curr;
4268
b39e66ea 4269 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4270 return;
4271
4272 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4273 hrtick_start_fair(rq, curr);
4274}
55e12e5e 4275#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4276static inline void
4277hrtick_start_fair(struct rq *rq, struct task_struct *p)
4278{
4279}
a4c2f00f
PZ
4280
4281static inline void hrtick_update(struct rq *rq)
4282{
4283}
8f4d37ec
PZ
4284#endif
4285
bf0f6f24
IM
4286/*
4287 * The enqueue_task method is called before nr_running is
4288 * increased. Here we update the fair scheduling stats and
4289 * then put the task into the rbtree:
4290 */
ea87bb78 4291static void
371fd7e7 4292enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4293{
4294 struct cfs_rq *cfs_rq;
62fb1851 4295 struct sched_entity *se = &p->se;
bf0f6f24
IM
4296
4297 for_each_sched_entity(se) {
62fb1851 4298 if (se->on_rq)
bf0f6f24
IM
4299 break;
4300 cfs_rq = cfs_rq_of(se);
88ec22d3 4301 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4302
4303 /*
4304 * end evaluation on encountering a throttled cfs_rq
4305 *
4306 * note: in the case of encountering a throttled cfs_rq we will
4307 * post the final h_nr_running increment below.
4308 */
4309 if (cfs_rq_throttled(cfs_rq))
4310 break;
953bfcd1 4311 cfs_rq->h_nr_running++;
85dac906 4312
88ec22d3 4313 flags = ENQUEUE_WAKEUP;
bf0f6f24 4314 }
8f4d37ec 4315
2069dd75 4316 for_each_sched_entity(se) {
0f317143 4317 cfs_rq = cfs_rq_of(se);
953bfcd1 4318 cfs_rq->h_nr_running++;
2069dd75 4319
85dac906
PT
4320 if (cfs_rq_throttled(cfs_rq))
4321 break;
4322
9d89c257 4323 update_load_avg(se, 1);
17bc14b7 4324 update_cfs_shares(cfs_rq);
2069dd75
PZ
4325 }
4326
cd126afe 4327 if (!se)
72465447 4328 add_nr_running(rq, 1);
cd126afe 4329
a4c2f00f 4330 hrtick_update(rq);
bf0f6f24
IM
4331}
4332
2f36825b
VP
4333static void set_next_buddy(struct sched_entity *se);
4334
bf0f6f24
IM
4335/*
4336 * The dequeue_task method is called before nr_running is
4337 * decreased. We remove the task from the rbtree and
4338 * update the fair scheduling stats:
4339 */
371fd7e7 4340static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4341{
4342 struct cfs_rq *cfs_rq;
62fb1851 4343 struct sched_entity *se = &p->se;
2f36825b 4344 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4345
4346 for_each_sched_entity(se) {
4347 cfs_rq = cfs_rq_of(se);
371fd7e7 4348 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4349
4350 /*
4351 * end evaluation on encountering a throttled cfs_rq
4352 *
4353 * note: in the case of encountering a throttled cfs_rq we will
4354 * post the final h_nr_running decrement below.
4355 */
4356 if (cfs_rq_throttled(cfs_rq))
4357 break;
953bfcd1 4358 cfs_rq->h_nr_running--;
2069dd75 4359
bf0f6f24 4360 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4361 if (cfs_rq->load.weight) {
4362 /*
4363 * Bias pick_next to pick a task from this cfs_rq, as
4364 * p is sleeping when it is within its sched_slice.
4365 */
4366 if (task_sleep && parent_entity(se))
4367 set_next_buddy(parent_entity(se));
9598c82d
PT
4368
4369 /* avoid re-evaluating load for this entity */
4370 se = parent_entity(se);
bf0f6f24 4371 break;
2f36825b 4372 }
371fd7e7 4373 flags |= DEQUEUE_SLEEP;
bf0f6f24 4374 }
8f4d37ec 4375
2069dd75 4376 for_each_sched_entity(se) {
0f317143 4377 cfs_rq = cfs_rq_of(se);
953bfcd1 4378 cfs_rq->h_nr_running--;
2069dd75 4379
85dac906
PT
4380 if (cfs_rq_throttled(cfs_rq))
4381 break;
4382
9d89c257 4383 update_load_avg(se, 1);
17bc14b7 4384 update_cfs_shares(cfs_rq);
2069dd75
PZ
4385 }
4386
cd126afe 4387 if (!se)
72465447 4388 sub_nr_running(rq, 1);
cd126afe 4389
a4c2f00f 4390 hrtick_update(rq);
bf0f6f24
IM
4391}
4392
e7693a36 4393#ifdef CONFIG_SMP
3289bdb4
PZ
4394
4395/*
4396 * per rq 'load' arrray crap; XXX kill this.
4397 */
4398
4399/*
d937cdc5 4400 * The exact cpuload calculated at every tick would be:
3289bdb4 4401 *
d937cdc5
PZ
4402 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4403 *
4404 * If a cpu misses updates for n ticks (as it was idle) and update gets
4405 * called on the n+1-th tick when cpu may be busy, then we have:
4406 *
4407 * load_n = (1 - 1/2^i)^n * load_0
4408 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4409 *
4410 * decay_load_missed() below does efficient calculation of
3289bdb4 4411 *
d937cdc5
PZ
4412 * load' = (1 - 1/2^i)^n * load
4413 *
4414 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4415 * This allows us to precompute the above in said factors, thereby allowing the
4416 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4417 * fixed_power_int())
3289bdb4 4418 *
d937cdc5 4419 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4420 */
4421#define DEGRADE_SHIFT 7
d937cdc5
PZ
4422
4423static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4424static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4425 { 0, 0, 0, 0, 0, 0, 0, 0 },
4426 { 64, 32, 8, 0, 0, 0, 0, 0 },
4427 { 96, 72, 40, 12, 1, 0, 0, 0 },
4428 { 112, 98, 75, 43, 15, 1, 0, 0 },
4429 { 120, 112, 98, 76, 45, 16, 2, 0 }
4430};
3289bdb4
PZ
4431
4432/*
4433 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4434 * would be when CPU is idle and so we just decay the old load without
4435 * adding any new load.
4436 */
4437static unsigned long
4438decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4439{
4440 int j = 0;
4441
4442 if (!missed_updates)
4443 return load;
4444
4445 if (missed_updates >= degrade_zero_ticks[idx])
4446 return 0;
4447
4448 if (idx == 1)
4449 return load >> missed_updates;
4450
4451 while (missed_updates) {
4452 if (missed_updates % 2)
4453 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4454
4455 missed_updates >>= 1;
4456 j++;
4457 }
4458 return load;
4459}
4460
59543275
BP
4461/**
4462 * __update_cpu_load - update the rq->cpu_load[] statistics
4463 * @this_rq: The rq to update statistics for
4464 * @this_load: The current load
4465 * @pending_updates: The number of missed updates
4466 * @active: !0 for NOHZ_FULL
4467 *
3289bdb4 4468 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4469 * scheduler tick (TICK_NSEC).
4470 *
4471 * This function computes a decaying average:
4472 *
4473 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4474 *
4475 * Because of NOHZ it might not get called on every tick which gives need for
4476 * the @pending_updates argument.
4477 *
4478 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4479 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4480 * = A * (A * load[i]_n-2 + B) + B
4481 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4482 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4483 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4484 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4485 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4486 *
4487 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4488 * any change in load would have resulted in the tick being turned back on.
4489 *
4490 * For regular NOHZ, this reduces to:
4491 *
4492 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4493 *
4494 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4495 * term. See the @active paramter.
3289bdb4
PZ
4496 */
4497static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4498 unsigned long pending_updates, int active)
3289bdb4 4499{
59543275 4500 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4501 int i, scale;
4502
4503 this_rq->nr_load_updates++;
4504
4505 /* Update our load: */
4506 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4507 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4508 unsigned long old_load, new_load;
4509
4510 /* scale is effectively 1 << i now, and >> i divides by scale */
4511
7400d3bb 4512 old_load = this_rq->cpu_load[i];
3289bdb4 4513 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4514 if (tickless_load) {
4515 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4516 /*
4517 * old_load can never be a negative value because a
4518 * decayed tickless_load cannot be greater than the
4519 * original tickless_load.
4520 */
4521 old_load += tickless_load;
4522 }
3289bdb4
PZ
4523 new_load = this_load;
4524 /*
4525 * Round up the averaging division if load is increasing. This
4526 * prevents us from getting stuck on 9 if the load is 10, for
4527 * example.
4528 */
4529 if (new_load > old_load)
4530 new_load += scale - 1;
4531
4532 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4533 }
4534
4535 sched_avg_update(this_rq);
4536}
4537
7ea241af
YD
4538/* Used instead of source_load when we know the type == 0 */
4539static unsigned long weighted_cpuload(const int cpu)
4540{
4541 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4542}
4543
3289bdb4 4544#ifdef CONFIG_NO_HZ_COMMON
be68a682
FW
4545static void __update_cpu_load_nohz(struct rq *this_rq,
4546 unsigned long curr_jiffies,
4547 unsigned long load,
4548 int active)
4549{
4550 unsigned long pending_updates;
4551
4552 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4553 if (pending_updates) {
4554 this_rq->last_load_update_tick = curr_jiffies;
4555 /*
4556 * In the regular NOHZ case, we were idle, this means load 0.
4557 * In the NOHZ_FULL case, we were non-idle, we should consider
4558 * its weighted load.
4559 */
4560 __update_cpu_load(this_rq, load, pending_updates, active);
4561 }
4562}
4563
3289bdb4
PZ
4564/*
4565 * There is no sane way to deal with nohz on smp when using jiffies because the
4566 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4567 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4568 *
4569 * Therefore we cannot use the delta approach from the regular tick since that
4570 * would seriously skew the load calculation. However we'll make do for those
4571 * updates happening while idle (nohz_idle_balance) or coming out of idle
4572 * (tick_nohz_idle_exit).
4573 *
4574 * This means we might still be one tick off for nohz periods.
4575 */
4576
4577/*
4578 * Called from nohz_idle_balance() to update the load ratings before doing the
4579 * idle balance.
4580 */
be68a682 4581static void update_cpu_load_idle(struct rq *this_rq)
3289bdb4 4582{
3289bdb4
PZ
4583 /*
4584 * bail if there's load or we're actually up-to-date.
4585 */
be68a682 4586 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4587 return;
4588
be68a682 4589 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
3289bdb4
PZ
4590}
4591
4592/*
4593 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4594 */
525705d1 4595void update_cpu_load_nohz(int active)
3289bdb4
PZ
4596{
4597 struct rq *this_rq = this_rq();
316c1608 4598 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4599 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4600
4601 if (curr_jiffies == this_rq->last_load_update_tick)
4602 return;
4603
4604 raw_spin_lock(&this_rq->lock);
be68a682 4605 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
3289bdb4
PZ
4606 raw_spin_unlock(&this_rq->lock);
4607}
4608#endif /* CONFIG_NO_HZ */
4609
4610/*
4611 * Called from scheduler_tick()
4612 */
4613void update_cpu_load_active(struct rq *this_rq)
4614{
7ea241af 4615 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4616 /*
be68a682 4617 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
3289bdb4
PZ
4618 */
4619 this_rq->last_load_update_tick = jiffies;
59543275 4620 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4621}
4622
029632fb
PZ
4623/*
4624 * Return a low guess at the load of a migration-source cpu weighted
4625 * according to the scheduling class and "nice" value.
4626 *
4627 * We want to under-estimate the load of migration sources, to
4628 * balance conservatively.
4629 */
4630static unsigned long source_load(int cpu, int type)
4631{
4632 struct rq *rq = cpu_rq(cpu);
4633 unsigned long total = weighted_cpuload(cpu);
4634
4635 if (type == 0 || !sched_feat(LB_BIAS))
4636 return total;
4637
4638 return min(rq->cpu_load[type-1], total);
4639}
4640
4641/*
4642 * Return a high guess at the load of a migration-target cpu weighted
4643 * according to the scheduling class and "nice" value.
4644 */
4645static unsigned long target_load(int cpu, int type)
4646{
4647 struct rq *rq = cpu_rq(cpu);
4648 unsigned long total = weighted_cpuload(cpu);
4649
4650 if (type == 0 || !sched_feat(LB_BIAS))
4651 return total;
4652
4653 return max(rq->cpu_load[type-1], total);
4654}
4655
ced549fa 4656static unsigned long capacity_of(int cpu)
029632fb 4657{
ced549fa 4658 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4659}
4660
ca6d75e6
VG
4661static unsigned long capacity_orig_of(int cpu)
4662{
4663 return cpu_rq(cpu)->cpu_capacity_orig;
4664}
4665
029632fb
PZ
4666static unsigned long cpu_avg_load_per_task(int cpu)
4667{
4668 struct rq *rq = cpu_rq(cpu);
316c1608 4669 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4670 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4671
4672 if (nr_running)
b92486cb 4673 return load_avg / nr_running;
029632fb
PZ
4674
4675 return 0;
4676}
4677
62470419
MW
4678static void record_wakee(struct task_struct *p)
4679{
4680 /*
4681 * Rough decay (wiping) for cost saving, don't worry
4682 * about the boundary, really active task won't care
4683 * about the loss.
4684 */
2538d960 4685 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4686 current->wakee_flips >>= 1;
62470419
MW
4687 current->wakee_flip_decay_ts = jiffies;
4688 }
4689
4690 if (current->last_wakee != p) {
4691 current->last_wakee = p;
4692 current->wakee_flips++;
4693 }
4694}
098fb9db 4695
74f8e4b2 4696static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4697{
4698 struct sched_entity *se = &p->se;
4699 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4700 u64 min_vruntime;
4701
4702#ifndef CONFIG_64BIT
4703 u64 min_vruntime_copy;
88ec22d3 4704
3fe1698b
PZ
4705 do {
4706 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4707 smp_rmb();
4708 min_vruntime = cfs_rq->min_vruntime;
4709 } while (min_vruntime != min_vruntime_copy);
4710#else
4711 min_vruntime = cfs_rq->min_vruntime;
4712#endif
88ec22d3 4713
3fe1698b 4714 se->vruntime -= min_vruntime;
62470419 4715 record_wakee(p);
88ec22d3
PZ
4716}
4717
bb3469ac 4718#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4719/*
4720 * effective_load() calculates the load change as seen from the root_task_group
4721 *
4722 * Adding load to a group doesn't make a group heavier, but can cause movement
4723 * of group shares between cpus. Assuming the shares were perfectly aligned one
4724 * can calculate the shift in shares.
cf5f0acf
PZ
4725 *
4726 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4727 * on this @cpu and results in a total addition (subtraction) of @wg to the
4728 * total group weight.
4729 *
4730 * Given a runqueue weight distribution (rw_i) we can compute a shares
4731 * distribution (s_i) using:
4732 *
4733 * s_i = rw_i / \Sum rw_j (1)
4734 *
4735 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4736 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4737 * shares distribution (s_i):
4738 *
4739 * rw_i = { 2, 4, 1, 0 }
4740 * s_i = { 2/7, 4/7, 1/7, 0 }
4741 *
4742 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4743 * task used to run on and the CPU the waker is running on), we need to
4744 * compute the effect of waking a task on either CPU and, in case of a sync
4745 * wakeup, compute the effect of the current task going to sleep.
4746 *
4747 * So for a change of @wl to the local @cpu with an overall group weight change
4748 * of @wl we can compute the new shares distribution (s'_i) using:
4749 *
4750 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4751 *
4752 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4753 * differences in waking a task to CPU 0. The additional task changes the
4754 * weight and shares distributions like:
4755 *
4756 * rw'_i = { 3, 4, 1, 0 }
4757 * s'_i = { 3/8, 4/8, 1/8, 0 }
4758 *
4759 * We can then compute the difference in effective weight by using:
4760 *
4761 * dw_i = S * (s'_i - s_i) (3)
4762 *
4763 * Where 'S' is the group weight as seen by its parent.
4764 *
4765 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4766 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4767 * 4/7) times the weight of the group.
f5bfb7d9 4768 */
2069dd75 4769static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4770{
4be9daaa 4771 struct sched_entity *se = tg->se[cpu];
f1d239f7 4772
9722c2da 4773 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4774 return wl;
4775
4be9daaa 4776 for_each_sched_entity(se) {
cf5f0acf 4777 long w, W;
4be9daaa 4778
977dda7c 4779 tg = se->my_q->tg;
bb3469ac 4780
cf5f0acf
PZ
4781 /*
4782 * W = @wg + \Sum rw_j
4783 */
4784 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4785
cf5f0acf
PZ
4786 /*
4787 * w = rw_i + @wl
4788 */
7ea241af 4789 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4790
cf5f0acf
PZ
4791 /*
4792 * wl = S * s'_i; see (2)
4793 */
4794 if (W > 0 && w < W)
32a8df4e 4795 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4796 else
4797 wl = tg->shares;
940959e9 4798
cf5f0acf
PZ
4799 /*
4800 * Per the above, wl is the new se->load.weight value; since
4801 * those are clipped to [MIN_SHARES, ...) do so now. See
4802 * calc_cfs_shares().
4803 */
977dda7c
PT
4804 if (wl < MIN_SHARES)
4805 wl = MIN_SHARES;
cf5f0acf
PZ
4806
4807 /*
4808 * wl = dw_i = S * (s'_i - s_i); see (3)
4809 */
9d89c257 4810 wl -= se->avg.load_avg;
cf5f0acf
PZ
4811
4812 /*
4813 * Recursively apply this logic to all parent groups to compute
4814 * the final effective load change on the root group. Since
4815 * only the @tg group gets extra weight, all parent groups can
4816 * only redistribute existing shares. @wl is the shift in shares
4817 * resulting from this level per the above.
4818 */
4be9daaa 4819 wg = 0;
4be9daaa 4820 }
bb3469ac 4821
4be9daaa 4822 return wl;
bb3469ac
PZ
4823}
4824#else
4be9daaa 4825
58d081b5 4826static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4827{
83378269 4828 return wl;
bb3469ac 4829}
4be9daaa 4830
bb3469ac
PZ
4831#endif
4832
63b0e9ed
MG
4833/*
4834 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4835 * A waker of many should wake a different task than the one last awakened
4836 * at a frequency roughly N times higher than one of its wakees. In order
4837 * to determine whether we should let the load spread vs consolodating to
4838 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4839 * partner, and a factor of lls_size higher frequency in the other. With
4840 * both conditions met, we can be relatively sure that the relationship is
4841 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4842 * being client/server, worker/dispatcher, interrupt source or whatever is
4843 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4844 */
62470419
MW
4845static int wake_wide(struct task_struct *p)
4846{
63b0e9ed
MG
4847 unsigned int master = current->wakee_flips;
4848 unsigned int slave = p->wakee_flips;
7d9ffa89 4849 int factor = this_cpu_read(sd_llc_size);
62470419 4850
63b0e9ed
MG
4851 if (master < slave)
4852 swap(master, slave);
4853 if (slave < factor || master < slave * factor)
4854 return 0;
4855 return 1;
62470419
MW
4856}
4857
c88d5910 4858static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4859{
e37b6a7b 4860 s64 this_load, load;
bd61c98f 4861 s64 this_eff_load, prev_eff_load;
c88d5910 4862 int idx, this_cpu, prev_cpu;
c88d5910 4863 struct task_group *tg;
83378269 4864 unsigned long weight;
b3137bc8 4865 int balanced;
098fb9db 4866
c88d5910
PZ
4867 idx = sd->wake_idx;
4868 this_cpu = smp_processor_id();
4869 prev_cpu = task_cpu(p);
4870 load = source_load(prev_cpu, idx);
4871 this_load = target_load(this_cpu, idx);
098fb9db 4872
b3137bc8
MG
4873 /*
4874 * If sync wakeup then subtract the (maximum possible)
4875 * effect of the currently running task from the load
4876 * of the current CPU:
4877 */
83378269
PZ
4878 if (sync) {
4879 tg = task_group(current);
9d89c257 4880 weight = current->se.avg.load_avg;
83378269 4881
c88d5910 4882 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4883 load += effective_load(tg, prev_cpu, 0, -weight);
4884 }
b3137bc8 4885
83378269 4886 tg = task_group(p);
9d89c257 4887 weight = p->se.avg.load_avg;
b3137bc8 4888
71a29aa7
PZ
4889 /*
4890 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4891 * due to the sync cause above having dropped this_load to 0, we'll
4892 * always have an imbalance, but there's really nothing you can do
4893 * about that, so that's good too.
71a29aa7
PZ
4894 *
4895 * Otherwise check if either cpus are near enough in load to allow this
4896 * task to be woken on this_cpu.
4897 */
bd61c98f
VG
4898 this_eff_load = 100;
4899 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4900
bd61c98f
VG
4901 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4902 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4903
bd61c98f 4904 if (this_load > 0) {
e51fd5e2
PZ
4905 this_eff_load *= this_load +
4906 effective_load(tg, this_cpu, weight, weight);
4907
e51fd5e2 4908 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4909 }
e51fd5e2 4910
bd61c98f 4911 balanced = this_eff_load <= prev_eff_load;
098fb9db 4912
41acab88 4913 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4914
05bfb65f
VG
4915 if (!balanced)
4916 return 0;
098fb9db 4917
05bfb65f
VG
4918 schedstat_inc(sd, ttwu_move_affine);
4919 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4920
4921 return 1;
098fb9db
IM
4922}
4923
aaee1203
PZ
4924/*
4925 * find_idlest_group finds and returns the least busy CPU group within the
4926 * domain.
4927 */
4928static struct sched_group *
78e7ed53 4929find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4930 int this_cpu, int sd_flag)
e7693a36 4931{
b3bd3de6 4932 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4933 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4934 int load_idx = sd->forkexec_idx;
aaee1203 4935 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4936
c44f2a02
VG
4937 if (sd_flag & SD_BALANCE_WAKE)
4938 load_idx = sd->wake_idx;
4939
aaee1203
PZ
4940 do {
4941 unsigned long load, avg_load;
4942 int local_group;
4943 int i;
e7693a36 4944
aaee1203
PZ
4945 /* Skip over this group if it has no CPUs allowed */
4946 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4947 tsk_cpus_allowed(p)))
aaee1203
PZ
4948 continue;
4949
4950 local_group = cpumask_test_cpu(this_cpu,
4951 sched_group_cpus(group));
4952
4953 /* Tally up the load of all CPUs in the group */
4954 avg_load = 0;
4955
4956 for_each_cpu(i, sched_group_cpus(group)) {
4957 /* Bias balancing toward cpus of our domain */
4958 if (local_group)
4959 load = source_load(i, load_idx);
4960 else
4961 load = target_load(i, load_idx);
4962
4963 avg_load += load;
4964 }
4965
63b2ca30 4966 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4967 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4968
4969 if (local_group) {
4970 this_load = avg_load;
aaee1203
PZ
4971 } else if (avg_load < min_load) {
4972 min_load = avg_load;
4973 idlest = group;
4974 }
4975 } while (group = group->next, group != sd->groups);
4976
4977 if (!idlest || 100*this_load < imbalance*min_load)
4978 return NULL;
4979 return idlest;
4980}
4981
4982/*
4983 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4984 */
4985static int
4986find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4987{
4988 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4989 unsigned int min_exit_latency = UINT_MAX;
4990 u64 latest_idle_timestamp = 0;
4991 int least_loaded_cpu = this_cpu;
4992 int shallowest_idle_cpu = -1;
aaee1203
PZ
4993 int i;
4994
4995 /* Traverse only the allowed CPUs */
fa17b507 4996 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4997 if (idle_cpu(i)) {
4998 struct rq *rq = cpu_rq(i);
4999 struct cpuidle_state *idle = idle_get_state(rq);
5000 if (idle && idle->exit_latency < min_exit_latency) {
5001 /*
5002 * We give priority to a CPU whose idle state
5003 * has the smallest exit latency irrespective
5004 * of any idle timestamp.
5005 */
5006 min_exit_latency = idle->exit_latency;
5007 latest_idle_timestamp = rq->idle_stamp;
5008 shallowest_idle_cpu = i;
5009 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5010 rq->idle_stamp > latest_idle_timestamp) {
5011 /*
5012 * If equal or no active idle state, then
5013 * the most recently idled CPU might have
5014 * a warmer cache.
5015 */
5016 latest_idle_timestamp = rq->idle_stamp;
5017 shallowest_idle_cpu = i;
5018 }
9f96742a 5019 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5020 load = weighted_cpuload(i);
5021 if (load < min_load || (load == min_load && i == this_cpu)) {
5022 min_load = load;
5023 least_loaded_cpu = i;
5024 }
e7693a36
GH
5025 }
5026 }
5027
83a0a96a 5028 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5029}
e7693a36 5030
a50bde51
PZ
5031/*
5032 * Try and locate an idle CPU in the sched_domain.
5033 */
99bd5e2f 5034static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5035{
99bd5e2f 5036 struct sched_domain *sd;
37407ea7 5037 struct sched_group *sg;
e0a79f52 5038 int i = task_cpu(p);
a50bde51 5039
e0a79f52
MG
5040 if (idle_cpu(target))
5041 return target;
99bd5e2f
SS
5042
5043 /*
e0a79f52 5044 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5045 */
e0a79f52
MG
5046 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5047 return i;
a50bde51
PZ
5048
5049 /*
37407ea7 5050 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 5051 */
518cd623 5052 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5053 for_each_lower_domain(sd) {
37407ea7
LT
5054 sg = sd->groups;
5055 do {
5056 if (!cpumask_intersects(sched_group_cpus(sg),
5057 tsk_cpus_allowed(p)))
5058 goto next;
5059
5060 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5061 if (i == target || !idle_cpu(i))
37407ea7
LT
5062 goto next;
5063 }
970e1789 5064
37407ea7
LT
5065 target = cpumask_first_and(sched_group_cpus(sg),
5066 tsk_cpus_allowed(p));
5067 goto done;
5068next:
5069 sg = sg->next;
5070 } while (sg != sd->groups);
5071 }
5072done:
a50bde51
PZ
5073 return target;
5074}
231678b7 5075
8bb5b00c 5076/*
9e91d61d 5077 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5078 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5079 * compare the utilization with the capacity of the CPU that is available for
5080 * CFS task (ie cpu_capacity).
231678b7
DE
5081 *
5082 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5083 * recent utilization of currently non-runnable tasks on a CPU. It represents
5084 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5085 * capacity_orig is the cpu_capacity available at the highest frequency
5086 * (arch_scale_freq_capacity()).
5087 * The utilization of a CPU converges towards a sum equal to or less than the
5088 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5089 * the running time on this CPU scaled by capacity_curr.
5090 *
5091 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5092 * higher than capacity_orig because of unfortunate rounding in
5093 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5094 * the average stabilizes with the new running time. We need to check that the
5095 * utilization stays within the range of [0..capacity_orig] and cap it if
5096 * necessary. Without utilization capping, a group could be seen as overloaded
5097 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5098 * available capacity. We allow utilization to overshoot capacity_curr (but not
5099 * capacity_orig) as it useful for predicting the capacity required after task
5100 * migrations (scheduler-driven DVFS).
8bb5b00c 5101 */
9e91d61d 5102static int cpu_util(int cpu)
8bb5b00c 5103{
9e91d61d 5104 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5105 unsigned long capacity = capacity_orig_of(cpu);
5106
231678b7 5107 return (util >= capacity) ? capacity : util;
8bb5b00c 5108}
a50bde51 5109
aaee1203 5110/*
de91b9cb
MR
5111 * select_task_rq_fair: Select target runqueue for the waking task in domains
5112 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5113 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5114 *
de91b9cb
MR
5115 * Balances load by selecting the idlest cpu in the idlest group, or under
5116 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5117 *
de91b9cb 5118 * Returns the target cpu number.
aaee1203
PZ
5119 *
5120 * preempt must be disabled.
5121 */
0017d735 5122static int
ac66f547 5123select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5124{
29cd8bae 5125 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5126 int cpu = smp_processor_id();
63b0e9ed 5127 int new_cpu = prev_cpu;
99bd5e2f 5128 int want_affine = 0;
5158f4e4 5129 int sync = wake_flags & WF_SYNC;
c88d5910 5130
a8edd075 5131 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5132 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5133
dce840a0 5134 rcu_read_lock();
aaee1203 5135 for_each_domain(cpu, tmp) {
e4f42888 5136 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5137 break;
e4f42888 5138
fe3bcfe1 5139 /*
99bd5e2f
SS
5140 * If both cpu and prev_cpu are part of this domain,
5141 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5142 */
99bd5e2f
SS
5143 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5144 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5145 affine_sd = tmp;
29cd8bae 5146 break;
f03542a7 5147 }
29cd8bae 5148
f03542a7 5149 if (tmp->flags & sd_flag)
29cd8bae 5150 sd = tmp;
63b0e9ed
MG
5151 else if (!want_affine)
5152 break;
29cd8bae
PZ
5153 }
5154
63b0e9ed
MG
5155 if (affine_sd) {
5156 sd = NULL; /* Prefer wake_affine over balance flags */
5157 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5158 new_cpu = cpu;
8b911acd 5159 }
e7693a36 5160
63b0e9ed
MG
5161 if (!sd) {
5162 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5163 new_cpu = select_idle_sibling(p, new_cpu);
5164
5165 } else while (sd) {
aaee1203 5166 struct sched_group *group;
c88d5910 5167 int weight;
098fb9db 5168
0763a660 5169 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5170 sd = sd->child;
5171 continue;
5172 }
098fb9db 5173
c44f2a02 5174 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5175 if (!group) {
5176 sd = sd->child;
5177 continue;
5178 }
4ae7d5ce 5179
d7c33c49 5180 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5181 if (new_cpu == -1 || new_cpu == cpu) {
5182 /* Now try balancing at a lower domain level of cpu */
5183 sd = sd->child;
5184 continue;
e7693a36 5185 }
aaee1203
PZ
5186
5187 /* Now try balancing at a lower domain level of new_cpu */
5188 cpu = new_cpu;
669c55e9 5189 weight = sd->span_weight;
aaee1203
PZ
5190 sd = NULL;
5191 for_each_domain(cpu, tmp) {
669c55e9 5192 if (weight <= tmp->span_weight)
aaee1203 5193 break;
0763a660 5194 if (tmp->flags & sd_flag)
aaee1203
PZ
5195 sd = tmp;
5196 }
5197 /* while loop will break here if sd == NULL */
e7693a36 5198 }
dce840a0 5199 rcu_read_unlock();
e7693a36 5200
c88d5910 5201 return new_cpu;
e7693a36 5202}
0a74bef8
PT
5203
5204/*
5205 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5206 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5207 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5208 */
5a4fd036 5209static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5210{
aff3e498 5211 /*
9d89c257
YD
5212 * We are supposed to update the task to "current" time, then its up to date
5213 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5214 * what current time is, so simply throw away the out-of-date time. This
5215 * will result in the wakee task is less decayed, but giving the wakee more
5216 * load sounds not bad.
aff3e498 5217 */
9d89c257
YD
5218 remove_entity_load_avg(&p->se);
5219
5220 /* Tell new CPU we are migrated */
5221 p->se.avg.last_update_time = 0;
3944a927
BS
5222
5223 /* We have migrated, no longer consider this task hot */
9d89c257 5224 p->se.exec_start = 0;
0a74bef8 5225}
12695578
YD
5226
5227static void task_dead_fair(struct task_struct *p)
5228{
5229 remove_entity_load_avg(&p->se);
5230}
e7693a36
GH
5231#endif /* CONFIG_SMP */
5232
e52fb7c0
PZ
5233static unsigned long
5234wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5235{
5236 unsigned long gran = sysctl_sched_wakeup_granularity;
5237
5238 /*
e52fb7c0
PZ
5239 * Since its curr running now, convert the gran from real-time
5240 * to virtual-time in his units.
13814d42
MG
5241 *
5242 * By using 'se' instead of 'curr' we penalize light tasks, so
5243 * they get preempted easier. That is, if 'se' < 'curr' then
5244 * the resulting gran will be larger, therefore penalizing the
5245 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5246 * be smaller, again penalizing the lighter task.
5247 *
5248 * This is especially important for buddies when the leftmost
5249 * task is higher priority than the buddy.
0bbd3336 5250 */
f4ad9bd2 5251 return calc_delta_fair(gran, se);
0bbd3336
PZ
5252}
5253
464b7527
PZ
5254/*
5255 * Should 'se' preempt 'curr'.
5256 *
5257 * |s1
5258 * |s2
5259 * |s3
5260 * g
5261 * |<--->|c
5262 *
5263 * w(c, s1) = -1
5264 * w(c, s2) = 0
5265 * w(c, s3) = 1
5266 *
5267 */
5268static int
5269wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5270{
5271 s64 gran, vdiff = curr->vruntime - se->vruntime;
5272
5273 if (vdiff <= 0)
5274 return -1;
5275
e52fb7c0 5276 gran = wakeup_gran(curr, se);
464b7527
PZ
5277 if (vdiff > gran)
5278 return 1;
5279
5280 return 0;
5281}
5282
02479099
PZ
5283static void set_last_buddy(struct sched_entity *se)
5284{
69c80f3e
VP
5285 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5286 return;
5287
5288 for_each_sched_entity(se)
5289 cfs_rq_of(se)->last = se;
02479099
PZ
5290}
5291
5292static void set_next_buddy(struct sched_entity *se)
5293{
69c80f3e
VP
5294 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5295 return;
5296
5297 for_each_sched_entity(se)
5298 cfs_rq_of(se)->next = se;
02479099
PZ
5299}
5300
ac53db59
RR
5301static void set_skip_buddy(struct sched_entity *se)
5302{
69c80f3e
VP
5303 for_each_sched_entity(se)
5304 cfs_rq_of(se)->skip = se;
ac53db59
RR
5305}
5306
bf0f6f24
IM
5307/*
5308 * Preempt the current task with a newly woken task if needed:
5309 */
5a9b86f6 5310static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5311{
5312 struct task_struct *curr = rq->curr;
8651a86c 5313 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5314 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5315 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5316 int next_buddy_marked = 0;
bf0f6f24 5317
4ae7d5ce
IM
5318 if (unlikely(se == pse))
5319 return;
5320
5238cdd3 5321 /*
163122b7 5322 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5323 * unconditionally check_prempt_curr() after an enqueue (which may have
5324 * lead to a throttle). This both saves work and prevents false
5325 * next-buddy nomination below.
5326 */
5327 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5328 return;
5329
2f36825b 5330 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5331 set_next_buddy(pse);
2f36825b
VP
5332 next_buddy_marked = 1;
5333 }
57fdc26d 5334
aec0a514
BR
5335 /*
5336 * We can come here with TIF_NEED_RESCHED already set from new task
5337 * wake up path.
5238cdd3
PT
5338 *
5339 * Note: this also catches the edge-case of curr being in a throttled
5340 * group (e.g. via set_curr_task), since update_curr() (in the
5341 * enqueue of curr) will have resulted in resched being set. This
5342 * prevents us from potentially nominating it as a false LAST_BUDDY
5343 * below.
aec0a514
BR
5344 */
5345 if (test_tsk_need_resched(curr))
5346 return;
5347
a2f5c9ab
DH
5348 /* Idle tasks are by definition preempted by non-idle tasks. */
5349 if (unlikely(curr->policy == SCHED_IDLE) &&
5350 likely(p->policy != SCHED_IDLE))
5351 goto preempt;
5352
91c234b4 5353 /*
a2f5c9ab
DH
5354 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5355 * is driven by the tick):
91c234b4 5356 */
8ed92e51 5357 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5358 return;
bf0f6f24 5359
464b7527 5360 find_matching_se(&se, &pse);
9bbd7374 5361 update_curr(cfs_rq_of(se));
002f128b 5362 BUG_ON(!pse);
2f36825b
VP
5363 if (wakeup_preempt_entity(se, pse) == 1) {
5364 /*
5365 * Bias pick_next to pick the sched entity that is
5366 * triggering this preemption.
5367 */
5368 if (!next_buddy_marked)
5369 set_next_buddy(pse);
3a7e73a2 5370 goto preempt;
2f36825b 5371 }
464b7527 5372
3a7e73a2 5373 return;
a65ac745 5374
3a7e73a2 5375preempt:
8875125e 5376 resched_curr(rq);
3a7e73a2
PZ
5377 /*
5378 * Only set the backward buddy when the current task is still
5379 * on the rq. This can happen when a wakeup gets interleaved
5380 * with schedule on the ->pre_schedule() or idle_balance()
5381 * point, either of which can * drop the rq lock.
5382 *
5383 * Also, during early boot the idle thread is in the fair class,
5384 * for obvious reasons its a bad idea to schedule back to it.
5385 */
5386 if (unlikely(!se->on_rq || curr == rq->idle))
5387 return;
5388
5389 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5390 set_last_buddy(se);
bf0f6f24
IM
5391}
5392
606dba2e
PZ
5393static struct task_struct *
5394pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5395{
5396 struct cfs_rq *cfs_rq = &rq->cfs;
5397 struct sched_entity *se;
678d5718 5398 struct task_struct *p;
37e117c0 5399 int new_tasks;
678d5718 5400
6e83125c 5401again:
678d5718
PZ
5402#ifdef CONFIG_FAIR_GROUP_SCHED
5403 if (!cfs_rq->nr_running)
38033c37 5404 goto idle;
678d5718 5405
3f1d2a31 5406 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5407 goto simple;
5408
5409 /*
5410 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5411 * likely that a next task is from the same cgroup as the current.
5412 *
5413 * Therefore attempt to avoid putting and setting the entire cgroup
5414 * hierarchy, only change the part that actually changes.
5415 */
5416
5417 do {
5418 struct sched_entity *curr = cfs_rq->curr;
5419
5420 /*
5421 * Since we got here without doing put_prev_entity() we also
5422 * have to consider cfs_rq->curr. If it is still a runnable
5423 * entity, update_curr() will update its vruntime, otherwise
5424 * forget we've ever seen it.
5425 */
54d27365
BS
5426 if (curr) {
5427 if (curr->on_rq)
5428 update_curr(cfs_rq);
5429 else
5430 curr = NULL;
678d5718 5431
54d27365
BS
5432 /*
5433 * This call to check_cfs_rq_runtime() will do the
5434 * throttle and dequeue its entity in the parent(s).
5435 * Therefore the 'simple' nr_running test will indeed
5436 * be correct.
5437 */
5438 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5439 goto simple;
5440 }
678d5718
PZ
5441
5442 se = pick_next_entity(cfs_rq, curr);
5443 cfs_rq = group_cfs_rq(se);
5444 } while (cfs_rq);
5445
5446 p = task_of(se);
5447
5448 /*
5449 * Since we haven't yet done put_prev_entity and if the selected task
5450 * is a different task than we started out with, try and touch the
5451 * least amount of cfs_rqs.
5452 */
5453 if (prev != p) {
5454 struct sched_entity *pse = &prev->se;
5455
5456 while (!(cfs_rq = is_same_group(se, pse))) {
5457 int se_depth = se->depth;
5458 int pse_depth = pse->depth;
5459
5460 if (se_depth <= pse_depth) {
5461 put_prev_entity(cfs_rq_of(pse), pse);
5462 pse = parent_entity(pse);
5463 }
5464 if (se_depth >= pse_depth) {
5465 set_next_entity(cfs_rq_of(se), se);
5466 se = parent_entity(se);
5467 }
5468 }
5469
5470 put_prev_entity(cfs_rq, pse);
5471 set_next_entity(cfs_rq, se);
5472 }
5473
5474 if (hrtick_enabled(rq))
5475 hrtick_start_fair(rq, p);
5476
5477 return p;
5478simple:
5479 cfs_rq = &rq->cfs;
5480#endif
bf0f6f24 5481
36ace27e 5482 if (!cfs_rq->nr_running)
38033c37 5483 goto idle;
bf0f6f24 5484
3f1d2a31 5485 put_prev_task(rq, prev);
606dba2e 5486
bf0f6f24 5487 do {
678d5718 5488 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5489 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5490 cfs_rq = group_cfs_rq(se);
5491 } while (cfs_rq);
5492
8f4d37ec 5493 p = task_of(se);
678d5718 5494
b39e66ea
MG
5495 if (hrtick_enabled(rq))
5496 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5497
5498 return p;
38033c37
PZ
5499
5500idle:
cbce1a68
PZ
5501 /*
5502 * This is OK, because current is on_cpu, which avoids it being picked
5503 * for load-balance and preemption/IRQs are still disabled avoiding
5504 * further scheduler activity on it and we're being very careful to
5505 * re-start the picking loop.
5506 */
5507 lockdep_unpin_lock(&rq->lock);
e4aa358b 5508 new_tasks = idle_balance(rq);
cbce1a68 5509 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5510 /*
5511 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5512 * possible for any higher priority task to appear. In that case we
5513 * must re-start the pick_next_entity() loop.
5514 */
e4aa358b 5515 if (new_tasks < 0)
37e117c0
PZ
5516 return RETRY_TASK;
5517
e4aa358b 5518 if (new_tasks > 0)
38033c37 5519 goto again;
38033c37
PZ
5520
5521 return NULL;
bf0f6f24
IM
5522}
5523
5524/*
5525 * Account for a descheduled task:
5526 */
31ee529c 5527static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5528{
5529 struct sched_entity *se = &prev->se;
5530 struct cfs_rq *cfs_rq;
5531
5532 for_each_sched_entity(se) {
5533 cfs_rq = cfs_rq_of(se);
ab6cde26 5534 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5535 }
5536}
5537
ac53db59
RR
5538/*
5539 * sched_yield() is very simple
5540 *
5541 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5542 */
5543static void yield_task_fair(struct rq *rq)
5544{
5545 struct task_struct *curr = rq->curr;
5546 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5547 struct sched_entity *se = &curr->se;
5548
5549 /*
5550 * Are we the only task in the tree?
5551 */
5552 if (unlikely(rq->nr_running == 1))
5553 return;
5554
5555 clear_buddies(cfs_rq, se);
5556
5557 if (curr->policy != SCHED_BATCH) {
5558 update_rq_clock(rq);
5559 /*
5560 * Update run-time statistics of the 'current'.
5561 */
5562 update_curr(cfs_rq);
916671c0
MG
5563 /*
5564 * Tell update_rq_clock() that we've just updated,
5565 * so we don't do microscopic update in schedule()
5566 * and double the fastpath cost.
5567 */
9edfbfed 5568 rq_clock_skip_update(rq, true);
ac53db59
RR
5569 }
5570
5571 set_skip_buddy(se);
5572}
5573
d95f4122
MG
5574static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5575{
5576 struct sched_entity *se = &p->se;
5577
5238cdd3
PT
5578 /* throttled hierarchies are not runnable */
5579 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5580 return false;
5581
5582 /* Tell the scheduler that we'd really like pse to run next. */
5583 set_next_buddy(se);
5584
d95f4122
MG
5585 yield_task_fair(rq);
5586
5587 return true;
5588}
5589
681f3e68 5590#ifdef CONFIG_SMP
bf0f6f24 5591/**************************************************
e9c84cb8
PZ
5592 * Fair scheduling class load-balancing methods.
5593 *
5594 * BASICS
5595 *
5596 * The purpose of load-balancing is to achieve the same basic fairness the
5597 * per-cpu scheduler provides, namely provide a proportional amount of compute
5598 * time to each task. This is expressed in the following equation:
5599 *
5600 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5601 *
5602 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5603 * W_i,0 is defined as:
5604 *
5605 * W_i,0 = \Sum_j w_i,j (2)
5606 *
5607 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5608 * is derived from the nice value as per prio_to_weight[].
5609 *
5610 * The weight average is an exponential decay average of the instantaneous
5611 * weight:
5612 *
5613 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5614 *
ced549fa 5615 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5616 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5617 * can also include other factors [XXX].
5618 *
5619 * To achieve this balance we define a measure of imbalance which follows
5620 * directly from (1):
5621 *
ced549fa 5622 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5623 *
5624 * We them move tasks around to minimize the imbalance. In the continuous
5625 * function space it is obvious this converges, in the discrete case we get
5626 * a few fun cases generally called infeasible weight scenarios.
5627 *
5628 * [XXX expand on:
5629 * - infeasible weights;
5630 * - local vs global optima in the discrete case. ]
5631 *
5632 *
5633 * SCHED DOMAINS
5634 *
5635 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5636 * for all i,j solution, we create a tree of cpus that follows the hardware
5637 * topology where each level pairs two lower groups (or better). This results
5638 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5639 * tree to only the first of the previous level and we decrease the frequency
5640 * of load-balance at each level inv. proportional to the number of cpus in
5641 * the groups.
5642 *
5643 * This yields:
5644 *
5645 * log_2 n 1 n
5646 * \Sum { --- * --- * 2^i } = O(n) (5)
5647 * i = 0 2^i 2^i
5648 * `- size of each group
5649 * | | `- number of cpus doing load-balance
5650 * | `- freq
5651 * `- sum over all levels
5652 *
5653 * Coupled with a limit on how many tasks we can migrate every balance pass,
5654 * this makes (5) the runtime complexity of the balancer.
5655 *
5656 * An important property here is that each CPU is still (indirectly) connected
5657 * to every other cpu in at most O(log n) steps:
5658 *
5659 * The adjacency matrix of the resulting graph is given by:
5660 *
5661 * log_2 n
5662 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5663 * k = 0
5664 *
5665 * And you'll find that:
5666 *
5667 * A^(log_2 n)_i,j != 0 for all i,j (7)
5668 *
5669 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5670 * The task movement gives a factor of O(m), giving a convergence complexity
5671 * of:
5672 *
5673 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5674 *
5675 *
5676 * WORK CONSERVING
5677 *
5678 * In order to avoid CPUs going idle while there's still work to do, new idle
5679 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5680 * tree itself instead of relying on other CPUs to bring it work.
5681 *
5682 * This adds some complexity to both (5) and (8) but it reduces the total idle
5683 * time.
5684 *
5685 * [XXX more?]
5686 *
5687 *
5688 * CGROUPS
5689 *
5690 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5691 *
5692 * s_k,i
5693 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5694 * S_k
5695 *
5696 * Where
5697 *
5698 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5699 *
5700 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5701 *
5702 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5703 * property.
5704 *
5705 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5706 * rewrite all of this once again.]
5707 */
bf0f6f24 5708
ed387b78
HS
5709static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5710
0ec8aa00
PZ
5711enum fbq_type { regular, remote, all };
5712
ddcdf6e7 5713#define LBF_ALL_PINNED 0x01
367456c7 5714#define LBF_NEED_BREAK 0x02
6263322c
PZ
5715#define LBF_DST_PINNED 0x04
5716#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5717
5718struct lb_env {
5719 struct sched_domain *sd;
5720
ddcdf6e7 5721 struct rq *src_rq;
85c1e7da 5722 int src_cpu;
ddcdf6e7
PZ
5723
5724 int dst_cpu;
5725 struct rq *dst_rq;
5726
88b8dac0
SV
5727 struct cpumask *dst_grpmask;
5728 int new_dst_cpu;
ddcdf6e7 5729 enum cpu_idle_type idle;
bd939f45 5730 long imbalance;
b9403130
MW
5731 /* The set of CPUs under consideration for load-balancing */
5732 struct cpumask *cpus;
5733
ddcdf6e7 5734 unsigned int flags;
367456c7
PZ
5735
5736 unsigned int loop;
5737 unsigned int loop_break;
5738 unsigned int loop_max;
0ec8aa00
PZ
5739
5740 enum fbq_type fbq_type;
163122b7 5741 struct list_head tasks;
ddcdf6e7
PZ
5742};
5743
029632fb
PZ
5744/*
5745 * Is this task likely cache-hot:
5746 */
5d5e2b1b 5747static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5748{
5749 s64 delta;
5750
e5673f28
KT
5751 lockdep_assert_held(&env->src_rq->lock);
5752
029632fb
PZ
5753 if (p->sched_class != &fair_sched_class)
5754 return 0;
5755
5756 if (unlikely(p->policy == SCHED_IDLE))
5757 return 0;
5758
5759 /*
5760 * Buddy candidates are cache hot:
5761 */
5d5e2b1b 5762 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5763 (&p->se == cfs_rq_of(&p->se)->next ||
5764 &p->se == cfs_rq_of(&p->se)->last))
5765 return 1;
5766
5767 if (sysctl_sched_migration_cost == -1)
5768 return 1;
5769 if (sysctl_sched_migration_cost == 0)
5770 return 0;
5771
5d5e2b1b 5772 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5773
5774 return delta < (s64)sysctl_sched_migration_cost;
5775}
5776
3a7053b3 5777#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5778/*
2a1ed24c
SD
5779 * Returns 1, if task migration degrades locality
5780 * Returns 0, if task migration improves locality i.e migration preferred.
5781 * Returns -1, if task migration is not affected by locality.
c1ceac62 5782 */
2a1ed24c 5783static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5784{
b1ad065e 5785 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5786 unsigned long src_faults, dst_faults;
3a7053b3
MG
5787 int src_nid, dst_nid;
5788
2a595721 5789 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5790 return -1;
5791
c3b9bc5b 5792 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5793 return -1;
7a0f3083
MG
5794
5795 src_nid = cpu_to_node(env->src_cpu);
5796 dst_nid = cpu_to_node(env->dst_cpu);
5797
83e1d2cd 5798 if (src_nid == dst_nid)
2a1ed24c 5799 return -1;
7a0f3083 5800
2a1ed24c
SD
5801 /* Migrating away from the preferred node is always bad. */
5802 if (src_nid == p->numa_preferred_nid) {
5803 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5804 return 1;
5805 else
5806 return -1;
5807 }
b1ad065e 5808
c1ceac62
RR
5809 /* Encourage migration to the preferred node. */
5810 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5811 return 0;
b1ad065e 5812
c1ceac62
RR
5813 if (numa_group) {
5814 src_faults = group_faults(p, src_nid);
5815 dst_faults = group_faults(p, dst_nid);
5816 } else {
5817 src_faults = task_faults(p, src_nid);
5818 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5819 }
5820
c1ceac62 5821 return dst_faults < src_faults;
7a0f3083
MG
5822}
5823
3a7053b3 5824#else
2a1ed24c 5825static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5826 struct lb_env *env)
5827{
2a1ed24c 5828 return -1;
7a0f3083 5829}
3a7053b3
MG
5830#endif
5831
1e3c88bd
PZ
5832/*
5833 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5834 */
5835static
8e45cb54 5836int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5837{
2a1ed24c 5838 int tsk_cache_hot;
e5673f28
KT
5839
5840 lockdep_assert_held(&env->src_rq->lock);
5841
1e3c88bd
PZ
5842 /*
5843 * We do not migrate tasks that are:
d3198084 5844 * 1) throttled_lb_pair, or
1e3c88bd 5845 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5846 * 3) running (obviously), or
5847 * 4) are cache-hot on their current CPU.
1e3c88bd 5848 */
d3198084
JK
5849 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5850 return 0;
5851
ddcdf6e7 5852 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5853 int cpu;
88b8dac0 5854
41acab88 5855 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5856
6263322c
PZ
5857 env->flags |= LBF_SOME_PINNED;
5858
88b8dac0
SV
5859 /*
5860 * Remember if this task can be migrated to any other cpu in
5861 * our sched_group. We may want to revisit it if we couldn't
5862 * meet load balance goals by pulling other tasks on src_cpu.
5863 *
5864 * Also avoid computing new_dst_cpu if we have already computed
5865 * one in current iteration.
5866 */
6263322c 5867 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5868 return 0;
5869
e02e60c1
JK
5870 /* Prevent to re-select dst_cpu via env's cpus */
5871 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5872 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5873 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5874 env->new_dst_cpu = cpu;
5875 break;
5876 }
88b8dac0 5877 }
e02e60c1 5878
1e3c88bd
PZ
5879 return 0;
5880 }
88b8dac0
SV
5881
5882 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5883 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5884
ddcdf6e7 5885 if (task_running(env->src_rq, p)) {
41acab88 5886 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5887 return 0;
5888 }
5889
5890 /*
5891 * Aggressive migration if:
3a7053b3
MG
5892 * 1) destination numa is preferred
5893 * 2) task is cache cold, or
5894 * 3) too many balance attempts have failed.
1e3c88bd 5895 */
2a1ed24c
SD
5896 tsk_cache_hot = migrate_degrades_locality(p, env);
5897 if (tsk_cache_hot == -1)
5898 tsk_cache_hot = task_hot(p, env);
3a7053b3 5899
2a1ed24c 5900 if (tsk_cache_hot <= 0 ||
7a96c231 5901 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5902 if (tsk_cache_hot == 1) {
3a7053b3
MG
5903 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5904 schedstat_inc(p, se.statistics.nr_forced_migrations);
5905 }
1e3c88bd
PZ
5906 return 1;
5907 }
5908
4e2dcb73
ZH
5909 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5910 return 0;
1e3c88bd
PZ
5911}
5912
897c395f 5913/*
163122b7
KT
5914 * detach_task() -- detach the task for the migration specified in env
5915 */
5916static void detach_task(struct task_struct *p, struct lb_env *env)
5917{
5918 lockdep_assert_held(&env->src_rq->lock);
5919
163122b7 5920 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5921 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5922 set_task_cpu(p, env->dst_cpu);
5923}
5924
897c395f 5925/*
e5673f28 5926 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5927 * part of active balancing operations within "domain".
897c395f 5928 *
e5673f28 5929 * Returns a task if successful and NULL otherwise.
897c395f 5930 */
e5673f28 5931static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5932{
5933 struct task_struct *p, *n;
897c395f 5934
e5673f28
KT
5935 lockdep_assert_held(&env->src_rq->lock);
5936
367456c7 5937 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5938 if (!can_migrate_task(p, env))
5939 continue;
897c395f 5940
163122b7 5941 detach_task(p, env);
e5673f28 5942
367456c7 5943 /*
e5673f28 5944 * Right now, this is only the second place where
163122b7 5945 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5946 * so we can safely collect stats here rather than
163122b7 5947 * inside detach_tasks().
367456c7
PZ
5948 */
5949 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5950 return p;
897c395f 5951 }
e5673f28 5952 return NULL;
897c395f
PZ
5953}
5954
eb95308e
PZ
5955static const unsigned int sched_nr_migrate_break = 32;
5956
5d6523eb 5957/*
163122b7
KT
5958 * detach_tasks() -- tries to detach up to imbalance weighted load from
5959 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5960 *
163122b7 5961 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5962 */
163122b7 5963static int detach_tasks(struct lb_env *env)
1e3c88bd 5964{
5d6523eb
PZ
5965 struct list_head *tasks = &env->src_rq->cfs_tasks;
5966 struct task_struct *p;
367456c7 5967 unsigned long load;
163122b7
KT
5968 int detached = 0;
5969
5970 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5971
bd939f45 5972 if (env->imbalance <= 0)
5d6523eb 5973 return 0;
1e3c88bd 5974
5d6523eb 5975 while (!list_empty(tasks)) {
985d3a4c
YD
5976 /*
5977 * We don't want to steal all, otherwise we may be treated likewise,
5978 * which could at worst lead to a livelock crash.
5979 */
5980 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5981 break;
5982
5d6523eb 5983 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5984
367456c7
PZ
5985 env->loop++;
5986 /* We've more or less seen every task there is, call it quits */
5d6523eb 5987 if (env->loop > env->loop_max)
367456c7 5988 break;
5d6523eb
PZ
5989
5990 /* take a breather every nr_migrate tasks */
367456c7 5991 if (env->loop > env->loop_break) {
eb95308e 5992 env->loop_break += sched_nr_migrate_break;
8e45cb54 5993 env->flags |= LBF_NEED_BREAK;
ee00e66f 5994 break;
a195f004 5995 }
1e3c88bd 5996
d3198084 5997 if (!can_migrate_task(p, env))
367456c7
PZ
5998 goto next;
5999
6000 load = task_h_load(p);
5d6523eb 6001
eb95308e 6002 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6003 goto next;
6004
bd939f45 6005 if ((load / 2) > env->imbalance)
367456c7 6006 goto next;
1e3c88bd 6007
163122b7
KT
6008 detach_task(p, env);
6009 list_add(&p->se.group_node, &env->tasks);
6010
6011 detached++;
bd939f45 6012 env->imbalance -= load;
1e3c88bd
PZ
6013
6014#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6015 /*
6016 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6017 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6018 * the critical section.
6019 */
5d6523eb 6020 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6021 break;
1e3c88bd
PZ
6022#endif
6023
ee00e66f
PZ
6024 /*
6025 * We only want to steal up to the prescribed amount of
6026 * weighted load.
6027 */
bd939f45 6028 if (env->imbalance <= 0)
ee00e66f 6029 break;
367456c7
PZ
6030
6031 continue;
6032next:
5d6523eb 6033 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6034 }
5d6523eb 6035
1e3c88bd 6036 /*
163122b7
KT
6037 * Right now, this is one of only two places we collect this stat
6038 * so we can safely collect detach_one_task() stats here rather
6039 * than inside detach_one_task().
1e3c88bd 6040 */
163122b7 6041 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6042
163122b7
KT
6043 return detached;
6044}
6045
6046/*
6047 * attach_task() -- attach the task detached by detach_task() to its new rq.
6048 */
6049static void attach_task(struct rq *rq, struct task_struct *p)
6050{
6051 lockdep_assert_held(&rq->lock);
6052
6053 BUG_ON(task_rq(p) != rq);
163122b7 6054 activate_task(rq, p, 0);
3ea94de1 6055 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6056 check_preempt_curr(rq, p, 0);
6057}
6058
6059/*
6060 * attach_one_task() -- attaches the task returned from detach_one_task() to
6061 * its new rq.
6062 */
6063static void attach_one_task(struct rq *rq, struct task_struct *p)
6064{
6065 raw_spin_lock(&rq->lock);
6066 attach_task(rq, p);
6067 raw_spin_unlock(&rq->lock);
6068}
6069
6070/*
6071 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6072 * new rq.
6073 */
6074static void attach_tasks(struct lb_env *env)
6075{
6076 struct list_head *tasks = &env->tasks;
6077 struct task_struct *p;
6078
6079 raw_spin_lock(&env->dst_rq->lock);
6080
6081 while (!list_empty(tasks)) {
6082 p = list_first_entry(tasks, struct task_struct, se.group_node);
6083 list_del_init(&p->se.group_node);
1e3c88bd 6084
163122b7
KT
6085 attach_task(env->dst_rq, p);
6086 }
6087
6088 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6089}
6090
230059de 6091#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6092static void update_blocked_averages(int cpu)
9e3081ca 6093{
9e3081ca 6094 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6095 struct cfs_rq *cfs_rq;
6096 unsigned long flags;
9e3081ca 6097
48a16753
PT
6098 raw_spin_lock_irqsave(&rq->lock, flags);
6099 update_rq_clock(rq);
9d89c257 6100
9763b67f
PZ
6101 /*
6102 * Iterates the task_group tree in a bottom up fashion, see
6103 * list_add_leaf_cfs_rq() for details.
6104 */
64660c86 6105 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6106 /* throttled entities do not contribute to load */
6107 if (throttled_hierarchy(cfs_rq))
6108 continue;
48a16753 6109
9d89c257
YD
6110 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6111 update_tg_load_avg(cfs_rq, 0);
6112 }
48a16753 6113 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6114}
6115
9763b67f 6116/*
68520796 6117 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6118 * This needs to be done in a top-down fashion because the load of a child
6119 * group is a fraction of its parents load.
6120 */
68520796 6121static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6122{
68520796
VD
6123 struct rq *rq = rq_of(cfs_rq);
6124 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6125 unsigned long now = jiffies;
68520796 6126 unsigned long load;
a35b6466 6127
68520796 6128 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6129 return;
6130
68520796
VD
6131 cfs_rq->h_load_next = NULL;
6132 for_each_sched_entity(se) {
6133 cfs_rq = cfs_rq_of(se);
6134 cfs_rq->h_load_next = se;
6135 if (cfs_rq->last_h_load_update == now)
6136 break;
6137 }
a35b6466 6138
68520796 6139 if (!se) {
7ea241af 6140 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6141 cfs_rq->last_h_load_update = now;
6142 }
6143
6144 while ((se = cfs_rq->h_load_next) != NULL) {
6145 load = cfs_rq->h_load;
7ea241af
YD
6146 load = div64_ul(load * se->avg.load_avg,
6147 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6148 cfs_rq = group_cfs_rq(se);
6149 cfs_rq->h_load = load;
6150 cfs_rq->last_h_load_update = now;
6151 }
9763b67f
PZ
6152}
6153
367456c7 6154static unsigned long task_h_load(struct task_struct *p)
230059de 6155{
367456c7 6156 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6157
68520796 6158 update_cfs_rq_h_load(cfs_rq);
9d89c257 6159 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6160 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6161}
6162#else
48a16753 6163static inline void update_blocked_averages(int cpu)
9e3081ca 6164{
6c1d47c0
VG
6165 struct rq *rq = cpu_rq(cpu);
6166 struct cfs_rq *cfs_rq = &rq->cfs;
6167 unsigned long flags;
6168
6169 raw_spin_lock_irqsave(&rq->lock, flags);
6170 update_rq_clock(rq);
6171 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6172 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6173}
6174
367456c7 6175static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6176{
9d89c257 6177 return p->se.avg.load_avg;
1e3c88bd 6178}
230059de 6179#endif
1e3c88bd 6180
1e3c88bd 6181/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6182
6183enum group_type {
6184 group_other = 0,
6185 group_imbalanced,
6186 group_overloaded,
6187};
6188
1e3c88bd
PZ
6189/*
6190 * sg_lb_stats - stats of a sched_group required for load_balancing
6191 */
6192struct sg_lb_stats {
6193 unsigned long avg_load; /*Avg load across the CPUs of the group */
6194 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6195 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6196 unsigned long load_per_task;
63b2ca30 6197 unsigned long group_capacity;
9e91d61d 6198 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6199 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6200 unsigned int idle_cpus;
6201 unsigned int group_weight;
caeb178c 6202 enum group_type group_type;
ea67821b 6203 int group_no_capacity;
0ec8aa00
PZ
6204#ifdef CONFIG_NUMA_BALANCING
6205 unsigned int nr_numa_running;
6206 unsigned int nr_preferred_running;
6207#endif
1e3c88bd
PZ
6208};
6209
56cf515b
JK
6210/*
6211 * sd_lb_stats - Structure to store the statistics of a sched_domain
6212 * during load balancing.
6213 */
6214struct sd_lb_stats {
6215 struct sched_group *busiest; /* Busiest group in this sd */
6216 struct sched_group *local; /* Local group in this sd */
6217 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6218 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6219 unsigned long avg_load; /* Average load across all groups in sd */
6220
56cf515b 6221 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6222 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6223};
6224
147c5fc2
PZ
6225static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6226{
6227 /*
6228 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6229 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6230 * We must however clear busiest_stat::avg_load because
6231 * update_sd_pick_busiest() reads this before assignment.
6232 */
6233 *sds = (struct sd_lb_stats){
6234 .busiest = NULL,
6235 .local = NULL,
6236 .total_load = 0UL,
63b2ca30 6237 .total_capacity = 0UL,
147c5fc2
PZ
6238 .busiest_stat = {
6239 .avg_load = 0UL,
caeb178c
RR
6240 .sum_nr_running = 0,
6241 .group_type = group_other,
147c5fc2
PZ
6242 },
6243 };
6244}
6245
1e3c88bd
PZ
6246/**
6247 * get_sd_load_idx - Obtain the load index for a given sched domain.
6248 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6249 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6250 *
6251 * Return: The load index.
1e3c88bd
PZ
6252 */
6253static inline int get_sd_load_idx(struct sched_domain *sd,
6254 enum cpu_idle_type idle)
6255{
6256 int load_idx;
6257
6258 switch (idle) {
6259 case CPU_NOT_IDLE:
6260 load_idx = sd->busy_idx;
6261 break;
6262
6263 case CPU_NEWLY_IDLE:
6264 load_idx = sd->newidle_idx;
6265 break;
6266 default:
6267 load_idx = sd->idle_idx;
6268 break;
6269 }
6270
6271 return load_idx;
6272}
6273
ced549fa 6274static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6275{
6276 struct rq *rq = cpu_rq(cpu);
b5b4860d 6277 u64 total, used, age_stamp, avg;
cadefd3d 6278 s64 delta;
1e3c88bd 6279
b654f7de
PZ
6280 /*
6281 * Since we're reading these variables without serialization make sure
6282 * we read them once before doing sanity checks on them.
6283 */
316c1608
JL
6284 age_stamp = READ_ONCE(rq->age_stamp);
6285 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6286 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6287
cadefd3d
PZ
6288 if (unlikely(delta < 0))
6289 delta = 0;
6290
6291 total = sched_avg_period() + delta;
aa483808 6292
b5b4860d 6293 used = div_u64(avg, total);
1e3c88bd 6294
b5b4860d
VG
6295 if (likely(used < SCHED_CAPACITY_SCALE))
6296 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6297
b5b4860d 6298 return 1;
1e3c88bd
PZ
6299}
6300
ced549fa 6301static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6302{
8cd5601c 6303 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6304 struct sched_group *sdg = sd->groups;
6305
ca6d75e6 6306 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6307
ced549fa 6308 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6309 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6310
ced549fa
NP
6311 if (!capacity)
6312 capacity = 1;
1e3c88bd 6313
ced549fa
NP
6314 cpu_rq(cpu)->cpu_capacity = capacity;
6315 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6316}
6317
63b2ca30 6318void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6319{
6320 struct sched_domain *child = sd->child;
6321 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6322 unsigned long capacity;
4ec4412e
VG
6323 unsigned long interval;
6324
6325 interval = msecs_to_jiffies(sd->balance_interval);
6326 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6327 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6328
6329 if (!child) {
ced549fa 6330 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6331 return;
6332 }
6333
dc7ff76e 6334 capacity = 0;
1e3c88bd 6335
74a5ce20
PZ
6336 if (child->flags & SD_OVERLAP) {
6337 /*
6338 * SD_OVERLAP domains cannot assume that child groups
6339 * span the current group.
6340 */
6341
863bffc8 6342 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6343 struct sched_group_capacity *sgc;
9abf24d4 6344 struct rq *rq = cpu_rq(cpu);
863bffc8 6345
9abf24d4 6346 /*
63b2ca30 6347 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6348 * gets here before we've attached the domains to the
6349 * runqueues.
6350 *
ced549fa
NP
6351 * Use capacity_of(), which is set irrespective of domains
6352 * in update_cpu_capacity().
9abf24d4 6353 *
dc7ff76e 6354 * This avoids capacity from being 0 and
9abf24d4 6355 * causing divide-by-zero issues on boot.
9abf24d4
SD
6356 */
6357 if (unlikely(!rq->sd)) {
ced549fa 6358 capacity += capacity_of(cpu);
9abf24d4
SD
6359 continue;
6360 }
863bffc8 6361
63b2ca30 6362 sgc = rq->sd->groups->sgc;
63b2ca30 6363 capacity += sgc->capacity;
863bffc8 6364 }
74a5ce20
PZ
6365 } else {
6366 /*
6367 * !SD_OVERLAP domains can assume that child groups
6368 * span the current group.
6369 */
6370
6371 group = child->groups;
6372 do {
63b2ca30 6373 capacity += group->sgc->capacity;
74a5ce20
PZ
6374 group = group->next;
6375 } while (group != child->groups);
6376 }
1e3c88bd 6377
63b2ca30 6378 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6379}
6380
9d5efe05 6381/*
ea67821b
VG
6382 * Check whether the capacity of the rq has been noticeably reduced by side
6383 * activity. The imbalance_pct is used for the threshold.
6384 * Return true is the capacity is reduced
9d5efe05
SV
6385 */
6386static inline int
ea67821b 6387check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6388{
ea67821b
VG
6389 return ((rq->cpu_capacity * sd->imbalance_pct) <
6390 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6391}
6392
30ce5dab
PZ
6393/*
6394 * Group imbalance indicates (and tries to solve) the problem where balancing
6395 * groups is inadequate due to tsk_cpus_allowed() constraints.
6396 *
6397 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6398 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6399 * Something like:
6400 *
6401 * { 0 1 2 3 } { 4 5 6 7 }
6402 * * * * *
6403 *
6404 * If we were to balance group-wise we'd place two tasks in the first group and
6405 * two tasks in the second group. Clearly this is undesired as it will overload
6406 * cpu 3 and leave one of the cpus in the second group unused.
6407 *
6408 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6409 * by noticing the lower domain failed to reach balance and had difficulty
6410 * moving tasks due to affinity constraints.
30ce5dab
PZ
6411 *
6412 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6413 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6414 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6415 * to create an effective group imbalance.
6416 *
6417 * This is a somewhat tricky proposition since the next run might not find the
6418 * group imbalance and decide the groups need to be balanced again. A most
6419 * subtle and fragile situation.
6420 */
6421
6263322c 6422static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6423{
63b2ca30 6424 return group->sgc->imbalance;
30ce5dab
PZ
6425}
6426
b37d9316 6427/*
ea67821b
VG
6428 * group_has_capacity returns true if the group has spare capacity that could
6429 * be used by some tasks.
6430 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6431 * smaller than the number of CPUs or if the utilization is lower than the
6432 * available capacity for CFS tasks.
ea67821b
VG
6433 * For the latter, we use a threshold to stabilize the state, to take into
6434 * account the variance of the tasks' load and to return true if the available
6435 * capacity in meaningful for the load balancer.
6436 * As an example, an available capacity of 1% can appear but it doesn't make
6437 * any benefit for the load balance.
b37d9316 6438 */
ea67821b
VG
6439static inline bool
6440group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6441{
ea67821b
VG
6442 if (sgs->sum_nr_running < sgs->group_weight)
6443 return true;
c61037e9 6444
ea67821b 6445 if ((sgs->group_capacity * 100) >
9e91d61d 6446 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6447 return true;
b37d9316 6448
ea67821b
VG
6449 return false;
6450}
6451
6452/*
6453 * group_is_overloaded returns true if the group has more tasks than it can
6454 * handle.
6455 * group_is_overloaded is not equals to !group_has_capacity because a group
6456 * with the exact right number of tasks, has no more spare capacity but is not
6457 * overloaded so both group_has_capacity and group_is_overloaded return
6458 * false.
6459 */
6460static inline bool
6461group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6462{
6463 if (sgs->sum_nr_running <= sgs->group_weight)
6464 return false;
b37d9316 6465
ea67821b 6466 if ((sgs->group_capacity * 100) <
9e91d61d 6467 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6468 return true;
b37d9316 6469
ea67821b 6470 return false;
b37d9316
PZ
6471}
6472
79a89f92
LY
6473static inline enum
6474group_type group_classify(struct sched_group *group,
6475 struct sg_lb_stats *sgs)
caeb178c 6476{
ea67821b 6477 if (sgs->group_no_capacity)
caeb178c
RR
6478 return group_overloaded;
6479
6480 if (sg_imbalanced(group))
6481 return group_imbalanced;
6482
6483 return group_other;
6484}
6485
1e3c88bd
PZ
6486/**
6487 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6488 * @env: The load balancing environment.
1e3c88bd 6489 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6490 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6491 * @local_group: Does group contain this_cpu.
1e3c88bd 6492 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6493 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6494 */
bd939f45
PZ
6495static inline void update_sg_lb_stats(struct lb_env *env,
6496 struct sched_group *group, int load_idx,
4486edd1
TC
6497 int local_group, struct sg_lb_stats *sgs,
6498 bool *overload)
1e3c88bd 6499{
30ce5dab 6500 unsigned long load;
a426f99c 6501 int i, nr_running;
1e3c88bd 6502
b72ff13c
PZ
6503 memset(sgs, 0, sizeof(*sgs));
6504
b9403130 6505 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6506 struct rq *rq = cpu_rq(i);
6507
1e3c88bd 6508 /* Bias balancing toward cpus of our domain */
6263322c 6509 if (local_group)
04f733b4 6510 load = target_load(i, load_idx);
6263322c 6511 else
1e3c88bd 6512 load = source_load(i, load_idx);
1e3c88bd
PZ
6513
6514 sgs->group_load += load;
9e91d61d 6515 sgs->group_util += cpu_util(i);
65fdac08 6516 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6517
a426f99c
WL
6518 nr_running = rq->nr_running;
6519 if (nr_running > 1)
4486edd1
TC
6520 *overload = true;
6521
0ec8aa00
PZ
6522#ifdef CONFIG_NUMA_BALANCING
6523 sgs->nr_numa_running += rq->nr_numa_running;
6524 sgs->nr_preferred_running += rq->nr_preferred_running;
6525#endif
1e3c88bd 6526 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6527 /*
6528 * No need to call idle_cpu() if nr_running is not 0
6529 */
6530 if (!nr_running && idle_cpu(i))
aae6d3dd 6531 sgs->idle_cpus++;
1e3c88bd
PZ
6532 }
6533
63b2ca30
NP
6534 /* Adjust by relative CPU capacity of the group */
6535 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6536 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6537
dd5feea1 6538 if (sgs->sum_nr_running)
38d0f770 6539 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6540
aae6d3dd 6541 sgs->group_weight = group->group_weight;
b37d9316 6542
ea67821b 6543 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6544 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6545}
6546
532cb4c4
MN
6547/**
6548 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6549 * @env: The load balancing environment.
532cb4c4
MN
6550 * @sds: sched_domain statistics
6551 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6552 * @sgs: sched_group statistics
532cb4c4
MN
6553 *
6554 * Determine if @sg is a busier group than the previously selected
6555 * busiest group.
e69f6186
YB
6556 *
6557 * Return: %true if @sg is a busier group than the previously selected
6558 * busiest group. %false otherwise.
532cb4c4 6559 */
bd939f45 6560static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6561 struct sd_lb_stats *sds,
6562 struct sched_group *sg,
bd939f45 6563 struct sg_lb_stats *sgs)
532cb4c4 6564{
caeb178c 6565 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6566
caeb178c 6567 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6568 return true;
6569
caeb178c
RR
6570 if (sgs->group_type < busiest->group_type)
6571 return false;
6572
6573 if (sgs->avg_load <= busiest->avg_load)
6574 return false;
6575
6576 /* This is the busiest node in its class. */
6577 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6578 return true;
6579
6580 /*
6581 * ASYM_PACKING needs to move all the work to the lowest
6582 * numbered CPUs in the group, therefore mark all groups
6583 * higher than ourself as busy.
6584 */
caeb178c 6585 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6586 if (!sds->busiest)
6587 return true;
6588
6589 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6590 return true;
6591 }
6592
6593 return false;
6594}
6595
0ec8aa00
PZ
6596#ifdef CONFIG_NUMA_BALANCING
6597static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6598{
6599 if (sgs->sum_nr_running > sgs->nr_numa_running)
6600 return regular;
6601 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6602 return remote;
6603 return all;
6604}
6605
6606static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6607{
6608 if (rq->nr_running > rq->nr_numa_running)
6609 return regular;
6610 if (rq->nr_running > rq->nr_preferred_running)
6611 return remote;
6612 return all;
6613}
6614#else
6615static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6616{
6617 return all;
6618}
6619
6620static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6621{
6622 return regular;
6623}
6624#endif /* CONFIG_NUMA_BALANCING */
6625
1e3c88bd 6626/**
461819ac 6627 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6628 * @env: The load balancing environment.
1e3c88bd
PZ
6629 * @sds: variable to hold the statistics for this sched_domain.
6630 */
0ec8aa00 6631static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6632{
bd939f45
PZ
6633 struct sched_domain *child = env->sd->child;
6634 struct sched_group *sg = env->sd->groups;
56cf515b 6635 struct sg_lb_stats tmp_sgs;
1e3c88bd 6636 int load_idx, prefer_sibling = 0;
4486edd1 6637 bool overload = false;
1e3c88bd
PZ
6638
6639 if (child && child->flags & SD_PREFER_SIBLING)
6640 prefer_sibling = 1;
6641
bd939f45 6642 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6643
6644 do {
56cf515b 6645 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6646 int local_group;
6647
bd939f45 6648 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6649 if (local_group) {
6650 sds->local = sg;
6651 sgs = &sds->local_stat;
b72ff13c
PZ
6652
6653 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6654 time_after_eq(jiffies, sg->sgc->next_update))
6655 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6656 }
1e3c88bd 6657
4486edd1
TC
6658 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6659 &overload);
1e3c88bd 6660
b72ff13c
PZ
6661 if (local_group)
6662 goto next_group;
6663
1e3c88bd
PZ
6664 /*
6665 * In case the child domain prefers tasks go to siblings
ea67821b 6666 * first, lower the sg capacity so that we'll try
75dd321d
NR
6667 * and move all the excess tasks away. We lower the capacity
6668 * of a group only if the local group has the capacity to fit
ea67821b
VG
6669 * these excess tasks. The extra check prevents the case where
6670 * you always pull from the heaviest group when it is already
6671 * under-utilized (possible with a large weight task outweighs
6672 * the tasks on the system).
1e3c88bd 6673 */
b72ff13c 6674 if (prefer_sibling && sds->local &&
ea67821b
VG
6675 group_has_capacity(env, &sds->local_stat) &&
6676 (sgs->sum_nr_running > 1)) {
6677 sgs->group_no_capacity = 1;
79a89f92 6678 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6679 }
1e3c88bd 6680
b72ff13c 6681 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6682 sds->busiest = sg;
56cf515b 6683 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6684 }
6685
b72ff13c
PZ
6686next_group:
6687 /* Now, start updating sd_lb_stats */
6688 sds->total_load += sgs->group_load;
63b2ca30 6689 sds->total_capacity += sgs->group_capacity;
b72ff13c 6690
532cb4c4 6691 sg = sg->next;
bd939f45 6692 } while (sg != env->sd->groups);
0ec8aa00
PZ
6693
6694 if (env->sd->flags & SD_NUMA)
6695 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6696
6697 if (!env->sd->parent) {
6698 /* update overload indicator if we are at root domain */
6699 if (env->dst_rq->rd->overload != overload)
6700 env->dst_rq->rd->overload = overload;
6701 }
6702
532cb4c4
MN
6703}
6704
532cb4c4
MN
6705/**
6706 * check_asym_packing - Check to see if the group is packed into the
6707 * sched doman.
6708 *
6709 * This is primarily intended to used at the sibling level. Some
6710 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6711 * case of POWER7, it can move to lower SMT modes only when higher
6712 * threads are idle. When in lower SMT modes, the threads will
6713 * perform better since they share less core resources. Hence when we
6714 * have idle threads, we want them to be the higher ones.
6715 *
6716 * This packing function is run on idle threads. It checks to see if
6717 * the busiest CPU in this domain (core in the P7 case) has a higher
6718 * CPU number than the packing function is being run on. Here we are
6719 * assuming lower CPU number will be equivalent to lower a SMT thread
6720 * number.
6721 *
e69f6186 6722 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6723 * this CPU. The amount of the imbalance is returned in *imbalance.
6724 *
cd96891d 6725 * @env: The load balancing environment.
532cb4c4 6726 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6727 */
bd939f45 6728static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6729{
6730 int busiest_cpu;
6731
bd939f45 6732 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6733 return 0;
6734
6735 if (!sds->busiest)
6736 return 0;
6737
6738 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6739 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6740 return 0;
6741
bd939f45 6742 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6743 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6744 SCHED_CAPACITY_SCALE);
bd939f45 6745
532cb4c4 6746 return 1;
1e3c88bd
PZ
6747}
6748
6749/**
6750 * fix_small_imbalance - Calculate the minor imbalance that exists
6751 * amongst the groups of a sched_domain, during
6752 * load balancing.
cd96891d 6753 * @env: The load balancing environment.
1e3c88bd 6754 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6755 */
bd939f45
PZ
6756static inline
6757void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6758{
63b2ca30 6759 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6760 unsigned int imbn = 2;
dd5feea1 6761 unsigned long scaled_busy_load_per_task;
56cf515b 6762 struct sg_lb_stats *local, *busiest;
1e3c88bd 6763
56cf515b
JK
6764 local = &sds->local_stat;
6765 busiest = &sds->busiest_stat;
1e3c88bd 6766
56cf515b
JK
6767 if (!local->sum_nr_running)
6768 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6769 else if (busiest->load_per_task > local->load_per_task)
6770 imbn = 1;
dd5feea1 6771
56cf515b 6772 scaled_busy_load_per_task =
ca8ce3d0 6773 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6774 busiest->group_capacity;
56cf515b 6775
3029ede3
VD
6776 if (busiest->avg_load + scaled_busy_load_per_task >=
6777 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6778 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6779 return;
6780 }
6781
6782 /*
6783 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6784 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6785 * moving them.
6786 */
6787
63b2ca30 6788 capa_now += busiest->group_capacity *
56cf515b 6789 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6790 capa_now += local->group_capacity *
56cf515b 6791 min(local->load_per_task, local->avg_load);
ca8ce3d0 6792 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6793
6794 /* Amount of load we'd subtract */
a2cd4260 6795 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6796 capa_move += busiest->group_capacity *
56cf515b 6797 min(busiest->load_per_task,
a2cd4260 6798 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6799 }
1e3c88bd
PZ
6800
6801 /* Amount of load we'd add */
63b2ca30 6802 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6803 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6804 tmp = (busiest->avg_load * busiest->group_capacity) /
6805 local->group_capacity;
56cf515b 6806 } else {
ca8ce3d0 6807 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6808 local->group_capacity;
56cf515b 6809 }
63b2ca30 6810 capa_move += local->group_capacity *
3ae11c90 6811 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6812 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6813
6814 /* Move if we gain throughput */
63b2ca30 6815 if (capa_move > capa_now)
56cf515b 6816 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6817}
6818
6819/**
6820 * calculate_imbalance - Calculate the amount of imbalance present within the
6821 * groups of a given sched_domain during load balance.
bd939f45 6822 * @env: load balance environment
1e3c88bd 6823 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6824 */
bd939f45 6825static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6826{
dd5feea1 6827 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6828 struct sg_lb_stats *local, *busiest;
6829
6830 local = &sds->local_stat;
56cf515b 6831 busiest = &sds->busiest_stat;
dd5feea1 6832
caeb178c 6833 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6834 /*
6835 * In the group_imb case we cannot rely on group-wide averages
6836 * to ensure cpu-load equilibrium, look at wider averages. XXX
6837 */
56cf515b
JK
6838 busiest->load_per_task =
6839 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6840 }
6841
1e3c88bd
PZ
6842 /*
6843 * In the presence of smp nice balancing, certain scenarios can have
6844 * max load less than avg load(as we skip the groups at or below
ced549fa 6845 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6846 */
b1885550
VD
6847 if (busiest->avg_load <= sds->avg_load ||
6848 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6849 env->imbalance = 0;
6850 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6851 }
6852
9a5d9ba6
PZ
6853 /*
6854 * If there aren't any idle cpus, avoid creating some.
6855 */
6856 if (busiest->group_type == group_overloaded &&
6857 local->group_type == group_overloaded) {
ea67821b
VG
6858 load_above_capacity = busiest->sum_nr_running *
6859 SCHED_LOAD_SCALE;
6860 if (load_above_capacity > busiest->group_capacity)
6861 load_above_capacity -= busiest->group_capacity;
6862 else
6863 load_above_capacity = ~0UL;
dd5feea1
SS
6864 }
6865
6866 /*
6867 * We're trying to get all the cpus to the average_load, so we don't
6868 * want to push ourselves above the average load, nor do we wish to
6869 * reduce the max loaded cpu below the average load. At the same time,
6870 * we also don't want to reduce the group load below the group capacity
6871 * (so that we can implement power-savings policies etc). Thus we look
6872 * for the minimum possible imbalance.
dd5feea1 6873 */
30ce5dab 6874 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6875
6876 /* How much load to actually move to equalise the imbalance */
56cf515b 6877 env->imbalance = min(
63b2ca30
NP
6878 max_pull * busiest->group_capacity,
6879 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6880 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6881
6882 /*
6883 * if *imbalance is less than the average load per runnable task
25985edc 6884 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6885 * a think about bumping its value to force at least one task to be
6886 * moved
6887 */
56cf515b 6888 if (env->imbalance < busiest->load_per_task)
bd939f45 6889 return fix_small_imbalance(env, sds);
1e3c88bd 6890}
fab47622 6891
1e3c88bd
PZ
6892/******* find_busiest_group() helpers end here *********************/
6893
6894/**
6895 * find_busiest_group - Returns the busiest group within the sched_domain
6896 * if there is an imbalance. If there isn't an imbalance, and
6897 * the user has opted for power-savings, it returns a group whose
6898 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6899 * such a group exists.
6900 *
6901 * Also calculates the amount of weighted load which should be moved
6902 * to restore balance.
6903 *
cd96891d 6904 * @env: The load balancing environment.
1e3c88bd 6905 *
e69f6186 6906 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6907 * - If no imbalance and user has opted for power-savings balance,
6908 * return the least loaded group whose CPUs can be
6909 * put to idle by rebalancing its tasks onto our group.
6910 */
56cf515b 6911static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6912{
56cf515b 6913 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6914 struct sd_lb_stats sds;
6915
147c5fc2 6916 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6917
6918 /*
6919 * Compute the various statistics relavent for load balancing at
6920 * this level.
6921 */
23f0d209 6922 update_sd_lb_stats(env, &sds);
56cf515b
JK
6923 local = &sds.local_stat;
6924 busiest = &sds.busiest_stat;
1e3c88bd 6925
ea67821b 6926 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6927 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6928 check_asym_packing(env, &sds))
532cb4c4
MN
6929 return sds.busiest;
6930
cc57aa8f 6931 /* There is no busy sibling group to pull tasks from */
56cf515b 6932 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6933 goto out_balanced;
6934
ca8ce3d0
NP
6935 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6936 / sds.total_capacity;
b0432d8f 6937
866ab43e
PZ
6938 /*
6939 * If the busiest group is imbalanced the below checks don't
30ce5dab 6940 * work because they assume all things are equal, which typically
866ab43e
PZ
6941 * isn't true due to cpus_allowed constraints and the like.
6942 */
caeb178c 6943 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6944 goto force_balance;
6945
cc57aa8f 6946 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6947 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6948 busiest->group_no_capacity)
fab47622
NR
6949 goto force_balance;
6950
cc57aa8f 6951 /*
9c58c79a 6952 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6953 * don't try and pull any tasks.
6954 */
56cf515b 6955 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6956 goto out_balanced;
6957
cc57aa8f
PZ
6958 /*
6959 * Don't pull any tasks if this group is already above the domain
6960 * average load.
6961 */
56cf515b 6962 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6963 goto out_balanced;
6964
bd939f45 6965 if (env->idle == CPU_IDLE) {
aae6d3dd 6966 /*
43f4d666
VG
6967 * This cpu is idle. If the busiest group is not overloaded
6968 * and there is no imbalance between this and busiest group
6969 * wrt idle cpus, it is balanced. The imbalance becomes
6970 * significant if the diff is greater than 1 otherwise we
6971 * might end up to just move the imbalance on another group
aae6d3dd 6972 */
43f4d666
VG
6973 if ((busiest->group_type != group_overloaded) &&
6974 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6975 goto out_balanced;
c186fafe
PZ
6976 } else {
6977 /*
6978 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6979 * imbalance_pct to be conservative.
6980 */
56cf515b
JK
6981 if (100 * busiest->avg_load <=
6982 env->sd->imbalance_pct * local->avg_load)
c186fafe 6983 goto out_balanced;
aae6d3dd 6984 }
1e3c88bd 6985
fab47622 6986force_balance:
1e3c88bd 6987 /* Looks like there is an imbalance. Compute it */
bd939f45 6988 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6989 return sds.busiest;
6990
6991out_balanced:
bd939f45 6992 env->imbalance = 0;
1e3c88bd
PZ
6993 return NULL;
6994}
6995
6996/*
6997 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6998 */
bd939f45 6999static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7000 struct sched_group *group)
1e3c88bd
PZ
7001{
7002 struct rq *busiest = NULL, *rq;
ced549fa 7003 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7004 int i;
7005
6906a408 7006 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7007 unsigned long capacity, wl;
0ec8aa00
PZ
7008 enum fbq_type rt;
7009
7010 rq = cpu_rq(i);
7011 rt = fbq_classify_rq(rq);
1e3c88bd 7012
0ec8aa00
PZ
7013 /*
7014 * We classify groups/runqueues into three groups:
7015 * - regular: there are !numa tasks
7016 * - remote: there are numa tasks that run on the 'wrong' node
7017 * - all: there is no distinction
7018 *
7019 * In order to avoid migrating ideally placed numa tasks,
7020 * ignore those when there's better options.
7021 *
7022 * If we ignore the actual busiest queue to migrate another
7023 * task, the next balance pass can still reduce the busiest
7024 * queue by moving tasks around inside the node.
7025 *
7026 * If we cannot move enough load due to this classification
7027 * the next pass will adjust the group classification and
7028 * allow migration of more tasks.
7029 *
7030 * Both cases only affect the total convergence complexity.
7031 */
7032 if (rt > env->fbq_type)
7033 continue;
7034
ced549fa 7035 capacity = capacity_of(i);
9d5efe05 7036
6e40f5bb 7037 wl = weighted_cpuload(i);
1e3c88bd 7038
6e40f5bb
TG
7039 /*
7040 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7041 * which is not scaled with the cpu capacity.
6e40f5bb 7042 */
ea67821b
VG
7043
7044 if (rq->nr_running == 1 && wl > env->imbalance &&
7045 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7046 continue;
7047
6e40f5bb
TG
7048 /*
7049 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7050 * the weighted_cpuload() scaled with the cpu capacity, so
7051 * that the load can be moved away from the cpu that is
7052 * potentially running at a lower capacity.
95a79b80 7053 *
ced549fa 7054 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7055 * multiplication to rid ourselves of the division works out
ced549fa
NP
7056 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7057 * our previous maximum.
6e40f5bb 7058 */
ced549fa 7059 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7060 busiest_load = wl;
ced549fa 7061 busiest_capacity = capacity;
1e3c88bd
PZ
7062 busiest = rq;
7063 }
7064 }
7065
7066 return busiest;
7067}
7068
7069/*
7070 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7071 * so long as it is large enough.
7072 */
7073#define MAX_PINNED_INTERVAL 512
7074
7075/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7076DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7077
bd939f45 7078static int need_active_balance(struct lb_env *env)
1af3ed3d 7079{
bd939f45
PZ
7080 struct sched_domain *sd = env->sd;
7081
7082 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7083
7084 /*
7085 * ASYM_PACKING needs to force migrate tasks from busy but
7086 * higher numbered CPUs in order to pack all tasks in the
7087 * lowest numbered CPUs.
7088 */
bd939f45 7089 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7090 return 1;
1af3ed3d
PZ
7091 }
7092
1aaf90a4
VG
7093 /*
7094 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7095 * It's worth migrating the task if the src_cpu's capacity is reduced
7096 * because of other sched_class or IRQs if more capacity stays
7097 * available on dst_cpu.
7098 */
7099 if ((env->idle != CPU_NOT_IDLE) &&
7100 (env->src_rq->cfs.h_nr_running == 1)) {
7101 if ((check_cpu_capacity(env->src_rq, sd)) &&
7102 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7103 return 1;
7104 }
7105
1af3ed3d
PZ
7106 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7107}
7108
969c7921
TH
7109static int active_load_balance_cpu_stop(void *data);
7110
23f0d209
JK
7111static int should_we_balance(struct lb_env *env)
7112{
7113 struct sched_group *sg = env->sd->groups;
7114 struct cpumask *sg_cpus, *sg_mask;
7115 int cpu, balance_cpu = -1;
7116
7117 /*
7118 * In the newly idle case, we will allow all the cpu's
7119 * to do the newly idle load balance.
7120 */
7121 if (env->idle == CPU_NEWLY_IDLE)
7122 return 1;
7123
7124 sg_cpus = sched_group_cpus(sg);
7125 sg_mask = sched_group_mask(sg);
7126 /* Try to find first idle cpu */
7127 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7128 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7129 continue;
7130
7131 balance_cpu = cpu;
7132 break;
7133 }
7134
7135 if (balance_cpu == -1)
7136 balance_cpu = group_balance_cpu(sg);
7137
7138 /*
7139 * First idle cpu or the first cpu(busiest) in this sched group
7140 * is eligible for doing load balancing at this and above domains.
7141 */
b0cff9d8 7142 return balance_cpu == env->dst_cpu;
23f0d209
JK
7143}
7144
1e3c88bd
PZ
7145/*
7146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7147 * tasks if there is an imbalance.
7148 */
7149static int load_balance(int this_cpu, struct rq *this_rq,
7150 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7151 int *continue_balancing)
1e3c88bd 7152{
88b8dac0 7153 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7154 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7155 struct sched_group *group;
1e3c88bd
PZ
7156 struct rq *busiest;
7157 unsigned long flags;
4ba29684 7158 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7159
8e45cb54
PZ
7160 struct lb_env env = {
7161 .sd = sd,
ddcdf6e7
PZ
7162 .dst_cpu = this_cpu,
7163 .dst_rq = this_rq,
88b8dac0 7164 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7165 .idle = idle,
eb95308e 7166 .loop_break = sched_nr_migrate_break,
b9403130 7167 .cpus = cpus,
0ec8aa00 7168 .fbq_type = all,
163122b7 7169 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7170 };
7171
cfc03118
JK
7172 /*
7173 * For NEWLY_IDLE load_balancing, we don't need to consider
7174 * other cpus in our group
7175 */
e02e60c1 7176 if (idle == CPU_NEWLY_IDLE)
cfc03118 7177 env.dst_grpmask = NULL;
cfc03118 7178
1e3c88bd
PZ
7179 cpumask_copy(cpus, cpu_active_mask);
7180
1e3c88bd
PZ
7181 schedstat_inc(sd, lb_count[idle]);
7182
7183redo:
23f0d209
JK
7184 if (!should_we_balance(&env)) {
7185 *continue_balancing = 0;
1e3c88bd 7186 goto out_balanced;
23f0d209 7187 }
1e3c88bd 7188
23f0d209 7189 group = find_busiest_group(&env);
1e3c88bd
PZ
7190 if (!group) {
7191 schedstat_inc(sd, lb_nobusyg[idle]);
7192 goto out_balanced;
7193 }
7194
b9403130 7195 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7196 if (!busiest) {
7197 schedstat_inc(sd, lb_nobusyq[idle]);
7198 goto out_balanced;
7199 }
7200
78feefc5 7201 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7202
bd939f45 7203 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7204
1aaf90a4
VG
7205 env.src_cpu = busiest->cpu;
7206 env.src_rq = busiest;
7207
1e3c88bd
PZ
7208 ld_moved = 0;
7209 if (busiest->nr_running > 1) {
7210 /*
7211 * Attempt to move tasks. If find_busiest_group has found
7212 * an imbalance but busiest->nr_running <= 1, the group is
7213 * still unbalanced. ld_moved simply stays zero, so it is
7214 * correctly treated as an imbalance.
7215 */
8e45cb54 7216 env.flags |= LBF_ALL_PINNED;
c82513e5 7217 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7218
5d6523eb 7219more_balance:
163122b7 7220 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7221
7222 /*
7223 * cur_ld_moved - load moved in current iteration
7224 * ld_moved - cumulative load moved across iterations
7225 */
163122b7 7226 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7227
7228 /*
163122b7
KT
7229 * We've detached some tasks from busiest_rq. Every
7230 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7231 * unlock busiest->lock, and we are able to be sure
7232 * that nobody can manipulate the tasks in parallel.
7233 * See task_rq_lock() family for the details.
1e3c88bd 7234 */
163122b7
KT
7235
7236 raw_spin_unlock(&busiest->lock);
7237
7238 if (cur_ld_moved) {
7239 attach_tasks(&env);
7240 ld_moved += cur_ld_moved;
7241 }
7242
1e3c88bd 7243 local_irq_restore(flags);
88b8dac0 7244
f1cd0858
JK
7245 if (env.flags & LBF_NEED_BREAK) {
7246 env.flags &= ~LBF_NEED_BREAK;
7247 goto more_balance;
7248 }
7249
88b8dac0
SV
7250 /*
7251 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7252 * us and move them to an alternate dst_cpu in our sched_group
7253 * where they can run. The upper limit on how many times we
7254 * iterate on same src_cpu is dependent on number of cpus in our
7255 * sched_group.
7256 *
7257 * This changes load balance semantics a bit on who can move
7258 * load to a given_cpu. In addition to the given_cpu itself
7259 * (or a ilb_cpu acting on its behalf where given_cpu is
7260 * nohz-idle), we now have balance_cpu in a position to move
7261 * load to given_cpu. In rare situations, this may cause
7262 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7263 * _independently_ and at _same_ time to move some load to
7264 * given_cpu) causing exceess load to be moved to given_cpu.
7265 * This however should not happen so much in practice and
7266 * moreover subsequent load balance cycles should correct the
7267 * excess load moved.
7268 */
6263322c 7269 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7270
7aff2e3a
VD
7271 /* Prevent to re-select dst_cpu via env's cpus */
7272 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7273
78feefc5 7274 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7275 env.dst_cpu = env.new_dst_cpu;
6263322c 7276 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7277 env.loop = 0;
7278 env.loop_break = sched_nr_migrate_break;
e02e60c1 7279
88b8dac0
SV
7280 /*
7281 * Go back to "more_balance" rather than "redo" since we
7282 * need to continue with same src_cpu.
7283 */
7284 goto more_balance;
7285 }
1e3c88bd 7286
6263322c
PZ
7287 /*
7288 * We failed to reach balance because of affinity.
7289 */
7290 if (sd_parent) {
63b2ca30 7291 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7292
afdeee05 7293 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7294 *group_imbalance = 1;
6263322c
PZ
7295 }
7296
1e3c88bd 7297 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7298 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7299 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7300 if (!cpumask_empty(cpus)) {
7301 env.loop = 0;
7302 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7303 goto redo;
bbf18b19 7304 }
afdeee05 7305 goto out_all_pinned;
1e3c88bd
PZ
7306 }
7307 }
7308
7309 if (!ld_moved) {
7310 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7311 /*
7312 * Increment the failure counter only on periodic balance.
7313 * We do not want newidle balance, which can be very
7314 * frequent, pollute the failure counter causing
7315 * excessive cache_hot migrations and active balances.
7316 */
7317 if (idle != CPU_NEWLY_IDLE)
7318 sd->nr_balance_failed++;
1e3c88bd 7319
bd939f45 7320 if (need_active_balance(&env)) {
1e3c88bd
PZ
7321 raw_spin_lock_irqsave(&busiest->lock, flags);
7322
969c7921
TH
7323 /* don't kick the active_load_balance_cpu_stop,
7324 * if the curr task on busiest cpu can't be
7325 * moved to this_cpu
1e3c88bd
PZ
7326 */
7327 if (!cpumask_test_cpu(this_cpu,
fa17b507 7328 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7329 raw_spin_unlock_irqrestore(&busiest->lock,
7330 flags);
8e45cb54 7331 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7332 goto out_one_pinned;
7333 }
7334
969c7921
TH
7335 /*
7336 * ->active_balance synchronizes accesses to
7337 * ->active_balance_work. Once set, it's cleared
7338 * only after active load balance is finished.
7339 */
1e3c88bd
PZ
7340 if (!busiest->active_balance) {
7341 busiest->active_balance = 1;
7342 busiest->push_cpu = this_cpu;
7343 active_balance = 1;
7344 }
7345 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7346
bd939f45 7347 if (active_balance) {
969c7921
TH
7348 stop_one_cpu_nowait(cpu_of(busiest),
7349 active_load_balance_cpu_stop, busiest,
7350 &busiest->active_balance_work);
bd939f45 7351 }
1e3c88bd
PZ
7352
7353 /*
7354 * We've kicked active balancing, reset the failure
7355 * counter.
7356 */
7357 sd->nr_balance_failed = sd->cache_nice_tries+1;
7358 }
7359 } else
7360 sd->nr_balance_failed = 0;
7361
7362 if (likely(!active_balance)) {
7363 /* We were unbalanced, so reset the balancing interval */
7364 sd->balance_interval = sd->min_interval;
7365 } else {
7366 /*
7367 * If we've begun active balancing, start to back off. This
7368 * case may not be covered by the all_pinned logic if there
7369 * is only 1 task on the busy runqueue (because we don't call
163122b7 7370 * detach_tasks).
1e3c88bd
PZ
7371 */
7372 if (sd->balance_interval < sd->max_interval)
7373 sd->balance_interval *= 2;
7374 }
7375
1e3c88bd
PZ
7376 goto out;
7377
7378out_balanced:
afdeee05
VG
7379 /*
7380 * We reach balance although we may have faced some affinity
7381 * constraints. Clear the imbalance flag if it was set.
7382 */
7383 if (sd_parent) {
7384 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7385
7386 if (*group_imbalance)
7387 *group_imbalance = 0;
7388 }
7389
7390out_all_pinned:
7391 /*
7392 * We reach balance because all tasks are pinned at this level so
7393 * we can't migrate them. Let the imbalance flag set so parent level
7394 * can try to migrate them.
7395 */
1e3c88bd
PZ
7396 schedstat_inc(sd, lb_balanced[idle]);
7397
7398 sd->nr_balance_failed = 0;
7399
7400out_one_pinned:
7401 /* tune up the balancing interval */
8e45cb54 7402 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7403 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7404 (sd->balance_interval < sd->max_interval))
7405 sd->balance_interval *= 2;
7406
46e49b38 7407 ld_moved = 0;
1e3c88bd 7408out:
1e3c88bd
PZ
7409 return ld_moved;
7410}
7411
52a08ef1
JL
7412static inline unsigned long
7413get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7414{
7415 unsigned long interval = sd->balance_interval;
7416
7417 if (cpu_busy)
7418 interval *= sd->busy_factor;
7419
7420 /* scale ms to jiffies */
7421 interval = msecs_to_jiffies(interval);
7422 interval = clamp(interval, 1UL, max_load_balance_interval);
7423
7424 return interval;
7425}
7426
7427static inline void
7428update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7429{
7430 unsigned long interval, next;
7431
7432 interval = get_sd_balance_interval(sd, cpu_busy);
7433 next = sd->last_balance + interval;
7434
7435 if (time_after(*next_balance, next))
7436 *next_balance = next;
7437}
7438
1e3c88bd
PZ
7439/*
7440 * idle_balance is called by schedule() if this_cpu is about to become
7441 * idle. Attempts to pull tasks from other CPUs.
7442 */
6e83125c 7443static int idle_balance(struct rq *this_rq)
1e3c88bd 7444{
52a08ef1
JL
7445 unsigned long next_balance = jiffies + HZ;
7446 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7447 struct sched_domain *sd;
7448 int pulled_task = 0;
9bd721c5 7449 u64 curr_cost = 0;
1e3c88bd 7450
6e83125c
PZ
7451 /*
7452 * We must set idle_stamp _before_ calling idle_balance(), such that we
7453 * measure the duration of idle_balance() as idle time.
7454 */
7455 this_rq->idle_stamp = rq_clock(this_rq);
7456
4486edd1
TC
7457 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7458 !this_rq->rd->overload) {
52a08ef1
JL
7459 rcu_read_lock();
7460 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7461 if (sd)
7462 update_next_balance(sd, 0, &next_balance);
7463 rcu_read_unlock();
7464
6e83125c 7465 goto out;
52a08ef1 7466 }
1e3c88bd 7467
f492e12e
PZ
7468 raw_spin_unlock(&this_rq->lock);
7469
48a16753 7470 update_blocked_averages(this_cpu);
dce840a0 7471 rcu_read_lock();
1e3c88bd 7472 for_each_domain(this_cpu, sd) {
23f0d209 7473 int continue_balancing = 1;
9bd721c5 7474 u64 t0, domain_cost;
1e3c88bd
PZ
7475
7476 if (!(sd->flags & SD_LOAD_BALANCE))
7477 continue;
7478
52a08ef1
JL
7479 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7480 update_next_balance(sd, 0, &next_balance);
9bd721c5 7481 break;
52a08ef1 7482 }
9bd721c5 7483
f492e12e 7484 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7485 t0 = sched_clock_cpu(this_cpu);
7486
f492e12e 7487 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7488 sd, CPU_NEWLY_IDLE,
7489 &continue_balancing);
9bd721c5
JL
7490
7491 domain_cost = sched_clock_cpu(this_cpu) - t0;
7492 if (domain_cost > sd->max_newidle_lb_cost)
7493 sd->max_newidle_lb_cost = domain_cost;
7494
7495 curr_cost += domain_cost;
f492e12e 7496 }
1e3c88bd 7497
52a08ef1 7498 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7499
7500 /*
7501 * Stop searching for tasks to pull if there are
7502 * now runnable tasks on this rq.
7503 */
7504 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7505 break;
1e3c88bd 7506 }
dce840a0 7507 rcu_read_unlock();
f492e12e
PZ
7508
7509 raw_spin_lock(&this_rq->lock);
7510
0e5b5337
JL
7511 if (curr_cost > this_rq->max_idle_balance_cost)
7512 this_rq->max_idle_balance_cost = curr_cost;
7513
e5fc6611 7514 /*
0e5b5337
JL
7515 * While browsing the domains, we released the rq lock, a task could
7516 * have been enqueued in the meantime. Since we're not going idle,
7517 * pretend we pulled a task.
e5fc6611 7518 */
0e5b5337 7519 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7520 pulled_task = 1;
e5fc6611 7521
52a08ef1
JL
7522out:
7523 /* Move the next balance forward */
7524 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7525 this_rq->next_balance = next_balance;
9bd721c5 7526
e4aa358b 7527 /* Is there a task of a high priority class? */
46383648 7528 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7529 pulled_task = -1;
7530
38c6ade2 7531 if (pulled_task)
6e83125c
PZ
7532 this_rq->idle_stamp = 0;
7533
3c4017c1 7534 return pulled_task;
1e3c88bd
PZ
7535}
7536
7537/*
969c7921
TH
7538 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7539 * running tasks off the busiest CPU onto idle CPUs. It requires at
7540 * least 1 task to be running on each physical CPU where possible, and
7541 * avoids physical / logical imbalances.
1e3c88bd 7542 */
969c7921 7543static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7544{
969c7921
TH
7545 struct rq *busiest_rq = data;
7546 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7547 int target_cpu = busiest_rq->push_cpu;
969c7921 7548 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7549 struct sched_domain *sd;
e5673f28 7550 struct task_struct *p = NULL;
969c7921
TH
7551
7552 raw_spin_lock_irq(&busiest_rq->lock);
7553
7554 /* make sure the requested cpu hasn't gone down in the meantime */
7555 if (unlikely(busiest_cpu != smp_processor_id() ||
7556 !busiest_rq->active_balance))
7557 goto out_unlock;
1e3c88bd
PZ
7558
7559 /* Is there any task to move? */
7560 if (busiest_rq->nr_running <= 1)
969c7921 7561 goto out_unlock;
1e3c88bd
PZ
7562
7563 /*
7564 * This condition is "impossible", if it occurs
7565 * we need to fix it. Originally reported by
7566 * Bjorn Helgaas on a 128-cpu setup.
7567 */
7568 BUG_ON(busiest_rq == target_rq);
7569
1e3c88bd 7570 /* Search for an sd spanning us and the target CPU. */
dce840a0 7571 rcu_read_lock();
1e3c88bd
PZ
7572 for_each_domain(target_cpu, sd) {
7573 if ((sd->flags & SD_LOAD_BALANCE) &&
7574 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7575 break;
7576 }
7577
7578 if (likely(sd)) {
8e45cb54
PZ
7579 struct lb_env env = {
7580 .sd = sd,
ddcdf6e7
PZ
7581 .dst_cpu = target_cpu,
7582 .dst_rq = target_rq,
7583 .src_cpu = busiest_rq->cpu,
7584 .src_rq = busiest_rq,
8e45cb54
PZ
7585 .idle = CPU_IDLE,
7586 };
7587
1e3c88bd
PZ
7588 schedstat_inc(sd, alb_count);
7589
e5673f28
KT
7590 p = detach_one_task(&env);
7591 if (p)
1e3c88bd
PZ
7592 schedstat_inc(sd, alb_pushed);
7593 else
7594 schedstat_inc(sd, alb_failed);
7595 }
dce840a0 7596 rcu_read_unlock();
969c7921
TH
7597out_unlock:
7598 busiest_rq->active_balance = 0;
e5673f28
KT
7599 raw_spin_unlock(&busiest_rq->lock);
7600
7601 if (p)
7602 attach_one_task(target_rq, p);
7603
7604 local_irq_enable();
7605
969c7921 7606 return 0;
1e3c88bd
PZ
7607}
7608
d987fc7f
MG
7609static inline int on_null_domain(struct rq *rq)
7610{
7611 return unlikely(!rcu_dereference_sched(rq->sd));
7612}
7613
3451d024 7614#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7615/*
7616 * idle load balancing details
83cd4fe2
VP
7617 * - When one of the busy CPUs notice that there may be an idle rebalancing
7618 * needed, they will kick the idle load balancer, which then does idle
7619 * load balancing for all the idle CPUs.
7620 */
1e3c88bd 7621static struct {
83cd4fe2 7622 cpumask_var_t idle_cpus_mask;
0b005cf5 7623 atomic_t nr_cpus;
83cd4fe2
VP
7624 unsigned long next_balance; /* in jiffy units */
7625} nohz ____cacheline_aligned;
1e3c88bd 7626
3dd0337d 7627static inline int find_new_ilb(void)
1e3c88bd 7628{
0b005cf5 7629 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7630
786d6dc7
SS
7631 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7632 return ilb;
7633
7634 return nr_cpu_ids;
1e3c88bd 7635}
1e3c88bd 7636
83cd4fe2
VP
7637/*
7638 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7639 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7640 * CPU (if there is one).
7641 */
0aeeeeba 7642static void nohz_balancer_kick(void)
83cd4fe2
VP
7643{
7644 int ilb_cpu;
7645
7646 nohz.next_balance++;
7647
3dd0337d 7648 ilb_cpu = find_new_ilb();
83cd4fe2 7649
0b005cf5
SS
7650 if (ilb_cpu >= nr_cpu_ids)
7651 return;
83cd4fe2 7652
cd490c5b 7653 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7654 return;
7655 /*
7656 * Use smp_send_reschedule() instead of resched_cpu().
7657 * This way we generate a sched IPI on the target cpu which
7658 * is idle. And the softirq performing nohz idle load balance
7659 * will be run before returning from the IPI.
7660 */
7661 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7662 return;
7663}
7664
c1cc017c 7665static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7666{
7667 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7668 /*
7669 * Completely isolated CPUs don't ever set, so we must test.
7670 */
7671 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7672 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7673 atomic_dec(&nohz.nr_cpus);
7674 }
71325960
SS
7675 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7676 }
7677}
7678
69e1e811
SS
7679static inline void set_cpu_sd_state_busy(void)
7680{
7681 struct sched_domain *sd;
37dc6b50 7682 int cpu = smp_processor_id();
69e1e811 7683
69e1e811 7684 rcu_read_lock();
37dc6b50 7685 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7686
7687 if (!sd || !sd->nohz_idle)
7688 goto unlock;
7689 sd->nohz_idle = 0;
7690
63b2ca30 7691 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7692unlock:
69e1e811
SS
7693 rcu_read_unlock();
7694}
7695
7696void set_cpu_sd_state_idle(void)
7697{
7698 struct sched_domain *sd;
37dc6b50 7699 int cpu = smp_processor_id();
69e1e811 7700
69e1e811 7701 rcu_read_lock();
37dc6b50 7702 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7703
7704 if (!sd || sd->nohz_idle)
7705 goto unlock;
7706 sd->nohz_idle = 1;
7707
63b2ca30 7708 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7709unlock:
69e1e811
SS
7710 rcu_read_unlock();
7711}
7712
1e3c88bd 7713/*
c1cc017c 7714 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7715 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7716 */
c1cc017c 7717void nohz_balance_enter_idle(int cpu)
1e3c88bd 7718{
71325960
SS
7719 /*
7720 * If this cpu is going down, then nothing needs to be done.
7721 */
7722 if (!cpu_active(cpu))
7723 return;
7724
c1cc017c
AS
7725 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7726 return;
1e3c88bd 7727
d987fc7f
MG
7728 /*
7729 * If we're a completely isolated CPU, we don't play.
7730 */
7731 if (on_null_domain(cpu_rq(cpu)))
7732 return;
7733
c1cc017c
AS
7734 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7735 atomic_inc(&nohz.nr_cpus);
7736 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7737}
71325960 7738
0db0628d 7739static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7740 unsigned long action, void *hcpu)
7741{
7742 switch (action & ~CPU_TASKS_FROZEN) {
7743 case CPU_DYING:
c1cc017c 7744 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7745 return NOTIFY_OK;
7746 default:
7747 return NOTIFY_DONE;
7748 }
7749}
1e3c88bd
PZ
7750#endif
7751
7752static DEFINE_SPINLOCK(balancing);
7753
49c022e6
PZ
7754/*
7755 * Scale the max load_balance interval with the number of CPUs in the system.
7756 * This trades load-balance latency on larger machines for less cross talk.
7757 */
029632fb 7758void update_max_interval(void)
49c022e6
PZ
7759{
7760 max_load_balance_interval = HZ*num_online_cpus()/10;
7761}
7762
1e3c88bd
PZ
7763/*
7764 * It checks each scheduling domain to see if it is due to be balanced,
7765 * and initiates a balancing operation if so.
7766 *
b9b0853a 7767 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7768 */
f7ed0a89 7769static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7770{
23f0d209 7771 int continue_balancing = 1;
f7ed0a89 7772 int cpu = rq->cpu;
1e3c88bd 7773 unsigned long interval;
04f733b4 7774 struct sched_domain *sd;
1e3c88bd
PZ
7775 /* Earliest time when we have to do rebalance again */
7776 unsigned long next_balance = jiffies + 60*HZ;
7777 int update_next_balance = 0;
f48627e6
JL
7778 int need_serialize, need_decay = 0;
7779 u64 max_cost = 0;
1e3c88bd 7780
48a16753 7781 update_blocked_averages(cpu);
2069dd75 7782
dce840a0 7783 rcu_read_lock();
1e3c88bd 7784 for_each_domain(cpu, sd) {
f48627e6
JL
7785 /*
7786 * Decay the newidle max times here because this is a regular
7787 * visit to all the domains. Decay ~1% per second.
7788 */
7789 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7790 sd->max_newidle_lb_cost =
7791 (sd->max_newidle_lb_cost * 253) / 256;
7792 sd->next_decay_max_lb_cost = jiffies + HZ;
7793 need_decay = 1;
7794 }
7795 max_cost += sd->max_newidle_lb_cost;
7796
1e3c88bd
PZ
7797 if (!(sd->flags & SD_LOAD_BALANCE))
7798 continue;
7799
f48627e6
JL
7800 /*
7801 * Stop the load balance at this level. There is another
7802 * CPU in our sched group which is doing load balancing more
7803 * actively.
7804 */
7805 if (!continue_balancing) {
7806 if (need_decay)
7807 continue;
7808 break;
7809 }
7810
52a08ef1 7811 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7812
7813 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7814 if (need_serialize) {
7815 if (!spin_trylock(&balancing))
7816 goto out;
7817 }
7818
7819 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7820 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7821 /*
6263322c 7822 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7823 * env->dst_cpu, so we can't know our idle
7824 * state even if we migrated tasks. Update it.
1e3c88bd 7825 */
de5eb2dd 7826 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7827 }
7828 sd->last_balance = jiffies;
52a08ef1 7829 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7830 }
7831 if (need_serialize)
7832 spin_unlock(&balancing);
7833out:
7834 if (time_after(next_balance, sd->last_balance + interval)) {
7835 next_balance = sd->last_balance + interval;
7836 update_next_balance = 1;
7837 }
f48627e6
JL
7838 }
7839 if (need_decay) {
1e3c88bd 7840 /*
f48627e6
JL
7841 * Ensure the rq-wide value also decays but keep it at a
7842 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7843 */
f48627e6
JL
7844 rq->max_idle_balance_cost =
7845 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7846 }
dce840a0 7847 rcu_read_unlock();
1e3c88bd
PZ
7848
7849 /*
7850 * next_balance will be updated only when there is a need.
7851 * When the cpu is attached to null domain for ex, it will not be
7852 * updated.
7853 */
c5afb6a8 7854 if (likely(update_next_balance)) {
1e3c88bd 7855 rq->next_balance = next_balance;
c5afb6a8
VG
7856
7857#ifdef CONFIG_NO_HZ_COMMON
7858 /*
7859 * If this CPU has been elected to perform the nohz idle
7860 * balance. Other idle CPUs have already rebalanced with
7861 * nohz_idle_balance() and nohz.next_balance has been
7862 * updated accordingly. This CPU is now running the idle load
7863 * balance for itself and we need to update the
7864 * nohz.next_balance accordingly.
7865 */
7866 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7867 nohz.next_balance = rq->next_balance;
7868#endif
7869 }
1e3c88bd
PZ
7870}
7871
3451d024 7872#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7873/*
3451d024 7874 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7875 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7876 */
208cb16b 7877static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7878{
208cb16b 7879 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7880 struct rq *rq;
7881 int balance_cpu;
c5afb6a8
VG
7882 /* Earliest time when we have to do rebalance again */
7883 unsigned long next_balance = jiffies + 60*HZ;
7884 int update_next_balance = 0;
83cd4fe2 7885
1c792db7
SS
7886 if (idle != CPU_IDLE ||
7887 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7888 goto end;
83cd4fe2
VP
7889
7890 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7891 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7892 continue;
7893
7894 /*
7895 * If this cpu gets work to do, stop the load balancing
7896 * work being done for other cpus. Next load
7897 * balancing owner will pick it up.
7898 */
1c792db7 7899 if (need_resched())
83cd4fe2 7900 break;
83cd4fe2 7901
5ed4f1d9
VG
7902 rq = cpu_rq(balance_cpu);
7903
ed61bbc6
TC
7904 /*
7905 * If time for next balance is due,
7906 * do the balance.
7907 */
7908 if (time_after_eq(jiffies, rq->next_balance)) {
7909 raw_spin_lock_irq(&rq->lock);
7910 update_rq_clock(rq);
be68a682 7911 update_cpu_load_idle(rq);
ed61bbc6
TC
7912 raw_spin_unlock_irq(&rq->lock);
7913 rebalance_domains(rq, CPU_IDLE);
7914 }
83cd4fe2 7915
c5afb6a8
VG
7916 if (time_after(next_balance, rq->next_balance)) {
7917 next_balance = rq->next_balance;
7918 update_next_balance = 1;
7919 }
83cd4fe2 7920 }
c5afb6a8
VG
7921
7922 /*
7923 * next_balance will be updated only when there is a need.
7924 * When the CPU is attached to null domain for ex, it will not be
7925 * updated.
7926 */
7927 if (likely(update_next_balance))
7928 nohz.next_balance = next_balance;
1c792db7
SS
7929end:
7930 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7931}
7932
7933/*
0b005cf5 7934 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7935 * of an idle cpu in the system.
0b005cf5 7936 * - This rq has more than one task.
1aaf90a4
VG
7937 * - This rq has at least one CFS task and the capacity of the CPU is
7938 * significantly reduced because of RT tasks or IRQs.
7939 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7940 * multiple busy cpu.
0b005cf5
SS
7941 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7942 * domain span are idle.
83cd4fe2 7943 */
1aaf90a4 7944static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7945{
7946 unsigned long now = jiffies;
0b005cf5 7947 struct sched_domain *sd;
63b2ca30 7948 struct sched_group_capacity *sgc;
4a725627 7949 int nr_busy, cpu = rq->cpu;
1aaf90a4 7950 bool kick = false;
83cd4fe2 7951
4a725627 7952 if (unlikely(rq->idle_balance))
1aaf90a4 7953 return false;
83cd4fe2 7954
1c792db7
SS
7955 /*
7956 * We may be recently in ticked or tickless idle mode. At the first
7957 * busy tick after returning from idle, we will update the busy stats.
7958 */
69e1e811 7959 set_cpu_sd_state_busy();
c1cc017c 7960 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7961
7962 /*
7963 * None are in tickless mode and hence no need for NOHZ idle load
7964 * balancing.
7965 */
7966 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7967 return false;
1c792db7
SS
7968
7969 if (time_before(now, nohz.next_balance))
1aaf90a4 7970 return false;
83cd4fe2 7971
0b005cf5 7972 if (rq->nr_running >= 2)
1aaf90a4 7973 return true;
83cd4fe2 7974
067491b7 7975 rcu_read_lock();
37dc6b50 7976 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7977 if (sd) {
63b2ca30
NP
7978 sgc = sd->groups->sgc;
7979 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7980
1aaf90a4
VG
7981 if (nr_busy > 1) {
7982 kick = true;
7983 goto unlock;
7984 }
7985
83cd4fe2 7986 }
37dc6b50 7987
1aaf90a4
VG
7988 sd = rcu_dereference(rq->sd);
7989 if (sd) {
7990 if ((rq->cfs.h_nr_running >= 1) &&
7991 check_cpu_capacity(rq, sd)) {
7992 kick = true;
7993 goto unlock;
7994 }
7995 }
37dc6b50 7996
1aaf90a4 7997 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7998 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7999 sched_domain_span(sd)) < cpu)) {
8000 kick = true;
8001 goto unlock;
8002 }
067491b7 8003
1aaf90a4 8004unlock:
067491b7 8005 rcu_read_unlock();
1aaf90a4 8006 return kick;
83cd4fe2
VP
8007}
8008#else
208cb16b 8009static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8010#endif
8011
8012/*
8013 * run_rebalance_domains is triggered when needed from the scheduler tick.
8014 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8015 */
1e3c88bd
PZ
8016static void run_rebalance_domains(struct softirq_action *h)
8017{
208cb16b 8018 struct rq *this_rq = this_rq();
6eb57e0d 8019 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8020 CPU_IDLE : CPU_NOT_IDLE;
8021
1e3c88bd 8022 /*
83cd4fe2 8023 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8024 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8025 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8026 * give the idle cpus a chance to load balance. Else we may
8027 * load balance only within the local sched_domain hierarchy
8028 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8029 */
208cb16b 8030 nohz_idle_balance(this_rq, idle);
d4573c3e 8031 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8032}
8033
1e3c88bd
PZ
8034/*
8035 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8036 */
7caff66f 8037void trigger_load_balance(struct rq *rq)
1e3c88bd 8038{
1e3c88bd 8039 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8040 if (unlikely(on_null_domain(rq)))
8041 return;
8042
8043 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8044 raise_softirq(SCHED_SOFTIRQ);
3451d024 8045#ifdef CONFIG_NO_HZ_COMMON
c726099e 8046 if (nohz_kick_needed(rq))
0aeeeeba 8047 nohz_balancer_kick();
83cd4fe2 8048#endif
1e3c88bd
PZ
8049}
8050
0bcdcf28
CE
8051static void rq_online_fair(struct rq *rq)
8052{
8053 update_sysctl();
0e59bdae
KT
8054
8055 update_runtime_enabled(rq);
0bcdcf28
CE
8056}
8057
8058static void rq_offline_fair(struct rq *rq)
8059{
8060 update_sysctl();
a4c96ae3
PB
8061
8062 /* Ensure any throttled groups are reachable by pick_next_task */
8063 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8064}
8065
55e12e5e 8066#endif /* CONFIG_SMP */
e1d1484f 8067
bf0f6f24
IM
8068/*
8069 * scheduler tick hitting a task of our scheduling class:
8070 */
8f4d37ec 8071static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8072{
8073 struct cfs_rq *cfs_rq;
8074 struct sched_entity *se = &curr->se;
8075
8076 for_each_sched_entity(se) {
8077 cfs_rq = cfs_rq_of(se);
8f4d37ec 8078 entity_tick(cfs_rq, se, queued);
bf0f6f24 8079 }
18bf2805 8080
b52da86e 8081 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8082 task_tick_numa(rq, curr);
bf0f6f24
IM
8083}
8084
8085/*
cd29fe6f
PZ
8086 * called on fork with the child task as argument from the parent's context
8087 * - child not yet on the tasklist
8088 * - preemption disabled
bf0f6f24 8089 */
cd29fe6f 8090static void task_fork_fair(struct task_struct *p)
bf0f6f24 8091{
4fc420c9
DN
8092 struct cfs_rq *cfs_rq;
8093 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8094 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8095 struct rq *rq = this_rq();
8096 unsigned long flags;
8097
05fa785c 8098 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8099
861d034e
PZ
8100 update_rq_clock(rq);
8101
4fc420c9
DN
8102 cfs_rq = task_cfs_rq(current);
8103 curr = cfs_rq->curr;
8104
6c9a27f5
DN
8105 /*
8106 * Not only the cpu but also the task_group of the parent might have
8107 * been changed after parent->se.parent,cfs_rq were copied to
8108 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8109 * of child point to valid ones.
8110 */
8111 rcu_read_lock();
8112 __set_task_cpu(p, this_cpu);
8113 rcu_read_unlock();
bf0f6f24 8114
7109c442 8115 update_curr(cfs_rq);
cd29fe6f 8116
b5d9d734
MG
8117 if (curr)
8118 se->vruntime = curr->vruntime;
aeb73b04 8119 place_entity(cfs_rq, se, 1);
4d78e7b6 8120
cd29fe6f 8121 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8122 /*
edcb60a3
IM
8123 * Upon rescheduling, sched_class::put_prev_task() will place
8124 * 'current' within the tree based on its new key value.
8125 */
4d78e7b6 8126 swap(curr->vruntime, se->vruntime);
8875125e 8127 resched_curr(rq);
4d78e7b6 8128 }
bf0f6f24 8129
88ec22d3
PZ
8130 se->vruntime -= cfs_rq->min_vruntime;
8131
05fa785c 8132 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8133}
8134
cb469845
SR
8135/*
8136 * Priority of the task has changed. Check to see if we preempt
8137 * the current task.
8138 */
da7a735e
PZ
8139static void
8140prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8141{
da0c1e65 8142 if (!task_on_rq_queued(p))
da7a735e
PZ
8143 return;
8144
cb469845
SR
8145 /*
8146 * Reschedule if we are currently running on this runqueue and
8147 * our priority decreased, or if we are not currently running on
8148 * this runqueue and our priority is higher than the current's
8149 */
da7a735e 8150 if (rq->curr == p) {
cb469845 8151 if (p->prio > oldprio)
8875125e 8152 resched_curr(rq);
cb469845 8153 } else
15afe09b 8154 check_preempt_curr(rq, p, 0);
cb469845
SR
8155}
8156
daa59407 8157static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8158{
8159 struct sched_entity *se = &p->se;
da7a735e
PZ
8160
8161 /*
daa59407
BP
8162 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8163 * the dequeue_entity(.flags=0) will already have normalized the
8164 * vruntime.
8165 */
8166 if (p->on_rq)
8167 return true;
8168
8169 /*
8170 * When !on_rq, vruntime of the task has usually NOT been normalized.
8171 * But there are some cases where it has already been normalized:
da7a735e 8172 *
daa59407
BP
8173 * - A forked child which is waiting for being woken up by
8174 * wake_up_new_task().
8175 * - A task which has been woken up by try_to_wake_up() and
8176 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8177 */
daa59407
BP
8178 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8179 return true;
8180
8181 return false;
8182}
8183
8184static void detach_task_cfs_rq(struct task_struct *p)
8185{
8186 struct sched_entity *se = &p->se;
8187 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8188
8189 if (!vruntime_normalized(p)) {
da7a735e
PZ
8190 /*
8191 * Fix up our vruntime so that the current sleep doesn't
8192 * cause 'unlimited' sleep bonus.
8193 */
8194 place_entity(cfs_rq, se, 0);
8195 se->vruntime -= cfs_rq->min_vruntime;
8196 }
9ee474f5 8197
9d89c257 8198 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8199 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8200}
8201
daa59407 8202static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8203{
f36c019c 8204 struct sched_entity *se = &p->se;
daa59407 8205 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8206
8207#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8208 /*
8209 * Since the real-depth could have been changed (only FAIR
8210 * class maintain depth value), reset depth properly.
8211 */
8212 se->depth = se->parent ? se->parent->depth + 1 : 0;
8213#endif
7855a35a 8214
6efdb105 8215 /* Synchronize task with its cfs_rq */
daa59407
BP
8216 attach_entity_load_avg(cfs_rq, se);
8217
8218 if (!vruntime_normalized(p))
8219 se->vruntime += cfs_rq->min_vruntime;
8220}
6efdb105 8221
daa59407
BP
8222static void switched_from_fair(struct rq *rq, struct task_struct *p)
8223{
8224 detach_task_cfs_rq(p);
8225}
8226
8227static void switched_to_fair(struct rq *rq, struct task_struct *p)
8228{
8229 attach_task_cfs_rq(p);
7855a35a 8230
daa59407 8231 if (task_on_rq_queued(p)) {
7855a35a 8232 /*
daa59407
BP
8233 * We were most likely switched from sched_rt, so
8234 * kick off the schedule if running, otherwise just see
8235 * if we can still preempt the current task.
7855a35a 8236 */
daa59407
BP
8237 if (rq->curr == p)
8238 resched_curr(rq);
8239 else
8240 check_preempt_curr(rq, p, 0);
7855a35a 8241 }
cb469845
SR
8242}
8243
83b699ed
SV
8244/* Account for a task changing its policy or group.
8245 *
8246 * This routine is mostly called to set cfs_rq->curr field when a task
8247 * migrates between groups/classes.
8248 */
8249static void set_curr_task_fair(struct rq *rq)
8250{
8251 struct sched_entity *se = &rq->curr->se;
8252
ec12cb7f
PT
8253 for_each_sched_entity(se) {
8254 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8255
8256 set_next_entity(cfs_rq, se);
8257 /* ensure bandwidth has been allocated on our new cfs_rq */
8258 account_cfs_rq_runtime(cfs_rq, 0);
8259 }
83b699ed
SV
8260}
8261
029632fb
PZ
8262void init_cfs_rq(struct cfs_rq *cfs_rq)
8263{
8264 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8265 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8266#ifndef CONFIG_64BIT
8267 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8268#endif
141965c7 8269#ifdef CONFIG_SMP
9d89c257
YD
8270 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8271 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8272#endif
029632fb
PZ
8273}
8274
810b3817 8275#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8276static void task_move_group_fair(struct task_struct *p)
810b3817 8277{
daa59407 8278 detach_task_cfs_rq(p);
b2b5ce02 8279 set_task_rq(p, task_cpu(p));
6efdb105
BP
8280
8281#ifdef CONFIG_SMP
8282 /* Tell se's cfs_rq has been changed -- migrated */
8283 p->se.avg.last_update_time = 0;
8284#endif
daa59407 8285 attach_task_cfs_rq(p);
810b3817 8286}
029632fb
PZ
8287
8288void free_fair_sched_group(struct task_group *tg)
8289{
8290 int i;
8291
8292 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8293
8294 for_each_possible_cpu(i) {
8295 if (tg->cfs_rq)
8296 kfree(tg->cfs_rq[i]);
6fe1f348 8297 if (tg->se)
029632fb
PZ
8298 kfree(tg->se[i]);
8299 }
8300
8301 kfree(tg->cfs_rq);
8302 kfree(tg->se);
8303}
8304
8305int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8306{
8307 struct cfs_rq *cfs_rq;
8308 struct sched_entity *se;
8309 int i;
8310
8311 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8312 if (!tg->cfs_rq)
8313 goto err;
8314 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8315 if (!tg->se)
8316 goto err;
8317
8318 tg->shares = NICE_0_LOAD;
8319
8320 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8321
8322 for_each_possible_cpu(i) {
8323 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8324 GFP_KERNEL, cpu_to_node(i));
8325 if (!cfs_rq)
8326 goto err;
8327
8328 se = kzalloc_node(sizeof(struct sched_entity),
8329 GFP_KERNEL, cpu_to_node(i));
8330 if (!se)
8331 goto err_free_rq;
8332
8333 init_cfs_rq(cfs_rq);
8334 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8335 init_entity_runnable_average(se);
029632fb
PZ
8336 }
8337
8338 return 1;
8339
8340err_free_rq:
8341 kfree(cfs_rq);
8342err:
8343 return 0;
8344}
8345
6fe1f348 8346void unregister_fair_sched_group(struct task_group *tg)
029632fb 8347{
029632fb 8348 unsigned long flags;
6fe1f348
PZ
8349 struct rq *rq;
8350 int cpu;
029632fb 8351
6fe1f348
PZ
8352 for_each_possible_cpu(cpu) {
8353 if (tg->se[cpu])
8354 remove_entity_load_avg(tg->se[cpu]);
029632fb 8355
6fe1f348
PZ
8356 /*
8357 * Only empty task groups can be destroyed; so we can speculatively
8358 * check on_list without danger of it being re-added.
8359 */
8360 if (!tg->cfs_rq[cpu]->on_list)
8361 continue;
8362
8363 rq = cpu_rq(cpu);
8364
8365 raw_spin_lock_irqsave(&rq->lock, flags);
8366 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8367 raw_spin_unlock_irqrestore(&rq->lock, flags);
8368 }
029632fb
PZ
8369}
8370
8371void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8372 struct sched_entity *se, int cpu,
8373 struct sched_entity *parent)
8374{
8375 struct rq *rq = cpu_rq(cpu);
8376
8377 cfs_rq->tg = tg;
8378 cfs_rq->rq = rq;
029632fb
PZ
8379 init_cfs_rq_runtime(cfs_rq);
8380
8381 tg->cfs_rq[cpu] = cfs_rq;
8382 tg->se[cpu] = se;
8383
8384 /* se could be NULL for root_task_group */
8385 if (!se)
8386 return;
8387
fed14d45 8388 if (!parent) {
029632fb 8389 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8390 se->depth = 0;
8391 } else {
029632fb 8392 se->cfs_rq = parent->my_q;
fed14d45
PZ
8393 se->depth = parent->depth + 1;
8394 }
029632fb
PZ
8395
8396 se->my_q = cfs_rq;
0ac9b1c2
PT
8397 /* guarantee group entities always have weight */
8398 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8399 se->parent = parent;
8400}
8401
8402static DEFINE_MUTEX(shares_mutex);
8403
8404int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8405{
8406 int i;
8407 unsigned long flags;
8408
8409 /*
8410 * We can't change the weight of the root cgroup.
8411 */
8412 if (!tg->se[0])
8413 return -EINVAL;
8414
8415 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8416
8417 mutex_lock(&shares_mutex);
8418 if (tg->shares == shares)
8419 goto done;
8420
8421 tg->shares = shares;
8422 for_each_possible_cpu(i) {
8423 struct rq *rq = cpu_rq(i);
8424 struct sched_entity *se;
8425
8426 se = tg->se[i];
8427 /* Propagate contribution to hierarchy */
8428 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8429
8430 /* Possible calls to update_curr() need rq clock */
8431 update_rq_clock(rq);
17bc14b7 8432 for_each_sched_entity(se)
029632fb
PZ
8433 update_cfs_shares(group_cfs_rq(se));
8434 raw_spin_unlock_irqrestore(&rq->lock, flags);
8435 }
8436
8437done:
8438 mutex_unlock(&shares_mutex);
8439 return 0;
8440}
8441#else /* CONFIG_FAIR_GROUP_SCHED */
8442
8443void free_fair_sched_group(struct task_group *tg) { }
8444
8445int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8446{
8447 return 1;
8448}
8449
6fe1f348 8450void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8451
8452#endif /* CONFIG_FAIR_GROUP_SCHED */
8453
810b3817 8454
6d686f45 8455static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8456{
8457 struct sched_entity *se = &task->se;
0d721cea
PW
8458 unsigned int rr_interval = 0;
8459
8460 /*
8461 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8462 * idle runqueue:
8463 */
0d721cea 8464 if (rq->cfs.load.weight)
a59f4e07 8465 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8466
8467 return rr_interval;
8468}
8469
bf0f6f24
IM
8470/*
8471 * All the scheduling class methods:
8472 */
029632fb 8473const struct sched_class fair_sched_class = {
5522d5d5 8474 .next = &idle_sched_class,
bf0f6f24
IM
8475 .enqueue_task = enqueue_task_fair,
8476 .dequeue_task = dequeue_task_fair,
8477 .yield_task = yield_task_fair,
d95f4122 8478 .yield_to_task = yield_to_task_fair,
bf0f6f24 8479
2e09bf55 8480 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8481
8482 .pick_next_task = pick_next_task_fair,
8483 .put_prev_task = put_prev_task_fair,
8484
681f3e68 8485#ifdef CONFIG_SMP
4ce72a2c 8486 .select_task_rq = select_task_rq_fair,
0a74bef8 8487 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8488
0bcdcf28
CE
8489 .rq_online = rq_online_fair,
8490 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8491
8492 .task_waking = task_waking_fair,
12695578 8493 .task_dead = task_dead_fair,
c5b28038 8494 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8495#endif
bf0f6f24 8496
83b699ed 8497 .set_curr_task = set_curr_task_fair,
bf0f6f24 8498 .task_tick = task_tick_fair,
cd29fe6f 8499 .task_fork = task_fork_fair,
cb469845
SR
8500
8501 .prio_changed = prio_changed_fair,
da7a735e 8502 .switched_from = switched_from_fair,
cb469845 8503 .switched_to = switched_to_fair,
810b3817 8504
0d721cea
PW
8505 .get_rr_interval = get_rr_interval_fair,
8506
6e998916
SG
8507 .update_curr = update_curr_fair,
8508
810b3817 8509#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8510 .task_move_group = task_move_group_fair,
810b3817 8511#endif
bf0f6f24
IM
8512};
8513
8514#ifdef CONFIG_SCHED_DEBUG
029632fb 8515void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8516{
bf0f6f24
IM
8517 struct cfs_rq *cfs_rq;
8518
5973e5b9 8519 rcu_read_lock();
c3b64f1e 8520 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8521 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8522 rcu_read_unlock();
bf0f6f24 8523}
397f2378
SD
8524
8525#ifdef CONFIG_NUMA_BALANCING
8526void show_numa_stats(struct task_struct *p, struct seq_file *m)
8527{
8528 int node;
8529 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8530
8531 for_each_online_node(node) {
8532 if (p->numa_faults) {
8533 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8534 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8535 }
8536 if (p->numa_group) {
8537 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8538 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8539 }
8540 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8541 }
8542}
8543#endif /* CONFIG_NUMA_BALANCING */
8544#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8545
8546__init void init_sched_fair_class(void)
8547{
8548#ifdef CONFIG_SMP
8549 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8550
3451d024 8551#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8552 nohz.next_balance = jiffies;
029632fb 8553 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8554 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8555#endif
8556#endif /* SMP */
8557
8558}