]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/numa: Slow down scan rate if shared faults dominate
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7
PZ
515 struct sched_entity *curr = cfs_rq->curr;
516
1af5f730
PZ
517 u64 vruntime = cfs_rq->min_vruntime;
518
b60205c7
PZ
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
1af5f730
PZ
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
549{
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bf0f6f24
IM
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
1af5f730 577 if (leftmost)
57cb499d 578 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
582}
583
0702e3eb 584static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 585{
3fe69747
PZ
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
3fe69747
PZ
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
3fe69747 591 }
e9acbff6 592
bf0f6f24 593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
f4b6755f
PZ
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
7eee3e67 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67
IM
623
624 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
acb4a848 631int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 632 void __user *buffer, size_t *lenp,
b2be5e96
PZ
633 loff_t *ppos)
634{
8d65af78 635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 636 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
acb4a848
CE
644#define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
649#undef WRT_SYSCTL
650
b2be5e96
PZ
651 return 0;
652}
653#endif
647e7cac 654
a7be37ac 655/*
f9c0b095 656 * delta /= w
a7be37ac 657 */
9dbdb155 658static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 659{
f9c0b095 660 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
662
663 return delta;
664}
665
647e7cac
IM
666/*
667 * The idea is to set a period in which each task runs once.
668 *
532b1858 669 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
4d78e7b6
PZ
674static u64 __sched_period(unsigned long nr_running)
675{
8e2b0bf3
BF
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
4d78e7b6
PZ
680}
681
647e7cac
IM
682/*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
f9c0b095 686 * s = p*P[w/rw]
647e7cac 687 */
6d0f0ebd 688static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 689{
0a582440 690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 691
0a582440 692 for_each_sched_entity(se) {
6272d68c 693 struct load_weight *load;
3104bf03 694 struct load_weight lw;
6272d68c
LM
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
f9c0b095 698
0a582440 699 if (unlikely(!se->on_rq)) {
3104bf03 700 lw = cfs_rq->load;
0a582440
MG
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
9dbdb155 705 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
706 }
707 return slice;
bf0f6f24
IM
708}
709
647e7cac 710/*
660cc00f 711 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 712 *
f9c0b095 713 * vs = s/w
647e7cac 714 */
f9c0b095 715static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 716{
f9c0b095 717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
718}
719
a75cdaa9 720#ifdef CONFIG_SMP
283e2ed3
PZ
721
722#include "sched-pelt.h"
723
772bd008 724static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
725static unsigned long task_h_load(struct task_struct *p);
726
540247fb
YD
727/* Give new sched_entity start runnable values to heavy its load in infant time */
728void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 729{
540247fb 730 struct sched_avg *sa = &se->avg;
a75cdaa9 731
9d89c257
YD
732 sa->last_update_time = 0;
733 /*
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
737 */
738 sa->period_contrib = 1023;
b5a9b340
VG
739 /*
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
744 */
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
748 /*
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 */
751 sa->util_avg = 0;
752 sa->util_sum = 0;
9d89c257 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 754}
7ea241af 755
7dc603c9 756static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 757static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 758
2b8c41da
YD
759/*
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
762 *
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764 *
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
768 *
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
771 *
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773 *
774 * where n denotes the nth task.
775 *
776 * For example, a simplest series from the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784void post_init_entity_util_avg(struct sched_entity *se)
785{
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
172895e6 788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
789
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
799 }
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 }
7dc603c9
PZ
802
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
806 /*
807 * For !fair tasks do:
808 *
3a123bbb 809 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
812 *
813 * such that the next switched_to_fair() has the
814 * expected state.
815 */
df217913 816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
817 return;
818 }
819 }
820
df217913 821 attach_entity_cfs_rq(se);
2b8c41da
YD
822}
823
7dc603c9 824#else /* !CONFIG_SMP */
540247fb 825void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
826{
827}
2b8c41da
YD
828void post_init_entity_util_avg(struct sched_entity *se)
829{
830}
3d30544f
PZ
831static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832{
833}
7dc603c9 834#endif /* CONFIG_SMP */
a75cdaa9 835
bf0f6f24 836/*
9dbdb155 837 * Update the current task's runtime statistics.
bf0f6f24 838 */
b7cc0896 839static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 840{
429d43bc 841 struct sched_entity *curr = cfs_rq->curr;
78becc27 842 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 843 u64 delta_exec;
bf0f6f24
IM
844
845 if (unlikely(!curr))
846 return;
847
9dbdb155
PZ
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
34f28ecd 850 return;
bf0f6f24 851
8ebc91d9 852 curr->exec_start = now;
d842de87 853
9dbdb155
PZ
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
ae92882e 858 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
d842de87
SV
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
f977bb49 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 867 cpuacct_charge(curtask, delta_exec);
f06febc9 868 account_group_exec_runtime(curtask, delta_exec);
d842de87 869 }
ec12cb7f
PT
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
872}
873
6e998916
SG
874static void update_curr_fair(struct rq *rq)
875{
876 update_curr(cfs_rq_of(&rq->curr->se));
877}
878
bf0f6f24 879static inline void
5870db5b 880update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 881{
4fa8d299
JP
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
3ea94de1 893
4fa8d299 894 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
895}
896
4fa8d299 897static inline void
3ea94de1
JP
898update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899{
900 struct task_struct *p;
cb251765
MG
901 u64 delta;
902
4fa8d299
JP
903 if (!schedstat_enabled())
904 return;
905
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
907
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
911 /*
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
915 */
4fa8d299 916 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
917 return;
918 }
919 trace_sched_stat_wait(p, delta);
920 }
921
4fa8d299
JP
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 927}
3ea94de1 928
4fa8d299 929static inline void
1a3d027c
JP
930update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931{
932 struct task_struct *tsk = NULL;
4fa8d299
JP
933 u64 sleep_start, block_start;
934
935 if (!schedstat_enabled())
936 return;
937
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
940
941 if (entity_is_task(se))
942 tsk = task_of(se);
943
4fa8d299
JP
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
946
947 if ((s64)delta < 0)
948 delta = 0;
949
4fa8d299
JP
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 952
4fa8d299
JP
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
955
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
959 }
960 }
4fa8d299
JP
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
963
964 if ((s64)delta < 0)
965 delta = 0;
966
4fa8d299
JP
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
1a3d027c 969
4fa8d299
JP
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
972
973 if (tsk) {
974 if (tsk->in_iowait) {
4fa8d299
JP
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
977 trace_sched_stat_iowait(tsk, delta);
978 }
979
980 trace_sched_stat_blocked(tsk, delta);
981
982 /*
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
986 */
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
991 }
992 account_scheduler_latency(tsk, delta >> 10, 0);
993 }
994 }
3ea94de1 995}
3ea94de1 996
bf0f6f24
IM
997/*
998 * Task is being enqueued - update stats:
999 */
cb251765 1000static inline void
1a3d027c 1001update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1002{
4fa8d299
JP
1003 if (!schedstat_enabled())
1004 return;
1005
bf0f6f24
IM
1006 /*
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1009 */
429d43bc 1010 if (se != cfs_rq->curr)
5870db5b 1011 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1012
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1015}
1016
bf0f6f24 1017static inline void
cb251765 1018update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1019{
4fa8d299
JP
1020
1021 if (!schedstat_enabled())
1022 return;
1023
bf0f6f24
IM
1024 /*
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1027 */
429d43bc 1028 if (se != cfs_rq->curr)
9ef0a961 1029 update_stats_wait_end(cfs_rq, se);
cb251765 1030
4fa8d299
JP
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
cb251765 1033
4fa8d299
JP
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
cb251765 1040 }
cb251765
MG
1041}
1042
bf0f6f24
IM
1043/*
1044 * We are picking a new current task - update its stats:
1045 */
1046static inline void
79303e9e 1047update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1048{
1049 /*
1050 * We are starting a new run period:
1051 */
78becc27 1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1053}
1054
bf0f6f24
IM
1055/**************************************************
1056 * Scheduling class queueing methods:
1057 */
1058
cbee9f88
PZ
1059#ifdef CONFIG_NUMA_BALANCING
1060/*
598f0ec0
MG
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
cbee9f88 1064 */
598f0ec0
MG
1065unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1067
1068/* Portion of address space to scan in MB */
1069unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1070
4b96a29b
PZ
1071/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073
598f0ec0
MG
1074static unsigned int task_nr_scan_windows(struct task_struct *p)
1075{
1076 unsigned long rss = 0;
1077 unsigned long nr_scan_pages;
1078
1079 /*
1080 * Calculations based on RSS as non-present and empty pages are skipped
1081 * by the PTE scanner and NUMA hinting faults should be trapped based
1082 * on resident pages
1083 */
1084 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1085 rss = get_mm_rss(p->mm);
1086 if (!rss)
1087 rss = nr_scan_pages;
1088
1089 rss = round_up(rss, nr_scan_pages);
1090 return rss / nr_scan_pages;
1091}
1092
1093/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1094#define MAX_SCAN_WINDOW 2560
1095
1096static unsigned int task_scan_min(struct task_struct *p)
1097{
316c1608 1098 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1099 unsigned int scan, floor;
1100 unsigned int windows = 1;
1101
64192658
KT
1102 if (scan_size < MAX_SCAN_WINDOW)
1103 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1104 floor = 1000 / windows;
1105
1106 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1107 return max_t(unsigned int, floor, scan);
1108}
1109
1110static unsigned int task_scan_max(struct task_struct *p)
1111{
1112 unsigned int smin = task_scan_min(p);
1113 unsigned int smax;
1114
1115 /* Watch for min being lower than max due to floor calculations */
1116 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1117 return max(smin, smax);
1118}
1119
0ec8aa00
PZ
1120static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1121{
1122 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1123 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1124}
1125
1126static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1127{
1128 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1129 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1130}
1131
8c8a743c
PZ
1132struct numa_group {
1133 atomic_t refcount;
1134
1135 spinlock_t lock; /* nr_tasks, tasks */
1136 int nr_tasks;
e29cf08b 1137 pid_t gid;
4142c3eb 1138 int active_nodes;
8c8a743c
PZ
1139
1140 struct rcu_head rcu;
989348b5 1141 unsigned long total_faults;
4142c3eb 1142 unsigned long max_faults_cpu;
7e2703e6
RR
1143 /*
1144 * Faults_cpu is used to decide whether memory should move
1145 * towards the CPU. As a consequence, these stats are weighted
1146 * more by CPU use than by memory faults.
1147 */
50ec8a40 1148 unsigned long *faults_cpu;
989348b5 1149 unsigned long faults[0];
8c8a743c
PZ
1150};
1151
be1e4e76
RR
1152/* Shared or private faults. */
1153#define NR_NUMA_HINT_FAULT_TYPES 2
1154
1155/* Memory and CPU locality */
1156#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1157
1158/* Averaged statistics, and temporary buffers. */
1159#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1160
e29cf08b
MG
1161pid_t task_numa_group_id(struct task_struct *p)
1162{
1163 return p->numa_group ? p->numa_group->gid : 0;
1164}
1165
44dba3d5
IM
1166/*
1167 * The averaged statistics, shared & private, memory & cpu,
1168 * occupy the first half of the array. The second half of the
1169 * array is for current counters, which are averaged into the
1170 * first set by task_numa_placement.
1171 */
1172static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1173{
44dba3d5 1174 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1175}
1176
1177static inline unsigned long task_faults(struct task_struct *p, int nid)
1178{
44dba3d5 1179 if (!p->numa_faults)
ac8e895b
MG
1180 return 0;
1181
44dba3d5
IM
1182 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1183 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1184}
1185
83e1d2cd
MG
1186static inline unsigned long group_faults(struct task_struct *p, int nid)
1187{
1188 if (!p->numa_group)
1189 return 0;
1190
44dba3d5
IM
1191 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1192 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1193}
1194
20e07dea
RR
1195static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1196{
44dba3d5
IM
1197 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1198 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1199}
1200
4142c3eb
RR
1201/*
1202 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1203 * considered part of a numa group's pseudo-interleaving set. Migrations
1204 * between these nodes are slowed down, to allow things to settle down.
1205 */
1206#define ACTIVE_NODE_FRACTION 3
1207
1208static bool numa_is_active_node(int nid, struct numa_group *ng)
1209{
1210 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1211}
1212
6c6b1193
RR
1213/* Handle placement on systems where not all nodes are directly connected. */
1214static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1215 int maxdist, bool task)
1216{
1217 unsigned long score = 0;
1218 int node;
1219
1220 /*
1221 * All nodes are directly connected, and the same distance
1222 * from each other. No need for fancy placement algorithms.
1223 */
1224 if (sched_numa_topology_type == NUMA_DIRECT)
1225 return 0;
1226
1227 /*
1228 * This code is called for each node, introducing N^2 complexity,
1229 * which should be ok given the number of nodes rarely exceeds 8.
1230 */
1231 for_each_online_node(node) {
1232 unsigned long faults;
1233 int dist = node_distance(nid, node);
1234
1235 /*
1236 * The furthest away nodes in the system are not interesting
1237 * for placement; nid was already counted.
1238 */
1239 if (dist == sched_max_numa_distance || node == nid)
1240 continue;
1241
1242 /*
1243 * On systems with a backplane NUMA topology, compare groups
1244 * of nodes, and move tasks towards the group with the most
1245 * memory accesses. When comparing two nodes at distance
1246 * "hoplimit", only nodes closer by than "hoplimit" are part
1247 * of each group. Skip other nodes.
1248 */
1249 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1250 dist > maxdist)
1251 continue;
1252
1253 /* Add up the faults from nearby nodes. */
1254 if (task)
1255 faults = task_faults(p, node);
1256 else
1257 faults = group_faults(p, node);
1258
1259 /*
1260 * On systems with a glueless mesh NUMA topology, there are
1261 * no fixed "groups of nodes". Instead, nodes that are not
1262 * directly connected bounce traffic through intermediate
1263 * nodes; a numa_group can occupy any set of nodes.
1264 * The further away a node is, the less the faults count.
1265 * This seems to result in good task placement.
1266 */
1267 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1268 faults *= (sched_max_numa_distance - dist);
1269 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1270 }
1271
1272 score += faults;
1273 }
1274
1275 return score;
1276}
1277
83e1d2cd
MG
1278/*
1279 * These return the fraction of accesses done by a particular task, or
1280 * task group, on a particular numa node. The group weight is given a
1281 * larger multiplier, in order to group tasks together that are almost
1282 * evenly spread out between numa nodes.
1283 */
7bd95320
RR
1284static inline unsigned long task_weight(struct task_struct *p, int nid,
1285 int dist)
83e1d2cd 1286{
7bd95320 1287 unsigned long faults, total_faults;
83e1d2cd 1288
44dba3d5 1289 if (!p->numa_faults)
83e1d2cd
MG
1290 return 0;
1291
1292 total_faults = p->total_numa_faults;
1293
1294 if (!total_faults)
1295 return 0;
1296
7bd95320 1297 faults = task_faults(p, nid);
6c6b1193
RR
1298 faults += score_nearby_nodes(p, nid, dist, true);
1299
7bd95320 1300 return 1000 * faults / total_faults;
83e1d2cd
MG
1301}
1302
7bd95320
RR
1303static inline unsigned long group_weight(struct task_struct *p, int nid,
1304 int dist)
83e1d2cd 1305{
7bd95320
RR
1306 unsigned long faults, total_faults;
1307
1308 if (!p->numa_group)
1309 return 0;
1310
1311 total_faults = p->numa_group->total_faults;
1312
1313 if (!total_faults)
83e1d2cd
MG
1314 return 0;
1315
7bd95320 1316 faults = group_faults(p, nid);
6c6b1193
RR
1317 faults += score_nearby_nodes(p, nid, dist, false);
1318
7bd95320 1319 return 1000 * faults / total_faults;
83e1d2cd
MG
1320}
1321
10f39042
RR
1322bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1323 int src_nid, int dst_cpu)
1324{
1325 struct numa_group *ng = p->numa_group;
1326 int dst_nid = cpu_to_node(dst_cpu);
1327 int last_cpupid, this_cpupid;
1328
1329 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1330
1331 /*
1332 * Multi-stage node selection is used in conjunction with a periodic
1333 * migration fault to build a temporal task<->page relation. By using
1334 * a two-stage filter we remove short/unlikely relations.
1335 *
1336 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1337 * a task's usage of a particular page (n_p) per total usage of this
1338 * page (n_t) (in a given time-span) to a probability.
1339 *
1340 * Our periodic faults will sample this probability and getting the
1341 * same result twice in a row, given these samples are fully
1342 * independent, is then given by P(n)^2, provided our sample period
1343 * is sufficiently short compared to the usage pattern.
1344 *
1345 * This quadric squishes small probabilities, making it less likely we
1346 * act on an unlikely task<->page relation.
1347 */
1348 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1349 if (!cpupid_pid_unset(last_cpupid) &&
1350 cpupid_to_nid(last_cpupid) != dst_nid)
1351 return false;
1352
1353 /* Always allow migrate on private faults */
1354 if (cpupid_match_pid(p, last_cpupid))
1355 return true;
1356
1357 /* A shared fault, but p->numa_group has not been set up yet. */
1358 if (!ng)
1359 return true;
1360
1361 /*
4142c3eb
RR
1362 * Destination node is much more heavily used than the source
1363 * node? Allow migration.
10f39042 1364 */
4142c3eb
RR
1365 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1366 ACTIVE_NODE_FRACTION)
10f39042
RR
1367 return true;
1368
1369 /*
4142c3eb
RR
1370 * Distribute memory according to CPU & memory use on each node,
1371 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1372 *
1373 * faults_cpu(dst) 3 faults_cpu(src)
1374 * --------------- * - > ---------------
1375 * faults_mem(dst) 4 faults_mem(src)
10f39042 1376 */
4142c3eb
RR
1377 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1378 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1379}
1380
c7132dd6 1381static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1382static unsigned long source_load(int cpu, int type);
1383static unsigned long target_load(int cpu, int type);
ced549fa 1384static unsigned long capacity_of(int cpu);
58d081b5 1385
fb13c7ee 1386/* Cached statistics for all CPUs within a node */
58d081b5 1387struct numa_stats {
fb13c7ee 1388 unsigned long nr_running;
58d081b5 1389 unsigned long load;
fb13c7ee
MG
1390
1391 /* Total compute capacity of CPUs on a node */
5ef20ca1 1392 unsigned long compute_capacity;
fb13c7ee
MG
1393
1394 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1395 unsigned long task_capacity;
1b6a7495 1396 int has_free_capacity;
58d081b5 1397};
e6628d5b 1398
fb13c7ee
MG
1399/*
1400 * XXX borrowed from update_sg_lb_stats
1401 */
1402static void update_numa_stats(struct numa_stats *ns, int nid)
1403{
83d7f242
RR
1404 int smt, cpu, cpus = 0;
1405 unsigned long capacity;
fb13c7ee
MG
1406
1407 memset(ns, 0, sizeof(*ns));
1408 for_each_cpu(cpu, cpumask_of_node(nid)) {
1409 struct rq *rq = cpu_rq(cpu);
1410
1411 ns->nr_running += rq->nr_running;
c7132dd6 1412 ns->load += weighted_cpuload(rq);
ced549fa 1413 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1414
1415 cpus++;
fb13c7ee
MG
1416 }
1417
5eca82a9
PZ
1418 /*
1419 * If we raced with hotplug and there are no CPUs left in our mask
1420 * the @ns structure is NULL'ed and task_numa_compare() will
1421 * not find this node attractive.
1422 *
1b6a7495
NP
1423 * We'll either bail at !has_free_capacity, or we'll detect a huge
1424 * imbalance and bail there.
5eca82a9
PZ
1425 */
1426 if (!cpus)
1427 return;
1428
83d7f242
RR
1429 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1430 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1431 capacity = cpus / smt; /* cores */
1432
1433 ns->task_capacity = min_t(unsigned, capacity,
1434 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1435 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1436}
1437
58d081b5
MG
1438struct task_numa_env {
1439 struct task_struct *p;
e6628d5b 1440
58d081b5
MG
1441 int src_cpu, src_nid;
1442 int dst_cpu, dst_nid;
e6628d5b 1443
58d081b5 1444 struct numa_stats src_stats, dst_stats;
e6628d5b 1445
40ea2b42 1446 int imbalance_pct;
7bd95320 1447 int dist;
fb13c7ee
MG
1448
1449 struct task_struct *best_task;
1450 long best_imp;
58d081b5
MG
1451 int best_cpu;
1452};
1453
fb13c7ee
MG
1454static void task_numa_assign(struct task_numa_env *env,
1455 struct task_struct *p, long imp)
1456{
1457 if (env->best_task)
1458 put_task_struct(env->best_task);
bac78573
ON
1459 if (p)
1460 get_task_struct(p);
fb13c7ee
MG
1461
1462 env->best_task = p;
1463 env->best_imp = imp;
1464 env->best_cpu = env->dst_cpu;
1465}
1466
28a21745 1467static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1468 struct task_numa_env *env)
1469{
e4991b24
RR
1470 long imb, old_imb;
1471 long orig_src_load, orig_dst_load;
28a21745
RR
1472 long src_capacity, dst_capacity;
1473
1474 /*
1475 * The load is corrected for the CPU capacity available on each node.
1476 *
1477 * src_load dst_load
1478 * ------------ vs ---------
1479 * src_capacity dst_capacity
1480 */
1481 src_capacity = env->src_stats.compute_capacity;
1482 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1483
1484 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1485 if (dst_load < src_load)
1486 swap(dst_load, src_load);
e63da036
RR
1487
1488 /* Is the difference below the threshold? */
e4991b24
RR
1489 imb = dst_load * src_capacity * 100 -
1490 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1491 if (imb <= 0)
1492 return false;
1493
1494 /*
1495 * The imbalance is above the allowed threshold.
e4991b24 1496 * Compare it with the old imbalance.
e63da036 1497 */
28a21745 1498 orig_src_load = env->src_stats.load;
e4991b24 1499 orig_dst_load = env->dst_stats.load;
28a21745 1500
e4991b24
RR
1501 if (orig_dst_load < orig_src_load)
1502 swap(orig_dst_load, orig_src_load);
e63da036 1503
e4991b24
RR
1504 old_imb = orig_dst_load * src_capacity * 100 -
1505 orig_src_load * dst_capacity * env->imbalance_pct;
1506
1507 /* Would this change make things worse? */
1508 return (imb > old_imb);
e63da036
RR
1509}
1510
fb13c7ee
MG
1511/*
1512 * This checks if the overall compute and NUMA accesses of the system would
1513 * be improved if the source tasks was migrated to the target dst_cpu taking
1514 * into account that it might be best if task running on the dst_cpu should
1515 * be exchanged with the source task
1516 */
887c290e
RR
1517static void task_numa_compare(struct task_numa_env *env,
1518 long taskimp, long groupimp)
fb13c7ee
MG
1519{
1520 struct rq *src_rq = cpu_rq(env->src_cpu);
1521 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1522 struct task_struct *cur;
28a21745 1523 long src_load, dst_load;
fb13c7ee 1524 long load;
1c5d3eb3 1525 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1526 long moveimp = imp;
7bd95320 1527 int dist = env->dist;
fb13c7ee
MG
1528
1529 rcu_read_lock();
bac78573
ON
1530 cur = task_rcu_dereference(&dst_rq->curr);
1531 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1532 cur = NULL;
1533
7af68335
PZ
1534 /*
1535 * Because we have preemption enabled we can get migrated around and
1536 * end try selecting ourselves (current == env->p) as a swap candidate.
1537 */
1538 if (cur == env->p)
1539 goto unlock;
1540
fb13c7ee
MG
1541 /*
1542 * "imp" is the fault differential for the source task between the
1543 * source and destination node. Calculate the total differential for
1544 * the source task and potential destination task. The more negative
1545 * the value is, the more rmeote accesses that would be expected to
1546 * be incurred if the tasks were swapped.
1547 */
1548 if (cur) {
1549 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1550 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1551 goto unlock;
1552
887c290e
RR
1553 /*
1554 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1555 * in any group then look only at task weights.
887c290e 1556 */
ca28aa53 1557 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1558 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1559 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1560 /*
1561 * Add some hysteresis to prevent swapping the
1562 * tasks within a group over tiny differences.
1563 */
1564 if (cur->numa_group)
1565 imp -= imp/16;
887c290e 1566 } else {
ca28aa53
RR
1567 /*
1568 * Compare the group weights. If a task is all by
1569 * itself (not part of a group), use the task weight
1570 * instead.
1571 */
ca28aa53 1572 if (cur->numa_group)
7bd95320
RR
1573 imp += group_weight(cur, env->src_nid, dist) -
1574 group_weight(cur, env->dst_nid, dist);
ca28aa53 1575 else
7bd95320
RR
1576 imp += task_weight(cur, env->src_nid, dist) -
1577 task_weight(cur, env->dst_nid, dist);
887c290e 1578 }
fb13c7ee
MG
1579 }
1580
0132c3e1 1581 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1582 goto unlock;
1583
1584 if (!cur) {
1585 /* Is there capacity at our destination? */
b932c03c 1586 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1587 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1588 goto unlock;
1589
1590 goto balance;
1591 }
1592
1593 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1594 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1595 dst_rq->nr_running == 1)
fb13c7ee
MG
1596 goto assign;
1597
1598 /*
1599 * In the overloaded case, try and keep the load balanced.
1600 */
1601balance:
e720fff6
PZ
1602 load = task_h_load(env->p);
1603 dst_load = env->dst_stats.load + load;
1604 src_load = env->src_stats.load - load;
fb13c7ee 1605
0132c3e1
RR
1606 if (moveimp > imp && moveimp > env->best_imp) {
1607 /*
1608 * If the improvement from just moving env->p direction is
1609 * better than swapping tasks around, check if a move is
1610 * possible. Store a slightly smaller score than moveimp,
1611 * so an actually idle CPU will win.
1612 */
1613 if (!load_too_imbalanced(src_load, dst_load, env)) {
1614 imp = moveimp - 1;
1615 cur = NULL;
1616 goto assign;
1617 }
1618 }
1619
1620 if (imp <= env->best_imp)
1621 goto unlock;
1622
fb13c7ee 1623 if (cur) {
e720fff6
PZ
1624 load = task_h_load(cur);
1625 dst_load -= load;
1626 src_load += load;
fb13c7ee
MG
1627 }
1628
28a21745 1629 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1630 goto unlock;
1631
ba7e5a27
RR
1632 /*
1633 * One idle CPU per node is evaluated for a task numa move.
1634 * Call select_idle_sibling to maybe find a better one.
1635 */
10e2f1ac
PZ
1636 if (!cur) {
1637 /*
1638 * select_idle_siblings() uses an per-cpu cpumask that
1639 * can be used from IRQ context.
1640 */
1641 local_irq_disable();
772bd008
MR
1642 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1643 env->dst_cpu);
10e2f1ac
PZ
1644 local_irq_enable();
1645 }
ba7e5a27 1646
fb13c7ee
MG
1647assign:
1648 task_numa_assign(env, cur, imp);
1649unlock:
1650 rcu_read_unlock();
1651}
1652
887c290e
RR
1653static void task_numa_find_cpu(struct task_numa_env *env,
1654 long taskimp, long groupimp)
2c8a50aa
MG
1655{
1656 int cpu;
1657
1658 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1659 /* Skip this CPU if the source task cannot migrate */
0c98d344 1660 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1661 continue;
1662
1663 env->dst_cpu = cpu;
887c290e 1664 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1665 }
1666}
1667
6f9aad0b
RR
1668/* Only move tasks to a NUMA node less busy than the current node. */
1669static bool numa_has_capacity(struct task_numa_env *env)
1670{
1671 struct numa_stats *src = &env->src_stats;
1672 struct numa_stats *dst = &env->dst_stats;
1673
1674 if (src->has_free_capacity && !dst->has_free_capacity)
1675 return false;
1676
1677 /*
1678 * Only consider a task move if the source has a higher load
1679 * than the destination, corrected for CPU capacity on each node.
1680 *
1681 * src->load dst->load
1682 * --------------------- vs ---------------------
1683 * src->compute_capacity dst->compute_capacity
1684 */
44dcb04f
SD
1685 if (src->load * dst->compute_capacity * env->imbalance_pct >
1686
1687 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1688 return true;
1689
1690 return false;
1691}
1692
58d081b5
MG
1693static int task_numa_migrate(struct task_struct *p)
1694{
58d081b5
MG
1695 struct task_numa_env env = {
1696 .p = p,
fb13c7ee 1697
58d081b5 1698 .src_cpu = task_cpu(p),
b32e86b4 1699 .src_nid = task_node(p),
fb13c7ee
MG
1700
1701 .imbalance_pct = 112,
1702
1703 .best_task = NULL,
1704 .best_imp = 0,
4142c3eb 1705 .best_cpu = -1,
58d081b5
MG
1706 };
1707 struct sched_domain *sd;
887c290e 1708 unsigned long taskweight, groupweight;
7bd95320 1709 int nid, ret, dist;
887c290e 1710 long taskimp, groupimp;
e6628d5b 1711
58d081b5 1712 /*
fb13c7ee
MG
1713 * Pick the lowest SD_NUMA domain, as that would have the smallest
1714 * imbalance and would be the first to start moving tasks about.
1715 *
1716 * And we want to avoid any moving of tasks about, as that would create
1717 * random movement of tasks -- counter the numa conditions we're trying
1718 * to satisfy here.
58d081b5
MG
1719 */
1720 rcu_read_lock();
fb13c7ee 1721 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1722 if (sd)
1723 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1724 rcu_read_unlock();
1725
46a73e8a
RR
1726 /*
1727 * Cpusets can break the scheduler domain tree into smaller
1728 * balance domains, some of which do not cross NUMA boundaries.
1729 * Tasks that are "trapped" in such domains cannot be migrated
1730 * elsewhere, so there is no point in (re)trying.
1731 */
1732 if (unlikely(!sd)) {
de1b301a 1733 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1734 return -EINVAL;
1735 }
1736
2c8a50aa 1737 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1738 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1739 taskweight = task_weight(p, env.src_nid, dist);
1740 groupweight = group_weight(p, env.src_nid, dist);
1741 update_numa_stats(&env.src_stats, env.src_nid);
1742 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1743 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1744 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1745
a43455a1 1746 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1747 if (numa_has_capacity(&env))
1748 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1749
9de05d48
RR
1750 /*
1751 * Look at other nodes in these cases:
1752 * - there is no space available on the preferred_nid
1753 * - the task is part of a numa_group that is interleaved across
1754 * multiple NUMA nodes; in order to better consolidate the group,
1755 * we need to check other locations.
1756 */
4142c3eb 1757 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1758 for_each_online_node(nid) {
1759 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1760 continue;
58d081b5 1761
7bd95320 1762 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1763 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1764 dist != env.dist) {
1765 taskweight = task_weight(p, env.src_nid, dist);
1766 groupweight = group_weight(p, env.src_nid, dist);
1767 }
7bd95320 1768
83e1d2cd 1769 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1770 taskimp = task_weight(p, nid, dist) - taskweight;
1771 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1772 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1773 continue;
1774
7bd95320 1775 env.dist = dist;
2c8a50aa
MG
1776 env.dst_nid = nid;
1777 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1778 if (numa_has_capacity(&env))
1779 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1780 }
1781 }
1782
68d1b02a
RR
1783 /*
1784 * If the task is part of a workload that spans multiple NUMA nodes,
1785 * and is migrating into one of the workload's active nodes, remember
1786 * this node as the task's preferred numa node, so the workload can
1787 * settle down.
1788 * A task that migrated to a second choice node will be better off
1789 * trying for a better one later. Do not set the preferred node here.
1790 */
db015dae 1791 if (p->numa_group) {
4142c3eb
RR
1792 struct numa_group *ng = p->numa_group;
1793
db015dae
RR
1794 if (env.best_cpu == -1)
1795 nid = env.src_nid;
1796 else
1797 nid = env.dst_nid;
1798
4142c3eb 1799 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1800 sched_setnuma(p, env.dst_nid);
1801 }
1802
1803 /* No better CPU than the current one was found. */
1804 if (env.best_cpu == -1)
1805 return -EAGAIN;
0ec8aa00 1806
04bb2f94
RR
1807 /*
1808 * Reset the scan period if the task is being rescheduled on an
1809 * alternative node to recheck if the tasks is now properly placed.
1810 */
1811 p->numa_scan_period = task_scan_min(p);
1812
fb13c7ee 1813 if (env.best_task == NULL) {
286549dc
MG
1814 ret = migrate_task_to(p, env.best_cpu);
1815 if (ret != 0)
1816 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1817 return ret;
1818 }
1819
1820 ret = migrate_swap(p, env.best_task);
286549dc
MG
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1823 put_task_struct(env.best_task);
1824 return ret;
e6628d5b
MG
1825}
1826
6b9a7460
MG
1827/* Attempt to migrate a task to a CPU on the preferred node. */
1828static void numa_migrate_preferred(struct task_struct *p)
1829{
5085e2a3
RR
1830 unsigned long interval = HZ;
1831
2739d3ee 1832 /* This task has no NUMA fault statistics yet */
44dba3d5 1833 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1834 return;
1835
2739d3ee 1836 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1837 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1838 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1839
1840 /* Success if task is already running on preferred CPU */
de1b301a 1841 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1842 return;
1843
1844 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1845 task_numa_migrate(p);
6b9a7460
MG
1846}
1847
20e07dea 1848/*
4142c3eb 1849 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1850 * tracking the nodes from which NUMA hinting faults are triggered. This can
1851 * be different from the set of nodes where the workload's memory is currently
1852 * located.
20e07dea 1853 */
4142c3eb 1854static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1855{
1856 unsigned long faults, max_faults = 0;
4142c3eb 1857 int nid, active_nodes = 0;
20e07dea
RR
1858
1859 for_each_online_node(nid) {
1860 faults = group_faults_cpu(numa_group, nid);
1861 if (faults > max_faults)
1862 max_faults = faults;
1863 }
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1867 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1868 active_nodes++;
20e07dea 1869 }
4142c3eb
RR
1870
1871 numa_group->max_faults_cpu = max_faults;
1872 numa_group->active_nodes = active_nodes;
20e07dea
RR
1873}
1874
04bb2f94
RR
1875/*
1876 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1877 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1878 * period will be for the next scan window. If local/(local+remote) ratio is
1879 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1880 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1881 */
1882#define NUMA_PERIOD_SLOTS 10
a22b4b01 1883#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1884
1885/*
1886 * Increase the scan period (slow down scanning) if the majority of
1887 * our memory is already on our local node, or if the majority of
1888 * the page accesses are shared with other processes.
1889 * Otherwise, decrease the scan period.
1890 */
1891static void update_task_scan_period(struct task_struct *p,
1892 unsigned long shared, unsigned long private)
1893{
1894 unsigned int period_slot;
37ec97de 1895 int lr_ratio, ps_ratio;
04bb2f94
RR
1896 int diff;
1897
1898 unsigned long remote = p->numa_faults_locality[0];
1899 unsigned long local = p->numa_faults_locality[1];
1900
1901 /*
1902 * If there were no record hinting faults then either the task is
1903 * completely idle or all activity is areas that are not of interest
074c2381
MG
1904 * to automatic numa balancing. Related to that, if there were failed
1905 * migration then it implies we are migrating too quickly or the local
1906 * node is overloaded. In either case, scan slower
04bb2f94 1907 */
074c2381 1908 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1909 p->numa_scan_period = min(p->numa_scan_period_max,
1910 p->numa_scan_period << 1);
1911
1912 p->mm->numa_next_scan = jiffies +
1913 msecs_to_jiffies(p->numa_scan_period);
1914
1915 return;
1916 }
1917
1918 /*
1919 * Prepare to scale scan period relative to the current period.
1920 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1921 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1922 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1923 */
1924 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1925 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1926 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1927
1928 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1929 /*
1930 * Most memory accesses are local. There is no need to
1931 * do fast NUMA scanning, since memory is already local.
1932 */
1933 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1934 if (!slot)
1935 slot = 1;
1936 diff = slot * period_slot;
1937 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1938 /*
1939 * Most memory accesses are shared with other tasks.
1940 * There is no point in continuing fast NUMA scanning,
1941 * since other tasks may just move the memory elsewhere.
1942 */
1943 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1944 if (!slot)
1945 slot = 1;
1946 diff = slot * period_slot;
1947 } else {
04bb2f94 1948 /*
37ec97de
RR
1949 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1950 * yet they are not on the local NUMA node. Speed up
1951 * NUMA scanning to get the memory moved over.
04bb2f94 1952 */
37ec97de
RR
1953 int ratio = max(lr_ratio, ps_ratio);
1954 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1955 }
1956
1957 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1958 task_scan_min(p), task_scan_max(p));
1959 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1960}
1961
7e2703e6
RR
1962/*
1963 * Get the fraction of time the task has been running since the last
1964 * NUMA placement cycle. The scheduler keeps similar statistics, but
1965 * decays those on a 32ms period, which is orders of magnitude off
1966 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1967 * stats only if the task is so new there are no NUMA statistics yet.
1968 */
1969static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1970{
1971 u64 runtime, delta, now;
1972 /* Use the start of this time slice to avoid calculations. */
1973 now = p->se.exec_start;
1974 runtime = p->se.sum_exec_runtime;
1975
1976 if (p->last_task_numa_placement) {
1977 delta = runtime - p->last_sum_exec_runtime;
1978 *period = now - p->last_task_numa_placement;
1979 } else {
9d89c257
YD
1980 delta = p->se.avg.load_sum / p->se.load.weight;
1981 *period = LOAD_AVG_MAX;
7e2703e6
RR
1982 }
1983
1984 p->last_sum_exec_runtime = runtime;
1985 p->last_task_numa_placement = now;
1986
1987 return delta;
1988}
1989
54009416
RR
1990/*
1991 * Determine the preferred nid for a task in a numa_group. This needs to
1992 * be done in a way that produces consistent results with group_weight,
1993 * otherwise workloads might not converge.
1994 */
1995static int preferred_group_nid(struct task_struct *p, int nid)
1996{
1997 nodemask_t nodes;
1998 int dist;
1999
2000 /* Direct connections between all NUMA nodes. */
2001 if (sched_numa_topology_type == NUMA_DIRECT)
2002 return nid;
2003
2004 /*
2005 * On a system with glueless mesh NUMA topology, group_weight
2006 * scores nodes according to the number of NUMA hinting faults on
2007 * both the node itself, and on nearby nodes.
2008 */
2009 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2010 unsigned long score, max_score = 0;
2011 int node, max_node = nid;
2012
2013 dist = sched_max_numa_distance;
2014
2015 for_each_online_node(node) {
2016 score = group_weight(p, node, dist);
2017 if (score > max_score) {
2018 max_score = score;
2019 max_node = node;
2020 }
2021 }
2022 return max_node;
2023 }
2024
2025 /*
2026 * Finding the preferred nid in a system with NUMA backplane
2027 * interconnect topology is more involved. The goal is to locate
2028 * tasks from numa_groups near each other in the system, and
2029 * untangle workloads from different sides of the system. This requires
2030 * searching down the hierarchy of node groups, recursively searching
2031 * inside the highest scoring group of nodes. The nodemask tricks
2032 * keep the complexity of the search down.
2033 */
2034 nodes = node_online_map;
2035 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2036 unsigned long max_faults = 0;
81907478 2037 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2038 int a, b;
2039
2040 /* Are there nodes at this distance from each other? */
2041 if (!find_numa_distance(dist))
2042 continue;
2043
2044 for_each_node_mask(a, nodes) {
2045 unsigned long faults = 0;
2046 nodemask_t this_group;
2047 nodes_clear(this_group);
2048
2049 /* Sum group's NUMA faults; includes a==b case. */
2050 for_each_node_mask(b, nodes) {
2051 if (node_distance(a, b) < dist) {
2052 faults += group_faults(p, b);
2053 node_set(b, this_group);
2054 node_clear(b, nodes);
2055 }
2056 }
2057
2058 /* Remember the top group. */
2059 if (faults > max_faults) {
2060 max_faults = faults;
2061 max_group = this_group;
2062 /*
2063 * subtle: at the smallest distance there is
2064 * just one node left in each "group", the
2065 * winner is the preferred nid.
2066 */
2067 nid = a;
2068 }
2069 }
2070 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2071 if (!max_faults)
2072 break;
54009416
RR
2073 nodes = max_group;
2074 }
2075 return nid;
2076}
2077
cbee9f88
PZ
2078static void task_numa_placement(struct task_struct *p)
2079{
83e1d2cd
MG
2080 int seq, nid, max_nid = -1, max_group_nid = -1;
2081 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2082 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2083 unsigned long total_faults;
2084 u64 runtime, period;
7dbd13ed 2085 spinlock_t *group_lock = NULL;
cbee9f88 2086
7e5a2c17
JL
2087 /*
2088 * The p->mm->numa_scan_seq field gets updated without
2089 * exclusive access. Use READ_ONCE() here to ensure
2090 * that the field is read in a single access:
2091 */
316c1608 2092 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2093 if (p->numa_scan_seq == seq)
2094 return;
2095 p->numa_scan_seq = seq;
598f0ec0 2096 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2097
7e2703e6
RR
2098 total_faults = p->numa_faults_locality[0] +
2099 p->numa_faults_locality[1];
2100 runtime = numa_get_avg_runtime(p, &period);
2101
7dbd13ed
MG
2102 /* If the task is part of a group prevent parallel updates to group stats */
2103 if (p->numa_group) {
2104 group_lock = &p->numa_group->lock;
60e69eed 2105 spin_lock_irq(group_lock);
7dbd13ed
MG
2106 }
2107
688b7585
MG
2108 /* Find the node with the highest number of faults */
2109 for_each_online_node(nid) {
44dba3d5
IM
2110 /* Keep track of the offsets in numa_faults array */
2111 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2112 unsigned long faults = 0, group_faults = 0;
44dba3d5 2113 int priv;
745d6147 2114
be1e4e76 2115 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2116 long diff, f_diff, f_weight;
8c8a743c 2117
44dba3d5
IM
2118 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2119 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2120 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2121 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2122
ac8e895b 2123 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2124 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2125 fault_types[priv] += p->numa_faults[membuf_idx];
2126 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2127
7e2703e6
RR
2128 /*
2129 * Normalize the faults_from, so all tasks in a group
2130 * count according to CPU use, instead of by the raw
2131 * number of faults. Tasks with little runtime have
2132 * little over-all impact on throughput, and thus their
2133 * faults are less important.
2134 */
2135 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2136 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2137 (total_faults + 1);
44dba3d5
IM
2138 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2139 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2140
44dba3d5
IM
2141 p->numa_faults[mem_idx] += diff;
2142 p->numa_faults[cpu_idx] += f_diff;
2143 faults += p->numa_faults[mem_idx];
83e1d2cd 2144 p->total_numa_faults += diff;
8c8a743c 2145 if (p->numa_group) {
44dba3d5
IM
2146 /*
2147 * safe because we can only change our own group
2148 *
2149 * mem_idx represents the offset for a given
2150 * nid and priv in a specific region because it
2151 * is at the beginning of the numa_faults array.
2152 */
2153 p->numa_group->faults[mem_idx] += diff;
2154 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2155 p->numa_group->total_faults += diff;
44dba3d5 2156 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2157 }
ac8e895b
MG
2158 }
2159
688b7585
MG
2160 if (faults > max_faults) {
2161 max_faults = faults;
2162 max_nid = nid;
2163 }
83e1d2cd
MG
2164
2165 if (group_faults > max_group_faults) {
2166 max_group_faults = group_faults;
2167 max_group_nid = nid;
2168 }
2169 }
2170
04bb2f94
RR
2171 update_task_scan_period(p, fault_types[0], fault_types[1]);
2172
7dbd13ed 2173 if (p->numa_group) {
4142c3eb 2174 numa_group_count_active_nodes(p->numa_group);
60e69eed 2175 spin_unlock_irq(group_lock);
54009416 2176 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2177 }
2178
bb97fc31
RR
2179 if (max_faults) {
2180 /* Set the new preferred node */
2181 if (max_nid != p->numa_preferred_nid)
2182 sched_setnuma(p, max_nid);
2183
2184 if (task_node(p) != p->numa_preferred_nid)
2185 numa_migrate_preferred(p);
3a7053b3 2186 }
cbee9f88
PZ
2187}
2188
8c8a743c
PZ
2189static inline int get_numa_group(struct numa_group *grp)
2190{
2191 return atomic_inc_not_zero(&grp->refcount);
2192}
2193
2194static inline void put_numa_group(struct numa_group *grp)
2195{
2196 if (atomic_dec_and_test(&grp->refcount))
2197 kfree_rcu(grp, rcu);
2198}
2199
3e6a9418
MG
2200static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2201 int *priv)
8c8a743c
PZ
2202{
2203 struct numa_group *grp, *my_grp;
2204 struct task_struct *tsk;
2205 bool join = false;
2206 int cpu = cpupid_to_cpu(cpupid);
2207 int i;
2208
2209 if (unlikely(!p->numa_group)) {
2210 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2211 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2212
2213 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2214 if (!grp)
2215 return;
2216
2217 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2218 grp->active_nodes = 1;
2219 grp->max_faults_cpu = 0;
8c8a743c 2220 spin_lock_init(&grp->lock);
e29cf08b 2221 grp->gid = p->pid;
50ec8a40 2222 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2223 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2224 nr_node_ids;
8c8a743c 2225
be1e4e76 2226 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2227 grp->faults[i] = p->numa_faults[i];
8c8a743c 2228
989348b5 2229 grp->total_faults = p->total_numa_faults;
83e1d2cd 2230
8c8a743c
PZ
2231 grp->nr_tasks++;
2232 rcu_assign_pointer(p->numa_group, grp);
2233 }
2234
2235 rcu_read_lock();
316c1608 2236 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2237
2238 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2239 goto no_join;
8c8a743c
PZ
2240
2241 grp = rcu_dereference(tsk->numa_group);
2242 if (!grp)
3354781a 2243 goto no_join;
8c8a743c
PZ
2244
2245 my_grp = p->numa_group;
2246 if (grp == my_grp)
3354781a 2247 goto no_join;
8c8a743c
PZ
2248
2249 /*
2250 * Only join the other group if its bigger; if we're the bigger group,
2251 * the other task will join us.
2252 */
2253 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2254 goto no_join;
8c8a743c
PZ
2255
2256 /*
2257 * Tie-break on the grp address.
2258 */
2259 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2260 goto no_join;
8c8a743c 2261
dabe1d99
RR
2262 /* Always join threads in the same process. */
2263 if (tsk->mm == current->mm)
2264 join = true;
2265
2266 /* Simple filter to avoid false positives due to PID collisions */
2267 if (flags & TNF_SHARED)
2268 join = true;
8c8a743c 2269
3e6a9418
MG
2270 /* Update priv based on whether false sharing was detected */
2271 *priv = !join;
2272
dabe1d99 2273 if (join && !get_numa_group(grp))
3354781a 2274 goto no_join;
8c8a743c 2275
8c8a743c
PZ
2276 rcu_read_unlock();
2277
2278 if (!join)
2279 return;
2280
60e69eed
MG
2281 BUG_ON(irqs_disabled());
2282 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2283
be1e4e76 2284 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2285 my_grp->faults[i] -= p->numa_faults[i];
2286 grp->faults[i] += p->numa_faults[i];
8c8a743c 2287 }
989348b5
MG
2288 my_grp->total_faults -= p->total_numa_faults;
2289 grp->total_faults += p->total_numa_faults;
8c8a743c 2290
8c8a743c
PZ
2291 my_grp->nr_tasks--;
2292 grp->nr_tasks++;
2293
2294 spin_unlock(&my_grp->lock);
60e69eed 2295 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2296
2297 rcu_assign_pointer(p->numa_group, grp);
2298
2299 put_numa_group(my_grp);
3354781a
PZ
2300 return;
2301
2302no_join:
2303 rcu_read_unlock();
2304 return;
8c8a743c
PZ
2305}
2306
2307void task_numa_free(struct task_struct *p)
2308{
2309 struct numa_group *grp = p->numa_group;
44dba3d5 2310 void *numa_faults = p->numa_faults;
e9dd685c
SR
2311 unsigned long flags;
2312 int i;
8c8a743c
PZ
2313
2314 if (grp) {
e9dd685c 2315 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2316 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2317 grp->faults[i] -= p->numa_faults[i];
989348b5 2318 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2319
8c8a743c 2320 grp->nr_tasks--;
e9dd685c 2321 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2322 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2323 put_numa_group(grp);
2324 }
2325
44dba3d5 2326 p->numa_faults = NULL;
82727018 2327 kfree(numa_faults);
8c8a743c
PZ
2328}
2329
cbee9f88
PZ
2330/*
2331 * Got a PROT_NONE fault for a page on @node.
2332 */
58b46da3 2333void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2334{
2335 struct task_struct *p = current;
6688cc05 2336 bool migrated = flags & TNF_MIGRATED;
58b46da3 2337 int cpu_node = task_node(current);
792568ec 2338 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2339 struct numa_group *ng;
ac8e895b 2340 int priv;
cbee9f88 2341
2a595721 2342 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2343 return;
2344
9ff1d9ff
MG
2345 /* for example, ksmd faulting in a user's mm */
2346 if (!p->mm)
2347 return;
2348
f809ca9a 2349 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2350 if (unlikely(!p->numa_faults)) {
2351 int size = sizeof(*p->numa_faults) *
be1e4e76 2352 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2353
44dba3d5
IM
2354 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2355 if (!p->numa_faults)
f809ca9a 2356 return;
745d6147 2357
83e1d2cd 2358 p->total_numa_faults = 0;
04bb2f94 2359 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2360 }
cbee9f88 2361
8c8a743c
PZ
2362 /*
2363 * First accesses are treated as private, otherwise consider accesses
2364 * to be private if the accessing pid has not changed
2365 */
2366 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2367 priv = 1;
2368 } else {
2369 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2370 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2371 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2372 }
2373
792568ec
RR
2374 /*
2375 * If a workload spans multiple NUMA nodes, a shared fault that
2376 * occurs wholly within the set of nodes that the workload is
2377 * actively using should be counted as local. This allows the
2378 * scan rate to slow down when a workload has settled down.
2379 */
4142c3eb
RR
2380 ng = p->numa_group;
2381 if (!priv && !local && ng && ng->active_nodes > 1 &&
2382 numa_is_active_node(cpu_node, ng) &&
2383 numa_is_active_node(mem_node, ng))
792568ec
RR
2384 local = 1;
2385
cbee9f88 2386 task_numa_placement(p);
f809ca9a 2387
2739d3ee
RR
2388 /*
2389 * Retry task to preferred node migration periodically, in case it
2390 * case it previously failed, or the scheduler moved us.
2391 */
2392 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2393 numa_migrate_preferred(p);
2394
b32e86b4
IM
2395 if (migrated)
2396 p->numa_pages_migrated += pages;
074c2381
MG
2397 if (flags & TNF_MIGRATE_FAIL)
2398 p->numa_faults_locality[2] += pages;
b32e86b4 2399
44dba3d5
IM
2400 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2401 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2402 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2403}
2404
6e5fb223
PZ
2405static void reset_ptenuma_scan(struct task_struct *p)
2406{
7e5a2c17
JL
2407 /*
2408 * We only did a read acquisition of the mmap sem, so
2409 * p->mm->numa_scan_seq is written to without exclusive access
2410 * and the update is not guaranteed to be atomic. That's not
2411 * much of an issue though, since this is just used for
2412 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2413 * expensive, to avoid any form of compiler optimizations:
2414 */
316c1608 2415 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2416 p->mm->numa_scan_offset = 0;
2417}
2418
cbee9f88
PZ
2419/*
2420 * The expensive part of numa migration is done from task_work context.
2421 * Triggered from task_tick_numa().
2422 */
2423void task_numa_work(struct callback_head *work)
2424{
2425 unsigned long migrate, next_scan, now = jiffies;
2426 struct task_struct *p = current;
2427 struct mm_struct *mm = p->mm;
51170840 2428 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2429 struct vm_area_struct *vma;
9f40604c 2430 unsigned long start, end;
598f0ec0 2431 unsigned long nr_pte_updates = 0;
4620f8c1 2432 long pages, virtpages;
cbee9f88 2433
9148a3a1 2434 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2435
2436 work->next = work; /* protect against double add */
2437 /*
2438 * Who cares about NUMA placement when they're dying.
2439 *
2440 * NOTE: make sure not to dereference p->mm before this check,
2441 * exit_task_work() happens _after_ exit_mm() so we could be called
2442 * without p->mm even though we still had it when we enqueued this
2443 * work.
2444 */
2445 if (p->flags & PF_EXITING)
2446 return;
2447
930aa174 2448 if (!mm->numa_next_scan) {
7e8d16b6
MG
2449 mm->numa_next_scan = now +
2450 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2451 }
2452
cbee9f88
PZ
2453 /*
2454 * Enforce maximal scan/migration frequency..
2455 */
2456 migrate = mm->numa_next_scan;
2457 if (time_before(now, migrate))
2458 return;
2459
598f0ec0
MG
2460 if (p->numa_scan_period == 0) {
2461 p->numa_scan_period_max = task_scan_max(p);
2462 p->numa_scan_period = task_scan_min(p);
2463 }
cbee9f88 2464
fb003b80 2465 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2466 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2467 return;
2468
19a78d11
PZ
2469 /*
2470 * Delay this task enough that another task of this mm will likely win
2471 * the next time around.
2472 */
2473 p->node_stamp += 2 * TICK_NSEC;
2474
9f40604c
MG
2475 start = mm->numa_scan_offset;
2476 pages = sysctl_numa_balancing_scan_size;
2477 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2478 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2479 if (!pages)
2480 return;
cbee9f88 2481
4620f8c1 2482
8655d549
VB
2483 if (!down_read_trylock(&mm->mmap_sem))
2484 return;
9f40604c 2485 vma = find_vma(mm, start);
6e5fb223
PZ
2486 if (!vma) {
2487 reset_ptenuma_scan(p);
9f40604c 2488 start = 0;
6e5fb223
PZ
2489 vma = mm->mmap;
2490 }
9f40604c 2491 for (; vma; vma = vma->vm_next) {
6b79c57b 2492 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2493 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2494 continue;
6b79c57b 2495 }
6e5fb223 2496
4591ce4f
MG
2497 /*
2498 * Shared library pages mapped by multiple processes are not
2499 * migrated as it is expected they are cache replicated. Avoid
2500 * hinting faults in read-only file-backed mappings or the vdso
2501 * as migrating the pages will be of marginal benefit.
2502 */
2503 if (!vma->vm_mm ||
2504 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2505 continue;
2506
3c67f474
MG
2507 /*
2508 * Skip inaccessible VMAs to avoid any confusion between
2509 * PROT_NONE and NUMA hinting ptes
2510 */
2511 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2512 continue;
4591ce4f 2513
9f40604c
MG
2514 do {
2515 start = max(start, vma->vm_start);
2516 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2517 end = min(end, vma->vm_end);
4620f8c1 2518 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2519
2520 /*
4620f8c1
RR
2521 * Try to scan sysctl_numa_balancing_size worth of
2522 * hpages that have at least one present PTE that
2523 * is not already pte-numa. If the VMA contains
2524 * areas that are unused or already full of prot_numa
2525 * PTEs, scan up to virtpages, to skip through those
2526 * areas faster.
598f0ec0
MG
2527 */
2528 if (nr_pte_updates)
2529 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2530 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2531
9f40604c 2532 start = end;
4620f8c1 2533 if (pages <= 0 || virtpages <= 0)
9f40604c 2534 goto out;
3cf1962c
RR
2535
2536 cond_resched();
9f40604c 2537 } while (end != vma->vm_end);
cbee9f88 2538 }
6e5fb223 2539
9f40604c 2540out:
6e5fb223 2541 /*
c69307d5
PZ
2542 * It is possible to reach the end of the VMA list but the last few
2543 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2544 * would find the !migratable VMA on the next scan but not reset the
2545 * scanner to the start so check it now.
6e5fb223
PZ
2546 */
2547 if (vma)
9f40604c 2548 mm->numa_scan_offset = start;
6e5fb223
PZ
2549 else
2550 reset_ptenuma_scan(p);
2551 up_read(&mm->mmap_sem);
51170840
RR
2552
2553 /*
2554 * Make sure tasks use at least 32x as much time to run other code
2555 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2556 * Usually update_task_scan_period slows down scanning enough; on an
2557 * overloaded system we need to limit overhead on a per task basis.
2558 */
2559 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2560 u64 diff = p->se.sum_exec_runtime - runtime;
2561 p->node_stamp += 32 * diff;
2562 }
cbee9f88
PZ
2563}
2564
2565/*
2566 * Drive the periodic memory faults..
2567 */
2568void task_tick_numa(struct rq *rq, struct task_struct *curr)
2569{
2570 struct callback_head *work = &curr->numa_work;
2571 u64 period, now;
2572
2573 /*
2574 * We don't care about NUMA placement if we don't have memory.
2575 */
2576 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2577 return;
2578
2579 /*
2580 * Using runtime rather than walltime has the dual advantage that
2581 * we (mostly) drive the selection from busy threads and that the
2582 * task needs to have done some actual work before we bother with
2583 * NUMA placement.
2584 */
2585 now = curr->se.sum_exec_runtime;
2586 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2587
25b3e5a3 2588 if (now > curr->node_stamp + period) {
4b96a29b 2589 if (!curr->node_stamp)
598f0ec0 2590 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2591 curr->node_stamp += period;
cbee9f88
PZ
2592
2593 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2594 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2595 task_work_add(curr, work, true);
2596 }
2597 }
2598}
3fed382b
RR
2599
2600/*
2601 * Can a task be moved from prev_cpu to this_cpu without causing a load
2602 * imbalance that would trigger the load balancer?
2603 */
2604static inline bool numa_wake_affine(struct sched_domain *sd,
2605 struct task_struct *p, int this_cpu,
2606 int prev_cpu, int sync)
2607{
2608 struct numa_stats prev_load, this_load;
2609 s64 this_eff_load, prev_eff_load;
2610
2611 update_numa_stats(&prev_load, cpu_to_node(prev_cpu));
2612 update_numa_stats(&this_load, cpu_to_node(this_cpu));
2613
2614 /*
2615 * If sync wakeup then subtract the (maximum possible)
2616 * effect of the currently running task from the load
2617 * of the current CPU:
2618 */
2619 if (sync) {
2620 unsigned long current_load = task_h_load(current);
2621
2622 if (this_load.load > current_load)
2623 this_load.load -= current_load;
2624 else
2625 this_load.load = 0;
2626 }
2627
2628 /*
2629 * In low-load situations, where this_cpu's node is idle due to the
2630 * sync cause above having dropped this_load.load to 0, move the task.
2631 * Moving to an idle socket will not create a bad imbalance.
2632 *
2633 * Otherwise check if the nodes are near enough in load to allow this
2634 * task to be woken on this_cpu's node.
2635 */
2636 if (this_load.load > 0) {
2637 unsigned long task_load = task_h_load(p);
2638
2639 this_eff_load = 100;
2640 this_eff_load *= prev_load.compute_capacity;
2641
2642 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2643 prev_eff_load *= this_load.compute_capacity;
2644
2645 this_eff_load *= this_load.load + task_load;
2646 prev_eff_load *= prev_load.load - task_load;
2647
2648 return this_eff_load <= prev_eff_load;
2649 }
2650
2651 return true;
2652}
cbee9f88
PZ
2653#else
2654static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2655{
2656}
0ec8aa00
PZ
2657
2658static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2659{
2660}
2661
2662static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2663{
2664}
3fed382b 2665
ff801b71 2666#ifdef CONFIG_SMP
3fed382b
RR
2667static inline bool numa_wake_affine(struct sched_domain *sd,
2668 struct task_struct *p, int this_cpu,
2669 int prev_cpu, int sync)
2670{
2671 return true;
2672}
ff801b71 2673#endif /* !SMP */
cbee9f88
PZ
2674#endif /* CONFIG_NUMA_BALANCING */
2675
30cfdcfc
DA
2676static void
2677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2678{
2679 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2680 if (!parent_entity(se))
029632fb 2681 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2682#ifdef CONFIG_SMP
0ec8aa00
PZ
2683 if (entity_is_task(se)) {
2684 struct rq *rq = rq_of(cfs_rq);
2685
2686 account_numa_enqueue(rq, task_of(se));
2687 list_add(&se->group_node, &rq->cfs_tasks);
2688 }
367456c7 2689#endif
30cfdcfc 2690 cfs_rq->nr_running++;
30cfdcfc
DA
2691}
2692
2693static void
2694account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2695{
2696 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2697 if (!parent_entity(se))
029632fb 2698 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2699#ifdef CONFIG_SMP
0ec8aa00
PZ
2700 if (entity_is_task(se)) {
2701 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2702 list_del_init(&se->group_node);
0ec8aa00 2703 }
bfdb198c 2704#endif
30cfdcfc 2705 cfs_rq->nr_running--;
30cfdcfc
DA
2706}
2707
3ff6dcac
YZ
2708#ifdef CONFIG_FAIR_GROUP_SCHED
2709# ifdef CONFIG_SMP
ea1dc6fc 2710static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2711{
ea1dc6fc 2712 long tg_weight, load, shares;
cf5f0acf
PZ
2713
2714 /*
ea1dc6fc
PZ
2715 * This really should be: cfs_rq->avg.load_avg, but instead we use
2716 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2717 * the shares for small weight interactive tasks.
cf5f0acf 2718 */
ea1dc6fc 2719 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2720
ea1dc6fc 2721 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2722
ea1dc6fc
PZ
2723 /* Ensure tg_weight >= load */
2724 tg_weight -= cfs_rq->tg_load_avg_contrib;
2725 tg_weight += load;
3ff6dcac 2726
3ff6dcac 2727 shares = (tg->shares * load);
cf5f0acf
PZ
2728 if (tg_weight)
2729 shares /= tg_weight;
3ff6dcac 2730
b8fd8423
DE
2731 /*
2732 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2733 * of a group with small tg->shares value. It is a floor value which is
2734 * assigned as a minimum load.weight to the sched_entity representing
2735 * the group on a CPU.
2736 *
2737 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2738 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2739 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2740 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2741 * instead of 0.
2742 */
3ff6dcac
YZ
2743 if (shares < MIN_SHARES)
2744 shares = MIN_SHARES;
2745 if (shares > tg->shares)
2746 shares = tg->shares;
2747
2748 return shares;
2749}
3ff6dcac 2750# else /* CONFIG_SMP */
6d5ab293 2751static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2752{
2753 return tg->shares;
2754}
3ff6dcac 2755# endif /* CONFIG_SMP */
ea1dc6fc 2756
2069dd75
PZ
2757static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2758 unsigned long weight)
2759{
19e5eebb
PT
2760 if (se->on_rq) {
2761 /* commit outstanding execution time */
2762 if (cfs_rq->curr == se)
2763 update_curr(cfs_rq);
2069dd75 2764 account_entity_dequeue(cfs_rq, se);
19e5eebb 2765 }
2069dd75
PZ
2766
2767 update_load_set(&se->load, weight);
2768
2769 if (se->on_rq)
2770 account_entity_enqueue(cfs_rq, se);
2771}
2772
82958366
PT
2773static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2774
89ee048f 2775static void update_cfs_shares(struct sched_entity *se)
2069dd75 2776{
89ee048f 2777 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2778 struct task_group *tg;
3ff6dcac 2779 long shares;
2069dd75 2780
89ee048f
VG
2781 if (!cfs_rq)
2782 return;
2783
2784 if (throttled_hierarchy(cfs_rq))
2069dd75 2785 return;
89ee048f
VG
2786
2787 tg = cfs_rq->tg;
2788
3ff6dcac
YZ
2789#ifndef CONFIG_SMP
2790 if (likely(se->load.weight == tg->shares))
2791 return;
2792#endif
6d5ab293 2793 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2794
2795 reweight_entity(cfs_rq_of(se), se, shares);
2796}
89ee048f 2797
2069dd75 2798#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2799static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2800{
2801}
2802#endif /* CONFIG_FAIR_GROUP_SCHED */
2803
a030d738
VK
2804static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2805{
2806 if (&this_rq()->cfs == cfs_rq) {
2807 /*
2808 * There are a few boundary cases this might miss but it should
2809 * get called often enough that that should (hopefully) not be
2810 * a real problem -- added to that it only calls on the local
2811 * CPU, so if we enqueue remotely we'll miss an update, but
2812 * the next tick/schedule should update.
2813 *
2814 * It will not get called when we go idle, because the idle
2815 * thread is a different class (!fair), nor will the utilization
2816 * number include things like RT tasks.
2817 *
2818 * As is, the util number is not freq-invariant (we'd have to
2819 * implement arch_scale_freq_capacity() for that).
2820 *
2821 * See cpu_util().
2822 */
2823 cpufreq_update_util(rq_of(cfs_rq), 0);
2824 }
2825}
2826
141965c7 2827#ifdef CONFIG_SMP
9d85f21c
PT
2828/*
2829 * Approximate:
2830 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2831 */
a481db34 2832static u64 decay_load(u64 val, u64 n)
9d85f21c 2833{
5b51f2f8
PT
2834 unsigned int local_n;
2835
05296e75 2836 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2837 return 0;
2838
2839 /* after bounds checking we can collapse to 32-bit */
2840 local_n = n;
2841
2842 /*
2843 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2844 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2845 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2846 *
2847 * To achieve constant time decay_load.
2848 */
2849 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2850 val >>= local_n / LOAD_AVG_PERIOD;
2851 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2852 }
2853
9d89c257
YD
2854 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2855 return val;
5b51f2f8
PT
2856}
2857
05296e75 2858static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2859{
05296e75 2860 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2861
a481db34 2862 /*
3841cdc3 2863 * c1 = d1 y^p
a481db34 2864 */
05296e75 2865 c1 = decay_load((u64)d1, periods);
a481db34 2866
a481db34 2867 /*
3841cdc3 2868 * p-1
05296e75
PZ
2869 * c2 = 1024 \Sum y^n
2870 * n=1
a481db34 2871 *
05296e75
PZ
2872 * inf inf
2873 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2874 * n=0 n=p
a481db34 2875 */
05296e75 2876 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2877
2878 return c1 + c2 + c3;
9d85f21c
PT
2879}
2880
54a21385 2881#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2882
a481db34
YD
2883/*
2884 * Accumulate the three separate parts of the sum; d1 the remainder
2885 * of the last (incomplete) period, d2 the span of full periods and d3
2886 * the remainder of the (incomplete) current period.
2887 *
2888 * d1 d2 d3
2889 * ^ ^ ^
2890 * | | |
2891 * |<->|<----------------->|<--->|
2892 * ... |---x---|------| ... |------|-----x (now)
2893 *
3841cdc3
PZ
2894 * p-1
2895 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2896 * n=1
a481db34 2897 *
3841cdc3 2898 * = u y^p + (Step 1)
a481db34 2899 *
3841cdc3
PZ
2900 * p-1
2901 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2902 * n=1
a481db34
YD
2903 */
2904static __always_inline u32
2905accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2906 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2907{
2908 unsigned long scale_freq, scale_cpu;
05296e75 2909 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2910 u64 periods;
a481db34
YD
2911
2912 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2913 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2914
2915 delta += sa->period_contrib;
2916 periods = delta / 1024; /* A period is 1024us (~1ms) */
2917
2918 /*
2919 * Step 1: decay old *_sum if we crossed period boundaries.
2920 */
2921 if (periods) {
2922 sa->load_sum = decay_load(sa->load_sum, periods);
2923 if (cfs_rq) {
2924 cfs_rq->runnable_load_sum =
2925 decay_load(cfs_rq->runnable_load_sum, periods);
2926 }
2927 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2928
05296e75
PZ
2929 /*
2930 * Step 2
2931 */
2932 delta %= 1024;
2933 contrib = __accumulate_pelt_segments(periods,
2934 1024 - sa->period_contrib, delta);
2935 }
a481db34
YD
2936 sa->period_contrib = delta;
2937
2938 contrib = cap_scale(contrib, scale_freq);
2939 if (weight) {
2940 sa->load_sum += weight * contrib;
2941 if (cfs_rq)
2942 cfs_rq->runnable_load_sum += weight * contrib;
2943 }
2944 if (running)
2945 sa->util_sum += contrib * scale_cpu;
2946
2947 return periods;
2948}
2949
9d85f21c
PT
2950/*
2951 * We can represent the historical contribution to runnable average as the
2952 * coefficients of a geometric series. To do this we sub-divide our runnable
2953 * history into segments of approximately 1ms (1024us); label the segment that
2954 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2955 *
2956 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2957 * p0 p1 p2
2958 * (now) (~1ms ago) (~2ms ago)
2959 *
2960 * Let u_i denote the fraction of p_i that the entity was runnable.
2961 *
2962 * We then designate the fractions u_i as our co-efficients, yielding the
2963 * following representation of historical load:
2964 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2965 *
2966 * We choose y based on the with of a reasonably scheduling period, fixing:
2967 * y^32 = 0.5
2968 *
2969 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2970 * approximately half as much as the contribution to load within the last ms
2971 * (u_0).
2972 *
2973 * When a period "rolls over" and we have new u_0`, multiplying the previous
2974 * sum again by y is sufficient to update:
2975 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2976 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2977 */
9d89c257 2978static __always_inline int
0ccb977f 2979___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2980 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2981{
a481db34 2982 u64 delta;
9d85f21c 2983
9d89c257 2984 delta = now - sa->last_update_time;
9d85f21c
PT
2985 /*
2986 * This should only happen when time goes backwards, which it
2987 * unfortunately does during sched clock init when we swap over to TSC.
2988 */
2989 if ((s64)delta < 0) {
9d89c257 2990 sa->last_update_time = now;
9d85f21c
PT
2991 return 0;
2992 }
2993
2994 /*
2995 * Use 1024ns as the unit of measurement since it's a reasonable
2996 * approximation of 1us and fast to compute.
2997 */
2998 delta >>= 10;
2999 if (!delta)
3000 return 0;
bb0bd044
PZ
3001
3002 sa->last_update_time += delta << 10;
9d85f21c 3003
f235a54f
VG
3004 /*
3005 * running is a subset of runnable (weight) so running can't be set if
3006 * runnable is clear. But there are some corner cases where the current
3007 * se has been already dequeued but cfs_rq->curr still points to it.
3008 * This means that weight will be 0 but not running for a sched_entity
3009 * but also for a cfs_rq if the latter becomes idle. As an example,
3010 * this happens during idle_balance() which calls
3011 * update_blocked_averages()
3012 */
3013 if (!weight)
3014 running = 0;
3015
a481db34
YD
3016 /*
3017 * Now we know we crossed measurement unit boundaries. The *_avg
3018 * accrues by two steps:
3019 *
3020 * Step 1: accumulate *_sum since last_update_time. If we haven't
3021 * crossed period boundaries, finish.
3022 */
3023 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3024 return 0;
9ee474f5 3025
a481db34
YD
3026 /*
3027 * Step 2: update *_avg.
3028 */
625ed2bf 3029 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
3030 if (cfs_rq) {
3031 cfs_rq->runnable_load_avg =
625ed2bf 3032 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 3033 }
625ed2bf 3034 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 3035
a481db34 3036 return 1;
9ee474f5
PT
3037}
3038
0ccb977f
PZ
3039static int
3040__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3041{
3042 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3043}
3044
3045static int
3046__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3047{
3048 return ___update_load_avg(now, cpu, &se->avg,
3049 se->on_rq * scale_load_down(se->load.weight),
3050 cfs_rq->curr == se, NULL);
3051}
3052
3053static int
3054__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3055{
3056 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3057 scale_load_down(cfs_rq->load.weight),
3058 cfs_rq->curr != NULL, cfs_rq);
3059}
3060
09a43ace
VG
3061/*
3062 * Signed add and clamp on underflow.
3063 *
3064 * Explicitly do a load-store to ensure the intermediate value never hits
3065 * memory. This allows lockless observations without ever seeing the negative
3066 * values.
3067 */
3068#define add_positive(_ptr, _val) do { \
3069 typeof(_ptr) ptr = (_ptr); \
3070 typeof(_val) val = (_val); \
3071 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3072 \
3073 res = var + val; \
3074 \
3075 if (val < 0 && res > var) \
3076 res = 0; \
3077 \
3078 WRITE_ONCE(*ptr, res); \
3079} while (0)
3080
c566e8e9 3081#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3082/**
3083 * update_tg_load_avg - update the tg's load avg
3084 * @cfs_rq: the cfs_rq whose avg changed
3085 * @force: update regardless of how small the difference
3086 *
3087 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3088 * However, because tg->load_avg is a global value there are performance
3089 * considerations.
3090 *
3091 * In order to avoid having to look at the other cfs_rq's, we use a
3092 * differential update where we store the last value we propagated. This in
3093 * turn allows skipping updates if the differential is 'small'.
3094 *
815abf5a 3095 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3096 */
9d89c257 3097static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3098{
9d89c257 3099 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3100
aa0b7ae0
WL
3101 /*
3102 * No need to update load_avg for root_task_group as it is not used.
3103 */
3104 if (cfs_rq->tg == &root_task_group)
3105 return;
3106
9d89c257
YD
3107 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3108 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3109 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3110 }
8165e145 3111}
f5f9739d 3112
ad936d86
BP
3113/*
3114 * Called within set_task_rq() right before setting a task's cpu. The
3115 * caller only guarantees p->pi_lock is held; no other assumptions,
3116 * including the state of rq->lock, should be made.
3117 */
3118void set_task_rq_fair(struct sched_entity *se,
3119 struct cfs_rq *prev, struct cfs_rq *next)
3120{
0ccb977f
PZ
3121 u64 p_last_update_time;
3122 u64 n_last_update_time;
3123
ad936d86
BP
3124 if (!sched_feat(ATTACH_AGE_LOAD))
3125 return;
3126
3127 /*
3128 * We are supposed to update the task to "current" time, then its up to
3129 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3130 * getting what current time is, so simply throw away the out-of-date
3131 * time. This will result in the wakee task is less decayed, but giving
3132 * the wakee more load sounds not bad.
3133 */
0ccb977f
PZ
3134 if (!(se->avg.last_update_time && prev))
3135 return;
ad936d86
BP
3136
3137#ifndef CONFIG_64BIT
0ccb977f 3138 {
ad936d86
BP
3139 u64 p_last_update_time_copy;
3140 u64 n_last_update_time_copy;
3141
3142 do {
3143 p_last_update_time_copy = prev->load_last_update_time_copy;
3144 n_last_update_time_copy = next->load_last_update_time_copy;
3145
3146 smp_rmb();
3147
3148 p_last_update_time = prev->avg.last_update_time;
3149 n_last_update_time = next->avg.last_update_time;
3150
3151 } while (p_last_update_time != p_last_update_time_copy ||
3152 n_last_update_time != n_last_update_time_copy);
0ccb977f 3153 }
ad936d86 3154#else
0ccb977f
PZ
3155 p_last_update_time = prev->avg.last_update_time;
3156 n_last_update_time = next->avg.last_update_time;
ad936d86 3157#endif
0ccb977f
PZ
3158 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3159 se->avg.last_update_time = n_last_update_time;
ad936d86 3160}
09a43ace
VG
3161
3162/* Take into account change of utilization of a child task group */
3163static inline void
3164update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3165{
3166 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3167 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3168
3169 /* Nothing to update */
3170 if (!delta)
3171 return;
3172
3173 /* Set new sched_entity's utilization */
3174 se->avg.util_avg = gcfs_rq->avg.util_avg;
3175 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3176
3177 /* Update parent cfs_rq utilization */
3178 add_positive(&cfs_rq->avg.util_avg, delta);
3179 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3180}
3181
3182/* Take into account change of load of a child task group */
3183static inline void
3184update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3185{
3186 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3187 long delta, load = gcfs_rq->avg.load_avg;
3188
3189 /*
3190 * If the load of group cfs_rq is null, the load of the
3191 * sched_entity will also be null so we can skip the formula
3192 */
3193 if (load) {
3194 long tg_load;
3195
3196 /* Get tg's load and ensure tg_load > 0 */
3197 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3198
3199 /* Ensure tg_load >= load and updated with current load*/
3200 tg_load -= gcfs_rq->tg_load_avg_contrib;
3201 tg_load += load;
3202
3203 /*
3204 * We need to compute a correction term in the case that the
3205 * task group is consuming more CPU than a task of equal
3206 * weight. A task with a weight equals to tg->shares will have
3207 * a load less or equal to scale_load_down(tg->shares).
3208 * Similarly, the sched_entities that represent the task group
3209 * at parent level, can't have a load higher than
3210 * scale_load_down(tg->shares). And the Sum of sched_entities'
3211 * load must be <= scale_load_down(tg->shares).
3212 */
3213 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3214 /* scale gcfs_rq's load into tg's shares*/
3215 load *= scale_load_down(gcfs_rq->tg->shares);
3216 load /= tg_load;
3217 }
3218 }
3219
3220 delta = load - se->avg.load_avg;
3221
3222 /* Nothing to update */
3223 if (!delta)
3224 return;
3225
3226 /* Set new sched_entity's load */
3227 se->avg.load_avg = load;
3228 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3229
3230 /* Update parent cfs_rq load */
3231 add_positive(&cfs_rq->avg.load_avg, delta);
3232 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3233
3234 /*
3235 * If the sched_entity is already enqueued, we also have to update the
3236 * runnable load avg.
3237 */
3238 if (se->on_rq) {
3239 /* Update parent cfs_rq runnable_load_avg */
3240 add_positive(&cfs_rq->runnable_load_avg, delta);
3241 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3242 }
3243}
3244
3245static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3246{
3247 cfs_rq->propagate_avg = 1;
3248}
3249
3250static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3251{
3252 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3253
3254 if (!cfs_rq->propagate_avg)
3255 return 0;
3256
3257 cfs_rq->propagate_avg = 0;
3258 return 1;
3259}
3260
3261/* Update task and its cfs_rq load average */
3262static inline int propagate_entity_load_avg(struct sched_entity *se)
3263{
3264 struct cfs_rq *cfs_rq;
3265
3266 if (entity_is_task(se))
3267 return 0;
3268
3269 if (!test_and_clear_tg_cfs_propagate(se))
3270 return 0;
3271
3272 cfs_rq = cfs_rq_of(se);
3273
3274 set_tg_cfs_propagate(cfs_rq);
3275
3276 update_tg_cfs_util(cfs_rq, se);
3277 update_tg_cfs_load(cfs_rq, se);
3278
3279 return 1;
3280}
3281
bc427898
VG
3282/*
3283 * Check if we need to update the load and the utilization of a blocked
3284 * group_entity:
3285 */
3286static inline bool skip_blocked_update(struct sched_entity *se)
3287{
3288 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3289
3290 /*
3291 * If sched_entity still have not zero load or utilization, we have to
3292 * decay it:
3293 */
3294 if (se->avg.load_avg || se->avg.util_avg)
3295 return false;
3296
3297 /*
3298 * If there is a pending propagation, we have to update the load and
3299 * the utilization of the sched_entity:
3300 */
3301 if (gcfs_rq->propagate_avg)
3302 return false;
3303
3304 /*
3305 * Otherwise, the load and the utilization of the sched_entity is
3306 * already zero and there is no pending propagation, so it will be a
3307 * waste of time to try to decay it:
3308 */
3309 return true;
3310}
3311
6e83125c 3312#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3313
9d89c257 3314static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3315
3316static inline int propagate_entity_load_avg(struct sched_entity *se)
3317{
3318 return 0;
3319}
3320
3321static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3322
6e83125c 3323#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3324
89741892
PZ
3325/*
3326 * Unsigned subtract and clamp on underflow.
3327 *
3328 * Explicitly do a load-store to ensure the intermediate value never hits
3329 * memory. This allows lockless observations without ever seeing the negative
3330 * values.
3331 */
3332#define sub_positive(_ptr, _val) do { \
3333 typeof(_ptr) ptr = (_ptr); \
3334 typeof(*ptr) val = (_val); \
3335 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3336 res = var - val; \
3337 if (res > var) \
3338 res = 0; \
3339 WRITE_ONCE(*ptr, res); \
3340} while (0)
3341
3d30544f
PZ
3342/**
3343 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3344 * @now: current time, as per cfs_rq_clock_task()
3345 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3346 *
3347 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3348 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3349 * post_init_entity_util_avg().
3350 *
3351 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3352 *
7c3edd2c
PZ
3353 * Returns true if the load decayed or we removed load.
3354 *
3355 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3356 * call update_tg_load_avg() when this function returns true.
3d30544f 3357 */
a2c6c91f 3358static inline int
3a123bbb 3359update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3360{
9d89c257 3361 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3362 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3363
9d89c257 3364 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3365 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3366 sub_positive(&sa->load_avg, r);
3367 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3368 removed_load = 1;
4e516076 3369 set_tg_cfs_propagate(cfs_rq);
8165e145 3370 }
2dac754e 3371
9d89c257
YD
3372 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3373 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3374 sub_positive(&sa->util_avg, r);
3375 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3376 removed_util = 1;
4e516076 3377 set_tg_cfs_propagate(cfs_rq);
9d89c257 3378 }
36ee28e4 3379
0ccb977f 3380 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3381
9d89c257
YD
3382#ifndef CONFIG_64BIT
3383 smp_wmb();
3384 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3385#endif
36ee28e4 3386
3a123bbb 3387 if (decayed || removed_util)
a2c6c91f 3388 cfs_rq_util_change(cfs_rq);
21e96f88 3389
41e0d37f 3390 return decayed || removed_load;
21e96f88
SM
3391}
3392
d31b1a66
VG
3393/*
3394 * Optional action to be done while updating the load average
3395 */
3396#define UPDATE_TG 0x1
3397#define SKIP_AGE_LOAD 0x2
3398
21e96f88 3399/* Update task and its cfs_rq load average */
d31b1a66 3400static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3401{
3402 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3403 u64 now = cfs_rq_clock_task(cfs_rq);
3404 struct rq *rq = rq_of(cfs_rq);
3405 int cpu = cpu_of(rq);
09a43ace 3406 int decayed;
21e96f88
SM
3407
3408 /*
3409 * Track task load average for carrying it to new CPU after migrated, and
3410 * track group sched_entity load average for task_h_load calc in migration
3411 */
0ccb977f
PZ
3412 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3413 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3414
3a123bbb 3415 decayed = update_cfs_rq_load_avg(now, cfs_rq);
09a43ace
VG
3416 decayed |= propagate_entity_load_avg(se);
3417
3418 if (decayed && (flags & UPDATE_TG))
21e96f88 3419 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3420}
3421
3d30544f
PZ
3422/**
3423 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3424 * @cfs_rq: cfs_rq to attach to
3425 * @se: sched_entity to attach
3426 *
3427 * Must call update_cfs_rq_load_avg() before this, since we rely on
3428 * cfs_rq->avg.last_update_time being current.
3429 */
a05e8c51
BP
3430static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3431{
3432 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3433 cfs_rq->avg.load_avg += se->avg.load_avg;
3434 cfs_rq->avg.load_sum += se->avg.load_sum;
3435 cfs_rq->avg.util_avg += se->avg.util_avg;
3436 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3437 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3438
3439 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3440}
3441
3d30544f
PZ
3442/**
3443 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3444 * @cfs_rq: cfs_rq to detach from
3445 * @se: sched_entity to detach
3446 *
3447 * Must call update_cfs_rq_load_avg() before this, since we rely on
3448 * cfs_rq->avg.last_update_time being current.
3449 */
a05e8c51
BP
3450static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3451{
a05e8c51 3452
89741892
PZ
3453 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3454 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3455 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3456 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3457 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3458
3459 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3460}
3461
9d89c257
YD
3462/* Add the load generated by se into cfs_rq's load average */
3463static inline void
3464enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3465{
9d89c257 3466 struct sched_avg *sa = &se->avg;
18bf2805 3467
13962234
YD
3468 cfs_rq->runnable_load_avg += sa->load_avg;
3469 cfs_rq->runnable_load_sum += sa->load_sum;
3470
d31b1a66 3471 if (!sa->last_update_time) {
a05e8c51 3472 attach_entity_load_avg(cfs_rq, se);
9d89c257 3473 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3474 }
2dac754e
PT
3475}
3476
13962234
YD
3477/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3478static inline void
3479dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3480{
13962234
YD
3481 cfs_rq->runnable_load_avg =
3482 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3483 cfs_rq->runnable_load_sum =
a05e8c51 3484 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3485}
3486
9d89c257 3487#ifndef CONFIG_64BIT
0905f04e
YD
3488static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3489{
9d89c257 3490 u64 last_update_time_copy;
0905f04e 3491 u64 last_update_time;
9ee474f5 3492
9d89c257
YD
3493 do {
3494 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3495 smp_rmb();
3496 last_update_time = cfs_rq->avg.last_update_time;
3497 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3498
3499 return last_update_time;
3500}
9d89c257 3501#else
0905f04e
YD
3502static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3503{
3504 return cfs_rq->avg.last_update_time;
3505}
9d89c257
YD
3506#endif
3507
104cb16d
MR
3508/*
3509 * Synchronize entity load avg of dequeued entity without locking
3510 * the previous rq.
3511 */
3512void sync_entity_load_avg(struct sched_entity *se)
3513{
3514 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3515 u64 last_update_time;
3516
3517 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3518 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3519}
3520
0905f04e
YD
3521/*
3522 * Task first catches up with cfs_rq, and then subtract
3523 * itself from the cfs_rq (task must be off the queue now).
3524 */
3525void remove_entity_load_avg(struct sched_entity *se)
3526{
3527 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3528
3529 /*
7dc603c9
PZ
3530 * tasks cannot exit without having gone through wake_up_new_task() ->
3531 * post_init_entity_util_avg() which will have added things to the
3532 * cfs_rq, so we can remove unconditionally.
3533 *
3534 * Similarly for groups, they will have passed through
3535 * post_init_entity_util_avg() before unregister_sched_fair_group()
3536 * calls this.
0905f04e 3537 */
0905f04e 3538
104cb16d 3539 sync_entity_load_avg(se);
9d89c257
YD
3540 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3541 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3542}
642dbc39 3543
7ea241af
YD
3544static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3545{
3546 return cfs_rq->runnable_load_avg;
3547}
3548
3549static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3550{
3551 return cfs_rq->avg.load_avg;
3552}
3553
46f69fa3 3554static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3555
38033c37
PZ
3556#else /* CONFIG_SMP */
3557
01011473 3558static inline int
3a123bbb 3559update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3560{
3561 return 0;
3562}
3563
d31b1a66
VG
3564#define UPDATE_TG 0x0
3565#define SKIP_AGE_LOAD 0x0
3566
3567static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3568{
a030d738 3569 cfs_rq_util_change(cfs_rq_of(se));
536bd00c
RW
3570}
3571
9d89c257
YD
3572static inline void
3573enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3574static inline void
3575dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3576static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3577
a05e8c51
BP
3578static inline void
3579attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3580static inline void
3581detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3582
46f69fa3 3583static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3584{
3585 return 0;
3586}
3587
38033c37 3588#endif /* CONFIG_SMP */
9d85f21c 3589
ddc97297
PZ
3590static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3591{
3592#ifdef CONFIG_SCHED_DEBUG
3593 s64 d = se->vruntime - cfs_rq->min_vruntime;
3594
3595 if (d < 0)
3596 d = -d;
3597
3598 if (d > 3*sysctl_sched_latency)
ae92882e 3599 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3600#endif
3601}
3602
aeb73b04
PZ
3603static void
3604place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3605{
1af5f730 3606 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3607
2cb8600e
PZ
3608 /*
3609 * The 'current' period is already promised to the current tasks,
3610 * however the extra weight of the new task will slow them down a
3611 * little, place the new task so that it fits in the slot that
3612 * stays open at the end.
3613 */
94dfb5e7 3614 if (initial && sched_feat(START_DEBIT))
f9c0b095 3615 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3616
a2e7a7eb 3617 /* sleeps up to a single latency don't count. */
5ca9880c 3618 if (!initial) {
a2e7a7eb 3619 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3620
a2e7a7eb
MG
3621 /*
3622 * Halve their sleep time's effect, to allow
3623 * for a gentler effect of sleepers:
3624 */
3625 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3626 thresh >>= 1;
51e0304c 3627
a2e7a7eb 3628 vruntime -= thresh;
aeb73b04
PZ
3629 }
3630
b5d9d734 3631 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3632 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3633}
3634
d3d9dc33
PT
3635static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3636
cb251765
MG
3637static inline void check_schedstat_required(void)
3638{
3639#ifdef CONFIG_SCHEDSTATS
3640 if (schedstat_enabled())
3641 return;
3642
3643 /* Force schedstat enabled if a dependent tracepoint is active */
3644 if (trace_sched_stat_wait_enabled() ||
3645 trace_sched_stat_sleep_enabled() ||
3646 trace_sched_stat_iowait_enabled() ||
3647 trace_sched_stat_blocked_enabled() ||
3648 trace_sched_stat_runtime_enabled()) {
eda8dca5 3649 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3650 "stat_blocked and stat_runtime require the "
f67abed5 3651 "kernel parameter schedstats=enable or "
cb251765
MG
3652 "kernel.sched_schedstats=1\n");
3653 }
3654#endif
3655}
3656
b5179ac7
PZ
3657
3658/*
3659 * MIGRATION
3660 *
3661 * dequeue
3662 * update_curr()
3663 * update_min_vruntime()
3664 * vruntime -= min_vruntime
3665 *
3666 * enqueue
3667 * update_curr()
3668 * update_min_vruntime()
3669 * vruntime += min_vruntime
3670 *
3671 * this way the vruntime transition between RQs is done when both
3672 * min_vruntime are up-to-date.
3673 *
3674 * WAKEUP (remote)
3675 *
59efa0ba 3676 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3677 * vruntime -= min_vruntime
3678 *
3679 * enqueue
3680 * update_curr()
3681 * update_min_vruntime()
3682 * vruntime += min_vruntime
3683 *
3684 * this way we don't have the most up-to-date min_vruntime on the originating
3685 * CPU and an up-to-date min_vruntime on the destination CPU.
3686 */
3687
bf0f6f24 3688static void
88ec22d3 3689enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3690{
2f950354
PZ
3691 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3692 bool curr = cfs_rq->curr == se;
3693
88ec22d3 3694 /*
2f950354
PZ
3695 * If we're the current task, we must renormalise before calling
3696 * update_curr().
88ec22d3 3697 */
2f950354 3698 if (renorm && curr)
88ec22d3
PZ
3699 se->vruntime += cfs_rq->min_vruntime;
3700
2f950354
PZ
3701 update_curr(cfs_rq);
3702
bf0f6f24 3703 /*
2f950354
PZ
3704 * Otherwise, renormalise after, such that we're placed at the current
3705 * moment in time, instead of some random moment in the past. Being
3706 * placed in the past could significantly boost this task to the
3707 * fairness detriment of existing tasks.
bf0f6f24 3708 */
2f950354
PZ
3709 if (renorm && !curr)
3710 se->vruntime += cfs_rq->min_vruntime;
3711
89ee048f
VG
3712 /*
3713 * When enqueuing a sched_entity, we must:
3714 * - Update loads to have both entity and cfs_rq synced with now.
3715 * - Add its load to cfs_rq->runnable_avg
3716 * - For group_entity, update its weight to reflect the new share of
3717 * its group cfs_rq
3718 * - Add its new weight to cfs_rq->load.weight
3719 */
d31b1a66 3720 update_load_avg(se, UPDATE_TG);
9d89c257 3721 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3722 update_cfs_shares(se);
17bc14b7 3723 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3724
1a3d027c 3725 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3726 place_entity(cfs_rq, se, 0);
bf0f6f24 3727
cb251765 3728 check_schedstat_required();
4fa8d299
JP
3729 update_stats_enqueue(cfs_rq, se, flags);
3730 check_spread(cfs_rq, se);
2f950354 3731 if (!curr)
83b699ed 3732 __enqueue_entity(cfs_rq, se);
2069dd75 3733 se->on_rq = 1;
3d4b47b4 3734
d3d9dc33 3735 if (cfs_rq->nr_running == 1) {
3d4b47b4 3736 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3737 check_enqueue_throttle(cfs_rq);
3738 }
bf0f6f24
IM
3739}
3740
2c13c919 3741static void __clear_buddies_last(struct sched_entity *se)
2002c695 3742{
2c13c919
RR
3743 for_each_sched_entity(se) {
3744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3745 if (cfs_rq->last != se)
2c13c919 3746 break;
f1044799
PZ
3747
3748 cfs_rq->last = NULL;
2c13c919
RR
3749 }
3750}
2002c695 3751
2c13c919
RR
3752static void __clear_buddies_next(struct sched_entity *se)
3753{
3754 for_each_sched_entity(se) {
3755 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3756 if (cfs_rq->next != se)
2c13c919 3757 break;
f1044799
PZ
3758
3759 cfs_rq->next = NULL;
2c13c919 3760 }
2002c695
PZ
3761}
3762
ac53db59
RR
3763static void __clear_buddies_skip(struct sched_entity *se)
3764{
3765 for_each_sched_entity(se) {
3766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3767 if (cfs_rq->skip != se)
ac53db59 3768 break;
f1044799
PZ
3769
3770 cfs_rq->skip = NULL;
ac53db59
RR
3771 }
3772}
3773
a571bbea
PZ
3774static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3775{
2c13c919
RR
3776 if (cfs_rq->last == se)
3777 __clear_buddies_last(se);
3778
3779 if (cfs_rq->next == se)
3780 __clear_buddies_next(se);
ac53db59
RR
3781
3782 if (cfs_rq->skip == se)
3783 __clear_buddies_skip(se);
a571bbea
PZ
3784}
3785
6c16a6dc 3786static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3787
bf0f6f24 3788static void
371fd7e7 3789dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3790{
a2a2d680
DA
3791 /*
3792 * Update run-time statistics of the 'current'.
3793 */
3794 update_curr(cfs_rq);
89ee048f
VG
3795
3796 /*
3797 * When dequeuing a sched_entity, we must:
3798 * - Update loads to have both entity and cfs_rq synced with now.
3799 * - Substract its load from the cfs_rq->runnable_avg.
3800 * - Substract its previous weight from cfs_rq->load.weight.
3801 * - For group entity, update its weight to reflect the new share
3802 * of its group cfs_rq.
3803 */
d31b1a66 3804 update_load_avg(se, UPDATE_TG);
13962234 3805 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3806
4fa8d299 3807 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3808
2002c695 3809 clear_buddies(cfs_rq, se);
4793241b 3810
83b699ed 3811 if (se != cfs_rq->curr)
30cfdcfc 3812 __dequeue_entity(cfs_rq, se);
17bc14b7 3813 se->on_rq = 0;
30cfdcfc 3814 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3815
3816 /*
b60205c7
PZ
3817 * Normalize after update_curr(); which will also have moved
3818 * min_vruntime if @se is the one holding it back. But before doing
3819 * update_min_vruntime() again, which will discount @se's position and
3820 * can move min_vruntime forward still more.
88ec22d3 3821 */
371fd7e7 3822 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3823 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3824
d8b4986d
PT
3825 /* return excess runtime on last dequeue */
3826 return_cfs_rq_runtime(cfs_rq);
3827
89ee048f 3828 update_cfs_shares(se);
b60205c7
PZ
3829
3830 /*
3831 * Now advance min_vruntime if @se was the entity holding it back,
3832 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3833 * put back on, and if we advance min_vruntime, we'll be placed back
3834 * further than we started -- ie. we'll be penalized.
3835 */
3836 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3837 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3838}
3839
3840/*
3841 * Preempt the current task with a newly woken task if needed:
3842 */
7c92e54f 3843static void
2e09bf55 3844check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3845{
11697830 3846 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3847 struct sched_entity *se;
3848 s64 delta;
11697830 3849
6d0f0ebd 3850 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3851 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3852 if (delta_exec > ideal_runtime) {
8875125e 3853 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3854 /*
3855 * The current task ran long enough, ensure it doesn't get
3856 * re-elected due to buddy favours.
3857 */
3858 clear_buddies(cfs_rq, curr);
f685ceac
MG
3859 return;
3860 }
3861
3862 /*
3863 * Ensure that a task that missed wakeup preemption by a
3864 * narrow margin doesn't have to wait for a full slice.
3865 * This also mitigates buddy induced latencies under load.
3866 */
f685ceac
MG
3867 if (delta_exec < sysctl_sched_min_granularity)
3868 return;
3869
f4cfb33e
WX
3870 se = __pick_first_entity(cfs_rq);
3871 delta = curr->vruntime - se->vruntime;
f685ceac 3872
f4cfb33e
WX
3873 if (delta < 0)
3874 return;
d7d82944 3875
f4cfb33e 3876 if (delta > ideal_runtime)
8875125e 3877 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3878}
3879
83b699ed 3880static void
8494f412 3881set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3882{
83b699ed
SV
3883 /* 'current' is not kept within the tree. */
3884 if (se->on_rq) {
3885 /*
3886 * Any task has to be enqueued before it get to execute on
3887 * a CPU. So account for the time it spent waiting on the
3888 * runqueue.
3889 */
4fa8d299 3890 update_stats_wait_end(cfs_rq, se);
83b699ed 3891 __dequeue_entity(cfs_rq, se);
d31b1a66 3892 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3893 }
3894
79303e9e 3895 update_stats_curr_start(cfs_rq, se);
429d43bc 3896 cfs_rq->curr = se;
4fa8d299 3897
eba1ed4b
IM
3898 /*
3899 * Track our maximum slice length, if the CPU's load is at
3900 * least twice that of our own weight (i.e. dont track it
3901 * when there are only lesser-weight tasks around):
3902 */
cb251765 3903 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3904 schedstat_set(se->statistics.slice_max,
3905 max((u64)schedstat_val(se->statistics.slice_max),
3906 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3907 }
4fa8d299 3908
4a55b450 3909 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3910}
3911
3f3a4904
PZ
3912static int
3913wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3914
ac53db59
RR
3915/*
3916 * Pick the next process, keeping these things in mind, in this order:
3917 * 1) keep things fair between processes/task groups
3918 * 2) pick the "next" process, since someone really wants that to run
3919 * 3) pick the "last" process, for cache locality
3920 * 4) do not run the "skip" process, if something else is available
3921 */
678d5718
PZ
3922static struct sched_entity *
3923pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3924{
678d5718
PZ
3925 struct sched_entity *left = __pick_first_entity(cfs_rq);
3926 struct sched_entity *se;
3927
3928 /*
3929 * If curr is set we have to see if its left of the leftmost entity
3930 * still in the tree, provided there was anything in the tree at all.
3931 */
3932 if (!left || (curr && entity_before(curr, left)))
3933 left = curr;
3934
3935 se = left; /* ideally we run the leftmost entity */
f4b6755f 3936
ac53db59
RR
3937 /*
3938 * Avoid running the skip buddy, if running something else can
3939 * be done without getting too unfair.
3940 */
3941 if (cfs_rq->skip == se) {
678d5718
PZ
3942 struct sched_entity *second;
3943
3944 if (se == curr) {
3945 second = __pick_first_entity(cfs_rq);
3946 } else {
3947 second = __pick_next_entity(se);
3948 if (!second || (curr && entity_before(curr, second)))
3949 second = curr;
3950 }
3951
ac53db59
RR
3952 if (second && wakeup_preempt_entity(second, left) < 1)
3953 se = second;
3954 }
aa2ac252 3955
f685ceac
MG
3956 /*
3957 * Prefer last buddy, try to return the CPU to a preempted task.
3958 */
3959 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3960 se = cfs_rq->last;
3961
ac53db59
RR
3962 /*
3963 * Someone really wants this to run. If it's not unfair, run it.
3964 */
3965 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3966 se = cfs_rq->next;
3967
f685ceac 3968 clear_buddies(cfs_rq, se);
4793241b
PZ
3969
3970 return se;
aa2ac252
PZ
3971}
3972
678d5718 3973static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3974
ab6cde26 3975static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3976{
3977 /*
3978 * If still on the runqueue then deactivate_task()
3979 * was not called and update_curr() has to be done:
3980 */
3981 if (prev->on_rq)
b7cc0896 3982 update_curr(cfs_rq);
bf0f6f24 3983
d3d9dc33
PT
3984 /* throttle cfs_rqs exceeding runtime */
3985 check_cfs_rq_runtime(cfs_rq);
3986
4fa8d299 3987 check_spread(cfs_rq, prev);
cb251765 3988
30cfdcfc 3989 if (prev->on_rq) {
4fa8d299 3990 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3991 /* Put 'current' back into the tree. */
3992 __enqueue_entity(cfs_rq, prev);
9d85f21c 3993 /* in !on_rq case, update occurred at dequeue */
9d89c257 3994 update_load_avg(prev, 0);
30cfdcfc 3995 }
429d43bc 3996 cfs_rq->curr = NULL;
bf0f6f24
IM
3997}
3998
8f4d37ec
PZ
3999static void
4000entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4001{
bf0f6f24 4002 /*
30cfdcfc 4003 * Update run-time statistics of the 'current'.
bf0f6f24 4004 */
30cfdcfc 4005 update_curr(cfs_rq);
bf0f6f24 4006
9d85f21c
PT
4007 /*
4008 * Ensure that runnable average is periodically updated.
4009 */
d31b1a66 4010 update_load_avg(curr, UPDATE_TG);
89ee048f 4011 update_cfs_shares(curr);
9d85f21c 4012
8f4d37ec
PZ
4013#ifdef CONFIG_SCHED_HRTICK
4014 /*
4015 * queued ticks are scheduled to match the slice, so don't bother
4016 * validating it and just reschedule.
4017 */
983ed7a6 4018 if (queued) {
8875125e 4019 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4020 return;
4021 }
8f4d37ec
PZ
4022 /*
4023 * don't let the period tick interfere with the hrtick preemption
4024 */
4025 if (!sched_feat(DOUBLE_TICK) &&
4026 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4027 return;
4028#endif
4029
2c2efaed 4030 if (cfs_rq->nr_running > 1)
2e09bf55 4031 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4032}
4033
ab84d31e
PT
4034
4035/**************************************************
4036 * CFS bandwidth control machinery
4037 */
4038
4039#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4040
4041#ifdef HAVE_JUMP_LABEL
c5905afb 4042static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4043
4044static inline bool cfs_bandwidth_used(void)
4045{
c5905afb 4046 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4047}
4048
1ee14e6c 4049void cfs_bandwidth_usage_inc(void)
029632fb 4050{
1ee14e6c
BS
4051 static_key_slow_inc(&__cfs_bandwidth_used);
4052}
4053
4054void cfs_bandwidth_usage_dec(void)
4055{
4056 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4057}
4058#else /* HAVE_JUMP_LABEL */
4059static bool cfs_bandwidth_used(void)
4060{
4061 return true;
4062}
4063
1ee14e6c
BS
4064void cfs_bandwidth_usage_inc(void) {}
4065void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4066#endif /* HAVE_JUMP_LABEL */
4067
ab84d31e
PT
4068/*
4069 * default period for cfs group bandwidth.
4070 * default: 0.1s, units: nanoseconds
4071 */
4072static inline u64 default_cfs_period(void)
4073{
4074 return 100000000ULL;
4075}
ec12cb7f
PT
4076
4077static inline u64 sched_cfs_bandwidth_slice(void)
4078{
4079 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4080}
4081
a9cf55b2
PT
4082/*
4083 * Replenish runtime according to assigned quota and update expiration time.
4084 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4085 * additional synchronization around rq->lock.
4086 *
4087 * requires cfs_b->lock
4088 */
029632fb 4089void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4090{
4091 u64 now;
4092
4093 if (cfs_b->quota == RUNTIME_INF)
4094 return;
4095
4096 now = sched_clock_cpu(smp_processor_id());
4097 cfs_b->runtime = cfs_b->quota;
4098 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4099}
4100
029632fb
PZ
4101static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4102{
4103 return &tg->cfs_bandwidth;
4104}
4105
f1b17280
PT
4106/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4107static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4108{
4109 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4110 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4111
78becc27 4112 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4113}
4114
85dac906
PT
4115/* returns 0 on failure to allocate runtime */
4116static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4117{
4118 struct task_group *tg = cfs_rq->tg;
4119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4120 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4121
4122 /* note: this is a positive sum as runtime_remaining <= 0 */
4123 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4124
4125 raw_spin_lock(&cfs_b->lock);
4126 if (cfs_b->quota == RUNTIME_INF)
4127 amount = min_amount;
58088ad0 4128 else {
77a4d1a1 4129 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4130
4131 if (cfs_b->runtime > 0) {
4132 amount = min(cfs_b->runtime, min_amount);
4133 cfs_b->runtime -= amount;
4134 cfs_b->idle = 0;
4135 }
ec12cb7f 4136 }
a9cf55b2 4137 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4138 raw_spin_unlock(&cfs_b->lock);
4139
4140 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4141 /*
4142 * we may have advanced our local expiration to account for allowed
4143 * spread between our sched_clock and the one on which runtime was
4144 * issued.
4145 */
4146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4147 cfs_rq->runtime_expires = expires;
85dac906
PT
4148
4149 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4150}
4151
a9cf55b2
PT
4152/*
4153 * Note: This depends on the synchronization provided by sched_clock and the
4154 * fact that rq->clock snapshots this value.
4155 */
4156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4157{
a9cf55b2 4158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4159
4160 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4161 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4162 return;
4163
a9cf55b2
PT
4164 if (cfs_rq->runtime_remaining < 0)
4165 return;
4166
4167 /*
4168 * If the local deadline has passed we have to consider the
4169 * possibility that our sched_clock is 'fast' and the global deadline
4170 * has not truly expired.
4171 *
4172 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4173 * whether the global deadline has advanced. It is valid to compare
4174 * cfs_b->runtime_expires without any locks since we only care about
4175 * exact equality, so a partial write will still work.
a9cf55b2
PT
4176 */
4177
51f2176d 4178 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4179 /* extend local deadline, drift is bounded above by 2 ticks */
4180 cfs_rq->runtime_expires += TICK_NSEC;
4181 } else {
4182 /* global deadline is ahead, expiration has passed */
4183 cfs_rq->runtime_remaining = 0;
4184 }
4185}
4186
9dbdb155 4187static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4188{
4189 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4190 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4191 expire_cfs_rq_runtime(cfs_rq);
4192
4193 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4194 return;
4195
85dac906
PT
4196 /*
4197 * if we're unable to extend our runtime we resched so that the active
4198 * hierarchy can be throttled
4199 */
4200 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4201 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4202}
4203
6c16a6dc 4204static __always_inline
9dbdb155 4205void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4206{
56f570e5 4207 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4208 return;
4209
4210 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4211}
4212
85dac906
PT
4213static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4214{
56f570e5 4215 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4216}
4217
64660c86
PT
4218/* check whether cfs_rq, or any parent, is throttled */
4219static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4220{
56f570e5 4221 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4222}
4223
4224/*
4225 * Ensure that neither of the group entities corresponding to src_cpu or
4226 * dest_cpu are members of a throttled hierarchy when performing group
4227 * load-balance operations.
4228 */
4229static inline int throttled_lb_pair(struct task_group *tg,
4230 int src_cpu, int dest_cpu)
4231{
4232 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4233
4234 src_cfs_rq = tg->cfs_rq[src_cpu];
4235 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4236
4237 return throttled_hierarchy(src_cfs_rq) ||
4238 throttled_hierarchy(dest_cfs_rq);
4239}
4240
4241/* updated child weight may affect parent so we have to do this bottom up */
4242static int tg_unthrottle_up(struct task_group *tg, void *data)
4243{
4244 struct rq *rq = data;
4245 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4246
4247 cfs_rq->throttle_count--;
64660c86 4248 if (!cfs_rq->throttle_count) {
f1b17280 4249 /* adjust cfs_rq_clock_task() */
78becc27 4250 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4251 cfs_rq->throttled_clock_task;
64660c86 4252 }
64660c86
PT
4253
4254 return 0;
4255}
4256
4257static int tg_throttle_down(struct task_group *tg, void *data)
4258{
4259 struct rq *rq = data;
4260 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4261
82958366
PT
4262 /* group is entering throttled state, stop time */
4263 if (!cfs_rq->throttle_count)
78becc27 4264 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4265 cfs_rq->throttle_count++;
4266
4267 return 0;
4268}
4269
d3d9dc33 4270static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4271{
4272 struct rq *rq = rq_of(cfs_rq);
4273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4274 struct sched_entity *se;
4275 long task_delta, dequeue = 1;
77a4d1a1 4276 bool empty;
85dac906
PT
4277
4278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4279
f1b17280 4280 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4281 rcu_read_lock();
4282 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4283 rcu_read_unlock();
85dac906
PT
4284
4285 task_delta = cfs_rq->h_nr_running;
4286 for_each_sched_entity(se) {
4287 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4288 /* throttled entity or throttle-on-deactivate */
4289 if (!se->on_rq)
4290 break;
4291
4292 if (dequeue)
4293 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4294 qcfs_rq->h_nr_running -= task_delta;
4295
4296 if (qcfs_rq->load.weight)
4297 dequeue = 0;
4298 }
4299
4300 if (!se)
72465447 4301 sub_nr_running(rq, task_delta);
85dac906
PT
4302
4303 cfs_rq->throttled = 1;
78becc27 4304 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4305 raw_spin_lock(&cfs_b->lock);
d49db342 4306 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4307
c06f04c7
BS
4308 /*
4309 * Add to the _head_ of the list, so that an already-started
4310 * distribute_cfs_runtime will not see us
4311 */
4312 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4313
4314 /*
4315 * If we're the first throttled task, make sure the bandwidth
4316 * timer is running.
4317 */
4318 if (empty)
4319 start_cfs_bandwidth(cfs_b);
4320
85dac906
PT
4321 raw_spin_unlock(&cfs_b->lock);
4322}
4323
029632fb 4324void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4325{
4326 struct rq *rq = rq_of(cfs_rq);
4327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4328 struct sched_entity *se;
4329 int enqueue = 1;
4330 long task_delta;
4331
22b958d8 4332 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4333
4334 cfs_rq->throttled = 0;
1a55af2e
FW
4335
4336 update_rq_clock(rq);
4337
671fd9da 4338 raw_spin_lock(&cfs_b->lock);
78becc27 4339 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4340 list_del_rcu(&cfs_rq->throttled_list);
4341 raw_spin_unlock(&cfs_b->lock);
4342
64660c86
PT
4343 /* update hierarchical throttle state */
4344 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4345
671fd9da
PT
4346 if (!cfs_rq->load.weight)
4347 return;
4348
4349 task_delta = cfs_rq->h_nr_running;
4350 for_each_sched_entity(se) {
4351 if (se->on_rq)
4352 enqueue = 0;
4353
4354 cfs_rq = cfs_rq_of(se);
4355 if (enqueue)
4356 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4357 cfs_rq->h_nr_running += task_delta;
4358
4359 if (cfs_rq_throttled(cfs_rq))
4360 break;
4361 }
4362
4363 if (!se)
72465447 4364 add_nr_running(rq, task_delta);
671fd9da
PT
4365
4366 /* determine whether we need to wake up potentially idle cpu */
4367 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4368 resched_curr(rq);
671fd9da
PT
4369}
4370
4371static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4372 u64 remaining, u64 expires)
4373{
4374 struct cfs_rq *cfs_rq;
c06f04c7
BS
4375 u64 runtime;
4376 u64 starting_runtime = remaining;
671fd9da
PT
4377
4378 rcu_read_lock();
4379 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4380 throttled_list) {
4381 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4382 struct rq_flags rf;
671fd9da 4383
8a8c69c3 4384 rq_lock(rq, &rf);
671fd9da
PT
4385 if (!cfs_rq_throttled(cfs_rq))
4386 goto next;
4387
4388 runtime = -cfs_rq->runtime_remaining + 1;
4389 if (runtime > remaining)
4390 runtime = remaining;
4391 remaining -= runtime;
4392
4393 cfs_rq->runtime_remaining += runtime;
4394 cfs_rq->runtime_expires = expires;
4395
4396 /* we check whether we're throttled above */
4397 if (cfs_rq->runtime_remaining > 0)
4398 unthrottle_cfs_rq(cfs_rq);
4399
4400next:
8a8c69c3 4401 rq_unlock(rq, &rf);
671fd9da
PT
4402
4403 if (!remaining)
4404 break;
4405 }
4406 rcu_read_unlock();
4407
c06f04c7 4408 return starting_runtime - remaining;
671fd9da
PT
4409}
4410
58088ad0
PT
4411/*
4412 * Responsible for refilling a task_group's bandwidth and unthrottling its
4413 * cfs_rqs as appropriate. If there has been no activity within the last
4414 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4415 * used to track this state.
4416 */
4417static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4418{
671fd9da 4419 u64 runtime, runtime_expires;
51f2176d 4420 int throttled;
58088ad0 4421
58088ad0
PT
4422 /* no need to continue the timer with no bandwidth constraint */
4423 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4424 goto out_deactivate;
58088ad0 4425
671fd9da 4426 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4427 cfs_b->nr_periods += overrun;
671fd9da 4428
51f2176d
BS
4429 /*
4430 * idle depends on !throttled (for the case of a large deficit), and if
4431 * we're going inactive then everything else can be deferred
4432 */
4433 if (cfs_b->idle && !throttled)
4434 goto out_deactivate;
a9cf55b2
PT
4435
4436 __refill_cfs_bandwidth_runtime(cfs_b);
4437
671fd9da
PT
4438 if (!throttled) {
4439 /* mark as potentially idle for the upcoming period */
4440 cfs_b->idle = 1;
51f2176d 4441 return 0;
671fd9da
PT
4442 }
4443
e8da1b18
NR
4444 /* account preceding periods in which throttling occurred */
4445 cfs_b->nr_throttled += overrun;
4446
671fd9da 4447 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4448
4449 /*
c06f04c7
BS
4450 * This check is repeated as we are holding onto the new bandwidth while
4451 * we unthrottle. This can potentially race with an unthrottled group
4452 * trying to acquire new bandwidth from the global pool. This can result
4453 * in us over-using our runtime if it is all used during this loop, but
4454 * only by limited amounts in that extreme case.
671fd9da 4455 */
c06f04c7
BS
4456 while (throttled && cfs_b->runtime > 0) {
4457 runtime = cfs_b->runtime;
671fd9da
PT
4458 raw_spin_unlock(&cfs_b->lock);
4459 /* we can't nest cfs_b->lock while distributing bandwidth */
4460 runtime = distribute_cfs_runtime(cfs_b, runtime,
4461 runtime_expires);
4462 raw_spin_lock(&cfs_b->lock);
4463
4464 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4465
4466 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4467 }
58088ad0 4468
671fd9da
PT
4469 /*
4470 * While we are ensured activity in the period following an
4471 * unthrottle, this also covers the case in which the new bandwidth is
4472 * insufficient to cover the existing bandwidth deficit. (Forcing the
4473 * timer to remain active while there are any throttled entities.)
4474 */
4475 cfs_b->idle = 0;
58088ad0 4476
51f2176d
BS
4477 return 0;
4478
4479out_deactivate:
51f2176d 4480 return 1;
58088ad0 4481}
d3d9dc33 4482
d8b4986d
PT
4483/* a cfs_rq won't donate quota below this amount */
4484static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4485/* minimum remaining period time to redistribute slack quota */
4486static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4487/* how long we wait to gather additional slack before distributing */
4488static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4489
db06e78c
BS
4490/*
4491 * Are we near the end of the current quota period?
4492 *
4493 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4494 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4495 * migrate_hrtimers, base is never cleared, so we are fine.
4496 */
d8b4986d
PT
4497static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4498{
4499 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4500 u64 remaining;
4501
4502 /* if the call-back is running a quota refresh is already occurring */
4503 if (hrtimer_callback_running(refresh_timer))
4504 return 1;
4505
4506 /* is a quota refresh about to occur? */
4507 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4508 if (remaining < min_expire)
4509 return 1;
4510
4511 return 0;
4512}
4513
4514static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4515{
4516 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4517
4518 /* if there's a quota refresh soon don't bother with slack */
4519 if (runtime_refresh_within(cfs_b, min_left))
4520 return;
4521
4cfafd30
PZ
4522 hrtimer_start(&cfs_b->slack_timer,
4523 ns_to_ktime(cfs_bandwidth_slack_period),
4524 HRTIMER_MODE_REL);
d8b4986d
PT
4525}
4526
4527/* we know any runtime found here is valid as update_curr() precedes return */
4528static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4529{
4530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4531 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4532
4533 if (slack_runtime <= 0)
4534 return;
4535
4536 raw_spin_lock(&cfs_b->lock);
4537 if (cfs_b->quota != RUNTIME_INF &&
4538 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4539 cfs_b->runtime += slack_runtime;
4540
4541 /* we are under rq->lock, defer unthrottling using a timer */
4542 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4543 !list_empty(&cfs_b->throttled_cfs_rq))
4544 start_cfs_slack_bandwidth(cfs_b);
4545 }
4546 raw_spin_unlock(&cfs_b->lock);
4547
4548 /* even if it's not valid for return we don't want to try again */
4549 cfs_rq->runtime_remaining -= slack_runtime;
4550}
4551
4552static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4553{
56f570e5
PT
4554 if (!cfs_bandwidth_used())
4555 return;
4556
fccfdc6f 4557 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4558 return;
4559
4560 __return_cfs_rq_runtime(cfs_rq);
4561}
4562
4563/*
4564 * This is done with a timer (instead of inline with bandwidth return) since
4565 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4566 */
4567static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4568{
4569 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4570 u64 expires;
4571
4572 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4573 raw_spin_lock(&cfs_b->lock);
4574 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4575 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4576 return;
db06e78c 4577 }
d8b4986d 4578
c06f04c7 4579 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4580 runtime = cfs_b->runtime;
c06f04c7 4581
d8b4986d
PT
4582 expires = cfs_b->runtime_expires;
4583 raw_spin_unlock(&cfs_b->lock);
4584
4585 if (!runtime)
4586 return;
4587
4588 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4589
4590 raw_spin_lock(&cfs_b->lock);
4591 if (expires == cfs_b->runtime_expires)
c06f04c7 4592 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4593 raw_spin_unlock(&cfs_b->lock);
4594}
4595
d3d9dc33
PT
4596/*
4597 * When a group wakes up we want to make sure that its quota is not already
4598 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4599 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4600 */
4601static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4602{
56f570e5
PT
4603 if (!cfs_bandwidth_used())
4604 return;
4605
d3d9dc33
PT
4606 /* an active group must be handled by the update_curr()->put() path */
4607 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4608 return;
4609
4610 /* ensure the group is not already throttled */
4611 if (cfs_rq_throttled(cfs_rq))
4612 return;
4613
4614 /* update runtime allocation */
4615 account_cfs_rq_runtime(cfs_rq, 0);
4616 if (cfs_rq->runtime_remaining <= 0)
4617 throttle_cfs_rq(cfs_rq);
4618}
4619
55e16d30
PZ
4620static void sync_throttle(struct task_group *tg, int cpu)
4621{
4622 struct cfs_rq *pcfs_rq, *cfs_rq;
4623
4624 if (!cfs_bandwidth_used())
4625 return;
4626
4627 if (!tg->parent)
4628 return;
4629
4630 cfs_rq = tg->cfs_rq[cpu];
4631 pcfs_rq = tg->parent->cfs_rq[cpu];
4632
4633 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4634 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4635}
4636
d3d9dc33 4637/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4638static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4639{
56f570e5 4640 if (!cfs_bandwidth_used())
678d5718 4641 return false;
56f570e5 4642
d3d9dc33 4643 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4644 return false;
d3d9dc33
PT
4645
4646 /*
4647 * it's possible for a throttled entity to be forced into a running
4648 * state (e.g. set_curr_task), in this case we're finished.
4649 */
4650 if (cfs_rq_throttled(cfs_rq))
678d5718 4651 return true;
d3d9dc33
PT
4652
4653 throttle_cfs_rq(cfs_rq);
678d5718 4654 return true;
d3d9dc33 4655}
029632fb 4656
029632fb
PZ
4657static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4658{
4659 struct cfs_bandwidth *cfs_b =
4660 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4661
029632fb
PZ
4662 do_sched_cfs_slack_timer(cfs_b);
4663
4664 return HRTIMER_NORESTART;
4665}
4666
4667static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4668{
4669 struct cfs_bandwidth *cfs_b =
4670 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4671 int overrun;
4672 int idle = 0;
4673
51f2176d 4674 raw_spin_lock(&cfs_b->lock);
029632fb 4675 for (;;) {
77a4d1a1 4676 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4677 if (!overrun)
4678 break;
4679
4680 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4681 }
4cfafd30
PZ
4682 if (idle)
4683 cfs_b->period_active = 0;
51f2176d 4684 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4685
4686 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4687}
4688
4689void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4690{
4691 raw_spin_lock_init(&cfs_b->lock);
4692 cfs_b->runtime = 0;
4693 cfs_b->quota = RUNTIME_INF;
4694 cfs_b->period = ns_to_ktime(default_cfs_period());
4695
4696 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4697 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4698 cfs_b->period_timer.function = sched_cfs_period_timer;
4699 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4700 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4701}
4702
4703static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4704{
4705 cfs_rq->runtime_enabled = 0;
4706 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4707}
4708
77a4d1a1 4709void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4710{
4cfafd30 4711 lockdep_assert_held(&cfs_b->lock);
029632fb 4712
4cfafd30
PZ
4713 if (!cfs_b->period_active) {
4714 cfs_b->period_active = 1;
4715 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4716 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4717 }
029632fb
PZ
4718}
4719
4720static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4721{
7f1a169b
TH
4722 /* init_cfs_bandwidth() was not called */
4723 if (!cfs_b->throttled_cfs_rq.next)
4724 return;
4725
029632fb
PZ
4726 hrtimer_cancel(&cfs_b->period_timer);
4727 hrtimer_cancel(&cfs_b->slack_timer);
4728}
4729
502ce005
PZ
4730/*
4731 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4732 *
4733 * The race is harmless, since modifying bandwidth settings of unhooked group
4734 * bits doesn't do much.
4735 */
4736
4737/* cpu online calback */
0e59bdae
KT
4738static void __maybe_unused update_runtime_enabled(struct rq *rq)
4739{
502ce005 4740 struct task_group *tg;
0e59bdae 4741
502ce005
PZ
4742 lockdep_assert_held(&rq->lock);
4743
4744 rcu_read_lock();
4745 list_for_each_entry_rcu(tg, &task_groups, list) {
4746 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4747 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4748
4749 raw_spin_lock(&cfs_b->lock);
4750 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4751 raw_spin_unlock(&cfs_b->lock);
4752 }
502ce005 4753 rcu_read_unlock();
0e59bdae
KT
4754}
4755
502ce005 4756/* cpu offline callback */
38dc3348 4757static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4758{
502ce005
PZ
4759 struct task_group *tg;
4760
4761 lockdep_assert_held(&rq->lock);
4762
4763 rcu_read_lock();
4764 list_for_each_entry_rcu(tg, &task_groups, list) {
4765 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4766
029632fb
PZ
4767 if (!cfs_rq->runtime_enabled)
4768 continue;
4769
4770 /*
4771 * clock_task is not advancing so we just need to make sure
4772 * there's some valid quota amount
4773 */
51f2176d 4774 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4775 /*
4776 * Offline rq is schedulable till cpu is completely disabled
4777 * in take_cpu_down(), so we prevent new cfs throttling here.
4778 */
4779 cfs_rq->runtime_enabled = 0;
4780
029632fb
PZ
4781 if (cfs_rq_throttled(cfs_rq))
4782 unthrottle_cfs_rq(cfs_rq);
4783 }
502ce005 4784 rcu_read_unlock();
029632fb
PZ
4785}
4786
4787#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4788static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4789{
78becc27 4790 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4791}
4792
9dbdb155 4793static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4794static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4795static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4796static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4797static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4798
4799static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4800{
4801 return 0;
4802}
64660c86
PT
4803
4804static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4805{
4806 return 0;
4807}
4808
4809static inline int throttled_lb_pair(struct task_group *tg,
4810 int src_cpu, int dest_cpu)
4811{
4812 return 0;
4813}
029632fb
PZ
4814
4815void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4816
4817#ifdef CONFIG_FAIR_GROUP_SCHED
4818static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4819#endif
4820
029632fb
PZ
4821static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4822{
4823 return NULL;
4824}
4825static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4826static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4827static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4828
4829#endif /* CONFIG_CFS_BANDWIDTH */
4830
bf0f6f24
IM
4831/**************************************************
4832 * CFS operations on tasks:
4833 */
4834
8f4d37ec
PZ
4835#ifdef CONFIG_SCHED_HRTICK
4836static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4837{
8f4d37ec
PZ
4838 struct sched_entity *se = &p->se;
4839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4840
9148a3a1 4841 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4842
8bf46a39 4843 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4844 u64 slice = sched_slice(cfs_rq, se);
4845 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4846 s64 delta = slice - ran;
4847
4848 if (delta < 0) {
4849 if (rq->curr == p)
8875125e 4850 resched_curr(rq);
8f4d37ec
PZ
4851 return;
4852 }
31656519 4853 hrtick_start(rq, delta);
8f4d37ec
PZ
4854 }
4855}
a4c2f00f
PZ
4856
4857/*
4858 * called from enqueue/dequeue and updates the hrtick when the
4859 * current task is from our class and nr_running is low enough
4860 * to matter.
4861 */
4862static void hrtick_update(struct rq *rq)
4863{
4864 struct task_struct *curr = rq->curr;
4865
b39e66ea 4866 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4867 return;
4868
4869 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4870 hrtick_start_fair(rq, curr);
4871}
55e12e5e 4872#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4873static inline void
4874hrtick_start_fair(struct rq *rq, struct task_struct *p)
4875{
4876}
a4c2f00f
PZ
4877
4878static inline void hrtick_update(struct rq *rq)
4879{
4880}
8f4d37ec
PZ
4881#endif
4882
bf0f6f24
IM
4883/*
4884 * The enqueue_task method is called before nr_running is
4885 * increased. Here we update the fair scheduling stats and
4886 * then put the task into the rbtree:
4887 */
ea87bb78 4888static void
371fd7e7 4889enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4890{
4891 struct cfs_rq *cfs_rq;
62fb1851 4892 struct sched_entity *se = &p->se;
bf0f6f24 4893
8c34ab19
RW
4894 /*
4895 * If in_iowait is set, the code below may not trigger any cpufreq
4896 * utilization updates, so do it here explicitly with the IOWAIT flag
4897 * passed.
4898 */
4899 if (p->in_iowait)
4900 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4901
bf0f6f24 4902 for_each_sched_entity(se) {
62fb1851 4903 if (se->on_rq)
bf0f6f24
IM
4904 break;
4905 cfs_rq = cfs_rq_of(se);
88ec22d3 4906 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4907
4908 /*
4909 * end evaluation on encountering a throttled cfs_rq
4910 *
4911 * note: in the case of encountering a throttled cfs_rq we will
4912 * post the final h_nr_running increment below.
e210bffd 4913 */
85dac906
PT
4914 if (cfs_rq_throttled(cfs_rq))
4915 break;
953bfcd1 4916 cfs_rq->h_nr_running++;
85dac906 4917
88ec22d3 4918 flags = ENQUEUE_WAKEUP;
bf0f6f24 4919 }
8f4d37ec 4920
2069dd75 4921 for_each_sched_entity(se) {
0f317143 4922 cfs_rq = cfs_rq_of(se);
953bfcd1 4923 cfs_rq->h_nr_running++;
2069dd75 4924
85dac906
PT
4925 if (cfs_rq_throttled(cfs_rq))
4926 break;
4927
d31b1a66 4928 update_load_avg(se, UPDATE_TG);
89ee048f 4929 update_cfs_shares(se);
2069dd75
PZ
4930 }
4931
cd126afe 4932 if (!se)
72465447 4933 add_nr_running(rq, 1);
cd126afe 4934
a4c2f00f 4935 hrtick_update(rq);
bf0f6f24
IM
4936}
4937
2f36825b
VP
4938static void set_next_buddy(struct sched_entity *se);
4939
bf0f6f24
IM
4940/*
4941 * The dequeue_task method is called before nr_running is
4942 * decreased. We remove the task from the rbtree and
4943 * update the fair scheduling stats:
4944 */
371fd7e7 4945static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4946{
4947 struct cfs_rq *cfs_rq;
62fb1851 4948 struct sched_entity *se = &p->se;
2f36825b 4949 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4950
4951 for_each_sched_entity(se) {
4952 cfs_rq = cfs_rq_of(se);
371fd7e7 4953 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4954
4955 /*
4956 * end evaluation on encountering a throttled cfs_rq
4957 *
4958 * note: in the case of encountering a throttled cfs_rq we will
4959 * post the final h_nr_running decrement below.
4960 */
4961 if (cfs_rq_throttled(cfs_rq))
4962 break;
953bfcd1 4963 cfs_rq->h_nr_running--;
2069dd75 4964
bf0f6f24 4965 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4966 if (cfs_rq->load.weight) {
754bd598
KK
4967 /* Avoid re-evaluating load for this entity: */
4968 se = parent_entity(se);
2f36825b
VP
4969 /*
4970 * Bias pick_next to pick a task from this cfs_rq, as
4971 * p is sleeping when it is within its sched_slice.
4972 */
754bd598
KK
4973 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4974 set_next_buddy(se);
bf0f6f24 4975 break;
2f36825b 4976 }
371fd7e7 4977 flags |= DEQUEUE_SLEEP;
bf0f6f24 4978 }
8f4d37ec 4979
2069dd75 4980 for_each_sched_entity(se) {
0f317143 4981 cfs_rq = cfs_rq_of(se);
953bfcd1 4982 cfs_rq->h_nr_running--;
2069dd75 4983
85dac906
PT
4984 if (cfs_rq_throttled(cfs_rq))
4985 break;
4986
d31b1a66 4987 update_load_avg(se, UPDATE_TG);
89ee048f 4988 update_cfs_shares(se);
2069dd75
PZ
4989 }
4990
cd126afe 4991 if (!se)
72465447 4992 sub_nr_running(rq, 1);
cd126afe 4993
a4c2f00f 4994 hrtick_update(rq);
bf0f6f24
IM
4995}
4996
e7693a36 4997#ifdef CONFIG_SMP
10e2f1ac
PZ
4998
4999/* Working cpumask for: load_balance, load_balance_newidle. */
5000DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5001DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5002
9fd81dd5 5003#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5004/*
5005 * per rq 'load' arrray crap; XXX kill this.
5006 */
5007
5008/*
d937cdc5 5009 * The exact cpuload calculated at every tick would be:
3289bdb4 5010 *
d937cdc5
PZ
5011 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5012 *
5013 * If a cpu misses updates for n ticks (as it was idle) and update gets
5014 * called on the n+1-th tick when cpu may be busy, then we have:
5015 *
5016 * load_n = (1 - 1/2^i)^n * load_0
5017 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5018 *
5019 * decay_load_missed() below does efficient calculation of
3289bdb4 5020 *
d937cdc5
PZ
5021 * load' = (1 - 1/2^i)^n * load
5022 *
5023 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5024 * This allows us to precompute the above in said factors, thereby allowing the
5025 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5026 * fixed_power_int())
3289bdb4 5027 *
d937cdc5 5028 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5029 */
5030#define DEGRADE_SHIFT 7
d937cdc5
PZ
5031
5032static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5033static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5034 { 0, 0, 0, 0, 0, 0, 0, 0 },
5035 { 64, 32, 8, 0, 0, 0, 0, 0 },
5036 { 96, 72, 40, 12, 1, 0, 0, 0 },
5037 { 112, 98, 75, 43, 15, 1, 0, 0 },
5038 { 120, 112, 98, 76, 45, 16, 2, 0 }
5039};
3289bdb4
PZ
5040
5041/*
5042 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5043 * would be when CPU is idle and so we just decay the old load without
5044 * adding any new load.
5045 */
5046static unsigned long
5047decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5048{
5049 int j = 0;
5050
5051 if (!missed_updates)
5052 return load;
5053
5054 if (missed_updates >= degrade_zero_ticks[idx])
5055 return 0;
5056
5057 if (idx == 1)
5058 return load >> missed_updates;
5059
5060 while (missed_updates) {
5061 if (missed_updates % 2)
5062 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5063
5064 missed_updates >>= 1;
5065 j++;
5066 }
5067 return load;
5068}
9fd81dd5 5069#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5070
59543275 5071/**
cee1afce 5072 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5073 * @this_rq: The rq to update statistics for
5074 * @this_load: The current load
5075 * @pending_updates: The number of missed updates
59543275 5076 *
3289bdb4 5077 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5078 * scheduler tick (TICK_NSEC).
5079 *
5080 * This function computes a decaying average:
5081 *
5082 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5083 *
5084 * Because of NOHZ it might not get called on every tick which gives need for
5085 * the @pending_updates argument.
5086 *
5087 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5088 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5089 * = A * (A * load[i]_n-2 + B) + B
5090 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5091 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5092 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5093 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5094 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5095 *
5096 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5097 * any change in load would have resulted in the tick being turned back on.
5098 *
5099 * For regular NOHZ, this reduces to:
5100 *
5101 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5102 *
5103 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5104 * term.
3289bdb4 5105 */
1f41906a
FW
5106static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5107 unsigned long pending_updates)
3289bdb4 5108{
9fd81dd5 5109 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5110 int i, scale;
5111
5112 this_rq->nr_load_updates++;
5113
5114 /* Update our load: */
5115 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5116 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5117 unsigned long old_load, new_load;
5118
5119 /* scale is effectively 1 << i now, and >> i divides by scale */
5120
7400d3bb 5121 old_load = this_rq->cpu_load[i];
9fd81dd5 5122#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5123 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5124 if (tickless_load) {
5125 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5126 /*
5127 * old_load can never be a negative value because a
5128 * decayed tickless_load cannot be greater than the
5129 * original tickless_load.
5130 */
5131 old_load += tickless_load;
5132 }
9fd81dd5 5133#endif
3289bdb4
PZ
5134 new_load = this_load;
5135 /*
5136 * Round up the averaging division if load is increasing. This
5137 * prevents us from getting stuck on 9 if the load is 10, for
5138 * example.
5139 */
5140 if (new_load > old_load)
5141 new_load += scale - 1;
5142
5143 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5144 }
5145
5146 sched_avg_update(this_rq);
5147}
5148
7ea241af 5149/* Used instead of source_load when we know the type == 0 */
c7132dd6 5150static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5151{
c7132dd6 5152 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5153}
5154
3289bdb4 5155#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5156/*
5157 * There is no sane way to deal with nohz on smp when using jiffies because the
5158 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5159 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5160 *
5161 * Therefore we need to avoid the delta approach from the regular tick when
5162 * possible since that would seriously skew the load calculation. This is why we
5163 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5164 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5165 * loop exit, nohz_idle_balance, nohz full exit...)
5166 *
5167 * This means we might still be one tick off for nohz periods.
5168 */
5169
5170static void cpu_load_update_nohz(struct rq *this_rq,
5171 unsigned long curr_jiffies,
5172 unsigned long load)
be68a682
FW
5173{
5174 unsigned long pending_updates;
5175
5176 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5177 if (pending_updates) {
5178 this_rq->last_load_update_tick = curr_jiffies;
5179 /*
5180 * In the regular NOHZ case, we were idle, this means load 0.
5181 * In the NOHZ_FULL case, we were non-idle, we should consider
5182 * its weighted load.
5183 */
1f41906a 5184 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5185 }
5186}
5187
3289bdb4
PZ
5188/*
5189 * Called from nohz_idle_balance() to update the load ratings before doing the
5190 * idle balance.
5191 */
cee1afce 5192static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5193{
3289bdb4
PZ
5194 /*
5195 * bail if there's load or we're actually up-to-date.
5196 */
c7132dd6 5197 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5198 return;
5199
1f41906a 5200 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5201}
5202
5203/*
1f41906a
FW
5204 * Record CPU load on nohz entry so we know the tickless load to account
5205 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5206 * than other cpu_load[idx] but it should be fine as cpu_load readers
5207 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5208 */
1f41906a 5209void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5210{
5211 struct rq *this_rq = this_rq();
1f41906a
FW
5212
5213 /*
5214 * This is all lockless but should be fine. If weighted_cpuload changes
5215 * concurrently we'll exit nohz. And cpu_load write can race with
5216 * cpu_load_update_idle() but both updater would be writing the same.
5217 */
c7132dd6 5218 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5219}
5220
5221/*
5222 * Account the tickless load in the end of a nohz frame.
5223 */
5224void cpu_load_update_nohz_stop(void)
5225{
316c1608 5226 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5227 struct rq *this_rq = this_rq();
5228 unsigned long load;
8a8c69c3 5229 struct rq_flags rf;
3289bdb4
PZ
5230
5231 if (curr_jiffies == this_rq->last_load_update_tick)
5232 return;
5233
c7132dd6 5234 load = weighted_cpuload(this_rq);
8a8c69c3 5235 rq_lock(this_rq, &rf);
b52fad2d 5236 update_rq_clock(this_rq);
1f41906a 5237 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5238 rq_unlock(this_rq, &rf);
3289bdb4 5239}
1f41906a
FW
5240#else /* !CONFIG_NO_HZ_COMMON */
5241static inline void cpu_load_update_nohz(struct rq *this_rq,
5242 unsigned long curr_jiffies,
5243 unsigned long load) { }
5244#endif /* CONFIG_NO_HZ_COMMON */
5245
5246static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5247{
9fd81dd5 5248#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5249 /* See the mess around cpu_load_update_nohz(). */
5250 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5251#endif
1f41906a
FW
5252 cpu_load_update(this_rq, load, 1);
5253}
3289bdb4
PZ
5254
5255/*
5256 * Called from scheduler_tick()
5257 */
cee1afce 5258void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5259{
c7132dd6 5260 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5261
5262 if (tick_nohz_tick_stopped())
5263 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5264 else
5265 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5266}
5267
029632fb
PZ
5268/*
5269 * Return a low guess at the load of a migration-source cpu weighted
5270 * according to the scheduling class and "nice" value.
5271 *
5272 * We want to under-estimate the load of migration sources, to
5273 * balance conservatively.
5274 */
5275static unsigned long source_load(int cpu, int type)
5276{
5277 struct rq *rq = cpu_rq(cpu);
c7132dd6 5278 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5279
5280 if (type == 0 || !sched_feat(LB_BIAS))
5281 return total;
5282
5283 return min(rq->cpu_load[type-1], total);
5284}
5285
5286/*
5287 * Return a high guess at the load of a migration-target cpu weighted
5288 * according to the scheduling class and "nice" value.
5289 */
5290static unsigned long target_load(int cpu, int type)
5291{
5292 struct rq *rq = cpu_rq(cpu);
c7132dd6 5293 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5294
5295 if (type == 0 || !sched_feat(LB_BIAS))
5296 return total;
5297
5298 return max(rq->cpu_load[type-1], total);
5299}
5300
ced549fa 5301static unsigned long capacity_of(int cpu)
029632fb 5302{
ced549fa 5303 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5304}
5305
ca6d75e6
VG
5306static unsigned long capacity_orig_of(int cpu)
5307{
5308 return cpu_rq(cpu)->cpu_capacity_orig;
5309}
5310
029632fb
PZ
5311static unsigned long cpu_avg_load_per_task(int cpu)
5312{
5313 struct rq *rq = cpu_rq(cpu);
316c1608 5314 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5315 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5316
5317 if (nr_running)
b92486cb 5318 return load_avg / nr_running;
029632fb
PZ
5319
5320 return 0;
5321}
5322
c58d25f3
PZ
5323static void record_wakee(struct task_struct *p)
5324{
5325 /*
5326 * Only decay a single time; tasks that have less then 1 wakeup per
5327 * jiffy will not have built up many flips.
5328 */
5329 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5330 current->wakee_flips >>= 1;
5331 current->wakee_flip_decay_ts = jiffies;
5332 }
5333
5334 if (current->last_wakee != p) {
5335 current->last_wakee = p;
5336 current->wakee_flips++;
5337 }
5338}
5339
63b0e9ed
MG
5340/*
5341 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5342 *
63b0e9ed 5343 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5344 * at a frequency roughly N times higher than one of its wakees.
5345 *
5346 * In order to determine whether we should let the load spread vs consolidating
5347 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5348 * partner, and a factor of lls_size higher frequency in the other.
5349 *
5350 * With both conditions met, we can be relatively sure that the relationship is
5351 * non-monogamous, with partner count exceeding socket size.
5352 *
5353 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5354 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5355 * socket size.
63b0e9ed 5356 */
62470419
MW
5357static int wake_wide(struct task_struct *p)
5358{
63b0e9ed
MG
5359 unsigned int master = current->wakee_flips;
5360 unsigned int slave = p->wakee_flips;
7d9ffa89 5361 int factor = this_cpu_read(sd_llc_size);
62470419 5362
63b0e9ed
MG
5363 if (master < slave)
5364 swap(master, slave);
5365 if (slave < factor || master < slave * factor)
5366 return 0;
5367 return 1;
62470419
MW
5368}
5369
772bd008
MR
5370static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5371 int prev_cpu, int sync)
098fb9db 5372{
3fed382b
RR
5373 int this_cpu = smp_processor_id();
5374 bool affine = false;
098fb9db 5375
7d894e6e
RR
5376 /*
5377 * Common case: CPUs are in the same socket, and select_idle_sibling()
5378 * will do its thing regardless of what we return:
5379 */
5380 if (cpus_share_cache(prev_cpu, this_cpu))
3fed382b
RR
5381 affine = true;
5382 else
5383 affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5384
ae92882e 5385 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5386 if (affine) {
5387 schedstat_inc(sd->ttwu_move_affine);
5388 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5389 }
098fb9db 5390
3fed382b 5391 return affine;
098fb9db
IM
5392}
5393
6a0b19c0
MR
5394static inline int task_util(struct task_struct *p);
5395static int cpu_util_wake(int cpu, struct task_struct *p);
5396
5397static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5398{
5399 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5400}
5401
aaee1203
PZ
5402/*
5403 * find_idlest_group finds and returns the least busy CPU group within the
5404 * domain.
5405 */
5406static struct sched_group *
78e7ed53 5407find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5408 int this_cpu, int sd_flag)
e7693a36 5409{
b3bd3de6 5410 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5411 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5412 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5413 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5414 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5415 int load_idx = sd->forkexec_idx;
6b94780e
VG
5416 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5417 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5418 (sd->imbalance_pct-100) / 100;
e7693a36 5419
c44f2a02
VG
5420 if (sd_flag & SD_BALANCE_WAKE)
5421 load_idx = sd->wake_idx;
5422
aaee1203 5423 do {
6b94780e
VG
5424 unsigned long load, avg_load, runnable_load;
5425 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5426 int local_group;
5427 int i;
e7693a36 5428
aaee1203 5429 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5430 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5431 &p->cpus_allowed))
aaee1203
PZ
5432 continue;
5433
5434 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5435 sched_group_span(group));
aaee1203 5436
6a0b19c0
MR
5437 /*
5438 * Tally up the load of all CPUs in the group and find
5439 * the group containing the CPU with most spare capacity.
5440 */
aaee1203 5441 avg_load = 0;
6b94780e 5442 runnable_load = 0;
6a0b19c0 5443 max_spare_cap = 0;
aaee1203 5444
ae4df9d6 5445 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5446 /* Bias balancing toward cpus of our domain */
5447 if (local_group)
5448 load = source_load(i, load_idx);
5449 else
5450 load = target_load(i, load_idx);
5451
6b94780e
VG
5452 runnable_load += load;
5453
5454 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5455
5456 spare_cap = capacity_spare_wake(i, p);
5457
5458 if (spare_cap > max_spare_cap)
5459 max_spare_cap = spare_cap;
aaee1203
PZ
5460 }
5461
63b2ca30 5462 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5463 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5464 group->sgc->capacity;
5465 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5466 group->sgc->capacity;
aaee1203
PZ
5467
5468 if (local_group) {
6b94780e
VG
5469 this_runnable_load = runnable_load;
5470 this_avg_load = avg_load;
6a0b19c0
MR
5471 this_spare = max_spare_cap;
5472 } else {
6b94780e
VG
5473 if (min_runnable_load > (runnable_load + imbalance)) {
5474 /*
5475 * The runnable load is significantly smaller
5476 * so we can pick this new cpu
5477 */
5478 min_runnable_load = runnable_load;
5479 min_avg_load = avg_load;
5480 idlest = group;
5481 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5482 (100*min_avg_load > imbalance_scale*avg_load)) {
5483 /*
5484 * The runnable loads are close so take the
5485 * blocked load into account through avg_load.
5486 */
5487 min_avg_load = avg_load;
6a0b19c0
MR
5488 idlest = group;
5489 }
5490
5491 if (most_spare < max_spare_cap) {
5492 most_spare = max_spare_cap;
5493 most_spare_sg = group;
5494 }
aaee1203
PZ
5495 }
5496 } while (group = group->next, group != sd->groups);
5497
6a0b19c0
MR
5498 /*
5499 * The cross-over point between using spare capacity or least load
5500 * is too conservative for high utilization tasks on partially
5501 * utilized systems if we require spare_capacity > task_util(p),
5502 * so we allow for some task stuffing by using
5503 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5504 *
5505 * Spare capacity can't be used for fork because the utilization has
5506 * not been set yet, we must first select a rq to compute the initial
5507 * utilization.
6a0b19c0 5508 */
f519a3f1
VG
5509 if (sd_flag & SD_BALANCE_FORK)
5510 goto skip_spare;
5511
6a0b19c0 5512 if (this_spare > task_util(p) / 2 &&
6b94780e 5513 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5514 return NULL;
6b94780e
VG
5515
5516 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5517 return most_spare_sg;
5518
f519a3f1 5519skip_spare:
6b94780e
VG
5520 if (!idlest)
5521 return NULL;
5522
5523 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5524 return NULL;
6b94780e
VG
5525
5526 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5527 (100*this_avg_load < imbalance_scale*min_avg_load))
5528 return NULL;
5529
aaee1203
PZ
5530 return idlest;
5531}
5532
5533/*
5534 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5535 */
5536static int
5537find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5538{
5539 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5540 unsigned int min_exit_latency = UINT_MAX;
5541 u64 latest_idle_timestamp = 0;
5542 int least_loaded_cpu = this_cpu;
5543 int shallowest_idle_cpu = -1;
aaee1203
PZ
5544 int i;
5545
eaecf41f
MR
5546 /* Check if we have any choice: */
5547 if (group->group_weight == 1)
ae4df9d6 5548 return cpumask_first(sched_group_span(group));
eaecf41f 5549
aaee1203 5550 /* Traverse only the allowed CPUs */
ae4df9d6 5551 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5552 if (idle_cpu(i)) {
5553 struct rq *rq = cpu_rq(i);
5554 struct cpuidle_state *idle = idle_get_state(rq);
5555 if (idle && idle->exit_latency < min_exit_latency) {
5556 /*
5557 * We give priority to a CPU whose idle state
5558 * has the smallest exit latency irrespective
5559 * of any idle timestamp.
5560 */
5561 min_exit_latency = idle->exit_latency;
5562 latest_idle_timestamp = rq->idle_stamp;
5563 shallowest_idle_cpu = i;
5564 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5565 rq->idle_stamp > latest_idle_timestamp) {
5566 /*
5567 * If equal or no active idle state, then
5568 * the most recently idled CPU might have
5569 * a warmer cache.
5570 */
5571 latest_idle_timestamp = rq->idle_stamp;
5572 shallowest_idle_cpu = i;
5573 }
9f96742a 5574 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5575 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5576 if (load < min_load || (load == min_load && i == this_cpu)) {
5577 min_load = load;
5578 least_loaded_cpu = i;
5579 }
e7693a36
GH
5580 }
5581 }
5582
83a0a96a 5583 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5584}
e7693a36 5585
10e2f1ac
PZ
5586#ifdef CONFIG_SCHED_SMT
5587
5588static inline void set_idle_cores(int cpu, int val)
5589{
5590 struct sched_domain_shared *sds;
5591
5592 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5593 if (sds)
5594 WRITE_ONCE(sds->has_idle_cores, val);
5595}
5596
5597static inline bool test_idle_cores(int cpu, bool def)
5598{
5599 struct sched_domain_shared *sds;
5600
5601 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5602 if (sds)
5603 return READ_ONCE(sds->has_idle_cores);
5604
5605 return def;
5606}
5607
5608/*
5609 * Scans the local SMT mask to see if the entire core is idle, and records this
5610 * information in sd_llc_shared->has_idle_cores.
5611 *
5612 * Since SMT siblings share all cache levels, inspecting this limited remote
5613 * state should be fairly cheap.
5614 */
1b568f0a 5615void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5616{
5617 int core = cpu_of(rq);
5618 int cpu;
5619
5620 rcu_read_lock();
5621 if (test_idle_cores(core, true))
5622 goto unlock;
5623
5624 for_each_cpu(cpu, cpu_smt_mask(core)) {
5625 if (cpu == core)
5626 continue;
5627
5628 if (!idle_cpu(cpu))
5629 goto unlock;
5630 }
5631
5632 set_idle_cores(core, 1);
5633unlock:
5634 rcu_read_unlock();
5635}
5636
5637/*
5638 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5639 * there are no idle cores left in the system; tracked through
5640 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5641 */
5642static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5643{
5644 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5645 int core, cpu;
10e2f1ac 5646
1b568f0a
PZ
5647 if (!static_branch_likely(&sched_smt_present))
5648 return -1;
5649
10e2f1ac
PZ
5650 if (!test_idle_cores(target, false))
5651 return -1;
5652
0c98d344 5653 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5654
c743f0a5 5655 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5656 bool idle = true;
5657
5658 for_each_cpu(cpu, cpu_smt_mask(core)) {
5659 cpumask_clear_cpu(cpu, cpus);
5660 if (!idle_cpu(cpu))
5661 idle = false;
5662 }
5663
5664 if (idle)
5665 return core;
5666 }
5667
5668 /*
5669 * Failed to find an idle core; stop looking for one.
5670 */
5671 set_idle_cores(target, 0);
5672
5673 return -1;
5674}
5675
5676/*
5677 * Scan the local SMT mask for idle CPUs.
5678 */
5679static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5680{
5681 int cpu;
5682
1b568f0a
PZ
5683 if (!static_branch_likely(&sched_smt_present))
5684 return -1;
5685
10e2f1ac 5686 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5687 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5688 continue;
5689 if (idle_cpu(cpu))
5690 return cpu;
5691 }
5692
5693 return -1;
5694}
5695
5696#else /* CONFIG_SCHED_SMT */
5697
5698static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5699{
5700 return -1;
5701}
5702
5703static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5704{
5705 return -1;
5706}
5707
5708#endif /* CONFIG_SCHED_SMT */
5709
5710/*
5711 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5712 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5713 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5714 */
10e2f1ac
PZ
5715static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5716{
9cfb38a7 5717 struct sched_domain *this_sd;
1ad3aaf3 5718 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5719 u64 time, cost;
5720 s64 delta;
1ad3aaf3 5721 int cpu, nr = INT_MAX;
10e2f1ac 5722
9cfb38a7
WL
5723 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5724 if (!this_sd)
5725 return -1;
5726
10e2f1ac
PZ
5727 /*
5728 * Due to large variance we need a large fuzz factor; hackbench in
5729 * particularly is sensitive here.
5730 */
1ad3aaf3
PZ
5731 avg_idle = this_rq()->avg_idle / 512;
5732 avg_cost = this_sd->avg_scan_cost + 1;
5733
5734 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5735 return -1;
5736
1ad3aaf3
PZ
5737 if (sched_feat(SIS_PROP)) {
5738 u64 span_avg = sd->span_weight * avg_idle;
5739 if (span_avg > 4*avg_cost)
5740 nr = div_u64(span_avg, avg_cost);
5741 else
5742 nr = 4;
5743 }
5744
10e2f1ac
PZ
5745 time = local_clock();
5746
c743f0a5 5747 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5748 if (!--nr)
5749 return -1;
0c98d344 5750 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5751 continue;
5752 if (idle_cpu(cpu))
5753 break;
5754 }
5755
5756 time = local_clock() - time;
5757 cost = this_sd->avg_scan_cost;
5758 delta = (s64)(time - cost) / 8;
5759 this_sd->avg_scan_cost += delta;
5760
5761 return cpu;
5762}
5763
5764/*
5765 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5766 */
772bd008 5767static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5768{
99bd5e2f 5769 struct sched_domain *sd;
10e2f1ac 5770 int i;
a50bde51 5771
e0a79f52
MG
5772 if (idle_cpu(target))
5773 return target;
99bd5e2f
SS
5774
5775 /*
10e2f1ac 5776 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5777 */
772bd008
MR
5778 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5779 return prev;
a50bde51 5780
518cd623 5781 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5782 if (!sd)
5783 return target;
772bd008 5784
10e2f1ac
PZ
5785 i = select_idle_core(p, sd, target);
5786 if ((unsigned)i < nr_cpumask_bits)
5787 return i;
37407ea7 5788
10e2f1ac
PZ
5789 i = select_idle_cpu(p, sd, target);
5790 if ((unsigned)i < nr_cpumask_bits)
5791 return i;
5792
5793 i = select_idle_smt(p, sd, target);
5794 if ((unsigned)i < nr_cpumask_bits)
5795 return i;
970e1789 5796
a50bde51
PZ
5797 return target;
5798}
231678b7 5799
8bb5b00c 5800/*
9e91d61d 5801 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5802 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5803 * compare the utilization with the capacity of the CPU that is available for
5804 * CFS task (ie cpu_capacity).
231678b7
DE
5805 *
5806 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5807 * recent utilization of currently non-runnable tasks on a CPU. It represents
5808 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5809 * capacity_orig is the cpu_capacity available at the highest frequency
5810 * (arch_scale_freq_capacity()).
5811 * The utilization of a CPU converges towards a sum equal to or less than the
5812 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5813 * the running time on this CPU scaled by capacity_curr.
5814 *
5815 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5816 * higher than capacity_orig because of unfortunate rounding in
5817 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5818 * the average stabilizes with the new running time. We need to check that the
5819 * utilization stays within the range of [0..capacity_orig] and cap it if
5820 * necessary. Without utilization capping, a group could be seen as overloaded
5821 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5822 * available capacity. We allow utilization to overshoot capacity_curr (but not
5823 * capacity_orig) as it useful for predicting the capacity required after task
5824 * migrations (scheduler-driven DVFS).
8bb5b00c 5825 */
9e91d61d 5826static int cpu_util(int cpu)
8bb5b00c 5827{
9e91d61d 5828 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5829 unsigned long capacity = capacity_orig_of(cpu);
5830
231678b7 5831 return (util >= capacity) ? capacity : util;
8bb5b00c 5832}
a50bde51 5833
3273163c
MR
5834static inline int task_util(struct task_struct *p)
5835{
5836 return p->se.avg.util_avg;
5837}
5838
104cb16d
MR
5839/*
5840 * cpu_util_wake: Compute cpu utilization with any contributions from
5841 * the waking task p removed.
5842 */
5843static int cpu_util_wake(int cpu, struct task_struct *p)
5844{
5845 unsigned long util, capacity;
5846
5847 /* Task has no contribution or is new */
5848 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5849 return cpu_util(cpu);
5850
5851 capacity = capacity_orig_of(cpu);
5852 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5853
5854 return (util >= capacity) ? capacity : util;
5855}
5856
3273163c
MR
5857/*
5858 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5859 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5860 *
5861 * In that case WAKE_AFFINE doesn't make sense and we'll let
5862 * BALANCE_WAKE sort things out.
5863 */
5864static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5865{
5866 long min_cap, max_cap;
5867
5868 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5869 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5870
5871 /* Minimum capacity is close to max, no need to abort wake_affine */
5872 if (max_cap - min_cap < max_cap >> 3)
5873 return 0;
5874
104cb16d
MR
5875 /* Bring task utilization in sync with prev_cpu */
5876 sync_entity_load_avg(&p->se);
5877
3273163c
MR
5878 return min_cap * 1024 < task_util(p) * capacity_margin;
5879}
5880
aaee1203 5881/*
de91b9cb
MR
5882 * select_task_rq_fair: Select target runqueue for the waking task in domains
5883 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5884 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5885 *
de91b9cb
MR
5886 * Balances load by selecting the idlest cpu in the idlest group, or under
5887 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5888 *
de91b9cb 5889 * Returns the target cpu number.
aaee1203
PZ
5890 *
5891 * preempt must be disabled.
5892 */
0017d735 5893static int
ac66f547 5894select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5895{
29cd8bae 5896 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5897 int cpu = smp_processor_id();
63b0e9ed 5898 int new_cpu = prev_cpu;
99bd5e2f 5899 int want_affine = 0;
5158f4e4 5900 int sync = wake_flags & WF_SYNC;
c88d5910 5901
c58d25f3
PZ
5902 if (sd_flag & SD_BALANCE_WAKE) {
5903 record_wakee(p);
3273163c 5904 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5905 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5906 }
aaee1203 5907
dce840a0 5908 rcu_read_lock();
aaee1203 5909 for_each_domain(cpu, tmp) {
e4f42888 5910 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5911 break;
e4f42888 5912
fe3bcfe1 5913 /*
99bd5e2f
SS
5914 * If both cpu and prev_cpu are part of this domain,
5915 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5916 */
99bd5e2f
SS
5917 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5918 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5919 affine_sd = tmp;
29cd8bae 5920 break;
f03542a7 5921 }
29cd8bae 5922
f03542a7 5923 if (tmp->flags & sd_flag)
29cd8bae 5924 sd = tmp;
63b0e9ed
MG
5925 else if (!want_affine)
5926 break;
29cd8bae
PZ
5927 }
5928
63b0e9ed
MG
5929 if (affine_sd) {
5930 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
5931 if (cpu == prev_cpu)
5932 goto pick_cpu;
5933
5934 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5935 new_cpu = cpu;
8b911acd 5936 }
e7693a36 5937
63b0e9ed 5938 if (!sd) {
7d894e6e 5939 pick_cpu:
63b0e9ed 5940 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5941 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5942
5943 } else while (sd) {
aaee1203 5944 struct sched_group *group;
c88d5910 5945 int weight;
098fb9db 5946
0763a660 5947 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5948 sd = sd->child;
5949 continue;
5950 }
098fb9db 5951
c44f2a02 5952 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5953 if (!group) {
5954 sd = sd->child;
5955 continue;
5956 }
4ae7d5ce 5957
d7c33c49 5958 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5959 if (new_cpu == -1 || new_cpu == cpu) {
5960 /* Now try balancing at a lower domain level of cpu */
5961 sd = sd->child;
5962 continue;
e7693a36 5963 }
aaee1203
PZ
5964
5965 /* Now try balancing at a lower domain level of new_cpu */
5966 cpu = new_cpu;
669c55e9 5967 weight = sd->span_weight;
aaee1203
PZ
5968 sd = NULL;
5969 for_each_domain(cpu, tmp) {
669c55e9 5970 if (weight <= tmp->span_weight)
aaee1203 5971 break;
0763a660 5972 if (tmp->flags & sd_flag)
aaee1203
PZ
5973 sd = tmp;
5974 }
5975 /* while loop will break here if sd == NULL */
e7693a36 5976 }
dce840a0 5977 rcu_read_unlock();
e7693a36 5978
c88d5910 5979 return new_cpu;
e7693a36 5980}
0a74bef8
PT
5981
5982/*
5983 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5984 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5985 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5986 */
5a4fd036 5987static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5988{
59efa0ba
PZ
5989 /*
5990 * As blocked tasks retain absolute vruntime the migration needs to
5991 * deal with this by subtracting the old and adding the new
5992 * min_vruntime -- the latter is done by enqueue_entity() when placing
5993 * the task on the new runqueue.
5994 */
5995 if (p->state == TASK_WAKING) {
5996 struct sched_entity *se = &p->se;
5997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5998 u64 min_vruntime;
5999
6000#ifndef CONFIG_64BIT
6001 u64 min_vruntime_copy;
6002
6003 do {
6004 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6005 smp_rmb();
6006 min_vruntime = cfs_rq->min_vruntime;
6007 } while (min_vruntime != min_vruntime_copy);
6008#else
6009 min_vruntime = cfs_rq->min_vruntime;
6010#endif
6011
6012 se->vruntime -= min_vruntime;
6013 }
6014
aff3e498 6015 /*
9d89c257
YD
6016 * We are supposed to update the task to "current" time, then its up to date
6017 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6018 * what current time is, so simply throw away the out-of-date time. This
6019 * will result in the wakee task is less decayed, but giving the wakee more
6020 * load sounds not bad.
aff3e498 6021 */
9d89c257
YD
6022 remove_entity_load_avg(&p->se);
6023
6024 /* Tell new CPU we are migrated */
6025 p->se.avg.last_update_time = 0;
3944a927
BS
6026
6027 /* We have migrated, no longer consider this task hot */
9d89c257 6028 p->se.exec_start = 0;
0a74bef8 6029}
12695578
YD
6030
6031static void task_dead_fair(struct task_struct *p)
6032{
6033 remove_entity_load_avg(&p->se);
6034}
e7693a36
GH
6035#endif /* CONFIG_SMP */
6036
e52fb7c0
PZ
6037static unsigned long
6038wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6039{
6040 unsigned long gran = sysctl_sched_wakeup_granularity;
6041
6042 /*
e52fb7c0
PZ
6043 * Since its curr running now, convert the gran from real-time
6044 * to virtual-time in his units.
13814d42
MG
6045 *
6046 * By using 'se' instead of 'curr' we penalize light tasks, so
6047 * they get preempted easier. That is, if 'se' < 'curr' then
6048 * the resulting gran will be larger, therefore penalizing the
6049 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6050 * be smaller, again penalizing the lighter task.
6051 *
6052 * This is especially important for buddies when the leftmost
6053 * task is higher priority than the buddy.
0bbd3336 6054 */
f4ad9bd2 6055 return calc_delta_fair(gran, se);
0bbd3336
PZ
6056}
6057
464b7527
PZ
6058/*
6059 * Should 'se' preempt 'curr'.
6060 *
6061 * |s1
6062 * |s2
6063 * |s3
6064 * g
6065 * |<--->|c
6066 *
6067 * w(c, s1) = -1
6068 * w(c, s2) = 0
6069 * w(c, s3) = 1
6070 *
6071 */
6072static int
6073wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6074{
6075 s64 gran, vdiff = curr->vruntime - se->vruntime;
6076
6077 if (vdiff <= 0)
6078 return -1;
6079
e52fb7c0 6080 gran = wakeup_gran(curr, se);
464b7527
PZ
6081 if (vdiff > gran)
6082 return 1;
6083
6084 return 0;
6085}
6086
02479099
PZ
6087static void set_last_buddy(struct sched_entity *se)
6088{
69c80f3e
VP
6089 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6090 return;
6091
c5ae366e
DA
6092 for_each_sched_entity(se) {
6093 if (SCHED_WARN_ON(!se->on_rq))
6094 return;
69c80f3e 6095 cfs_rq_of(se)->last = se;
c5ae366e 6096 }
02479099
PZ
6097}
6098
6099static void set_next_buddy(struct sched_entity *se)
6100{
69c80f3e
VP
6101 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6102 return;
6103
c5ae366e
DA
6104 for_each_sched_entity(se) {
6105 if (SCHED_WARN_ON(!se->on_rq))
6106 return;
69c80f3e 6107 cfs_rq_of(se)->next = se;
c5ae366e 6108 }
02479099
PZ
6109}
6110
ac53db59
RR
6111static void set_skip_buddy(struct sched_entity *se)
6112{
69c80f3e
VP
6113 for_each_sched_entity(se)
6114 cfs_rq_of(se)->skip = se;
ac53db59
RR
6115}
6116
bf0f6f24
IM
6117/*
6118 * Preempt the current task with a newly woken task if needed:
6119 */
5a9b86f6 6120static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6121{
6122 struct task_struct *curr = rq->curr;
8651a86c 6123 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6124 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6125 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6126 int next_buddy_marked = 0;
bf0f6f24 6127
4ae7d5ce
IM
6128 if (unlikely(se == pse))
6129 return;
6130
5238cdd3 6131 /*
163122b7 6132 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6133 * unconditionally check_prempt_curr() after an enqueue (which may have
6134 * lead to a throttle). This both saves work and prevents false
6135 * next-buddy nomination below.
6136 */
6137 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6138 return;
6139
2f36825b 6140 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6141 set_next_buddy(pse);
2f36825b
VP
6142 next_buddy_marked = 1;
6143 }
57fdc26d 6144
aec0a514
BR
6145 /*
6146 * We can come here with TIF_NEED_RESCHED already set from new task
6147 * wake up path.
5238cdd3
PT
6148 *
6149 * Note: this also catches the edge-case of curr being in a throttled
6150 * group (e.g. via set_curr_task), since update_curr() (in the
6151 * enqueue of curr) will have resulted in resched being set. This
6152 * prevents us from potentially nominating it as a false LAST_BUDDY
6153 * below.
aec0a514
BR
6154 */
6155 if (test_tsk_need_resched(curr))
6156 return;
6157
a2f5c9ab
DH
6158 /* Idle tasks are by definition preempted by non-idle tasks. */
6159 if (unlikely(curr->policy == SCHED_IDLE) &&
6160 likely(p->policy != SCHED_IDLE))
6161 goto preempt;
6162
91c234b4 6163 /*
a2f5c9ab
DH
6164 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6165 * is driven by the tick):
91c234b4 6166 */
8ed92e51 6167 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6168 return;
bf0f6f24 6169
464b7527 6170 find_matching_se(&se, &pse);
9bbd7374 6171 update_curr(cfs_rq_of(se));
002f128b 6172 BUG_ON(!pse);
2f36825b
VP
6173 if (wakeup_preempt_entity(se, pse) == 1) {
6174 /*
6175 * Bias pick_next to pick the sched entity that is
6176 * triggering this preemption.
6177 */
6178 if (!next_buddy_marked)
6179 set_next_buddy(pse);
3a7e73a2 6180 goto preempt;
2f36825b 6181 }
464b7527 6182
3a7e73a2 6183 return;
a65ac745 6184
3a7e73a2 6185preempt:
8875125e 6186 resched_curr(rq);
3a7e73a2
PZ
6187 /*
6188 * Only set the backward buddy when the current task is still
6189 * on the rq. This can happen when a wakeup gets interleaved
6190 * with schedule on the ->pre_schedule() or idle_balance()
6191 * point, either of which can * drop the rq lock.
6192 *
6193 * Also, during early boot the idle thread is in the fair class,
6194 * for obvious reasons its a bad idea to schedule back to it.
6195 */
6196 if (unlikely(!se->on_rq || curr == rq->idle))
6197 return;
6198
6199 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6200 set_last_buddy(se);
bf0f6f24
IM
6201}
6202
606dba2e 6203static struct task_struct *
d8ac8971 6204pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6205{
6206 struct cfs_rq *cfs_rq = &rq->cfs;
6207 struct sched_entity *se;
678d5718 6208 struct task_struct *p;
37e117c0 6209 int new_tasks;
678d5718 6210
6e83125c 6211again:
678d5718 6212 if (!cfs_rq->nr_running)
38033c37 6213 goto idle;
678d5718 6214
9674f5ca 6215#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6216 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6217 goto simple;
6218
6219 /*
6220 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6221 * likely that a next task is from the same cgroup as the current.
6222 *
6223 * Therefore attempt to avoid putting and setting the entire cgroup
6224 * hierarchy, only change the part that actually changes.
6225 */
6226
6227 do {
6228 struct sched_entity *curr = cfs_rq->curr;
6229
6230 /*
6231 * Since we got here without doing put_prev_entity() we also
6232 * have to consider cfs_rq->curr. If it is still a runnable
6233 * entity, update_curr() will update its vruntime, otherwise
6234 * forget we've ever seen it.
6235 */
54d27365
BS
6236 if (curr) {
6237 if (curr->on_rq)
6238 update_curr(cfs_rq);
6239 else
6240 curr = NULL;
678d5718 6241
54d27365
BS
6242 /*
6243 * This call to check_cfs_rq_runtime() will do the
6244 * throttle and dequeue its entity in the parent(s).
9674f5ca 6245 * Therefore the nr_running test will indeed
54d27365
BS
6246 * be correct.
6247 */
9674f5ca
VK
6248 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6249 cfs_rq = &rq->cfs;
6250
6251 if (!cfs_rq->nr_running)
6252 goto idle;
6253
54d27365 6254 goto simple;
9674f5ca 6255 }
54d27365 6256 }
678d5718
PZ
6257
6258 se = pick_next_entity(cfs_rq, curr);
6259 cfs_rq = group_cfs_rq(se);
6260 } while (cfs_rq);
6261
6262 p = task_of(se);
6263
6264 /*
6265 * Since we haven't yet done put_prev_entity and if the selected task
6266 * is a different task than we started out with, try and touch the
6267 * least amount of cfs_rqs.
6268 */
6269 if (prev != p) {
6270 struct sched_entity *pse = &prev->se;
6271
6272 while (!(cfs_rq = is_same_group(se, pse))) {
6273 int se_depth = se->depth;
6274 int pse_depth = pse->depth;
6275
6276 if (se_depth <= pse_depth) {
6277 put_prev_entity(cfs_rq_of(pse), pse);
6278 pse = parent_entity(pse);
6279 }
6280 if (se_depth >= pse_depth) {
6281 set_next_entity(cfs_rq_of(se), se);
6282 se = parent_entity(se);
6283 }
6284 }
6285
6286 put_prev_entity(cfs_rq, pse);
6287 set_next_entity(cfs_rq, se);
6288 }
6289
6290 if (hrtick_enabled(rq))
6291 hrtick_start_fair(rq, p);
6292
6293 return p;
6294simple:
678d5718 6295#endif
bf0f6f24 6296
3f1d2a31 6297 put_prev_task(rq, prev);
606dba2e 6298
bf0f6f24 6299 do {
678d5718 6300 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6301 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6302 cfs_rq = group_cfs_rq(se);
6303 } while (cfs_rq);
6304
8f4d37ec 6305 p = task_of(se);
678d5718 6306
b39e66ea
MG
6307 if (hrtick_enabled(rq))
6308 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6309
6310 return p;
38033c37
PZ
6311
6312idle:
46f69fa3
MF
6313 new_tasks = idle_balance(rq, rf);
6314
37e117c0
PZ
6315 /*
6316 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6317 * possible for any higher priority task to appear. In that case we
6318 * must re-start the pick_next_entity() loop.
6319 */
e4aa358b 6320 if (new_tasks < 0)
37e117c0
PZ
6321 return RETRY_TASK;
6322
e4aa358b 6323 if (new_tasks > 0)
38033c37 6324 goto again;
38033c37
PZ
6325
6326 return NULL;
bf0f6f24
IM
6327}
6328
6329/*
6330 * Account for a descheduled task:
6331 */
31ee529c 6332static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6333{
6334 struct sched_entity *se = &prev->se;
6335 struct cfs_rq *cfs_rq;
6336
6337 for_each_sched_entity(se) {
6338 cfs_rq = cfs_rq_of(se);
ab6cde26 6339 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6340 }
6341}
6342
ac53db59
RR
6343/*
6344 * sched_yield() is very simple
6345 *
6346 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6347 */
6348static void yield_task_fair(struct rq *rq)
6349{
6350 struct task_struct *curr = rq->curr;
6351 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6352 struct sched_entity *se = &curr->se;
6353
6354 /*
6355 * Are we the only task in the tree?
6356 */
6357 if (unlikely(rq->nr_running == 1))
6358 return;
6359
6360 clear_buddies(cfs_rq, se);
6361
6362 if (curr->policy != SCHED_BATCH) {
6363 update_rq_clock(rq);
6364 /*
6365 * Update run-time statistics of the 'current'.
6366 */
6367 update_curr(cfs_rq);
916671c0
MG
6368 /*
6369 * Tell update_rq_clock() that we've just updated,
6370 * so we don't do microscopic update in schedule()
6371 * and double the fastpath cost.
6372 */
9edfbfed 6373 rq_clock_skip_update(rq, true);
ac53db59
RR
6374 }
6375
6376 set_skip_buddy(se);
6377}
6378
d95f4122
MG
6379static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6380{
6381 struct sched_entity *se = &p->se;
6382
5238cdd3
PT
6383 /* throttled hierarchies are not runnable */
6384 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6385 return false;
6386
6387 /* Tell the scheduler that we'd really like pse to run next. */
6388 set_next_buddy(se);
6389
d95f4122
MG
6390 yield_task_fair(rq);
6391
6392 return true;
6393}
6394
681f3e68 6395#ifdef CONFIG_SMP
bf0f6f24 6396/**************************************************
e9c84cb8
PZ
6397 * Fair scheduling class load-balancing methods.
6398 *
6399 * BASICS
6400 *
6401 * The purpose of load-balancing is to achieve the same basic fairness the
6402 * per-cpu scheduler provides, namely provide a proportional amount of compute
6403 * time to each task. This is expressed in the following equation:
6404 *
6405 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6406 *
6407 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6408 * W_i,0 is defined as:
6409 *
6410 * W_i,0 = \Sum_j w_i,j (2)
6411 *
6412 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6413 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6414 *
6415 * The weight average is an exponential decay average of the instantaneous
6416 * weight:
6417 *
6418 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6419 *
ced549fa 6420 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6421 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6422 * can also include other factors [XXX].
6423 *
6424 * To achieve this balance we define a measure of imbalance which follows
6425 * directly from (1):
6426 *
ced549fa 6427 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6428 *
6429 * We them move tasks around to minimize the imbalance. In the continuous
6430 * function space it is obvious this converges, in the discrete case we get
6431 * a few fun cases generally called infeasible weight scenarios.
6432 *
6433 * [XXX expand on:
6434 * - infeasible weights;
6435 * - local vs global optima in the discrete case. ]
6436 *
6437 *
6438 * SCHED DOMAINS
6439 *
6440 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6441 * for all i,j solution, we create a tree of cpus that follows the hardware
6442 * topology where each level pairs two lower groups (or better). This results
6443 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6444 * tree to only the first of the previous level and we decrease the frequency
6445 * of load-balance at each level inv. proportional to the number of cpus in
6446 * the groups.
6447 *
6448 * This yields:
6449 *
6450 * log_2 n 1 n
6451 * \Sum { --- * --- * 2^i } = O(n) (5)
6452 * i = 0 2^i 2^i
6453 * `- size of each group
6454 * | | `- number of cpus doing load-balance
6455 * | `- freq
6456 * `- sum over all levels
6457 *
6458 * Coupled with a limit on how many tasks we can migrate every balance pass,
6459 * this makes (5) the runtime complexity of the balancer.
6460 *
6461 * An important property here is that each CPU is still (indirectly) connected
6462 * to every other cpu in at most O(log n) steps:
6463 *
6464 * The adjacency matrix of the resulting graph is given by:
6465 *
97a7142f 6466 * log_2 n
e9c84cb8
PZ
6467 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6468 * k = 0
6469 *
6470 * And you'll find that:
6471 *
6472 * A^(log_2 n)_i,j != 0 for all i,j (7)
6473 *
6474 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6475 * The task movement gives a factor of O(m), giving a convergence complexity
6476 * of:
6477 *
6478 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6479 *
6480 *
6481 * WORK CONSERVING
6482 *
6483 * In order to avoid CPUs going idle while there's still work to do, new idle
6484 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6485 * tree itself instead of relying on other CPUs to bring it work.
6486 *
6487 * This adds some complexity to both (5) and (8) but it reduces the total idle
6488 * time.
6489 *
6490 * [XXX more?]
6491 *
6492 *
6493 * CGROUPS
6494 *
6495 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6496 *
6497 * s_k,i
6498 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6499 * S_k
6500 *
6501 * Where
6502 *
6503 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6504 *
6505 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6506 *
6507 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6508 * property.
6509 *
6510 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6511 * rewrite all of this once again.]
97a7142f 6512 */
bf0f6f24 6513
ed387b78
HS
6514static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6515
0ec8aa00
PZ
6516enum fbq_type { regular, remote, all };
6517
ddcdf6e7 6518#define LBF_ALL_PINNED 0x01
367456c7 6519#define LBF_NEED_BREAK 0x02
6263322c
PZ
6520#define LBF_DST_PINNED 0x04
6521#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6522
6523struct lb_env {
6524 struct sched_domain *sd;
6525
ddcdf6e7 6526 struct rq *src_rq;
85c1e7da 6527 int src_cpu;
ddcdf6e7
PZ
6528
6529 int dst_cpu;
6530 struct rq *dst_rq;
6531
88b8dac0
SV
6532 struct cpumask *dst_grpmask;
6533 int new_dst_cpu;
ddcdf6e7 6534 enum cpu_idle_type idle;
bd939f45 6535 long imbalance;
b9403130
MW
6536 /* The set of CPUs under consideration for load-balancing */
6537 struct cpumask *cpus;
6538
ddcdf6e7 6539 unsigned int flags;
367456c7
PZ
6540
6541 unsigned int loop;
6542 unsigned int loop_break;
6543 unsigned int loop_max;
0ec8aa00
PZ
6544
6545 enum fbq_type fbq_type;
163122b7 6546 struct list_head tasks;
ddcdf6e7
PZ
6547};
6548
029632fb
PZ
6549/*
6550 * Is this task likely cache-hot:
6551 */
5d5e2b1b 6552static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6553{
6554 s64 delta;
6555
e5673f28
KT
6556 lockdep_assert_held(&env->src_rq->lock);
6557
029632fb
PZ
6558 if (p->sched_class != &fair_sched_class)
6559 return 0;
6560
6561 if (unlikely(p->policy == SCHED_IDLE))
6562 return 0;
6563
6564 /*
6565 * Buddy candidates are cache hot:
6566 */
5d5e2b1b 6567 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6568 (&p->se == cfs_rq_of(&p->se)->next ||
6569 &p->se == cfs_rq_of(&p->se)->last))
6570 return 1;
6571
6572 if (sysctl_sched_migration_cost == -1)
6573 return 1;
6574 if (sysctl_sched_migration_cost == 0)
6575 return 0;
6576
5d5e2b1b 6577 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6578
6579 return delta < (s64)sysctl_sched_migration_cost;
6580}
6581
3a7053b3 6582#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6583/*
2a1ed24c
SD
6584 * Returns 1, if task migration degrades locality
6585 * Returns 0, if task migration improves locality i.e migration preferred.
6586 * Returns -1, if task migration is not affected by locality.
c1ceac62 6587 */
2a1ed24c 6588static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6589{
b1ad065e 6590 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6591 unsigned long src_faults, dst_faults;
3a7053b3
MG
6592 int src_nid, dst_nid;
6593
2a595721 6594 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6595 return -1;
6596
c3b9bc5b 6597 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6598 return -1;
7a0f3083
MG
6599
6600 src_nid = cpu_to_node(env->src_cpu);
6601 dst_nid = cpu_to_node(env->dst_cpu);
6602
83e1d2cd 6603 if (src_nid == dst_nid)
2a1ed24c 6604 return -1;
7a0f3083 6605
2a1ed24c
SD
6606 /* Migrating away from the preferred node is always bad. */
6607 if (src_nid == p->numa_preferred_nid) {
6608 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6609 return 1;
6610 else
6611 return -1;
6612 }
b1ad065e 6613
c1ceac62
RR
6614 /* Encourage migration to the preferred node. */
6615 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6616 return 0;
b1ad065e 6617
739294fb
RR
6618 /* Leaving a core idle is often worse than degrading locality. */
6619 if (env->idle != CPU_NOT_IDLE)
6620 return -1;
6621
c1ceac62
RR
6622 if (numa_group) {
6623 src_faults = group_faults(p, src_nid);
6624 dst_faults = group_faults(p, dst_nid);
6625 } else {
6626 src_faults = task_faults(p, src_nid);
6627 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6628 }
6629
c1ceac62 6630 return dst_faults < src_faults;
7a0f3083
MG
6631}
6632
3a7053b3 6633#else
2a1ed24c 6634static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6635 struct lb_env *env)
6636{
2a1ed24c 6637 return -1;
7a0f3083 6638}
3a7053b3
MG
6639#endif
6640
1e3c88bd
PZ
6641/*
6642 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6643 */
6644static
8e45cb54 6645int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6646{
2a1ed24c 6647 int tsk_cache_hot;
e5673f28
KT
6648
6649 lockdep_assert_held(&env->src_rq->lock);
6650
1e3c88bd
PZ
6651 /*
6652 * We do not migrate tasks that are:
d3198084 6653 * 1) throttled_lb_pair, or
1e3c88bd 6654 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6655 * 3) running (obviously), or
6656 * 4) are cache-hot on their current CPU.
1e3c88bd 6657 */
d3198084
JK
6658 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6659 return 0;
6660
0c98d344 6661 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6662 int cpu;
88b8dac0 6663
ae92882e 6664 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6665
6263322c
PZ
6666 env->flags |= LBF_SOME_PINNED;
6667
88b8dac0
SV
6668 /*
6669 * Remember if this task can be migrated to any other cpu in
6670 * our sched_group. We may want to revisit it if we couldn't
6671 * meet load balance goals by pulling other tasks on src_cpu.
6672 *
65a4433a
JH
6673 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6674 * already computed one in current iteration.
88b8dac0 6675 */
65a4433a 6676 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6677 return 0;
6678
e02e60c1
JK
6679 /* Prevent to re-select dst_cpu via env's cpus */
6680 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6681 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6682 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6683 env->new_dst_cpu = cpu;
6684 break;
6685 }
88b8dac0 6686 }
e02e60c1 6687
1e3c88bd
PZ
6688 return 0;
6689 }
88b8dac0
SV
6690
6691 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6692 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6693
ddcdf6e7 6694 if (task_running(env->src_rq, p)) {
ae92882e 6695 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6696 return 0;
6697 }
6698
6699 /*
6700 * Aggressive migration if:
3a7053b3
MG
6701 * 1) destination numa is preferred
6702 * 2) task is cache cold, or
6703 * 3) too many balance attempts have failed.
1e3c88bd 6704 */
2a1ed24c
SD
6705 tsk_cache_hot = migrate_degrades_locality(p, env);
6706 if (tsk_cache_hot == -1)
6707 tsk_cache_hot = task_hot(p, env);
3a7053b3 6708
2a1ed24c 6709 if (tsk_cache_hot <= 0 ||
7a96c231 6710 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6711 if (tsk_cache_hot == 1) {
ae92882e
JP
6712 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6713 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6714 }
1e3c88bd
PZ
6715 return 1;
6716 }
6717
ae92882e 6718 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6719 return 0;
1e3c88bd
PZ
6720}
6721
897c395f 6722/*
163122b7
KT
6723 * detach_task() -- detach the task for the migration specified in env
6724 */
6725static void detach_task(struct task_struct *p, struct lb_env *env)
6726{
6727 lockdep_assert_held(&env->src_rq->lock);
6728
163122b7 6729 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6730 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6731 set_task_cpu(p, env->dst_cpu);
6732}
6733
897c395f 6734/*
e5673f28 6735 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6736 * part of active balancing operations within "domain".
897c395f 6737 *
e5673f28 6738 * Returns a task if successful and NULL otherwise.
897c395f 6739 */
e5673f28 6740static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6741{
6742 struct task_struct *p, *n;
897c395f 6743
e5673f28
KT
6744 lockdep_assert_held(&env->src_rq->lock);
6745
367456c7 6746 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6747 if (!can_migrate_task(p, env))
6748 continue;
897c395f 6749
163122b7 6750 detach_task(p, env);
e5673f28 6751
367456c7 6752 /*
e5673f28 6753 * Right now, this is only the second place where
163122b7 6754 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6755 * so we can safely collect stats here rather than
163122b7 6756 * inside detach_tasks().
367456c7 6757 */
ae92882e 6758 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6759 return p;
897c395f 6760 }
e5673f28 6761 return NULL;
897c395f
PZ
6762}
6763
eb95308e
PZ
6764static const unsigned int sched_nr_migrate_break = 32;
6765
5d6523eb 6766/*
163122b7
KT
6767 * detach_tasks() -- tries to detach up to imbalance weighted load from
6768 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6769 *
163122b7 6770 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6771 */
163122b7 6772static int detach_tasks(struct lb_env *env)
1e3c88bd 6773{
5d6523eb
PZ
6774 struct list_head *tasks = &env->src_rq->cfs_tasks;
6775 struct task_struct *p;
367456c7 6776 unsigned long load;
163122b7
KT
6777 int detached = 0;
6778
6779 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6780
bd939f45 6781 if (env->imbalance <= 0)
5d6523eb 6782 return 0;
1e3c88bd 6783
5d6523eb 6784 while (!list_empty(tasks)) {
985d3a4c
YD
6785 /*
6786 * We don't want to steal all, otherwise we may be treated likewise,
6787 * which could at worst lead to a livelock crash.
6788 */
6789 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6790 break;
6791
5d6523eb 6792 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6793
367456c7
PZ
6794 env->loop++;
6795 /* We've more or less seen every task there is, call it quits */
5d6523eb 6796 if (env->loop > env->loop_max)
367456c7 6797 break;
5d6523eb
PZ
6798
6799 /* take a breather every nr_migrate tasks */
367456c7 6800 if (env->loop > env->loop_break) {
eb95308e 6801 env->loop_break += sched_nr_migrate_break;
8e45cb54 6802 env->flags |= LBF_NEED_BREAK;
ee00e66f 6803 break;
a195f004 6804 }
1e3c88bd 6805
d3198084 6806 if (!can_migrate_task(p, env))
367456c7
PZ
6807 goto next;
6808
6809 load = task_h_load(p);
5d6523eb 6810
eb95308e 6811 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6812 goto next;
6813
bd939f45 6814 if ((load / 2) > env->imbalance)
367456c7 6815 goto next;
1e3c88bd 6816
163122b7
KT
6817 detach_task(p, env);
6818 list_add(&p->se.group_node, &env->tasks);
6819
6820 detached++;
bd939f45 6821 env->imbalance -= load;
1e3c88bd
PZ
6822
6823#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6824 /*
6825 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6826 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6827 * the critical section.
6828 */
5d6523eb 6829 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6830 break;
1e3c88bd
PZ
6831#endif
6832
ee00e66f
PZ
6833 /*
6834 * We only want to steal up to the prescribed amount of
6835 * weighted load.
6836 */
bd939f45 6837 if (env->imbalance <= 0)
ee00e66f 6838 break;
367456c7
PZ
6839
6840 continue;
6841next:
5d6523eb 6842 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6843 }
5d6523eb 6844
1e3c88bd 6845 /*
163122b7
KT
6846 * Right now, this is one of only two places we collect this stat
6847 * so we can safely collect detach_one_task() stats here rather
6848 * than inside detach_one_task().
1e3c88bd 6849 */
ae92882e 6850 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6851
163122b7
KT
6852 return detached;
6853}
6854
6855/*
6856 * attach_task() -- attach the task detached by detach_task() to its new rq.
6857 */
6858static void attach_task(struct rq *rq, struct task_struct *p)
6859{
6860 lockdep_assert_held(&rq->lock);
6861
6862 BUG_ON(task_rq(p) != rq);
5704ac0a 6863 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6864 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6865 check_preempt_curr(rq, p, 0);
6866}
6867
6868/*
6869 * attach_one_task() -- attaches the task returned from detach_one_task() to
6870 * its new rq.
6871 */
6872static void attach_one_task(struct rq *rq, struct task_struct *p)
6873{
8a8c69c3
PZ
6874 struct rq_flags rf;
6875
6876 rq_lock(rq, &rf);
5704ac0a 6877 update_rq_clock(rq);
163122b7 6878 attach_task(rq, p);
8a8c69c3 6879 rq_unlock(rq, &rf);
163122b7
KT
6880}
6881
6882/*
6883 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6884 * new rq.
6885 */
6886static void attach_tasks(struct lb_env *env)
6887{
6888 struct list_head *tasks = &env->tasks;
6889 struct task_struct *p;
8a8c69c3 6890 struct rq_flags rf;
163122b7 6891
8a8c69c3 6892 rq_lock(env->dst_rq, &rf);
5704ac0a 6893 update_rq_clock(env->dst_rq);
163122b7
KT
6894
6895 while (!list_empty(tasks)) {
6896 p = list_first_entry(tasks, struct task_struct, se.group_node);
6897 list_del_init(&p->se.group_node);
1e3c88bd 6898
163122b7
KT
6899 attach_task(env->dst_rq, p);
6900 }
6901
8a8c69c3 6902 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6903}
6904
230059de 6905#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
6906
6907static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6908{
6909 if (cfs_rq->load.weight)
6910 return false;
6911
6912 if (cfs_rq->avg.load_sum)
6913 return false;
6914
6915 if (cfs_rq->avg.util_sum)
6916 return false;
6917
6918 if (cfs_rq->runnable_load_sum)
6919 return false;
6920
6921 return true;
6922}
6923
48a16753 6924static void update_blocked_averages(int cpu)
9e3081ca 6925{
9e3081ca 6926 struct rq *rq = cpu_rq(cpu);
a9e7f654 6927 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 6928 struct rq_flags rf;
9e3081ca 6929
8a8c69c3 6930 rq_lock_irqsave(rq, &rf);
48a16753 6931 update_rq_clock(rq);
9d89c257 6932
9763b67f
PZ
6933 /*
6934 * Iterates the task_group tree in a bottom up fashion, see
6935 * list_add_leaf_cfs_rq() for details.
6936 */
a9e7f654 6937 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
6938 struct sched_entity *se;
6939
9d89c257
YD
6940 /* throttled entities do not contribute to load */
6941 if (throttled_hierarchy(cfs_rq))
6942 continue;
48a16753 6943
3a123bbb 6944 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 6945 update_tg_load_avg(cfs_rq, 0);
4e516076 6946
bc427898
VG
6947 /* Propagate pending load changes to the parent, if any: */
6948 se = cfs_rq->tg->se[cpu];
6949 if (se && !skip_blocked_update(se))
6950 update_load_avg(se, 0);
a9e7f654
TH
6951
6952 /*
6953 * There can be a lot of idle CPU cgroups. Don't let fully
6954 * decayed cfs_rqs linger on the list.
6955 */
6956 if (cfs_rq_is_decayed(cfs_rq))
6957 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 6958 }
8a8c69c3 6959 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
6960}
6961
9763b67f 6962/*
68520796 6963 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6964 * This needs to be done in a top-down fashion because the load of a child
6965 * group is a fraction of its parents load.
6966 */
68520796 6967static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6968{
68520796
VD
6969 struct rq *rq = rq_of(cfs_rq);
6970 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6971 unsigned long now = jiffies;
68520796 6972 unsigned long load;
a35b6466 6973
68520796 6974 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6975 return;
6976
68520796
VD
6977 cfs_rq->h_load_next = NULL;
6978 for_each_sched_entity(se) {
6979 cfs_rq = cfs_rq_of(se);
6980 cfs_rq->h_load_next = se;
6981 if (cfs_rq->last_h_load_update == now)
6982 break;
6983 }
a35b6466 6984
68520796 6985 if (!se) {
7ea241af 6986 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6987 cfs_rq->last_h_load_update = now;
6988 }
6989
6990 while ((se = cfs_rq->h_load_next) != NULL) {
6991 load = cfs_rq->h_load;
7ea241af
YD
6992 load = div64_ul(load * se->avg.load_avg,
6993 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6994 cfs_rq = group_cfs_rq(se);
6995 cfs_rq->h_load = load;
6996 cfs_rq->last_h_load_update = now;
6997 }
9763b67f
PZ
6998}
6999
367456c7 7000static unsigned long task_h_load(struct task_struct *p)
230059de 7001{
367456c7 7002 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7003
68520796 7004 update_cfs_rq_h_load(cfs_rq);
9d89c257 7005 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7006 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7007}
7008#else
48a16753 7009static inline void update_blocked_averages(int cpu)
9e3081ca 7010{
6c1d47c0
VG
7011 struct rq *rq = cpu_rq(cpu);
7012 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7013 struct rq_flags rf;
6c1d47c0 7014
8a8c69c3 7015 rq_lock_irqsave(rq, &rf);
6c1d47c0 7016 update_rq_clock(rq);
3a123bbb 7017 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7018 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7019}
7020
367456c7 7021static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7022{
9d89c257 7023 return p->se.avg.load_avg;
1e3c88bd 7024}
230059de 7025#endif
1e3c88bd 7026
1e3c88bd 7027/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7028
7029enum group_type {
7030 group_other = 0,
7031 group_imbalanced,
7032 group_overloaded,
7033};
7034
1e3c88bd
PZ
7035/*
7036 * sg_lb_stats - stats of a sched_group required for load_balancing
7037 */
7038struct sg_lb_stats {
7039 unsigned long avg_load; /*Avg load across the CPUs of the group */
7040 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7041 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7042 unsigned long load_per_task;
63b2ca30 7043 unsigned long group_capacity;
9e91d61d 7044 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7045 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7046 unsigned int idle_cpus;
7047 unsigned int group_weight;
caeb178c 7048 enum group_type group_type;
ea67821b 7049 int group_no_capacity;
0ec8aa00
PZ
7050#ifdef CONFIG_NUMA_BALANCING
7051 unsigned int nr_numa_running;
7052 unsigned int nr_preferred_running;
7053#endif
1e3c88bd
PZ
7054};
7055
56cf515b
JK
7056/*
7057 * sd_lb_stats - Structure to store the statistics of a sched_domain
7058 * during load balancing.
7059 */
7060struct sd_lb_stats {
7061 struct sched_group *busiest; /* Busiest group in this sd */
7062 struct sched_group *local; /* Local group in this sd */
7063 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7064 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7065 unsigned long avg_load; /* Average load across all groups in sd */
7066
56cf515b 7067 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7068 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7069};
7070
147c5fc2
PZ
7071static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7072{
7073 /*
7074 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7075 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7076 * We must however clear busiest_stat::avg_load because
7077 * update_sd_pick_busiest() reads this before assignment.
7078 */
7079 *sds = (struct sd_lb_stats){
7080 .busiest = NULL,
7081 .local = NULL,
7082 .total_load = 0UL,
63b2ca30 7083 .total_capacity = 0UL,
147c5fc2
PZ
7084 .busiest_stat = {
7085 .avg_load = 0UL,
caeb178c
RR
7086 .sum_nr_running = 0,
7087 .group_type = group_other,
147c5fc2
PZ
7088 },
7089 };
7090}
7091
1e3c88bd
PZ
7092/**
7093 * get_sd_load_idx - Obtain the load index for a given sched domain.
7094 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7095 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7096 *
7097 * Return: The load index.
1e3c88bd
PZ
7098 */
7099static inline int get_sd_load_idx(struct sched_domain *sd,
7100 enum cpu_idle_type idle)
7101{
7102 int load_idx;
7103
7104 switch (idle) {
7105 case CPU_NOT_IDLE:
7106 load_idx = sd->busy_idx;
7107 break;
7108
7109 case CPU_NEWLY_IDLE:
7110 load_idx = sd->newidle_idx;
7111 break;
7112 default:
7113 load_idx = sd->idle_idx;
7114 break;
7115 }
7116
7117 return load_idx;
7118}
7119
ced549fa 7120static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7121{
7122 struct rq *rq = cpu_rq(cpu);
b5b4860d 7123 u64 total, used, age_stamp, avg;
cadefd3d 7124 s64 delta;
1e3c88bd 7125
b654f7de
PZ
7126 /*
7127 * Since we're reading these variables without serialization make sure
7128 * we read them once before doing sanity checks on them.
7129 */
316c1608
JL
7130 age_stamp = READ_ONCE(rq->age_stamp);
7131 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7132 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7133
cadefd3d
PZ
7134 if (unlikely(delta < 0))
7135 delta = 0;
7136
7137 total = sched_avg_period() + delta;
aa483808 7138
b5b4860d 7139 used = div_u64(avg, total);
1e3c88bd 7140
b5b4860d
VG
7141 if (likely(used < SCHED_CAPACITY_SCALE))
7142 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7143
b5b4860d 7144 return 1;
1e3c88bd
PZ
7145}
7146
ced549fa 7147static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7148{
8cd5601c 7149 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7150 struct sched_group *sdg = sd->groups;
7151
ca6d75e6 7152 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7153
ced549fa 7154 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7155 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7156
ced549fa
NP
7157 if (!capacity)
7158 capacity = 1;
1e3c88bd 7159
ced549fa
NP
7160 cpu_rq(cpu)->cpu_capacity = capacity;
7161 sdg->sgc->capacity = capacity;
bf475ce0 7162 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7163}
7164
63b2ca30 7165void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7166{
7167 struct sched_domain *child = sd->child;
7168 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7169 unsigned long capacity, min_capacity;
4ec4412e
VG
7170 unsigned long interval;
7171
7172 interval = msecs_to_jiffies(sd->balance_interval);
7173 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7174 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7175
7176 if (!child) {
ced549fa 7177 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7178 return;
7179 }
7180
dc7ff76e 7181 capacity = 0;
bf475ce0 7182 min_capacity = ULONG_MAX;
1e3c88bd 7183
74a5ce20
PZ
7184 if (child->flags & SD_OVERLAP) {
7185 /*
7186 * SD_OVERLAP domains cannot assume that child groups
7187 * span the current group.
7188 */
7189
ae4df9d6 7190 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7191 struct sched_group_capacity *sgc;
9abf24d4 7192 struct rq *rq = cpu_rq(cpu);
863bffc8 7193
9abf24d4 7194 /*
63b2ca30 7195 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7196 * gets here before we've attached the domains to the
7197 * runqueues.
7198 *
ced549fa
NP
7199 * Use capacity_of(), which is set irrespective of domains
7200 * in update_cpu_capacity().
9abf24d4 7201 *
dc7ff76e 7202 * This avoids capacity from being 0 and
9abf24d4 7203 * causing divide-by-zero issues on boot.
9abf24d4
SD
7204 */
7205 if (unlikely(!rq->sd)) {
ced549fa 7206 capacity += capacity_of(cpu);
bf475ce0
MR
7207 } else {
7208 sgc = rq->sd->groups->sgc;
7209 capacity += sgc->capacity;
9abf24d4 7210 }
863bffc8 7211
bf475ce0 7212 min_capacity = min(capacity, min_capacity);
863bffc8 7213 }
74a5ce20
PZ
7214 } else {
7215 /*
7216 * !SD_OVERLAP domains can assume that child groups
7217 * span the current group.
97a7142f 7218 */
74a5ce20
PZ
7219
7220 group = child->groups;
7221 do {
bf475ce0
MR
7222 struct sched_group_capacity *sgc = group->sgc;
7223
7224 capacity += sgc->capacity;
7225 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7226 group = group->next;
7227 } while (group != child->groups);
7228 }
1e3c88bd 7229
63b2ca30 7230 sdg->sgc->capacity = capacity;
bf475ce0 7231 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7232}
7233
9d5efe05 7234/*
ea67821b
VG
7235 * Check whether the capacity of the rq has been noticeably reduced by side
7236 * activity. The imbalance_pct is used for the threshold.
7237 * Return true is the capacity is reduced
9d5efe05
SV
7238 */
7239static inline int
ea67821b 7240check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7241{
ea67821b
VG
7242 return ((rq->cpu_capacity * sd->imbalance_pct) <
7243 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7244}
7245
30ce5dab
PZ
7246/*
7247 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7248 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7249 *
7250 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7251 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7252 * Something like:
7253 *
2b4d5b25
IM
7254 * { 0 1 2 3 } { 4 5 6 7 }
7255 * * * * *
30ce5dab
PZ
7256 *
7257 * If we were to balance group-wise we'd place two tasks in the first group and
7258 * two tasks in the second group. Clearly this is undesired as it will overload
7259 * cpu 3 and leave one of the cpus in the second group unused.
7260 *
7261 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7262 * by noticing the lower domain failed to reach balance and had difficulty
7263 * moving tasks due to affinity constraints.
30ce5dab
PZ
7264 *
7265 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7266 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7267 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7268 * to create an effective group imbalance.
7269 *
7270 * This is a somewhat tricky proposition since the next run might not find the
7271 * group imbalance and decide the groups need to be balanced again. A most
7272 * subtle and fragile situation.
7273 */
7274
6263322c 7275static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7276{
63b2ca30 7277 return group->sgc->imbalance;
30ce5dab
PZ
7278}
7279
b37d9316 7280/*
ea67821b
VG
7281 * group_has_capacity returns true if the group has spare capacity that could
7282 * be used by some tasks.
7283 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7284 * smaller than the number of CPUs or if the utilization is lower than the
7285 * available capacity for CFS tasks.
ea67821b
VG
7286 * For the latter, we use a threshold to stabilize the state, to take into
7287 * account the variance of the tasks' load and to return true if the available
7288 * capacity in meaningful for the load balancer.
7289 * As an example, an available capacity of 1% can appear but it doesn't make
7290 * any benefit for the load balance.
b37d9316 7291 */
ea67821b
VG
7292static inline bool
7293group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7294{
ea67821b
VG
7295 if (sgs->sum_nr_running < sgs->group_weight)
7296 return true;
c61037e9 7297
ea67821b 7298 if ((sgs->group_capacity * 100) >
9e91d61d 7299 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7300 return true;
b37d9316 7301
ea67821b
VG
7302 return false;
7303}
7304
7305/*
7306 * group_is_overloaded returns true if the group has more tasks than it can
7307 * handle.
7308 * group_is_overloaded is not equals to !group_has_capacity because a group
7309 * with the exact right number of tasks, has no more spare capacity but is not
7310 * overloaded so both group_has_capacity and group_is_overloaded return
7311 * false.
7312 */
7313static inline bool
7314group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7315{
7316 if (sgs->sum_nr_running <= sgs->group_weight)
7317 return false;
b37d9316 7318
ea67821b 7319 if ((sgs->group_capacity * 100) <
9e91d61d 7320 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7321 return true;
b37d9316 7322
ea67821b 7323 return false;
b37d9316
PZ
7324}
7325
9e0994c0
MR
7326/*
7327 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7328 * per-CPU capacity than sched_group ref.
7329 */
7330static inline bool
7331group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7332{
7333 return sg->sgc->min_capacity * capacity_margin <
7334 ref->sgc->min_capacity * 1024;
7335}
7336
79a89f92
LY
7337static inline enum
7338group_type group_classify(struct sched_group *group,
7339 struct sg_lb_stats *sgs)
caeb178c 7340{
ea67821b 7341 if (sgs->group_no_capacity)
caeb178c
RR
7342 return group_overloaded;
7343
7344 if (sg_imbalanced(group))
7345 return group_imbalanced;
7346
7347 return group_other;
7348}
7349
1e3c88bd
PZ
7350/**
7351 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7352 * @env: The load balancing environment.
1e3c88bd 7353 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7354 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7355 * @local_group: Does group contain this_cpu.
1e3c88bd 7356 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7357 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7358 */
bd939f45
PZ
7359static inline void update_sg_lb_stats(struct lb_env *env,
7360 struct sched_group *group, int load_idx,
4486edd1
TC
7361 int local_group, struct sg_lb_stats *sgs,
7362 bool *overload)
1e3c88bd 7363{
30ce5dab 7364 unsigned long load;
a426f99c 7365 int i, nr_running;
1e3c88bd 7366
b72ff13c
PZ
7367 memset(sgs, 0, sizeof(*sgs));
7368
ae4df9d6 7369 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7370 struct rq *rq = cpu_rq(i);
7371
1e3c88bd 7372 /* Bias balancing toward cpus of our domain */
6263322c 7373 if (local_group)
04f733b4 7374 load = target_load(i, load_idx);
6263322c 7375 else
1e3c88bd 7376 load = source_load(i, load_idx);
1e3c88bd
PZ
7377
7378 sgs->group_load += load;
9e91d61d 7379 sgs->group_util += cpu_util(i);
65fdac08 7380 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7381
a426f99c
WL
7382 nr_running = rq->nr_running;
7383 if (nr_running > 1)
4486edd1
TC
7384 *overload = true;
7385
0ec8aa00
PZ
7386#ifdef CONFIG_NUMA_BALANCING
7387 sgs->nr_numa_running += rq->nr_numa_running;
7388 sgs->nr_preferred_running += rq->nr_preferred_running;
7389#endif
c7132dd6 7390 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7391 /*
7392 * No need to call idle_cpu() if nr_running is not 0
7393 */
7394 if (!nr_running && idle_cpu(i))
aae6d3dd 7395 sgs->idle_cpus++;
1e3c88bd
PZ
7396 }
7397
63b2ca30
NP
7398 /* Adjust by relative CPU capacity of the group */
7399 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7400 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7401
dd5feea1 7402 if (sgs->sum_nr_running)
38d0f770 7403 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7404
aae6d3dd 7405 sgs->group_weight = group->group_weight;
b37d9316 7406
ea67821b 7407 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7408 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7409}
7410
532cb4c4
MN
7411/**
7412 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7413 * @env: The load balancing environment.
532cb4c4
MN
7414 * @sds: sched_domain statistics
7415 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7416 * @sgs: sched_group statistics
532cb4c4
MN
7417 *
7418 * Determine if @sg is a busier group than the previously selected
7419 * busiest group.
e69f6186
YB
7420 *
7421 * Return: %true if @sg is a busier group than the previously selected
7422 * busiest group. %false otherwise.
532cb4c4 7423 */
bd939f45 7424static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7425 struct sd_lb_stats *sds,
7426 struct sched_group *sg,
bd939f45 7427 struct sg_lb_stats *sgs)
532cb4c4 7428{
caeb178c 7429 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7430
caeb178c 7431 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7432 return true;
7433
caeb178c
RR
7434 if (sgs->group_type < busiest->group_type)
7435 return false;
7436
7437 if (sgs->avg_load <= busiest->avg_load)
7438 return false;
7439
9e0994c0
MR
7440 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7441 goto asym_packing;
7442
7443 /*
7444 * Candidate sg has no more than one task per CPU and
7445 * has higher per-CPU capacity. Migrating tasks to less
7446 * capable CPUs may harm throughput. Maximize throughput,
7447 * power/energy consequences are not considered.
7448 */
7449 if (sgs->sum_nr_running <= sgs->group_weight &&
7450 group_smaller_cpu_capacity(sds->local, sg))
7451 return false;
7452
7453asym_packing:
caeb178c
RR
7454 /* This is the busiest node in its class. */
7455 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7456 return true;
7457
1f621e02
SD
7458 /* No ASYM_PACKING if target cpu is already busy */
7459 if (env->idle == CPU_NOT_IDLE)
7460 return true;
532cb4c4 7461 /*
afe06efd
TC
7462 * ASYM_PACKING needs to move all the work to the highest
7463 * prority CPUs in the group, therefore mark all groups
7464 * of lower priority than ourself as busy.
532cb4c4 7465 */
afe06efd
TC
7466 if (sgs->sum_nr_running &&
7467 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7468 if (!sds->busiest)
7469 return true;
7470
afe06efd
TC
7471 /* Prefer to move from lowest priority cpu's work */
7472 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7473 sg->asym_prefer_cpu))
532cb4c4
MN
7474 return true;
7475 }
7476
7477 return false;
7478}
7479
0ec8aa00
PZ
7480#ifdef CONFIG_NUMA_BALANCING
7481static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7482{
7483 if (sgs->sum_nr_running > sgs->nr_numa_running)
7484 return regular;
7485 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7486 return remote;
7487 return all;
7488}
7489
7490static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7491{
7492 if (rq->nr_running > rq->nr_numa_running)
7493 return regular;
7494 if (rq->nr_running > rq->nr_preferred_running)
7495 return remote;
7496 return all;
7497}
7498#else
7499static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7500{
7501 return all;
7502}
7503
7504static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7505{
7506 return regular;
7507}
7508#endif /* CONFIG_NUMA_BALANCING */
7509
1e3c88bd 7510/**
461819ac 7511 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7512 * @env: The load balancing environment.
1e3c88bd
PZ
7513 * @sds: variable to hold the statistics for this sched_domain.
7514 */
0ec8aa00 7515static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7516{
bd939f45
PZ
7517 struct sched_domain *child = env->sd->child;
7518 struct sched_group *sg = env->sd->groups;
05b40e05 7519 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7520 struct sg_lb_stats tmp_sgs;
1e3c88bd 7521 int load_idx, prefer_sibling = 0;
4486edd1 7522 bool overload = false;
1e3c88bd
PZ
7523
7524 if (child && child->flags & SD_PREFER_SIBLING)
7525 prefer_sibling = 1;
7526
bd939f45 7527 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7528
7529 do {
56cf515b 7530 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7531 int local_group;
7532
ae4df9d6 7533 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7534 if (local_group) {
7535 sds->local = sg;
05b40e05 7536 sgs = local;
b72ff13c
PZ
7537
7538 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7539 time_after_eq(jiffies, sg->sgc->next_update))
7540 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7541 }
1e3c88bd 7542
4486edd1
TC
7543 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7544 &overload);
1e3c88bd 7545
b72ff13c
PZ
7546 if (local_group)
7547 goto next_group;
7548
1e3c88bd
PZ
7549 /*
7550 * In case the child domain prefers tasks go to siblings
ea67821b 7551 * first, lower the sg capacity so that we'll try
75dd321d
NR
7552 * and move all the excess tasks away. We lower the capacity
7553 * of a group only if the local group has the capacity to fit
ea67821b
VG
7554 * these excess tasks. The extra check prevents the case where
7555 * you always pull from the heaviest group when it is already
7556 * under-utilized (possible with a large weight task outweighs
7557 * the tasks on the system).
1e3c88bd 7558 */
b72ff13c 7559 if (prefer_sibling && sds->local &&
05b40e05
SD
7560 group_has_capacity(env, local) &&
7561 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7562 sgs->group_no_capacity = 1;
79a89f92 7563 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7564 }
1e3c88bd 7565
b72ff13c 7566 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7567 sds->busiest = sg;
56cf515b 7568 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7569 }
7570
b72ff13c
PZ
7571next_group:
7572 /* Now, start updating sd_lb_stats */
7573 sds->total_load += sgs->group_load;
63b2ca30 7574 sds->total_capacity += sgs->group_capacity;
b72ff13c 7575
532cb4c4 7576 sg = sg->next;
bd939f45 7577 } while (sg != env->sd->groups);
0ec8aa00
PZ
7578
7579 if (env->sd->flags & SD_NUMA)
7580 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7581
7582 if (!env->sd->parent) {
7583 /* update overload indicator if we are at root domain */
7584 if (env->dst_rq->rd->overload != overload)
7585 env->dst_rq->rd->overload = overload;
7586 }
7587
532cb4c4
MN
7588}
7589
532cb4c4
MN
7590/**
7591 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7592 * sched domain.
532cb4c4
MN
7593 *
7594 * This is primarily intended to used at the sibling level. Some
7595 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7596 * case of POWER7, it can move to lower SMT modes only when higher
7597 * threads are idle. When in lower SMT modes, the threads will
7598 * perform better since they share less core resources. Hence when we
7599 * have idle threads, we want them to be the higher ones.
7600 *
7601 * This packing function is run on idle threads. It checks to see if
7602 * the busiest CPU in this domain (core in the P7 case) has a higher
7603 * CPU number than the packing function is being run on. Here we are
7604 * assuming lower CPU number will be equivalent to lower a SMT thread
7605 * number.
7606 *
e69f6186 7607 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7608 * this CPU. The amount of the imbalance is returned in *imbalance.
7609 *
cd96891d 7610 * @env: The load balancing environment.
532cb4c4 7611 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7612 */
bd939f45 7613static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7614{
7615 int busiest_cpu;
7616
bd939f45 7617 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7618 return 0;
7619
1f621e02
SD
7620 if (env->idle == CPU_NOT_IDLE)
7621 return 0;
7622
532cb4c4
MN
7623 if (!sds->busiest)
7624 return 0;
7625
afe06efd
TC
7626 busiest_cpu = sds->busiest->asym_prefer_cpu;
7627 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7628 return 0;
7629
bd939f45 7630 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7631 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7632 SCHED_CAPACITY_SCALE);
bd939f45 7633
532cb4c4 7634 return 1;
1e3c88bd
PZ
7635}
7636
7637/**
7638 * fix_small_imbalance - Calculate the minor imbalance that exists
7639 * amongst the groups of a sched_domain, during
7640 * load balancing.
cd96891d 7641 * @env: The load balancing environment.
1e3c88bd 7642 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7643 */
bd939f45
PZ
7644static inline
7645void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7646{
63b2ca30 7647 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7648 unsigned int imbn = 2;
dd5feea1 7649 unsigned long scaled_busy_load_per_task;
56cf515b 7650 struct sg_lb_stats *local, *busiest;
1e3c88bd 7651
56cf515b
JK
7652 local = &sds->local_stat;
7653 busiest = &sds->busiest_stat;
1e3c88bd 7654
56cf515b
JK
7655 if (!local->sum_nr_running)
7656 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7657 else if (busiest->load_per_task > local->load_per_task)
7658 imbn = 1;
dd5feea1 7659
56cf515b 7660 scaled_busy_load_per_task =
ca8ce3d0 7661 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7662 busiest->group_capacity;
56cf515b 7663
3029ede3
VD
7664 if (busiest->avg_load + scaled_busy_load_per_task >=
7665 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7666 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7667 return;
7668 }
7669
7670 /*
7671 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7672 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7673 * moving them.
7674 */
7675
63b2ca30 7676 capa_now += busiest->group_capacity *
56cf515b 7677 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7678 capa_now += local->group_capacity *
56cf515b 7679 min(local->load_per_task, local->avg_load);
ca8ce3d0 7680 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7681
7682 /* Amount of load we'd subtract */
a2cd4260 7683 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7684 capa_move += busiest->group_capacity *
56cf515b 7685 min(busiest->load_per_task,
a2cd4260 7686 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7687 }
1e3c88bd
PZ
7688
7689 /* Amount of load we'd add */
63b2ca30 7690 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7691 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7692 tmp = (busiest->avg_load * busiest->group_capacity) /
7693 local->group_capacity;
56cf515b 7694 } else {
ca8ce3d0 7695 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7696 local->group_capacity;
56cf515b 7697 }
63b2ca30 7698 capa_move += local->group_capacity *
3ae11c90 7699 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7700 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7701
7702 /* Move if we gain throughput */
63b2ca30 7703 if (capa_move > capa_now)
56cf515b 7704 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7705}
7706
7707/**
7708 * calculate_imbalance - Calculate the amount of imbalance present within the
7709 * groups of a given sched_domain during load balance.
bd939f45 7710 * @env: load balance environment
1e3c88bd 7711 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7712 */
bd939f45 7713static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7714{
dd5feea1 7715 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7716 struct sg_lb_stats *local, *busiest;
7717
7718 local = &sds->local_stat;
56cf515b 7719 busiest = &sds->busiest_stat;
dd5feea1 7720
caeb178c 7721 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7722 /*
7723 * In the group_imb case we cannot rely on group-wide averages
7724 * to ensure cpu-load equilibrium, look at wider averages. XXX
7725 */
56cf515b
JK
7726 busiest->load_per_task =
7727 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7728 }
7729
1e3c88bd 7730 /*
885e542c
DE
7731 * Avg load of busiest sg can be less and avg load of local sg can
7732 * be greater than avg load across all sgs of sd because avg load
7733 * factors in sg capacity and sgs with smaller group_type are
7734 * skipped when updating the busiest sg:
1e3c88bd 7735 */
b1885550
VD
7736 if (busiest->avg_load <= sds->avg_load ||
7737 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7738 env->imbalance = 0;
7739 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7740 }
7741
9a5d9ba6
PZ
7742 /*
7743 * If there aren't any idle cpus, avoid creating some.
7744 */
7745 if (busiest->group_type == group_overloaded &&
7746 local->group_type == group_overloaded) {
1be0eb2a 7747 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7748 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7749 load_above_capacity -= busiest->group_capacity;
26656215 7750 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7751 load_above_capacity /= busiest->group_capacity;
7752 } else
ea67821b 7753 load_above_capacity = ~0UL;
dd5feea1
SS
7754 }
7755
7756 /*
7757 * We're trying to get all the cpus to the average_load, so we don't
7758 * want to push ourselves above the average load, nor do we wish to
7759 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7760 * we also don't want to reduce the group load below the group
7761 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7762 */
30ce5dab 7763 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7764
7765 /* How much load to actually move to equalise the imbalance */
56cf515b 7766 env->imbalance = min(
63b2ca30
NP
7767 max_pull * busiest->group_capacity,
7768 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7769 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7770
7771 /*
7772 * if *imbalance is less than the average load per runnable task
25985edc 7773 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7774 * a think about bumping its value to force at least one task to be
7775 * moved
7776 */
56cf515b 7777 if (env->imbalance < busiest->load_per_task)
bd939f45 7778 return fix_small_imbalance(env, sds);
1e3c88bd 7779}
fab47622 7780
1e3c88bd
PZ
7781/******* find_busiest_group() helpers end here *********************/
7782
7783/**
7784 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7785 * if there is an imbalance.
1e3c88bd
PZ
7786 *
7787 * Also calculates the amount of weighted load which should be moved
7788 * to restore balance.
7789 *
cd96891d 7790 * @env: The load balancing environment.
1e3c88bd 7791 *
e69f6186 7792 * Return: - The busiest group if imbalance exists.
1e3c88bd 7793 */
56cf515b 7794static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7795{
56cf515b 7796 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7797 struct sd_lb_stats sds;
7798
147c5fc2 7799 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7800
7801 /*
7802 * Compute the various statistics relavent for load balancing at
7803 * this level.
7804 */
23f0d209 7805 update_sd_lb_stats(env, &sds);
56cf515b
JK
7806 local = &sds.local_stat;
7807 busiest = &sds.busiest_stat;
1e3c88bd 7808
ea67821b 7809 /* ASYM feature bypasses nice load balance check */
1f621e02 7810 if (check_asym_packing(env, &sds))
532cb4c4
MN
7811 return sds.busiest;
7812
cc57aa8f 7813 /* There is no busy sibling group to pull tasks from */
56cf515b 7814 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7815 goto out_balanced;
7816
ca8ce3d0
NP
7817 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7818 / sds.total_capacity;
b0432d8f 7819
866ab43e
PZ
7820 /*
7821 * If the busiest group is imbalanced the below checks don't
30ce5dab 7822 * work because they assume all things are equal, which typically
866ab43e
PZ
7823 * isn't true due to cpus_allowed constraints and the like.
7824 */
caeb178c 7825 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7826 goto force_balance;
7827
cc57aa8f 7828 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7829 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7830 busiest->group_no_capacity)
fab47622
NR
7831 goto force_balance;
7832
cc57aa8f 7833 /*
9c58c79a 7834 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7835 * don't try and pull any tasks.
7836 */
56cf515b 7837 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7838 goto out_balanced;
7839
cc57aa8f
PZ
7840 /*
7841 * Don't pull any tasks if this group is already above the domain
7842 * average load.
7843 */
56cf515b 7844 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7845 goto out_balanced;
7846
bd939f45 7847 if (env->idle == CPU_IDLE) {
aae6d3dd 7848 /*
43f4d666
VG
7849 * This cpu is idle. If the busiest group is not overloaded
7850 * and there is no imbalance between this and busiest group
7851 * wrt idle cpus, it is balanced. The imbalance becomes
7852 * significant if the diff is greater than 1 otherwise we
7853 * might end up to just move the imbalance on another group
aae6d3dd 7854 */
43f4d666
VG
7855 if ((busiest->group_type != group_overloaded) &&
7856 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7857 goto out_balanced;
c186fafe
PZ
7858 } else {
7859 /*
7860 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7861 * imbalance_pct to be conservative.
7862 */
56cf515b
JK
7863 if (100 * busiest->avg_load <=
7864 env->sd->imbalance_pct * local->avg_load)
c186fafe 7865 goto out_balanced;
aae6d3dd 7866 }
1e3c88bd 7867
fab47622 7868force_balance:
1e3c88bd 7869 /* Looks like there is an imbalance. Compute it */
bd939f45 7870 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7871 return sds.busiest;
7872
7873out_balanced:
bd939f45 7874 env->imbalance = 0;
1e3c88bd
PZ
7875 return NULL;
7876}
7877
7878/*
7879 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7880 */
bd939f45 7881static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7882 struct sched_group *group)
1e3c88bd
PZ
7883{
7884 struct rq *busiest = NULL, *rq;
ced549fa 7885 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7886 int i;
7887
ae4df9d6 7888 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 7889 unsigned long capacity, wl;
0ec8aa00
PZ
7890 enum fbq_type rt;
7891
7892 rq = cpu_rq(i);
7893 rt = fbq_classify_rq(rq);
1e3c88bd 7894
0ec8aa00
PZ
7895 /*
7896 * We classify groups/runqueues into three groups:
7897 * - regular: there are !numa tasks
7898 * - remote: there are numa tasks that run on the 'wrong' node
7899 * - all: there is no distinction
7900 *
7901 * In order to avoid migrating ideally placed numa tasks,
7902 * ignore those when there's better options.
7903 *
7904 * If we ignore the actual busiest queue to migrate another
7905 * task, the next balance pass can still reduce the busiest
7906 * queue by moving tasks around inside the node.
7907 *
7908 * If we cannot move enough load due to this classification
7909 * the next pass will adjust the group classification and
7910 * allow migration of more tasks.
7911 *
7912 * Both cases only affect the total convergence complexity.
7913 */
7914 if (rt > env->fbq_type)
7915 continue;
7916
ced549fa 7917 capacity = capacity_of(i);
9d5efe05 7918
c7132dd6 7919 wl = weighted_cpuload(rq);
1e3c88bd 7920
6e40f5bb
TG
7921 /*
7922 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7923 * which is not scaled with the cpu capacity.
6e40f5bb 7924 */
ea67821b
VG
7925
7926 if (rq->nr_running == 1 && wl > env->imbalance &&
7927 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7928 continue;
7929
6e40f5bb
TG
7930 /*
7931 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7932 * the weighted_cpuload() scaled with the cpu capacity, so
7933 * that the load can be moved away from the cpu that is
7934 * potentially running at a lower capacity.
95a79b80 7935 *
ced549fa 7936 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7937 * multiplication to rid ourselves of the division works out
ced549fa
NP
7938 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7939 * our previous maximum.
6e40f5bb 7940 */
ced549fa 7941 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7942 busiest_load = wl;
ced549fa 7943 busiest_capacity = capacity;
1e3c88bd
PZ
7944 busiest = rq;
7945 }
7946 }
7947
7948 return busiest;
7949}
7950
7951/*
7952 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7953 * so long as it is large enough.
7954 */
7955#define MAX_PINNED_INTERVAL 512
7956
bd939f45 7957static int need_active_balance(struct lb_env *env)
1af3ed3d 7958{
bd939f45
PZ
7959 struct sched_domain *sd = env->sd;
7960
7961 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7962
7963 /*
7964 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
7965 * lower priority CPUs in order to pack all tasks in the
7966 * highest priority CPUs.
532cb4c4 7967 */
afe06efd
TC
7968 if ((sd->flags & SD_ASYM_PACKING) &&
7969 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 7970 return 1;
1af3ed3d
PZ
7971 }
7972
1aaf90a4
VG
7973 /*
7974 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7975 * It's worth migrating the task if the src_cpu's capacity is reduced
7976 * because of other sched_class or IRQs if more capacity stays
7977 * available on dst_cpu.
7978 */
7979 if ((env->idle != CPU_NOT_IDLE) &&
7980 (env->src_rq->cfs.h_nr_running == 1)) {
7981 if ((check_cpu_capacity(env->src_rq, sd)) &&
7982 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7983 return 1;
7984 }
7985
1af3ed3d
PZ
7986 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7987}
7988
969c7921
TH
7989static int active_load_balance_cpu_stop(void *data);
7990
23f0d209
JK
7991static int should_we_balance(struct lb_env *env)
7992{
7993 struct sched_group *sg = env->sd->groups;
23f0d209
JK
7994 int cpu, balance_cpu = -1;
7995
7996 /*
7997 * In the newly idle case, we will allow all the cpu's
7998 * to do the newly idle load balance.
7999 */
8000 if (env->idle == CPU_NEWLY_IDLE)
8001 return 1;
8002
23f0d209 8003 /* Try to find first idle cpu */
e5c14b1f 8004 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8005 if (!idle_cpu(cpu))
23f0d209
JK
8006 continue;
8007
8008 balance_cpu = cpu;
8009 break;
8010 }
8011
8012 if (balance_cpu == -1)
8013 balance_cpu = group_balance_cpu(sg);
8014
8015 /*
8016 * First idle cpu or the first cpu(busiest) in this sched group
8017 * is eligible for doing load balancing at this and above domains.
8018 */
b0cff9d8 8019 return balance_cpu == env->dst_cpu;
23f0d209
JK
8020}
8021
1e3c88bd
PZ
8022/*
8023 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8024 * tasks if there is an imbalance.
8025 */
8026static int load_balance(int this_cpu, struct rq *this_rq,
8027 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8028 int *continue_balancing)
1e3c88bd 8029{
88b8dac0 8030 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8031 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8032 struct sched_group *group;
1e3c88bd 8033 struct rq *busiest;
8a8c69c3 8034 struct rq_flags rf;
4ba29684 8035 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8036
8e45cb54
PZ
8037 struct lb_env env = {
8038 .sd = sd,
ddcdf6e7
PZ
8039 .dst_cpu = this_cpu,
8040 .dst_rq = this_rq,
ae4df9d6 8041 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8042 .idle = idle,
eb95308e 8043 .loop_break = sched_nr_migrate_break,
b9403130 8044 .cpus = cpus,
0ec8aa00 8045 .fbq_type = all,
163122b7 8046 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8047 };
8048
65a4433a 8049 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8050
ae92882e 8051 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8052
8053redo:
23f0d209
JK
8054 if (!should_we_balance(&env)) {
8055 *continue_balancing = 0;
1e3c88bd 8056 goto out_balanced;
23f0d209 8057 }
1e3c88bd 8058
23f0d209 8059 group = find_busiest_group(&env);
1e3c88bd 8060 if (!group) {
ae92882e 8061 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8062 goto out_balanced;
8063 }
8064
b9403130 8065 busiest = find_busiest_queue(&env, group);
1e3c88bd 8066 if (!busiest) {
ae92882e 8067 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8068 goto out_balanced;
8069 }
8070
78feefc5 8071 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8072
ae92882e 8073 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8074
1aaf90a4
VG
8075 env.src_cpu = busiest->cpu;
8076 env.src_rq = busiest;
8077
1e3c88bd
PZ
8078 ld_moved = 0;
8079 if (busiest->nr_running > 1) {
8080 /*
8081 * Attempt to move tasks. If find_busiest_group has found
8082 * an imbalance but busiest->nr_running <= 1, the group is
8083 * still unbalanced. ld_moved simply stays zero, so it is
8084 * correctly treated as an imbalance.
8085 */
8e45cb54 8086 env.flags |= LBF_ALL_PINNED;
c82513e5 8087 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8088
5d6523eb 8089more_balance:
8a8c69c3 8090 rq_lock_irqsave(busiest, &rf);
3bed5e21 8091 update_rq_clock(busiest);
88b8dac0
SV
8092
8093 /*
8094 * cur_ld_moved - load moved in current iteration
8095 * ld_moved - cumulative load moved across iterations
8096 */
163122b7 8097 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8098
8099 /*
163122b7
KT
8100 * We've detached some tasks from busiest_rq. Every
8101 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8102 * unlock busiest->lock, and we are able to be sure
8103 * that nobody can manipulate the tasks in parallel.
8104 * See task_rq_lock() family for the details.
1e3c88bd 8105 */
163122b7 8106
8a8c69c3 8107 rq_unlock(busiest, &rf);
163122b7
KT
8108
8109 if (cur_ld_moved) {
8110 attach_tasks(&env);
8111 ld_moved += cur_ld_moved;
8112 }
8113
8a8c69c3 8114 local_irq_restore(rf.flags);
88b8dac0 8115
f1cd0858
JK
8116 if (env.flags & LBF_NEED_BREAK) {
8117 env.flags &= ~LBF_NEED_BREAK;
8118 goto more_balance;
8119 }
8120
88b8dac0
SV
8121 /*
8122 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8123 * us and move them to an alternate dst_cpu in our sched_group
8124 * where they can run. The upper limit on how many times we
8125 * iterate on same src_cpu is dependent on number of cpus in our
8126 * sched_group.
8127 *
8128 * This changes load balance semantics a bit on who can move
8129 * load to a given_cpu. In addition to the given_cpu itself
8130 * (or a ilb_cpu acting on its behalf where given_cpu is
8131 * nohz-idle), we now have balance_cpu in a position to move
8132 * load to given_cpu. In rare situations, this may cause
8133 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8134 * _independently_ and at _same_ time to move some load to
8135 * given_cpu) causing exceess load to be moved to given_cpu.
8136 * This however should not happen so much in practice and
8137 * moreover subsequent load balance cycles should correct the
8138 * excess load moved.
8139 */
6263322c 8140 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8141
7aff2e3a
VD
8142 /* Prevent to re-select dst_cpu via env's cpus */
8143 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8144
78feefc5 8145 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8146 env.dst_cpu = env.new_dst_cpu;
6263322c 8147 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8148 env.loop = 0;
8149 env.loop_break = sched_nr_migrate_break;
e02e60c1 8150
88b8dac0
SV
8151 /*
8152 * Go back to "more_balance" rather than "redo" since we
8153 * need to continue with same src_cpu.
8154 */
8155 goto more_balance;
8156 }
1e3c88bd 8157
6263322c
PZ
8158 /*
8159 * We failed to reach balance because of affinity.
8160 */
8161 if (sd_parent) {
63b2ca30 8162 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8163
afdeee05 8164 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8165 *group_imbalance = 1;
6263322c
PZ
8166 }
8167
1e3c88bd 8168 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8169 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8170 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8171 /*
8172 * Attempting to continue load balancing at the current
8173 * sched_domain level only makes sense if there are
8174 * active CPUs remaining as possible busiest CPUs to
8175 * pull load from which are not contained within the
8176 * destination group that is receiving any migrated
8177 * load.
8178 */
8179 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8180 env.loop = 0;
8181 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8182 goto redo;
bbf18b19 8183 }
afdeee05 8184 goto out_all_pinned;
1e3c88bd
PZ
8185 }
8186 }
8187
8188 if (!ld_moved) {
ae92882e 8189 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8190 /*
8191 * Increment the failure counter only on periodic balance.
8192 * We do not want newidle balance, which can be very
8193 * frequent, pollute the failure counter causing
8194 * excessive cache_hot migrations and active balances.
8195 */
8196 if (idle != CPU_NEWLY_IDLE)
8197 sd->nr_balance_failed++;
1e3c88bd 8198
bd939f45 8199 if (need_active_balance(&env)) {
8a8c69c3
PZ
8200 unsigned long flags;
8201
1e3c88bd
PZ
8202 raw_spin_lock_irqsave(&busiest->lock, flags);
8203
969c7921
TH
8204 /* don't kick the active_load_balance_cpu_stop,
8205 * if the curr task on busiest cpu can't be
8206 * moved to this_cpu
1e3c88bd 8207 */
0c98d344 8208 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8209 raw_spin_unlock_irqrestore(&busiest->lock,
8210 flags);
8e45cb54 8211 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8212 goto out_one_pinned;
8213 }
8214
969c7921
TH
8215 /*
8216 * ->active_balance synchronizes accesses to
8217 * ->active_balance_work. Once set, it's cleared
8218 * only after active load balance is finished.
8219 */
1e3c88bd
PZ
8220 if (!busiest->active_balance) {
8221 busiest->active_balance = 1;
8222 busiest->push_cpu = this_cpu;
8223 active_balance = 1;
8224 }
8225 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8226
bd939f45 8227 if (active_balance) {
969c7921
TH
8228 stop_one_cpu_nowait(cpu_of(busiest),
8229 active_load_balance_cpu_stop, busiest,
8230 &busiest->active_balance_work);
bd939f45 8231 }
1e3c88bd 8232
d02c0711 8233 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8234 sd->nr_balance_failed = sd->cache_nice_tries+1;
8235 }
8236 } else
8237 sd->nr_balance_failed = 0;
8238
8239 if (likely(!active_balance)) {
8240 /* We were unbalanced, so reset the balancing interval */
8241 sd->balance_interval = sd->min_interval;
8242 } else {
8243 /*
8244 * If we've begun active balancing, start to back off. This
8245 * case may not be covered by the all_pinned logic if there
8246 * is only 1 task on the busy runqueue (because we don't call
163122b7 8247 * detach_tasks).
1e3c88bd
PZ
8248 */
8249 if (sd->balance_interval < sd->max_interval)
8250 sd->balance_interval *= 2;
8251 }
8252
1e3c88bd
PZ
8253 goto out;
8254
8255out_balanced:
afdeee05
VG
8256 /*
8257 * We reach balance although we may have faced some affinity
8258 * constraints. Clear the imbalance flag if it was set.
8259 */
8260 if (sd_parent) {
8261 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8262
8263 if (*group_imbalance)
8264 *group_imbalance = 0;
8265 }
8266
8267out_all_pinned:
8268 /*
8269 * We reach balance because all tasks are pinned at this level so
8270 * we can't migrate them. Let the imbalance flag set so parent level
8271 * can try to migrate them.
8272 */
ae92882e 8273 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8274
8275 sd->nr_balance_failed = 0;
8276
8277out_one_pinned:
8278 /* tune up the balancing interval */
8e45cb54 8279 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8280 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8281 (sd->balance_interval < sd->max_interval))
8282 sd->balance_interval *= 2;
8283
46e49b38 8284 ld_moved = 0;
1e3c88bd 8285out:
1e3c88bd
PZ
8286 return ld_moved;
8287}
8288
52a08ef1
JL
8289static inline unsigned long
8290get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8291{
8292 unsigned long interval = sd->balance_interval;
8293
8294 if (cpu_busy)
8295 interval *= sd->busy_factor;
8296
8297 /* scale ms to jiffies */
8298 interval = msecs_to_jiffies(interval);
8299 interval = clamp(interval, 1UL, max_load_balance_interval);
8300
8301 return interval;
8302}
8303
8304static inline void
31851a98 8305update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8306{
8307 unsigned long interval, next;
8308
31851a98
LY
8309 /* used by idle balance, so cpu_busy = 0 */
8310 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8311 next = sd->last_balance + interval;
8312
8313 if (time_after(*next_balance, next))
8314 *next_balance = next;
8315}
8316
1e3c88bd
PZ
8317/*
8318 * idle_balance is called by schedule() if this_cpu is about to become
8319 * idle. Attempts to pull tasks from other CPUs.
8320 */
46f69fa3 8321static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8322{
52a08ef1
JL
8323 unsigned long next_balance = jiffies + HZ;
8324 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8325 struct sched_domain *sd;
8326 int pulled_task = 0;
9bd721c5 8327 u64 curr_cost = 0;
1e3c88bd 8328
6e83125c
PZ
8329 /*
8330 * We must set idle_stamp _before_ calling idle_balance(), such that we
8331 * measure the duration of idle_balance() as idle time.
8332 */
8333 this_rq->idle_stamp = rq_clock(this_rq);
8334
46f69fa3
MF
8335 /*
8336 * This is OK, because current is on_cpu, which avoids it being picked
8337 * for load-balance and preemption/IRQs are still disabled avoiding
8338 * further scheduler activity on it and we're being very careful to
8339 * re-start the picking loop.
8340 */
8341 rq_unpin_lock(this_rq, rf);
8342
4486edd1
TC
8343 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8344 !this_rq->rd->overload) {
52a08ef1
JL
8345 rcu_read_lock();
8346 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8347 if (sd)
31851a98 8348 update_next_balance(sd, &next_balance);
52a08ef1
JL
8349 rcu_read_unlock();
8350
6e83125c 8351 goto out;
52a08ef1 8352 }
1e3c88bd 8353
f492e12e
PZ
8354 raw_spin_unlock(&this_rq->lock);
8355
48a16753 8356 update_blocked_averages(this_cpu);
dce840a0 8357 rcu_read_lock();
1e3c88bd 8358 for_each_domain(this_cpu, sd) {
23f0d209 8359 int continue_balancing = 1;
9bd721c5 8360 u64 t0, domain_cost;
1e3c88bd
PZ
8361
8362 if (!(sd->flags & SD_LOAD_BALANCE))
8363 continue;
8364
52a08ef1 8365 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8366 update_next_balance(sd, &next_balance);
9bd721c5 8367 break;
52a08ef1 8368 }
9bd721c5 8369
f492e12e 8370 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8371 t0 = sched_clock_cpu(this_cpu);
8372
f492e12e 8373 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8374 sd, CPU_NEWLY_IDLE,
8375 &continue_balancing);
9bd721c5
JL
8376
8377 domain_cost = sched_clock_cpu(this_cpu) - t0;
8378 if (domain_cost > sd->max_newidle_lb_cost)
8379 sd->max_newidle_lb_cost = domain_cost;
8380
8381 curr_cost += domain_cost;
f492e12e 8382 }
1e3c88bd 8383
31851a98 8384 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8385
8386 /*
8387 * Stop searching for tasks to pull if there are
8388 * now runnable tasks on this rq.
8389 */
8390 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8391 break;
1e3c88bd 8392 }
dce840a0 8393 rcu_read_unlock();
f492e12e
PZ
8394
8395 raw_spin_lock(&this_rq->lock);
8396
0e5b5337
JL
8397 if (curr_cost > this_rq->max_idle_balance_cost)
8398 this_rq->max_idle_balance_cost = curr_cost;
8399
e5fc6611 8400 /*
0e5b5337
JL
8401 * While browsing the domains, we released the rq lock, a task could
8402 * have been enqueued in the meantime. Since we're not going idle,
8403 * pretend we pulled a task.
e5fc6611 8404 */
0e5b5337 8405 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8406 pulled_task = 1;
e5fc6611 8407
52a08ef1
JL
8408out:
8409 /* Move the next balance forward */
8410 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8411 this_rq->next_balance = next_balance;
9bd721c5 8412
e4aa358b 8413 /* Is there a task of a high priority class? */
46383648 8414 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8415 pulled_task = -1;
8416
38c6ade2 8417 if (pulled_task)
6e83125c
PZ
8418 this_rq->idle_stamp = 0;
8419
46f69fa3
MF
8420 rq_repin_lock(this_rq, rf);
8421
3c4017c1 8422 return pulled_task;
1e3c88bd
PZ
8423}
8424
8425/*
969c7921
TH
8426 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8427 * running tasks off the busiest CPU onto idle CPUs. It requires at
8428 * least 1 task to be running on each physical CPU where possible, and
8429 * avoids physical / logical imbalances.
1e3c88bd 8430 */
969c7921 8431static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8432{
969c7921
TH
8433 struct rq *busiest_rq = data;
8434 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8435 int target_cpu = busiest_rq->push_cpu;
969c7921 8436 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8437 struct sched_domain *sd;
e5673f28 8438 struct task_struct *p = NULL;
8a8c69c3 8439 struct rq_flags rf;
969c7921 8440
8a8c69c3 8441 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8442
8443 /* make sure the requested cpu hasn't gone down in the meantime */
8444 if (unlikely(busiest_cpu != smp_processor_id() ||
8445 !busiest_rq->active_balance))
8446 goto out_unlock;
1e3c88bd
PZ
8447
8448 /* Is there any task to move? */
8449 if (busiest_rq->nr_running <= 1)
969c7921 8450 goto out_unlock;
1e3c88bd
PZ
8451
8452 /*
8453 * This condition is "impossible", if it occurs
8454 * we need to fix it. Originally reported by
8455 * Bjorn Helgaas on a 128-cpu setup.
8456 */
8457 BUG_ON(busiest_rq == target_rq);
8458
1e3c88bd 8459 /* Search for an sd spanning us and the target CPU. */
dce840a0 8460 rcu_read_lock();
1e3c88bd
PZ
8461 for_each_domain(target_cpu, sd) {
8462 if ((sd->flags & SD_LOAD_BALANCE) &&
8463 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8464 break;
8465 }
8466
8467 if (likely(sd)) {
8e45cb54
PZ
8468 struct lb_env env = {
8469 .sd = sd,
ddcdf6e7
PZ
8470 .dst_cpu = target_cpu,
8471 .dst_rq = target_rq,
8472 .src_cpu = busiest_rq->cpu,
8473 .src_rq = busiest_rq,
8e45cb54 8474 .idle = CPU_IDLE,
65a4433a
JH
8475 /*
8476 * can_migrate_task() doesn't need to compute new_dst_cpu
8477 * for active balancing. Since we have CPU_IDLE, but no
8478 * @dst_grpmask we need to make that test go away with lying
8479 * about DST_PINNED.
8480 */
8481 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8482 };
8483
ae92882e 8484 schedstat_inc(sd->alb_count);
3bed5e21 8485 update_rq_clock(busiest_rq);
1e3c88bd 8486
e5673f28 8487 p = detach_one_task(&env);
d02c0711 8488 if (p) {
ae92882e 8489 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8490 /* Active balancing done, reset the failure counter. */
8491 sd->nr_balance_failed = 0;
8492 } else {
ae92882e 8493 schedstat_inc(sd->alb_failed);
d02c0711 8494 }
1e3c88bd 8495 }
dce840a0 8496 rcu_read_unlock();
969c7921
TH
8497out_unlock:
8498 busiest_rq->active_balance = 0;
8a8c69c3 8499 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8500
8501 if (p)
8502 attach_one_task(target_rq, p);
8503
8504 local_irq_enable();
8505
969c7921 8506 return 0;
1e3c88bd
PZ
8507}
8508
d987fc7f
MG
8509static inline int on_null_domain(struct rq *rq)
8510{
8511 return unlikely(!rcu_dereference_sched(rq->sd));
8512}
8513
3451d024 8514#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8515/*
8516 * idle load balancing details
83cd4fe2
VP
8517 * - When one of the busy CPUs notice that there may be an idle rebalancing
8518 * needed, they will kick the idle load balancer, which then does idle
8519 * load balancing for all the idle CPUs.
8520 */
1e3c88bd 8521static struct {
83cd4fe2 8522 cpumask_var_t idle_cpus_mask;
0b005cf5 8523 atomic_t nr_cpus;
83cd4fe2
VP
8524 unsigned long next_balance; /* in jiffy units */
8525} nohz ____cacheline_aligned;
1e3c88bd 8526
3dd0337d 8527static inline int find_new_ilb(void)
1e3c88bd 8528{
0b005cf5 8529 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8530
786d6dc7
SS
8531 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8532 return ilb;
8533
8534 return nr_cpu_ids;
1e3c88bd 8535}
1e3c88bd 8536
83cd4fe2
VP
8537/*
8538 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8539 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8540 * CPU (if there is one).
8541 */
0aeeeeba 8542static void nohz_balancer_kick(void)
83cd4fe2
VP
8543{
8544 int ilb_cpu;
8545
8546 nohz.next_balance++;
8547
3dd0337d 8548 ilb_cpu = find_new_ilb();
83cd4fe2 8549
0b005cf5
SS
8550 if (ilb_cpu >= nr_cpu_ids)
8551 return;
83cd4fe2 8552
cd490c5b 8553 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8554 return;
8555 /*
8556 * Use smp_send_reschedule() instead of resched_cpu().
8557 * This way we generate a sched IPI on the target cpu which
8558 * is idle. And the softirq performing nohz idle load balance
8559 * will be run before returning from the IPI.
8560 */
8561 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8562 return;
8563}
8564
20a5c8cc 8565void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8566{
8567 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8568 /*
8569 * Completely isolated CPUs don't ever set, so we must test.
8570 */
8571 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8572 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8573 atomic_dec(&nohz.nr_cpus);
8574 }
71325960
SS
8575 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8576 }
8577}
8578
69e1e811
SS
8579static inline void set_cpu_sd_state_busy(void)
8580{
8581 struct sched_domain *sd;
37dc6b50 8582 int cpu = smp_processor_id();
69e1e811 8583
69e1e811 8584 rcu_read_lock();
0e369d75 8585 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8586
8587 if (!sd || !sd->nohz_idle)
8588 goto unlock;
8589 sd->nohz_idle = 0;
8590
0e369d75 8591 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8592unlock:
69e1e811
SS
8593 rcu_read_unlock();
8594}
8595
8596void set_cpu_sd_state_idle(void)
8597{
8598 struct sched_domain *sd;
37dc6b50 8599 int cpu = smp_processor_id();
69e1e811 8600
69e1e811 8601 rcu_read_lock();
0e369d75 8602 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8603
8604 if (!sd || sd->nohz_idle)
8605 goto unlock;
8606 sd->nohz_idle = 1;
8607
0e369d75 8608 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8609unlock:
69e1e811
SS
8610 rcu_read_unlock();
8611}
8612
1e3c88bd 8613/*
c1cc017c 8614 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8615 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8616 */
c1cc017c 8617void nohz_balance_enter_idle(int cpu)
1e3c88bd 8618{
71325960
SS
8619 /*
8620 * If this cpu is going down, then nothing needs to be done.
8621 */
8622 if (!cpu_active(cpu))
8623 return;
8624
387bc8b5
FW
8625 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8626 if (!is_housekeeping_cpu(cpu))
8627 return;
8628
c1cc017c
AS
8629 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8630 return;
1e3c88bd 8631
d987fc7f
MG
8632 /*
8633 * If we're a completely isolated CPU, we don't play.
8634 */
8635 if (on_null_domain(cpu_rq(cpu)))
8636 return;
8637
c1cc017c
AS
8638 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8639 atomic_inc(&nohz.nr_cpus);
8640 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8641}
8642#endif
8643
8644static DEFINE_SPINLOCK(balancing);
8645
49c022e6
PZ
8646/*
8647 * Scale the max load_balance interval with the number of CPUs in the system.
8648 * This trades load-balance latency on larger machines for less cross talk.
8649 */
029632fb 8650void update_max_interval(void)
49c022e6
PZ
8651{
8652 max_load_balance_interval = HZ*num_online_cpus()/10;
8653}
8654
1e3c88bd
PZ
8655/*
8656 * It checks each scheduling domain to see if it is due to be balanced,
8657 * and initiates a balancing operation if so.
8658 *
b9b0853a 8659 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8660 */
f7ed0a89 8661static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8662{
23f0d209 8663 int continue_balancing = 1;
f7ed0a89 8664 int cpu = rq->cpu;
1e3c88bd 8665 unsigned long interval;
04f733b4 8666 struct sched_domain *sd;
1e3c88bd
PZ
8667 /* Earliest time when we have to do rebalance again */
8668 unsigned long next_balance = jiffies + 60*HZ;
8669 int update_next_balance = 0;
f48627e6
JL
8670 int need_serialize, need_decay = 0;
8671 u64 max_cost = 0;
1e3c88bd 8672
48a16753 8673 update_blocked_averages(cpu);
2069dd75 8674
dce840a0 8675 rcu_read_lock();
1e3c88bd 8676 for_each_domain(cpu, sd) {
f48627e6
JL
8677 /*
8678 * Decay the newidle max times here because this is a regular
8679 * visit to all the domains. Decay ~1% per second.
8680 */
8681 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8682 sd->max_newidle_lb_cost =
8683 (sd->max_newidle_lb_cost * 253) / 256;
8684 sd->next_decay_max_lb_cost = jiffies + HZ;
8685 need_decay = 1;
8686 }
8687 max_cost += sd->max_newidle_lb_cost;
8688
1e3c88bd
PZ
8689 if (!(sd->flags & SD_LOAD_BALANCE))
8690 continue;
8691
f48627e6
JL
8692 /*
8693 * Stop the load balance at this level. There is another
8694 * CPU in our sched group which is doing load balancing more
8695 * actively.
8696 */
8697 if (!continue_balancing) {
8698 if (need_decay)
8699 continue;
8700 break;
8701 }
8702
52a08ef1 8703 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8704
8705 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8706 if (need_serialize) {
8707 if (!spin_trylock(&balancing))
8708 goto out;
8709 }
8710
8711 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8712 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8713 /*
6263322c 8714 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8715 * env->dst_cpu, so we can't know our idle
8716 * state even if we migrated tasks. Update it.
1e3c88bd 8717 */
de5eb2dd 8718 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8719 }
8720 sd->last_balance = jiffies;
52a08ef1 8721 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8722 }
8723 if (need_serialize)
8724 spin_unlock(&balancing);
8725out:
8726 if (time_after(next_balance, sd->last_balance + interval)) {
8727 next_balance = sd->last_balance + interval;
8728 update_next_balance = 1;
8729 }
f48627e6
JL
8730 }
8731 if (need_decay) {
1e3c88bd 8732 /*
f48627e6
JL
8733 * Ensure the rq-wide value also decays but keep it at a
8734 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8735 */
f48627e6
JL
8736 rq->max_idle_balance_cost =
8737 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8738 }
dce840a0 8739 rcu_read_unlock();
1e3c88bd
PZ
8740
8741 /*
8742 * next_balance will be updated only when there is a need.
8743 * When the cpu is attached to null domain for ex, it will not be
8744 * updated.
8745 */
c5afb6a8 8746 if (likely(update_next_balance)) {
1e3c88bd 8747 rq->next_balance = next_balance;
c5afb6a8
VG
8748
8749#ifdef CONFIG_NO_HZ_COMMON
8750 /*
8751 * If this CPU has been elected to perform the nohz idle
8752 * balance. Other idle CPUs have already rebalanced with
8753 * nohz_idle_balance() and nohz.next_balance has been
8754 * updated accordingly. This CPU is now running the idle load
8755 * balance for itself and we need to update the
8756 * nohz.next_balance accordingly.
8757 */
8758 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8759 nohz.next_balance = rq->next_balance;
8760#endif
8761 }
1e3c88bd
PZ
8762}
8763
3451d024 8764#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8765/*
3451d024 8766 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8767 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8768 */
208cb16b 8769static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8770{
208cb16b 8771 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8772 struct rq *rq;
8773 int balance_cpu;
c5afb6a8
VG
8774 /* Earliest time when we have to do rebalance again */
8775 unsigned long next_balance = jiffies + 60*HZ;
8776 int update_next_balance = 0;
83cd4fe2 8777
1c792db7
SS
8778 if (idle != CPU_IDLE ||
8779 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8780 goto end;
83cd4fe2
VP
8781
8782 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8783 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8784 continue;
8785
8786 /*
8787 * If this cpu gets work to do, stop the load balancing
8788 * work being done for other cpus. Next load
8789 * balancing owner will pick it up.
8790 */
1c792db7 8791 if (need_resched())
83cd4fe2 8792 break;
83cd4fe2 8793
5ed4f1d9
VG
8794 rq = cpu_rq(balance_cpu);
8795
ed61bbc6
TC
8796 /*
8797 * If time for next balance is due,
8798 * do the balance.
8799 */
8800 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8801 struct rq_flags rf;
8802
8803 rq_lock_irq(rq, &rf);
ed61bbc6 8804 update_rq_clock(rq);
cee1afce 8805 cpu_load_update_idle(rq);
8a8c69c3
PZ
8806 rq_unlock_irq(rq, &rf);
8807
ed61bbc6
TC
8808 rebalance_domains(rq, CPU_IDLE);
8809 }
83cd4fe2 8810
c5afb6a8
VG
8811 if (time_after(next_balance, rq->next_balance)) {
8812 next_balance = rq->next_balance;
8813 update_next_balance = 1;
8814 }
83cd4fe2 8815 }
c5afb6a8
VG
8816
8817 /*
8818 * next_balance will be updated only when there is a need.
8819 * When the CPU is attached to null domain for ex, it will not be
8820 * updated.
8821 */
8822 if (likely(update_next_balance))
8823 nohz.next_balance = next_balance;
1c792db7
SS
8824end:
8825 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8826}
8827
8828/*
0b005cf5 8829 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8830 * of an idle cpu in the system.
0b005cf5 8831 * - This rq has more than one task.
1aaf90a4
VG
8832 * - This rq has at least one CFS task and the capacity of the CPU is
8833 * significantly reduced because of RT tasks or IRQs.
8834 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8835 * multiple busy cpu.
0b005cf5
SS
8836 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8837 * domain span are idle.
83cd4fe2 8838 */
1aaf90a4 8839static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8840{
8841 unsigned long now = jiffies;
0e369d75 8842 struct sched_domain_shared *sds;
0b005cf5 8843 struct sched_domain *sd;
afe06efd 8844 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8845 bool kick = false;
83cd4fe2 8846
4a725627 8847 if (unlikely(rq->idle_balance))
1aaf90a4 8848 return false;
83cd4fe2 8849
1c792db7
SS
8850 /*
8851 * We may be recently in ticked or tickless idle mode. At the first
8852 * busy tick after returning from idle, we will update the busy stats.
8853 */
69e1e811 8854 set_cpu_sd_state_busy();
c1cc017c 8855 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8856
8857 /*
8858 * None are in tickless mode and hence no need for NOHZ idle load
8859 * balancing.
8860 */
8861 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8862 return false;
1c792db7
SS
8863
8864 if (time_before(now, nohz.next_balance))
1aaf90a4 8865 return false;
83cd4fe2 8866
0b005cf5 8867 if (rq->nr_running >= 2)
1aaf90a4 8868 return true;
83cd4fe2 8869
067491b7 8870 rcu_read_lock();
0e369d75
PZ
8871 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8872 if (sds) {
8873 /*
8874 * XXX: write a coherent comment on why we do this.
8875 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8876 */
8877 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8878 if (nr_busy > 1) {
8879 kick = true;
8880 goto unlock;
8881 }
8882
83cd4fe2 8883 }
37dc6b50 8884
1aaf90a4
VG
8885 sd = rcu_dereference(rq->sd);
8886 if (sd) {
8887 if ((rq->cfs.h_nr_running >= 1) &&
8888 check_cpu_capacity(rq, sd)) {
8889 kick = true;
8890 goto unlock;
8891 }
8892 }
37dc6b50 8893
1aaf90a4 8894 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8895 if (sd) {
8896 for_each_cpu(i, sched_domain_span(sd)) {
8897 if (i == cpu ||
8898 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8899 continue;
067491b7 8900
afe06efd
TC
8901 if (sched_asym_prefer(i, cpu)) {
8902 kick = true;
8903 goto unlock;
8904 }
8905 }
8906 }
1aaf90a4 8907unlock:
067491b7 8908 rcu_read_unlock();
1aaf90a4 8909 return kick;
83cd4fe2
VP
8910}
8911#else
208cb16b 8912static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8913#endif
8914
8915/*
8916 * run_rebalance_domains is triggered when needed from the scheduler tick.
8917 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8918 */
0766f788 8919static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8920{
208cb16b 8921 struct rq *this_rq = this_rq();
6eb57e0d 8922 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8923 CPU_IDLE : CPU_NOT_IDLE;
8924
1e3c88bd 8925 /*
83cd4fe2 8926 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8927 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8928 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8929 * give the idle cpus a chance to load balance. Else we may
8930 * load balance only within the local sched_domain hierarchy
8931 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8932 */
208cb16b 8933 nohz_idle_balance(this_rq, idle);
d4573c3e 8934 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8935}
8936
1e3c88bd
PZ
8937/*
8938 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8939 */
7caff66f 8940void trigger_load_balance(struct rq *rq)
1e3c88bd 8941{
1e3c88bd 8942 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8943 if (unlikely(on_null_domain(rq)))
8944 return;
8945
8946 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8947 raise_softirq(SCHED_SOFTIRQ);
3451d024 8948#ifdef CONFIG_NO_HZ_COMMON
c726099e 8949 if (nohz_kick_needed(rq))
0aeeeeba 8950 nohz_balancer_kick();
83cd4fe2 8951#endif
1e3c88bd
PZ
8952}
8953
0bcdcf28
CE
8954static void rq_online_fair(struct rq *rq)
8955{
8956 update_sysctl();
0e59bdae
KT
8957
8958 update_runtime_enabled(rq);
0bcdcf28
CE
8959}
8960
8961static void rq_offline_fair(struct rq *rq)
8962{
8963 update_sysctl();
a4c96ae3
PB
8964
8965 /* Ensure any throttled groups are reachable by pick_next_task */
8966 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8967}
8968
55e12e5e 8969#endif /* CONFIG_SMP */
e1d1484f 8970
bf0f6f24
IM
8971/*
8972 * scheduler tick hitting a task of our scheduling class:
8973 */
8f4d37ec 8974static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8975{
8976 struct cfs_rq *cfs_rq;
8977 struct sched_entity *se = &curr->se;
8978
8979 for_each_sched_entity(se) {
8980 cfs_rq = cfs_rq_of(se);
8f4d37ec 8981 entity_tick(cfs_rq, se, queued);
bf0f6f24 8982 }
18bf2805 8983
b52da86e 8984 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8985 task_tick_numa(rq, curr);
bf0f6f24
IM
8986}
8987
8988/*
cd29fe6f
PZ
8989 * called on fork with the child task as argument from the parent's context
8990 * - child not yet on the tasklist
8991 * - preemption disabled
bf0f6f24 8992 */
cd29fe6f 8993static void task_fork_fair(struct task_struct *p)
bf0f6f24 8994{
4fc420c9
DN
8995 struct cfs_rq *cfs_rq;
8996 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8997 struct rq *rq = this_rq();
8a8c69c3 8998 struct rq_flags rf;
bf0f6f24 8999
8a8c69c3 9000 rq_lock(rq, &rf);
861d034e
PZ
9001 update_rq_clock(rq);
9002
4fc420c9
DN
9003 cfs_rq = task_cfs_rq(current);
9004 curr = cfs_rq->curr;
e210bffd
PZ
9005 if (curr) {
9006 update_curr(cfs_rq);
b5d9d734 9007 se->vruntime = curr->vruntime;
e210bffd 9008 }
aeb73b04 9009 place_entity(cfs_rq, se, 1);
4d78e7b6 9010
cd29fe6f 9011 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9012 /*
edcb60a3
IM
9013 * Upon rescheduling, sched_class::put_prev_task() will place
9014 * 'current' within the tree based on its new key value.
9015 */
4d78e7b6 9016 swap(curr->vruntime, se->vruntime);
8875125e 9017 resched_curr(rq);
4d78e7b6 9018 }
bf0f6f24 9019
88ec22d3 9020 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9021 rq_unlock(rq, &rf);
bf0f6f24
IM
9022}
9023
cb469845
SR
9024/*
9025 * Priority of the task has changed. Check to see if we preempt
9026 * the current task.
9027 */
da7a735e
PZ
9028static void
9029prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9030{
da0c1e65 9031 if (!task_on_rq_queued(p))
da7a735e
PZ
9032 return;
9033
cb469845
SR
9034 /*
9035 * Reschedule if we are currently running on this runqueue and
9036 * our priority decreased, or if we are not currently running on
9037 * this runqueue and our priority is higher than the current's
9038 */
da7a735e 9039 if (rq->curr == p) {
cb469845 9040 if (p->prio > oldprio)
8875125e 9041 resched_curr(rq);
cb469845 9042 } else
15afe09b 9043 check_preempt_curr(rq, p, 0);
cb469845
SR
9044}
9045
daa59407 9046static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9047{
9048 struct sched_entity *se = &p->se;
da7a735e
PZ
9049
9050 /*
daa59407
BP
9051 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9052 * the dequeue_entity(.flags=0) will already have normalized the
9053 * vruntime.
9054 */
9055 if (p->on_rq)
9056 return true;
9057
9058 /*
9059 * When !on_rq, vruntime of the task has usually NOT been normalized.
9060 * But there are some cases where it has already been normalized:
da7a735e 9061 *
daa59407
BP
9062 * - A forked child which is waiting for being woken up by
9063 * wake_up_new_task().
9064 * - A task which has been woken up by try_to_wake_up() and
9065 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9066 */
daa59407
BP
9067 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9068 return true;
9069
9070 return false;
9071}
9072
09a43ace
VG
9073#ifdef CONFIG_FAIR_GROUP_SCHED
9074/*
9075 * Propagate the changes of the sched_entity across the tg tree to make it
9076 * visible to the root
9077 */
9078static void propagate_entity_cfs_rq(struct sched_entity *se)
9079{
9080 struct cfs_rq *cfs_rq;
9081
9082 /* Start to propagate at parent */
9083 se = se->parent;
9084
9085 for_each_sched_entity(se) {
9086 cfs_rq = cfs_rq_of(se);
9087
9088 if (cfs_rq_throttled(cfs_rq))
9089 break;
9090
9091 update_load_avg(se, UPDATE_TG);
9092 }
9093}
9094#else
9095static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9096#endif
9097
df217913 9098static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9099{
daa59407
BP
9100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9101
9d89c257 9102 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9103 update_load_avg(se, 0);
a05e8c51 9104 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9105 update_tg_load_avg(cfs_rq, false);
09a43ace 9106 propagate_entity_cfs_rq(se);
da7a735e
PZ
9107}
9108
df217913 9109static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9110{
daa59407 9111 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9112
9113#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9114 /*
9115 * Since the real-depth could have been changed (only FAIR
9116 * class maintain depth value), reset depth properly.
9117 */
9118 se->depth = se->parent ? se->parent->depth + 1 : 0;
9119#endif
7855a35a 9120
df217913 9121 /* Synchronize entity with its cfs_rq */
d31b1a66 9122 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9123 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9124 update_tg_load_avg(cfs_rq, false);
09a43ace 9125 propagate_entity_cfs_rq(se);
df217913
VG
9126}
9127
9128static void detach_task_cfs_rq(struct task_struct *p)
9129{
9130 struct sched_entity *se = &p->se;
9131 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9132
9133 if (!vruntime_normalized(p)) {
9134 /*
9135 * Fix up our vruntime so that the current sleep doesn't
9136 * cause 'unlimited' sleep bonus.
9137 */
9138 place_entity(cfs_rq, se, 0);
9139 se->vruntime -= cfs_rq->min_vruntime;
9140 }
9141
9142 detach_entity_cfs_rq(se);
9143}
9144
9145static void attach_task_cfs_rq(struct task_struct *p)
9146{
9147 struct sched_entity *se = &p->se;
9148 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9149
9150 attach_entity_cfs_rq(se);
daa59407
BP
9151
9152 if (!vruntime_normalized(p))
9153 se->vruntime += cfs_rq->min_vruntime;
9154}
6efdb105 9155
daa59407
BP
9156static void switched_from_fair(struct rq *rq, struct task_struct *p)
9157{
9158 detach_task_cfs_rq(p);
9159}
9160
9161static void switched_to_fair(struct rq *rq, struct task_struct *p)
9162{
9163 attach_task_cfs_rq(p);
7855a35a 9164
daa59407 9165 if (task_on_rq_queued(p)) {
7855a35a 9166 /*
daa59407
BP
9167 * We were most likely switched from sched_rt, so
9168 * kick off the schedule if running, otherwise just see
9169 * if we can still preempt the current task.
7855a35a 9170 */
daa59407
BP
9171 if (rq->curr == p)
9172 resched_curr(rq);
9173 else
9174 check_preempt_curr(rq, p, 0);
7855a35a 9175 }
cb469845
SR
9176}
9177
83b699ed
SV
9178/* Account for a task changing its policy or group.
9179 *
9180 * This routine is mostly called to set cfs_rq->curr field when a task
9181 * migrates between groups/classes.
9182 */
9183static void set_curr_task_fair(struct rq *rq)
9184{
9185 struct sched_entity *se = &rq->curr->se;
9186
ec12cb7f
PT
9187 for_each_sched_entity(se) {
9188 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9189
9190 set_next_entity(cfs_rq, se);
9191 /* ensure bandwidth has been allocated on our new cfs_rq */
9192 account_cfs_rq_runtime(cfs_rq, 0);
9193 }
83b699ed
SV
9194}
9195
029632fb
PZ
9196void init_cfs_rq(struct cfs_rq *cfs_rq)
9197{
9198 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9199 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9200#ifndef CONFIG_64BIT
9201 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9202#endif
141965c7 9203#ifdef CONFIG_SMP
09a43ace
VG
9204#ifdef CONFIG_FAIR_GROUP_SCHED
9205 cfs_rq->propagate_avg = 0;
9206#endif
9d89c257
YD
9207 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9208 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9209#endif
029632fb
PZ
9210}
9211
810b3817 9212#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9213static void task_set_group_fair(struct task_struct *p)
9214{
9215 struct sched_entity *se = &p->se;
9216
9217 set_task_rq(p, task_cpu(p));
9218 se->depth = se->parent ? se->parent->depth + 1 : 0;
9219}
9220
bc54da21 9221static void task_move_group_fair(struct task_struct *p)
810b3817 9222{
daa59407 9223 detach_task_cfs_rq(p);
b2b5ce02 9224 set_task_rq(p, task_cpu(p));
6efdb105
BP
9225
9226#ifdef CONFIG_SMP
9227 /* Tell se's cfs_rq has been changed -- migrated */
9228 p->se.avg.last_update_time = 0;
9229#endif
daa59407 9230 attach_task_cfs_rq(p);
810b3817 9231}
029632fb 9232
ea86cb4b
VG
9233static void task_change_group_fair(struct task_struct *p, int type)
9234{
9235 switch (type) {
9236 case TASK_SET_GROUP:
9237 task_set_group_fair(p);
9238 break;
9239
9240 case TASK_MOVE_GROUP:
9241 task_move_group_fair(p);
9242 break;
9243 }
9244}
9245
029632fb
PZ
9246void free_fair_sched_group(struct task_group *tg)
9247{
9248 int i;
9249
9250 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9251
9252 for_each_possible_cpu(i) {
9253 if (tg->cfs_rq)
9254 kfree(tg->cfs_rq[i]);
6fe1f348 9255 if (tg->se)
029632fb
PZ
9256 kfree(tg->se[i]);
9257 }
9258
9259 kfree(tg->cfs_rq);
9260 kfree(tg->se);
9261}
9262
9263int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9264{
029632fb 9265 struct sched_entity *se;
b7fa30c9 9266 struct cfs_rq *cfs_rq;
029632fb
PZ
9267 int i;
9268
9269 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9270 if (!tg->cfs_rq)
9271 goto err;
9272 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9273 if (!tg->se)
9274 goto err;
9275
9276 tg->shares = NICE_0_LOAD;
9277
9278 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9279
9280 for_each_possible_cpu(i) {
9281 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9282 GFP_KERNEL, cpu_to_node(i));
9283 if (!cfs_rq)
9284 goto err;
9285
9286 se = kzalloc_node(sizeof(struct sched_entity),
9287 GFP_KERNEL, cpu_to_node(i));
9288 if (!se)
9289 goto err_free_rq;
9290
9291 init_cfs_rq(cfs_rq);
9292 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9293 init_entity_runnable_average(se);
029632fb
PZ
9294 }
9295
9296 return 1;
9297
9298err_free_rq:
9299 kfree(cfs_rq);
9300err:
9301 return 0;
9302}
9303
8663e24d
PZ
9304void online_fair_sched_group(struct task_group *tg)
9305{
9306 struct sched_entity *se;
9307 struct rq *rq;
9308 int i;
9309
9310 for_each_possible_cpu(i) {
9311 rq = cpu_rq(i);
9312 se = tg->se[i];
9313
9314 raw_spin_lock_irq(&rq->lock);
4126bad6 9315 update_rq_clock(rq);
d0326691 9316 attach_entity_cfs_rq(se);
55e16d30 9317 sync_throttle(tg, i);
8663e24d
PZ
9318 raw_spin_unlock_irq(&rq->lock);
9319 }
9320}
9321
6fe1f348 9322void unregister_fair_sched_group(struct task_group *tg)
029632fb 9323{
029632fb 9324 unsigned long flags;
6fe1f348
PZ
9325 struct rq *rq;
9326 int cpu;
029632fb 9327
6fe1f348
PZ
9328 for_each_possible_cpu(cpu) {
9329 if (tg->se[cpu])
9330 remove_entity_load_avg(tg->se[cpu]);
029632fb 9331
6fe1f348
PZ
9332 /*
9333 * Only empty task groups can be destroyed; so we can speculatively
9334 * check on_list without danger of it being re-added.
9335 */
9336 if (!tg->cfs_rq[cpu]->on_list)
9337 continue;
9338
9339 rq = cpu_rq(cpu);
9340
9341 raw_spin_lock_irqsave(&rq->lock, flags);
9342 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9343 raw_spin_unlock_irqrestore(&rq->lock, flags);
9344 }
029632fb
PZ
9345}
9346
9347void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9348 struct sched_entity *se, int cpu,
9349 struct sched_entity *parent)
9350{
9351 struct rq *rq = cpu_rq(cpu);
9352
9353 cfs_rq->tg = tg;
9354 cfs_rq->rq = rq;
029632fb
PZ
9355 init_cfs_rq_runtime(cfs_rq);
9356
9357 tg->cfs_rq[cpu] = cfs_rq;
9358 tg->se[cpu] = se;
9359
9360 /* se could be NULL for root_task_group */
9361 if (!se)
9362 return;
9363
fed14d45 9364 if (!parent) {
029632fb 9365 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9366 se->depth = 0;
9367 } else {
029632fb 9368 se->cfs_rq = parent->my_q;
fed14d45
PZ
9369 se->depth = parent->depth + 1;
9370 }
029632fb
PZ
9371
9372 se->my_q = cfs_rq;
0ac9b1c2
PT
9373 /* guarantee group entities always have weight */
9374 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9375 se->parent = parent;
9376}
9377
9378static DEFINE_MUTEX(shares_mutex);
9379
9380int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9381{
9382 int i;
029632fb
PZ
9383
9384 /*
9385 * We can't change the weight of the root cgroup.
9386 */
9387 if (!tg->se[0])
9388 return -EINVAL;
9389
9390 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9391
9392 mutex_lock(&shares_mutex);
9393 if (tg->shares == shares)
9394 goto done;
9395
9396 tg->shares = shares;
9397 for_each_possible_cpu(i) {
9398 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9399 struct sched_entity *se = tg->se[i];
9400 struct rq_flags rf;
029632fb 9401
029632fb 9402 /* Propagate contribution to hierarchy */
8a8c69c3 9403 rq_lock_irqsave(rq, &rf);
71b1da46 9404 update_rq_clock(rq);
89ee048f
VG
9405 for_each_sched_entity(se) {
9406 update_load_avg(se, UPDATE_TG);
9407 update_cfs_shares(se);
9408 }
8a8c69c3 9409 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9410 }
9411
9412done:
9413 mutex_unlock(&shares_mutex);
9414 return 0;
9415}
9416#else /* CONFIG_FAIR_GROUP_SCHED */
9417
9418void free_fair_sched_group(struct task_group *tg) { }
9419
9420int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9421{
9422 return 1;
9423}
9424
8663e24d
PZ
9425void online_fair_sched_group(struct task_group *tg) { }
9426
6fe1f348 9427void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9428
9429#endif /* CONFIG_FAIR_GROUP_SCHED */
9430
810b3817 9431
6d686f45 9432static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9433{
9434 struct sched_entity *se = &task->se;
0d721cea
PW
9435 unsigned int rr_interval = 0;
9436
9437 /*
9438 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9439 * idle runqueue:
9440 */
0d721cea 9441 if (rq->cfs.load.weight)
a59f4e07 9442 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9443
9444 return rr_interval;
9445}
9446
bf0f6f24
IM
9447/*
9448 * All the scheduling class methods:
9449 */
029632fb 9450const struct sched_class fair_sched_class = {
5522d5d5 9451 .next = &idle_sched_class,
bf0f6f24
IM
9452 .enqueue_task = enqueue_task_fair,
9453 .dequeue_task = dequeue_task_fair,
9454 .yield_task = yield_task_fair,
d95f4122 9455 .yield_to_task = yield_to_task_fair,
bf0f6f24 9456
2e09bf55 9457 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9458
9459 .pick_next_task = pick_next_task_fair,
9460 .put_prev_task = put_prev_task_fair,
9461
681f3e68 9462#ifdef CONFIG_SMP
4ce72a2c 9463 .select_task_rq = select_task_rq_fair,
0a74bef8 9464 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9465
0bcdcf28
CE
9466 .rq_online = rq_online_fair,
9467 .rq_offline = rq_offline_fair,
88ec22d3 9468
12695578 9469 .task_dead = task_dead_fair,
c5b28038 9470 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9471#endif
bf0f6f24 9472
83b699ed 9473 .set_curr_task = set_curr_task_fair,
bf0f6f24 9474 .task_tick = task_tick_fair,
cd29fe6f 9475 .task_fork = task_fork_fair,
cb469845
SR
9476
9477 .prio_changed = prio_changed_fair,
da7a735e 9478 .switched_from = switched_from_fair,
cb469845 9479 .switched_to = switched_to_fair,
810b3817 9480
0d721cea
PW
9481 .get_rr_interval = get_rr_interval_fair,
9482
6e998916
SG
9483 .update_curr = update_curr_fair,
9484
810b3817 9485#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9486 .task_change_group = task_change_group_fair,
810b3817 9487#endif
bf0f6f24
IM
9488};
9489
9490#ifdef CONFIG_SCHED_DEBUG
029632fb 9491void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9492{
a9e7f654 9493 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9494
5973e5b9 9495 rcu_read_lock();
a9e7f654 9496 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9497 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9498 rcu_read_unlock();
bf0f6f24 9499}
397f2378
SD
9500
9501#ifdef CONFIG_NUMA_BALANCING
9502void show_numa_stats(struct task_struct *p, struct seq_file *m)
9503{
9504 int node;
9505 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9506
9507 for_each_online_node(node) {
9508 if (p->numa_faults) {
9509 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9510 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9511 }
9512 if (p->numa_group) {
9513 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9514 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9515 }
9516 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9517 }
9518}
9519#endif /* CONFIG_NUMA_BALANCING */
9520#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9521
9522__init void init_sched_fair_class(void)
9523{
9524#ifdef CONFIG_SMP
9525 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9526
3451d024 9527#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9528 nohz.next_balance = jiffies;
029632fb 9529 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9530#endif
9531#endif /* SMP */
9532
9533}