]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/fair: Fix fairness issue on migration
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
7b20b916
YD
2605/*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613};
2614
9d85f21c
PT
2615/*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619static __always_inline u64 decay_load(u64 val, u64 n)
2620{
5b51f2f8
PT
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2641 }
2642
9d89c257
YD
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
5b51f2f8
PT
2645}
2646
2647/*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654static u32 __compute_runnable_contrib(u64 n)
2655{
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
7b20b916
YD
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2668}
2669
54a21385 2670#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2671
9d85f21c
PT
2672/*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
9d89c257
YD
2700static __always_inline int
2701__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2703{
e0f5f3af 2704 u64 delta, scaled_delta, periods;
9d89c257 2705 u32 contrib;
6115c793 2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2707 unsigned long scale_freq, scale_cpu;
9d85f21c 2708
9d89c257 2709 delta = now - sa->last_update_time;
9d85f21c
PT
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
9d89c257 2715 sa->last_update_time = now;
9d85f21c
PT
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
9d89c257 2726 sa->last_update_time = now;
9d85f21c 2727
6f2b0452
DE
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
9d85f21c 2731 /* delta_w is the amount already accumulated against our next period */
9d89c257 2732 delta_w = sa->period_contrib;
9d85f21c 2733 if (delta + delta_w >= 1024) {
9d85f21c
PT
2734 decayed = 1;
2735
9d89c257
YD
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
9d85f21c
PT
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
54a21385 2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2746 if (weight) {
e0f5f3af
DE
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
13962234 2752 }
36ee28e4 2753 if (running)
006cdf02 2754 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
9d89c257 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
9d89c257 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2770 contrib = __compute_runnable_contrib(periods);
54a21385 2771 contrib = cap_scale(contrib, scale_freq);
13962234 2772 if (weight) {
9d89c257 2773 sa->load_sum += weight * contrib;
13962234
YD
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
36ee28e4 2777 if (running)
006cdf02 2778 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
54a21385 2782 scaled_delta = cap_scale(delta, scale_freq);
13962234 2783 if (weight) {
e0f5f3af 2784 sa->load_sum += weight * scaled_delta;
13962234 2785 if (cfs_rq)
e0f5f3af 2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2787 }
36ee28e4 2788 if (running)
006cdf02 2789 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2790
9d89c257 2791 sa->period_contrib += delta;
9ee474f5 2792
9d89c257
YD
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
006cdf02 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2800 }
aff3e498 2801
9d89c257 2802 return decayed;
9ee474f5
PT
2803}
2804
c566e8e9 2805#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2806/*
9d89c257
YD
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
bb17f655 2809 */
9d89c257 2810static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2811{
9d89c257 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2813
aa0b7ae0
WL
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
9d89c257
YD
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2823 }
8165e145 2824}
f5f9739d 2825
ad936d86
BP
2826/*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833{
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848#ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863#else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866#endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871}
6e83125c 2872#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2873static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2874#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2875
9d89c257 2876static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2877
a2c6c91f
SM
2878static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2879{
2880 struct rq *rq = rq_of(cfs_rq);
2881 int cpu = cpu_of(rq);
2882
2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2884 unsigned long max = rq->cpu_capacity_orig;
2885
2886 /*
2887 * There are a few boundary cases this might miss but it should
2888 * get called often enough that that should (hopefully) not be
2889 * a real problem -- added to that it only calls on the local
2890 * CPU, so if we enqueue remotely we'll miss an update, but
2891 * the next tick/schedule should update.
2892 *
2893 * It will not get called when we go idle, because the idle
2894 * thread is a different class (!fair), nor will the utilization
2895 * number include things like RT tasks.
2896 *
2897 * As is, the util number is not freq-invariant (we'd have to
2898 * implement arch_scale_freq_capacity() for that).
2899 *
2900 * See cpu_util().
2901 */
2902 cpufreq_update_util(rq_clock(rq),
2903 min(cfs_rq->avg.util_avg, max), max);
2904 }
2905}
2906
9d89c257 2907/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2908static inline int
2909update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2910{
9d89c257 2911 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2912 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2913
9d89c257 2914 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2915 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2916 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2917 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2918 removed_load = 1;
8165e145 2919 }
2dac754e 2920
9d89c257
YD
2921 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2922 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2923 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2924 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2925 removed_util = 1;
9d89c257 2926 }
36ee28e4 2927
a2c6c91f 2928 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2929 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2930
9d89c257
YD
2931#ifndef CONFIG_64BIT
2932 smp_wmb();
2933 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2934#endif
36ee28e4 2935
a2c6c91f
SM
2936 if (update_freq && (decayed || removed_util))
2937 cfs_rq_util_change(cfs_rq);
21e96f88 2938
41e0d37f 2939 return decayed || removed_load;
21e96f88
SM
2940}
2941
2942/* Update task and its cfs_rq load average */
2943static inline void update_load_avg(struct sched_entity *se, int update_tg)
2944{
2945 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2946 u64 now = cfs_rq_clock_task(cfs_rq);
2947 struct rq *rq = rq_of(cfs_rq);
2948 int cpu = cpu_of(rq);
2949
2950 /*
2951 * Track task load average for carrying it to new CPU after migrated, and
2952 * track group sched_entity load average for task_h_load calc in migration
2953 */
2954 __update_load_avg(now, cpu, &se->avg,
2955 se->on_rq * scale_load_down(se->load.weight),
2956 cfs_rq->curr == se, NULL);
2957
a2c6c91f 2958 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2959 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2960}
2961
a05e8c51
BP
2962static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2963{
a9280514
PZ
2964 if (!sched_feat(ATTACH_AGE_LOAD))
2965 goto skip_aging;
2966
6efdb105
BP
2967 /*
2968 * If we got migrated (either between CPUs or between cgroups) we'll
2969 * have aged the average right before clearing @last_update_time.
2970 */
2971 if (se->avg.last_update_time) {
2972 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2973 &se->avg, 0, 0, NULL);
2974
2975 /*
2976 * XXX: we could have just aged the entire load away if we've been
2977 * absent from the fair class for too long.
2978 */
2979 }
2980
a9280514 2981skip_aging:
a05e8c51
BP
2982 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2983 cfs_rq->avg.load_avg += se->avg.load_avg;
2984 cfs_rq->avg.load_sum += se->avg.load_sum;
2985 cfs_rq->avg.util_avg += se->avg.util_avg;
2986 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2987
2988 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2989}
2990
2991static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2992{
2993 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2994 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2995 cfs_rq->curr == se, NULL);
2996
2997 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2998 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2999 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
3000 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
a2c6c91f
SM
3001
3002 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3003}
3004
9d89c257
YD
3005/* Add the load generated by se into cfs_rq's load average */
3006static inline void
3007enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3008{
9d89c257
YD
3009 struct sched_avg *sa = &se->avg;
3010 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3011 int migrated, decayed;
9ee474f5 3012
a05e8c51
BP
3013 migrated = !sa->last_update_time;
3014 if (!migrated) {
9d89c257 3015 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3016 se->on_rq * scale_load_down(se->load.weight),
3017 cfs_rq->curr == se, NULL);
aff3e498 3018 }
c566e8e9 3019
a2c6c91f 3020 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3021
13962234
YD
3022 cfs_rq->runnable_load_avg += sa->load_avg;
3023 cfs_rq->runnable_load_sum += sa->load_sum;
3024
a05e8c51
BP
3025 if (migrated)
3026 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3027
9d89c257
YD
3028 if (decayed || migrated)
3029 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3030}
3031
13962234
YD
3032/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3033static inline void
3034dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035{
3036 update_load_avg(se, 1);
3037
3038 cfs_rq->runnable_load_avg =
3039 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3040 cfs_rq->runnable_load_sum =
a05e8c51 3041 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3042}
3043
9d89c257 3044#ifndef CONFIG_64BIT
0905f04e
YD
3045static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3046{
9d89c257 3047 u64 last_update_time_copy;
0905f04e 3048 u64 last_update_time;
9ee474f5 3049
9d89c257
YD
3050 do {
3051 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3052 smp_rmb();
3053 last_update_time = cfs_rq->avg.last_update_time;
3054 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3055
3056 return last_update_time;
3057}
9d89c257 3058#else
0905f04e
YD
3059static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3060{
3061 return cfs_rq->avg.last_update_time;
3062}
9d89c257
YD
3063#endif
3064
0905f04e
YD
3065/*
3066 * Task first catches up with cfs_rq, and then subtract
3067 * itself from the cfs_rq (task must be off the queue now).
3068 */
3069void remove_entity_load_avg(struct sched_entity *se)
3070{
3071 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3072 u64 last_update_time;
3073
3074 /*
3075 * Newly created task or never used group entity should not be removed
3076 * from its (source) cfs_rq
3077 */
3078 if (se->avg.last_update_time == 0)
3079 return;
3080
3081 last_update_time = cfs_rq_last_update_time(cfs_rq);
3082
13962234 3083 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3084 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3085 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3086}
642dbc39 3087
7ea241af
YD
3088static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3089{
3090 return cfs_rq->runnable_load_avg;
3091}
3092
3093static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3094{
3095 return cfs_rq->avg.load_avg;
3096}
3097
6e83125c
PZ
3098static int idle_balance(struct rq *this_rq);
3099
38033c37
PZ
3100#else /* CONFIG_SMP */
3101
536bd00c
RW
3102static inline void update_load_avg(struct sched_entity *se, int not_used)
3103{
3104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3105 struct rq *rq = rq_of(cfs_rq);
3106
3107 cpufreq_trigger_update(rq_clock(rq));
3108}
3109
9d89c257
YD
3110static inline void
3111enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3112static inline void
3113dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3114static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3115
a05e8c51
BP
3116static inline void
3117attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3118static inline void
3119detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3120
6e83125c
PZ
3121static inline int idle_balance(struct rq *rq)
3122{
3123 return 0;
3124}
3125
38033c37 3126#endif /* CONFIG_SMP */
9d85f21c 3127
2396af69 3128static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3129{
bf0f6f24 3130#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3131 struct task_struct *tsk = NULL;
3132
3133 if (entity_is_task(se))
3134 tsk = task_of(se);
3135
41acab88 3136 if (se->statistics.sleep_start) {
78becc27 3137 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3138
3139 if ((s64)delta < 0)
3140 delta = 0;
3141
41acab88
LDM
3142 if (unlikely(delta > se->statistics.sleep_max))
3143 se->statistics.sleep_max = delta;
bf0f6f24 3144
8c79a045 3145 se->statistics.sleep_start = 0;
41acab88 3146 se->statistics.sum_sleep_runtime += delta;
9745512c 3147
768d0c27 3148 if (tsk) {
e414314c 3149 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3150 trace_sched_stat_sleep(tsk, delta);
3151 }
bf0f6f24 3152 }
41acab88 3153 if (se->statistics.block_start) {
78becc27 3154 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3155
3156 if ((s64)delta < 0)
3157 delta = 0;
3158
41acab88
LDM
3159 if (unlikely(delta > se->statistics.block_max))
3160 se->statistics.block_max = delta;
bf0f6f24 3161
8c79a045 3162 se->statistics.block_start = 0;
41acab88 3163 se->statistics.sum_sleep_runtime += delta;
30084fbd 3164
e414314c 3165 if (tsk) {
8f0dfc34 3166 if (tsk->in_iowait) {
41acab88
LDM
3167 se->statistics.iowait_sum += delta;
3168 se->statistics.iowait_count++;
768d0c27 3169 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3170 }
3171
b781a602
AV
3172 trace_sched_stat_blocked(tsk, delta);
3173
e414314c
PZ
3174 /*
3175 * Blocking time is in units of nanosecs, so shift by
3176 * 20 to get a milliseconds-range estimation of the
3177 * amount of time that the task spent sleeping:
3178 */
3179 if (unlikely(prof_on == SLEEP_PROFILING)) {
3180 profile_hits(SLEEP_PROFILING,
3181 (void *)get_wchan(tsk),
3182 delta >> 20);
3183 }
3184 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3185 }
bf0f6f24
IM
3186 }
3187#endif
3188}
3189
ddc97297
PZ
3190static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3191{
3192#ifdef CONFIG_SCHED_DEBUG
3193 s64 d = se->vruntime - cfs_rq->min_vruntime;
3194
3195 if (d < 0)
3196 d = -d;
3197
3198 if (d > 3*sysctl_sched_latency)
3199 schedstat_inc(cfs_rq, nr_spread_over);
3200#endif
3201}
3202
aeb73b04
PZ
3203static void
3204place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3205{
1af5f730 3206 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3207
2cb8600e
PZ
3208 /*
3209 * The 'current' period is already promised to the current tasks,
3210 * however the extra weight of the new task will slow them down a
3211 * little, place the new task so that it fits in the slot that
3212 * stays open at the end.
3213 */
94dfb5e7 3214 if (initial && sched_feat(START_DEBIT))
f9c0b095 3215 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3216
a2e7a7eb 3217 /* sleeps up to a single latency don't count. */
5ca9880c 3218 if (!initial) {
a2e7a7eb 3219 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3220
a2e7a7eb
MG
3221 /*
3222 * Halve their sleep time's effect, to allow
3223 * for a gentler effect of sleepers:
3224 */
3225 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3226 thresh >>= 1;
51e0304c 3227
a2e7a7eb 3228 vruntime -= thresh;
aeb73b04
PZ
3229 }
3230
b5d9d734 3231 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3232 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3233}
3234
d3d9dc33
PT
3235static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3236
cb251765
MG
3237static inline void check_schedstat_required(void)
3238{
3239#ifdef CONFIG_SCHEDSTATS
3240 if (schedstat_enabled())
3241 return;
3242
3243 /* Force schedstat enabled if a dependent tracepoint is active */
3244 if (trace_sched_stat_wait_enabled() ||
3245 trace_sched_stat_sleep_enabled() ||
3246 trace_sched_stat_iowait_enabled() ||
3247 trace_sched_stat_blocked_enabled() ||
3248 trace_sched_stat_runtime_enabled()) {
3249 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3250 "stat_blocked and stat_runtime require the "
3251 "kernel parameter schedstats=enabled or "
3252 "kernel.sched_schedstats=1\n");
3253 }
3254#endif
3255}
3256
b5179ac7
PZ
3257
3258/*
3259 * MIGRATION
3260 *
3261 * dequeue
3262 * update_curr()
3263 * update_min_vruntime()
3264 * vruntime -= min_vruntime
3265 *
3266 * enqueue
3267 * update_curr()
3268 * update_min_vruntime()
3269 * vruntime += min_vruntime
3270 *
3271 * this way the vruntime transition between RQs is done when both
3272 * min_vruntime are up-to-date.
3273 *
3274 * WAKEUP (remote)
3275 *
59efa0ba 3276 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3277 * vruntime -= min_vruntime
3278 *
3279 * enqueue
3280 * update_curr()
3281 * update_min_vruntime()
3282 * vruntime += min_vruntime
3283 *
3284 * this way we don't have the most up-to-date min_vruntime on the originating
3285 * CPU and an up-to-date min_vruntime on the destination CPU.
3286 */
3287
bf0f6f24 3288static void
88ec22d3 3289enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3290{
2f950354
PZ
3291 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3292 bool curr = cfs_rq->curr == se;
3293
88ec22d3 3294 /*
2f950354
PZ
3295 * If we're the current task, we must renormalise before calling
3296 * update_curr().
88ec22d3 3297 */
2f950354 3298 if (renorm && curr)
88ec22d3
PZ
3299 se->vruntime += cfs_rq->min_vruntime;
3300
2f950354
PZ
3301 update_curr(cfs_rq);
3302
bf0f6f24 3303 /*
2f950354
PZ
3304 * Otherwise, renormalise after, such that we're placed at the current
3305 * moment in time, instead of some random moment in the past. Being
3306 * placed in the past could significantly boost this task to the
3307 * fairness detriment of existing tasks.
bf0f6f24 3308 */
2f950354
PZ
3309 if (renorm && !curr)
3310 se->vruntime += cfs_rq->min_vruntime;
3311
9d89c257 3312 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3313 account_entity_enqueue(cfs_rq, se);
3314 update_cfs_shares(cfs_rq);
bf0f6f24 3315
88ec22d3 3316 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3317 place_entity(cfs_rq, se, 0);
cb251765
MG
3318 if (schedstat_enabled())
3319 enqueue_sleeper(cfs_rq, se);
e9acbff6 3320 }
bf0f6f24 3321
cb251765
MG
3322 check_schedstat_required();
3323 if (schedstat_enabled()) {
3324 update_stats_enqueue(cfs_rq, se);
3325 check_spread(cfs_rq, se);
3326 }
2f950354 3327 if (!curr)
83b699ed 3328 __enqueue_entity(cfs_rq, se);
2069dd75 3329 se->on_rq = 1;
3d4b47b4 3330
d3d9dc33 3331 if (cfs_rq->nr_running == 1) {
3d4b47b4 3332 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3333 check_enqueue_throttle(cfs_rq);
3334 }
bf0f6f24
IM
3335}
3336
2c13c919 3337static void __clear_buddies_last(struct sched_entity *se)
2002c695 3338{
2c13c919
RR
3339 for_each_sched_entity(se) {
3340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3341 if (cfs_rq->last != se)
2c13c919 3342 break;
f1044799
PZ
3343
3344 cfs_rq->last = NULL;
2c13c919
RR
3345 }
3346}
2002c695 3347
2c13c919
RR
3348static void __clear_buddies_next(struct sched_entity *se)
3349{
3350 for_each_sched_entity(se) {
3351 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3352 if (cfs_rq->next != se)
2c13c919 3353 break;
f1044799
PZ
3354
3355 cfs_rq->next = NULL;
2c13c919 3356 }
2002c695
PZ
3357}
3358
ac53db59
RR
3359static void __clear_buddies_skip(struct sched_entity *se)
3360{
3361 for_each_sched_entity(se) {
3362 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3363 if (cfs_rq->skip != se)
ac53db59 3364 break;
f1044799
PZ
3365
3366 cfs_rq->skip = NULL;
ac53db59
RR
3367 }
3368}
3369
a571bbea
PZ
3370static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3371{
2c13c919
RR
3372 if (cfs_rq->last == se)
3373 __clear_buddies_last(se);
3374
3375 if (cfs_rq->next == se)
3376 __clear_buddies_next(se);
ac53db59
RR
3377
3378 if (cfs_rq->skip == se)
3379 __clear_buddies_skip(se);
a571bbea
PZ
3380}
3381
6c16a6dc 3382static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3383
bf0f6f24 3384static void
371fd7e7 3385dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3386{
a2a2d680
DA
3387 /*
3388 * Update run-time statistics of the 'current'.
3389 */
3390 update_curr(cfs_rq);
13962234 3391 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3392
cb251765
MG
3393 if (schedstat_enabled())
3394 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3395
2002c695 3396 clear_buddies(cfs_rq, se);
4793241b 3397
83b699ed 3398 if (se != cfs_rq->curr)
30cfdcfc 3399 __dequeue_entity(cfs_rq, se);
17bc14b7 3400 se->on_rq = 0;
30cfdcfc 3401 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3402
3403 /*
3404 * Normalize the entity after updating the min_vruntime because the
3405 * update can refer to the ->curr item and we need to reflect this
3406 * movement in our normalized position.
3407 */
371fd7e7 3408 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3409 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3410
d8b4986d
PT
3411 /* return excess runtime on last dequeue */
3412 return_cfs_rq_runtime(cfs_rq);
3413
1e876231 3414 update_min_vruntime(cfs_rq);
17bc14b7 3415 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3416}
3417
3418/*
3419 * Preempt the current task with a newly woken task if needed:
3420 */
7c92e54f 3421static void
2e09bf55 3422check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3423{
11697830 3424 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3425 struct sched_entity *se;
3426 s64 delta;
11697830 3427
6d0f0ebd 3428 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3429 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3430 if (delta_exec > ideal_runtime) {
8875125e 3431 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3432 /*
3433 * The current task ran long enough, ensure it doesn't get
3434 * re-elected due to buddy favours.
3435 */
3436 clear_buddies(cfs_rq, curr);
f685ceac
MG
3437 return;
3438 }
3439
3440 /*
3441 * Ensure that a task that missed wakeup preemption by a
3442 * narrow margin doesn't have to wait for a full slice.
3443 * This also mitigates buddy induced latencies under load.
3444 */
f685ceac
MG
3445 if (delta_exec < sysctl_sched_min_granularity)
3446 return;
3447
f4cfb33e
WX
3448 se = __pick_first_entity(cfs_rq);
3449 delta = curr->vruntime - se->vruntime;
f685ceac 3450
f4cfb33e
WX
3451 if (delta < 0)
3452 return;
d7d82944 3453
f4cfb33e 3454 if (delta > ideal_runtime)
8875125e 3455 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3456}
3457
83b699ed 3458static void
8494f412 3459set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3460{
83b699ed
SV
3461 /* 'current' is not kept within the tree. */
3462 if (se->on_rq) {
3463 /*
3464 * Any task has to be enqueued before it get to execute on
3465 * a CPU. So account for the time it spent waiting on the
3466 * runqueue.
3467 */
cb251765
MG
3468 if (schedstat_enabled())
3469 update_stats_wait_end(cfs_rq, se);
83b699ed 3470 __dequeue_entity(cfs_rq, se);
9d89c257 3471 update_load_avg(se, 1);
83b699ed
SV
3472 }
3473
79303e9e 3474 update_stats_curr_start(cfs_rq, se);
429d43bc 3475 cfs_rq->curr = se;
eba1ed4b
IM
3476#ifdef CONFIG_SCHEDSTATS
3477 /*
3478 * Track our maximum slice length, if the CPU's load is at
3479 * least twice that of our own weight (i.e. dont track it
3480 * when there are only lesser-weight tasks around):
3481 */
cb251765 3482 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3483 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3484 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3485 }
3486#endif
4a55b450 3487 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3488}
3489
3f3a4904
PZ
3490static int
3491wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3492
ac53db59
RR
3493/*
3494 * Pick the next process, keeping these things in mind, in this order:
3495 * 1) keep things fair between processes/task groups
3496 * 2) pick the "next" process, since someone really wants that to run
3497 * 3) pick the "last" process, for cache locality
3498 * 4) do not run the "skip" process, if something else is available
3499 */
678d5718
PZ
3500static struct sched_entity *
3501pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3502{
678d5718
PZ
3503 struct sched_entity *left = __pick_first_entity(cfs_rq);
3504 struct sched_entity *se;
3505
3506 /*
3507 * If curr is set we have to see if its left of the leftmost entity
3508 * still in the tree, provided there was anything in the tree at all.
3509 */
3510 if (!left || (curr && entity_before(curr, left)))
3511 left = curr;
3512
3513 se = left; /* ideally we run the leftmost entity */
f4b6755f 3514
ac53db59
RR
3515 /*
3516 * Avoid running the skip buddy, if running something else can
3517 * be done without getting too unfair.
3518 */
3519 if (cfs_rq->skip == se) {
678d5718
PZ
3520 struct sched_entity *second;
3521
3522 if (se == curr) {
3523 second = __pick_first_entity(cfs_rq);
3524 } else {
3525 second = __pick_next_entity(se);
3526 if (!second || (curr && entity_before(curr, second)))
3527 second = curr;
3528 }
3529
ac53db59
RR
3530 if (second && wakeup_preempt_entity(second, left) < 1)
3531 se = second;
3532 }
aa2ac252 3533
f685ceac
MG
3534 /*
3535 * Prefer last buddy, try to return the CPU to a preempted task.
3536 */
3537 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3538 se = cfs_rq->last;
3539
ac53db59
RR
3540 /*
3541 * Someone really wants this to run. If it's not unfair, run it.
3542 */
3543 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3544 se = cfs_rq->next;
3545
f685ceac 3546 clear_buddies(cfs_rq, se);
4793241b
PZ
3547
3548 return se;
aa2ac252
PZ
3549}
3550
678d5718 3551static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3552
ab6cde26 3553static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3554{
3555 /*
3556 * If still on the runqueue then deactivate_task()
3557 * was not called and update_curr() has to be done:
3558 */
3559 if (prev->on_rq)
b7cc0896 3560 update_curr(cfs_rq);
bf0f6f24 3561
d3d9dc33
PT
3562 /* throttle cfs_rqs exceeding runtime */
3563 check_cfs_rq_runtime(cfs_rq);
3564
cb251765
MG
3565 if (schedstat_enabled()) {
3566 check_spread(cfs_rq, prev);
3567 if (prev->on_rq)
3568 update_stats_wait_start(cfs_rq, prev);
3569 }
3570
30cfdcfc 3571 if (prev->on_rq) {
30cfdcfc
DA
3572 /* Put 'current' back into the tree. */
3573 __enqueue_entity(cfs_rq, prev);
9d85f21c 3574 /* in !on_rq case, update occurred at dequeue */
9d89c257 3575 update_load_avg(prev, 0);
30cfdcfc 3576 }
429d43bc 3577 cfs_rq->curr = NULL;
bf0f6f24
IM
3578}
3579
8f4d37ec
PZ
3580static void
3581entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3582{
bf0f6f24 3583 /*
30cfdcfc 3584 * Update run-time statistics of the 'current'.
bf0f6f24 3585 */
30cfdcfc 3586 update_curr(cfs_rq);
bf0f6f24 3587
9d85f21c
PT
3588 /*
3589 * Ensure that runnable average is periodically updated.
3590 */
9d89c257 3591 update_load_avg(curr, 1);
bf0bd948 3592 update_cfs_shares(cfs_rq);
9d85f21c 3593
8f4d37ec
PZ
3594#ifdef CONFIG_SCHED_HRTICK
3595 /*
3596 * queued ticks are scheduled to match the slice, so don't bother
3597 * validating it and just reschedule.
3598 */
983ed7a6 3599 if (queued) {
8875125e 3600 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3601 return;
3602 }
8f4d37ec
PZ
3603 /*
3604 * don't let the period tick interfere with the hrtick preemption
3605 */
3606 if (!sched_feat(DOUBLE_TICK) &&
3607 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3608 return;
3609#endif
3610
2c2efaed 3611 if (cfs_rq->nr_running > 1)
2e09bf55 3612 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3613}
3614
ab84d31e
PT
3615
3616/**************************************************
3617 * CFS bandwidth control machinery
3618 */
3619
3620#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3621
3622#ifdef HAVE_JUMP_LABEL
c5905afb 3623static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3624
3625static inline bool cfs_bandwidth_used(void)
3626{
c5905afb 3627 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3628}
3629
1ee14e6c 3630void cfs_bandwidth_usage_inc(void)
029632fb 3631{
1ee14e6c
BS
3632 static_key_slow_inc(&__cfs_bandwidth_used);
3633}
3634
3635void cfs_bandwidth_usage_dec(void)
3636{
3637 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3638}
3639#else /* HAVE_JUMP_LABEL */
3640static bool cfs_bandwidth_used(void)
3641{
3642 return true;
3643}
3644
1ee14e6c
BS
3645void cfs_bandwidth_usage_inc(void) {}
3646void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3647#endif /* HAVE_JUMP_LABEL */
3648
ab84d31e
PT
3649/*
3650 * default period for cfs group bandwidth.
3651 * default: 0.1s, units: nanoseconds
3652 */
3653static inline u64 default_cfs_period(void)
3654{
3655 return 100000000ULL;
3656}
ec12cb7f
PT
3657
3658static inline u64 sched_cfs_bandwidth_slice(void)
3659{
3660 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3661}
3662
a9cf55b2
PT
3663/*
3664 * Replenish runtime according to assigned quota and update expiration time.
3665 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3666 * additional synchronization around rq->lock.
3667 *
3668 * requires cfs_b->lock
3669 */
029632fb 3670void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3671{
3672 u64 now;
3673
3674 if (cfs_b->quota == RUNTIME_INF)
3675 return;
3676
3677 now = sched_clock_cpu(smp_processor_id());
3678 cfs_b->runtime = cfs_b->quota;
3679 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3680}
3681
029632fb
PZ
3682static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3683{
3684 return &tg->cfs_bandwidth;
3685}
3686
f1b17280
PT
3687/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3688static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3689{
3690 if (unlikely(cfs_rq->throttle_count))
3691 return cfs_rq->throttled_clock_task;
3692
78becc27 3693 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3694}
3695
85dac906
PT
3696/* returns 0 on failure to allocate runtime */
3697static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3698{
3699 struct task_group *tg = cfs_rq->tg;
3700 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3701 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3702
3703 /* note: this is a positive sum as runtime_remaining <= 0 */
3704 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3705
3706 raw_spin_lock(&cfs_b->lock);
3707 if (cfs_b->quota == RUNTIME_INF)
3708 amount = min_amount;
58088ad0 3709 else {
77a4d1a1 3710 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3711
3712 if (cfs_b->runtime > 0) {
3713 amount = min(cfs_b->runtime, min_amount);
3714 cfs_b->runtime -= amount;
3715 cfs_b->idle = 0;
3716 }
ec12cb7f 3717 }
a9cf55b2 3718 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3719 raw_spin_unlock(&cfs_b->lock);
3720
3721 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3722 /*
3723 * we may have advanced our local expiration to account for allowed
3724 * spread between our sched_clock and the one on which runtime was
3725 * issued.
3726 */
3727 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3728 cfs_rq->runtime_expires = expires;
85dac906
PT
3729
3730 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3731}
3732
a9cf55b2
PT
3733/*
3734 * Note: This depends on the synchronization provided by sched_clock and the
3735 * fact that rq->clock snapshots this value.
3736 */
3737static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3738{
a9cf55b2 3739 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3740
3741 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3742 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3743 return;
3744
a9cf55b2
PT
3745 if (cfs_rq->runtime_remaining < 0)
3746 return;
3747
3748 /*
3749 * If the local deadline has passed we have to consider the
3750 * possibility that our sched_clock is 'fast' and the global deadline
3751 * has not truly expired.
3752 *
3753 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3754 * whether the global deadline has advanced. It is valid to compare
3755 * cfs_b->runtime_expires without any locks since we only care about
3756 * exact equality, so a partial write will still work.
a9cf55b2
PT
3757 */
3758
51f2176d 3759 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3760 /* extend local deadline, drift is bounded above by 2 ticks */
3761 cfs_rq->runtime_expires += TICK_NSEC;
3762 } else {
3763 /* global deadline is ahead, expiration has passed */
3764 cfs_rq->runtime_remaining = 0;
3765 }
3766}
3767
9dbdb155 3768static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3769{
3770 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3771 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3772 expire_cfs_rq_runtime(cfs_rq);
3773
3774 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3775 return;
3776
85dac906
PT
3777 /*
3778 * if we're unable to extend our runtime we resched so that the active
3779 * hierarchy can be throttled
3780 */
3781 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3782 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3783}
3784
6c16a6dc 3785static __always_inline
9dbdb155 3786void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3787{
56f570e5 3788 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3789 return;
3790
3791 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3792}
3793
85dac906
PT
3794static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3795{
56f570e5 3796 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3797}
3798
64660c86
PT
3799/* check whether cfs_rq, or any parent, is throttled */
3800static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3801{
56f570e5 3802 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3803}
3804
3805/*
3806 * Ensure that neither of the group entities corresponding to src_cpu or
3807 * dest_cpu are members of a throttled hierarchy when performing group
3808 * load-balance operations.
3809 */
3810static inline int throttled_lb_pair(struct task_group *tg,
3811 int src_cpu, int dest_cpu)
3812{
3813 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3814
3815 src_cfs_rq = tg->cfs_rq[src_cpu];
3816 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3817
3818 return throttled_hierarchy(src_cfs_rq) ||
3819 throttled_hierarchy(dest_cfs_rq);
3820}
3821
3822/* updated child weight may affect parent so we have to do this bottom up */
3823static int tg_unthrottle_up(struct task_group *tg, void *data)
3824{
3825 struct rq *rq = data;
3826 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3827
3828 cfs_rq->throttle_count--;
3829#ifdef CONFIG_SMP
3830 if (!cfs_rq->throttle_count) {
f1b17280 3831 /* adjust cfs_rq_clock_task() */
78becc27 3832 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3833 cfs_rq->throttled_clock_task;
64660c86
PT
3834 }
3835#endif
3836
3837 return 0;
3838}
3839
3840static int tg_throttle_down(struct task_group *tg, void *data)
3841{
3842 struct rq *rq = data;
3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3844
82958366
PT
3845 /* group is entering throttled state, stop time */
3846 if (!cfs_rq->throttle_count)
78becc27 3847 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3848 cfs_rq->throttle_count++;
3849
3850 return 0;
3851}
3852
d3d9dc33 3853static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3854{
3855 struct rq *rq = rq_of(cfs_rq);
3856 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3857 struct sched_entity *se;
3858 long task_delta, dequeue = 1;
77a4d1a1 3859 bool empty;
85dac906
PT
3860
3861 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3862
f1b17280 3863 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3864 rcu_read_lock();
3865 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3866 rcu_read_unlock();
85dac906
PT
3867
3868 task_delta = cfs_rq->h_nr_running;
3869 for_each_sched_entity(se) {
3870 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3871 /* throttled entity or throttle-on-deactivate */
3872 if (!se->on_rq)
3873 break;
3874
3875 if (dequeue)
3876 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3877 qcfs_rq->h_nr_running -= task_delta;
3878
3879 if (qcfs_rq->load.weight)
3880 dequeue = 0;
3881 }
3882
3883 if (!se)
72465447 3884 sub_nr_running(rq, task_delta);
85dac906
PT
3885
3886 cfs_rq->throttled = 1;
78becc27 3887 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3888 raw_spin_lock(&cfs_b->lock);
d49db342 3889 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3890
c06f04c7
BS
3891 /*
3892 * Add to the _head_ of the list, so that an already-started
3893 * distribute_cfs_runtime will not see us
3894 */
3895 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3896
3897 /*
3898 * If we're the first throttled task, make sure the bandwidth
3899 * timer is running.
3900 */
3901 if (empty)
3902 start_cfs_bandwidth(cfs_b);
3903
85dac906
PT
3904 raw_spin_unlock(&cfs_b->lock);
3905}
3906
029632fb 3907void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3908{
3909 struct rq *rq = rq_of(cfs_rq);
3910 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3911 struct sched_entity *se;
3912 int enqueue = 1;
3913 long task_delta;
3914
22b958d8 3915 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3916
3917 cfs_rq->throttled = 0;
1a55af2e
FW
3918
3919 update_rq_clock(rq);
3920
671fd9da 3921 raw_spin_lock(&cfs_b->lock);
78becc27 3922 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3923 list_del_rcu(&cfs_rq->throttled_list);
3924 raw_spin_unlock(&cfs_b->lock);
3925
64660c86
PT
3926 /* update hierarchical throttle state */
3927 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3928
671fd9da
PT
3929 if (!cfs_rq->load.weight)
3930 return;
3931
3932 task_delta = cfs_rq->h_nr_running;
3933 for_each_sched_entity(se) {
3934 if (se->on_rq)
3935 enqueue = 0;
3936
3937 cfs_rq = cfs_rq_of(se);
3938 if (enqueue)
3939 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3940 cfs_rq->h_nr_running += task_delta;
3941
3942 if (cfs_rq_throttled(cfs_rq))
3943 break;
3944 }
3945
3946 if (!se)
72465447 3947 add_nr_running(rq, task_delta);
671fd9da
PT
3948
3949 /* determine whether we need to wake up potentially idle cpu */
3950 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3951 resched_curr(rq);
671fd9da
PT
3952}
3953
3954static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3955 u64 remaining, u64 expires)
3956{
3957 struct cfs_rq *cfs_rq;
c06f04c7
BS
3958 u64 runtime;
3959 u64 starting_runtime = remaining;
671fd9da
PT
3960
3961 rcu_read_lock();
3962 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3963 throttled_list) {
3964 struct rq *rq = rq_of(cfs_rq);
3965
3966 raw_spin_lock(&rq->lock);
3967 if (!cfs_rq_throttled(cfs_rq))
3968 goto next;
3969
3970 runtime = -cfs_rq->runtime_remaining + 1;
3971 if (runtime > remaining)
3972 runtime = remaining;
3973 remaining -= runtime;
3974
3975 cfs_rq->runtime_remaining += runtime;
3976 cfs_rq->runtime_expires = expires;
3977
3978 /* we check whether we're throttled above */
3979 if (cfs_rq->runtime_remaining > 0)
3980 unthrottle_cfs_rq(cfs_rq);
3981
3982next:
3983 raw_spin_unlock(&rq->lock);
3984
3985 if (!remaining)
3986 break;
3987 }
3988 rcu_read_unlock();
3989
c06f04c7 3990 return starting_runtime - remaining;
671fd9da
PT
3991}
3992
58088ad0
PT
3993/*
3994 * Responsible for refilling a task_group's bandwidth and unthrottling its
3995 * cfs_rqs as appropriate. If there has been no activity within the last
3996 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3997 * used to track this state.
3998 */
3999static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4000{
671fd9da 4001 u64 runtime, runtime_expires;
51f2176d 4002 int throttled;
58088ad0 4003
58088ad0
PT
4004 /* no need to continue the timer with no bandwidth constraint */
4005 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4006 goto out_deactivate;
58088ad0 4007
671fd9da 4008 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4009 cfs_b->nr_periods += overrun;
671fd9da 4010
51f2176d
BS
4011 /*
4012 * idle depends on !throttled (for the case of a large deficit), and if
4013 * we're going inactive then everything else can be deferred
4014 */
4015 if (cfs_b->idle && !throttled)
4016 goto out_deactivate;
a9cf55b2
PT
4017
4018 __refill_cfs_bandwidth_runtime(cfs_b);
4019
671fd9da
PT
4020 if (!throttled) {
4021 /* mark as potentially idle for the upcoming period */
4022 cfs_b->idle = 1;
51f2176d 4023 return 0;
671fd9da
PT
4024 }
4025
e8da1b18
NR
4026 /* account preceding periods in which throttling occurred */
4027 cfs_b->nr_throttled += overrun;
4028
671fd9da 4029 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4030
4031 /*
c06f04c7
BS
4032 * This check is repeated as we are holding onto the new bandwidth while
4033 * we unthrottle. This can potentially race with an unthrottled group
4034 * trying to acquire new bandwidth from the global pool. This can result
4035 * in us over-using our runtime if it is all used during this loop, but
4036 * only by limited amounts in that extreme case.
671fd9da 4037 */
c06f04c7
BS
4038 while (throttled && cfs_b->runtime > 0) {
4039 runtime = cfs_b->runtime;
671fd9da
PT
4040 raw_spin_unlock(&cfs_b->lock);
4041 /* we can't nest cfs_b->lock while distributing bandwidth */
4042 runtime = distribute_cfs_runtime(cfs_b, runtime,
4043 runtime_expires);
4044 raw_spin_lock(&cfs_b->lock);
4045
4046 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4047
4048 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4049 }
58088ad0 4050
671fd9da
PT
4051 /*
4052 * While we are ensured activity in the period following an
4053 * unthrottle, this also covers the case in which the new bandwidth is
4054 * insufficient to cover the existing bandwidth deficit. (Forcing the
4055 * timer to remain active while there are any throttled entities.)
4056 */
4057 cfs_b->idle = 0;
58088ad0 4058
51f2176d
BS
4059 return 0;
4060
4061out_deactivate:
51f2176d 4062 return 1;
58088ad0 4063}
d3d9dc33 4064
d8b4986d
PT
4065/* a cfs_rq won't donate quota below this amount */
4066static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4067/* minimum remaining period time to redistribute slack quota */
4068static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4069/* how long we wait to gather additional slack before distributing */
4070static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4071
db06e78c
BS
4072/*
4073 * Are we near the end of the current quota period?
4074 *
4075 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4076 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4077 * migrate_hrtimers, base is never cleared, so we are fine.
4078 */
d8b4986d
PT
4079static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4080{
4081 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4082 u64 remaining;
4083
4084 /* if the call-back is running a quota refresh is already occurring */
4085 if (hrtimer_callback_running(refresh_timer))
4086 return 1;
4087
4088 /* is a quota refresh about to occur? */
4089 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4090 if (remaining < min_expire)
4091 return 1;
4092
4093 return 0;
4094}
4095
4096static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4097{
4098 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4099
4100 /* if there's a quota refresh soon don't bother with slack */
4101 if (runtime_refresh_within(cfs_b, min_left))
4102 return;
4103
4cfafd30
PZ
4104 hrtimer_start(&cfs_b->slack_timer,
4105 ns_to_ktime(cfs_bandwidth_slack_period),
4106 HRTIMER_MODE_REL);
d8b4986d
PT
4107}
4108
4109/* we know any runtime found here is valid as update_curr() precedes return */
4110static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4111{
4112 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4113 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4114
4115 if (slack_runtime <= 0)
4116 return;
4117
4118 raw_spin_lock(&cfs_b->lock);
4119 if (cfs_b->quota != RUNTIME_INF &&
4120 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4121 cfs_b->runtime += slack_runtime;
4122
4123 /* we are under rq->lock, defer unthrottling using a timer */
4124 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4125 !list_empty(&cfs_b->throttled_cfs_rq))
4126 start_cfs_slack_bandwidth(cfs_b);
4127 }
4128 raw_spin_unlock(&cfs_b->lock);
4129
4130 /* even if it's not valid for return we don't want to try again */
4131 cfs_rq->runtime_remaining -= slack_runtime;
4132}
4133
4134static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4135{
56f570e5
PT
4136 if (!cfs_bandwidth_used())
4137 return;
4138
fccfdc6f 4139 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4140 return;
4141
4142 __return_cfs_rq_runtime(cfs_rq);
4143}
4144
4145/*
4146 * This is done with a timer (instead of inline with bandwidth return) since
4147 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4148 */
4149static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4150{
4151 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4152 u64 expires;
4153
4154 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4155 raw_spin_lock(&cfs_b->lock);
4156 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4157 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4158 return;
db06e78c 4159 }
d8b4986d 4160
c06f04c7 4161 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4162 runtime = cfs_b->runtime;
c06f04c7 4163
d8b4986d
PT
4164 expires = cfs_b->runtime_expires;
4165 raw_spin_unlock(&cfs_b->lock);
4166
4167 if (!runtime)
4168 return;
4169
4170 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4171
4172 raw_spin_lock(&cfs_b->lock);
4173 if (expires == cfs_b->runtime_expires)
c06f04c7 4174 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4175 raw_spin_unlock(&cfs_b->lock);
4176}
4177
d3d9dc33
PT
4178/*
4179 * When a group wakes up we want to make sure that its quota is not already
4180 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4181 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4182 */
4183static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4184{
56f570e5
PT
4185 if (!cfs_bandwidth_used())
4186 return;
4187
d3d9dc33
PT
4188 /* an active group must be handled by the update_curr()->put() path */
4189 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4190 return;
4191
4192 /* ensure the group is not already throttled */
4193 if (cfs_rq_throttled(cfs_rq))
4194 return;
4195
4196 /* update runtime allocation */
4197 account_cfs_rq_runtime(cfs_rq, 0);
4198 if (cfs_rq->runtime_remaining <= 0)
4199 throttle_cfs_rq(cfs_rq);
4200}
4201
4202/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4203static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4204{
56f570e5 4205 if (!cfs_bandwidth_used())
678d5718 4206 return false;
56f570e5 4207
d3d9dc33 4208 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4209 return false;
d3d9dc33
PT
4210
4211 /*
4212 * it's possible for a throttled entity to be forced into a running
4213 * state (e.g. set_curr_task), in this case we're finished.
4214 */
4215 if (cfs_rq_throttled(cfs_rq))
678d5718 4216 return true;
d3d9dc33
PT
4217
4218 throttle_cfs_rq(cfs_rq);
678d5718 4219 return true;
d3d9dc33 4220}
029632fb 4221
029632fb
PZ
4222static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4223{
4224 struct cfs_bandwidth *cfs_b =
4225 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4226
029632fb
PZ
4227 do_sched_cfs_slack_timer(cfs_b);
4228
4229 return HRTIMER_NORESTART;
4230}
4231
4232static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4233{
4234 struct cfs_bandwidth *cfs_b =
4235 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4236 int overrun;
4237 int idle = 0;
4238
51f2176d 4239 raw_spin_lock(&cfs_b->lock);
029632fb 4240 for (;;) {
77a4d1a1 4241 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4242 if (!overrun)
4243 break;
4244
4245 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4246 }
4cfafd30
PZ
4247 if (idle)
4248 cfs_b->period_active = 0;
51f2176d 4249 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4250
4251 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4252}
4253
4254void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4255{
4256 raw_spin_lock_init(&cfs_b->lock);
4257 cfs_b->runtime = 0;
4258 cfs_b->quota = RUNTIME_INF;
4259 cfs_b->period = ns_to_ktime(default_cfs_period());
4260
4261 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4262 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4263 cfs_b->period_timer.function = sched_cfs_period_timer;
4264 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4265 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4266}
4267
4268static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4269{
4270 cfs_rq->runtime_enabled = 0;
4271 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4272}
4273
77a4d1a1 4274void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4275{
4cfafd30 4276 lockdep_assert_held(&cfs_b->lock);
029632fb 4277
4cfafd30
PZ
4278 if (!cfs_b->period_active) {
4279 cfs_b->period_active = 1;
4280 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4281 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4282 }
029632fb
PZ
4283}
4284
4285static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4286{
7f1a169b
TH
4287 /* init_cfs_bandwidth() was not called */
4288 if (!cfs_b->throttled_cfs_rq.next)
4289 return;
4290
029632fb
PZ
4291 hrtimer_cancel(&cfs_b->period_timer);
4292 hrtimer_cancel(&cfs_b->slack_timer);
4293}
4294
0e59bdae
KT
4295static void __maybe_unused update_runtime_enabled(struct rq *rq)
4296{
4297 struct cfs_rq *cfs_rq;
4298
4299 for_each_leaf_cfs_rq(rq, cfs_rq) {
4300 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4301
4302 raw_spin_lock(&cfs_b->lock);
4303 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4304 raw_spin_unlock(&cfs_b->lock);
4305 }
4306}
4307
38dc3348 4308static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4309{
4310 struct cfs_rq *cfs_rq;
4311
4312 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4313 if (!cfs_rq->runtime_enabled)
4314 continue;
4315
4316 /*
4317 * clock_task is not advancing so we just need to make sure
4318 * there's some valid quota amount
4319 */
51f2176d 4320 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4321 /*
4322 * Offline rq is schedulable till cpu is completely disabled
4323 * in take_cpu_down(), so we prevent new cfs throttling here.
4324 */
4325 cfs_rq->runtime_enabled = 0;
4326
029632fb
PZ
4327 if (cfs_rq_throttled(cfs_rq))
4328 unthrottle_cfs_rq(cfs_rq);
4329 }
4330}
4331
4332#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4333static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4334{
78becc27 4335 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4336}
4337
9dbdb155 4338static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4339static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4340static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4341static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4342
4343static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4344{
4345 return 0;
4346}
64660c86
PT
4347
4348static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4349{
4350 return 0;
4351}
4352
4353static inline int throttled_lb_pair(struct task_group *tg,
4354 int src_cpu, int dest_cpu)
4355{
4356 return 0;
4357}
029632fb
PZ
4358
4359void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4360
4361#ifdef CONFIG_FAIR_GROUP_SCHED
4362static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4363#endif
4364
029632fb
PZ
4365static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4366{
4367 return NULL;
4368}
4369static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4370static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4371static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4372
4373#endif /* CONFIG_CFS_BANDWIDTH */
4374
bf0f6f24
IM
4375/**************************************************
4376 * CFS operations on tasks:
4377 */
4378
8f4d37ec
PZ
4379#ifdef CONFIG_SCHED_HRTICK
4380static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4381{
8f4d37ec
PZ
4382 struct sched_entity *se = &p->se;
4383 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4384
4385 WARN_ON(task_rq(p) != rq);
4386
b39e66ea 4387 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4388 u64 slice = sched_slice(cfs_rq, se);
4389 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4390 s64 delta = slice - ran;
4391
4392 if (delta < 0) {
4393 if (rq->curr == p)
8875125e 4394 resched_curr(rq);
8f4d37ec
PZ
4395 return;
4396 }
31656519 4397 hrtick_start(rq, delta);
8f4d37ec
PZ
4398 }
4399}
a4c2f00f
PZ
4400
4401/*
4402 * called from enqueue/dequeue and updates the hrtick when the
4403 * current task is from our class and nr_running is low enough
4404 * to matter.
4405 */
4406static void hrtick_update(struct rq *rq)
4407{
4408 struct task_struct *curr = rq->curr;
4409
b39e66ea 4410 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4411 return;
4412
4413 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4414 hrtick_start_fair(rq, curr);
4415}
55e12e5e 4416#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4417static inline void
4418hrtick_start_fair(struct rq *rq, struct task_struct *p)
4419{
4420}
a4c2f00f
PZ
4421
4422static inline void hrtick_update(struct rq *rq)
4423{
4424}
8f4d37ec
PZ
4425#endif
4426
bf0f6f24
IM
4427/*
4428 * The enqueue_task method is called before nr_running is
4429 * increased. Here we update the fair scheduling stats and
4430 * then put the task into the rbtree:
4431 */
ea87bb78 4432static void
371fd7e7 4433enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4434{
4435 struct cfs_rq *cfs_rq;
62fb1851 4436 struct sched_entity *se = &p->se;
bf0f6f24
IM
4437
4438 for_each_sched_entity(se) {
62fb1851 4439 if (se->on_rq)
bf0f6f24
IM
4440 break;
4441 cfs_rq = cfs_rq_of(se);
88ec22d3 4442 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4443
4444 /*
4445 * end evaluation on encountering a throttled cfs_rq
4446 *
4447 * note: in the case of encountering a throttled cfs_rq we will
4448 * post the final h_nr_running increment below.
4449 */
4450 if (cfs_rq_throttled(cfs_rq))
4451 break;
953bfcd1 4452 cfs_rq->h_nr_running++;
85dac906 4453
88ec22d3 4454 flags = ENQUEUE_WAKEUP;
bf0f6f24 4455 }
8f4d37ec 4456
2069dd75 4457 for_each_sched_entity(se) {
0f317143 4458 cfs_rq = cfs_rq_of(se);
953bfcd1 4459 cfs_rq->h_nr_running++;
2069dd75 4460
85dac906
PT
4461 if (cfs_rq_throttled(cfs_rq))
4462 break;
4463
9d89c257 4464 update_load_avg(se, 1);
17bc14b7 4465 update_cfs_shares(cfs_rq);
2069dd75
PZ
4466 }
4467
cd126afe 4468 if (!se)
72465447 4469 add_nr_running(rq, 1);
cd126afe 4470
a4c2f00f 4471 hrtick_update(rq);
bf0f6f24
IM
4472}
4473
2f36825b
VP
4474static void set_next_buddy(struct sched_entity *se);
4475
bf0f6f24
IM
4476/*
4477 * The dequeue_task method is called before nr_running is
4478 * decreased. We remove the task from the rbtree and
4479 * update the fair scheduling stats:
4480 */
371fd7e7 4481static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4482{
4483 struct cfs_rq *cfs_rq;
62fb1851 4484 struct sched_entity *se = &p->se;
2f36825b 4485 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4486
4487 for_each_sched_entity(se) {
4488 cfs_rq = cfs_rq_of(se);
371fd7e7 4489 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4490
4491 /*
4492 * end evaluation on encountering a throttled cfs_rq
4493 *
4494 * note: in the case of encountering a throttled cfs_rq we will
4495 * post the final h_nr_running decrement below.
4496 */
4497 if (cfs_rq_throttled(cfs_rq))
4498 break;
953bfcd1 4499 cfs_rq->h_nr_running--;
2069dd75 4500
bf0f6f24 4501 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4502 if (cfs_rq->load.weight) {
4503 /*
4504 * Bias pick_next to pick a task from this cfs_rq, as
4505 * p is sleeping when it is within its sched_slice.
4506 */
4507 if (task_sleep && parent_entity(se))
4508 set_next_buddy(parent_entity(se));
9598c82d
PT
4509
4510 /* avoid re-evaluating load for this entity */
4511 se = parent_entity(se);
bf0f6f24 4512 break;
2f36825b 4513 }
371fd7e7 4514 flags |= DEQUEUE_SLEEP;
bf0f6f24 4515 }
8f4d37ec 4516
2069dd75 4517 for_each_sched_entity(se) {
0f317143 4518 cfs_rq = cfs_rq_of(se);
953bfcd1 4519 cfs_rq->h_nr_running--;
2069dd75 4520
85dac906
PT
4521 if (cfs_rq_throttled(cfs_rq))
4522 break;
4523
9d89c257 4524 update_load_avg(se, 1);
17bc14b7 4525 update_cfs_shares(cfs_rq);
2069dd75
PZ
4526 }
4527
cd126afe 4528 if (!se)
72465447 4529 sub_nr_running(rq, 1);
cd126afe 4530
a4c2f00f 4531 hrtick_update(rq);
bf0f6f24
IM
4532}
4533
e7693a36 4534#ifdef CONFIG_SMP
9fd81dd5 4535#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4536/*
4537 * per rq 'load' arrray crap; XXX kill this.
4538 */
4539
4540/*
d937cdc5 4541 * The exact cpuload calculated at every tick would be:
3289bdb4 4542 *
d937cdc5
PZ
4543 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4544 *
4545 * If a cpu misses updates for n ticks (as it was idle) and update gets
4546 * called on the n+1-th tick when cpu may be busy, then we have:
4547 *
4548 * load_n = (1 - 1/2^i)^n * load_0
4549 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4550 *
4551 * decay_load_missed() below does efficient calculation of
3289bdb4 4552 *
d937cdc5
PZ
4553 * load' = (1 - 1/2^i)^n * load
4554 *
4555 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4556 * This allows us to precompute the above in said factors, thereby allowing the
4557 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4558 * fixed_power_int())
3289bdb4 4559 *
d937cdc5 4560 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4561 */
4562#define DEGRADE_SHIFT 7
d937cdc5
PZ
4563
4564static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4565static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4566 { 0, 0, 0, 0, 0, 0, 0, 0 },
4567 { 64, 32, 8, 0, 0, 0, 0, 0 },
4568 { 96, 72, 40, 12, 1, 0, 0, 0 },
4569 { 112, 98, 75, 43, 15, 1, 0, 0 },
4570 { 120, 112, 98, 76, 45, 16, 2, 0 }
4571};
3289bdb4
PZ
4572
4573/*
4574 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4575 * would be when CPU is idle and so we just decay the old load without
4576 * adding any new load.
4577 */
4578static unsigned long
4579decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4580{
4581 int j = 0;
4582
4583 if (!missed_updates)
4584 return load;
4585
4586 if (missed_updates >= degrade_zero_ticks[idx])
4587 return 0;
4588
4589 if (idx == 1)
4590 return load >> missed_updates;
4591
4592 while (missed_updates) {
4593 if (missed_updates % 2)
4594 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4595
4596 missed_updates >>= 1;
4597 j++;
4598 }
4599 return load;
4600}
9fd81dd5 4601#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4602
59543275 4603/**
cee1afce 4604 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4605 * @this_rq: The rq to update statistics for
4606 * @this_load: The current load
4607 * @pending_updates: The number of missed updates
59543275 4608 *
3289bdb4 4609 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4610 * scheduler tick (TICK_NSEC).
4611 *
4612 * This function computes a decaying average:
4613 *
4614 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4615 *
4616 * Because of NOHZ it might not get called on every tick which gives need for
4617 * the @pending_updates argument.
4618 *
4619 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4620 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4621 * = A * (A * load[i]_n-2 + B) + B
4622 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4623 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4624 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4625 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4626 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4627 *
4628 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4629 * any change in load would have resulted in the tick being turned back on.
4630 *
4631 * For regular NOHZ, this reduces to:
4632 *
4633 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4634 *
4635 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4636 * term.
3289bdb4 4637 */
1f41906a
FW
4638static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4639 unsigned long pending_updates)
3289bdb4 4640{
9fd81dd5 4641 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4642 int i, scale;
4643
4644 this_rq->nr_load_updates++;
4645
4646 /* Update our load: */
4647 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4648 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4649 unsigned long old_load, new_load;
4650
4651 /* scale is effectively 1 << i now, and >> i divides by scale */
4652
7400d3bb 4653 old_load = this_rq->cpu_load[i];
9fd81dd5 4654#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4655 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4656 if (tickless_load) {
4657 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4658 /*
4659 * old_load can never be a negative value because a
4660 * decayed tickless_load cannot be greater than the
4661 * original tickless_load.
4662 */
4663 old_load += tickless_load;
4664 }
9fd81dd5 4665#endif
3289bdb4
PZ
4666 new_load = this_load;
4667 /*
4668 * Round up the averaging division if load is increasing. This
4669 * prevents us from getting stuck on 9 if the load is 10, for
4670 * example.
4671 */
4672 if (new_load > old_load)
4673 new_load += scale - 1;
4674
4675 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4676 }
4677
4678 sched_avg_update(this_rq);
4679}
4680
7ea241af
YD
4681/* Used instead of source_load when we know the type == 0 */
4682static unsigned long weighted_cpuload(const int cpu)
4683{
4684 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4685}
4686
3289bdb4 4687#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4688/*
4689 * There is no sane way to deal with nohz on smp when using jiffies because the
4690 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4691 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4692 *
4693 * Therefore we need to avoid the delta approach from the regular tick when
4694 * possible since that would seriously skew the load calculation. This is why we
4695 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4696 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4697 * loop exit, nohz_idle_balance, nohz full exit...)
4698 *
4699 * This means we might still be one tick off for nohz periods.
4700 */
4701
4702static void cpu_load_update_nohz(struct rq *this_rq,
4703 unsigned long curr_jiffies,
4704 unsigned long load)
be68a682
FW
4705{
4706 unsigned long pending_updates;
4707
4708 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4709 if (pending_updates) {
4710 this_rq->last_load_update_tick = curr_jiffies;
4711 /*
4712 * In the regular NOHZ case, we were idle, this means load 0.
4713 * In the NOHZ_FULL case, we were non-idle, we should consider
4714 * its weighted load.
4715 */
1f41906a 4716 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4717 }
4718}
4719
3289bdb4
PZ
4720/*
4721 * Called from nohz_idle_balance() to update the load ratings before doing the
4722 * idle balance.
4723 */
cee1afce 4724static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4725{
3289bdb4
PZ
4726 /*
4727 * bail if there's load or we're actually up-to-date.
4728 */
be68a682 4729 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4730 return;
4731
1f41906a 4732 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4733}
4734
4735/*
1f41906a
FW
4736 * Record CPU load on nohz entry so we know the tickless load to account
4737 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4738 * than other cpu_load[idx] but it should be fine as cpu_load readers
4739 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4740 */
1f41906a 4741void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4742{
4743 struct rq *this_rq = this_rq();
1f41906a
FW
4744
4745 /*
4746 * This is all lockless but should be fine. If weighted_cpuload changes
4747 * concurrently we'll exit nohz. And cpu_load write can race with
4748 * cpu_load_update_idle() but both updater would be writing the same.
4749 */
4750 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4751}
4752
4753/*
4754 * Account the tickless load in the end of a nohz frame.
4755 */
4756void cpu_load_update_nohz_stop(void)
4757{
316c1608 4758 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4759 struct rq *this_rq = this_rq();
4760 unsigned long load;
3289bdb4
PZ
4761
4762 if (curr_jiffies == this_rq->last_load_update_tick)
4763 return;
4764
1f41906a 4765 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4766 raw_spin_lock(&this_rq->lock);
b52fad2d 4767 update_rq_clock(this_rq);
1f41906a 4768 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4769 raw_spin_unlock(&this_rq->lock);
4770}
1f41906a
FW
4771#else /* !CONFIG_NO_HZ_COMMON */
4772static inline void cpu_load_update_nohz(struct rq *this_rq,
4773 unsigned long curr_jiffies,
4774 unsigned long load) { }
4775#endif /* CONFIG_NO_HZ_COMMON */
4776
4777static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4778{
9fd81dd5 4779#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4780 /* See the mess around cpu_load_update_nohz(). */
4781 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4782#endif
1f41906a
FW
4783 cpu_load_update(this_rq, load, 1);
4784}
3289bdb4
PZ
4785
4786/*
4787 * Called from scheduler_tick()
4788 */
cee1afce 4789void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4790{
7ea241af 4791 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4792
4793 if (tick_nohz_tick_stopped())
4794 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4795 else
4796 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4797}
4798
029632fb
PZ
4799/*
4800 * Return a low guess at the load of a migration-source cpu weighted
4801 * according to the scheduling class and "nice" value.
4802 *
4803 * We want to under-estimate the load of migration sources, to
4804 * balance conservatively.
4805 */
4806static unsigned long source_load(int cpu, int type)
4807{
4808 struct rq *rq = cpu_rq(cpu);
4809 unsigned long total = weighted_cpuload(cpu);
4810
4811 if (type == 0 || !sched_feat(LB_BIAS))
4812 return total;
4813
4814 return min(rq->cpu_load[type-1], total);
4815}
4816
4817/*
4818 * Return a high guess at the load of a migration-target cpu weighted
4819 * according to the scheduling class and "nice" value.
4820 */
4821static unsigned long target_load(int cpu, int type)
4822{
4823 struct rq *rq = cpu_rq(cpu);
4824 unsigned long total = weighted_cpuload(cpu);
4825
4826 if (type == 0 || !sched_feat(LB_BIAS))
4827 return total;
4828
4829 return max(rq->cpu_load[type-1], total);
4830}
4831
ced549fa 4832static unsigned long capacity_of(int cpu)
029632fb 4833{
ced549fa 4834 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4835}
4836
ca6d75e6
VG
4837static unsigned long capacity_orig_of(int cpu)
4838{
4839 return cpu_rq(cpu)->cpu_capacity_orig;
4840}
4841
029632fb
PZ
4842static unsigned long cpu_avg_load_per_task(int cpu)
4843{
4844 struct rq *rq = cpu_rq(cpu);
316c1608 4845 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4846 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4847
4848 if (nr_running)
b92486cb 4849 return load_avg / nr_running;
029632fb
PZ
4850
4851 return 0;
4852}
4853
bb3469ac 4854#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4855/*
4856 * effective_load() calculates the load change as seen from the root_task_group
4857 *
4858 * Adding load to a group doesn't make a group heavier, but can cause movement
4859 * of group shares between cpus. Assuming the shares were perfectly aligned one
4860 * can calculate the shift in shares.
cf5f0acf
PZ
4861 *
4862 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4863 * on this @cpu and results in a total addition (subtraction) of @wg to the
4864 * total group weight.
4865 *
4866 * Given a runqueue weight distribution (rw_i) we can compute a shares
4867 * distribution (s_i) using:
4868 *
4869 * s_i = rw_i / \Sum rw_j (1)
4870 *
4871 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4872 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4873 * shares distribution (s_i):
4874 *
4875 * rw_i = { 2, 4, 1, 0 }
4876 * s_i = { 2/7, 4/7, 1/7, 0 }
4877 *
4878 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4879 * task used to run on and the CPU the waker is running on), we need to
4880 * compute the effect of waking a task on either CPU and, in case of a sync
4881 * wakeup, compute the effect of the current task going to sleep.
4882 *
4883 * So for a change of @wl to the local @cpu with an overall group weight change
4884 * of @wl we can compute the new shares distribution (s'_i) using:
4885 *
4886 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4887 *
4888 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4889 * differences in waking a task to CPU 0. The additional task changes the
4890 * weight and shares distributions like:
4891 *
4892 * rw'_i = { 3, 4, 1, 0 }
4893 * s'_i = { 3/8, 4/8, 1/8, 0 }
4894 *
4895 * We can then compute the difference in effective weight by using:
4896 *
4897 * dw_i = S * (s'_i - s_i) (3)
4898 *
4899 * Where 'S' is the group weight as seen by its parent.
4900 *
4901 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4902 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4903 * 4/7) times the weight of the group.
f5bfb7d9 4904 */
2069dd75 4905static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4906{
4be9daaa 4907 struct sched_entity *se = tg->se[cpu];
f1d239f7 4908
9722c2da 4909 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4910 return wl;
4911
4be9daaa 4912 for_each_sched_entity(se) {
cf5f0acf 4913 long w, W;
4be9daaa 4914
977dda7c 4915 tg = se->my_q->tg;
bb3469ac 4916
cf5f0acf
PZ
4917 /*
4918 * W = @wg + \Sum rw_j
4919 */
4920 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4921
cf5f0acf
PZ
4922 /*
4923 * w = rw_i + @wl
4924 */
7ea241af 4925 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4926
cf5f0acf
PZ
4927 /*
4928 * wl = S * s'_i; see (2)
4929 */
4930 if (W > 0 && w < W)
32a8df4e 4931 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4932 else
4933 wl = tg->shares;
940959e9 4934
cf5f0acf
PZ
4935 /*
4936 * Per the above, wl is the new se->load.weight value; since
4937 * those are clipped to [MIN_SHARES, ...) do so now. See
4938 * calc_cfs_shares().
4939 */
977dda7c
PT
4940 if (wl < MIN_SHARES)
4941 wl = MIN_SHARES;
cf5f0acf
PZ
4942
4943 /*
4944 * wl = dw_i = S * (s'_i - s_i); see (3)
4945 */
9d89c257 4946 wl -= se->avg.load_avg;
cf5f0acf
PZ
4947
4948 /*
4949 * Recursively apply this logic to all parent groups to compute
4950 * the final effective load change on the root group. Since
4951 * only the @tg group gets extra weight, all parent groups can
4952 * only redistribute existing shares. @wl is the shift in shares
4953 * resulting from this level per the above.
4954 */
4be9daaa 4955 wg = 0;
4be9daaa 4956 }
bb3469ac 4957
4be9daaa 4958 return wl;
bb3469ac
PZ
4959}
4960#else
4be9daaa 4961
58d081b5 4962static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4963{
83378269 4964 return wl;
bb3469ac 4965}
4be9daaa 4966
bb3469ac
PZ
4967#endif
4968
c58d25f3
PZ
4969static void record_wakee(struct task_struct *p)
4970{
4971 /*
4972 * Only decay a single time; tasks that have less then 1 wakeup per
4973 * jiffy will not have built up many flips.
4974 */
4975 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4976 current->wakee_flips >>= 1;
4977 current->wakee_flip_decay_ts = jiffies;
4978 }
4979
4980 if (current->last_wakee != p) {
4981 current->last_wakee = p;
4982 current->wakee_flips++;
4983 }
4984}
4985
63b0e9ed
MG
4986/*
4987 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 4988 *
63b0e9ed 4989 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
4990 * at a frequency roughly N times higher than one of its wakees.
4991 *
4992 * In order to determine whether we should let the load spread vs consolidating
4993 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
4994 * partner, and a factor of lls_size higher frequency in the other.
4995 *
4996 * With both conditions met, we can be relatively sure that the relationship is
4997 * non-monogamous, with partner count exceeding socket size.
4998 *
4999 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5000 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5001 * socket size.
63b0e9ed 5002 */
62470419
MW
5003static int wake_wide(struct task_struct *p)
5004{
63b0e9ed
MG
5005 unsigned int master = current->wakee_flips;
5006 unsigned int slave = p->wakee_flips;
7d9ffa89 5007 int factor = this_cpu_read(sd_llc_size);
62470419 5008
63b0e9ed
MG
5009 if (master < slave)
5010 swap(master, slave);
5011 if (slave < factor || master < slave * factor)
5012 return 0;
5013 return 1;
62470419
MW
5014}
5015
c88d5910 5016static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5017{
e37b6a7b 5018 s64 this_load, load;
bd61c98f 5019 s64 this_eff_load, prev_eff_load;
c88d5910 5020 int idx, this_cpu, prev_cpu;
c88d5910 5021 struct task_group *tg;
83378269 5022 unsigned long weight;
b3137bc8 5023 int balanced;
098fb9db 5024
c88d5910
PZ
5025 idx = sd->wake_idx;
5026 this_cpu = smp_processor_id();
5027 prev_cpu = task_cpu(p);
5028 load = source_load(prev_cpu, idx);
5029 this_load = target_load(this_cpu, idx);
098fb9db 5030
b3137bc8
MG
5031 /*
5032 * If sync wakeup then subtract the (maximum possible)
5033 * effect of the currently running task from the load
5034 * of the current CPU:
5035 */
83378269
PZ
5036 if (sync) {
5037 tg = task_group(current);
9d89c257 5038 weight = current->se.avg.load_avg;
83378269 5039
c88d5910 5040 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5041 load += effective_load(tg, prev_cpu, 0, -weight);
5042 }
b3137bc8 5043
83378269 5044 tg = task_group(p);
9d89c257 5045 weight = p->se.avg.load_avg;
b3137bc8 5046
71a29aa7
PZ
5047 /*
5048 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5049 * due to the sync cause above having dropped this_load to 0, we'll
5050 * always have an imbalance, but there's really nothing you can do
5051 * about that, so that's good too.
71a29aa7
PZ
5052 *
5053 * Otherwise check if either cpus are near enough in load to allow this
5054 * task to be woken on this_cpu.
5055 */
bd61c98f
VG
5056 this_eff_load = 100;
5057 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5058
bd61c98f
VG
5059 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5060 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5061
bd61c98f 5062 if (this_load > 0) {
e51fd5e2
PZ
5063 this_eff_load *= this_load +
5064 effective_load(tg, this_cpu, weight, weight);
5065
e51fd5e2 5066 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5067 }
e51fd5e2 5068
bd61c98f 5069 balanced = this_eff_load <= prev_eff_load;
098fb9db 5070
41acab88 5071 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5072
05bfb65f
VG
5073 if (!balanced)
5074 return 0;
098fb9db 5075
05bfb65f
VG
5076 schedstat_inc(sd, ttwu_move_affine);
5077 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5078
5079 return 1;
098fb9db
IM
5080}
5081
aaee1203
PZ
5082/*
5083 * find_idlest_group finds and returns the least busy CPU group within the
5084 * domain.
5085 */
5086static struct sched_group *
78e7ed53 5087find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5088 int this_cpu, int sd_flag)
e7693a36 5089{
b3bd3de6 5090 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5091 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5092 int load_idx = sd->forkexec_idx;
aaee1203 5093 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5094
c44f2a02
VG
5095 if (sd_flag & SD_BALANCE_WAKE)
5096 load_idx = sd->wake_idx;
5097
aaee1203
PZ
5098 do {
5099 unsigned long load, avg_load;
5100 int local_group;
5101 int i;
e7693a36 5102
aaee1203
PZ
5103 /* Skip over this group if it has no CPUs allowed */
5104 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5105 tsk_cpus_allowed(p)))
aaee1203
PZ
5106 continue;
5107
5108 local_group = cpumask_test_cpu(this_cpu,
5109 sched_group_cpus(group));
5110
5111 /* Tally up the load of all CPUs in the group */
5112 avg_load = 0;
5113
5114 for_each_cpu(i, sched_group_cpus(group)) {
5115 /* Bias balancing toward cpus of our domain */
5116 if (local_group)
5117 load = source_load(i, load_idx);
5118 else
5119 load = target_load(i, load_idx);
5120
5121 avg_load += load;
5122 }
5123
63b2ca30 5124 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5125 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5126
5127 if (local_group) {
5128 this_load = avg_load;
aaee1203
PZ
5129 } else if (avg_load < min_load) {
5130 min_load = avg_load;
5131 idlest = group;
5132 }
5133 } while (group = group->next, group != sd->groups);
5134
5135 if (!idlest || 100*this_load < imbalance*min_load)
5136 return NULL;
5137 return idlest;
5138}
5139
5140/*
5141 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5142 */
5143static int
5144find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5145{
5146 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5147 unsigned int min_exit_latency = UINT_MAX;
5148 u64 latest_idle_timestamp = 0;
5149 int least_loaded_cpu = this_cpu;
5150 int shallowest_idle_cpu = -1;
aaee1203
PZ
5151 int i;
5152
5153 /* Traverse only the allowed CPUs */
fa17b507 5154 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5155 if (idle_cpu(i)) {
5156 struct rq *rq = cpu_rq(i);
5157 struct cpuidle_state *idle = idle_get_state(rq);
5158 if (idle && idle->exit_latency < min_exit_latency) {
5159 /*
5160 * We give priority to a CPU whose idle state
5161 * has the smallest exit latency irrespective
5162 * of any idle timestamp.
5163 */
5164 min_exit_latency = idle->exit_latency;
5165 latest_idle_timestamp = rq->idle_stamp;
5166 shallowest_idle_cpu = i;
5167 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5168 rq->idle_stamp > latest_idle_timestamp) {
5169 /*
5170 * If equal or no active idle state, then
5171 * the most recently idled CPU might have
5172 * a warmer cache.
5173 */
5174 latest_idle_timestamp = rq->idle_stamp;
5175 shallowest_idle_cpu = i;
5176 }
9f96742a 5177 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5178 load = weighted_cpuload(i);
5179 if (load < min_load || (load == min_load && i == this_cpu)) {
5180 min_load = load;
5181 least_loaded_cpu = i;
5182 }
e7693a36
GH
5183 }
5184 }
5185
83a0a96a 5186 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5187}
e7693a36 5188
a50bde51
PZ
5189/*
5190 * Try and locate an idle CPU in the sched_domain.
5191 */
99bd5e2f 5192static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5193{
99bd5e2f 5194 struct sched_domain *sd;
37407ea7 5195 struct sched_group *sg;
e0a79f52 5196 int i = task_cpu(p);
a50bde51 5197
e0a79f52
MG
5198 if (idle_cpu(target))
5199 return target;
99bd5e2f
SS
5200
5201 /*
e0a79f52 5202 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5203 */
e0a79f52
MG
5204 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5205 return i;
a50bde51
PZ
5206
5207 /*
d4335581
MF
5208 * Otherwise, iterate the domains and find an eligible idle cpu.
5209 *
5210 * A completely idle sched group at higher domains is more
5211 * desirable than an idle group at a lower level, because lower
5212 * domains have smaller groups and usually share hardware
5213 * resources which causes tasks to contend on them, e.g. x86
5214 * hyperthread siblings in the lowest domain (SMT) can contend
5215 * on the shared cpu pipeline.
5216 *
5217 * However, while we prefer idle groups at higher domains
5218 * finding an idle cpu at the lowest domain is still better than
5219 * returning 'target', which we've already established, isn't
5220 * idle.
a50bde51 5221 */
518cd623 5222 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5223 for_each_lower_domain(sd) {
37407ea7
LT
5224 sg = sd->groups;
5225 do {
5226 if (!cpumask_intersects(sched_group_cpus(sg),
5227 tsk_cpus_allowed(p)))
5228 goto next;
5229
d4335581 5230 /* Ensure the entire group is idle */
37407ea7 5231 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5232 if (i == target || !idle_cpu(i))
37407ea7
LT
5233 goto next;
5234 }
970e1789 5235
d4335581
MF
5236 /*
5237 * It doesn't matter which cpu we pick, the
5238 * whole group is idle.
5239 */
37407ea7
LT
5240 target = cpumask_first_and(sched_group_cpus(sg),
5241 tsk_cpus_allowed(p));
5242 goto done;
5243next:
5244 sg = sg->next;
5245 } while (sg != sd->groups);
5246 }
5247done:
a50bde51
PZ
5248 return target;
5249}
231678b7 5250
8bb5b00c 5251/*
9e91d61d 5252 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5253 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5254 * compare the utilization with the capacity of the CPU that is available for
5255 * CFS task (ie cpu_capacity).
231678b7
DE
5256 *
5257 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5258 * recent utilization of currently non-runnable tasks on a CPU. It represents
5259 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5260 * capacity_orig is the cpu_capacity available at the highest frequency
5261 * (arch_scale_freq_capacity()).
5262 * The utilization of a CPU converges towards a sum equal to or less than the
5263 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5264 * the running time on this CPU scaled by capacity_curr.
5265 *
5266 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5267 * higher than capacity_orig because of unfortunate rounding in
5268 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5269 * the average stabilizes with the new running time. We need to check that the
5270 * utilization stays within the range of [0..capacity_orig] and cap it if
5271 * necessary. Without utilization capping, a group could be seen as overloaded
5272 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5273 * available capacity. We allow utilization to overshoot capacity_curr (but not
5274 * capacity_orig) as it useful for predicting the capacity required after task
5275 * migrations (scheduler-driven DVFS).
8bb5b00c 5276 */
9e91d61d 5277static int cpu_util(int cpu)
8bb5b00c 5278{
9e91d61d 5279 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5280 unsigned long capacity = capacity_orig_of(cpu);
5281
231678b7 5282 return (util >= capacity) ? capacity : util;
8bb5b00c 5283}
a50bde51 5284
aaee1203 5285/*
de91b9cb
MR
5286 * select_task_rq_fair: Select target runqueue for the waking task in domains
5287 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5288 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5289 *
de91b9cb
MR
5290 * Balances load by selecting the idlest cpu in the idlest group, or under
5291 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5292 *
de91b9cb 5293 * Returns the target cpu number.
aaee1203
PZ
5294 *
5295 * preempt must be disabled.
5296 */
0017d735 5297static int
ac66f547 5298select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5299{
29cd8bae 5300 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5301 int cpu = smp_processor_id();
63b0e9ed 5302 int new_cpu = prev_cpu;
99bd5e2f 5303 int want_affine = 0;
5158f4e4 5304 int sync = wake_flags & WF_SYNC;
c88d5910 5305
c58d25f3
PZ
5306 if (sd_flag & SD_BALANCE_WAKE) {
5307 record_wakee(p);
63b0e9ed 5308 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5309 }
aaee1203 5310
dce840a0 5311 rcu_read_lock();
aaee1203 5312 for_each_domain(cpu, tmp) {
e4f42888 5313 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5314 break;
e4f42888 5315
fe3bcfe1 5316 /*
99bd5e2f
SS
5317 * If both cpu and prev_cpu are part of this domain,
5318 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5319 */
99bd5e2f
SS
5320 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5321 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5322 affine_sd = tmp;
29cd8bae 5323 break;
f03542a7 5324 }
29cd8bae 5325
f03542a7 5326 if (tmp->flags & sd_flag)
29cd8bae 5327 sd = tmp;
63b0e9ed
MG
5328 else if (!want_affine)
5329 break;
29cd8bae
PZ
5330 }
5331
63b0e9ed
MG
5332 if (affine_sd) {
5333 sd = NULL; /* Prefer wake_affine over balance flags */
5334 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5335 new_cpu = cpu;
8b911acd 5336 }
e7693a36 5337
63b0e9ed
MG
5338 if (!sd) {
5339 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5340 new_cpu = select_idle_sibling(p, new_cpu);
5341
5342 } else while (sd) {
aaee1203 5343 struct sched_group *group;
c88d5910 5344 int weight;
098fb9db 5345
0763a660 5346 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5347 sd = sd->child;
5348 continue;
5349 }
098fb9db 5350
c44f2a02 5351 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5352 if (!group) {
5353 sd = sd->child;
5354 continue;
5355 }
4ae7d5ce 5356
d7c33c49 5357 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5358 if (new_cpu == -1 || new_cpu == cpu) {
5359 /* Now try balancing at a lower domain level of cpu */
5360 sd = sd->child;
5361 continue;
e7693a36 5362 }
aaee1203
PZ
5363
5364 /* Now try balancing at a lower domain level of new_cpu */
5365 cpu = new_cpu;
669c55e9 5366 weight = sd->span_weight;
aaee1203
PZ
5367 sd = NULL;
5368 for_each_domain(cpu, tmp) {
669c55e9 5369 if (weight <= tmp->span_weight)
aaee1203 5370 break;
0763a660 5371 if (tmp->flags & sd_flag)
aaee1203
PZ
5372 sd = tmp;
5373 }
5374 /* while loop will break here if sd == NULL */
e7693a36 5375 }
dce840a0 5376 rcu_read_unlock();
e7693a36 5377
c88d5910 5378 return new_cpu;
e7693a36 5379}
0a74bef8
PT
5380
5381/*
5382 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5383 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5384 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5385 */
5a4fd036 5386static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5387{
59efa0ba
PZ
5388 /*
5389 * As blocked tasks retain absolute vruntime the migration needs to
5390 * deal with this by subtracting the old and adding the new
5391 * min_vruntime -- the latter is done by enqueue_entity() when placing
5392 * the task on the new runqueue.
5393 */
5394 if (p->state == TASK_WAKING) {
5395 struct sched_entity *se = &p->se;
5396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5397 u64 min_vruntime;
5398
5399#ifndef CONFIG_64BIT
5400 u64 min_vruntime_copy;
5401
5402 do {
5403 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5404 smp_rmb();
5405 min_vruntime = cfs_rq->min_vruntime;
5406 } while (min_vruntime != min_vruntime_copy);
5407#else
5408 min_vruntime = cfs_rq->min_vruntime;
5409#endif
5410
5411 se->vruntime -= min_vruntime;
5412 }
5413
aff3e498 5414 /*
9d89c257
YD
5415 * We are supposed to update the task to "current" time, then its up to date
5416 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5417 * what current time is, so simply throw away the out-of-date time. This
5418 * will result in the wakee task is less decayed, but giving the wakee more
5419 * load sounds not bad.
aff3e498 5420 */
9d89c257
YD
5421 remove_entity_load_avg(&p->se);
5422
5423 /* Tell new CPU we are migrated */
5424 p->se.avg.last_update_time = 0;
3944a927
BS
5425
5426 /* We have migrated, no longer consider this task hot */
9d89c257 5427 p->se.exec_start = 0;
0a74bef8 5428}
12695578
YD
5429
5430static void task_dead_fair(struct task_struct *p)
5431{
5432 remove_entity_load_avg(&p->se);
5433}
e7693a36
GH
5434#endif /* CONFIG_SMP */
5435
e52fb7c0
PZ
5436static unsigned long
5437wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5438{
5439 unsigned long gran = sysctl_sched_wakeup_granularity;
5440
5441 /*
e52fb7c0
PZ
5442 * Since its curr running now, convert the gran from real-time
5443 * to virtual-time in his units.
13814d42
MG
5444 *
5445 * By using 'se' instead of 'curr' we penalize light tasks, so
5446 * they get preempted easier. That is, if 'se' < 'curr' then
5447 * the resulting gran will be larger, therefore penalizing the
5448 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5449 * be smaller, again penalizing the lighter task.
5450 *
5451 * This is especially important for buddies when the leftmost
5452 * task is higher priority than the buddy.
0bbd3336 5453 */
f4ad9bd2 5454 return calc_delta_fair(gran, se);
0bbd3336
PZ
5455}
5456
464b7527
PZ
5457/*
5458 * Should 'se' preempt 'curr'.
5459 *
5460 * |s1
5461 * |s2
5462 * |s3
5463 * g
5464 * |<--->|c
5465 *
5466 * w(c, s1) = -1
5467 * w(c, s2) = 0
5468 * w(c, s3) = 1
5469 *
5470 */
5471static int
5472wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5473{
5474 s64 gran, vdiff = curr->vruntime - se->vruntime;
5475
5476 if (vdiff <= 0)
5477 return -1;
5478
e52fb7c0 5479 gran = wakeup_gran(curr, se);
464b7527
PZ
5480 if (vdiff > gran)
5481 return 1;
5482
5483 return 0;
5484}
5485
02479099
PZ
5486static void set_last_buddy(struct sched_entity *se)
5487{
69c80f3e
VP
5488 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5489 return;
5490
5491 for_each_sched_entity(se)
5492 cfs_rq_of(se)->last = se;
02479099
PZ
5493}
5494
5495static void set_next_buddy(struct sched_entity *se)
5496{
69c80f3e
VP
5497 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5498 return;
5499
5500 for_each_sched_entity(se)
5501 cfs_rq_of(se)->next = se;
02479099
PZ
5502}
5503
ac53db59
RR
5504static void set_skip_buddy(struct sched_entity *se)
5505{
69c80f3e
VP
5506 for_each_sched_entity(se)
5507 cfs_rq_of(se)->skip = se;
ac53db59
RR
5508}
5509
bf0f6f24
IM
5510/*
5511 * Preempt the current task with a newly woken task if needed:
5512 */
5a9b86f6 5513static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5514{
5515 struct task_struct *curr = rq->curr;
8651a86c 5516 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5517 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5518 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5519 int next_buddy_marked = 0;
bf0f6f24 5520
4ae7d5ce
IM
5521 if (unlikely(se == pse))
5522 return;
5523
5238cdd3 5524 /*
163122b7 5525 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5526 * unconditionally check_prempt_curr() after an enqueue (which may have
5527 * lead to a throttle). This both saves work and prevents false
5528 * next-buddy nomination below.
5529 */
5530 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5531 return;
5532
2f36825b 5533 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5534 set_next_buddy(pse);
2f36825b
VP
5535 next_buddy_marked = 1;
5536 }
57fdc26d 5537
aec0a514
BR
5538 /*
5539 * We can come here with TIF_NEED_RESCHED already set from new task
5540 * wake up path.
5238cdd3
PT
5541 *
5542 * Note: this also catches the edge-case of curr being in a throttled
5543 * group (e.g. via set_curr_task), since update_curr() (in the
5544 * enqueue of curr) will have resulted in resched being set. This
5545 * prevents us from potentially nominating it as a false LAST_BUDDY
5546 * below.
aec0a514
BR
5547 */
5548 if (test_tsk_need_resched(curr))
5549 return;
5550
a2f5c9ab
DH
5551 /* Idle tasks are by definition preempted by non-idle tasks. */
5552 if (unlikely(curr->policy == SCHED_IDLE) &&
5553 likely(p->policy != SCHED_IDLE))
5554 goto preempt;
5555
91c234b4 5556 /*
a2f5c9ab
DH
5557 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5558 * is driven by the tick):
91c234b4 5559 */
8ed92e51 5560 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5561 return;
bf0f6f24 5562
464b7527 5563 find_matching_se(&se, &pse);
9bbd7374 5564 update_curr(cfs_rq_of(se));
002f128b 5565 BUG_ON(!pse);
2f36825b
VP
5566 if (wakeup_preempt_entity(se, pse) == 1) {
5567 /*
5568 * Bias pick_next to pick the sched entity that is
5569 * triggering this preemption.
5570 */
5571 if (!next_buddy_marked)
5572 set_next_buddy(pse);
3a7e73a2 5573 goto preempt;
2f36825b 5574 }
464b7527 5575
3a7e73a2 5576 return;
a65ac745 5577
3a7e73a2 5578preempt:
8875125e 5579 resched_curr(rq);
3a7e73a2
PZ
5580 /*
5581 * Only set the backward buddy when the current task is still
5582 * on the rq. This can happen when a wakeup gets interleaved
5583 * with schedule on the ->pre_schedule() or idle_balance()
5584 * point, either of which can * drop the rq lock.
5585 *
5586 * Also, during early boot the idle thread is in the fair class,
5587 * for obvious reasons its a bad idea to schedule back to it.
5588 */
5589 if (unlikely(!se->on_rq || curr == rq->idle))
5590 return;
5591
5592 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5593 set_last_buddy(se);
bf0f6f24
IM
5594}
5595
606dba2e 5596static struct task_struct *
e7904a28 5597pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5598{
5599 struct cfs_rq *cfs_rq = &rq->cfs;
5600 struct sched_entity *se;
678d5718 5601 struct task_struct *p;
37e117c0 5602 int new_tasks;
678d5718 5603
6e83125c 5604again:
678d5718
PZ
5605#ifdef CONFIG_FAIR_GROUP_SCHED
5606 if (!cfs_rq->nr_running)
38033c37 5607 goto idle;
678d5718 5608
3f1d2a31 5609 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5610 goto simple;
5611
5612 /*
5613 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5614 * likely that a next task is from the same cgroup as the current.
5615 *
5616 * Therefore attempt to avoid putting and setting the entire cgroup
5617 * hierarchy, only change the part that actually changes.
5618 */
5619
5620 do {
5621 struct sched_entity *curr = cfs_rq->curr;
5622
5623 /*
5624 * Since we got here without doing put_prev_entity() we also
5625 * have to consider cfs_rq->curr. If it is still a runnable
5626 * entity, update_curr() will update its vruntime, otherwise
5627 * forget we've ever seen it.
5628 */
54d27365
BS
5629 if (curr) {
5630 if (curr->on_rq)
5631 update_curr(cfs_rq);
5632 else
5633 curr = NULL;
678d5718 5634
54d27365
BS
5635 /*
5636 * This call to check_cfs_rq_runtime() will do the
5637 * throttle and dequeue its entity in the parent(s).
5638 * Therefore the 'simple' nr_running test will indeed
5639 * be correct.
5640 */
5641 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5642 goto simple;
5643 }
678d5718
PZ
5644
5645 se = pick_next_entity(cfs_rq, curr);
5646 cfs_rq = group_cfs_rq(se);
5647 } while (cfs_rq);
5648
5649 p = task_of(se);
5650
5651 /*
5652 * Since we haven't yet done put_prev_entity and if the selected task
5653 * is a different task than we started out with, try and touch the
5654 * least amount of cfs_rqs.
5655 */
5656 if (prev != p) {
5657 struct sched_entity *pse = &prev->se;
5658
5659 while (!(cfs_rq = is_same_group(se, pse))) {
5660 int se_depth = se->depth;
5661 int pse_depth = pse->depth;
5662
5663 if (se_depth <= pse_depth) {
5664 put_prev_entity(cfs_rq_of(pse), pse);
5665 pse = parent_entity(pse);
5666 }
5667 if (se_depth >= pse_depth) {
5668 set_next_entity(cfs_rq_of(se), se);
5669 se = parent_entity(se);
5670 }
5671 }
5672
5673 put_prev_entity(cfs_rq, pse);
5674 set_next_entity(cfs_rq, se);
5675 }
5676
5677 if (hrtick_enabled(rq))
5678 hrtick_start_fair(rq, p);
5679
5680 return p;
5681simple:
5682 cfs_rq = &rq->cfs;
5683#endif
bf0f6f24 5684
36ace27e 5685 if (!cfs_rq->nr_running)
38033c37 5686 goto idle;
bf0f6f24 5687
3f1d2a31 5688 put_prev_task(rq, prev);
606dba2e 5689
bf0f6f24 5690 do {
678d5718 5691 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5692 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5693 cfs_rq = group_cfs_rq(se);
5694 } while (cfs_rq);
5695
8f4d37ec 5696 p = task_of(se);
678d5718 5697
b39e66ea
MG
5698 if (hrtick_enabled(rq))
5699 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5700
5701 return p;
38033c37
PZ
5702
5703idle:
cbce1a68
PZ
5704 /*
5705 * This is OK, because current is on_cpu, which avoids it being picked
5706 * for load-balance and preemption/IRQs are still disabled avoiding
5707 * further scheduler activity on it and we're being very careful to
5708 * re-start the picking loop.
5709 */
e7904a28 5710 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5711 new_tasks = idle_balance(rq);
e7904a28 5712 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5713 /*
5714 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5715 * possible for any higher priority task to appear. In that case we
5716 * must re-start the pick_next_entity() loop.
5717 */
e4aa358b 5718 if (new_tasks < 0)
37e117c0
PZ
5719 return RETRY_TASK;
5720
e4aa358b 5721 if (new_tasks > 0)
38033c37 5722 goto again;
38033c37
PZ
5723
5724 return NULL;
bf0f6f24
IM
5725}
5726
5727/*
5728 * Account for a descheduled task:
5729 */
31ee529c 5730static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5731{
5732 struct sched_entity *se = &prev->se;
5733 struct cfs_rq *cfs_rq;
5734
5735 for_each_sched_entity(se) {
5736 cfs_rq = cfs_rq_of(se);
ab6cde26 5737 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5738 }
5739}
5740
ac53db59
RR
5741/*
5742 * sched_yield() is very simple
5743 *
5744 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5745 */
5746static void yield_task_fair(struct rq *rq)
5747{
5748 struct task_struct *curr = rq->curr;
5749 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5750 struct sched_entity *se = &curr->se;
5751
5752 /*
5753 * Are we the only task in the tree?
5754 */
5755 if (unlikely(rq->nr_running == 1))
5756 return;
5757
5758 clear_buddies(cfs_rq, se);
5759
5760 if (curr->policy != SCHED_BATCH) {
5761 update_rq_clock(rq);
5762 /*
5763 * Update run-time statistics of the 'current'.
5764 */
5765 update_curr(cfs_rq);
916671c0
MG
5766 /*
5767 * Tell update_rq_clock() that we've just updated,
5768 * so we don't do microscopic update in schedule()
5769 * and double the fastpath cost.
5770 */
9edfbfed 5771 rq_clock_skip_update(rq, true);
ac53db59
RR
5772 }
5773
5774 set_skip_buddy(se);
5775}
5776
d95f4122
MG
5777static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5778{
5779 struct sched_entity *se = &p->se;
5780
5238cdd3
PT
5781 /* throttled hierarchies are not runnable */
5782 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5783 return false;
5784
5785 /* Tell the scheduler that we'd really like pse to run next. */
5786 set_next_buddy(se);
5787
d95f4122
MG
5788 yield_task_fair(rq);
5789
5790 return true;
5791}
5792
681f3e68 5793#ifdef CONFIG_SMP
bf0f6f24 5794/**************************************************
e9c84cb8
PZ
5795 * Fair scheduling class load-balancing methods.
5796 *
5797 * BASICS
5798 *
5799 * The purpose of load-balancing is to achieve the same basic fairness the
5800 * per-cpu scheduler provides, namely provide a proportional amount of compute
5801 * time to each task. This is expressed in the following equation:
5802 *
5803 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5804 *
5805 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5806 * W_i,0 is defined as:
5807 *
5808 * W_i,0 = \Sum_j w_i,j (2)
5809 *
5810 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5811 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5812 *
5813 * The weight average is an exponential decay average of the instantaneous
5814 * weight:
5815 *
5816 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5817 *
ced549fa 5818 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5819 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5820 * can also include other factors [XXX].
5821 *
5822 * To achieve this balance we define a measure of imbalance which follows
5823 * directly from (1):
5824 *
ced549fa 5825 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5826 *
5827 * We them move tasks around to minimize the imbalance. In the continuous
5828 * function space it is obvious this converges, in the discrete case we get
5829 * a few fun cases generally called infeasible weight scenarios.
5830 *
5831 * [XXX expand on:
5832 * - infeasible weights;
5833 * - local vs global optima in the discrete case. ]
5834 *
5835 *
5836 * SCHED DOMAINS
5837 *
5838 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5839 * for all i,j solution, we create a tree of cpus that follows the hardware
5840 * topology where each level pairs two lower groups (or better). This results
5841 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5842 * tree to only the first of the previous level and we decrease the frequency
5843 * of load-balance at each level inv. proportional to the number of cpus in
5844 * the groups.
5845 *
5846 * This yields:
5847 *
5848 * log_2 n 1 n
5849 * \Sum { --- * --- * 2^i } = O(n) (5)
5850 * i = 0 2^i 2^i
5851 * `- size of each group
5852 * | | `- number of cpus doing load-balance
5853 * | `- freq
5854 * `- sum over all levels
5855 *
5856 * Coupled with a limit on how many tasks we can migrate every balance pass,
5857 * this makes (5) the runtime complexity of the balancer.
5858 *
5859 * An important property here is that each CPU is still (indirectly) connected
5860 * to every other cpu in at most O(log n) steps:
5861 *
5862 * The adjacency matrix of the resulting graph is given by:
5863 *
5864 * log_2 n
5865 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5866 * k = 0
5867 *
5868 * And you'll find that:
5869 *
5870 * A^(log_2 n)_i,j != 0 for all i,j (7)
5871 *
5872 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5873 * The task movement gives a factor of O(m), giving a convergence complexity
5874 * of:
5875 *
5876 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5877 *
5878 *
5879 * WORK CONSERVING
5880 *
5881 * In order to avoid CPUs going idle while there's still work to do, new idle
5882 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5883 * tree itself instead of relying on other CPUs to bring it work.
5884 *
5885 * This adds some complexity to both (5) and (8) but it reduces the total idle
5886 * time.
5887 *
5888 * [XXX more?]
5889 *
5890 *
5891 * CGROUPS
5892 *
5893 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5894 *
5895 * s_k,i
5896 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5897 * S_k
5898 *
5899 * Where
5900 *
5901 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5902 *
5903 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5904 *
5905 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5906 * property.
5907 *
5908 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5909 * rewrite all of this once again.]
5910 */
bf0f6f24 5911
ed387b78
HS
5912static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5913
0ec8aa00
PZ
5914enum fbq_type { regular, remote, all };
5915
ddcdf6e7 5916#define LBF_ALL_PINNED 0x01
367456c7 5917#define LBF_NEED_BREAK 0x02
6263322c
PZ
5918#define LBF_DST_PINNED 0x04
5919#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5920
5921struct lb_env {
5922 struct sched_domain *sd;
5923
ddcdf6e7 5924 struct rq *src_rq;
85c1e7da 5925 int src_cpu;
ddcdf6e7
PZ
5926
5927 int dst_cpu;
5928 struct rq *dst_rq;
5929
88b8dac0
SV
5930 struct cpumask *dst_grpmask;
5931 int new_dst_cpu;
ddcdf6e7 5932 enum cpu_idle_type idle;
bd939f45 5933 long imbalance;
b9403130
MW
5934 /* The set of CPUs under consideration for load-balancing */
5935 struct cpumask *cpus;
5936
ddcdf6e7 5937 unsigned int flags;
367456c7
PZ
5938
5939 unsigned int loop;
5940 unsigned int loop_break;
5941 unsigned int loop_max;
0ec8aa00
PZ
5942
5943 enum fbq_type fbq_type;
163122b7 5944 struct list_head tasks;
ddcdf6e7
PZ
5945};
5946
029632fb
PZ
5947/*
5948 * Is this task likely cache-hot:
5949 */
5d5e2b1b 5950static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5951{
5952 s64 delta;
5953
e5673f28
KT
5954 lockdep_assert_held(&env->src_rq->lock);
5955
029632fb
PZ
5956 if (p->sched_class != &fair_sched_class)
5957 return 0;
5958
5959 if (unlikely(p->policy == SCHED_IDLE))
5960 return 0;
5961
5962 /*
5963 * Buddy candidates are cache hot:
5964 */
5d5e2b1b 5965 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5966 (&p->se == cfs_rq_of(&p->se)->next ||
5967 &p->se == cfs_rq_of(&p->se)->last))
5968 return 1;
5969
5970 if (sysctl_sched_migration_cost == -1)
5971 return 1;
5972 if (sysctl_sched_migration_cost == 0)
5973 return 0;
5974
5d5e2b1b 5975 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5976
5977 return delta < (s64)sysctl_sched_migration_cost;
5978}
5979
3a7053b3 5980#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5981/*
2a1ed24c
SD
5982 * Returns 1, if task migration degrades locality
5983 * Returns 0, if task migration improves locality i.e migration preferred.
5984 * Returns -1, if task migration is not affected by locality.
c1ceac62 5985 */
2a1ed24c 5986static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5987{
b1ad065e 5988 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5989 unsigned long src_faults, dst_faults;
3a7053b3
MG
5990 int src_nid, dst_nid;
5991
2a595721 5992 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5993 return -1;
5994
c3b9bc5b 5995 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5996 return -1;
7a0f3083
MG
5997
5998 src_nid = cpu_to_node(env->src_cpu);
5999 dst_nid = cpu_to_node(env->dst_cpu);
6000
83e1d2cd 6001 if (src_nid == dst_nid)
2a1ed24c 6002 return -1;
7a0f3083 6003
2a1ed24c
SD
6004 /* Migrating away from the preferred node is always bad. */
6005 if (src_nid == p->numa_preferred_nid) {
6006 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6007 return 1;
6008 else
6009 return -1;
6010 }
b1ad065e 6011
c1ceac62
RR
6012 /* Encourage migration to the preferred node. */
6013 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6014 return 0;
b1ad065e 6015
c1ceac62
RR
6016 if (numa_group) {
6017 src_faults = group_faults(p, src_nid);
6018 dst_faults = group_faults(p, dst_nid);
6019 } else {
6020 src_faults = task_faults(p, src_nid);
6021 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6022 }
6023
c1ceac62 6024 return dst_faults < src_faults;
7a0f3083
MG
6025}
6026
3a7053b3 6027#else
2a1ed24c 6028static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6029 struct lb_env *env)
6030{
2a1ed24c 6031 return -1;
7a0f3083 6032}
3a7053b3
MG
6033#endif
6034
1e3c88bd
PZ
6035/*
6036 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6037 */
6038static
8e45cb54 6039int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6040{
2a1ed24c 6041 int tsk_cache_hot;
e5673f28
KT
6042
6043 lockdep_assert_held(&env->src_rq->lock);
6044
1e3c88bd
PZ
6045 /*
6046 * We do not migrate tasks that are:
d3198084 6047 * 1) throttled_lb_pair, or
1e3c88bd 6048 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6049 * 3) running (obviously), or
6050 * 4) are cache-hot on their current CPU.
1e3c88bd 6051 */
d3198084
JK
6052 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6053 return 0;
6054
ddcdf6e7 6055 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6056 int cpu;
88b8dac0 6057
41acab88 6058 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6059
6263322c
PZ
6060 env->flags |= LBF_SOME_PINNED;
6061
88b8dac0
SV
6062 /*
6063 * Remember if this task can be migrated to any other cpu in
6064 * our sched_group. We may want to revisit it if we couldn't
6065 * meet load balance goals by pulling other tasks on src_cpu.
6066 *
6067 * Also avoid computing new_dst_cpu if we have already computed
6068 * one in current iteration.
6069 */
6263322c 6070 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6071 return 0;
6072
e02e60c1
JK
6073 /* Prevent to re-select dst_cpu via env's cpus */
6074 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6075 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6076 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6077 env->new_dst_cpu = cpu;
6078 break;
6079 }
88b8dac0 6080 }
e02e60c1 6081
1e3c88bd
PZ
6082 return 0;
6083 }
88b8dac0
SV
6084
6085 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6086 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6087
ddcdf6e7 6088 if (task_running(env->src_rq, p)) {
41acab88 6089 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6090 return 0;
6091 }
6092
6093 /*
6094 * Aggressive migration if:
3a7053b3
MG
6095 * 1) destination numa is preferred
6096 * 2) task is cache cold, or
6097 * 3) too many balance attempts have failed.
1e3c88bd 6098 */
2a1ed24c
SD
6099 tsk_cache_hot = migrate_degrades_locality(p, env);
6100 if (tsk_cache_hot == -1)
6101 tsk_cache_hot = task_hot(p, env);
3a7053b3 6102
2a1ed24c 6103 if (tsk_cache_hot <= 0 ||
7a96c231 6104 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6105 if (tsk_cache_hot == 1) {
3a7053b3
MG
6106 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6107 schedstat_inc(p, se.statistics.nr_forced_migrations);
6108 }
1e3c88bd
PZ
6109 return 1;
6110 }
6111
4e2dcb73
ZH
6112 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6113 return 0;
1e3c88bd
PZ
6114}
6115
897c395f 6116/*
163122b7
KT
6117 * detach_task() -- detach the task for the migration specified in env
6118 */
6119static void detach_task(struct task_struct *p, struct lb_env *env)
6120{
6121 lockdep_assert_held(&env->src_rq->lock);
6122
163122b7 6123 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6124 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6125 set_task_cpu(p, env->dst_cpu);
6126}
6127
897c395f 6128/*
e5673f28 6129 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6130 * part of active balancing operations within "domain".
897c395f 6131 *
e5673f28 6132 * Returns a task if successful and NULL otherwise.
897c395f 6133 */
e5673f28 6134static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6135{
6136 struct task_struct *p, *n;
897c395f 6137
e5673f28
KT
6138 lockdep_assert_held(&env->src_rq->lock);
6139
367456c7 6140 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6141 if (!can_migrate_task(p, env))
6142 continue;
897c395f 6143
163122b7 6144 detach_task(p, env);
e5673f28 6145
367456c7 6146 /*
e5673f28 6147 * Right now, this is only the second place where
163122b7 6148 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6149 * so we can safely collect stats here rather than
163122b7 6150 * inside detach_tasks().
367456c7
PZ
6151 */
6152 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6153 return p;
897c395f 6154 }
e5673f28 6155 return NULL;
897c395f
PZ
6156}
6157
eb95308e
PZ
6158static const unsigned int sched_nr_migrate_break = 32;
6159
5d6523eb 6160/*
163122b7
KT
6161 * detach_tasks() -- tries to detach up to imbalance weighted load from
6162 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6163 *
163122b7 6164 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6165 */
163122b7 6166static int detach_tasks(struct lb_env *env)
1e3c88bd 6167{
5d6523eb
PZ
6168 struct list_head *tasks = &env->src_rq->cfs_tasks;
6169 struct task_struct *p;
367456c7 6170 unsigned long load;
163122b7
KT
6171 int detached = 0;
6172
6173 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6174
bd939f45 6175 if (env->imbalance <= 0)
5d6523eb 6176 return 0;
1e3c88bd 6177
5d6523eb 6178 while (!list_empty(tasks)) {
985d3a4c
YD
6179 /*
6180 * We don't want to steal all, otherwise we may be treated likewise,
6181 * which could at worst lead to a livelock crash.
6182 */
6183 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6184 break;
6185
5d6523eb 6186 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6187
367456c7
PZ
6188 env->loop++;
6189 /* We've more or less seen every task there is, call it quits */
5d6523eb 6190 if (env->loop > env->loop_max)
367456c7 6191 break;
5d6523eb
PZ
6192
6193 /* take a breather every nr_migrate tasks */
367456c7 6194 if (env->loop > env->loop_break) {
eb95308e 6195 env->loop_break += sched_nr_migrate_break;
8e45cb54 6196 env->flags |= LBF_NEED_BREAK;
ee00e66f 6197 break;
a195f004 6198 }
1e3c88bd 6199
d3198084 6200 if (!can_migrate_task(p, env))
367456c7
PZ
6201 goto next;
6202
6203 load = task_h_load(p);
5d6523eb 6204
eb95308e 6205 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6206 goto next;
6207
bd939f45 6208 if ((load / 2) > env->imbalance)
367456c7 6209 goto next;
1e3c88bd 6210
163122b7
KT
6211 detach_task(p, env);
6212 list_add(&p->se.group_node, &env->tasks);
6213
6214 detached++;
bd939f45 6215 env->imbalance -= load;
1e3c88bd
PZ
6216
6217#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6218 /*
6219 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6220 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6221 * the critical section.
6222 */
5d6523eb 6223 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6224 break;
1e3c88bd
PZ
6225#endif
6226
ee00e66f
PZ
6227 /*
6228 * We only want to steal up to the prescribed amount of
6229 * weighted load.
6230 */
bd939f45 6231 if (env->imbalance <= 0)
ee00e66f 6232 break;
367456c7
PZ
6233
6234 continue;
6235next:
5d6523eb 6236 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6237 }
5d6523eb 6238
1e3c88bd 6239 /*
163122b7
KT
6240 * Right now, this is one of only two places we collect this stat
6241 * so we can safely collect detach_one_task() stats here rather
6242 * than inside detach_one_task().
1e3c88bd 6243 */
163122b7 6244 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6245
163122b7
KT
6246 return detached;
6247}
6248
6249/*
6250 * attach_task() -- attach the task detached by detach_task() to its new rq.
6251 */
6252static void attach_task(struct rq *rq, struct task_struct *p)
6253{
6254 lockdep_assert_held(&rq->lock);
6255
6256 BUG_ON(task_rq(p) != rq);
163122b7 6257 activate_task(rq, p, 0);
3ea94de1 6258 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6259 check_preempt_curr(rq, p, 0);
6260}
6261
6262/*
6263 * attach_one_task() -- attaches the task returned from detach_one_task() to
6264 * its new rq.
6265 */
6266static void attach_one_task(struct rq *rq, struct task_struct *p)
6267{
6268 raw_spin_lock(&rq->lock);
6269 attach_task(rq, p);
6270 raw_spin_unlock(&rq->lock);
6271}
6272
6273/*
6274 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6275 * new rq.
6276 */
6277static void attach_tasks(struct lb_env *env)
6278{
6279 struct list_head *tasks = &env->tasks;
6280 struct task_struct *p;
6281
6282 raw_spin_lock(&env->dst_rq->lock);
6283
6284 while (!list_empty(tasks)) {
6285 p = list_first_entry(tasks, struct task_struct, se.group_node);
6286 list_del_init(&p->se.group_node);
1e3c88bd 6287
163122b7
KT
6288 attach_task(env->dst_rq, p);
6289 }
6290
6291 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6292}
6293
230059de 6294#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6295static void update_blocked_averages(int cpu)
9e3081ca 6296{
9e3081ca 6297 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6298 struct cfs_rq *cfs_rq;
6299 unsigned long flags;
9e3081ca 6300
48a16753
PT
6301 raw_spin_lock_irqsave(&rq->lock, flags);
6302 update_rq_clock(rq);
9d89c257 6303
9763b67f
PZ
6304 /*
6305 * Iterates the task_group tree in a bottom up fashion, see
6306 * list_add_leaf_cfs_rq() for details.
6307 */
64660c86 6308 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6309 /* throttled entities do not contribute to load */
6310 if (throttled_hierarchy(cfs_rq))
6311 continue;
48a16753 6312
a2c6c91f 6313 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6314 update_tg_load_avg(cfs_rq, 0);
6315 }
48a16753 6316 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6317}
6318
9763b67f 6319/*
68520796 6320 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6321 * This needs to be done in a top-down fashion because the load of a child
6322 * group is a fraction of its parents load.
6323 */
68520796 6324static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6325{
68520796
VD
6326 struct rq *rq = rq_of(cfs_rq);
6327 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6328 unsigned long now = jiffies;
68520796 6329 unsigned long load;
a35b6466 6330
68520796 6331 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6332 return;
6333
68520796
VD
6334 cfs_rq->h_load_next = NULL;
6335 for_each_sched_entity(se) {
6336 cfs_rq = cfs_rq_of(se);
6337 cfs_rq->h_load_next = se;
6338 if (cfs_rq->last_h_load_update == now)
6339 break;
6340 }
a35b6466 6341
68520796 6342 if (!se) {
7ea241af 6343 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6344 cfs_rq->last_h_load_update = now;
6345 }
6346
6347 while ((se = cfs_rq->h_load_next) != NULL) {
6348 load = cfs_rq->h_load;
7ea241af
YD
6349 load = div64_ul(load * se->avg.load_avg,
6350 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6351 cfs_rq = group_cfs_rq(se);
6352 cfs_rq->h_load = load;
6353 cfs_rq->last_h_load_update = now;
6354 }
9763b67f
PZ
6355}
6356
367456c7 6357static unsigned long task_h_load(struct task_struct *p)
230059de 6358{
367456c7 6359 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6360
68520796 6361 update_cfs_rq_h_load(cfs_rq);
9d89c257 6362 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6363 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6364}
6365#else
48a16753 6366static inline void update_blocked_averages(int cpu)
9e3081ca 6367{
6c1d47c0
VG
6368 struct rq *rq = cpu_rq(cpu);
6369 struct cfs_rq *cfs_rq = &rq->cfs;
6370 unsigned long flags;
6371
6372 raw_spin_lock_irqsave(&rq->lock, flags);
6373 update_rq_clock(rq);
a2c6c91f 6374 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6375 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6376}
6377
367456c7 6378static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6379{
9d89c257 6380 return p->se.avg.load_avg;
1e3c88bd 6381}
230059de 6382#endif
1e3c88bd 6383
1e3c88bd 6384/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6385
6386enum group_type {
6387 group_other = 0,
6388 group_imbalanced,
6389 group_overloaded,
6390};
6391
1e3c88bd
PZ
6392/*
6393 * sg_lb_stats - stats of a sched_group required for load_balancing
6394 */
6395struct sg_lb_stats {
6396 unsigned long avg_load; /*Avg load across the CPUs of the group */
6397 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6398 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6399 unsigned long load_per_task;
63b2ca30 6400 unsigned long group_capacity;
9e91d61d 6401 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6402 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6403 unsigned int idle_cpus;
6404 unsigned int group_weight;
caeb178c 6405 enum group_type group_type;
ea67821b 6406 int group_no_capacity;
0ec8aa00
PZ
6407#ifdef CONFIG_NUMA_BALANCING
6408 unsigned int nr_numa_running;
6409 unsigned int nr_preferred_running;
6410#endif
1e3c88bd
PZ
6411};
6412
56cf515b
JK
6413/*
6414 * sd_lb_stats - Structure to store the statistics of a sched_domain
6415 * during load balancing.
6416 */
6417struct sd_lb_stats {
6418 struct sched_group *busiest; /* Busiest group in this sd */
6419 struct sched_group *local; /* Local group in this sd */
6420 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6421 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6422 unsigned long avg_load; /* Average load across all groups in sd */
6423
56cf515b 6424 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6425 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6426};
6427
147c5fc2
PZ
6428static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6429{
6430 /*
6431 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6432 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6433 * We must however clear busiest_stat::avg_load because
6434 * update_sd_pick_busiest() reads this before assignment.
6435 */
6436 *sds = (struct sd_lb_stats){
6437 .busiest = NULL,
6438 .local = NULL,
6439 .total_load = 0UL,
63b2ca30 6440 .total_capacity = 0UL,
147c5fc2
PZ
6441 .busiest_stat = {
6442 .avg_load = 0UL,
caeb178c
RR
6443 .sum_nr_running = 0,
6444 .group_type = group_other,
147c5fc2
PZ
6445 },
6446 };
6447}
6448
1e3c88bd
PZ
6449/**
6450 * get_sd_load_idx - Obtain the load index for a given sched domain.
6451 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6452 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6453 *
6454 * Return: The load index.
1e3c88bd
PZ
6455 */
6456static inline int get_sd_load_idx(struct sched_domain *sd,
6457 enum cpu_idle_type idle)
6458{
6459 int load_idx;
6460
6461 switch (idle) {
6462 case CPU_NOT_IDLE:
6463 load_idx = sd->busy_idx;
6464 break;
6465
6466 case CPU_NEWLY_IDLE:
6467 load_idx = sd->newidle_idx;
6468 break;
6469 default:
6470 load_idx = sd->idle_idx;
6471 break;
6472 }
6473
6474 return load_idx;
6475}
6476
ced549fa 6477static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6478{
6479 struct rq *rq = cpu_rq(cpu);
b5b4860d 6480 u64 total, used, age_stamp, avg;
cadefd3d 6481 s64 delta;
1e3c88bd 6482
b654f7de
PZ
6483 /*
6484 * Since we're reading these variables without serialization make sure
6485 * we read them once before doing sanity checks on them.
6486 */
316c1608
JL
6487 age_stamp = READ_ONCE(rq->age_stamp);
6488 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6489 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6490
cadefd3d
PZ
6491 if (unlikely(delta < 0))
6492 delta = 0;
6493
6494 total = sched_avg_period() + delta;
aa483808 6495
b5b4860d 6496 used = div_u64(avg, total);
1e3c88bd 6497
b5b4860d
VG
6498 if (likely(used < SCHED_CAPACITY_SCALE))
6499 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6500
b5b4860d 6501 return 1;
1e3c88bd
PZ
6502}
6503
ced549fa 6504static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6505{
8cd5601c 6506 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6507 struct sched_group *sdg = sd->groups;
6508
ca6d75e6 6509 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6510
ced549fa 6511 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6512 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6513
ced549fa
NP
6514 if (!capacity)
6515 capacity = 1;
1e3c88bd 6516
ced549fa
NP
6517 cpu_rq(cpu)->cpu_capacity = capacity;
6518 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6519}
6520
63b2ca30 6521void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6522{
6523 struct sched_domain *child = sd->child;
6524 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6525 unsigned long capacity;
4ec4412e
VG
6526 unsigned long interval;
6527
6528 interval = msecs_to_jiffies(sd->balance_interval);
6529 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6530 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6531
6532 if (!child) {
ced549fa 6533 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6534 return;
6535 }
6536
dc7ff76e 6537 capacity = 0;
1e3c88bd 6538
74a5ce20
PZ
6539 if (child->flags & SD_OVERLAP) {
6540 /*
6541 * SD_OVERLAP domains cannot assume that child groups
6542 * span the current group.
6543 */
6544
863bffc8 6545 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6546 struct sched_group_capacity *sgc;
9abf24d4 6547 struct rq *rq = cpu_rq(cpu);
863bffc8 6548
9abf24d4 6549 /*
63b2ca30 6550 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6551 * gets here before we've attached the domains to the
6552 * runqueues.
6553 *
ced549fa
NP
6554 * Use capacity_of(), which is set irrespective of domains
6555 * in update_cpu_capacity().
9abf24d4 6556 *
dc7ff76e 6557 * This avoids capacity from being 0 and
9abf24d4 6558 * causing divide-by-zero issues on boot.
9abf24d4
SD
6559 */
6560 if (unlikely(!rq->sd)) {
ced549fa 6561 capacity += capacity_of(cpu);
9abf24d4
SD
6562 continue;
6563 }
863bffc8 6564
63b2ca30 6565 sgc = rq->sd->groups->sgc;
63b2ca30 6566 capacity += sgc->capacity;
863bffc8 6567 }
74a5ce20
PZ
6568 } else {
6569 /*
6570 * !SD_OVERLAP domains can assume that child groups
6571 * span the current group.
6572 */
6573
6574 group = child->groups;
6575 do {
63b2ca30 6576 capacity += group->sgc->capacity;
74a5ce20
PZ
6577 group = group->next;
6578 } while (group != child->groups);
6579 }
1e3c88bd 6580
63b2ca30 6581 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6582}
6583
9d5efe05 6584/*
ea67821b
VG
6585 * Check whether the capacity of the rq has been noticeably reduced by side
6586 * activity. The imbalance_pct is used for the threshold.
6587 * Return true is the capacity is reduced
9d5efe05
SV
6588 */
6589static inline int
ea67821b 6590check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6591{
ea67821b
VG
6592 return ((rq->cpu_capacity * sd->imbalance_pct) <
6593 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6594}
6595
30ce5dab
PZ
6596/*
6597 * Group imbalance indicates (and tries to solve) the problem where balancing
6598 * groups is inadequate due to tsk_cpus_allowed() constraints.
6599 *
6600 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6601 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6602 * Something like:
6603 *
6604 * { 0 1 2 3 } { 4 5 6 7 }
6605 * * * * *
6606 *
6607 * If we were to balance group-wise we'd place two tasks in the first group and
6608 * two tasks in the second group. Clearly this is undesired as it will overload
6609 * cpu 3 and leave one of the cpus in the second group unused.
6610 *
6611 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6612 * by noticing the lower domain failed to reach balance and had difficulty
6613 * moving tasks due to affinity constraints.
30ce5dab
PZ
6614 *
6615 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6616 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6617 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6618 * to create an effective group imbalance.
6619 *
6620 * This is a somewhat tricky proposition since the next run might not find the
6621 * group imbalance and decide the groups need to be balanced again. A most
6622 * subtle and fragile situation.
6623 */
6624
6263322c 6625static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6626{
63b2ca30 6627 return group->sgc->imbalance;
30ce5dab
PZ
6628}
6629
b37d9316 6630/*
ea67821b
VG
6631 * group_has_capacity returns true if the group has spare capacity that could
6632 * be used by some tasks.
6633 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6634 * smaller than the number of CPUs or if the utilization is lower than the
6635 * available capacity for CFS tasks.
ea67821b
VG
6636 * For the latter, we use a threshold to stabilize the state, to take into
6637 * account the variance of the tasks' load and to return true if the available
6638 * capacity in meaningful for the load balancer.
6639 * As an example, an available capacity of 1% can appear but it doesn't make
6640 * any benefit for the load balance.
b37d9316 6641 */
ea67821b
VG
6642static inline bool
6643group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6644{
ea67821b
VG
6645 if (sgs->sum_nr_running < sgs->group_weight)
6646 return true;
c61037e9 6647
ea67821b 6648 if ((sgs->group_capacity * 100) >
9e91d61d 6649 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6650 return true;
b37d9316 6651
ea67821b
VG
6652 return false;
6653}
6654
6655/*
6656 * group_is_overloaded returns true if the group has more tasks than it can
6657 * handle.
6658 * group_is_overloaded is not equals to !group_has_capacity because a group
6659 * with the exact right number of tasks, has no more spare capacity but is not
6660 * overloaded so both group_has_capacity and group_is_overloaded return
6661 * false.
6662 */
6663static inline bool
6664group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6665{
6666 if (sgs->sum_nr_running <= sgs->group_weight)
6667 return false;
b37d9316 6668
ea67821b 6669 if ((sgs->group_capacity * 100) <
9e91d61d 6670 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6671 return true;
b37d9316 6672
ea67821b 6673 return false;
b37d9316
PZ
6674}
6675
79a89f92
LY
6676static inline enum
6677group_type group_classify(struct sched_group *group,
6678 struct sg_lb_stats *sgs)
caeb178c 6679{
ea67821b 6680 if (sgs->group_no_capacity)
caeb178c
RR
6681 return group_overloaded;
6682
6683 if (sg_imbalanced(group))
6684 return group_imbalanced;
6685
6686 return group_other;
6687}
6688
1e3c88bd
PZ
6689/**
6690 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6691 * @env: The load balancing environment.
1e3c88bd 6692 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6693 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6694 * @local_group: Does group contain this_cpu.
1e3c88bd 6695 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6696 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6697 */
bd939f45
PZ
6698static inline void update_sg_lb_stats(struct lb_env *env,
6699 struct sched_group *group, int load_idx,
4486edd1
TC
6700 int local_group, struct sg_lb_stats *sgs,
6701 bool *overload)
1e3c88bd 6702{
30ce5dab 6703 unsigned long load;
a426f99c 6704 int i, nr_running;
1e3c88bd 6705
b72ff13c
PZ
6706 memset(sgs, 0, sizeof(*sgs));
6707
b9403130 6708 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6709 struct rq *rq = cpu_rq(i);
6710
1e3c88bd 6711 /* Bias balancing toward cpus of our domain */
6263322c 6712 if (local_group)
04f733b4 6713 load = target_load(i, load_idx);
6263322c 6714 else
1e3c88bd 6715 load = source_load(i, load_idx);
1e3c88bd
PZ
6716
6717 sgs->group_load += load;
9e91d61d 6718 sgs->group_util += cpu_util(i);
65fdac08 6719 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6720
a426f99c
WL
6721 nr_running = rq->nr_running;
6722 if (nr_running > 1)
4486edd1
TC
6723 *overload = true;
6724
0ec8aa00
PZ
6725#ifdef CONFIG_NUMA_BALANCING
6726 sgs->nr_numa_running += rq->nr_numa_running;
6727 sgs->nr_preferred_running += rq->nr_preferred_running;
6728#endif
1e3c88bd 6729 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6730 /*
6731 * No need to call idle_cpu() if nr_running is not 0
6732 */
6733 if (!nr_running && idle_cpu(i))
aae6d3dd 6734 sgs->idle_cpus++;
1e3c88bd
PZ
6735 }
6736
63b2ca30
NP
6737 /* Adjust by relative CPU capacity of the group */
6738 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6739 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6740
dd5feea1 6741 if (sgs->sum_nr_running)
38d0f770 6742 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6743
aae6d3dd 6744 sgs->group_weight = group->group_weight;
b37d9316 6745
ea67821b 6746 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6747 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6748}
6749
532cb4c4
MN
6750/**
6751 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6752 * @env: The load balancing environment.
532cb4c4
MN
6753 * @sds: sched_domain statistics
6754 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6755 * @sgs: sched_group statistics
532cb4c4
MN
6756 *
6757 * Determine if @sg is a busier group than the previously selected
6758 * busiest group.
e69f6186
YB
6759 *
6760 * Return: %true if @sg is a busier group than the previously selected
6761 * busiest group. %false otherwise.
532cb4c4 6762 */
bd939f45 6763static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6764 struct sd_lb_stats *sds,
6765 struct sched_group *sg,
bd939f45 6766 struct sg_lb_stats *sgs)
532cb4c4 6767{
caeb178c 6768 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6769
caeb178c 6770 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6771 return true;
6772
caeb178c
RR
6773 if (sgs->group_type < busiest->group_type)
6774 return false;
6775
6776 if (sgs->avg_load <= busiest->avg_load)
6777 return false;
6778
6779 /* This is the busiest node in its class. */
6780 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6781 return true;
6782
1f621e02
SD
6783 /* No ASYM_PACKING if target cpu is already busy */
6784 if (env->idle == CPU_NOT_IDLE)
6785 return true;
532cb4c4
MN
6786 /*
6787 * ASYM_PACKING needs to move all the work to the lowest
6788 * numbered CPUs in the group, therefore mark all groups
6789 * higher than ourself as busy.
6790 */
caeb178c 6791 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6792 if (!sds->busiest)
6793 return true;
6794
1f621e02
SD
6795 /* Prefer to move from highest possible cpu's work */
6796 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6797 return true;
6798 }
6799
6800 return false;
6801}
6802
0ec8aa00
PZ
6803#ifdef CONFIG_NUMA_BALANCING
6804static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6805{
6806 if (sgs->sum_nr_running > sgs->nr_numa_running)
6807 return regular;
6808 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6809 return remote;
6810 return all;
6811}
6812
6813static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6814{
6815 if (rq->nr_running > rq->nr_numa_running)
6816 return regular;
6817 if (rq->nr_running > rq->nr_preferred_running)
6818 return remote;
6819 return all;
6820}
6821#else
6822static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6823{
6824 return all;
6825}
6826
6827static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6828{
6829 return regular;
6830}
6831#endif /* CONFIG_NUMA_BALANCING */
6832
1e3c88bd 6833/**
461819ac 6834 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6835 * @env: The load balancing environment.
1e3c88bd
PZ
6836 * @sds: variable to hold the statistics for this sched_domain.
6837 */
0ec8aa00 6838static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6839{
bd939f45
PZ
6840 struct sched_domain *child = env->sd->child;
6841 struct sched_group *sg = env->sd->groups;
56cf515b 6842 struct sg_lb_stats tmp_sgs;
1e3c88bd 6843 int load_idx, prefer_sibling = 0;
4486edd1 6844 bool overload = false;
1e3c88bd
PZ
6845
6846 if (child && child->flags & SD_PREFER_SIBLING)
6847 prefer_sibling = 1;
6848
bd939f45 6849 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6850
6851 do {
56cf515b 6852 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6853 int local_group;
6854
bd939f45 6855 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6856 if (local_group) {
6857 sds->local = sg;
6858 sgs = &sds->local_stat;
b72ff13c
PZ
6859
6860 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6861 time_after_eq(jiffies, sg->sgc->next_update))
6862 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6863 }
1e3c88bd 6864
4486edd1
TC
6865 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6866 &overload);
1e3c88bd 6867
b72ff13c
PZ
6868 if (local_group)
6869 goto next_group;
6870
1e3c88bd
PZ
6871 /*
6872 * In case the child domain prefers tasks go to siblings
ea67821b 6873 * first, lower the sg capacity so that we'll try
75dd321d
NR
6874 * and move all the excess tasks away. We lower the capacity
6875 * of a group only if the local group has the capacity to fit
ea67821b
VG
6876 * these excess tasks. The extra check prevents the case where
6877 * you always pull from the heaviest group when it is already
6878 * under-utilized (possible with a large weight task outweighs
6879 * the tasks on the system).
1e3c88bd 6880 */
b72ff13c 6881 if (prefer_sibling && sds->local &&
ea67821b
VG
6882 group_has_capacity(env, &sds->local_stat) &&
6883 (sgs->sum_nr_running > 1)) {
6884 sgs->group_no_capacity = 1;
79a89f92 6885 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6886 }
1e3c88bd 6887
b72ff13c 6888 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6889 sds->busiest = sg;
56cf515b 6890 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6891 }
6892
b72ff13c
PZ
6893next_group:
6894 /* Now, start updating sd_lb_stats */
6895 sds->total_load += sgs->group_load;
63b2ca30 6896 sds->total_capacity += sgs->group_capacity;
b72ff13c 6897
532cb4c4 6898 sg = sg->next;
bd939f45 6899 } while (sg != env->sd->groups);
0ec8aa00
PZ
6900
6901 if (env->sd->flags & SD_NUMA)
6902 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6903
6904 if (!env->sd->parent) {
6905 /* update overload indicator if we are at root domain */
6906 if (env->dst_rq->rd->overload != overload)
6907 env->dst_rq->rd->overload = overload;
6908 }
6909
532cb4c4
MN
6910}
6911
532cb4c4
MN
6912/**
6913 * check_asym_packing - Check to see if the group is packed into the
6914 * sched doman.
6915 *
6916 * This is primarily intended to used at the sibling level. Some
6917 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6918 * case of POWER7, it can move to lower SMT modes only when higher
6919 * threads are idle. When in lower SMT modes, the threads will
6920 * perform better since they share less core resources. Hence when we
6921 * have idle threads, we want them to be the higher ones.
6922 *
6923 * This packing function is run on idle threads. It checks to see if
6924 * the busiest CPU in this domain (core in the P7 case) has a higher
6925 * CPU number than the packing function is being run on. Here we are
6926 * assuming lower CPU number will be equivalent to lower a SMT thread
6927 * number.
6928 *
e69f6186 6929 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6930 * this CPU. The amount of the imbalance is returned in *imbalance.
6931 *
cd96891d 6932 * @env: The load balancing environment.
532cb4c4 6933 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6934 */
bd939f45 6935static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6936{
6937 int busiest_cpu;
6938
bd939f45 6939 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6940 return 0;
6941
1f621e02
SD
6942 if (env->idle == CPU_NOT_IDLE)
6943 return 0;
6944
532cb4c4
MN
6945 if (!sds->busiest)
6946 return 0;
6947
6948 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6949 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6950 return 0;
6951
bd939f45 6952 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6953 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6954 SCHED_CAPACITY_SCALE);
bd939f45 6955
532cb4c4 6956 return 1;
1e3c88bd
PZ
6957}
6958
6959/**
6960 * fix_small_imbalance - Calculate the minor imbalance that exists
6961 * amongst the groups of a sched_domain, during
6962 * load balancing.
cd96891d 6963 * @env: The load balancing environment.
1e3c88bd 6964 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6965 */
bd939f45
PZ
6966static inline
6967void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6968{
63b2ca30 6969 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6970 unsigned int imbn = 2;
dd5feea1 6971 unsigned long scaled_busy_load_per_task;
56cf515b 6972 struct sg_lb_stats *local, *busiest;
1e3c88bd 6973
56cf515b
JK
6974 local = &sds->local_stat;
6975 busiest = &sds->busiest_stat;
1e3c88bd 6976
56cf515b
JK
6977 if (!local->sum_nr_running)
6978 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6979 else if (busiest->load_per_task > local->load_per_task)
6980 imbn = 1;
dd5feea1 6981
56cf515b 6982 scaled_busy_load_per_task =
ca8ce3d0 6983 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6984 busiest->group_capacity;
56cf515b 6985
3029ede3
VD
6986 if (busiest->avg_load + scaled_busy_load_per_task >=
6987 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6988 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6989 return;
6990 }
6991
6992 /*
6993 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6994 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6995 * moving them.
6996 */
6997
63b2ca30 6998 capa_now += busiest->group_capacity *
56cf515b 6999 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7000 capa_now += local->group_capacity *
56cf515b 7001 min(local->load_per_task, local->avg_load);
ca8ce3d0 7002 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7003
7004 /* Amount of load we'd subtract */
a2cd4260 7005 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7006 capa_move += busiest->group_capacity *
56cf515b 7007 min(busiest->load_per_task,
a2cd4260 7008 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7009 }
1e3c88bd
PZ
7010
7011 /* Amount of load we'd add */
63b2ca30 7012 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7013 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7014 tmp = (busiest->avg_load * busiest->group_capacity) /
7015 local->group_capacity;
56cf515b 7016 } else {
ca8ce3d0 7017 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7018 local->group_capacity;
56cf515b 7019 }
63b2ca30 7020 capa_move += local->group_capacity *
3ae11c90 7021 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7022 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7023
7024 /* Move if we gain throughput */
63b2ca30 7025 if (capa_move > capa_now)
56cf515b 7026 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7027}
7028
7029/**
7030 * calculate_imbalance - Calculate the amount of imbalance present within the
7031 * groups of a given sched_domain during load balance.
bd939f45 7032 * @env: load balance environment
1e3c88bd 7033 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7034 */
bd939f45 7035static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7036{
dd5feea1 7037 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7038 struct sg_lb_stats *local, *busiest;
7039
7040 local = &sds->local_stat;
56cf515b 7041 busiest = &sds->busiest_stat;
dd5feea1 7042
caeb178c 7043 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7044 /*
7045 * In the group_imb case we cannot rely on group-wide averages
7046 * to ensure cpu-load equilibrium, look at wider averages. XXX
7047 */
56cf515b
JK
7048 busiest->load_per_task =
7049 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7050 }
7051
1e3c88bd 7052 /*
885e542c
DE
7053 * Avg load of busiest sg can be less and avg load of local sg can
7054 * be greater than avg load across all sgs of sd because avg load
7055 * factors in sg capacity and sgs with smaller group_type are
7056 * skipped when updating the busiest sg:
1e3c88bd 7057 */
b1885550
VD
7058 if (busiest->avg_load <= sds->avg_load ||
7059 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7060 env->imbalance = 0;
7061 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7062 }
7063
9a5d9ba6
PZ
7064 /*
7065 * If there aren't any idle cpus, avoid creating some.
7066 */
7067 if (busiest->group_type == group_overloaded &&
7068 local->group_type == group_overloaded) {
ea67821b 7069 load_above_capacity = busiest->sum_nr_running *
172895e6 7070 scale_load_down(NICE_0_LOAD);
ea67821b
VG
7071 if (load_above_capacity > busiest->group_capacity)
7072 load_above_capacity -= busiest->group_capacity;
7073 else
7074 load_above_capacity = ~0UL;
dd5feea1
SS
7075 }
7076
7077 /*
7078 * We're trying to get all the cpus to the average_load, so we don't
7079 * want to push ourselves above the average load, nor do we wish to
7080 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7081 * we also don't want to reduce the group load below the group
7082 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7083 */
30ce5dab 7084 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7085
7086 /* How much load to actually move to equalise the imbalance */
56cf515b 7087 env->imbalance = min(
63b2ca30
NP
7088 max_pull * busiest->group_capacity,
7089 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7090 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7091
7092 /*
7093 * if *imbalance is less than the average load per runnable task
25985edc 7094 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7095 * a think about bumping its value to force at least one task to be
7096 * moved
7097 */
56cf515b 7098 if (env->imbalance < busiest->load_per_task)
bd939f45 7099 return fix_small_imbalance(env, sds);
1e3c88bd 7100}
fab47622 7101
1e3c88bd
PZ
7102/******* find_busiest_group() helpers end here *********************/
7103
7104/**
7105 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7106 * if there is an imbalance.
1e3c88bd
PZ
7107 *
7108 * Also calculates the amount of weighted load which should be moved
7109 * to restore balance.
7110 *
cd96891d 7111 * @env: The load balancing environment.
1e3c88bd 7112 *
e69f6186 7113 * Return: - The busiest group if imbalance exists.
1e3c88bd 7114 */
56cf515b 7115static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7116{
56cf515b 7117 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7118 struct sd_lb_stats sds;
7119
147c5fc2 7120 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7121
7122 /*
7123 * Compute the various statistics relavent for load balancing at
7124 * this level.
7125 */
23f0d209 7126 update_sd_lb_stats(env, &sds);
56cf515b
JK
7127 local = &sds.local_stat;
7128 busiest = &sds.busiest_stat;
1e3c88bd 7129
ea67821b 7130 /* ASYM feature bypasses nice load balance check */
1f621e02 7131 if (check_asym_packing(env, &sds))
532cb4c4
MN
7132 return sds.busiest;
7133
cc57aa8f 7134 /* There is no busy sibling group to pull tasks from */
56cf515b 7135 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7136 goto out_balanced;
7137
ca8ce3d0
NP
7138 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7139 / sds.total_capacity;
b0432d8f 7140
866ab43e
PZ
7141 /*
7142 * If the busiest group is imbalanced the below checks don't
30ce5dab 7143 * work because they assume all things are equal, which typically
866ab43e
PZ
7144 * isn't true due to cpus_allowed constraints and the like.
7145 */
caeb178c 7146 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7147 goto force_balance;
7148
cc57aa8f 7149 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7150 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7151 busiest->group_no_capacity)
fab47622
NR
7152 goto force_balance;
7153
cc57aa8f 7154 /*
9c58c79a 7155 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7156 * don't try and pull any tasks.
7157 */
56cf515b 7158 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7159 goto out_balanced;
7160
cc57aa8f
PZ
7161 /*
7162 * Don't pull any tasks if this group is already above the domain
7163 * average load.
7164 */
56cf515b 7165 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7166 goto out_balanced;
7167
bd939f45 7168 if (env->idle == CPU_IDLE) {
aae6d3dd 7169 /*
43f4d666
VG
7170 * This cpu is idle. If the busiest group is not overloaded
7171 * and there is no imbalance between this and busiest group
7172 * wrt idle cpus, it is balanced. The imbalance becomes
7173 * significant if the diff is greater than 1 otherwise we
7174 * might end up to just move the imbalance on another group
aae6d3dd 7175 */
43f4d666
VG
7176 if ((busiest->group_type != group_overloaded) &&
7177 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7178 goto out_balanced;
c186fafe
PZ
7179 } else {
7180 /*
7181 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7182 * imbalance_pct to be conservative.
7183 */
56cf515b
JK
7184 if (100 * busiest->avg_load <=
7185 env->sd->imbalance_pct * local->avg_load)
c186fafe 7186 goto out_balanced;
aae6d3dd 7187 }
1e3c88bd 7188
fab47622 7189force_balance:
1e3c88bd 7190 /* Looks like there is an imbalance. Compute it */
bd939f45 7191 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7192 return sds.busiest;
7193
7194out_balanced:
bd939f45 7195 env->imbalance = 0;
1e3c88bd
PZ
7196 return NULL;
7197}
7198
7199/*
7200 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7201 */
bd939f45 7202static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7203 struct sched_group *group)
1e3c88bd
PZ
7204{
7205 struct rq *busiest = NULL, *rq;
ced549fa 7206 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7207 int i;
7208
6906a408 7209 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7210 unsigned long capacity, wl;
0ec8aa00
PZ
7211 enum fbq_type rt;
7212
7213 rq = cpu_rq(i);
7214 rt = fbq_classify_rq(rq);
1e3c88bd 7215
0ec8aa00
PZ
7216 /*
7217 * We classify groups/runqueues into three groups:
7218 * - regular: there are !numa tasks
7219 * - remote: there are numa tasks that run on the 'wrong' node
7220 * - all: there is no distinction
7221 *
7222 * In order to avoid migrating ideally placed numa tasks,
7223 * ignore those when there's better options.
7224 *
7225 * If we ignore the actual busiest queue to migrate another
7226 * task, the next balance pass can still reduce the busiest
7227 * queue by moving tasks around inside the node.
7228 *
7229 * If we cannot move enough load due to this classification
7230 * the next pass will adjust the group classification and
7231 * allow migration of more tasks.
7232 *
7233 * Both cases only affect the total convergence complexity.
7234 */
7235 if (rt > env->fbq_type)
7236 continue;
7237
ced549fa 7238 capacity = capacity_of(i);
9d5efe05 7239
6e40f5bb 7240 wl = weighted_cpuload(i);
1e3c88bd 7241
6e40f5bb
TG
7242 /*
7243 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7244 * which is not scaled with the cpu capacity.
6e40f5bb 7245 */
ea67821b
VG
7246
7247 if (rq->nr_running == 1 && wl > env->imbalance &&
7248 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7249 continue;
7250
6e40f5bb
TG
7251 /*
7252 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7253 * the weighted_cpuload() scaled with the cpu capacity, so
7254 * that the load can be moved away from the cpu that is
7255 * potentially running at a lower capacity.
95a79b80 7256 *
ced549fa 7257 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7258 * multiplication to rid ourselves of the division works out
ced549fa
NP
7259 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7260 * our previous maximum.
6e40f5bb 7261 */
ced549fa 7262 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7263 busiest_load = wl;
ced549fa 7264 busiest_capacity = capacity;
1e3c88bd
PZ
7265 busiest = rq;
7266 }
7267 }
7268
7269 return busiest;
7270}
7271
7272/*
7273 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7274 * so long as it is large enough.
7275 */
7276#define MAX_PINNED_INTERVAL 512
7277
7278/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7279DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7280
bd939f45 7281static int need_active_balance(struct lb_env *env)
1af3ed3d 7282{
bd939f45
PZ
7283 struct sched_domain *sd = env->sd;
7284
7285 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7286
7287 /*
7288 * ASYM_PACKING needs to force migrate tasks from busy but
7289 * higher numbered CPUs in order to pack all tasks in the
7290 * lowest numbered CPUs.
7291 */
bd939f45 7292 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7293 return 1;
1af3ed3d
PZ
7294 }
7295
1aaf90a4
VG
7296 /*
7297 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7298 * It's worth migrating the task if the src_cpu's capacity is reduced
7299 * because of other sched_class or IRQs if more capacity stays
7300 * available on dst_cpu.
7301 */
7302 if ((env->idle != CPU_NOT_IDLE) &&
7303 (env->src_rq->cfs.h_nr_running == 1)) {
7304 if ((check_cpu_capacity(env->src_rq, sd)) &&
7305 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7306 return 1;
7307 }
7308
1af3ed3d
PZ
7309 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7310}
7311
969c7921
TH
7312static int active_load_balance_cpu_stop(void *data);
7313
23f0d209
JK
7314static int should_we_balance(struct lb_env *env)
7315{
7316 struct sched_group *sg = env->sd->groups;
7317 struct cpumask *sg_cpus, *sg_mask;
7318 int cpu, balance_cpu = -1;
7319
7320 /*
7321 * In the newly idle case, we will allow all the cpu's
7322 * to do the newly idle load balance.
7323 */
7324 if (env->idle == CPU_NEWLY_IDLE)
7325 return 1;
7326
7327 sg_cpus = sched_group_cpus(sg);
7328 sg_mask = sched_group_mask(sg);
7329 /* Try to find first idle cpu */
7330 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7331 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7332 continue;
7333
7334 balance_cpu = cpu;
7335 break;
7336 }
7337
7338 if (balance_cpu == -1)
7339 balance_cpu = group_balance_cpu(sg);
7340
7341 /*
7342 * First idle cpu or the first cpu(busiest) in this sched group
7343 * is eligible for doing load balancing at this and above domains.
7344 */
b0cff9d8 7345 return balance_cpu == env->dst_cpu;
23f0d209
JK
7346}
7347
1e3c88bd
PZ
7348/*
7349 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7350 * tasks if there is an imbalance.
7351 */
7352static int load_balance(int this_cpu, struct rq *this_rq,
7353 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7354 int *continue_balancing)
1e3c88bd 7355{
88b8dac0 7356 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7357 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7358 struct sched_group *group;
1e3c88bd
PZ
7359 struct rq *busiest;
7360 unsigned long flags;
4ba29684 7361 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7362
8e45cb54
PZ
7363 struct lb_env env = {
7364 .sd = sd,
ddcdf6e7
PZ
7365 .dst_cpu = this_cpu,
7366 .dst_rq = this_rq,
88b8dac0 7367 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7368 .idle = idle,
eb95308e 7369 .loop_break = sched_nr_migrate_break,
b9403130 7370 .cpus = cpus,
0ec8aa00 7371 .fbq_type = all,
163122b7 7372 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7373 };
7374
cfc03118
JK
7375 /*
7376 * For NEWLY_IDLE load_balancing, we don't need to consider
7377 * other cpus in our group
7378 */
e02e60c1 7379 if (idle == CPU_NEWLY_IDLE)
cfc03118 7380 env.dst_grpmask = NULL;
cfc03118 7381
1e3c88bd
PZ
7382 cpumask_copy(cpus, cpu_active_mask);
7383
1e3c88bd
PZ
7384 schedstat_inc(sd, lb_count[idle]);
7385
7386redo:
23f0d209
JK
7387 if (!should_we_balance(&env)) {
7388 *continue_balancing = 0;
1e3c88bd 7389 goto out_balanced;
23f0d209 7390 }
1e3c88bd 7391
23f0d209 7392 group = find_busiest_group(&env);
1e3c88bd
PZ
7393 if (!group) {
7394 schedstat_inc(sd, lb_nobusyg[idle]);
7395 goto out_balanced;
7396 }
7397
b9403130 7398 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7399 if (!busiest) {
7400 schedstat_inc(sd, lb_nobusyq[idle]);
7401 goto out_balanced;
7402 }
7403
78feefc5 7404 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7405
bd939f45 7406 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7407
1aaf90a4
VG
7408 env.src_cpu = busiest->cpu;
7409 env.src_rq = busiest;
7410
1e3c88bd
PZ
7411 ld_moved = 0;
7412 if (busiest->nr_running > 1) {
7413 /*
7414 * Attempt to move tasks. If find_busiest_group has found
7415 * an imbalance but busiest->nr_running <= 1, the group is
7416 * still unbalanced. ld_moved simply stays zero, so it is
7417 * correctly treated as an imbalance.
7418 */
8e45cb54 7419 env.flags |= LBF_ALL_PINNED;
c82513e5 7420 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7421
5d6523eb 7422more_balance:
163122b7 7423 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7424
7425 /*
7426 * cur_ld_moved - load moved in current iteration
7427 * ld_moved - cumulative load moved across iterations
7428 */
163122b7 7429 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7430
7431 /*
163122b7
KT
7432 * We've detached some tasks from busiest_rq. Every
7433 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7434 * unlock busiest->lock, and we are able to be sure
7435 * that nobody can manipulate the tasks in parallel.
7436 * See task_rq_lock() family for the details.
1e3c88bd 7437 */
163122b7
KT
7438
7439 raw_spin_unlock(&busiest->lock);
7440
7441 if (cur_ld_moved) {
7442 attach_tasks(&env);
7443 ld_moved += cur_ld_moved;
7444 }
7445
1e3c88bd 7446 local_irq_restore(flags);
88b8dac0 7447
f1cd0858
JK
7448 if (env.flags & LBF_NEED_BREAK) {
7449 env.flags &= ~LBF_NEED_BREAK;
7450 goto more_balance;
7451 }
7452
88b8dac0
SV
7453 /*
7454 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7455 * us and move them to an alternate dst_cpu in our sched_group
7456 * where they can run. The upper limit on how many times we
7457 * iterate on same src_cpu is dependent on number of cpus in our
7458 * sched_group.
7459 *
7460 * This changes load balance semantics a bit on who can move
7461 * load to a given_cpu. In addition to the given_cpu itself
7462 * (or a ilb_cpu acting on its behalf where given_cpu is
7463 * nohz-idle), we now have balance_cpu in a position to move
7464 * load to given_cpu. In rare situations, this may cause
7465 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7466 * _independently_ and at _same_ time to move some load to
7467 * given_cpu) causing exceess load to be moved to given_cpu.
7468 * This however should not happen so much in practice and
7469 * moreover subsequent load balance cycles should correct the
7470 * excess load moved.
7471 */
6263322c 7472 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7473
7aff2e3a
VD
7474 /* Prevent to re-select dst_cpu via env's cpus */
7475 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7476
78feefc5 7477 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7478 env.dst_cpu = env.new_dst_cpu;
6263322c 7479 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7480 env.loop = 0;
7481 env.loop_break = sched_nr_migrate_break;
e02e60c1 7482
88b8dac0
SV
7483 /*
7484 * Go back to "more_balance" rather than "redo" since we
7485 * need to continue with same src_cpu.
7486 */
7487 goto more_balance;
7488 }
1e3c88bd 7489
6263322c
PZ
7490 /*
7491 * We failed to reach balance because of affinity.
7492 */
7493 if (sd_parent) {
63b2ca30 7494 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7495
afdeee05 7496 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7497 *group_imbalance = 1;
6263322c
PZ
7498 }
7499
1e3c88bd 7500 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7501 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7502 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7503 if (!cpumask_empty(cpus)) {
7504 env.loop = 0;
7505 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7506 goto redo;
bbf18b19 7507 }
afdeee05 7508 goto out_all_pinned;
1e3c88bd
PZ
7509 }
7510 }
7511
7512 if (!ld_moved) {
7513 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7514 /*
7515 * Increment the failure counter only on periodic balance.
7516 * We do not want newidle balance, which can be very
7517 * frequent, pollute the failure counter causing
7518 * excessive cache_hot migrations and active balances.
7519 */
7520 if (idle != CPU_NEWLY_IDLE)
7521 sd->nr_balance_failed++;
1e3c88bd 7522
bd939f45 7523 if (need_active_balance(&env)) {
1e3c88bd
PZ
7524 raw_spin_lock_irqsave(&busiest->lock, flags);
7525
969c7921
TH
7526 /* don't kick the active_load_balance_cpu_stop,
7527 * if the curr task on busiest cpu can't be
7528 * moved to this_cpu
1e3c88bd
PZ
7529 */
7530 if (!cpumask_test_cpu(this_cpu,
fa17b507 7531 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7532 raw_spin_unlock_irqrestore(&busiest->lock,
7533 flags);
8e45cb54 7534 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7535 goto out_one_pinned;
7536 }
7537
969c7921
TH
7538 /*
7539 * ->active_balance synchronizes accesses to
7540 * ->active_balance_work. Once set, it's cleared
7541 * only after active load balance is finished.
7542 */
1e3c88bd
PZ
7543 if (!busiest->active_balance) {
7544 busiest->active_balance = 1;
7545 busiest->push_cpu = this_cpu;
7546 active_balance = 1;
7547 }
7548 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7549
bd939f45 7550 if (active_balance) {
969c7921
TH
7551 stop_one_cpu_nowait(cpu_of(busiest),
7552 active_load_balance_cpu_stop, busiest,
7553 &busiest->active_balance_work);
bd939f45 7554 }
1e3c88bd 7555
d02c0711 7556 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7557 sd->nr_balance_failed = sd->cache_nice_tries+1;
7558 }
7559 } else
7560 sd->nr_balance_failed = 0;
7561
7562 if (likely(!active_balance)) {
7563 /* We were unbalanced, so reset the balancing interval */
7564 sd->balance_interval = sd->min_interval;
7565 } else {
7566 /*
7567 * If we've begun active balancing, start to back off. This
7568 * case may not be covered by the all_pinned logic if there
7569 * is only 1 task on the busy runqueue (because we don't call
163122b7 7570 * detach_tasks).
1e3c88bd
PZ
7571 */
7572 if (sd->balance_interval < sd->max_interval)
7573 sd->balance_interval *= 2;
7574 }
7575
1e3c88bd
PZ
7576 goto out;
7577
7578out_balanced:
afdeee05
VG
7579 /*
7580 * We reach balance although we may have faced some affinity
7581 * constraints. Clear the imbalance flag if it was set.
7582 */
7583 if (sd_parent) {
7584 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7585
7586 if (*group_imbalance)
7587 *group_imbalance = 0;
7588 }
7589
7590out_all_pinned:
7591 /*
7592 * We reach balance because all tasks are pinned at this level so
7593 * we can't migrate them. Let the imbalance flag set so parent level
7594 * can try to migrate them.
7595 */
1e3c88bd
PZ
7596 schedstat_inc(sd, lb_balanced[idle]);
7597
7598 sd->nr_balance_failed = 0;
7599
7600out_one_pinned:
7601 /* tune up the balancing interval */
8e45cb54 7602 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7603 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7604 (sd->balance_interval < sd->max_interval))
7605 sd->balance_interval *= 2;
7606
46e49b38 7607 ld_moved = 0;
1e3c88bd 7608out:
1e3c88bd
PZ
7609 return ld_moved;
7610}
7611
52a08ef1
JL
7612static inline unsigned long
7613get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7614{
7615 unsigned long interval = sd->balance_interval;
7616
7617 if (cpu_busy)
7618 interval *= sd->busy_factor;
7619
7620 /* scale ms to jiffies */
7621 interval = msecs_to_jiffies(interval);
7622 interval = clamp(interval, 1UL, max_load_balance_interval);
7623
7624 return interval;
7625}
7626
7627static inline void
7628update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7629{
7630 unsigned long interval, next;
7631
7632 interval = get_sd_balance_interval(sd, cpu_busy);
7633 next = sd->last_balance + interval;
7634
7635 if (time_after(*next_balance, next))
7636 *next_balance = next;
7637}
7638
1e3c88bd
PZ
7639/*
7640 * idle_balance is called by schedule() if this_cpu is about to become
7641 * idle. Attempts to pull tasks from other CPUs.
7642 */
6e83125c 7643static int idle_balance(struct rq *this_rq)
1e3c88bd 7644{
52a08ef1
JL
7645 unsigned long next_balance = jiffies + HZ;
7646 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7647 struct sched_domain *sd;
7648 int pulled_task = 0;
9bd721c5 7649 u64 curr_cost = 0;
1e3c88bd 7650
6e83125c
PZ
7651 /*
7652 * We must set idle_stamp _before_ calling idle_balance(), such that we
7653 * measure the duration of idle_balance() as idle time.
7654 */
7655 this_rq->idle_stamp = rq_clock(this_rq);
7656
4486edd1
TC
7657 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7658 !this_rq->rd->overload) {
52a08ef1
JL
7659 rcu_read_lock();
7660 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7661 if (sd)
7662 update_next_balance(sd, 0, &next_balance);
7663 rcu_read_unlock();
7664
6e83125c 7665 goto out;
52a08ef1 7666 }
1e3c88bd 7667
f492e12e
PZ
7668 raw_spin_unlock(&this_rq->lock);
7669
48a16753 7670 update_blocked_averages(this_cpu);
dce840a0 7671 rcu_read_lock();
1e3c88bd 7672 for_each_domain(this_cpu, sd) {
23f0d209 7673 int continue_balancing = 1;
9bd721c5 7674 u64 t0, domain_cost;
1e3c88bd
PZ
7675
7676 if (!(sd->flags & SD_LOAD_BALANCE))
7677 continue;
7678
52a08ef1
JL
7679 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7680 update_next_balance(sd, 0, &next_balance);
9bd721c5 7681 break;
52a08ef1 7682 }
9bd721c5 7683
f492e12e 7684 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7685 t0 = sched_clock_cpu(this_cpu);
7686
f492e12e 7687 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7688 sd, CPU_NEWLY_IDLE,
7689 &continue_balancing);
9bd721c5
JL
7690
7691 domain_cost = sched_clock_cpu(this_cpu) - t0;
7692 if (domain_cost > sd->max_newidle_lb_cost)
7693 sd->max_newidle_lb_cost = domain_cost;
7694
7695 curr_cost += domain_cost;
f492e12e 7696 }
1e3c88bd 7697
52a08ef1 7698 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7699
7700 /*
7701 * Stop searching for tasks to pull if there are
7702 * now runnable tasks on this rq.
7703 */
7704 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7705 break;
1e3c88bd 7706 }
dce840a0 7707 rcu_read_unlock();
f492e12e
PZ
7708
7709 raw_spin_lock(&this_rq->lock);
7710
0e5b5337
JL
7711 if (curr_cost > this_rq->max_idle_balance_cost)
7712 this_rq->max_idle_balance_cost = curr_cost;
7713
e5fc6611 7714 /*
0e5b5337
JL
7715 * While browsing the domains, we released the rq lock, a task could
7716 * have been enqueued in the meantime. Since we're not going idle,
7717 * pretend we pulled a task.
e5fc6611 7718 */
0e5b5337 7719 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7720 pulled_task = 1;
e5fc6611 7721
52a08ef1
JL
7722out:
7723 /* Move the next balance forward */
7724 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7725 this_rq->next_balance = next_balance;
9bd721c5 7726
e4aa358b 7727 /* Is there a task of a high priority class? */
46383648 7728 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7729 pulled_task = -1;
7730
38c6ade2 7731 if (pulled_task)
6e83125c
PZ
7732 this_rq->idle_stamp = 0;
7733
3c4017c1 7734 return pulled_task;
1e3c88bd
PZ
7735}
7736
7737/*
969c7921
TH
7738 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7739 * running tasks off the busiest CPU onto idle CPUs. It requires at
7740 * least 1 task to be running on each physical CPU where possible, and
7741 * avoids physical / logical imbalances.
1e3c88bd 7742 */
969c7921 7743static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7744{
969c7921
TH
7745 struct rq *busiest_rq = data;
7746 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7747 int target_cpu = busiest_rq->push_cpu;
969c7921 7748 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7749 struct sched_domain *sd;
e5673f28 7750 struct task_struct *p = NULL;
969c7921
TH
7751
7752 raw_spin_lock_irq(&busiest_rq->lock);
7753
7754 /* make sure the requested cpu hasn't gone down in the meantime */
7755 if (unlikely(busiest_cpu != smp_processor_id() ||
7756 !busiest_rq->active_balance))
7757 goto out_unlock;
1e3c88bd
PZ
7758
7759 /* Is there any task to move? */
7760 if (busiest_rq->nr_running <= 1)
969c7921 7761 goto out_unlock;
1e3c88bd
PZ
7762
7763 /*
7764 * This condition is "impossible", if it occurs
7765 * we need to fix it. Originally reported by
7766 * Bjorn Helgaas on a 128-cpu setup.
7767 */
7768 BUG_ON(busiest_rq == target_rq);
7769
1e3c88bd 7770 /* Search for an sd spanning us and the target CPU. */
dce840a0 7771 rcu_read_lock();
1e3c88bd
PZ
7772 for_each_domain(target_cpu, sd) {
7773 if ((sd->flags & SD_LOAD_BALANCE) &&
7774 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7775 break;
7776 }
7777
7778 if (likely(sd)) {
8e45cb54
PZ
7779 struct lb_env env = {
7780 .sd = sd,
ddcdf6e7
PZ
7781 .dst_cpu = target_cpu,
7782 .dst_rq = target_rq,
7783 .src_cpu = busiest_rq->cpu,
7784 .src_rq = busiest_rq,
8e45cb54
PZ
7785 .idle = CPU_IDLE,
7786 };
7787
1e3c88bd
PZ
7788 schedstat_inc(sd, alb_count);
7789
e5673f28 7790 p = detach_one_task(&env);
d02c0711 7791 if (p) {
1e3c88bd 7792 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7793 /* Active balancing done, reset the failure counter. */
7794 sd->nr_balance_failed = 0;
7795 } else {
1e3c88bd 7796 schedstat_inc(sd, alb_failed);
d02c0711 7797 }
1e3c88bd 7798 }
dce840a0 7799 rcu_read_unlock();
969c7921
TH
7800out_unlock:
7801 busiest_rq->active_balance = 0;
e5673f28
KT
7802 raw_spin_unlock(&busiest_rq->lock);
7803
7804 if (p)
7805 attach_one_task(target_rq, p);
7806
7807 local_irq_enable();
7808
969c7921 7809 return 0;
1e3c88bd
PZ
7810}
7811
d987fc7f
MG
7812static inline int on_null_domain(struct rq *rq)
7813{
7814 return unlikely(!rcu_dereference_sched(rq->sd));
7815}
7816
3451d024 7817#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7818/*
7819 * idle load balancing details
83cd4fe2
VP
7820 * - When one of the busy CPUs notice that there may be an idle rebalancing
7821 * needed, they will kick the idle load balancer, which then does idle
7822 * load balancing for all the idle CPUs.
7823 */
1e3c88bd 7824static struct {
83cd4fe2 7825 cpumask_var_t idle_cpus_mask;
0b005cf5 7826 atomic_t nr_cpus;
83cd4fe2
VP
7827 unsigned long next_balance; /* in jiffy units */
7828} nohz ____cacheline_aligned;
1e3c88bd 7829
3dd0337d 7830static inline int find_new_ilb(void)
1e3c88bd 7831{
0b005cf5 7832 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7833
786d6dc7
SS
7834 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7835 return ilb;
7836
7837 return nr_cpu_ids;
1e3c88bd 7838}
1e3c88bd 7839
83cd4fe2
VP
7840/*
7841 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7842 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7843 * CPU (if there is one).
7844 */
0aeeeeba 7845static void nohz_balancer_kick(void)
83cd4fe2
VP
7846{
7847 int ilb_cpu;
7848
7849 nohz.next_balance++;
7850
3dd0337d 7851 ilb_cpu = find_new_ilb();
83cd4fe2 7852
0b005cf5
SS
7853 if (ilb_cpu >= nr_cpu_ids)
7854 return;
83cd4fe2 7855
cd490c5b 7856 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7857 return;
7858 /*
7859 * Use smp_send_reschedule() instead of resched_cpu().
7860 * This way we generate a sched IPI on the target cpu which
7861 * is idle. And the softirq performing nohz idle load balance
7862 * will be run before returning from the IPI.
7863 */
7864 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7865 return;
7866}
7867
20a5c8cc 7868void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7869{
7870 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7871 /*
7872 * Completely isolated CPUs don't ever set, so we must test.
7873 */
7874 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7875 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7876 atomic_dec(&nohz.nr_cpus);
7877 }
71325960
SS
7878 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7879 }
7880}
7881
69e1e811
SS
7882static inline void set_cpu_sd_state_busy(void)
7883{
7884 struct sched_domain *sd;
37dc6b50 7885 int cpu = smp_processor_id();
69e1e811 7886
69e1e811 7887 rcu_read_lock();
37dc6b50 7888 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7889
7890 if (!sd || !sd->nohz_idle)
7891 goto unlock;
7892 sd->nohz_idle = 0;
7893
63b2ca30 7894 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7895unlock:
69e1e811
SS
7896 rcu_read_unlock();
7897}
7898
7899void set_cpu_sd_state_idle(void)
7900{
7901 struct sched_domain *sd;
37dc6b50 7902 int cpu = smp_processor_id();
69e1e811 7903
69e1e811 7904 rcu_read_lock();
37dc6b50 7905 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7906
7907 if (!sd || sd->nohz_idle)
7908 goto unlock;
7909 sd->nohz_idle = 1;
7910
63b2ca30 7911 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7912unlock:
69e1e811
SS
7913 rcu_read_unlock();
7914}
7915
1e3c88bd 7916/*
c1cc017c 7917 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7918 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7919 */
c1cc017c 7920void nohz_balance_enter_idle(int cpu)
1e3c88bd 7921{
71325960
SS
7922 /*
7923 * If this cpu is going down, then nothing needs to be done.
7924 */
7925 if (!cpu_active(cpu))
7926 return;
7927
c1cc017c
AS
7928 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7929 return;
1e3c88bd 7930
d987fc7f
MG
7931 /*
7932 * If we're a completely isolated CPU, we don't play.
7933 */
7934 if (on_null_domain(cpu_rq(cpu)))
7935 return;
7936
c1cc017c
AS
7937 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7938 atomic_inc(&nohz.nr_cpus);
7939 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7940}
7941#endif
7942
7943static DEFINE_SPINLOCK(balancing);
7944
49c022e6
PZ
7945/*
7946 * Scale the max load_balance interval with the number of CPUs in the system.
7947 * This trades load-balance latency on larger machines for less cross talk.
7948 */
029632fb 7949void update_max_interval(void)
49c022e6
PZ
7950{
7951 max_load_balance_interval = HZ*num_online_cpus()/10;
7952}
7953
1e3c88bd
PZ
7954/*
7955 * It checks each scheduling domain to see if it is due to be balanced,
7956 * and initiates a balancing operation if so.
7957 *
b9b0853a 7958 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7959 */
f7ed0a89 7960static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7961{
23f0d209 7962 int continue_balancing = 1;
f7ed0a89 7963 int cpu = rq->cpu;
1e3c88bd 7964 unsigned long interval;
04f733b4 7965 struct sched_domain *sd;
1e3c88bd
PZ
7966 /* Earliest time when we have to do rebalance again */
7967 unsigned long next_balance = jiffies + 60*HZ;
7968 int update_next_balance = 0;
f48627e6
JL
7969 int need_serialize, need_decay = 0;
7970 u64 max_cost = 0;
1e3c88bd 7971
48a16753 7972 update_blocked_averages(cpu);
2069dd75 7973
dce840a0 7974 rcu_read_lock();
1e3c88bd 7975 for_each_domain(cpu, sd) {
f48627e6
JL
7976 /*
7977 * Decay the newidle max times here because this is a regular
7978 * visit to all the domains. Decay ~1% per second.
7979 */
7980 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7981 sd->max_newidle_lb_cost =
7982 (sd->max_newidle_lb_cost * 253) / 256;
7983 sd->next_decay_max_lb_cost = jiffies + HZ;
7984 need_decay = 1;
7985 }
7986 max_cost += sd->max_newidle_lb_cost;
7987
1e3c88bd
PZ
7988 if (!(sd->flags & SD_LOAD_BALANCE))
7989 continue;
7990
f48627e6
JL
7991 /*
7992 * Stop the load balance at this level. There is another
7993 * CPU in our sched group which is doing load balancing more
7994 * actively.
7995 */
7996 if (!continue_balancing) {
7997 if (need_decay)
7998 continue;
7999 break;
8000 }
8001
52a08ef1 8002 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8003
8004 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8005 if (need_serialize) {
8006 if (!spin_trylock(&balancing))
8007 goto out;
8008 }
8009
8010 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8011 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8012 /*
6263322c 8013 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8014 * env->dst_cpu, so we can't know our idle
8015 * state even if we migrated tasks. Update it.
1e3c88bd 8016 */
de5eb2dd 8017 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8018 }
8019 sd->last_balance = jiffies;
52a08ef1 8020 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8021 }
8022 if (need_serialize)
8023 spin_unlock(&balancing);
8024out:
8025 if (time_after(next_balance, sd->last_balance + interval)) {
8026 next_balance = sd->last_balance + interval;
8027 update_next_balance = 1;
8028 }
f48627e6
JL
8029 }
8030 if (need_decay) {
1e3c88bd 8031 /*
f48627e6
JL
8032 * Ensure the rq-wide value also decays but keep it at a
8033 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8034 */
f48627e6
JL
8035 rq->max_idle_balance_cost =
8036 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8037 }
dce840a0 8038 rcu_read_unlock();
1e3c88bd
PZ
8039
8040 /*
8041 * next_balance will be updated only when there is a need.
8042 * When the cpu is attached to null domain for ex, it will not be
8043 * updated.
8044 */
c5afb6a8 8045 if (likely(update_next_balance)) {
1e3c88bd 8046 rq->next_balance = next_balance;
c5afb6a8
VG
8047
8048#ifdef CONFIG_NO_HZ_COMMON
8049 /*
8050 * If this CPU has been elected to perform the nohz idle
8051 * balance. Other idle CPUs have already rebalanced with
8052 * nohz_idle_balance() and nohz.next_balance has been
8053 * updated accordingly. This CPU is now running the idle load
8054 * balance for itself and we need to update the
8055 * nohz.next_balance accordingly.
8056 */
8057 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8058 nohz.next_balance = rq->next_balance;
8059#endif
8060 }
1e3c88bd
PZ
8061}
8062
3451d024 8063#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8064/*
3451d024 8065 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8066 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8067 */
208cb16b 8068static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8069{
208cb16b 8070 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8071 struct rq *rq;
8072 int balance_cpu;
c5afb6a8
VG
8073 /* Earliest time when we have to do rebalance again */
8074 unsigned long next_balance = jiffies + 60*HZ;
8075 int update_next_balance = 0;
83cd4fe2 8076
1c792db7
SS
8077 if (idle != CPU_IDLE ||
8078 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8079 goto end;
83cd4fe2
VP
8080
8081 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8082 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8083 continue;
8084
8085 /*
8086 * If this cpu gets work to do, stop the load balancing
8087 * work being done for other cpus. Next load
8088 * balancing owner will pick it up.
8089 */
1c792db7 8090 if (need_resched())
83cd4fe2 8091 break;
83cd4fe2 8092
5ed4f1d9
VG
8093 rq = cpu_rq(balance_cpu);
8094
ed61bbc6
TC
8095 /*
8096 * If time for next balance is due,
8097 * do the balance.
8098 */
8099 if (time_after_eq(jiffies, rq->next_balance)) {
8100 raw_spin_lock_irq(&rq->lock);
8101 update_rq_clock(rq);
cee1afce 8102 cpu_load_update_idle(rq);
ed61bbc6
TC
8103 raw_spin_unlock_irq(&rq->lock);
8104 rebalance_domains(rq, CPU_IDLE);
8105 }
83cd4fe2 8106
c5afb6a8
VG
8107 if (time_after(next_balance, rq->next_balance)) {
8108 next_balance = rq->next_balance;
8109 update_next_balance = 1;
8110 }
83cd4fe2 8111 }
c5afb6a8
VG
8112
8113 /*
8114 * next_balance will be updated only when there is a need.
8115 * When the CPU is attached to null domain for ex, it will not be
8116 * updated.
8117 */
8118 if (likely(update_next_balance))
8119 nohz.next_balance = next_balance;
1c792db7
SS
8120end:
8121 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8122}
8123
8124/*
0b005cf5 8125 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8126 * of an idle cpu in the system.
0b005cf5 8127 * - This rq has more than one task.
1aaf90a4
VG
8128 * - This rq has at least one CFS task and the capacity of the CPU is
8129 * significantly reduced because of RT tasks or IRQs.
8130 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8131 * multiple busy cpu.
0b005cf5
SS
8132 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8133 * domain span are idle.
83cd4fe2 8134 */
1aaf90a4 8135static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8136{
8137 unsigned long now = jiffies;
0b005cf5 8138 struct sched_domain *sd;
63b2ca30 8139 struct sched_group_capacity *sgc;
4a725627 8140 int nr_busy, cpu = rq->cpu;
1aaf90a4 8141 bool kick = false;
83cd4fe2 8142
4a725627 8143 if (unlikely(rq->idle_balance))
1aaf90a4 8144 return false;
83cd4fe2 8145
1c792db7
SS
8146 /*
8147 * We may be recently in ticked or tickless idle mode. At the first
8148 * busy tick after returning from idle, we will update the busy stats.
8149 */
69e1e811 8150 set_cpu_sd_state_busy();
c1cc017c 8151 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8152
8153 /*
8154 * None are in tickless mode and hence no need for NOHZ idle load
8155 * balancing.
8156 */
8157 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8158 return false;
1c792db7
SS
8159
8160 if (time_before(now, nohz.next_balance))
1aaf90a4 8161 return false;
83cd4fe2 8162
0b005cf5 8163 if (rq->nr_running >= 2)
1aaf90a4 8164 return true;
83cd4fe2 8165
067491b7 8166 rcu_read_lock();
37dc6b50 8167 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8168 if (sd) {
63b2ca30
NP
8169 sgc = sd->groups->sgc;
8170 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8171
1aaf90a4
VG
8172 if (nr_busy > 1) {
8173 kick = true;
8174 goto unlock;
8175 }
8176
83cd4fe2 8177 }
37dc6b50 8178
1aaf90a4
VG
8179 sd = rcu_dereference(rq->sd);
8180 if (sd) {
8181 if ((rq->cfs.h_nr_running >= 1) &&
8182 check_cpu_capacity(rq, sd)) {
8183 kick = true;
8184 goto unlock;
8185 }
8186 }
37dc6b50 8187
1aaf90a4 8188 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8189 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8190 sched_domain_span(sd)) < cpu)) {
8191 kick = true;
8192 goto unlock;
8193 }
067491b7 8194
1aaf90a4 8195unlock:
067491b7 8196 rcu_read_unlock();
1aaf90a4 8197 return kick;
83cd4fe2
VP
8198}
8199#else
208cb16b 8200static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8201#endif
8202
8203/*
8204 * run_rebalance_domains is triggered when needed from the scheduler tick.
8205 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8206 */
1e3c88bd
PZ
8207static void run_rebalance_domains(struct softirq_action *h)
8208{
208cb16b 8209 struct rq *this_rq = this_rq();
6eb57e0d 8210 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8211 CPU_IDLE : CPU_NOT_IDLE;
8212
1e3c88bd 8213 /*
83cd4fe2 8214 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8215 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8216 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8217 * give the idle cpus a chance to load balance. Else we may
8218 * load balance only within the local sched_domain hierarchy
8219 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8220 */
208cb16b 8221 nohz_idle_balance(this_rq, idle);
d4573c3e 8222 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8223}
8224
1e3c88bd
PZ
8225/*
8226 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8227 */
7caff66f 8228void trigger_load_balance(struct rq *rq)
1e3c88bd 8229{
1e3c88bd 8230 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8231 if (unlikely(on_null_domain(rq)))
8232 return;
8233
8234 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8235 raise_softirq(SCHED_SOFTIRQ);
3451d024 8236#ifdef CONFIG_NO_HZ_COMMON
c726099e 8237 if (nohz_kick_needed(rq))
0aeeeeba 8238 nohz_balancer_kick();
83cd4fe2 8239#endif
1e3c88bd
PZ
8240}
8241
0bcdcf28
CE
8242static void rq_online_fair(struct rq *rq)
8243{
8244 update_sysctl();
0e59bdae
KT
8245
8246 update_runtime_enabled(rq);
0bcdcf28
CE
8247}
8248
8249static void rq_offline_fair(struct rq *rq)
8250{
8251 update_sysctl();
a4c96ae3
PB
8252
8253 /* Ensure any throttled groups are reachable by pick_next_task */
8254 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8255}
8256
55e12e5e 8257#endif /* CONFIG_SMP */
e1d1484f 8258
bf0f6f24
IM
8259/*
8260 * scheduler tick hitting a task of our scheduling class:
8261 */
8f4d37ec 8262static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8263{
8264 struct cfs_rq *cfs_rq;
8265 struct sched_entity *se = &curr->se;
8266
8267 for_each_sched_entity(se) {
8268 cfs_rq = cfs_rq_of(se);
8f4d37ec 8269 entity_tick(cfs_rq, se, queued);
bf0f6f24 8270 }
18bf2805 8271
b52da86e 8272 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8273 task_tick_numa(rq, curr);
bf0f6f24
IM
8274}
8275
8276/*
cd29fe6f
PZ
8277 * called on fork with the child task as argument from the parent's context
8278 * - child not yet on the tasklist
8279 * - preemption disabled
bf0f6f24 8280 */
cd29fe6f 8281static void task_fork_fair(struct task_struct *p)
bf0f6f24 8282{
4fc420c9
DN
8283 struct cfs_rq *cfs_rq;
8284 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8285 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8286 struct rq *rq = this_rq();
8287 unsigned long flags;
8288
05fa785c 8289 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8290
861d034e
PZ
8291 update_rq_clock(rq);
8292
4fc420c9
DN
8293 cfs_rq = task_cfs_rq(current);
8294 curr = cfs_rq->curr;
8295
6c9a27f5
DN
8296 /*
8297 * Not only the cpu but also the task_group of the parent might have
8298 * been changed after parent->se.parent,cfs_rq were copied to
8299 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8300 * of child point to valid ones.
8301 */
8302 rcu_read_lock();
8303 __set_task_cpu(p, this_cpu);
8304 rcu_read_unlock();
bf0f6f24 8305
7109c442 8306 update_curr(cfs_rq);
cd29fe6f 8307
b5d9d734
MG
8308 if (curr)
8309 se->vruntime = curr->vruntime;
aeb73b04 8310 place_entity(cfs_rq, se, 1);
4d78e7b6 8311
cd29fe6f 8312 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8313 /*
edcb60a3
IM
8314 * Upon rescheduling, sched_class::put_prev_task() will place
8315 * 'current' within the tree based on its new key value.
8316 */
4d78e7b6 8317 swap(curr->vruntime, se->vruntime);
8875125e 8318 resched_curr(rq);
4d78e7b6 8319 }
bf0f6f24 8320
88ec22d3
PZ
8321 se->vruntime -= cfs_rq->min_vruntime;
8322
05fa785c 8323 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8324}
8325
cb469845
SR
8326/*
8327 * Priority of the task has changed. Check to see if we preempt
8328 * the current task.
8329 */
da7a735e
PZ
8330static void
8331prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8332{
da0c1e65 8333 if (!task_on_rq_queued(p))
da7a735e
PZ
8334 return;
8335
cb469845
SR
8336 /*
8337 * Reschedule if we are currently running on this runqueue and
8338 * our priority decreased, or if we are not currently running on
8339 * this runqueue and our priority is higher than the current's
8340 */
da7a735e 8341 if (rq->curr == p) {
cb469845 8342 if (p->prio > oldprio)
8875125e 8343 resched_curr(rq);
cb469845 8344 } else
15afe09b 8345 check_preempt_curr(rq, p, 0);
cb469845
SR
8346}
8347
daa59407 8348static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8349{
8350 struct sched_entity *se = &p->se;
da7a735e
PZ
8351
8352 /*
daa59407
BP
8353 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8354 * the dequeue_entity(.flags=0) will already have normalized the
8355 * vruntime.
8356 */
8357 if (p->on_rq)
8358 return true;
8359
8360 /*
8361 * When !on_rq, vruntime of the task has usually NOT been normalized.
8362 * But there are some cases where it has already been normalized:
da7a735e 8363 *
daa59407
BP
8364 * - A forked child which is waiting for being woken up by
8365 * wake_up_new_task().
8366 * - A task which has been woken up by try_to_wake_up() and
8367 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8368 */
daa59407
BP
8369 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8370 return true;
8371
8372 return false;
8373}
8374
8375static void detach_task_cfs_rq(struct task_struct *p)
8376{
8377 struct sched_entity *se = &p->se;
8378 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8379
8380 if (!vruntime_normalized(p)) {
da7a735e
PZ
8381 /*
8382 * Fix up our vruntime so that the current sleep doesn't
8383 * cause 'unlimited' sleep bonus.
8384 */
8385 place_entity(cfs_rq, se, 0);
8386 se->vruntime -= cfs_rq->min_vruntime;
8387 }
9ee474f5 8388
9d89c257 8389 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8390 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8391}
8392
daa59407 8393static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8394{
f36c019c 8395 struct sched_entity *se = &p->se;
daa59407 8396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8397
8398#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8399 /*
8400 * Since the real-depth could have been changed (only FAIR
8401 * class maintain depth value), reset depth properly.
8402 */
8403 se->depth = se->parent ? se->parent->depth + 1 : 0;
8404#endif
7855a35a 8405
6efdb105 8406 /* Synchronize task with its cfs_rq */
daa59407
BP
8407 attach_entity_load_avg(cfs_rq, se);
8408
8409 if (!vruntime_normalized(p))
8410 se->vruntime += cfs_rq->min_vruntime;
8411}
6efdb105 8412
daa59407
BP
8413static void switched_from_fair(struct rq *rq, struct task_struct *p)
8414{
8415 detach_task_cfs_rq(p);
8416}
8417
8418static void switched_to_fair(struct rq *rq, struct task_struct *p)
8419{
8420 attach_task_cfs_rq(p);
7855a35a 8421
daa59407 8422 if (task_on_rq_queued(p)) {
7855a35a 8423 /*
daa59407
BP
8424 * We were most likely switched from sched_rt, so
8425 * kick off the schedule if running, otherwise just see
8426 * if we can still preempt the current task.
7855a35a 8427 */
daa59407
BP
8428 if (rq->curr == p)
8429 resched_curr(rq);
8430 else
8431 check_preempt_curr(rq, p, 0);
7855a35a 8432 }
cb469845
SR
8433}
8434
83b699ed
SV
8435/* Account for a task changing its policy or group.
8436 *
8437 * This routine is mostly called to set cfs_rq->curr field when a task
8438 * migrates between groups/classes.
8439 */
8440static void set_curr_task_fair(struct rq *rq)
8441{
8442 struct sched_entity *se = &rq->curr->se;
8443
ec12cb7f
PT
8444 for_each_sched_entity(se) {
8445 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8446
8447 set_next_entity(cfs_rq, se);
8448 /* ensure bandwidth has been allocated on our new cfs_rq */
8449 account_cfs_rq_runtime(cfs_rq, 0);
8450 }
83b699ed
SV
8451}
8452
029632fb
PZ
8453void init_cfs_rq(struct cfs_rq *cfs_rq)
8454{
8455 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8456 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8457#ifndef CONFIG_64BIT
8458 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8459#endif
141965c7 8460#ifdef CONFIG_SMP
9d89c257
YD
8461 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8462 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8463#endif
029632fb
PZ
8464}
8465
810b3817 8466#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8467static void task_move_group_fair(struct task_struct *p)
810b3817 8468{
daa59407 8469 detach_task_cfs_rq(p);
b2b5ce02 8470 set_task_rq(p, task_cpu(p));
6efdb105
BP
8471
8472#ifdef CONFIG_SMP
8473 /* Tell se's cfs_rq has been changed -- migrated */
8474 p->se.avg.last_update_time = 0;
8475#endif
daa59407 8476 attach_task_cfs_rq(p);
810b3817 8477}
029632fb
PZ
8478
8479void free_fair_sched_group(struct task_group *tg)
8480{
8481 int i;
8482
8483 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8484
8485 for_each_possible_cpu(i) {
8486 if (tg->cfs_rq)
8487 kfree(tg->cfs_rq[i]);
6fe1f348 8488 if (tg->se)
029632fb
PZ
8489 kfree(tg->se[i]);
8490 }
8491
8492 kfree(tg->cfs_rq);
8493 kfree(tg->se);
8494}
8495
8496int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8497{
8498 struct cfs_rq *cfs_rq;
8499 struct sched_entity *se;
8500 int i;
8501
8502 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8503 if (!tg->cfs_rq)
8504 goto err;
8505 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8506 if (!tg->se)
8507 goto err;
8508
8509 tg->shares = NICE_0_LOAD;
8510
8511 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8512
8513 for_each_possible_cpu(i) {
8514 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8515 GFP_KERNEL, cpu_to_node(i));
8516 if (!cfs_rq)
8517 goto err;
8518
8519 se = kzalloc_node(sizeof(struct sched_entity),
8520 GFP_KERNEL, cpu_to_node(i));
8521 if (!se)
8522 goto err_free_rq;
8523
8524 init_cfs_rq(cfs_rq);
8525 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8526 init_entity_runnable_average(se);
2b8c41da 8527 post_init_entity_util_avg(se);
029632fb
PZ
8528 }
8529
8530 return 1;
8531
8532err_free_rq:
8533 kfree(cfs_rq);
8534err:
8535 return 0;
8536}
8537
6fe1f348 8538void unregister_fair_sched_group(struct task_group *tg)
029632fb 8539{
029632fb 8540 unsigned long flags;
6fe1f348
PZ
8541 struct rq *rq;
8542 int cpu;
029632fb 8543
6fe1f348
PZ
8544 for_each_possible_cpu(cpu) {
8545 if (tg->se[cpu])
8546 remove_entity_load_avg(tg->se[cpu]);
029632fb 8547
6fe1f348
PZ
8548 /*
8549 * Only empty task groups can be destroyed; so we can speculatively
8550 * check on_list without danger of it being re-added.
8551 */
8552 if (!tg->cfs_rq[cpu]->on_list)
8553 continue;
8554
8555 rq = cpu_rq(cpu);
8556
8557 raw_spin_lock_irqsave(&rq->lock, flags);
8558 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8559 raw_spin_unlock_irqrestore(&rq->lock, flags);
8560 }
029632fb
PZ
8561}
8562
8563void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8564 struct sched_entity *se, int cpu,
8565 struct sched_entity *parent)
8566{
8567 struct rq *rq = cpu_rq(cpu);
8568
8569 cfs_rq->tg = tg;
8570 cfs_rq->rq = rq;
029632fb
PZ
8571 init_cfs_rq_runtime(cfs_rq);
8572
8573 tg->cfs_rq[cpu] = cfs_rq;
8574 tg->se[cpu] = se;
8575
8576 /* se could be NULL for root_task_group */
8577 if (!se)
8578 return;
8579
fed14d45 8580 if (!parent) {
029632fb 8581 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8582 se->depth = 0;
8583 } else {
029632fb 8584 se->cfs_rq = parent->my_q;
fed14d45
PZ
8585 se->depth = parent->depth + 1;
8586 }
029632fb
PZ
8587
8588 se->my_q = cfs_rq;
0ac9b1c2
PT
8589 /* guarantee group entities always have weight */
8590 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8591 se->parent = parent;
8592}
8593
8594static DEFINE_MUTEX(shares_mutex);
8595
8596int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8597{
8598 int i;
8599 unsigned long flags;
8600
8601 /*
8602 * We can't change the weight of the root cgroup.
8603 */
8604 if (!tg->se[0])
8605 return -EINVAL;
8606
8607 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8608
8609 mutex_lock(&shares_mutex);
8610 if (tg->shares == shares)
8611 goto done;
8612
8613 tg->shares = shares;
8614 for_each_possible_cpu(i) {
8615 struct rq *rq = cpu_rq(i);
8616 struct sched_entity *se;
8617
8618 se = tg->se[i];
8619 /* Propagate contribution to hierarchy */
8620 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8621
8622 /* Possible calls to update_curr() need rq clock */
8623 update_rq_clock(rq);
17bc14b7 8624 for_each_sched_entity(se)
029632fb
PZ
8625 update_cfs_shares(group_cfs_rq(se));
8626 raw_spin_unlock_irqrestore(&rq->lock, flags);
8627 }
8628
8629done:
8630 mutex_unlock(&shares_mutex);
8631 return 0;
8632}
8633#else /* CONFIG_FAIR_GROUP_SCHED */
8634
8635void free_fair_sched_group(struct task_group *tg) { }
8636
8637int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8638{
8639 return 1;
8640}
8641
6fe1f348 8642void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8643
8644#endif /* CONFIG_FAIR_GROUP_SCHED */
8645
810b3817 8646
6d686f45 8647static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8648{
8649 struct sched_entity *se = &task->se;
0d721cea
PW
8650 unsigned int rr_interval = 0;
8651
8652 /*
8653 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8654 * idle runqueue:
8655 */
0d721cea 8656 if (rq->cfs.load.weight)
a59f4e07 8657 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8658
8659 return rr_interval;
8660}
8661
bf0f6f24
IM
8662/*
8663 * All the scheduling class methods:
8664 */
029632fb 8665const struct sched_class fair_sched_class = {
5522d5d5 8666 .next = &idle_sched_class,
bf0f6f24
IM
8667 .enqueue_task = enqueue_task_fair,
8668 .dequeue_task = dequeue_task_fair,
8669 .yield_task = yield_task_fair,
d95f4122 8670 .yield_to_task = yield_to_task_fair,
bf0f6f24 8671
2e09bf55 8672 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8673
8674 .pick_next_task = pick_next_task_fair,
8675 .put_prev_task = put_prev_task_fair,
8676
681f3e68 8677#ifdef CONFIG_SMP
4ce72a2c 8678 .select_task_rq = select_task_rq_fair,
0a74bef8 8679 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8680
0bcdcf28
CE
8681 .rq_online = rq_online_fair,
8682 .rq_offline = rq_offline_fair,
88ec22d3 8683
12695578 8684 .task_dead = task_dead_fair,
c5b28038 8685 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8686#endif
bf0f6f24 8687
83b699ed 8688 .set_curr_task = set_curr_task_fair,
bf0f6f24 8689 .task_tick = task_tick_fair,
cd29fe6f 8690 .task_fork = task_fork_fair,
cb469845
SR
8691
8692 .prio_changed = prio_changed_fair,
da7a735e 8693 .switched_from = switched_from_fair,
cb469845 8694 .switched_to = switched_to_fair,
810b3817 8695
0d721cea
PW
8696 .get_rr_interval = get_rr_interval_fair,
8697
6e998916
SG
8698 .update_curr = update_curr_fair,
8699
810b3817 8700#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8701 .task_move_group = task_move_group_fair,
810b3817 8702#endif
bf0f6f24
IM
8703};
8704
8705#ifdef CONFIG_SCHED_DEBUG
029632fb 8706void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8707{
bf0f6f24
IM
8708 struct cfs_rq *cfs_rq;
8709
5973e5b9 8710 rcu_read_lock();
c3b64f1e 8711 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8712 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8713 rcu_read_unlock();
bf0f6f24 8714}
397f2378
SD
8715
8716#ifdef CONFIG_NUMA_BALANCING
8717void show_numa_stats(struct task_struct *p, struct seq_file *m)
8718{
8719 int node;
8720 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8721
8722 for_each_online_node(node) {
8723 if (p->numa_faults) {
8724 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8725 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8726 }
8727 if (p->numa_group) {
8728 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8729 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8730 }
8731 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8732 }
8733}
8734#endif /* CONFIG_NUMA_BALANCING */
8735#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8736
8737__init void init_sched_fair_class(void)
8738{
8739#ifdef CONFIG_SMP
8740 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8741
3451d024 8742#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8743 nohz.next_balance = jiffies;
029632fb 8744 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8745#endif
8746#endif /* SMP */
8747
8748}