]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bf0f6f24 IM |
2 | /* |
3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
4 | * | |
5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | |
6 | * | |
7 | * Interactivity improvements by Mike Galbraith | |
8 | * (C) 2007 Mike Galbraith <efault@gmx.de> | |
9 | * | |
10 | * Various enhancements by Dmitry Adamushko. | |
11 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | |
12 | * | |
13 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
14 | * Copyright IBM Corporation, 2007 | |
15 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | |
16 | * | |
17 | * Scaled math optimizations by Thomas Gleixner | |
18 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | |
21805085 PZ |
19 | * |
20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
90eec103 | 21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
bf0f6f24 | 22 | */ |
325ea10c | 23 | #include "sched.h" |
029632fb PZ |
24 | |
25 | #include <trace/events/sched.h> | |
26 | ||
bf0f6f24 | 27 | /* |
21805085 | 28 | * Targeted preemption latency for CPU-bound tasks: |
bf0f6f24 | 29 | * |
21805085 | 30 | * NOTE: this latency value is not the same as the concept of |
d274a4ce IM |
31 | * 'timeslice length' - timeslices in CFS are of variable length |
32 | * and have no persistent notion like in traditional, time-slice | |
33 | * based scheduling concepts. | |
bf0f6f24 | 34 | * |
d274a4ce IM |
35 | * (to see the precise effective timeslice length of your workload, |
36 | * run vmstat and monitor the context-switches (cs) field) | |
2b4d5b25 IM |
37 | * |
38 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 39 | */ |
2b4d5b25 | 40 | unsigned int sysctl_sched_latency = 6000000ULL; |
ed8885a1 | 41 | static unsigned int normalized_sysctl_sched_latency = 6000000ULL; |
2bd8e6d4 | 42 | |
1983a922 CE |
43 | /* |
44 | * The initial- and re-scaling of tunables is configurable | |
1983a922 CE |
45 | * |
46 | * Options are: | |
2b4d5b25 IM |
47 | * |
48 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | |
49 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | |
50 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | |
51 | * | |
52 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | |
1983a922 | 53 | */ |
2b4d5b25 | 54 | enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
1983a922 | 55 | |
2bd8e6d4 | 56 | /* |
b2be5e96 | 57 | * Minimal preemption granularity for CPU-bound tasks: |
2b4d5b25 | 58 | * |
864616ee | 59 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 60 | */ |
ed8885a1 MS |
61 | unsigned int sysctl_sched_min_granularity = 750000ULL; |
62 | static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | |
21805085 PZ |
63 | |
64 | /* | |
2b4d5b25 | 65 | * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity |
b2be5e96 | 66 | */ |
0bf377bb | 67 | static unsigned int sched_nr_latency = 8; |
b2be5e96 PZ |
68 | |
69 | /* | |
2bba22c5 | 70 | * After fork, child runs first. If set to 0 (default) then |
b2be5e96 | 71 | * parent will (try to) run first. |
21805085 | 72 | */ |
2bba22c5 | 73 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
bf0f6f24 | 74 | |
bf0f6f24 IM |
75 | /* |
76 | * SCHED_OTHER wake-up granularity. | |
bf0f6f24 IM |
77 | * |
78 | * This option delays the preemption effects of decoupled workloads | |
79 | * and reduces their over-scheduling. Synchronous workloads will still | |
80 | * have immediate wakeup/sleep latencies. | |
2b4d5b25 IM |
81 | * |
82 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 83 | */ |
ed8885a1 MS |
84 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
85 | static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | |
bf0f6f24 | 86 | |
2b4d5b25 | 87 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
da84d961 | 88 | |
afe06efd TC |
89 | #ifdef CONFIG_SMP |
90 | /* | |
97fb7a0a | 91 | * For asym packing, by default the lower numbered CPU has higher priority. |
afe06efd TC |
92 | */ |
93 | int __weak arch_asym_cpu_priority(int cpu) | |
94 | { | |
95 | return -cpu; | |
96 | } | |
6d101ba6 OJ |
97 | |
98 | /* | |
60e17f5c | 99 | * The margin used when comparing utilization with CPU capacity. |
6d101ba6 OJ |
100 | * |
101 | * (default: ~20%) | |
102 | */ | |
60e17f5c VK |
103 | #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) |
104 | ||
afe06efd TC |
105 | #endif |
106 | ||
ec12cb7f PT |
107 | #ifdef CONFIG_CFS_BANDWIDTH |
108 | /* | |
109 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | |
110 | * each time a cfs_rq requests quota. | |
111 | * | |
112 | * Note: in the case that the slice exceeds the runtime remaining (either due | |
113 | * to consumption or the quota being specified to be smaller than the slice) | |
114 | * we will always only issue the remaining available time. | |
115 | * | |
2b4d5b25 IM |
116 | * (default: 5 msec, units: microseconds) |
117 | */ | |
118 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | |
ec12cb7f PT |
119 | #endif |
120 | ||
8527632d PG |
121 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
122 | { | |
123 | lw->weight += inc; | |
124 | lw->inv_weight = 0; | |
125 | } | |
126 | ||
127 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
128 | { | |
129 | lw->weight -= dec; | |
130 | lw->inv_weight = 0; | |
131 | } | |
132 | ||
133 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
134 | { | |
135 | lw->weight = w; | |
136 | lw->inv_weight = 0; | |
137 | } | |
138 | ||
029632fb PZ |
139 | /* |
140 | * Increase the granularity value when there are more CPUs, | |
141 | * because with more CPUs the 'effective latency' as visible | |
142 | * to users decreases. But the relationship is not linear, | |
143 | * so pick a second-best guess by going with the log2 of the | |
144 | * number of CPUs. | |
145 | * | |
146 | * This idea comes from the SD scheduler of Con Kolivas: | |
147 | */ | |
58ac93e4 | 148 | static unsigned int get_update_sysctl_factor(void) |
029632fb | 149 | { |
58ac93e4 | 150 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
029632fb PZ |
151 | unsigned int factor; |
152 | ||
153 | switch (sysctl_sched_tunable_scaling) { | |
154 | case SCHED_TUNABLESCALING_NONE: | |
155 | factor = 1; | |
156 | break; | |
157 | case SCHED_TUNABLESCALING_LINEAR: | |
158 | factor = cpus; | |
159 | break; | |
160 | case SCHED_TUNABLESCALING_LOG: | |
161 | default: | |
162 | factor = 1 + ilog2(cpus); | |
163 | break; | |
164 | } | |
165 | ||
166 | return factor; | |
167 | } | |
168 | ||
169 | static void update_sysctl(void) | |
170 | { | |
171 | unsigned int factor = get_update_sysctl_factor(); | |
172 | ||
173 | #define SET_SYSCTL(name) \ | |
174 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
175 | SET_SYSCTL(sched_min_granularity); | |
176 | SET_SYSCTL(sched_latency); | |
177 | SET_SYSCTL(sched_wakeup_granularity); | |
178 | #undef SET_SYSCTL | |
179 | } | |
180 | ||
181 | void sched_init_granularity(void) | |
182 | { | |
183 | update_sysctl(); | |
184 | } | |
185 | ||
9dbdb155 | 186 | #define WMULT_CONST (~0U) |
029632fb PZ |
187 | #define WMULT_SHIFT 32 |
188 | ||
9dbdb155 PZ |
189 | static void __update_inv_weight(struct load_weight *lw) |
190 | { | |
191 | unsigned long w; | |
192 | ||
193 | if (likely(lw->inv_weight)) | |
194 | return; | |
195 | ||
196 | w = scale_load_down(lw->weight); | |
197 | ||
198 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
199 | lw->inv_weight = 1; | |
200 | else if (unlikely(!w)) | |
201 | lw->inv_weight = WMULT_CONST; | |
202 | else | |
203 | lw->inv_weight = WMULT_CONST / w; | |
204 | } | |
029632fb PZ |
205 | |
206 | /* | |
9dbdb155 PZ |
207 | * delta_exec * weight / lw.weight |
208 | * OR | |
209 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | |
210 | * | |
1c3de5e1 | 211 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
9dbdb155 PZ |
212 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
213 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | |
214 | * | |
215 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | |
216 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | |
029632fb | 217 | */ |
9dbdb155 | 218 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
029632fb | 219 | { |
9dbdb155 PZ |
220 | u64 fact = scale_load_down(weight); |
221 | int shift = WMULT_SHIFT; | |
029632fb | 222 | |
9dbdb155 | 223 | __update_inv_weight(lw); |
029632fb | 224 | |
9dbdb155 PZ |
225 | if (unlikely(fact >> 32)) { |
226 | while (fact >> 32) { | |
227 | fact >>= 1; | |
228 | shift--; | |
229 | } | |
029632fb PZ |
230 | } |
231 | ||
2eeb01a2 | 232 | fact = mul_u32_u32(fact, lw->inv_weight); |
029632fb | 233 | |
9dbdb155 PZ |
234 | while (fact >> 32) { |
235 | fact >>= 1; | |
236 | shift--; | |
237 | } | |
029632fb | 238 | |
9dbdb155 | 239 | return mul_u64_u32_shr(delta_exec, fact, shift); |
029632fb PZ |
240 | } |
241 | ||
242 | ||
243 | const struct sched_class fair_sched_class; | |
a4c2f00f | 244 | |
bf0f6f24 IM |
245 | /************************************************************** |
246 | * CFS operations on generic schedulable entities: | |
247 | */ | |
248 | ||
62160e3f | 249 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8f48894f PZ |
250 | static inline struct task_struct *task_of(struct sched_entity *se) |
251 | { | |
9148a3a1 | 252 | SCHED_WARN_ON(!entity_is_task(se)); |
8f48894f PZ |
253 | return container_of(se, struct task_struct, se); |
254 | } | |
255 | ||
b758149c PZ |
256 | /* Walk up scheduling entities hierarchy */ |
257 | #define for_each_sched_entity(se) \ | |
258 | for (; se; se = se->parent) | |
259 | ||
260 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | |
261 | { | |
262 | return p->se.cfs_rq; | |
263 | } | |
264 | ||
265 | /* runqueue on which this entity is (to be) queued */ | |
266 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | |
267 | { | |
268 | return se->cfs_rq; | |
269 | } | |
270 | ||
271 | /* runqueue "owned" by this group */ | |
272 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
273 | { | |
274 | return grp->my_q; | |
275 | } | |
276 | ||
3c93a0c0 QY |
277 | static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) |
278 | { | |
279 | if (!path) | |
280 | return; | |
281 | ||
282 | if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) | |
283 | autogroup_path(cfs_rq->tg, path, len); | |
284 | else if (cfs_rq && cfs_rq->tg->css.cgroup) | |
285 | cgroup_path(cfs_rq->tg->css.cgroup, path, len); | |
286 | else | |
287 | strlcpy(path, "(null)", len); | |
288 | } | |
289 | ||
f6783319 | 290 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 291 | { |
5d299eab PZ |
292 | struct rq *rq = rq_of(cfs_rq); |
293 | int cpu = cpu_of(rq); | |
294 | ||
295 | if (cfs_rq->on_list) | |
f6783319 | 296 | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; |
5d299eab PZ |
297 | |
298 | cfs_rq->on_list = 1; | |
299 | ||
300 | /* | |
301 | * Ensure we either appear before our parent (if already | |
302 | * enqueued) or force our parent to appear after us when it is | |
303 | * enqueued. The fact that we always enqueue bottom-up | |
304 | * reduces this to two cases and a special case for the root | |
305 | * cfs_rq. Furthermore, it also means that we will always reset | |
306 | * tmp_alone_branch either when the branch is connected | |
307 | * to a tree or when we reach the top of the tree | |
308 | */ | |
309 | if (cfs_rq->tg->parent && | |
310 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { | |
67e86250 | 311 | /* |
5d299eab PZ |
312 | * If parent is already on the list, we add the child |
313 | * just before. Thanks to circular linked property of | |
314 | * the list, this means to put the child at the tail | |
315 | * of the list that starts by parent. | |
67e86250 | 316 | */ |
5d299eab PZ |
317 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
318 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | |
319 | /* | |
320 | * The branch is now connected to its tree so we can | |
321 | * reset tmp_alone_branch to the beginning of the | |
322 | * list. | |
323 | */ | |
324 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 325 | return true; |
5d299eab | 326 | } |
3d4b47b4 | 327 | |
5d299eab PZ |
328 | if (!cfs_rq->tg->parent) { |
329 | /* | |
330 | * cfs rq without parent should be put | |
331 | * at the tail of the list. | |
332 | */ | |
333 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | |
334 | &rq->leaf_cfs_rq_list); | |
335 | /* | |
336 | * We have reach the top of a tree so we can reset | |
337 | * tmp_alone_branch to the beginning of the list. | |
338 | */ | |
339 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 340 | return true; |
3d4b47b4 | 341 | } |
5d299eab PZ |
342 | |
343 | /* | |
344 | * The parent has not already been added so we want to | |
345 | * make sure that it will be put after us. | |
346 | * tmp_alone_branch points to the begin of the branch | |
347 | * where we will add parent. | |
348 | */ | |
349 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); | |
350 | /* | |
351 | * update tmp_alone_branch to points to the new begin | |
352 | * of the branch | |
353 | */ | |
354 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | |
f6783319 | 355 | return false; |
3d4b47b4 PZ |
356 | } |
357 | ||
358 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
359 | { | |
360 | if (cfs_rq->on_list) { | |
31bc6aea VG |
361 | struct rq *rq = rq_of(cfs_rq); |
362 | ||
363 | /* | |
364 | * With cfs_rq being unthrottled/throttled during an enqueue, | |
365 | * it can happen the tmp_alone_branch points the a leaf that | |
366 | * we finally want to del. In this case, tmp_alone_branch moves | |
367 | * to the prev element but it will point to rq->leaf_cfs_rq_list | |
368 | * at the end of the enqueue. | |
369 | */ | |
370 | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) | |
371 | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; | |
372 | ||
3d4b47b4 PZ |
373 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
374 | cfs_rq->on_list = 0; | |
375 | } | |
376 | } | |
377 | ||
5d299eab PZ |
378 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
379 | { | |
380 | SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); | |
381 | } | |
382 | ||
039ae8bc VG |
383 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
384 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ | |
385 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ | |
386 | leaf_cfs_rq_list) | |
b758149c PZ |
387 | |
388 | /* Do the two (enqueued) entities belong to the same group ? */ | |
fed14d45 | 389 | static inline struct cfs_rq * |
b758149c PZ |
390 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
391 | { | |
392 | if (se->cfs_rq == pse->cfs_rq) | |
fed14d45 | 393 | return se->cfs_rq; |
b758149c | 394 | |
fed14d45 | 395 | return NULL; |
b758149c PZ |
396 | } |
397 | ||
398 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | |
399 | { | |
400 | return se->parent; | |
401 | } | |
402 | ||
464b7527 PZ |
403 | static void |
404 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
405 | { | |
406 | int se_depth, pse_depth; | |
407 | ||
408 | /* | |
409 | * preemption test can be made between sibling entities who are in the | |
410 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
411 | * both tasks until we find their ancestors who are siblings of common | |
412 | * parent. | |
413 | */ | |
414 | ||
415 | /* First walk up until both entities are at same depth */ | |
fed14d45 PZ |
416 | se_depth = (*se)->depth; |
417 | pse_depth = (*pse)->depth; | |
464b7527 PZ |
418 | |
419 | while (se_depth > pse_depth) { | |
420 | se_depth--; | |
421 | *se = parent_entity(*se); | |
422 | } | |
423 | ||
424 | while (pse_depth > se_depth) { | |
425 | pse_depth--; | |
426 | *pse = parent_entity(*pse); | |
427 | } | |
428 | ||
429 | while (!is_same_group(*se, *pse)) { | |
430 | *se = parent_entity(*se); | |
431 | *pse = parent_entity(*pse); | |
432 | } | |
433 | } | |
434 | ||
8f48894f PZ |
435 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
436 | ||
437 | static inline struct task_struct *task_of(struct sched_entity *se) | |
438 | { | |
439 | return container_of(se, struct task_struct, se); | |
440 | } | |
bf0f6f24 | 441 | |
b758149c PZ |
442 | #define for_each_sched_entity(se) \ |
443 | for (; se; se = NULL) | |
bf0f6f24 | 444 | |
b758149c | 445 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
bf0f6f24 | 446 | { |
b758149c | 447 | return &task_rq(p)->cfs; |
bf0f6f24 IM |
448 | } |
449 | ||
b758149c PZ |
450 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
451 | { | |
452 | struct task_struct *p = task_of(se); | |
453 | struct rq *rq = task_rq(p); | |
454 | ||
455 | return &rq->cfs; | |
456 | } | |
457 | ||
458 | /* runqueue "owned" by this group */ | |
459 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
460 | { | |
461 | return NULL; | |
462 | } | |
463 | ||
3c93a0c0 QY |
464 | static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) |
465 | { | |
466 | if (path) | |
467 | strlcpy(path, "(null)", len); | |
468 | } | |
469 | ||
f6783319 | 470 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 471 | { |
f6783319 | 472 | return true; |
3d4b47b4 PZ |
473 | } |
474 | ||
475 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
476 | { | |
477 | } | |
478 | ||
5d299eab PZ |
479 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
480 | { | |
481 | } | |
482 | ||
039ae8bc VG |
483 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
484 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | |
b758149c | 485 | |
b758149c PZ |
486 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
487 | { | |
488 | return NULL; | |
489 | } | |
490 | ||
464b7527 PZ |
491 | static inline void |
492 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
493 | { | |
494 | } | |
495 | ||
b758149c PZ |
496 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
497 | ||
6c16a6dc | 498 | static __always_inline |
9dbdb155 | 499 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
bf0f6f24 IM |
500 | |
501 | /************************************************************** | |
502 | * Scheduling class tree data structure manipulation methods: | |
503 | */ | |
504 | ||
1bf08230 | 505 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
02e0431a | 506 | { |
1bf08230 | 507 | s64 delta = (s64)(vruntime - max_vruntime); |
368059a9 | 508 | if (delta > 0) |
1bf08230 | 509 | max_vruntime = vruntime; |
02e0431a | 510 | |
1bf08230 | 511 | return max_vruntime; |
02e0431a PZ |
512 | } |
513 | ||
0702e3eb | 514 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
515 | { |
516 | s64 delta = (s64)(vruntime - min_vruntime); | |
517 | if (delta < 0) | |
518 | min_vruntime = vruntime; | |
519 | ||
520 | return min_vruntime; | |
521 | } | |
522 | ||
54fdc581 FC |
523 | static inline int entity_before(struct sched_entity *a, |
524 | struct sched_entity *b) | |
525 | { | |
526 | return (s64)(a->vruntime - b->vruntime) < 0; | |
527 | } | |
528 | ||
1af5f730 PZ |
529 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
530 | { | |
b60205c7 | 531 | struct sched_entity *curr = cfs_rq->curr; |
bfb06889 | 532 | struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); |
b60205c7 | 533 | |
1af5f730 PZ |
534 | u64 vruntime = cfs_rq->min_vruntime; |
535 | ||
b60205c7 PZ |
536 | if (curr) { |
537 | if (curr->on_rq) | |
538 | vruntime = curr->vruntime; | |
539 | else | |
540 | curr = NULL; | |
541 | } | |
1af5f730 | 542 | |
bfb06889 DB |
543 | if (leftmost) { /* non-empty tree */ |
544 | struct sched_entity *se; | |
545 | se = rb_entry(leftmost, struct sched_entity, run_node); | |
1af5f730 | 546 | |
b60205c7 | 547 | if (!curr) |
1af5f730 PZ |
548 | vruntime = se->vruntime; |
549 | else | |
550 | vruntime = min_vruntime(vruntime, se->vruntime); | |
551 | } | |
552 | ||
1bf08230 | 553 | /* ensure we never gain time by being placed backwards. */ |
1af5f730 | 554 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
3fe1698b PZ |
555 | #ifndef CONFIG_64BIT |
556 | smp_wmb(); | |
557 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
558 | #endif | |
1af5f730 PZ |
559 | } |
560 | ||
bf0f6f24 IM |
561 | /* |
562 | * Enqueue an entity into the rb-tree: | |
563 | */ | |
0702e3eb | 564 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 565 | { |
bfb06889 | 566 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; |
bf0f6f24 IM |
567 | struct rb_node *parent = NULL; |
568 | struct sched_entity *entry; | |
bfb06889 | 569 | bool leftmost = true; |
bf0f6f24 IM |
570 | |
571 | /* | |
572 | * Find the right place in the rbtree: | |
573 | */ | |
574 | while (*link) { | |
575 | parent = *link; | |
576 | entry = rb_entry(parent, struct sched_entity, run_node); | |
577 | /* | |
578 | * We dont care about collisions. Nodes with | |
579 | * the same key stay together. | |
580 | */ | |
2bd2d6f2 | 581 | if (entity_before(se, entry)) { |
bf0f6f24 IM |
582 | link = &parent->rb_left; |
583 | } else { | |
584 | link = &parent->rb_right; | |
bfb06889 | 585 | leftmost = false; |
bf0f6f24 IM |
586 | } |
587 | } | |
588 | ||
bf0f6f24 | 589 | rb_link_node(&se->run_node, parent, link); |
bfb06889 DB |
590 | rb_insert_color_cached(&se->run_node, |
591 | &cfs_rq->tasks_timeline, leftmost); | |
bf0f6f24 IM |
592 | } |
593 | ||
0702e3eb | 594 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 595 | { |
bfb06889 | 596 | rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); |
bf0f6f24 IM |
597 | } |
598 | ||
029632fb | 599 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
bf0f6f24 | 600 | { |
bfb06889 | 601 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); |
f4b6755f PZ |
602 | |
603 | if (!left) | |
604 | return NULL; | |
605 | ||
606 | return rb_entry(left, struct sched_entity, run_node); | |
bf0f6f24 IM |
607 | } |
608 | ||
ac53db59 RR |
609 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) |
610 | { | |
611 | struct rb_node *next = rb_next(&se->run_node); | |
612 | ||
613 | if (!next) | |
614 | return NULL; | |
615 | ||
616 | return rb_entry(next, struct sched_entity, run_node); | |
617 | } | |
618 | ||
619 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 620 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 621 | { |
bfb06889 | 622 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); |
aeb73b04 | 623 | |
70eee74b BS |
624 | if (!last) |
625 | return NULL; | |
7eee3e67 IM |
626 | |
627 | return rb_entry(last, struct sched_entity, run_node); | |
aeb73b04 PZ |
628 | } |
629 | ||
bf0f6f24 IM |
630 | /************************************************************** |
631 | * Scheduling class statistics methods: | |
632 | */ | |
633 | ||
acb4a848 | 634 | int sched_proc_update_handler(struct ctl_table *table, int write, |
8d65af78 | 635 | void __user *buffer, size_t *lenp, |
b2be5e96 PZ |
636 | loff_t *ppos) |
637 | { | |
8d65af78 | 638 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
58ac93e4 | 639 | unsigned int factor = get_update_sysctl_factor(); |
b2be5e96 PZ |
640 | |
641 | if (ret || !write) | |
642 | return ret; | |
643 | ||
644 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | |
645 | sysctl_sched_min_granularity); | |
646 | ||
acb4a848 CE |
647 | #define WRT_SYSCTL(name) \ |
648 | (normalized_sysctl_##name = sysctl_##name / (factor)) | |
649 | WRT_SYSCTL(sched_min_granularity); | |
650 | WRT_SYSCTL(sched_latency); | |
651 | WRT_SYSCTL(sched_wakeup_granularity); | |
acb4a848 CE |
652 | #undef WRT_SYSCTL |
653 | ||
b2be5e96 PZ |
654 | return 0; |
655 | } | |
656 | #endif | |
647e7cac | 657 | |
a7be37ac | 658 | /* |
f9c0b095 | 659 | * delta /= w |
a7be37ac | 660 | */ |
9dbdb155 | 661 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) |
a7be37ac | 662 | { |
f9c0b095 | 663 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
9dbdb155 | 664 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); |
a7be37ac PZ |
665 | |
666 | return delta; | |
667 | } | |
668 | ||
647e7cac IM |
669 | /* |
670 | * The idea is to set a period in which each task runs once. | |
671 | * | |
532b1858 | 672 | * When there are too many tasks (sched_nr_latency) we have to stretch |
647e7cac IM |
673 | * this period because otherwise the slices get too small. |
674 | * | |
675 | * p = (nr <= nl) ? l : l*nr/nl | |
676 | */ | |
4d78e7b6 PZ |
677 | static u64 __sched_period(unsigned long nr_running) |
678 | { | |
8e2b0bf3 BF |
679 | if (unlikely(nr_running > sched_nr_latency)) |
680 | return nr_running * sysctl_sched_min_granularity; | |
681 | else | |
682 | return sysctl_sched_latency; | |
4d78e7b6 PZ |
683 | } |
684 | ||
647e7cac IM |
685 | /* |
686 | * We calculate the wall-time slice from the period by taking a part | |
687 | * proportional to the weight. | |
688 | * | |
f9c0b095 | 689 | * s = p*P[w/rw] |
647e7cac | 690 | */ |
6d0f0ebd | 691 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 692 | { |
0a582440 | 693 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
f9c0b095 | 694 | |
0a582440 | 695 | for_each_sched_entity(se) { |
6272d68c | 696 | struct load_weight *load; |
3104bf03 | 697 | struct load_weight lw; |
6272d68c LM |
698 | |
699 | cfs_rq = cfs_rq_of(se); | |
700 | load = &cfs_rq->load; | |
f9c0b095 | 701 | |
0a582440 | 702 | if (unlikely(!se->on_rq)) { |
3104bf03 | 703 | lw = cfs_rq->load; |
0a582440 MG |
704 | |
705 | update_load_add(&lw, se->load.weight); | |
706 | load = &lw; | |
707 | } | |
9dbdb155 | 708 | slice = __calc_delta(slice, se->load.weight, load); |
0a582440 MG |
709 | } |
710 | return slice; | |
bf0f6f24 IM |
711 | } |
712 | ||
647e7cac | 713 | /* |
660cc00f | 714 | * We calculate the vruntime slice of a to-be-inserted task. |
647e7cac | 715 | * |
f9c0b095 | 716 | * vs = s/w |
647e7cac | 717 | */ |
f9c0b095 | 718 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
67e9fb2a | 719 | { |
f9c0b095 | 720 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
a7be37ac PZ |
721 | } |
722 | ||
c0796298 | 723 | #include "pelt.h" |
23127296 | 724 | #ifdef CONFIG_SMP |
283e2ed3 | 725 | |
772bd008 | 726 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
fb13c7ee | 727 | static unsigned long task_h_load(struct task_struct *p); |
3b1baa64 | 728 | static unsigned long capacity_of(int cpu); |
fb13c7ee | 729 | |
540247fb YD |
730 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
731 | void init_entity_runnable_average(struct sched_entity *se) | |
a75cdaa9 | 732 | { |
540247fb | 733 | struct sched_avg *sa = &se->avg; |
a75cdaa9 | 734 | |
f207934f PZ |
735 | memset(sa, 0, sizeof(*sa)); |
736 | ||
b5a9b340 | 737 | /* |
dfcb245e | 738 | * Tasks are initialized with full load to be seen as heavy tasks until |
b5a9b340 | 739 | * they get a chance to stabilize to their real load level. |
dfcb245e | 740 | * Group entities are initialized with zero load to reflect the fact that |
b5a9b340 VG |
741 | * nothing has been attached to the task group yet. |
742 | */ | |
743 | if (entity_is_task(se)) | |
1ea6c46a | 744 | sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); |
1ea6c46a | 745 | |
f207934f PZ |
746 | se->runnable_weight = se->load.weight; |
747 | ||
9d89c257 | 748 | /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ |
a75cdaa9 | 749 | } |
7ea241af | 750 | |
df217913 | 751 | static void attach_entity_cfs_rq(struct sched_entity *se); |
7dc603c9 | 752 | |
2b8c41da YD |
753 | /* |
754 | * With new tasks being created, their initial util_avgs are extrapolated | |
755 | * based on the cfs_rq's current util_avg: | |
756 | * | |
757 | * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight | |
758 | * | |
759 | * However, in many cases, the above util_avg does not give a desired | |
760 | * value. Moreover, the sum of the util_avgs may be divergent, such | |
761 | * as when the series is a harmonic series. | |
762 | * | |
763 | * To solve this problem, we also cap the util_avg of successive tasks to | |
764 | * only 1/2 of the left utilization budget: | |
765 | * | |
8fe5c5a9 | 766 | * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n |
2b8c41da | 767 | * |
8fe5c5a9 | 768 | * where n denotes the nth task and cpu_scale the CPU capacity. |
2b8c41da | 769 | * |
8fe5c5a9 QP |
770 | * For example, for a CPU with 1024 of capacity, a simplest series from |
771 | * the beginning would be like: | |
2b8c41da YD |
772 | * |
773 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... | |
774 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | |
775 | * | |
776 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | |
777 | * if util_avg > util_avg_cap. | |
778 | */ | |
d0fe0b9c | 779 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da | 780 | { |
d0fe0b9c | 781 | struct sched_entity *se = &p->se; |
2b8c41da YD |
782 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
783 | struct sched_avg *sa = &se->avg; | |
8ec59c0f | 784 | long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); |
8fe5c5a9 | 785 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; |
2b8c41da YD |
786 | |
787 | if (cap > 0) { | |
788 | if (cfs_rq->avg.util_avg != 0) { | |
789 | sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; | |
790 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | |
791 | ||
792 | if (sa->util_avg > cap) | |
793 | sa->util_avg = cap; | |
794 | } else { | |
795 | sa->util_avg = cap; | |
796 | } | |
2b8c41da | 797 | } |
7dc603c9 | 798 | |
d0fe0b9c DE |
799 | if (p->sched_class != &fair_sched_class) { |
800 | /* | |
801 | * For !fair tasks do: | |
802 | * | |
803 | update_cfs_rq_load_avg(now, cfs_rq); | |
804 | attach_entity_load_avg(cfs_rq, se, 0); | |
805 | switched_from_fair(rq, p); | |
806 | * | |
807 | * such that the next switched_to_fair() has the | |
808 | * expected state. | |
809 | */ | |
810 | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); | |
811 | return; | |
7dc603c9 PZ |
812 | } |
813 | ||
df217913 | 814 | attach_entity_cfs_rq(se); |
2b8c41da YD |
815 | } |
816 | ||
7dc603c9 | 817 | #else /* !CONFIG_SMP */ |
540247fb | 818 | void init_entity_runnable_average(struct sched_entity *se) |
a75cdaa9 AS |
819 | { |
820 | } | |
d0fe0b9c | 821 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da YD |
822 | { |
823 | } | |
3d30544f PZ |
824 | static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
825 | { | |
826 | } | |
7dc603c9 | 827 | #endif /* CONFIG_SMP */ |
a75cdaa9 | 828 | |
bf0f6f24 | 829 | /* |
9dbdb155 | 830 | * Update the current task's runtime statistics. |
bf0f6f24 | 831 | */ |
b7cc0896 | 832 | static void update_curr(struct cfs_rq *cfs_rq) |
bf0f6f24 | 833 | { |
429d43bc | 834 | struct sched_entity *curr = cfs_rq->curr; |
78becc27 | 835 | u64 now = rq_clock_task(rq_of(cfs_rq)); |
9dbdb155 | 836 | u64 delta_exec; |
bf0f6f24 IM |
837 | |
838 | if (unlikely(!curr)) | |
839 | return; | |
840 | ||
9dbdb155 PZ |
841 | delta_exec = now - curr->exec_start; |
842 | if (unlikely((s64)delta_exec <= 0)) | |
34f28ecd | 843 | return; |
bf0f6f24 | 844 | |
8ebc91d9 | 845 | curr->exec_start = now; |
d842de87 | 846 | |
9dbdb155 PZ |
847 | schedstat_set(curr->statistics.exec_max, |
848 | max(delta_exec, curr->statistics.exec_max)); | |
849 | ||
850 | curr->sum_exec_runtime += delta_exec; | |
ae92882e | 851 | schedstat_add(cfs_rq->exec_clock, delta_exec); |
9dbdb155 PZ |
852 | |
853 | curr->vruntime += calc_delta_fair(delta_exec, curr); | |
854 | update_min_vruntime(cfs_rq); | |
855 | ||
d842de87 SV |
856 | if (entity_is_task(curr)) { |
857 | struct task_struct *curtask = task_of(curr); | |
858 | ||
f977bb49 | 859 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); |
d2cc5ed6 | 860 | cgroup_account_cputime(curtask, delta_exec); |
f06febc9 | 861 | account_group_exec_runtime(curtask, delta_exec); |
d842de87 | 862 | } |
ec12cb7f PT |
863 | |
864 | account_cfs_rq_runtime(cfs_rq, delta_exec); | |
bf0f6f24 IM |
865 | } |
866 | ||
6e998916 SG |
867 | static void update_curr_fair(struct rq *rq) |
868 | { | |
869 | update_curr(cfs_rq_of(&rq->curr->se)); | |
870 | } | |
871 | ||
bf0f6f24 | 872 | static inline void |
5870db5b | 873 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 874 | { |
4fa8d299 JP |
875 | u64 wait_start, prev_wait_start; |
876 | ||
877 | if (!schedstat_enabled()) | |
878 | return; | |
879 | ||
880 | wait_start = rq_clock(rq_of(cfs_rq)); | |
881 | prev_wait_start = schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
882 | |
883 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && | |
4fa8d299 JP |
884 | likely(wait_start > prev_wait_start)) |
885 | wait_start -= prev_wait_start; | |
3ea94de1 | 886 | |
2ed41a55 | 887 | __schedstat_set(se->statistics.wait_start, wait_start); |
bf0f6f24 IM |
888 | } |
889 | ||
4fa8d299 | 890 | static inline void |
3ea94de1 JP |
891 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
892 | { | |
893 | struct task_struct *p; | |
cb251765 MG |
894 | u64 delta; |
895 | ||
4fa8d299 JP |
896 | if (!schedstat_enabled()) |
897 | return; | |
898 | ||
899 | delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
900 | |
901 | if (entity_is_task(se)) { | |
902 | p = task_of(se); | |
903 | if (task_on_rq_migrating(p)) { | |
904 | /* | |
905 | * Preserve migrating task's wait time so wait_start | |
906 | * time stamp can be adjusted to accumulate wait time | |
907 | * prior to migration. | |
908 | */ | |
2ed41a55 | 909 | __schedstat_set(se->statistics.wait_start, delta); |
3ea94de1 JP |
910 | return; |
911 | } | |
912 | trace_sched_stat_wait(p, delta); | |
913 | } | |
914 | ||
2ed41a55 | 915 | __schedstat_set(se->statistics.wait_max, |
4fa8d299 | 916 | max(schedstat_val(se->statistics.wait_max), delta)); |
2ed41a55 PZ |
917 | __schedstat_inc(se->statistics.wait_count); |
918 | __schedstat_add(se->statistics.wait_sum, delta); | |
919 | __schedstat_set(se->statistics.wait_start, 0); | |
3ea94de1 | 920 | } |
3ea94de1 | 921 | |
4fa8d299 | 922 | static inline void |
1a3d027c JP |
923 | update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
924 | { | |
925 | struct task_struct *tsk = NULL; | |
4fa8d299 JP |
926 | u64 sleep_start, block_start; |
927 | ||
928 | if (!schedstat_enabled()) | |
929 | return; | |
930 | ||
931 | sleep_start = schedstat_val(se->statistics.sleep_start); | |
932 | block_start = schedstat_val(se->statistics.block_start); | |
1a3d027c JP |
933 | |
934 | if (entity_is_task(se)) | |
935 | tsk = task_of(se); | |
936 | ||
4fa8d299 JP |
937 | if (sleep_start) { |
938 | u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; | |
1a3d027c JP |
939 | |
940 | if ((s64)delta < 0) | |
941 | delta = 0; | |
942 | ||
4fa8d299 | 943 | if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) |
2ed41a55 | 944 | __schedstat_set(se->statistics.sleep_max, delta); |
1a3d027c | 945 | |
2ed41a55 PZ |
946 | __schedstat_set(se->statistics.sleep_start, 0); |
947 | __schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
948 | |
949 | if (tsk) { | |
950 | account_scheduler_latency(tsk, delta >> 10, 1); | |
951 | trace_sched_stat_sleep(tsk, delta); | |
952 | } | |
953 | } | |
4fa8d299 JP |
954 | if (block_start) { |
955 | u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; | |
1a3d027c JP |
956 | |
957 | if ((s64)delta < 0) | |
958 | delta = 0; | |
959 | ||
4fa8d299 | 960 | if (unlikely(delta > schedstat_val(se->statistics.block_max))) |
2ed41a55 | 961 | __schedstat_set(se->statistics.block_max, delta); |
1a3d027c | 962 | |
2ed41a55 PZ |
963 | __schedstat_set(se->statistics.block_start, 0); |
964 | __schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
965 | |
966 | if (tsk) { | |
967 | if (tsk->in_iowait) { | |
2ed41a55 PZ |
968 | __schedstat_add(se->statistics.iowait_sum, delta); |
969 | __schedstat_inc(se->statistics.iowait_count); | |
1a3d027c JP |
970 | trace_sched_stat_iowait(tsk, delta); |
971 | } | |
972 | ||
973 | trace_sched_stat_blocked(tsk, delta); | |
974 | ||
975 | /* | |
976 | * Blocking time is in units of nanosecs, so shift by | |
977 | * 20 to get a milliseconds-range estimation of the | |
978 | * amount of time that the task spent sleeping: | |
979 | */ | |
980 | if (unlikely(prof_on == SLEEP_PROFILING)) { | |
981 | profile_hits(SLEEP_PROFILING, | |
982 | (void *)get_wchan(tsk), | |
983 | delta >> 20); | |
984 | } | |
985 | account_scheduler_latency(tsk, delta >> 10, 0); | |
986 | } | |
987 | } | |
3ea94de1 | 988 | } |
3ea94de1 | 989 | |
bf0f6f24 IM |
990 | /* |
991 | * Task is being enqueued - update stats: | |
992 | */ | |
cb251765 | 993 | static inline void |
1a3d027c | 994 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 995 | { |
4fa8d299 JP |
996 | if (!schedstat_enabled()) |
997 | return; | |
998 | ||
bf0f6f24 IM |
999 | /* |
1000 | * Are we enqueueing a waiting task? (for current tasks | |
1001 | * a dequeue/enqueue event is a NOP) | |
1002 | */ | |
429d43bc | 1003 | if (se != cfs_rq->curr) |
5870db5b | 1004 | update_stats_wait_start(cfs_rq, se); |
1a3d027c JP |
1005 | |
1006 | if (flags & ENQUEUE_WAKEUP) | |
1007 | update_stats_enqueue_sleeper(cfs_rq, se); | |
bf0f6f24 IM |
1008 | } |
1009 | ||
bf0f6f24 | 1010 | static inline void |
cb251765 | 1011 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1012 | { |
4fa8d299 JP |
1013 | |
1014 | if (!schedstat_enabled()) | |
1015 | return; | |
1016 | ||
bf0f6f24 IM |
1017 | /* |
1018 | * Mark the end of the wait period if dequeueing a | |
1019 | * waiting task: | |
1020 | */ | |
429d43bc | 1021 | if (se != cfs_rq->curr) |
9ef0a961 | 1022 | update_stats_wait_end(cfs_rq, se); |
cb251765 | 1023 | |
4fa8d299 JP |
1024 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
1025 | struct task_struct *tsk = task_of(se); | |
cb251765 | 1026 | |
4fa8d299 | 1027 | if (tsk->state & TASK_INTERRUPTIBLE) |
2ed41a55 | 1028 | __schedstat_set(se->statistics.sleep_start, |
4fa8d299 JP |
1029 | rq_clock(rq_of(cfs_rq))); |
1030 | if (tsk->state & TASK_UNINTERRUPTIBLE) | |
2ed41a55 | 1031 | __schedstat_set(se->statistics.block_start, |
4fa8d299 | 1032 | rq_clock(rq_of(cfs_rq))); |
cb251765 | 1033 | } |
cb251765 MG |
1034 | } |
1035 | ||
bf0f6f24 IM |
1036 | /* |
1037 | * We are picking a new current task - update its stats: | |
1038 | */ | |
1039 | static inline void | |
79303e9e | 1040 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
1041 | { |
1042 | /* | |
1043 | * We are starting a new run period: | |
1044 | */ | |
78becc27 | 1045 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
bf0f6f24 IM |
1046 | } |
1047 | ||
bf0f6f24 IM |
1048 | /************************************************** |
1049 | * Scheduling class queueing methods: | |
1050 | */ | |
1051 | ||
cbee9f88 PZ |
1052 | #ifdef CONFIG_NUMA_BALANCING |
1053 | /* | |
598f0ec0 MG |
1054 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
1055 | * calculated based on the tasks virtual memory size and | |
1056 | * numa_balancing_scan_size. | |
cbee9f88 | 1057 | */ |
598f0ec0 MG |
1058 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
1059 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | |
6e5fb223 PZ |
1060 | |
1061 | /* Portion of address space to scan in MB */ | |
1062 | unsigned int sysctl_numa_balancing_scan_size = 256; | |
cbee9f88 | 1063 | |
4b96a29b PZ |
1064 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
1065 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | |
1066 | ||
b5dd77c8 | 1067 | struct numa_group { |
c45a7795 | 1068 | refcount_t refcount; |
b5dd77c8 RR |
1069 | |
1070 | spinlock_t lock; /* nr_tasks, tasks */ | |
1071 | int nr_tasks; | |
1072 | pid_t gid; | |
1073 | int active_nodes; | |
1074 | ||
1075 | struct rcu_head rcu; | |
1076 | unsigned long total_faults; | |
1077 | unsigned long max_faults_cpu; | |
1078 | /* | |
1079 | * Faults_cpu is used to decide whether memory should move | |
1080 | * towards the CPU. As a consequence, these stats are weighted | |
1081 | * more by CPU use than by memory faults. | |
1082 | */ | |
1083 | unsigned long *faults_cpu; | |
1084 | unsigned long faults[0]; | |
1085 | }; | |
1086 | ||
cb361d8c JH |
1087 | /* |
1088 | * For functions that can be called in multiple contexts that permit reading | |
1089 | * ->numa_group (see struct task_struct for locking rules). | |
1090 | */ | |
1091 | static struct numa_group *deref_task_numa_group(struct task_struct *p) | |
1092 | { | |
1093 | return rcu_dereference_check(p->numa_group, p == current || | |
1094 | (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); | |
1095 | } | |
1096 | ||
1097 | static struct numa_group *deref_curr_numa_group(struct task_struct *p) | |
1098 | { | |
1099 | return rcu_dereference_protected(p->numa_group, p == current); | |
1100 | } | |
1101 | ||
b5dd77c8 RR |
1102 | static inline unsigned long group_faults_priv(struct numa_group *ng); |
1103 | static inline unsigned long group_faults_shared(struct numa_group *ng); | |
1104 | ||
598f0ec0 MG |
1105 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
1106 | { | |
1107 | unsigned long rss = 0; | |
1108 | unsigned long nr_scan_pages; | |
1109 | ||
1110 | /* | |
1111 | * Calculations based on RSS as non-present and empty pages are skipped | |
1112 | * by the PTE scanner and NUMA hinting faults should be trapped based | |
1113 | * on resident pages | |
1114 | */ | |
1115 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | |
1116 | rss = get_mm_rss(p->mm); | |
1117 | if (!rss) | |
1118 | rss = nr_scan_pages; | |
1119 | ||
1120 | rss = round_up(rss, nr_scan_pages); | |
1121 | return rss / nr_scan_pages; | |
1122 | } | |
1123 | ||
1124 | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | |
1125 | #define MAX_SCAN_WINDOW 2560 | |
1126 | ||
1127 | static unsigned int task_scan_min(struct task_struct *p) | |
1128 | { | |
316c1608 | 1129 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
598f0ec0 MG |
1130 | unsigned int scan, floor; |
1131 | unsigned int windows = 1; | |
1132 | ||
64192658 KT |
1133 | if (scan_size < MAX_SCAN_WINDOW) |
1134 | windows = MAX_SCAN_WINDOW / scan_size; | |
598f0ec0 MG |
1135 | floor = 1000 / windows; |
1136 | ||
1137 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | |
1138 | return max_t(unsigned int, floor, scan); | |
1139 | } | |
1140 | ||
b5dd77c8 RR |
1141 | static unsigned int task_scan_start(struct task_struct *p) |
1142 | { | |
1143 | unsigned long smin = task_scan_min(p); | |
1144 | unsigned long period = smin; | |
cb361d8c | 1145 | struct numa_group *ng; |
b5dd77c8 RR |
1146 | |
1147 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1148 | rcu_read_lock(); |
1149 | ng = rcu_dereference(p->numa_group); | |
1150 | if (ng) { | |
b5dd77c8 RR |
1151 | unsigned long shared = group_faults_shared(ng); |
1152 | unsigned long private = group_faults_priv(ng); | |
1153 | ||
c45a7795 | 1154 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1155 | period *= shared + 1; |
1156 | period /= private + shared + 1; | |
1157 | } | |
cb361d8c | 1158 | rcu_read_unlock(); |
b5dd77c8 RR |
1159 | |
1160 | return max(smin, period); | |
1161 | } | |
1162 | ||
598f0ec0 MG |
1163 | static unsigned int task_scan_max(struct task_struct *p) |
1164 | { | |
b5dd77c8 RR |
1165 | unsigned long smin = task_scan_min(p); |
1166 | unsigned long smax; | |
cb361d8c | 1167 | struct numa_group *ng; |
598f0ec0 MG |
1168 | |
1169 | /* Watch for min being lower than max due to floor calculations */ | |
1170 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | |
b5dd77c8 RR |
1171 | |
1172 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1173 | ng = deref_curr_numa_group(p); |
1174 | if (ng) { | |
b5dd77c8 RR |
1175 | unsigned long shared = group_faults_shared(ng); |
1176 | unsigned long private = group_faults_priv(ng); | |
1177 | unsigned long period = smax; | |
1178 | ||
c45a7795 | 1179 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1180 | period *= shared + 1; |
1181 | period /= private + shared + 1; | |
1182 | ||
1183 | smax = max(smax, period); | |
1184 | } | |
1185 | ||
598f0ec0 MG |
1186 | return max(smin, smax); |
1187 | } | |
1188 | ||
0ec8aa00 PZ |
1189 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
1190 | { | |
98fa15f3 | 1191 | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1192 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); |
1193 | } | |
1194 | ||
1195 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
1196 | { | |
98fa15f3 | 1197 | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1198 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); |
1199 | } | |
1200 | ||
be1e4e76 RR |
1201 | /* Shared or private faults. */ |
1202 | #define NR_NUMA_HINT_FAULT_TYPES 2 | |
1203 | ||
1204 | /* Memory and CPU locality */ | |
1205 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | |
1206 | ||
1207 | /* Averaged statistics, and temporary buffers. */ | |
1208 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | |
1209 | ||
e29cf08b MG |
1210 | pid_t task_numa_group_id(struct task_struct *p) |
1211 | { | |
cb361d8c JH |
1212 | struct numa_group *ng; |
1213 | pid_t gid = 0; | |
1214 | ||
1215 | rcu_read_lock(); | |
1216 | ng = rcu_dereference(p->numa_group); | |
1217 | if (ng) | |
1218 | gid = ng->gid; | |
1219 | rcu_read_unlock(); | |
1220 | ||
1221 | return gid; | |
e29cf08b MG |
1222 | } |
1223 | ||
44dba3d5 | 1224 | /* |
97fb7a0a | 1225 | * The averaged statistics, shared & private, memory & CPU, |
44dba3d5 IM |
1226 | * occupy the first half of the array. The second half of the |
1227 | * array is for current counters, which are averaged into the | |
1228 | * first set by task_numa_placement. | |
1229 | */ | |
1230 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | |
ac8e895b | 1231 | { |
44dba3d5 | 1232 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
ac8e895b MG |
1233 | } |
1234 | ||
1235 | static inline unsigned long task_faults(struct task_struct *p, int nid) | |
1236 | { | |
44dba3d5 | 1237 | if (!p->numa_faults) |
ac8e895b MG |
1238 | return 0; |
1239 | ||
44dba3d5 IM |
1240 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1241 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
ac8e895b MG |
1242 | } |
1243 | ||
83e1d2cd MG |
1244 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
1245 | { | |
cb361d8c JH |
1246 | struct numa_group *ng = deref_task_numa_group(p); |
1247 | ||
1248 | if (!ng) | |
83e1d2cd MG |
1249 | return 0; |
1250 | ||
cb361d8c JH |
1251 | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1252 | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
83e1d2cd MG |
1253 | } |
1254 | ||
20e07dea RR |
1255 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
1256 | { | |
44dba3d5 IM |
1257 | return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + |
1258 | group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; | |
20e07dea RR |
1259 | } |
1260 | ||
b5dd77c8 RR |
1261 | static inline unsigned long group_faults_priv(struct numa_group *ng) |
1262 | { | |
1263 | unsigned long faults = 0; | |
1264 | int node; | |
1265 | ||
1266 | for_each_online_node(node) { | |
1267 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
1268 | } | |
1269 | ||
1270 | return faults; | |
1271 | } | |
1272 | ||
1273 | static inline unsigned long group_faults_shared(struct numa_group *ng) | |
1274 | { | |
1275 | unsigned long faults = 0; | |
1276 | int node; | |
1277 | ||
1278 | for_each_online_node(node) { | |
1279 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
1280 | } | |
1281 | ||
1282 | return faults; | |
1283 | } | |
1284 | ||
4142c3eb RR |
1285 | /* |
1286 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | |
1287 | * considered part of a numa group's pseudo-interleaving set. Migrations | |
1288 | * between these nodes are slowed down, to allow things to settle down. | |
1289 | */ | |
1290 | #define ACTIVE_NODE_FRACTION 3 | |
1291 | ||
1292 | static bool numa_is_active_node(int nid, struct numa_group *ng) | |
1293 | { | |
1294 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | |
1295 | } | |
1296 | ||
6c6b1193 RR |
1297 | /* Handle placement on systems where not all nodes are directly connected. */ |
1298 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | |
1299 | int maxdist, bool task) | |
1300 | { | |
1301 | unsigned long score = 0; | |
1302 | int node; | |
1303 | ||
1304 | /* | |
1305 | * All nodes are directly connected, and the same distance | |
1306 | * from each other. No need for fancy placement algorithms. | |
1307 | */ | |
1308 | if (sched_numa_topology_type == NUMA_DIRECT) | |
1309 | return 0; | |
1310 | ||
1311 | /* | |
1312 | * This code is called for each node, introducing N^2 complexity, | |
1313 | * which should be ok given the number of nodes rarely exceeds 8. | |
1314 | */ | |
1315 | for_each_online_node(node) { | |
1316 | unsigned long faults; | |
1317 | int dist = node_distance(nid, node); | |
1318 | ||
1319 | /* | |
1320 | * The furthest away nodes in the system are not interesting | |
1321 | * for placement; nid was already counted. | |
1322 | */ | |
1323 | if (dist == sched_max_numa_distance || node == nid) | |
1324 | continue; | |
1325 | ||
1326 | /* | |
1327 | * On systems with a backplane NUMA topology, compare groups | |
1328 | * of nodes, and move tasks towards the group with the most | |
1329 | * memory accesses. When comparing two nodes at distance | |
1330 | * "hoplimit", only nodes closer by than "hoplimit" are part | |
1331 | * of each group. Skip other nodes. | |
1332 | */ | |
1333 | if (sched_numa_topology_type == NUMA_BACKPLANE && | |
0ee7e74d | 1334 | dist >= maxdist) |
6c6b1193 RR |
1335 | continue; |
1336 | ||
1337 | /* Add up the faults from nearby nodes. */ | |
1338 | if (task) | |
1339 | faults = task_faults(p, node); | |
1340 | else | |
1341 | faults = group_faults(p, node); | |
1342 | ||
1343 | /* | |
1344 | * On systems with a glueless mesh NUMA topology, there are | |
1345 | * no fixed "groups of nodes". Instead, nodes that are not | |
1346 | * directly connected bounce traffic through intermediate | |
1347 | * nodes; a numa_group can occupy any set of nodes. | |
1348 | * The further away a node is, the less the faults count. | |
1349 | * This seems to result in good task placement. | |
1350 | */ | |
1351 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
1352 | faults *= (sched_max_numa_distance - dist); | |
1353 | faults /= (sched_max_numa_distance - LOCAL_DISTANCE); | |
1354 | } | |
1355 | ||
1356 | score += faults; | |
1357 | } | |
1358 | ||
1359 | return score; | |
1360 | } | |
1361 | ||
83e1d2cd MG |
1362 | /* |
1363 | * These return the fraction of accesses done by a particular task, or | |
1364 | * task group, on a particular numa node. The group weight is given a | |
1365 | * larger multiplier, in order to group tasks together that are almost | |
1366 | * evenly spread out between numa nodes. | |
1367 | */ | |
7bd95320 RR |
1368 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
1369 | int dist) | |
83e1d2cd | 1370 | { |
7bd95320 | 1371 | unsigned long faults, total_faults; |
83e1d2cd | 1372 | |
44dba3d5 | 1373 | if (!p->numa_faults) |
83e1d2cd MG |
1374 | return 0; |
1375 | ||
1376 | total_faults = p->total_numa_faults; | |
1377 | ||
1378 | if (!total_faults) | |
1379 | return 0; | |
1380 | ||
7bd95320 | 1381 | faults = task_faults(p, nid); |
6c6b1193 RR |
1382 | faults += score_nearby_nodes(p, nid, dist, true); |
1383 | ||
7bd95320 | 1384 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1385 | } |
1386 | ||
7bd95320 RR |
1387 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
1388 | int dist) | |
83e1d2cd | 1389 | { |
cb361d8c | 1390 | struct numa_group *ng = deref_task_numa_group(p); |
7bd95320 RR |
1391 | unsigned long faults, total_faults; |
1392 | ||
cb361d8c | 1393 | if (!ng) |
7bd95320 RR |
1394 | return 0; |
1395 | ||
cb361d8c | 1396 | total_faults = ng->total_faults; |
7bd95320 RR |
1397 | |
1398 | if (!total_faults) | |
83e1d2cd MG |
1399 | return 0; |
1400 | ||
7bd95320 | 1401 | faults = group_faults(p, nid); |
6c6b1193 RR |
1402 | faults += score_nearby_nodes(p, nid, dist, false); |
1403 | ||
7bd95320 | 1404 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1405 | } |
1406 | ||
10f39042 RR |
1407 | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, |
1408 | int src_nid, int dst_cpu) | |
1409 | { | |
cb361d8c | 1410 | struct numa_group *ng = deref_curr_numa_group(p); |
10f39042 RR |
1411 | int dst_nid = cpu_to_node(dst_cpu); |
1412 | int last_cpupid, this_cpupid; | |
1413 | ||
1414 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | |
37355bdc MG |
1415 | last_cpupid = page_cpupid_xchg_last(page, this_cpupid); |
1416 | ||
1417 | /* | |
1418 | * Allow first faults or private faults to migrate immediately early in | |
1419 | * the lifetime of a task. The magic number 4 is based on waiting for | |
1420 | * two full passes of the "multi-stage node selection" test that is | |
1421 | * executed below. | |
1422 | */ | |
98fa15f3 | 1423 | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && |
37355bdc MG |
1424 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) |
1425 | return true; | |
10f39042 RR |
1426 | |
1427 | /* | |
1428 | * Multi-stage node selection is used in conjunction with a periodic | |
1429 | * migration fault to build a temporal task<->page relation. By using | |
1430 | * a two-stage filter we remove short/unlikely relations. | |
1431 | * | |
1432 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | |
1433 | * a task's usage of a particular page (n_p) per total usage of this | |
1434 | * page (n_t) (in a given time-span) to a probability. | |
1435 | * | |
1436 | * Our periodic faults will sample this probability and getting the | |
1437 | * same result twice in a row, given these samples are fully | |
1438 | * independent, is then given by P(n)^2, provided our sample period | |
1439 | * is sufficiently short compared to the usage pattern. | |
1440 | * | |
1441 | * This quadric squishes small probabilities, making it less likely we | |
1442 | * act on an unlikely task<->page relation. | |
1443 | */ | |
10f39042 RR |
1444 | if (!cpupid_pid_unset(last_cpupid) && |
1445 | cpupid_to_nid(last_cpupid) != dst_nid) | |
1446 | return false; | |
1447 | ||
1448 | /* Always allow migrate on private faults */ | |
1449 | if (cpupid_match_pid(p, last_cpupid)) | |
1450 | return true; | |
1451 | ||
1452 | /* A shared fault, but p->numa_group has not been set up yet. */ | |
1453 | if (!ng) | |
1454 | return true; | |
1455 | ||
1456 | /* | |
4142c3eb RR |
1457 | * Destination node is much more heavily used than the source |
1458 | * node? Allow migration. | |
10f39042 | 1459 | */ |
4142c3eb RR |
1460 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
1461 | ACTIVE_NODE_FRACTION) | |
10f39042 RR |
1462 | return true; |
1463 | ||
1464 | /* | |
4142c3eb RR |
1465 | * Distribute memory according to CPU & memory use on each node, |
1466 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | |
1467 | * | |
1468 | * faults_cpu(dst) 3 faults_cpu(src) | |
1469 | * --------------- * - > --------------- | |
1470 | * faults_mem(dst) 4 faults_mem(src) | |
10f39042 | 1471 | */ |
4142c3eb RR |
1472 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
1473 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | |
10f39042 RR |
1474 | } |
1475 | ||
11f10e54 VG |
1476 | static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); |
1477 | ||
1478 | static unsigned long cpu_runnable_load(struct rq *rq) | |
1479 | { | |
1480 | return cfs_rq_runnable_load_avg(&rq->cfs); | |
1481 | } | |
58d081b5 | 1482 | |
fb13c7ee | 1483 | /* Cached statistics for all CPUs within a node */ |
58d081b5 MG |
1484 | struct numa_stats { |
1485 | unsigned long load; | |
fb13c7ee MG |
1486 | |
1487 | /* Total compute capacity of CPUs on a node */ | |
5ef20ca1 | 1488 | unsigned long compute_capacity; |
58d081b5 | 1489 | }; |
e6628d5b | 1490 | |
fb13c7ee MG |
1491 | /* |
1492 | * XXX borrowed from update_sg_lb_stats | |
1493 | */ | |
1494 | static void update_numa_stats(struct numa_stats *ns, int nid) | |
1495 | { | |
d90707eb | 1496 | int cpu; |
fb13c7ee MG |
1497 | |
1498 | memset(ns, 0, sizeof(*ns)); | |
1499 | for_each_cpu(cpu, cpumask_of_node(nid)) { | |
1500 | struct rq *rq = cpu_rq(cpu); | |
1501 | ||
a3df0679 | 1502 | ns->load += cpu_runnable_load(rq); |
ced549fa | 1503 | ns->compute_capacity += capacity_of(cpu); |
fb13c7ee MG |
1504 | } |
1505 | ||
fb13c7ee MG |
1506 | } |
1507 | ||
58d081b5 MG |
1508 | struct task_numa_env { |
1509 | struct task_struct *p; | |
e6628d5b | 1510 | |
58d081b5 MG |
1511 | int src_cpu, src_nid; |
1512 | int dst_cpu, dst_nid; | |
e6628d5b | 1513 | |
58d081b5 | 1514 | struct numa_stats src_stats, dst_stats; |
e6628d5b | 1515 | |
40ea2b42 | 1516 | int imbalance_pct; |
7bd95320 | 1517 | int dist; |
fb13c7ee MG |
1518 | |
1519 | struct task_struct *best_task; | |
1520 | long best_imp; | |
58d081b5 MG |
1521 | int best_cpu; |
1522 | }; | |
1523 | ||
fb13c7ee MG |
1524 | static void task_numa_assign(struct task_numa_env *env, |
1525 | struct task_struct *p, long imp) | |
1526 | { | |
a4739eca SD |
1527 | struct rq *rq = cpu_rq(env->dst_cpu); |
1528 | ||
1529 | /* Bail out if run-queue part of active NUMA balance. */ | |
1530 | if (xchg(&rq->numa_migrate_on, 1)) | |
1531 | return; | |
1532 | ||
1533 | /* | |
1534 | * Clear previous best_cpu/rq numa-migrate flag, since task now | |
1535 | * found a better CPU to move/swap. | |
1536 | */ | |
1537 | if (env->best_cpu != -1) { | |
1538 | rq = cpu_rq(env->best_cpu); | |
1539 | WRITE_ONCE(rq->numa_migrate_on, 0); | |
1540 | } | |
1541 | ||
fb13c7ee MG |
1542 | if (env->best_task) |
1543 | put_task_struct(env->best_task); | |
bac78573 ON |
1544 | if (p) |
1545 | get_task_struct(p); | |
fb13c7ee MG |
1546 | |
1547 | env->best_task = p; | |
1548 | env->best_imp = imp; | |
1549 | env->best_cpu = env->dst_cpu; | |
1550 | } | |
1551 | ||
28a21745 | 1552 | static bool load_too_imbalanced(long src_load, long dst_load, |
e63da036 RR |
1553 | struct task_numa_env *env) |
1554 | { | |
e4991b24 RR |
1555 | long imb, old_imb; |
1556 | long orig_src_load, orig_dst_load; | |
28a21745 RR |
1557 | long src_capacity, dst_capacity; |
1558 | ||
1559 | /* | |
1560 | * The load is corrected for the CPU capacity available on each node. | |
1561 | * | |
1562 | * src_load dst_load | |
1563 | * ------------ vs --------- | |
1564 | * src_capacity dst_capacity | |
1565 | */ | |
1566 | src_capacity = env->src_stats.compute_capacity; | |
1567 | dst_capacity = env->dst_stats.compute_capacity; | |
e63da036 | 1568 | |
5f95ba7a | 1569 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); |
e63da036 | 1570 | |
28a21745 | 1571 | orig_src_load = env->src_stats.load; |
e4991b24 | 1572 | orig_dst_load = env->dst_stats.load; |
28a21745 | 1573 | |
5f95ba7a | 1574 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); |
e4991b24 RR |
1575 | |
1576 | /* Would this change make things worse? */ | |
1577 | return (imb > old_imb); | |
e63da036 RR |
1578 | } |
1579 | ||
6fd98e77 SD |
1580 | /* |
1581 | * Maximum NUMA importance can be 1998 (2*999); | |
1582 | * SMALLIMP @ 30 would be close to 1998/64. | |
1583 | * Used to deter task migration. | |
1584 | */ | |
1585 | #define SMALLIMP 30 | |
1586 | ||
fb13c7ee MG |
1587 | /* |
1588 | * This checks if the overall compute and NUMA accesses of the system would | |
1589 | * be improved if the source tasks was migrated to the target dst_cpu taking | |
1590 | * into account that it might be best if task running on the dst_cpu should | |
1591 | * be exchanged with the source task | |
1592 | */ | |
887c290e | 1593 | static void task_numa_compare(struct task_numa_env *env, |
305c1fac | 1594 | long taskimp, long groupimp, bool maymove) |
fb13c7ee | 1595 | { |
cb361d8c | 1596 | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); |
fb13c7ee | 1597 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
cb361d8c | 1598 | long imp = p_ng ? groupimp : taskimp; |
fb13c7ee | 1599 | struct task_struct *cur; |
28a21745 | 1600 | long src_load, dst_load; |
7bd95320 | 1601 | int dist = env->dist; |
cb361d8c JH |
1602 | long moveimp = imp; |
1603 | long load; | |
fb13c7ee | 1604 | |
a4739eca SD |
1605 | if (READ_ONCE(dst_rq->numa_migrate_on)) |
1606 | return; | |
1607 | ||
fb13c7ee | 1608 | rcu_read_lock(); |
154abafc | 1609 | cur = rcu_dereference(dst_rq->curr); |
bac78573 | 1610 | if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) |
fb13c7ee MG |
1611 | cur = NULL; |
1612 | ||
7af68335 PZ |
1613 | /* |
1614 | * Because we have preemption enabled we can get migrated around and | |
1615 | * end try selecting ourselves (current == env->p) as a swap candidate. | |
1616 | */ | |
1617 | if (cur == env->p) | |
1618 | goto unlock; | |
1619 | ||
305c1fac | 1620 | if (!cur) { |
6fd98e77 | 1621 | if (maymove && moveimp >= env->best_imp) |
305c1fac SD |
1622 | goto assign; |
1623 | else | |
1624 | goto unlock; | |
1625 | } | |
1626 | ||
fb13c7ee MG |
1627 | /* |
1628 | * "imp" is the fault differential for the source task between the | |
1629 | * source and destination node. Calculate the total differential for | |
1630 | * the source task and potential destination task. The more negative | |
305c1fac | 1631 | * the value is, the more remote accesses that would be expected to |
fb13c7ee MG |
1632 | * be incurred if the tasks were swapped. |
1633 | */ | |
305c1fac | 1634 | /* Skip this swap candidate if cannot move to the source cpu */ |
3bd37062 | 1635 | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) |
305c1fac | 1636 | goto unlock; |
fb13c7ee | 1637 | |
305c1fac SD |
1638 | /* |
1639 | * If dst and source tasks are in the same NUMA group, or not | |
1640 | * in any group then look only at task weights. | |
1641 | */ | |
cb361d8c JH |
1642 | cur_ng = rcu_dereference(cur->numa_group); |
1643 | if (cur_ng == p_ng) { | |
305c1fac SD |
1644 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
1645 | task_weight(cur, env->dst_nid, dist); | |
887c290e | 1646 | /* |
305c1fac SD |
1647 | * Add some hysteresis to prevent swapping the |
1648 | * tasks within a group over tiny differences. | |
887c290e | 1649 | */ |
cb361d8c | 1650 | if (cur_ng) |
305c1fac SD |
1651 | imp -= imp / 16; |
1652 | } else { | |
1653 | /* | |
1654 | * Compare the group weights. If a task is all by itself | |
1655 | * (not part of a group), use the task weight instead. | |
1656 | */ | |
cb361d8c | 1657 | if (cur_ng && p_ng) |
305c1fac SD |
1658 | imp += group_weight(cur, env->src_nid, dist) - |
1659 | group_weight(cur, env->dst_nid, dist); | |
1660 | else | |
1661 | imp += task_weight(cur, env->src_nid, dist) - | |
1662 | task_weight(cur, env->dst_nid, dist); | |
fb13c7ee MG |
1663 | } |
1664 | ||
305c1fac | 1665 | if (maymove && moveimp > imp && moveimp > env->best_imp) { |
6fd98e77 | 1666 | imp = moveimp; |
305c1fac | 1667 | cur = NULL; |
fb13c7ee | 1668 | goto assign; |
305c1fac | 1669 | } |
fb13c7ee | 1670 | |
6fd98e77 SD |
1671 | /* |
1672 | * If the NUMA importance is less than SMALLIMP, | |
1673 | * task migration might only result in ping pong | |
1674 | * of tasks and also hurt performance due to cache | |
1675 | * misses. | |
1676 | */ | |
1677 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | |
1678 | goto unlock; | |
1679 | ||
fb13c7ee MG |
1680 | /* |
1681 | * In the overloaded case, try and keep the load balanced. | |
1682 | */ | |
305c1fac SD |
1683 | load = task_h_load(env->p) - task_h_load(cur); |
1684 | if (!load) | |
1685 | goto assign; | |
1686 | ||
e720fff6 PZ |
1687 | dst_load = env->dst_stats.load + load; |
1688 | src_load = env->src_stats.load - load; | |
fb13c7ee | 1689 | |
28a21745 | 1690 | if (load_too_imbalanced(src_load, dst_load, env)) |
fb13c7ee MG |
1691 | goto unlock; |
1692 | ||
305c1fac | 1693 | assign: |
ba7e5a27 RR |
1694 | /* |
1695 | * One idle CPU per node is evaluated for a task numa move. | |
1696 | * Call select_idle_sibling to maybe find a better one. | |
1697 | */ | |
10e2f1ac PZ |
1698 | if (!cur) { |
1699 | /* | |
97fb7a0a | 1700 | * select_idle_siblings() uses an per-CPU cpumask that |
10e2f1ac PZ |
1701 | * can be used from IRQ context. |
1702 | */ | |
1703 | local_irq_disable(); | |
772bd008 MR |
1704 | env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, |
1705 | env->dst_cpu); | |
10e2f1ac PZ |
1706 | local_irq_enable(); |
1707 | } | |
ba7e5a27 | 1708 | |
fb13c7ee MG |
1709 | task_numa_assign(env, cur, imp); |
1710 | unlock: | |
1711 | rcu_read_unlock(); | |
1712 | } | |
1713 | ||
887c290e RR |
1714 | static void task_numa_find_cpu(struct task_numa_env *env, |
1715 | long taskimp, long groupimp) | |
2c8a50aa | 1716 | { |
305c1fac SD |
1717 | long src_load, dst_load, load; |
1718 | bool maymove = false; | |
2c8a50aa MG |
1719 | int cpu; |
1720 | ||
305c1fac SD |
1721 | load = task_h_load(env->p); |
1722 | dst_load = env->dst_stats.load + load; | |
1723 | src_load = env->src_stats.load - load; | |
1724 | ||
1725 | /* | |
1726 | * If the improvement from just moving env->p direction is better | |
1727 | * than swapping tasks around, check if a move is possible. | |
1728 | */ | |
1729 | maymove = !load_too_imbalanced(src_load, dst_load, env); | |
1730 | ||
2c8a50aa MG |
1731 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
1732 | /* Skip this CPU if the source task cannot migrate */ | |
3bd37062 | 1733 | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) |
2c8a50aa MG |
1734 | continue; |
1735 | ||
1736 | env->dst_cpu = cpu; | |
305c1fac | 1737 | task_numa_compare(env, taskimp, groupimp, maymove); |
2c8a50aa MG |
1738 | } |
1739 | } | |
1740 | ||
58d081b5 MG |
1741 | static int task_numa_migrate(struct task_struct *p) |
1742 | { | |
58d081b5 MG |
1743 | struct task_numa_env env = { |
1744 | .p = p, | |
fb13c7ee | 1745 | |
58d081b5 | 1746 | .src_cpu = task_cpu(p), |
b32e86b4 | 1747 | .src_nid = task_node(p), |
fb13c7ee MG |
1748 | |
1749 | .imbalance_pct = 112, | |
1750 | ||
1751 | .best_task = NULL, | |
1752 | .best_imp = 0, | |
4142c3eb | 1753 | .best_cpu = -1, |
58d081b5 | 1754 | }; |
cb361d8c | 1755 | unsigned long taskweight, groupweight; |
58d081b5 | 1756 | struct sched_domain *sd; |
cb361d8c JH |
1757 | long taskimp, groupimp; |
1758 | struct numa_group *ng; | |
a4739eca | 1759 | struct rq *best_rq; |
7bd95320 | 1760 | int nid, ret, dist; |
e6628d5b | 1761 | |
58d081b5 | 1762 | /* |
fb13c7ee MG |
1763 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
1764 | * imbalance and would be the first to start moving tasks about. | |
1765 | * | |
1766 | * And we want to avoid any moving of tasks about, as that would create | |
1767 | * random movement of tasks -- counter the numa conditions we're trying | |
1768 | * to satisfy here. | |
58d081b5 MG |
1769 | */ |
1770 | rcu_read_lock(); | |
fb13c7ee | 1771 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
46a73e8a RR |
1772 | if (sd) |
1773 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | |
e6628d5b MG |
1774 | rcu_read_unlock(); |
1775 | ||
46a73e8a RR |
1776 | /* |
1777 | * Cpusets can break the scheduler domain tree into smaller | |
1778 | * balance domains, some of which do not cross NUMA boundaries. | |
1779 | * Tasks that are "trapped" in such domains cannot be migrated | |
1780 | * elsewhere, so there is no point in (re)trying. | |
1781 | */ | |
1782 | if (unlikely(!sd)) { | |
8cd45eee | 1783 | sched_setnuma(p, task_node(p)); |
46a73e8a RR |
1784 | return -EINVAL; |
1785 | } | |
1786 | ||
2c8a50aa | 1787 | env.dst_nid = p->numa_preferred_nid; |
7bd95320 RR |
1788 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
1789 | taskweight = task_weight(p, env.src_nid, dist); | |
1790 | groupweight = group_weight(p, env.src_nid, dist); | |
1791 | update_numa_stats(&env.src_stats, env.src_nid); | |
1792 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; | |
1793 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | |
2c8a50aa | 1794 | update_numa_stats(&env.dst_stats, env.dst_nid); |
58d081b5 | 1795 | |
a43455a1 | 1796 | /* Try to find a spot on the preferred nid. */ |
2d4056fa | 1797 | task_numa_find_cpu(&env, taskimp, groupimp); |
e1dda8a7 | 1798 | |
9de05d48 RR |
1799 | /* |
1800 | * Look at other nodes in these cases: | |
1801 | * - there is no space available on the preferred_nid | |
1802 | * - the task is part of a numa_group that is interleaved across | |
1803 | * multiple NUMA nodes; in order to better consolidate the group, | |
1804 | * we need to check other locations. | |
1805 | */ | |
cb361d8c JH |
1806 | ng = deref_curr_numa_group(p); |
1807 | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { | |
2c8a50aa MG |
1808 | for_each_online_node(nid) { |
1809 | if (nid == env.src_nid || nid == p->numa_preferred_nid) | |
1810 | continue; | |
58d081b5 | 1811 | |
7bd95320 | 1812 | dist = node_distance(env.src_nid, env.dst_nid); |
6c6b1193 RR |
1813 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
1814 | dist != env.dist) { | |
1815 | taskweight = task_weight(p, env.src_nid, dist); | |
1816 | groupweight = group_weight(p, env.src_nid, dist); | |
1817 | } | |
7bd95320 | 1818 | |
83e1d2cd | 1819 | /* Only consider nodes where both task and groups benefit */ |
7bd95320 RR |
1820 | taskimp = task_weight(p, nid, dist) - taskweight; |
1821 | groupimp = group_weight(p, nid, dist) - groupweight; | |
887c290e | 1822 | if (taskimp < 0 && groupimp < 0) |
fb13c7ee MG |
1823 | continue; |
1824 | ||
7bd95320 | 1825 | env.dist = dist; |
2c8a50aa MG |
1826 | env.dst_nid = nid; |
1827 | update_numa_stats(&env.dst_stats, env.dst_nid); | |
2d4056fa | 1828 | task_numa_find_cpu(&env, taskimp, groupimp); |
58d081b5 MG |
1829 | } |
1830 | } | |
1831 | ||
68d1b02a RR |
1832 | /* |
1833 | * If the task is part of a workload that spans multiple NUMA nodes, | |
1834 | * and is migrating into one of the workload's active nodes, remember | |
1835 | * this node as the task's preferred numa node, so the workload can | |
1836 | * settle down. | |
1837 | * A task that migrated to a second choice node will be better off | |
1838 | * trying for a better one later. Do not set the preferred node here. | |
1839 | */ | |
cb361d8c | 1840 | if (ng) { |
db015dae RR |
1841 | if (env.best_cpu == -1) |
1842 | nid = env.src_nid; | |
1843 | else | |
8cd45eee | 1844 | nid = cpu_to_node(env.best_cpu); |
db015dae | 1845 | |
8cd45eee SD |
1846 | if (nid != p->numa_preferred_nid) |
1847 | sched_setnuma(p, nid); | |
db015dae RR |
1848 | } |
1849 | ||
1850 | /* No better CPU than the current one was found. */ | |
1851 | if (env.best_cpu == -1) | |
1852 | return -EAGAIN; | |
0ec8aa00 | 1853 | |
a4739eca | 1854 | best_rq = cpu_rq(env.best_cpu); |
fb13c7ee | 1855 | if (env.best_task == NULL) { |
286549dc | 1856 | ret = migrate_task_to(p, env.best_cpu); |
a4739eca | 1857 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
286549dc MG |
1858 | if (ret != 0) |
1859 | trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); | |
fb13c7ee MG |
1860 | return ret; |
1861 | } | |
1862 | ||
0ad4e3df | 1863 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); |
a4739eca | 1864 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
0ad4e3df | 1865 | |
286549dc MG |
1866 | if (ret != 0) |
1867 | trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); | |
fb13c7ee MG |
1868 | put_task_struct(env.best_task); |
1869 | return ret; | |
e6628d5b MG |
1870 | } |
1871 | ||
6b9a7460 MG |
1872 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
1873 | static void numa_migrate_preferred(struct task_struct *p) | |
1874 | { | |
5085e2a3 RR |
1875 | unsigned long interval = HZ; |
1876 | ||
2739d3ee | 1877 | /* This task has no NUMA fault statistics yet */ |
98fa15f3 | 1878 | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) |
6b9a7460 MG |
1879 | return; |
1880 | ||
2739d3ee | 1881 | /* Periodically retry migrating the task to the preferred node */ |
5085e2a3 | 1882 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
789ba280 | 1883 | p->numa_migrate_retry = jiffies + interval; |
2739d3ee RR |
1884 | |
1885 | /* Success if task is already running on preferred CPU */ | |
de1b301a | 1886 | if (task_node(p) == p->numa_preferred_nid) |
6b9a7460 MG |
1887 | return; |
1888 | ||
1889 | /* Otherwise, try migrate to a CPU on the preferred node */ | |
2739d3ee | 1890 | task_numa_migrate(p); |
6b9a7460 MG |
1891 | } |
1892 | ||
20e07dea | 1893 | /* |
4142c3eb | 1894 | * Find out how many nodes on the workload is actively running on. Do this by |
20e07dea RR |
1895 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
1896 | * be different from the set of nodes where the workload's memory is currently | |
1897 | * located. | |
20e07dea | 1898 | */ |
4142c3eb | 1899 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
20e07dea RR |
1900 | { |
1901 | unsigned long faults, max_faults = 0; | |
4142c3eb | 1902 | int nid, active_nodes = 0; |
20e07dea RR |
1903 | |
1904 | for_each_online_node(nid) { | |
1905 | faults = group_faults_cpu(numa_group, nid); | |
1906 | if (faults > max_faults) | |
1907 | max_faults = faults; | |
1908 | } | |
1909 | ||
1910 | for_each_online_node(nid) { | |
1911 | faults = group_faults_cpu(numa_group, nid); | |
4142c3eb RR |
1912 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
1913 | active_nodes++; | |
20e07dea | 1914 | } |
4142c3eb RR |
1915 | |
1916 | numa_group->max_faults_cpu = max_faults; | |
1917 | numa_group->active_nodes = active_nodes; | |
20e07dea RR |
1918 | } |
1919 | ||
04bb2f94 RR |
1920 | /* |
1921 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | |
1922 | * increments. The more local the fault statistics are, the higher the scan | |
a22b4b01 RR |
1923 | * period will be for the next scan window. If local/(local+remote) ratio is |
1924 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | |
1925 | * the scan period will decrease. Aim for 70% local accesses. | |
04bb2f94 RR |
1926 | */ |
1927 | #define NUMA_PERIOD_SLOTS 10 | |
a22b4b01 | 1928 | #define NUMA_PERIOD_THRESHOLD 7 |
04bb2f94 RR |
1929 | |
1930 | /* | |
1931 | * Increase the scan period (slow down scanning) if the majority of | |
1932 | * our memory is already on our local node, or if the majority of | |
1933 | * the page accesses are shared with other processes. | |
1934 | * Otherwise, decrease the scan period. | |
1935 | */ | |
1936 | static void update_task_scan_period(struct task_struct *p, | |
1937 | unsigned long shared, unsigned long private) | |
1938 | { | |
1939 | unsigned int period_slot; | |
37ec97de | 1940 | int lr_ratio, ps_ratio; |
04bb2f94 RR |
1941 | int diff; |
1942 | ||
1943 | unsigned long remote = p->numa_faults_locality[0]; | |
1944 | unsigned long local = p->numa_faults_locality[1]; | |
1945 | ||
1946 | /* | |
1947 | * If there were no record hinting faults then either the task is | |
1948 | * completely idle or all activity is areas that are not of interest | |
074c2381 MG |
1949 | * to automatic numa balancing. Related to that, if there were failed |
1950 | * migration then it implies we are migrating too quickly or the local | |
1951 | * node is overloaded. In either case, scan slower | |
04bb2f94 | 1952 | */ |
074c2381 | 1953 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
04bb2f94 RR |
1954 | p->numa_scan_period = min(p->numa_scan_period_max, |
1955 | p->numa_scan_period << 1); | |
1956 | ||
1957 | p->mm->numa_next_scan = jiffies + | |
1958 | msecs_to_jiffies(p->numa_scan_period); | |
1959 | ||
1960 | return; | |
1961 | } | |
1962 | ||
1963 | /* | |
1964 | * Prepare to scale scan period relative to the current period. | |
1965 | * == NUMA_PERIOD_THRESHOLD scan period stays the same | |
1966 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | |
1967 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | |
1968 | */ | |
1969 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | |
37ec97de RR |
1970 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
1971 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | |
1972 | ||
1973 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | |
1974 | /* | |
1975 | * Most memory accesses are local. There is no need to | |
1976 | * do fast NUMA scanning, since memory is already local. | |
1977 | */ | |
1978 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | |
1979 | if (!slot) | |
1980 | slot = 1; | |
1981 | diff = slot * period_slot; | |
1982 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | |
1983 | /* | |
1984 | * Most memory accesses are shared with other tasks. | |
1985 | * There is no point in continuing fast NUMA scanning, | |
1986 | * since other tasks may just move the memory elsewhere. | |
1987 | */ | |
1988 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | |
04bb2f94 RR |
1989 | if (!slot) |
1990 | slot = 1; | |
1991 | diff = slot * period_slot; | |
1992 | } else { | |
04bb2f94 | 1993 | /* |
37ec97de RR |
1994 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
1995 | * yet they are not on the local NUMA node. Speed up | |
1996 | * NUMA scanning to get the memory moved over. | |
04bb2f94 | 1997 | */ |
37ec97de RR |
1998 | int ratio = max(lr_ratio, ps_ratio); |
1999 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | |
04bb2f94 RR |
2000 | } |
2001 | ||
2002 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | |
2003 | task_scan_min(p), task_scan_max(p)); | |
2004 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | |
2005 | } | |
2006 | ||
7e2703e6 RR |
2007 | /* |
2008 | * Get the fraction of time the task has been running since the last | |
2009 | * NUMA placement cycle. The scheduler keeps similar statistics, but | |
2010 | * decays those on a 32ms period, which is orders of magnitude off | |
2011 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | |
2012 | * stats only if the task is so new there are no NUMA statistics yet. | |
2013 | */ | |
2014 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | |
2015 | { | |
2016 | u64 runtime, delta, now; | |
2017 | /* Use the start of this time slice to avoid calculations. */ | |
2018 | now = p->se.exec_start; | |
2019 | runtime = p->se.sum_exec_runtime; | |
2020 | ||
2021 | if (p->last_task_numa_placement) { | |
2022 | delta = runtime - p->last_sum_exec_runtime; | |
2023 | *period = now - p->last_task_numa_placement; | |
a860fa7b XX |
2024 | |
2025 | /* Avoid time going backwards, prevent potential divide error: */ | |
2026 | if (unlikely((s64)*period < 0)) | |
2027 | *period = 0; | |
7e2703e6 | 2028 | } else { |
c7b50216 | 2029 | delta = p->se.avg.load_sum; |
9d89c257 | 2030 | *period = LOAD_AVG_MAX; |
7e2703e6 RR |
2031 | } |
2032 | ||
2033 | p->last_sum_exec_runtime = runtime; | |
2034 | p->last_task_numa_placement = now; | |
2035 | ||
2036 | return delta; | |
2037 | } | |
2038 | ||
54009416 RR |
2039 | /* |
2040 | * Determine the preferred nid for a task in a numa_group. This needs to | |
2041 | * be done in a way that produces consistent results with group_weight, | |
2042 | * otherwise workloads might not converge. | |
2043 | */ | |
2044 | static int preferred_group_nid(struct task_struct *p, int nid) | |
2045 | { | |
2046 | nodemask_t nodes; | |
2047 | int dist; | |
2048 | ||
2049 | /* Direct connections between all NUMA nodes. */ | |
2050 | if (sched_numa_topology_type == NUMA_DIRECT) | |
2051 | return nid; | |
2052 | ||
2053 | /* | |
2054 | * On a system with glueless mesh NUMA topology, group_weight | |
2055 | * scores nodes according to the number of NUMA hinting faults on | |
2056 | * both the node itself, and on nearby nodes. | |
2057 | */ | |
2058 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
2059 | unsigned long score, max_score = 0; | |
2060 | int node, max_node = nid; | |
2061 | ||
2062 | dist = sched_max_numa_distance; | |
2063 | ||
2064 | for_each_online_node(node) { | |
2065 | score = group_weight(p, node, dist); | |
2066 | if (score > max_score) { | |
2067 | max_score = score; | |
2068 | max_node = node; | |
2069 | } | |
2070 | } | |
2071 | return max_node; | |
2072 | } | |
2073 | ||
2074 | /* | |
2075 | * Finding the preferred nid in a system with NUMA backplane | |
2076 | * interconnect topology is more involved. The goal is to locate | |
2077 | * tasks from numa_groups near each other in the system, and | |
2078 | * untangle workloads from different sides of the system. This requires | |
2079 | * searching down the hierarchy of node groups, recursively searching | |
2080 | * inside the highest scoring group of nodes. The nodemask tricks | |
2081 | * keep the complexity of the search down. | |
2082 | */ | |
2083 | nodes = node_online_map; | |
2084 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | |
2085 | unsigned long max_faults = 0; | |
81907478 | 2086 | nodemask_t max_group = NODE_MASK_NONE; |
54009416 RR |
2087 | int a, b; |
2088 | ||
2089 | /* Are there nodes at this distance from each other? */ | |
2090 | if (!find_numa_distance(dist)) | |
2091 | continue; | |
2092 | ||
2093 | for_each_node_mask(a, nodes) { | |
2094 | unsigned long faults = 0; | |
2095 | nodemask_t this_group; | |
2096 | nodes_clear(this_group); | |
2097 | ||
2098 | /* Sum group's NUMA faults; includes a==b case. */ | |
2099 | for_each_node_mask(b, nodes) { | |
2100 | if (node_distance(a, b) < dist) { | |
2101 | faults += group_faults(p, b); | |
2102 | node_set(b, this_group); | |
2103 | node_clear(b, nodes); | |
2104 | } | |
2105 | } | |
2106 | ||
2107 | /* Remember the top group. */ | |
2108 | if (faults > max_faults) { | |
2109 | max_faults = faults; | |
2110 | max_group = this_group; | |
2111 | /* | |
2112 | * subtle: at the smallest distance there is | |
2113 | * just one node left in each "group", the | |
2114 | * winner is the preferred nid. | |
2115 | */ | |
2116 | nid = a; | |
2117 | } | |
2118 | } | |
2119 | /* Next round, evaluate the nodes within max_group. */ | |
890a5409 JB |
2120 | if (!max_faults) |
2121 | break; | |
54009416 RR |
2122 | nodes = max_group; |
2123 | } | |
2124 | return nid; | |
2125 | } | |
2126 | ||
cbee9f88 PZ |
2127 | static void task_numa_placement(struct task_struct *p) |
2128 | { | |
98fa15f3 | 2129 | int seq, nid, max_nid = NUMA_NO_NODE; |
f03bb676 | 2130 | unsigned long max_faults = 0; |
04bb2f94 | 2131 | unsigned long fault_types[2] = { 0, 0 }; |
7e2703e6 RR |
2132 | unsigned long total_faults; |
2133 | u64 runtime, period; | |
7dbd13ed | 2134 | spinlock_t *group_lock = NULL; |
cb361d8c | 2135 | struct numa_group *ng; |
cbee9f88 | 2136 | |
7e5a2c17 JL |
2137 | /* |
2138 | * The p->mm->numa_scan_seq field gets updated without | |
2139 | * exclusive access. Use READ_ONCE() here to ensure | |
2140 | * that the field is read in a single access: | |
2141 | */ | |
316c1608 | 2142 | seq = READ_ONCE(p->mm->numa_scan_seq); |
cbee9f88 PZ |
2143 | if (p->numa_scan_seq == seq) |
2144 | return; | |
2145 | p->numa_scan_seq = seq; | |
598f0ec0 | 2146 | p->numa_scan_period_max = task_scan_max(p); |
cbee9f88 | 2147 | |
7e2703e6 RR |
2148 | total_faults = p->numa_faults_locality[0] + |
2149 | p->numa_faults_locality[1]; | |
2150 | runtime = numa_get_avg_runtime(p, &period); | |
2151 | ||
7dbd13ed | 2152 | /* If the task is part of a group prevent parallel updates to group stats */ |
cb361d8c JH |
2153 | ng = deref_curr_numa_group(p); |
2154 | if (ng) { | |
2155 | group_lock = &ng->lock; | |
60e69eed | 2156 | spin_lock_irq(group_lock); |
7dbd13ed MG |
2157 | } |
2158 | ||
688b7585 MG |
2159 | /* Find the node with the highest number of faults */ |
2160 | for_each_online_node(nid) { | |
44dba3d5 IM |
2161 | /* Keep track of the offsets in numa_faults array */ |
2162 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | |
83e1d2cd | 2163 | unsigned long faults = 0, group_faults = 0; |
44dba3d5 | 2164 | int priv; |
745d6147 | 2165 | |
be1e4e76 | 2166 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
7e2703e6 | 2167 | long diff, f_diff, f_weight; |
8c8a743c | 2168 | |
44dba3d5 IM |
2169 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
2170 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | |
2171 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | |
2172 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | |
745d6147 | 2173 | |
ac8e895b | 2174 | /* Decay existing window, copy faults since last scan */ |
44dba3d5 IM |
2175 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
2176 | fault_types[priv] += p->numa_faults[membuf_idx]; | |
2177 | p->numa_faults[membuf_idx] = 0; | |
fb13c7ee | 2178 | |
7e2703e6 RR |
2179 | /* |
2180 | * Normalize the faults_from, so all tasks in a group | |
2181 | * count according to CPU use, instead of by the raw | |
2182 | * number of faults. Tasks with little runtime have | |
2183 | * little over-all impact on throughput, and thus their | |
2184 | * faults are less important. | |
2185 | */ | |
2186 | f_weight = div64_u64(runtime << 16, period + 1); | |
44dba3d5 | 2187 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
7e2703e6 | 2188 | (total_faults + 1); |
44dba3d5 IM |
2189 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
2190 | p->numa_faults[cpubuf_idx] = 0; | |
50ec8a40 | 2191 | |
44dba3d5 IM |
2192 | p->numa_faults[mem_idx] += diff; |
2193 | p->numa_faults[cpu_idx] += f_diff; | |
2194 | faults += p->numa_faults[mem_idx]; | |
83e1d2cd | 2195 | p->total_numa_faults += diff; |
cb361d8c | 2196 | if (ng) { |
44dba3d5 IM |
2197 | /* |
2198 | * safe because we can only change our own group | |
2199 | * | |
2200 | * mem_idx represents the offset for a given | |
2201 | * nid and priv in a specific region because it | |
2202 | * is at the beginning of the numa_faults array. | |
2203 | */ | |
cb361d8c JH |
2204 | ng->faults[mem_idx] += diff; |
2205 | ng->faults_cpu[mem_idx] += f_diff; | |
2206 | ng->total_faults += diff; | |
2207 | group_faults += ng->faults[mem_idx]; | |
8c8a743c | 2208 | } |
ac8e895b MG |
2209 | } |
2210 | ||
cb361d8c | 2211 | if (!ng) { |
f03bb676 SD |
2212 | if (faults > max_faults) { |
2213 | max_faults = faults; | |
2214 | max_nid = nid; | |
2215 | } | |
2216 | } else if (group_faults > max_faults) { | |
2217 | max_faults = group_faults; | |
688b7585 MG |
2218 | max_nid = nid; |
2219 | } | |
83e1d2cd MG |
2220 | } |
2221 | ||
cb361d8c JH |
2222 | if (ng) { |
2223 | numa_group_count_active_nodes(ng); | |
60e69eed | 2224 | spin_unlock_irq(group_lock); |
f03bb676 | 2225 | max_nid = preferred_group_nid(p, max_nid); |
688b7585 MG |
2226 | } |
2227 | ||
bb97fc31 RR |
2228 | if (max_faults) { |
2229 | /* Set the new preferred node */ | |
2230 | if (max_nid != p->numa_preferred_nid) | |
2231 | sched_setnuma(p, max_nid); | |
3a7053b3 | 2232 | } |
30619c89 SD |
2233 | |
2234 | update_task_scan_period(p, fault_types[0], fault_types[1]); | |
cbee9f88 PZ |
2235 | } |
2236 | ||
8c8a743c PZ |
2237 | static inline int get_numa_group(struct numa_group *grp) |
2238 | { | |
c45a7795 | 2239 | return refcount_inc_not_zero(&grp->refcount); |
8c8a743c PZ |
2240 | } |
2241 | ||
2242 | static inline void put_numa_group(struct numa_group *grp) | |
2243 | { | |
c45a7795 | 2244 | if (refcount_dec_and_test(&grp->refcount)) |
8c8a743c PZ |
2245 | kfree_rcu(grp, rcu); |
2246 | } | |
2247 | ||
3e6a9418 MG |
2248 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
2249 | int *priv) | |
8c8a743c PZ |
2250 | { |
2251 | struct numa_group *grp, *my_grp; | |
2252 | struct task_struct *tsk; | |
2253 | bool join = false; | |
2254 | int cpu = cpupid_to_cpu(cpupid); | |
2255 | int i; | |
2256 | ||
cb361d8c | 2257 | if (unlikely(!deref_curr_numa_group(p))) { |
8c8a743c | 2258 | unsigned int size = sizeof(struct numa_group) + |
50ec8a40 | 2259 | 4*nr_node_ids*sizeof(unsigned long); |
8c8a743c PZ |
2260 | |
2261 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | |
2262 | if (!grp) | |
2263 | return; | |
2264 | ||
c45a7795 | 2265 | refcount_set(&grp->refcount, 1); |
4142c3eb RR |
2266 | grp->active_nodes = 1; |
2267 | grp->max_faults_cpu = 0; | |
8c8a743c | 2268 | spin_lock_init(&grp->lock); |
e29cf08b | 2269 | grp->gid = p->pid; |
50ec8a40 | 2270 | /* Second half of the array tracks nids where faults happen */ |
be1e4e76 RR |
2271 | grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * |
2272 | nr_node_ids; | |
8c8a743c | 2273 | |
be1e4e76 | 2274 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2275 | grp->faults[i] = p->numa_faults[i]; |
8c8a743c | 2276 | |
989348b5 | 2277 | grp->total_faults = p->total_numa_faults; |
83e1d2cd | 2278 | |
8c8a743c PZ |
2279 | grp->nr_tasks++; |
2280 | rcu_assign_pointer(p->numa_group, grp); | |
2281 | } | |
2282 | ||
2283 | rcu_read_lock(); | |
316c1608 | 2284 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
8c8a743c PZ |
2285 | |
2286 | if (!cpupid_match_pid(tsk, cpupid)) | |
3354781a | 2287 | goto no_join; |
8c8a743c PZ |
2288 | |
2289 | grp = rcu_dereference(tsk->numa_group); | |
2290 | if (!grp) | |
3354781a | 2291 | goto no_join; |
8c8a743c | 2292 | |
cb361d8c | 2293 | my_grp = deref_curr_numa_group(p); |
8c8a743c | 2294 | if (grp == my_grp) |
3354781a | 2295 | goto no_join; |
8c8a743c PZ |
2296 | |
2297 | /* | |
2298 | * Only join the other group if its bigger; if we're the bigger group, | |
2299 | * the other task will join us. | |
2300 | */ | |
2301 | if (my_grp->nr_tasks > grp->nr_tasks) | |
3354781a | 2302 | goto no_join; |
8c8a743c PZ |
2303 | |
2304 | /* | |
2305 | * Tie-break on the grp address. | |
2306 | */ | |
2307 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | |
3354781a | 2308 | goto no_join; |
8c8a743c | 2309 | |
dabe1d99 RR |
2310 | /* Always join threads in the same process. */ |
2311 | if (tsk->mm == current->mm) | |
2312 | join = true; | |
2313 | ||
2314 | /* Simple filter to avoid false positives due to PID collisions */ | |
2315 | if (flags & TNF_SHARED) | |
2316 | join = true; | |
8c8a743c | 2317 | |
3e6a9418 MG |
2318 | /* Update priv based on whether false sharing was detected */ |
2319 | *priv = !join; | |
2320 | ||
dabe1d99 | 2321 | if (join && !get_numa_group(grp)) |
3354781a | 2322 | goto no_join; |
8c8a743c | 2323 | |
8c8a743c PZ |
2324 | rcu_read_unlock(); |
2325 | ||
2326 | if (!join) | |
2327 | return; | |
2328 | ||
60e69eed MG |
2329 | BUG_ON(irqs_disabled()); |
2330 | double_lock_irq(&my_grp->lock, &grp->lock); | |
989348b5 | 2331 | |
be1e4e76 | 2332 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
44dba3d5 IM |
2333 | my_grp->faults[i] -= p->numa_faults[i]; |
2334 | grp->faults[i] += p->numa_faults[i]; | |
8c8a743c | 2335 | } |
989348b5 MG |
2336 | my_grp->total_faults -= p->total_numa_faults; |
2337 | grp->total_faults += p->total_numa_faults; | |
8c8a743c | 2338 | |
8c8a743c PZ |
2339 | my_grp->nr_tasks--; |
2340 | grp->nr_tasks++; | |
2341 | ||
2342 | spin_unlock(&my_grp->lock); | |
60e69eed | 2343 | spin_unlock_irq(&grp->lock); |
8c8a743c PZ |
2344 | |
2345 | rcu_assign_pointer(p->numa_group, grp); | |
2346 | ||
2347 | put_numa_group(my_grp); | |
3354781a PZ |
2348 | return; |
2349 | ||
2350 | no_join: | |
2351 | rcu_read_unlock(); | |
2352 | return; | |
8c8a743c PZ |
2353 | } |
2354 | ||
16d51a59 JH |
2355 | /* |
2356 | * Get rid of NUMA staticstics associated with a task (either current or dead). | |
2357 | * If @final is set, the task is dead and has reached refcount zero, so we can | |
2358 | * safely free all relevant data structures. Otherwise, there might be | |
2359 | * concurrent reads from places like load balancing and procfs, and we should | |
2360 | * reset the data back to default state without freeing ->numa_faults. | |
2361 | */ | |
2362 | void task_numa_free(struct task_struct *p, bool final) | |
8c8a743c | 2363 | { |
cb361d8c JH |
2364 | /* safe: p either is current or is being freed by current */ |
2365 | struct numa_group *grp = rcu_dereference_raw(p->numa_group); | |
16d51a59 | 2366 | unsigned long *numa_faults = p->numa_faults; |
e9dd685c SR |
2367 | unsigned long flags; |
2368 | int i; | |
8c8a743c | 2369 | |
16d51a59 JH |
2370 | if (!numa_faults) |
2371 | return; | |
2372 | ||
8c8a743c | 2373 | if (grp) { |
e9dd685c | 2374 | spin_lock_irqsave(&grp->lock, flags); |
be1e4e76 | 2375 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2376 | grp->faults[i] -= p->numa_faults[i]; |
989348b5 | 2377 | grp->total_faults -= p->total_numa_faults; |
83e1d2cd | 2378 | |
8c8a743c | 2379 | grp->nr_tasks--; |
e9dd685c | 2380 | spin_unlock_irqrestore(&grp->lock, flags); |
35b123e2 | 2381 | RCU_INIT_POINTER(p->numa_group, NULL); |
8c8a743c PZ |
2382 | put_numa_group(grp); |
2383 | } | |
2384 | ||
16d51a59 JH |
2385 | if (final) { |
2386 | p->numa_faults = NULL; | |
2387 | kfree(numa_faults); | |
2388 | } else { | |
2389 | p->total_numa_faults = 0; | |
2390 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | |
2391 | numa_faults[i] = 0; | |
2392 | } | |
8c8a743c PZ |
2393 | } |
2394 | ||
cbee9f88 PZ |
2395 | /* |
2396 | * Got a PROT_NONE fault for a page on @node. | |
2397 | */ | |
58b46da3 | 2398 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
cbee9f88 PZ |
2399 | { |
2400 | struct task_struct *p = current; | |
6688cc05 | 2401 | bool migrated = flags & TNF_MIGRATED; |
58b46da3 | 2402 | int cpu_node = task_node(current); |
792568ec | 2403 | int local = !!(flags & TNF_FAULT_LOCAL); |
4142c3eb | 2404 | struct numa_group *ng; |
ac8e895b | 2405 | int priv; |
cbee9f88 | 2406 | |
2a595721 | 2407 | if (!static_branch_likely(&sched_numa_balancing)) |
1a687c2e MG |
2408 | return; |
2409 | ||
9ff1d9ff MG |
2410 | /* for example, ksmd faulting in a user's mm */ |
2411 | if (!p->mm) | |
2412 | return; | |
2413 | ||
f809ca9a | 2414 | /* Allocate buffer to track faults on a per-node basis */ |
44dba3d5 IM |
2415 | if (unlikely(!p->numa_faults)) { |
2416 | int size = sizeof(*p->numa_faults) * | |
be1e4e76 | 2417 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
f809ca9a | 2418 | |
44dba3d5 IM |
2419 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
2420 | if (!p->numa_faults) | |
f809ca9a | 2421 | return; |
745d6147 | 2422 | |
83e1d2cd | 2423 | p->total_numa_faults = 0; |
04bb2f94 | 2424 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
f809ca9a | 2425 | } |
cbee9f88 | 2426 | |
8c8a743c PZ |
2427 | /* |
2428 | * First accesses are treated as private, otherwise consider accesses | |
2429 | * to be private if the accessing pid has not changed | |
2430 | */ | |
2431 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | |
2432 | priv = 1; | |
2433 | } else { | |
2434 | priv = cpupid_match_pid(p, last_cpupid); | |
6688cc05 | 2435 | if (!priv && !(flags & TNF_NO_GROUP)) |
3e6a9418 | 2436 | task_numa_group(p, last_cpupid, flags, &priv); |
8c8a743c PZ |
2437 | } |
2438 | ||
792568ec RR |
2439 | /* |
2440 | * If a workload spans multiple NUMA nodes, a shared fault that | |
2441 | * occurs wholly within the set of nodes that the workload is | |
2442 | * actively using should be counted as local. This allows the | |
2443 | * scan rate to slow down when a workload has settled down. | |
2444 | */ | |
cb361d8c | 2445 | ng = deref_curr_numa_group(p); |
4142c3eb RR |
2446 | if (!priv && !local && ng && ng->active_nodes > 1 && |
2447 | numa_is_active_node(cpu_node, ng) && | |
2448 | numa_is_active_node(mem_node, ng)) | |
792568ec RR |
2449 | local = 1; |
2450 | ||
2739d3ee | 2451 | /* |
e1ff516a YW |
2452 | * Retry to migrate task to preferred node periodically, in case it |
2453 | * previously failed, or the scheduler moved us. | |
2739d3ee | 2454 | */ |
b6a60cf3 SD |
2455 | if (time_after(jiffies, p->numa_migrate_retry)) { |
2456 | task_numa_placement(p); | |
6b9a7460 | 2457 | numa_migrate_preferred(p); |
b6a60cf3 | 2458 | } |
6b9a7460 | 2459 | |
b32e86b4 IM |
2460 | if (migrated) |
2461 | p->numa_pages_migrated += pages; | |
074c2381 MG |
2462 | if (flags & TNF_MIGRATE_FAIL) |
2463 | p->numa_faults_locality[2] += pages; | |
b32e86b4 | 2464 | |
44dba3d5 IM |
2465 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
2466 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | |
792568ec | 2467 | p->numa_faults_locality[local] += pages; |
cbee9f88 PZ |
2468 | } |
2469 | ||
6e5fb223 PZ |
2470 | static void reset_ptenuma_scan(struct task_struct *p) |
2471 | { | |
7e5a2c17 JL |
2472 | /* |
2473 | * We only did a read acquisition of the mmap sem, so | |
2474 | * p->mm->numa_scan_seq is written to without exclusive access | |
2475 | * and the update is not guaranteed to be atomic. That's not | |
2476 | * much of an issue though, since this is just used for | |
2477 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | |
2478 | * expensive, to avoid any form of compiler optimizations: | |
2479 | */ | |
316c1608 | 2480 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
6e5fb223 PZ |
2481 | p->mm->numa_scan_offset = 0; |
2482 | } | |
2483 | ||
cbee9f88 PZ |
2484 | /* |
2485 | * The expensive part of numa migration is done from task_work context. | |
2486 | * Triggered from task_tick_numa(). | |
2487 | */ | |
9434f9f5 | 2488 | static void task_numa_work(struct callback_head *work) |
cbee9f88 PZ |
2489 | { |
2490 | unsigned long migrate, next_scan, now = jiffies; | |
2491 | struct task_struct *p = current; | |
2492 | struct mm_struct *mm = p->mm; | |
51170840 | 2493 | u64 runtime = p->se.sum_exec_runtime; |
6e5fb223 | 2494 | struct vm_area_struct *vma; |
9f40604c | 2495 | unsigned long start, end; |
598f0ec0 | 2496 | unsigned long nr_pte_updates = 0; |
4620f8c1 | 2497 | long pages, virtpages; |
cbee9f88 | 2498 | |
9148a3a1 | 2499 | SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); |
cbee9f88 | 2500 | |
b34920d4 | 2501 | work->next = work; |
cbee9f88 PZ |
2502 | /* |
2503 | * Who cares about NUMA placement when they're dying. | |
2504 | * | |
2505 | * NOTE: make sure not to dereference p->mm before this check, | |
2506 | * exit_task_work() happens _after_ exit_mm() so we could be called | |
2507 | * without p->mm even though we still had it when we enqueued this | |
2508 | * work. | |
2509 | */ | |
2510 | if (p->flags & PF_EXITING) | |
2511 | return; | |
2512 | ||
930aa174 | 2513 | if (!mm->numa_next_scan) { |
7e8d16b6 MG |
2514 | mm->numa_next_scan = now + |
2515 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
b8593bfd MG |
2516 | } |
2517 | ||
cbee9f88 PZ |
2518 | /* |
2519 | * Enforce maximal scan/migration frequency.. | |
2520 | */ | |
2521 | migrate = mm->numa_next_scan; | |
2522 | if (time_before(now, migrate)) | |
2523 | return; | |
2524 | ||
598f0ec0 MG |
2525 | if (p->numa_scan_period == 0) { |
2526 | p->numa_scan_period_max = task_scan_max(p); | |
b5dd77c8 | 2527 | p->numa_scan_period = task_scan_start(p); |
598f0ec0 | 2528 | } |
cbee9f88 | 2529 | |
fb003b80 | 2530 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
cbee9f88 PZ |
2531 | if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) |
2532 | return; | |
2533 | ||
19a78d11 PZ |
2534 | /* |
2535 | * Delay this task enough that another task of this mm will likely win | |
2536 | * the next time around. | |
2537 | */ | |
2538 | p->node_stamp += 2 * TICK_NSEC; | |
2539 | ||
9f40604c MG |
2540 | start = mm->numa_scan_offset; |
2541 | pages = sysctl_numa_balancing_scan_size; | |
2542 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | |
4620f8c1 | 2543 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
9f40604c MG |
2544 | if (!pages) |
2545 | return; | |
cbee9f88 | 2546 | |
4620f8c1 | 2547 | |
8655d549 VB |
2548 | if (!down_read_trylock(&mm->mmap_sem)) |
2549 | return; | |
9f40604c | 2550 | vma = find_vma(mm, start); |
6e5fb223 PZ |
2551 | if (!vma) { |
2552 | reset_ptenuma_scan(p); | |
9f40604c | 2553 | start = 0; |
6e5fb223 PZ |
2554 | vma = mm->mmap; |
2555 | } | |
9f40604c | 2556 | for (; vma; vma = vma->vm_next) { |
6b79c57b | 2557 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
8e76d4ee | 2558 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
6e5fb223 | 2559 | continue; |
6b79c57b | 2560 | } |
6e5fb223 | 2561 | |
4591ce4f MG |
2562 | /* |
2563 | * Shared library pages mapped by multiple processes are not | |
2564 | * migrated as it is expected they are cache replicated. Avoid | |
2565 | * hinting faults in read-only file-backed mappings or the vdso | |
2566 | * as migrating the pages will be of marginal benefit. | |
2567 | */ | |
2568 | if (!vma->vm_mm || | |
2569 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) | |
2570 | continue; | |
2571 | ||
3c67f474 MG |
2572 | /* |
2573 | * Skip inaccessible VMAs to avoid any confusion between | |
2574 | * PROT_NONE and NUMA hinting ptes | |
2575 | */ | |
2576 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | |
2577 | continue; | |
4591ce4f | 2578 | |
9f40604c MG |
2579 | do { |
2580 | start = max(start, vma->vm_start); | |
2581 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | |
2582 | end = min(end, vma->vm_end); | |
4620f8c1 | 2583 | nr_pte_updates = change_prot_numa(vma, start, end); |
598f0ec0 MG |
2584 | |
2585 | /* | |
4620f8c1 RR |
2586 | * Try to scan sysctl_numa_balancing_size worth of |
2587 | * hpages that have at least one present PTE that | |
2588 | * is not already pte-numa. If the VMA contains | |
2589 | * areas that are unused or already full of prot_numa | |
2590 | * PTEs, scan up to virtpages, to skip through those | |
2591 | * areas faster. | |
598f0ec0 MG |
2592 | */ |
2593 | if (nr_pte_updates) | |
2594 | pages -= (end - start) >> PAGE_SHIFT; | |
4620f8c1 | 2595 | virtpages -= (end - start) >> PAGE_SHIFT; |
6e5fb223 | 2596 | |
9f40604c | 2597 | start = end; |
4620f8c1 | 2598 | if (pages <= 0 || virtpages <= 0) |
9f40604c | 2599 | goto out; |
3cf1962c RR |
2600 | |
2601 | cond_resched(); | |
9f40604c | 2602 | } while (end != vma->vm_end); |
cbee9f88 | 2603 | } |
6e5fb223 | 2604 | |
9f40604c | 2605 | out: |
6e5fb223 | 2606 | /* |
c69307d5 PZ |
2607 | * It is possible to reach the end of the VMA list but the last few |
2608 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | |
2609 | * would find the !migratable VMA on the next scan but not reset the | |
2610 | * scanner to the start so check it now. | |
6e5fb223 PZ |
2611 | */ |
2612 | if (vma) | |
9f40604c | 2613 | mm->numa_scan_offset = start; |
6e5fb223 PZ |
2614 | else |
2615 | reset_ptenuma_scan(p); | |
2616 | up_read(&mm->mmap_sem); | |
51170840 RR |
2617 | |
2618 | /* | |
2619 | * Make sure tasks use at least 32x as much time to run other code | |
2620 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | |
2621 | * Usually update_task_scan_period slows down scanning enough; on an | |
2622 | * overloaded system we need to limit overhead on a per task basis. | |
2623 | */ | |
2624 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | |
2625 | u64 diff = p->se.sum_exec_runtime - runtime; | |
2626 | p->node_stamp += 32 * diff; | |
2627 | } | |
cbee9f88 PZ |
2628 | } |
2629 | ||
d35927a1 VS |
2630 | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
2631 | { | |
2632 | int mm_users = 0; | |
2633 | struct mm_struct *mm = p->mm; | |
2634 | ||
2635 | if (mm) { | |
2636 | mm_users = atomic_read(&mm->mm_users); | |
2637 | if (mm_users == 1) { | |
2638 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
2639 | mm->numa_scan_seq = 0; | |
2640 | } | |
2641 | } | |
2642 | p->node_stamp = 0; | |
2643 | p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; | |
2644 | p->numa_scan_period = sysctl_numa_balancing_scan_delay; | |
b34920d4 | 2645 | /* Protect against double add, see task_tick_numa and task_numa_work */ |
d35927a1 VS |
2646 | p->numa_work.next = &p->numa_work; |
2647 | p->numa_faults = NULL; | |
2648 | RCU_INIT_POINTER(p->numa_group, NULL); | |
2649 | p->last_task_numa_placement = 0; | |
2650 | p->last_sum_exec_runtime = 0; | |
2651 | ||
b34920d4 VS |
2652 | init_task_work(&p->numa_work, task_numa_work); |
2653 | ||
d35927a1 VS |
2654 | /* New address space, reset the preferred nid */ |
2655 | if (!(clone_flags & CLONE_VM)) { | |
2656 | p->numa_preferred_nid = NUMA_NO_NODE; | |
2657 | return; | |
2658 | } | |
2659 | ||
2660 | /* | |
2661 | * New thread, keep existing numa_preferred_nid which should be copied | |
2662 | * already by arch_dup_task_struct but stagger when scans start. | |
2663 | */ | |
2664 | if (mm) { | |
2665 | unsigned int delay; | |
2666 | ||
2667 | delay = min_t(unsigned int, task_scan_max(current), | |
2668 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | |
2669 | delay += 2 * TICK_NSEC; | |
2670 | p->node_stamp = delay; | |
2671 | } | |
2672 | } | |
2673 | ||
cbee9f88 PZ |
2674 | /* |
2675 | * Drive the periodic memory faults.. | |
2676 | */ | |
b1546edc | 2677 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
cbee9f88 PZ |
2678 | { |
2679 | struct callback_head *work = &curr->numa_work; | |
2680 | u64 period, now; | |
2681 | ||
2682 | /* | |
2683 | * We don't care about NUMA placement if we don't have memory. | |
2684 | */ | |
2685 | if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) | |
2686 | return; | |
2687 | ||
2688 | /* | |
2689 | * Using runtime rather than walltime has the dual advantage that | |
2690 | * we (mostly) drive the selection from busy threads and that the | |
2691 | * task needs to have done some actual work before we bother with | |
2692 | * NUMA placement. | |
2693 | */ | |
2694 | now = curr->se.sum_exec_runtime; | |
2695 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | |
2696 | ||
25b3e5a3 | 2697 | if (now > curr->node_stamp + period) { |
4b96a29b | 2698 | if (!curr->node_stamp) |
b5dd77c8 | 2699 | curr->numa_scan_period = task_scan_start(curr); |
19a78d11 | 2700 | curr->node_stamp += period; |
cbee9f88 | 2701 | |
b34920d4 | 2702 | if (!time_before(jiffies, curr->mm->numa_next_scan)) |
cbee9f88 | 2703 | task_work_add(curr, work, true); |
cbee9f88 PZ |
2704 | } |
2705 | } | |
3fed382b | 2706 | |
3f9672ba SD |
2707 | static void update_scan_period(struct task_struct *p, int new_cpu) |
2708 | { | |
2709 | int src_nid = cpu_to_node(task_cpu(p)); | |
2710 | int dst_nid = cpu_to_node(new_cpu); | |
2711 | ||
05cbdf4f MG |
2712 | if (!static_branch_likely(&sched_numa_balancing)) |
2713 | return; | |
2714 | ||
3f9672ba SD |
2715 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) |
2716 | return; | |
2717 | ||
05cbdf4f MG |
2718 | if (src_nid == dst_nid) |
2719 | return; | |
2720 | ||
2721 | /* | |
2722 | * Allow resets if faults have been trapped before one scan | |
2723 | * has completed. This is most likely due to a new task that | |
2724 | * is pulled cross-node due to wakeups or load balancing. | |
2725 | */ | |
2726 | if (p->numa_scan_seq) { | |
2727 | /* | |
2728 | * Avoid scan adjustments if moving to the preferred | |
2729 | * node or if the task was not previously running on | |
2730 | * the preferred node. | |
2731 | */ | |
2732 | if (dst_nid == p->numa_preferred_nid || | |
98fa15f3 AK |
2733 | (p->numa_preferred_nid != NUMA_NO_NODE && |
2734 | src_nid != p->numa_preferred_nid)) | |
05cbdf4f MG |
2735 | return; |
2736 | } | |
2737 | ||
2738 | p->numa_scan_period = task_scan_start(p); | |
3f9672ba SD |
2739 | } |
2740 | ||
cbee9f88 PZ |
2741 | #else |
2742 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
2743 | { | |
2744 | } | |
0ec8aa00 PZ |
2745 | |
2746 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | |
2747 | { | |
2748 | } | |
2749 | ||
2750 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
2751 | { | |
2752 | } | |
3fed382b | 2753 | |
3f9672ba SD |
2754 | static inline void update_scan_period(struct task_struct *p, int new_cpu) |
2755 | { | |
2756 | } | |
2757 | ||
cbee9f88 PZ |
2758 | #endif /* CONFIG_NUMA_BALANCING */ |
2759 | ||
30cfdcfc DA |
2760 | static void |
2761 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2762 | { | |
2763 | update_load_add(&cfs_rq->load, se->load.weight); | |
367456c7 | 2764 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
2765 | if (entity_is_task(se)) { |
2766 | struct rq *rq = rq_of(cfs_rq); | |
2767 | ||
2768 | account_numa_enqueue(rq, task_of(se)); | |
2769 | list_add(&se->group_node, &rq->cfs_tasks); | |
2770 | } | |
367456c7 | 2771 | #endif |
30cfdcfc | 2772 | cfs_rq->nr_running++; |
30cfdcfc DA |
2773 | } |
2774 | ||
2775 | static void | |
2776 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2777 | { | |
2778 | update_load_sub(&cfs_rq->load, se->load.weight); | |
bfdb198c | 2779 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
2780 | if (entity_is_task(se)) { |
2781 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | |
b87f1724 | 2782 | list_del_init(&se->group_node); |
0ec8aa00 | 2783 | } |
bfdb198c | 2784 | #endif |
30cfdcfc | 2785 | cfs_rq->nr_running--; |
30cfdcfc DA |
2786 | } |
2787 | ||
8d5b9025 PZ |
2788 | /* |
2789 | * Signed add and clamp on underflow. | |
2790 | * | |
2791 | * Explicitly do a load-store to ensure the intermediate value never hits | |
2792 | * memory. This allows lockless observations without ever seeing the negative | |
2793 | * values. | |
2794 | */ | |
2795 | #define add_positive(_ptr, _val) do { \ | |
2796 | typeof(_ptr) ptr = (_ptr); \ | |
2797 | typeof(_val) val = (_val); \ | |
2798 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
2799 | \ | |
2800 | res = var + val; \ | |
2801 | \ | |
2802 | if (val < 0 && res > var) \ | |
2803 | res = 0; \ | |
2804 | \ | |
2805 | WRITE_ONCE(*ptr, res); \ | |
2806 | } while (0) | |
2807 | ||
2808 | /* | |
2809 | * Unsigned subtract and clamp on underflow. | |
2810 | * | |
2811 | * Explicitly do a load-store to ensure the intermediate value never hits | |
2812 | * memory. This allows lockless observations without ever seeing the negative | |
2813 | * values. | |
2814 | */ | |
2815 | #define sub_positive(_ptr, _val) do { \ | |
2816 | typeof(_ptr) ptr = (_ptr); \ | |
2817 | typeof(*ptr) val = (_val); \ | |
2818 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
2819 | res = var - val; \ | |
2820 | if (res > var) \ | |
2821 | res = 0; \ | |
2822 | WRITE_ONCE(*ptr, res); \ | |
2823 | } while (0) | |
2824 | ||
b5c0ce7b PB |
2825 | /* |
2826 | * Remove and clamp on negative, from a local variable. | |
2827 | * | |
2828 | * A variant of sub_positive(), which does not use explicit load-store | |
2829 | * and is thus optimized for local variable updates. | |
2830 | */ | |
2831 | #define lsub_positive(_ptr, _val) do { \ | |
2832 | typeof(_ptr) ptr = (_ptr); \ | |
2833 | *ptr -= min_t(typeof(*ptr), *ptr, _val); \ | |
2834 | } while (0) | |
2835 | ||
8d5b9025 | 2836 | #ifdef CONFIG_SMP |
8d5b9025 PZ |
2837 | static inline void |
2838 | enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2839 | { | |
1ea6c46a PZ |
2840 | cfs_rq->runnable_weight += se->runnable_weight; |
2841 | ||
2842 | cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; | |
2843 | cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; | |
8d5b9025 PZ |
2844 | } |
2845 | ||
2846 | static inline void | |
2847 | dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2848 | { | |
1ea6c46a PZ |
2849 | cfs_rq->runnable_weight -= se->runnable_weight; |
2850 | ||
2851 | sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); | |
2852 | sub_positive(&cfs_rq->avg.runnable_load_sum, | |
2853 | se_runnable(se) * se->avg.runnable_load_sum); | |
8d5b9025 PZ |
2854 | } |
2855 | ||
2856 | static inline void | |
2857 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2858 | { | |
2859 | cfs_rq->avg.load_avg += se->avg.load_avg; | |
2860 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | |
2861 | } | |
2862 | ||
2863 | static inline void | |
2864 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2865 | { | |
2866 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | |
2867 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); | |
2868 | } | |
2869 | #else | |
2870 | static inline void | |
2871 | enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2872 | static inline void | |
2873 | dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2874 | static inline void | |
2875 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2876 | static inline void | |
2877 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
2878 | #endif | |
2879 | ||
9059393e | 2880 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
1ea6c46a | 2881 | unsigned long weight, unsigned long runnable) |
9059393e VG |
2882 | { |
2883 | if (se->on_rq) { | |
2884 | /* commit outstanding execution time */ | |
2885 | if (cfs_rq->curr == se) | |
2886 | update_curr(cfs_rq); | |
2887 | account_entity_dequeue(cfs_rq, se); | |
2888 | dequeue_runnable_load_avg(cfs_rq, se); | |
2889 | } | |
2890 | dequeue_load_avg(cfs_rq, se); | |
2891 | ||
1ea6c46a | 2892 | se->runnable_weight = runnable; |
9059393e VG |
2893 | update_load_set(&se->load, weight); |
2894 | ||
2895 | #ifdef CONFIG_SMP | |
1ea6c46a PZ |
2896 | do { |
2897 | u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; | |
2898 | ||
2899 | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); | |
2900 | se->avg.runnable_load_avg = | |
2901 | div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); | |
2902 | } while (0); | |
9059393e VG |
2903 | #endif |
2904 | ||
2905 | enqueue_load_avg(cfs_rq, se); | |
2906 | if (se->on_rq) { | |
2907 | account_entity_enqueue(cfs_rq, se); | |
2908 | enqueue_runnable_load_avg(cfs_rq, se); | |
2909 | } | |
2910 | } | |
2911 | ||
2912 | void reweight_task(struct task_struct *p, int prio) | |
2913 | { | |
2914 | struct sched_entity *se = &p->se; | |
2915 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2916 | struct load_weight *load = &se->load; | |
2917 | unsigned long weight = scale_load(sched_prio_to_weight[prio]); | |
2918 | ||
1ea6c46a | 2919 | reweight_entity(cfs_rq, se, weight, weight); |
9059393e VG |
2920 | load->inv_weight = sched_prio_to_wmult[prio]; |
2921 | } | |
2922 | ||
3ff6dcac | 2923 | #ifdef CONFIG_FAIR_GROUP_SCHED |
387f77cc | 2924 | #ifdef CONFIG_SMP |
cef27403 PZ |
2925 | /* |
2926 | * All this does is approximate the hierarchical proportion which includes that | |
2927 | * global sum we all love to hate. | |
2928 | * | |
2929 | * That is, the weight of a group entity, is the proportional share of the | |
2930 | * group weight based on the group runqueue weights. That is: | |
2931 | * | |
2932 | * tg->weight * grq->load.weight | |
2933 | * ge->load.weight = ----------------------------- (1) | |
2934 | * \Sum grq->load.weight | |
2935 | * | |
2936 | * Now, because computing that sum is prohibitively expensive to compute (been | |
2937 | * there, done that) we approximate it with this average stuff. The average | |
2938 | * moves slower and therefore the approximation is cheaper and more stable. | |
2939 | * | |
2940 | * So instead of the above, we substitute: | |
2941 | * | |
2942 | * grq->load.weight -> grq->avg.load_avg (2) | |
2943 | * | |
2944 | * which yields the following: | |
2945 | * | |
2946 | * tg->weight * grq->avg.load_avg | |
2947 | * ge->load.weight = ------------------------------ (3) | |
2948 | * tg->load_avg | |
2949 | * | |
2950 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | |
2951 | * | |
2952 | * That is shares_avg, and it is right (given the approximation (2)). | |
2953 | * | |
2954 | * The problem with it is that because the average is slow -- it was designed | |
2955 | * to be exactly that of course -- this leads to transients in boundary | |
2956 | * conditions. In specific, the case where the group was idle and we start the | |
2957 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | |
2958 | * yielding bad latency etc.. | |
2959 | * | |
2960 | * Now, in that special case (1) reduces to: | |
2961 | * | |
2962 | * tg->weight * grq->load.weight | |
17de4ee0 | 2963 | * ge->load.weight = ----------------------------- = tg->weight (4) |
cef27403 PZ |
2964 | * grp->load.weight |
2965 | * | |
2966 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | |
2967 | * | |
2968 | * So what we do is modify our approximation (3) to approach (4) in the (near) | |
2969 | * UP case, like: | |
2970 | * | |
2971 | * ge->load.weight = | |
2972 | * | |
2973 | * tg->weight * grq->load.weight | |
2974 | * --------------------------------------------------- (5) | |
2975 | * tg->load_avg - grq->avg.load_avg + grq->load.weight | |
2976 | * | |
17de4ee0 PZ |
2977 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, |
2978 | * we need to use grq->avg.load_avg as its lower bound, which then gives: | |
2979 | * | |
2980 | * | |
2981 | * tg->weight * grq->load.weight | |
2982 | * ge->load.weight = ----------------------------- (6) | |
2983 | * tg_load_avg' | |
2984 | * | |
2985 | * Where: | |
2986 | * | |
2987 | * tg_load_avg' = tg->load_avg - grq->avg.load_avg + | |
2988 | * max(grq->load.weight, grq->avg.load_avg) | |
cef27403 PZ |
2989 | * |
2990 | * And that is shares_weight and is icky. In the (near) UP case it approaches | |
2991 | * (4) while in the normal case it approaches (3). It consistently | |
2992 | * overestimates the ge->load.weight and therefore: | |
2993 | * | |
2994 | * \Sum ge->load.weight >= tg->weight | |
2995 | * | |
2996 | * hence icky! | |
2997 | */ | |
2c8e4dce | 2998 | static long calc_group_shares(struct cfs_rq *cfs_rq) |
cf5f0acf | 2999 | { |
7c80cfc9 PZ |
3000 | long tg_weight, tg_shares, load, shares; |
3001 | struct task_group *tg = cfs_rq->tg; | |
3002 | ||
3003 | tg_shares = READ_ONCE(tg->shares); | |
cf5f0acf | 3004 | |
3d4b60d3 | 3005 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); |
cf5f0acf | 3006 | |
ea1dc6fc | 3007 | tg_weight = atomic_long_read(&tg->load_avg); |
3ff6dcac | 3008 | |
ea1dc6fc PZ |
3009 | /* Ensure tg_weight >= load */ |
3010 | tg_weight -= cfs_rq->tg_load_avg_contrib; | |
3011 | tg_weight += load; | |
3ff6dcac | 3012 | |
7c80cfc9 | 3013 | shares = (tg_shares * load); |
cf5f0acf PZ |
3014 | if (tg_weight) |
3015 | shares /= tg_weight; | |
3ff6dcac | 3016 | |
b8fd8423 DE |
3017 | /* |
3018 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | |
3019 | * of a group with small tg->shares value. It is a floor value which is | |
3020 | * assigned as a minimum load.weight to the sched_entity representing | |
3021 | * the group on a CPU. | |
3022 | * | |
3023 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | |
3024 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | |
3025 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | |
3026 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | |
3027 | * instead of 0. | |
3028 | */ | |
7c80cfc9 | 3029 | return clamp_t(long, shares, MIN_SHARES, tg_shares); |
3ff6dcac | 3030 | } |
2c8e4dce JB |
3031 | |
3032 | /* | |
17de4ee0 PZ |
3033 | * This calculates the effective runnable weight for a group entity based on |
3034 | * the group entity weight calculated above. | |
3035 | * | |
3036 | * Because of the above approximation (2), our group entity weight is | |
3037 | * an load_avg based ratio (3). This means that it includes blocked load and | |
3038 | * does not represent the runnable weight. | |
3039 | * | |
3040 | * Approximate the group entity's runnable weight per ratio from the group | |
3041 | * runqueue: | |
3042 | * | |
3043 | * grq->avg.runnable_load_avg | |
3044 | * ge->runnable_weight = ge->load.weight * -------------------------- (7) | |
3045 | * grq->avg.load_avg | |
3046 | * | |
3047 | * However, analogous to above, since the avg numbers are slow, this leads to | |
3048 | * transients in the from-idle case. Instead we use: | |
3049 | * | |
3050 | * ge->runnable_weight = ge->load.weight * | |
3051 | * | |
3052 | * max(grq->avg.runnable_load_avg, grq->runnable_weight) | |
3053 | * ----------------------------------------------------- (8) | |
3054 | * max(grq->avg.load_avg, grq->load.weight) | |
3055 | * | |
3056 | * Where these max() serve both to use the 'instant' values to fix the slow | |
3057 | * from-idle and avoid the /0 on to-idle, similar to (6). | |
2c8e4dce JB |
3058 | */ |
3059 | static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) | |
3060 | { | |
17de4ee0 PZ |
3061 | long runnable, load_avg; |
3062 | ||
3063 | load_avg = max(cfs_rq->avg.load_avg, | |
3064 | scale_load_down(cfs_rq->load.weight)); | |
3065 | ||
3066 | runnable = max(cfs_rq->avg.runnable_load_avg, | |
3067 | scale_load_down(cfs_rq->runnable_weight)); | |
2c8e4dce JB |
3068 | |
3069 | runnable *= shares; | |
3070 | if (load_avg) | |
3071 | runnable /= load_avg; | |
17de4ee0 | 3072 | |
2c8e4dce JB |
3073 | return clamp_t(long, runnable, MIN_SHARES, shares); |
3074 | } | |
387f77cc | 3075 | #endif /* CONFIG_SMP */ |
ea1dc6fc | 3076 | |
82958366 PT |
3077 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
3078 | ||
1ea6c46a PZ |
3079 | /* |
3080 | * Recomputes the group entity based on the current state of its group | |
3081 | * runqueue. | |
3082 | */ | |
3083 | static void update_cfs_group(struct sched_entity *se) | |
2069dd75 | 3084 | { |
1ea6c46a PZ |
3085 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
3086 | long shares, runnable; | |
2069dd75 | 3087 | |
1ea6c46a | 3088 | if (!gcfs_rq) |
89ee048f VG |
3089 | return; |
3090 | ||
1ea6c46a | 3091 | if (throttled_hierarchy(gcfs_rq)) |
2069dd75 | 3092 | return; |
89ee048f | 3093 | |
3ff6dcac | 3094 | #ifndef CONFIG_SMP |
1ea6c46a | 3095 | runnable = shares = READ_ONCE(gcfs_rq->tg->shares); |
7c80cfc9 PZ |
3096 | |
3097 | if (likely(se->load.weight == shares)) | |
3ff6dcac | 3098 | return; |
7c80cfc9 | 3099 | #else |
2c8e4dce JB |
3100 | shares = calc_group_shares(gcfs_rq); |
3101 | runnable = calc_group_runnable(gcfs_rq, shares); | |
3ff6dcac | 3102 | #endif |
2069dd75 | 3103 | |
1ea6c46a | 3104 | reweight_entity(cfs_rq_of(se), se, shares, runnable); |
2069dd75 | 3105 | } |
89ee048f | 3106 | |
2069dd75 | 3107 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
1ea6c46a | 3108 | static inline void update_cfs_group(struct sched_entity *se) |
2069dd75 PZ |
3109 | { |
3110 | } | |
3111 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
3112 | ||
ea14b57e | 3113 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) |
a030d738 | 3114 | { |
43964409 LT |
3115 | struct rq *rq = rq_of(cfs_rq); |
3116 | ||
ea14b57e | 3117 | if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { |
a030d738 VK |
3118 | /* |
3119 | * There are a few boundary cases this might miss but it should | |
3120 | * get called often enough that that should (hopefully) not be | |
9783be2c | 3121 | * a real problem. |
a030d738 VK |
3122 | * |
3123 | * It will not get called when we go idle, because the idle | |
3124 | * thread is a different class (!fair), nor will the utilization | |
3125 | * number include things like RT tasks. | |
3126 | * | |
3127 | * As is, the util number is not freq-invariant (we'd have to | |
3128 | * implement arch_scale_freq_capacity() for that). | |
3129 | * | |
3130 | * See cpu_util(). | |
3131 | */ | |
ea14b57e | 3132 | cpufreq_update_util(rq, flags); |
a030d738 VK |
3133 | } |
3134 | } | |
3135 | ||
141965c7 | 3136 | #ifdef CONFIG_SMP |
c566e8e9 | 3137 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7c3edd2c PZ |
3138 | /** |
3139 | * update_tg_load_avg - update the tg's load avg | |
3140 | * @cfs_rq: the cfs_rq whose avg changed | |
3141 | * @force: update regardless of how small the difference | |
3142 | * | |
3143 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | |
3144 | * However, because tg->load_avg is a global value there are performance | |
3145 | * considerations. | |
3146 | * | |
3147 | * In order to avoid having to look at the other cfs_rq's, we use a | |
3148 | * differential update where we store the last value we propagated. This in | |
3149 | * turn allows skipping updates if the differential is 'small'. | |
3150 | * | |
815abf5a | 3151 | * Updating tg's load_avg is necessary before update_cfs_share(). |
bb17f655 | 3152 | */ |
9d89c257 | 3153 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
bb17f655 | 3154 | { |
9d89c257 | 3155 | long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; |
bb17f655 | 3156 | |
aa0b7ae0 WL |
3157 | /* |
3158 | * No need to update load_avg for root_task_group as it is not used. | |
3159 | */ | |
3160 | if (cfs_rq->tg == &root_task_group) | |
3161 | return; | |
3162 | ||
9d89c257 YD |
3163 | if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
3164 | atomic_long_add(delta, &cfs_rq->tg->load_avg); | |
3165 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | |
bb17f655 | 3166 | } |
8165e145 | 3167 | } |
f5f9739d | 3168 | |
ad936d86 | 3169 | /* |
97fb7a0a | 3170 | * Called within set_task_rq() right before setting a task's CPU. The |
ad936d86 BP |
3171 | * caller only guarantees p->pi_lock is held; no other assumptions, |
3172 | * including the state of rq->lock, should be made. | |
3173 | */ | |
3174 | void set_task_rq_fair(struct sched_entity *se, | |
3175 | struct cfs_rq *prev, struct cfs_rq *next) | |
3176 | { | |
0ccb977f PZ |
3177 | u64 p_last_update_time; |
3178 | u64 n_last_update_time; | |
3179 | ||
ad936d86 BP |
3180 | if (!sched_feat(ATTACH_AGE_LOAD)) |
3181 | return; | |
3182 | ||
3183 | /* | |
3184 | * We are supposed to update the task to "current" time, then its up to | |
3185 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | |
3186 | * getting what current time is, so simply throw away the out-of-date | |
3187 | * time. This will result in the wakee task is less decayed, but giving | |
3188 | * the wakee more load sounds not bad. | |
3189 | */ | |
0ccb977f PZ |
3190 | if (!(se->avg.last_update_time && prev)) |
3191 | return; | |
ad936d86 BP |
3192 | |
3193 | #ifndef CONFIG_64BIT | |
0ccb977f | 3194 | { |
ad936d86 BP |
3195 | u64 p_last_update_time_copy; |
3196 | u64 n_last_update_time_copy; | |
3197 | ||
3198 | do { | |
3199 | p_last_update_time_copy = prev->load_last_update_time_copy; | |
3200 | n_last_update_time_copy = next->load_last_update_time_copy; | |
3201 | ||
3202 | smp_rmb(); | |
3203 | ||
3204 | p_last_update_time = prev->avg.last_update_time; | |
3205 | n_last_update_time = next->avg.last_update_time; | |
3206 | ||
3207 | } while (p_last_update_time != p_last_update_time_copy || | |
3208 | n_last_update_time != n_last_update_time_copy); | |
0ccb977f | 3209 | } |
ad936d86 | 3210 | #else |
0ccb977f PZ |
3211 | p_last_update_time = prev->avg.last_update_time; |
3212 | n_last_update_time = next->avg.last_update_time; | |
ad936d86 | 3213 | #endif |
23127296 | 3214 | __update_load_avg_blocked_se(p_last_update_time, se); |
0ccb977f | 3215 | se->avg.last_update_time = n_last_update_time; |
ad936d86 | 3216 | } |
09a43ace | 3217 | |
0e2d2aaa PZ |
3218 | |
3219 | /* | |
3220 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | |
3221 | * propagate its contribution. The key to this propagation is the invariant | |
3222 | * that for each group: | |
3223 | * | |
3224 | * ge->avg == grq->avg (1) | |
3225 | * | |
3226 | * _IFF_ we look at the pure running and runnable sums. Because they | |
3227 | * represent the very same entity, just at different points in the hierarchy. | |
3228 | * | |
a4c3c049 VG |
3229 | * Per the above update_tg_cfs_util() is trivial and simply copies the running |
3230 | * sum over (but still wrong, because the group entity and group rq do not have | |
3231 | * their PELT windows aligned). | |
0e2d2aaa PZ |
3232 | * |
3233 | * However, update_tg_cfs_runnable() is more complex. So we have: | |
3234 | * | |
3235 | * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) | |
3236 | * | |
3237 | * And since, like util, the runnable part should be directly transferable, | |
3238 | * the following would _appear_ to be the straight forward approach: | |
3239 | * | |
a4c3c049 | 3240 | * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) |
0e2d2aaa PZ |
3241 | * |
3242 | * And per (1) we have: | |
3243 | * | |
a4c3c049 | 3244 | * ge->avg.runnable_avg == grq->avg.runnable_avg |
0e2d2aaa PZ |
3245 | * |
3246 | * Which gives: | |
3247 | * | |
3248 | * ge->load.weight * grq->avg.load_avg | |
3249 | * ge->avg.load_avg = ----------------------------------- (4) | |
3250 | * grq->load.weight | |
3251 | * | |
3252 | * Except that is wrong! | |
3253 | * | |
3254 | * Because while for entities historical weight is not important and we | |
3255 | * really only care about our future and therefore can consider a pure | |
3256 | * runnable sum, runqueues can NOT do this. | |
3257 | * | |
3258 | * We specifically want runqueues to have a load_avg that includes | |
3259 | * historical weights. Those represent the blocked load, the load we expect | |
3260 | * to (shortly) return to us. This only works by keeping the weights as | |
3261 | * integral part of the sum. We therefore cannot decompose as per (3). | |
3262 | * | |
a4c3c049 VG |
3263 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. |
3264 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | |
3265 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | |
3266 | * runnable section of these tasks overlap (or not). If they were to perfectly | |
3267 | * align the rq as a whole would be runnable 2/3 of the time. If however we | |
3268 | * always have at least 1 runnable task, the rq as a whole is always runnable. | |
0e2d2aaa | 3269 | * |
a4c3c049 | 3270 | * So we'll have to approximate.. :/ |
0e2d2aaa | 3271 | * |
a4c3c049 | 3272 | * Given the constraint: |
0e2d2aaa | 3273 | * |
a4c3c049 | 3274 | * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX |
0e2d2aaa | 3275 | * |
a4c3c049 VG |
3276 | * We can construct a rule that adds runnable to a rq by assuming minimal |
3277 | * overlap. | |
0e2d2aaa | 3278 | * |
a4c3c049 | 3279 | * On removal, we'll assume each task is equally runnable; which yields: |
0e2d2aaa | 3280 | * |
a4c3c049 | 3281 | * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight |
0e2d2aaa | 3282 | * |
a4c3c049 | 3283 | * XXX: only do this for the part of runnable > running ? |
0e2d2aaa | 3284 | * |
0e2d2aaa PZ |
3285 | */ |
3286 | ||
09a43ace | 3287 | static inline void |
0e2d2aaa | 3288 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 3289 | { |
09a43ace VG |
3290 | long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; |
3291 | ||
3292 | /* Nothing to update */ | |
3293 | if (!delta) | |
3294 | return; | |
3295 | ||
a4c3c049 VG |
3296 | /* |
3297 | * The relation between sum and avg is: | |
3298 | * | |
3299 | * LOAD_AVG_MAX - 1024 + sa->period_contrib | |
3300 | * | |
3301 | * however, the PELT windows are not aligned between grq and gse. | |
3302 | */ | |
3303 | ||
09a43ace VG |
3304 | /* Set new sched_entity's utilization */ |
3305 | se->avg.util_avg = gcfs_rq->avg.util_avg; | |
3306 | se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; | |
3307 | ||
3308 | /* Update parent cfs_rq utilization */ | |
3309 | add_positive(&cfs_rq->avg.util_avg, delta); | |
3310 | cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; | |
3311 | } | |
3312 | ||
09a43ace | 3313 | static inline void |
0e2d2aaa | 3314 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 3315 | { |
a4c3c049 VG |
3316 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; |
3317 | unsigned long runnable_load_avg, load_avg; | |
3318 | u64 runnable_load_sum, load_sum = 0; | |
3319 | s64 delta_sum; | |
09a43ace | 3320 | |
0e2d2aaa PZ |
3321 | if (!runnable_sum) |
3322 | return; | |
09a43ace | 3323 | |
0e2d2aaa | 3324 | gcfs_rq->prop_runnable_sum = 0; |
09a43ace | 3325 | |
a4c3c049 VG |
3326 | if (runnable_sum >= 0) { |
3327 | /* | |
3328 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | |
3329 | * the CPU is saturated running == runnable. | |
3330 | */ | |
3331 | runnable_sum += se->avg.load_sum; | |
3332 | runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); | |
3333 | } else { | |
3334 | /* | |
3335 | * Estimate the new unweighted runnable_sum of the gcfs_rq by | |
3336 | * assuming all tasks are equally runnable. | |
3337 | */ | |
3338 | if (scale_load_down(gcfs_rq->load.weight)) { | |
3339 | load_sum = div_s64(gcfs_rq->avg.load_sum, | |
3340 | scale_load_down(gcfs_rq->load.weight)); | |
3341 | } | |
3342 | ||
3343 | /* But make sure to not inflate se's runnable */ | |
3344 | runnable_sum = min(se->avg.load_sum, load_sum); | |
3345 | } | |
3346 | ||
3347 | /* | |
3348 | * runnable_sum can't be lower than running_sum | |
23127296 VG |
3349 | * Rescale running sum to be in the same range as runnable sum |
3350 | * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] | |
3351 | * runnable_sum is in [0 : LOAD_AVG_MAX] | |
a4c3c049 | 3352 | */ |
23127296 | 3353 | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; |
a4c3c049 VG |
3354 | runnable_sum = max(runnable_sum, running_sum); |
3355 | ||
0e2d2aaa PZ |
3356 | load_sum = (s64)se_weight(se) * runnable_sum; |
3357 | load_avg = div_s64(load_sum, LOAD_AVG_MAX); | |
09a43ace | 3358 | |
a4c3c049 VG |
3359 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; |
3360 | delta_avg = load_avg - se->avg.load_avg; | |
09a43ace | 3361 | |
a4c3c049 VG |
3362 | se->avg.load_sum = runnable_sum; |
3363 | se->avg.load_avg = load_avg; | |
3364 | add_positive(&cfs_rq->avg.load_avg, delta_avg); | |
3365 | add_positive(&cfs_rq->avg.load_sum, delta_sum); | |
09a43ace | 3366 | |
1ea6c46a PZ |
3367 | runnable_load_sum = (s64)se_runnable(se) * runnable_sum; |
3368 | runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); | |
a4c3c049 VG |
3369 | delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; |
3370 | delta_avg = runnable_load_avg - se->avg.runnable_load_avg; | |
1ea6c46a | 3371 | |
a4c3c049 VG |
3372 | se->avg.runnable_load_sum = runnable_sum; |
3373 | se->avg.runnable_load_avg = runnable_load_avg; | |
1ea6c46a | 3374 | |
09a43ace | 3375 | if (se->on_rq) { |
a4c3c049 VG |
3376 | add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); |
3377 | add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); | |
09a43ace VG |
3378 | } |
3379 | } | |
3380 | ||
0e2d2aaa | 3381 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) |
09a43ace | 3382 | { |
0e2d2aaa PZ |
3383 | cfs_rq->propagate = 1; |
3384 | cfs_rq->prop_runnable_sum += runnable_sum; | |
09a43ace VG |
3385 | } |
3386 | ||
3387 | /* Update task and its cfs_rq load average */ | |
3388 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3389 | { | |
0e2d2aaa | 3390 | struct cfs_rq *cfs_rq, *gcfs_rq; |
09a43ace VG |
3391 | |
3392 | if (entity_is_task(se)) | |
3393 | return 0; | |
3394 | ||
0e2d2aaa PZ |
3395 | gcfs_rq = group_cfs_rq(se); |
3396 | if (!gcfs_rq->propagate) | |
09a43ace VG |
3397 | return 0; |
3398 | ||
0e2d2aaa PZ |
3399 | gcfs_rq->propagate = 0; |
3400 | ||
09a43ace VG |
3401 | cfs_rq = cfs_rq_of(se); |
3402 | ||
0e2d2aaa | 3403 | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); |
09a43ace | 3404 | |
0e2d2aaa PZ |
3405 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); |
3406 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); | |
09a43ace | 3407 | |
ba19f51f | 3408 | trace_pelt_cfs_tp(cfs_rq); |
8de6242c | 3409 | trace_pelt_se_tp(se); |
ba19f51f | 3410 | |
09a43ace VG |
3411 | return 1; |
3412 | } | |
3413 | ||
bc427898 VG |
3414 | /* |
3415 | * Check if we need to update the load and the utilization of a blocked | |
3416 | * group_entity: | |
3417 | */ | |
3418 | static inline bool skip_blocked_update(struct sched_entity *se) | |
3419 | { | |
3420 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
3421 | ||
3422 | /* | |
3423 | * If sched_entity still have not zero load or utilization, we have to | |
3424 | * decay it: | |
3425 | */ | |
3426 | if (se->avg.load_avg || se->avg.util_avg) | |
3427 | return false; | |
3428 | ||
3429 | /* | |
3430 | * If there is a pending propagation, we have to update the load and | |
3431 | * the utilization of the sched_entity: | |
3432 | */ | |
0e2d2aaa | 3433 | if (gcfs_rq->propagate) |
bc427898 VG |
3434 | return false; |
3435 | ||
3436 | /* | |
3437 | * Otherwise, the load and the utilization of the sched_entity is | |
3438 | * already zero and there is no pending propagation, so it will be a | |
3439 | * waste of time to try to decay it: | |
3440 | */ | |
3441 | return true; | |
3442 | } | |
3443 | ||
6e83125c | 3444 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
09a43ace | 3445 | |
9d89c257 | 3446 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} |
09a43ace VG |
3447 | |
3448 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3449 | { | |
3450 | return 0; | |
3451 | } | |
3452 | ||
0e2d2aaa | 3453 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} |
09a43ace | 3454 | |
6e83125c | 3455 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
c566e8e9 | 3456 | |
3d30544f PZ |
3457 | /** |
3458 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | |
23127296 | 3459 | * @now: current time, as per cfs_rq_clock_pelt() |
3d30544f | 3460 | * @cfs_rq: cfs_rq to update |
3d30544f PZ |
3461 | * |
3462 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | |
3463 | * avg. The immediate corollary is that all (fair) tasks must be attached, see | |
3464 | * post_init_entity_util_avg(). | |
3465 | * | |
3466 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | |
3467 | * | |
7c3edd2c PZ |
3468 | * Returns true if the load decayed or we removed load. |
3469 | * | |
3470 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | |
3471 | * call update_tg_load_avg() when this function returns true. | |
3d30544f | 3472 | */ |
a2c6c91f | 3473 | static inline int |
3a123bbb | 3474 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
2dac754e | 3475 | { |
0e2d2aaa | 3476 | unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; |
9d89c257 | 3477 | struct sched_avg *sa = &cfs_rq->avg; |
2a2f5d4e | 3478 | int decayed = 0; |
2dac754e | 3479 | |
2a2f5d4e PZ |
3480 | if (cfs_rq->removed.nr) { |
3481 | unsigned long r; | |
9a2dd585 | 3482 | u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; |
2a2f5d4e PZ |
3483 | |
3484 | raw_spin_lock(&cfs_rq->removed.lock); | |
3485 | swap(cfs_rq->removed.util_avg, removed_util); | |
3486 | swap(cfs_rq->removed.load_avg, removed_load); | |
0e2d2aaa | 3487 | swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); |
2a2f5d4e PZ |
3488 | cfs_rq->removed.nr = 0; |
3489 | raw_spin_unlock(&cfs_rq->removed.lock); | |
3490 | ||
2a2f5d4e | 3491 | r = removed_load; |
89741892 | 3492 | sub_positive(&sa->load_avg, r); |
9a2dd585 | 3493 | sub_positive(&sa->load_sum, r * divider); |
2dac754e | 3494 | |
2a2f5d4e | 3495 | r = removed_util; |
89741892 | 3496 | sub_positive(&sa->util_avg, r); |
9a2dd585 | 3497 | sub_positive(&sa->util_sum, r * divider); |
2a2f5d4e | 3498 | |
0e2d2aaa | 3499 | add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); |
2a2f5d4e PZ |
3500 | |
3501 | decayed = 1; | |
9d89c257 | 3502 | } |
36ee28e4 | 3503 | |
23127296 | 3504 | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); |
36ee28e4 | 3505 | |
9d89c257 YD |
3506 | #ifndef CONFIG_64BIT |
3507 | smp_wmb(); | |
3508 | cfs_rq->load_last_update_time_copy = sa->last_update_time; | |
3509 | #endif | |
36ee28e4 | 3510 | |
2a2f5d4e | 3511 | if (decayed) |
ea14b57e | 3512 | cfs_rq_util_change(cfs_rq, 0); |
21e96f88 | 3513 | |
2a2f5d4e | 3514 | return decayed; |
21e96f88 SM |
3515 | } |
3516 | ||
3d30544f PZ |
3517 | /** |
3518 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | |
3519 | * @cfs_rq: cfs_rq to attach to | |
3520 | * @se: sched_entity to attach | |
882a78a9 | 3521 | * @flags: migration hints |
3d30544f PZ |
3522 | * |
3523 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3524 | * cfs_rq->avg.last_update_time being current. | |
3525 | */ | |
ea14b57e | 3526 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
a05e8c51 | 3527 | { |
f207934f PZ |
3528 | u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; |
3529 | ||
3530 | /* | |
3531 | * When we attach the @se to the @cfs_rq, we must align the decay | |
3532 | * window because without that, really weird and wonderful things can | |
3533 | * happen. | |
3534 | * | |
3535 | * XXX illustrate | |
3536 | */ | |
a05e8c51 | 3537 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
f207934f PZ |
3538 | se->avg.period_contrib = cfs_rq->avg.period_contrib; |
3539 | ||
3540 | /* | |
3541 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | |
3542 | * period_contrib. This isn't strictly correct, but since we're | |
3543 | * entirely outside of the PELT hierarchy, nobody cares if we truncate | |
3544 | * _sum a little. | |
3545 | */ | |
3546 | se->avg.util_sum = se->avg.util_avg * divider; | |
3547 | ||
3548 | se->avg.load_sum = divider; | |
3549 | if (se_weight(se)) { | |
3550 | se->avg.load_sum = | |
3551 | div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); | |
3552 | } | |
3553 | ||
3554 | se->avg.runnable_load_sum = se->avg.load_sum; | |
3555 | ||
8d5b9025 | 3556 | enqueue_load_avg(cfs_rq, se); |
a05e8c51 BP |
3557 | cfs_rq->avg.util_avg += se->avg.util_avg; |
3558 | cfs_rq->avg.util_sum += se->avg.util_sum; | |
0e2d2aaa PZ |
3559 | |
3560 | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); | |
a2c6c91f | 3561 | |
ea14b57e | 3562 | cfs_rq_util_change(cfs_rq, flags); |
ba19f51f QY |
3563 | |
3564 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
3565 | } |
3566 | ||
3d30544f PZ |
3567 | /** |
3568 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | |
3569 | * @cfs_rq: cfs_rq to detach from | |
3570 | * @se: sched_entity to detach | |
3571 | * | |
3572 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3573 | * cfs_rq->avg.last_update_time being current. | |
3574 | */ | |
a05e8c51 BP |
3575 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3576 | { | |
8d5b9025 | 3577 | dequeue_load_avg(cfs_rq, se); |
89741892 PZ |
3578 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
3579 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | |
0e2d2aaa PZ |
3580 | |
3581 | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); | |
a2c6c91f | 3582 | |
ea14b57e | 3583 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
3584 | |
3585 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
3586 | } |
3587 | ||
b382a531 PZ |
3588 | /* |
3589 | * Optional action to be done while updating the load average | |
3590 | */ | |
3591 | #define UPDATE_TG 0x1 | |
3592 | #define SKIP_AGE_LOAD 0x2 | |
3593 | #define DO_ATTACH 0x4 | |
3594 | ||
3595 | /* Update task and its cfs_rq load average */ | |
3596 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |
3597 | { | |
23127296 | 3598 | u64 now = cfs_rq_clock_pelt(cfs_rq); |
b382a531 PZ |
3599 | int decayed; |
3600 | ||
3601 | /* | |
3602 | * Track task load average for carrying it to new CPU after migrated, and | |
3603 | * track group sched_entity load average for task_h_load calc in migration | |
3604 | */ | |
3605 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | |
23127296 | 3606 | __update_load_avg_se(now, cfs_rq, se); |
b382a531 PZ |
3607 | |
3608 | decayed = update_cfs_rq_load_avg(now, cfs_rq); | |
3609 | decayed |= propagate_entity_load_avg(se); | |
3610 | ||
3611 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | |
3612 | ||
ea14b57e PZ |
3613 | /* |
3614 | * DO_ATTACH means we're here from enqueue_entity(). | |
3615 | * !last_update_time means we've passed through | |
3616 | * migrate_task_rq_fair() indicating we migrated. | |
3617 | * | |
3618 | * IOW we're enqueueing a task on a new CPU. | |
3619 | */ | |
3620 | attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); | |
b382a531 PZ |
3621 | update_tg_load_avg(cfs_rq, 0); |
3622 | ||
3623 | } else if (decayed && (flags & UPDATE_TG)) | |
3624 | update_tg_load_avg(cfs_rq, 0); | |
3625 | } | |
3626 | ||
9d89c257 | 3627 | #ifndef CONFIG_64BIT |
0905f04e YD |
3628 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3629 | { | |
9d89c257 | 3630 | u64 last_update_time_copy; |
0905f04e | 3631 | u64 last_update_time; |
9ee474f5 | 3632 | |
9d89c257 YD |
3633 | do { |
3634 | last_update_time_copy = cfs_rq->load_last_update_time_copy; | |
3635 | smp_rmb(); | |
3636 | last_update_time = cfs_rq->avg.last_update_time; | |
3637 | } while (last_update_time != last_update_time_copy); | |
0905f04e YD |
3638 | |
3639 | return last_update_time; | |
3640 | } | |
9d89c257 | 3641 | #else |
0905f04e YD |
3642 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3643 | { | |
3644 | return cfs_rq->avg.last_update_time; | |
3645 | } | |
9d89c257 YD |
3646 | #endif |
3647 | ||
104cb16d MR |
3648 | /* |
3649 | * Synchronize entity load avg of dequeued entity without locking | |
3650 | * the previous rq. | |
3651 | */ | |
71b47eaf | 3652 | static void sync_entity_load_avg(struct sched_entity *se) |
104cb16d MR |
3653 | { |
3654 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3655 | u64 last_update_time; | |
3656 | ||
3657 | last_update_time = cfs_rq_last_update_time(cfs_rq); | |
23127296 | 3658 | __update_load_avg_blocked_se(last_update_time, se); |
104cb16d MR |
3659 | } |
3660 | ||
0905f04e YD |
3661 | /* |
3662 | * Task first catches up with cfs_rq, and then subtract | |
3663 | * itself from the cfs_rq (task must be off the queue now). | |
3664 | */ | |
71b47eaf | 3665 | static void remove_entity_load_avg(struct sched_entity *se) |
0905f04e YD |
3666 | { |
3667 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2a2f5d4e | 3668 | unsigned long flags; |
0905f04e YD |
3669 | |
3670 | /* | |
7dc603c9 PZ |
3671 | * tasks cannot exit without having gone through wake_up_new_task() -> |
3672 | * post_init_entity_util_avg() which will have added things to the | |
3673 | * cfs_rq, so we can remove unconditionally. | |
0905f04e | 3674 | */ |
0905f04e | 3675 | |
104cb16d | 3676 | sync_entity_load_avg(se); |
2a2f5d4e PZ |
3677 | |
3678 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | |
3679 | ++cfs_rq->removed.nr; | |
3680 | cfs_rq->removed.util_avg += se->avg.util_avg; | |
3681 | cfs_rq->removed.load_avg += se->avg.load_avg; | |
0e2d2aaa | 3682 | cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ |
2a2f5d4e | 3683 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); |
2dac754e | 3684 | } |
642dbc39 | 3685 | |
7ea241af YD |
3686 | static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) |
3687 | { | |
1ea6c46a | 3688 | return cfs_rq->avg.runnable_load_avg; |
7ea241af YD |
3689 | } |
3690 | ||
3691 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) | |
3692 | { | |
3693 | return cfs_rq->avg.load_avg; | |
3694 | } | |
3695 | ||
7f65ea42 PB |
3696 | static inline unsigned long task_util(struct task_struct *p) |
3697 | { | |
3698 | return READ_ONCE(p->se.avg.util_avg); | |
3699 | } | |
3700 | ||
3701 | static inline unsigned long _task_util_est(struct task_struct *p) | |
3702 | { | |
3703 | struct util_est ue = READ_ONCE(p->se.avg.util_est); | |
3704 | ||
92a801e5 | 3705 | return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); |
7f65ea42 PB |
3706 | } |
3707 | ||
3708 | static inline unsigned long task_util_est(struct task_struct *p) | |
3709 | { | |
3710 | return max(task_util(p), _task_util_est(p)); | |
3711 | } | |
3712 | ||
3713 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, | |
3714 | struct task_struct *p) | |
3715 | { | |
3716 | unsigned int enqueued; | |
3717 | ||
3718 | if (!sched_feat(UTIL_EST)) | |
3719 | return; | |
3720 | ||
3721 | /* Update root cfs_rq's estimated utilization */ | |
3722 | enqueued = cfs_rq->avg.util_est.enqueued; | |
92a801e5 | 3723 | enqueued += _task_util_est(p); |
7f65ea42 PB |
3724 | WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); |
3725 | } | |
3726 | ||
3727 | /* | |
3728 | * Check if a (signed) value is within a specified (unsigned) margin, | |
3729 | * based on the observation that: | |
3730 | * | |
3731 | * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) | |
3732 | * | |
3733 | * NOTE: this only works when value + maring < INT_MAX. | |
3734 | */ | |
3735 | static inline bool within_margin(int value, int margin) | |
3736 | { | |
3737 | return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); | |
3738 | } | |
3739 | ||
3740 | static void | |
3741 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) | |
3742 | { | |
3743 | long last_ewma_diff; | |
3744 | struct util_est ue; | |
10a35e68 | 3745 | int cpu; |
7f65ea42 PB |
3746 | |
3747 | if (!sched_feat(UTIL_EST)) | |
3748 | return; | |
3749 | ||
3482d98b VG |
3750 | /* Update root cfs_rq's estimated utilization */ |
3751 | ue.enqueued = cfs_rq->avg.util_est.enqueued; | |
92a801e5 | 3752 | ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); |
7f65ea42 PB |
3753 | WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); |
3754 | ||
3755 | /* | |
3756 | * Skip update of task's estimated utilization when the task has not | |
3757 | * yet completed an activation, e.g. being migrated. | |
3758 | */ | |
3759 | if (!task_sleep) | |
3760 | return; | |
3761 | ||
d519329f PB |
3762 | /* |
3763 | * If the PELT values haven't changed since enqueue time, | |
3764 | * skip the util_est update. | |
3765 | */ | |
3766 | ue = p->se.avg.util_est; | |
3767 | if (ue.enqueued & UTIL_AVG_UNCHANGED) | |
3768 | return; | |
3769 | ||
b8c96361 PB |
3770 | /* |
3771 | * Reset EWMA on utilization increases, the moving average is used only | |
3772 | * to smooth utilization decreases. | |
3773 | */ | |
3774 | ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); | |
3775 | if (sched_feat(UTIL_EST_FASTUP)) { | |
3776 | if (ue.ewma < ue.enqueued) { | |
3777 | ue.ewma = ue.enqueued; | |
3778 | goto done; | |
3779 | } | |
3780 | } | |
3781 | ||
7f65ea42 PB |
3782 | /* |
3783 | * Skip update of task's estimated utilization when its EWMA is | |
3784 | * already ~1% close to its last activation value. | |
3785 | */ | |
7f65ea42 PB |
3786 | last_ewma_diff = ue.enqueued - ue.ewma; |
3787 | if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) | |
3788 | return; | |
3789 | ||
10a35e68 VG |
3790 | /* |
3791 | * To avoid overestimation of actual task utilization, skip updates if | |
3792 | * we cannot grant there is idle time in this CPU. | |
3793 | */ | |
3794 | cpu = cpu_of(rq_of(cfs_rq)); | |
3795 | if (task_util(p) > capacity_orig_of(cpu)) | |
3796 | return; | |
3797 | ||
7f65ea42 PB |
3798 | /* |
3799 | * Update Task's estimated utilization | |
3800 | * | |
3801 | * When *p completes an activation we can consolidate another sample | |
3802 | * of the task size. This is done by storing the current PELT value | |
3803 | * as ue.enqueued and by using this value to update the Exponential | |
3804 | * Weighted Moving Average (EWMA): | |
3805 | * | |
3806 | * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) | |
3807 | * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) | |
3808 | * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) | |
3809 | * = w * ( last_ewma_diff ) + ewma(t-1) | |
3810 | * = w * (last_ewma_diff + ewma(t-1) / w) | |
3811 | * | |
3812 | * Where 'w' is the weight of new samples, which is configured to be | |
3813 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | |
3814 | */ | |
3815 | ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; | |
3816 | ue.ewma += last_ewma_diff; | |
3817 | ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; | |
b8c96361 | 3818 | done: |
7f65ea42 PB |
3819 | WRITE_ONCE(p->se.avg.util_est, ue); |
3820 | } | |
3821 | ||
3b1baa64 MR |
3822 | static inline int task_fits_capacity(struct task_struct *p, long capacity) |
3823 | { | |
60e17f5c | 3824 | return fits_capacity(task_util_est(p), capacity); |
3b1baa64 MR |
3825 | } |
3826 | ||
3827 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | |
3828 | { | |
3829 | if (!static_branch_unlikely(&sched_asym_cpucapacity)) | |
3830 | return; | |
3831 | ||
3832 | if (!p) { | |
3833 | rq->misfit_task_load = 0; | |
3834 | return; | |
3835 | } | |
3836 | ||
3837 | if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { | |
3838 | rq->misfit_task_load = 0; | |
3839 | return; | |
3840 | } | |
3841 | ||
3842 | rq->misfit_task_load = task_h_load(p); | |
3843 | } | |
3844 | ||
38033c37 PZ |
3845 | #else /* CONFIG_SMP */ |
3846 | ||
d31b1a66 VG |
3847 | #define UPDATE_TG 0x0 |
3848 | #define SKIP_AGE_LOAD 0x0 | |
b382a531 | 3849 | #define DO_ATTACH 0x0 |
d31b1a66 | 3850 | |
88c0616e | 3851 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) |
536bd00c | 3852 | { |
ea14b57e | 3853 | cfs_rq_util_change(cfs_rq, 0); |
536bd00c RW |
3854 | } |
3855 | ||
9d89c257 | 3856 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
6e83125c | 3857 | |
a05e8c51 | 3858 | static inline void |
ea14b57e | 3859 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} |
a05e8c51 BP |
3860 | static inline void |
3861 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
3862 | ||
46f69fa3 | 3863 | static inline int idle_balance(struct rq *rq, struct rq_flags *rf) |
6e83125c PZ |
3864 | { |
3865 | return 0; | |
3866 | } | |
3867 | ||
7f65ea42 PB |
3868 | static inline void |
3869 | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | |
3870 | ||
3871 | static inline void | |
3872 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, | |
3873 | bool task_sleep) {} | |
3b1baa64 | 3874 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} |
7f65ea42 | 3875 | |
38033c37 | 3876 | #endif /* CONFIG_SMP */ |
9d85f21c | 3877 | |
ddc97297 PZ |
3878 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3879 | { | |
3880 | #ifdef CONFIG_SCHED_DEBUG | |
3881 | s64 d = se->vruntime - cfs_rq->min_vruntime; | |
3882 | ||
3883 | if (d < 0) | |
3884 | d = -d; | |
3885 | ||
3886 | if (d > 3*sysctl_sched_latency) | |
ae92882e | 3887 | schedstat_inc(cfs_rq->nr_spread_over); |
ddc97297 PZ |
3888 | #endif |
3889 | } | |
3890 | ||
aeb73b04 PZ |
3891 | static void |
3892 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |
3893 | { | |
1af5f730 | 3894 | u64 vruntime = cfs_rq->min_vruntime; |
94dfb5e7 | 3895 | |
2cb8600e PZ |
3896 | /* |
3897 | * The 'current' period is already promised to the current tasks, | |
3898 | * however the extra weight of the new task will slow them down a | |
3899 | * little, place the new task so that it fits in the slot that | |
3900 | * stays open at the end. | |
3901 | */ | |
94dfb5e7 | 3902 | if (initial && sched_feat(START_DEBIT)) |
f9c0b095 | 3903 | vruntime += sched_vslice(cfs_rq, se); |
aeb73b04 | 3904 | |
a2e7a7eb | 3905 | /* sleeps up to a single latency don't count. */ |
5ca9880c | 3906 | if (!initial) { |
a2e7a7eb | 3907 | unsigned long thresh = sysctl_sched_latency; |
a7be37ac | 3908 | |
a2e7a7eb MG |
3909 | /* |
3910 | * Halve their sleep time's effect, to allow | |
3911 | * for a gentler effect of sleepers: | |
3912 | */ | |
3913 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | |
3914 | thresh >>= 1; | |
51e0304c | 3915 | |
a2e7a7eb | 3916 | vruntime -= thresh; |
aeb73b04 PZ |
3917 | } |
3918 | ||
b5d9d734 | 3919 | /* ensure we never gain time by being placed backwards. */ |
16c8f1c7 | 3920 | se->vruntime = max_vruntime(se->vruntime, vruntime); |
aeb73b04 PZ |
3921 | } |
3922 | ||
d3d9dc33 PT |
3923 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
3924 | ||
cb251765 MG |
3925 | static inline void check_schedstat_required(void) |
3926 | { | |
3927 | #ifdef CONFIG_SCHEDSTATS | |
3928 | if (schedstat_enabled()) | |
3929 | return; | |
3930 | ||
3931 | /* Force schedstat enabled if a dependent tracepoint is active */ | |
3932 | if (trace_sched_stat_wait_enabled() || | |
3933 | trace_sched_stat_sleep_enabled() || | |
3934 | trace_sched_stat_iowait_enabled() || | |
3935 | trace_sched_stat_blocked_enabled() || | |
3936 | trace_sched_stat_runtime_enabled()) { | |
eda8dca5 | 3937 | printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " |
cb251765 | 3938 | "stat_blocked and stat_runtime require the " |
f67abed5 | 3939 | "kernel parameter schedstats=enable or " |
cb251765 MG |
3940 | "kernel.sched_schedstats=1\n"); |
3941 | } | |
3942 | #endif | |
3943 | } | |
3944 | ||
b5179ac7 PZ |
3945 | |
3946 | /* | |
3947 | * MIGRATION | |
3948 | * | |
3949 | * dequeue | |
3950 | * update_curr() | |
3951 | * update_min_vruntime() | |
3952 | * vruntime -= min_vruntime | |
3953 | * | |
3954 | * enqueue | |
3955 | * update_curr() | |
3956 | * update_min_vruntime() | |
3957 | * vruntime += min_vruntime | |
3958 | * | |
3959 | * this way the vruntime transition between RQs is done when both | |
3960 | * min_vruntime are up-to-date. | |
3961 | * | |
3962 | * WAKEUP (remote) | |
3963 | * | |
59efa0ba | 3964 | * ->migrate_task_rq_fair() (p->state == TASK_WAKING) |
b5179ac7 PZ |
3965 | * vruntime -= min_vruntime |
3966 | * | |
3967 | * enqueue | |
3968 | * update_curr() | |
3969 | * update_min_vruntime() | |
3970 | * vruntime += min_vruntime | |
3971 | * | |
3972 | * this way we don't have the most up-to-date min_vruntime on the originating | |
3973 | * CPU and an up-to-date min_vruntime on the destination CPU. | |
3974 | */ | |
3975 | ||
bf0f6f24 | 3976 | static void |
88ec22d3 | 3977 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 3978 | { |
2f950354 PZ |
3979 | bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); |
3980 | bool curr = cfs_rq->curr == se; | |
3981 | ||
88ec22d3 | 3982 | /* |
2f950354 PZ |
3983 | * If we're the current task, we must renormalise before calling |
3984 | * update_curr(). | |
88ec22d3 | 3985 | */ |
2f950354 | 3986 | if (renorm && curr) |
88ec22d3 PZ |
3987 | se->vruntime += cfs_rq->min_vruntime; |
3988 | ||
2f950354 PZ |
3989 | update_curr(cfs_rq); |
3990 | ||
bf0f6f24 | 3991 | /* |
2f950354 PZ |
3992 | * Otherwise, renormalise after, such that we're placed at the current |
3993 | * moment in time, instead of some random moment in the past. Being | |
3994 | * placed in the past could significantly boost this task to the | |
3995 | * fairness detriment of existing tasks. | |
bf0f6f24 | 3996 | */ |
2f950354 PZ |
3997 | if (renorm && !curr) |
3998 | se->vruntime += cfs_rq->min_vruntime; | |
3999 | ||
89ee048f VG |
4000 | /* |
4001 | * When enqueuing a sched_entity, we must: | |
4002 | * - Update loads to have both entity and cfs_rq synced with now. | |
4003 | * - Add its load to cfs_rq->runnable_avg | |
4004 | * - For group_entity, update its weight to reflect the new share of | |
4005 | * its group cfs_rq | |
4006 | * - Add its new weight to cfs_rq->load.weight | |
4007 | */ | |
b382a531 | 4008 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); |
1ea6c46a | 4009 | update_cfs_group(se); |
b5b3e35f | 4010 | enqueue_runnable_load_avg(cfs_rq, se); |
17bc14b7 | 4011 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 4012 | |
1a3d027c | 4013 | if (flags & ENQUEUE_WAKEUP) |
aeb73b04 | 4014 | place_entity(cfs_rq, se, 0); |
bf0f6f24 | 4015 | |
cb251765 | 4016 | check_schedstat_required(); |
4fa8d299 JP |
4017 | update_stats_enqueue(cfs_rq, se, flags); |
4018 | check_spread(cfs_rq, se); | |
2f950354 | 4019 | if (!curr) |
83b699ed | 4020 | __enqueue_entity(cfs_rq, se); |
2069dd75 | 4021 | se->on_rq = 1; |
3d4b47b4 | 4022 | |
d3d9dc33 | 4023 | if (cfs_rq->nr_running == 1) { |
3d4b47b4 | 4024 | list_add_leaf_cfs_rq(cfs_rq); |
d3d9dc33 PT |
4025 | check_enqueue_throttle(cfs_rq); |
4026 | } | |
bf0f6f24 IM |
4027 | } |
4028 | ||
2c13c919 | 4029 | static void __clear_buddies_last(struct sched_entity *se) |
2002c695 | 4030 | { |
2c13c919 RR |
4031 | for_each_sched_entity(se) { |
4032 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 4033 | if (cfs_rq->last != se) |
2c13c919 | 4034 | break; |
f1044799 PZ |
4035 | |
4036 | cfs_rq->last = NULL; | |
2c13c919 RR |
4037 | } |
4038 | } | |
2002c695 | 4039 | |
2c13c919 RR |
4040 | static void __clear_buddies_next(struct sched_entity *se) |
4041 | { | |
4042 | for_each_sched_entity(se) { | |
4043 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 4044 | if (cfs_rq->next != se) |
2c13c919 | 4045 | break; |
f1044799 PZ |
4046 | |
4047 | cfs_rq->next = NULL; | |
2c13c919 | 4048 | } |
2002c695 PZ |
4049 | } |
4050 | ||
ac53db59 RR |
4051 | static void __clear_buddies_skip(struct sched_entity *se) |
4052 | { | |
4053 | for_each_sched_entity(se) { | |
4054 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 4055 | if (cfs_rq->skip != se) |
ac53db59 | 4056 | break; |
f1044799 PZ |
4057 | |
4058 | cfs_rq->skip = NULL; | |
ac53db59 RR |
4059 | } |
4060 | } | |
4061 | ||
a571bbea PZ |
4062 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
4063 | { | |
2c13c919 RR |
4064 | if (cfs_rq->last == se) |
4065 | __clear_buddies_last(se); | |
4066 | ||
4067 | if (cfs_rq->next == se) | |
4068 | __clear_buddies_next(se); | |
ac53db59 RR |
4069 | |
4070 | if (cfs_rq->skip == se) | |
4071 | __clear_buddies_skip(se); | |
a571bbea PZ |
4072 | } |
4073 | ||
6c16a6dc | 4074 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d8b4986d | 4075 | |
bf0f6f24 | 4076 | static void |
371fd7e7 | 4077 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 4078 | { |
a2a2d680 DA |
4079 | /* |
4080 | * Update run-time statistics of the 'current'. | |
4081 | */ | |
4082 | update_curr(cfs_rq); | |
89ee048f VG |
4083 | |
4084 | /* | |
4085 | * When dequeuing a sched_entity, we must: | |
4086 | * - Update loads to have both entity and cfs_rq synced with now. | |
dfcb245e IM |
4087 | * - Subtract its load from the cfs_rq->runnable_avg. |
4088 | * - Subtract its previous weight from cfs_rq->load.weight. | |
89ee048f VG |
4089 | * - For group entity, update its weight to reflect the new share |
4090 | * of its group cfs_rq. | |
4091 | */ | |
88c0616e | 4092 | update_load_avg(cfs_rq, se, UPDATE_TG); |
b5b3e35f | 4093 | dequeue_runnable_load_avg(cfs_rq, se); |
a2a2d680 | 4094 | |
4fa8d299 | 4095 | update_stats_dequeue(cfs_rq, se, flags); |
67e9fb2a | 4096 | |
2002c695 | 4097 | clear_buddies(cfs_rq, se); |
4793241b | 4098 | |
83b699ed | 4099 | if (se != cfs_rq->curr) |
30cfdcfc | 4100 | __dequeue_entity(cfs_rq, se); |
17bc14b7 | 4101 | se->on_rq = 0; |
30cfdcfc | 4102 | account_entity_dequeue(cfs_rq, se); |
88ec22d3 PZ |
4103 | |
4104 | /* | |
b60205c7 PZ |
4105 | * Normalize after update_curr(); which will also have moved |
4106 | * min_vruntime if @se is the one holding it back. But before doing | |
4107 | * update_min_vruntime() again, which will discount @se's position and | |
4108 | * can move min_vruntime forward still more. | |
88ec22d3 | 4109 | */ |
371fd7e7 | 4110 | if (!(flags & DEQUEUE_SLEEP)) |
88ec22d3 | 4111 | se->vruntime -= cfs_rq->min_vruntime; |
1e876231 | 4112 | |
d8b4986d PT |
4113 | /* return excess runtime on last dequeue */ |
4114 | return_cfs_rq_runtime(cfs_rq); | |
4115 | ||
1ea6c46a | 4116 | update_cfs_group(se); |
b60205c7 PZ |
4117 | |
4118 | /* | |
4119 | * Now advance min_vruntime if @se was the entity holding it back, | |
4120 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | |
4121 | * put back on, and if we advance min_vruntime, we'll be placed back | |
4122 | * further than we started -- ie. we'll be penalized. | |
4123 | */ | |
9845c49c | 4124 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) |
b60205c7 | 4125 | update_min_vruntime(cfs_rq); |
bf0f6f24 IM |
4126 | } |
4127 | ||
4128 | /* | |
4129 | * Preempt the current task with a newly woken task if needed: | |
4130 | */ | |
7c92e54f | 4131 | static void |
2e09bf55 | 4132 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
bf0f6f24 | 4133 | { |
11697830 | 4134 | unsigned long ideal_runtime, delta_exec; |
f4cfb33e WX |
4135 | struct sched_entity *se; |
4136 | s64 delta; | |
11697830 | 4137 | |
6d0f0ebd | 4138 | ideal_runtime = sched_slice(cfs_rq, curr); |
11697830 | 4139 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
a9f3e2b5 | 4140 | if (delta_exec > ideal_runtime) { |
8875125e | 4141 | resched_curr(rq_of(cfs_rq)); |
a9f3e2b5 MG |
4142 | /* |
4143 | * The current task ran long enough, ensure it doesn't get | |
4144 | * re-elected due to buddy favours. | |
4145 | */ | |
4146 | clear_buddies(cfs_rq, curr); | |
f685ceac MG |
4147 | return; |
4148 | } | |
4149 | ||
4150 | /* | |
4151 | * Ensure that a task that missed wakeup preemption by a | |
4152 | * narrow margin doesn't have to wait for a full slice. | |
4153 | * This also mitigates buddy induced latencies under load. | |
4154 | */ | |
f685ceac MG |
4155 | if (delta_exec < sysctl_sched_min_granularity) |
4156 | return; | |
4157 | ||
f4cfb33e WX |
4158 | se = __pick_first_entity(cfs_rq); |
4159 | delta = curr->vruntime - se->vruntime; | |
f685ceac | 4160 | |
f4cfb33e WX |
4161 | if (delta < 0) |
4162 | return; | |
d7d82944 | 4163 | |
f4cfb33e | 4164 | if (delta > ideal_runtime) |
8875125e | 4165 | resched_curr(rq_of(cfs_rq)); |
bf0f6f24 IM |
4166 | } |
4167 | ||
83b699ed | 4168 | static void |
8494f412 | 4169 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 4170 | { |
83b699ed SV |
4171 | /* 'current' is not kept within the tree. */ |
4172 | if (se->on_rq) { | |
4173 | /* | |
4174 | * Any task has to be enqueued before it get to execute on | |
4175 | * a CPU. So account for the time it spent waiting on the | |
4176 | * runqueue. | |
4177 | */ | |
4fa8d299 | 4178 | update_stats_wait_end(cfs_rq, se); |
83b699ed | 4179 | __dequeue_entity(cfs_rq, se); |
88c0616e | 4180 | update_load_avg(cfs_rq, se, UPDATE_TG); |
83b699ed SV |
4181 | } |
4182 | ||
79303e9e | 4183 | update_stats_curr_start(cfs_rq, se); |
429d43bc | 4184 | cfs_rq->curr = se; |
4fa8d299 | 4185 | |
eba1ed4b IM |
4186 | /* |
4187 | * Track our maximum slice length, if the CPU's load is at | |
4188 | * least twice that of our own weight (i.e. dont track it | |
4189 | * when there are only lesser-weight tasks around): | |
4190 | */ | |
f2bedc47 DE |
4191 | if (schedstat_enabled() && |
4192 | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { | |
4fa8d299 JP |
4193 | schedstat_set(se->statistics.slice_max, |
4194 | max((u64)schedstat_val(se->statistics.slice_max), | |
4195 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); | |
eba1ed4b | 4196 | } |
4fa8d299 | 4197 | |
4a55b450 | 4198 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
4199 | } |
4200 | ||
3f3a4904 PZ |
4201 | static int |
4202 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |
4203 | ||
ac53db59 RR |
4204 | /* |
4205 | * Pick the next process, keeping these things in mind, in this order: | |
4206 | * 1) keep things fair between processes/task groups | |
4207 | * 2) pick the "next" process, since someone really wants that to run | |
4208 | * 3) pick the "last" process, for cache locality | |
4209 | * 4) do not run the "skip" process, if something else is available | |
4210 | */ | |
678d5718 PZ |
4211 | static struct sched_entity * |
4212 | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | |
aa2ac252 | 4213 | { |
678d5718 PZ |
4214 | struct sched_entity *left = __pick_first_entity(cfs_rq); |
4215 | struct sched_entity *se; | |
4216 | ||
4217 | /* | |
4218 | * If curr is set we have to see if its left of the leftmost entity | |
4219 | * still in the tree, provided there was anything in the tree at all. | |
4220 | */ | |
4221 | if (!left || (curr && entity_before(curr, left))) | |
4222 | left = curr; | |
4223 | ||
4224 | se = left; /* ideally we run the leftmost entity */ | |
f4b6755f | 4225 | |
ac53db59 RR |
4226 | /* |
4227 | * Avoid running the skip buddy, if running something else can | |
4228 | * be done without getting too unfair. | |
4229 | */ | |
4230 | if (cfs_rq->skip == se) { | |
678d5718 PZ |
4231 | struct sched_entity *second; |
4232 | ||
4233 | if (se == curr) { | |
4234 | second = __pick_first_entity(cfs_rq); | |
4235 | } else { | |
4236 | second = __pick_next_entity(se); | |
4237 | if (!second || (curr && entity_before(curr, second))) | |
4238 | second = curr; | |
4239 | } | |
4240 | ||
ac53db59 RR |
4241 | if (second && wakeup_preempt_entity(second, left) < 1) |
4242 | se = second; | |
4243 | } | |
aa2ac252 | 4244 | |
f685ceac MG |
4245 | /* |
4246 | * Prefer last buddy, try to return the CPU to a preempted task. | |
4247 | */ | |
4248 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | |
4249 | se = cfs_rq->last; | |
4250 | ||
ac53db59 RR |
4251 | /* |
4252 | * Someone really wants this to run. If it's not unfair, run it. | |
4253 | */ | |
4254 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | |
4255 | se = cfs_rq->next; | |
4256 | ||
f685ceac | 4257 | clear_buddies(cfs_rq, se); |
4793241b PZ |
4258 | |
4259 | return se; | |
aa2ac252 PZ |
4260 | } |
4261 | ||
678d5718 | 4262 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d3d9dc33 | 4263 | |
ab6cde26 | 4264 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
4265 | { |
4266 | /* | |
4267 | * If still on the runqueue then deactivate_task() | |
4268 | * was not called and update_curr() has to be done: | |
4269 | */ | |
4270 | if (prev->on_rq) | |
b7cc0896 | 4271 | update_curr(cfs_rq); |
bf0f6f24 | 4272 | |
d3d9dc33 PT |
4273 | /* throttle cfs_rqs exceeding runtime */ |
4274 | check_cfs_rq_runtime(cfs_rq); | |
4275 | ||
4fa8d299 | 4276 | check_spread(cfs_rq, prev); |
cb251765 | 4277 | |
30cfdcfc | 4278 | if (prev->on_rq) { |
4fa8d299 | 4279 | update_stats_wait_start(cfs_rq, prev); |
30cfdcfc DA |
4280 | /* Put 'current' back into the tree. */ |
4281 | __enqueue_entity(cfs_rq, prev); | |
9d85f21c | 4282 | /* in !on_rq case, update occurred at dequeue */ |
88c0616e | 4283 | update_load_avg(cfs_rq, prev, 0); |
30cfdcfc | 4284 | } |
429d43bc | 4285 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
4286 | } |
4287 | ||
8f4d37ec PZ |
4288 | static void |
4289 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 4290 | { |
bf0f6f24 | 4291 | /* |
30cfdcfc | 4292 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 4293 | */ |
30cfdcfc | 4294 | update_curr(cfs_rq); |
bf0f6f24 | 4295 | |
9d85f21c PT |
4296 | /* |
4297 | * Ensure that runnable average is periodically updated. | |
4298 | */ | |
88c0616e | 4299 | update_load_avg(cfs_rq, curr, UPDATE_TG); |
1ea6c46a | 4300 | update_cfs_group(curr); |
9d85f21c | 4301 | |
8f4d37ec PZ |
4302 | #ifdef CONFIG_SCHED_HRTICK |
4303 | /* | |
4304 | * queued ticks are scheduled to match the slice, so don't bother | |
4305 | * validating it and just reschedule. | |
4306 | */ | |
983ed7a6 | 4307 | if (queued) { |
8875125e | 4308 | resched_curr(rq_of(cfs_rq)); |
983ed7a6 HH |
4309 | return; |
4310 | } | |
8f4d37ec PZ |
4311 | /* |
4312 | * don't let the period tick interfere with the hrtick preemption | |
4313 | */ | |
4314 | if (!sched_feat(DOUBLE_TICK) && | |
4315 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | |
4316 | return; | |
4317 | #endif | |
4318 | ||
2c2efaed | 4319 | if (cfs_rq->nr_running > 1) |
2e09bf55 | 4320 | check_preempt_tick(cfs_rq, curr); |
bf0f6f24 IM |
4321 | } |
4322 | ||
ab84d31e PT |
4323 | |
4324 | /************************************************** | |
4325 | * CFS bandwidth control machinery | |
4326 | */ | |
4327 | ||
4328 | #ifdef CONFIG_CFS_BANDWIDTH | |
029632fb | 4329 | |
e9666d10 | 4330 | #ifdef CONFIG_JUMP_LABEL |
c5905afb | 4331 | static struct static_key __cfs_bandwidth_used; |
029632fb PZ |
4332 | |
4333 | static inline bool cfs_bandwidth_used(void) | |
4334 | { | |
c5905afb | 4335 | return static_key_false(&__cfs_bandwidth_used); |
029632fb PZ |
4336 | } |
4337 | ||
1ee14e6c | 4338 | void cfs_bandwidth_usage_inc(void) |
029632fb | 4339 | { |
ce48c146 | 4340 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); |
1ee14e6c BS |
4341 | } |
4342 | ||
4343 | void cfs_bandwidth_usage_dec(void) | |
4344 | { | |
ce48c146 | 4345 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); |
029632fb | 4346 | } |
e9666d10 | 4347 | #else /* CONFIG_JUMP_LABEL */ |
029632fb PZ |
4348 | static bool cfs_bandwidth_used(void) |
4349 | { | |
4350 | return true; | |
4351 | } | |
4352 | ||
1ee14e6c BS |
4353 | void cfs_bandwidth_usage_inc(void) {} |
4354 | void cfs_bandwidth_usage_dec(void) {} | |
e9666d10 | 4355 | #endif /* CONFIG_JUMP_LABEL */ |
029632fb | 4356 | |
ab84d31e PT |
4357 | /* |
4358 | * default period for cfs group bandwidth. | |
4359 | * default: 0.1s, units: nanoseconds | |
4360 | */ | |
4361 | static inline u64 default_cfs_period(void) | |
4362 | { | |
4363 | return 100000000ULL; | |
4364 | } | |
ec12cb7f PT |
4365 | |
4366 | static inline u64 sched_cfs_bandwidth_slice(void) | |
4367 | { | |
4368 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | |
4369 | } | |
4370 | ||
a9cf55b2 | 4371 | /* |
763a9ec0 QC |
4372 | * Replenish runtime according to assigned quota. We use sched_clock_cpu |
4373 | * directly instead of rq->clock to avoid adding additional synchronization | |
4374 | * around rq->lock. | |
a9cf55b2 PT |
4375 | * |
4376 | * requires cfs_b->lock | |
4377 | */ | |
029632fb | 4378 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
a9cf55b2 | 4379 | { |
763a9ec0 QC |
4380 | if (cfs_b->quota != RUNTIME_INF) |
4381 | cfs_b->runtime = cfs_b->quota; | |
a9cf55b2 PT |
4382 | } |
4383 | ||
029632fb PZ |
4384 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
4385 | { | |
4386 | return &tg->cfs_bandwidth; | |
4387 | } | |
4388 | ||
85dac906 PT |
4389 | /* returns 0 on failure to allocate runtime */ |
4390 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
ec12cb7f PT |
4391 | { |
4392 | struct task_group *tg = cfs_rq->tg; | |
4393 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | |
de53fd7a | 4394 | u64 amount = 0, min_amount; |
ec12cb7f PT |
4395 | |
4396 | /* note: this is a positive sum as runtime_remaining <= 0 */ | |
4397 | min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | |
4398 | ||
4399 | raw_spin_lock(&cfs_b->lock); | |
4400 | if (cfs_b->quota == RUNTIME_INF) | |
4401 | amount = min_amount; | |
58088ad0 | 4402 | else { |
77a4d1a1 | 4403 | start_cfs_bandwidth(cfs_b); |
58088ad0 PT |
4404 | |
4405 | if (cfs_b->runtime > 0) { | |
4406 | amount = min(cfs_b->runtime, min_amount); | |
4407 | cfs_b->runtime -= amount; | |
4408 | cfs_b->idle = 0; | |
4409 | } | |
ec12cb7f PT |
4410 | } |
4411 | raw_spin_unlock(&cfs_b->lock); | |
4412 | ||
4413 | cfs_rq->runtime_remaining += amount; | |
85dac906 PT |
4414 | |
4415 | return cfs_rq->runtime_remaining > 0; | |
ec12cb7f PT |
4416 | } |
4417 | ||
9dbdb155 | 4418 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
a9cf55b2 PT |
4419 | { |
4420 | /* dock delta_exec before expiring quota (as it could span periods) */ | |
ec12cb7f | 4421 | cfs_rq->runtime_remaining -= delta_exec; |
a9cf55b2 PT |
4422 | |
4423 | if (likely(cfs_rq->runtime_remaining > 0)) | |
ec12cb7f PT |
4424 | return; |
4425 | ||
5e2d2cc2 L |
4426 | if (cfs_rq->throttled) |
4427 | return; | |
85dac906 PT |
4428 | /* |
4429 | * if we're unable to extend our runtime we resched so that the active | |
4430 | * hierarchy can be throttled | |
4431 | */ | |
4432 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | |
8875125e | 4433 | resched_curr(rq_of(cfs_rq)); |
ec12cb7f PT |
4434 | } |
4435 | ||
6c16a6dc | 4436 | static __always_inline |
9dbdb155 | 4437 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
ec12cb7f | 4438 | { |
56f570e5 | 4439 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
ec12cb7f PT |
4440 | return; |
4441 | ||
4442 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | |
4443 | } | |
4444 | ||
85dac906 PT |
4445 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
4446 | { | |
56f570e5 | 4447 | return cfs_bandwidth_used() && cfs_rq->throttled; |
85dac906 PT |
4448 | } |
4449 | ||
64660c86 PT |
4450 | /* check whether cfs_rq, or any parent, is throttled */ |
4451 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
4452 | { | |
56f570e5 | 4453 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
64660c86 PT |
4454 | } |
4455 | ||
4456 | /* | |
4457 | * Ensure that neither of the group entities corresponding to src_cpu or | |
4458 | * dest_cpu are members of a throttled hierarchy when performing group | |
4459 | * load-balance operations. | |
4460 | */ | |
4461 | static inline int throttled_lb_pair(struct task_group *tg, | |
4462 | int src_cpu, int dest_cpu) | |
4463 | { | |
4464 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | |
4465 | ||
4466 | src_cfs_rq = tg->cfs_rq[src_cpu]; | |
4467 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | |
4468 | ||
4469 | return throttled_hierarchy(src_cfs_rq) || | |
4470 | throttled_hierarchy(dest_cfs_rq); | |
4471 | } | |
4472 | ||
64660c86 PT |
4473 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
4474 | { | |
4475 | struct rq *rq = data; | |
4476 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4477 | ||
4478 | cfs_rq->throttle_count--; | |
64660c86 | 4479 | if (!cfs_rq->throttle_count) { |
78becc27 | 4480 | cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - |
f1b17280 | 4481 | cfs_rq->throttled_clock_task; |
31bc6aea VG |
4482 | |
4483 | /* Add cfs_rq with already running entity in the list */ | |
4484 | if (cfs_rq->nr_running >= 1) | |
4485 | list_add_leaf_cfs_rq(cfs_rq); | |
64660c86 | 4486 | } |
64660c86 PT |
4487 | |
4488 | return 0; | |
4489 | } | |
4490 | ||
4491 | static int tg_throttle_down(struct task_group *tg, void *data) | |
4492 | { | |
4493 | struct rq *rq = data; | |
4494 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4495 | ||
82958366 | 4496 | /* group is entering throttled state, stop time */ |
31bc6aea | 4497 | if (!cfs_rq->throttle_count) { |
78becc27 | 4498 | cfs_rq->throttled_clock_task = rq_clock_task(rq); |
31bc6aea VG |
4499 | list_del_leaf_cfs_rq(cfs_rq); |
4500 | } | |
64660c86 PT |
4501 | cfs_rq->throttle_count++; |
4502 | ||
4503 | return 0; | |
4504 | } | |
4505 | ||
d3d9dc33 | 4506 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) |
85dac906 PT |
4507 | { |
4508 | struct rq *rq = rq_of(cfs_rq); | |
4509 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4510 | struct sched_entity *se; | |
43e9f7f2 | 4511 | long task_delta, idle_task_delta, dequeue = 1; |
77a4d1a1 | 4512 | bool empty; |
85dac906 PT |
4513 | |
4514 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | |
4515 | ||
f1b17280 | 4516 | /* freeze hierarchy runnable averages while throttled */ |
64660c86 PT |
4517 | rcu_read_lock(); |
4518 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | |
4519 | rcu_read_unlock(); | |
85dac906 PT |
4520 | |
4521 | task_delta = cfs_rq->h_nr_running; | |
43e9f7f2 | 4522 | idle_task_delta = cfs_rq->idle_h_nr_running; |
85dac906 PT |
4523 | for_each_sched_entity(se) { |
4524 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
4525 | /* throttled entity or throttle-on-deactivate */ | |
4526 | if (!se->on_rq) | |
4527 | break; | |
4528 | ||
4529 | if (dequeue) | |
4530 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | |
4531 | qcfs_rq->h_nr_running -= task_delta; | |
43e9f7f2 | 4532 | qcfs_rq->idle_h_nr_running -= idle_task_delta; |
85dac906 PT |
4533 | |
4534 | if (qcfs_rq->load.weight) | |
4535 | dequeue = 0; | |
4536 | } | |
4537 | ||
4538 | if (!se) | |
72465447 | 4539 | sub_nr_running(rq, task_delta); |
85dac906 PT |
4540 | |
4541 | cfs_rq->throttled = 1; | |
78becc27 | 4542 | cfs_rq->throttled_clock = rq_clock(rq); |
85dac906 | 4543 | raw_spin_lock(&cfs_b->lock); |
d49db342 | 4544 | empty = list_empty(&cfs_b->throttled_cfs_rq); |
77a4d1a1 | 4545 | |
c06f04c7 BS |
4546 | /* |
4547 | * Add to the _head_ of the list, so that an already-started | |
baa9be4f PA |
4548 | * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is |
4549 | * not running add to the tail so that later runqueues don't get starved. | |
c06f04c7 | 4550 | */ |
baa9be4f PA |
4551 | if (cfs_b->distribute_running) |
4552 | list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | |
4553 | else | |
4554 | list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | |
77a4d1a1 PZ |
4555 | |
4556 | /* | |
4557 | * If we're the first throttled task, make sure the bandwidth | |
4558 | * timer is running. | |
4559 | */ | |
4560 | if (empty) | |
4561 | start_cfs_bandwidth(cfs_b); | |
4562 | ||
85dac906 PT |
4563 | raw_spin_unlock(&cfs_b->lock); |
4564 | } | |
4565 | ||
029632fb | 4566 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
671fd9da PT |
4567 | { |
4568 | struct rq *rq = rq_of(cfs_rq); | |
4569 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4570 | struct sched_entity *se; | |
4571 | int enqueue = 1; | |
43e9f7f2 | 4572 | long task_delta, idle_task_delta; |
671fd9da | 4573 | |
22b958d8 | 4574 | se = cfs_rq->tg->se[cpu_of(rq)]; |
671fd9da PT |
4575 | |
4576 | cfs_rq->throttled = 0; | |
1a55af2e FW |
4577 | |
4578 | update_rq_clock(rq); | |
4579 | ||
671fd9da | 4580 | raw_spin_lock(&cfs_b->lock); |
78becc27 | 4581 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; |
671fd9da PT |
4582 | list_del_rcu(&cfs_rq->throttled_list); |
4583 | raw_spin_unlock(&cfs_b->lock); | |
4584 | ||
64660c86 PT |
4585 | /* update hierarchical throttle state */ |
4586 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | |
4587 | ||
671fd9da PT |
4588 | if (!cfs_rq->load.weight) |
4589 | return; | |
4590 | ||
4591 | task_delta = cfs_rq->h_nr_running; | |
43e9f7f2 | 4592 | idle_task_delta = cfs_rq->idle_h_nr_running; |
671fd9da PT |
4593 | for_each_sched_entity(se) { |
4594 | if (se->on_rq) | |
4595 | enqueue = 0; | |
4596 | ||
4597 | cfs_rq = cfs_rq_of(se); | |
4598 | if (enqueue) | |
4599 | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | |
4600 | cfs_rq->h_nr_running += task_delta; | |
43e9f7f2 | 4601 | cfs_rq->idle_h_nr_running += idle_task_delta; |
671fd9da PT |
4602 | |
4603 | if (cfs_rq_throttled(cfs_rq)) | |
4604 | break; | |
4605 | } | |
4606 | ||
31bc6aea VG |
4607 | assert_list_leaf_cfs_rq(rq); |
4608 | ||
671fd9da | 4609 | if (!se) |
72465447 | 4610 | add_nr_running(rq, task_delta); |
671fd9da | 4611 | |
97fb7a0a | 4612 | /* Determine whether we need to wake up potentially idle CPU: */ |
671fd9da | 4613 | if (rq->curr == rq->idle && rq->cfs.nr_running) |
8875125e | 4614 | resched_curr(rq); |
671fd9da PT |
4615 | } |
4616 | ||
de53fd7a | 4617 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining) |
671fd9da PT |
4618 | { |
4619 | struct cfs_rq *cfs_rq; | |
c06f04c7 BS |
4620 | u64 runtime; |
4621 | u64 starting_runtime = remaining; | |
671fd9da PT |
4622 | |
4623 | rcu_read_lock(); | |
4624 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | |
4625 | throttled_list) { | |
4626 | struct rq *rq = rq_of(cfs_rq); | |
8a8c69c3 | 4627 | struct rq_flags rf; |
671fd9da | 4628 | |
c0ad4aa4 | 4629 | rq_lock_irqsave(rq, &rf); |
671fd9da PT |
4630 | if (!cfs_rq_throttled(cfs_rq)) |
4631 | goto next; | |
4632 | ||
5e2d2cc2 L |
4633 | /* By the above check, this should never be true */ |
4634 | SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); | |
4635 | ||
671fd9da PT |
4636 | runtime = -cfs_rq->runtime_remaining + 1; |
4637 | if (runtime > remaining) | |
4638 | runtime = remaining; | |
4639 | remaining -= runtime; | |
4640 | ||
4641 | cfs_rq->runtime_remaining += runtime; | |
671fd9da PT |
4642 | |
4643 | /* we check whether we're throttled above */ | |
4644 | if (cfs_rq->runtime_remaining > 0) | |
4645 | unthrottle_cfs_rq(cfs_rq); | |
4646 | ||
4647 | next: | |
c0ad4aa4 | 4648 | rq_unlock_irqrestore(rq, &rf); |
671fd9da PT |
4649 | |
4650 | if (!remaining) | |
4651 | break; | |
4652 | } | |
4653 | rcu_read_unlock(); | |
4654 | ||
c06f04c7 | 4655 | return starting_runtime - remaining; |
671fd9da PT |
4656 | } |
4657 | ||
58088ad0 PT |
4658 | /* |
4659 | * Responsible for refilling a task_group's bandwidth and unthrottling its | |
4660 | * cfs_rqs as appropriate. If there has been no activity within the last | |
4661 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | |
4662 | * used to track this state. | |
4663 | */ | |
c0ad4aa4 | 4664 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) |
58088ad0 | 4665 | { |
de53fd7a | 4666 | u64 runtime; |
51f2176d | 4667 | int throttled; |
58088ad0 | 4668 | |
58088ad0 PT |
4669 | /* no need to continue the timer with no bandwidth constraint */ |
4670 | if (cfs_b->quota == RUNTIME_INF) | |
51f2176d | 4671 | goto out_deactivate; |
58088ad0 | 4672 | |
671fd9da | 4673 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
e8da1b18 | 4674 | cfs_b->nr_periods += overrun; |
671fd9da | 4675 | |
51f2176d BS |
4676 | /* |
4677 | * idle depends on !throttled (for the case of a large deficit), and if | |
4678 | * we're going inactive then everything else can be deferred | |
4679 | */ | |
4680 | if (cfs_b->idle && !throttled) | |
4681 | goto out_deactivate; | |
a9cf55b2 PT |
4682 | |
4683 | __refill_cfs_bandwidth_runtime(cfs_b); | |
4684 | ||
671fd9da PT |
4685 | if (!throttled) { |
4686 | /* mark as potentially idle for the upcoming period */ | |
4687 | cfs_b->idle = 1; | |
51f2176d | 4688 | return 0; |
671fd9da PT |
4689 | } |
4690 | ||
e8da1b18 NR |
4691 | /* account preceding periods in which throttling occurred */ |
4692 | cfs_b->nr_throttled += overrun; | |
4693 | ||
671fd9da | 4694 | /* |
c06f04c7 BS |
4695 | * This check is repeated as we are holding onto the new bandwidth while |
4696 | * we unthrottle. This can potentially race with an unthrottled group | |
4697 | * trying to acquire new bandwidth from the global pool. This can result | |
4698 | * in us over-using our runtime if it is all used during this loop, but | |
4699 | * only by limited amounts in that extreme case. | |
671fd9da | 4700 | */ |
baa9be4f | 4701 | while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { |
c06f04c7 | 4702 | runtime = cfs_b->runtime; |
baa9be4f | 4703 | cfs_b->distribute_running = 1; |
c0ad4aa4 | 4704 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
671fd9da | 4705 | /* we can't nest cfs_b->lock while distributing bandwidth */ |
de53fd7a | 4706 | runtime = distribute_cfs_runtime(cfs_b, runtime); |
c0ad4aa4 | 4707 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
671fd9da | 4708 | |
baa9be4f | 4709 | cfs_b->distribute_running = 0; |
671fd9da | 4710 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
c06f04c7 | 4711 | |
b5c0ce7b | 4712 | lsub_positive(&cfs_b->runtime, runtime); |
671fd9da | 4713 | } |
58088ad0 | 4714 | |
671fd9da PT |
4715 | /* |
4716 | * While we are ensured activity in the period following an | |
4717 | * unthrottle, this also covers the case in which the new bandwidth is | |
4718 | * insufficient to cover the existing bandwidth deficit. (Forcing the | |
4719 | * timer to remain active while there are any throttled entities.) | |
4720 | */ | |
4721 | cfs_b->idle = 0; | |
58088ad0 | 4722 | |
51f2176d BS |
4723 | return 0; |
4724 | ||
4725 | out_deactivate: | |
51f2176d | 4726 | return 1; |
58088ad0 | 4727 | } |
d3d9dc33 | 4728 | |
d8b4986d PT |
4729 | /* a cfs_rq won't donate quota below this amount */ |
4730 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | |
4731 | /* minimum remaining period time to redistribute slack quota */ | |
4732 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | |
4733 | /* how long we wait to gather additional slack before distributing */ | |
4734 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | |
4735 | ||
db06e78c BS |
4736 | /* |
4737 | * Are we near the end of the current quota period? | |
4738 | * | |
4739 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | |
4961b6e1 | 4740 | * hrtimer base being cleared by hrtimer_start. In the case of |
db06e78c BS |
4741 | * migrate_hrtimers, base is never cleared, so we are fine. |
4742 | */ | |
d8b4986d PT |
4743 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
4744 | { | |
4745 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | |
4746 | u64 remaining; | |
4747 | ||
4748 | /* if the call-back is running a quota refresh is already occurring */ | |
4749 | if (hrtimer_callback_running(refresh_timer)) | |
4750 | return 1; | |
4751 | ||
4752 | /* is a quota refresh about to occur? */ | |
4753 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | |
4754 | if (remaining < min_expire) | |
4755 | return 1; | |
4756 | ||
4757 | return 0; | |
4758 | } | |
4759 | ||
4760 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | |
4761 | { | |
4762 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | |
4763 | ||
4764 | /* if there's a quota refresh soon don't bother with slack */ | |
4765 | if (runtime_refresh_within(cfs_b, min_left)) | |
4766 | return; | |
4767 | ||
66567fcb | 4768 | /* don't push forwards an existing deferred unthrottle */ |
4769 | if (cfs_b->slack_started) | |
4770 | return; | |
4771 | cfs_b->slack_started = true; | |
4772 | ||
4cfafd30 PZ |
4773 | hrtimer_start(&cfs_b->slack_timer, |
4774 | ns_to_ktime(cfs_bandwidth_slack_period), | |
4775 | HRTIMER_MODE_REL); | |
d8b4986d PT |
4776 | } |
4777 | ||
4778 | /* we know any runtime found here is valid as update_curr() precedes return */ | |
4779 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4780 | { | |
4781 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4782 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | |
4783 | ||
4784 | if (slack_runtime <= 0) | |
4785 | return; | |
4786 | ||
4787 | raw_spin_lock(&cfs_b->lock); | |
de53fd7a | 4788 | if (cfs_b->quota != RUNTIME_INF) { |
d8b4986d PT |
4789 | cfs_b->runtime += slack_runtime; |
4790 | ||
4791 | /* we are under rq->lock, defer unthrottling using a timer */ | |
4792 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | |
4793 | !list_empty(&cfs_b->throttled_cfs_rq)) | |
4794 | start_cfs_slack_bandwidth(cfs_b); | |
4795 | } | |
4796 | raw_spin_unlock(&cfs_b->lock); | |
4797 | ||
4798 | /* even if it's not valid for return we don't want to try again */ | |
4799 | cfs_rq->runtime_remaining -= slack_runtime; | |
4800 | } | |
4801 | ||
4802 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4803 | { | |
56f570e5 PT |
4804 | if (!cfs_bandwidth_used()) |
4805 | return; | |
4806 | ||
fccfdc6f | 4807 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
d8b4986d PT |
4808 | return; |
4809 | ||
4810 | __return_cfs_rq_runtime(cfs_rq); | |
4811 | } | |
4812 | ||
4813 | /* | |
4814 | * This is done with a timer (instead of inline with bandwidth return) since | |
4815 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | |
4816 | */ | |
4817 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |
4818 | { | |
4819 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | |
c0ad4aa4 | 4820 | unsigned long flags; |
d8b4986d PT |
4821 | |
4822 | /* confirm we're still not at a refresh boundary */ | |
c0ad4aa4 | 4823 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
66567fcb | 4824 | cfs_b->slack_started = false; |
baa9be4f | 4825 | if (cfs_b->distribute_running) { |
c0ad4aa4 | 4826 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
baa9be4f PA |
4827 | return; |
4828 | } | |
4829 | ||
db06e78c | 4830 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
c0ad4aa4 | 4831 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d | 4832 | return; |
db06e78c | 4833 | } |
d8b4986d | 4834 | |
c06f04c7 | 4835 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
d8b4986d | 4836 | runtime = cfs_b->runtime; |
c06f04c7 | 4837 | |
baa9be4f PA |
4838 | if (runtime) |
4839 | cfs_b->distribute_running = 1; | |
4840 | ||
c0ad4aa4 | 4841 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d PT |
4842 | |
4843 | if (!runtime) | |
4844 | return; | |
4845 | ||
de53fd7a | 4846 | runtime = distribute_cfs_runtime(cfs_b, runtime); |
d8b4986d | 4847 | |
c0ad4aa4 | 4848 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
de53fd7a | 4849 | lsub_positive(&cfs_b->runtime, runtime); |
baa9be4f | 4850 | cfs_b->distribute_running = 0; |
c0ad4aa4 | 4851 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d PT |
4852 | } |
4853 | ||
d3d9dc33 PT |
4854 | /* |
4855 | * When a group wakes up we want to make sure that its quota is not already | |
4856 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | |
4857 | * runtime as update_curr() throttling can not not trigger until it's on-rq. | |
4858 | */ | |
4859 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |
4860 | { | |
56f570e5 PT |
4861 | if (!cfs_bandwidth_used()) |
4862 | return; | |
4863 | ||
d3d9dc33 PT |
4864 | /* an active group must be handled by the update_curr()->put() path */ |
4865 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | |
4866 | return; | |
4867 | ||
4868 | /* ensure the group is not already throttled */ | |
4869 | if (cfs_rq_throttled(cfs_rq)) | |
4870 | return; | |
4871 | ||
4872 | /* update runtime allocation */ | |
4873 | account_cfs_rq_runtime(cfs_rq, 0); | |
4874 | if (cfs_rq->runtime_remaining <= 0) | |
4875 | throttle_cfs_rq(cfs_rq); | |
4876 | } | |
4877 | ||
55e16d30 PZ |
4878 | static void sync_throttle(struct task_group *tg, int cpu) |
4879 | { | |
4880 | struct cfs_rq *pcfs_rq, *cfs_rq; | |
4881 | ||
4882 | if (!cfs_bandwidth_used()) | |
4883 | return; | |
4884 | ||
4885 | if (!tg->parent) | |
4886 | return; | |
4887 | ||
4888 | cfs_rq = tg->cfs_rq[cpu]; | |
4889 | pcfs_rq = tg->parent->cfs_rq[cpu]; | |
4890 | ||
4891 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | |
b8922125 | 4892 | cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); |
55e16d30 PZ |
4893 | } |
4894 | ||
d3d9dc33 | 4895 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
678d5718 | 4896 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
d3d9dc33 | 4897 | { |
56f570e5 | 4898 | if (!cfs_bandwidth_used()) |
678d5718 | 4899 | return false; |
56f570e5 | 4900 | |
d3d9dc33 | 4901 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
678d5718 | 4902 | return false; |
d3d9dc33 PT |
4903 | |
4904 | /* | |
4905 | * it's possible for a throttled entity to be forced into a running | |
4906 | * state (e.g. set_curr_task), in this case we're finished. | |
4907 | */ | |
4908 | if (cfs_rq_throttled(cfs_rq)) | |
678d5718 | 4909 | return true; |
d3d9dc33 PT |
4910 | |
4911 | throttle_cfs_rq(cfs_rq); | |
678d5718 | 4912 | return true; |
d3d9dc33 | 4913 | } |
029632fb | 4914 | |
029632fb PZ |
4915 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
4916 | { | |
4917 | struct cfs_bandwidth *cfs_b = | |
4918 | container_of(timer, struct cfs_bandwidth, slack_timer); | |
77a4d1a1 | 4919 | |
029632fb PZ |
4920 | do_sched_cfs_slack_timer(cfs_b); |
4921 | ||
4922 | return HRTIMER_NORESTART; | |
4923 | } | |
4924 | ||
2e8e1922 PA |
4925 | extern const u64 max_cfs_quota_period; |
4926 | ||
029632fb PZ |
4927 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) |
4928 | { | |
4929 | struct cfs_bandwidth *cfs_b = | |
4930 | container_of(timer, struct cfs_bandwidth, period_timer); | |
c0ad4aa4 | 4931 | unsigned long flags; |
029632fb PZ |
4932 | int overrun; |
4933 | int idle = 0; | |
2e8e1922 | 4934 | int count = 0; |
029632fb | 4935 | |
c0ad4aa4 | 4936 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
029632fb | 4937 | for (;;) { |
77a4d1a1 | 4938 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
029632fb PZ |
4939 | if (!overrun) |
4940 | break; | |
4941 | ||
2e8e1922 PA |
4942 | if (++count > 3) { |
4943 | u64 new, old = ktime_to_ns(cfs_b->period); | |
4944 | ||
4929a4e6 XZ |
4945 | /* |
4946 | * Grow period by a factor of 2 to avoid losing precision. | |
4947 | * Precision loss in the quota/period ratio can cause __cfs_schedulable | |
4948 | * to fail. | |
4949 | */ | |
4950 | new = old * 2; | |
4951 | if (new < max_cfs_quota_period) { | |
4952 | cfs_b->period = ns_to_ktime(new); | |
4953 | cfs_b->quota *= 2; | |
4954 | ||
4955 | pr_warn_ratelimited( | |
4956 | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
4957 | smp_processor_id(), | |
4958 | div_u64(new, NSEC_PER_USEC), | |
4959 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
4960 | } else { | |
4961 | pr_warn_ratelimited( | |
4962 | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
4963 | smp_processor_id(), | |
4964 | div_u64(old, NSEC_PER_USEC), | |
4965 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
4966 | } | |
2e8e1922 PA |
4967 | |
4968 | /* reset count so we don't come right back in here */ | |
4969 | count = 0; | |
4970 | } | |
4971 | ||
c0ad4aa4 | 4972 | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); |
029632fb | 4973 | } |
4cfafd30 PZ |
4974 | if (idle) |
4975 | cfs_b->period_active = 0; | |
c0ad4aa4 | 4976 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
029632fb PZ |
4977 | |
4978 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
4979 | } | |
4980 | ||
4981 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
4982 | { | |
4983 | raw_spin_lock_init(&cfs_b->lock); | |
4984 | cfs_b->runtime = 0; | |
4985 | cfs_b->quota = RUNTIME_INF; | |
4986 | cfs_b->period = ns_to_ktime(default_cfs_period()); | |
4987 | ||
4988 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | |
4cfafd30 | 4989 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
4990 | cfs_b->period_timer.function = sched_cfs_period_timer; |
4991 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
4992 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | |
baa9be4f | 4993 | cfs_b->distribute_running = 0; |
66567fcb | 4994 | cfs_b->slack_started = false; |
029632fb PZ |
4995 | } |
4996 | ||
4997 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4998 | { | |
4999 | cfs_rq->runtime_enabled = 0; | |
5000 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | |
5001 | } | |
5002 | ||
77a4d1a1 | 5003 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
029632fb | 5004 | { |
4cfafd30 | 5005 | lockdep_assert_held(&cfs_b->lock); |
029632fb | 5006 | |
f1d1be8a XP |
5007 | if (cfs_b->period_active) |
5008 | return; | |
5009 | ||
5010 | cfs_b->period_active = 1; | |
763a9ec0 | 5011 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); |
f1d1be8a | 5012 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
5013 | } |
5014 | ||
5015 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
5016 | { | |
7f1a169b TH |
5017 | /* init_cfs_bandwidth() was not called */ |
5018 | if (!cfs_b->throttled_cfs_rq.next) | |
5019 | return; | |
5020 | ||
029632fb PZ |
5021 | hrtimer_cancel(&cfs_b->period_timer); |
5022 | hrtimer_cancel(&cfs_b->slack_timer); | |
5023 | } | |
5024 | ||
502ce005 | 5025 | /* |
97fb7a0a | 5026 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() |
502ce005 PZ |
5027 | * |
5028 | * The race is harmless, since modifying bandwidth settings of unhooked group | |
5029 | * bits doesn't do much. | |
5030 | */ | |
5031 | ||
5032 | /* cpu online calback */ | |
0e59bdae KT |
5033 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
5034 | { | |
502ce005 | 5035 | struct task_group *tg; |
0e59bdae | 5036 | |
502ce005 PZ |
5037 | lockdep_assert_held(&rq->lock); |
5038 | ||
5039 | rcu_read_lock(); | |
5040 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
5041 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | |
5042 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
0e59bdae KT |
5043 | |
5044 | raw_spin_lock(&cfs_b->lock); | |
5045 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | |
5046 | raw_spin_unlock(&cfs_b->lock); | |
5047 | } | |
502ce005 | 5048 | rcu_read_unlock(); |
0e59bdae KT |
5049 | } |
5050 | ||
502ce005 | 5051 | /* cpu offline callback */ |
38dc3348 | 5052 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
029632fb | 5053 | { |
502ce005 PZ |
5054 | struct task_group *tg; |
5055 | ||
5056 | lockdep_assert_held(&rq->lock); | |
5057 | ||
5058 | rcu_read_lock(); | |
5059 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
5060 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
029632fb | 5061 | |
029632fb PZ |
5062 | if (!cfs_rq->runtime_enabled) |
5063 | continue; | |
5064 | ||
5065 | /* | |
5066 | * clock_task is not advancing so we just need to make sure | |
5067 | * there's some valid quota amount | |
5068 | */ | |
51f2176d | 5069 | cfs_rq->runtime_remaining = 1; |
0e59bdae | 5070 | /* |
97fb7a0a | 5071 | * Offline rq is schedulable till CPU is completely disabled |
0e59bdae KT |
5072 | * in take_cpu_down(), so we prevent new cfs throttling here. |
5073 | */ | |
5074 | cfs_rq->runtime_enabled = 0; | |
5075 | ||
029632fb PZ |
5076 | if (cfs_rq_throttled(cfs_rq)) |
5077 | unthrottle_cfs_rq(cfs_rq); | |
5078 | } | |
502ce005 | 5079 | rcu_read_unlock(); |
029632fb PZ |
5080 | } |
5081 | ||
5082 | #else /* CONFIG_CFS_BANDWIDTH */ | |
f6783319 VG |
5083 | |
5084 | static inline bool cfs_bandwidth_used(void) | |
5085 | { | |
5086 | return false; | |
5087 | } | |
5088 | ||
9dbdb155 | 5089 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
678d5718 | 5090 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
d3d9dc33 | 5091 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
55e16d30 | 5092 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
6c16a6dc | 5093 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
85dac906 PT |
5094 | |
5095 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | |
5096 | { | |
5097 | return 0; | |
5098 | } | |
64660c86 PT |
5099 | |
5100 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
5101 | { | |
5102 | return 0; | |
5103 | } | |
5104 | ||
5105 | static inline int throttled_lb_pair(struct task_group *tg, | |
5106 | int src_cpu, int dest_cpu) | |
5107 | { | |
5108 | return 0; | |
5109 | } | |
029632fb PZ |
5110 | |
5111 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
5112 | ||
5113 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
5114 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | |
ab84d31e PT |
5115 | #endif |
5116 | ||
029632fb PZ |
5117 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
5118 | { | |
5119 | return NULL; | |
5120 | } | |
5121 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
0e59bdae | 5122 | static inline void update_runtime_enabled(struct rq *rq) {} |
a4c96ae3 | 5123 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
029632fb PZ |
5124 | |
5125 | #endif /* CONFIG_CFS_BANDWIDTH */ | |
5126 | ||
bf0f6f24 IM |
5127 | /************************************************** |
5128 | * CFS operations on tasks: | |
5129 | */ | |
5130 | ||
8f4d37ec PZ |
5131 | #ifdef CONFIG_SCHED_HRTICK |
5132 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
5133 | { | |
8f4d37ec PZ |
5134 | struct sched_entity *se = &p->se; |
5135 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
5136 | ||
9148a3a1 | 5137 | SCHED_WARN_ON(task_rq(p) != rq); |
8f4d37ec | 5138 | |
8bf46a39 | 5139 | if (rq->cfs.h_nr_running > 1) { |
8f4d37ec PZ |
5140 | u64 slice = sched_slice(cfs_rq, se); |
5141 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | |
5142 | s64 delta = slice - ran; | |
5143 | ||
5144 | if (delta < 0) { | |
5145 | if (rq->curr == p) | |
8875125e | 5146 | resched_curr(rq); |
8f4d37ec PZ |
5147 | return; |
5148 | } | |
31656519 | 5149 | hrtick_start(rq, delta); |
8f4d37ec PZ |
5150 | } |
5151 | } | |
a4c2f00f PZ |
5152 | |
5153 | /* | |
5154 | * called from enqueue/dequeue and updates the hrtick when the | |
5155 | * current task is from our class and nr_running is low enough | |
5156 | * to matter. | |
5157 | */ | |
5158 | static void hrtick_update(struct rq *rq) | |
5159 | { | |
5160 | struct task_struct *curr = rq->curr; | |
5161 | ||
b39e66ea | 5162 | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) |
a4c2f00f PZ |
5163 | return; |
5164 | ||
5165 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | |
5166 | hrtick_start_fair(rq, curr); | |
5167 | } | |
55e12e5e | 5168 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
5169 | static inline void |
5170 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
5171 | { | |
5172 | } | |
a4c2f00f PZ |
5173 | |
5174 | static inline void hrtick_update(struct rq *rq) | |
5175 | { | |
5176 | } | |
8f4d37ec PZ |
5177 | #endif |
5178 | ||
2802bf3c MR |
5179 | #ifdef CONFIG_SMP |
5180 | static inline unsigned long cpu_util(int cpu); | |
2802bf3c MR |
5181 | |
5182 | static inline bool cpu_overutilized(int cpu) | |
5183 | { | |
60e17f5c | 5184 | return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); |
2802bf3c MR |
5185 | } |
5186 | ||
5187 | static inline void update_overutilized_status(struct rq *rq) | |
5188 | { | |
f9f240f9 | 5189 | if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { |
2802bf3c | 5190 | WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); |
f9f240f9 QY |
5191 | trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); |
5192 | } | |
2802bf3c MR |
5193 | } |
5194 | #else | |
5195 | static inline void update_overutilized_status(struct rq *rq) { } | |
5196 | #endif | |
5197 | ||
bf0f6f24 IM |
5198 | /* |
5199 | * The enqueue_task method is called before nr_running is | |
5200 | * increased. Here we update the fair scheduling stats and | |
5201 | * then put the task into the rbtree: | |
5202 | */ | |
ea87bb78 | 5203 | static void |
371fd7e7 | 5204 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
5205 | { |
5206 | struct cfs_rq *cfs_rq; | |
62fb1851 | 5207 | struct sched_entity *se = &p->se; |
43e9f7f2 | 5208 | int idle_h_nr_running = task_has_idle_policy(p); |
bf0f6f24 | 5209 | |
2539fc82 PB |
5210 | /* |
5211 | * The code below (indirectly) updates schedutil which looks at | |
5212 | * the cfs_rq utilization to select a frequency. | |
5213 | * Let's add the task's estimated utilization to the cfs_rq's | |
5214 | * estimated utilization, before we update schedutil. | |
5215 | */ | |
5216 | util_est_enqueue(&rq->cfs, p); | |
5217 | ||
8c34ab19 RW |
5218 | /* |
5219 | * If in_iowait is set, the code below may not trigger any cpufreq | |
5220 | * utilization updates, so do it here explicitly with the IOWAIT flag | |
5221 | * passed. | |
5222 | */ | |
5223 | if (p->in_iowait) | |
674e7541 | 5224 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); |
8c34ab19 | 5225 | |
bf0f6f24 | 5226 | for_each_sched_entity(se) { |
62fb1851 | 5227 | if (se->on_rq) |
bf0f6f24 IM |
5228 | break; |
5229 | cfs_rq = cfs_rq_of(se); | |
88ec22d3 | 5230 | enqueue_entity(cfs_rq, se, flags); |
85dac906 PT |
5231 | |
5232 | /* | |
5233 | * end evaluation on encountering a throttled cfs_rq | |
5234 | * | |
5235 | * note: in the case of encountering a throttled cfs_rq we will | |
5236 | * post the final h_nr_running increment below. | |
e210bffd | 5237 | */ |
85dac906 PT |
5238 | if (cfs_rq_throttled(cfs_rq)) |
5239 | break; | |
953bfcd1 | 5240 | cfs_rq->h_nr_running++; |
43e9f7f2 | 5241 | cfs_rq->idle_h_nr_running += idle_h_nr_running; |
85dac906 | 5242 | |
88ec22d3 | 5243 | flags = ENQUEUE_WAKEUP; |
bf0f6f24 | 5244 | } |
8f4d37ec | 5245 | |
2069dd75 | 5246 | for_each_sched_entity(se) { |
0f317143 | 5247 | cfs_rq = cfs_rq_of(se); |
953bfcd1 | 5248 | cfs_rq->h_nr_running++; |
43e9f7f2 | 5249 | cfs_rq->idle_h_nr_running += idle_h_nr_running; |
2069dd75 | 5250 | |
85dac906 PT |
5251 | if (cfs_rq_throttled(cfs_rq)) |
5252 | break; | |
5253 | ||
88c0616e | 5254 | update_load_avg(cfs_rq, se, UPDATE_TG); |
1ea6c46a | 5255 | update_cfs_group(se); |
2069dd75 PZ |
5256 | } |
5257 | ||
2802bf3c | 5258 | if (!se) { |
72465447 | 5259 | add_nr_running(rq, 1); |
2802bf3c MR |
5260 | /* |
5261 | * Since new tasks are assigned an initial util_avg equal to | |
5262 | * half of the spare capacity of their CPU, tiny tasks have the | |
5263 | * ability to cross the overutilized threshold, which will | |
5264 | * result in the load balancer ruining all the task placement | |
5265 | * done by EAS. As a way to mitigate that effect, do not account | |
5266 | * for the first enqueue operation of new tasks during the | |
5267 | * overutilized flag detection. | |
5268 | * | |
5269 | * A better way of solving this problem would be to wait for | |
5270 | * the PELT signals of tasks to converge before taking them | |
5271 | * into account, but that is not straightforward to implement, | |
5272 | * and the following generally works well enough in practice. | |
5273 | */ | |
5274 | if (flags & ENQUEUE_WAKEUP) | |
5275 | update_overutilized_status(rq); | |
5276 | ||
5277 | } | |
cd126afe | 5278 | |
f6783319 VG |
5279 | if (cfs_bandwidth_used()) { |
5280 | /* | |
5281 | * When bandwidth control is enabled; the cfs_rq_throttled() | |
5282 | * breaks in the above iteration can result in incomplete | |
5283 | * leaf list maintenance, resulting in triggering the assertion | |
5284 | * below. | |
5285 | */ | |
5286 | for_each_sched_entity(se) { | |
5287 | cfs_rq = cfs_rq_of(se); | |
5288 | ||
5289 | if (list_add_leaf_cfs_rq(cfs_rq)) | |
5290 | break; | |
5291 | } | |
5292 | } | |
5293 | ||
5d299eab PZ |
5294 | assert_list_leaf_cfs_rq(rq); |
5295 | ||
a4c2f00f | 5296 | hrtick_update(rq); |
bf0f6f24 IM |
5297 | } |
5298 | ||
2f36825b VP |
5299 | static void set_next_buddy(struct sched_entity *se); |
5300 | ||
bf0f6f24 IM |
5301 | /* |
5302 | * The dequeue_task method is called before nr_running is | |
5303 | * decreased. We remove the task from the rbtree and | |
5304 | * update the fair scheduling stats: | |
5305 | */ | |
371fd7e7 | 5306 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
5307 | { |
5308 | struct cfs_rq *cfs_rq; | |
62fb1851 | 5309 | struct sched_entity *se = &p->se; |
2f36825b | 5310 | int task_sleep = flags & DEQUEUE_SLEEP; |
43e9f7f2 | 5311 | int idle_h_nr_running = task_has_idle_policy(p); |
bf0f6f24 IM |
5312 | |
5313 | for_each_sched_entity(se) { | |
5314 | cfs_rq = cfs_rq_of(se); | |
371fd7e7 | 5315 | dequeue_entity(cfs_rq, se, flags); |
85dac906 PT |
5316 | |
5317 | /* | |
5318 | * end evaluation on encountering a throttled cfs_rq | |
5319 | * | |
5320 | * note: in the case of encountering a throttled cfs_rq we will | |
5321 | * post the final h_nr_running decrement below. | |
5322 | */ | |
5323 | if (cfs_rq_throttled(cfs_rq)) | |
5324 | break; | |
953bfcd1 | 5325 | cfs_rq->h_nr_running--; |
43e9f7f2 | 5326 | cfs_rq->idle_h_nr_running -= idle_h_nr_running; |
2069dd75 | 5327 | |
bf0f6f24 | 5328 | /* Don't dequeue parent if it has other entities besides us */ |
2f36825b | 5329 | if (cfs_rq->load.weight) { |
754bd598 KK |
5330 | /* Avoid re-evaluating load for this entity: */ |
5331 | se = parent_entity(se); | |
2f36825b VP |
5332 | /* |
5333 | * Bias pick_next to pick a task from this cfs_rq, as | |
5334 | * p is sleeping when it is within its sched_slice. | |
5335 | */ | |
754bd598 KK |
5336 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
5337 | set_next_buddy(se); | |
bf0f6f24 | 5338 | break; |
2f36825b | 5339 | } |
371fd7e7 | 5340 | flags |= DEQUEUE_SLEEP; |
bf0f6f24 | 5341 | } |
8f4d37ec | 5342 | |
2069dd75 | 5343 | for_each_sched_entity(se) { |
0f317143 | 5344 | cfs_rq = cfs_rq_of(se); |
953bfcd1 | 5345 | cfs_rq->h_nr_running--; |
43e9f7f2 | 5346 | cfs_rq->idle_h_nr_running -= idle_h_nr_running; |
2069dd75 | 5347 | |
85dac906 PT |
5348 | if (cfs_rq_throttled(cfs_rq)) |
5349 | break; | |
5350 | ||
88c0616e | 5351 | update_load_avg(cfs_rq, se, UPDATE_TG); |
1ea6c46a | 5352 | update_cfs_group(se); |
2069dd75 PZ |
5353 | } |
5354 | ||
cd126afe | 5355 | if (!se) |
72465447 | 5356 | sub_nr_running(rq, 1); |
cd126afe | 5357 | |
7f65ea42 | 5358 | util_est_dequeue(&rq->cfs, p, task_sleep); |
a4c2f00f | 5359 | hrtick_update(rq); |
bf0f6f24 IM |
5360 | } |
5361 | ||
e7693a36 | 5362 | #ifdef CONFIG_SMP |
10e2f1ac PZ |
5363 | |
5364 | /* Working cpumask for: load_balance, load_balance_newidle. */ | |
5365 | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | |
5366 | DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); | |
5367 | ||
9fd81dd5 | 5368 | #ifdef CONFIG_NO_HZ_COMMON |
e022e0d3 PZ |
5369 | |
5370 | static struct { | |
5371 | cpumask_var_t idle_cpus_mask; | |
5372 | atomic_t nr_cpus; | |
f643ea22 | 5373 | int has_blocked; /* Idle CPUS has blocked load */ |
e022e0d3 | 5374 | unsigned long next_balance; /* in jiffy units */ |
f643ea22 | 5375 | unsigned long next_blocked; /* Next update of blocked load in jiffies */ |
e022e0d3 PZ |
5376 | } nohz ____cacheline_aligned; |
5377 | ||
9fd81dd5 | 5378 | #endif /* CONFIG_NO_HZ_COMMON */ |
3289bdb4 | 5379 | |
3c29e651 VK |
5380 | /* CPU only has SCHED_IDLE tasks enqueued */ |
5381 | static int sched_idle_cpu(int cpu) | |
5382 | { | |
5383 | struct rq *rq = cpu_rq(cpu); | |
5384 | ||
5385 | return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && | |
5386 | rq->nr_running); | |
5387 | } | |
5388 | ||
b0fb1eb4 VG |
5389 | static unsigned long cpu_load(struct rq *rq) |
5390 | { | |
5391 | return cfs_rq_load_avg(&rq->cfs); | |
5392 | } | |
5393 | ||
3318544b VG |
5394 | /* |
5395 | * cpu_load_without - compute CPU load without any contributions from *p | |
5396 | * @cpu: the CPU which load is requested | |
5397 | * @p: the task which load should be discounted | |
5398 | * | |
5399 | * The load of a CPU is defined by the load of tasks currently enqueued on that | |
5400 | * CPU as well as tasks which are currently sleeping after an execution on that | |
5401 | * CPU. | |
5402 | * | |
5403 | * This method returns the load of the specified CPU by discounting the load of | |
5404 | * the specified task, whenever the task is currently contributing to the CPU | |
5405 | * load. | |
5406 | */ | |
5407 | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) | |
5408 | { | |
5409 | struct cfs_rq *cfs_rq; | |
5410 | unsigned int load; | |
5411 | ||
5412 | /* Task has no contribution or is new */ | |
5413 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
5414 | return cpu_load(rq); | |
5415 | ||
5416 | cfs_rq = &rq->cfs; | |
5417 | load = READ_ONCE(cfs_rq->avg.load_avg); | |
5418 | ||
5419 | /* Discount task's util from CPU's util */ | |
5420 | lsub_positive(&load, task_h_load(p)); | |
5421 | ||
5422 | return load; | |
5423 | } | |
5424 | ||
ced549fa | 5425 | static unsigned long capacity_of(int cpu) |
029632fb | 5426 | { |
ced549fa | 5427 | return cpu_rq(cpu)->cpu_capacity; |
029632fb PZ |
5428 | } |
5429 | ||
c58d25f3 PZ |
5430 | static void record_wakee(struct task_struct *p) |
5431 | { | |
5432 | /* | |
5433 | * Only decay a single time; tasks that have less then 1 wakeup per | |
5434 | * jiffy will not have built up many flips. | |
5435 | */ | |
5436 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | |
5437 | current->wakee_flips >>= 1; | |
5438 | current->wakee_flip_decay_ts = jiffies; | |
5439 | } | |
5440 | ||
5441 | if (current->last_wakee != p) { | |
5442 | current->last_wakee = p; | |
5443 | current->wakee_flips++; | |
5444 | } | |
5445 | } | |
5446 | ||
63b0e9ed MG |
5447 | /* |
5448 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | |
c58d25f3 | 5449 | * |
63b0e9ed | 5450 | * A waker of many should wake a different task than the one last awakened |
c58d25f3 PZ |
5451 | * at a frequency roughly N times higher than one of its wakees. |
5452 | * | |
5453 | * In order to determine whether we should let the load spread vs consolidating | |
5454 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | |
5455 | * partner, and a factor of lls_size higher frequency in the other. | |
5456 | * | |
5457 | * With both conditions met, we can be relatively sure that the relationship is | |
5458 | * non-monogamous, with partner count exceeding socket size. | |
5459 | * | |
5460 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | |
5461 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | |
5462 | * socket size. | |
63b0e9ed | 5463 | */ |
62470419 MW |
5464 | static int wake_wide(struct task_struct *p) |
5465 | { | |
63b0e9ed MG |
5466 | unsigned int master = current->wakee_flips; |
5467 | unsigned int slave = p->wakee_flips; | |
7d9ffa89 | 5468 | int factor = this_cpu_read(sd_llc_size); |
62470419 | 5469 | |
63b0e9ed MG |
5470 | if (master < slave) |
5471 | swap(master, slave); | |
5472 | if (slave < factor || master < slave * factor) | |
5473 | return 0; | |
5474 | return 1; | |
62470419 MW |
5475 | } |
5476 | ||
90001d67 | 5477 | /* |
d153b153 PZ |
5478 | * The purpose of wake_affine() is to quickly determine on which CPU we can run |
5479 | * soonest. For the purpose of speed we only consider the waking and previous | |
5480 | * CPU. | |
90001d67 | 5481 | * |
7332dec0 MG |
5482 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is |
5483 | * cache-affine and is (or will be) idle. | |
f2cdd9cc PZ |
5484 | * |
5485 | * wake_affine_weight() - considers the weight to reflect the average | |
5486 | * scheduling latency of the CPUs. This seems to work | |
5487 | * for the overloaded case. | |
90001d67 | 5488 | */ |
3b76c4a3 | 5489 | static int |
89a55f56 | 5490 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) |
90001d67 | 5491 | { |
7332dec0 MG |
5492 | /* |
5493 | * If this_cpu is idle, it implies the wakeup is from interrupt | |
5494 | * context. Only allow the move if cache is shared. Otherwise an | |
5495 | * interrupt intensive workload could force all tasks onto one | |
5496 | * node depending on the IO topology or IRQ affinity settings. | |
806486c3 MG |
5497 | * |
5498 | * If the prev_cpu is idle and cache affine then avoid a migration. | |
5499 | * There is no guarantee that the cache hot data from an interrupt | |
5500 | * is more important than cache hot data on the prev_cpu and from | |
5501 | * a cpufreq perspective, it's better to have higher utilisation | |
5502 | * on one CPU. | |
7332dec0 | 5503 | */ |
943d355d RJ |
5504 | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) |
5505 | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; | |
90001d67 | 5506 | |
d153b153 | 5507 | if (sync && cpu_rq(this_cpu)->nr_running == 1) |
3b76c4a3 | 5508 | return this_cpu; |
90001d67 | 5509 | |
3b76c4a3 | 5510 | return nr_cpumask_bits; |
90001d67 PZ |
5511 | } |
5512 | ||
3b76c4a3 | 5513 | static int |
f2cdd9cc PZ |
5514 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, |
5515 | int this_cpu, int prev_cpu, int sync) | |
90001d67 | 5516 | { |
90001d67 PZ |
5517 | s64 this_eff_load, prev_eff_load; |
5518 | unsigned long task_load; | |
5519 | ||
11f10e54 | 5520 | this_eff_load = cpu_load(cpu_rq(this_cpu)); |
90001d67 | 5521 | |
90001d67 PZ |
5522 | if (sync) { |
5523 | unsigned long current_load = task_h_load(current); | |
5524 | ||
f2cdd9cc | 5525 | if (current_load > this_eff_load) |
3b76c4a3 | 5526 | return this_cpu; |
90001d67 | 5527 | |
f2cdd9cc | 5528 | this_eff_load -= current_load; |
90001d67 PZ |
5529 | } |
5530 | ||
90001d67 PZ |
5531 | task_load = task_h_load(p); |
5532 | ||
f2cdd9cc PZ |
5533 | this_eff_load += task_load; |
5534 | if (sched_feat(WA_BIAS)) | |
5535 | this_eff_load *= 100; | |
5536 | this_eff_load *= capacity_of(prev_cpu); | |
90001d67 | 5537 | |
11f10e54 | 5538 | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); |
f2cdd9cc PZ |
5539 | prev_eff_load -= task_load; |
5540 | if (sched_feat(WA_BIAS)) | |
5541 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | |
5542 | prev_eff_load *= capacity_of(this_cpu); | |
90001d67 | 5543 | |
082f764a MG |
5544 | /* |
5545 | * If sync, adjust the weight of prev_eff_load such that if | |
5546 | * prev_eff == this_eff that select_idle_sibling() will consider | |
5547 | * stacking the wakee on top of the waker if no other CPU is | |
5548 | * idle. | |
5549 | */ | |
5550 | if (sync) | |
5551 | prev_eff_load += 1; | |
5552 | ||
5553 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | |
90001d67 PZ |
5554 | } |
5555 | ||
772bd008 | 5556 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
7ebb66a1 | 5557 | int this_cpu, int prev_cpu, int sync) |
098fb9db | 5558 | { |
3b76c4a3 | 5559 | int target = nr_cpumask_bits; |
098fb9db | 5560 | |
89a55f56 | 5561 | if (sched_feat(WA_IDLE)) |
3b76c4a3 | 5562 | target = wake_affine_idle(this_cpu, prev_cpu, sync); |
90001d67 | 5563 | |
3b76c4a3 MG |
5564 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) |
5565 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | |
098fb9db | 5566 | |
ae92882e | 5567 | schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); |
3b76c4a3 MG |
5568 | if (target == nr_cpumask_bits) |
5569 | return prev_cpu; | |
098fb9db | 5570 | |
3b76c4a3 MG |
5571 | schedstat_inc(sd->ttwu_move_affine); |
5572 | schedstat_inc(p->se.statistics.nr_wakeups_affine); | |
5573 | return target; | |
098fb9db IM |
5574 | } |
5575 | ||
aaee1203 | 5576 | static struct sched_group * |
78e7ed53 | 5577 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, |
57abff06 | 5578 | int this_cpu, int sd_flag); |
aaee1203 PZ |
5579 | |
5580 | /* | |
97fb7a0a | 5581 | * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. |
aaee1203 PZ |
5582 | */ |
5583 | static int | |
18bd1b4b | 5584 | find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
aaee1203 PZ |
5585 | { |
5586 | unsigned long load, min_load = ULONG_MAX; | |
83a0a96a NP |
5587 | unsigned int min_exit_latency = UINT_MAX; |
5588 | u64 latest_idle_timestamp = 0; | |
5589 | int least_loaded_cpu = this_cpu; | |
3c29e651 | 5590 | int shallowest_idle_cpu = -1, si_cpu = -1; |
aaee1203 PZ |
5591 | int i; |
5592 | ||
eaecf41f MR |
5593 | /* Check if we have any choice: */ |
5594 | if (group->group_weight == 1) | |
ae4df9d6 | 5595 | return cpumask_first(sched_group_span(group)); |
eaecf41f | 5596 | |
aaee1203 | 5597 | /* Traverse only the allowed CPUs */ |
3bd37062 | 5598 | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { |
943d355d | 5599 | if (available_idle_cpu(i)) { |
83a0a96a NP |
5600 | struct rq *rq = cpu_rq(i); |
5601 | struct cpuidle_state *idle = idle_get_state(rq); | |
5602 | if (idle && idle->exit_latency < min_exit_latency) { | |
5603 | /* | |
5604 | * We give priority to a CPU whose idle state | |
5605 | * has the smallest exit latency irrespective | |
5606 | * of any idle timestamp. | |
5607 | */ | |
5608 | min_exit_latency = idle->exit_latency; | |
5609 | latest_idle_timestamp = rq->idle_stamp; | |
5610 | shallowest_idle_cpu = i; | |
5611 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | |
5612 | rq->idle_stamp > latest_idle_timestamp) { | |
5613 | /* | |
5614 | * If equal or no active idle state, then | |
5615 | * the most recently idled CPU might have | |
5616 | * a warmer cache. | |
5617 | */ | |
5618 | latest_idle_timestamp = rq->idle_stamp; | |
5619 | shallowest_idle_cpu = i; | |
5620 | } | |
3c29e651 VK |
5621 | } else if (shallowest_idle_cpu == -1 && si_cpu == -1) { |
5622 | if (sched_idle_cpu(i)) { | |
5623 | si_cpu = i; | |
5624 | continue; | |
5625 | } | |
5626 | ||
11f10e54 | 5627 | load = cpu_load(cpu_rq(i)); |
18cec7e0 | 5628 | if (load < min_load) { |
83a0a96a NP |
5629 | min_load = load; |
5630 | least_loaded_cpu = i; | |
5631 | } | |
e7693a36 GH |
5632 | } |
5633 | } | |
5634 | ||
3c29e651 VK |
5635 | if (shallowest_idle_cpu != -1) |
5636 | return shallowest_idle_cpu; | |
5637 | if (si_cpu != -1) | |
5638 | return si_cpu; | |
5639 | return least_loaded_cpu; | |
aaee1203 | 5640 | } |
e7693a36 | 5641 | |
18bd1b4b BJ |
5642 | static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, |
5643 | int cpu, int prev_cpu, int sd_flag) | |
5644 | { | |
93f50f90 | 5645 | int new_cpu = cpu; |
18bd1b4b | 5646 | |
3bd37062 | 5647 | if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) |
6fee85cc BJ |
5648 | return prev_cpu; |
5649 | ||
c976a862 | 5650 | /* |
57abff06 | 5651 | * We need task's util for cpu_util_without, sync it up to |
c469933e | 5652 | * prev_cpu's last_update_time. |
c976a862 VK |
5653 | */ |
5654 | if (!(sd_flag & SD_BALANCE_FORK)) | |
5655 | sync_entity_load_avg(&p->se); | |
5656 | ||
18bd1b4b BJ |
5657 | while (sd) { |
5658 | struct sched_group *group; | |
5659 | struct sched_domain *tmp; | |
5660 | int weight; | |
5661 | ||
5662 | if (!(sd->flags & sd_flag)) { | |
5663 | sd = sd->child; | |
5664 | continue; | |
5665 | } | |
5666 | ||
5667 | group = find_idlest_group(sd, p, cpu, sd_flag); | |
5668 | if (!group) { | |
5669 | sd = sd->child; | |
5670 | continue; | |
5671 | } | |
5672 | ||
5673 | new_cpu = find_idlest_group_cpu(group, p, cpu); | |
e90381ea | 5674 | if (new_cpu == cpu) { |
97fb7a0a | 5675 | /* Now try balancing at a lower domain level of 'cpu': */ |
18bd1b4b BJ |
5676 | sd = sd->child; |
5677 | continue; | |
5678 | } | |
5679 | ||
97fb7a0a | 5680 | /* Now try balancing at a lower domain level of 'new_cpu': */ |
18bd1b4b BJ |
5681 | cpu = new_cpu; |
5682 | weight = sd->span_weight; | |
5683 | sd = NULL; | |
5684 | for_each_domain(cpu, tmp) { | |
5685 | if (weight <= tmp->span_weight) | |
5686 | break; | |
5687 | if (tmp->flags & sd_flag) | |
5688 | sd = tmp; | |
5689 | } | |
18bd1b4b BJ |
5690 | } |
5691 | ||
5692 | return new_cpu; | |
5693 | } | |
5694 | ||
10e2f1ac | 5695 | #ifdef CONFIG_SCHED_SMT |
ba2591a5 | 5696 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); |
b284909a | 5697 | EXPORT_SYMBOL_GPL(sched_smt_present); |
10e2f1ac PZ |
5698 | |
5699 | static inline void set_idle_cores(int cpu, int val) | |
5700 | { | |
5701 | struct sched_domain_shared *sds; | |
5702 | ||
5703 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
5704 | if (sds) | |
5705 | WRITE_ONCE(sds->has_idle_cores, val); | |
5706 | } | |
5707 | ||
5708 | static inline bool test_idle_cores(int cpu, bool def) | |
5709 | { | |
5710 | struct sched_domain_shared *sds; | |
5711 | ||
5712 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
5713 | if (sds) | |
5714 | return READ_ONCE(sds->has_idle_cores); | |
5715 | ||
5716 | return def; | |
5717 | } | |
5718 | ||
5719 | /* | |
5720 | * Scans the local SMT mask to see if the entire core is idle, and records this | |
5721 | * information in sd_llc_shared->has_idle_cores. | |
5722 | * | |
5723 | * Since SMT siblings share all cache levels, inspecting this limited remote | |
5724 | * state should be fairly cheap. | |
5725 | */ | |
1b568f0a | 5726 | void __update_idle_core(struct rq *rq) |
10e2f1ac PZ |
5727 | { |
5728 | int core = cpu_of(rq); | |
5729 | int cpu; | |
5730 | ||
5731 | rcu_read_lock(); | |
5732 | if (test_idle_cores(core, true)) | |
5733 | goto unlock; | |
5734 | ||
5735 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
5736 | if (cpu == core) | |
5737 | continue; | |
5738 | ||
943d355d | 5739 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
5740 | goto unlock; |
5741 | } | |
5742 | ||
5743 | set_idle_cores(core, 1); | |
5744 | unlock: | |
5745 | rcu_read_unlock(); | |
5746 | } | |
5747 | ||
5748 | /* | |
5749 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | |
5750 | * there are no idle cores left in the system; tracked through | |
5751 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | |
5752 | */ | |
5753 | static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
5754 | { | |
5755 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); | |
c743f0a5 | 5756 | int core, cpu; |
10e2f1ac | 5757 | |
1b568f0a PZ |
5758 | if (!static_branch_likely(&sched_smt_present)) |
5759 | return -1; | |
5760 | ||
10e2f1ac PZ |
5761 | if (!test_idle_cores(target, false)) |
5762 | return -1; | |
5763 | ||
3bd37062 | 5764 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
10e2f1ac | 5765 | |
c743f0a5 | 5766 | for_each_cpu_wrap(core, cpus, target) { |
10e2f1ac PZ |
5767 | bool idle = true; |
5768 | ||
5769 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
c89d92ed | 5770 | __cpumask_clear_cpu(cpu, cpus); |
943d355d | 5771 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
5772 | idle = false; |
5773 | } | |
5774 | ||
5775 | if (idle) | |
5776 | return core; | |
5777 | } | |
5778 | ||
5779 | /* | |
5780 | * Failed to find an idle core; stop looking for one. | |
5781 | */ | |
5782 | set_idle_cores(target, 0); | |
5783 | ||
5784 | return -1; | |
5785 | } | |
5786 | ||
5787 | /* | |
5788 | * Scan the local SMT mask for idle CPUs. | |
5789 | */ | |
1b5500d7 | 5790 | static int select_idle_smt(struct task_struct *p, int target) |
10e2f1ac | 5791 | { |
3c29e651 | 5792 | int cpu, si_cpu = -1; |
10e2f1ac | 5793 | |
1b568f0a PZ |
5794 | if (!static_branch_likely(&sched_smt_present)) |
5795 | return -1; | |
5796 | ||
10e2f1ac | 5797 | for_each_cpu(cpu, cpu_smt_mask(target)) { |
3bd37062 | 5798 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
10e2f1ac | 5799 | continue; |
943d355d | 5800 | if (available_idle_cpu(cpu)) |
10e2f1ac | 5801 | return cpu; |
3c29e651 VK |
5802 | if (si_cpu == -1 && sched_idle_cpu(cpu)) |
5803 | si_cpu = cpu; | |
10e2f1ac PZ |
5804 | } |
5805 | ||
3c29e651 | 5806 | return si_cpu; |
10e2f1ac PZ |
5807 | } |
5808 | ||
5809 | #else /* CONFIG_SCHED_SMT */ | |
5810 | ||
5811 | static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
5812 | { | |
5813 | return -1; | |
5814 | } | |
5815 | ||
1b5500d7 | 5816 | static inline int select_idle_smt(struct task_struct *p, int target) |
10e2f1ac PZ |
5817 | { |
5818 | return -1; | |
5819 | } | |
5820 | ||
5821 | #endif /* CONFIG_SCHED_SMT */ | |
5822 | ||
5823 | /* | |
5824 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | |
5825 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | |
5826 | * average idle time for this rq (as found in rq->avg_idle). | |
a50bde51 | 5827 | */ |
10e2f1ac PZ |
5828 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) |
5829 | { | |
9cfb38a7 | 5830 | struct sched_domain *this_sd; |
1ad3aaf3 | 5831 | u64 avg_cost, avg_idle; |
10e2f1ac PZ |
5832 | u64 time, cost; |
5833 | s64 delta; | |
8dc2d993 | 5834 | int this = smp_processor_id(); |
3c29e651 | 5835 | int cpu, nr = INT_MAX, si_cpu = -1; |
10e2f1ac | 5836 | |
9cfb38a7 WL |
5837 | this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); |
5838 | if (!this_sd) | |
5839 | return -1; | |
5840 | ||
10e2f1ac PZ |
5841 | /* |
5842 | * Due to large variance we need a large fuzz factor; hackbench in | |
5843 | * particularly is sensitive here. | |
5844 | */ | |
1ad3aaf3 PZ |
5845 | avg_idle = this_rq()->avg_idle / 512; |
5846 | avg_cost = this_sd->avg_scan_cost + 1; | |
5847 | ||
5848 | if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) | |
10e2f1ac PZ |
5849 | return -1; |
5850 | ||
1ad3aaf3 PZ |
5851 | if (sched_feat(SIS_PROP)) { |
5852 | u64 span_avg = sd->span_weight * avg_idle; | |
5853 | if (span_avg > 4*avg_cost) | |
5854 | nr = div_u64(span_avg, avg_cost); | |
5855 | else | |
5856 | nr = 4; | |
5857 | } | |
5858 | ||
8dc2d993 | 5859 | time = cpu_clock(this); |
10e2f1ac | 5860 | |
c743f0a5 | 5861 | for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { |
1ad3aaf3 | 5862 | if (!--nr) |
3c29e651 | 5863 | return si_cpu; |
3bd37062 | 5864 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
10e2f1ac | 5865 | continue; |
943d355d | 5866 | if (available_idle_cpu(cpu)) |
10e2f1ac | 5867 | break; |
3c29e651 VK |
5868 | if (si_cpu == -1 && sched_idle_cpu(cpu)) |
5869 | si_cpu = cpu; | |
10e2f1ac PZ |
5870 | } |
5871 | ||
8dc2d993 | 5872 | time = cpu_clock(this) - time; |
10e2f1ac PZ |
5873 | cost = this_sd->avg_scan_cost; |
5874 | delta = (s64)(time - cost) / 8; | |
5875 | this_sd->avg_scan_cost += delta; | |
5876 | ||
5877 | return cpu; | |
5878 | } | |
5879 | ||
5880 | /* | |
5881 | * Try and locate an idle core/thread in the LLC cache domain. | |
a50bde51 | 5882 | */ |
772bd008 | 5883 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
a50bde51 | 5884 | { |
99bd5e2f | 5885 | struct sched_domain *sd; |
32e839dd | 5886 | int i, recent_used_cpu; |
a50bde51 | 5887 | |
3c29e651 | 5888 | if (available_idle_cpu(target) || sched_idle_cpu(target)) |
e0a79f52 | 5889 | return target; |
99bd5e2f SS |
5890 | |
5891 | /* | |
97fb7a0a | 5892 | * If the previous CPU is cache affine and idle, don't be stupid: |
99bd5e2f | 5893 | */ |
3c29e651 VK |
5894 | if (prev != target && cpus_share_cache(prev, target) && |
5895 | (available_idle_cpu(prev) || sched_idle_cpu(prev))) | |
772bd008 | 5896 | return prev; |
a50bde51 | 5897 | |
97fb7a0a | 5898 | /* Check a recently used CPU as a potential idle candidate: */ |
32e839dd MG |
5899 | recent_used_cpu = p->recent_used_cpu; |
5900 | if (recent_used_cpu != prev && | |
5901 | recent_used_cpu != target && | |
5902 | cpus_share_cache(recent_used_cpu, target) && | |
3c29e651 | 5903 | (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && |
3bd37062 | 5904 | cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { |
32e839dd MG |
5905 | /* |
5906 | * Replace recent_used_cpu with prev as it is a potential | |
97fb7a0a | 5907 | * candidate for the next wake: |
32e839dd MG |
5908 | */ |
5909 | p->recent_used_cpu = prev; | |
5910 | return recent_used_cpu; | |
5911 | } | |
5912 | ||
518cd623 | 5913 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
10e2f1ac PZ |
5914 | if (!sd) |
5915 | return target; | |
772bd008 | 5916 | |
10e2f1ac PZ |
5917 | i = select_idle_core(p, sd, target); |
5918 | if ((unsigned)i < nr_cpumask_bits) | |
5919 | return i; | |
37407ea7 | 5920 | |
10e2f1ac PZ |
5921 | i = select_idle_cpu(p, sd, target); |
5922 | if ((unsigned)i < nr_cpumask_bits) | |
5923 | return i; | |
5924 | ||
1b5500d7 | 5925 | i = select_idle_smt(p, target); |
10e2f1ac PZ |
5926 | if ((unsigned)i < nr_cpumask_bits) |
5927 | return i; | |
970e1789 | 5928 | |
a50bde51 PZ |
5929 | return target; |
5930 | } | |
231678b7 | 5931 | |
f9be3e59 PB |
5932 | /** |
5933 | * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks | |
5934 | * @cpu: the CPU to get the utilization of | |
5935 | * | |
5936 | * The unit of the return value must be the one of capacity so we can compare | |
5937 | * the utilization with the capacity of the CPU that is available for CFS task | |
5938 | * (ie cpu_capacity). | |
231678b7 DE |
5939 | * |
5940 | * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the | |
5941 | * recent utilization of currently non-runnable tasks on a CPU. It represents | |
5942 | * the amount of utilization of a CPU in the range [0..capacity_orig] where | |
5943 | * capacity_orig is the cpu_capacity available at the highest frequency | |
5944 | * (arch_scale_freq_capacity()). | |
5945 | * The utilization of a CPU converges towards a sum equal to or less than the | |
5946 | * current capacity (capacity_curr <= capacity_orig) of the CPU because it is | |
5947 | * the running time on this CPU scaled by capacity_curr. | |
5948 | * | |
f9be3e59 PB |
5949 | * The estimated utilization of a CPU is defined to be the maximum between its |
5950 | * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks | |
5951 | * currently RUNNABLE on that CPU. | |
5952 | * This allows to properly represent the expected utilization of a CPU which | |
5953 | * has just got a big task running since a long sleep period. At the same time | |
5954 | * however it preserves the benefits of the "blocked utilization" in | |
5955 | * describing the potential for other tasks waking up on the same CPU. | |
5956 | * | |
231678b7 DE |
5957 | * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even |
5958 | * higher than capacity_orig because of unfortunate rounding in | |
5959 | * cfs.avg.util_avg or just after migrating tasks and new task wakeups until | |
5960 | * the average stabilizes with the new running time. We need to check that the | |
5961 | * utilization stays within the range of [0..capacity_orig] and cap it if | |
5962 | * necessary. Without utilization capping, a group could be seen as overloaded | |
5963 | * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of | |
5964 | * available capacity. We allow utilization to overshoot capacity_curr (but not | |
5965 | * capacity_orig) as it useful for predicting the capacity required after task | |
5966 | * migrations (scheduler-driven DVFS). | |
f9be3e59 PB |
5967 | * |
5968 | * Return: the (estimated) utilization for the specified CPU | |
8bb5b00c | 5969 | */ |
f9be3e59 | 5970 | static inline unsigned long cpu_util(int cpu) |
8bb5b00c | 5971 | { |
f9be3e59 PB |
5972 | struct cfs_rq *cfs_rq; |
5973 | unsigned int util; | |
5974 | ||
5975 | cfs_rq = &cpu_rq(cpu)->cfs; | |
5976 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
5977 | ||
5978 | if (sched_feat(UTIL_EST)) | |
5979 | util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); | |
8bb5b00c | 5980 | |
f9be3e59 | 5981 | return min_t(unsigned long, util, capacity_orig_of(cpu)); |
8bb5b00c | 5982 | } |
a50bde51 | 5983 | |
104cb16d | 5984 | /* |
c469933e PB |
5985 | * cpu_util_without: compute cpu utilization without any contributions from *p |
5986 | * @cpu: the CPU which utilization is requested | |
5987 | * @p: the task which utilization should be discounted | |
5988 | * | |
5989 | * The utilization of a CPU is defined by the utilization of tasks currently | |
5990 | * enqueued on that CPU as well as tasks which are currently sleeping after an | |
5991 | * execution on that CPU. | |
5992 | * | |
5993 | * This method returns the utilization of the specified CPU by discounting the | |
5994 | * utilization of the specified task, whenever the task is currently | |
5995 | * contributing to the CPU utilization. | |
104cb16d | 5996 | */ |
c469933e | 5997 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) |
104cb16d | 5998 | { |
f9be3e59 PB |
5999 | struct cfs_rq *cfs_rq; |
6000 | unsigned int util; | |
104cb16d MR |
6001 | |
6002 | /* Task has no contribution or is new */ | |
f9be3e59 | 6003 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
104cb16d MR |
6004 | return cpu_util(cpu); |
6005 | ||
f9be3e59 PB |
6006 | cfs_rq = &cpu_rq(cpu)->cfs; |
6007 | util = READ_ONCE(cfs_rq->avg.util_avg); | |
6008 | ||
c469933e | 6009 | /* Discount task's util from CPU's util */ |
b5c0ce7b | 6010 | lsub_positive(&util, task_util(p)); |
104cb16d | 6011 | |
f9be3e59 PB |
6012 | /* |
6013 | * Covered cases: | |
6014 | * | |
6015 | * a) if *p is the only task sleeping on this CPU, then: | |
6016 | * cpu_util (== task_util) > util_est (== 0) | |
6017 | * and thus we return: | |
c469933e | 6018 | * cpu_util_without = (cpu_util - task_util) = 0 |
f9be3e59 PB |
6019 | * |
6020 | * b) if other tasks are SLEEPING on this CPU, which is now exiting | |
6021 | * IDLE, then: | |
6022 | * cpu_util >= task_util | |
6023 | * cpu_util > util_est (== 0) | |
6024 | * and thus we discount *p's blocked utilization to return: | |
c469933e | 6025 | * cpu_util_without = (cpu_util - task_util) >= 0 |
f9be3e59 PB |
6026 | * |
6027 | * c) if other tasks are RUNNABLE on that CPU and | |
6028 | * util_est > cpu_util | |
6029 | * then we use util_est since it returns a more restrictive | |
6030 | * estimation of the spare capacity on that CPU, by just | |
6031 | * considering the expected utilization of tasks already | |
6032 | * runnable on that CPU. | |
6033 | * | |
6034 | * Cases a) and b) are covered by the above code, while case c) is | |
6035 | * covered by the following code when estimated utilization is | |
6036 | * enabled. | |
6037 | */ | |
c469933e PB |
6038 | if (sched_feat(UTIL_EST)) { |
6039 | unsigned int estimated = | |
6040 | READ_ONCE(cfs_rq->avg.util_est.enqueued); | |
6041 | ||
6042 | /* | |
6043 | * Despite the following checks we still have a small window | |
6044 | * for a possible race, when an execl's select_task_rq_fair() | |
6045 | * races with LB's detach_task(): | |
6046 | * | |
6047 | * detach_task() | |
6048 | * p->on_rq = TASK_ON_RQ_MIGRATING; | |
6049 | * ---------------------------------- A | |
6050 | * deactivate_task() \ | |
6051 | * dequeue_task() + RaceTime | |
6052 | * util_est_dequeue() / | |
6053 | * ---------------------------------- B | |
6054 | * | |
6055 | * The additional check on "current == p" it's required to | |
6056 | * properly fix the execl regression and it helps in further | |
6057 | * reducing the chances for the above race. | |
6058 | */ | |
b5c0ce7b PB |
6059 | if (unlikely(task_on_rq_queued(p) || current == p)) |
6060 | lsub_positive(&estimated, _task_util_est(p)); | |
6061 | ||
c469933e PB |
6062 | util = max(util, estimated); |
6063 | } | |
f9be3e59 PB |
6064 | |
6065 | /* | |
6066 | * Utilization (estimated) can exceed the CPU capacity, thus let's | |
6067 | * clamp to the maximum CPU capacity to ensure consistency with | |
6068 | * the cpu_util call. | |
6069 | */ | |
6070 | return min_t(unsigned long, util, capacity_orig_of(cpu)); | |
104cb16d MR |
6071 | } |
6072 | ||
3273163c MR |
6073 | /* |
6074 | * Disable WAKE_AFFINE in the case where task @p doesn't fit in the | |
6075 | * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. | |
6076 | * | |
6077 | * In that case WAKE_AFFINE doesn't make sense and we'll let | |
6078 | * BALANCE_WAKE sort things out. | |
6079 | */ | |
6080 | static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) | |
6081 | { | |
6082 | long min_cap, max_cap; | |
6083 | ||
df054e84 MR |
6084 | if (!static_branch_unlikely(&sched_asym_cpucapacity)) |
6085 | return 0; | |
6086 | ||
3273163c MR |
6087 | min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); |
6088 | max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; | |
6089 | ||
6090 | /* Minimum capacity is close to max, no need to abort wake_affine */ | |
6091 | if (max_cap - min_cap < max_cap >> 3) | |
6092 | return 0; | |
6093 | ||
104cb16d MR |
6094 | /* Bring task utilization in sync with prev_cpu */ |
6095 | sync_entity_load_avg(&p->se); | |
6096 | ||
3b1baa64 | 6097 | return !task_fits_capacity(p, min_cap); |
3273163c MR |
6098 | } |
6099 | ||
390031e4 QP |
6100 | /* |
6101 | * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) | |
6102 | * to @dst_cpu. | |
6103 | */ | |
6104 | static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) | |
6105 | { | |
6106 | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; | |
6107 | unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); | |
6108 | ||
6109 | /* | |
6110 | * If @p migrates from @cpu to another, remove its contribution. Or, | |
6111 | * if @p migrates from another CPU to @cpu, add its contribution. In | |
6112 | * the other cases, @cpu is not impacted by the migration, so the | |
6113 | * util_avg should already be correct. | |
6114 | */ | |
6115 | if (task_cpu(p) == cpu && dst_cpu != cpu) | |
6116 | sub_positive(&util, task_util(p)); | |
6117 | else if (task_cpu(p) != cpu && dst_cpu == cpu) | |
6118 | util += task_util(p); | |
6119 | ||
6120 | if (sched_feat(UTIL_EST)) { | |
6121 | util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); | |
6122 | ||
6123 | /* | |
6124 | * During wake-up, the task isn't enqueued yet and doesn't | |
6125 | * appear in the cfs_rq->avg.util_est.enqueued of any rq, | |
6126 | * so just add it (if needed) to "simulate" what will be | |
6127 | * cpu_util() after the task has been enqueued. | |
6128 | */ | |
6129 | if (dst_cpu == cpu) | |
6130 | util_est += _task_util_est(p); | |
6131 | ||
6132 | util = max(util, util_est); | |
6133 | } | |
6134 | ||
6135 | return min(util, capacity_orig_of(cpu)); | |
6136 | } | |
6137 | ||
6138 | /* | |
eb92692b | 6139 | * compute_energy(): Estimates the energy that @pd would consume if @p was |
390031e4 | 6140 | * migrated to @dst_cpu. compute_energy() predicts what will be the utilization |
eb92692b | 6141 | * landscape of @pd's CPUs after the task migration, and uses the Energy Model |
390031e4 QP |
6142 | * to compute what would be the energy if we decided to actually migrate that |
6143 | * task. | |
6144 | */ | |
6145 | static long | |
6146 | compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) | |
6147 | { | |
eb92692b QP |
6148 | struct cpumask *pd_mask = perf_domain_span(pd); |
6149 | unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); | |
6150 | unsigned long max_util = 0, sum_util = 0; | |
390031e4 QP |
6151 | int cpu; |
6152 | ||
eb92692b QP |
6153 | /* |
6154 | * The capacity state of CPUs of the current rd can be driven by CPUs | |
6155 | * of another rd if they belong to the same pd. So, account for the | |
6156 | * utilization of these CPUs too by masking pd with cpu_online_mask | |
6157 | * instead of the rd span. | |
6158 | * | |
6159 | * If an entire pd is outside of the current rd, it will not appear in | |
6160 | * its pd list and will not be accounted by compute_energy(). | |
6161 | */ | |
6162 | for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { | |
6163 | unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); | |
6164 | struct task_struct *tsk = cpu == dst_cpu ? p : NULL; | |
af24bde8 PB |
6165 | |
6166 | /* | |
eb92692b QP |
6167 | * Busy time computation: utilization clamping is not |
6168 | * required since the ratio (sum_util / cpu_capacity) | |
6169 | * is already enough to scale the EM reported power | |
6170 | * consumption at the (eventually clamped) cpu_capacity. | |
af24bde8 | 6171 | */ |
eb92692b QP |
6172 | sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, |
6173 | ENERGY_UTIL, NULL); | |
af24bde8 | 6174 | |
390031e4 | 6175 | /* |
eb92692b QP |
6176 | * Performance domain frequency: utilization clamping |
6177 | * must be considered since it affects the selection | |
6178 | * of the performance domain frequency. | |
6179 | * NOTE: in case RT tasks are running, by default the | |
6180 | * FREQUENCY_UTIL's utilization can be max OPP. | |
390031e4 | 6181 | */ |
eb92692b QP |
6182 | cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, |
6183 | FREQUENCY_UTIL, tsk); | |
6184 | max_util = max(max_util, cpu_util); | |
390031e4 QP |
6185 | } |
6186 | ||
eb92692b | 6187 | return em_pd_energy(pd->em_pd, max_util, sum_util); |
390031e4 QP |
6188 | } |
6189 | ||
732cd75b QP |
6190 | /* |
6191 | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the | |
6192 | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum | |
6193 | * spare capacity in each performance domain and uses it as a potential | |
6194 | * candidate to execute the task. Then, it uses the Energy Model to figure | |
6195 | * out which of the CPU candidates is the most energy-efficient. | |
6196 | * | |
6197 | * The rationale for this heuristic is as follows. In a performance domain, | |
6198 | * all the most energy efficient CPU candidates (according to the Energy | |
6199 | * Model) are those for which we'll request a low frequency. When there are | |
6200 | * several CPUs for which the frequency request will be the same, we don't | |
6201 | * have enough data to break the tie between them, because the Energy Model | |
6202 | * only includes active power costs. With this model, if we assume that | |
6203 | * frequency requests follow utilization (e.g. using schedutil), the CPU with | |
6204 | * the maximum spare capacity in a performance domain is guaranteed to be among | |
6205 | * the best candidates of the performance domain. | |
6206 | * | |
6207 | * In practice, it could be preferable from an energy standpoint to pack | |
6208 | * small tasks on a CPU in order to let other CPUs go in deeper idle states, | |
6209 | * but that could also hurt our chances to go cluster idle, and we have no | |
6210 | * ways to tell with the current Energy Model if this is actually a good | |
6211 | * idea or not. So, find_energy_efficient_cpu() basically favors | |
6212 | * cluster-packing, and spreading inside a cluster. That should at least be | |
6213 | * a good thing for latency, and this is consistent with the idea that most | |
6214 | * of the energy savings of EAS come from the asymmetry of the system, and | |
6215 | * not so much from breaking the tie between identical CPUs. That's also the | |
6216 | * reason why EAS is enabled in the topology code only for systems where | |
6217 | * SD_ASYM_CPUCAPACITY is set. | |
6218 | * | |
6219 | * NOTE: Forkees are not accepted in the energy-aware wake-up path because | |
6220 | * they don't have any useful utilization data yet and it's not possible to | |
6221 | * forecast their impact on energy consumption. Consequently, they will be | |
6222 | * placed by find_idlest_cpu() on the least loaded CPU, which might turn out | |
6223 | * to be energy-inefficient in some use-cases. The alternative would be to | |
6224 | * bias new tasks towards specific types of CPUs first, or to try to infer | |
6225 | * their util_avg from the parent task, but those heuristics could hurt | |
6226 | * other use-cases too. So, until someone finds a better way to solve this, | |
6227 | * let's keep things simple by re-using the existing slow path. | |
6228 | */ | |
732cd75b QP |
6229 | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) |
6230 | { | |
eb92692b | 6231 | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; |
732cd75b | 6232 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; |
eb92692b | 6233 | unsigned long cpu_cap, util, base_energy = 0; |
732cd75b | 6234 | int cpu, best_energy_cpu = prev_cpu; |
732cd75b | 6235 | struct sched_domain *sd; |
eb92692b | 6236 | struct perf_domain *pd; |
732cd75b QP |
6237 | |
6238 | rcu_read_lock(); | |
6239 | pd = rcu_dereference(rd->pd); | |
6240 | if (!pd || READ_ONCE(rd->overutilized)) | |
6241 | goto fail; | |
732cd75b QP |
6242 | |
6243 | /* | |
6244 | * Energy-aware wake-up happens on the lowest sched_domain starting | |
6245 | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. | |
6246 | */ | |
6247 | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); | |
6248 | while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | |
6249 | sd = sd->parent; | |
6250 | if (!sd) | |
6251 | goto fail; | |
6252 | ||
6253 | sync_entity_load_avg(&p->se); | |
6254 | if (!task_util_est(p)) | |
6255 | goto unlock; | |
6256 | ||
6257 | for (; pd; pd = pd->next) { | |
eb92692b QP |
6258 | unsigned long cur_delta, spare_cap, max_spare_cap = 0; |
6259 | unsigned long base_energy_pd; | |
732cd75b QP |
6260 | int max_spare_cap_cpu = -1; |
6261 | ||
eb92692b QP |
6262 | /* Compute the 'base' energy of the pd, without @p */ |
6263 | base_energy_pd = compute_energy(p, -1, pd); | |
6264 | base_energy += base_energy_pd; | |
6265 | ||
732cd75b | 6266 | for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { |
3bd37062 | 6267 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
732cd75b QP |
6268 | continue; |
6269 | ||
6270 | /* Skip CPUs that will be overutilized. */ | |
6271 | util = cpu_util_next(cpu, p, cpu); | |
6272 | cpu_cap = capacity_of(cpu); | |
60e17f5c | 6273 | if (!fits_capacity(util, cpu_cap)) |
732cd75b QP |
6274 | continue; |
6275 | ||
6276 | /* Always use prev_cpu as a candidate. */ | |
6277 | if (cpu == prev_cpu) { | |
eb92692b QP |
6278 | prev_delta = compute_energy(p, prev_cpu, pd); |
6279 | prev_delta -= base_energy_pd; | |
6280 | best_delta = min(best_delta, prev_delta); | |
732cd75b QP |
6281 | } |
6282 | ||
6283 | /* | |
6284 | * Find the CPU with the maximum spare capacity in | |
6285 | * the performance domain | |
6286 | */ | |
6287 | spare_cap = cpu_cap - util; | |
6288 | if (spare_cap > max_spare_cap) { | |
6289 | max_spare_cap = spare_cap; | |
6290 | max_spare_cap_cpu = cpu; | |
6291 | } | |
6292 | } | |
6293 | ||
6294 | /* Evaluate the energy impact of using this CPU. */ | |
4892f51a | 6295 | if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { |
eb92692b QP |
6296 | cur_delta = compute_energy(p, max_spare_cap_cpu, pd); |
6297 | cur_delta -= base_energy_pd; | |
6298 | if (cur_delta < best_delta) { | |
6299 | best_delta = cur_delta; | |
732cd75b QP |
6300 | best_energy_cpu = max_spare_cap_cpu; |
6301 | } | |
6302 | } | |
6303 | } | |
6304 | unlock: | |
6305 | rcu_read_unlock(); | |
6306 | ||
6307 | /* | |
6308 | * Pick the best CPU if prev_cpu cannot be used, or if it saves at | |
6309 | * least 6% of the energy used by prev_cpu. | |
6310 | */ | |
eb92692b | 6311 | if (prev_delta == ULONG_MAX) |
732cd75b QP |
6312 | return best_energy_cpu; |
6313 | ||
eb92692b | 6314 | if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) |
732cd75b QP |
6315 | return best_energy_cpu; |
6316 | ||
6317 | return prev_cpu; | |
6318 | ||
6319 | fail: | |
6320 | rcu_read_unlock(); | |
6321 | ||
6322 | return -1; | |
6323 | } | |
6324 | ||
aaee1203 | 6325 | /* |
de91b9cb MR |
6326 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
6327 | * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, | |
6328 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | |
aaee1203 | 6329 | * |
97fb7a0a IM |
6330 | * Balances load by selecting the idlest CPU in the idlest group, or under |
6331 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | |
aaee1203 | 6332 | * |
97fb7a0a | 6333 | * Returns the target CPU number. |
aaee1203 PZ |
6334 | * |
6335 | * preempt must be disabled. | |
6336 | */ | |
0017d735 | 6337 | static int |
ac66f547 | 6338 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) |
aaee1203 | 6339 | { |
f1d88b44 | 6340 | struct sched_domain *tmp, *sd = NULL; |
c88d5910 | 6341 | int cpu = smp_processor_id(); |
63b0e9ed | 6342 | int new_cpu = prev_cpu; |
99bd5e2f | 6343 | int want_affine = 0; |
24d0c1d6 | 6344 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); |
c88d5910 | 6345 | |
c58d25f3 PZ |
6346 | if (sd_flag & SD_BALANCE_WAKE) { |
6347 | record_wakee(p); | |
732cd75b | 6348 | |
f8a696f2 | 6349 | if (sched_energy_enabled()) { |
732cd75b QP |
6350 | new_cpu = find_energy_efficient_cpu(p, prev_cpu); |
6351 | if (new_cpu >= 0) | |
6352 | return new_cpu; | |
6353 | new_cpu = prev_cpu; | |
6354 | } | |
6355 | ||
6356 | want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && | |
3bd37062 | 6357 | cpumask_test_cpu(cpu, p->cpus_ptr); |
c58d25f3 | 6358 | } |
aaee1203 | 6359 | |
dce840a0 | 6360 | rcu_read_lock(); |
aaee1203 | 6361 | for_each_domain(cpu, tmp) { |
e4f42888 | 6362 | if (!(tmp->flags & SD_LOAD_BALANCE)) |
63b0e9ed | 6363 | break; |
e4f42888 | 6364 | |
fe3bcfe1 | 6365 | /* |
97fb7a0a | 6366 | * If both 'cpu' and 'prev_cpu' are part of this domain, |
99bd5e2f | 6367 | * cpu is a valid SD_WAKE_AFFINE target. |
fe3bcfe1 | 6368 | */ |
99bd5e2f SS |
6369 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
6370 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
f1d88b44 VK |
6371 | if (cpu != prev_cpu) |
6372 | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); | |
6373 | ||
6374 | sd = NULL; /* Prefer wake_affine over balance flags */ | |
29cd8bae | 6375 | break; |
f03542a7 | 6376 | } |
29cd8bae | 6377 | |
f03542a7 | 6378 | if (tmp->flags & sd_flag) |
29cd8bae | 6379 | sd = tmp; |
63b0e9ed MG |
6380 | else if (!want_affine) |
6381 | break; | |
29cd8bae PZ |
6382 | } |
6383 | ||
f1d88b44 VK |
6384 | if (unlikely(sd)) { |
6385 | /* Slow path */ | |
18bd1b4b | 6386 | new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); |
f1d88b44 VK |
6387 | } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ |
6388 | /* Fast path */ | |
6389 | ||
6390 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); | |
6391 | ||
6392 | if (want_affine) | |
6393 | current->recent_used_cpu = cpu; | |
e7693a36 | 6394 | } |
dce840a0 | 6395 | rcu_read_unlock(); |
e7693a36 | 6396 | |
c88d5910 | 6397 | return new_cpu; |
e7693a36 | 6398 | } |
0a74bef8 | 6399 | |
144d8487 PZ |
6400 | static void detach_entity_cfs_rq(struct sched_entity *se); |
6401 | ||
0a74bef8 | 6402 | /* |
97fb7a0a | 6403 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and |
0a74bef8 | 6404 | * cfs_rq_of(p) references at time of call are still valid and identify the |
97fb7a0a | 6405 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
0a74bef8 | 6406 | */ |
3f9672ba | 6407 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) |
0a74bef8 | 6408 | { |
59efa0ba PZ |
6409 | /* |
6410 | * As blocked tasks retain absolute vruntime the migration needs to | |
6411 | * deal with this by subtracting the old and adding the new | |
6412 | * min_vruntime -- the latter is done by enqueue_entity() when placing | |
6413 | * the task on the new runqueue. | |
6414 | */ | |
6415 | if (p->state == TASK_WAKING) { | |
6416 | struct sched_entity *se = &p->se; | |
6417 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
6418 | u64 min_vruntime; | |
6419 | ||
6420 | #ifndef CONFIG_64BIT | |
6421 | u64 min_vruntime_copy; | |
6422 | ||
6423 | do { | |
6424 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | |
6425 | smp_rmb(); | |
6426 | min_vruntime = cfs_rq->min_vruntime; | |
6427 | } while (min_vruntime != min_vruntime_copy); | |
6428 | #else | |
6429 | min_vruntime = cfs_rq->min_vruntime; | |
6430 | #endif | |
6431 | ||
6432 | se->vruntime -= min_vruntime; | |
6433 | } | |
6434 | ||
144d8487 PZ |
6435 | if (p->on_rq == TASK_ON_RQ_MIGRATING) { |
6436 | /* | |
6437 | * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' | |
6438 | * rq->lock and can modify state directly. | |
6439 | */ | |
6440 | lockdep_assert_held(&task_rq(p)->lock); | |
6441 | detach_entity_cfs_rq(&p->se); | |
6442 | ||
6443 | } else { | |
6444 | /* | |
6445 | * We are supposed to update the task to "current" time, then | |
6446 | * its up to date and ready to go to new CPU/cfs_rq. But we | |
6447 | * have difficulty in getting what current time is, so simply | |
6448 | * throw away the out-of-date time. This will result in the | |
6449 | * wakee task is less decayed, but giving the wakee more load | |
6450 | * sounds not bad. | |
6451 | */ | |
6452 | remove_entity_load_avg(&p->se); | |
6453 | } | |
9d89c257 YD |
6454 | |
6455 | /* Tell new CPU we are migrated */ | |
6456 | p->se.avg.last_update_time = 0; | |
3944a927 BS |
6457 | |
6458 | /* We have migrated, no longer consider this task hot */ | |
9d89c257 | 6459 | p->se.exec_start = 0; |
3f9672ba SD |
6460 | |
6461 | update_scan_period(p, new_cpu); | |
0a74bef8 | 6462 | } |
12695578 YD |
6463 | |
6464 | static void task_dead_fair(struct task_struct *p) | |
6465 | { | |
6466 | remove_entity_load_avg(&p->se); | |
6467 | } | |
6e2df058 PZ |
6468 | |
6469 | static int | |
6470 | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | |
6471 | { | |
6472 | if (rq->nr_running) | |
6473 | return 1; | |
6474 | ||
6475 | return newidle_balance(rq, rf) != 0; | |
6476 | } | |
e7693a36 GH |
6477 | #endif /* CONFIG_SMP */ |
6478 | ||
a555e9d8 | 6479 | static unsigned long wakeup_gran(struct sched_entity *se) |
0bbd3336 PZ |
6480 | { |
6481 | unsigned long gran = sysctl_sched_wakeup_granularity; | |
6482 | ||
6483 | /* | |
e52fb7c0 PZ |
6484 | * Since its curr running now, convert the gran from real-time |
6485 | * to virtual-time in his units. | |
13814d42 MG |
6486 | * |
6487 | * By using 'se' instead of 'curr' we penalize light tasks, so | |
6488 | * they get preempted easier. That is, if 'se' < 'curr' then | |
6489 | * the resulting gran will be larger, therefore penalizing the | |
6490 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | |
6491 | * be smaller, again penalizing the lighter task. | |
6492 | * | |
6493 | * This is especially important for buddies when the leftmost | |
6494 | * task is higher priority than the buddy. | |
0bbd3336 | 6495 | */ |
f4ad9bd2 | 6496 | return calc_delta_fair(gran, se); |
0bbd3336 PZ |
6497 | } |
6498 | ||
464b7527 PZ |
6499 | /* |
6500 | * Should 'se' preempt 'curr'. | |
6501 | * | |
6502 | * |s1 | |
6503 | * |s2 | |
6504 | * |s3 | |
6505 | * g | |
6506 | * |<--->|c | |
6507 | * | |
6508 | * w(c, s1) = -1 | |
6509 | * w(c, s2) = 0 | |
6510 | * w(c, s3) = 1 | |
6511 | * | |
6512 | */ | |
6513 | static int | |
6514 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |
6515 | { | |
6516 | s64 gran, vdiff = curr->vruntime - se->vruntime; | |
6517 | ||
6518 | if (vdiff <= 0) | |
6519 | return -1; | |
6520 | ||
a555e9d8 | 6521 | gran = wakeup_gran(se); |
464b7527 PZ |
6522 | if (vdiff > gran) |
6523 | return 1; | |
6524 | ||
6525 | return 0; | |
6526 | } | |
6527 | ||
02479099 PZ |
6528 | static void set_last_buddy(struct sched_entity *se) |
6529 | { | |
1da1843f | 6530 | if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) |
69c80f3e VP |
6531 | return; |
6532 | ||
c5ae366e DA |
6533 | for_each_sched_entity(se) { |
6534 | if (SCHED_WARN_ON(!se->on_rq)) | |
6535 | return; | |
69c80f3e | 6536 | cfs_rq_of(se)->last = se; |
c5ae366e | 6537 | } |
02479099 PZ |
6538 | } |
6539 | ||
6540 | static void set_next_buddy(struct sched_entity *se) | |
6541 | { | |
1da1843f | 6542 | if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) |
69c80f3e VP |
6543 | return; |
6544 | ||
c5ae366e DA |
6545 | for_each_sched_entity(se) { |
6546 | if (SCHED_WARN_ON(!se->on_rq)) | |
6547 | return; | |
69c80f3e | 6548 | cfs_rq_of(se)->next = se; |
c5ae366e | 6549 | } |
02479099 PZ |
6550 | } |
6551 | ||
ac53db59 RR |
6552 | static void set_skip_buddy(struct sched_entity *se) |
6553 | { | |
69c80f3e VP |
6554 | for_each_sched_entity(se) |
6555 | cfs_rq_of(se)->skip = se; | |
ac53db59 RR |
6556 | } |
6557 | ||
bf0f6f24 IM |
6558 | /* |
6559 | * Preempt the current task with a newly woken task if needed: | |
6560 | */ | |
5a9b86f6 | 6561 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 IM |
6562 | { |
6563 | struct task_struct *curr = rq->curr; | |
8651a86c | 6564 | struct sched_entity *se = &curr->se, *pse = &p->se; |
03e89e45 | 6565 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
f685ceac | 6566 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
2f36825b | 6567 | int next_buddy_marked = 0; |
bf0f6f24 | 6568 | |
4ae7d5ce IM |
6569 | if (unlikely(se == pse)) |
6570 | return; | |
6571 | ||
5238cdd3 | 6572 | /* |
163122b7 | 6573 | * This is possible from callers such as attach_tasks(), in which we |
5238cdd3 PT |
6574 | * unconditionally check_prempt_curr() after an enqueue (which may have |
6575 | * lead to a throttle). This both saves work and prevents false | |
6576 | * next-buddy nomination below. | |
6577 | */ | |
6578 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | |
6579 | return; | |
6580 | ||
2f36825b | 6581 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { |
3cb63d52 | 6582 | set_next_buddy(pse); |
2f36825b VP |
6583 | next_buddy_marked = 1; |
6584 | } | |
57fdc26d | 6585 | |
aec0a514 BR |
6586 | /* |
6587 | * We can come here with TIF_NEED_RESCHED already set from new task | |
6588 | * wake up path. | |
5238cdd3 PT |
6589 | * |
6590 | * Note: this also catches the edge-case of curr being in a throttled | |
6591 | * group (e.g. via set_curr_task), since update_curr() (in the | |
6592 | * enqueue of curr) will have resulted in resched being set. This | |
6593 | * prevents us from potentially nominating it as a false LAST_BUDDY | |
6594 | * below. | |
aec0a514 BR |
6595 | */ |
6596 | if (test_tsk_need_resched(curr)) | |
6597 | return; | |
6598 | ||
a2f5c9ab | 6599 | /* Idle tasks are by definition preempted by non-idle tasks. */ |
1da1843f VK |
6600 | if (unlikely(task_has_idle_policy(curr)) && |
6601 | likely(!task_has_idle_policy(p))) | |
a2f5c9ab DH |
6602 | goto preempt; |
6603 | ||
91c234b4 | 6604 | /* |
a2f5c9ab DH |
6605 | * Batch and idle tasks do not preempt non-idle tasks (their preemption |
6606 | * is driven by the tick): | |
91c234b4 | 6607 | */ |
8ed92e51 | 6608 | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) |
91c234b4 | 6609 | return; |
bf0f6f24 | 6610 | |
464b7527 | 6611 | find_matching_se(&se, &pse); |
9bbd7374 | 6612 | update_curr(cfs_rq_of(se)); |
002f128b | 6613 | BUG_ON(!pse); |
2f36825b VP |
6614 | if (wakeup_preempt_entity(se, pse) == 1) { |
6615 | /* | |
6616 | * Bias pick_next to pick the sched entity that is | |
6617 | * triggering this preemption. | |
6618 | */ | |
6619 | if (!next_buddy_marked) | |
6620 | set_next_buddy(pse); | |
3a7e73a2 | 6621 | goto preempt; |
2f36825b | 6622 | } |
464b7527 | 6623 | |
3a7e73a2 | 6624 | return; |
a65ac745 | 6625 | |
3a7e73a2 | 6626 | preempt: |
8875125e | 6627 | resched_curr(rq); |
3a7e73a2 PZ |
6628 | /* |
6629 | * Only set the backward buddy when the current task is still | |
6630 | * on the rq. This can happen when a wakeup gets interleaved | |
6631 | * with schedule on the ->pre_schedule() or idle_balance() | |
6632 | * point, either of which can * drop the rq lock. | |
6633 | * | |
6634 | * Also, during early boot the idle thread is in the fair class, | |
6635 | * for obvious reasons its a bad idea to schedule back to it. | |
6636 | */ | |
6637 | if (unlikely(!se->on_rq || curr == rq->idle)) | |
6638 | return; | |
6639 | ||
6640 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | |
6641 | set_last_buddy(se); | |
bf0f6f24 IM |
6642 | } |
6643 | ||
5d7d6056 | 6644 | struct task_struct * |
d8ac8971 | 6645 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
bf0f6f24 IM |
6646 | { |
6647 | struct cfs_rq *cfs_rq = &rq->cfs; | |
6648 | struct sched_entity *se; | |
678d5718 | 6649 | struct task_struct *p; |
37e117c0 | 6650 | int new_tasks; |
678d5718 | 6651 | |
6e83125c | 6652 | again: |
6e2df058 | 6653 | if (!sched_fair_runnable(rq)) |
38033c37 | 6654 | goto idle; |
678d5718 | 6655 | |
9674f5ca | 6656 | #ifdef CONFIG_FAIR_GROUP_SCHED |
67692435 | 6657 | if (!prev || prev->sched_class != &fair_sched_class) |
678d5718 PZ |
6658 | goto simple; |
6659 | ||
6660 | /* | |
6661 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | |
6662 | * likely that a next task is from the same cgroup as the current. | |
6663 | * | |
6664 | * Therefore attempt to avoid putting and setting the entire cgroup | |
6665 | * hierarchy, only change the part that actually changes. | |
6666 | */ | |
6667 | ||
6668 | do { | |
6669 | struct sched_entity *curr = cfs_rq->curr; | |
6670 | ||
6671 | /* | |
6672 | * Since we got here without doing put_prev_entity() we also | |
6673 | * have to consider cfs_rq->curr. If it is still a runnable | |
6674 | * entity, update_curr() will update its vruntime, otherwise | |
6675 | * forget we've ever seen it. | |
6676 | */ | |
54d27365 BS |
6677 | if (curr) { |
6678 | if (curr->on_rq) | |
6679 | update_curr(cfs_rq); | |
6680 | else | |
6681 | curr = NULL; | |
678d5718 | 6682 | |
54d27365 BS |
6683 | /* |
6684 | * This call to check_cfs_rq_runtime() will do the | |
6685 | * throttle and dequeue its entity in the parent(s). | |
9674f5ca | 6686 | * Therefore the nr_running test will indeed |
54d27365 BS |
6687 | * be correct. |
6688 | */ | |
9674f5ca VK |
6689 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) { |
6690 | cfs_rq = &rq->cfs; | |
6691 | ||
6692 | if (!cfs_rq->nr_running) | |
6693 | goto idle; | |
6694 | ||
54d27365 | 6695 | goto simple; |
9674f5ca | 6696 | } |
54d27365 | 6697 | } |
678d5718 PZ |
6698 | |
6699 | se = pick_next_entity(cfs_rq, curr); | |
6700 | cfs_rq = group_cfs_rq(se); | |
6701 | } while (cfs_rq); | |
6702 | ||
6703 | p = task_of(se); | |
6704 | ||
6705 | /* | |
6706 | * Since we haven't yet done put_prev_entity and if the selected task | |
6707 | * is a different task than we started out with, try and touch the | |
6708 | * least amount of cfs_rqs. | |
6709 | */ | |
6710 | if (prev != p) { | |
6711 | struct sched_entity *pse = &prev->se; | |
6712 | ||
6713 | while (!(cfs_rq = is_same_group(se, pse))) { | |
6714 | int se_depth = se->depth; | |
6715 | int pse_depth = pse->depth; | |
6716 | ||
6717 | if (se_depth <= pse_depth) { | |
6718 | put_prev_entity(cfs_rq_of(pse), pse); | |
6719 | pse = parent_entity(pse); | |
6720 | } | |
6721 | if (se_depth >= pse_depth) { | |
6722 | set_next_entity(cfs_rq_of(se), se); | |
6723 | se = parent_entity(se); | |
6724 | } | |
6725 | } | |
6726 | ||
6727 | put_prev_entity(cfs_rq, pse); | |
6728 | set_next_entity(cfs_rq, se); | |
6729 | } | |
6730 | ||
93824900 | 6731 | goto done; |
678d5718 | 6732 | simple: |
678d5718 | 6733 | #endif |
67692435 PZ |
6734 | if (prev) |
6735 | put_prev_task(rq, prev); | |
606dba2e | 6736 | |
bf0f6f24 | 6737 | do { |
678d5718 | 6738 | se = pick_next_entity(cfs_rq, NULL); |
f4b6755f | 6739 | set_next_entity(cfs_rq, se); |
bf0f6f24 IM |
6740 | cfs_rq = group_cfs_rq(se); |
6741 | } while (cfs_rq); | |
6742 | ||
8f4d37ec | 6743 | p = task_of(se); |
678d5718 | 6744 | |
13a453c2 | 6745 | done: __maybe_unused; |
93824900 UR |
6746 | #ifdef CONFIG_SMP |
6747 | /* | |
6748 | * Move the next running task to the front of | |
6749 | * the list, so our cfs_tasks list becomes MRU | |
6750 | * one. | |
6751 | */ | |
6752 | list_move(&p->se.group_node, &rq->cfs_tasks); | |
6753 | #endif | |
6754 | ||
b39e66ea MG |
6755 | if (hrtick_enabled(rq)) |
6756 | hrtick_start_fair(rq, p); | |
8f4d37ec | 6757 | |
3b1baa64 MR |
6758 | update_misfit_status(p, rq); |
6759 | ||
8f4d37ec | 6760 | return p; |
38033c37 PZ |
6761 | |
6762 | idle: | |
67692435 PZ |
6763 | if (!rf) |
6764 | return NULL; | |
6765 | ||
5ba553ef | 6766 | new_tasks = newidle_balance(rq, rf); |
46f69fa3 | 6767 | |
37e117c0 | 6768 | /* |
5ba553ef | 6769 | * Because newidle_balance() releases (and re-acquires) rq->lock, it is |
37e117c0 PZ |
6770 | * possible for any higher priority task to appear. In that case we |
6771 | * must re-start the pick_next_entity() loop. | |
6772 | */ | |
e4aa358b | 6773 | if (new_tasks < 0) |
37e117c0 PZ |
6774 | return RETRY_TASK; |
6775 | ||
e4aa358b | 6776 | if (new_tasks > 0) |
38033c37 | 6777 | goto again; |
38033c37 | 6778 | |
23127296 VG |
6779 | /* |
6780 | * rq is about to be idle, check if we need to update the | |
6781 | * lost_idle_time of clock_pelt | |
6782 | */ | |
6783 | update_idle_rq_clock_pelt(rq); | |
6784 | ||
38033c37 | 6785 | return NULL; |
bf0f6f24 IM |
6786 | } |
6787 | ||
98c2f700 PZ |
6788 | static struct task_struct *__pick_next_task_fair(struct rq *rq) |
6789 | { | |
6790 | return pick_next_task_fair(rq, NULL, NULL); | |
6791 | } | |
6792 | ||
bf0f6f24 IM |
6793 | /* |
6794 | * Account for a descheduled task: | |
6795 | */ | |
6e2df058 | 6796 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
bf0f6f24 IM |
6797 | { |
6798 | struct sched_entity *se = &prev->se; | |
6799 | struct cfs_rq *cfs_rq; | |
6800 | ||
6801 | for_each_sched_entity(se) { | |
6802 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 6803 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
6804 | } |
6805 | } | |
6806 | ||
ac53db59 RR |
6807 | /* |
6808 | * sched_yield() is very simple | |
6809 | * | |
6810 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | |
6811 | */ | |
6812 | static void yield_task_fair(struct rq *rq) | |
6813 | { | |
6814 | struct task_struct *curr = rq->curr; | |
6815 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
6816 | struct sched_entity *se = &curr->se; | |
6817 | ||
6818 | /* | |
6819 | * Are we the only task in the tree? | |
6820 | */ | |
6821 | if (unlikely(rq->nr_running == 1)) | |
6822 | return; | |
6823 | ||
6824 | clear_buddies(cfs_rq, se); | |
6825 | ||
6826 | if (curr->policy != SCHED_BATCH) { | |
6827 | update_rq_clock(rq); | |
6828 | /* | |
6829 | * Update run-time statistics of the 'current'. | |
6830 | */ | |
6831 | update_curr(cfs_rq); | |
916671c0 MG |
6832 | /* |
6833 | * Tell update_rq_clock() that we've just updated, | |
6834 | * so we don't do microscopic update in schedule() | |
6835 | * and double the fastpath cost. | |
6836 | */ | |
adcc8da8 | 6837 | rq_clock_skip_update(rq); |
ac53db59 RR |
6838 | } |
6839 | ||
6840 | set_skip_buddy(se); | |
6841 | } | |
6842 | ||
d95f4122 MG |
6843 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) |
6844 | { | |
6845 | struct sched_entity *se = &p->se; | |
6846 | ||
5238cdd3 PT |
6847 | /* throttled hierarchies are not runnable */ |
6848 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | |
d95f4122 MG |
6849 | return false; |
6850 | ||
6851 | /* Tell the scheduler that we'd really like pse to run next. */ | |
6852 | set_next_buddy(se); | |
6853 | ||
d95f4122 MG |
6854 | yield_task_fair(rq); |
6855 | ||
6856 | return true; | |
6857 | } | |
6858 | ||
681f3e68 | 6859 | #ifdef CONFIG_SMP |
bf0f6f24 | 6860 | /************************************************** |
e9c84cb8 PZ |
6861 | * Fair scheduling class load-balancing methods. |
6862 | * | |
6863 | * BASICS | |
6864 | * | |
6865 | * The purpose of load-balancing is to achieve the same basic fairness the | |
97fb7a0a | 6866 | * per-CPU scheduler provides, namely provide a proportional amount of compute |
e9c84cb8 PZ |
6867 | * time to each task. This is expressed in the following equation: |
6868 | * | |
6869 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) | |
6870 | * | |
97fb7a0a | 6871 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight |
e9c84cb8 PZ |
6872 | * W_i,0 is defined as: |
6873 | * | |
6874 | * W_i,0 = \Sum_j w_i,j (2) | |
6875 | * | |
97fb7a0a | 6876 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight |
1c3de5e1 | 6877 | * is derived from the nice value as per sched_prio_to_weight[]. |
e9c84cb8 PZ |
6878 | * |
6879 | * The weight average is an exponential decay average of the instantaneous | |
6880 | * weight: | |
6881 | * | |
6882 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) | |
6883 | * | |
97fb7a0a | 6884 | * C_i is the compute capacity of CPU i, typically it is the |
e9c84cb8 PZ |
6885 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
6886 | * can also include other factors [XXX]. | |
6887 | * | |
6888 | * To achieve this balance we define a measure of imbalance which follows | |
6889 | * directly from (1): | |
6890 | * | |
ced549fa | 6891 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
e9c84cb8 PZ |
6892 | * |
6893 | * We them move tasks around to minimize the imbalance. In the continuous | |
6894 | * function space it is obvious this converges, in the discrete case we get | |
6895 | * a few fun cases generally called infeasible weight scenarios. | |
6896 | * | |
6897 | * [XXX expand on: | |
6898 | * - infeasible weights; | |
6899 | * - local vs global optima in the discrete case. ] | |
6900 | * | |
6901 | * | |
6902 | * SCHED DOMAINS | |
6903 | * | |
6904 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | |
97fb7a0a | 6905 | * for all i,j solution, we create a tree of CPUs that follows the hardware |
e9c84cb8 | 6906 | * topology where each level pairs two lower groups (or better). This results |
97fb7a0a | 6907 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the |
e9c84cb8 | 6908 | * tree to only the first of the previous level and we decrease the frequency |
97fb7a0a | 6909 | * of load-balance at each level inv. proportional to the number of CPUs in |
e9c84cb8 PZ |
6910 | * the groups. |
6911 | * | |
6912 | * This yields: | |
6913 | * | |
6914 | * log_2 n 1 n | |
6915 | * \Sum { --- * --- * 2^i } = O(n) (5) | |
6916 | * i = 0 2^i 2^i | |
6917 | * `- size of each group | |
97fb7a0a | 6918 | * | | `- number of CPUs doing load-balance |
e9c84cb8 PZ |
6919 | * | `- freq |
6920 | * `- sum over all levels | |
6921 | * | |
6922 | * Coupled with a limit on how many tasks we can migrate every balance pass, | |
6923 | * this makes (5) the runtime complexity of the balancer. | |
6924 | * | |
6925 | * An important property here is that each CPU is still (indirectly) connected | |
97fb7a0a | 6926 | * to every other CPU in at most O(log n) steps: |
e9c84cb8 PZ |
6927 | * |
6928 | * The adjacency matrix of the resulting graph is given by: | |
6929 | * | |
97a7142f | 6930 | * log_2 n |
e9c84cb8 PZ |
6931 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
6932 | * k = 0 | |
6933 | * | |
6934 | * And you'll find that: | |
6935 | * | |
6936 | * A^(log_2 n)_i,j != 0 for all i,j (7) | |
6937 | * | |
97fb7a0a | 6938 | * Showing there's indeed a path between every CPU in at most O(log n) steps. |
e9c84cb8 PZ |
6939 | * The task movement gives a factor of O(m), giving a convergence complexity |
6940 | * of: | |
6941 | * | |
6942 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) | |
6943 | * | |
6944 | * | |
6945 | * WORK CONSERVING | |
6946 | * | |
6947 | * In order to avoid CPUs going idle while there's still work to do, new idle | |
97fb7a0a | 6948 | * balancing is more aggressive and has the newly idle CPU iterate up the domain |
e9c84cb8 PZ |
6949 | * tree itself instead of relying on other CPUs to bring it work. |
6950 | * | |
6951 | * This adds some complexity to both (5) and (8) but it reduces the total idle | |
6952 | * time. | |
6953 | * | |
6954 | * [XXX more?] | |
6955 | * | |
6956 | * | |
6957 | * CGROUPS | |
6958 | * | |
6959 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | |
6960 | * | |
6961 | * s_k,i | |
6962 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) | |
6963 | * S_k | |
6964 | * | |
6965 | * Where | |
6966 | * | |
6967 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) | |
6968 | * | |
97fb7a0a | 6969 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. |
e9c84cb8 PZ |
6970 | * |
6971 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | |
6972 | * property. | |
6973 | * | |
6974 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | |
6975 | * rewrite all of this once again.] | |
97a7142f | 6976 | */ |
bf0f6f24 | 6977 | |
ed387b78 HS |
6978 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
6979 | ||
0ec8aa00 PZ |
6980 | enum fbq_type { regular, remote, all }; |
6981 | ||
0b0695f2 VG |
6982 | /* |
6983 | * group_type describes the group of CPUs at the moment of the load balance. | |
6984 | * The enum is ordered by pulling priority, with the group with lowest priority | |
6985 | * first so the groupe_type can be simply compared when selecting the busiest | |
6986 | * group. see update_sd_pick_busiest(). | |
6987 | */ | |
3b1baa64 | 6988 | enum group_type { |
0b0695f2 VG |
6989 | group_has_spare = 0, |
6990 | group_fully_busy, | |
3b1baa64 | 6991 | group_misfit_task, |
0b0695f2 | 6992 | group_asym_packing, |
3b1baa64 | 6993 | group_imbalanced, |
0b0695f2 VG |
6994 | group_overloaded |
6995 | }; | |
6996 | ||
6997 | enum migration_type { | |
6998 | migrate_load = 0, | |
6999 | migrate_util, | |
7000 | migrate_task, | |
7001 | migrate_misfit | |
3b1baa64 MR |
7002 | }; |
7003 | ||
ddcdf6e7 | 7004 | #define LBF_ALL_PINNED 0x01 |
367456c7 | 7005 | #define LBF_NEED_BREAK 0x02 |
6263322c PZ |
7006 | #define LBF_DST_PINNED 0x04 |
7007 | #define LBF_SOME_PINNED 0x08 | |
e022e0d3 | 7008 | #define LBF_NOHZ_STATS 0x10 |
f643ea22 | 7009 | #define LBF_NOHZ_AGAIN 0x20 |
ddcdf6e7 PZ |
7010 | |
7011 | struct lb_env { | |
7012 | struct sched_domain *sd; | |
7013 | ||
ddcdf6e7 | 7014 | struct rq *src_rq; |
85c1e7da | 7015 | int src_cpu; |
ddcdf6e7 PZ |
7016 | |
7017 | int dst_cpu; | |
7018 | struct rq *dst_rq; | |
7019 | ||
88b8dac0 SV |
7020 | struct cpumask *dst_grpmask; |
7021 | int new_dst_cpu; | |
ddcdf6e7 | 7022 | enum cpu_idle_type idle; |
bd939f45 | 7023 | long imbalance; |
b9403130 MW |
7024 | /* The set of CPUs under consideration for load-balancing */ |
7025 | struct cpumask *cpus; | |
7026 | ||
ddcdf6e7 | 7027 | unsigned int flags; |
367456c7 PZ |
7028 | |
7029 | unsigned int loop; | |
7030 | unsigned int loop_break; | |
7031 | unsigned int loop_max; | |
0ec8aa00 PZ |
7032 | |
7033 | enum fbq_type fbq_type; | |
0b0695f2 | 7034 | enum migration_type migration_type; |
163122b7 | 7035 | struct list_head tasks; |
ddcdf6e7 PZ |
7036 | }; |
7037 | ||
029632fb PZ |
7038 | /* |
7039 | * Is this task likely cache-hot: | |
7040 | */ | |
5d5e2b1b | 7041 | static int task_hot(struct task_struct *p, struct lb_env *env) |
029632fb PZ |
7042 | { |
7043 | s64 delta; | |
7044 | ||
e5673f28 KT |
7045 | lockdep_assert_held(&env->src_rq->lock); |
7046 | ||
029632fb PZ |
7047 | if (p->sched_class != &fair_sched_class) |
7048 | return 0; | |
7049 | ||
1da1843f | 7050 | if (unlikely(task_has_idle_policy(p))) |
029632fb PZ |
7051 | return 0; |
7052 | ||
7053 | /* | |
7054 | * Buddy candidates are cache hot: | |
7055 | */ | |
5d5e2b1b | 7056 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
029632fb PZ |
7057 | (&p->se == cfs_rq_of(&p->se)->next || |
7058 | &p->se == cfs_rq_of(&p->se)->last)) | |
7059 | return 1; | |
7060 | ||
7061 | if (sysctl_sched_migration_cost == -1) | |
7062 | return 1; | |
7063 | if (sysctl_sched_migration_cost == 0) | |
7064 | return 0; | |
7065 | ||
5d5e2b1b | 7066 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
029632fb PZ |
7067 | |
7068 | return delta < (s64)sysctl_sched_migration_cost; | |
7069 | } | |
7070 | ||
3a7053b3 | 7071 | #ifdef CONFIG_NUMA_BALANCING |
c1ceac62 | 7072 | /* |
2a1ed24c SD |
7073 | * Returns 1, if task migration degrades locality |
7074 | * Returns 0, if task migration improves locality i.e migration preferred. | |
7075 | * Returns -1, if task migration is not affected by locality. | |
c1ceac62 | 7076 | */ |
2a1ed24c | 7077 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
3a7053b3 | 7078 | { |
b1ad065e | 7079 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
f35678b6 SD |
7080 | unsigned long src_weight, dst_weight; |
7081 | int src_nid, dst_nid, dist; | |
3a7053b3 | 7082 | |
2a595721 | 7083 | if (!static_branch_likely(&sched_numa_balancing)) |
2a1ed24c SD |
7084 | return -1; |
7085 | ||
c3b9bc5b | 7086 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
2a1ed24c | 7087 | return -1; |
7a0f3083 MG |
7088 | |
7089 | src_nid = cpu_to_node(env->src_cpu); | |
7090 | dst_nid = cpu_to_node(env->dst_cpu); | |
7091 | ||
83e1d2cd | 7092 | if (src_nid == dst_nid) |
2a1ed24c | 7093 | return -1; |
7a0f3083 | 7094 | |
2a1ed24c SD |
7095 | /* Migrating away from the preferred node is always bad. */ |
7096 | if (src_nid == p->numa_preferred_nid) { | |
7097 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | |
7098 | return 1; | |
7099 | else | |
7100 | return -1; | |
7101 | } | |
b1ad065e | 7102 | |
c1ceac62 RR |
7103 | /* Encourage migration to the preferred node. */ |
7104 | if (dst_nid == p->numa_preferred_nid) | |
2a1ed24c | 7105 | return 0; |
b1ad065e | 7106 | |
739294fb | 7107 | /* Leaving a core idle is often worse than degrading locality. */ |
f35678b6 | 7108 | if (env->idle == CPU_IDLE) |
739294fb RR |
7109 | return -1; |
7110 | ||
f35678b6 | 7111 | dist = node_distance(src_nid, dst_nid); |
c1ceac62 | 7112 | if (numa_group) { |
f35678b6 SD |
7113 | src_weight = group_weight(p, src_nid, dist); |
7114 | dst_weight = group_weight(p, dst_nid, dist); | |
c1ceac62 | 7115 | } else { |
f35678b6 SD |
7116 | src_weight = task_weight(p, src_nid, dist); |
7117 | dst_weight = task_weight(p, dst_nid, dist); | |
b1ad065e RR |
7118 | } |
7119 | ||
f35678b6 | 7120 | return dst_weight < src_weight; |
7a0f3083 MG |
7121 | } |
7122 | ||
3a7053b3 | 7123 | #else |
2a1ed24c | 7124 | static inline int migrate_degrades_locality(struct task_struct *p, |
3a7053b3 MG |
7125 | struct lb_env *env) |
7126 | { | |
2a1ed24c | 7127 | return -1; |
7a0f3083 | 7128 | } |
3a7053b3 MG |
7129 | #endif |
7130 | ||
1e3c88bd PZ |
7131 | /* |
7132 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
7133 | */ | |
7134 | static | |
8e45cb54 | 7135 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
1e3c88bd | 7136 | { |
2a1ed24c | 7137 | int tsk_cache_hot; |
e5673f28 KT |
7138 | |
7139 | lockdep_assert_held(&env->src_rq->lock); | |
7140 | ||
1e3c88bd PZ |
7141 | /* |
7142 | * We do not migrate tasks that are: | |
d3198084 | 7143 | * 1) throttled_lb_pair, or |
3bd37062 | 7144 | * 2) cannot be migrated to this CPU due to cpus_ptr, or |
d3198084 JK |
7145 | * 3) running (obviously), or |
7146 | * 4) are cache-hot on their current CPU. | |
1e3c88bd | 7147 | */ |
d3198084 JK |
7148 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
7149 | return 0; | |
7150 | ||
3bd37062 | 7151 | if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { |
e02e60c1 | 7152 | int cpu; |
88b8dac0 | 7153 | |
ae92882e | 7154 | schedstat_inc(p->se.statistics.nr_failed_migrations_affine); |
88b8dac0 | 7155 | |
6263322c PZ |
7156 | env->flags |= LBF_SOME_PINNED; |
7157 | ||
88b8dac0 | 7158 | /* |
97fb7a0a | 7159 | * Remember if this task can be migrated to any other CPU in |
88b8dac0 SV |
7160 | * our sched_group. We may want to revisit it if we couldn't |
7161 | * meet load balance goals by pulling other tasks on src_cpu. | |
7162 | * | |
65a4433a JH |
7163 | * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have |
7164 | * already computed one in current iteration. | |
88b8dac0 | 7165 | */ |
65a4433a | 7166 | if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) |
88b8dac0 SV |
7167 | return 0; |
7168 | ||
97fb7a0a | 7169 | /* Prevent to re-select dst_cpu via env's CPUs: */ |
e02e60c1 | 7170 | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { |
3bd37062 | 7171 | if (cpumask_test_cpu(cpu, p->cpus_ptr)) { |
6263322c | 7172 | env->flags |= LBF_DST_PINNED; |
e02e60c1 JK |
7173 | env->new_dst_cpu = cpu; |
7174 | break; | |
7175 | } | |
88b8dac0 | 7176 | } |
e02e60c1 | 7177 | |
1e3c88bd PZ |
7178 | return 0; |
7179 | } | |
88b8dac0 SV |
7180 | |
7181 | /* Record that we found atleast one task that could run on dst_cpu */ | |
8e45cb54 | 7182 | env->flags &= ~LBF_ALL_PINNED; |
1e3c88bd | 7183 | |
ddcdf6e7 | 7184 | if (task_running(env->src_rq, p)) { |
ae92882e | 7185 | schedstat_inc(p->se.statistics.nr_failed_migrations_running); |
1e3c88bd PZ |
7186 | return 0; |
7187 | } | |
7188 | ||
7189 | /* | |
7190 | * Aggressive migration if: | |
3a7053b3 MG |
7191 | * 1) destination numa is preferred |
7192 | * 2) task is cache cold, or | |
7193 | * 3) too many balance attempts have failed. | |
1e3c88bd | 7194 | */ |
2a1ed24c SD |
7195 | tsk_cache_hot = migrate_degrades_locality(p, env); |
7196 | if (tsk_cache_hot == -1) | |
7197 | tsk_cache_hot = task_hot(p, env); | |
3a7053b3 | 7198 | |
2a1ed24c | 7199 | if (tsk_cache_hot <= 0 || |
7a96c231 | 7200 | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
2a1ed24c | 7201 | if (tsk_cache_hot == 1) { |
ae92882e JP |
7202 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); |
7203 | schedstat_inc(p->se.statistics.nr_forced_migrations); | |
3a7053b3 | 7204 | } |
1e3c88bd PZ |
7205 | return 1; |
7206 | } | |
7207 | ||
ae92882e | 7208 | schedstat_inc(p->se.statistics.nr_failed_migrations_hot); |
4e2dcb73 | 7209 | return 0; |
1e3c88bd PZ |
7210 | } |
7211 | ||
897c395f | 7212 | /* |
163122b7 KT |
7213 | * detach_task() -- detach the task for the migration specified in env |
7214 | */ | |
7215 | static void detach_task(struct task_struct *p, struct lb_env *env) | |
7216 | { | |
7217 | lockdep_assert_held(&env->src_rq->lock); | |
7218 | ||
5704ac0a | 7219 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
163122b7 KT |
7220 | set_task_cpu(p, env->dst_cpu); |
7221 | } | |
7222 | ||
897c395f | 7223 | /* |
e5673f28 | 7224 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
897c395f | 7225 | * part of active balancing operations within "domain". |
897c395f | 7226 | * |
e5673f28 | 7227 | * Returns a task if successful and NULL otherwise. |
897c395f | 7228 | */ |
e5673f28 | 7229 | static struct task_struct *detach_one_task(struct lb_env *env) |
897c395f | 7230 | { |
93824900 | 7231 | struct task_struct *p; |
897c395f | 7232 | |
e5673f28 KT |
7233 | lockdep_assert_held(&env->src_rq->lock); |
7234 | ||
93824900 UR |
7235 | list_for_each_entry_reverse(p, |
7236 | &env->src_rq->cfs_tasks, se.group_node) { | |
367456c7 PZ |
7237 | if (!can_migrate_task(p, env)) |
7238 | continue; | |
897c395f | 7239 | |
163122b7 | 7240 | detach_task(p, env); |
e5673f28 | 7241 | |
367456c7 | 7242 | /* |
e5673f28 | 7243 | * Right now, this is only the second place where |
163122b7 | 7244 | * lb_gained[env->idle] is updated (other is detach_tasks) |
e5673f28 | 7245 | * so we can safely collect stats here rather than |
163122b7 | 7246 | * inside detach_tasks(). |
367456c7 | 7247 | */ |
ae92882e | 7248 | schedstat_inc(env->sd->lb_gained[env->idle]); |
e5673f28 | 7249 | return p; |
897c395f | 7250 | } |
e5673f28 | 7251 | return NULL; |
897c395f PZ |
7252 | } |
7253 | ||
eb95308e PZ |
7254 | static const unsigned int sched_nr_migrate_break = 32; |
7255 | ||
5d6523eb | 7256 | /* |
0b0695f2 | 7257 | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from |
163122b7 | 7258 | * busiest_rq, as part of a balancing operation within domain "sd". |
5d6523eb | 7259 | * |
163122b7 | 7260 | * Returns number of detached tasks if successful and 0 otherwise. |
5d6523eb | 7261 | */ |
163122b7 | 7262 | static int detach_tasks(struct lb_env *env) |
1e3c88bd | 7263 | { |
5d6523eb | 7264 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
0b0695f2 | 7265 | unsigned long util, load; |
5d6523eb | 7266 | struct task_struct *p; |
163122b7 KT |
7267 | int detached = 0; |
7268 | ||
7269 | lockdep_assert_held(&env->src_rq->lock); | |
1e3c88bd | 7270 | |
bd939f45 | 7271 | if (env->imbalance <= 0) |
5d6523eb | 7272 | return 0; |
1e3c88bd | 7273 | |
5d6523eb | 7274 | while (!list_empty(tasks)) { |
985d3a4c YD |
7275 | /* |
7276 | * We don't want to steal all, otherwise we may be treated likewise, | |
7277 | * which could at worst lead to a livelock crash. | |
7278 | */ | |
7279 | if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) | |
7280 | break; | |
7281 | ||
93824900 | 7282 | p = list_last_entry(tasks, struct task_struct, se.group_node); |
1e3c88bd | 7283 | |
367456c7 PZ |
7284 | env->loop++; |
7285 | /* We've more or less seen every task there is, call it quits */ | |
5d6523eb | 7286 | if (env->loop > env->loop_max) |
367456c7 | 7287 | break; |
5d6523eb PZ |
7288 | |
7289 | /* take a breather every nr_migrate tasks */ | |
367456c7 | 7290 | if (env->loop > env->loop_break) { |
eb95308e | 7291 | env->loop_break += sched_nr_migrate_break; |
8e45cb54 | 7292 | env->flags |= LBF_NEED_BREAK; |
ee00e66f | 7293 | break; |
a195f004 | 7294 | } |
1e3c88bd | 7295 | |
d3198084 | 7296 | if (!can_migrate_task(p, env)) |
367456c7 PZ |
7297 | goto next; |
7298 | ||
0b0695f2 VG |
7299 | switch (env->migration_type) { |
7300 | case migrate_load: | |
7301 | load = task_h_load(p); | |
5d6523eb | 7302 | |
0b0695f2 VG |
7303 | if (sched_feat(LB_MIN) && |
7304 | load < 16 && !env->sd->nr_balance_failed) | |
7305 | goto next; | |
367456c7 | 7306 | |
0b0695f2 VG |
7307 | if (load/2 > env->imbalance) |
7308 | goto next; | |
7309 | ||
7310 | env->imbalance -= load; | |
7311 | break; | |
7312 | ||
7313 | case migrate_util: | |
7314 | util = task_util_est(p); | |
7315 | ||
7316 | if (util > env->imbalance) | |
7317 | goto next; | |
7318 | ||
7319 | env->imbalance -= util; | |
7320 | break; | |
7321 | ||
7322 | case migrate_task: | |
7323 | env->imbalance--; | |
7324 | break; | |
7325 | ||
7326 | case migrate_misfit: | |
c63be7be VG |
7327 | /* This is not a misfit task */ |
7328 | if (task_fits_capacity(p, capacity_of(env->src_cpu))) | |
0b0695f2 VG |
7329 | goto next; |
7330 | ||
7331 | env->imbalance = 0; | |
7332 | break; | |
7333 | } | |
1e3c88bd | 7334 | |
163122b7 KT |
7335 | detach_task(p, env); |
7336 | list_add(&p->se.group_node, &env->tasks); | |
7337 | ||
7338 | detached++; | |
1e3c88bd | 7339 | |
c1a280b6 | 7340 | #ifdef CONFIG_PREEMPTION |
ee00e66f PZ |
7341 | /* |
7342 | * NEWIDLE balancing is a source of latency, so preemptible | |
163122b7 | 7343 | * kernels will stop after the first task is detached to minimize |
ee00e66f PZ |
7344 | * the critical section. |
7345 | */ | |
5d6523eb | 7346 | if (env->idle == CPU_NEWLY_IDLE) |
ee00e66f | 7347 | break; |
1e3c88bd PZ |
7348 | #endif |
7349 | ||
ee00e66f PZ |
7350 | /* |
7351 | * We only want to steal up to the prescribed amount of | |
0b0695f2 | 7352 | * load/util/tasks. |
ee00e66f | 7353 | */ |
bd939f45 | 7354 | if (env->imbalance <= 0) |
ee00e66f | 7355 | break; |
367456c7 PZ |
7356 | |
7357 | continue; | |
7358 | next: | |
93824900 | 7359 | list_move(&p->se.group_node, tasks); |
1e3c88bd | 7360 | } |
5d6523eb | 7361 | |
1e3c88bd | 7362 | /* |
163122b7 KT |
7363 | * Right now, this is one of only two places we collect this stat |
7364 | * so we can safely collect detach_one_task() stats here rather | |
7365 | * than inside detach_one_task(). | |
1e3c88bd | 7366 | */ |
ae92882e | 7367 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
1e3c88bd | 7368 | |
163122b7 KT |
7369 | return detached; |
7370 | } | |
7371 | ||
7372 | /* | |
7373 | * attach_task() -- attach the task detached by detach_task() to its new rq. | |
7374 | */ | |
7375 | static void attach_task(struct rq *rq, struct task_struct *p) | |
7376 | { | |
7377 | lockdep_assert_held(&rq->lock); | |
7378 | ||
7379 | BUG_ON(task_rq(p) != rq); | |
5704ac0a | 7380 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
163122b7 KT |
7381 | check_preempt_curr(rq, p, 0); |
7382 | } | |
7383 | ||
7384 | /* | |
7385 | * attach_one_task() -- attaches the task returned from detach_one_task() to | |
7386 | * its new rq. | |
7387 | */ | |
7388 | static void attach_one_task(struct rq *rq, struct task_struct *p) | |
7389 | { | |
8a8c69c3 PZ |
7390 | struct rq_flags rf; |
7391 | ||
7392 | rq_lock(rq, &rf); | |
5704ac0a | 7393 | update_rq_clock(rq); |
163122b7 | 7394 | attach_task(rq, p); |
8a8c69c3 | 7395 | rq_unlock(rq, &rf); |
163122b7 KT |
7396 | } |
7397 | ||
7398 | /* | |
7399 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | |
7400 | * new rq. | |
7401 | */ | |
7402 | static void attach_tasks(struct lb_env *env) | |
7403 | { | |
7404 | struct list_head *tasks = &env->tasks; | |
7405 | struct task_struct *p; | |
8a8c69c3 | 7406 | struct rq_flags rf; |
163122b7 | 7407 | |
8a8c69c3 | 7408 | rq_lock(env->dst_rq, &rf); |
5704ac0a | 7409 | update_rq_clock(env->dst_rq); |
163122b7 KT |
7410 | |
7411 | while (!list_empty(tasks)) { | |
7412 | p = list_first_entry(tasks, struct task_struct, se.group_node); | |
7413 | list_del_init(&p->se.group_node); | |
1e3c88bd | 7414 | |
163122b7 KT |
7415 | attach_task(env->dst_rq, p); |
7416 | } | |
7417 | ||
8a8c69c3 | 7418 | rq_unlock(env->dst_rq, &rf); |
1e3c88bd PZ |
7419 | } |
7420 | ||
b0c79224 | 7421 | #ifdef CONFIG_NO_HZ_COMMON |
1936c53c VG |
7422 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) |
7423 | { | |
7424 | if (cfs_rq->avg.load_avg) | |
7425 | return true; | |
7426 | ||
7427 | if (cfs_rq->avg.util_avg) | |
7428 | return true; | |
7429 | ||
7430 | return false; | |
7431 | } | |
7432 | ||
91c27493 | 7433 | static inline bool others_have_blocked(struct rq *rq) |
371bf427 VG |
7434 | { |
7435 | if (READ_ONCE(rq->avg_rt.util_avg)) | |
7436 | return true; | |
7437 | ||
3727e0e1 VG |
7438 | if (READ_ONCE(rq->avg_dl.util_avg)) |
7439 | return true; | |
7440 | ||
11d4afd4 | 7441 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
91c27493 VG |
7442 | if (READ_ONCE(rq->avg_irq.util_avg)) |
7443 | return true; | |
7444 | #endif | |
7445 | ||
371bf427 VG |
7446 | return false; |
7447 | } | |
7448 | ||
b0c79224 VS |
7449 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) |
7450 | { | |
7451 | rq->last_blocked_load_update_tick = jiffies; | |
7452 | ||
7453 | if (!has_blocked) | |
7454 | rq->has_blocked_load = 0; | |
7455 | } | |
7456 | #else | |
7457 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } | |
7458 | static inline bool others_have_blocked(struct rq *rq) { return false; } | |
7459 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} | |
7460 | #endif | |
7461 | ||
1936c53c VG |
7462 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7463 | ||
039ae8bc VG |
7464 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
7465 | { | |
7466 | if (cfs_rq->load.weight) | |
7467 | return false; | |
7468 | ||
7469 | if (cfs_rq->avg.load_sum) | |
7470 | return false; | |
7471 | ||
7472 | if (cfs_rq->avg.util_sum) | |
7473 | return false; | |
7474 | ||
7475 | if (cfs_rq->avg.runnable_load_sum) | |
7476 | return false; | |
7477 | ||
7478 | return true; | |
7479 | } | |
7480 | ||
48a16753 | 7481 | static void update_blocked_averages(int cpu) |
9e3081ca | 7482 | { |
9e3081ca | 7483 | struct rq *rq = cpu_rq(cpu); |
039ae8bc | 7484 | struct cfs_rq *cfs_rq, *pos; |
12b04875 | 7485 | const struct sched_class *curr_class; |
8a8c69c3 | 7486 | struct rq_flags rf; |
f643ea22 | 7487 | bool done = true; |
9e3081ca | 7488 | |
8a8c69c3 | 7489 | rq_lock_irqsave(rq, &rf); |
48a16753 | 7490 | update_rq_clock(rq); |
9d89c257 | 7491 | |
9763b67f PZ |
7492 | /* |
7493 | * Iterates the task_group tree in a bottom up fashion, see | |
7494 | * list_add_leaf_cfs_rq() for details. | |
7495 | */ | |
039ae8bc | 7496 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
bc427898 VG |
7497 | struct sched_entity *se; |
7498 | ||
23127296 | 7499 | if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) |
9d89c257 | 7500 | update_tg_load_avg(cfs_rq, 0); |
4e516076 | 7501 | |
bc427898 VG |
7502 | /* Propagate pending load changes to the parent, if any: */ |
7503 | se = cfs_rq->tg->se[cpu]; | |
7504 | if (se && !skip_blocked_update(se)) | |
88c0616e | 7505 | update_load_avg(cfs_rq_of(se), se, 0); |
a9e7f654 | 7506 | |
039ae8bc VG |
7507 | /* |
7508 | * There can be a lot of idle CPU cgroups. Don't let fully | |
7509 | * decayed cfs_rqs linger on the list. | |
7510 | */ | |
7511 | if (cfs_rq_is_decayed(cfs_rq)) | |
7512 | list_del_leaf_cfs_rq(cfs_rq); | |
7513 | ||
1936c53c VG |
7514 | /* Don't need periodic decay once load/util_avg are null */ |
7515 | if (cfs_rq_has_blocked(cfs_rq)) | |
f643ea22 | 7516 | done = false; |
9d89c257 | 7517 | } |
12b04875 VG |
7518 | |
7519 | curr_class = rq->curr->sched_class; | |
23127296 VG |
7520 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); |
7521 | update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); | |
91c27493 | 7522 | update_irq_load_avg(rq, 0); |
371bf427 | 7523 | /* Don't need periodic decay once load/util_avg are null */ |
91c27493 | 7524 | if (others_have_blocked(rq)) |
371bf427 | 7525 | done = false; |
e022e0d3 | 7526 | |
b0c79224 | 7527 | update_blocked_load_status(rq, !done); |
8a8c69c3 | 7528 | rq_unlock_irqrestore(rq, &rf); |
9e3081ca PZ |
7529 | } |
7530 | ||
9763b67f | 7531 | /* |
68520796 | 7532 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
9763b67f PZ |
7533 | * This needs to be done in a top-down fashion because the load of a child |
7534 | * group is a fraction of its parents load. | |
7535 | */ | |
68520796 | 7536 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
9763b67f | 7537 | { |
68520796 VD |
7538 | struct rq *rq = rq_of(cfs_rq); |
7539 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | |
a35b6466 | 7540 | unsigned long now = jiffies; |
68520796 | 7541 | unsigned long load; |
a35b6466 | 7542 | |
68520796 | 7543 | if (cfs_rq->last_h_load_update == now) |
a35b6466 PZ |
7544 | return; |
7545 | ||
0e9f0245 | 7546 | WRITE_ONCE(cfs_rq->h_load_next, NULL); |
68520796 VD |
7547 | for_each_sched_entity(se) { |
7548 | cfs_rq = cfs_rq_of(se); | |
0e9f0245 | 7549 | WRITE_ONCE(cfs_rq->h_load_next, se); |
68520796 VD |
7550 | if (cfs_rq->last_h_load_update == now) |
7551 | break; | |
7552 | } | |
a35b6466 | 7553 | |
68520796 | 7554 | if (!se) { |
7ea241af | 7555 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
68520796 VD |
7556 | cfs_rq->last_h_load_update = now; |
7557 | } | |
7558 | ||
0e9f0245 | 7559 | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { |
68520796 | 7560 | load = cfs_rq->h_load; |
7ea241af YD |
7561 | load = div64_ul(load * se->avg.load_avg, |
7562 | cfs_rq_load_avg(cfs_rq) + 1); | |
68520796 VD |
7563 | cfs_rq = group_cfs_rq(se); |
7564 | cfs_rq->h_load = load; | |
7565 | cfs_rq->last_h_load_update = now; | |
7566 | } | |
9763b67f PZ |
7567 | } |
7568 | ||
367456c7 | 7569 | static unsigned long task_h_load(struct task_struct *p) |
230059de | 7570 | { |
367456c7 | 7571 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
230059de | 7572 | |
68520796 | 7573 | update_cfs_rq_h_load(cfs_rq); |
9d89c257 | 7574 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
7ea241af | 7575 | cfs_rq_load_avg(cfs_rq) + 1); |
230059de PZ |
7576 | } |
7577 | #else | |
48a16753 | 7578 | static inline void update_blocked_averages(int cpu) |
9e3081ca | 7579 | { |
6c1d47c0 VG |
7580 | struct rq *rq = cpu_rq(cpu); |
7581 | struct cfs_rq *cfs_rq = &rq->cfs; | |
12b04875 | 7582 | const struct sched_class *curr_class; |
8a8c69c3 | 7583 | struct rq_flags rf; |
6c1d47c0 | 7584 | |
8a8c69c3 | 7585 | rq_lock_irqsave(rq, &rf); |
6c1d47c0 | 7586 | update_rq_clock(rq); |
23127296 | 7587 | update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); |
12b04875 VG |
7588 | |
7589 | curr_class = rq->curr->sched_class; | |
23127296 VG |
7590 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class); |
7591 | update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class); | |
91c27493 | 7592 | update_irq_load_avg(rq, 0); |
b0c79224 | 7593 | update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq)); |
8a8c69c3 | 7594 | rq_unlock_irqrestore(rq, &rf); |
9e3081ca PZ |
7595 | } |
7596 | ||
367456c7 | 7597 | static unsigned long task_h_load(struct task_struct *p) |
1e3c88bd | 7598 | { |
9d89c257 | 7599 | return p->se.avg.load_avg; |
1e3c88bd | 7600 | } |
230059de | 7601 | #endif |
1e3c88bd | 7602 | |
1e3c88bd | 7603 | /********** Helpers for find_busiest_group ************************/ |
caeb178c | 7604 | |
1e3c88bd PZ |
7605 | /* |
7606 | * sg_lb_stats - stats of a sched_group required for load_balancing | |
7607 | */ | |
7608 | struct sg_lb_stats { | |
7609 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | |
7610 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
63b2ca30 | 7611 | unsigned long group_capacity; |
9e91d61d | 7612 | unsigned long group_util; /* Total utilization of the group */ |
5e23e474 | 7613 | unsigned int sum_nr_running; /* Nr of tasks running in the group */ |
a3498347 | 7614 | unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ |
147c5fc2 PZ |
7615 | unsigned int idle_cpus; |
7616 | unsigned int group_weight; | |
caeb178c | 7617 | enum group_type group_type; |
490ba971 | 7618 | unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ |
3b1baa64 | 7619 | unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ |
0ec8aa00 PZ |
7620 | #ifdef CONFIG_NUMA_BALANCING |
7621 | unsigned int nr_numa_running; | |
7622 | unsigned int nr_preferred_running; | |
7623 | #endif | |
1e3c88bd PZ |
7624 | }; |
7625 | ||
56cf515b JK |
7626 | /* |
7627 | * sd_lb_stats - Structure to store the statistics of a sched_domain | |
7628 | * during load balancing. | |
7629 | */ | |
7630 | struct sd_lb_stats { | |
7631 | struct sched_group *busiest; /* Busiest group in this sd */ | |
7632 | struct sched_group *local; /* Local group in this sd */ | |
7633 | unsigned long total_load; /* Total load of all groups in sd */ | |
63b2ca30 | 7634 | unsigned long total_capacity; /* Total capacity of all groups in sd */ |
56cf515b | 7635 | unsigned long avg_load; /* Average load across all groups in sd */ |
0b0695f2 | 7636 | unsigned int prefer_sibling; /* tasks should go to sibling first */ |
56cf515b | 7637 | |
56cf515b | 7638 | struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ |
147c5fc2 | 7639 | struct sg_lb_stats local_stat; /* Statistics of the local group */ |
56cf515b JK |
7640 | }; |
7641 | ||
147c5fc2 PZ |
7642 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
7643 | { | |
7644 | /* | |
7645 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | |
7646 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | |
0b0695f2 VG |
7647 | * We must however set busiest_stat::group_type and |
7648 | * busiest_stat::idle_cpus to the worst busiest group because | |
7649 | * update_sd_pick_busiest() reads these before assignment. | |
147c5fc2 PZ |
7650 | */ |
7651 | *sds = (struct sd_lb_stats){ | |
7652 | .busiest = NULL, | |
7653 | .local = NULL, | |
7654 | .total_load = 0UL, | |
63b2ca30 | 7655 | .total_capacity = 0UL, |
147c5fc2 | 7656 | .busiest_stat = { |
0b0695f2 VG |
7657 | .idle_cpus = UINT_MAX, |
7658 | .group_type = group_has_spare, | |
147c5fc2 PZ |
7659 | }, |
7660 | }; | |
7661 | } | |
7662 | ||
287cdaac | 7663 | static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
7664 | { |
7665 | struct rq *rq = cpu_rq(cpu); | |
8ec59c0f | 7666 | unsigned long max = arch_scale_cpu_capacity(cpu); |
523e979d | 7667 | unsigned long used, free; |
523e979d | 7668 | unsigned long irq; |
b654f7de | 7669 | |
2e62c474 | 7670 | irq = cpu_util_irq(rq); |
cadefd3d | 7671 | |
523e979d VG |
7672 | if (unlikely(irq >= max)) |
7673 | return 1; | |
aa483808 | 7674 | |
523e979d VG |
7675 | used = READ_ONCE(rq->avg_rt.util_avg); |
7676 | used += READ_ONCE(rq->avg_dl.util_avg); | |
1e3c88bd | 7677 | |
523e979d VG |
7678 | if (unlikely(used >= max)) |
7679 | return 1; | |
1e3c88bd | 7680 | |
523e979d | 7681 | free = max - used; |
2e62c474 VG |
7682 | |
7683 | return scale_irq_capacity(free, irq, max); | |
1e3c88bd PZ |
7684 | } |
7685 | ||
ced549fa | 7686 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd | 7687 | { |
287cdaac | 7688 | unsigned long capacity = scale_rt_capacity(sd, cpu); |
1e3c88bd PZ |
7689 | struct sched_group *sdg = sd->groups; |
7690 | ||
8ec59c0f | 7691 | cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); |
1e3c88bd | 7692 | |
ced549fa NP |
7693 | if (!capacity) |
7694 | capacity = 1; | |
1e3c88bd | 7695 | |
ced549fa NP |
7696 | cpu_rq(cpu)->cpu_capacity = capacity; |
7697 | sdg->sgc->capacity = capacity; | |
bf475ce0 | 7698 | sdg->sgc->min_capacity = capacity; |
e3d6d0cb | 7699 | sdg->sgc->max_capacity = capacity; |
1e3c88bd PZ |
7700 | } |
7701 | ||
63b2ca30 | 7702 | void update_group_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
7703 | { |
7704 | struct sched_domain *child = sd->child; | |
7705 | struct sched_group *group, *sdg = sd->groups; | |
e3d6d0cb | 7706 | unsigned long capacity, min_capacity, max_capacity; |
4ec4412e VG |
7707 | unsigned long interval; |
7708 | ||
7709 | interval = msecs_to_jiffies(sd->balance_interval); | |
7710 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
63b2ca30 | 7711 | sdg->sgc->next_update = jiffies + interval; |
1e3c88bd PZ |
7712 | |
7713 | if (!child) { | |
ced549fa | 7714 | update_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
7715 | return; |
7716 | } | |
7717 | ||
dc7ff76e | 7718 | capacity = 0; |
bf475ce0 | 7719 | min_capacity = ULONG_MAX; |
e3d6d0cb | 7720 | max_capacity = 0; |
1e3c88bd | 7721 | |
74a5ce20 PZ |
7722 | if (child->flags & SD_OVERLAP) { |
7723 | /* | |
7724 | * SD_OVERLAP domains cannot assume that child groups | |
7725 | * span the current group. | |
7726 | */ | |
7727 | ||
ae4df9d6 | 7728 | for_each_cpu(cpu, sched_group_span(sdg)) { |
63b2ca30 | 7729 | struct sched_group_capacity *sgc; |
9abf24d4 | 7730 | struct rq *rq = cpu_rq(cpu); |
863bffc8 | 7731 | |
9abf24d4 | 7732 | /* |
63b2ca30 | 7733 | * build_sched_domains() -> init_sched_groups_capacity() |
9abf24d4 SD |
7734 | * gets here before we've attached the domains to the |
7735 | * runqueues. | |
7736 | * | |
ced549fa NP |
7737 | * Use capacity_of(), which is set irrespective of domains |
7738 | * in update_cpu_capacity(). | |
9abf24d4 | 7739 | * |
dc7ff76e | 7740 | * This avoids capacity from being 0 and |
9abf24d4 | 7741 | * causing divide-by-zero issues on boot. |
9abf24d4 SD |
7742 | */ |
7743 | if (unlikely(!rq->sd)) { | |
ced549fa | 7744 | capacity += capacity_of(cpu); |
bf475ce0 MR |
7745 | } else { |
7746 | sgc = rq->sd->groups->sgc; | |
7747 | capacity += sgc->capacity; | |
9abf24d4 | 7748 | } |
863bffc8 | 7749 | |
bf475ce0 | 7750 | min_capacity = min(capacity, min_capacity); |
e3d6d0cb | 7751 | max_capacity = max(capacity, max_capacity); |
863bffc8 | 7752 | } |
74a5ce20 PZ |
7753 | } else { |
7754 | /* | |
7755 | * !SD_OVERLAP domains can assume that child groups | |
7756 | * span the current group. | |
97a7142f | 7757 | */ |
74a5ce20 PZ |
7758 | |
7759 | group = child->groups; | |
7760 | do { | |
bf475ce0 MR |
7761 | struct sched_group_capacity *sgc = group->sgc; |
7762 | ||
7763 | capacity += sgc->capacity; | |
7764 | min_capacity = min(sgc->min_capacity, min_capacity); | |
e3d6d0cb | 7765 | max_capacity = max(sgc->max_capacity, max_capacity); |
74a5ce20 PZ |
7766 | group = group->next; |
7767 | } while (group != child->groups); | |
7768 | } | |
1e3c88bd | 7769 | |
63b2ca30 | 7770 | sdg->sgc->capacity = capacity; |
bf475ce0 | 7771 | sdg->sgc->min_capacity = min_capacity; |
e3d6d0cb | 7772 | sdg->sgc->max_capacity = max_capacity; |
1e3c88bd PZ |
7773 | } |
7774 | ||
9d5efe05 | 7775 | /* |
ea67821b VG |
7776 | * Check whether the capacity of the rq has been noticeably reduced by side |
7777 | * activity. The imbalance_pct is used for the threshold. | |
7778 | * Return true is the capacity is reduced | |
9d5efe05 SV |
7779 | */ |
7780 | static inline int | |
ea67821b | 7781 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
9d5efe05 | 7782 | { |
ea67821b VG |
7783 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
7784 | (rq->cpu_capacity_orig * 100)); | |
9d5efe05 SV |
7785 | } |
7786 | ||
a0fe2cf0 VS |
7787 | /* |
7788 | * Check whether a rq has a misfit task and if it looks like we can actually | |
7789 | * help that task: we can migrate the task to a CPU of higher capacity, or | |
7790 | * the task's current CPU is heavily pressured. | |
7791 | */ | |
7792 | static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) | |
7793 | { | |
7794 | return rq->misfit_task_load && | |
7795 | (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || | |
7796 | check_cpu_capacity(rq, sd)); | |
7797 | } | |
7798 | ||
30ce5dab PZ |
7799 | /* |
7800 | * Group imbalance indicates (and tries to solve) the problem where balancing | |
3bd37062 | 7801 | * groups is inadequate due to ->cpus_ptr constraints. |
30ce5dab | 7802 | * |
97fb7a0a IM |
7803 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a |
7804 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | |
30ce5dab PZ |
7805 | * Something like: |
7806 | * | |
2b4d5b25 IM |
7807 | * { 0 1 2 3 } { 4 5 6 7 } |
7808 | * * * * * | |
30ce5dab PZ |
7809 | * |
7810 | * If we were to balance group-wise we'd place two tasks in the first group and | |
7811 | * two tasks in the second group. Clearly this is undesired as it will overload | |
97fb7a0a | 7812 | * cpu 3 and leave one of the CPUs in the second group unused. |
30ce5dab PZ |
7813 | * |
7814 | * The current solution to this issue is detecting the skew in the first group | |
6263322c PZ |
7815 | * by noticing the lower domain failed to reach balance and had difficulty |
7816 | * moving tasks due to affinity constraints. | |
30ce5dab PZ |
7817 | * |
7818 | * When this is so detected; this group becomes a candidate for busiest; see | |
ed1b7732 | 7819 | * update_sd_pick_busiest(). And calculate_imbalance() and |
6263322c | 7820 | * find_busiest_group() avoid some of the usual balance conditions to allow it |
30ce5dab PZ |
7821 | * to create an effective group imbalance. |
7822 | * | |
7823 | * This is a somewhat tricky proposition since the next run might not find the | |
7824 | * group imbalance and decide the groups need to be balanced again. A most | |
7825 | * subtle and fragile situation. | |
7826 | */ | |
7827 | ||
6263322c | 7828 | static inline int sg_imbalanced(struct sched_group *group) |
30ce5dab | 7829 | { |
63b2ca30 | 7830 | return group->sgc->imbalance; |
30ce5dab PZ |
7831 | } |
7832 | ||
b37d9316 | 7833 | /* |
ea67821b VG |
7834 | * group_has_capacity returns true if the group has spare capacity that could |
7835 | * be used by some tasks. | |
7836 | * We consider that a group has spare capacity if the * number of task is | |
9e91d61d DE |
7837 | * smaller than the number of CPUs or if the utilization is lower than the |
7838 | * available capacity for CFS tasks. | |
ea67821b VG |
7839 | * For the latter, we use a threshold to stabilize the state, to take into |
7840 | * account the variance of the tasks' load and to return true if the available | |
7841 | * capacity in meaningful for the load balancer. | |
7842 | * As an example, an available capacity of 1% can appear but it doesn't make | |
7843 | * any benefit for the load balance. | |
b37d9316 | 7844 | */ |
ea67821b | 7845 | static inline bool |
57abff06 | 7846 | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
b37d9316 | 7847 | { |
5e23e474 | 7848 | if (sgs->sum_nr_running < sgs->group_weight) |
ea67821b | 7849 | return true; |
c61037e9 | 7850 | |
ea67821b | 7851 | if ((sgs->group_capacity * 100) > |
57abff06 | 7852 | (sgs->group_util * imbalance_pct)) |
ea67821b | 7853 | return true; |
b37d9316 | 7854 | |
ea67821b VG |
7855 | return false; |
7856 | } | |
7857 | ||
7858 | /* | |
7859 | * group_is_overloaded returns true if the group has more tasks than it can | |
7860 | * handle. | |
7861 | * group_is_overloaded is not equals to !group_has_capacity because a group | |
7862 | * with the exact right number of tasks, has no more spare capacity but is not | |
7863 | * overloaded so both group_has_capacity and group_is_overloaded return | |
7864 | * false. | |
7865 | */ | |
7866 | static inline bool | |
57abff06 | 7867 | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
ea67821b | 7868 | { |
5e23e474 | 7869 | if (sgs->sum_nr_running <= sgs->group_weight) |
ea67821b | 7870 | return false; |
b37d9316 | 7871 | |
ea67821b | 7872 | if ((sgs->group_capacity * 100) < |
57abff06 | 7873 | (sgs->group_util * imbalance_pct)) |
ea67821b | 7874 | return true; |
b37d9316 | 7875 | |
ea67821b | 7876 | return false; |
b37d9316 PZ |
7877 | } |
7878 | ||
9e0994c0 | 7879 | /* |
e3d6d0cb | 7880 | * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller |
9e0994c0 MR |
7881 | * per-CPU capacity than sched_group ref. |
7882 | */ | |
7883 | static inline bool | |
e3d6d0cb | 7884 | group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) |
9e0994c0 | 7885 | { |
60e17f5c | 7886 | return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); |
9e0994c0 MR |
7887 | } |
7888 | ||
e3d6d0cb MR |
7889 | /* |
7890 | * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller | |
7891 | * per-CPU capacity_orig than sched_group ref. | |
7892 | */ | |
7893 | static inline bool | |
7894 | group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) | |
7895 | { | |
60e17f5c | 7896 | return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); |
e3d6d0cb MR |
7897 | } |
7898 | ||
79a89f92 | 7899 | static inline enum |
57abff06 | 7900 | group_type group_classify(unsigned int imbalance_pct, |
0b0695f2 | 7901 | struct sched_group *group, |
79a89f92 | 7902 | struct sg_lb_stats *sgs) |
caeb178c | 7903 | { |
57abff06 | 7904 | if (group_is_overloaded(imbalance_pct, sgs)) |
caeb178c RR |
7905 | return group_overloaded; |
7906 | ||
7907 | if (sg_imbalanced(group)) | |
7908 | return group_imbalanced; | |
7909 | ||
0b0695f2 VG |
7910 | if (sgs->group_asym_packing) |
7911 | return group_asym_packing; | |
7912 | ||
3b1baa64 MR |
7913 | if (sgs->group_misfit_task_load) |
7914 | return group_misfit_task; | |
7915 | ||
57abff06 | 7916 | if (!group_has_capacity(imbalance_pct, sgs)) |
0b0695f2 VG |
7917 | return group_fully_busy; |
7918 | ||
7919 | return group_has_spare; | |
caeb178c RR |
7920 | } |
7921 | ||
63928384 | 7922 | static bool update_nohz_stats(struct rq *rq, bool force) |
e022e0d3 PZ |
7923 | { |
7924 | #ifdef CONFIG_NO_HZ_COMMON | |
7925 | unsigned int cpu = rq->cpu; | |
7926 | ||
f643ea22 VG |
7927 | if (!rq->has_blocked_load) |
7928 | return false; | |
7929 | ||
e022e0d3 | 7930 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) |
f643ea22 | 7931 | return false; |
e022e0d3 | 7932 | |
63928384 | 7933 | if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) |
f643ea22 | 7934 | return true; |
e022e0d3 PZ |
7935 | |
7936 | update_blocked_averages(cpu); | |
f643ea22 VG |
7937 | |
7938 | return rq->has_blocked_load; | |
7939 | #else | |
7940 | return false; | |
e022e0d3 PZ |
7941 | #endif |
7942 | } | |
7943 | ||
1e3c88bd PZ |
7944 | /** |
7945 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
cd96891d | 7946 | * @env: The load balancing environment. |
1e3c88bd | 7947 | * @group: sched_group whose statistics are to be updated. |
1e3c88bd | 7948 | * @sgs: variable to hold the statistics for this group. |
630246a0 | 7949 | * @sg_status: Holds flag indicating the status of the sched_group |
1e3c88bd | 7950 | */ |
bd939f45 | 7951 | static inline void update_sg_lb_stats(struct lb_env *env, |
630246a0 QP |
7952 | struct sched_group *group, |
7953 | struct sg_lb_stats *sgs, | |
7954 | int *sg_status) | |
1e3c88bd | 7955 | { |
0b0695f2 | 7956 | int i, nr_running, local_group; |
1e3c88bd | 7957 | |
b72ff13c PZ |
7958 | memset(sgs, 0, sizeof(*sgs)); |
7959 | ||
0b0695f2 VG |
7960 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); |
7961 | ||
ae4df9d6 | 7962 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
1e3c88bd PZ |
7963 | struct rq *rq = cpu_rq(i); |
7964 | ||
63928384 | 7965 | if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) |
f643ea22 | 7966 | env->flags |= LBF_NOHZ_AGAIN; |
e022e0d3 | 7967 | |
b0fb1eb4 | 7968 | sgs->group_load += cpu_load(rq); |
9e91d61d | 7969 | sgs->group_util += cpu_util(i); |
a3498347 | 7970 | sgs->sum_h_nr_running += rq->cfs.h_nr_running; |
4486edd1 | 7971 | |
a426f99c | 7972 | nr_running = rq->nr_running; |
5e23e474 VG |
7973 | sgs->sum_nr_running += nr_running; |
7974 | ||
a426f99c | 7975 | if (nr_running > 1) |
630246a0 | 7976 | *sg_status |= SG_OVERLOAD; |
4486edd1 | 7977 | |
2802bf3c MR |
7978 | if (cpu_overutilized(i)) |
7979 | *sg_status |= SG_OVERUTILIZED; | |
4486edd1 | 7980 | |
0ec8aa00 PZ |
7981 | #ifdef CONFIG_NUMA_BALANCING |
7982 | sgs->nr_numa_running += rq->nr_numa_running; | |
7983 | sgs->nr_preferred_running += rq->nr_preferred_running; | |
7984 | #endif | |
a426f99c WL |
7985 | /* |
7986 | * No need to call idle_cpu() if nr_running is not 0 | |
7987 | */ | |
0b0695f2 | 7988 | if (!nr_running && idle_cpu(i)) { |
aae6d3dd | 7989 | sgs->idle_cpus++; |
0b0695f2 VG |
7990 | /* Idle cpu can't have misfit task */ |
7991 | continue; | |
7992 | } | |
7993 | ||
7994 | if (local_group) | |
7995 | continue; | |
3b1baa64 | 7996 | |
0b0695f2 | 7997 | /* Check for a misfit task on the cpu */ |
3b1baa64 | 7998 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && |
757ffdd7 | 7999 | sgs->group_misfit_task_load < rq->misfit_task_load) { |
3b1baa64 | 8000 | sgs->group_misfit_task_load = rq->misfit_task_load; |
630246a0 | 8001 | *sg_status |= SG_OVERLOAD; |
757ffdd7 | 8002 | } |
1e3c88bd PZ |
8003 | } |
8004 | ||
0b0695f2 VG |
8005 | /* Check if dst CPU is idle and preferred to this group */ |
8006 | if (env->sd->flags & SD_ASYM_PACKING && | |
8007 | env->idle != CPU_NOT_IDLE && | |
8008 | sgs->sum_h_nr_running && | |
8009 | sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { | |
8010 | sgs->group_asym_packing = 1; | |
8011 | } | |
8012 | ||
63b2ca30 | 8013 | sgs->group_capacity = group->sgc->capacity; |
1e3c88bd | 8014 | |
aae6d3dd | 8015 | sgs->group_weight = group->group_weight; |
b37d9316 | 8016 | |
57abff06 | 8017 | sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); |
0b0695f2 VG |
8018 | |
8019 | /* Computing avg_load makes sense only when group is overloaded */ | |
8020 | if (sgs->group_type == group_overloaded) | |
8021 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | |
8022 | sgs->group_capacity; | |
1e3c88bd PZ |
8023 | } |
8024 | ||
532cb4c4 MN |
8025 | /** |
8026 | * update_sd_pick_busiest - return 1 on busiest group | |
cd96891d | 8027 | * @env: The load balancing environment. |
532cb4c4 MN |
8028 | * @sds: sched_domain statistics |
8029 | * @sg: sched_group candidate to be checked for being the busiest | |
b6b12294 | 8030 | * @sgs: sched_group statistics |
532cb4c4 MN |
8031 | * |
8032 | * Determine if @sg is a busier group than the previously selected | |
8033 | * busiest group. | |
e69f6186 YB |
8034 | * |
8035 | * Return: %true if @sg is a busier group than the previously selected | |
8036 | * busiest group. %false otherwise. | |
532cb4c4 | 8037 | */ |
bd939f45 | 8038 | static bool update_sd_pick_busiest(struct lb_env *env, |
532cb4c4 MN |
8039 | struct sd_lb_stats *sds, |
8040 | struct sched_group *sg, | |
bd939f45 | 8041 | struct sg_lb_stats *sgs) |
532cb4c4 | 8042 | { |
caeb178c | 8043 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
532cb4c4 | 8044 | |
0b0695f2 VG |
8045 | /* Make sure that there is at least one task to pull */ |
8046 | if (!sgs->sum_h_nr_running) | |
8047 | return false; | |
8048 | ||
cad68e55 MR |
8049 | /* |
8050 | * Don't try to pull misfit tasks we can't help. | |
8051 | * We can use max_capacity here as reduction in capacity on some | |
8052 | * CPUs in the group should either be possible to resolve | |
8053 | * internally or be covered by avg_load imbalance (eventually). | |
8054 | */ | |
8055 | if (sgs->group_type == group_misfit_task && | |
8056 | (!group_smaller_max_cpu_capacity(sg, sds->local) || | |
0b0695f2 | 8057 | sds->local_stat.group_type != group_has_spare)) |
cad68e55 MR |
8058 | return false; |
8059 | ||
caeb178c | 8060 | if (sgs->group_type > busiest->group_type) |
532cb4c4 MN |
8061 | return true; |
8062 | ||
caeb178c RR |
8063 | if (sgs->group_type < busiest->group_type) |
8064 | return false; | |
8065 | ||
9e0994c0 | 8066 | /* |
0b0695f2 VG |
8067 | * The candidate and the current busiest group are the same type of |
8068 | * group. Let check which one is the busiest according to the type. | |
9e0994c0 | 8069 | */ |
9e0994c0 | 8070 | |
0b0695f2 VG |
8071 | switch (sgs->group_type) { |
8072 | case group_overloaded: | |
8073 | /* Select the overloaded group with highest avg_load. */ | |
8074 | if (sgs->avg_load <= busiest->avg_load) | |
8075 | return false; | |
8076 | break; | |
8077 | ||
8078 | case group_imbalanced: | |
8079 | /* | |
8080 | * Select the 1st imbalanced group as we don't have any way to | |
8081 | * choose one more than another. | |
8082 | */ | |
9e0994c0 MR |
8083 | return false; |
8084 | ||
0b0695f2 VG |
8085 | case group_asym_packing: |
8086 | /* Prefer to move from lowest priority CPU's work */ | |
8087 | if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) | |
8088 | return false; | |
8089 | break; | |
532cb4c4 | 8090 | |
0b0695f2 VG |
8091 | case group_misfit_task: |
8092 | /* | |
8093 | * If we have more than one misfit sg go with the biggest | |
8094 | * misfit. | |
8095 | */ | |
8096 | if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) | |
8097 | return false; | |
8098 | break; | |
532cb4c4 | 8099 | |
0b0695f2 VG |
8100 | case group_fully_busy: |
8101 | /* | |
8102 | * Select the fully busy group with highest avg_load. In | |
8103 | * theory, there is no need to pull task from such kind of | |
8104 | * group because tasks have all compute capacity that they need | |
8105 | * but we can still improve the overall throughput by reducing | |
8106 | * contention when accessing shared HW resources. | |
8107 | * | |
8108 | * XXX for now avg_load is not computed and always 0 so we | |
8109 | * select the 1st one. | |
8110 | */ | |
8111 | if (sgs->avg_load <= busiest->avg_load) | |
8112 | return false; | |
8113 | break; | |
8114 | ||
8115 | case group_has_spare: | |
8116 | /* | |
8117 | * Select not overloaded group with lowest number of | |
8118 | * idle cpus. We could also compare the spare capacity | |
8119 | * which is more stable but it can end up that the | |
8120 | * group has less spare capacity but finally more idle | |
8121 | * CPUs which means less opportunity to pull tasks. | |
8122 | */ | |
8123 | if (sgs->idle_cpus >= busiest->idle_cpus) | |
8124 | return false; | |
8125 | break; | |
532cb4c4 MN |
8126 | } |
8127 | ||
0b0695f2 VG |
8128 | /* |
8129 | * Candidate sg has no more than one task per CPU and has higher | |
8130 | * per-CPU capacity. Migrating tasks to less capable CPUs may harm | |
8131 | * throughput. Maximize throughput, power/energy consequences are not | |
8132 | * considered. | |
8133 | */ | |
8134 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | |
8135 | (sgs->group_type <= group_fully_busy) && | |
8136 | (group_smaller_min_cpu_capacity(sds->local, sg))) | |
8137 | return false; | |
8138 | ||
8139 | return true; | |
532cb4c4 MN |
8140 | } |
8141 | ||
0ec8aa00 PZ |
8142 | #ifdef CONFIG_NUMA_BALANCING |
8143 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
8144 | { | |
a3498347 | 8145 | if (sgs->sum_h_nr_running > sgs->nr_numa_running) |
0ec8aa00 | 8146 | return regular; |
a3498347 | 8147 | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) |
0ec8aa00 PZ |
8148 | return remote; |
8149 | return all; | |
8150 | } | |
8151 | ||
8152 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
8153 | { | |
8154 | if (rq->nr_running > rq->nr_numa_running) | |
8155 | return regular; | |
8156 | if (rq->nr_running > rq->nr_preferred_running) | |
8157 | return remote; | |
8158 | return all; | |
8159 | } | |
8160 | #else | |
8161 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
8162 | { | |
8163 | return all; | |
8164 | } | |
8165 | ||
8166 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
8167 | { | |
8168 | return regular; | |
8169 | } | |
8170 | #endif /* CONFIG_NUMA_BALANCING */ | |
8171 | ||
57abff06 VG |
8172 | |
8173 | struct sg_lb_stats; | |
8174 | ||
3318544b VG |
8175 | /* |
8176 | * task_running_on_cpu - return 1 if @p is running on @cpu. | |
8177 | */ | |
8178 | ||
8179 | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) | |
8180 | { | |
8181 | /* Task has no contribution or is new */ | |
8182 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
8183 | return 0; | |
8184 | ||
8185 | if (task_on_rq_queued(p)) | |
8186 | return 1; | |
8187 | ||
8188 | return 0; | |
8189 | } | |
8190 | ||
8191 | /** | |
8192 | * idle_cpu_without - would a given CPU be idle without p ? | |
8193 | * @cpu: the processor on which idleness is tested. | |
8194 | * @p: task which should be ignored. | |
8195 | * | |
8196 | * Return: 1 if the CPU would be idle. 0 otherwise. | |
8197 | */ | |
8198 | static int idle_cpu_without(int cpu, struct task_struct *p) | |
8199 | { | |
8200 | struct rq *rq = cpu_rq(cpu); | |
8201 | ||
8202 | if (rq->curr != rq->idle && rq->curr != p) | |
8203 | return 0; | |
8204 | ||
8205 | /* | |
8206 | * rq->nr_running can't be used but an updated version without the | |
8207 | * impact of p on cpu must be used instead. The updated nr_running | |
8208 | * be computed and tested before calling idle_cpu_without(). | |
8209 | */ | |
8210 | ||
8211 | #ifdef CONFIG_SMP | |
8212 | if (!llist_empty(&rq->wake_list)) | |
8213 | return 0; | |
8214 | #endif | |
8215 | ||
8216 | return 1; | |
8217 | } | |
8218 | ||
57abff06 VG |
8219 | /* |
8220 | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. | |
3318544b | 8221 | * @sd: The sched_domain level to look for idlest group. |
57abff06 VG |
8222 | * @group: sched_group whose statistics are to be updated. |
8223 | * @sgs: variable to hold the statistics for this group. | |
3318544b | 8224 | * @p: The task for which we look for the idlest group/CPU. |
57abff06 VG |
8225 | */ |
8226 | static inline void update_sg_wakeup_stats(struct sched_domain *sd, | |
8227 | struct sched_group *group, | |
8228 | struct sg_lb_stats *sgs, | |
8229 | struct task_struct *p) | |
8230 | { | |
8231 | int i, nr_running; | |
8232 | ||
8233 | memset(sgs, 0, sizeof(*sgs)); | |
8234 | ||
8235 | for_each_cpu(i, sched_group_span(group)) { | |
8236 | struct rq *rq = cpu_rq(i); | |
3318544b | 8237 | unsigned int local; |
57abff06 | 8238 | |
3318544b | 8239 | sgs->group_load += cpu_load_without(rq, p); |
57abff06 | 8240 | sgs->group_util += cpu_util_without(i, p); |
3318544b VG |
8241 | local = task_running_on_cpu(i, p); |
8242 | sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; | |
57abff06 | 8243 | |
3318544b | 8244 | nr_running = rq->nr_running - local; |
57abff06 VG |
8245 | sgs->sum_nr_running += nr_running; |
8246 | ||
8247 | /* | |
3318544b | 8248 | * No need to call idle_cpu_without() if nr_running is not 0 |
57abff06 | 8249 | */ |
3318544b | 8250 | if (!nr_running && idle_cpu_without(i, p)) |
57abff06 VG |
8251 | sgs->idle_cpus++; |
8252 | ||
57abff06 VG |
8253 | } |
8254 | ||
8255 | /* Check if task fits in the group */ | |
8256 | if (sd->flags & SD_ASYM_CPUCAPACITY && | |
8257 | !task_fits_capacity(p, group->sgc->max_capacity)) { | |
8258 | sgs->group_misfit_task_load = 1; | |
8259 | } | |
8260 | ||
8261 | sgs->group_capacity = group->sgc->capacity; | |
8262 | ||
8263 | sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); | |
8264 | ||
8265 | /* | |
8266 | * Computing avg_load makes sense only when group is fully busy or | |
8267 | * overloaded | |
8268 | */ | |
8269 | if (sgs->group_type < group_fully_busy) | |
8270 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | |
8271 | sgs->group_capacity; | |
8272 | } | |
8273 | ||
8274 | static bool update_pick_idlest(struct sched_group *idlest, | |
8275 | struct sg_lb_stats *idlest_sgs, | |
8276 | struct sched_group *group, | |
8277 | struct sg_lb_stats *sgs) | |
8278 | { | |
8279 | if (sgs->group_type < idlest_sgs->group_type) | |
8280 | return true; | |
8281 | ||
8282 | if (sgs->group_type > idlest_sgs->group_type) | |
8283 | return false; | |
8284 | ||
8285 | /* | |
8286 | * The candidate and the current idlest group are the same type of | |
8287 | * group. Let check which one is the idlest according to the type. | |
8288 | */ | |
8289 | ||
8290 | switch (sgs->group_type) { | |
8291 | case group_overloaded: | |
8292 | case group_fully_busy: | |
8293 | /* Select the group with lowest avg_load. */ | |
8294 | if (idlest_sgs->avg_load <= sgs->avg_load) | |
8295 | return false; | |
8296 | break; | |
8297 | ||
8298 | case group_imbalanced: | |
8299 | case group_asym_packing: | |
8300 | /* Those types are not used in the slow wakeup path */ | |
8301 | return false; | |
8302 | ||
8303 | case group_misfit_task: | |
8304 | /* Select group with the highest max capacity */ | |
8305 | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) | |
8306 | return false; | |
8307 | break; | |
8308 | ||
8309 | case group_has_spare: | |
8310 | /* Select group with most idle CPUs */ | |
8311 | if (idlest_sgs->idle_cpus >= sgs->idle_cpus) | |
8312 | return false; | |
8313 | break; | |
8314 | } | |
8315 | ||
8316 | return true; | |
8317 | } | |
8318 | ||
8319 | /* | |
8320 | * find_idlest_group() finds and returns the least busy CPU group within the | |
8321 | * domain. | |
8322 | * | |
8323 | * Assumes p is allowed on at least one CPU in sd. | |
8324 | */ | |
8325 | static struct sched_group * | |
8326 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | |
8327 | int this_cpu, int sd_flag) | |
8328 | { | |
8329 | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; | |
8330 | struct sg_lb_stats local_sgs, tmp_sgs; | |
8331 | struct sg_lb_stats *sgs; | |
8332 | unsigned long imbalance; | |
8333 | struct sg_lb_stats idlest_sgs = { | |
8334 | .avg_load = UINT_MAX, | |
8335 | .group_type = group_overloaded, | |
8336 | }; | |
8337 | ||
8338 | imbalance = scale_load_down(NICE_0_LOAD) * | |
8339 | (sd->imbalance_pct-100) / 100; | |
8340 | ||
8341 | do { | |
8342 | int local_group; | |
8343 | ||
8344 | /* Skip over this group if it has no CPUs allowed */ | |
8345 | if (!cpumask_intersects(sched_group_span(group), | |
8346 | p->cpus_ptr)) | |
8347 | continue; | |
8348 | ||
8349 | local_group = cpumask_test_cpu(this_cpu, | |
8350 | sched_group_span(group)); | |
8351 | ||
8352 | if (local_group) { | |
8353 | sgs = &local_sgs; | |
8354 | local = group; | |
8355 | } else { | |
8356 | sgs = &tmp_sgs; | |
8357 | } | |
8358 | ||
8359 | update_sg_wakeup_stats(sd, group, sgs, p); | |
8360 | ||
8361 | if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { | |
8362 | idlest = group; | |
8363 | idlest_sgs = *sgs; | |
8364 | } | |
8365 | ||
8366 | } while (group = group->next, group != sd->groups); | |
8367 | ||
8368 | ||
8369 | /* There is no idlest group to push tasks to */ | |
8370 | if (!idlest) | |
8371 | return NULL; | |
8372 | ||
8373 | /* | |
8374 | * If the local group is idler than the selected idlest group | |
8375 | * don't try and push the task. | |
8376 | */ | |
8377 | if (local_sgs.group_type < idlest_sgs.group_type) | |
8378 | return NULL; | |
8379 | ||
8380 | /* | |
8381 | * If the local group is busier than the selected idlest group | |
8382 | * try and push the task. | |
8383 | */ | |
8384 | if (local_sgs.group_type > idlest_sgs.group_type) | |
8385 | return idlest; | |
8386 | ||
8387 | switch (local_sgs.group_type) { | |
8388 | case group_overloaded: | |
8389 | case group_fully_busy: | |
8390 | /* | |
8391 | * When comparing groups across NUMA domains, it's possible for | |
8392 | * the local domain to be very lightly loaded relative to the | |
8393 | * remote domains but "imbalance" skews the comparison making | |
8394 | * remote CPUs look much more favourable. When considering | |
8395 | * cross-domain, add imbalance to the load on the remote node | |
8396 | * and consider staying local. | |
8397 | */ | |
8398 | ||
8399 | if ((sd->flags & SD_NUMA) && | |
8400 | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) | |
8401 | return NULL; | |
8402 | ||
8403 | /* | |
8404 | * If the local group is less loaded than the selected | |
8405 | * idlest group don't try and push any tasks. | |
8406 | */ | |
8407 | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) | |
8408 | return NULL; | |
8409 | ||
8410 | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) | |
8411 | return NULL; | |
8412 | break; | |
8413 | ||
8414 | case group_imbalanced: | |
8415 | case group_asym_packing: | |
8416 | /* Those type are not used in the slow wakeup path */ | |
8417 | return NULL; | |
8418 | ||
8419 | case group_misfit_task: | |
8420 | /* Select group with the highest max capacity */ | |
8421 | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) | |
8422 | return NULL; | |
8423 | break; | |
8424 | ||
8425 | case group_has_spare: | |
8426 | if (sd->flags & SD_NUMA) { | |
8427 | #ifdef CONFIG_NUMA_BALANCING | |
8428 | int idlest_cpu; | |
8429 | /* | |
8430 | * If there is spare capacity at NUMA, try to select | |
8431 | * the preferred node | |
8432 | */ | |
8433 | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) | |
8434 | return NULL; | |
8435 | ||
8436 | idlest_cpu = cpumask_first(sched_group_span(idlest)); | |
8437 | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) | |
8438 | return idlest; | |
8439 | #endif | |
8440 | /* | |
8441 | * Otherwise, keep the task on this node to stay close | |
8442 | * its wakeup source and improve locality. If there is | |
8443 | * a real need of migration, periodic load balance will | |
8444 | * take care of it. | |
8445 | */ | |
8446 | if (local_sgs.idle_cpus) | |
8447 | return NULL; | |
8448 | } | |
8449 | ||
8450 | /* | |
8451 | * Select group with highest number of idle CPUs. We could also | |
8452 | * compare the utilization which is more stable but it can end | |
8453 | * up that the group has less spare capacity but finally more | |
8454 | * idle CPUs which means more opportunity to run task. | |
8455 | */ | |
8456 | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) | |
8457 | return NULL; | |
8458 | break; | |
8459 | } | |
8460 | ||
8461 | return idlest; | |
8462 | } | |
8463 | ||
1e3c88bd | 8464 | /** |
461819ac | 8465 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
cd96891d | 8466 | * @env: The load balancing environment. |
1e3c88bd PZ |
8467 | * @sds: variable to hold the statistics for this sched_domain. |
8468 | */ | |
0b0695f2 | 8469 | |
0ec8aa00 | 8470 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 8471 | { |
bd939f45 PZ |
8472 | struct sched_domain *child = env->sd->child; |
8473 | struct sched_group *sg = env->sd->groups; | |
05b40e05 | 8474 | struct sg_lb_stats *local = &sds->local_stat; |
56cf515b | 8475 | struct sg_lb_stats tmp_sgs; |
630246a0 | 8476 | int sg_status = 0; |
1e3c88bd | 8477 | |
e022e0d3 | 8478 | #ifdef CONFIG_NO_HZ_COMMON |
f643ea22 | 8479 | if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) |
e022e0d3 | 8480 | env->flags |= LBF_NOHZ_STATS; |
e022e0d3 PZ |
8481 | #endif |
8482 | ||
1e3c88bd | 8483 | do { |
56cf515b | 8484 | struct sg_lb_stats *sgs = &tmp_sgs; |
1e3c88bd PZ |
8485 | int local_group; |
8486 | ||
ae4df9d6 | 8487 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
56cf515b JK |
8488 | if (local_group) { |
8489 | sds->local = sg; | |
05b40e05 | 8490 | sgs = local; |
b72ff13c PZ |
8491 | |
8492 | if (env->idle != CPU_NEWLY_IDLE || | |
63b2ca30 NP |
8493 | time_after_eq(jiffies, sg->sgc->next_update)) |
8494 | update_group_capacity(env->sd, env->dst_cpu); | |
56cf515b | 8495 | } |
1e3c88bd | 8496 | |
630246a0 | 8497 | update_sg_lb_stats(env, sg, sgs, &sg_status); |
1e3c88bd | 8498 | |
b72ff13c PZ |
8499 | if (local_group) |
8500 | goto next_group; | |
8501 | ||
1e3c88bd | 8502 | |
b72ff13c | 8503 | if (update_sd_pick_busiest(env, sds, sg, sgs)) { |
532cb4c4 | 8504 | sds->busiest = sg; |
56cf515b | 8505 | sds->busiest_stat = *sgs; |
1e3c88bd PZ |
8506 | } |
8507 | ||
b72ff13c PZ |
8508 | next_group: |
8509 | /* Now, start updating sd_lb_stats */ | |
8510 | sds->total_load += sgs->group_load; | |
63b2ca30 | 8511 | sds->total_capacity += sgs->group_capacity; |
b72ff13c | 8512 | |
532cb4c4 | 8513 | sg = sg->next; |
bd939f45 | 8514 | } while (sg != env->sd->groups); |
0ec8aa00 | 8515 | |
0b0695f2 VG |
8516 | /* Tag domain that child domain prefers tasks go to siblings first */ |
8517 | sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; | |
8518 | ||
f643ea22 VG |
8519 | #ifdef CONFIG_NO_HZ_COMMON |
8520 | if ((env->flags & LBF_NOHZ_AGAIN) && | |
8521 | cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { | |
8522 | ||
8523 | WRITE_ONCE(nohz.next_blocked, | |
8524 | jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
8525 | } | |
8526 | #endif | |
8527 | ||
0ec8aa00 PZ |
8528 | if (env->sd->flags & SD_NUMA) |
8529 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | |
4486edd1 TC |
8530 | |
8531 | if (!env->sd->parent) { | |
2802bf3c MR |
8532 | struct root_domain *rd = env->dst_rq->rd; |
8533 | ||
4486edd1 | 8534 | /* update overload indicator if we are at root domain */ |
2802bf3c MR |
8535 | WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); |
8536 | ||
8537 | /* Update over-utilization (tipping point, U >= 0) indicator */ | |
8538 | WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); | |
f9f240f9 | 8539 | trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); |
2802bf3c | 8540 | } else if (sg_status & SG_OVERUTILIZED) { |
f9f240f9 QY |
8541 | struct root_domain *rd = env->dst_rq->rd; |
8542 | ||
8543 | WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); | |
8544 | trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); | |
4486edd1 | 8545 | } |
532cb4c4 MN |
8546 | } |
8547 | ||
1e3c88bd PZ |
8548 | /** |
8549 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
8550 | * groups of a given sched_domain during load balance. | |
bd939f45 | 8551 | * @env: load balance environment |
1e3c88bd | 8552 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 8553 | */ |
bd939f45 | 8554 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 8555 | { |
56cf515b JK |
8556 | struct sg_lb_stats *local, *busiest; |
8557 | ||
8558 | local = &sds->local_stat; | |
56cf515b | 8559 | busiest = &sds->busiest_stat; |
dd5feea1 | 8560 | |
0b0695f2 VG |
8561 | if (busiest->group_type == group_misfit_task) { |
8562 | /* Set imbalance to allow misfit tasks to be balanced. */ | |
8563 | env->migration_type = migrate_misfit; | |
c63be7be | 8564 | env->imbalance = 1; |
0b0695f2 VG |
8565 | return; |
8566 | } | |
8567 | ||
8568 | if (busiest->group_type == group_asym_packing) { | |
8569 | /* | |
8570 | * In case of asym capacity, we will try to migrate all load to | |
8571 | * the preferred CPU. | |
8572 | */ | |
8573 | env->migration_type = migrate_task; | |
8574 | env->imbalance = busiest->sum_h_nr_running; | |
8575 | return; | |
8576 | } | |
8577 | ||
8578 | if (busiest->group_type == group_imbalanced) { | |
8579 | /* | |
8580 | * In the group_imb case we cannot rely on group-wide averages | |
8581 | * to ensure CPU-load equilibrium, try to move any task to fix | |
8582 | * the imbalance. The next load balance will take care of | |
8583 | * balancing back the system. | |
8584 | */ | |
8585 | env->migration_type = migrate_task; | |
8586 | env->imbalance = 1; | |
490ba971 VG |
8587 | return; |
8588 | } | |
8589 | ||
1e3c88bd | 8590 | /* |
0b0695f2 VG |
8591 | * Try to use spare capacity of local group without overloading it or |
8592 | * emptying busiest | |
1e3c88bd | 8593 | */ |
0b0695f2 VG |
8594 | if (local->group_type == group_has_spare) { |
8595 | if (busiest->group_type > group_fully_busy) { | |
8596 | /* | |
8597 | * If busiest is overloaded, try to fill spare | |
8598 | * capacity. This might end up creating spare capacity | |
8599 | * in busiest or busiest still being overloaded but | |
8600 | * there is no simple way to directly compute the | |
8601 | * amount of load to migrate in order to balance the | |
8602 | * system. | |
8603 | */ | |
8604 | env->migration_type = migrate_util; | |
8605 | env->imbalance = max(local->group_capacity, local->group_util) - | |
8606 | local->group_util; | |
8607 | ||
8608 | /* | |
8609 | * In some cases, the group's utilization is max or even | |
8610 | * higher than capacity because of migrations but the | |
8611 | * local CPU is (newly) idle. There is at least one | |
8612 | * waiting task in this overloaded busiest group. Let's | |
8613 | * try to pull it. | |
8614 | */ | |
8615 | if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { | |
8616 | env->migration_type = migrate_task; | |
8617 | env->imbalance = 1; | |
8618 | } | |
8619 | ||
8620 | return; | |
8621 | } | |
8622 | ||
8623 | if (busiest->group_weight == 1 || sds->prefer_sibling) { | |
5e23e474 | 8624 | unsigned int nr_diff = busiest->sum_nr_running; |
0b0695f2 VG |
8625 | /* |
8626 | * When prefer sibling, evenly spread running tasks on | |
8627 | * groups. | |
8628 | */ | |
8629 | env->migration_type = migrate_task; | |
5e23e474 | 8630 | lsub_positive(&nr_diff, local->sum_nr_running); |
0b0695f2 VG |
8631 | env->imbalance = nr_diff >> 1; |
8632 | return; | |
8633 | } | |
8634 | ||
8635 | /* | |
8636 | * If there is no overload, we just want to even the number of | |
8637 | * idle cpus. | |
8638 | */ | |
8639 | env->migration_type = migrate_task; | |
8640 | env->imbalance = max_t(long, 0, (local->idle_cpus - | |
8641 | busiest->idle_cpus) >> 1); | |
fcf0553d | 8642 | return; |
1e3c88bd PZ |
8643 | } |
8644 | ||
9a5d9ba6 | 8645 | /* |
0b0695f2 VG |
8646 | * Local is fully busy but has to take more load to relieve the |
8647 | * busiest group | |
9a5d9ba6 | 8648 | */ |
0b0695f2 VG |
8649 | if (local->group_type < group_overloaded) { |
8650 | /* | |
8651 | * Local will become overloaded so the avg_load metrics are | |
8652 | * finally needed. | |
8653 | */ | |
8654 | ||
8655 | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / | |
8656 | local->group_capacity; | |
8657 | ||
8658 | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / | |
8659 | sds->total_capacity; | |
dd5feea1 SS |
8660 | } |
8661 | ||
8662 | /* | |
0b0695f2 VG |
8663 | * Both group are or will become overloaded and we're trying to get all |
8664 | * the CPUs to the average_load, so we don't want to push ourselves | |
8665 | * above the average load, nor do we wish to reduce the max loaded CPU | |
8666 | * below the average load. At the same time, we also don't want to | |
8667 | * reduce the group load below the group capacity. Thus we look for | |
8668 | * the minimum possible imbalance. | |
dd5feea1 | 8669 | */ |
0b0695f2 | 8670 | env->migration_type = migrate_load; |
56cf515b | 8671 | env->imbalance = min( |
0b0695f2 | 8672 | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, |
63b2ca30 | 8673 | (sds->avg_load - local->avg_load) * local->group_capacity |
ca8ce3d0 | 8674 | ) / SCHED_CAPACITY_SCALE; |
1e3c88bd | 8675 | } |
fab47622 | 8676 | |
1e3c88bd PZ |
8677 | /******* find_busiest_group() helpers end here *********************/ |
8678 | ||
0b0695f2 VG |
8679 | /* |
8680 | * Decision matrix according to the local and busiest group type: | |
8681 | * | |
8682 | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded | |
8683 | * has_spare nr_idle balanced N/A N/A balanced balanced | |
8684 | * fully_busy nr_idle nr_idle N/A N/A balanced balanced | |
8685 | * misfit_task force N/A N/A N/A force force | |
8686 | * asym_packing force force N/A N/A force force | |
8687 | * imbalanced force force N/A N/A force force | |
8688 | * overloaded force force N/A N/A force avg_load | |
8689 | * | |
8690 | * N/A : Not Applicable because already filtered while updating | |
8691 | * statistics. | |
8692 | * balanced : The system is balanced for these 2 groups. | |
8693 | * force : Calculate the imbalance as load migration is probably needed. | |
8694 | * avg_load : Only if imbalance is significant enough. | |
8695 | * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite | |
8696 | * different in groups. | |
8697 | */ | |
8698 | ||
1e3c88bd PZ |
8699 | /** |
8700 | * find_busiest_group - Returns the busiest group within the sched_domain | |
0a9b23ce | 8701 | * if there is an imbalance. |
1e3c88bd | 8702 | * |
a3df0679 | 8703 | * Also calculates the amount of runnable load which should be moved |
1e3c88bd PZ |
8704 | * to restore balance. |
8705 | * | |
cd96891d | 8706 | * @env: The load balancing environment. |
1e3c88bd | 8707 | * |
e69f6186 | 8708 | * Return: - The busiest group if imbalance exists. |
1e3c88bd | 8709 | */ |
56cf515b | 8710 | static struct sched_group *find_busiest_group(struct lb_env *env) |
1e3c88bd | 8711 | { |
56cf515b | 8712 | struct sg_lb_stats *local, *busiest; |
1e3c88bd PZ |
8713 | struct sd_lb_stats sds; |
8714 | ||
147c5fc2 | 8715 | init_sd_lb_stats(&sds); |
1e3c88bd PZ |
8716 | |
8717 | /* | |
b0fb1eb4 | 8718 | * Compute the various statistics relevant for load balancing at |
1e3c88bd PZ |
8719 | * this level. |
8720 | */ | |
23f0d209 | 8721 | update_sd_lb_stats(env, &sds); |
2802bf3c | 8722 | |
f8a696f2 | 8723 | if (sched_energy_enabled()) { |
2802bf3c MR |
8724 | struct root_domain *rd = env->dst_rq->rd; |
8725 | ||
8726 | if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) | |
8727 | goto out_balanced; | |
8728 | } | |
8729 | ||
56cf515b JK |
8730 | local = &sds.local_stat; |
8731 | busiest = &sds.busiest_stat; | |
1e3c88bd | 8732 | |
cc57aa8f | 8733 | /* There is no busy sibling group to pull tasks from */ |
0b0695f2 | 8734 | if (!sds.busiest) |
1e3c88bd PZ |
8735 | goto out_balanced; |
8736 | ||
0b0695f2 VG |
8737 | /* Misfit tasks should be dealt with regardless of the avg load */ |
8738 | if (busiest->group_type == group_misfit_task) | |
8739 | goto force_balance; | |
8740 | ||
8741 | /* ASYM feature bypasses nice load balance check */ | |
8742 | if (busiest->group_type == group_asym_packing) | |
8743 | goto force_balance; | |
b0432d8f | 8744 | |
866ab43e PZ |
8745 | /* |
8746 | * If the busiest group is imbalanced the below checks don't | |
30ce5dab | 8747 | * work because they assume all things are equal, which typically |
3bd37062 | 8748 | * isn't true due to cpus_ptr constraints and the like. |
866ab43e | 8749 | */ |
caeb178c | 8750 | if (busiest->group_type == group_imbalanced) |
866ab43e PZ |
8751 | goto force_balance; |
8752 | ||
cc57aa8f | 8753 | /* |
9c58c79a | 8754 | * If the local group is busier than the selected busiest group |
cc57aa8f PZ |
8755 | * don't try and pull any tasks. |
8756 | */ | |
0b0695f2 | 8757 | if (local->group_type > busiest->group_type) |
1e3c88bd PZ |
8758 | goto out_balanced; |
8759 | ||
cc57aa8f | 8760 | /* |
0b0695f2 VG |
8761 | * When groups are overloaded, use the avg_load to ensure fairness |
8762 | * between tasks. | |
cc57aa8f | 8763 | */ |
0b0695f2 VG |
8764 | if (local->group_type == group_overloaded) { |
8765 | /* | |
8766 | * If the local group is more loaded than the selected | |
8767 | * busiest group don't try to pull any tasks. | |
8768 | */ | |
8769 | if (local->avg_load >= busiest->avg_load) | |
8770 | goto out_balanced; | |
8771 | ||
8772 | /* XXX broken for overlapping NUMA groups */ | |
8773 | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / | |
8774 | sds.total_capacity; | |
1e3c88bd | 8775 | |
aae6d3dd | 8776 | /* |
0b0695f2 VG |
8777 | * Don't pull any tasks if this group is already above the |
8778 | * domain average load. | |
aae6d3dd | 8779 | */ |
0b0695f2 | 8780 | if (local->avg_load >= sds.avg_load) |
aae6d3dd | 8781 | goto out_balanced; |
0b0695f2 | 8782 | |
c186fafe | 8783 | /* |
0b0695f2 VG |
8784 | * If the busiest group is more loaded, use imbalance_pct to be |
8785 | * conservative. | |
c186fafe | 8786 | */ |
56cf515b JK |
8787 | if (100 * busiest->avg_load <= |
8788 | env->sd->imbalance_pct * local->avg_load) | |
c186fafe | 8789 | goto out_balanced; |
aae6d3dd | 8790 | } |
1e3c88bd | 8791 | |
0b0695f2 VG |
8792 | /* Try to move all excess tasks to child's sibling domain */ |
8793 | if (sds.prefer_sibling && local->group_type == group_has_spare && | |
5e23e474 | 8794 | busiest->sum_nr_running > local->sum_nr_running + 1) |
0b0695f2 VG |
8795 | goto force_balance; |
8796 | ||
2ab4092f VG |
8797 | if (busiest->group_type != group_overloaded) { |
8798 | if (env->idle == CPU_NOT_IDLE) | |
8799 | /* | |
8800 | * If the busiest group is not overloaded (and as a | |
8801 | * result the local one too) but this CPU is already | |
8802 | * busy, let another idle CPU try to pull task. | |
8803 | */ | |
8804 | goto out_balanced; | |
8805 | ||
8806 | if (busiest->group_weight > 1 && | |
8807 | local->idle_cpus <= (busiest->idle_cpus + 1)) | |
8808 | /* | |
8809 | * If the busiest group is not overloaded | |
8810 | * and there is no imbalance between this and busiest | |
8811 | * group wrt idle CPUs, it is balanced. The imbalance | |
8812 | * becomes significant if the diff is greater than 1 | |
8813 | * otherwise we might end up to just move the imbalance | |
8814 | * on another group. Of course this applies only if | |
8815 | * there is more than 1 CPU per group. | |
8816 | */ | |
8817 | goto out_balanced; | |
8818 | ||
8819 | if (busiest->sum_h_nr_running == 1) | |
8820 | /* | |
8821 | * busiest doesn't have any tasks waiting to run | |
8822 | */ | |
8823 | goto out_balanced; | |
8824 | } | |
0b0695f2 | 8825 | |
fab47622 | 8826 | force_balance: |
1e3c88bd | 8827 | /* Looks like there is an imbalance. Compute it */ |
bd939f45 | 8828 | calculate_imbalance(env, &sds); |
bb3485c8 | 8829 | return env->imbalance ? sds.busiest : NULL; |
1e3c88bd PZ |
8830 | |
8831 | out_balanced: | |
bd939f45 | 8832 | env->imbalance = 0; |
1e3c88bd PZ |
8833 | return NULL; |
8834 | } | |
8835 | ||
8836 | /* | |
97fb7a0a | 8837 | * find_busiest_queue - find the busiest runqueue among the CPUs in the group. |
1e3c88bd | 8838 | */ |
bd939f45 | 8839 | static struct rq *find_busiest_queue(struct lb_env *env, |
b9403130 | 8840 | struct sched_group *group) |
1e3c88bd PZ |
8841 | { |
8842 | struct rq *busiest = NULL, *rq; | |
0b0695f2 VG |
8843 | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; |
8844 | unsigned int busiest_nr = 0; | |
1e3c88bd PZ |
8845 | int i; |
8846 | ||
ae4df9d6 | 8847 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
0b0695f2 VG |
8848 | unsigned long capacity, load, util; |
8849 | unsigned int nr_running; | |
0ec8aa00 PZ |
8850 | enum fbq_type rt; |
8851 | ||
8852 | rq = cpu_rq(i); | |
8853 | rt = fbq_classify_rq(rq); | |
1e3c88bd | 8854 | |
0ec8aa00 PZ |
8855 | /* |
8856 | * We classify groups/runqueues into three groups: | |
8857 | * - regular: there are !numa tasks | |
8858 | * - remote: there are numa tasks that run on the 'wrong' node | |
8859 | * - all: there is no distinction | |
8860 | * | |
8861 | * In order to avoid migrating ideally placed numa tasks, | |
8862 | * ignore those when there's better options. | |
8863 | * | |
8864 | * If we ignore the actual busiest queue to migrate another | |
8865 | * task, the next balance pass can still reduce the busiest | |
8866 | * queue by moving tasks around inside the node. | |
8867 | * | |
8868 | * If we cannot move enough load due to this classification | |
8869 | * the next pass will adjust the group classification and | |
8870 | * allow migration of more tasks. | |
8871 | * | |
8872 | * Both cases only affect the total convergence complexity. | |
8873 | */ | |
8874 | if (rt > env->fbq_type) | |
8875 | continue; | |
8876 | ||
ced549fa | 8877 | capacity = capacity_of(i); |
0b0695f2 | 8878 | nr_running = rq->cfs.h_nr_running; |
9d5efe05 | 8879 | |
4ad3831a CR |
8880 | /* |
8881 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | |
8882 | * eventually lead to active_balancing high->low capacity. | |
8883 | * Higher per-CPU capacity is considered better than balancing | |
8884 | * average load. | |
8885 | */ | |
8886 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | |
8887 | capacity_of(env->dst_cpu) < capacity && | |
0b0695f2 | 8888 | nr_running == 1) |
4ad3831a CR |
8889 | continue; |
8890 | ||
0b0695f2 VG |
8891 | switch (env->migration_type) { |
8892 | case migrate_load: | |
8893 | /* | |
b0fb1eb4 VG |
8894 | * When comparing with load imbalance, use cpu_load() |
8895 | * which is not scaled with the CPU capacity. | |
0b0695f2 | 8896 | */ |
b0fb1eb4 | 8897 | load = cpu_load(rq); |
1e3c88bd | 8898 | |
0b0695f2 VG |
8899 | if (nr_running == 1 && load > env->imbalance && |
8900 | !check_cpu_capacity(rq, env->sd)) | |
8901 | break; | |
ea67821b | 8902 | |
0b0695f2 VG |
8903 | /* |
8904 | * For the load comparisons with the other CPUs, | |
b0fb1eb4 VG |
8905 | * consider the cpu_load() scaled with the CPU |
8906 | * capacity, so that the load can be moved away | |
8907 | * from the CPU that is potentially running at a | |
8908 | * lower capacity. | |
0b0695f2 VG |
8909 | * |
8910 | * Thus we're looking for max(load_i / capacity_i), | |
8911 | * crosswise multiplication to rid ourselves of the | |
8912 | * division works out to: | |
8913 | * load_i * capacity_j > load_j * capacity_i; | |
8914 | * where j is our previous maximum. | |
8915 | */ | |
8916 | if (load * busiest_capacity > busiest_load * capacity) { | |
8917 | busiest_load = load; | |
8918 | busiest_capacity = capacity; | |
8919 | busiest = rq; | |
8920 | } | |
8921 | break; | |
8922 | ||
8923 | case migrate_util: | |
8924 | util = cpu_util(cpu_of(rq)); | |
8925 | ||
8926 | if (busiest_util < util) { | |
8927 | busiest_util = util; | |
8928 | busiest = rq; | |
8929 | } | |
8930 | break; | |
8931 | ||
8932 | case migrate_task: | |
8933 | if (busiest_nr < nr_running) { | |
8934 | busiest_nr = nr_running; | |
8935 | busiest = rq; | |
8936 | } | |
8937 | break; | |
8938 | ||
8939 | case migrate_misfit: | |
8940 | /* | |
8941 | * For ASYM_CPUCAPACITY domains with misfit tasks we | |
8942 | * simply seek the "biggest" misfit task. | |
8943 | */ | |
8944 | if (rq->misfit_task_load > busiest_load) { | |
8945 | busiest_load = rq->misfit_task_load; | |
8946 | busiest = rq; | |
8947 | } | |
8948 | ||
8949 | break; | |
1e3c88bd | 8950 | |
1e3c88bd PZ |
8951 | } |
8952 | } | |
8953 | ||
8954 | return busiest; | |
8955 | } | |
8956 | ||
8957 | /* | |
8958 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
8959 | * so long as it is large enough. | |
8960 | */ | |
8961 | #define MAX_PINNED_INTERVAL 512 | |
8962 | ||
46a745d9 VG |
8963 | static inline bool |
8964 | asym_active_balance(struct lb_env *env) | |
1af3ed3d | 8965 | { |
46a745d9 VG |
8966 | /* |
8967 | * ASYM_PACKING needs to force migrate tasks from busy but | |
8968 | * lower priority CPUs in order to pack all tasks in the | |
8969 | * highest priority CPUs. | |
8970 | */ | |
8971 | return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && | |
8972 | sched_asym_prefer(env->dst_cpu, env->src_cpu); | |
8973 | } | |
bd939f45 | 8974 | |
46a745d9 VG |
8975 | static inline bool |
8976 | voluntary_active_balance(struct lb_env *env) | |
8977 | { | |
8978 | struct sched_domain *sd = env->sd; | |
532cb4c4 | 8979 | |
46a745d9 VG |
8980 | if (asym_active_balance(env)) |
8981 | return 1; | |
1af3ed3d | 8982 | |
1aaf90a4 VG |
8983 | /* |
8984 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | |
8985 | * It's worth migrating the task if the src_cpu's capacity is reduced | |
8986 | * because of other sched_class or IRQs if more capacity stays | |
8987 | * available on dst_cpu. | |
8988 | */ | |
8989 | if ((env->idle != CPU_NOT_IDLE) && | |
8990 | (env->src_rq->cfs.h_nr_running == 1)) { | |
8991 | if ((check_cpu_capacity(env->src_rq, sd)) && | |
8992 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | |
8993 | return 1; | |
8994 | } | |
8995 | ||
0b0695f2 | 8996 | if (env->migration_type == migrate_misfit) |
cad68e55 MR |
8997 | return 1; |
8998 | ||
46a745d9 VG |
8999 | return 0; |
9000 | } | |
9001 | ||
9002 | static int need_active_balance(struct lb_env *env) | |
9003 | { | |
9004 | struct sched_domain *sd = env->sd; | |
9005 | ||
9006 | if (voluntary_active_balance(env)) | |
9007 | return 1; | |
9008 | ||
1af3ed3d PZ |
9009 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
9010 | } | |
9011 | ||
969c7921 TH |
9012 | static int active_load_balance_cpu_stop(void *data); |
9013 | ||
23f0d209 JK |
9014 | static int should_we_balance(struct lb_env *env) |
9015 | { | |
9016 | struct sched_group *sg = env->sd->groups; | |
23f0d209 JK |
9017 | int cpu, balance_cpu = -1; |
9018 | ||
024c9d2f PZ |
9019 | /* |
9020 | * Ensure the balancing environment is consistent; can happen | |
9021 | * when the softirq triggers 'during' hotplug. | |
9022 | */ | |
9023 | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) | |
9024 | return 0; | |
9025 | ||
23f0d209 | 9026 | /* |
97fb7a0a | 9027 | * In the newly idle case, we will allow all the CPUs |
23f0d209 JK |
9028 | * to do the newly idle load balance. |
9029 | */ | |
9030 | if (env->idle == CPU_NEWLY_IDLE) | |
9031 | return 1; | |
9032 | ||
97fb7a0a | 9033 | /* Try to find first idle CPU */ |
e5c14b1f | 9034 | for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { |
af218122 | 9035 | if (!idle_cpu(cpu)) |
23f0d209 JK |
9036 | continue; |
9037 | ||
9038 | balance_cpu = cpu; | |
9039 | break; | |
9040 | } | |
9041 | ||
9042 | if (balance_cpu == -1) | |
9043 | balance_cpu = group_balance_cpu(sg); | |
9044 | ||
9045 | /* | |
97fb7a0a | 9046 | * First idle CPU or the first CPU(busiest) in this sched group |
23f0d209 JK |
9047 | * is eligible for doing load balancing at this and above domains. |
9048 | */ | |
b0cff9d8 | 9049 | return balance_cpu == env->dst_cpu; |
23f0d209 JK |
9050 | } |
9051 | ||
1e3c88bd PZ |
9052 | /* |
9053 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
9054 | * tasks if there is an imbalance. | |
9055 | */ | |
9056 | static int load_balance(int this_cpu, struct rq *this_rq, | |
9057 | struct sched_domain *sd, enum cpu_idle_type idle, | |
23f0d209 | 9058 | int *continue_balancing) |
1e3c88bd | 9059 | { |
88b8dac0 | 9060 | int ld_moved, cur_ld_moved, active_balance = 0; |
6263322c | 9061 | struct sched_domain *sd_parent = sd->parent; |
1e3c88bd | 9062 | struct sched_group *group; |
1e3c88bd | 9063 | struct rq *busiest; |
8a8c69c3 | 9064 | struct rq_flags rf; |
4ba29684 | 9065 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
1e3c88bd | 9066 | |
8e45cb54 PZ |
9067 | struct lb_env env = { |
9068 | .sd = sd, | |
ddcdf6e7 PZ |
9069 | .dst_cpu = this_cpu, |
9070 | .dst_rq = this_rq, | |
ae4df9d6 | 9071 | .dst_grpmask = sched_group_span(sd->groups), |
8e45cb54 | 9072 | .idle = idle, |
eb95308e | 9073 | .loop_break = sched_nr_migrate_break, |
b9403130 | 9074 | .cpus = cpus, |
0ec8aa00 | 9075 | .fbq_type = all, |
163122b7 | 9076 | .tasks = LIST_HEAD_INIT(env.tasks), |
8e45cb54 PZ |
9077 | }; |
9078 | ||
65a4433a | 9079 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
1e3c88bd | 9080 | |
ae92882e | 9081 | schedstat_inc(sd->lb_count[idle]); |
1e3c88bd PZ |
9082 | |
9083 | redo: | |
23f0d209 JK |
9084 | if (!should_we_balance(&env)) { |
9085 | *continue_balancing = 0; | |
1e3c88bd | 9086 | goto out_balanced; |
23f0d209 | 9087 | } |
1e3c88bd | 9088 | |
23f0d209 | 9089 | group = find_busiest_group(&env); |
1e3c88bd | 9090 | if (!group) { |
ae92882e | 9091 | schedstat_inc(sd->lb_nobusyg[idle]); |
1e3c88bd PZ |
9092 | goto out_balanced; |
9093 | } | |
9094 | ||
b9403130 | 9095 | busiest = find_busiest_queue(&env, group); |
1e3c88bd | 9096 | if (!busiest) { |
ae92882e | 9097 | schedstat_inc(sd->lb_nobusyq[idle]); |
1e3c88bd PZ |
9098 | goto out_balanced; |
9099 | } | |
9100 | ||
78feefc5 | 9101 | BUG_ON(busiest == env.dst_rq); |
1e3c88bd | 9102 | |
ae92882e | 9103 | schedstat_add(sd->lb_imbalance[idle], env.imbalance); |
1e3c88bd | 9104 | |
1aaf90a4 VG |
9105 | env.src_cpu = busiest->cpu; |
9106 | env.src_rq = busiest; | |
9107 | ||
1e3c88bd PZ |
9108 | ld_moved = 0; |
9109 | if (busiest->nr_running > 1) { | |
9110 | /* | |
9111 | * Attempt to move tasks. If find_busiest_group has found | |
9112 | * an imbalance but busiest->nr_running <= 1, the group is | |
9113 | * still unbalanced. ld_moved simply stays zero, so it is | |
9114 | * correctly treated as an imbalance. | |
9115 | */ | |
8e45cb54 | 9116 | env.flags |= LBF_ALL_PINNED; |
c82513e5 | 9117 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
8e45cb54 | 9118 | |
5d6523eb | 9119 | more_balance: |
8a8c69c3 | 9120 | rq_lock_irqsave(busiest, &rf); |
3bed5e21 | 9121 | update_rq_clock(busiest); |
88b8dac0 SV |
9122 | |
9123 | /* | |
9124 | * cur_ld_moved - load moved in current iteration | |
9125 | * ld_moved - cumulative load moved across iterations | |
9126 | */ | |
163122b7 | 9127 | cur_ld_moved = detach_tasks(&env); |
1e3c88bd PZ |
9128 | |
9129 | /* | |
163122b7 KT |
9130 | * We've detached some tasks from busiest_rq. Every |
9131 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | |
9132 | * unlock busiest->lock, and we are able to be sure | |
9133 | * that nobody can manipulate the tasks in parallel. | |
9134 | * See task_rq_lock() family for the details. | |
1e3c88bd | 9135 | */ |
163122b7 | 9136 | |
8a8c69c3 | 9137 | rq_unlock(busiest, &rf); |
163122b7 KT |
9138 | |
9139 | if (cur_ld_moved) { | |
9140 | attach_tasks(&env); | |
9141 | ld_moved += cur_ld_moved; | |
9142 | } | |
9143 | ||
8a8c69c3 | 9144 | local_irq_restore(rf.flags); |
88b8dac0 | 9145 | |
f1cd0858 JK |
9146 | if (env.flags & LBF_NEED_BREAK) { |
9147 | env.flags &= ~LBF_NEED_BREAK; | |
9148 | goto more_balance; | |
9149 | } | |
9150 | ||
88b8dac0 SV |
9151 | /* |
9152 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | |
9153 | * us and move them to an alternate dst_cpu in our sched_group | |
9154 | * where they can run. The upper limit on how many times we | |
97fb7a0a | 9155 | * iterate on same src_cpu is dependent on number of CPUs in our |
88b8dac0 SV |
9156 | * sched_group. |
9157 | * | |
9158 | * This changes load balance semantics a bit on who can move | |
9159 | * load to a given_cpu. In addition to the given_cpu itself | |
9160 | * (or a ilb_cpu acting on its behalf where given_cpu is | |
9161 | * nohz-idle), we now have balance_cpu in a position to move | |
9162 | * load to given_cpu. In rare situations, this may cause | |
9163 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | |
9164 | * _independently_ and at _same_ time to move some load to | |
9165 | * given_cpu) causing exceess load to be moved to given_cpu. | |
9166 | * This however should not happen so much in practice and | |
9167 | * moreover subsequent load balance cycles should correct the | |
9168 | * excess load moved. | |
9169 | */ | |
6263322c | 9170 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
88b8dac0 | 9171 | |
97fb7a0a | 9172 | /* Prevent to re-select dst_cpu via env's CPUs */ |
c89d92ed | 9173 | __cpumask_clear_cpu(env.dst_cpu, env.cpus); |
7aff2e3a | 9174 | |
78feefc5 | 9175 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
88b8dac0 | 9176 | env.dst_cpu = env.new_dst_cpu; |
6263322c | 9177 | env.flags &= ~LBF_DST_PINNED; |
88b8dac0 SV |
9178 | env.loop = 0; |
9179 | env.loop_break = sched_nr_migrate_break; | |
e02e60c1 | 9180 | |
88b8dac0 SV |
9181 | /* |
9182 | * Go back to "more_balance" rather than "redo" since we | |
9183 | * need to continue with same src_cpu. | |
9184 | */ | |
9185 | goto more_balance; | |
9186 | } | |
1e3c88bd | 9187 | |
6263322c PZ |
9188 | /* |
9189 | * We failed to reach balance because of affinity. | |
9190 | */ | |
9191 | if (sd_parent) { | |
63b2ca30 | 9192 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
6263322c | 9193 | |
afdeee05 | 9194 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
6263322c | 9195 | *group_imbalance = 1; |
6263322c PZ |
9196 | } |
9197 | ||
1e3c88bd | 9198 | /* All tasks on this runqueue were pinned by CPU affinity */ |
8e45cb54 | 9199 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
c89d92ed | 9200 | __cpumask_clear_cpu(cpu_of(busiest), cpus); |
65a4433a JH |
9201 | /* |
9202 | * Attempting to continue load balancing at the current | |
9203 | * sched_domain level only makes sense if there are | |
9204 | * active CPUs remaining as possible busiest CPUs to | |
9205 | * pull load from which are not contained within the | |
9206 | * destination group that is receiving any migrated | |
9207 | * load. | |
9208 | */ | |
9209 | if (!cpumask_subset(cpus, env.dst_grpmask)) { | |
bbf18b19 PN |
9210 | env.loop = 0; |
9211 | env.loop_break = sched_nr_migrate_break; | |
1e3c88bd | 9212 | goto redo; |
bbf18b19 | 9213 | } |
afdeee05 | 9214 | goto out_all_pinned; |
1e3c88bd PZ |
9215 | } |
9216 | } | |
9217 | ||
9218 | if (!ld_moved) { | |
ae92882e | 9219 | schedstat_inc(sd->lb_failed[idle]); |
58b26c4c VP |
9220 | /* |
9221 | * Increment the failure counter only on periodic balance. | |
9222 | * We do not want newidle balance, which can be very | |
9223 | * frequent, pollute the failure counter causing | |
9224 | * excessive cache_hot migrations and active balances. | |
9225 | */ | |
9226 | if (idle != CPU_NEWLY_IDLE) | |
9227 | sd->nr_balance_failed++; | |
1e3c88bd | 9228 | |
bd939f45 | 9229 | if (need_active_balance(&env)) { |
8a8c69c3 PZ |
9230 | unsigned long flags; |
9231 | ||
1e3c88bd PZ |
9232 | raw_spin_lock_irqsave(&busiest->lock, flags); |
9233 | ||
97fb7a0a IM |
9234 | /* |
9235 | * Don't kick the active_load_balance_cpu_stop, | |
9236 | * if the curr task on busiest CPU can't be | |
9237 | * moved to this_cpu: | |
1e3c88bd | 9238 | */ |
3bd37062 | 9239 | if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { |
1e3c88bd PZ |
9240 | raw_spin_unlock_irqrestore(&busiest->lock, |
9241 | flags); | |
8e45cb54 | 9242 | env.flags |= LBF_ALL_PINNED; |
1e3c88bd PZ |
9243 | goto out_one_pinned; |
9244 | } | |
9245 | ||
969c7921 TH |
9246 | /* |
9247 | * ->active_balance synchronizes accesses to | |
9248 | * ->active_balance_work. Once set, it's cleared | |
9249 | * only after active load balance is finished. | |
9250 | */ | |
1e3c88bd PZ |
9251 | if (!busiest->active_balance) { |
9252 | busiest->active_balance = 1; | |
9253 | busiest->push_cpu = this_cpu; | |
9254 | active_balance = 1; | |
9255 | } | |
9256 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | |
969c7921 | 9257 | |
bd939f45 | 9258 | if (active_balance) { |
969c7921 TH |
9259 | stop_one_cpu_nowait(cpu_of(busiest), |
9260 | active_load_balance_cpu_stop, busiest, | |
9261 | &busiest->active_balance_work); | |
bd939f45 | 9262 | } |
1e3c88bd | 9263 | |
d02c0711 | 9264 | /* We've kicked active balancing, force task migration. */ |
1e3c88bd PZ |
9265 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
9266 | } | |
9267 | } else | |
9268 | sd->nr_balance_failed = 0; | |
9269 | ||
46a745d9 | 9270 | if (likely(!active_balance) || voluntary_active_balance(&env)) { |
1e3c88bd PZ |
9271 | /* We were unbalanced, so reset the balancing interval */ |
9272 | sd->balance_interval = sd->min_interval; | |
9273 | } else { | |
9274 | /* | |
9275 | * If we've begun active balancing, start to back off. This | |
9276 | * case may not be covered by the all_pinned logic if there | |
9277 | * is only 1 task on the busy runqueue (because we don't call | |
163122b7 | 9278 | * detach_tasks). |
1e3c88bd PZ |
9279 | */ |
9280 | if (sd->balance_interval < sd->max_interval) | |
9281 | sd->balance_interval *= 2; | |
9282 | } | |
9283 | ||
1e3c88bd PZ |
9284 | goto out; |
9285 | ||
9286 | out_balanced: | |
afdeee05 VG |
9287 | /* |
9288 | * We reach balance although we may have faced some affinity | |
f6cad8df VG |
9289 | * constraints. Clear the imbalance flag only if other tasks got |
9290 | * a chance to move and fix the imbalance. | |
afdeee05 | 9291 | */ |
f6cad8df | 9292 | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { |
afdeee05 VG |
9293 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
9294 | ||
9295 | if (*group_imbalance) | |
9296 | *group_imbalance = 0; | |
9297 | } | |
9298 | ||
9299 | out_all_pinned: | |
9300 | /* | |
9301 | * We reach balance because all tasks are pinned at this level so | |
9302 | * we can't migrate them. Let the imbalance flag set so parent level | |
9303 | * can try to migrate them. | |
9304 | */ | |
ae92882e | 9305 | schedstat_inc(sd->lb_balanced[idle]); |
1e3c88bd PZ |
9306 | |
9307 | sd->nr_balance_failed = 0; | |
9308 | ||
9309 | out_one_pinned: | |
3f130a37 VS |
9310 | ld_moved = 0; |
9311 | ||
9312 | /* | |
5ba553ef PZ |
9313 | * newidle_balance() disregards balance intervals, so we could |
9314 | * repeatedly reach this code, which would lead to balance_interval | |
9315 | * skyrocketting in a short amount of time. Skip the balance_interval | |
9316 | * increase logic to avoid that. | |
3f130a37 VS |
9317 | */ |
9318 | if (env.idle == CPU_NEWLY_IDLE) | |
9319 | goto out; | |
9320 | ||
1e3c88bd | 9321 | /* tune up the balancing interval */ |
47b7aee1 VS |
9322 | if ((env.flags & LBF_ALL_PINNED && |
9323 | sd->balance_interval < MAX_PINNED_INTERVAL) || | |
9324 | sd->balance_interval < sd->max_interval) | |
1e3c88bd | 9325 | sd->balance_interval *= 2; |
1e3c88bd | 9326 | out: |
1e3c88bd PZ |
9327 | return ld_moved; |
9328 | } | |
9329 | ||
52a08ef1 JL |
9330 | static inline unsigned long |
9331 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | |
9332 | { | |
9333 | unsigned long interval = sd->balance_interval; | |
9334 | ||
9335 | if (cpu_busy) | |
9336 | interval *= sd->busy_factor; | |
9337 | ||
9338 | /* scale ms to jiffies */ | |
9339 | interval = msecs_to_jiffies(interval); | |
9340 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
9341 | ||
9342 | return interval; | |
9343 | } | |
9344 | ||
9345 | static inline void | |
31851a98 | 9346 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
52a08ef1 JL |
9347 | { |
9348 | unsigned long interval, next; | |
9349 | ||
31851a98 LY |
9350 | /* used by idle balance, so cpu_busy = 0 */ |
9351 | interval = get_sd_balance_interval(sd, 0); | |
52a08ef1 JL |
9352 | next = sd->last_balance + interval; |
9353 | ||
9354 | if (time_after(*next_balance, next)) | |
9355 | *next_balance = next; | |
9356 | } | |
9357 | ||
1e3c88bd | 9358 | /* |
97fb7a0a | 9359 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes |
969c7921 TH |
9360 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
9361 | * least 1 task to be running on each physical CPU where possible, and | |
9362 | * avoids physical / logical imbalances. | |
1e3c88bd | 9363 | */ |
969c7921 | 9364 | static int active_load_balance_cpu_stop(void *data) |
1e3c88bd | 9365 | { |
969c7921 TH |
9366 | struct rq *busiest_rq = data; |
9367 | int busiest_cpu = cpu_of(busiest_rq); | |
1e3c88bd | 9368 | int target_cpu = busiest_rq->push_cpu; |
969c7921 | 9369 | struct rq *target_rq = cpu_rq(target_cpu); |
1e3c88bd | 9370 | struct sched_domain *sd; |
e5673f28 | 9371 | struct task_struct *p = NULL; |
8a8c69c3 | 9372 | struct rq_flags rf; |
969c7921 | 9373 | |
8a8c69c3 | 9374 | rq_lock_irq(busiest_rq, &rf); |
edd8e41d PZ |
9375 | /* |
9376 | * Between queueing the stop-work and running it is a hole in which | |
9377 | * CPUs can become inactive. We should not move tasks from or to | |
9378 | * inactive CPUs. | |
9379 | */ | |
9380 | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) | |
9381 | goto out_unlock; | |
969c7921 | 9382 | |
97fb7a0a | 9383 | /* Make sure the requested CPU hasn't gone down in the meantime: */ |
969c7921 TH |
9384 | if (unlikely(busiest_cpu != smp_processor_id() || |
9385 | !busiest_rq->active_balance)) | |
9386 | goto out_unlock; | |
1e3c88bd PZ |
9387 | |
9388 | /* Is there any task to move? */ | |
9389 | if (busiest_rq->nr_running <= 1) | |
969c7921 | 9390 | goto out_unlock; |
1e3c88bd PZ |
9391 | |
9392 | /* | |
9393 | * This condition is "impossible", if it occurs | |
9394 | * we need to fix it. Originally reported by | |
97fb7a0a | 9395 | * Bjorn Helgaas on a 128-CPU setup. |
1e3c88bd PZ |
9396 | */ |
9397 | BUG_ON(busiest_rq == target_rq); | |
9398 | ||
1e3c88bd | 9399 | /* Search for an sd spanning us and the target CPU. */ |
dce840a0 | 9400 | rcu_read_lock(); |
1e3c88bd PZ |
9401 | for_each_domain(target_cpu, sd) { |
9402 | if ((sd->flags & SD_LOAD_BALANCE) && | |
9403 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | |
9404 | break; | |
9405 | } | |
9406 | ||
9407 | if (likely(sd)) { | |
8e45cb54 PZ |
9408 | struct lb_env env = { |
9409 | .sd = sd, | |
ddcdf6e7 PZ |
9410 | .dst_cpu = target_cpu, |
9411 | .dst_rq = target_rq, | |
9412 | .src_cpu = busiest_rq->cpu, | |
9413 | .src_rq = busiest_rq, | |
8e45cb54 | 9414 | .idle = CPU_IDLE, |
65a4433a JH |
9415 | /* |
9416 | * can_migrate_task() doesn't need to compute new_dst_cpu | |
9417 | * for active balancing. Since we have CPU_IDLE, but no | |
9418 | * @dst_grpmask we need to make that test go away with lying | |
9419 | * about DST_PINNED. | |
9420 | */ | |
9421 | .flags = LBF_DST_PINNED, | |
8e45cb54 PZ |
9422 | }; |
9423 | ||
ae92882e | 9424 | schedstat_inc(sd->alb_count); |
3bed5e21 | 9425 | update_rq_clock(busiest_rq); |
1e3c88bd | 9426 | |
e5673f28 | 9427 | p = detach_one_task(&env); |
d02c0711 | 9428 | if (p) { |
ae92882e | 9429 | schedstat_inc(sd->alb_pushed); |
d02c0711 SD |
9430 | /* Active balancing done, reset the failure counter. */ |
9431 | sd->nr_balance_failed = 0; | |
9432 | } else { | |
ae92882e | 9433 | schedstat_inc(sd->alb_failed); |
d02c0711 | 9434 | } |
1e3c88bd | 9435 | } |
dce840a0 | 9436 | rcu_read_unlock(); |
969c7921 TH |
9437 | out_unlock: |
9438 | busiest_rq->active_balance = 0; | |
8a8c69c3 | 9439 | rq_unlock(busiest_rq, &rf); |
e5673f28 KT |
9440 | |
9441 | if (p) | |
9442 | attach_one_task(target_rq, p); | |
9443 | ||
9444 | local_irq_enable(); | |
9445 | ||
969c7921 | 9446 | return 0; |
1e3c88bd PZ |
9447 | } |
9448 | ||
af3fe03c PZ |
9449 | static DEFINE_SPINLOCK(balancing); |
9450 | ||
9451 | /* | |
9452 | * Scale the max load_balance interval with the number of CPUs in the system. | |
9453 | * This trades load-balance latency on larger machines for less cross talk. | |
9454 | */ | |
9455 | void update_max_interval(void) | |
9456 | { | |
9457 | max_load_balance_interval = HZ*num_online_cpus()/10; | |
9458 | } | |
9459 | ||
9460 | /* | |
9461 | * It checks each scheduling domain to see if it is due to be balanced, | |
9462 | * and initiates a balancing operation if so. | |
9463 | * | |
9464 | * Balancing parameters are set up in init_sched_domains. | |
9465 | */ | |
9466 | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) | |
9467 | { | |
9468 | int continue_balancing = 1; | |
9469 | int cpu = rq->cpu; | |
9470 | unsigned long interval; | |
9471 | struct sched_domain *sd; | |
9472 | /* Earliest time when we have to do rebalance again */ | |
9473 | unsigned long next_balance = jiffies + 60*HZ; | |
9474 | int update_next_balance = 0; | |
9475 | int need_serialize, need_decay = 0; | |
9476 | u64 max_cost = 0; | |
9477 | ||
9478 | rcu_read_lock(); | |
9479 | for_each_domain(cpu, sd) { | |
9480 | /* | |
9481 | * Decay the newidle max times here because this is a regular | |
9482 | * visit to all the domains. Decay ~1% per second. | |
9483 | */ | |
9484 | if (time_after(jiffies, sd->next_decay_max_lb_cost)) { | |
9485 | sd->max_newidle_lb_cost = | |
9486 | (sd->max_newidle_lb_cost * 253) / 256; | |
9487 | sd->next_decay_max_lb_cost = jiffies + HZ; | |
9488 | need_decay = 1; | |
9489 | } | |
9490 | max_cost += sd->max_newidle_lb_cost; | |
9491 | ||
9492 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
9493 | continue; | |
9494 | ||
9495 | /* | |
9496 | * Stop the load balance at this level. There is another | |
9497 | * CPU in our sched group which is doing load balancing more | |
9498 | * actively. | |
9499 | */ | |
9500 | if (!continue_balancing) { | |
9501 | if (need_decay) | |
9502 | continue; | |
9503 | break; | |
9504 | } | |
9505 | ||
9506 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | |
9507 | ||
9508 | need_serialize = sd->flags & SD_SERIALIZE; | |
9509 | if (need_serialize) { | |
9510 | if (!spin_trylock(&balancing)) | |
9511 | goto out; | |
9512 | } | |
9513 | ||
9514 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | |
9515 | if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { | |
9516 | /* | |
9517 | * The LBF_DST_PINNED logic could have changed | |
9518 | * env->dst_cpu, so we can't know our idle | |
9519 | * state even if we migrated tasks. Update it. | |
9520 | */ | |
9521 | idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; | |
9522 | } | |
9523 | sd->last_balance = jiffies; | |
9524 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | |
9525 | } | |
9526 | if (need_serialize) | |
9527 | spin_unlock(&balancing); | |
9528 | out: | |
9529 | if (time_after(next_balance, sd->last_balance + interval)) { | |
9530 | next_balance = sd->last_balance + interval; | |
9531 | update_next_balance = 1; | |
9532 | } | |
9533 | } | |
9534 | if (need_decay) { | |
9535 | /* | |
9536 | * Ensure the rq-wide value also decays but keep it at a | |
9537 | * reasonable floor to avoid funnies with rq->avg_idle. | |
9538 | */ | |
9539 | rq->max_idle_balance_cost = | |
9540 | max((u64)sysctl_sched_migration_cost, max_cost); | |
9541 | } | |
9542 | rcu_read_unlock(); | |
9543 | ||
9544 | /* | |
9545 | * next_balance will be updated only when there is a need. | |
9546 | * When the cpu is attached to null domain for ex, it will not be | |
9547 | * updated. | |
9548 | */ | |
9549 | if (likely(update_next_balance)) { | |
9550 | rq->next_balance = next_balance; | |
9551 | ||
9552 | #ifdef CONFIG_NO_HZ_COMMON | |
9553 | /* | |
9554 | * If this CPU has been elected to perform the nohz idle | |
9555 | * balance. Other idle CPUs have already rebalanced with | |
9556 | * nohz_idle_balance() and nohz.next_balance has been | |
9557 | * updated accordingly. This CPU is now running the idle load | |
9558 | * balance for itself and we need to update the | |
9559 | * nohz.next_balance accordingly. | |
9560 | */ | |
9561 | if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) | |
9562 | nohz.next_balance = rq->next_balance; | |
9563 | #endif | |
9564 | } | |
9565 | } | |
9566 | ||
d987fc7f MG |
9567 | static inline int on_null_domain(struct rq *rq) |
9568 | { | |
9569 | return unlikely(!rcu_dereference_sched(rq->sd)); | |
9570 | } | |
9571 | ||
3451d024 | 9572 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 VP |
9573 | /* |
9574 | * idle load balancing details | |
83cd4fe2 VP |
9575 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
9576 | * needed, they will kick the idle load balancer, which then does idle | |
9577 | * load balancing for all the idle CPUs. | |
9b019acb NP |
9578 | * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set |
9579 | * anywhere yet. | |
83cd4fe2 | 9580 | */ |
1e3c88bd | 9581 | |
3dd0337d | 9582 | static inline int find_new_ilb(void) |
1e3c88bd | 9583 | { |
9b019acb | 9584 | int ilb; |
1e3c88bd | 9585 | |
9b019acb NP |
9586 | for_each_cpu_and(ilb, nohz.idle_cpus_mask, |
9587 | housekeeping_cpumask(HK_FLAG_MISC)) { | |
9588 | if (idle_cpu(ilb)) | |
9589 | return ilb; | |
9590 | } | |
786d6dc7 SS |
9591 | |
9592 | return nr_cpu_ids; | |
1e3c88bd | 9593 | } |
1e3c88bd | 9594 | |
83cd4fe2 | 9595 | /* |
9b019acb NP |
9596 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick any |
9597 | * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). | |
83cd4fe2 | 9598 | */ |
a4064fb6 | 9599 | static void kick_ilb(unsigned int flags) |
83cd4fe2 VP |
9600 | { |
9601 | int ilb_cpu; | |
9602 | ||
9603 | nohz.next_balance++; | |
9604 | ||
3dd0337d | 9605 | ilb_cpu = find_new_ilb(); |
83cd4fe2 | 9606 | |
0b005cf5 SS |
9607 | if (ilb_cpu >= nr_cpu_ids) |
9608 | return; | |
83cd4fe2 | 9609 | |
a4064fb6 | 9610 | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); |
b7031a02 | 9611 | if (flags & NOHZ_KICK_MASK) |
1c792db7 | 9612 | return; |
4550487a | 9613 | |
1c792db7 SS |
9614 | /* |
9615 | * Use smp_send_reschedule() instead of resched_cpu(). | |
97fb7a0a | 9616 | * This way we generate a sched IPI on the target CPU which |
1c792db7 SS |
9617 | * is idle. And the softirq performing nohz idle load balance |
9618 | * will be run before returning from the IPI. | |
9619 | */ | |
9620 | smp_send_reschedule(ilb_cpu); | |
4550487a PZ |
9621 | } |
9622 | ||
9623 | /* | |
9f132742 VS |
9624 | * Current decision point for kicking the idle load balancer in the presence |
9625 | * of idle CPUs in the system. | |
4550487a PZ |
9626 | */ |
9627 | static void nohz_balancer_kick(struct rq *rq) | |
9628 | { | |
9629 | unsigned long now = jiffies; | |
9630 | struct sched_domain_shared *sds; | |
9631 | struct sched_domain *sd; | |
9632 | int nr_busy, i, cpu = rq->cpu; | |
a4064fb6 | 9633 | unsigned int flags = 0; |
4550487a PZ |
9634 | |
9635 | if (unlikely(rq->idle_balance)) | |
9636 | return; | |
9637 | ||
9638 | /* | |
9639 | * We may be recently in ticked or tickless idle mode. At the first | |
9640 | * busy tick after returning from idle, we will update the busy stats. | |
9641 | */ | |
00357f5e | 9642 | nohz_balance_exit_idle(rq); |
4550487a PZ |
9643 | |
9644 | /* | |
9645 | * None are in tickless mode and hence no need for NOHZ idle load | |
9646 | * balancing. | |
9647 | */ | |
9648 | if (likely(!atomic_read(&nohz.nr_cpus))) | |
9649 | return; | |
9650 | ||
f643ea22 VG |
9651 | if (READ_ONCE(nohz.has_blocked) && |
9652 | time_after(now, READ_ONCE(nohz.next_blocked))) | |
a4064fb6 PZ |
9653 | flags = NOHZ_STATS_KICK; |
9654 | ||
4550487a | 9655 | if (time_before(now, nohz.next_balance)) |
a4064fb6 | 9656 | goto out; |
4550487a | 9657 | |
a0fe2cf0 | 9658 | if (rq->nr_running >= 2) { |
a4064fb6 | 9659 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9660 | goto out; |
9661 | } | |
9662 | ||
9663 | rcu_read_lock(); | |
4550487a PZ |
9664 | |
9665 | sd = rcu_dereference(rq->sd); | |
9666 | if (sd) { | |
e25a7a94 VS |
9667 | /* |
9668 | * If there's a CFS task and the current CPU has reduced | |
9669 | * capacity; kick the ILB to see if there's a better CPU to run | |
9670 | * on. | |
9671 | */ | |
9672 | if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { | |
a4064fb6 | 9673 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9674 | goto unlock; |
9675 | } | |
9676 | } | |
9677 | ||
011b27bb | 9678 | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); |
4550487a | 9679 | if (sd) { |
b9a7b883 VS |
9680 | /* |
9681 | * When ASYM_PACKING; see if there's a more preferred CPU | |
9682 | * currently idle; in which case, kick the ILB to move tasks | |
9683 | * around. | |
9684 | */ | |
7edab78d | 9685 | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { |
4550487a | 9686 | if (sched_asym_prefer(i, cpu)) { |
a4064fb6 | 9687 | flags = NOHZ_KICK_MASK; |
4550487a PZ |
9688 | goto unlock; |
9689 | } | |
9690 | } | |
9691 | } | |
b9a7b883 | 9692 | |
a0fe2cf0 VS |
9693 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); |
9694 | if (sd) { | |
9695 | /* | |
9696 | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU | |
9697 | * to run the misfit task on. | |
9698 | */ | |
9699 | if (check_misfit_status(rq, sd)) { | |
9700 | flags = NOHZ_KICK_MASK; | |
9701 | goto unlock; | |
9702 | } | |
b9a7b883 VS |
9703 | |
9704 | /* | |
9705 | * For asymmetric systems, we do not want to nicely balance | |
9706 | * cache use, instead we want to embrace asymmetry and only | |
9707 | * ensure tasks have enough CPU capacity. | |
9708 | * | |
9709 | * Skip the LLC logic because it's not relevant in that case. | |
9710 | */ | |
9711 | goto unlock; | |
a0fe2cf0 VS |
9712 | } |
9713 | ||
b9a7b883 VS |
9714 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
9715 | if (sds) { | |
e25a7a94 | 9716 | /* |
b9a7b883 VS |
9717 | * If there is an imbalance between LLC domains (IOW we could |
9718 | * increase the overall cache use), we need some less-loaded LLC | |
9719 | * domain to pull some load. Likewise, we may need to spread | |
9720 | * load within the current LLC domain (e.g. packed SMT cores but | |
9721 | * other CPUs are idle). We can't really know from here how busy | |
9722 | * the others are - so just get a nohz balance going if it looks | |
9723 | * like this LLC domain has tasks we could move. | |
e25a7a94 | 9724 | */ |
b9a7b883 VS |
9725 | nr_busy = atomic_read(&sds->nr_busy_cpus); |
9726 | if (nr_busy > 1) { | |
9727 | flags = NOHZ_KICK_MASK; | |
9728 | goto unlock; | |
4550487a PZ |
9729 | } |
9730 | } | |
9731 | unlock: | |
9732 | rcu_read_unlock(); | |
9733 | out: | |
a4064fb6 PZ |
9734 | if (flags) |
9735 | kick_ilb(flags); | |
83cd4fe2 VP |
9736 | } |
9737 | ||
00357f5e | 9738 | static void set_cpu_sd_state_busy(int cpu) |
71325960 | 9739 | { |
00357f5e | 9740 | struct sched_domain *sd; |
a22e47a4 | 9741 | |
00357f5e PZ |
9742 | rcu_read_lock(); |
9743 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | |
a22e47a4 | 9744 | |
00357f5e PZ |
9745 | if (!sd || !sd->nohz_idle) |
9746 | goto unlock; | |
9747 | sd->nohz_idle = 0; | |
9748 | ||
9749 | atomic_inc(&sd->shared->nr_busy_cpus); | |
9750 | unlock: | |
9751 | rcu_read_unlock(); | |
71325960 SS |
9752 | } |
9753 | ||
00357f5e PZ |
9754 | void nohz_balance_exit_idle(struct rq *rq) |
9755 | { | |
9756 | SCHED_WARN_ON(rq != this_rq()); | |
9757 | ||
9758 | if (likely(!rq->nohz_tick_stopped)) | |
9759 | return; | |
9760 | ||
9761 | rq->nohz_tick_stopped = 0; | |
9762 | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); | |
9763 | atomic_dec(&nohz.nr_cpus); | |
9764 | ||
9765 | set_cpu_sd_state_busy(rq->cpu); | |
9766 | } | |
9767 | ||
9768 | static void set_cpu_sd_state_idle(int cpu) | |
69e1e811 SS |
9769 | { |
9770 | struct sched_domain *sd; | |
69e1e811 | 9771 | |
69e1e811 | 9772 | rcu_read_lock(); |
0e369d75 | 9773 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
9774 | |
9775 | if (!sd || sd->nohz_idle) | |
9776 | goto unlock; | |
9777 | sd->nohz_idle = 1; | |
9778 | ||
0e369d75 | 9779 | atomic_dec(&sd->shared->nr_busy_cpus); |
25f55d9d | 9780 | unlock: |
69e1e811 SS |
9781 | rcu_read_unlock(); |
9782 | } | |
9783 | ||
1e3c88bd | 9784 | /* |
97fb7a0a | 9785 | * This routine will record that the CPU is going idle with tick stopped. |
0b005cf5 | 9786 | * This info will be used in performing idle load balancing in the future. |
1e3c88bd | 9787 | */ |
c1cc017c | 9788 | void nohz_balance_enter_idle(int cpu) |
1e3c88bd | 9789 | { |
00357f5e PZ |
9790 | struct rq *rq = cpu_rq(cpu); |
9791 | ||
9792 | SCHED_WARN_ON(cpu != smp_processor_id()); | |
9793 | ||
97fb7a0a | 9794 | /* If this CPU is going down, then nothing needs to be done: */ |
71325960 SS |
9795 | if (!cpu_active(cpu)) |
9796 | return; | |
9797 | ||
387bc8b5 | 9798 | /* Spare idle load balancing on CPUs that don't want to be disturbed: */ |
de201559 | 9799 | if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) |
387bc8b5 FW |
9800 | return; |
9801 | ||
f643ea22 VG |
9802 | /* |
9803 | * Can be set safely without rq->lock held | |
9804 | * If a clear happens, it will have evaluated last additions because | |
9805 | * rq->lock is held during the check and the clear | |
9806 | */ | |
9807 | rq->has_blocked_load = 1; | |
9808 | ||
9809 | /* | |
9810 | * The tick is still stopped but load could have been added in the | |
9811 | * meantime. We set the nohz.has_blocked flag to trig a check of the | |
9812 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | |
9813 | * of nohz.has_blocked can only happen after checking the new load | |
9814 | */ | |
00357f5e | 9815 | if (rq->nohz_tick_stopped) |
f643ea22 | 9816 | goto out; |
1e3c88bd | 9817 | |
97fb7a0a | 9818 | /* If we're a completely isolated CPU, we don't play: */ |
00357f5e | 9819 | if (on_null_domain(rq)) |
d987fc7f MG |
9820 | return; |
9821 | ||
00357f5e PZ |
9822 | rq->nohz_tick_stopped = 1; |
9823 | ||
c1cc017c AS |
9824 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
9825 | atomic_inc(&nohz.nr_cpus); | |
00357f5e | 9826 | |
f643ea22 VG |
9827 | /* |
9828 | * Ensures that if nohz_idle_balance() fails to observe our | |
9829 | * @idle_cpus_mask store, it must observe the @has_blocked | |
9830 | * store. | |
9831 | */ | |
9832 | smp_mb__after_atomic(); | |
9833 | ||
00357f5e | 9834 | set_cpu_sd_state_idle(cpu); |
f643ea22 VG |
9835 | |
9836 | out: | |
9837 | /* | |
9838 | * Each time a cpu enter idle, we assume that it has blocked load and | |
9839 | * enable the periodic update of the load of idle cpus | |
9840 | */ | |
9841 | WRITE_ONCE(nohz.has_blocked, 1); | |
1e3c88bd | 9842 | } |
1e3c88bd | 9843 | |
1e3c88bd | 9844 | /* |
31e77c93 VG |
9845 | * Internal function that runs load balance for all idle cpus. The load balance |
9846 | * can be a simple update of blocked load or a complete load balance with | |
9847 | * tasks movement depending of flags. | |
9848 | * The function returns false if the loop has stopped before running | |
9849 | * through all idle CPUs. | |
1e3c88bd | 9850 | */ |
31e77c93 VG |
9851 | static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, |
9852 | enum cpu_idle_type idle) | |
83cd4fe2 | 9853 | { |
c5afb6a8 | 9854 | /* Earliest time when we have to do rebalance again */ |
a4064fb6 PZ |
9855 | unsigned long now = jiffies; |
9856 | unsigned long next_balance = now + 60*HZ; | |
f643ea22 | 9857 | bool has_blocked_load = false; |
c5afb6a8 | 9858 | int update_next_balance = 0; |
b7031a02 | 9859 | int this_cpu = this_rq->cpu; |
b7031a02 | 9860 | int balance_cpu; |
31e77c93 | 9861 | int ret = false; |
b7031a02 | 9862 | struct rq *rq; |
83cd4fe2 | 9863 | |
b7031a02 | 9864 | SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); |
83cd4fe2 | 9865 | |
f643ea22 VG |
9866 | /* |
9867 | * We assume there will be no idle load after this update and clear | |
9868 | * the has_blocked flag. If a cpu enters idle in the mean time, it will | |
9869 | * set the has_blocked flag and trig another update of idle load. | |
9870 | * Because a cpu that becomes idle, is added to idle_cpus_mask before | |
9871 | * setting the flag, we are sure to not clear the state and not | |
9872 | * check the load of an idle cpu. | |
9873 | */ | |
9874 | WRITE_ONCE(nohz.has_blocked, 0); | |
9875 | ||
9876 | /* | |
9877 | * Ensures that if we miss the CPU, we must see the has_blocked | |
9878 | * store from nohz_balance_enter_idle(). | |
9879 | */ | |
9880 | smp_mb(); | |
9881 | ||
83cd4fe2 | 9882 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { |
8a6d42d1 | 9883 | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) |
83cd4fe2 VP |
9884 | continue; |
9885 | ||
9886 | /* | |
97fb7a0a IM |
9887 | * If this CPU gets work to do, stop the load balancing |
9888 | * work being done for other CPUs. Next load | |
83cd4fe2 VP |
9889 | * balancing owner will pick it up. |
9890 | */ | |
f643ea22 VG |
9891 | if (need_resched()) { |
9892 | has_blocked_load = true; | |
9893 | goto abort; | |
9894 | } | |
83cd4fe2 | 9895 | |
5ed4f1d9 VG |
9896 | rq = cpu_rq(balance_cpu); |
9897 | ||
63928384 | 9898 | has_blocked_load |= update_nohz_stats(rq, true); |
f643ea22 | 9899 | |
ed61bbc6 TC |
9900 | /* |
9901 | * If time for next balance is due, | |
9902 | * do the balance. | |
9903 | */ | |
9904 | if (time_after_eq(jiffies, rq->next_balance)) { | |
8a8c69c3 PZ |
9905 | struct rq_flags rf; |
9906 | ||
31e77c93 | 9907 | rq_lock_irqsave(rq, &rf); |
ed61bbc6 | 9908 | update_rq_clock(rq); |
31e77c93 | 9909 | rq_unlock_irqrestore(rq, &rf); |
8a8c69c3 | 9910 | |
b7031a02 PZ |
9911 | if (flags & NOHZ_BALANCE_KICK) |
9912 | rebalance_domains(rq, CPU_IDLE); | |
ed61bbc6 | 9913 | } |
83cd4fe2 | 9914 | |
c5afb6a8 VG |
9915 | if (time_after(next_balance, rq->next_balance)) { |
9916 | next_balance = rq->next_balance; | |
9917 | update_next_balance = 1; | |
9918 | } | |
83cd4fe2 | 9919 | } |
c5afb6a8 | 9920 | |
31e77c93 VG |
9921 | /* Newly idle CPU doesn't need an update */ |
9922 | if (idle != CPU_NEWLY_IDLE) { | |
9923 | update_blocked_averages(this_cpu); | |
9924 | has_blocked_load |= this_rq->has_blocked_load; | |
9925 | } | |
9926 | ||
b7031a02 PZ |
9927 | if (flags & NOHZ_BALANCE_KICK) |
9928 | rebalance_domains(this_rq, CPU_IDLE); | |
9929 | ||
f643ea22 VG |
9930 | WRITE_ONCE(nohz.next_blocked, |
9931 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
9932 | ||
31e77c93 VG |
9933 | /* The full idle balance loop has been done */ |
9934 | ret = true; | |
9935 | ||
f643ea22 VG |
9936 | abort: |
9937 | /* There is still blocked load, enable periodic update */ | |
9938 | if (has_blocked_load) | |
9939 | WRITE_ONCE(nohz.has_blocked, 1); | |
a4064fb6 | 9940 | |
c5afb6a8 VG |
9941 | /* |
9942 | * next_balance will be updated only when there is a need. | |
9943 | * When the CPU is attached to null domain for ex, it will not be | |
9944 | * updated. | |
9945 | */ | |
9946 | if (likely(update_next_balance)) | |
9947 | nohz.next_balance = next_balance; | |
b7031a02 | 9948 | |
31e77c93 VG |
9949 | return ret; |
9950 | } | |
9951 | ||
9952 | /* | |
9953 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | |
9954 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
9955 | */ | |
9956 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | |
9957 | { | |
9958 | int this_cpu = this_rq->cpu; | |
9959 | unsigned int flags; | |
9960 | ||
9961 | if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) | |
9962 | return false; | |
9963 | ||
9964 | if (idle != CPU_IDLE) { | |
9965 | atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); | |
9966 | return false; | |
9967 | } | |
9968 | ||
80eb8657 | 9969 | /* could be _relaxed() */ |
31e77c93 VG |
9970 | flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); |
9971 | if (!(flags & NOHZ_KICK_MASK)) | |
9972 | return false; | |
9973 | ||
9974 | _nohz_idle_balance(this_rq, flags, idle); | |
9975 | ||
b7031a02 | 9976 | return true; |
83cd4fe2 | 9977 | } |
31e77c93 VG |
9978 | |
9979 | static void nohz_newidle_balance(struct rq *this_rq) | |
9980 | { | |
9981 | int this_cpu = this_rq->cpu; | |
9982 | ||
9983 | /* | |
9984 | * This CPU doesn't want to be disturbed by scheduler | |
9985 | * housekeeping | |
9986 | */ | |
9987 | if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) | |
9988 | return; | |
9989 | ||
9990 | /* Will wake up very soon. No time for doing anything else*/ | |
9991 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | |
9992 | return; | |
9993 | ||
9994 | /* Don't need to update blocked load of idle CPUs*/ | |
9995 | if (!READ_ONCE(nohz.has_blocked) || | |
9996 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | |
9997 | return; | |
9998 | ||
9999 | raw_spin_unlock(&this_rq->lock); | |
10000 | /* | |
10001 | * This CPU is going to be idle and blocked load of idle CPUs | |
10002 | * need to be updated. Run the ilb locally as it is a good | |
10003 | * candidate for ilb instead of waking up another idle CPU. | |
10004 | * Kick an normal ilb if we failed to do the update. | |
10005 | */ | |
10006 | if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) | |
10007 | kick_ilb(NOHZ_STATS_KICK); | |
10008 | raw_spin_lock(&this_rq->lock); | |
10009 | } | |
10010 | ||
dd707247 PZ |
10011 | #else /* !CONFIG_NO_HZ_COMMON */ |
10012 | static inline void nohz_balancer_kick(struct rq *rq) { } | |
10013 | ||
31e77c93 | 10014 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
b7031a02 PZ |
10015 | { |
10016 | return false; | |
10017 | } | |
31e77c93 VG |
10018 | |
10019 | static inline void nohz_newidle_balance(struct rq *this_rq) { } | |
dd707247 | 10020 | #endif /* CONFIG_NO_HZ_COMMON */ |
83cd4fe2 | 10021 | |
47ea5412 PZ |
10022 | /* |
10023 | * idle_balance is called by schedule() if this_cpu is about to become | |
10024 | * idle. Attempts to pull tasks from other CPUs. | |
7277a34c PZ |
10025 | * |
10026 | * Returns: | |
10027 | * < 0 - we released the lock and there are !fair tasks present | |
10028 | * 0 - failed, no new tasks | |
10029 | * > 0 - success, new (fair) tasks present | |
47ea5412 | 10030 | */ |
5ba553ef | 10031 | int newidle_balance(struct rq *this_rq, struct rq_flags *rf) |
47ea5412 PZ |
10032 | { |
10033 | unsigned long next_balance = jiffies + HZ; | |
10034 | int this_cpu = this_rq->cpu; | |
10035 | struct sched_domain *sd; | |
10036 | int pulled_task = 0; | |
10037 | u64 curr_cost = 0; | |
10038 | ||
5ba553ef | 10039 | update_misfit_status(NULL, this_rq); |
47ea5412 PZ |
10040 | /* |
10041 | * We must set idle_stamp _before_ calling idle_balance(), such that we | |
10042 | * measure the duration of idle_balance() as idle time. | |
10043 | */ | |
10044 | this_rq->idle_stamp = rq_clock(this_rq); | |
10045 | ||
10046 | /* | |
10047 | * Do not pull tasks towards !active CPUs... | |
10048 | */ | |
10049 | if (!cpu_active(this_cpu)) | |
10050 | return 0; | |
10051 | ||
10052 | /* | |
10053 | * This is OK, because current is on_cpu, which avoids it being picked | |
10054 | * for load-balance and preemption/IRQs are still disabled avoiding | |
10055 | * further scheduler activity on it and we're being very careful to | |
10056 | * re-start the picking loop. | |
10057 | */ | |
10058 | rq_unpin_lock(this_rq, rf); | |
10059 | ||
10060 | if (this_rq->avg_idle < sysctl_sched_migration_cost || | |
e90c8fe1 | 10061 | !READ_ONCE(this_rq->rd->overload)) { |
31e77c93 | 10062 | |
47ea5412 PZ |
10063 | rcu_read_lock(); |
10064 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | |
10065 | if (sd) | |
10066 | update_next_balance(sd, &next_balance); | |
10067 | rcu_read_unlock(); | |
10068 | ||
31e77c93 VG |
10069 | nohz_newidle_balance(this_rq); |
10070 | ||
47ea5412 PZ |
10071 | goto out; |
10072 | } | |
10073 | ||
10074 | raw_spin_unlock(&this_rq->lock); | |
10075 | ||
10076 | update_blocked_averages(this_cpu); | |
10077 | rcu_read_lock(); | |
10078 | for_each_domain(this_cpu, sd) { | |
10079 | int continue_balancing = 1; | |
10080 | u64 t0, domain_cost; | |
10081 | ||
10082 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
10083 | continue; | |
10084 | ||
10085 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { | |
10086 | update_next_balance(sd, &next_balance); | |
10087 | break; | |
10088 | } | |
10089 | ||
10090 | if (sd->flags & SD_BALANCE_NEWIDLE) { | |
10091 | t0 = sched_clock_cpu(this_cpu); | |
10092 | ||
10093 | pulled_task = load_balance(this_cpu, this_rq, | |
10094 | sd, CPU_NEWLY_IDLE, | |
10095 | &continue_balancing); | |
10096 | ||
10097 | domain_cost = sched_clock_cpu(this_cpu) - t0; | |
10098 | if (domain_cost > sd->max_newidle_lb_cost) | |
10099 | sd->max_newidle_lb_cost = domain_cost; | |
10100 | ||
10101 | curr_cost += domain_cost; | |
10102 | } | |
10103 | ||
10104 | update_next_balance(sd, &next_balance); | |
10105 | ||
10106 | /* | |
10107 | * Stop searching for tasks to pull if there are | |
10108 | * now runnable tasks on this rq. | |
10109 | */ | |
10110 | if (pulled_task || this_rq->nr_running > 0) | |
10111 | break; | |
10112 | } | |
10113 | rcu_read_unlock(); | |
10114 | ||
10115 | raw_spin_lock(&this_rq->lock); | |
10116 | ||
10117 | if (curr_cost > this_rq->max_idle_balance_cost) | |
10118 | this_rq->max_idle_balance_cost = curr_cost; | |
10119 | ||
457be908 | 10120 | out: |
47ea5412 PZ |
10121 | /* |
10122 | * While browsing the domains, we released the rq lock, a task could | |
10123 | * have been enqueued in the meantime. Since we're not going idle, | |
10124 | * pretend we pulled a task. | |
10125 | */ | |
10126 | if (this_rq->cfs.h_nr_running && !pulled_task) | |
10127 | pulled_task = 1; | |
10128 | ||
47ea5412 PZ |
10129 | /* Move the next balance forward */ |
10130 | if (time_after(this_rq->next_balance, next_balance)) | |
10131 | this_rq->next_balance = next_balance; | |
10132 | ||
10133 | /* Is there a task of a high priority class? */ | |
10134 | if (this_rq->nr_running != this_rq->cfs.h_nr_running) | |
10135 | pulled_task = -1; | |
10136 | ||
10137 | if (pulled_task) | |
10138 | this_rq->idle_stamp = 0; | |
10139 | ||
10140 | rq_repin_lock(this_rq, rf); | |
10141 | ||
10142 | return pulled_task; | |
10143 | } | |
10144 | ||
83cd4fe2 VP |
10145 | /* |
10146 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
10147 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | |
10148 | */ | |
0766f788 | 10149 | static __latent_entropy void run_rebalance_domains(struct softirq_action *h) |
1e3c88bd | 10150 | { |
208cb16b | 10151 | struct rq *this_rq = this_rq(); |
6eb57e0d | 10152 | enum cpu_idle_type idle = this_rq->idle_balance ? |
1e3c88bd PZ |
10153 | CPU_IDLE : CPU_NOT_IDLE; |
10154 | ||
1e3c88bd | 10155 | /* |
97fb7a0a IM |
10156 | * If this CPU has a pending nohz_balance_kick, then do the |
10157 | * balancing on behalf of the other idle CPUs whose ticks are | |
d4573c3e | 10158 | * stopped. Do nohz_idle_balance *before* rebalance_domains to |
97fb7a0a | 10159 | * give the idle CPUs a chance to load balance. Else we may |
d4573c3e PM |
10160 | * load balance only within the local sched_domain hierarchy |
10161 | * and abort nohz_idle_balance altogether if we pull some load. | |
1e3c88bd | 10162 | */ |
b7031a02 PZ |
10163 | if (nohz_idle_balance(this_rq, idle)) |
10164 | return; | |
10165 | ||
10166 | /* normal load balance */ | |
10167 | update_blocked_averages(this_rq->cpu); | |
d4573c3e | 10168 | rebalance_domains(this_rq, idle); |
1e3c88bd PZ |
10169 | } |
10170 | ||
1e3c88bd PZ |
10171 | /* |
10172 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
1e3c88bd | 10173 | */ |
7caff66f | 10174 | void trigger_load_balance(struct rq *rq) |
1e3c88bd | 10175 | { |
1e3c88bd | 10176 | /* Don't need to rebalance while attached to NULL domain */ |
c726099e DL |
10177 | if (unlikely(on_null_domain(rq))) |
10178 | return; | |
10179 | ||
10180 | if (time_after_eq(jiffies, rq->next_balance)) | |
1e3c88bd | 10181 | raise_softirq(SCHED_SOFTIRQ); |
4550487a PZ |
10182 | |
10183 | nohz_balancer_kick(rq); | |
1e3c88bd PZ |
10184 | } |
10185 | ||
0bcdcf28 CE |
10186 | static void rq_online_fair(struct rq *rq) |
10187 | { | |
10188 | update_sysctl(); | |
0e59bdae KT |
10189 | |
10190 | update_runtime_enabled(rq); | |
0bcdcf28 CE |
10191 | } |
10192 | ||
10193 | static void rq_offline_fair(struct rq *rq) | |
10194 | { | |
10195 | update_sysctl(); | |
a4c96ae3 PB |
10196 | |
10197 | /* Ensure any throttled groups are reachable by pick_next_task */ | |
10198 | unthrottle_offline_cfs_rqs(rq); | |
0bcdcf28 CE |
10199 | } |
10200 | ||
55e12e5e | 10201 | #endif /* CONFIG_SMP */ |
e1d1484f | 10202 | |
bf0f6f24 | 10203 | /* |
d84b3131 FW |
10204 | * scheduler tick hitting a task of our scheduling class. |
10205 | * | |
10206 | * NOTE: This function can be called remotely by the tick offload that | |
10207 | * goes along full dynticks. Therefore no local assumption can be made | |
10208 | * and everything must be accessed through the @rq and @curr passed in | |
10209 | * parameters. | |
bf0f6f24 | 10210 | */ |
8f4d37ec | 10211 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
10212 | { |
10213 | struct cfs_rq *cfs_rq; | |
10214 | struct sched_entity *se = &curr->se; | |
10215 | ||
10216 | for_each_sched_entity(se) { | |
10217 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 10218 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 | 10219 | } |
18bf2805 | 10220 | |
b52da86e | 10221 | if (static_branch_unlikely(&sched_numa_balancing)) |
cbee9f88 | 10222 | task_tick_numa(rq, curr); |
3b1baa64 MR |
10223 | |
10224 | update_misfit_status(curr, rq); | |
2802bf3c | 10225 | update_overutilized_status(task_rq(curr)); |
bf0f6f24 IM |
10226 | } |
10227 | ||
10228 | /* | |
cd29fe6f PZ |
10229 | * called on fork with the child task as argument from the parent's context |
10230 | * - child not yet on the tasklist | |
10231 | * - preemption disabled | |
bf0f6f24 | 10232 | */ |
cd29fe6f | 10233 | static void task_fork_fair(struct task_struct *p) |
bf0f6f24 | 10234 | { |
4fc420c9 DN |
10235 | struct cfs_rq *cfs_rq; |
10236 | struct sched_entity *se = &p->se, *curr; | |
cd29fe6f | 10237 | struct rq *rq = this_rq(); |
8a8c69c3 | 10238 | struct rq_flags rf; |
bf0f6f24 | 10239 | |
8a8c69c3 | 10240 | rq_lock(rq, &rf); |
861d034e PZ |
10241 | update_rq_clock(rq); |
10242 | ||
4fc420c9 DN |
10243 | cfs_rq = task_cfs_rq(current); |
10244 | curr = cfs_rq->curr; | |
e210bffd PZ |
10245 | if (curr) { |
10246 | update_curr(cfs_rq); | |
b5d9d734 | 10247 | se->vruntime = curr->vruntime; |
e210bffd | 10248 | } |
aeb73b04 | 10249 | place_entity(cfs_rq, se, 1); |
4d78e7b6 | 10250 | |
cd29fe6f | 10251 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { |
87fefa38 | 10252 | /* |
edcb60a3 IM |
10253 | * Upon rescheduling, sched_class::put_prev_task() will place |
10254 | * 'current' within the tree based on its new key value. | |
10255 | */ | |
4d78e7b6 | 10256 | swap(curr->vruntime, se->vruntime); |
8875125e | 10257 | resched_curr(rq); |
4d78e7b6 | 10258 | } |
bf0f6f24 | 10259 | |
88ec22d3 | 10260 | se->vruntime -= cfs_rq->min_vruntime; |
8a8c69c3 | 10261 | rq_unlock(rq, &rf); |
bf0f6f24 IM |
10262 | } |
10263 | ||
cb469845 SR |
10264 | /* |
10265 | * Priority of the task has changed. Check to see if we preempt | |
10266 | * the current task. | |
10267 | */ | |
da7a735e PZ |
10268 | static void |
10269 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 10270 | { |
da0c1e65 | 10271 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
10272 | return; |
10273 | ||
cb469845 SR |
10274 | /* |
10275 | * Reschedule if we are currently running on this runqueue and | |
10276 | * our priority decreased, or if we are not currently running on | |
10277 | * this runqueue and our priority is higher than the current's | |
10278 | */ | |
da7a735e | 10279 | if (rq->curr == p) { |
cb469845 | 10280 | if (p->prio > oldprio) |
8875125e | 10281 | resched_curr(rq); |
cb469845 | 10282 | } else |
15afe09b | 10283 | check_preempt_curr(rq, p, 0); |
cb469845 SR |
10284 | } |
10285 | ||
daa59407 | 10286 | static inline bool vruntime_normalized(struct task_struct *p) |
da7a735e PZ |
10287 | { |
10288 | struct sched_entity *se = &p->se; | |
da7a735e PZ |
10289 | |
10290 | /* | |
daa59407 BP |
10291 | * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, |
10292 | * the dequeue_entity(.flags=0) will already have normalized the | |
10293 | * vruntime. | |
10294 | */ | |
10295 | if (p->on_rq) | |
10296 | return true; | |
10297 | ||
10298 | /* | |
10299 | * When !on_rq, vruntime of the task has usually NOT been normalized. | |
10300 | * But there are some cases where it has already been normalized: | |
da7a735e | 10301 | * |
daa59407 BP |
10302 | * - A forked child which is waiting for being woken up by |
10303 | * wake_up_new_task(). | |
10304 | * - A task which has been woken up by try_to_wake_up() and | |
10305 | * waiting for actually being woken up by sched_ttwu_pending(). | |
da7a735e | 10306 | */ |
d0cdb3ce SM |
10307 | if (!se->sum_exec_runtime || |
10308 | (p->state == TASK_WAKING && p->sched_remote_wakeup)) | |
daa59407 BP |
10309 | return true; |
10310 | ||
10311 | return false; | |
10312 | } | |
10313 | ||
09a43ace VG |
10314 | #ifdef CONFIG_FAIR_GROUP_SCHED |
10315 | /* | |
10316 | * Propagate the changes of the sched_entity across the tg tree to make it | |
10317 | * visible to the root | |
10318 | */ | |
10319 | static void propagate_entity_cfs_rq(struct sched_entity *se) | |
10320 | { | |
10321 | struct cfs_rq *cfs_rq; | |
10322 | ||
10323 | /* Start to propagate at parent */ | |
10324 | se = se->parent; | |
10325 | ||
10326 | for_each_sched_entity(se) { | |
10327 | cfs_rq = cfs_rq_of(se); | |
10328 | ||
10329 | if (cfs_rq_throttled(cfs_rq)) | |
10330 | break; | |
10331 | ||
88c0616e | 10332 | update_load_avg(cfs_rq, se, UPDATE_TG); |
09a43ace VG |
10333 | } |
10334 | } | |
10335 | #else | |
10336 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | |
10337 | #endif | |
10338 | ||
df217913 | 10339 | static void detach_entity_cfs_rq(struct sched_entity *se) |
daa59407 | 10340 | { |
daa59407 BP |
10341 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
10342 | ||
9d89c257 | 10343 | /* Catch up with the cfs_rq and remove our load when we leave */ |
88c0616e | 10344 | update_load_avg(cfs_rq, se, 0); |
a05e8c51 | 10345 | detach_entity_load_avg(cfs_rq, se); |
7c3edd2c | 10346 | update_tg_load_avg(cfs_rq, false); |
09a43ace | 10347 | propagate_entity_cfs_rq(se); |
da7a735e PZ |
10348 | } |
10349 | ||
df217913 | 10350 | static void attach_entity_cfs_rq(struct sched_entity *se) |
cb469845 | 10351 | { |
daa59407 | 10352 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
7855a35a BP |
10353 | |
10354 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
eb7a59b2 M |
10355 | /* |
10356 | * Since the real-depth could have been changed (only FAIR | |
10357 | * class maintain depth value), reset depth properly. | |
10358 | */ | |
10359 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
10360 | #endif | |
7855a35a | 10361 | |
df217913 | 10362 | /* Synchronize entity with its cfs_rq */ |
88c0616e | 10363 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
ea14b57e | 10364 | attach_entity_load_avg(cfs_rq, se, 0); |
7c3edd2c | 10365 | update_tg_load_avg(cfs_rq, false); |
09a43ace | 10366 | propagate_entity_cfs_rq(se); |
df217913 VG |
10367 | } |
10368 | ||
10369 | static void detach_task_cfs_rq(struct task_struct *p) | |
10370 | { | |
10371 | struct sched_entity *se = &p->se; | |
10372 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
10373 | ||
10374 | if (!vruntime_normalized(p)) { | |
10375 | /* | |
10376 | * Fix up our vruntime so that the current sleep doesn't | |
10377 | * cause 'unlimited' sleep bonus. | |
10378 | */ | |
10379 | place_entity(cfs_rq, se, 0); | |
10380 | se->vruntime -= cfs_rq->min_vruntime; | |
10381 | } | |
10382 | ||
10383 | detach_entity_cfs_rq(se); | |
10384 | } | |
10385 | ||
10386 | static void attach_task_cfs_rq(struct task_struct *p) | |
10387 | { | |
10388 | struct sched_entity *se = &p->se; | |
10389 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
10390 | ||
10391 | attach_entity_cfs_rq(se); | |
daa59407 BP |
10392 | |
10393 | if (!vruntime_normalized(p)) | |
10394 | se->vruntime += cfs_rq->min_vruntime; | |
10395 | } | |
6efdb105 | 10396 | |
daa59407 BP |
10397 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
10398 | { | |
10399 | detach_task_cfs_rq(p); | |
10400 | } | |
10401 | ||
10402 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | |
10403 | { | |
10404 | attach_task_cfs_rq(p); | |
7855a35a | 10405 | |
daa59407 | 10406 | if (task_on_rq_queued(p)) { |
7855a35a | 10407 | /* |
daa59407 BP |
10408 | * We were most likely switched from sched_rt, so |
10409 | * kick off the schedule if running, otherwise just see | |
10410 | * if we can still preempt the current task. | |
7855a35a | 10411 | */ |
daa59407 BP |
10412 | if (rq->curr == p) |
10413 | resched_curr(rq); | |
10414 | else | |
10415 | check_preempt_curr(rq, p, 0); | |
7855a35a | 10416 | } |
cb469845 SR |
10417 | } |
10418 | ||
83b699ed SV |
10419 | /* Account for a task changing its policy or group. |
10420 | * | |
10421 | * This routine is mostly called to set cfs_rq->curr field when a task | |
10422 | * migrates between groups/classes. | |
10423 | */ | |
a0e813f2 | 10424 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) |
83b699ed | 10425 | { |
03b7fad1 PZ |
10426 | struct sched_entity *se = &p->se; |
10427 | ||
10428 | #ifdef CONFIG_SMP | |
10429 | if (task_on_rq_queued(p)) { | |
10430 | /* | |
10431 | * Move the next running task to the front of the list, so our | |
10432 | * cfs_tasks list becomes MRU one. | |
10433 | */ | |
10434 | list_move(&se->group_node, &rq->cfs_tasks); | |
10435 | } | |
10436 | #endif | |
83b699ed | 10437 | |
ec12cb7f PT |
10438 | for_each_sched_entity(se) { |
10439 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
10440 | ||
10441 | set_next_entity(cfs_rq, se); | |
10442 | /* ensure bandwidth has been allocated on our new cfs_rq */ | |
10443 | account_cfs_rq_runtime(cfs_rq, 0); | |
10444 | } | |
83b699ed SV |
10445 | } |
10446 | ||
029632fb PZ |
10447 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
10448 | { | |
bfb06889 | 10449 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; |
029632fb PZ |
10450 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
10451 | #ifndef CONFIG_64BIT | |
10452 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
10453 | #endif | |
141965c7 | 10454 | #ifdef CONFIG_SMP |
2a2f5d4e | 10455 | raw_spin_lock_init(&cfs_rq->removed.lock); |
9ee474f5 | 10456 | #endif |
029632fb PZ |
10457 | } |
10458 | ||
810b3817 | 10459 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b VG |
10460 | static void task_set_group_fair(struct task_struct *p) |
10461 | { | |
10462 | struct sched_entity *se = &p->se; | |
10463 | ||
10464 | set_task_rq(p, task_cpu(p)); | |
10465 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
10466 | } | |
10467 | ||
bc54da21 | 10468 | static void task_move_group_fair(struct task_struct *p) |
810b3817 | 10469 | { |
daa59407 | 10470 | detach_task_cfs_rq(p); |
b2b5ce02 | 10471 | set_task_rq(p, task_cpu(p)); |
6efdb105 BP |
10472 | |
10473 | #ifdef CONFIG_SMP | |
10474 | /* Tell se's cfs_rq has been changed -- migrated */ | |
10475 | p->se.avg.last_update_time = 0; | |
10476 | #endif | |
daa59407 | 10477 | attach_task_cfs_rq(p); |
810b3817 | 10478 | } |
029632fb | 10479 | |
ea86cb4b VG |
10480 | static void task_change_group_fair(struct task_struct *p, int type) |
10481 | { | |
10482 | switch (type) { | |
10483 | case TASK_SET_GROUP: | |
10484 | task_set_group_fair(p); | |
10485 | break; | |
10486 | ||
10487 | case TASK_MOVE_GROUP: | |
10488 | task_move_group_fair(p); | |
10489 | break; | |
10490 | } | |
10491 | } | |
10492 | ||
029632fb PZ |
10493 | void free_fair_sched_group(struct task_group *tg) |
10494 | { | |
10495 | int i; | |
10496 | ||
10497 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
10498 | ||
10499 | for_each_possible_cpu(i) { | |
10500 | if (tg->cfs_rq) | |
10501 | kfree(tg->cfs_rq[i]); | |
6fe1f348 | 10502 | if (tg->se) |
029632fb PZ |
10503 | kfree(tg->se[i]); |
10504 | } | |
10505 | ||
10506 | kfree(tg->cfs_rq); | |
10507 | kfree(tg->se); | |
10508 | } | |
10509 | ||
10510 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
10511 | { | |
029632fb | 10512 | struct sched_entity *se; |
b7fa30c9 | 10513 | struct cfs_rq *cfs_rq; |
029632fb PZ |
10514 | int i; |
10515 | ||
6396bb22 | 10516 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); |
029632fb PZ |
10517 | if (!tg->cfs_rq) |
10518 | goto err; | |
6396bb22 | 10519 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); |
029632fb PZ |
10520 | if (!tg->se) |
10521 | goto err; | |
10522 | ||
10523 | tg->shares = NICE_0_LOAD; | |
10524 | ||
10525 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
10526 | ||
10527 | for_each_possible_cpu(i) { | |
10528 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
10529 | GFP_KERNEL, cpu_to_node(i)); | |
10530 | if (!cfs_rq) | |
10531 | goto err; | |
10532 | ||
10533 | se = kzalloc_node(sizeof(struct sched_entity), | |
10534 | GFP_KERNEL, cpu_to_node(i)); | |
10535 | if (!se) | |
10536 | goto err_free_rq; | |
10537 | ||
10538 | init_cfs_rq(cfs_rq); | |
10539 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | |
540247fb | 10540 | init_entity_runnable_average(se); |
029632fb PZ |
10541 | } |
10542 | ||
10543 | return 1; | |
10544 | ||
10545 | err_free_rq: | |
10546 | kfree(cfs_rq); | |
10547 | err: | |
10548 | return 0; | |
10549 | } | |
10550 | ||
8663e24d PZ |
10551 | void online_fair_sched_group(struct task_group *tg) |
10552 | { | |
10553 | struct sched_entity *se; | |
a46d14ec | 10554 | struct rq_flags rf; |
8663e24d PZ |
10555 | struct rq *rq; |
10556 | int i; | |
10557 | ||
10558 | for_each_possible_cpu(i) { | |
10559 | rq = cpu_rq(i); | |
10560 | se = tg->se[i]; | |
a46d14ec | 10561 | rq_lock_irq(rq, &rf); |
4126bad6 | 10562 | update_rq_clock(rq); |
d0326691 | 10563 | attach_entity_cfs_rq(se); |
55e16d30 | 10564 | sync_throttle(tg, i); |
a46d14ec | 10565 | rq_unlock_irq(rq, &rf); |
8663e24d PZ |
10566 | } |
10567 | } | |
10568 | ||
6fe1f348 | 10569 | void unregister_fair_sched_group(struct task_group *tg) |
029632fb | 10570 | { |
029632fb | 10571 | unsigned long flags; |
6fe1f348 PZ |
10572 | struct rq *rq; |
10573 | int cpu; | |
029632fb | 10574 | |
6fe1f348 PZ |
10575 | for_each_possible_cpu(cpu) { |
10576 | if (tg->se[cpu]) | |
10577 | remove_entity_load_avg(tg->se[cpu]); | |
029632fb | 10578 | |
6fe1f348 PZ |
10579 | /* |
10580 | * Only empty task groups can be destroyed; so we can speculatively | |
10581 | * check on_list without danger of it being re-added. | |
10582 | */ | |
10583 | if (!tg->cfs_rq[cpu]->on_list) | |
10584 | continue; | |
10585 | ||
10586 | rq = cpu_rq(cpu); | |
10587 | ||
10588 | raw_spin_lock_irqsave(&rq->lock, flags); | |
10589 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | |
10590 | raw_spin_unlock_irqrestore(&rq->lock, flags); | |
10591 | } | |
029632fb PZ |
10592 | } |
10593 | ||
10594 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
10595 | struct sched_entity *se, int cpu, | |
10596 | struct sched_entity *parent) | |
10597 | { | |
10598 | struct rq *rq = cpu_rq(cpu); | |
10599 | ||
10600 | cfs_rq->tg = tg; | |
10601 | cfs_rq->rq = rq; | |
029632fb PZ |
10602 | init_cfs_rq_runtime(cfs_rq); |
10603 | ||
10604 | tg->cfs_rq[cpu] = cfs_rq; | |
10605 | tg->se[cpu] = se; | |
10606 | ||
10607 | /* se could be NULL for root_task_group */ | |
10608 | if (!se) | |
10609 | return; | |
10610 | ||
fed14d45 | 10611 | if (!parent) { |
029632fb | 10612 | se->cfs_rq = &rq->cfs; |
fed14d45 PZ |
10613 | se->depth = 0; |
10614 | } else { | |
029632fb | 10615 | se->cfs_rq = parent->my_q; |
fed14d45 PZ |
10616 | se->depth = parent->depth + 1; |
10617 | } | |
029632fb PZ |
10618 | |
10619 | se->my_q = cfs_rq; | |
0ac9b1c2 PT |
10620 | /* guarantee group entities always have weight */ |
10621 | update_load_set(&se->load, NICE_0_LOAD); | |
029632fb PZ |
10622 | se->parent = parent; |
10623 | } | |
10624 | ||
10625 | static DEFINE_MUTEX(shares_mutex); | |
10626 | ||
10627 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
10628 | { | |
10629 | int i; | |
029632fb PZ |
10630 | |
10631 | /* | |
10632 | * We can't change the weight of the root cgroup. | |
10633 | */ | |
10634 | if (!tg->se[0]) | |
10635 | return -EINVAL; | |
10636 | ||
10637 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | |
10638 | ||
10639 | mutex_lock(&shares_mutex); | |
10640 | if (tg->shares == shares) | |
10641 | goto done; | |
10642 | ||
10643 | tg->shares = shares; | |
10644 | for_each_possible_cpu(i) { | |
10645 | struct rq *rq = cpu_rq(i); | |
8a8c69c3 PZ |
10646 | struct sched_entity *se = tg->se[i]; |
10647 | struct rq_flags rf; | |
029632fb | 10648 | |
029632fb | 10649 | /* Propagate contribution to hierarchy */ |
8a8c69c3 | 10650 | rq_lock_irqsave(rq, &rf); |
71b1da46 | 10651 | update_rq_clock(rq); |
89ee048f | 10652 | for_each_sched_entity(se) { |
88c0616e | 10653 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
1ea6c46a | 10654 | update_cfs_group(se); |
89ee048f | 10655 | } |
8a8c69c3 | 10656 | rq_unlock_irqrestore(rq, &rf); |
029632fb PZ |
10657 | } |
10658 | ||
10659 | done: | |
10660 | mutex_unlock(&shares_mutex); | |
10661 | return 0; | |
10662 | } | |
10663 | #else /* CONFIG_FAIR_GROUP_SCHED */ | |
10664 | ||
10665 | void free_fair_sched_group(struct task_group *tg) { } | |
10666 | ||
10667 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
10668 | { | |
10669 | return 1; | |
10670 | } | |
10671 | ||
8663e24d PZ |
10672 | void online_fair_sched_group(struct task_group *tg) { } |
10673 | ||
6fe1f348 | 10674 | void unregister_fair_sched_group(struct task_group *tg) { } |
029632fb PZ |
10675 | |
10676 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
10677 | ||
810b3817 | 10678 | |
6d686f45 | 10679 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
0d721cea PW |
10680 | { |
10681 | struct sched_entity *se = &task->se; | |
0d721cea PW |
10682 | unsigned int rr_interval = 0; |
10683 | ||
10684 | /* | |
10685 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | |
10686 | * idle runqueue: | |
10687 | */ | |
0d721cea | 10688 | if (rq->cfs.load.weight) |
a59f4e07 | 10689 | rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); |
0d721cea PW |
10690 | |
10691 | return rr_interval; | |
10692 | } | |
10693 | ||
bf0f6f24 IM |
10694 | /* |
10695 | * All the scheduling class methods: | |
10696 | */ | |
029632fb | 10697 | const struct sched_class fair_sched_class = { |
5522d5d5 | 10698 | .next = &idle_sched_class, |
bf0f6f24 IM |
10699 | .enqueue_task = enqueue_task_fair, |
10700 | .dequeue_task = dequeue_task_fair, | |
10701 | .yield_task = yield_task_fair, | |
d95f4122 | 10702 | .yield_to_task = yield_to_task_fair, |
bf0f6f24 | 10703 | |
2e09bf55 | 10704 | .check_preempt_curr = check_preempt_wakeup, |
bf0f6f24 | 10705 | |
98c2f700 | 10706 | .pick_next_task = __pick_next_task_fair, |
bf0f6f24 | 10707 | .put_prev_task = put_prev_task_fair, |
03b7fad1 | 10708 | .set_next_task = set_next_task_fair, |
bf0f6f24 | 10709 | |
681f3e68 | 10710 | #ifdef CONFIG_SMP |
6e2df058 | 10711 | .balance = balance_fair, |
4ce72a2c | 10712 | .select_task_rq = select_task_rq_fair, |
0a74bef8 | 10713 | .migrate_task_rq = migrate_task_rq_fair, |
141965c7 | 10714 | |
0bcdcf28 CE |
10715 | .rq_online = rq_online_fair, |
10716 | .rq_offline = rq_offline_fair, | |
88ec22d3 | 10717 | |
12695578 | 10718 | .task_dead = task_dead_fair, |
c5b28038 | 10719 | .set_cpus_allowed = set_cpus_allowed_common, |
681f3e68 | 10720 | #endif |
bf0f6f24 | 10721 | |
bf0f6f24 | 10722 | .task_tick = task_tick_fair, |
cd29fe6f | 10723 | .task_fork = task_fork_fair, |
cb469845 SR |
10724 | |
10725 | .prio_changed = prio_changed_fair, | |
da7a735e | 10726 | .switched_from = switched_from_fair, |
cb469845 | 10727 | .switched_to = switched_to_fair, |
810b3817 | 10728 | |
0d721cea PW |
10729 | .get_rr_interval = get_rr_interval_fair, |
10730 | ||
6e998916 SG |
10731 | .update_curr = update_curr_fair, |
10732 | ||
810b3817 | 10733 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b | 10734 | .task_change_group = task_change_group_fair, |
810b3817 | 10735 | #endif |
982d9cdc PB |
10736 | |
10737 | #ifdef CONFIG_UCLAMP_TASK | |
10738 | .uclamp_enabled = 1, | |
10739 | #endif | |
bf0f6f24 IM |
10740 | }; |
10741 | ||
10742 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 10743 | void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 10744 | { |
039ae8bc | 10745 | struct cfs_rq *cfs_rq, *pos; |
bf0f6f24 | 10746 | |
5973e5b9 | 10747 | rcu_read_lock(); |
039ae8bc | 10748 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
5cef9eca | 10749 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 10750 | rcu_read_unlock(); |
bf0f6f24 | 10751 | } |
397f2378 SD |
10752 | |
10753 | #ifdef CONFIG_NUMA_BALANCING | |
10754 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | |
10755 | { | |
10756 | int node; | |
10757 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | |
cb361d8c | 10758 | struct numa_group *ng; |
397f2378 | 10759 | |
cb361d8c JH |
10760 | rcu_read_lock(); |
10761 | ng = rcu_dereference(p->numa_group); | |
397f2378 SD |
10762 | for_each_online_node(node) { |
10763 | if (p->numa_faults) { | |
10764 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
10765 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
10766 | } | |
cb361d8c JH |
10767 | if (ng) { |
10768 | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], | |
10769 | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
397f2378 SD |
10770 | } |
10771 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | |
10772 | } | |
cb361d8c | 10773 | rcu_read_unlock(); |
397f2378 SD |
10774 | } |
10775 | #endif /* CONFIG_NUMA_BALANCING */ | |
10776 | #endif /* CONFIG_SCHED_DEBUG */ | |
029632fb PZ |
10777 | |
10778 | __init void init_sched_fair_class(void) | |
10779 | { | |
10780 | #ifdef CONFIG_SMP | |
10781 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | |
10782 | ||
3451d024 | 10783 | #ifdef CONFIG_NO_HZ_COMMON |
554cecaf | 10784 | nohz.next_balance = jiffies; |
f643ea22 | 10785 | nohz.next_blocked = jiffies; |
029632fb | 10786 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
029632fb PZ |
10787 | #endif |
10788 | #endif /* SMP */ | |
10789 | ||
10790 | } | |
3c93a0c0 QY |
10791 | |
10792 | /* | |
10793 | * Helper functions to facilitate extracting info from tracepoints. | |
10794 | */ | |
10795 | ||
10796 | const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) | |
10797 | { | |
10798 | #ifdef CONFIG_SMP | |
10799 | return cfs_rq ? &cfs_rq->avg : NULL; | |
10800 | #else | |
10801 | return NULL; | |
10802 | #endif | |
10803 | } | |
10804 | EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); | |
10805 | ||
10806 | char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) | |
10807 | { | |
10808 | if (!cfs_rq) { | |
10809 | if (str) | |
10810 | strlcpy(str, "(null)", len); | |
10811 | else | |
10812 | return NULL; | |
10813 | } | |
10814 | ||
10815 | cfs_rq_tg_path(cfs_rq, str, len); | |
10816 | return str; | |
10817 | } | |
10818 | EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); | |
10819 | ||
10820 | int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) | |
10821 | { | |
10822 | return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; | |
10823 | } | |
10824 | EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); | |
10825 | ||
10826 | const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) | |
10827 | { | |
10828 | #ifdef CONFIG_SMP | |
10829 | return rq ? &rq->avg_rt : NULL; | |
10830 | #else | |
10831 | return NULL; | |
10832 | #endif | |
10833 | } | |
10834 | EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); | |
10835 | ||
10836 | const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) | |
10837 | { | |
10838 | #ifdef CONFIG_SMP | |
10839 | return rq ? &rq->avg_dl : NULL; | |
10840 | #else | |
10841 | return NULL; | |
10842 | #endif | |
10843 | } | |
10844 | EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); | |
10845 | ||
10846 | const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) | |
10847 | { | |
10848 | #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) | |
10849 | return rq ? &rq->avg_irq : NULL; | |
10850 | #else | |
10851 | return NULL; | |
10852 | #endif | |
10853 | } | |
10854 | EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); | |
10855 | ||
10856 | int sched_trace_rq_cpu(struct rq *rq) | |
10857 | { | |
10858 | return rq ? cpu_of(rq) : -1; | |
10859 | } | |
10860 | EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); | |
10861 | ||
10862 | const struct cpumask *sched_trace_rd_span(struct root_domain *rd) | |
10863 | { | |
10864 | #ifdef CONFIG_SMP | |
10865 | return rd ? rd->span : NULL; | |
10866 | #else | |
10867 | return NULL; | |
10868 | #endif | |
10869 | } | |
10870 | EXPORT_SYMBOL_GPL(sched_trace_rd_span); |