]>
Commit | Line | Data |
---|---|---|
bf0f6f24 IM |
1 | /* |
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
3 | * | |
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | |
5 | * | |
6 | * Interactivity improvements by Mike Galbraith | |
7 | * (C) 2007 Mike Galbraith <efault@gmx.de> | |
8 | * | |
9 | * Various enhancements by Dmitry Adamushko. | |
10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | |
11 | * | |
12 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
13 | * Copyright IBM Corporation, 2007 | |
14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | |
15 | * | |
16 | * Scaled math optimizations by Thomas Gleixner | |
17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | |
21805085 PZ |
18 | * |
19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
90eec103 | 20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
bf0f6f24 IM |
21 | */ |
22 | ||
589ee628 | 23 | #include <linux/sched/mm.h> |
105ab3d8 IM |
24 | #include <linux/sched/topology.h> |
25 | ||
cb251765 | 26 | #include <linux/latencytop.h> |
3436ae12 | 27 | #include <linux/cpumask.h> |
83a0a96a | 28 | #include <linux/cpuidle.h> |
029632fb PZ |
29 | #include <linux/slab.h> |
30 | #include <linux/profile.h> | |
31 | #include <linux/interrupt.h> | |
cbee9f88 | 32 | #include <linux/mempolicy.h> |
e14808b4 | 33 | #include <linux/migrate.h> |
cbee9f88 | 34 | #include <linux/task_work.h> |
029632fb PZ |
35 | |
36 | #include <trace/events/sched.h> | |
37 | ||
38 | #include "sched.h" | |
9745512c | 39 | |
bf0f6f24 | 40 | /* |
21805085 | 41 | * Targeted preemption latency for CPU-bound tasks: |
bf0f6f24 | 42 | * |
21805085 | 43 | * NOTE: this latency value is not the same as the concept of |
d274a4ce IM |
44 | * 'timeslice length' - timeslices in CFS are of variable length |
45 | * and have no persistent notion like in traditional, time-slice | |
46 | * based scheduling concepts. | |
bf0f6f24 | 47 | * |
d274a4ce IM |
48 | * (to see the precise effective timeslice length of your workload, |
49 | * run vmstat and monitor the context-switches (cs) field) | |
2b4d5b25 IM |
50 | * |
51 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 52 | */ |
2b4d5b25 IM |
53 | unsigned int sysctl_sched_latency = 6000000ULL; |
54 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | |
2bd8e6d4 | 55 | |
1983a922 CE |
56 | /* |
57 | * The initial- and re-scaling of tunables is configurable | |
1983a922 CE |
58 | * |
59 | * Options are: | |
2b4d5b25 IM |
60 | * |
61 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | |
62 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | |
63 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | |
64 | * | |
65 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | |
1983a922 | 66 | */ |
2b4d5b25 | 67 | enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
1983a922 | 68 | |
2bd8e6d4 | 69 | /* |
b2be5e96 | 70 | * Minimal preemption granularity for CPU-bound tasks: |
2b4d5b25 | 71 | * |
864616ee | 72 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 73 | */ |
2b4d5b25 IM |
74 | unsigned int sysctl_sched_min_granularity = 750000ULL; |
75 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | |
21805085 PZ |
76 | |
77 | /* | |
2b4d5b25 | 78 | * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity |
b2be5e96 | 79 | */ |
0bf377bb | 80 | static unsigned int sched_nr_latency = 8; |
b2be5e96 PZ |
81 | |
82 | /* | |
2bba22c5 | 83 | * After fork, child runs first. If set to 0 (default) then |
b2be5e96 | 84 | * parent will (try to) run first. |
21805085 | 85 | */ |
2bba22c5 | 86 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
bf0f6f24 | 87 | |
bf0f6f24 IM |
88 | /* |
89 | * SCHED_OTHER wake-up granularity. | |
bf0f6f24 IM |
90 | * |
91 | * This option delays the preemption effects of decoupled workloads | |
92 | * and reduces their over-scheduling. Synchronous workloads will still | |
93 | * have immediate wakeup/sleep latencies. | |
2b4d5b25 IM |
94 | * |
95 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | |
bf0f6f24 | 96 | */ |
2b4d5b25 IM |
97 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
98 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | |
bf0f6f24 | 99 | |
2b4d5b25 | 100 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
da84d961 | 101 | |
afe06efd TC |
102 | #ifdef CONFIG_SMP |
103 | /* | |
104 | * For asym packing, by default the lower numbered cpu has higher priority. | |
105 | */ | |
106 | int __weak arch_asym_cpu_priority(int cpu) | |
107 | { | |
108 | return -cpu; | |
109 | } | |
110 | #endif | |
111 | ||
ec12cb7f PT |
112 | #ifdef CONFIG_CFS_BANDWIDTH |
113 | /* | |
114 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | |
115 | * each time a cfs_rq requests quota. | |
116 | * | |
117 | * Note: in the case that the slice exceeds the runtime remaining (either due | |
118 | * to consumption or the quota being specified to be smaller than the slice) | |
119 | * we will always only issue the remaining available time. | |
120 | * | |
2b4d5b25 IM |
121 | * (default: 5 msec, units: microseconds) |
122 | */ | |
123 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | |
ec12cb7f PT |
124 | #endif |
125 | ||
3273163c MR |
126 | /* |
127 | * The margin used when comparing utilization with CPU capacity: | |
893c5d22 | 128 | * util * margin < capacity * 1024 |
2b4d5b25 IM |
129 | * |
130 | * (default: ~20%) | |
3273163c | 131 | */ |
2b4d5b25 | 132 | unsigned int capacity_margin = 1280; |
3273163c | 133 | |
8527632d PG |
134 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
135 | { | |
136 | lw->weight += inc; | |
137 | lw->inv_weight = 0; | |
138 | } | |
139 | ||
140 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
141 | { | |
142 | lw->weight -= dec; | |
143 | lw->inv_weight = 0; | |
144 | } | |
145 | ||
146 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
147 | { | |
148 | lw->weight = w; | |
149 | lw->inv_weight = 0; | |
150 | } | |
151 | ||
029632fb PZ |
152 | /* |
153 | * Increase the granularity value when there are more CPUs, | |
154 | * because with more CPUs the 'effective latency' as visible | |
155 | * to users decreases. But the relationship is not linear, | |
156 | * so pick a second-best guess by going with the log2 of the | |
157 | * number of CPUs. | |
158 | * | |
159 | * This idea comes from the SD scheduler of Con Kolivas: | |
160 | */ | |
58ac93e4 | 161 | static unsigned int get_update_sysctl_factor(void) |
029632fb | 162 | { |
58ac93e4 | 163 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
029632fb PZ |
164 | unsigned int factor; |
165 | ||
166 | switch (sysctl_sched_tunable_scaling) { | |
167 | case SCHED_TUNABLESCALING_NONE: | |
168 | factor = 1; | |
169 | break; | |
170 | case SCHED_TUNABLESCALING_LINEAR: | |
171 | factor = cpus; | |
172 | break; | |
173 | case SCHED_TUNABLESCALING_LOG: | |
174 | default: | |
175 | factor = 1 + ilog2(cpus); | |
176 | break; | |
177 | } | |
178 | ||
179 | return factor; | |
180 | } | |
181 | ||
182 | static void update_sysctl(void) | |
183 | { | |
184 | unsigned int factor = get_update_sysctl_factor(); | |
185 | ||
186 | #define SET_SYSCTL(name) \ | |
187 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
188 | SET_SYSCTL(sched_min_granularity); | |
189 | SET_SYSCTL(sched_latency); | |
190 | SET_SYSCTL(sched_wakeup_granularity); | |
191 | #undef SET_SYSCTL | |
192 | } | |
193 | ||
194 | void sched_init_granularity(void) | |
195 | { | |
196 | update_sysctl(); | |
197 | } | |
198 | ||
9dbdb155 | 199 | #define WMULT_CONST (~0U) |
029632fb PZ |
200 | #define WMULT_SHIFT 32 |
201 | ||
9dbdb155 PZ |
202 | static void __update_inv_weight(struct load_weight *lw) |
203 | { | |
204 | unsigned long w; | |
205 | ||
206 | if (likely(lw->inv_weight)) | |
207 | return; | |
208 | ||
209 | w = scale_load_down(lw->weight); | |
210 | ||
211 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
212 | lw->inv_weight = 1; | |
213 | else if (unlikely(!w)) | |
214 | lw->inv_weight = WMULT_CONST; | |
215 | else | |
216 | lw->inv_weight = WMULT_CONST / w; | |
217 | } | |
029632fb PZ |
218 | |
219 | /* | |
9dbdb155 PZ |
220 | * delta_exec * weight / lw.weight |
221 | * OR | |
222 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | |
223 | * | |
1c3de5e1 | 224 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
9dbdb155 PZ |
225 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
226 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | |
227 | * | |
228 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | |
229 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | |
029632fb | 230 | */ |
9dbdb155 | 231 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
029632fb | 232 | { |
9dbdb155 PZ |
233 | u64 fact = scale_load_down(weight); |
234 | int shift = WMULT_SHIFT; | |
029632fb | 235 | |
9dbdb155 | 236 | __update_inv_weight(lw); |
029632fb | 237 | |
9dbdb155 PZ |
238 | if (unlikely(fact >> 32)) { |
239 | while (fact >> 32) { | |
240 | fact >>= 1; | |
241 | shift--; | |
242 | } | |
029632fb PZ |
243 | } |
244 | ||
9dbdb155 PZ |
245 | /* hint to use a 32x32->64 mul */ |
246 | fact = (u64)(u32)fact * lw->inv_weight; | |
029632fb | 247 | |
9dbdb155 PZ |
248 | while (fact >> 32) { |
249 | fact >>= 1; | |
250 | shift--; | |
251 | } | |
029632fb | 252 | |
9dbdb155 | 253 | return mul_u64_u32_shr(delta_exec, fact, shift); |
029632fb PZ |
254 | } |
255 | ||
256 | ||
257 | const struct sched_class fair_sched_class; | |
a4c2f00f | 258 | |
bf0f6f24 IM |
259 | /************************************************************** |
260 | * CFS operations on generic schedulable entities: | |
261 | */ | |
262 | ||
62160e3f | 263 | #ifdef CONFIG_FAIR_GROUP_SCHED |
bf0f6f24 | 264 | |
62160e3f | 265 | /* cpu runqueue to which this cfs_rq is attached */ |
bf0f6f24 IM |
266 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
267 | { | |
62160e3f | 268 | return cfs_rq->rq; |
bf0f6f24 IM |
269 | } |
270 | ||
62160e3f IM |
271 | /* An entity is a task if it doesn't "own" a runqueue */ |
272 | #define entity_is_task(se) (!se->my_q) | |
bf0f6f24 | 273 | |
8f48894f PZ |
274 | static inline struct task_struct *task_of(struct sched_entity *se) |
275 | { | |
9148a3a1 | 276 | SCHED_WARN_ON(!entity_is_task(se)); |
8f48894f PZ |
277 | return container_of(se, struct task_struct, se); |
278 | } | |
279 | ||
b758149c PZ |
280 | /* Walk up scheduling entities hierarchy */ |
281 | #define for_each_sched_entity(se) \ | |
282 | for (; se; se = se->parent) | |
283 | ||
284 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | |
285 | { | |
286 | return p->se.cfs_rq; | |
287 | } | |
288 | ||
289 | /* runqueue on which this entity is (to be) queued */ | |
290 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | |
291 | { | |
292 | return se->cfs_rq; | |
293 | } | |
294 | ||
295 | /* runqueue "owned" by this group */ | |
296 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
297 | { | |
298 | return grp->my_q; | |
299 | } | |
300 | ||
3d4b47b4 PZ |
301 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
302 | { | |
303 | if (!cfs_rq->on_list) { | |
9c2791f9 VG |
304 | struct rq *rq = rq_of(cfs_rq); |
305 | int cpu = cpu_of(rq); | |
67e86250 PT |
306 | /* |
307 | * Ensure we either appear before our parent (if already | |
308 | * enqueued) or force our parent to appear after us when it is | |
9c2791f9 VG |
309 | * enqueued. The fact that we always enqueue bottom-up |
310 | * reduces this to two cases and a special case for the root | |
311 | * cfs_rq. Furthermore, it also means that we will always reset | |
312 | * tmp_alone_branch either when the branch is connected | |
313 | * to a tree or when we reach the beg of the tree | |
67e86250 PT |
314 | */ |
315 | if (cfs_rq->tg->parent && | |
9c2791f9 VG |
316 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { |
317 | /* | |
318 | * If parent is already on the list, we add the child | |
319 | * just before. Thanks to circular linked property of | |
320 | * the list, this means to put the child at the tail | |
321 | * of the list that starts by parent. | |
322 | */ | |
323 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | |
324 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | |
325 | /* | |
326 | * The branch is now connected to its tree so we can | |
327 | * reset tmp_alone_branch to the beginning of the | |
328 | * list. | |
329 | */ | |
330 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
331 | } else if (!cfs_rq->tg->parent) { | |
332 | /* | |
333 | * cfs rq without parent should be put | |
334 | * at the tail of the list. | |
335 | */ | |
67e86250 | 336 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
9c2791f9 VG |
337 | &rq->leaf_cfs_rq_list); |
338 | /* | |
339 | * We have reach the beg of a tree so we can reset | |
340 | * tmp_alone_branch to the beginning of the list. | |
341 | */ | |
342 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
343 | } else { | |
344 | /* | |
345 | * The parent has not already been added so we want to | |
346 | * make sure that it will be put after us. | |
347 | * tmp_alone_branch points to the beg of the branch | |
348 | * where we will add parent. | |
349 | */ | |
350 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | |
351 | rq->tmp_alone_branch); | |
352 | /* | |
353 | * update tmp_alone_branch to points to the new beg | |
354 | * of the branch | |
355 | */ | |
356 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | |
67e86250 | 357 | } |
3d4b47b4 PZ |
358 | |
359 | cfs_rq->on_list = 1; | |
360 | } | |
361 | } | |
362 | ||
363 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
364 | { | |
365 | if (cfs_rq->on_list) { | |
366 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | |
367 | cfs_rq->on_list = 0; | |
368 | } | |
369 | } | |
370 | ||
b758149c | 371 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
a9e7f654 TH |
372 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
373 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ | |
374 | leaf_cfs_rq_list) | |
b758149c PZ |
375 | |
376 | /* Do the two (enqueued) entities belong to the same group ? */ | |
fed14d45 | 377 | static inline struct cfs_rq * |
b758149c PZ |
378 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
379 | { | |
380 | if (se->cfs_rq == pse->cfs_rq) | |
fed14d45 | 381 | return se->cfs_rq; |
b758149c | 382 | |
fed14d45 | 383 | return NULL; |
b758149c PZ |
384 | } |
385 | ||
386 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | |
387 | { | |
388 | return se->parent; | |
389 | } | |
390 | ||
464b7527 PZ |
391 | static void |
392 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
393 | { | |
394 | int se_depth, pse_depth; | |
395 | ||
396 | /* | |
397 | * preemption test can be made between sibling entities who are in the | |
398 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
399 | * both tasks until we find their ancestors who are siblings of common | |
400 | * parent. | |
401 | */ | |
402 | ||
403 | /* First walk up until both entities are at same depth */ | |
fed14d45 PZ |
404 | se_depth = (*se)->depth; |
405 | pse_depth = (*pse)->depth; | |
464b7527 PZ |
406 | |
407 | while (se_depth > pse_depth) { | |
408 | se_depth--; | |
409 | *se = parent_entity(*se); | |
410 | } | |
411 | ||
412 | while (pse_depth > se_depth) { | |
413 | pse_depth--; | |
414 | *pse = parent_entity(*pse); | |
415 | } | |
416 | ||
417 | while (!is_same_group(*se, *pse)) { | |
418 | *se = parent_entity(*se); | |
419 | *pse = parent_entity(*pse); | |
420 | } | |
421 | } | |
422 | ||
8f48894f PZ |
423 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
424 | ||
425 | static inline struct task_struct *task_of(struct sched_entity *se) | |
426 | { | |
427 | return container_of(se, struct task_struct, se); | |
428 | } | |
bf0f6f24 | 429 | |
62160e3f IM |
430 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
431 | { | |
432 | return container_of(cfs_rq, struct rq, cfs); | |
bf0f6f24 IM |
433 | } |
434 | ||
435 | #define entity_is_task(se) 1 | |
436 | ||
b758149c PZ |
437 | #define for_each_sched_entity(se) \ |
438 | for (; se; se = NULL) | |
bf0f6f24 | 439 | |
b758149c | 440 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
bf0f6f24 | 441 | { |
b758149c | 442 | return &task_rq(p)->cfs; |
bf0f6f24 IM |
443 | } |
444 | ||
b758149c PZ |
445 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
446 | { | |
447 | struct task_struct *p = task_of(se); | |
448 | struct rq *rq = task_rq(p); | |
449 | ||
450 | return &rq->cfs; | |
451 | } | |
452 | ||
453 | /* runqueue "owned" by this group */ | |
454 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
455 | { | |
456 | return NULL; | |
457 | } | |
458 | ||
3d4b47b4 PZ |
459 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
460 | { | |
461 | } | |
462 | ||
463 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
464 | { | |
465 | } | |
466 | ||
a9e7f654 TH |
467 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
468 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | |
b758149c | 469 | |
b758149c PZ |
470 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
471 | { | |
472 | return NULL; | |
473 | } | |
474 | ||
464b7527 PZ |
475 | static inline void |
476 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
477 | { | |
478 | } | |
479 | ||
b758149c PZ |
480 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
481 | ||
6c16a6dc | 482 | static __always_inline |
9dbdb155 | 483 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
bf0f6f24 IM |
484 | |
485 | /************************************************************** | |
486 | * Scheduling class tree data structure manipulation methods: | |
487 | */ | |
488 | ||
1bf08230 | 489 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
02e0431a | 490 | { |
1bf08230 | 491 | s64 delta = (s64)(vruntime - max_vruntime); |
368059a9 | 492 | if (delta > 0) |
1bf08230 | 493 | max_vruntime = vruntime; |
02e0431a | 494 | |
1bf08230 | 495 | return max_vruntime; |
02e0431a PZ |
496 | } |
497 | ||
0702e3eb | 498 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
499 | { |
500 | s64 delta = (s64)(vruntime - min_vruntime); | |
501 | if (delta < 0) | |
502 | min_vruntime = vruntime; | |
503 | ||
504 | return min_vruntime; | |
505 | } | |
506 | ||
54fdc581 FC |
507 | static inline int entity_before(struct sched_entity *a, |
508 | struct sched_entity *b) | |
509 | { | |
510 | return (s64)(a->vruntime - b->vruntime) < 0; | |
511 | } | |
512 | ||
1af5f730 PZ |
513 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
514 | { | |
b60205c7 PZ |
515 | struct sched_entity *curr = cfs_rq->curr; |
516 | ||
1af5f730 PZ |
517 | u64 vruntime = cfs_rq->min_vruntime; |
518 | ||
b60205c7 PZ |
519 | if (curr) { |
520 | if (curr->on_rq) | |
521 | vruntime = curr->vruntime; | |
522 | else | |
523 | curr = NULL; | |
524 | } | |
1af5f730 PZ |
525 | |
526 | if (cfs_rq->rb_leftmost) { | |
527 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | |
528 | struct sched_entity, | |
529 | run_node); | |
530 | ||
b60205c7 | 531 | if (!curr) |
1af5f730 PZ |
532 | vruntime = se->vruntime; |
533 | else | |
534 | vruntime = min_vruntime(vruntime, se->vruntime); | |
535 | } | |
536 | ||
1bf08230 | 537 | /* ensure we never gain time by being placed backwards. */ |
1af5f730 | 538 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
3fe1698b PZ |
539 | #ifndef CONFIG_64BIT |
540 | smp_wmb(); | |
541 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
542 | #endif | |
1af5f730 PZ |
543 | } |
544 | ||
bf0f6f24 IM |
545 | /* |
546 | * Enqueue an entity into the rb-tree: | |
547 | */ | |
0702e3eb | 548 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
549 | { |
550 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | |
551 | struct rb_node *parent = NULL; | |
552 | struct sched_entity *entry; | |
bf0f6f24 IM |
553 | int leftmost = 1; |
554 | ||
555 | /* | |
556 | * Find the right place in the rbtree: | |
557 | */ | |
558 | while (*link) { | |
559 | parent = *link; | |
560 | entry = rb_entry(parent, struct sched_entity, run_node); | |
561 | /* | |
562 | * We dont care about collisions. Nodes with | |
563 | * the same key stay together. | |
564 | */ | |
2bd2d6f2 | 565 | if (entity_before(se, entry)) { |
bf0f6f24 IM |
566 | link = &parent->rb_left; |
567 | } else { | |
568 | link = &parent->rb_right; | |
569 | leftmost = 0; | |
570 | } | |
571 | } | |
572 | ||
573 | /* | |
574 | * Maintain a cache of leftmost tree entries (it is frequently | |
575 | * used): | |
576 | */ | |
1af5f730 | 577 | if (leftmost) |
57cb499d | 578 | cfs_rq->rb_leftmost = &se->run_node; |
bf0f6f24 IM |
579 | |
580 | rb_link_node(&se->run_node, parent, link); | |
581 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | |
bf0f6f24 IM |
582 | } |
583 | ||
0702e3eb | 584 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 585 | { |
3fe69747 PZ |
586 | if (cfs_rq->rb_leftmost == &se->run_node) { |
587 | struct rb_node *next_node; | |
3fe69747 PZ |
588 | |
589 | next_node = rb_next(&se->run_node); | |
590 | cfs_rq->rb_leftmost = next_node; | |
3fe69747 | 591 | } |
e9acbff6 | 592 | |
bf0f6f24 | 593 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); |
bf0f6f24 IM |
594 | } |
595 | ||
029632fb | 596 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
bf0f6f24 | 597 | { |
f4b6755f PZ |
598 | struct rb_node *left = cfs_rq->rb_leftmost; |
599 | ||
600 | if (!left) | |
601 | return NULL; | |
602 | ||
603 | return rb_entry(left, struct sched_entity, run_node); | |
bf0f6f24 IM |
604 | } |
605 | ||
ac53db59 RR |
606 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) |
607 | { | |
608 | struct rb_node *next = rb_next(&se->run_node); | |
609 | ||
610 | if (!next) | |
611 | return NULL; | |
612 | ||
613 | return rb_entry(next, struct sched_entity, run_node); | |
614 | } | |
615 | ||
616 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 617 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 618 | { |
7eee3e67 | 619 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); |
aeb73b04 | 620 | |
70eee74b BS |
621 | if (!last) |
622 | return NULL; | |
7eee3e67 IM |
623 | |
624 | return rb_entry(last, struct sched_entity, run_node); | |
aeb73b04 PZ |
625 | } |
626 | ||
bf0f6f24 IM |
627 | /************************************************************** |
628 | * Scheduling class statistics methods: | |
629 | */ | |
630 | ||
acb4a848 | 631 | int sched_proc_update_handler(struct ctl_table *table, int write, |
8d65af78 | 632 | void __user *buffer, size_t *lenp, |
b2be5e96 PZ |
633 | loff_t *ppos) |
634 | { | |
8d65af78 | 635 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
58ac93e4 | 636 | unsigned int factor = get_update_sysctl_factor(); |
b2be5e96 PZ |
637 | |
638 | if (ret || !write) | |
639 | return ret; | |
640 | ||
641 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | |
642 | sysctl_sched_min_granularity); | |
643 | ||
acb4a848 CE |
644 | #define WRT_SYSCTL(name) \ |
645 | (normalized_sysctl_##name = sysctl_##name / (factor)) | |
646 | WRT_SYSCTL(sched_min_granularity); | |
647 | WRT_SYSCTL(sched_latency); | |
648 | WRT_SYSCTL(sched_wakeup_granularity); | |
acb4a848 CE |
649 | #undef WRT_SYSCTL |
650 | ||
b2be5e96 PZ |
651 | return 0; |
652 | } | |
653 | #endif | |
647e7cac | 654 | |
a7be37ac | 655 | /* |
f9c0b095 | 656 | * delta /= w |
a7be37ac | 657 | */ |
9dbdb155 | 658 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) |
a7be37ac | 659 | { |
f9c0b095 | 660 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
9dbdb155 | 661 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); |
a7be37ac PZ |
662 | |
663 | return delta; | |
664 | } | |
665 | ||
647e7cac IM |
666 | /* |
667 | * The idea is to set a period in which each task runs once. | |
668 | * | |
532b1858 | 669 | * When there are too many tasks (sched_nr_latency) we have to stretch |
647e7cac IM |
670 | * this period because otherwise the slices get too small. |
671 | * | |
672 | * p = (nr <= nl) ? l : l*nr/nl | |
673 | */ | |
4d78e7b6 PZ |
674 | static u64 __sched_period(unsigned long nr_running) |
675 | { | |
8e2b0bf3 BF |
676 | if (unlikely(nr_running > sched_nr_latency)) |
677 | return nr_running * sysctl_sched_min_granularity; | |
678 | else | |
679 | return sysctl_sched_latency; | |
4d78e7b6 PZ |
680 | } |
681 | ||
647e7cac IM |
682 | /* |
683 | * We calculate the wall-time slice from the period by taking a part | |
684 | * proportional to the weight. | |
685 | * | |
f9c0b095 | 686 | * s = p*P[w/rw] |
647e7cac | 687 | */ |
6d0f0ebd | 688 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 689 | { |
0a582440 | 690 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
f9c0b095 | 691 | |
0a582440 | 692 | for_each_sched_entity(se) { |
6272d68c | 693 | struct load_weight *load; |
3104bf03 | 694 | struct load_weight lw; |
6272d68c LM |
695 | |
696 | cfs_rq = cfs_rq_of(se); | |
697 | load = &cfs_rq->load; | |
f9c0b095 | 698 | |
0a582440 | 699 | if (unlikely(!se->on_rq)) { |
3104bf03 | 700 | lw = cfs_rq->load; |
0a582440 MG |
701 | |
702 | update_load_add(&lw, se->load.weight); | |
703 | load = &lw; | |
704 | } | |
9dbdb155 | 705 | slice = __calc_delta(slice, se->load.weight, load); |
0a582440 MG |
706 | } |
707 | return slice; | |
bf0f6f24 IM |
708 | } |
709 | ||
647e7cac | 710 | /* |
660cc00f | 711 | * We calculate the vruntime slice of a to-be-inserted task. |
647e7cac | 712 | * |
f9c0b095 | 713 | * vs = s/w |
647e7cac | 714 | */ |
f9c0b095 | 715 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
67e9fb2a | 716 | { |
f9c0b095 | 717 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
a7be37ac PZ |
718 | } |
719 | ||
a75cdaa9 | 720 | #ifdef CONFIG_SMP |
283e2ed3 PZ |
721 | |
722 | #include "sched-pelt.h" | |
723 | ||
772bd008 | 724 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
fb13c7ee MG |
725 | static unsigned long task_h_load(struct task_struct *p); |
726 | ||
540247fb YD |
727 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
728 | void init_entity_runnable_average(struct sched_entity *se) | |
a75cdaa9 | 729 | { |
540247fb | 730 | struct sched_avg *sa = &se->avg; |
a75cdaa9 | 731 | |
9d89c257 YD |
732 | sa->last_update_time = 0; |
733 | /* | |
734 | * sched_avg's period_contrib should be strictly less then 1024, so | |
735 | * we give it 1023 to make sure it is almost a period (1024us), and | |
736 | * will definitely be update (after enqueue). | |
737 | */ | |
738 | sa->period_contrib = 1023; | |
b5a9b340 VG |
739 | /* |
740 | * Tasks are intialized with full load to be seen as heavy tasks until | |
741 | * they get a chance to stabilize to their real load level. | |
742 | * Group entities are intialized with zero load to reflect the fact that | |
743 | * nothing has been attached to the task group yet. | |
744 | */ | |
745 | if (entity_is_task(se)) | |
746 | sa->load_avg = scale_load_down(se->load.weight); | |
9d89c257 | 747 | sa->load_sum = sa->load_avg * LOAD_AVG_MAX; |
2b8c41da YD |
748 | /* |
749 | * At this point, util_avg won't be used in select_task_rq_fair anyway | |
750 | */ | |
751 | sa->util_avg = 0; | |
752 | sa->util_sum = 0; | |
9d89c257 | 753 | /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ |
a75cdaa9 | 754 | } |
7ea241af | 755 | |
7dc603c9 | 756 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); |
df217913 | 757 | static void attach_entity_cfs_rq(struct sched_entity *se); |
7dc603c9 | 758 | |
2b8c41da YD |
759 | /* |
760 | * With new tasks being created, their initial util_avgs are extrapolated | |
761 | * based on the cfs_rq's current util_avg: | |
762 | * | |
763 | * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight | |
764 | * | |
765 | * However, in many cases, the above util_avg does not give a desired | |
766 | * value. Moreover, the sum of the util_avgs may be divergent, such | |
767 | * as when the series is a harmonic series. | |
768 | * | |
769 | * To solve this problem, we also cap the util_avg of successive tasks to | |
770 | * only 1/2 of the left utilization budget: | |
771 | * | |
772 | * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n | |
773 | * | |
774 | * where n denotes the nth task. | |
775 | * | |
776 | * For example, a simplest series from the beginning would be like: | |
777 | * | |
778 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... | |
779 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | |
780 | * | |
781 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | |
782 | * if util_avg > util_avg_cap. | |
783 | */ | |
784 | void post_init_entity_util_avg(struct sched_entity *se) | |
785 | { | |
786 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
787 | struct sched_avg *sa = &se->avg; | |
172895e6 | 788 | long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; |
2b8c41da YD |
789 | |
790 | if (cap > 0) { | |
791 | if (cfs_rq->avg.util_avg != 0) { | |
792 | sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; | |
793 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); | |
794 | ||
795 | if (sa->util_avg > cap) | |
796 | sa->util_avg = cap; | |
797 | } else { | |
798 | sa->util_avg = cap; | |
799 | } | |
800 | sa->util_sum = sa->util_avg * LOAD_AVG_MAX; | |
801 | } | |
7dc603c9 PZ |
802 | |
803 | if (entity_is_task(se)) { | |
804 | struct task_struct *p = task_of(se); | |
805 | if (p->sched_class != &fair_sched_class) { | |
806 | /* | |
807 | * For !fair tasks do: | |
808 | * | |
3a123bbb | 809 | update_cfs_rq_load_avg(now, cfs_rq); |
7dc603c9 PZ |
810 | attach_entity_load_avg(cfs_rq, se); |
811 | switched_from_fair(rq, p); | |
812 | * | |
813 | * such that the next switched_to_fair() has the | |
814 | * expected state. | |
815 | */ | |
df217913 | 816 | se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); |
7dc603c9 PZ |
817 | return; |
818 | } | |
819 | } | |
820 | ||
df217913 | 821 | attach_entity_cfs_rq(se); |
2b8c41da YD |
822 | } |
823 | ||
7dc603c9 | 824 | #else /* !CONFIG_SMP */ |
540247fb | 825 | void init_entity_runnable_average(struct sched_entity *se) |
a75cdaa9 AS |
826 | { |
827 | } | |
2b8c41da YD |
828 | void post_init_entity_util_avg(struct sched_entity *se) |
829 | { | |
830 | } | |
3d30544f PZ |
831 | static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
832 | { | |
833 | } | |
7dc603c9 | 834 | #endif /* CONFIG_SMP */ |
a75cdaa9 | 835 | |
bf0f6f24 | 836 | /* |
9dbdb155 | 837 | * Update the current task's runtime statistics. |
bf0f6f24 | 838 | */ |
b7cc0896 | 839 | static void update_curr(struct cfs_rq *cfs_rq) |
bf0f6f24 | 840 | { |
429d43bc | 841 | struct sched_entity *curr = cfs_rq->curr; |
78becc27 | 842 | u64 now = rq_clock_task(rq_of(cfs_rq)); |
9dbdb155 | 843 | u64 delta_exec; |
bf0f6f24 IM |
844 | |
845 | if (unlikely(!curr)) | |
846 | return; | |
847 | ||
9dbdb155 PZ |
848 | delta_exec = now - curr->exec_start; |
849 | if (unlikely((s64)delta_exec <= 0)) | |
34f28ecd | 850 | return; |
bf0f6f24 | 851 | |
8ebc91d9 | 852 | curr->exec_start = now; |
d842de87 | 853 | |
9dbdb155 PZ |
854 | schedstat_set(curr->statistics.exec_max, |
855 | max(delta_exec, curr->statistics.exec_max)); | |
856 | ||
857 | curr->sum_exec_runtime += delta_exec; | |
ae92882e | 858 | schedstat_add(cfs_rq->exec_clock, delta_exec); |
9dbdb155 PZ |
859 | |
860 | curr->vruntime += calc_delta_fair(delta_exec, curr); | |
861 | update_min_vruntime(cfs_rq); | |
862 | ||
d842de87 SV |
863 | if (entity_is_task(curr)) { |
864 | struct task_struct *curtask = task_of(curr); | |
865 | ||
f977bb49 | 866 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); |
d842de87 | 867 | cpuacct_charge(curtask, delta_exec); |
f06febc9 | 868 | account_group_exec_runtime(curtask, delta_exec); |
d842de87 | 869 | } |
ec12cb7f PT |
870 | |
871 | account_cfs_rq_runtime(cfs_rq, delta_exec); | |
bf0f6f24 IM |
872 | } |
873 | ||
6e998916 SG |
874 | static void update_curr_fair(struct rq *rq) |
875 | { | |
876 | update_curr(cfs_rq_of(&rq->curr->se)); | |
877 | } | |
878 | ||
bf0f6f24 | 879 | static inline void |
5870db5b | 880 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 881 | { |
4fa8d299 JP |
882 | u64 wait_start, prev_wait_start; |
883 | ||
884 | if (!schedstat_enabled()) | |
885 | return; | |
886 | ||
887 | wait_start = rq_clock(rq_of(cfs_rq)); | |
888 | prev_wait_start = schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
889 | |
890 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && | |
4fa8d299 JP |
891 | likely(wait_start > prev_wait_start)) |
892 | wait_start -= prev_wait_start; | |
3ea94de1 | 893 | |
4fa8d299 | 894 | schedstat_set(se->statistics.wait_start, wait_start); |
bf0f6f24 IM |
895 | } |
896 | ||
4fa8d299 | 897 | static inline void |
3ea94de1 JP |
898 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
899 | { | |
900 | struct task_struct *p; | |
cb251765 MG |
901 | u64 delta; |
902 | ||
4fa8d299 JP |
903 | if (!schedstat_enabled()) |
904 | return; | |
905 | ||
906 | delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); | |
3ea94de1 JP |
907 | |
908 | if (entity_is_task(se)) { | |
909 | p = task_of(se); | |
910 | if (task_on_rq_migrating(p)) { | |
911 | /* | |
912 | * Preserve migrating task's wait time so wait_start | |
913 | * time stamp can be adjusted to accumulate wait time | |
914 | * prior to migration. | |
915 | */ | |
4fa8d299 | 916 | schedstat_set(se->statistics.wait_start, delta); |
3ea94de1 JP |
917 | return; |
918 | } | |
919 | trace_sched_stat_wait(p, delta); | |
920 | } | |
921 | ||
4fa8d299 JP |
922 | schedstat_set(se->statistics.wait_max, |
923 | max(schedstat_val(se->statistics.wait_max), delta)); | |
924 | schedstat_inc(se->statistics.wait_count); | |
925 | schedstat_add(se->statistics.wait_sum, delta); | |
926 | schedstat_set(se->statistics.wait_start, 0); | |
3ea94de1 | 927 | } |
3ea94de1 | 928 | |
4fa8d299 | 929 | static inline void |
1a3d027c JP |
930 | update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
931 | { | |
932 | struct task_struct *tsk = NULL; | |
4fa8d299 JP |
933 | u64 sleep_start, block_start; |
934 | ||
935 | if (!schedstat_enabled()) | |
936 | return; | |
937 | ||
938 | sleep_start = schedstat_val(se->statistics.sleep_start); | |
939 | block_start = schedstat_val(se->statistics.block_start); | |
1a3d027c JP |
940 | |
941 | if (entity_is_task(se)) | |
942 | tsk = task_of(se); | |
943 | ||
4fa8d299 JP |
944 | if (sleep_start) { |
945 | u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; | |
1a3d027c JP |
946 | |
947 | if ((s64)delta < 0) | |
948 | delta = 0; | |
949 | ||
4fa8d299 JP |
950 | if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) |
951 | schedstat_set(se->statistics.sleep_max, delta); | |
1a3d027c | 952 | |
4fa8d299 JP |
953 | schedstat_set(se->statistics.sleep_start, 0); |
954 | schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
955 | |
956 | if (tsk) { | |
957 | account_scheduler_latency(tsk, delta >> 10, 1); | |
958 | trace_sched_stat_sleep(tsk, delta); | |
959 | } | |
960 | } | |
4fa8d299 JP |
961 | if (block_start) { |
962 | u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; | |
1a3d027c JP |
963 | |
964 | if ((s64)delta < 0) | |
965 | delta = 0; | |
966 | ||
4fa8d299 JP |
967 | if (unlikely(delta > schedstat_val(se->statistics.block_max))) |
968 | schedstat_set(se->statistics.block_max, delta); | |
1a3d027c | 969 | |
4fa8d299 JP |
970 | schedstat_set(se->statistics.block_start, 0); |
971 | schedstat_add(se->statistics.sum_sleep_runtime, delta); | |
1a3d027c JP |
972 | |
973 | if (tsk) { | |
974 | if (tsk->in_iowait) { | |
4fa8d299 JP |
975 | schedstat_add(se->statistics.iowait_sum, delta); |
976 | schedstat_inc(se->statistics.iowait_count); | |
1a3d027c JP |
977 | trace_sched_stat_iowait(tsk, delta); |
978 | } | |
979 | ||
980 | trace_sched_stat_blocked(tsk, delta); | |
981 | ||
982 | /* | |
983 | * Blocking time is in units of nanosecs, so shift by | |
984 | * 20 to get a milliseconds-range estimation of the | |
985 | * amount of time that the task spent sleeping: | |
986 | */ | |
987 | if (unlikely(prof_on == SLEEP_PROFILING)) { | |
988 | profile_hits(SLEEP_PROFILING, | |
989 | (void *)get_wchan(tsk), | |
990 | delta >> 20); | |
991 | } | |
992 | account_scheduler_latency(tsk, delta >> 10, 0); | |
993 | } | |
994 | } | |
3ea94de1 | 995 | } |
3ea94de1 | 996 | |
bf0f6f24 IM |
997 | /* |
998 | * Task is being enqueued - update stats: | |
999 | */ | |
cb251765 | 1000 | static inline void |
1a3d027c | 1001 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1002 | { |
4fa8d299 JP |
1003 | if (!schedstat_enabled()) |
1004 | return; | |
1005 | ||
bf0f6f24 IM |
1006 | /* |
1007 | * Are we enqueueing a waiting task? (for current tasks | |
1008 | * a dequeue/enqueue event is a NOP) | |
1009 | */ | |
429d43bc | 1010 | if (se != cfs_rq->curr) |
5870db5b | 1011 | update_stats_wait_start(cfs_rq, se); |
1a3d027c JP |
1012 | |
1013 | if (flags & ENQUEUE_WAKEUP) | |
1014 | update_stats_enqueue_sleeper(cfs_rq, se); | |
bf0f6f24 IM |
1015 | } |
1016 | ||
bf0f6f24 | 1017 | static inline void |
cb251765 | 1018 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1019 | { |
4fa8d299 JP |
1020 | |
1021 | if (!schedstat_enabled()) | |
1022 | return; | |
1023 | ||
bf0f6f24 IM |
1024 | /* |
1025 | * Mark the end of the wait period if dequeueing a | |
1026 | * waiting task: | |
1027 | */ | |
429d43bc | 1028 | if (se != cfs_rq->curr) |
9ef0a961 | 1029 | update_stats_wait_end(cfs_rq, se); |
cb251765 | 1030 | |
4fa8d299 JP |
1031 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
1032 | struct task_struct *tsk = task_of(se); | |
cb251765 | 1033 | |
4fa8d299 JP |
1034 | if (tsk->state & TASK_INTERRUPTIBLE) |
1035 | schedstat_set(se->statistics.sleep_start, | |
1036 | rq_clock(rq_of(cfs_rq))); | |
1037 | if (tsk->state & TASK_UNINTERRUPTIBLE) | |
1038 | schedstat_set(se->statistics.block_start, | |
1039 | rq_clock(rq_of(cfs_rq))); | |
cb251765 | 1040 | } |
cb251765 MG |
1041 | } |
1042 | ||
bf0f6f24 IM |
1043 | /* |
1044 | * We are picking a new current task - update its stats: | |
1045 | */ | |
1046 | static inline void | |
79303e9e | 1047 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
1048 | { |
1049 | /* | |
1050 | * We are starting a new run period: | |
1051 | */ | |
78becc27 | 1052 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
bf0f6f24 IM |
1053 | } |
1054 | ||
bf0f6f24 IM |
1055 | /************************************************** |
1056 | * Scheduling class queueing methods: | |
1057 | */ | |
1058 | ||
cbee9f88 PZ |
1059 | #ifdef CONFIG_NUMA_BALANCING |
1060 | /* | |
598f0ec0 MG |
1061 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
1062 | * calculated based on the tasks virtual memory size and | |
1063 | * numa_balancing_scan_size. | |
cbee9f88 | 1064 | */ |
598f0ec0 MG |
1065 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
1066 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | |
6e5fb223 PZ |
1067 | |
1068 | /* Portion of address space to scan in MB */ | |
1069 | unsigned int sysctl_numa_balancing_scan_size = 256; | |
cbee9f88 | 1070 | |
4b96a29b PZ |
1071 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
1072 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | |
1073 | ||
598f0ec0 MG |
1074 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
1075 | { | |
1076 | unsigned long rss = 0; | |
1077 | unsigned long nr_scan_pages; | |
1078 | ||
1079 | /* | |
1080 | * Calculations based on RSS as non-present and empty pages are skipped | |
1081 | * by the PTE scanner and NUMA hinting faults should be trapped based | |
1082 | * on resident pages | |
1083 | */ | |
1084 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | |
1085 | rss = get_mm_rss(p->mm); | |
1086 | if (!rss) | |
1087 | rss = nr_scan_pages; | |
1088 | ||
1089 | rss = round_up(rss, nr_scan_pages); | |
1090 | return rss / nr_scan_pages; | |
1091 | } | |
1092 | ||
1093 | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | |
1094 | #define MAX_SCAN_WINDOW 2560 | |
1095 | ||
1096 | static unsigned int task_scan_min(struct task_struct *p) | |
1097 | { | |
316c1608 | 1098 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
598f0ec0 MG |
1099 | unsigned int scan, floor; |
1100 | unsigned int windows = 1; | |
1101 | ||
64192658 KT |
1102 | if (scan_size < MAX_SCAN_WINDOW) |
1103 | windows = MAX_SCAN_WINDOW / scan_size; | |
598f0ec0 MG |
1104 | floor = 1000 / windows; |
1105 | ||
1106 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | |
1107 | return max_t(unsigned int, floor, scan); | |
1108 | } | |
1109 | ||
1110 | static unsigned int task_scan_max(struct task_struct *p) | |
1111 | { | |
1112 | unsigned int smin = task_scan_min(p); | |
1113 | unsigned int smax; | |
1114 | ||
1115 | /* Watch for min being lower than max due to floor calculations */ | |
1116 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | |
1117 | return max(smin, smax); | |
1118 | } | |
1119 | ||
0ec8aa00 PZ |
1120 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
1121 | { | |
1122 | rq->nr_numa_running += (p->numa_preferred_nid != -1); | |
1123 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); | |
1124 | } | |
1125 | ||
1126 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
1127 | { | |
1128 | rq->nr_numa_running -= (p->numa_preferred_nid != -1); | |
1129 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); | |
1130 | } | |
1131 | ||
8c8a743c PZ |
1132 | struct numa_group { |
1133 | atomic_t refcount; | |
1134 | ||
1135 | spinlock_t lock; /* nr_tasks, tasks */ | |
1136 | int nr_tasks; | |
e29cf08b | 1137 | pid_t gid; |
4142c3eb | 1138 | int active_nodes; |
8c8a743c PZ |
1139 | |
1140 | struct rcu_head rcu; | |
989348b5 | 1141 | unsigned long total_faults; |
4142c3eb | 1142 | unsigned long max_faults_cpu; |
7e2703e6 RR |
1143 | /* |
1144 | * Faults_cpu is used to decide whether memory should move | |
1145 | * towards the CPU. As a consequence, these stats are weighted | |
1146 | * more by CPU use than by memory faults. | |
1147 | */ | |
50ec8a40 | 1148 | unsigned long *faults_cpu; |
989348b5 | 1149 | unsigned long faults[0]; |
8c8a743c PZ |
1150 | }; |
1151 | ||
be1e4e76 RR |
1152 | /* Shared or private faults. */ |
1153 | #define NR_NUMA_HINT_FAULT_TYPES 2 | |
1154 | ||
1155 | /* Memory and CPU locality */ | |
1156 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | |
1157 | ||
1158 | /* Averaged statistics, and temporary buffers. */ | |
1159 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | |
1160 | ||
e29cf08b MG |
1161 | pid_t task_numa_group_id(struct task_struct *p) |
1162 | { | |
1163 | return p->numa_group ? p->numa_group->gid : 0; | |
1164 | } | |
1165 | ||
44dba3d5 IM |
1166 | /* |
1167 | * The averaged statistics, shared & private, memory & cpu, | |
1168 | * occupy the first half of the array. The second half of the | |
1169 | * array is for current counters, which are averaged into the | |
1170 | * first set by task_numa_placement. | |
1171 | */ | |
1172 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | |
ac8e895b | 1173 | { |
44dba3d5 | 1174 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
ac8e895b MG |
1175 | } |
1176 | ||
1177 | static inline unsigned long task_faults(struct task_struct *p, int nid) | |
1178 | { | |
44dba3d5 | 1179 | if (!p->numa_faults) |
ac8e895b MG |
1180 | return 0; |
1181 | ||
44dba3d5 IM |
1182 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1183 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
ac8e895b MG |
1184 | } |
1185 | ||
83e1d2cd MG |
1186 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
1187 | { | |
1188 | if (!p->numa_group) | |
1189 | return 0; | |
1190 | ||
44dba3d5 IM |
1191 | return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1192 | p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
83e1d2cd MG |
1193 | } |
1194 | ||
20e07dea RR |
1195 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
1196 | { | |
44dba3d5 IM |
1197 | return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + |
1198 | group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; | |
20e07dea RR |
1199 | } |
1200 | ||
4142c3eb RR |
1201 | /* |
1202 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | |
1203 | * considered part of a numa group's pseudo-interleaving set. Migrations | |
1204 | * between these nodes are slowed down, to allow things to settle down. | |
1205 | */ | |
1206 | #define ACTIVE_NODE_FRACTION 3 | |
1207 | ||
1208 | static bool numa_is_active_node(int nid, struct numa_group *ng) | |
1209 | { | |
1210 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | |
1211 | } | |
1212 | ||
6c6b1193 RR |
1213 | /* Handle placement on systems where not all nodes are directly connected. */ |
1214 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | |
1215 | int maxdist, bool task) | |
1216 | { | |
1217 | unsigned long score = 0; | |
1218 | int node; | |
1219 | ||
1220 | /* | |
1221 | * All nodes are directly connected, and the same distance | |
1222 | * from each other. No need for fancy placement algorithms. | |
1223 | */ | |
1224 | if (sched_numa_topology_type == NUMA_DIRECT) | |
1225 | return 0; | |
1226 | ||
1227 | /* | |
1228 | * This code is called for each node, introducing N^2 complexity, | |
1229 | * which should be ok given the number of nodes rarely exceeds 8. | |
1230 | */ | |
1231 | for_each_online_node(node) { | |
1232 | unsigned long faults; | |
1233 | int dist = node_distance(nid, node); | |
1234 | ||
1235 | /* | |
1236 | * The furthest away nodes in the system are not interesting | |
1237 | * for placement; nid was already counted. | |
1238 | */ | |
1239 | if (dist == sched_max_numa_distance || node == nid) | |
1240 | continue; | |
1241 | ||
1242 | /* | |
1243 | * On systems with a backplane NUMA topology, compare groups | |
1244 | * of nodes, and move tasks towards the group with the most | |
1245 | * memory accesses. When comparing two nodes at distance | |
1246 | * "hoplimit", only nodes closer by than "hoplimit" are part | |
1247 | * of each group. Skip other nodes. | |
1248 | */ | |
1249 | if (sched_numa_topology_type == NUMA_BACKPLANE && | |
1250 | dist > maxdist) | |
1251 | continue; | |
1252 | ||
1253 | /* Add up the faults from nearby nodes. */ | |
1254 | if (task) | |
1255 | faults = task_faults(p, node); | |
1256 | else | |
1257 | faults = group_faults(p, node); | |
1258 | ||
1259 | /* | |
1260 | * On systems with a glueless mesh NUMA topology, there are | |
1261 | * no fixed "groups of nodes". Instead, nodes that are not | |
1262 | * directly connected bounce traffic through intermediate | |
1263 | * nodes; a numa_group can occupy any set of nodes. | |
1264 | * The further away a node is, the less the faults count. | |
1265 | * This seems to result in good task placement. | |
1266 | */ | |
1267 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
1268 | faults *= (sched_max_numa_distance - dist); | |
1269 | faults /= (sched_max_numa_distance - LOCAL_DISTANCE); | |
1270 | } | |
1271 | ||
1272 | score += faults; | |
1273 | } | |
1274 | ||
1275 | return score; | |
1276 | } | |
1277 | ||
83e1d2cd MG |
1278 | /* |
1279 | * These return the fraction of accesses done by a particular task, or | |
1280 | * task group, on a particular numa node. The group weight is given a | |
1281 | * larger multiplier, in order to group tasks together that are almost | |
1282 | * evenly spread out between numa nodes. | |
1283 | */ | |
7bd95320 RR |
1284 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
1285 | int dist) | |
83e1d2cd | 1286 | { |
7bd95320 | 1287 | unsigned long faults, total_faults; |
83e1d2cd | 1288 | |
44dba3d5 | 1289 | if (!p->numa_faults) |
83e1d2cd MG |
1290 | return 0; |
1291 | ||
1292 | total_faults = p->total_numa_faults; | |
1293 | ||
1294 | if (!total_faults) | |
1295 | return 0; | |
1296 | ||
7bd95320 | 1297 | faults = task_faults(p, nid); |
6c6b1193 RR |
1298 | faults += score_nearby_nodes(p, nid, dist, true); |
1299 | ||
7bd95320 | 1300 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1301 | } |
1302 | ||
7bd95320 RR |
1303 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
1304 | int dist) | |
83e1d2cd | 1305 | { |
7bd95320 RR |
1306 | unsigned long faults, total_faults; |
1307 | ||
1308 | if (!p->numa_group) | |
1309 | return 0; | |
1310 | ||
1311 | total_faults = p->numa_group->total_faults; | |
1312 | ||
1313 | if (!total_faults) | |
83e1d2cd MG |
1314 | return 0; |
1315 | ||
7bd95320 | 1316 | faults = group_faults(p, nid); |
6c6b1193 RR |
1317 | faults += score_nearby_nodes(p, nid, dist, false); |
1318 | ||
7bd95320 | 1319 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1320 | } |
1321 | ||
10f39042 RR |
1322 | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, |
1323 | int src_nid, int dst_cpu) | |
1324 | { | |
1325 | struct numa_group *ng = p->numa_group; | |
1326 | int dst_nid = cpu_to_node(dst_cpu); | |
1327 | int last_cpupid, this_cpupid; | |
1328 | ||
1329 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | |
1330 | ||
1331 | /* | |
1332 | * Multi-stage node selection is used in conjunction with a periodic | |
1333 | * migration fault to build a temporal task<->page relation. By using | |
1334 | * a two-stage filter we remove short/unlikely relations. | |
1335 | * | |
1336 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | |
1337 | * a task's usage of a particular page (n_p) per total usage of this | |
1338 | * page (n_t) (in a given time-span) to a probability. | |
1339 | * | |
1340 | * Our periodic faults will sample this probability and getting the | |
1341 | * same result twice in a row, given these samples are fully | |
1342 | * independent, is then given by P(n)^2, provided our sample period | |
1343 | * is sufficiently short compared to the usage pattern. | |
1344 | * | |
1345 | * This quadric squishes small probabilities, making it less likely we | |
1346 | * act on an unlikely task<->page relation. | |
1347 | */ | |
1348 | last_cpupid = page_cpupid_xchg_last(page, this_cpupid); | |
1349 | if (!cpupid_pid_unset(last_cpupid) && | |
1350 | cpupid_to_nid(last_cpupid) != dst_nid) | |
1351 | return false; | |
1352 | ||
1353 | /* Always allow migrate on private faults */ | |
1354 | if (cpupid_match_pid(p, last_cpupid)) | |
1355 | return true; | |
1356 | ||
1357 | /* A shared fault, but p->numa_group has not been set up yet. */ | |
1358 | if (!ng) | |
1359 | return true; | |
1360 | ||
1361 | /* | |
4142c3eb RR |
1362 | * Destination node is much more heavily used than the source |
1363 | * node? Allow migration. | |
10f39042 | 1364 | */ |
4142c3eb RR |
1365 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
1366 | ACTIVE_NODE_FRACTION) | |
10f39042 RR |
1367 | return true; |
1368 | ||
1369 | /* | |
4142c3eb RR |
1370 | * Distribute memory according to CPU & memory use on each node, |
1371 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | |
1372 | * | |
1373 | * faults_cpu(dst) 3 faults_cpu(src) | |
1374 | * --------------- * - > --------------- | |
1375 | * faults_mem(dst) 4 faults_mem(src) | |
10f39042 | 1376 | */ |
4142c3eb RR |
1377 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
1378 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | |
10f39042 RR |
1379 | } |
1380 | ||
c7132dd6 | 1381 | static unsigned long weighted_cpuload(struct rq *rq); |
58d081b5 MG |
1382 | static unsigned long source_load(int cpu, int type); |
1383 | static unsigned long target_load(int cpu, int type); | |
ced549fa | 1384 | static unsigned long capacity_of(int cpu); |
58d081b5 | 1385 | |
fb13c7ee | 1386 | /* Cached statistics for all CPUs within a node */ |
58d081b5 | 1387 | struct numa_stats { |
fb13c7ee | 1388 | unsigned long nr_running; |
58d081b5 | 1389 | unsigned long load; |
fb13c7ee MG |
1390 | |
1391 | /* Total compute capacity of CPUs on a node */ | |
5ef20ca1 | 1392 | unsigned long compute_capacity; |
fb13c7ee MG |
1393 | |
1394 | /* Approximate capacity in terms of runnable tasks on a node */ | |
5ef20ca1 | 1395 | unsigned long task_capacity; |
1b6a7495 | 1396 | int has_free_capacity; |
58d081b5 | 1397 | }; |
e6628d5b | 1398 | |
fb13c7ee MG |
1399 | /* |
1400 | * XXX borrowed from update_sg_lb_stats | |
1401 | */ | |
1402 | static void update_numa_stats(struct numa_stats *ns, int nid) | |
1403 | { | |
83d7f242 RR |
1404 | int smt, cpu, cpus = 0; |
1405 | unsigned long capacity; | |
fb13c7ee MG |
1406 | |
1407 | memset(ns, 0, sizeof(*ns)); | |
1408 | for_each_cpu(cpu, cpumask_of_node(nid)) { | |
1409 | struct rq *rq = cpu_rq(cpu); | |
1410 | ||
1411 | ns->nr_running += rq->nr_running; | |
c7132dd6 | 1412 | ns->load += weighted_cpuload(rq); |
ced549fa | 1413 | ns->compute_capacity += capacity_of(cpu); |
5eca82a9 PZ |
1414 | |
1415 | cpus++; | |
fb13c7ee MG |
1416 | } |
1417 | ||
5eca82a9 PZ |
1418 | /* |
1419 | * If we raced with hotplug and there are no CPUs left in our mask | |
1420 | * the @ns structure is NULL'ed and task_numa_compare() will | |
1421 | * not find this node attractive. | |
1422 | * | |
1b6a7495 NP |
1423 | * We'll either bail at !has_free_capacity, or we'll detect a huge |
1424 | * imbalance and bail there. | |
5eca82a9 PZ |
1425 | */ |
1426 | if (!cpus) | |
1427 | return; | |
1428 | ||
83d7f242 RR |
1429 | /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ |
1430 | smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); | |
1431 | capacity = cpus / smt; /* cores */ | |
1432 | ||
1433 | ns->task_capacity = min_t(unsigned, capacity, | |
1434 | DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); | |
1b6a7495 | 1435 | ns->has_free_capacity = (ns->nr_running < ns->task_capacity); |
fb13c7ee MG |
1436 | } |
1437 | ||
58d081b5 MG |
1438 | struct task_numa_env { |
1439 | struct task_struct *p; | |
e6628d5b | 1440 | |
58d081b5 MG |
1441 | int src_cpu, src_nid; |
1442 | int dst_cpu, dst_nid; | |
e6628d5b | 1443 | |
58d081b5 | 1444 | struct numa_stats src_stats, dst_stats; |
e6628d5b | 1445 | |
40ea2b42 | 1446 | int imbalance_pct; |
7bd95320 | 1447 | int dist; |
fb13c7ee MG |
1448 | |
1449 | struct task_struct *best_task; | |
1450 | long best_imp; | |
58d081b5 MG |
1451 | int best_cpu; |
1452 | }; | |
1453 | ||
fb13c7ee MG |
1454 | static void task_numa_assign(struct task_numa_env *env, |
1455 | struct task_struct *p, long imp) | |
1456 | { | |
1457 | if (env->best_task) | |
1458 | put_task_struct(env->best_task); | |
bac78573 ON |
1459 | if (p) |
1460 | get_task_struct(p); | |
fb13c7ee MG |
1461 | |
1462 | env->best_task = p; | |
1463 | env->best_imp = imp; | |
1464 | env->best_cpu = env->dst_cpu; | |
1465 | } | |
1466 | ||
28a21745 | 1467 | static bool load_too_imbalanced(long src_load, long dst_load, |
e63da036 RR |
1468 | struct task_numa_env *env) |
1469 | { | |
e4991b24 RR |
1470 | long imb, old_imb; |
1471 | long orig_src_load, orig_dst_load; | |
28a21745 RR |
1472 | long src_capacity, dst_capacity; |
1473 | ||
1474 | /* | |
1475 | * The load is corrected for the CPU capacity available on each node. | |
1476 | * | |
1477 | * src_load dst_load | |
1478 | * ------------ vs --------- | |
1479 | * src_capacity dst_capacity | |
1480 | */ | |
1481 | src_capacity = env->src_stats.compute_capacity; | |
1482 | dst_capacity = env->dst_stats.compute_capacity; | |
e63da036 RR |
1483 | |
1484 | /* We care about the slope of the imbalance, not the direction. */ | |
e4991b24 RR |
1485 | if (dst_load < src_load) |
1486 | swap(dst_load, src_load); | |
e63da036 RR |
1487 | |
1488 | /* Is the difference below the threshold? */ | |
e4991b24 RR |
1489 | imb = dst_load * src_capacity * 100 - |
1490 | src_load * dst_capacity * env->imbalance_pct; | |
e63da036 RR |
1491 | if (imb <= 0) |
1492 | return false; | |
1493 | ||
1494 | /* | |
1495 | * The imbalance is above the allowed threshold. | |
e4991b24 | 1496 | * Compare it with the old imbalance. |
e63da036 | 1497 | */ |
28a21745 | 1498 | orig_src_load = env->src_stats.load; |
e4991b24 | 1499 | orig_dst_load = env->dst_stats.load; |
28a21745 | 1500 | |
e4991b24 RR |
1501 | if (orig_dst_load < orig_src_load) |
1502 | swap(orig_dst_load, orig_src_load); | |
e63da036 | 1503 | |
e4991b24 RR |
1504 | old_imb = orig_dst_load * src_capacity * 100 - |
1505 | orig_src_load * dst_capacity * env->imbalance_pct; | |
1506 | ||
1507 | /* Would this change make things worse? */ | |
1508 | return (imb > old_imb); | |
e63da036 RR |
1509 | } |
1510 | ||
fb13c7ee MG |
1511 | /* |
1512 | * This checks if the overall compute and NUMA accesses of the system would | |
1513 | * be improved if the source tasks was migrated to the target dst_cpu taking | |
1514 | * into account that it might be best if task running on the dst_cpu should | |
1515 | * be exchanged with the source task | |
1516 | */ | |
887c290e RR |
1517 | static void task_numa_compare(struct task_numa_env *env, |
1518 | long taskimp, long groupimp) | |
fb13c7ee MG |
1519 | { |
1520 | struct rq *src_rq = cpu_rq(env->src_cpu); | |
1521 | struct rq *dst_rq = cpu_rq(env->dst_cpu); | |
1522 | struct task_struct *cur; | |
28a21745 | 1523 | long src_load, dst_load; |
fb13c7ee | 1524 | long load; |
1c5d3eb3 | 1525 | long imp = env->p->numa_group ? groupimp : taskimp; |
0132c3e1 | 1526 | long moveimp = imp; |
7bd95320 | 1527 | int dist = env->dist; |
fb13c7ee MG |
1528 | |
1529 | rcu_read_lock(); | |
bac78573 ON |
1530 | cur = task_rcu_dereference(&dst_rq->curr); |
1531 | if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) | |
fb13c7ee MG |
1532 | cur = NULL; |
1533 | ||
7af68335 PZ |
1534 | /* |
1535 | * Because we have preemption enabled we can get migrated around and | |
1536 | * end try selecting ourselves (current == env->p) as a swap candidate. | |
1537 | */ | |
1538 | if (cur == env->p) | |
1539 | goto unlock; | |
1540 | ||
fb13c7ee MG |
1541 | /* |
1542 | * "imp" is the fault differential for the source task between the | |
1543 | * source and destination node. Calculate the total differential for | |
1544 | * the source task and potential destination task. The more negative | |
1545 | * the value is, the more rmeote accesses that would be expected to | |
1546 | * be incurred if the tasks were swapped. | |
1547 | */ | |
1548 | if (cur) { | |
1549 | /* Skip this swap candidate if cannot move to the source cpu */ | |
0c98d344 | 1550 | if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) |
fb13c7ee MG |
1551 | goto unlock; |
1552 | ||
887c290e RR |
1553 | /* |
1554 | * If dst and source tasks are in the same NUMA group, or not | |
ca28aa53 | 1555 | * in any group then look only at task weights. |
887c290e | 1556 | */ |
ca28aa53 | 1557 | if (cur->numa_group == env->p->numa_group) { |
7bd95320 RR |
1558 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
1559 | task_weight(cur, env->dst_nid, dist); | |
ca28aa53 RR |
1560 | /* |
1561 | * Add some hysteresis to prevent swapping the | |
1562 | * tasks within a group over tiny differences. | |
1563 | */ | |
1564 | if (cur->numa_group) | |
1565 | imp -= imp/16; | |
887c290e | 1566 | } else { |
ca28aa53 RR |
1567 | /* |
1568 | * Compare the group weights. If a task is all by | |
1569 | * itself (not part of a group), use the task weight | |
1570 | * instead. | |
1571 | */ | |
ca28aa53 | 1572 | if (cur->numa_group) |
7bd95320 RR |
1573 | imp += group_weight(cur, env->src_nid, dist) - |
1574 | group_weight(cur, env->dst_nid, dist); | |
ca28aa53 | 1575 | else |
7bd95320 RR |
1576 | imp += task_weight(cur, env->src_nid, dist) - |
1577 | task_weight(cur, env->dst_nid, dist); | |
887c290e | 1578 | } |
fb13c7ee MG |
1579 | } |
1580 | ||
0132c3e1 | 1581 | if (imp <= env->best_imp && moveimp <= env->best_imp) |
fb13c7ee MG |
1582 | goto unlock; |
1583 | ||
1584 | if (!cur) { | |
1585 | /* Is there capacity at our destination? */ | |
b932c03c | 1586 | if (env->src_stats.nr_running <= env->src_stats.task_capacity && |
1b6a7495 | 1587 | !env->dst_stats.has_free_capacity) |
fb13c7ee MG |
1588 | goto unlock; |
1589 | ||
1590 | goto balance; | |
1591 | } | |
1592 | ||
1593 | /* Balance doesn't matter much if we're running a task per cpu */ | |
0132c3e1 RR |
1594 | if (imp > env->best_imp && src_rq->nr_running == 1 && |
1595 | dst_rq->nr_running == 1) | |
fb13c7ee MG |
1596 | goto assign; |
1597 | ||
1598 | /* | |
1599 | * In the overloaded case, try and keep the load balanced. | |
1600 | */ | |
1601 | balance: | |
e720fff6 PZ |
1602 | load = task_h_load(env->p); |
1603 | dst_load = env->dst_stats.load + load; | |
1604 | src_load = env->src_stats.load - load; | |
fb13c7ee | 1605 | |
0132c3e1 RR |
1606 | if (moveimp > imp && moveimp > env->best_imp) { |
1607 | /* | |
1608 | * If the improvement from just moving env->p direction is | |
1609 | * better than swapping tasks around, check if a move is | |
1610 | * possible. Store a slightly smaller score than moveimp, | |
1611 | * so an actually idle CPU will win. | |
1612 | */ | |
1613 | if (!load_too_imbalanced(src_load, dst_load, env)) { | |
1614 | imp = moveimp - 1; | |
1615 | cur = NULL; | |
1616 | goto assign; | |
1617 | } | |
1618 | } | |
1619 | ||
1620 | if (imp <= env->best_imp) | |
1621 | goto unlock; | |
1622 | ||
fb13c7ee | 1623 | if (cur) { |
e720fff6 PZ |
1624 | load = task_h_load(cur); |
1625 | dst_load -= load; | |
1626 | src_load += load; | |
fb13c7ee MG |
1627 | } |
1628 | ||
28a21745 | 1629 | if (load_too_imbalanced(src_load, dst_load, env)) |
fb13c7ee MG |
1630 | goto unlock; |
1631 | ||
ba7e5a27 RR |
1632 | /* |
1633 | * One idle CPU per node is evaluated for a task numa move. | |
1634 | * Call select_idle_sibling to maybe find a better one. | |
1635 | */ | |
10e2f1ac PZ |
1636 | if (!cur) { |
1637 | /* | |
1638 | * select_idle_siblings() uses an per-cpu cpumask that | |
1639 | * can be used from IRQ context. | |
1640 | */ | |
1641 | local_irq_disable(); | |
772bd008 MR |
1642 | env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, |
1643 | env->dst_cpu); | |
10e2f1ac PZ |
1644 | local_irq_enable(); |
1645 | } | |
ba7e5a27 | 1646 | |
fb13c7ee MG |
1647 | assign: |
1648 | task_numa_assign(env, cur, imp); | |
1649 | unlock: | |
1650 | rcu_read_unlock(); | |
1651 | } | |
1652 | ||
887c290e RR |
1653 | static void task_numa_find_cpu(struct task_numa_env *env, |
1654 | long taskimp, long groupimp) | |
2c8a50aa MG |
1655 | { |
1656 | int cpu; | |
1657 | ||
1658 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { | |
1659 | /* Skip this CPU if the source task cannot migrate */ | |
0c98d344 | 1660 | if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) |
2c8a50aa MG |
1661 | continue; |
1662 | ||
1663 | env->dst_cpu = cpu; | |
887c290e | 1664 | task_numa_compare(env, taskimp, groupimp); |
2c8a50aa MG |
1665 | } |
1666 | } | |
1667 | ||
6f9aad0b RR |
1668 | /* Only move tasks to a NUMA node less busy than the current node. */ |
1669 | static bool numa_has_capacity(struct task_numa_env *env) | |
1670 | { | |
1671 | struct numa_stats *src = &env->src_stats; | |
1672 | struct numa_stats *dst = &env->dst_stats; | |
1673 | ||
1674 | if (src->has_free_capacity && !dst->has_free_capacity) | |
1675 | return false; | |
1676 | ||
1677 | /* | |
1678 | * Only consider a task move if the source has a higher load | |
1679 | * than the destination, corrected for CPU capacity on each node. | |
1680 | * | |
1681 | * src->load dst->load | |
1682 | * --------------------- vs --------------------- | |
1683 | * src->compute_capacity dst->compute_capacity | |
1684 | */ | |
44dcb04f SD |
1685 | if (src->load * dst->compute_capacity * env->imbalance_pct > |
1686 | ||
1687 | dst->load * src->compute_capacity * 100) | |
6f9aad0b RR |
1688 | return true; |
1689 | ||
1690 | return false; | |
1691 | } | |
1692 | ||
58d081b5 MG |
1693 | static int task_numa_migrate(struct task_struct *p) |
1694 | { | |
58d081b5 MG |
1695 | struct task_numa_env env = { |
1696 | .p = p, | |
fb13c7ee | 1697 | |
58d081b5 | 1698 | .src_cpu = task_cpu(p), |
b32e86b4 | 1699 | .src_nid = task_node(p), |
fb13c7ee MG |
1700 | |
1701 | .imbalance_pct = 112, | |
1702 | ||
1703 | .best_task = NULL, | |
1704 | .best_imp = 0, | |
4142c3eb | 1705 | .best_cpu = -1, |
58d081b5 MG |
1706 | }; |
1707 | struct sched_domain *sd; | |
887c290e | 1708 | unsigned long taskweight, groupweight; |
7bd95320 | 1709 | int nid, ret, dist; |
887c290e | 1710 | long taskimp, groupimp; |
e6628d5b | 1711 | |
58d081b5 | 1712 | /* |
fb13c7ee MG |
1713 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
1714 | * imbalance and would be the first to start moving tasks about. | |
1715 | * | |
1716 | * And we want to avoid any moving of tasks about, as that would create | |
1717 | * random movement of tasks -- counter the numa conditions we're trying | |
1718 | * to satisfy here. | |
58d081b5 MG |
1719 | */ |
1720 | rcu_read_lock(); | |
fb13c7ee | 1721 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
46a73e8a RR |
1722 | if (sd) |
1723 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | |
e6628d5b MG |
1724 | rcu_read_unlock(); |
1725 | ||
46a73e8a RR |
1726 | /* |
1727 | * Cpusets can break the scheduler domain tree into smaller | |
1728 | * balance domains, some of which do not cross NUMA boundaries. | |
1729 | * Tasks that are "trapped" in such domains cannot be migrated | |
1730 | * elsewhere, so there is no point in (re)trying. | |
1731 | */ | |
1732 | if (unlikely(!sd)) { | |
de1b301a | 1733 | p->numa_preferred_nid = task_node(p); |
46a73e8a RR |
1734 | return -EINVAL; |
1735 | } | |
1736 | ||
2c8a50aa | 1737 | env.dst_nid = p->numa_preferred_nid; |
7bd95320 RR |
1738 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
1739 | taskweight = task_weight(p, env.src_nid, dist); | |
1740 | groupweight = group_weight(p, env.src_nid, dist); | |
1741 | update_numa_stats(&env.src_stats, env.src_nid); | |
1742 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; | |
1743 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | |
2c8a50aa | 1744 | update_numa_stats(&env.dst_stats, env.dst_nid); |
58d081b5 | 1745 | |
a43455a1 | 1746 | /* Try to find a spot on the preferred nid. */ |
6f9aad0b RR |
1747 | if (numa_has_capacity(&env)) |
1748 | task_numa_find_cpu(&env, taskimp, groupimp); | |
e1dda8a7 | 1749 | |
9de05d48 RR |
1750 | /* |
1751 | * Look at other nodes in these cases: | |
1752 | * - there is no space available on the preferred_nid | |
1753 | * - the task is part of a numa_group that is interleaved across | |
1754 | * multiple NUMA nodes; in order to better consolidate the group, | |
1755 | * we need to check other locations. | |
1756 | */ | |
4142c3eb | 1757 | if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { |
2c8a50aa MG |
1758 | for_each_online_node(nid) { |
1759 | if (nid == env.src_nid || nid == p->numa_preferred_nid) | |
1760 | continue; | |
58d081b5 | 1761 | |
7bd95320 | 1762 | dist = node_distance(env.src_nid, env.dst_nid); |
6c6b1193 RR |
1763 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
1764 | dist != env.dist) { | |
1765 | taskweight = task_weight(p, env.src_nid, dist); | |
1766 | groupweight = group_weight(p, env.src_nid, dist); | |
1767 | } | |
7bd95320 | 1768 | |
83e1d2cd | 1769 | /* Only consider nodes where both task and groups benefit */ |
7bd95320 RR |
1770 | taskimp = task_weight(p, nid, dist) - taskweight; |
1771 | groupimp = group_weight(p, nid, dist) - groupweight; | |
887c290e | 1772 | if (taskimp < 0 && groupimp < 0) |
fb13c7ee MG |
1773 | continue; |
1774 | ||
7bd95320 | 1775 | env.dist = dist; |
2c8a50aa MG |
1776 | env.dst_nid = nid; |
1777 | update_numa_stats(&env.dst_stats, env.dst_nid); | |
6f9aad0b RR |
1778 | if (numa_has_capacity(&env)) |
1779 | task_numa_find_cpu(&env, taskimp, groupimp); | |
58d081b5 MG |
1780 | } |
1781 | } | |
1782 | ||
68d1b02a RR |
1783 | /* |
1784 | * If the task is part of a workload that spans multiple NUMA nodes, | |
1785 | * and is migrating into one of the workload's active nodes, remember | |
1786 | * this node as the task's preferred numa node, so the workload can | |
1787 | * settle down. | |
1788 | * A task that migrated to a second choice node will be better off | |
1789 | * trying for a better one later. Do not set the preferred node here. | |
1790 | */ | |
db015dae | 1791 | if (p->numa_group) { |
4142c3eb RR |
1792 | struct numa_group *ng = p->numa_group; |
1793 | ||
db015dae RR |
1794 | if (env.best_cpu == -1) |
1795 | nid = env.src_nid; | |
1796 | else | |
1797 | nid = env.dst_nid; | |
1798 | ||
4142c3eb | 1799 | if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) |
db015dae RR |
1800 | sched_setnuma(p, env.dst_nid); |
1801 | } | |
1802 | ||
1803 | /* No better CPU than the current one was found. */ | |
1804 | if (env.best_cpu == -1) | |
1805 | return -EAGAIN; | |
0ec8aa00 | 1806 | |
04bb2f94 RR |
1807 | /* |
1808 | * Reset the scan period if the task is being rescheduled on an | |
1809 | * alternative node to recheck if the tasks is now properly placed. | |
1810 | */ | |
1811 | p->numa_scan_period = task_scan_min(p); | |
1812 | ||
fb13c7ee | 1813 | if (env.best_task == NULL) { |
286549dc MG |
1814 | ret = migrate_task_to(p, env.best_cpu); |
1815 | if (ret != 0) | |
1816 | trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); | |
fb13c7ee MG |
1817 | return ret; |
1818 | } | |
1819 | ||
1820 | ret = migrate_swap(p, env.best_task); | |
286549dc MG |
1821 | if (ret != 0) |
1822 | trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); | |
fb13c7ee MG |
1823 | put_task_struct(env.best_task); |
1824 | return ret; | |
e6628d5b MG |
1825 | } |
1826 | ||
6b9a7460 MG |
1827 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
1828 | static void numa_migrate_preferred(struct task_struct *p) | |
1829 | { | |
5085e2a3 RR |
1830 | unsigned long interval = HZ; |
1831 | ||
2739d3ee | 1832 | /* This task has no NUMA fault statistics yet */ |
44dba3d5 | 1833 | if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) |
6b9a7460 MG |
1834 | return; |
1835 | ||
2739d3ee | 1836 | /* Periodically retry migrating the task to the preferred node */ |
5085e2a3 RR |
1837 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
1838 | p->numa_migrate_retry = jiffies + interval; | |
2739d3ee RR |
1839 | |
1840 | /* Success if task is already running on preferred CPU */ | |
de1b301a | 1841 | if (task_node(p) == p->numa_preferred_nid) |
6b9a7460 MG |
1842 | return; |
1843 | ||
1844 | /* Otherwise, try migrate to a CPU on the preferred node */ | |
2739d3ee | 1845 | task_numa_migrate(p); |
6b9a7460 MG |
1846 | } |
1847 | ||
20e07dea | 1848 | /* |
4142c3eb | 1849 | * Find out how many nodes on the workload is actively running on. Do this by |
20e07dea RR |
1850 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
1851 | * be different from the set of nodes where the workload's memory is currently | |
1852 | * located. | |
20e07dea | 1853 | */ |
4142c3eb | 1854 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
20e07dea RR |
1855 | { |
1856 | unsigned long faults, max_faults = 0; | |
4142c3eb | 1857 | int nid, active_nodes = 0; |
20e07dea RR |
1858 | |
1859 | for_each_online_node(nid) { | |
1860 | faults = group_faults_cpu(numa_group, nid); | |
1861 | if (faults > max_faults) | |
1862 | max_faults = faults; | |
1863 | } | |
1864 | ||
1865 | for_each_online_node(nid) { | |
1866 | faults = group_faults_cpu(numa_group, nid); | |
4142c3eb RR |
1867 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
1868 | active_nodes++; | |
20e07dea | 1869 | } |
4142c3eb RR |
1870 | |
1871 | numa_group->max_faults_cpu = max_faults; | |
1872 | numa_group->active_nodes = active_nodes; | |
20e07dea RR |
1873 | } |
1874 | ||
04bb2f94 RR |
1875 | /* |
1876 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | |
1877 | * increments. The more local the fault statistics are, the higher the scan | |
a22b4b01 RR |
1878 | * period will be for the next scan window. If local/(local+remote) ratio is |
1879 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | |
1880 | * the scan period will decrease. Aim for 70% local accesses. | |
04bb2f94 RR |
1881 | */ |
1882 | #define NUMA_PERIOD_SLOTS 10 | |
a22b4b01 | 1883 | #define NUMA_PERIOD_THRESHOLD 7 |
04bb2f94 RR |
1884 | |
1885 | /* | |
1886 | * Increase the scan period (slow down scanning) if the majority of | |
1887 | * our memory is already on our local node, or if the majority of | |
1888 | * the page accesses are shared with other processes. | |
1889 | * Otherwise, decrease the scan period. | |
1890 | */ | |
1891 | static void update_task_scan_period(struct task_struct *p, | |
1892 | unsigned long shared, unsigned long private) | |
1893 | { | |
1894 | unsigned int period_slot; | |
37ec97de | 1895 | int lr_ratio, ps_ratio; |
04bb2f94 RR |
1896 | int diff; |
1897 | ||
1898 | unsigned long remote = p->numa_faults_locality[0]; | |
1899 | unsigned long local = p->numa_faults_locality[1]; | |
1900 | ||
1901 | /* | |
1902 | * If there were no record hinting faults then either the task is | |
1903 | * completely idle or all activity is areas that are not of interest | |
074c2381 MG |
1904 | * to automatic numa balancing. Related to that, if there were failed |
1905 | * migration then it implies we are migrating too quickly or the local | |
1906 | * node is overloaded. In either case, scan slower | |
04bb2f94 | 1907 | */ |
074c2381 | 1908 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
04bb2f94 RR |
1909 | p->numa_scan_period = min(p->numa_scan_period_max, |
1910 | p->numa_scan_period << 1); | |
1911 | ||
1912 | p->mm->numa_next_scan = jiffies + | |
1913 | msecs_to_jiffies(p->numa_scan_period); | |
1914 | ||
1915 | return; | |
1916 | } | |
1917 | ||
1918 | /* | |
1919 | * Prepare to scale scan period relative to the current period. | |
1920 | * == NUMA_PERIOD_THRESHOLD scan period stays the same | |
1921 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | |
1922 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | |
1923 | */ | |
1924 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | |
37ec97de RR |
1925 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
1926 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | |
1927 | ||
1928 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | |
1929 | /* | |
1930 | * Most memory accesses are local. There is no need to | |
1931 | * do fast NUMA scanning, since memory is already local. | |
1932 | */ | |
1933 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | |
1934 | if (!slot) | |
1935 | slot = 1; | |
1936 | diff = slot * period_slot; | |
1937 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | |
1938 | /* | |
1939 | * Most memory accesses are shared with other tasks. | |
1940 | * There is no point in continuing fast NUMA scanning, | |
1941 | * since other tasks may just move the memory elsewhere. | |
1942 | */ | |
1943 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | |
04bb2f94 RR |
1944 | if (!slot) |
1945 | slot = 1; | |
1946 | diff = slot * period_slot; | |
1947 | } else { | |
04bb2f94 | 1948 | /* |
37ec97de RR |
1949 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
1950 | * yet they are not on the local NUMA node. Speed up | |
1951 | * NUMA scanning to get the memory moved over. | |
04bb2f94 | 1952 | */ |
37ec97de RR |
1953 | int ratio = max(lr_ratio, ps_ratio); |
1954 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | |
04bb2f94 RR |
1955 | } |
1956 | ||
1957 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | |
1958 | task_scan_min(p), task_scan_max(p)); | |
1959 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | |
1960 | } | |
1961 | ||
7e2703e6 RR |
1962 | /* |
1963 | * Get the fraction of time the task has been running since the last | |
1964 | * NUMA placement cycle. The scheduler keeps similar statistics, but | |
1965 | * decays those on a 32ms period, which is orders of magnitude off | |
1966 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | |
1967 | * stats only if the task is so new there are no NUMA statistics yet. | |
1968 | */ | |
1969 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | |
1970 | { | |
1971 | u64 runtime, delta, now; | |
1972 | /* Use the start of this time slice to avoid calculations. */ | |
1973 | now = p->se.exec_start; | |
1974 | runtime = p->se.sum_exec_runtime; | |
1975 | ||
1976 | if (p->last_task_numa_placement) { | |
1977 | delta = runtime - p->last_sum_exec_runtime; | |
1978 | *period = now - p->last_task_numa_placement; | |
1979 | } else { | |
9d89c257 YD |
1980 | delta = p->se.avg.load_sum / p->se.load.weight; |
1981 | *period = LOAD_AVG_MAX; | |
7e2703e6 RR |
1982 | } |
1983 | ||
1984 | p->last_sum_exec_runtime = runtime; | |
1985 | p->last_task_numa_placement = now; | |
1986 | ||
1987 | return delta; | |
1988 | } | |
1989 | ||
54009416 RR |
1990 | /* |
1991 | * Determine the preferred nid for a task in a numa_group. This needs to | |
1992 | * be done in a way that produces consistent results with group_weight, | |
1993 | * otherwise workloads might not converge. | |
1994 | */ | |
1995 | static int preferred_group_nid(struct task_struct *p, int nid) | |
1996 | { | |
1997 | nodemask_t nodes; | |
1998 | int dist; | |
1999 | ||
2000 | /* Direct connections between all NUMA nodes. */ | |
2001 | if (sched_numa_topology_type == NUMA_DIRECT) | |
2002 | return nid; | |
2003 | ||
2004 | /* | |
2005 | * On a system with glueless mesh NUMA topology, group_weight | |
2006 | * scores nodes according to the number of NUMA hinting faults on | |
2007 | * both the node itself, and on nearby nodes. | |
2008 | */ | |
2009 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
2010 | unsigned long score, max_score = 0; | |
2011 | int node, max_node = nid; | |
2012 | ||
2013 | dist = sched_max_numa_distance; | |
2014 | ||
2015 | for_each_online_node(node) { | |
2016 | score = group_weight(p, node, dist); | |
2017 | if (score > max_score) { | |
2018 | max_score = score; | |
2019 | max_node = node; | |
2020 | } | |
2021 | } | |
2022 | return max_node; | |
2023 | } | |
2024 | ||
2025 | /* | |
2026 | * Finding the preferred nid in a system with NUMA backplane | |
2027 | * interconnect topology is more involved. The goal is to locate | |
2028 | * tasks from numa_groups near each other in the system, and | |
2029 | * untangle workloads from different sides of the system. This requires | |
2030 | * searching down the hierarchy of node groups, recursively searching | |
2031 | * inside the highest scoring group of nodes. The nodemask tricks | |
2032 | * keep the complexity of the search down. | |
2033 | */ | |
2034 | nodes = node_online_map; | |
2035 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | |
2036 | unsigned long max_faults = 0; | |
81907478 | 2037 | nodemask_t max_group = NODE_MASK_NONE; |
54009416 RR |
2038 | int a, b; |
2039 | ||
2040 | /* Are there nodes at this distance from each other? */ | |
2041 | if (!find_numa_distance(dist)) | |
2042 | continue; | |
2043 | ||
2044 | for_each_node_mask(a, nodes) { | |
2045 | unsigned long faults = 0; | |
2046 | nodemask_t this_group; | |
2047 | nodes_clear(this_group); | |
2048 | ||
2049 | /* Sum group's NUMA faults; includes a==b case. */ | |
2050 | for_each_node_mask(b, nodes) { | |
2051 | if (node_distance(a, b) < dist) { | |
2052 | faults += group_faults(p, b); | |
2053 | node_set(b, this_group); | |
2054 | node_clear(b, nodes); | |
2055 | } | |
2056 | } | |
2057 | ||
2058 | /* Remember the top group. */ | |
2059 | if (faults > max_faults) { | |
2060 | max_faults = faults; | |
2061 | max_group = this_group; | |
2062 | /* | |
2063 | * subtle: at the smallest distance there is | |
2064 | * just one node left in each "group", the | |
2065 | * winner is the preferred nid. | |
2066 | */ | |
2067 | nid = a; | |
2068 | } | |
2069 | } | |
2070 | /* Next round, evaluate the nodes within max_group. */ | |
890a5409 JB |
2071 | if (!max_faults) |
2072 | break; | |
54009416 RR |
2073 | nodes = max_group; |
2074 | } | |
2075 | return nid; | |
2076 | } | |
2077 | ||
cbee9f88 PZ |
2078 | static void task_numa_placement(struct task_struct *p) |
2079 | { | |
83e1d2cd MG |
2080 | int seq, nid, max_nid = -1, max_group_nid = -1; |
2081 | unsigned long max_faults = 0, max_group_faults = 0; | |
04bb2f94 | 2082 | unsigned long fault_types[2] = { 0, 0 }; |
7e2703e6 RR |
2083 | unsigned long total_faults; |
2084 | u64 runtime, period; | |
7dbd13ed | 2085 | spinlock_t *group_lock = NULL; |
cbee9f88 | 2086 | |
7e5a2c17 JL |
2087 | /* |
2088 | * The p->mm->numa_scan_seq field gets updated without | |
2089 | * exclusive access. Use READ_ONCE() here to ensure | |
2090 | * that the field is read in a single access: | |
2091 | */ | |
316c1608 | 2092 | seq = READ_ONCE(p->mm->numa_scan_seq); |
cbee9f88 PZ |
2093 | if (p->numa_scan_seq == seq) |
2094 | return; | |
2095 | p->numa_scan_seq = seq; | |
598f0ec0 | 2096 | p->numa_scan_period_max = task_scan_max(p); |
cbee9f88 | 2097 | |
7e2703e6 RR |
2098 | total_faults = p->numa_faults_locality[0] + |
2099 | p->numa_faults_locality[1]; | |
2100 | runtime = numa_get_avg_runtime(p, &period); | |
2101 | ||
7dbd13ed MG |
2102 | /* If the task is part of a group prevent parallel updates to group stats */ |
2103 | if (p->numa_group) { | |
2104 | group_lock = &p->numa_group->lock; | |
60e69eed | 2105 | spin_lock_irq(group_lock); |
7dbd13ed MG |
2106 | } |
2107 | ||
688b7585 MG |
2108 | /* Find the node with the highest number of faults */ |
2109 | for_each_online_node(nid) { | |
44dba3d5 IM |
2110 | /* Keep track of the offsets in numa_faults array */ |
2111 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | |
83e1d2cd | 2112 | unsigned long faults = 0, group_faults = 0; |
44dba3d5 | 2113 | int priv; |
745d6147 | 2114 | |
be1e4e76 | 2115 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
7e2703e6 | 2116 | long diff, f_diff, f_weight; |
8c8a743c | 2117 | |
44dba3d5 IM |
2118 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
2119 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | |
2120 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | |
2121 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | |
745d6147 | 2122 | |
ac8e895b | 2123 | /* Decay existing window, copy faults since last scan */ |
44dba3d5 IM |
2124 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
2125 | fault_types[priv] += p->numa_faults[membuf_idx]; | |
2126 | p->numa_faults[membuf_idx] = 0; | |
fb13c7ee | 2127 | |
7e2703e6 RR |
2128 | /* |
2129 | * Normalize the faults_from, so all tasks in a group | |
2130 | * count according to CPU use, instead of by the raw | |
2131 | * number of faults. Tasks with little runtime have | |
2132 | * little over-all impact on throughput, and thus their | |
2133 | * faults are less important. | |
2134 | */ | |
2135 | f_weight = div64_u64(runtime << 16, period + 1); | |
44dba3d5 | 2136 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
7e2703e6 | 2137 | (total_faults + 1); |
44dba3d5 IM |
2138 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
2139 | p->numa_faults[cpubuf_idx] = 0; | |
50ec8a40 | 2140 | |
44dba3d5 IM |
2141 | p->numa_faults[mem_idx] += diff; |
2142 | p->numa_faults[cpu_idx] += f_diff; | |
2143 | faults += p->numa_faults[mem_idx]; | |
83e1d2cd | 2144 | p->total_numa_faults += diff; |
8c8a743c | 2145 | if (p->numa_group) { |
44dba3d5 IM |
2146 | /* |
2147 | * safe because we can only change our own group | |
2148 | * | |
2149 | * mem_idx represents the offset for a given | |
2150 | * nid and priv in a specific region because it | |
2151 | * is at the beginning of the numa_faults array. | |
2152 | */ | |
2153 | p->numa_group->faults[mem_idx] += diff; | |
2154 | p->numa_group->faults_cpu[mem_idx] += f_diff; | |
989348b5 | 2155 | p->numa_group->total_faults += diff; |
44dba3d5 | 2156 | group_faults += p->numa_group->faults[mem_idx]; |
8c8a743c | 2157 | } |
ac8e895b MG |
2158 | } |
2159 | ||
688b7585 MG |
2160 | if (faults > max_faults) { |
2161 | max_faults = faults; | |
2162 | max_nid = nid; | |
2163 | } | |
83e1d2cd MG |
2164 | |
2165 | if (group_faults > max_group_faults) { | |
2166 | max_group_faults = group_faults; | |
2167 | max_group_nid = nid; | |
2168 | } | |
2169 | } | |
2170 | ||
04bb2f94 RR |
2171 | update_task_scan_period(p, fault_types[0], fault_types[1]); |
2172 | ||
7dbd13ed | 2173 | if (p->numa_group) { |
4142c3eb | 2174 | numa_group_count_active_nodes(p->numa_group); |
60e69eed | 2175 | spin_unlock_irq(group_lock); |
54009416 | 2176 | max_nid = preferred_group_nid(p, max_group_nid); |
688b7585 MG |
2177 | } |
2178 | ||
bb97fc31 RR |
2179 | if (max_faults) { |
2180 | /* Set the new preferred node */ | |
2181 | if (max_nid != p->numa_preferred_nid) | |
2182 | sched_setnuma(p, max_nid); | |
2183 | ||
2184 | if (task_node(p) != p->numa_preferred_nid) | |
2185 | numa_migrate_preferred(p); | |
3a7053b3 | 2186 | } |
cbee9f88 PZ |
2187 | } |
2188 | ||
8c8a743c PZ |
2189 | static inline int get_numa_group(struct numa_group *grp) |
2190 | { | |
2191 | return atomic_inc_not_zero(&grp->refcount); | |
2192 | } | |
2193 | ||
2194 | static inline void put_numa_group(struct numa_group *grp) | |
2195 | { | |
2196 | if (atomic_dec_and_test(&grp->refcount)) | |
2197 | kfree_rcu(grp, rcu); | |
2198 | } | |
2199 | ||
3e6a9418 MG |
2200 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
2201 | int *priv) | |
8c8a743c PZ |
2202 | { |
2203 | struct numa_group *grp, *my_grp; | |
2204 | struct task_struct *tsk; | |
2205 | bool join = false; | |
2206 | int cpu = cpupid_to_cpu(cpupid); | |
2207 | int i; | |
2208 | ||
2209 | if (unlikely(!p->numa_group)) { | |
2210 | unsigned int size = sizeof(struct numa_group) + | |
50ec8a40 | 2211 | 4*nr_node_ids*sizeof(unsigned long); |
8c8a743c PZ |
2212 | |
2213 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | |
2214 | if (!grp) | |
2215 | return; | |
2216 | ||
2217 | atomic_set(&grp->refcount, 1); | |
4142c3eb RR |
2218 | grp->active_nodes = 1; |
2219 | grp->max_faults_cpu = 0; | |
8c8a743c | 2220 | spin_lock_init(&grp->lock); |
e29cf08b | 2221 | grp->gid = p->pid; |
50ec8a40 | 2222 | /* Second half of the array tracks nids where faults happen */ |
be1e4e76 RR |
2223 | grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * |
2224 | nr_node_ids; | |
8c8a743c | 2225 | |
be1e4e76 | 2226 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2227 | grp->faults[i] = p->numa_faults[i]; |
8c8a743c | 2228 | |
989348b5 | 2229 | grp->total_faults = p->total_numa_faults; |
83e1d2cd | 2230 | |
8c8a743c PZ |
2231 | grp->nr_tasks++; |
2232 | rcu_assign_pointer(p->numa_group, grp); | |
2233 | } | |
2234 | ||
2235 | rcu_read_lock(); | |
316c1608 | 2236 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
8c8a743c PZ |
2237 | |
2238 | if (!cpupid_match_pid(tsk, cpupid)) | |
3354781a | 2239 | goto no_join; |
8c8a743c PZ |
2240 | |
2241 | grp = rcu_dereference(tsk->numa_group); | |
2242 | if (!grp) | |
3354781a | 2243 | goto no_join; |
8c8a743c PZ |
2244 | |
2245 | my_grp = p->numa_group; | |
2246 | if (grp == my_grp) | |
3354781a | 2247 | goto no_join; |
8c8a743c PZ |
2248 | |
2249 | /* | |
2250 | * Only join the other group if its bigger; if we're the bigger group, | |
2251 | * the other task will join us. | |
2252 | */ | |
2253 | if (my_grp->nr_tasks > grp->nr_tasks) | |
3354781a | 2254 | goto no_join; |
8c8a743c PZ |
2255 | |
2256 | /* | |
2257 | * Tie-break on the grp address. | |
2258 | */ | |
2259 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | |
3354781a | 2260 | goto no_join; |
8c8a743c | 2261 | |
dabe1d99 RR |
2262 | /* Always join threads in the same process. */ |
2263 | if (tsk->mm == current->mm) | |
2264 | join = true; | |
2265 | ||
2266 | /* Simple filter to avoid false positives due to PID collisions */ | |
2267 | if (flags & TNF_SHARED) | |
2268 | join = true; | |
8c8a743c | 2269 | |
3e6a9418 MG |
2270 | /* Update priv based on whether false sharing was detected */ |
2271 | *priv = !join; | |
2272 | ||
dabe1d99 | 2273 | if (join && !get_numa_group(grp)) |
3354781a | 2274 | goto no_join; |
8c8a743c | 2275 | |
8c8a743c PZ |
2276 | rcu_read_unlock(); |
2277 | ||
2278 | if (!join) | |
2279 | return; | |
2280 | ||
60e69eed MG |
2281 | BUG_ON(irqs_disabled()); |
2282 | double_lock_irq(&my_grp->lock, &grp->lock); | |
989348b5 | 2283 | |
be1e4e76 | 2284 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
44dba3d5 IM |
2285 | my_grp->faults[i] -= p->numa_faults[i]; |
2286 | grp->faults[i] += p->numa_faults[i]; | |
8c8a743c | 2287 | } |
989348b5 MG |
2288 | my_grp->total_faults -= p->total_numa_faults; |
2289 | grp->total_faults += p->total_numa_faults; | |
8c8a743c | 2290 | |
8c8a743c PZ |
2291 | my_grp->nr_tasks--; |
2292 | grp->nr_tasks++; | |
2293 | ||
2294 | spin_unlock(&my_grp->lock); | |
60e69eed | 2295 | spin_unlock_irq(&grp->lock); |
8c8a743c PZ |
2296 | |
2297 | rcu_assign_pointer(p->numa_group, grp); | |
2298 | ||
2299 | put_numa_group(my_grp); | |
3354781a PZ |
2300 | return; |
2301 | ||
2302 | no_join: | |
2303 | rcu_read_unlock(); | |
2304 | return; | |
8c8a743c PZ |
2305 | } |
2306 | ||
2307 | void task_numa_free(struct task_struct *p) | |
2308 | { | |
2309 | struct numa_group *grp = p->numa_group; | |
44dba3d5 | 2310 | void *numa_faults = p->numa_faults; |
e9dd685c SR |
2311 | unsigned long flags; |
2312 | int i; | |
8c8a743c PZ |
2313 | |
2314 | if (grp) { | |
e9dd685c | 2315 | spin_lock_irqsave(&grp->lock, flags); |
be1e4e76 | 2316 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 2317 | grp->faults[i] -= p->numa_faults[i]; |
989348b5 | 2318 | grp->total_faults -= p->total_numa_faults; |
83e1d2cd | 2319 | |
8c8a743c | 2320 | grp->nr_tasks--; |
e9dd685c | 2321 | spin_unlock_irqrestore(&grp->lock, flags); |
35b123e2 | 2322 | RCU_INIT_POINTER(p->numa_group, NULL); |
8c8a743c PZ |
2323 | put_numa_group(grp); |
2324 | } | |
2325 | ||
44dba3d5 | 2326 | p->numa_faults = NULL; |
82727018 | 2327 | kfree(numa_faults); |
8c8a743c PZ |
2328 | } |
2329 | ||
cbee9f88 PZ |
2330 | /* |
2331 | * Got a PROT_NONE fault for a page on @node. | |
2332 | */ | |
58b46da3 | 2333 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
cbee9f88 PZ |
2334 | { |
2335 | struct task_struct *p = current; | |
6688cc05 | 2336 | bool migrated = flags & TNF_MIGRATED; |
58b46da3 | 2337 | int cpu_node = task_node(current); |
792568ec | 2338 | int local = !!(flags & TNF_FAULT_LOCAL); |
4142c3eb | 2339 | struct numa_group *ng; |
ac8e895b | 2340 | int priv; |
cbee9f88 | 2341 | |
2a595721 | 2342 | if (!static_branch_likely(&sched_numa_balancing)) |
1a687c2e MG |
2343 | return; |
2344 | ||
9ff1d9ff MG |
2345 | /* for example, ksmd faulting in a user's mm */ |
2346 | if (!p->mm) | |
2347 | return; | |
2348 | ||
f809ca9a | 2349 | /* Allocate buffer to track faults on a per-node basis */ |
44dba3d5 IM |
2350 | if (unlikely(!p->numa_faults)) { |
2351 | int size = sizeof(*p->numa_faults) * | |
be1e4e76 | 2352 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
f809ca9a | 2353 | |
44dba3d5 IM |
2354 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
2355 | if (!p->numa_faults) | |
f809ca9a | 2356 | return; |
745d6147 | 2357 | |
83e1d2cd | 2358 | p->total_numa_faults = 0; |
04bb2f94 | 2359 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
f809ca9a | 2360 | } |
cbee9f88 | 2361 | |
8c8a743c PZ |
2362 | /* |
2363 | * First accesses are treated as private, otherwise consider accesses | |
2364 | * to be private if the accessing pid has not changed | |
2365 | */ | |
2366 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | |
2367 | priv = 1; | |
2368 | } else { | |
2369 | priv = cpupid_match_pid(p, last_cpupid); | |
6688cc05 | 2370 | if (!priv && !(flags & TNF_NO_GROUP)) |
3e6a9418 | 2371 | task_numa_group(p, last_cpupid, flags, &priv); |
8c8a743c PZ |
2372 | } |
2373 | ||
792568ec RR |
2374 | /* |
2375 | * If a workload spans multiple NUMA nodes, a shared fault that | |
2376 | * occurs wholly within the set of nodes that the workload is | |
2377 | * actively using should be counted as local. This allows the | |
2378 | * scan rate to slow down when a workload has settled down. | |
2379 | */ | |
4142c3eb RR |
2380 | ng = p->numa_group; |
2381 | if (!priv && !local && ng && ng->active_nodes > 1 && | |
2382 | numa_is_active_node(cpu_node, ng) && | |
2383 | numa_is_active_node(mem_node, ng)) | |
792568ec RR |
2384 | local = 1; |
2385 | ||
cbee9f88 | 2386 | task_numa_placement(p); |
f809ca9a | 2387 | |
2739d3ee RR |
2388 | /* |
2389 | * Retry task to preferred node migration periodically, in case it | |
2390 | * case it previously failed, or the scheduler moved us. | |
2391 | */ | |
2392 | if (time_after(jiffies, p->numa_migrate_retry)) | |
6b9a7460 MG |
2393 | numa_migrate_preferred(p); |
2394 | ||
b32e86b4 IM |
2395 | if (migrated) |
2396 | p->numa_pages_migrated += pages; | |
074c2381 MG |
2397 | if (flags & TNF_MIGRATE_FAIL) |
2398 | p->numa_faults_locality[2] += pages; | |
b32e86b4 | 2399 | |
44dba3d5 IM |
2400 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
2401 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | |
792568ec | 2402 | p->numa_faults_locality[local] += pages; |
cbee9f88 PZ |
2403 | } |
2404 | ||
6e5fb223 PZ |
2405 | static void reset_ptenuma_scan(struct task_struct *p) |
2406 | { | |
7e5a2c17 JL |
2407 | /* |
2408 | * We only did a read acquisition of the mmap sem, so | |
2409 | * p->mm->numa_scan_seq is written to without exclusive access | |
2410 | * and the update is not guaranteed to be atomic. That's not | |
2411 | * much of an issue though, since this is just used for | |
2412 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | |
2413 | * expensive, to avoid any form of compiler optimizations: | |
2414 | */ | |
316c1608 | 2415 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
6e5fb223 PZ |
2416 | p->mm->numa_scan_offset = 0; |
2417 | } | |
2418 | ||
cbee9f88 PZ |
2419 | /* |
2420 | * The expensive part of numa migration is done from task_work context. | |
2421 | * Triggered from task_tick_numa(). | |
2422 | */ | |
2423 | void task_numa_work(struct callback_head *work) | |
2424 | { | |
2425 | unsigned long migrate, next_scan, now = jiffies; | |
2426 | struct task_struct *p = current; | |
2427 | struct mm_struct *mm = p->mm; | |
51170840 | 2428 | u64 runtime = p->se.sum_exec_runtime; |
6e5fb223 | 2429 | struct vm_area_struct *vma; |
9f40604c | 2430 | unsigned long start, end; |
598f0ec0 | 2431 | unsigned long nr_pte_updates = 0; |
4620f8c1 | 2432 | long pages, virtpages; |
cbee9f88 | 2433 | |
9148a3a1 | 2434 | SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); |
cbee9f88 PZ |
2435 | |
2436 | work->next = work; /* protect against double add */ | |
2437 | /* | |
2438 | * Who cares about NUMA placement when they're dying. | |
2439 | * | |
2440 | * NOTE: make sure not to dereference p->mm before this check, | |
2441 | * exit_task_work() happens _after_ exit_mm() so we could be called | |
2442 | * without p->mm even though we still had it when we enqueued this | |
2443 | * work. | |
2444 | */ | |
2445 | if (p->flags & PF_EXITING) | |
2446 | return; | |
2447 | ||
930aa174 | 2448 | if (!mm->numa_next_scan) { |
7e8d16b6 MG |
2449 | mm->numa_next_scan = now + |
2450 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
b8593bfd MG |
2451 | } |
2452 | ||
cbee9f88 PZ |
2453 | /* |
2454 | * Enforce maximal scan/migration frequency.. | |
2455 | */ | |
2456 | migrate = mm->numa_next_scan; | |
2457 | if (time_before(now, migrate)) | |
2458 | return; | |
2459 | ||
598f0ec0 MG |
2460 | if (p->numa_scan_period == 0) { |
2461 | p->numa_scan_period_max = task_scan_max(p); | |
2462 | p->numa_scan_period = task_scan_min(p); | |
2463 | } | |
cbee9f88 | 2464 | |
fb003b80 | 2465 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
cbee9f88 PZ |
2466 | if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) |
2467 | return; | |
2468 | ||
19a78d11 PZ |
2469 | /* |
2470 | * Delay this task enough that another task of this mm will likely win | |
2471 | * the next time around. | |
2472 | */ | |
2473 | p->node_stamp += 2 * TICK_NSEC; | |
2474 | ||
9f40604c MG |
2475 | start = mm->numa_scan_offset; |
2476 | pages = sysctl_numa_balancing_scan_size; | |
2477 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | |
4620f8c1 | 2478 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
9f40604c MG |
2479 | if (!pages) |
2480 | return; | |
cbee9f88 | 2481 | |
4620f8c1 | 2482 | |
8655d549 VB |
2483 | if (!down_read_trylock(&mm->mmap_sem)) |
2484 | return; | |
9f40604c | 2485 | vma = find_vma(mm, start); |
6e5fb223 PZ |
2486 | if (!vma) { |
2487 | reset_ptenuma_scan(p); | |
9f40604c | 2488 | start = 0; |
6e5fb223 PZ |
2489 | vma = mm->mmap; |
2490 | } | |
9f40604c | 2491 | for (; vma; vma = vma->vm_next) { |
6b79c57b | 2492 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
8e76d4ee | 2493 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
6e5fb223 | 2494 | continue; |
6b79c57b | 2495 | } |
6e5fb223 | 2496 | |
4591ce4f MG |
2497 | /* |
2498 | * Shared library pages mapped by multiple processes are not | |
2499 | * migrated as it is expected they are cache replicated. Avoid | |
2500 | * hinting faults in read-only file-backed mappings or the vdso | |
2501 | * as migrating the pages will be of marginal benefit. | |
2502 | */ | |
2503 | if (!vma->vm_mm || | |
2504 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) | |
2505 | continue; | |
2506 | ||
3c67f474 MG |
2507 | /* |
2508 | * Skip inaccessible VMAs to avoid any confusion between | |
2509 | * PROT_NONE and NUMA hinting ptes | |
2510 | */ | |
2511 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | |
2512 | continue; | |
4591ce4f | 2513 | |
9f40604c MG |
2514 | do { |
2515 | start = max(start, vma->vm_start); | |
2516 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | |
2517 | end = min(end, vma->vm_end); | |
4620f8c1 | 2518 | nr_pte_updates = change_prot_numa(vma, start, end); |
598f0ec0 MG |
2519 | |
2520 | /* | |
4620f8c1 RR |
2521 | * Try to scan sysctl_numa_balancing_size worth of |
2522 | * hpages that have at least one present PTE that | |
2523 | * is not already pte-numa. If the VMA contains | |
2524 | * areas that are unused or already full of prot_numa | |
2525 | * PTEs, scan up to virtpages, to skip through those | |
2526 | * areas faster. | |
598f0ec0 MG |
2527 | */ |
2528 | if (nr_pte_updates) | |
2529 | pages -= (end - start) >> PAGE_SHIFT; | |
4620f8c1 | 2530 | virtpages -= (end - start) >> PAGE_SHIFT; |
6e5fb223 | 2531 | |
9f40604c | 2532 | start = end; |
4620f8c1 | 2533 | if (pages <= 0 || virtpages <= 0) |
9f40604c | 2534 | goto out; |
3cf1962c RR |
2535 | |
2536 | cond_resched(); | |
9f40604c | 2537 | } while (end != vma->vm_end); |
cbee9f88 | 2538 | } |
6e5fb223 | 2539 | |
9f40604c | 2540 | out: |
6e5fb223 | 2541 | /* |
c69307d5 PZ |
2542 | * It is possible to reach the end of the VMA list but the last few |
2543 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | |
2544 | * would find the !migratable VMA on the next scan but not reset the | |
2545 | * scanner to the start so check it now. | |
6e5fb223 PZ |
2546 | */ |
2547 | if (vma) | |
9f40604c | 2548 | mm->numa_scan_offset = start; |
6e5fb223 PZ |
2549 | else |
2550 | reset_ptenuma_scan(p); | |
2551 | up_read(&mm->mmap_sem); | |
51170840 RR |
2552 | |
2553 | /* | |
2554 | * Make sure tasks use at least 32x as much time to run other code | |
2555 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | |
2556 | * Usually update_task_scan_period slows down scanning enough; on an | |
2557 | * overloaded system we need to limit overhead on a per task basis. | |
2558 | */ | |
2559 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | |
2560 | u64 diff = p->se.sum_exec_runtime - runtime; | |
2561 | p->node_stamp += 32 * diff; | |
2562 | } | |
cbee9f88 PZ |
2563 | } |
2564 | ||
2565 | /* | |
2566 | * Drive the periodic memory faults.. | |
2567 | */ | |
2568 | void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
2569 | { | |
2570 | struct callback_head *work = &curr->numa_work; | |
2571 | u64 period, now; | |
2572 | ||
2573 | /* | |
2574 | * We don't care about NUMA placement if we don't have memory. | |
2575 | */ | |
2576 | if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) | |
2577 | return; | |
2578 | ||
2579 | /* | |
2580 | * Using runtime rather than walltime has the dual advantage that | |
2581 | * we (mostly) drive the selection from busy threads and that the | |
2582 | * task needs to have done some actual work before we bother with | |
2583 | * NUMA placement. | |
2584 | */ | |
2585 | now = curr->se.sum_exec_runtime; | |
2586 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | |
2587 | ||
25b3e5a3 | 2588 | if (now > curr->node_stamp + period) { |
4b96a29b | 2589 | if (!curr->node_stamp) |
598f0ec0 | 2590 | curr->numa_scan_period = task_scan_min(curr); |
19a78d11 | 2591 | curr->node_stamp += period; |
cbee9f88 PZ |
2592 | |
2593 | if (!time_before(jiffies, curr->mm->numa_next_scan)) { | |
2594 | init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ | |
2595 | task_work_add(curr, work, true); | |
2596 | } | |
2597 | } | |
2598 | } | |
3fed382b RR |
2599 | |
2600 | /* | |
2601 | * Can a task be moved from prev_cpu to this_cpu without causing a load | |
2602 | * imbalance that would trigger the load balancer? | |
2603 | */ | |
2604 | static inline bool numa_wake_affine(struct sched_domain *sd, | |
2605 | struct task_struct *p, int this_cpu, | |
2606 | int prev_cpu, int sync) | |
2607 | { | |
2608 | struct numa_stats prev_load, this_load; | |
2609 | s64 this_eff_load, prev_eff_load; | |
2610 | ||
2611 | update_numa_stats(&prev_load, cpu_to_node(prev_cpu)); | |
2612 | update_numa_stats(&this_load, cpu_to_node(this_cpu)); | |
2613 | ||
2614 | /* | |
2615 | * If sync wakeup then subtract the (maximum possible) | |
2616 | * effect of the currently running task from the load | |
2617 | * of the current CPU: | |
2618 | */ | |
2619 | if (sync) { | |
2620 | unsigned long current_load = task_h_load(current); | |
2621 | ||
2622 | if (this_load.load > current_load) | |
2623 | this_load.load -= current_load; | |
2624 | else | |
2625 | this_load.load = 0; | |
2626 | } | |
2627 | ||
2628 | /* | |
2629 | * In low-load situations, where this_cpu's node is idle due to the | |
2630 | * sync cause above having dropped this_load.load to 0, move the task. | |
2631 | * Moving to an idle socket will not create a bad imbalance. | |
2632 | * | |
2633 | * Otherwise check if the nodes are near enough in load to allow this | |
2634 | * task to be woken on this_cpu's node. | |
2635 | */ | |
2636 | if (this_load.load > 0) { | |
2637 | unsigned long task_load = task_h_load(p); | |
2638 | ||
2639 | this_eff_load = 100; | |
2640 | this_eff_load *= prev_load.compute_capacity; | |
2641 | ||
2642 | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | |
2643 | prev_eff_load *= this_load.compute_capacity; | |
2644 | ||
2645 | this_eff_load *= this_load.load + task_load; | |
2646 | prev_eff_load *= prev_load.load - task_load; | |
2647 | ||
2648 | return this_eff_load <= prev_eff_load; | |
2649 | } | |
2650 | ||
2651 | return true; | |
2652 | } | |
cbee9f88 PZ |
2653 | #else |
2654 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
2655 | { | |
2656 | } | |
0ec8aa00 PZ |
2657 | |
2658 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | |
2659 | { | |
2660 | } | |
2661 | ||
2662 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
2663 | { | |
2664 | } | |
3fed382b | 2665 | |
ff801b71 | 2666 | #ifdef CONFIG_SMP |
3fed382b RR |
2667 | static inline bool numa_wake_affine(struct sched_domain *sd, |
2668 | struct task_struct *p, int this_cpu, | |
2669 | int prev_cpu, int sync) | |
2670 | { | |
2671 | return true; | |
2672 | } | |
ff801b71 | 2673 | #endif /* !SMP */ |
cbee9f88 PZ |
2674 | #endif /* CONFIG_NUMA_BALANCING */ |
2675 | ||
30cfdcfc DA |
2676 | static void |
2677 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2678 | { | |
2679 | update_load_add(&cfs_rq->load, se->load.weight); | |
c09595f6 | 2680 | if (!parent_entity(se)) |
029632fb | 2681 | update_load_add(&rq_of(cfs_rq)->load, se->load.weight); |
367456c7 | 2682 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
2683 | if (entity_is_task(se)) { |
2684 | struct rq *rq = rq_of(cfs_rq); | |
2685 | ||
2686 | account_numa_enqueue(rq, task_of(se)); | |
2687 | list_add(&se->group_node, &rq->cfs_tasks); | |
2688 | } | |
367456c7 | 2689 | #endif |
30cfdcfc | 2690 | cfs_rq->nr_running++; |
30cfdcfc DA |
2691 | } |
2692 | ||
2693 | static void | |
2694 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
2695 | { | |
2696 | update_load_sub(&cfs_rq->load, se->load.weight); | |
c09595f6 | 2697 | if (!parent_entity(se)) |
029632fb | 2698 | update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); |
bfdb198c | 2699 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
2700 | if (entity_is_task(se)) { |
2701 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | |
b87f1724 | 2702 | list_del_init(&se->group_node); |
0ec8aa00 | 2703 | } |
bfdb198c | 2704 | #endif |
30cfdcfc | 2705 | cfs_rq->nr_running--; |
30cfdcfc DA |
2706 | } |
2707 | ||
3ff6dcac YZ |
2708 | #ifdef CONFIG_FAIR_GROUP_SCHED |
2709 | # ifdef CONFIG_SMP | |
ea1dc6fc | 2710 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) |
cf5f0acf | 2711 | { |
ea1dc6fc | 2712 | long tg_weight, load, shares; |
cf5f0acf PZ |
2713 | |
2714 | /* | |
ea1dc6fc PZ |
2715 | * This really should be: cfs_rq->avg.load_avg, but instead we use |
2716 | * cfs_rq->load.weight, which is its upper bound. This helps ramp up | |
2717 | * the shares for small weight interactive tasks. | |
cf5f0acf | 2718 | */ |
ea1dc6fc | 2719 | load = scale_load_down(cfs_rq->load.weight); |
cf5f0acf | 2720 | |
ea1dc6fc | 2721 | tg_weight = atomic_long_read(&tg->load_avg); |
3ff6dcac | 2722 | |
ea1dc6fc PZ |
2723 | /* Ensure tg_weight >= load */ |
2724 | tg_weight -= cfs_rq->tg_load_avg_contrib; | |
2725 | tg_weight += load; | |
3ff6dcac | 2726 | |
3ff6dcac | 2727 | shares = (tg->shares * load); |
cf5f0acf PZ |
2728 | if (tg_weight) |
2729 | shares /= tg_weight; | |
3ff6dcac | 2730 | |
b8fd8423 DE |
2731 | /* |
2732 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | |
2733 | * of a group with small tg->shares value. It is a floor value which is | |
2734 | * assigned as a minimum load.weight to the sched_entity representing | |
2735 | * the group on a CPU. | |
2736 | * | |
2737 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | |
2738 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | |
2739 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | |
2740 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | |
2741 | * instead of 0. | |
2742 | */ | |
3ff6dcac YZ |
2743 | if (shares < MIN_SHARES) |
2744 | shares = MIN_SHARES; | |
2745 | if (shares > tg->shares) | |
2746 | shares = tg->shares; | |
2747 | ||
2748 | return shares; | |
2749 | } | |
3ff6dcac | 2750 | # else /* CONFIG_SMP */ |
6d5ab293 | 2751 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) |
3ff6dcac YZ |
2752 | { |
2753 | return tg->shares; | |
2754 | } | |
3ff6dcac | 2755 | # endif /* CONFIG_SMP */ |
ea1dc6fc | 2756 | |
2069dd75 PZ |
2757 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
2758 | unsigned long weight) | |
2759 | { | |
19e5eebb PT |
2760 | if (se->on_rq) { |
2761 | /* commit outstanding execution time */ | |
2762 | if (cfs_rq->curr == se) | |
2763 | update_curr(cfs_rq); | |
2069dd75 | 2764 | account_entity_dequeue(cfs_rq, se); |
19e5eebb | 2765 | } |
2069dd75 PZ |
2766 | |
2767 | update_load_set(&se->load, weight); | |
2768 | ||
2769 | if (se->on_rq) | |
2770 | account_entity_enqueue(cfs_rq, se); | |
2771 | } | |
2772 | ||
82958366 PT |
2773 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
2774 | ||
89ee048f | 2775 | static void update_cfs_shares(struct sched_entity *se) |
2069dd75 | 2776 | { |
89ee048f | 2777 | struct cfs_rq *cfs_rq = group_cfs_rq(se); |
2069dd75 | 2778 | struct task_group *tg; |
3ff6dcac | 2779 | long shares; |
2069dd75 | 2780 | |
89ee048f VG |
2781 | if (!cfs_rq) |
2782 | return; | |
2783 | ||
2784 | if (throttled_hierarchy(cfs_rq)) | |
2069dd75 | 2785 | return; |
89ee048f VG |
2786 | |
2787 | tg = cfs_rq->tg; | |
2788 | ||
3ff6dcac YZ |
2789 | #ifndef CONFIG_SMP |
2790 | if (likely(se->load.weight == tg->shares)) | |
2791 | return; | |
2792 | #endif | |
6d5ab293 | 2793 | shares = calc_cfs_shares(cfs_rq, tg); |
2069dd75 PZ |
2794 | |
2795 | reweight_entity(cfs_rq_of(se), se, shares); | |
2796 | } | |
89ee048f | 2797 | |
2069dd75 | 2798 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
89ee048f | 2799 | static inline void update_cfs_shares(struct sched_entity *se) |
2069dd75 PZ |
2800 | { |
2801 | } | |
2802 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
2803 | ||
a030d738 VK |
2804 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) |
2805 | { | |
2806 | if (&this_rq()->cfs == cfs_rq) { | |
2807 | /* | |
2808 | * There are a few boundary cases this might miss but it should | |
2809 | * get called often enough that that should (hopefully) not be | |
2810 | * a real problem -- added to that it only calls on the local | |
2811 | * CPU, so if we enqueue remotely we'll miss an update, but | |
2812 | * the next tick/schedule should update. | |
2813 | * | |
2814 | * It will not get called when we go idle, because the idle | |
2815 | * thread is a different class (!fair), nor will the utilization | |
2816 | * number include things like RT tasks. | |
2817 | * | |
2818 | * As is, the util number is not freq-invariant (we'd have to | |
2819 | * implement arch_scale_freq_capacity() for that). | |
2820 | * | |
2821 | * See cpu_util(). | |
2822 | */ | |
2823 | cpufreq_update_util(rq_of(cfs_rq), 0); | |
2824 | } | |
2825 | } | |
2826 | ||
141965c7 | 2827 | #ifdef CONFIG_SMP |
9d85f21c PT |
2828 | /* |
2829 | * Approximate: | |
2830 | * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) | |
2831 | */ | |
a481db34 | 2832 | static u64 decay_load(u64 val, u64 n) |
9d85f21c | 2833 | { |
5b51f2f8 PT |
2834 | unsigned int local_n; |
2835 | ||
05296e75 | 2836 | if (unlikely(n > LOAD_AVG_PERIOD * 63)) |
5b51f2f8 PT |
2837 | return 0; |
2838 | ||
2839 | /* after bounds checking we can collapse to 32-bit */ | |
2840 | local_n = n; | |
2841 | ||
2842 | /* | |
2843 | * As y^PERIOD = 1/2, we can combine | |
9c58c79a ZZ |
2844 | * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) |
2845 | * With a look-up table which covers y^n (n<PERIOD) | |
5b51f2f8 PT |
2846 | * |
2847 | * To achieve constant time decay_load. | |
2848 | */ | |
2849 | if (unlikely(local_n >= LOAD_AVG_PERIOD)) { | |
2850 | val >>= local_n / LOAD_AVG_PERIOD; | |
2851 | local_n %= LOAD_AVG_PERIOD; | |
9d85f21c PT |
2852 | } |
2853 | ||
9d89c257 YD |
2854 | val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); |
2855 | return val; | |
5b51f2f8 PT |
2856 | } |
2857 | ||
05296e75 | 2858 | static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) |
5b51f2f8 | 2859 | { |
05296e75 | 2860 | u32 c1, c2, c3 = d3; /* y^0 == 1 */ |
5b51f2f8 | 2861 | |
a481db34 | 2862 | /* |
3841cdc3 | 2863 | * c1 = d1 y^p |
a481db34 | 2864 | */ |
05296e75 | 2865 | c1 = decay_load((u64)d1, periods); |
a481db34 | 2866 | |
a481db34 | 2867 | /* |
3841cdc3 | 2868 | * p-1 |
05296e75 PZ |
2869 | * c2 = 1024 \Sum y^n |
2870 | * n=1 | |
a481db34 | 2871 | * |
05296e75 PZ |
2872 | * inf inf |
2873 | * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) | |
3841cdc3 | 2874 | * n=0 n=p |
a481db34 | 2875 | */ |
05296e75 | 2876 | c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; |
a481db34 YD |
2877 | |
2878 | return c1 + c2 + c3; | |
9d85f21c PT |
2879 | } |
2880 | ||
54a21385 | 2881 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) |
e0f5f3af | 2882 | |
a481db34 YD |
2883 | /* |
2884 | * Accumulate the three separate parts of the sum; d1 the remainder | |
2885 | * of the last (incomplete) period, d2 the span of full periods and d3 | |
2886 | * the remainder of the (incomplete) current period. | |
2887 | * | |
2888 | * d1 d2 d3 | |
2889 | * ^ ^ ^ | |
2890 | * | | | | |
2891 | * |<->|<----------------->|<--->| | |
2892 | * ... |---x---|------| ... |------|-----x (now) | |
2893 | * | |
3841cdc3 PZ |
2894 | * p-1 |
2895 | * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 | |
2896 | * n=1 | |
a481db34 | 2897 | * |
3841cdc3 | 2898 | * = u y^p + (Step 1) |
a481db34 | 2899 | * |
3841cdc3 PZ |
2900 | * p-1 |
2901 | * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) | |
2902 | * n=1 | |
a481db34 YD |
2903 | */ |
2904 | static __always_inline u32 | |
2905 | accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, | |
2906 | unsigned long weight, int running, struct cfs_rq *cfs_rq) | |
2907 | { | |
2908 | unsigned long scale_freq, scale_cpu; | |
05296e75 | 2909 | u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ |
a481db34 | 2910 | u64 periods; |
a481db34 YD |
2911 | |
2912 | scale_freq = arch_scale_freq_capacity(NULL, cpu); | |
2913 | scale_cpu = arch_scale_cpu_capacity(NULL, cpu); | |
2914 | ||
2915 | delta += sa->period_contrib; | |
2916 | periods = delta / 1024; /* A period is 1024us (~1ms) */ | |
2917 | ||
2918 | /* | |
2919 | * Step 1: decay old *_sum if we crossed period boundaries. | |
2920 | */ | |
2921 | if (periods) { | |
2922 | sa->load_sum = decay_load(sa->load_sum, periods); | |
2923 | if (cfs_rq) { | |
2924 | cfs_rq->runnable_load_sum = | |
2925 | decay_load(cfs_rq->runnable_load_sum, periods); | |
2926 | } | |
2927 | sa->util_sum = decay_load((u64)(sa->util_sum), periods); | |
a481db34 | 2928 | |
05296e75 PZ |
2929 | /* |
2930 | * Step 2 | |
2931 | */ | |
2932 | delta %= 1024; | |
2933 | contrib = __accumulate_pelt_segments(periods, | |
2934 | 1024 - sa->period_contrib, delta); | |
2935 | } | |
a481db34 YD |
2936 | sa->period_contrib = delta; |
2937 | ||
2938 | contrib = cap_scale(contrib, scale_freq); | |
2939 | if (weight) { | |
2940 | sa->load_sum += weight * contrib; | |
2941 | if (cfs_rq) | |
2942 | cfs_rq->runnable_load_sum += weight * contrib; | |
2943 | } | |
2944 | if (running) | |
2945 | sa->util_sum += contrib * scale_cpu; | |
2946 | ||
2947 | return periods; | |
2948 | } | |
2949 | ||
9d85f21c PT |
2950 | /* |
2951 | * We can represent the historical contribution to runnable average as the | |
2952 | * coefficients of a geometric series. To do this we sub-divide our runnable | |
2953 | * history into segments of approximately 1ms (1024us); label the segment that | |
2954 | * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. | |
2955 | * | |
2956 | * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... | |
2957 | * p0 p1 p2 | |
2958 | * (now) (~1ms ago) (~2ms ago) | |
2959 | * | |
2960 | * Let u_i denote the fraction of p_i that the entity was runnable. | |
2961 | * | |
2962 | * We then designate the fractions u_i as our co-efficients, yielding the | |
2963 | * following representation of historical load: | |
2964 | * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... | |
2965 | * | |
2966 | * We choose y based on the with of a reasonably scheduling period, fixing: | |
2967 | * y^32 = 0.5 | |
2968 | * | |
2969 | * This means that the contribution to load ~32ms ago (u_32) will be weighted | |
2970 | * approximately half as much as the contribution to load within the last ms | |
2971 | * (u_0). | |
2972 | * | |
2973 | * When a period "rolls over" and we have new u_0`, multiplying the previous | |
2974 | * sum again by y is sufficient to update: | |
2975 | * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) | |
2976 | * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] | |
2977 | */ | |
9d89c257 | 2978 | static __always_inline int |
0ccb977f | 2979 | ___update_load_avg(u64 now, int cpu, struct sched_avg *sa, |
13962234 | 2980 | unsigned long weight, int running, struct cfs_rq *cfs_rq) |
9d85f21c | 2981 | { |
a481db34 | 2982 | u64 delta; |
9d85f21c | 2983 | |
9d89c257 | 2984 | delta = now - sa->last_update_time; |
9d85f21c PT |
2985 | /* |
2986 | * This should only happen when time goes backwards, which it | |
2987 | * unfortunately does during sched clock init when we swap over to TSC. | |
2988 | */ | |
2989 | if ((s64)delta < 0) { | |
9d89c257 | 2990 | sa->last_update_time = now; |
9d85f21c PT |
2991 | return 0; |
2992 | } | |
2993 | ||
2994 | /* | |
2995 | * Use 1024ns as the unit of measurement since it's a reasonable | |
2996 | * approximation of 1us and fast to compute. | |
2997 | */ | |
2998 | delta >>= 10; | |
2999 | if (!delta) | |
3000 | return 0; | |
bb0bd044 PZ |
3001 | |
3002 | sa->last_update_time += delta << 10; | |
9d85f21c | 3003 | |
f235a54f VG |
3004 | /* |
3005 | * running is a subset of runnable (weight) so running can't be set if | |
3006 | * runnable is clear. But there are some corner cases where the current | |
3007 | * se has been already dequeued but cfs_rq->curr still points to it. | |
3008 | * This means that weight will be 0 but not running for a sched_entity | |
3009 | * but also for a cfs_rq if the latter becomes idle. As an example, | |
3010 | * this happens during idle_balance() which calls | |
3011 | * update_blocked_averages() | |
3012 | */ | |
3013 | if (!weight) | |
3014 | running = 0; | |
3015 | ||
a481db34 YD |
3016 | /* |
3017 | * Now we know we crossed measurement unit boundaries. The *_avg | |
3018 | * accrues by two steps: | |
3019 | * | |
3020 | * Step 1: accumulate *_sum since last_update_time. If we haven't | |
3021 | * crossed period boundaries, finish. | |
3022 | */ | |
3023 | if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq)) | |
3024 | return 0; | |
9ee474f5 | 3025 | |
a481db34 YD |
3026 | /* |
3027 | * Step 2: update *_avg. | |
3028 | */ | |
625ed2bf | 3029 | sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); |
a481db34 YD |
3030 | if (cfs_rq) { |
3031 | cfs_rq->runnable_load_avg = | |
625ed2bf | 3032 | div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib); |
9d89c257 | 3033 | } |
625ed2bf | 3034 | sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib); |
aff3e498 | 3035 | |
a481db34 | 3036 | return 1; |
9ee474f5 PT |
3037 | } |
3038 | ||
0ccb977f PZ |
3039 | static int |
3040 | __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) | |
3041 | { | |
3042 | return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL); | |
3043 | } | |
3044 | ||
3045 | static int | |
3046 | __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3047 | { | |
3048 | return ___update_load_avg(now, cpu, &se->avg, | |
3049 | se->on_rq * scale_load_down(se->load.weight), | |
3050 | cfs_rq->curr == se, NULL); | |
3051 | } | |
3052 | ||
3053 | static int | |
3054 | __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) | |
3055 | { | |
3056 | return ___update_load_avg(now, cpu, &cfs_rq->avg, | |
3057 | scale_load_down(cfs_rq->load.weight), | |
3058 | cfs_rq->curr != NULL, cfs_rq); | |
3059 | } | |
3060 | ||
09a43ace VG |
3061 | /* |
3062 | * Signed add and clamp on underflow. | |
3063 | * | |
3064 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3065 | * memory. This allows lockless observations without ever seeing the negative | |
3066 | * values. | |
3067 | */ | |
3068 | #define add_positive(_ptr, _val) do { \ | |
3069 | typeof(_ptr) ptr = (_ptr); \ | |
3070 | typeof(_val) val = (_val); \ | |
3071 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3072 | \ | |
3073 | res = var + val; \ | |
3074 | \ | |
3075 | if (val < 0 && res > var) \ | |
3076 | res = 0; \ | |
3077 | \ | |
3078 | WRITE_ONCE(*ptr, res); \ | |
3079 | } while (0) | |
3080 | ||
c566e8e9 | 3081 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7c3edd2c PZ |
3082 | /** |
3083 | * update_tg_load_avg - update the tg's load avg | |
3084 | * @cfs_rq: the cfs_rq whose avg changed | |
3085 | * @force: update regardless of how small the difference | |
3086 | * | |
3087 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | |
3088 | * However, because tg->load_avg is a global value there are performance | |
3089 | * considerations. | |
3090 | * | |
3091 | * In order to avoid having to look at the other cfs_rq's, we use a | |
3092 | * differential update where we store the last value we propagated. This in | |
3093 | * turn allows skipping updates if the differential is 'small'. | |
3094 | * | |
815abf5a | 3095 | * Updating tg's load_avg is necessary before update_cfs_share(). |
bb17f655 | 3096 | */ |
9d89c257 | 3097 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) |
bb17f655 | 3098 | { |
9d89c257 | 3099 | long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; |
bb17f655 | 3100 | |
aa0b7ae0 WL |
3101 | /* |
3102 | * No need to update load_avg for root_task_group as it is not used. | |
3103 | */ | |
3104 | if (cfs_rq->tg == &root_task_group) | |
3105 | return; | |
3106 | ||
9d89c257 YD |
3107 | if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
3108 | atomic_long_add(delta, &cfs_rq->tg->load_avg); | |
3109 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | |
bb17f655 | 3110 | } |
8165e145 | 3111 | } |
f5f9739d | 3112 | |
ad936d86 BP |
3113 | /* |
3114 | * Called within set_task_rq() right before setting a task's cpu. The | |
3115 | * caller only guarantees p->pi_lock is held; no other assumptions, | |
3116 | * including the state of rq->lock, should be made. | |
3117 | */ | |
3118 | void set_task_rq_fair(struct sched_entity *se, | |
3119 | struct cfs_rq *prev, struct cfs_rq *next) | |
3120 | { | |
0ccb977f PZ |
3121 | u64 p_last_update_time; |
3122 | u64 n_last_update_time; | |
3123 | ||
ad936d86 BP |
3124 | if (!sched_feat(ATTACH_AGE_LOAD)) |
3125 | return; | |
3126 | ||
3127 | /* | |
3128 | * We are supposed to update the task to "current" time, then its up to | |
3129 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | |
3130 | * getting what current time is, so simply throw away the out-of-date | |
3131 | * time. This will result in the wakee task is less decayed, but giving | |
3132 | * the wakee more load sounds not bad. | |
3133 | */ | |
0ccb977f PZ |
3134 | if (!(se->avg.last_update_time && prev)) |
3135 | return; | |
ad936d86 BP |
3136 | |
3137 | #ifndef CONFIG_64BIT | |
0ccb977f | 3138 | { |
ad936d86 BP |
3139 | u64 p_last_update_time_copy; |
3140 | u64 n_last_update_time_copy; | |
3141 | ||
3142 | do { | |
3143 | p_last_update_time_copy = prev->load_last_update_time_copy; | |
3144 | n_last_update_time_copy = next->load_last_update_time_copy; | |
3145 | ||
3146 | smp_rmb(); | |
3147 | ||
3148 | p_last_update_time = prev->avg.last_update_time; | |
3149 | n_last_update_time = next->avg.last_update_time; | |
3150 | ||
3151 | } while (p_last_update_time != p_last_update_time_copy || | |
3152 | n_last_update_time != n_last_update_time_copy); | |
0ccb977f | 3153 | } |
ad936d86 | 3154 | #else |
0ccb977f PZ |
3155 | p_last_update_time = prev->avg.last_update_time; |
3156 | n_last_update_time = next->avg.last_update_time; | |
ad936d86 | 3157 | #endif |
0ccb977f PZ |
3158 | __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); |
3159 | se->avg.last_update_time = n_last_update_time; | |
ad936d86 | 3160 | } |
09a43ace VG |
3161 | |
3162 | /* Take into account change of utilization of a child task group */ | |
3163 | static inline void | |
3164 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3165 | { | |
3166 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
3167 | long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; | |
3168 | ||
3169 | /* Nothing to update */ | |
3170 | if (!delta) | |
3171 | return; | |
3172 | ||
3173 | /* Set new sched_entity's utilization */ | |
3174 | se->avg.util_avg = gcfs_rq->avg.util_avg; | |
3175 | se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; | |
3176 | ||
3177 | /* Update parent cfs_rq utilization */ | |
3178 | add_positive(&cfs_rq->avg.util_avg, delta); | |
3179 | cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; | |
3180 | } | |
3181 | ||
3182 | /* Take into account change of load of a child task group */ | |
3183 | static inline void | |
3184 | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3185 | { | |
3186 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
3187 | long delta, load = gcfs_rq->avg.load_avg; | |
3188 | ||
3189 | /* | |
3190 | * If the load of group cfs_rq is null, the load of the | |
3191 | * sched_entity will also be null so we can skip the formula | |
3192 | */ | |
3193 | if (load) { | |
3194 | long tg_load; | |
3195 | ||
3196 | /* Get tg's load and ensure tg_load > 0 */ | |
3197 | tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1; | |
3198 | ||
3199 | /* Ensure tg_load >= load and updated with current load*/ | |
3200 | tg_load -= gcfs_rq->tg_load_avg_contrib; | |
3201 | tg_load += load; | |
3202 | ||
3203 | /* | |
3204 | * We need to compute a correction term in the case that the | |
3205 | * task group is consuming more CPU than a task of equal | |
3206 | * weight. A task with a weight equals to tg->shares will have | |
3207 | * a load less or equal to scale_load_down(tg->shares). | |
3208 | * Similarly, the sched_entities that represent the task group | |
3209 | * at parent level, can't have a load higher than | |
3210 | * scale_load_down(tg->shares). And the Sum of sched_entities' | |
3211 | * load must be <= scale_load_down(tg->shares). | |
3212 | */ | |
3213 | if (tg_load > scale_load_down(gcfs_rq->tg->shares)) { | |
3214 | /* scale gcfs_rq's load into tg's shares*/ | |
3215 | load *= scale_load_down(gcfs_rq->tg->shares); | |
3216 | load /= tg_load; | |
3217 | } | |
3218 | } | |
3219 | ||
3220 | delta = load - se->avg.load_avg; | |
3221 | ||
3222 | /* Nothing to update */ | |
3223 | if (!delta) | |
3224 | return; | |
3225 | ||
3226 | /* Set new sched_entity's load */ | |
3227 | se->avg.load_avg = load; | |
3228 | se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX; | |
3229 | ||
3230 | /* Update parent cfs_rq load */ | |
3231 | add_positive(&cfs_rq->avg.load_avg, delta); | |
3232 | cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX; | |
3233 | ||
3234 | /* | |
3235 | * If the sched_entity is already enqueued, we also have to update the | |
3236 | * runnable load avg. | |
3237 | */ | |
3238 | if (se->on_rq) { | |
3239 | /* Update parent cfs_rq runnable_load_avg */ | |
3240 | add_positive(&cfs_rq->runnable_load_avg, delta); | |
3241 | cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX; | |
3242 | } | |
3243 | } | |
3244 | ||
3245 | static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) | |
3246 | { | |
3247 | cfs_rq->propagate_avg = 1; | |
3248 | } | |
3249 | ||
3250 | static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se) | |
3251 | { | |
3252 | struct cfs_rq *cfs_rq = group_cfs_rq(se); | |
3253 | ||
3254 | if (!cfs_rq->propagate_avg) | |
3255 | return 0; | |
3256 | ||
3257 | cfs_rq->propagate_avg = 0; | |
3258 | return 1; | |
3259 | } | |
3260 | ||
3261 | /* Update task and its cfs_rq load average */ | |
3262 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3263 | { | |
3264 | struct cfs_rq *cfs_rq; | |
3265 | ||
3266 | if (entity_is_task(se)) | |
3267 | return 0; | |
3268 | ||
3269 | if (!test_and_clear_tg_cfs_propagate(se)) | |
3270 | return 0; | |
3271 | ||
3272 | cfs_rq = cfs_rq_of(se); | |
3273 | ||
3274 | set_tg_cfs_propagate(cfs_rq); | |
3275 | ||
3276 | update_tg_cfs_util(cfs_rq, se); | |
3277 | update_tg_cfs_load(cfs_rq, se); | |
3278 | ||
3279 | return 1; | |
3280 | } | |
3281 | ||
bc427898 VG |
3282 | /* |
3283 | * Check if we need to update the load and the utilization of a blocked | |
3284 | * group_entity: | |
3285 | */ | |
3286 | static inline bool skip_blocked_update(struct sched_entity *se) | |
3287 | { | |
3288 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
3289 | ||
3290 | /* | |
3291 | * If sched_entity still have not zero load or utilization, we have to | |
3292 | * decay it: | |
3293 | */ | |
3294 | if (se->avg.load_avg || se->avg.util_avg) | |
3295 | return false; | |
3296 | ||
3297 | /* | |
3298 | * If there is a pending propagation, we have to update the load and | |
3299 | * the utilization of the sched_entity: | |
3300 | */ | |
3301 | if (gcfs_rq->propagate_avg) | |
3302 | return false; | |
3303 | ||
3304 | /* | |
3305 | * Otherwise, the load and the utilization of the sched_entity is | |
3306 | * already zero and there is no pending propagation, so it will be a | |
3307 | * waste of time to try to decay it: | |
3308 | */ | |
3309 | return true; | |
3310 | } | |
3311 | ||
6e83125c | 3312 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
09a43ace | 3313 | |
9d89c257 | 3314 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} |
09a43ace VG |
3315 | |
3316 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
3317 | { | |
3318 | return 0; | |
3319 | } | |
3320 | ||
3321 | static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {} | |
3322 | ||
6e83125c | 3323 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
c566e8e9 | 3324 | |
89741892 PZ |
3325 | /* |
3326 | * Unsigned subtract and clamp on underflow. | |
3327 | * | |
3328 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3329 | * memory. This allows lockless observations without ever seeing the negative | |
3330 | * values. | |
3331 | */ | |
3332 | #define sub_positive(_ptr, _val) do { \ | |
3333 | typeof(_ptr) ptr = (_ptr); \ | |
3334 | typeof(*ptr) val = (_val); \ | |
3335 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3336 | res = var - val; \ | |
3337 | if (res > var) \ | |
3338 | res = 0; \ | |
3339 | WRITE_ONCE(*ptr, res); \ | |
3340 | } while (0) | |
3341 | ||
3d30544f PZ |
3342 | /** |
3343 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | |
3344 | * @now: current time, as per cfs_rq_clock_task() | |
3345 | * @cfs_rq: cfs_rq to update | |
3d30544f PZ |
3346 | * |
3347 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | |
3348 | * avg. The immediate corollary is that all (fair) tasks must be attached, see | |
3349 | * post_init_entity_util_avg(). | |
3350 | * | |
3351 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | |
3352 | * | |
7c3edd2c PZ |
3353 | * Returns true if the load decayed or we removed load. |
3354 | * | |
3355 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | |
3356 | * call update_tg_load_avg() when this function returns true. | |
3d30544f | 3357 | */ |
a2c6c91f | 3358 | static inline int |
3a123bbb | 3359 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
2dac754e | 3360 | { |
9d89c257 | 3361 | struct sched_avg *sa = &cfs_rq->avg; |
41e0d37f | 3362 | int decayed, removed_load = 0, removed_util = 0; |
2dac754e | 3363 | |
9d89c257 | 3364 | if (atomic_long_read(&cfs_rq->removed_load_avg)) { |
9e0e83a1 | 3365 | s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); |
89741892 PZ |
3366 | sub_positive(&sa->load_avg, r); |
3367 | sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); | |
41e0d37f | 3368 | removed_load = 1; |
4e516076 | 3369 | set_tg_cfs_propagate(cfs_rq); |
8165e145 | 3370 | } |
2dac754e | 3371 | |
9d89c257 YD |
3372 | if (atomic_long_read(&cfs_rq->removed_util_avg)) { |
3373 | long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); | |
89741892 PZ |
3374 | sub_positive(&sa->util_avg, r); |
3375 | sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); | |
41e0d37f | 3376 | removed_util = 1; |
4e516076 | 3377 | set_tg_cfs_propagate(cfs_rq); |
9d89c257 | 3378 | } |
36ee28e4 | 3379 | |
0ccb977f | 3380 | decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); |
36ee28e4 | 3381 | |
9d89c257 YD |
3382 | #ifndef CONFIG_64BIT |
3383 | smp_wmb(); | |
3384 | cfs_rq->load_last_update_time_copy = sa->last_update_time; | |
3385 | #endif | |
36ee28e4 | 3386 | |
3a123bbb | 3387 | if (decayed || removed_util) |
a2c6c91f | 3388 | cfs_rq_util_change(cfs_rq); |
21e96f88 | 3389 | |
41e0d37f | 3390 | return decayed || removed_load; |
21e96f88 SM |
3391 | } |
3392 | ||
d31b1a66 VG |
3393 | /* |
3394 | * Optional action to be done while updating the load average | |
3395 | */ | |
3396 | #define UPDATE_TG 0x1 | |
3397 | #define SKIP_AGE_LOAD 0x2 | |
3398 | ||
21e96f88 | 3399 | /* Update task and its cfs_rq load average */ |
d31b1a66 | 3400 | static inline void update_load_avg(struct sched_entity *se, int flags) |
21e96f88 SM |
3401 | { |
3402 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3403 | u64 now = cfs_rq_clock_task(cfs_rq); | |
3404 | struct rq *rq = rq_of(cfs_rq); | |
3405 | int cpu = cpu_of(rq); | |
09a43ace | 3406 | int decayed; |
21e96f88 SM |
3407 | |
3408 | /* | |
3409 | * Track task load average for carrying it to new CPU after migrated, and | |
3410 | * track group sched_entity load average for task_h_load calc in migration | |
3411 | */ | |
0ccb977f PZ |
3412 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) |
3413 | __update_load_avg_se(now, cpu, cfs_rq, se); | |
21e96f88 | 3414 | |
3a123bbb | 3415 | decayed = update_cfs_rq_load_avg(now, cfs_rq); |
09a43ace VG |
3416 | decayed |= propagate_entity_load_avg(se); |
3417 | ||
3418 | if (decayed && (flags & UPDATE_TG)) | |
21e96f88 | 3419 | update_tg_load_avg(cfs_rq, 0); |
9ee474f5 PT |
3420 | } |
3421 | ||
3d30544f PZ |
3422 | /** |
3423 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | |
3424 | * @cfs_rq: cfs_rq to attach to | |
3425 | * @se: sched_entity to attach | |
3426 | * | |
3427 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3428 | * cfs_rq->avg.last_update_time being current. | |
3429 | */ | |
a05e8c51 BP |
3430 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3431 | { | |
3432 | se->avg.last_update_time = cfs_rq->avg.last_update_time; | |
3433 | cfs_rq->avg.load_avg += se->avg.load_avg; | |
3434 | cfs_rq->avg.load_sum += se->avg.load_sum; | |
3435 | cfs_rq->avg.util_avg += se->avg.util_avg; | |
3436 | cfs_rq->avg.util_sum += se->avg.util_sum; | |
09a43ace | 3437 | set_tg_cfs_propagate(cfs_rq); |
a2c6c91f SM |
3438 | |
3439 | cfs_rq_util_change(cfs_rq); | |
a05e8c51 BP |
3440 | } |
3441 | ||
3d30544f PZ |
3442 | /** |
3443 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | |
3444 | * @cfs_rq: cfs_rq to detach from | |
3445 | * @se: sched_entity to detach | |
3446 | * | |
3447 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
3448 | * cfs_rq->avg.last_update_time being current. | |
3449 | */ | |
a05e8c51 BP |
3450 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3451 | { | |
a05e8c51 | 3452 | |
89741892 PZ |
3453 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); |
3454 | sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); | |
3455 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); | |
3456 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | |
09a43ace | 3457 | set_tg_cfs_propagate(cfs_rq); |
a2c6c91f SM |
3458 | |
3459 | cfs_rq_util_change(cfs_rq); | |
a05e8c51 BP |
3460 | } |
3461 | ||
9d89c257 YD |
3462 | /* Add the load generated by se into cfs_rq's load average */ |
3463 | static inline void | |
3464 | enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
9ee474f5 | 3465 | { |
9d89c257 | 3466 | struct sched_avg *sa = &se->avg; |
18bf2805 | 3467 | |
13962234 YD |
3468 | cfs_rq->runnable_load_avg += sa->load_avg; |
3469 | cfs_rq->runnable_load_sum += sa->load_sum; | |
3470 | ||
d31b1a66 | 3471 | if (!sa->last_update_time) { |
a05e8c51 | 3472 | attach_entity_load_avg(cfs_rq, se); |
9d89c257 | 3473 | update_tg_load_avg(cfs_rq, 0); |
d31b1a66 | 3474 | } |
2dac754e PT |
3475 | } |
3476 | ||
13962234 YD |
3477 | /* Remove the runnable load generated by se from cfs_rq's runnable load average */ |
3478 | static inline void | |
3479 | dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3480 | { | |
13962234 YD |
3481 | cfs_rq->runnable_load_avg = |
3482 | max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); | |
3483 | cfs_rq->runnable_load_sum = | |
a05e8c51 | 3484 | max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); |
13962234 YD |
3485 | } |
3486 | ||
9d89c257 | 3487 | #ifndef CONFIG_64BIT |
0905f04e YD |
3488 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3489 | { | |
9d89c257 | 3490 | u64 last_update_time_copy; |
0905f04e | 3491 | u64 last_update_time; |
9ee474f5 | 3492 | |
9d89c257 YD |
3493 | do { |
3494 | last_update_time_copy = cfs_rq->load_last_update_time_copy; | |
3495 | smp_rmb(); | |
3496 | last_update_time = cfs_rq->avg.last_update_time; | |
3497 | } while (last_update_time != last_update_time_copy); | |
0905f04e YD |
3498 | |
3499 | return last_update_time; | |
3500 | } | |
9d89c257 | 3501 | #else |
0905f04e YD |
3502 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
3503 | { | |
3504 | return cfs_rq->avg.last_update_time; | |
3505 | } | |
9d89c257 YD |
3506 | #endif |
3507 | ||
104cb16d MR |
3508 | /* |
3509 | * Synchronize entity load avg of dequeued entity without locking | |
3510 | * the previous rq. | |
3511 | */ | |
3512 | void sync_entity_load_avg(struct sched_entity *se) | |
3513 | { | |
3514 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3515 | u64 last_update_time; | |
3516 | ||
3517 | last_update_time = cfs_rq_last_update_time(cfs_rq); | |
0ccb977f | 3518 | __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); |
104cb16d MR |
3519 | } |
3520 | ||
0905f04e YD |
3521 | /* |
3522 | * Task first catches up with cfs_rq, and then subtract | |
3523 | * itself from the cfs_rq (task must be off the queue now). | |
3524 | */ | |
3525 | void remove_entity_load_avg(struct sched_entity *se) | |
3526 | { | |
3527 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
0905f04e YD |
3528 | |
3529 | /* | |
7dc603c9 PZ |
3530 | * tasks cannot exit without having gone through wake_up_new_task() -> |
3531 | * post_init_entity_util_avg() which will have added things to the | |
3532 | * cfs_rq, so we can remove unconditionally. | |
3533 | * | |
3534 | * Similarly for groups, they will have passed through | |
3535 | * post_init_entity_util_avg() before unregister_sched_fair_group() | |
3536 | * calls this. | |
0905f04e | 3537 | */ |
0905f04e | 3538 | |
104cb16d | 3539 | sync_entity_load_avg(se); |
9d89c257 YD |
3540 | atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); |
3541 | atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); | |
2dac754e | 3542 | } |
642dbc39 | 3543 | |
7ea241af YD |
3544 | static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) |
3545 | { | |
3546 | return cfs_rq->runnable_load_avg; | |
3547 | } | |
3548 | ||
3549 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) | |
3550 | { | |
3551 | return cfs_rq->avg.load_avg; | |
3552 | } | |
3553 | ||
46f69fa3 | 3554 | static int idle_balance(struct rq *this_rq, struct rq_flags *rf); |
6e83125c | 3555 | |
38033c37 PZ |
3556 | #else /* CONFIG_SMP */ |
3557 | ||
01011473 | 3558 | static inline int |
3a123bbb | 3559 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
01011473 PZ |
3560 | { |
3561 | return 0; | |
3562 | } | |
3563 | ||
d31b1a66 VG |
3564 | #define UPDATE_TG 0x0 |
3565 | #define SKIP_AGE_LOAD 0x0 | |
3566 | ||
3567 | static inline void update_load_avg(struct sched_entity *se, int not_used1) | |
536bd00c | 3568 | { |
a030d738 | 3569 | cfs_rq_util_change(cfs_rq_of(se)); |
536bd00c RW |
3570 | } |
3571 | ||
9d89c257 YD |
3572 | static inline void |
3573 | enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
13962234 YD |
3574 | static inline void |
3575 | dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
9d89c257 | 3576 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
6e83125c | 3577 | |
a05e8c51 BP |
3578 | static inline void |
3579 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
3580 | static inline void | |
3581 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
3582 | ||
46f69fa3 | 3583 | static inline int idle_balance(struct rq *rq, struct rq_flags *rf) |
6e83125c PZ |
3584 | { |
3585 | return 0; | |
3586 | } | |
3587 | ||
38033c37 | 3588 | #endif /* CONFIG_SMP */ |
9d85f21c | 3589 | |
ddc97297 PZ |
3590 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3591 | { | |
3592 | #ifdef CONFIG_SCHED_DEBUG | |
3593 | s64 d = se->vruntime - cfs_rq->min_vruntime; | |
3594 | ||
3595 | if (d < 0) | |
3596 | d = -d; | |
3597 | ||
3598 | if (d > 3*sysctl_sched_latency) | |
ae92882e | 3599 | schedstat_inc(cfs_rq->nr_spread_over); |
ddc97297 PZ |
3600 | #endif |
3601 | } | |
3602 | ||
aeb73b04 PZ |
3603 | static void |
3604 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |
3605 | { | |
1af5f730 | 3606 | u64 vruntime = cfs_rq->min_vruntime; |
94dfb5e7 | 3607 | |
2cb8600e PZ |
3608 | /* |
3609 | * The 'current' period is already promised to the current tasks, | |
3610 | * however the extra weight of the new task will slow them down a | |
3611 | * little, place the new task so that it fits in the slot that | |
3612 | * stays open at the end. | |
3613 | */ | |
94dfb5e7 | 3614 | if (initial && sched_feat(START_DEBIT)) |
f9c0b095 | 3615 | vruntime += sched_vslice(cfs_rq, se); |
aeb73b04 | 3616 | |
a2e7a7eb | 3617 | /* sleeps up to a single latency don't count. */ |
5ca9880c | 3618 | if (!initial) { |
a2e7a7eb | 3619 | unsigned long thresh = sysctl_sched_latency; |
a7be37ac | 3620 | |
a2e7a7eb MG |
3621 | /* |
3622 | * Halve their sleep time's effect, to allow | |
3623 | * for a gentler effect of sleepers: | |
3624 | */ | |
3625 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | |
3626 | thresh >>= 1; | |
51e0304c | 3627 | |
a2e7a7eb | 3628 | vruntime -= thresh; |
aeb73b04 PZ |
3629 | } |
3630 | ||
b5d9d734 | 3631 | /* ensure we never gain time by being placed backwards. */ |
16c8f1c7 | 3632 | se->vruntime = max_vruntime(se->vruntime, vruntime); |
aeb73b04 PZ |
3633 | } |
3634 | ||
d3d9dc33 PT |
3635 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
3636 | ||
cb251765 MG |
3637 | static inline void check_schedstat_required(void) |
3638 | { | |
3639 | #ifdef CONFIG_SCHEDSTATS | |
3640 | if (schedstat_enabled()) | |
3641 | return; | |
3642 | ||
3643 | /* Force schedstat enabled if a dependent tracepoint is active */ | |
3644 | if (trace_sched_stat_wait_enabled() || | |
3645 | trace_sched_stat_sleep_enabled() || | |
3646 | trace_sched_stat_iowait_enabled() || | |
3647 | trace_sched_stat_blocked_enabled() || | |
3648 | trace_sched_stat_runtime_enabled()) { | |
eda8dca5 | 3649 | printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " |
cb251765 | 3650 | "stat_blocked and stat_runtime require the " |
f67abed5 | 3651 | "kernel parameter schedstats=enable or " |
cb251765 MG |
3652 | "kernel.sched_schedstats=1\n"); |
3653 | } | |
3654 | #endif | |
3655 | } | |
3656 | ||
b5179ac7 PZ |
3657 | |
3658 | /* | |
3659 | * MIGRATION | |
3660 | * | |
3661 | * dequeue | |
3662 | * update_curr() | |
3663 | * update_min_vruntime() | |
3664 | * vruntime -= min_vruntime | |
3665 | * | |
3666 | * enqueue | |
3667 | * update_curr() | |
3668 | * update_min_vruntime() | |
3669 | * vruntime += min_vruntime | |
3670 | * | |
3671 | * this way the vruntime transition between RQs is done when both | |
3672 | * min_vruntime are up-to-date. | |
3673 | * | |
3674 | * WAKEUP (remote) | |
3675 | * | |
59efa0ba | 3676 | * ->migrate_task_rq_fair() (p->state == TASK_WAKING) |
b5179ac7 PZ |
3677 | * vruntime -= min_vruntime |
3678 | * | |
3679 | * enqueue | |
3680 | * update_curr() | |
3681 | * update_min_vruntime() | |
3682 | * vruntime += min_vruntime | |
3683 | * | |
3684 | * this way we don't have the most up-to-date min_vruntime on the originating | |
3685 | * CPU and an up-to-date min_vruntime on the destination CPU. | |
3686 | */ | |
3687 | ||
bf0f6f24 | 3688 | static void |
88ec22d3 | 3689 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 3690 | { |
2f950354 PZ |
3691 | bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); |
3692 | bool curr = cfs_rq->curr == se; | |
3693 | ||
88ec22d3 | 3694 | /* |
2f950354 PZ |
3695 | * If we're the current task, we must renormalise before calling |
3696 | * update_curr(). | |
88ec22d3 | 3697 | */ |
2f950354 | 3698 | if (renorm && curr) |
88ec22d3 PZ |
3699 | se->vruntime += cfs_rq->min_vruntime; |
3700 | ||
2f950354 PZ |
3701 | update_curr(cfs_rq); |
3702 | ||
bf0f6f24 | 3703 | /* |
2f950354 PZ |
3704 | * Otherwise, renormalise after, such that we're placed at the current |
3705 | * moment in time, instead of some random moment in the past. Being | |
3706 | * placed in the past could significantly boost this task to the | |
3707 | * fairness detriment of existing tasks. | |
bf0f6f24 | 3708 | */ |
2f950354 PZ |
3709 | if (renorm && !curr) |
3710 | se->vruntime += cfs_rq->min_vruntime; | |
3711 | ||
89ee048f VG |
3712 | /* |
3713 | * When enqueuing a sched_entity, we must: | |
3714 | * - Update loads to have both entity and cfs_rq synced with now. | |
3715 | * - Add its load to cfs_rq->runnable_avg | |
3716 | * - For group_entity, update its weight to reflect the new share of | |
3717 | * its group cfs_rq | |
3718 | * - Add its new weight to cfs_rq->load.weight | |
3719 | */ | |
d31b1a66 | 3720 | update_load_avg(se, UPDATE_TG); |
9d89c257 | 3721 | enqueue_entity_load_avg(cfs_rq, se); |
89ee048f | 3722 | update_cfs_shares(se); |
17bc14b7 | 3723 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 3724 | |
1a3d027c | 3725 | if (flags & ENQUEUE_WAKEUP) |
aeb73b04 | 3726 | place_entity(cfs_rq, se, 0); |
bf0f6f24 | 3727 | |
cb251765 | 3728 | check_schedstat_required(); |
4fa8d299 JP |
3729 | update_stats_enqueue(cfs_rq, se, flags); |
3730 | check_spread(cfs_rq, se); | |
2f950354 | 3731 | if (!curr) |
83b699ed | 3732 | __enqueue_entity(cfs_rq, se); |
2069dd75 | 3733 | se->on_rq = 1; |
3d4b47b4 | 3734 | |
d3d9dc33 | 3735 | if (cfs_rq->nr_running == 1) { |
3d4b47b4 | 3736 | list_add_leaf_cfs_rq(cfs_rq); |
d3d9dc33 PT |
3737 | check_enqueue_throttle(cfs_rq); |
3738 | } | |
bf0f6f24 IM |
3739 | } |
3740 | ||
2c13c919 | 3741 | static void __clear_buddies_last(struct sched_entity *se) |
2002c695 | 3742 | { |
2c13c919 RR |
3743 | for_each_sched_entity(se) { |
3744 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 3745 | if (cfs_rq->last != se) |
2c13c919 | 3746 | break; |
f1044799 PZ |
3747 | |
3748 | cfs_rq->last = NULL; | |
2c13c919 RR |
3749 | } |
3750 | } | |
2002c695 | 3751 | |
2c13c919 RR |
3752 | static void __clear_buddies_next(struct sched_entity *se) |
3753 | { | |
3754 | for_each_sched_entity(se) { | |
3755 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 3756 | if (cfs_rq->next != se) |
2c13c919 | 3757 | break; |
f1044799 PZ |
3758 | |
3759 | cfs_rq->next = NULL; | |
2c13c919 | 3760 | } |
2002c695 PZ |
3761 | } |
3762 | ||
ac53db59 RR |
3763 | static void __clear_buddies_skip(struct sched_entity *se) |
3764 | { | |
3765 | for_each_sched_entity(se) { | |
3766 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 3767 | if (cfs_rq->skip != se) |
ac53db59 | 3768 | break; |
f1044799 PZ |
3769 | |
3770 | cfs_rq->skip = NULL; | |
ac53db59 RR |
3771 | } |
3772 | } | |
3773 | ||
a571bbea PZ |
3774 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3775 | { | |
2c13c919 RR |
3776 | if (cfs_rq->last == se) |
3777 | __clear_buddies_last(se); | |
3778 | ||
3779 | if (cfs_rq->next == se) | |
3780 | __clear_buddies_next(se); | |
ac53db59 RR |
3781 | |
3782 | if (cfs_rq->skip == se) | |
3783 | __clear_buddies_skip(se); | |
a571bbea PZ |
3784 | } |
3785 | ||
6c16a6dc | 3786 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d8b4986d | 3787 | |
bf0f6f24 | 3788 | static void |
371fd7e7 | 3789 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 3790 | { |
a2a2d680 DA |
3791 | /* |
3792 | * Update run-time statistics of the 'current'. | |
3793 | */ | |
3794 | update_curr(cfs_rq); | |
89ee048f VG |
3795 | |
3796 | /* | |
3797 | * When dequeuing a sched_entity, we must: | |
3798 | * - Update loads to have both entity and cfs_rq synced with now. | |
3799 | * - Substract its load from the cfs_rq->runnable_avg. | |
3800 | * - Substract its previous weight from cfs_rq->load.weight. | |
3801 | * - For group entity, update its weight to reflect the new share | |
3802 | * of its group cfs_rq. | |
3803 | */ | |
d31b1a66 | 3804 | update_load_avg(se, UPDATE_TG); |
13962234 | 3805 | dequeue_entity_load_avg(cfs_rq, se); |
a2a2d680 | 3806 | |
4fa8d299 | 3807 | update_stats_dequeue(cfs_rq, se, flags); |
67e9fb2a | 3808 | |
2002c695 | 3809 | clear_buddies(cfs_rq, se); |
4793241b | 3810 | |
83b699ed | 3811 | if (se != cfs_rq->curr) |
30cfdcfc | 3812 | __dequeue_entity(cfs_rq, se); |
17bc14b7 | 3813 | se->on_rq = 0; |
30cfdcfc | 3814 | account_entity_dequeue(cfs_rq, se); |
88ec22d3 PZ |
3815 | |
3816 | /* | |
b60205c7 PZ |
3817 | * Normalize after update_curr(); which will also have moved |
3818 | * min_vruntime if @se is the one holding it back. But before doing | |
3819 | * update_min_vruntime() again, which will discount @se's position and | |
3820 | * can move min_vruntime forward still more. | |
88ec22d3 | 3821 | */ |
371fd7e7 | 3822 | if (!(flags & DEQUEUE_SLEEP)) |
88ec22d3 | 3823 | se->vruntime -= cfs_rq->min_vruntime; |
1e876231 | 3824 | |
d8b4986d PT |
3825 | /* return excess runtime on last dequeue */ |
3826 | return_cfs_rq_runtime(cfs_rq); | |
3827 | ||
89ee048f | 3828 | update_cfs_shares(se); |
b60205c7 PZ |
3829 | |
3830 | /* | |
3831 | * Now advance min_vruntime if @se was the entity holding it back, | |
3832 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | |
3833 | * put back on, and if we advance min_vruntime, we'll be placed back | |
3834 | * further than we started -- ie. we'll be penalized. | |
3835 | */ | |
3836 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) | |
3837 | update_min_vruntime(cfs_rq); | |
bf0f6f24 IM |
3838 | } |
3839 | ||
3840 | /* | |
3841 | * Preempt the current task with a newly woken task if needed: | |
3842 | */ | |
7c92e54f | 3843 | static void |
2e09bf55 | 3844 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
bf0f6f24 | 3845 | { |
11697830 | 3846 | unsigned long ideal_runtime, delta_exec; |
f4cfb33e WX |
3847 | struct sched_entity *se; |
3848 | s64 delta; | |
11697830 | 3849 | |
6d0f0ebd | 3850 | ideal_runtime = sched_slice(cfs_rq, curr); |
11697830 | 3851 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
a9f3e2b5 | 3852 | if (delta_exec > ideal_runtime) { |
8875125e | 3853 | resched_curr(rq_of(cfs_rq)); |
a9f3e2b5 MG |
3854 | /* |
3855 | * The current task ran long enough, ensure it doesn't get | |
3856 | * re-elected due to buddy favours. | |
3857 | */ | |
3858 | clear_buddies(cfs_rq, curr); | |
f685ceac MG |
3859 | return; |
3860 | } | |
3861 | ||
3862 | /* | |
3863 | * Ensure that a task that missed wakeup preemption by a | |
3864 | * narrow margin doesn't have to wait for a full slice. | |
3865 | * This also mitigates buddy induced latencies under load. | |
3866 | */ | |
f685ceac MG |
3867 | if (delta_exec < sysctl_sched_min_granularity) |
3868 | return; | |
3869 | ||
f4cfb33e WX |
3870 | se = __pick_first_entity(cfs_rq); |
3871 | delta = curr->vruntime - se->vruntime; | |
f685ceac | 3872 | |
f4cfb33e WX |
3873 | if (delta < 0) |
3874 | return; | |
d7d82944 | 3875 | |
f4cfb33e | 3876 | if (delta > ideal_runtime) |
8875125e | 3877 | resched_curr(rq_of(cfs_rq)); |
bf0f6f24 IM |
3878 | } |
3879 | ||
83b699ed | 3880 | static void |
8494f412 | 3881 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 3882 | { |
83b699ed SV |
3883 | /* 'current' is not kept within the tree. */ |
3884 | if (se->on_rq) { | |
3885 | /* | |
3886 | * Any task has to be enqueued before it get to execute on | |
3887 | * a CPU. So account for the time it spent waiting on the | |
3888 | * runqueue. | |
3889 | */ | |
4fa8d299 | 3890 | update_stats_wait_end(cfs_rq, se); |
83b699ed | 3891 | __dequeue_entity(cfs_rq, se); |
d31b1a66 | 3892 | update_load_avg(se, UPDATE_TG); |
83b699ed SV |
3893 | } |
3894 | ||
79303e9e | 3895 | update_stats_curr_start(cfs_rq, se); |
429d43bc | 3896 | cfs_rq->curr = se; |
4fa8d299 | 3897 | |
eba1ed4b IM |
3898 | /* |
3899 | * Track our maximum slice length, if the CPU's load is at | |
3900 | * least twice that of our own weight (i.e. dont track it | |
3901 | * when there are only lesser-weight tasks around): | |
3902 | */ | |
cb251765 | 3903 | if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
4fa8d299 JP |
3904 | schedstat_set(se->statistics.slice_max, |
3905 | max((u64)schedstat_val(se->statistics.slice_max), | |
3906 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); | |
eba1ed4b | 3907 | } |
4fa8d299 | 3908 | |
4a55b450 | 3909 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
3910 | } |
3911 | ||
3f3a4904 PZ |
3912 | static int |
3913 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |
3914 | ||
ac53db59 RR |
3915 | /* |
3916 | * Pick the next process, keeping these things in mind, in this order: | |
3917 | * 1) keep things fair between processes/task groups | |
3918 | * 2) pick the "next" process, since someone really wants that to run | |
3919 | * 3) pick the "last" process, for cache locality | |
3920 | * 4) do not run the "skip" process, if something else is available | |
3921 | */ | |
678d5718 PZ |
3922 | static struct sched_entity * |
3923 | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | |
aa2ac252 | 3924 | { |
678d5718 PZ |
3925 | struct sched_entity *left = __pick_first_entity(cfs_rq); |
3926 | struct sched_entity *se; | |
3927 | ||
3928 | /* | |
3929 | * If curr is set we have to see if its left of the leftmost entity | |
3930 | * still in the tree, provided there was anything in the tree at all. | |
3931 | */ | |
3932 | if (!left || (curr && entity_before(curr, left))) | |
3933 | left = curr; | |
3934 | ||
3935 | se = left; /* ideally we run the leftmost entity */ | |
f4b6755f | 3936 | |
ac53db59 RR |
3937 | /* |
3938 | * Avoid running the skip buddy, if running something else can | |
3939 | * be done without getting too unfair. | |
3940 | */ | |
3941 | if (cfs_rq->skip == se) { | |
678d5718 PZ |
3942 | struct sched_entity *second; |
3943 | ||
3944 | if (se == curr) { | |
3945 | second = __pick_first_entity(cfs_rq); | |
3946 | } else { | |
3947 | second = __pick_next_entity(se); | |
3948 | if (!second || (curr && entity_before(curr, second))) | |
3949 | second = curr; | |
3950 | } | |
3951 | ||
ac53db59 RR |
3952 | if (second && wakeup_preempt_entity(second, left) < 1) |
3953 | se = second; | |
3954 | } | |
aa2ac252 | 3955 | |
f685ceac MG |
3956 | /* |
3957 | * Prefer last buddy, try to return the CPU to a preempted task. | |
3958 | */ | |
3959 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | |
3960 | se = cfs_rq->last; | |
3961 | ||
ac53db59 RR |
3962 | /* |
3963 | * Someone really wants this to run. If it's not unfair, run it. | |
3964 | */ | |
3965 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | |
3966 | se = cfs_rq->next; | |
3967 | ||
f685ceac | 3968 | clear_buddies(cfs_rq, se); |
4793241b PZ |
3969 | |
3970 | return se; | |
aa2ac252 PZ |
3971 | } |
3972 | ||
678d5718 | 3973 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d3d9dc33 | 3974 | |
ab6cde26 | 3975 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
3976 | { |
3977 | /* | |
3978 | * If still on the runqueue then deactivate_task() | |
3979 | * was not called and update_curr() has to be done: | |
3980 | */ | |
3981 | if (prev->on_rq) | |
b7cc0896 | 3982 | update_curr(cfs_rq); |
bf0f6f24 | 3983 | |
d3d9dc33 PT |
3984 | /* throttle cfs_rqs exceeding runtime */ |
3985 | check_cfs_rq_runtime(cfs_rq); | |
3986 | ||
4fa8d299 | 3987 | check_spread(cfs_rq, prev); |
cb251765 | 3988 | |
30cfdcfc | 3989 | if (prev->on_rq) { |
4fa8d299 | 3990 | update_stats_wait_start(cfs_rq, prev); |
30cfdcfc DA |
3991 | /* Put 'current' back into the tree. */ |
3992 | __enqueue_entity(cfs_rq, prev); | |
9d85f21c | 3993 | /* in !on_rq case, update occurred at dequeue */ |
9d89c257 | 3994 | update_load_avg(prev, 0); |
30cfdcfc | 3995 | } |
429d43bc | 3996 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
3997 | } |
3998 | ||
8f4d37ec PZ |
3999 | static void |
4000 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 4001 | { |
bf0f6f24 | 4002 | /* |
30cfdcfc | 4003 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 4004 | */ |
30cfdcfc | 4005 | update_curr(cfs_rq); |
bf0f6f24 | 4006 | |
9d85f21c PT |
4007 | /* |
4008 | * Ensure that runnable average is periodically updated. | |
4009 | */ | |
d31b1a66 | 4010 | update_load_avg(curr, UPDATE_TG); |
89ee048f | 4011 | update_cfs_shares(curr); |
9d85f21c | 4012 | |
8f4d37ec PZ |
4013 | #ifdef CONFIG_SCHED_HRTICK |
4014 | /* | |
4015 | * queued ticks are scheduled to match the slice, so don't bother | |
4016 | * validating it and just reschedule. | |
4017 | */ | |
983ed7a6 | 4018 | if (queued) { |
8875125e | 4019 | resched_curr(rq_of(cfs_rq)); |
983ed7a6 HH |
4020 | return; |
4021 | } | |
8f4d37ec PZ |
4022 | /* |
4023 | * don't let the period tick interfere with the hrtick preemption | |
4024 | */ | |
4025 | if (!sched_feat(DOUBLE_TICK) && | |
4026 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | |
4027 | return; | |
4028 | #endif | |
4029 | ||
2c2efaed | 4030 | if (cfs_rq->nr_running > 1) |
2e09bf55 | 4031 | check_preempt_tick(cfs_rq, curr); |
bf0f6f24 IM |
4032 | } |
4033 | ||
ab84d31e PT |
4034 | |
4035 | /************************************************** | |
4036 | * CFS bandwidth control machinery | |
4037 | */ | |
4038 | ||
4039 | #ifdef CONFIG_CFS_BANDWIDTH | |
029632fb PZ |
4040 | |
4041 | #ifdef HAVE_JUMP_LABEL | |
c5905afb | 4042 | static struct static_key __cfs_bandwidth_used; |
029632fb PZ |
4043 | |
4044 | static inline bool cfs_bandwidth_used(void) | |
4045 | { | |
c5905afb | 4046 | return static_key_false(&__cfs_bandwidth_used); |
029632fb PZ |
4047 | } |
4048 | ||
1ee14e6c | 4049 | void cfs_bandwidth_usage_inc(void) |
029632fb | 4050 | { |
1ee14e6c BS |
4051 | static_key_slow_inc(&__cfs_bandwidth_used); |
4052 | } | |
4053 | ||
4054 | void cfs_bandwidth_usage_dec(void) | |
4055 | { | |
4056 | static_key_slow_dec(&__cfs_bandwidth_used); | |
029632fb PZ |
4057 | } |
4058 | #else /* HAVE_JUMP_LABEL */ | |
4059 | static bool cfs_bandwidth_used(void) | |
4060 | { | |
4061 | return true; | |
4062 | } | |
4063 | ||
1ee14e6c BS |
4064 | void cfs_bandwidth_usage_inc(void) {} |
4065 | void cfs_bandwidth_usage_dec(void) {} | |
029632fb PZ |
4066 | #endif /* HAVE_JUMP_LABEL */ |
4067 | ||
ab84d31e PT |
4068 | /* |
4069 | * default period for cfs group bandwidth. | |
4070 | * default: 0.1s, units: nanoseconds | |
4071 | */ | |
4072 | static inline u64 default_cfs_period(void) | |
4073 | { | |
4074 | return 100000000ULL; | |
4075 | } | |
ec12cb7f PT |
4076 | |
4077 | static inline u64 sched_cfs_bandwidth_slice(void) | |
4078 | { | |
4079 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | |
4080 | } | |
4081 | ||
a9cf55b2 PT |
4082 | /* |
4083 | * Replenish runtime according to assigned quota and update expiration time. | |
4084 | * We use sched_clock_cpu directly instead of rq->clock to avoid adding | |
4085 | * additional synchronization around rq->lock. | |
4086 | * | |
4087 | * requires cfs_b->lock | |
4088 | */ | |
029632fb | 4089 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
a9cf55b2 PT |
4090 | { |
4091 | u64 now; | |
4092 | ||
4093 | if (cfs_b->quota == RUNTIME_INF) | |
4094 | return; | |
4095 | ||
4096 | now = sched_clock_cpu(smp_processor_id()); | |
4097 | cfs_b->runtime = cfs_b->quota; | |
4098 | cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | |
4099 | } | |
4100 | ||
029632fb PZ |
4101 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
4102 | { | |
4103 | return &tg->cfs_bandwidth; | |
4104 | } | |
4105 | ||
f1b17280 PT |
4106 | /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ |
4107 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) | |
4108 | { | |
4109 | if (unlikely(cfs_rq->throttle_count)) | |
1a99ae3f | 4110 | return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; |
f1b17280 | 4111 | |
78becc27 | 4112 | return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; |
f1b17280 PT |
4113 | } |
4114 | ||
85dac906 PT |
4115 | /* returns 0 on failure to allocate runtime */ |
4116 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
ec12cb7f PT |
4117 | { |
4118 | struct task_group *tg = cfs_rq->tg; | |
4119 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | |
a9cf55b2 | 4120 | u64 amount = 0, min_amount, expires; |
ec12cb7f PT |
4121 | |
4122 | /* note: this is a positive sum as runtime_remaining <= 0 */ | |
4123 | min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | |
4124 | ||
4125 | raw_spin_lock(&cfs_b->lock); | |
4126 | if (cfs_b->quota == RUNTIME_INF) | |
4127 | amount = min_amount; | |
58088ad0 | 4128 | else { |
77a4d1a1 | 4129 | start_cfs_bandwidth(cfs_b); |
58088ad0 PT |
4130 | |
4131 | if (cfs_b->runtime > 0) { | |
4132 | amount = min(cfs_b->runtime, min_amount); | |
4133 | cfs_b->runtime -= amount; | |
4134 | cfs_b->idle = 0; | |
4135 | } | |
ec12cb7f | 4136 | } |
a9cf55b2 | 4137 | expires = cfs_b->runtime_expires; |
ec12cb7f PT |
4138 | raw_spin_unlock(&cfs_b->lock); |
4139 | ||
4140 | cfs_rq->runtime_remaining += amount; | |
a9cf55b2 PT |
4141 | /* |
4142 | * we may have advanced our local expiration to account for allowed | |
4143 | * spread between our sched_clock and the one on which runtime was | |
4144 | * issued. | |
4145 | */ | |
4146 | if ((s64)(expires - cfs_rq->runtime_expires) > 0) | |
4147 | cfs_rq->runtime_expires = expires; | |
85dac906 PT |
4148 | |
4149 | return cfs_rq->runtime_remaining > 0; | |
ec12cb7f PT |
4150 | } |
4151 | ||
a9cf55b2 PT |
4152 | /* |
4153 | * Note: This depends on the synchronization provided by sched_clock and the | |
4154 | * fact that rq->clock snapshots this value. | |
4155 | */ | |
4156 | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
ec12cb7f | 4157 | { |
a9cf55b2 | 4158 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
a9cf55b2 PT |
4159 | |
4160 | /* if the deadline is ahead of our clock, nothing to do */ | |
78becc27 | 4161 | if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) |
ec12cb7f PT |
4162 | return; |
4163 | ||
a9cf55b2 PT |
4164 | if (cfs_rq->runtime_remaining < 0) |
4165 | return; | |
4166 | ||
4167 | /* | |
4168 | * If the local deadline has passed we have to consider the | |
4169 | * possibility that our sched_clock is 'fast' and the global deadline | |
4170 | * has not truly expired. | |
4171 | * | |
4172 | * Fortunately we can check determine whether this the case by checking | |
51f2176d BS |
4173 | * whether the global deadline has advanced. It is valid to compare |
4174 | * cfs_b->runtime_expires without any locks since we only care about | |
4175 | * exact equality, so a partial write will still work. | |
a9cf55b2 PT |
4176 | */ |
4177 | ||
51f2176d | 4178 | if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { |
a9cf55b2 PT |
4179 | /* extend local deadline, drift is bounded above by 2 ticks */ |
4180 | cfs_rq->runtime_expires += TICK_NSEC; | |
4181 | } else { | |
4182 | /* global deadline is ahead, expiration has passed */ | |
4183 | cfs_rq->runtime_remaining = 0; | |
4184 | } | |
4185 | } | |
4186 | ||
9dbdb155 | 4187 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
a9cf55b2 PT |
4188 | { |
4189 | /* dock delta_exec before expiring quota (as it could span periods) */ | |
ec12cb7f | 4190 | cfs_rq->runtime_remaining -= delta_exec; |
a9cf55b2 PT |
4191 | expire_cfs_rq_runtime(cfs_rq); |
4192 | ||
4193 | if (likely(cfs_rq->runtime_remaining > 0)) | |
ec12cb7f PT |
4194 | return; |
4195 | ||
85dac906 PT |
4196 | /* |
4197 | * if we're unable to extend our runtime we resched so that the active | |
4198 | * hierarchy can be throttled | |
4199 | */ | |
4200 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | |
8875125e | 4201 | resched_curr(rq_of(cfs_rq)); |
ec12cb7f PT |
4202 | } |
4203 | ||
6c16a6dc | 4204 | static __always_inline |
9dbdb155 | 4205 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
ec12cb7f | 4206 | { |
56f570e5 | 4207 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
ec12cb7f PT |
4208 | return; |
4209 | ||
4210 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | |
4211 | } | |
4212 | ||
85dac906 PT |
4213 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
4214 | { | |
56f570e5 | 4215 | return cfs_bandwidth_used() && cfs_rq->throttled; |
85dac906 PT |
4216 | } |
4217 | ||
64660c86 PT |
4218 | /* check whether cfs_rq, or any parent, is throttled */ |
4219 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
4220 | { | |
56f570e5 | 4221 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
64660c86 PT |
4222 | } |
4223 | ||
4224 | /* | |
4225 | * Ensure that neither of the group entities corresponding to src_cpu or | |
4226 | * dest_cpu are members of a throttled hierarchy when performing group | |
4227 | * load-balance operations. | |
4228 | */ | |
4229 | static inline int throttled_lb_pair(struct task_group *tg, | |
4230 | int src_cpu, int dest_cpu) | |
4231 | { | |
4232 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | |
4233 | ||
4234 | src_cfs_rq = tg->cfs_rq[src_cpu]; | |
4235 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | |
4236 | ||
4237 | return throttled_hierarchy(src_cfs_rq) || | |
4238 | throttled_hierarchy(dest_cfs_rq); | |
4239 | } | |
4240 | ||
4241 | /* updated child weight may affect parent so we have to do this bottom up */ | |
4242 | static int tg_unthrottle_up(struct task_group *tg, void *data) | |
4243 | { | |
4244 | struct rq *rq = data; | |
4245 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4246 | ||
4247 | cfs_rq->throttle_count--; | |
64660c86 | 4248 | if (!cfs_rq->throttle_count) { |
f1b17280 | 4249 | /* adjust cfs_rq_clock_task() */ |
78becc27 | 4250 | cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - |
f1b17280 | 4251 | cfs_rq->throttled_clock_task; |
64660c86 | 4252 | } |
64660c86 PT |
4253 | |
4254 | return 0; | |
4255 | } | |
4256 | ||
4257 | static int tg_throttle_down(struct task_group *tg, void *data) | |
4258 | { | |
4259 | struct rq *rq = data; | |
4260 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4261 | ||
82958366 PT |
4262 | /* group is entering throttled state, stop time */ |
4263 | if (!cfs_rq->throttle_count) | |
78becc27 | 4264 | cfs_rq->throttled_clock_task = rq_clock_task(rq); |
64660c86 PT |
4265 | cfs_rq->throttle_count++; |
4266 | ||
4267 | return 0; | |
4268 | } | |
4269 | ||
d3d9dc33 | 4270 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) |
85dac906 PT |
4271 | { |
4272 | struct rq *rq = rq_of(cfs_rq); | |
4273 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4274 | struct sched_entity *se; | |
4275 | long task_delta, dequeue = 1; | |
77a4d1a1 | 4276 | bool empty; |
85dac906 PT |
4277 | |
4278 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | |
4279 | ||
f1b17280 | 4280 | /* freeze hierarchy runnable averages while throttled */ |
64660c86 PT |
4281 | rcu_read_lock(); |
4282 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | |
4283 | rcu_read_unlock(); | |
85dac906 PT |
4284 | |
4285 | task_delta = cfs_rq->h_nr_running; | |
4286 | for_each_sched_entity(se) { | |
4287 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
4288 | /* throttled entity or throttle-on-deactivate */ | |
4289 | if (!se->on_rq) | |
4290 | break; | |
4291 | ||
4292 | if (dequeue) | |
4293 | dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | |
4294 | qcfs_rq->h_nr_running -= task_delta; | |
4295 | ||
4296 | if (qcfs_rq->load.weight) | |
4297 | dequeue = 0; | |
4298 | } | |
4299 | ||
4300 | if (!se) | |
72465447 | 4301 | sub_nr_running(rq, task_delta); |
85dac906 PT |
4302 | |
4303 | cfs_rq->throttled = 1; | |
78becc27 | 4304 | cfs_rq->throttled_clock = rq_clock(rq); |
85dac906 | 4305 | raw_spin_lock(&cfs_b->lock); |
d49db342 | 4306 | empty = list_empty(&cfs_b->throttled_cfs_rq); |
77a4d1a1 | 4307 | |
c06f04c7 BS |
4308 | /* |
4309 | * Add to the _head_ of the list, so that an already-started | |
4310 | * distribute_cfs_runtime will not see us | |
4311 | */ | |
4312 | list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | |
77a4d1a1 PZ |
4313 | |
4314 | /* | |
4315 | * If we're the first throttled task, make sure the bandwidth | |
4316 | * timer is running. | |
4317 | */ | |
4318 | if (empty) | |
4319 | start_cfs_bandwidth(cfs_b); | |
4320 | ||
85dac906 PT |
4321 | raw_spin_unlock(&cfs_b->lock); |
4322 | } | |
4323 | ||
029632fb | 4324 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
671fd9da PT |
4325 | { |
4326 | struct rq *rq = rq_of(cfs_rq); | |
4327 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4328 | struct sched_entity *se; | |
4329 | int enqueue = 1; | |
4330 | long task_delta; | |
4331 | ||
22b958d8 | 4332 | se = cfs_rq->tg->se[cpu_of(rq)]; |
671fd9da PT |
4333 | |
4334 | cfs_rq->throttled = 0; | |
1a55af2e FW |
4335 | |
4336 | update_rq_clock(rq); | |
4337 | ||
671fd9da | 4338 | raw_spin_lock(&cfs_b->lock); |
78becc27 | 4339 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; |
671fd9da PT |
4340 | list_del_rcu(&cfs_rq->throttled_list); |
4341 | raw_spin_unlock(&cfs_b->lock); | |
4342 | ||
64660c86 PT |
4343 | /* update hierarchical throttle state */ |
4344 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | |
4345 | ||
671fd9da PT |
4346 | if (!cfs_rq->load.weight) |
4347 | return; | |
4348 | ||
4349 | task_delta = cfs_rq->h_nr_running; | |
4350 | for_each_sched_entity(se) { | |
4351 | if (se->on_rq) | |
4352 | enqueue = 0; | |
4353 | ||
4354 | cfs_rq = cfs_rq_of(se); | |
4355 | if (enqueue) | |
4356 | enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | |
4357 | cfs_rq->h_nr_running += task_delta; | |
4358 | ||
4359 | if (cfs_rq_throttled(cfs_rq)) | |
4360 | break; | |
4361 | } | |
4362 | ||
4363 | if (!se) | |
72465447 | 4364 | add_nr_running(rq, task_delta); |
671fd9da PT |
4365 | |
4366 | /* determine whether we need to wake up potentially idle cpu */ | |
4367 | if (rq->curr == rq->idle && rq->cfs.nr_running) | |
8875125e | 4368 | resched_curr(rq); |
671fd9da PT |
4369 | } |
4370 | ||
4371 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, | |
4372 | u64 remaining, u64 expires) | |
4373 | { | |
4374 | struct cfs_rq *cfs_rq; | |
c06f04c7 BS |
4375 | u64 runtime; |
4376 | u64 starting_runtime = remaining; | |
671fd9da PT |
4377 | |
4378 | rcu_read_lock(); | |
4379 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | |
4380 | throttled_list) { | |
4381 | struct rq *rq = rq_of(cfs_rq); | |
8a8c69c3 | 4382 | struct rq_flags rf; |
671fd9da | 4383 | |
8a8c69c3 | 4384 | rq_lock(rq, &rf); |
671fd9da PT |
4385 | if (!cfs_rq_throttled(cfs_rq)) |
4386 | goto next; | |
4387 | ||
4388 | runtime = -cfs_rq->runtime_remaining + 1; | |
4389 | if (runtime > remaining) | |
4390 | runtime = remaining; | |
4391 | remaining -= runtime; | |
4392 | ||
4393 | cfs_rq->runtime_remaining += runtime; | |
4394 | cfs_rq->runtime_expires = expires; | |
4395 | ||
4396 | /* we check whether we're throttled above */ | |
4397 | if (cfs_rq->runtime_remaining > 0) | |
4398 | unthrottle_cfs_rq(cfs_rq); | |
4399 | ||
4400 | next: | |
8a8c69c3 | 4401 | rq_unlock(rq, &rf); |
671fd9da PT |
4402 | |
4403 | if (!remaining) | |
4404 | break; | |
4405 | } | |
4406 | rcu_read_unlock(); | |
4407 | ||
c06f04c7 | 4408 | return starting_runtime - remaining; |
671fd9da PT |
4409 | } |
4410 | ||
58088ad0 PT |
4411 | /* |
4412 | * Responsible for refilling a task_group's bandwidth and unthrottling its | |
4413 | * cfs_rqs as appropriate. If there has been no activity within the last | |
4414 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | |
4415 | * used to track this state. | |
4416 | */ | |
4417 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) | |
4418 | { | |
671fd9da | 4419 | u64 runtime, runtime_expires; |
51f2176d | 4420 | int throttled; |
58088ad0 | 4421 | |
58088ad0 PT |
4422 | /* no need to continue the timer with no bandwidth constraint */ |
4423 | if (cfs_b->quota == RUNTIME_INF) | |
51f2176d | 4424 | goto out_deactivate; |
58088ad0 | 4425 | |
671fd9da | 4426 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
e8da1b18 | 4427 | cfs_b->nr_periods += overrun; |
671fd9da | 4428 | |
51f2176d BS |
4429 | /* |
4430 | * idle depends on !throttled (for the case of a large deficit), and if | |
4431 | * we're going inactive then everything else can be deferred | |
4432 | */ | |
4433 | if (cfs_b->idle && !throttled) | |
4434 | goto out_deactivate; | |
a9cf55b2 PT |
4435 | |
4436 | __refill_cfs_bandwidth_runtime(cfs_b); | |
4437 | ||
671fd9da PT |
4438 | if (!throttled) { |
4439 | /* mark as potentially idle for the upcoming period */ | |
4440 | cfs_b->idle = 1; | |
51f2176d | 4441 | return 0; |
671fd9da PT |
4442 | } |
4443 | ||
e8da1b18 NR |
4444 | /* account preceding periods in which throttling occurred */ |
4445 | cfs_b->nr_throttled += overrun; | |
4446 | ||
671fd9da | 4447 | runtime_expires = cfs_b->runtime_expires; |
671fd9da PT |
4448 | |
4449 | /* | |
c06f04c7 BS |
4450 | * This check is repeated as we are holding onto the new bandwidth while |
4451 | * we unthrottle. This can potentially race with an unthrottled group | |
4452 | * trying to acquire new bandwidth from the global pool. This can result | |
4453 | * in us over-using our runtime if it is all used during this loop, but | |
4454 | * only by limited amounts in that extreme case. | |
671fd9da | 4455 | */ |
c06f04c7 BS |
4456 | while (throttled && cfs_b->runtime > 0) { |
4457 | runtime = cfs_b->runtime; | |
671fd9da PT |
4458 | raw_spin_unlock(&cfs_b->lock); |
4459 | /* we can't nest cfs_b->lock while distributing bandwidth */ | |
4460 | runtime = distribute_cfs_runtime(cfs_b, runtime, | |
4461 | runtime_expires); | |
4462 | raw_spin_lock(&cfs_b->lock); | |
4463 | ||
4464 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); | |
c06f04c7 BS |
4465 | |
4466 | cfs_b->runtime -= min(runtime, cfs_b->runtime); | |
671fd9da | 4467 | } |
58088ad0 | 4468 | |
671fd9da PT |
4469 | /* |
4470 | * While we are ensured activity in the period following an | |
4471 | * unthrottle, this also covers the case in which the new bandwidth is | |
4472 | * insufficient to cover the existing bandwidth deficit. (Forcing the | |
4473 | * timer to remain active while there are any throttled entities.) | |
4474 | */ | |
4475 | cfs_b->idle = 0; | |
58088ad0 | 4476 | |
51f2176d BS |
4477 | return 0; |
4478 | ||
4479 | out_deactivate: | |
51f2176d | 4480 | return 1; |
58088ad0 | 4481 | } |
d3d9dc33 | 4482 | |
d8b4986d PT |
4483 | /* a cfs_rq won't donate quota below this amount */ |
4484 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | |
4485 | /* minimum remaining period time to redistribute slack quota */ | |
4486 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | |
4487 | /* how long we wait to gather additional slack before distributing */ | |
4488 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | |
4489 | ||
db06e78c BS |
4490 | /* |
4491 | * Are we near the end of the current quota period? | |
4492 | * | |
4493 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | |
4961b6e1 | 4494 | * hrtimer base being cleared by hrtimer_start. In the case of |
db06e78c BS |
4495 | * migrate_hrtimers, base is never cleared, so we are fine. |
4496 | */ | |
d8b4986d PT |
4497 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
4498 | { | |
4499 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | |
4500 | u64 remaining; | |
4501 | ||
4502 | /* if the call-back is running a quota refresh is already occurring */ | |
4503 | if (hrtimer_callback_running(refresh_timer)) | |
4504 | return 1; | |
4505 | ||
4506 | /* is a quota refresh about to occur? */ | |
4507 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | |
4508 | if (remaining < min_expire) | |
4509 | return 1; | |
4510 | ||
4511 | return 0; | |
4512 | } | |
4513 | ||
4514 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | |
4515 | { | |
4516 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | |
4517 | ||
4518 | /* if there's a quota refresh soon don't bother with slack */ | |
4519 | if (runtime_refresh_within(cfs_b, min_left)) | |
4520 | return; | |
4521 | ||
4cfafd30 PZ |
4522 | hrtimer_start(&cfs_b->slack_timer, |
4523 | ns_to_ktime(cfs_bandwidth_slack_period), | |
4524 | HRTIMER_MODE_REL); | |
d8b4986d PT |
4525 | } |
4526 | ||
4527 | /* we know any runtime found here is valid as update_curr() precedes return */ | |
4528 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4529 | { | |
4530 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
4531 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | |
4532 | ||
4533 | if (slack_runtime <= 0) | |
4534 | return; | |
4535 | ||
4536 | raw_spin_lock(&cfs_b->lock); | |
4537 | if (cfs_b->quota != RUNTIME_INF && | |
4538 | cfs_rq->runtime_expires == cfs_b->runtime_expires) { | |
4539 | cfs_b->runtime += slack_runtime; | |
4540 | ||
4541 | /* we are under rq->lock, defer unthrottling using a timer */ | |
4542 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | |
4543 | !list_empty(&cfs_b->throttled_cfs_rq)) | |
4544 | start_cfs_slack_bandwidth(cfs_b); | |
4545 | } | |
4546 | raw_spin_unlock(&cfs_b->lock); | |
4547 | ||
4548 | /* even if it's not valid for return we don't want to try again */ | |
4549 | cfs_rq->runtime_remaining -= slack_runtime; | |
4550 | } | |
4551 | ||
4552 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4553 | { | |
56f570e5 PT |
4554 | if (!cfs_bandwidth_used()) |
4555 | return; | |
4556 | ||
fccfdc6f | 4557 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) |
d8b4986d PT |
4558 | return; |
4559 | ||
4560 | __return_cfs_rq_runtime(cfs_rq); | |
4561 | } | |
4562 | ||
4563 | /* | |
4564 | * This is done with a timer (instead of inline with bandwidth return) since | |
4565 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | |
4566 | */ | |
4567 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |
4568 | { | |
4569 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | |
4570 | u64 expires; | |
4571 | ||
4572 | /* confirm we're still not at a refresh boundary */ | |
db06e78c BS |
4573 | raw_spin_lock(&cfs_b->lock); |
4574 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { | |
4575 | raw_spin_unlock(&cfs_b->lock); | |
d8b4986d | 4576 | return; |
db06e78c | 4577 | } |
d8b4986d | 4578 | |
c06f04c7 | 4579 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
d8b4986d | 4580 | runtime = cfs_b->runtime; |
c06f04c7 | 4581 | |
d8b4986d PT |
4582 | expires = cfs_b->runtime_expires; |
4583 | raw_spin_unlock(&cfs_b->lock); | |
4584 | ||
4585 | if (!runtime) | |
4586 | return; | |
4587 | ||
4588 | runtime = distribute_cfs_runtime(cfs_b, runtime, expires); | |
4589 | ||
4590 | raw_spin_lock(&cfs_b->lock); | |
4591 | if (expires == cfs_b->runtime_expires) | |
c06f04c7 | 4592 | cfs_b->runtime -= min(runtime, cfs_b->runtime); |
d8b4986d PT |
4593 | raw_spin_unlock(&cfs_b->lock); |
4594 | } | |
4595 | ||
d3d9dc33 PT |
4596 | /* |
4597 | * When a group wakes up we want to make sure that its quota is not already | |
4598 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | |
4599 | * runtime as update_curr() throttling can not not trigger until it's on-rq. | |
4600 | */ | |
4601 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |
4602 | { | |
56f570e5 PT |
4603 | if (!cfs_bandwidth_used()) |
4604 | return; | |
4605 | ||
d3d9dc33 PT |
4606 | /* an active group must be handled by the update_curr()->put() path */ |
4607 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | |
4608 | return; | |
4609 | ||
4610 | /* ensure the group is not already throttled */ | |
4611 | if (cfs_rq_throttled(cfs_rq)) | |
4612 | return; | |
4613 | ||
4614 | /* update runtime allocation */ | |
4615 | account_cfs_rq_runtime(cfs_rq, 0); | |
4616 | if (cfs_rq->runtime_remaining <= 0) | |
4617 | throttle_cfs_rq(cfs_rq); | |
4618 | } | |
4619 | ||
55e16d30 PZ |
4620 | static void sync_throttle(struct task_group *tg, int cpu) |
4621 | { | |
4622 | struct cfs_rq *pcfs_rq, *cfs_rq; | |
4623 | ||
4624 | if (!cfs_bandwidth_used()) | |
4625 | return; | |
4626 | ||
4627 | if (!tg->parent) | |
4628 | return; | |
4629 | ||
4630 | cfs_rq = tg->cfs_rq[cpu]; | |
4631 | pcfs_rq = tg->parent->cfs_rq[cpu]; | |
4632 | ||
4633 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | |
b8922125 | 4634 | cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); |
55e16d30 PZ |
4635 | } |
4636 | ||
d3d9dc33 | 4637 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
678d5718 | 4638 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
d3d9dc33 | 4639 | { |
56f570e5 | 4640 | if (!cfs_bandwidth_used()) |
678d5718 | 4641 | return false; |
56f570e5 | 4642 | |
d3d9dc33 | 4643 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
678d5718 | 4644 | return false; |
d3d9dc33 PT |
4645 | |
4646 | /* | |
4647 | * it's possible for a throttled entity to be forced into a running | |
4648 | * state (e.g. set_curr_task), in this case we're finished. | |
4649 | */ | |
4650 | if (cfs_rq_throttled(cfs_rq)) | |
678d5718 | 4651 | return true; |
d3d9dc33 PT |
4652 | |
4653 | throttle_cfs_rq(cfs_rq); | |
678d5718 | 4654 | return true; |
d3d9dc33 | 4655 | } |
029632fb | 4656 | |
029632fb PZ |
4657 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
4658 | { | |
4659 | struct cfs_bandwidth *cfs_b = | |
4660 | container_of(timer, struct cfs_bandwidth, slack_timer); | |
77a4d1a1 | 4661 | |
029632fb PZ |
4662 | do_sched_cfs_slack_timer(cfs_b); |
4663 | ||
4664 | return HRTIMER_NORESTART; | |
4665 | } | |
4666 | ||
4667 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | |
4668 | { | |
4669 | struct cfs_bandwidth *cfs_b = | |
4670 | container_of(timer, struct cfs_bandwidth, period_timer); | |
029632fb PZ |
4671 | int overrun; |
4672 | int idle = 0; | |
4673 | ||
51f2176d | 4674 | raw_spin_lock(&cfs_b->lock); |
029632fb | 4675 | for (;;) { |
77a4d1a1 | 4676 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
029632fb PZ |
4677 | if (!overrun) |
4678 | break; | |
4679 | ||
4680 | idle = do_sched_cfs_period_timer(cfs_b, overrun); | |
4681 | } | |
4cfafd30 PZ |
4682 | if (idle) |
4683 | cfs_b->period_active = 0; | |
51f2176d | 4684 | raw_spin_unlock(&cfs_b->lock); |
029632fb PZ |
4685 | |
4686 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
4687 | } | |
4688 | ||
4689 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
4690 | { | |
4691 | raw_spin_lock_init(&cfs_b->lock); | |
4692 | cfs_b->runtime = 0; | |
4693 | cfs_b->quota = RUNTIME_INF; | |
4694 | cfs_b->period = ns_to_ktime(default_cfs_period()); | |
4695 | ||
4696 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | |
4cfafd30 | 4697 | hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
4698 | cfs_b->period_timer.function = sched_cfs_period_timer; |
4699 | hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
4700 | cfs_b->slack_timer.function = sched_cfs_slack_timer; | |
4701 | } | |
4702 | ||
4703 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
4704 | { | |
4705 | cfs_rq->runtime_enabled = 0; | |
4706 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | |
4707 | } | |
4708 | ||
77a4d1a1 | 4709 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
029632fb | 4710 | { |
4cfafd30 | 4711 | lockdep_assert_held(&cfs_b->lock); |
029632fb | 4712 | |
4cfafd30 PZ |
4713 | if (!cfs_b->period_active) { |
4714 | cfs_b->period_active = 1; | |
4715 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); | |
4716 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); | |
4717 | } | |
029632fb PZ |
4718 | } |
4719 | ||
4720 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
4721 | { | |
7f1a169b TH |
4722 | /* init_cfs_bandwidth() was not called */ |
4723 | if (!cfs_b->throttled_cfs_rq.next) | |
4724 | return; | |
4725 | ||
029632fb PZ |
4726 | hrtimer_cancel(&cfs_b->period_timer); |
4727 | hrtimer_cancel(&cfs_b->slack_timer); | |
4728 | } | |
4729 | ||
502ce005 PZ |
4730 | /* |
4731 | * Both these cpu hotplug callbacks race against unregister_fair_sched_group() | |
4732 | * | |
4733 | * The race is harmless, since modifying bandwidth settings of unhooked group | |
4734 | * bits doesn't do much. | |
4735 | */ | |
4736 | ||
4737 | /* cpu online calback */ | |
0e59bdae KT |
4738 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
4739 | { | |
502ce005 | 4740 | struct task_group *tg; |
0e59bdae | 4741 | |
502ce005 PZ |
4742 | lockdep_assert_held(&rq->lock); |
4743 | ||
4744 | rcu_read_lock(); | |
4745 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
4746 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | |
4747 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
0e59bdae KT |
4748 | |
4749 | raw_spin_lock(&cfs_b->lock); | |
4750 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | |
4751 | raw_spin_unlock(&cfs_b->lock); | |
4752 | } | |
502ce005 | 4753 | rcu_read_unlock(); |
0e59bdae KT |
4754 | } |
4755 | ||
502ce005 | 4756 | /* cpu offline callback */ |
38dc3348 | 4757 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
029632fb | 4758 | { |
502ce005 PZ |
4759 | struct task_group *tg; |
4760 | ||
4761 | lockdep_assert_held(&rq->lock); | |
4762 | ||
4763 | rcu_read_lock(); | |
4764 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
4765 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
029632fb | 4766 | |
029632fb PZ |
4767 | if (!cfs_rq->runtime_enabled) |
4768 | continue; | |
4769 | ||
4770 | /* | |
4771 | * clock_task is not advancing so we just need to make sure | |
4772 | * there's some valid quota amount | |
4773 | */ | |
51f2176d | 4774 | cfs_rq->runtime_remaining = 1; |
0e59bdae KT |
4775 | /* |
4776 | * Offline rq is schedulable till cpu is completely disabled | |
4777 | * in take_cpu_down(), so we prevent new cfs throttling here. | |
4778 | */ | |
4779 | cfs_rq->runtime_enabled = 0; | |
4780 | ||
029632fb PZ |
4781 | if (cfs_rq_throttled(cfs_rq)) |
4782 | unthrottle_cfs_rq(cfs_rq); | |
4783 | } | |
502ce005 | 4784 | rcu_read_unlock(); |
029632fb PZ |
4785 | } |
4786 | ||
4787 | #else /* CONFIG_CFS_BANDWIDTH */ | |
f1b17280 PT |
4788 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) |
4789 | { | |
78becc27 | 4790 | return rq_clock_task(rq_of(cfs_rq)); |
f1b17280 PT |
4791 | } |
4792 | ||
9dbdb155 | 4793 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
678d5718 | 4794 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
d3d9dc33 | 4795 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
55e16d30 | 4796 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
6c16a6dc | 4797 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
85dac906 PT |
4798 | |
4799 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | |
4800 | { | |
4801 | return 0; | |
4802 | } | |
64660c86 PT |
4803 | |
4804 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
4805 | { | |
4806 | return 0; | |
4807 | } | |
4808 | ||
4809 | static inline int throttled_lb_pair(struct task_group *tg, | |
4810 | int src_cpu, int dest_cpu) | |
4811 | { | |
4812 | return 0; | |
4813 | } | |
029632fb PZ |
4814 | |
4815 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
4816 | ||
4817 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
4818 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | |
ab84d31e PT |
4819 | #endif |
4820 | ||
029632fb PZ |
4821 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
4822 | { | |
4823 | return NULL; | |
4824 | } | |
4825 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
0e59bdae | 4826 | static inline void update_runtime_enabled(struct rq *rq) {} |
a4c96ae3 | 4827 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
029632fb PZ |
4828 | |
4829 | #endif /* CONFIG_CFS_BANDWIDTH */ | |
4830 | ||
bf0f6f24 IM |
4831 | /************************************************** |
4832 | * CFS operations on tasks: | |
4833 | */ | |
4834 | ||
8f4d37ec PZ |
4835 | #ifdef CONFIG_SCHED_HRTICK |
4836 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
4837 | { | |
8f4d37ec PZ |
4838 | struct sched_entity *se = &p->se; |
4839 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
4840 | ||
9148a3a1 | 4841 | SCHED_WARN_ON(task_rq(p) != rq); |
8f4d37ec | 4842 | |
8bf46a39 | 4843 | if (rq->cfs.h_nr_running > 1) { |
8f4d37ec PZ |
4844 | u64 slice = sched_slice(cfs_rq, se); |
4845 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | |
4846 | s64 delta = slice - ran; | |
4847 | ||
4848 | if (delta < 0) { | |
4849 | if (rq->curr == p) | |
8875125e | 4850 | resched_curr(rq); |
8f4d37ec PZ |
4851 | return; |
4852 | } | |
31656519 | 4853 | hrtick_start(rq, delta); |
8f4d37ec PZ |
4854 | } |
4855 | } | |
a4c2f00f PZ |
4856 | |
4857 | /* | |
4858 | * called from enqueue/dequeue and updates the hrtick when the | |
4859 | * current task is from our class and nr_running is low enough | |
4860 | * to matter. | |
4861 | */ | |
4862 | static void hrtick_update(struct rq *rq) | |
4863 | { | |
4864 | struct task_struct *curr = rq->curr; | |
4865 | ||
b39e66ea | 4866 | if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) |
a4c2f00f PZ |
4867 | return; |
4868 | ||
4869 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | |
4870 | hrtick_start_fair(rq, curr); | |
4871 | } | |
55e12e5e | 4872 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
4873 | static inline void |
4874 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
4875 | { | |
4876 | } | |
a4c2f00f PZ |
4877 | |
4878 | static inline void hrtick_update(struct rq *rq) | |
4879 | { | |
4880 | } | |
8f4d37ec PZ |
4881 | #endif |
4882 | ||
bf0f6f24 IM |
4883 | /* |
4884 | * The enqueue_task method is called before nr_running is | |
4885 | * increased. Here we update the fair scheduling stats and | |
4886 | * then put the task into the rbtree: | |
4887 | */ | |
ea87bb78 | 4888 | static void |
371fd7e7 | 4889 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
4890 | { |
4891 | struct cfs_rq *cfs_rq; | |
62fb1851 | 4892 | struct sched_entity *se = &p->se; |
bf0f6f24 | 4893 | |
8c34ab19 RW |
4894 | /* |
4895 | * If in_iowait is set, the code below may not trigger any cpufreq | |
4896 | * utilization updates, so do it here explicitly with the IOWAIT flag | |
4897 | * passed. | |
4898 | */ | |
4899 | if (p->in_iowait) | |
4900 | cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT); | |
4901 | ||
bf0f6f24 | 4902 | for_each_sched_entity(se) { |
62fb1851 | 4903 | if (se->on_rq) |
bf0f6f24 IM |
4904 | break; |
4905 | cfs_rq = cfs_rq_of(se); | |
88ec22d3 | 4906 | enqueue_entity(cfs_rq, se, flags); |
85dac906 PT |
4907 | |
4908 | /* | |
4909 | * end evaluation on encountering a throttled cfs_rq | |
4910 | * | |
4911 | * note: in the case of encountering a throttled cfs_rq we will | |
4912 | * post the final h_nr_running increment below. | |
e210bffd | 4913 | */ |
85dac906 PT |
4914 | if (cfs_rq_throttled(cfs_rq)) |
4915 | break; | |
953bfcd1 | 4916 | cfs_rq->h_nr_running++; |
85dac906 | 4917 | |
88ec22d3 | 4918 | flags = ENQUEUE_WAKEUP; |
bf0f6f24 | 4919 | } |
8f4d37ec | 4920 | |
2069dd75 | 4921 | for_each_sched_entity(se) { |
0f317143 | 4922 | cfs_rq = cfs_rq_of(se); |
953bfcd1 | 4923 | cfs_rq->h_nr_running++; |
2069dd75 | 4924 | |
85dac906 PT |
4925 | if (cfs_rq_throttled(cfs_rq)) |
4926 | break; | |
4927 | ||
d31b1a66 | 4928 | update_load_avg(se, UPDATE_TG); |
89ee048f | 4929 | update_cfs_shares(se); |
2069dd75 PZ |
4930 | } |
4931 | ||
cd126afe | 4932 | if (!se) |
72465447 | 4933 | add_nr_running(rq, 1); |
cd126afe | 4934 | |
a4c2f00f | 4935 | hrtick_update(rq); |
bf0f6f24 IM |
4936 | } |
4937 | ||
2f36825b VP |
4938 | static void set_next_buddy(struct sched_entity *se); |
4939 | ||
bf0f6f24 IM |
4940 | /* |
4941 | * The dequeue_task method is called before nr_running is | |
4942 | * decreased. We remove the task from the rbtree and | |
4943 | * update the fair scheduling stats: | |
4944 | */ | |
371fd7e7 | 4945 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
4946 | { |
4947 | struct cfs_rq *cfs_rq; | |
62fb1851 | 4948 | struct sched_entity *se = &p->se; |
2f36825b | 4949 | int task_sleep = flags & DEQUEUE_SLEEP; |
bf0f6f24 IM |
4950 | |
4951 | for_each_sched_entity(se) { | |
4952 | cfs_rq = cfs_rq_of(se); | |
371fd7e7 | 4953 | dequeue_entity(cfs_rq, se, flags); |
85dac906 PT |
4954 | |
4955 | /* | |
4956 | * end evaluation on encountering a throttled cfs_rq | |
4957 | * | |
4958 | * note: in the case of encountering a throttled cfs_rq we will | |
4959 | * post the final h_nr_running decrement below. | |
4960 | */ | |
4961 | if (cfs_rq_throttled(cfs_rq)) | |
4962 | break; | |
953bfcd1 | 4963 | cfs_rq->h_nr_running--; |
2069dd75 | 4964 | |
bf0f6f24 | 4965 | /* Don't dequeue parent if it has other entities besides us */ |
2f36825b | 4966 | if (cfs_rq->load.weight) { |
754bd598 KK |
4967 | /* Avoid re-evaluating load for this entity: */ |
4968 | se = parent_entity(se); | |
2f36825b VP |
4969 | /* |
4970 | * Bias pick_next to pick a task from this cfs_rq, as | |
4971 | * p is sleeping when it is within its sched_slice. | |
4972 | */ | |
754bd598 KK |
4973 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
4974 | set_next_buddy(se); | |
bf0f6f24 | 4975 | break; |
2f36825b | 4976 | } |
371fd7e7 | 4977 | flags |= DEQUEUE_SLEEP; |
bf0f6f24 | 4978 | } |
8f4d37ec | 4979 | |
2069dd75 | 4980 | for_each_sched_entity(se) { |
0f317143 | 4981 | cfs_rq = cfs_rq_of(se); |
953bfcd1 | 4982 | cfs_rq->h_nr_running--; |
2069dd75 | 4983 | |
85dac906 PT |
4984 | if (cfs_rq_throttled(cfs_rq)) |
4985 | break; | |
4986 | ||
d31b1a66 | 4987 | update_load_avg(se, UPDATE_TG); |
89ee048f | 4988 | update_cfs_shares(se); |
2069dd75 PZ |
4989 | } |
4990 | ||
cd126afe | 4991 | if (!se) |
72465447 | 4992 | sub_nr_running(rq, 1); |
cd126afe | 4993 | |
a4c2f00f | 4994 | hrtick_update(rq); |
bf0f6f24 IM |
4995 | } |
4996 | ||
e7693a36 | 4997 | #ifdef CONFIG_SMP |
10e2f1ac PZ |
4998 | |
4999 | /* Working cpumask for: load_balance, load_balance_newidle. */ | |
5000 | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | |
5001 | DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); | |
5002 | ||
9fd81dd5 | 5003 | #ifdef CONFIG_NO_HZ_COMMON |
3289bdb4 PZ |
5004 | /* |
5005 | * per rq 'load' arrray crap; XXX kill this. | |
5006 | */ | |
5007 | ||
5008 | /* | |
d937cdc5 | 5009 | * The exact cpuload calculated at every tick would be: |
3289bdb4 | 5010 | * |
d937cdc5 PZ |
5011 | * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load |
5012 | * | |
5013 | * If a cpu misses updates for n ticks (as it was idle) and update gets | |
5014 | * called on the n+1-th tick when cpu may be busy, then we have: | |
5015 | * | |
5016 | * load_n = (1 - 1/2^i)^n * load_0 | |
5017 | * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load | |
3289bdb4 PZ |
5018 | * |
5019 | * decay_load_missed() below does efficient calculation of | |
3289bdb4 | 5020 | * |
d937cdc5 PZ |
5021 | * load' = (1 - 1/2^i)^n * load |
5022 | * | |
5023 | * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. | |
5024 | * This allows us to precompute the above in said factors, thereby allowing the | |
5025 | * reduction of an arbitrary n in O(log_2 n) steps. (See also | |
5026 | * fixed_power_int()) | |
3289bdb4 | 5027 | * |
d937cdc5 | 5028 | * The calculation is approximated on a 128 point scale. |
3289bdb4 PZ |
5029 | */ |
5030 | #define DEGRADE_SHIFT 7 | |
d937cdc5 PZ |
5031 | |
5032 | static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | |
5033 | static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | |
5034 | { 0, 0, 0, 0, 0, 0, 0, 0 }, | |
5035 | { 64, 32, 8, 0, 0, 0, 0, 0 }, | |
5036 | { 96, 72, 40, 12, 1, 0, 0, 0 }, | |
5037 | { 112, 98, 75, 43, 15, 1, 0, 0 }, | |
5038 | { 120, 112, 98, 76, 45, 16, 2, 0 } | |
5039 | }; | |
3289bdb4 PZ |
5040 | |
5041 | /* | |
5042 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | |
5043 | * would be when CPU is idle and so we just decay the old load without | |
5044 | * adding any new load. | |
5045 | */ | |
5046 | static unsigned long | |
5047 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | |
5048 | { | |
5049 | int j = 0; | |
5050 | ||
5051 | if (!missed_updates) | |
5052 | return load; | |
5053 | ||
5054 | if (missed_updates >= degrade_zero_ticks[idx]) | |
5055 | return 0; | |
5056 | ||
5057 | if (idx == 1) | |
5058 | return load >> missed_updates; | |
5059 | ||
5060 | while (missed_updates) { | |
5061 | if (missed_updates % 2) | |
5062 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | |
5063 | ||
5064 | missed_updates >>= 1; | |
5065 | j++; | |
5066 | } | |
5067 | return load; | |
5068 | } | |
9fd81dd5 | 5069 | #endif /* CONFIG_NO_HZ_COMMON */ |
3289bdb4 | 5070 | |
59543275 | 5071 | /** |
cee1afce | 5072 | * __cpu_load_update - update the rq->cpu_load[] statistics |
59543275 BP |
5073 | * @this_rq: The rq to update statistics for |
5074 | * @this_load: The current load | |
5075 | * @pending_updates: The number of missed updates | |
59543275 | 5076 | * |
3289bdb4 | 5077 | * Update rq->cpu_load[] statistics. This function is usually called every |
59543275 BP |
5078 | * scheduler tick (TICK_NSEC). |
5079 | * | |
5080 | * This function computes a decaying average: | |
5081 | * | |
5082 | * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load | |
5083 | * | |
5084 | * Because of NOHZ it might not get called on every tick which gives need for | |
5085 | * the @pending_updates argument. | |
5086 | * | |
5087 | * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 | |
5088 | * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load | |
5089 | * = A * (A * load[i]_n-2 + B) + B | |
5090 | * = A * (A * (A * load[i]_n-3 + B) + B) + B | |
5091 | * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B | |
5092 | * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B | |
5093 | * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B | |
5094 | * = (1 - 1/2^i)^n * (load[i]_0 - load) + load | |
5095 | * | |
5096 | * In the above we've assumed load_n := load, which is true for NOHZ_FULL as | |
5097 | * any change in load would have resulted in the tick being turned back on. | |
5098 | * | |
5099 | * For regular NOHZ, this reduces to: | |
5100 | * | |
5101 | * load[i]_n = (1 - 1/2^i)^n * load[i]_0 | |
5102 | * | |
5103 | * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra | |
1f41906a | 5104 | * term. |
3289bdb4 | 5105 | */ |
1f41906a FW |
5106 | static void cpu_load_update(struct rq *this_rq, unsigned long this_load, |
5107 | unsigned long pending_updates) | |
3289bdb4 | 5108 | { |
9fd81dd5 | 5109 | unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; |
3289bdb4 PZ |
5110 | int i, scale; |
5111 | ||
5112 | this_rq->nr_load_updates++; | |
5113 | ||
5114 | /* Update our load: */ | |
5115 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | |
5116 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
5117 | unsigned long old_load, new_load; | |
5118 | ||
5119 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
5120 | ||
7400d3bb | 5121 | old_load = this_rq->cpu_load[i]; |
9fd81dd5 | 5122 | #ifdef CONFIG_NO_HZ_COMMON |
3289bdb4 | 5123 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
7400d3bb BP |
5124 | if (tickless_load) { |
5125 | old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); | |
5126 | /* | |
5127 | * old_load can never be a negative value because a | |
5128 | * decayed tickless_load cannot be greater than the | |
5129 | * original tickless_load. | |
5130 | */ | |
5131 | old_load += tickless_load; | |
5132 | } | |
9fd81dd5 | 5133 | #endif |
3289bdb4 PZ |
5134 | new_load = this_load; |
5135 | /* | |
5136 | * Round up the averaging division if load is increasing. This | |
5137 | * prevents us from getting stuck on 9 if the load is 10, for | |
5138 | * example. | |
5139 | */ | |
5140 | if (new_load > old_load) | |
5141 | new_load += scale - 1; | |
5142 | ||
5143 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | |
5144 | } | |
5145 | ||
5146 | sched_avg_update(this_rq); | |
5147 | } | |
5148 | ||
7ea241af | 5149 | /* Used instead of source_load when we know the type == 0 */ |
c7132dd6 | 5150 | static unsigned long weighted_cpuload(struct rq *rq) |
7ea241af | 5151 | { |
c7132dd6 | 5152 | return cfs_rq_runnable_load_avg(&rq->cfs); |
7ea241af YD |
5153 | } |
5154 | ||
3289bdb4 | 5155 | #ifdef CONFIG_NO_HZ_COMMON |
1f41906a FW |
5156 | /* |
5157 | * There is no sane way to deal with nohz on smp when using jiffies because the | |
5158 | * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading | |
5159 | * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. | |
5160 | * | |
5161 | * Therefore we need to avoid the delta approach from the regular tick when | |
5162 | * possible since that would seriously skew the load calculation. This is why we | |
5163 | * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on | |
5164 | * jiffies deltas for updates happening while in nohz mode (idle ticks, idle | |
5165 | * loop exit, nohz_idle_balance, nohz full exit...) | |
5166 | * | |
5167 | * This means we might still be one tick off for nohz periods. | |
5168 | */ | |
5169 | ||
5170 | static void cpu_load_update_nohz(struct rq *this_rq, | |
5171 | unsigned long curr_jiffies, | |
5172 | unsigned long load) | |
be68a682 FW |
5173 | { |
5174 | unsigned long pending_updates; | |
5175 | ||
5176 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | |
5177 | if (pending_updates) { | |
5178 | this_rq->last_load_update_tick = curr_jiffies; | |
5179 | /* | |
5180 | * In the regular NOHZ case, we were idle, this means load 0. | |
5181 | * In the NOHZ_FULL case, we were non-idle, we should consider | |
5182 | * its weighted load. | |
5183 | */ | |
1f41906a | 5184 | cpu_load_update(this_rq, load, pending_updates); |
be68a682 FW |
5185 | } |
5186 | } | |
5187 | ||
3289bdb4 PZ |
5188 | /* |
5189 | * Called from nohz_idle_balance() to update the load ratings before doing the | |
5190 | * idle balance. | |
5191 | */ | |
cee1afce | 5192 | static void cpu_load_update_idle(struct rq *this_rq) |
3289bdb4 | 5193 | { |
3289bdb4 PZ |
5194 | /* |
5195 | * bail if there's load or we're actually up-to-date. | |
5196 | */ | |
c7132dd6 | 5197 | if (weighted_cpuload(this_rq)) |
3289bdb4 PZ |
5198 | return; |
5199 | ||
1f41906a | 5200 | cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); |
3289bdb4 PZ |
5201 | } |
5202 | ||
5203 | /* | |
1f41906a FW |
5204 | * Record CPU load on nohz entry so we know the tickless load to account |
5205 | * on nohz exit. cpu_load[0] happens then to be updated more frequently | |
5206 | * than other cpu_load[idx] but it should be fine as cpu_load readers | |
5207 | * shouldn't rely into synchronized cpu_load[*] updates. | |
3289bdb4 | 5208 | */ |
1f41906a | 5209 | void cpu_load_update_nohz_start(void) |
3289bdb4 PZ |
5210 | { |
5211 | struct rq *this_rq = this_rq(); | |
1f41906a FW |
5212 | |
5213 | /* | |
5214 | * This is all lockless but should be fine. If weighted_cpuload changes | |
5215 | * concurrently we'll exit nohz. And cpu_load write can race with | |
5216 | * cpu_load_update_idle() but both updater would be writing the same. | |
5217 | */ | |
c7132dd6 | 5218 | this_rq->cpu_load[0] = weighted_cpuload(this_rq); |
1f41906a FW |
5219 | } |
5220 | ||
5221 | /* | |
5222 | * Account the tickless load in the end of a nohz frame. | |
5223 | */ | |
5224 | void cpu_load_update_nohz_stop(void) | |
5225 | { | |
316c1608 | 5226 | unsigned long curr_jiffies = READ_ONCE(jiffies); |
1f41906a FW |
5227 | struct rq *this_rq = this_rq(); |
5228 | unsigned long load; | |
8a8c69c3 | 5229 | struct rq_flags rf; |
3289bdb4 PZ |
5230 | |
5231 | if (curr_jiffies == this_rq->last_load_update_tick) | |
5232 | return; | |
5233 | ||
c7132dd6 | 5234 | load = weighted_cpuload(this_rq); |
8a8c69c3 | 5235 | rq_lock(this_rq, &rf); |
b52fad2d | 5236 | update_rq_clock(this_rq); |
1f41906a | 5237 | cpu_load_update_nohz(this_rq, curr_jiffies, load); |
8a8c69c3 | 5238 | rq_unlock(this_rq, &rf); |
3289bdb4 | 5239 | } |
1f41906a FW |
5240 | #else /* !CONFIG_NO_HZ_COMMON */ |
5241 | static inline void cpu_load_update_nohz(struct rq *this_rq, | |
5242 | unsigned long curr_jiffies, | |
5243 | unsigned long load) { } | |
5244 | #endif /* CONFIG_NO_HZ_COMMON */ | |
5245 | ||
5246 | static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) | |
5247 | { | |
9fd81dd5 | 5248 | #ifdef CONFIG_NO_HZ_COMMON |
1f41906a FW |
5249 | /* See the mess around cpu_load_update_nohz(). */ |
5250 | this_rq->last_load_update_tick = READ_ONCE(jiffies); | |
9fd81dd5 | 5251 | #endif |
1f41906a FW |
5252 | cpu_load_update(this_rq, load, 1); |
5253 | } | |
3289bdb4 PZ |
5254 | |
5255 | /* | |
5256 | * Called from scheduler_tick() | |
5257 | */ | |
cee1afce | 5258 | void cpu_load_update_active(struct rq *this_rq) |
3289bdb4 | 5259 | { |
c7132dd6 | 5260 | unsigned long load = weighted_cpuload(this_rq); |
1f41906a FW |
5261 | |
5262 | if (tick_nohz_tick_stopped()) | |
5263 | cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); | |
5264 | else | |
5265 | cpu_load_update_periodic(this_rq, load); | |
3289bdb4 PZ |
5266 | } |
5267 | ||
029632fb PZ |
5268 | /* |
5269 | * Return a low guess at the load of a migration-source cpu weighted | |
5270 | * according to the scheduling class and "nice" value. | |
5271 | * | |
5272 | * We want to under-estimate the load of migration sources, to | |
5273 | * balance conservatively. | |
5274 | */ | |
5275 | static unsigned long source_load(int cpu, int type) | |
5276 | { | |
5277 | struct rq *rq = cpu_rq(cpu); | |
c7132dd6 | 5278 | unsigned long total = weighted_cpuload(rq); |
029632fb PZ |
5279 | |
5280 | if (type == 0 || !sched_feat(LB_BIAS)) | |
5281 | return total; | |
5282 | ||
5283 | return min(rq->cpu_load[type-1], total); | |
5284 | } | |
5285 | ||
5286 | /* | |
5287 | * Return a high guess at the load of a migration-target cpu weighted | |
5288 | * according to the scheduling class and "nice" value. | |
5289 | */ | |
5290 | static unsigned long target_load(int cpu, int type) | |
5291 | { | |
5292 | struct rq *rq = cpu_rq(cpu); | |
c7132dd6 | 5293 | unsigned long total = weighted_cpuload(rq); |
029632fb PZ |
5294 | |
5295 | if (type == 0 || !sched_feat(LB_BIAS)) | |
5296 | return total; | |
5297 | ||
5298 | return max(rq->cpu_load[type-1], total); | |
5299 | } | |
5300 | ||
ced549fa | 5301 | static unsigned long capacity_of(int cpu) |
029632fb | 5302 | { |
ced549fa | 5303 | return cpu_rq(cpu)->cpu_capacity; |
029632fb PZ |
5304 | } |
5305 | ||
ca6d75e6 VG |
5306 | static unsigned long capacity_orig_of(int cpu) |
5307 | { | |
5308 | return cpu_rq(cpu)->cpu_capacity_orig; | |
5309 | } | |
5310 | ||
029632fb PZ |
5311 | static unsigned long cpu_avg_load_per_task(int cpu) |
5312 | { | |
5313 | struct rq *rq = cpu_rq(cpu); | |
316c1608 | 5314 | unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); |
c7132dd6 | 5315 | unsigned long load_avg = weighted_cpuload(rq); |
029632fb PZ |
5316 | |
5317 | if (nr_running) | |
b92486cb | 5318 | return load_avg / nr_running; |
029632fb PZ |
5319 | |
5320 | return 0; | |
5321 | } | |
5322 | ||
c58d25f3 PZ |
5323 | static void record_wakee(struct task_struct *p) |
5324 | { | |
5325 | /* | |
5326 | * Only decay a single time; tasks that have less then 1 wakeup per | |
5327 | * jiffy will not have built up many flips. | |
5328 | */ | |
5329 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | |
5330 | current->wakee_flips >>= 1; | |
5331 | current->wakee_flip_decay_ts = jiffies; | |
5332 | } | |
5333 | ||
5334 | if (current->last_wakee != p) { | |
5335 | current->last_wakee = p; | |
5336 | current->wakee_flips++; | |
5337 | } | |
5338 | } | |
5339 | ||
63b0e9ed MG |
5340 | /* |
5341 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | |
c58d25f3 | 5342 | * |
63b0e9ed | 5343 | * A waker of many should wake a different task than the one last awakened |
c58d25f3 PZ |
5344 | * at a frequency roughly N times higher than one of its wakees. |
5345 | * | |
5346 | * In order to determine whether we should let the load spread vs consolidating | |
5347 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | |
5348 | * partner, and a factor of lls_size higher frequency in the other. | |
5349 | * | |
5350 | * With both conditions met, we can be relatively sure that the relationship is | |
5351 | * non-monogamous, with partner count exceeding socket size. | |
5352 | * | |
5353 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | |
5354 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | |
5355 | * socket size. | |
63b0e9ed | 5356 | */ |
62470419 MW |
5357 | static int wake_wide(struct task_struct *p) |
5358 | { | |
63b0e9ed MG |
5359 | unsigned int master = current->wakee_flips; |
5360 | unsigned int slave = p->wakee_flips; | |
7d9ffa89 | 5361 | int factor = this_cpu_read(sd_llc_size); |
62470419 | 5362 | |
63b0e9ed MG |
5363 | if (master < slave) |
5364 | swap(master, slave); | |
5365 | if (slave < factor || master < slave * factor) | |
5366 | return 0; | |
5367 | return 1; | |
62470419 MW |
5368 | } |
5369 | ||
772bd008 MR |
5370 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
5371 | int prev_cpu, int sync) | |
098fb9db | 5372 | { |
3fed382b RR |
5373 | int this_cpu = smp_processor_id(); |
5374 | bool affine = false; | |
098fb9db | 5375 | |
7d894e6e RR |
5376 | /* |
5377 | * Common case: CPUs are in the same socket, and select_idle_sibling() | |
5378 | * will do its thing regardless of what we return: | |
5379 | */ | |
5380 | if (cpus_share_cache(prev_cpu, this_cpu)) | |
3fed382b RR |
5381 | affine = true; |
5382 | else | |
5383 | affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync); | |
098fb9db | 5384 | |
ae92882e | 5385 | schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); |
3fed382b RR |
5386 | if (affine) { |
5387 | schedstat_inc(sd->ttwu_move_affine); | |
5388 | schedstat_inc(p->se.statistics.nr_wakeups_affine); | |
5389 | } | |
098fb9db | 5390 | |
3fed382b | 5391 | return affine; |
098fb9db IM |
5392 | } |
5393 | ||
6a0b19c0 MR |
5394 | static inline int task_util(struct task_struct *p); |
5395 | static int cpu_util_wake(int cpu, struct task_struct *p); | |
5396 | ||
5397 | static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) | |
5398 | { | |
5399 | return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); | |
5400 | } | |
5401 | ||
aaee1203 PZ |
5402 | /* |
5403 | * find_idlest_group finds and returns the least busy CPU group within the | |
5404 | * domain. | |
5405 | */ | |
5406 | static struct sched_group * | |
78e7ed53 | 5407 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, |
c44f2a02 | 5408 | int this_cpu, int sd_flag) |
e7693a36 | 5409 | { |
b3bd3de6 | 5410 | struct sched_group *idlest = NULL, *group = sd->groups; |
6a0b19c0 | 5411 | struct sched_group *most_spare_sg = NULL; |
6b94780e VG |
5412 | unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0; |
5413 | unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0; | |
6a0b19c0 | 5414 | unsigned long most_spare = 0, this_spare = 0; |
c44f2a02 | 5415 | int load_idx = sd->forkexec_idx; |
6b94780e VG |
5416 | int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; |
5417 | unsigned long imbalance = scale_load_down(NICE_0_LOAD) * | |
5418 | (sd->imbalance_pct-100) / 100; | |
e7693a36 | 5419 | |
c44f2a02 VG |
5420 | if (sd_flag & SD_BALANCE_WAKE) |
5421 | load_idx = sd->wake_idx; | |
5422 | ||
aaee1203 | 5423 | do { |
6b94780e VG |
5424 | unsigned long load, avg_load, runnable_load; |
5425 | unsigned long spare_cap, max_spare_cap; | |
aaee1203 PZ |
5426 | int local_group; |
5427 | int i; | |
e7693a36 | 5428 | |
aaee1203 | 5429 | /* Skip over this group if it has no CPUs allowed */ |
ae4df9d6 | 5430 | if (!cpumask_intersects(sched_group_span(group), |
0c98d344 | 5431 | &p->cpus_allowed)) |
aaee1203 PZ |
5432 | continue; |
5433 | ||
5434 | local_group = cpumask_test_cpu(this_cpu, | |
ae4df9d6 | 5435 | sched_group_span(group)); |
aaee1203 | 5436 | |
6a0b19c0 MR |
5437 | /* |
5438 | * Tally up the load of all CPUs in the group and find | |
5439 | * the group containing the CPU with most spare capacity. | |
5440 | */ | |
aaee1203 | 5441 | avg_load = 0; |
6b94780e | 5442 | runnable_load = 0; |
6a0b19c0 | 5443 | max_spare_cap = 0; |
aaee1203 | 5444 | |
ae4df9d6 | 5445 | for_each_cpu(i, sched_group_span(group)) { |
aaee1203 PZ |
5446 | /* Bias balancing toward cpus of our domain */ |
5447 | if (local_group) | |
5448 | load = source_load(i, load_idx); | |
5449 | else | |
5450 | load = target_load(i, load_idx); | |
5451 | ||
6b94780e VG |
5452 | runnable_load += load; |
5453 | ||
5454 | avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); | |
6a0b19c0 MR |
5455 | |
5456 | spare_cap = capacity_spare_wake(i, p); | |
5457 | ||
5458 | if (spare_cap > max_spare_cap) | |
5459 | max_spare_cap = spare_cap; | |
aaee1203 PZ |
5460 | } |
5461 | ||
63b2ca30 | 5462 | /* Adjust by relative CPU capacity of the group */ |
6b94780e VG |
5463 | avg_load = (avg_load * SCHED_CAPACITY_SCALE) / |
5464 | group->sgc->capacity; | |
5465 | runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / | |
5466 | group->sgc->capacity; | |
aaee1203 PZ |
5467 | |
5468 | if (local_group) { | |
6b94780e VG |
5469 | this_runnable_load = runnable_load; |
5470 | this_avg_load = avg_load; | |
6a0b19c0 MR |
5471 | this_spare = max_spare_cap; |
5472 | } else { | |
6b94780e VG |
5473 | if (min_runnable_load > (runnable_load + imbalance)) { |
5474 | /* | |
5475 | * The runnable load is significantly smaller | |
5476 | * so we can pick this new cpu | |
5477 | */ | |
5478 | min_runnable_load = runnable_load; | |
5479 | min_avg_load = avg_load; | |
5480 | idlest = group; | |
5481 | } else if ((runnable_load < (min_runnable_load + imbalance)) && | |
5482 | (100*min_avg_load > imbalance_scale*avg_load)) { | |
5483 | /* | |
5484 | * The runnable loads are close so take the | |
5485 | * blocked load into account through avg_load. | |
5486 | */ | |
5487 | min_avg_load = avg_load; | |
6a0b19c0 MR |
5488 | idlest = group; |
5489 | } | |
5490 | ||
5491 | if (most_spare < max_spare_cap) { | |
5492 | most_spare = max_spare_cap; | |
5493 | most_spare_sg = group; | |
5494 | } | |
aaee1203 PZ |
5495 | } |
5496 | } while (group = group->next, group != sd->groups); | |
5497 | ||
6a0b19c0 MR |
5498 | /* |
5499 | * The cross-over point between using spare capacity or least load | |
5500 | * is too conservative for high utilization tasks on partially | |
5501 | * utilized systems if we require spare_capacity > task_util(p), | |
5502 | * so we allow for some task stuffing by using | |
5503 | * spare_capacity > task_util(p)/2. | |
f519a3f1 VG |
5504 | * |
5505 | * Spare capacity can't be used for fork because the utilization has | |
5506 | * not been set yet, we must first select a rq to compute the initial | |
5507 | * utilization. | |
6a0b19c0 | 5508 | */ |
f519a3f1 VG |
5509 | if (sd_flag & SD_BALANCE_FORK) |
5510 | goto skip_spare; | |
5511 | ||
6a0b19c0 | 5512 | if (this_spare > task_util(p) / 2 && |
6b94780e | 5513 | imbalance_scale*this_spare > 100*most_spare) |
6a0b19c0 | 5514 | return NULL; |
6b94780e VG |
5515 | |
5516 | if (most_spare > task_util(p) / 2) | |
6a0b19c0 MR |
5517 | return most_spare_sg; |
5518 | ||
f519a3f1 | 5519 | skip_spare: |
6b94780e VG |
5520 | if (!idlest) |
5521 | return NULL; | |
5522 | ||
5523 | if (min_runnable_load > (this_runnable_load + imbalance)) | |
aaee1203 | 5524 | return NULL; |
6b94780e VG |
5525 | |
5526 | if ((this_runnable_load < (min_runnable_load + imbalance)) && | |
5527 | (100*this_avg_load < imbalance_scale*min_avg_load)) | |
5528 | return NULL; | |
5529 | ||
aaee1203 PZ |
5530 | return idlest; |
5531 | } | |
5532 | ||
5533 | /* | |
5534 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | |
5535 | */ | |
5536 | static int | |
5537 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | |
5538 | { | |
5539 | unsigned long load, min_load = ULONG_MAX; | |
83a0a96a NP |
5540 | unsigned int min_exit_latency = UINT_MAX; |
5541 | u64 latest_idle_timestamp = 0; | |
5542 | int least_loaded_cpu = this_cpu; | |
5543 | int shallowest_idle_cpu = -1; | |
aaee1203 PZ |
5544 | int i; |
5545 | ||
eaecf41f MR |
5546 | /* Check if we have any choice: */ |
5547 | if (group->group_weight == 1) | |
ae4df9d6 | 5548 | return cpumask_first(sched_group_span(group)); |
eaecf41f | 5549 | |
aaee1203 | 5550 | /* Traverse only the allowed CPUs */ |
ae4df9d6 | 5551 | for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { |
83a0a96a NP |
5552 | if (idle_cpu(i)) { |
5553 | struct rq *rq = cpu_rq(i); | |
5554 | struct cpuidle_state *idle = idle_get_state(rq); | |
5555 | if (idle && idle->exit_latency < min_exit_latency) { | |
5556 | /* | |
5557 | * We give priority to a CPU whose idle state | |
5558 | * has the smallest exit latency irrespective | |
5559 | * of any idle timestamp. | |
5560 | */ | |
5561 | min_exit_latency = idle->exit_latency; | |
5562 | latest_idle_timestamp = rq->idle_stamp; | |
5563 | shallowest_idle_cpu = i; | |
5564 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | |
5565 | rq->idle_stamp > latest_idle_timestamp) { | |
5566 | /* | |
5567 | * If equal or no active idle state, then | |
5568 | * the most recently idled CPU might have | |
5569 | * a warmer cache. | |
5570 | */ | |
5571 | latest_idle_timestamp = rq->idle_stamp; | |
5572 | shallowest_idle_cpu = i; | |
5573 | } | |
9f96742a | 5574 | } else if (shallowest_idle_cpu == -1) { |
c7132dd6 | 5575 | load = weighted_cpuload(cpu_rq(i)); |
83a0a96a NP |
5576 | if (load < min_load || (load == min_load && i == this_cpu)) { |
5577 | min_load = load; | |
5578 | least_loaded_cpu = i; | |
5579 | } | |
e7693a36 GH |
5580 | } |
5581 | } | |
5582 | ||
83a0a96a | 5583 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
aaee1203 | 5584 | } |
e7693a36 | 5585 | |
10e2f1ac PZ |
5586 | #ifdef CONFIG_SCHED_SMT |
5587 | ||
5588 | static inline void set_idle_cores(int cpu, int val) | |
5589 | { | |
5590 | struct sched_domain_shared *sds; | |
5591 | ||
5592 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
5593 | if (sds) | |
5594 | WRITE_ONCE(sds->has_idle_cores, val); | |
5595 | } | |
5596 | ||
5597 | static inline bool test_idle_cores(int cpu, bool def) | |
5598 | { | |
5599 | struct sched_domain_shared *sds; | |
5600 | ||
5601 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
5602 | if (sds) | |
5603 | return READ_ONCE(sds->has_idle_cores); | |
5604 | ||
5605 | return def; | |
5606 | } | |
5607 | ||
5608 | /* | |
5609 | * Scans the local SMT mask to see if the entire core is idle, and records this | |
5610 | * information in sd_llc_shared->has_idle_cores. | |
5611 | * | |
5612 | * Since SMT siblings share all cache levels, inspecting this limited remote | |
5613 | * state should be fairly cheap. | |
5614 | */ | |
1b568f0a | 5615 | void __update_idle_core(struct rq *rq) |
10e2f1ac PZ |
5616 | { |
5617 | int core = cpu_of(rq); | |
5618 | int cpu; | |
5619 | ||
5620 | rcu_read_lock(); | |
5621 | if (test_idle_cores(core, true)) | |
5622 | goto unlock; | |
5623 | ||
5624 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
5625 | if (cpu == core) | |
5626 | continue; | |
5627 | ||
5628 | if (!idle_cpu(cpu)) | |
5629 | goto unlock; | |
5630 | } | |
5631 | ||
5632 | set_idle_cores(core, 1); | |
5633 | unlock: | |
5634 | rcu_read_unlock(); | |
5635 | } | |
5636 | ||
5637 | /* | |
5638 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | |
5639 | * there are no idle cores left in the system; tracked through | |
5640 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | |
5641 | */ | |
5642 | static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
5643 | { | |
5644 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); | |
c743f0a5 | 5645 | int core, cpu; |
10e2f1ac | 5646 | |
1b568f0a PZ |
5647 | if (!static_branch_likely(&sched_smt_present)) |
5648 | return -1; | |
5649 | ||
10e2f1ac PZ |
5650 | if (!test_idle_cores(target, false)) |
5651 | return -1; | |
5652 | ||
0c98d344 | 5653 | cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); |
10e2f1ac | 5654 | |
c743f0a5 | 5655 | for_each_cpu_wrap(core, cpus, target) { |
10e2f1ac PZ |
5656 | bool idle = true; |
5657 | ||
5658 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
5659 | cpumask_clear_cpu(cpu, cpus); | |
5660 | if (!idle_cpu(cpu)) | |
5661 | idle = false; | |
5662 | } | |
5663 | ||
5664 | if (idle) | |
5665 | return core; | |
5666 | } | |
5667 | ||
5668 | /* | |
5669 | * Failed to find an idle core; stop looking for one. | |
5670 | */ | |
5671 | set_idle_cores(target, 0); | |
5672 | ||
5673 | return -1; | |
5674 | } | |
5675 | ||
5676 | /* | |
5677 | * Scan the local SMT mask for idle CPUs. | |
5678 | */ | |
5679 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | |
5680 | { | |
5681 | int cpu; | |
5682 | ||
1b568f0a PZ |
5683 | if (!static_branch_likely(&sched_smt_present)) |
5684 | return -1; | |
5685 | ||
10e2f1ac | 5686 | for_each_cpu(cpu, cpu_smt_mask(target)) { |
0c98d344 | 5687 | if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) |
10e2f1ac PZ |
5688 | continue; |
5689 | if (idle_cpu(cpu)) | |
5690 | return cpu; | |
5691 | } | |
5692 | ||
5693 | return -1; | |
5694 | } | |
5695 | ||
5696 | #else /* CONFIG_SCHED_SMT */ | |
5697 | ||
5698 | static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) | |
5699 | { | |
5700 | return -1; | |
5701 | } | |
5702 | ||
5703 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) | |
5704 | { | |
5705 | return -1; | |
5706 | } | |
5707 | ||
5708 | #endif /* CONFIG_SCHED_SMT */ | |
5709 | ||
5710 | /* | |
5711 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | |
5712 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | |
5713 | * average idle time for this rq (as found in rq->avg_idle). | |
a50bde51 | 5714 | */ |
10e2f1ac PZ |
5715 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) |
5716 | { | |
9cfb38a7 | 5717 | struct sched_domain *this_sd; |
1ad3aaf3 | 5718 | u64 avg_cost, avg_idle; |
10e2f1ac PZ |
5719 | u64 time, cost; |
5720 | s64 delta; | |
1ad3aaf3 | 5721 | int cpu, nr = INT_MAX; |
10e2f1ac | 5722 | |
9cfb38a7 WL |
5723 | this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); |
5724 | if (!this_sd) | |
5725 | return -1; | |
5726 | ||
10e2f1ac PZ |
5727 | /* |
5728 | * Due to large variance we need a large fuzz factor; hackbench in | |
5729 | * particularly is sensitive here. | |
5730 | */ | |
1ad3aaf3 PZ |
5731 | avg_idle = this_rq()->avg_idle / 512; |
5732 | avg_cost = this_sd->avg_scan_cost + 1; | |
5733 | ||
5734 | if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) | |
10e2f1ac PZ |
5735 | return -1; |
5736 | ||
1ad3aaf3 PZ |
5737 | if (sched_feat(SIS_PROP)) { |
5738 | u64 span_avg = sd->span_weight * avg_idle; | |
5739 | if (span_avg > 4*avg_cost) | |
5740 | nr = div_u64(span_avg, avg_cost); | |
5741 | else | |
5742 | nr = 4; | |
5743 | } | |
5744 | ||
10e2f1ac PZ |
5745 | time = local_clock(); |
5746 | ||
c743f0a5 | 5747 | for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { |
1ad3aaf3 PZ |
5748 | if (!--nr) |
5749 | return -1; | |
0c98d344 | 5750 | if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) |
10e2f1ac PZ |
5751 | continue; |
5752 | if (idle_cpu(cpu)) | |
5753 | break; | |
5754 | } | |
5755 | ||
5756 | time = local_clock() - time; | |
5757 | cost = this_sd->avg_scan_cost; | |
5758 | delta = (s64)(time - cost) / 8; | |
5759 | this_sd->avg_scan_cost += delta; | |
5760 | ||
5761 | return cpu; | |
5762 | } | |
5763 | ||
5764 | /* | |
5765 | * Try and locate an idle core/thread in the LLC cache domain. | |
a50bde51 | 5766 | */ |
772bd008 | 5767 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
a50bde51 | 5768 | { |
99bd5e2f | 5769 | struct sched_domain *sd; |
10e2f1ac | 5770 | int i; |
a50bde51 | 5771 | |
e0a79f52 MG |
5772 | if (idle_cpu(target)) |
5773 | return target; | |
99bd5e2f SS |
5774 | |
5775 | /* | |
10e2f1ac | 5776 | * If the previous cpu is cache affine and idle, don't be stupid. |
99bd5e2f | 5777 | */ |
772bd008 MR |
5778 | if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) |
5779 | return prev; | |
a50bde51 | 5780 | |
518cd623 | 5781 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
10e2f1ac PZ |
5782 | if (!sd) |
5783 | return target; | |
772bd008 | 5784 | |
10e2f1ac PZ |
5785 | i = select_idle_core(p, sd, target); |
5786 | if ((unsigned)i < nr_cpumask_bits) | |
5787 | return i; | |
37407ea7 | 5788 | |
10e2f1ac PZ |
5789 | i = select_idle_cpu(p, sd, target); |
5790 | if ((unsigned)i < nr_cpumask_bits) | |
5791 | return i; | |
5792 | ||
5793 | i = select_idle_smt(p, sd, target); | |
5794 | if ((unsigned)i < nr_cpumask_bits) | |
5795 | return i; | |
970e1789 | 5796 | |
a50bde51 PZ |
5797 | return target; |
5798 | } | |
231678b7 | 5799 | |
8bb5b00c | 5800 | /* |
9e91d61d | 5801 | * cpu_util returns the amount of capacity of a CPU that is used by CFS |
8bb5b00c | 5802 | * tasks. The unit of the return value must be the one of capacity so we can |
9e91d61d DE |
5803 | * compare the utilization with the capacity of the CPU that is available for |
5804 | * CFS task (ie cpu_capacity). | |
231678b7 DE |
5805 | * |
5806 | * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the | |
5807 | * recent utilization of currently non-runnable tasks on a CPU. It represents | |
5808 | * the amount of utilization of a CPU in the range [0..capacity_orig] where | |
5809 | * capacity_orig is the cpu_capacity available at the highest frequency | |
5810 | * (arch_scale_freq_capacity()). | |
5811 | * The utilization of a CPU converges towards a sum equal to or less than the | |
5812 | * current capacity (capacity_curr <= capacity_orig) of the CPU because it is | |
5813 | * the running time on this CPU scaled by capacity_curr. | |
5814 | * | |
5815 | * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even | |
5816 | * higher than capacity_orig because of unfortunate rounding in | |
5817 | * cfs.avg.util_avg or just after migrating tasks and new task wakeups until | |
5818 | * the average stabilizes with the new running time. We need to check that the | |
5819 | * utilization stays within the range of [0..capacity_orig] and cap it if | |
5820 | * necessary. Without utilization capping, a group could be seen as overloaded | |
5821 | * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of | |
5822 | * available capacity. We allow utilization to overshoot capacity_curr (but not | |
5823 | * capacity_orig) as it useful for predicting the capacity required after task | |
5824 | * migrations (scheduler-driven DVFS). | |
8bb5b00c | 5825 | */ |
9e91d61d | 5826 | static int cpu_util(int cpu) |
8bb5b00c | 5827 | { |
9e91d61d | 5828 | unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; |
8bb5b00c VG |
5829 | unsigned long capacity = capacity_orig_of(cpu); |
5830 | ||
231678b7 | 5831 | return (util >= capacity) ? capacity : util; |
8bb5b00c | 5832 | } |
a50bde51 | 5833 | |
3273163c MR |
5834 | static inline int task_util(struct task_struct *p) |
5835 | { | |
5836 | return p->se.avg.util_avg; | |
5837 | } | |
5838 | ||
104cb16d MR |
5839 | /* |
5840 | * cpu_util_wake: Compute cpu utilization with any contributions from | |
5841 | * the waking task p removed. | |
5842 | */ | |
5843 | static int cpu_util_wake(int cpu, struct task_struct *p) | |
5844 | { | |
5845 | unsigned long util, capacity; | |
5846 | ||
5847 | /* Task has no contribution or is new */ | |
5848 | if (cpu != task_cpu(p) || !p->se.avg.last_update_time) | |
5849 | return cpu_util(cpu); | |
5850 | ||
5851 | capacity = capacity_orig_of(cpu); | |
5852 | util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); | |
5853 | ||
5854 | return (util >= capacity) ? capacity : util; | |
5855 | } | |
5856 | ||
3273163c MR |
5857 | /* |
5858 | * Disable WAKE_AFFINE in the case where task @p doesn't fit in the | |
5859 | * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. | |
5860 | * | |
5861 | * In that case WAKE_AFFINE doesn't make sense and we'll let | |
5862 | * BALANCE_WAKE sort things out. | |
5863 | */ | |
5864 | static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) | |
5865 | { | |
5866 | long min_cap, max_cap; | |
5867 | ||
5868 | min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); | |
5869 | max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; | |
5870 | ||
5871 | /* Minimum capacity is close to max, no need to abort wake_affine */ | |
5872 | if (max_cap - min_cap < max_cap >> 3) | |
5873 | return 0; | |
5874 | ||
104cb16d MR |
5875 | /* Bring task utilization in sync with prev_cpu */ |
5876 | sync_entity_load_avg(&p->se); | |
5877 | ||
3273163c MR |
5878 | return min_cap * 1024 < task_util(p) * capacity_margin; |
5879 | } | |
5880 | ||
aaee1203 | 5881 | /* |
de91b9cb MR |
5882 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
5883 | * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, | |
5884 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | |
aaee1203 | 5885 | * |
de91b9cb MR |
5886 | * Balances load by selecting the idlest cpu in the idlest group, or under |
5887 | * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. | |
aaee1203 | 5888 | * |
de91b9cb | 5889 | * Returns the target cpu number. |
aaee1203 PZ |
5890 | * |
5891 | * preempt must be disabled. | |
5892 | */ | |
0017d735 | 5893 | static int |
ac66f547 | 5894 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) |
aaee1203 | 5895 | { |
29cd8bae | 5896 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; |
c88d5910 | 5897 | int cpu = smp_processor_id(); |
63b0e9ed | 5898 | int new_cpu = prev_cpu; |
99bd5e2f | 5899 | int want_affine = 0; |
5158f4e4 | 5900 | int sync = wake_flags & WF_SYNC; |
c88d5910 | 5901 | |
c58d25f3 PZ |
5902 | if (sd_flag & SD_BALANCE_WAKE) { |
5903 | record_wakee(p); | |
3273163c | 5904 | want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) |
0c98d344 | 5905 | && cpumask_test_cpu(cpu, &p->cpus_allowed); |
c58d25f3 | 5906 | } |
aaee1203 | 5907 | |
dce840a0 | 5908 | rcu_read_lock(); |
aaee1203 | 5909 | for_each_domain(cpu, tmp) { |
e4f42888 | 5910 | if (!(tmp->flags & SD_LOAD_BALANCE)) |
63b0e9ed | 5911 | break; |
e4f42888 | 5912 | |
fe3bcfe1 | 5913 | /* |
99bd5e2f SS |
5914 | * If both cpu and prev_cpu are part of this domain, |
5915 | * cpu is a valid SD_WAKE_AFFINE target. | |
fe3bcfe1 | 5916 | */ |
99bd5e2f SS |
5917 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
5918 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
5919 | affine_sd = tmp; | |
29cd8bae | 5920 | break; |
f03542a7 | 5921 | } |
29cd8bae | 5922 | |
f03542a7 | 5923 | if (tmp->flags & sd_flag) |
29cd8bae | 5924 | sd = tmp; |
63b0e9ed MG |
5925 | else if (!want_affine) |
5926 | break; | |
29cd8bae PZ |
5927 | } |
5928 | ||
63b0e9ed MG |
5929 | if (affine_sd) { |
5930 | sd = NULL; /* Prefer wake_affine over balance flags */ | |
7d894e6e RR |
5931 | if (cpu == prev_cpu) |
5932 | goto pick_cpu; | |
5933 | ||
5934 | if (wake_affine(affine_sd, p, prev_cpu, sync)) | |
63b0e9ed | 5935 | new_cpu = cpu; |
8b911acd | 5936 | } |
e7693a36 | 5937 | |
63b0e9ed | 5938 | if (!sd) { |
7d894e6e | 5939 | pick_cpu: |
63b0e9ed | 5940 | if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ |
772bd008 | 5941 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); |
63b0e9ed MG |
5942 | |
5943 | } else while (sd) { | |
aaee1203 | 5944 | struct sched_group *group; |
c88d5910 | 5945 | int weight; |
098fb9db | 5946 | |
0763a660 | 5947 | if (!(sd->flags & sd_flag)) { |
aaee1203 PZ |
5948 | sd = sd->child; |
5949 | continue; | |
5950 | } | |
098fb9db | 5951 | |
c44f2a02 | 5952 | group = find_idlest_group(sd, p, cpu, sd_flag); |
aaee1203 PZ |
5953 | if (!group) { |
5954 | sd = sd->child; | |
5955 | continue; | |
5956 | } | |
4ae7d5ce | 5957 | |
d7c33c49 | 5958 | new_cpu = find_idlest_cpu(group, p, cpu); |
aaee1203 PZ |
5959 | if (new_cpu == -1 || new_cpu == cpu) { |
5960 | /* Now try balancing at a lower domain level of cpu */ | |
5961 | sd = sd->child; | |
5962 | continue; | |
e7693a36 | 5963 | } |
aaee1203 PZ |
5964 | |
5965 | /* Now try balancing at a lower domain level of new_cpu */ | |
5966 | cpu = new_cpu; | |
669c55e9 | 5967 | weight = sd->span_weight; |
aaee1203 PZ |
5968 | sd = NULL; |
5969 | for_each_domain(cpu, tmp) { | |
669c55e9 | 5970 | if (weight <= tmp->span_weight) |
aaee1203 | 5971 | break; |
0763a660 | 5972 | if (tmp->flags & sd_flag) |
aaee1203 PZ |
5973 | sd = tmp; |
5974 | } | |
5975 | /* while loop will break here if sd == NULL */ | |
e7693a36 | 5976 | } |
dce840a0 | 5977 | rcu_read_unlock(); |
e7693a36 | 5978 | |
c88d5910 | 5979 | return new_cpu; |
e7693a36 | 5980 | } |
0a74bef8 PT |
5981 | |
5982 | /* | |
5983 | * Called immediately before a task is migrated to a new cpu; task_cpu(p) and | |
5984 | * cfs_rq_of(p) references at time of call are still valid and identify the | |
525628c7 | 5985 | * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
0a74bef8 | 5986 | */ |
5a4fd036 | 5987 | static void migrate_task_rq_fair(struct task_struct *p) |
0a74bef8 | 5988 | { |
59efa0ba PZ |
5989 | /* |
5990 | * As blocked tasks retain absolute vruntime the migration needs to | |
5991 | * deal with this by subtracting the old and adding the new | |
5992 | * min_vruntime -- the latter is done by enqueue_entity() when placing | |
5993 | * the task on the new runqueue. | |
5994 | */ | |
5995 | if (p->state == TASK_WAKING) { | |
5996 | struct sched_entity *se = &p->se; | |
5997 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
5998 | u64 min_vruntime; | |
5999 | ||
6000 | #ifndef CONFIG_64BIT | |
6001 | u64 min_vruntime_copy; | |
6002 | ||
6003 | do { | |
6004 | min_vruntime_copy = cfs_rq->min_vruntime_copy; | |
6005 | smp_rmb(); | |
6006 | min_vruntime = cfs_rq->min_vruntime; | |
6007 | } while (min_vruntime != min_vruntime_copy); | |
6008 | #else | |
6009 | min_vruntime = cfs_rq->min_vruntime; | |
6010 | #endif | |
6011 | ||
6012 | se->vruntime -= min_vruntime; | |
6013 | } | |
6014 | ||
aff3e498 | 6015 | /* |
9d89c257 YD |
6016 | * We are supposed to update the task to "current" time, then its up to date |
6017 | * and ready to go to new CPU/cfs_rq. But we have difficulty in getting | |
6018 | * what current time is, so simply throw away the out-of-date time. This | |
6019 | * will result in the wakee task is less decayed, but giving the wakee more | |
6020 | * load sounds not bad. | |
aff3e498 | 6021 | */ |
9d89c257 YD |
6022 | remove_entity_load_avg(&p->se); |
6023 | ||
6024 | /* Tell new CPU we are migrated */ | |
6025 | p->se.avg.last_update_time = 0; | |
3944a927 BS |
6026 | |
6027 | /* We have migrated, no longer consider this task hot */ | |
9d89c257 | 6028 | p->se.exec_start = 0; |
0a74bef8 | 6029 | } |
12695578 YD |
6030 | |
6031 | static void task_dead_fair(struct task_struct *p) | |
6032 | { | |
6033 | remove_entity_load_avg(&p->se); | |
6034 | } | |
e7693a36 GH |
6035 | #endif /* CONFIG_SMP */ |
6036 | ||
e52fb7c0 PZ |
6037 | static unsigned long |
6038 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | |
0bbd3336 PZ |
6039 | { |
6040 | unsigned long gran = sysctl_sched_wakeup_granularity; | |
6041 | ||
6042 | /* | |
e52fb7c0 PZ |
6043 | * Since its curr running now, convert the gran from real-time |
6044 | * to virtual-time in his units. | |
13814d42 MG |
6045 | * |
6046 | * By using 'se' instead of 'curr' we penalize light tasks, so | |
6047 | * they get preempted easier. That is, if 'se' < 'curr' then | |
6048 | * the resulting gran will be larger, therefore penalizing the | |
6049 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | |
6050 | * be smaller, again penalizing the lighter task. | |
6051 | * | |
6052 | * This is especially important for buddies when the leftmost | |
6053 | * task is higher priority than the buddy. | |
0bbd3336 | 6054 | */ |
f4ad9bd2 | 6055 | return calc_delta_fair(gran, se); |
0bbd3336 PZ |
6056 | } |
6057 | ||
464b7527 PZ |
6058 | /* |
6059 | * Should 'se' preempt 'curr'. | |
6060 | * | |
6061 | * |s1 | |
6062 | * |s2 | |
6063 | * |s3 | |
6064 | * g | |
6065 | * |<--->|c | |
6066 | * | |
6067 | * w(c, s1) = -1 | |
6068 | * w(c, s2) = 0 | |
6069 | * w(c, s3) = 1 | |
6070 | * | |
6071 | */ | |
6072 | static int | |
6073 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |
6074 | { | |
6075 | s64 gran, vdiff = curr->vruntime - se->vruntime; | |
6076 | ||
6077 | if (vdiff <= 0) | |
6078 | return -1; | |
6079 | ||
e52fb7c0 | 6080 | gran = wakeup_gran(curr, se); |
464b7527 PZ |
6081 | if (vdiff > gran) |
6082 | return 1; | |
6083 | ||
6084 | return 0; | |
6085 | } | |
6086 | ||
02479099 PZ |
6087 | static void set_last_buddy(struct sched_entity *se) |
6088 | { | |
69c80f3e VP |
6089 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) |
6090 | return; | |
6091 | ||
c5ae366e DA |
6092 | for_each_sched_entity(se) { |
6093 | if (SCHED_WARN_ON(!se->on_rq)) | |
6094 | return; | |
69c80f3e | 6095 | cfs_rq_of(se)->last = se; |
c5ae366e | 6096 | } |
02479099 PZ |
6097 | } |
6098 | ||
6099 | static void set_next_buddy(struct sched_entity *se) | |
6100 | { | |
69c80f3e VP |
6101 | if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) |
6102 | return; | |
6103 | ||
c5ae366e DA |
6104 | for_each_sched_entity(se) { |
6105 | if (SCHED_WARN_ON(!se->on_rq)) | |
6106 | return; | |
69c80f3e | 6107 | cfs_rq_of(se)->next = se; |
c5ae366e | 6108 | } |
02479099 PZ |
6109 | } |
6110 | ||
ac53db59 RR |
6111 | static void set_skip_buddy(struct sched_entity *se) |
6112 | { | |
69c80f3e VP |
6113 | for_each_sched_entity(se) |
6114 | cfs_rq_of(se)->skip = se; | |
ac53db59 RR |
6115 | } |
6116 | ||
bf0f6f24 IM |
6117 | /* |
6118 | * Preempt the current task with a newly woken task if needed: | |
6119 | */ | |
5a9b86f6 | 6120 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 IM |
6121 | { |
6122 | struct task_struct *curr = rq->curr; | |
8651a86c | 6123 | struct sched_entity *se = &curr->se, *pse = &p->se; |
03e89e45 | 6124 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
f685ceac | 6125 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
2f36825b | 6126 | int next_buddy_marked = 0; |
bf0f6f24 | 6127 | |
4ae7d5ce IM |
6128 | if (unlikely(se == pse)) |
6129 | return; | |
6130 | ||
5238cdd3 | 6131 | /* |
163122b7 | 6132 | * This is possible from callers such as attach_tasks(), in which we |
5238cdd3 PT |
6133 | * unconditionally check_prempt_curr() after an enqueue (which may have |
6134 | * lead to a throttle). This both saves work and prevents false | |
6135 | * next-buddy nomination below. | |
6136 | */ | |
6137 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | |
6138 | return; | |
6139 | ||
2f36825b | 6140 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { |
3cb63d52 | 6141 | set_next_buddy(pse); |
2f36825b VP |
6142 | next_buddy_marked = 1; |
6143 | } | |
57fdc26d | 6144 | |
aec0a514 BR |
6145 | /* |
6146 | * We can come here with TIF_NEED_RESCHED already set from new task | |
6147 | * wake up path. | |
5238cdd3 PT |
6148 | * |
6149 | * Note: this also catches the edge-case of curr being in a throttled | |
6150 | * group (e.g. via set_curr_task), since update_curr() (in the | |
6151 | * enqueue of curr) will have resulted in resched being set. This | |
6152 | * prevents us from potentially nominating it as a false LAST_BUDDY | |
6153 | * below. | |
aec0a514 BR |
6154 | */ |
6155 | if (test_tsk_need_resched(curr)) | |
6156 | return; | |
6157 | ||
a2f5c9ab DH |
6158 | /* Idle tasks are by definition preempted by non-idle tasks. */ |
6159 | if (unlikely(curr->policy == SCHED_IDLE) && | |
6160 | likely(p->policy != SCHED_IDLE)) | |
6161 | goto preempt; | |
6162 | ||
91c234b4 | 6163 | /* |
a2f5c9ab DH |
6164 | * Batch and idle tasks do not preempt non-idle tasks (their preemption |
6165 | * is driven by the tick): | |
91c234b4 | 6166 | */ |
8ed92e51 | 6167 | if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) |
91c234b4 | 6168 | return; |
bf0f6f24 | 6169 | |
464b7527 | 6170 | find_matching_se(&se, &pse); |
9bbd7374 | 6171 | update_curr(cfs_rq_of(se)); |
002f128b | 6172 | BUG_ON(!pse); |
2f36825b VP |
6173 | if (wakeup_preempt_entity(se, pse) == 1) { |
6174 | /* | |
6175 | * Bias pick_next to pick the sched entity that is | |
6176 | * triggering this preemption. | |
6177 | */ | |
6178 | if (!next_buddy_marked) | |
6179 | set_next_buddy(pse); | |
3a7e73a2 | 6180 | goto preempt; |
2f36825b | 6181 | } |
464b7527 | 6182 | |
3a7e73a2 | 6183 | return; |
a65ac745 | 6184 | |
3a7e73a2 | 6185 | preempt: |
8875125e | 6186 | resched_curr(rq); |
3a7e73a2 PZ |
6187 | /* |
6188 | * Only set the backward buddy when the current task is still | |
6189 | * on the rq. This can happen when a wakeup gets interleaved | |
6190 | * with schedule on the ->pre_schedule() or idle_balance() | |
6191 | * point, either of which can * drop the rq lock. | |
6192 | * | |
6193 | * Also, during early boot the idle thread is in the fair class, | |
6194 | * for obvious reasons its a bad idea to schedule back to it. | |
6195 | */ | |
6196 | if (unlikely(!se->on_rq || curr == rq->idle)) | |
6197 | return; | |
6198 | ||
6199 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | |
6200 | set_last_buddy(se); | |
bf0f6f24 IM |
6201 | } |
6202 | ||
606dba2e | 6203 | static struct task_struct * |
d8ac8971 | 6204 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
bf0f6f24 IM |
6205 | { |
6206 | struct cfs_rq *cfs_rq = &rq->cfs; | |
6207 | struct sched_entity *se; | |
678d5718 | 6208 | struct task_struct *p; |
37e117c0 | 6209 | int new_tasks; |
678d5718 | 6210 | |
6e83125c | 6211 | again: |
678d5718 | 6212 | if (!cfs_rq->nr_running) |
38033c37 | 6213 | goto idle; |
678d5718 | 6214 | |
9674f5ca | 6215 | #ifdef CONFIG_FAIR_GROUP_SCHED |
3f1d2a31 | 6216 | if (prev->sched_class != &fair_sched_class) |
678d5718 PZ |
6217 | goto simple; |
6218 | ||
6219 | /* | |
6220 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | |
6221 | * likely that a next task is from the same cgroup as the current. | |
6222 | * | |
6223 | * Therefore attempt to avoid putting and setting the entire cgroup | |
6224 | * hierarchy, only change the part that actually changes. | |
6225 | */ | |
6226 | ||
6227 | do { | |
6228 | struct sched_entity *curr = cfs_rq->curr; | |
6229 | ||
6230 | /* | |
6231 | * Since we got here without doing put_prev_entity() we also | |
6232 | * have to consider cfs_rq->curr. If it is still a runnable | |
6233 | * entity, update_curr() will update its vruntime, otherwise | |
6234 | * forget we've ever seen it. | |
6235 | */ | |
54d27365 BS |
6236 | if (curr) { |
6237 | if (curr->on_rq) | |
6238 | update_curr(cfs_rq); | |
6239 | else | |
6240 | curr = NULL; | |
678d5718 | 6241 | |
54d27365 BS |
6242 | /* |
6243 | * This call to check_cfs_rq_runtime() will do the | |
6244 | * throttle and dequeue its entity in the parent(s). | |
9674f5ca | 6245 | * Therefore the nr_running test will indeed |
54d27365 BS |
6246 | * be correct. |
6247 | */ | |
9674f5ca VK |
6248 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) { |
6249 | cfs_rq = &rq->cfs; | |
6250 | ||
6251 | if (!cfs_rq->nr_running) | |
6252 | goto idle; | |
6253 | ||
54d27365 | 6254 | goto simple; |
9674f5ca | 6255 | } |
54d27365 | 6256 | } |
678d5718 PZ |
6257 | |
6258 | se = pick_next_entity(cfs_rq, curr); | |
6259 | cfs_rq = group_cfs_rq(se); | |
6260 | } while (cfs_rq); | |
6261 | ||
6262 | p = task_of(se); | |
6263 | ||
6264 | /* | |
6265 | * Since we haven't yet done put_prev_entity and if the selected task | |
6266 | * is a different task than we started out with, try and touch the | |
6267 | * least amount of cfs_rqs. | |
6268 | */ | |
6269 | if (prev != p) { | |
6270 | struct sched_entity *pse = &prev->se; | |
6271 | ||
6272 | while (!(cfs_rq = is_same_group(se, pse))) { | |
6273 | int se_depth = se->depth; | |
6274 | int pse_depth = pse->depth; | |
6275 | ||
6276 | if (se_depth <= pse_depth) { | |
6277 | put_prev_entity(cfs_rq_of(pse), pse); | |
6278 | pse = parent_entity(pse); | |
6279 | } | |
6280 | if (se_depth >= pse_depth) { | |
6281 | set_next_entity(cfs_rq_of(se), se); | |
6282 | se = parent_entity(se); | |
6283 | } | |
6284 | } | |
6285 | ||
6286 | put_prev_entity(cfs_rq, pse); | |
6287 | set_next_entity(cfs_rq, se); | |
6288 | } | |
6289 | ||
6290 | if (hrtick_enabled(rq)) | |
6291 | hrtick_start_fair(rq, p); | |
6292 | ||
6293 | return p; | |
6294 | simple: | |
678d5718 | 6295 | #endif |
bf0f6f24 | 6296 | |
3f1d2a31 | 6297 | put_prev_task(rq, prev); |
606dba2e | 6298 | |
bf0f6f24 | 6299 | do { |
678d5718 | 6300 | se = pick_next_entity(cfs_rq, NULL); |
f4b6755f | 6301 | set_next_entity(cfs_rq, se); |
bf0f6f24 IM |
6302 | cfs_rq = group_cfs_rq(se); |
6303 | } while (cfs_rq); | |
6304 | ||
8f4d37ec | 6305 | p = task_of(se); |
678d5718 | 6306 | |
b39e66ea MG |
6307 | if (hrtick_enabled(rq)) |
6308 | hrtick_start_fair(rq, p); | |
8f4d37ec PZ |
6309 | |
6310 | return p; | |
38033c37 PZ |
6311 | |
6312 | idle: | |
46f69fa3 MF |
6313 | new_tasks = idle_balance(rq, rf); |
6314 | ||
37e117c0 PZ |
6315 | /* |
6316 | * Because idle_balance() releases (and re-acquires) rq->lock, it is | |
6317 | * possible for any higher priority task to appear. In that case we | |
6318 | * must re-start the pick_next_entity() loop. | |
6319 | */ | |
e4aa358b | 6320 | if (new_tasks < 0) |
37e117c0 PZ |
6321 | return RETRY_TASK; |
6322 | ||
e4aa358b | 6323 | if (new_tasks > 0) |
38033c37 | 6324 | goto again; |
38033c37 PZ |
6325 | |
6326 | return NULL; | |
bf0f6f24 IM |
6327 | } |
6328 | ||
6329 | /* | |
6330 | * Account for a descheduled task: | |
6331 | */ | |
31ee529c | 6332 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
bf0f6f24 IM |
6333 | { |
6334 | struct sched_entity *se = &prev->se; | |
6335 | struct cfs_rq *cfs_rq; | |
6336 | ||
6337 | for_each_sched_entity(se) { | |
6338 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 6339 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
6340 | } |
6341 | } | |
6342 | ||
ac53db59 RR |
6343 | /* |
6344 | * sched_yield() is very simple | |
6345 | * | |
6346 | * The magic of dealing with the ->skip buddy is in pick_next_entity. | |
6347 | */ | |
6348 | static void yield_task_fair(struct rq *rq) | |
6349 | { | |
6350 | struct task_struct *curr = rq->curr; | |
6351 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
6352 | struct sched_entity *se = &curr->se; | |
6353 | ||
6354 | /* | |
6355 | * Are we the only task in the tree? | |
6356 | */ | |
6357 | if (unlikely(rq->nr_running == 1)) | |
6358 | return; | |
6359 | ||
6360 | clear_buddies(cfs_rq, se); | |
6361 | ||
6362 | if (curr->policy != SCHED_BATCH) { | |
6363 | update_rq_clock(rq); | |
6364 | /* | |
6365 | * Update run-time statistics of the 'current'. | |
6366 | */ | |
6367 | update_curr(cfs_rq); | |
916671c0 MG |
6368 | /* |
6369 | * Tell update_rq_clock() that we've just updated, | |
6370 | * so we don't do microscopic update in schedule() | |
6371 | * and double the fastpath cost. | |
6372 | */ | |
9edfbfed | 6373 | rq_clock_skip_update(rq, true); |
ac53db59 RR |
6374 | } |
6375 | ||
6376 | set_skip_buddy(se); | |
6377 | } | |
6378 | ||
d95f4122 MG |
6379 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) |
6380 | { | |
6381 | struct sched_entity *se = &p->se; | |
6382 | ||
5238cdd3 PT |
6383 | /* throttled hierarchies are not runnable */ |
6384 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | |
d95f4122 MG |
6385 | return false; |
6386 | ||
6387 | /* Tell the scheduler that we'd really like pse to run next. */ | |
6388 | set_next_buddy(se); | |
6389 | ||
d95f4122 MG |
6390 | yield_task_fair(rq); |
6391 | ||
6392 | return true; | |
6393 | } | |
6394 | ||
681f3e68 | 6395 | #ifdef CONFIG_SMP |
bf0f6f24 | 6396 | /************************************************** |
e9c84cb8 PZ |
6397 | * Fair scheduling class load-balancing methods. |
6398 | * | |
6399 | * BASICS | |
6400 | * | |
6401 | * The purpose of load-balancing is to achieve the same basic fairness the | |
6402 | * per-cpu scheduler provides, namely provide a proportional amount of compute | |
6403 | * time to each task. This is expressed in the following equation: | |
6404 | * | |
6405 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) | |
6406 | * | |
6407 | * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight | |
6408 | * W_i,0 is defined as: | |
6409 | * | |
6410 | * W_i,0 = \Sum_j w_i,j (2) | |
6411 | * | |
6412 | * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight | |
1c3de5e1 | 6413 | * is derived from the nice value as per sched_prio_to_weight[]. |
e9c84cb8 PZ |
6414 | * |
6415 | * The weight average is an exponential decay average of the instantaneous | |
6416 | * weight: | |
6417 | * | |
6418 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) | |
6419 | * | |
ced549fa | 6420 | * C_i is the compute capacity of cpu i, typically it is the |
e9c84cb8 PZ |
6421 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
6422 | * can also include other factors [XXX]. | |
6423 | * | |
6424 | * To achieve this balance we define a measure of imbalance which follows | |
6425 | * directly from (1): | |
6426 | * | |
ced549fa | 6427 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
e9c84cb8 PZ |
6428 | * |
6429 | * We them move tasks around to minimize the imbalance. In the continuous | |
6430 | * function space it is obvious this converges, in the discrete case we get | |
6431 | * a few fun cases generally called infeasible weight scenarios. | |
6432 | * | |
6433 | * [XXX expand on: | |
6434 | * - infeasible weights; | |
6435 | * - local vs global optima in the discrete case. ] | |
6436 | * | |
6437 | * | |
6438 | * SCHED DOMAINS | |
6439 | * | |
6440 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | |
6441 | * for all i,j solution, we create a tree of cpus that follows the hardware | |
6442 | * topology where each level pairs two lower groups (or better). This results | |
6443 | * in O(log n) layers. Furthermore we reduce the number of cpus going up the | |
6444 | * tree to only the first of the previous level and we decrease the frequency | |
6445 | * of load-balance at each level inv. proportional to the number of cpus in | |
6446 | * the groups. | |
6447 | * | |
6448 | * This yields: | |
6449 | * | |
6450 | * log_2 n 1 n | |
6451 | * \Sum { --- * --- * 2^i } = O(n) (5) | |
6452 | * i = 0 2^i 2^i | |
6453 | * `- size of each group | |
6454 | * | | `- number of cpus doing load-balance | |
6455 | * | `- freq | |
6456 | * `- sum over all levels | |
6457 | * | |
6458 | * Coupled with a limit on how many tasks we can migrate every balance pass, | |
6459 | * this makes (5) the runtime complexity of the balancer. | |
6460 | * | |
6461 | * An important property here is that each CPU is still (indirectly) connected | |
6462 | * to every other cpu in at most O(log n) steps: | |
6463 | * | |
6464 | * The adjacency matrix of the resulting graph is given by: | |
6465 | * | |
97a7142f | 6466 | * log_2 n |
e9c84cb8 PZ |
6467 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
6468 | * k = 0 | |
6469 | * | |
6470 | * And you'll find that: | |
6471 | * | |
6472 | * A^(log_2 n)_i,j != 0 for all i,j (7) | |
6473 | * | |
6474 | * Showing there's indeed a path between every cpu in at most O(log n) steps. | |
6475 | * The task movement gives a factor of O(m), giving a convergence complexity | |
6476 | * of: | |
6477 | * | |
6478 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) | |
6479 | * | |
6480 | * | |
6481 | * WORK CONSERVING | |
6482 | * | |
6483 | * In order to avoid CPUs going idle while there's still work to do, new idle | |
6484 | * balancing is more aggressive and has the newly idle cpu iterate up the domain | |
6485 | * tree itself instead of relying on other CPUs to bring it work. | |
6486 | * | |
6487 | * This adds some complexity to both (5) and (8) but it reduces the total idle | |
6488 | * time. | |
6489 | * | |
6490 | * [XXX more?] | |
6491 | * | |
6492 | * | |
6493 | * CGROUPS | |
6494 | * | |
6495 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | |
6496 | * | |
6497 | * s_k,i | |
6498 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) | |
6499 | * S_k | |
6500 | * | |
6501 | * Where | |
6502 | * | |
6503 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) | |
6504 | * | |
6505 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. | |
6506 | * | |
6507 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | |
6508 | * property. | |
6509 | * | |
6510 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | |
6511 | * rewrite all of this once again.] | |
97a7142f | 6512 | */ |
bf0f6f24 | 6513 | |
ed387b78 HS |
6514 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
6515 | ||
0ec8aa00 PZ |
6516 | enum fbq_type { regular, remote, all }; |
6517 | ||
ddcdf6e7 | 6518 | #define LBF_ALL_PINNED 0x01 |
367456c7 | 6519 | #define LBF_NEED_BREAK 0x02 |
6263322c PZ |
6520 | #define LBF_DST_PINNED 0x04 |
6521 | #define LBF_SOME_PINNED 0x08 | |
ddcdf6e7 PZ |
6522 | |
6523 | struct lb_env { | |
6524 | struct sched_domain *sd; | |
6525 | ||
ddcdf6e7 | 6526 | struct rq *src_rq; |
85c1e7da | 6527 | int src_cpu; |
ddcdf6e7 PZ |
6528 | |
6529 | int dst_cpu; | |
6530 | struct rq *dst_rq; | |
6531 | ||
88b8dac0 SV |
6532 | struct cpumask *dst_grpmask; |
6533 | int new_dst_cpu; | |
ddcdf6e7 | 6534 | enum cpu_idle_type idle; |
bd939f45 | 6535 | long imbalance; |
b9403130 MW |
6536 | /* The set of CPUs under consideration for load-balancing */ |
6537 | struct cpumask *cpus; | |
6538 | ||
ddcdf6e7 | 6539 | unsigned int flags; |
367456c7 PZ |
6540 | |
6541 | unsigned int loop; | |
6542 | unsigned int loop_break; | |
6543 | unsigned int loop_max; | |
0ec8aa00 PZ |
6544 | |
6545 | enum fbq_type fbq_type; | |
163122b7 | 6546 | struct list_head tasks; |
ddcdf6e7 PZ |
6547 | }; |
6548 | ||
029632fb PZ |
6549 | /* |
6550 | * Is this task likely cache-hot: | |
6551 | */ | |
5d5e2b1b | 6552 | static int task_hot(struct task_struct *p, struct lb_env *env) |
029632fb PZ |
6553 | { |
6554 | s64 delta; | |
6555 | ||
e5673f28 KT |
6556 | lockdep_assert_held(&env->src_rq->lock); |
6557 | ||
029632fb PZ |
6558 | if (p->sched_class != &fair_sched_class) |
6559 | return 0; | |
6560 | ||
6561 | if (unlikely(p->policy == SCHED_IDLE)) | |
6562 | return 0; | |
6563 | ||
6564 | /* | |
6565 | * Buddy candidates are cache hot: | |
6566 | */ | |
5d5e2b1b | 6567 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
029632fb PZ |
6568 | (&p->se == cfs_rq_of(&p->se)->next || |
6569 | &p->se == cfs_rq_of(&p->se)->last)) | |
6570 | return 1; | |
6571 | ||
6572 | if (sysctl_sched_migration_cost == -1) | |
6573 | return 1; | |
6574 | if (sysctl_sched_migration_cost == 0) | |
6575 | return 0; | |
6576 | ||
5d5e2b1b | 6577 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
029632fb PZ |
6578 | |
6579 | return delta < (s64)sysctl_sched_migration_cost; | |
6580 | } | |
6581 | ||
3a7053b3 | 6582 | #ifdef CONFIG_NUMA_BALANCING |
c1ceac62 | 6583 | /* |
2a1ed24c SD |
6584 | * Returns 1, if task migration degrades locality |
6585 | * Returns 0, if task migration improves locality i.e migration preferred. | |
6586 | * Returns -1, if task migration is not affected by locality. | |
c1ceac62 | 6587 | */ |
2a1ed24c | 6588 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
3a7053b3 | 6589 | { |
b1ad065e | 6590 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
c1ceac62 | 6591 | unsigned long src_faults, dst_faults; |
3a7053b3 MG |
6592 | int src_nid, dst_nid; |
6593 | ||
2a595721 | 6594 | if (!static_branch_likely(&sched_numa_balancing)) |
2a1ed24c SD |
6595 | return -1; |
6596 | ||
c3b9bc5b | 6597 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
2a1ed24c | 6598 | return -1; |
7a0f3083 MG |
6599 | |
6600 | src_nid = cpu_to_node(env->src_cpu); | |
6601 | dst_nid = cpu_to_node(env->dst_cpu); | |
6602 | ||
83e1d2cd | 6603 | if (src_nid == dst_nid) |
2a1ed24c | 6604 | return -1; |
7a0f3083 | 6605 | |
2a1ed24c SD |
6606 | /* Migrating away from the preferred node is always bad. */ |
6607 | if (src_nid == p->numa_preferred_nid) { | |
6608 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | |
6609 | return 1; | |
6610 | else | |
6611 | return -1; | |
6612 | } | |
b1ad065e | 6613 | |
c1ceac62 RR |
6614 | /* Encourage migration to the preferred node. */ |
6615 | if (dst_nid == p->numa_preferred_nid) | |
2a1ed24c | 6616 | return 0; |
b1ad065e | 6617 | |
739294fb RR |
6618 | /* Leaving a core idle is often worse than degrading locality. */ |
6619 | if (env->idle != CPU_NOT_IDLE) | |
6620 | return -1; | |
6621 | ||
c1ceac62 RR |
6622 | if (numa_group) { |
6623 | src_faults = group_faults(p, src_nid); | |
6624 | dst_faults = group_faults(p, dst_nid); | |
6625 | } else { | |
6626 | src_faults = task_faults(p, src_nid); | |
6627 | dst_faults = task_faults(p, dst_nid); | |
b1ad065e RR |
6628 | } |
6629 | ||
c1ceac62 | 6630 | return dst_faults < src_faults; |
7a0f3083 MG |
6631 | } |
6632 | ||
3a7053b3 | 6633 | #else |
2a1ed24c | 6634 | static inline int migrate_degrades_locality(struct task_struct *p, |
3a7053b3 MG |
6635 | struct lb_env *env) |
6636 | { | |
2a1ed24c | 6637 | return -1; |
7a0f3083 | 6638 | } |
3a7053b3 MG |
6639 | #endif |
6640 | ||
1e3c88bd PZ |
6641 | /* |
6642 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
6643 | */ | |
6644 | static | |
8e45cb54 | 6645 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
1e3c88bd | 6646 | { |
2a1ed24c | 6647 | int tsk_cache_hot; |
e5673f28 KT |
6648 | |
6649 | lockdep_assert_held(&env->src_rq->lock); | |
6650 | ||
1e3c88bd PZ |
6651 | /* |
6652 | * We do not migrate tasks that are: | |
d3198084 | 6653 | * 1) throttled_lb_pair, or |
1e3c88bd | 6654 | * 2) cannot be migrated to this CPU due to cpus_allowed, or |
d3198084 JK |
6655 | * 3) running (obviously), or |
6656 | * 4) are cache-hot on their current CPU. | |
1e3c88bd | 6657 | */ |
d3198084 JK |
6658 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
6659 | return 0; | |
6660 | ||
0c98d344 | 6661 | if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { |
e02e60c1 | 6662 | int cpu; |
88b8dac0 | 6663 | |
ae92882e | 6664 | schedstat_inc(p->se.statistics.nr_failed_migrations_affine); |
88b8dac0 | 6665 | |
6263322c PZ |
6666 | env->flags |= LBF_SOME_PINNED; |
6667 | ||
88b8dac0 SV |
6668 | /* |
6669 | * Remember if this task can be migrated to any other cpu in | |
6670 | * our sched_group. We may want to revisit it if we couldn't | |
6671 | * meet load balance goals by pulling other tasks on src_cpu. | |
6672 | * | |
65a4433a JH |
6673 | * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have |
6674 | * already computed one in current iteration. | |
88b8dac0 | 6675 | */ |
65a4433a | 6676 | if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) |
88b8dac0 SV |
6677 | return 0; |
6678 | ||
e02e60c1 JK |
6679 | /* Prevent to re-select dst_cpu via env's cpus */ |
6680 | for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { | |
0c98d344 | 6681 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { |
6263322c | 6682 | env->flags |= LBF_DST_PINNED; |
e02e60c1 JK |
6683 | env->new_dst_cpu = cpu; |
6684 | break; | |
6685 | } | |
88b8dac0 | 6686 | } |
e02e60c1 | 6687 | |
1e3c88bd PZ |
6688 | return 0; |
6689 | } | |
88b8dac0 SV |
6690 | |
6691 | /* Record that we found atleast one task that could run on dst_cpu */ | |
8e45cb54 | 6692 | env->flags &= ~LBF_ALL_PINNED; |
1e3c88bd | 6693 | |
ddcdf6e7 | 6694 | if (task_running(env->src_rq, p)) { |
ae92882e | 6695 | schedstat_inc(p->se.statistics.nr_failed_migrations_running); |
1e3c88bd PZ |
6696 | return 0; |
6697 | } | |
6698 | ||
6699 | /* | |
6700 | * Aggressive migration if: | |
3a7053b3 MG |
6701 | * 1) destination numa is preferred |
6702 | * 2) task is cache cold, or | |
6703 | * 3) too many balance attempts have failed. | |
1e3c88bd | 6704 | */ |
2a1ed24c SD |
6705 | tsk_cache_hot = migrate_degrades_locality(p, env); |
6706 | if (tsk_cache_hot == -1) | |
6707 | tsk_cache_hot = task_hot(p, env); | |
3a7053b3 | 6708 | |
2a1ed24c | 6709 | if (tsk_cache_hot <= 0 || |
7a96c231 | 6710 | env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
2a1ed24c | 6711 | if (tsk_cache_hot == 1) { |
ae92882e JP |
6712 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); |
6713 | schedstat_inc(p->se.statistics.nr_forced_migrations); | |
3a7053b3 | 6714 | } |
1e3c88bd PZ |
6715 | return 1; |
6716 | } | |
6717 | ||
ae92882e | 6718 | schedstat_inc(p->se.statistics.nr_failed_migrations_hot); |
4e2dcb73 | 6719 | return 0; |
1e3c88bd PZ |
6720 | } |
6721 | ||
897c395f | 6722 | /* |
163122b7 KT |
6723 | * detach_task() -- detach the task for the migration specified in env |
6724 | */ | |
6725 | static void detach_task(struct task_struct *p, struct lb_env *env) | |
6726 | { | |
6727 | lockdep_assert_held(&env->src_rq->lock); | |
6728 | ||
163122b7 | 6729 | p->on_rq = TASK_ON_RQ_MIGRATING; |
5704ac0a | 6730 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
163122b7 KT |
6731 | set_task_cpu(p, env->dst_cpu); |
6732 | } | |
6733 | ||
897c395f | 6734 | /* |
e5673f28 | 6735 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
897c395f | 6736 | * part of active balancing operations within "domain". |
897c395f | 6737 | * |
e5673f28 | 6738 | * Returns a task if successful and NULL otherwise. |
897c395f | 6739 | */ |
e5673f28 | 6740 | static struct task_struct *detach_one_task(struct lb_env *env) |
897c395f PZ |
6741 | { |
6742 | struct task_struct *p, *n; | |
897c395f | 6743 | |
e5673f28 KT |
6744 | lockdep_assert_held(&env->src_rq->lock); |
6745 | ||
367456c7 | 6746 | list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { |
367456c7 PZ |
6747 | if (!can_migrate_task(p, env)) |
6748 | continue; | |
897c395f | 6749 | |
163122b7 | 6750 | detach_task(p, env); |
e5673f28 | 6751 | |
367456c7 | 6752 | /* |
e5673f28 | 6753 | * Right now, this is only the second place where |
163122b7 | 6754 | * lb_gained[env->idle] is updated (other is detach_tasks) |
e5673f28 | 6755 | * so we can safely collect stats here rather than |
163122b7 | 6756 | * inside detach_tasks(). |
367456c7 | 6757 | */ |
ae92882e | 6758 | schedstat_inc(env->sd->lb_gained[env->idle]); |
e5673f28 | 6759 | return p; |
897c395f | 6760 | } |
e5673f28 | 6761 | return NULL; |
897c395f PZ |
6762 | } |
6763 | ||
eb95308e PZ |
6764 | static const unsigned int sched_nr_migrate_break = 32; |
6765 | ||
5d6523eb | 6766 | /* |
163122b7 KT |
6767 | * detach_tasks() -- tries to detach up to imbalance weighted load from |
6768 | * busiest_rq, as part of a balancing operation within domain "sd". | |
5d6523eb | 6769 | * |
163122b7 | 6770 | * Returns number of detached tasks if successful and 0 otherwise. |
5d6523eb | 6771 | */ |
163122b7 | 6772 | static int detach_tasks(struct lb_env *env) |
1e3c88bd | 6773 | { |
5d6523eb PZ |
6774 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
6775 | struct task_struct *p; | |
367456c7 | 6776 | unsigned long load; |
163122b7 KT |
6777 | int detached = 0; |
6778 | ||
6779 | lockdep_assert_held(&env->src_rq->lock); | |
1e3c88bd | 6780 | |
bd939f45 | 6781 | if (env->imbalance <= 0) |
5d6523eb | 6782 | return 0; |
1e3c88bd | 6783 | |
5d6523eb | 6784 | while (!list_empty(tasks)) { |
985d3a4c YD |
6785 | /* |
6786 | * We don't want to steal all, otherwise we may be treated likewise, | |
6787 | * which could at worst lead to a livelock crash. | |
6788 | */ | |
6789 | if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) | |
6790 | break; | |
6791 | ||
5d6523eb | 6792 | p = list_first_entry(tasks, struct task_struct, se.group_node); |
1e3c88bd | 6793 | |
367456c7 PZ |
6794 | env->loop++; |
6795 | /* We've more or less seen every task there is, call it quits */ | |
5d6523eb | 6796 | if (env->loop > env->loop_max) |
367456c7 | 6797 | break; |
5d6523eb PZ |
6798 | |
6799 | /* take a breather every nr_migrate tasks */ | |
367456c7 | 6800 | if (env->loop > env->loop_break) { |
eb95308e | 6801 | env->loop_break += sched_nr_migrate_break; |
8e45cb54 | 6802 | env->flags |= LBF_NEED_BREAK; |
ee00e66f | 6803 | break; |
a195f004 | 6804 | } |
1e3c88bd | 6805 | |
d3198084 | 6806 | if (!can_migrate_task(p, env)) |
367456c7 PZ |
6807 | goto next; |
6808 | ||
6809 | load = task_h_load(p); | |
5d6523eb | 6810 | |
eb95308e | 6811 | if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) |
367456c7 PZ |
6812 | goto next; |
6813 | ||
bd939f45 | 6814 | if ((load / 2) > env->imbalance) |
367456c7 | 6815 | goto next; |
1e3c88bd | 6816 | |
163122b7 KT |
6817 | detach_task(p, env); |
6818 | list_add(&p->se.group_node, &env->tasks); | |
6819 | ||
6820 | detached++; | |
bd939f45 | 6821 | env->imbalance -= load; |
1e3c88bd PZ |
6822 | |
6823 | #ifdef CONFIG_PREEMPT | |
ee00e66f PZ |
6824 | /* |
6825 | * NEWIDLE balancing is a source of latency, so preemptible | |
163122b7 | 6826 | * kernels will stop after the first task is detached to minimize |
ee00e66f PZ |
6827 | * the critical section. |
6828 | */ | |
5d6523eb | 6829 | if (env->idle == CPU_NEWLY_IDLE) |
ee00e66f | 6830 | break; |
1e3c88bd PZ |
6831 | #endif |
6832 | ||
ee00e66f PZ |
6833 | /* |
6834 | * We only want to steal up to the prescribed amount of | |
6835 | * weighted load. | |
6836 | */ | |
bd939f45 | 6837 | if (env->imbalance <= 0) |
ee00e66f | 6838 | break; |
367456c7 PZ |
6839 | |
6840 | continue; | |
6841 | next: | |
5d6523eb | 6842 | list_move_tail(&p->se.group_node, tasks); |
1e3c88bd | 6843 | } |
5d6523eb | 6844 | |
1e3c88bd | 6845 | /* |
163122b7 KT |
6846 | * Right now, this is one of only two places we collect this stat |
6847 | * so we can safely collect detach_one_task() stats here rather | |
6848 | * than inside detach_one_task(). | |
1e3c88bd | 6849 | */ |
ae92882e | 6850 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
1e3c88bd | 6851 | |
163122b7 KT |
6852 | return detached; |
6853 | } | |
6854 | ||
6855 | /* | |
6856 | * attach_task() -- attach the task detached by detach_task() to its new rq. | |
6857 | */ | |
6858 | static void attach_task(struct rq *rq, struct task_struct *p) | |
6859 | { | |
6860 | lockdep_assert_held(&rq->lock); | |
6861 | ||
6862 | BUG_ON(task_rq(p) != rq); | |
5704ac0a | 6863 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
3ea94de1 | 6864 | p->on_rq = TASK_ON_RQ_QUEUED; |
163122b7 KT |
6865 | check_preempt_curr(rq, p, 0); |
6866 | } | |
6867 | ||
6868 | /* | |
6869 | * attach_one_task() -- attaches the task returned from detach_one_task() to | |
6870 | * its new rq. | |
6871 | */ | |
6872 | static void attach_one_task(struct rq *rq, struct task_struct *p) | |
6873 | { | |
8a8c69c3 PZ |
6874 | struct rq_flags rf; |
6875 | ||
6876 | rq_lock(rq, &rf); | |
5704ac0a | 6877 | update_rq_clock(rq); |
163122b7 | 6878 | attach_task(rq, p); |
8a8c69c3 | 6879 | rq_unlock(rq, &rf); |
163122b7 KT |
6880 | } |
6881 | ||
6882 | /* | |
6883 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | |
6884 | * new rq. | |
6885 | */ | |
6886 | static void attach_tasks(struct lb_env *env) | |
6887 | { | |
6888 | struct list_head *tasks = &env->tasks; | |
6889 | struct task_struct *p; | |
8a8c69c3 | 6890 | struct rq_flags rf; |
163122b7 | 6891 | |
8a8c69c3 | 6892 | rq_lock(env->dst_rq, &rf); |
5704ac0a | 6893 | update_rq_clock(env->dst_rq); |
163122b7 KT |
6894 | |
6895 | while (!list_empty(tasks)) { | |
6896 | p = list_first_entry(tasks, struct task_struct, se.group_node); | |
6897 | list_del_init(&p->se.group_node); | |
1e3c88bd | 6898 | |
163122b7 KT |
6899 | attach_task(env->dst_rq, p); |
6900 | } | |
6901 | ||
8a8c69c3 | 6902 | rq_unlock(env->dst_rq, &rf); |
1e3c88bd PZ |
6903 | } |
6904 | ||
230059de | 6905 | #ifdef CONFIG_FAIR_GROUP_SCHED |
a9e7f654 TH |
6906 | |
6907 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) | |
6908 | { | |
6909 | if (cfs_rq->load.weight) | |
6910 | return false; | |
6911 | ||
6912 | if (cfs_rq->avg.load_sum) | |
6913 | return false; | |
6914 | ||
6915 | if (cfs_rq->avg.util_sum) | |
6916 | return false; | |
6917 | ||
6918 | if (cfs_rq->runnable_load_sum) | |
6919 | return false; | |
6920 | ||
6921 | return true; | |
6922 | } | |
6923 | ||
48a16753 | 6924 | static void update_blocked_averages(int cpu) |
9e3081ca | 6925 | { |
9e3081ca | 6926 | struct rq *rq = cpu_rq(cpu); |
a9e7f654 | 6927 | struct cfs_rq *cfs_rq, *pos; |
8a8c69c3 | 6928 | struct rq_flags rf; |
9e3081ca | 6929 | |
8a8c69c3 | 6930 | rq_lock_irqsave(rq, &rf); |
48a16753 | 6931 | update_rq_clock(rq); |
9d89c257 | 6932 | |
9763b67f PZ |
6933 | /* |
6934 | * Iterates the task_group tree in a bottom up fashion, see | |
6935 | * list_add_leaf_cfs_rq() for details. | |
6936 | */ | |
a9e7f654 | 6937 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
bc427898 VG |
6938 | struct sched_entity *se; |
6939 | ||
9d89c257 YD |
6940 | /* throttled entities do not contribute to load */ |
6941 | if (throttled_hierarchy(cfs_rq)) | |
6942 | continue; | |
48a16753 | 6943 | |
3a123bbb | 6944 | if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) |
9d89c257 | 6945 | update_tg_load_avg(cfs_rq, 0); |
4e516076 | 6946 | |
bc427898 VG |
6947 | /* Propagate pending load changes to the parent, if any: */ |
6948 | se = cfs_rq->tg->se[cpu]; | |
6949 | if (se && !skip_blocked_update(se)) | |
6950 | update_load_avg(se, 0); | |
a9e7f654 TH |
6951 | |
6952 | /* | |
6953 | * There can be a lot of idle CPU cgroups. Don't let fully | |
6954 | * decayed cfs_rqs linger on the list. | |
6955 | */ | |
6956 | if (cfs_rq_is_decayed(cfs_rq)) | |
6957 | list_del_leaf_cfs_rq(cfs_rq); | |
9d89c257 | 6958 | } |
8a8c69c3 | 6959 | rq_unlock_irqrestore(rq, &rf); |
9e3081ca PZ |
6960 | } |
6961 | ||
9763b67f | 6962 | /* |
68520796 | 6963 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
9763b67f PZ |
6964 | * This needs to be done in a top-down fashion because the load of a child |
6965 | * group is a fraction of its parents load. | |
6966 | */ | |
68520796 | 6967 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
9763b67f | 6968 | { |
68520796 VD |
6969 | struct rq *rq = rq_of(cfs_rq); |
6970 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | |
a35b6466 | 6971 | unsigned long now = jiffies; |
68520796 | 6972 | unsigned long load; |
a35b6466 | 6973 | |
68520796 | 6974 | if (cfs_rq->last_h_load_update == now) |
a35b6466 PZ |
6975 | return; |
6976 | ||
68520796 VD |
6977 | cfs_rq->h_load_next = NULL; |
6978 | for_each_sched_entity(se) { | |
6979 | cfs_rq = cfs_rq_of(se); | |
6980 | cfs_rq->h_load_next = se; | |
6981 | if (cfs_rq->last_h_load_update == now) | |
6982 | break; | |
6983 | } | |
a35b6466 | 6984 | |
68520796 | 6985 | if (!se) { |
7ea241af | 6986 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
68520796 VD |
6987 | cfs_rq->last_h_load_update = now; |
6988 | } | |
6989 | ||
6990 | while ((se = cfs_rq->h_load_next) != NULL) { | |
6991 | load = cfs_rq->h_load; | |
7ea241af YD |
6992 | load = div64_ul(load * se->avg.load_avg, |
6993 | cfs_rq_load_avg(cfs_rq) + 1); | |
68520796 VD |
6994 | cfs_rq = group_cfs_rq(se); |
6995 | cfs_rq->h_load = load; | |
6996 | cfs_rq->last_h_load_update = now; | |
6997 | } | |
9763b67f PZ |
6998 | } |
6999 | ||
367456c7 | 7000 | static unsigned long task_h_load(struct task_struct *p) |
230059de | 7001 | { |
367456c7 | 7002 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
230059de | 7003 | |
68520796 | 7004 | update_cfs_rq_h_load(cfs_rq); |
9d89c257 | 7005 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
7ea241af | 7006 | cfs_rq_load_avg(cfs_rq) + 1); |
230059de PZ |
7007 | } |
7008 | #else | |
48a16753 | 7009 | static inline void update_blocked_averages(int cpu) |
9e3081ca | 7010 | { |
6c1d47c0 VG |
7011 | struct rq *rq = cpu_rq(cpu); |
7012 | struct cfs_rq *cfs_rq = &rq->cfs; | |
8a8c69c3 | 7013 | struct rq_flags rf; |
6c1d47c0 | 7014 | |
8a8c69c3 | 7015 | rq_lock_irqsave(rq, &rf); |
6c1d47c0 | 7016 | update_rq_clock(rq); |
3a123bbb | 7017 | update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); |
8a8c69c3 | 7018 | rq_unlock_irqrestore(rq, &rf); |
9e3081ca PZ |
7019 | } |
7020 | ||
367456c7 | 7021 | static unsigned long task_h_load(struct task_struct *p) |
1e3c88bd | 7022 | { |
9d89c257 | 7023 | return p->se.avg.load_avg; |
1e3c88bd | 7024 | } |
230059de | 7025 | #endif |
1e3c88bd | 7026 | |
1e3c88bd | 7027 | /********** Helpers for find_busiest_group ************************/ |
caeb178c RR |
7028 | |
7029 | enum group_type { | |
7030 | group_other = 0, | |
7031 | group_imbalanced, | |
7032 | group_overloaded, | |
7033 | }; | |
7034 | ||
1e3c88bd PZ |
7035 | /* |
7036 | * sg_lb_stats - stats of a sched_group required for load_balancing | |
7037 | */ | |
7038 | struct sg_lb_stats { | |
7039 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | |
7040 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
1e3c88bd | 7041 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ |
56cf515b | 7042 | unsigned long load_per_task; |
63b2ca30 | 7043 | unsigned long group_capacity; |
9e91d61d | 7044 | unsigned long group_util; /* Total utilization of the group */ |
147c5fc2 | 7045 | unsigned int sum_nr_running; /* Nr tasks running in the group */ |
147c5fc2 PZ |
7046 | unsigned int idle_cpus; |
7047 | unsigned int group_weight; | |
caeb178c | 7048 | enum group_type group_type; |
ea67821b | 7049 | int group_no_capacity; |
0ec8aa00 PZ |
7050 | #ifdef CONFIG_NUMA_BALANCING |
7051 | unsigned int nr_numa_running; | |
7052 | unsigned int nr_preferred_running; | |
7053 | #endif | |
1e3c88bd PZ |
7054 | }; |
7055 | ||
56cf515b JK |
7056 | /* |
7057 | * sd_lb_stats - Structure to store the statistics of a sched_domain | |
7058 | * during load balancing. | |
7059 | */ | |
7060 | struct sd_lb_stats { | |
7061 | struct sched_group *busiest; /* Busiest group in this sd */ | |
7062 | struct sched_group *local; /* Local group in this sd */ | |
7063 | unsigned long total_load; /* Total load of all groups in sd */ | |
63b2ca30 | 7064 | unsigned long total_capacity; /* Total capacity of all groups in sd */ |
56cf515b JK |
7065 | unsigned long avg_load; /* Average load across all groups in sd */ |
7066 | ||
56cf515b | 7067 | struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ |
147c5fc2 | 7068 | struct sg_lb_stats local_stat; /* Statistics of the local group */ |
56cf515b JK |
7069 | }; |
7070 | ||
147c5fc2 PZ |
7071 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
7072 | { | |
7073 | /* | |
7074 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | |
7075 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | |
7076 | * We must however clear busiest_stat::avg_load because | |
7077 | * update_sd_pick_busiest() reads this before assignment. | |
7078 | */ | |
7079 | *sds = (struct sd_lb_stats){ | |
7080 | .busiest = NULL, | |
7081 | .local = NULL, | |
7082 | .total_load = 0UL, | |
63b2ca30 | 7083 | .total_capacity = 0UL, |
147c5fc2 PZ |
7084 | .busiest_stat = { |
7085 | .avg_load = 0UL, | |
caeb178c RR |
7086 | .sum_nr_running = 0, |
7087 | .group_type = group_other, | |
147c5fc2 PZ |
7088 | }, |
7089 | }; | |
7090 | } | |
7091 | ||
1e3c88bd PZ |
7092 | /** |
7093 | * get_sd_load_idx - Obtain the load index for a given sched domain. | |
7094 | * @sd: The sched_domain whose load_idx is to be obtained. | |
ed1b7732 | 7095 | * @idle: The idle status of the CPU for whose sd load_idx is obtained. |
e69f6186 YB |
7096 | * |
7097 | * Return: The load index. | |
1e3c88bd PZ |
7098 | */ |
7099 | static inline int get_sd_load_idx(struct sched_domain *sd, | |
7100 | enum cpu_idle_type idle) | |
7101 | { | |
7102 | int load_idx; | |
7103 | ||
7104 | switch (idle) { | |
7105 | case CPU_NOT_IDLE: | |
7106 | load_idx = sd->busy_idx; | |
7107 | break; | |
7108 | ||
7109 | case CPU_NEWLY_IDLE: | |
7110 | load_idx = sd->newidle_idx; | |
7111 | break; | |
7112 | default: | |
7113 | load_idx = sd->idle_idx; | |
7114 | break; | |
7115 | } | |
7116 | ||
7117 | return load_idx; | |
7118 | } | |
7119 | ||
ced549fa | 7120 | static unsigned long scale_rt_capacity(int cpu) |
1e3c88bd PZ |
7121 | { |
7122 | struct rq *rq = cpu_rq(cpu); | |
b5b4860d | 7123 | u64 total, used, age_stamp, avg; |
cadefd3d | 7124 | s64 delta; |
1e3c88bd | 7125 | |
b654f7de PZ |
7126 | /* |
7127 | * Since we're reading these variables without serialization make sure | |
7128 | * we read them once before doing sanity checks on them. | |
7129 | */ | |
316c1608 JL |
7130 | age_stamp = READ_ONCE(rq->age_stamp); |
7131 | avg = READ_ONCE(rq->rt_avg); | |
cebde6d6 | 7132 | delta = __rq_clock_broken(rq) - age_stamp; |
b654f7de | 7133 | |
cadefd3d PZ |
7134 | if (unlikely(delta < 0)) |
7135 | delta = 0; | |
7136 | ||
7137 | total = sched_avg_period() + delta; | |
aa483808 | 7138 | |
b5b4860d | 7139 | used = div_u64(avg, total); |
1e3c88bd | 7140 | |
b5b4860d VG |
7141 | if (likely(used < SCHED_CAPACITY_SCALE)) |
7142 | return SCHED_CAPACITY_SCALE - used; | |
1e3c88bd | 7143 | |
b5b4860d | 7144 | return 1; |
1e3c88bd PZ |
7145 | } |
7146 | ||
ced549fa | 7147 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd | 7148 | { |
8cd5601c | 7149 | unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
7150 | struct sched_group *sdg = sd->groups; |
7151 | ||
ca6d75e6 | 7152 | cpu_rq(cpu)->cpu_capacity_orig = capacity; |
9d5efe05 | 7153 | |
ced549fa | 7154 | capacity *= scale_rt_capacity(cpu); |
ca8ce3d0 | 7155 | capacity >>= SCHED_CAPACITY_SHIFT; |
1e3c88bd | 7156 | |
ced549fa NP |
7157 | if (!capacity) |
7158 | capacity = 1; | |
1e3c88bd | 7159 | |
ced549fa NP |
7160 | cpu_rq(cpu)->cpu_capacity = capacity; |
7161 | sdg->sgc->capacity = capacity; | |
bf475ce0 | 7162 | sdg->sgc->min_capacity = capacity; |
1e3c88bd PZ |
7163 | } |
7164 | ||
63b2ca30 | 7165 | void update_group_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
7166 | { |
7167 | struct sched_domain *child = sd->child; | |
7168 | struct sched_group *group, *sdg = sd->groups; | |
bf475ce0 | 7169 | unsigned long capacity, min_capacity; |
4ec4412e VG |
7170 | unsigned long interval; |
7171 | ||
7172 | interval = msecs_to_jiffies(sd->balance_interval); | |
7173 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
63b2ca30 | 7174 | sdg->sgc->next_update = jiffies + interval; |
1e3c88bd PZ |
7175 | |
7176 | if (!child) { | |
ced549fa | 7177 | update_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
7178 | return; |
7179 | } | |
7180 | ||
dc7ff76e | 7181 | capacity = 0; |
bf475ce0 | 7182 | min_capacity = ULONG_MAX; |
1e3c88bd | 7183 | |
74a5ce20 PZ |
7184 | if (child->flags & SD_OVERLAP) { |
7185 | /* | |
7186 | * SD_OVERLAP domains cannot assume that child groups | |
7187 | * span the current group. | |
7188 | */ | |
7189 | ||
ae4df9d6 | 7190 | for_each_cpu(cpu, sched_group_span(sdg)) { |
63b2ca30 | 7191 | struct sched_group_capacity *sgc; |
9abf24d4 | 7192 | struct rq *rq = cpu_rq(cpu); |
863bffc8 | 7193 | |
9abf24d4 | 7194 | /* |
63b2ca30 | 7195 | * build_sched_domains() -> init_sched_groups_capacity() |
9abf24d4 SD |
7196 | * gets here before we've attached the domains to the |
7197 | * runqueues. | |
7198 | * | |
ced549fa NP |
7199 | * Use capacity_of(), which is set irrespective of domains |
7200 | * in update_cpu_capacity(). | |
9abf24d4 | 7201 | * |
dc7ff76e | 7202 | * This avoids capacity from being 0 and |
9abf24d4 | 7203 | * causing divide-by-zero issues on boot. |
9abf24d4 SD |
7204 | */ |
7205 | if (unlikely(!rq->sd)) { | |
ced549fa | 7206 | capacity += capacity_of(cpu); |
bf475ce0 MR |
7207 | } else { |
7208 | sgc = rq->sd->groups->sgc; | |
7209 | capacity += sgc->capacity; | |
9abf24d4 | 7210 | } |
863bffc8 | 7211 | |
bf475ce0 | 7212 | min_capacity = min(capacity, min_capacity); |
863bffc8 | 7213 | } |
74a5ce20 PZ |
7214 | } else { |
7215 | /* | |
7216 | * !SD_OVERLAP domains can assume that child groups | |
7217 | * span the current group. | |
97a7142f | 7218 | */ |
74a5ce20 PZ |
7219 | |
7220 | group = child->groups; | |
7221 | do { | |
bf475ce0 MR |
7222 | struct sched_group_capacity *sgc = group->sgc; |
7223 | ||
7224 | capacity += sgc->capacity; | |
7225 | min_capacity = min(sgc->min_capacity, min_capacity); | |
74a5ce20 PZ |
7226 | group = group->next; |
7227 | } while (group != child->groups); | |
7228 | } | |
1e3c88bd | 7229 | |
63b2ca30 | 7230 | sdg->sgc->capacity = capacity; |
bf475ce0 | 7231 | sdg->sgc->min_capacity = min_capacity; |
1e3c88bd PZ |
7232 | } |
7233 | ||
9d5efe05 | 7234 | /* |
ea67821b VG |
7235 | * Check whether the capacity of the rq has been noticeably reduced by side |
7236 | * activity. The imbalance_pct is used for the threshold. | |
7237 | * Return true is the capacity is reduced | |
9d5efe05 SV |
7238 | */ |
7239 | static inline int | |
ea67821b | 7240 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
9d5efe05 | 7241 | { |
ea67821b VG |
7242 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
7243 | (rq->cpu_capacity_orig * 100)); | |
9d5efe05 SV |
7244 | } |
7245 | ||
30ce5dab PZ |
7246 | /* |
7247 | * Group imbalance indicates (and tries to solve) the problem where balancing | |
0c98d344 | 7248 | * groups is inadequate due to ->cpus_allowed constraints. |
30ce5dab PZ |
7249 | * |
7250 | * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a | |
7251 | * cpumask covering 1 cpu of the first group and 3 cpus of the second group. | |
7252 | * Something like: | |
7253 | * | |
2b4d5b25 IM |
7254 | * { 0 1 2 3 } { 4 5 6 7 } |
7255 | * * * * * | |
30ce5dab PZ |
7256 | * |
7257 | * If we were to balance group-wise we'd place two tasks in the first group and | |
7258 | * two tasks in the second group. Clearly this is undesired as it will overload | |
7259 | * cpu 3 and leave one of the cpus in the second group unused. | |
7260 | * | |
7261 | * The current solution to this issue is detecting the skew in the first group | |
6263322c PZ |
7262 | * by noticing the lower domain failed to reach balance and had difficulty |
7263 | * moving tasks due to affinity constraints. | |
30ce5dab PZ |
7264 | * |
7265 | * When this is so detected; this group becomes a candidate for busiest; see | |
ed1b7732 | 7266 | * update_sd_pick_busiest(). And calculate_imbalance() and |
6263322c | 7267 | * find_busiest_group() avoid some of the usual balance conditions to allow it |
30ce5dab PZ |
7268 | * to create an effective group imbalance. |
7269 | * | |
7270 | * This is a somewhat tricky proposition since the next run might not find the | |
7271 | * group imbalance and decide the groups need to be balanced again. A most | |
7272 | * subtle and fragile situation. | |
7273 | */ | |
7274 | ||
6263322c | 7275 | static inline int sg_imbalanced(struct sched_group *group) |
30ce5dab | 7276 | { |
63b2ca30 | 7277 | return group->sgc->imbalance; |
30ce5dab PZ |
7278 | } |
7279 | ||
b37d9316 | 7280 | /* |
ea67821b VG |
7281 | * group_has_capacity returns true if the group has spare capacity that could |
7282 | * be used by some tasks. | |
7283 | * We consider that a group has spare capacity if the * number of task is | |
9e91d61d DE |
7284 | * smaller than the number of CPUs or if the utilization is lower than the |
7285 | * available capacity for CFS tasks. | |
ea67821b VG |
7286 | * For the latter, we use a threshold to stabilize the state, to take into |
7287 | * account the variance of the tasks' load and to return true if the available | |
7288 | * capacity in meaningful for the load balancer. | |
7289 | * As an example, an available capacity of 1% can appear but it doesn't make | |
7290 | * any benefit for the load balance. | |
b37d9316 | 7291 | */ |
ea67821b VG |
7292 | static inline bool |
7293 | group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) | |
b37d9316 | 7294 | { |
ea67821b VG |
7295 | if (sgs->sum_nr_running < sgs->group_weight) |
7296 | return true; | |
c61037e9 | 7297 | |
ea67821b | 7298 | if ((sgs->group_capacity * 100) > |
9e91d61d | 7299 | (sgs->group_util * env->sd->imbalance_pct)) |
ea67821b | 7300 | return true; |
b37d9316 | 7301 | |
ea67821b VG |
7302 | return false; |
7303 | } | |
7304 | ||
7305 | /* | |
7306 | * group_is_overloaded returns true if the group has more tasks than it can | |
7307 | * handle. | |
7308 | * group_is_overloaded is not equals to !group_has_capacity because a group | |
7309 | * with the exact right number of tasks, has no more spare capacity but is not | |
7310 | * overloaded so both group_has_capacity and group_is_overloaded return | |
7311 | * false. | |
7312 | */ | |
7313 | static inline bool | |
7314 | group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) | |
7315 | { | |
7316 | if (sgs->sum_nr_running <= sgs->group_weight) | |
7317 | return false; | |
b37d9316 | 7318 | |
ea67821b | 7319 | if ((sgs->group_capacity * 100) < |
9e91d61d | 7320 | (sgs->group_util * env->sd->imbalance_pct)) |
ea67821b | 7321 | return true; |
b37d9316 | 7322 | |
ea67821b | 7323 | return false; |
b37d9316 PZ |
7324 | } |
7325 | ||
9e0994c0 MR |
7326 | /* |
7327 | * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller | |
7328 | * per-CPU capacity than sched_group ref. | |
7329 | */ | |
7330 | static inline bool | |
7331 | group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) | |
7332 | { | |
7333 | return sg->sgc->min_capacity * capacity_margin < | |
7334 | ref->sgc->min_capacity * 1024; | |
7335 | } | |
7336 | ||
79a89f92 LY |
7337 | static inline enum |
7338 | group_type group_classify(struct sched_group *group, | |
7339 | struct sg_lb_stats *sgs) | |
caeb178c | 7340 | { |
ea67821b | 7341 | if (sgs->group_no_capacity) |
caeb178c RR |
7342 | return group_overloaded; |
7343 | ||
7344 | if (sg_imbalanced(group)) | |
7345 | return group_imbalanced; | |
7346 | ||
7347 | return group_other; | |
7348 | } | |
7349 | ||
1e3c88bd PZ |
7350 | /** |
7351 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
cd96891d | 7352 | * @env: The load balancing environment. |
1e3c88bd | 7353 | * @group: sched_group whose statistics are to be updated. |
1e3c88bd | 7354 | * @load_idx: Load index of sched_domain of this_cpu for load calc. |
1e3c88bd | 7355 | * @local_group: Does group contain this_cpu. |
1e3c88bd | 7356 | * @sgs: variable to hold the statistics for this group. |
cd3bd4e6 | 7357 | * @overload: Indicate more than one runnable task for any CPU. |
1e3c88bd | 7358 | */ |
bd939f45 PZ |
7359 | static inline void update_sg_lb_stats(struct lb_env *env, |
7360 | struct sched_group *group, int load_idx, | |
4486edd1 TC |
7361 | int local_group, struct sg_lb_stats *sgs, |
7362 | bool *overload) | |
1e3c88bd | 7363 | { |
30ce5dab | 7364 | unsigned long load; |
a426f99c | 7365 | int i, nr_running; |
1e3c88bd | 7366 | |
b72ff13c PZ |
7367 | memset(sgs, 0, sizeof(*sgs)); |
7368 | ||
ae4df9d6 | 7369 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
1e3c88bd PZ |
7370 | struct rq *rq = cpu_rq(i); |
7371 | ||
1e3c88bd | 7372 | /* Bias balancing toward cpus of our domain */ |
6263322c | 7373 | if (local_group) |
04f733b4 | 7374 | load = target_load(i, load_idx); |
6263322c | 7375 | else |
1e3c88bd | 7376 | load = source_load(i, load_idx); |
1e3c88bd PZ |
7377 | |
7378 | sgs->group_load += load; | |
9e91d61d | 7379 | sgs->group_util += cpu_util(i); |
65fdac08 | 7380 | sgs->sum_nr_running += rq->cfs.h_nr_running; |
4486edd1 | 7381 | |
a426f99c WL |
7382 | nr_running = rq->nr_running; |
7383 | if (nr_running > 1) | |
4486edd1 TC |
7384 | *overload = true; |
7385 | ||
0ec8aa00 PZ |
7386 | #ifdef CONFIG_NUMA_BALANCING |
7387 | sgs->nr_numa_running += rq->nr_numa_running; | |
7388 | sgs->nr_preferred_running += rq->nr_preferred_running; | |
7389 | #endif | |
c7132dd6 | 7390 | sgs->sum_weighted_load += weighted_cpuload(rq); |
a426f99c WL |
7391 | /* |
7392 | * No need to call idle_cpu() if nr_running is not 0 | |
7393 | */ | |
7394 | if (!nr_running && idle_cpu(i)) | |
aae6d3dd | 7395 | sgs->idle_cpus++; |
1e3c88bd PZ |
7396 | } |
7397 | ||
63b2ca30 NP |
7398 | /* Adjust by relative CPU capacity of the group */ |
7399 | sgs->group_capacity = group->sgc->capacity; | |
ca8ce3d0 | 7400 | sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; |
1e3c88bd | 7401 | |
dd5feea1 | 7402 | if (sgs->sum_nr_running) |
38d0f770 | 7403 | sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; |
1e3c88bd | 7404 | |
aae6d3dd | 7405 | sgs->group_weight = group->group_weight; |
b37d9316 | 7406 | |
ea67821b | 7407 | sgs->group_no_capacity = group_is_overloaded(env, sgs); |
79a89f92 | 7408 | sgs->group_type = group_classify(group, sgs); |
1e3c88bd PZ |
7409 | } |
7410 | ||
532cb4c4 MN |
7411 | /** |
7412 | * update_sd_pick_busiest - return 1 on busiest group | |
cd96891d | 7413 | * @env: The load balancing environment. |
532cb4c4 MN |
7414 | * @sds: sched_domain statistics |
7415 | * @sg: sched_group candidate to be checked for being the busiest | |
b6b12294 | 7416 | * @sgs: sched_group statistics |
532cb4c4 MN |
7417 | * |
7418 | * Determine if @sg is a busier group than the previously selected | |
7419 | * busiest group. | |
e69f6186 YB |
7420 | * |
7421 | * Return: %true if @sg is a busier group than the previously selected | |
7422 | * busiest group. %false otherwise. | |
532cb4c4 | 7423 | */ |
bd939f45 | 7424 | static bool update_sd_pick_busiest(struct lb_env *env, |
532cb4c4 MN |
7425 | struct sd_lb_stats *sds, |
7426 | struct sched_group *sg, | |
bd939f45 | 7427 | struct sg_lb_stats *sgs) |
532cb4c4 | 7428 | { |
caeb178c | 7429 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
532cb4c4 | 7430 | |
caeb178c | 7431 | if (sgs->group_type > busiest->group_type) |
532cb4c4 MN |
7432 | return true; |
7433 | ||
caeb178c RR |
7434 | if (sgs->group_type < busiest->group_type) |
7435 | return false; | |
7436 | ||
7437 | if (sgs->avg_load <= busiest->avg_load) | |
7438 | return false; | |
7439 | ||
9e0994c0 MR |
7440 | if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) |
7441 | goto asym_packing; | |
7442 | ||
7443 | /* | |
7444 | * Candidate sg has no more than one task per CPU and | |
7445 | * has higher per-CPU capacity. Migrating tasks to less | |
7446 | * capable CPUs may harm throughput. Maximize throughput, | |
7447 | * power/energy consequences are not considered. | |
7448 | */ | |
7449 | if (sgs->sum_nr_running <= sgs->group_weight && | |
7450 | group_smaller_cpu_capacity(sds->local, sg)) | |
7451 | return false; | |
7452 | ||
7453 | asym_packing: | |
caeb178c RR |
7454 | /* This is the busiest node in its class. */ |
7455 | if (!(env->sd->flags & SD_ASYM_PACKING)) | |
532cb4c4 MN |
7456 | return true; |
7457 | ||
1f621e02 SD |
7458 | /* No ASYM_PACKING if target cpu is already busy */ |
7459 | if (env->idle == CPU_NOT_IDLE) | |
7460 | return true; | |
532cb4c4 | 7461 | /* |
afe06efd TC |
7462 | * ASYM_PACKING needs to move all the work to the highest |
7463 | * prority CPUs in the group, therefore mark all groups | |
7464 | * of lower priority than ourself as busy. | |
532cb4c4 | 7465 | */ |
afe06efd TC |
7466 | if (sgs->sum_nr_running && |
7467 | sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { | |
532cb4c4 MN |
7468 | if (!sds->busiest) |
7469 | return true; | |
7470 | ||
afe06efd TC |
7471 | /* Prefer to move from lowest priority cpu's work */ |
7472 | if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, | |
7473 | sg->asym_prefer_cpu)) | |
532cb4c4 MN |
7474 | return true; |
7475 | } | |
7476 | ||
7477 | return false; | |
7478 | } | |
7479 | ||
0ec8aa00 PZ |
7480 | #ifdef CONFIG_NUMA_BALANCING |
7481 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
7482 | { | |
7483 | if (sgs->sum_nr_running > sgs->nr_numa_running) | |
7484 | return regular; | |
7485 | if (sgs->sum_nr_running > sgs->nr_preferred_running) | |
7486 | return remote; | |
7487 | return all; | |
7488 | } | |
7489 | ||
7490 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
7491 | { | |
7492 | if (rq->nr_running > rq->nr_numa_running) | |
7493 | return regular; | |
7494 | if (rq->nr_running > rq->nr_preferred_running) | |
7495 | return remote; | |
7496 | return all; | |
7497 | } | |
7498 | #else | |
7499 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
7500 | { | |
7501 | return all; | |
7502 | } | |
7503 | ||
7504 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
7505 | { | |
7506 | return regular; | |
7507 | } | |
7508 | #endif /* CONFIG_NUMA_BALANCING */ | |
7509 | ||
1e3c88bd | 7510 | /** |
461819ac | 7511 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
cd96891d | 7512 | * @env: The load balancing environment. |
1e3c88bd PZ |
7513 | * @sds: variable to hold the statistics for this sched_domain. |
7514 | */ | |
0ec8aa00 | 7515 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 7516 | { |
bd939f45 PZ |
7517 | struct sched_domain *child = env->sd->child; |
7518 | struct sched_group *sg = env->sd->groups; | |
05b40e05 | 7519 | struct sg_lb_stats *local = &sds->local_stat; |
56cf515b | 7520 | struct sg_lb_stats tmp_sgs; |
1e3c88bd | 7521 | int load_idx, prefer_sibling = 0; |
4486edd1 | 7522 | bool overload = false; |
1e3c88bd PZ |
7523 | |
7524 | if (child && child->flags & SD_PREFER_SIBLING) | |
7525 | prefer_sibling = 1; | |
7526 | ||
bd939f45 | 7527 | load_idx = get_sd_load_idx(env->sd, env->idle); |
1e3c88bd PZ |
7528 | |
7529 | do { | |
56cf515b | 7530 | struct sg_lb_stats *sgs = &tmp_sgs; |
1e3c88bd PZ |
7531 | int local_group; |
7532 | ||
ae4df9d6 | 7533 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
56cf515b JK |
7534 | if (local_group) { |
7535 | sds->local = sg; | |
05b40e05 | 7536 | sgs = local; |
b72ff13c PZ |
7537 | |
7538 | if (env->idle != CPU_NEWLY_IDLE || | |
63b2ca30 NP |
7539 | time_after_eq(jiffies, sg->sgc->next_update)) |
7540 | update_group_capacity(env->sd, env->dst_cpu); | |
56cf515b | 7541 | } |
1e3c88bd | 7542 | |
4486edd1 TC |
7543 | update_sg_lb_stats(env, sg, load_idx, local_group, sgs, |
7544 | &overload); | |
1e3c88bd | 7545 | |
b72ff13c PZ |
7546 | if (local_group) |
7547 | goto next_group; | |
7548 | ||
1e3c88bd PZ |
7549 | /* |
7550 | * In case the child domain prefers tasks go to siblings | |
ea67821b | 7551 | * first, lower the sg capacity so that we'll try |
75dd321d NR |
7552 | * and move all the excess tasks away. We lower the capacity |
7553 | * of a group only if the local group has the capacity to fit | |
ea67821b VG |
7554 | * these excess tasks. The extra check prevents the case where |
7555 | * you always pull from the heaviest group when it is already | |
7556 | * under-utilized (possible with a large weight task outweighs | |
7557 | * the tasks on the system). | |
1e3c88bd | 7558 | */ |
b72ff13c | 7559 | if (prefer_sibling && sds->local && |
05b40e05 SD |
7560 | group_has_capacity(env, local) && |
7561 | (sgs->sum_nr_running > local->sum_nr_running + 1)) { | |
ea67821b | 7562 | sgs->group_no_capacity = 1; |
79a89f92 | 7563 | sgs->group_type = group_classify(sg, sgs); |
cb0b9f24 | 7564 | } |
1e3c88bd | 7565 | |
b72ff13c | 7566 | if (update_sd_pick_busiest(env, sds, sg, sgs)) { |
532cb4c4 | 7567 | sds->busiest = sg; |
56cf515b | 7568 | sds->busiest_stat = *sgs; |
1e3c88bd PZ |
7569 | } |
7570 | ||
b72ff13c PZ |
7571 | next_group: |
7572 | /* Now, start updating sd_lb_stats */ | |
7573 | sds->total_load += sgs->group_load; | |
63b2ca30 | 7574 | sds->total_capacity += sgs->group_capacity; |
b72ff13c | 7575 | |
532cb4c4 | 7576 | sg = sg->next; |
bd939f45 | 7577 | } while (sg != env->sd->groups); |
0ec8aa00 PZ |
7578 | |
7579 | if (env->sd->flags & SD_NUMA) | |
7580 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | |
4486edd1 TC |
7581 | |
7582 | if (!env->sd->parent) { | |
7583 | /* update overload indicator if we are at root domain */ | |
7584 | if (env->dst_rq->rd->overload != overload) | |
7585 | env->dst_rq->rd->overload = overload; | |
7586 | } | |
7587 | ||
532cb4c4 MN |
7588 | } |
7589 | ||
532cb4c4 MN |
7590 | /** |
7591 | * check_asym_packing - Check to see if the group is packed into the | |
0ba42a59 | 7592 | * sched domain. |
532cb4c4 MN |
7593 | * |
7594 | * This is primarily intended to used at the sibling level. Some | |
7595 | * cores like POWER7 prefer to use lower numbered SMT threads. In the | |
7596 | * case of POWER7, it can move to lower SMT modes only when higher | |
7597 | * threads are idle. When in lower SMT modes, the threads will | |
7598 | * perform better since they share less core resources. Hence when we | |
7599 | * have idle threads, we want them to be the higher ones. | |
7600 | * | |
7601 | * This packing function is run on idle threads. It checks to see if | |
7602 | * the busiest CPU in this domain (core in the P7 case) has a higher | |
7603 | * CPU number than the packing function is being run on. Here we are | |
7604 | * assuming lower CPU number will be equivalent to lower a SMT thread | |
7605 | * number. | |
7606 | * | |
e69f6186 | 7607 | * Return: 1 when packing is required and a task should be moved to |
b6b12294 MN |
7608 | * this CPU. The amount of the imbalance is returned in *imbalance. |
7609 | * | |
cd96891d | 7610 | * @env: The load balancing environment. |
532cb4c4 | 7611 | * @sds: Statistics of the sched_domain which is to be packed |
532cb4c4 | 7612 | */ |
bd939f45 | 7613 | static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) |
532cb4c4 MN |
7614 | { |
7615 | int busiest_cpu; | |
7616 | ||
bd939f45 | 7617 | if (!(env->sd->flags & SD_ASYM_PACKING)) |
532cb4c4 MN |
7618 | return 0; |
7619 | ||
1f621e02 SD |
7620 | if (env->idle == CPU_NOT_IDLE) |
7621 | return 0; | |
7622 | ||
532cb4c4 MN |
7623 | if (!sds->busiest) |
7624 | return 0; | |
7625 | ||
afe06efd TC |
7626 | busiest_cpu = sds->busiest->asym_prefer_cpu; |
7627 | if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) | |
532cb4c4 MN |
7628 | return 0; |
7629 | ||
bd939f45 | 7630 | env->imbalance = DIV_ROUND_CLOSEST( |
63b2ca30 | 7631 | sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, |
ca8ce3d0 | 7632 | SCHED_CAPACITY_SCALE); |
bd939f45 | 7633 | |
532cb4c4 | 7634 | return 1; |
1e3c88bd PZ |
7635 | } |
7636 | ||
7637 | /** | |
7638 | * fix_small_imbalance - Calculate the minor imbalance that exists | |
7639 | * amongst the groups of a sched_domain, during | |
7640 | * load balancing. | |
cd96891d | 7641 | * @env: The load balancing environment. |
1e3c88bd | 7642 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 7643 | */ |
bd939f45 PZ |
7644 | static inline |
7645 | void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | |
1e3c88bd | 7646 | { |
63b2ca30 | 7647 | unsigned long tmp, capa_now = 0, capa_move = 0; |
1e3c88bd | 7648 | unsigned int imbn = 2; |
dd5feea1 | 7649 | unsigned long scaled_busy_load_per_task; |
56cf515b | 7650 | struct sg_lb_stats *local, *busiest; |
1e3c88bd | 7651 | |
56cf515b JK |
7652 | local = &sds->local_stat; |
7653 | busiest = &sds->busiest_stat; | |
1e3c88bd | 7654 | |
56cf515b JK |
7655 | if (!local->sum_nr_running) |
7656 | local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); | |
7657 | else if (busiest->load_per_task > local->load_per_task) | |
7658 | imbn = 1; | |
dd5feea1 | 7659 | |
56cf515b | 7660 | scaled_busy_load_per_task = |
ca8ce3d0 | 7661 | (busiest->load_per_task * SCHED_CAPACITY_SCALE) / |
63b2ca30 | 7662 | busiest->group_capacity; |
56cf515b | 7663 | |
3029ede3 VD |
7664 | if (busiest->avg_load + scaled_busy_load_per_task >= |
7665 | local->avg_load + (scaled_busy_load_per_task * imbn)) { | |
56cf515b | 7666 | env->imbalance = busiest->load_per_task; |
1e3c88bd PZ |
7667 | return; |
7668 | } | |
7669 | ||
7670 | /* | |
7671 | * OK, we don't have enough imbalance to justify moving tasks, | |
ced549fa | 7672 | * however we may be able to increase total CPU capacity used by |
1e3c88bd PZ |
7673 | * moving them. |
7674 | */ | |
7675 | ||
63b2ca30 | 7676 | capa_now += busiest->group_capacity * |
56cf515b | 7677 | min(busiest->load_per_task, busiest->avg_load); |
63b2ca30 | 7678 | capa_now += local->group_capacity * |
56cf515b | 7679 | min(local->load_per_task, local->avg_load); |
ca8ce3d0 | 7680 | capa_now /= SCHED_CAPACITY_SCALE; |
1e3c88bd PZ |
7681 | |
7682 | /* Amount of load we'd subtract */ | |
a2cd4260 | 7683 | if (busiest->avg_load > scaled_busy_load_per_task) { |
63b2ca30 | 7684 | capa_move += busiest->group_capacity * |
56cf515b | 7685 | min(busiest->load_per_task, |
a2cd4260 | 7686 | busiest->avg_load - scaled_busy_load_per_task); |
56cf515b | 7687 | } |
1e3c88bd PZ |
7688 | |
7689 | /* Amount of load we'd add */ | |
63b2ca30 | 7690 | if (busiest->avg_load * busiest->group_capacity < |
ca8ce3d0 | 7691 | busiest->load_per_task * SCHED_CAPACITY_SCALE) { |
63b2ca30 NP |
7692 | tmp = (busiest->avg_load * busiest->group_capacity) / |
7693 | local->group_capacity; | |
56cf515b | 7694 | } else { |
ca8ce3d0 | 7695 | tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / |
63b2ca30 | 7696 | local->group_capacity; |
56cf515b | 7697 | } |
63b2ca30 | 7698 | capa_move += local->group_capacity * |
3ae11c90 | 7699 | min(local->load_per_task, local->avg_load + tmp); |
ca8ce3d0 | 7700 | capa_move /= SCHED_CAPACITY_SCALE; |
1e3c88bd PZ |
7701 | |
7702 | /* Move if we gain throughput */ | |
63b2ca30 | 7703 | if (capa_move > capa_now) |
56cf515b | 7704 | env->imbalance = busiest->load_per_task; |
1e3c88bd PZ |
7705 | } |
7706 | ||
7707 | /** | |
7708 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
7709 | * groups of a given sched_domain during load balance. | |
bd939f45 | 7710 | * @env: load balance environment |
1e3c88bd | 7711 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 7712 | */ |
bd939f45 | 7713 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 7714 | { |
dd5feea1 | 7715 | unsigned long max_pull, load_above_capacity = ~0UL; |
56cf515b JK |
7716 | struct sg_lb_stats *local, *busiest; |
7717 | ||
7718 | local = &sds->local_stat; | |
56cf515b | 7719 | busiest = &sds->busiest_stat; |
dd5feea1 | 7720 | |
caeb178c | 7721 | if (busiest->group_type == group_imbalanced) { |
30ce5dab PZ |
7722 | /* |
7723 | * In the group_imb case we cannot rely on group-wide averages | |
7724 | * to ensure cpu-load equilibrium, look at wider averages. XXX | |
7725 | */ | |
56cf515b JK |
7726 | busiest->load_per_task = |
7727 | min(busiest->load_per_task, sds->avg_load); | |
dd5feea1 SS |
7728 | } |
7729 | ||
1e3c88bd | 7730 | /* |
885e542c DE |
7731 | * Avg load of busiest sg can be less and avg load of local sg can |
7732 | * be greater than avg load across all sgs of sd because avg load | |
7733 | * factors in sg capacity and sgs with smaller group_type are | |
7734 | * skipped when updating the busiest sg: | |
1e3c88bd | 7735 | */ |
b1885550 VD |
7736 | if (busiest->avg_load <= sds->avg_load || |
7737 | local->avg_load >= sds->avg_load) { | |
bd939f45 PZ |
7738 | env->imbalance = 0; |
7739 | return fix_small_imbalance(env, sds); | |
1e3c88bd PZ |
7740 | } |
7741 | ||
9a5d9ba6 PZ |
7742 | /* |
7743 | * If there aren't any idle cpus, avoid creating some. | |
7744 | */ | |
7745 | if (busiest->group_type == group_overloaded && | |
7746 | local->group_type == group_overloaded) { | |
1be0eb2a | 7747 | load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; |
cfa10334 | 7748 | if (load_above_capacity > busiest->group_capacity) { |
ea67821b | 7749 | load_above_capacity -= busiest->group_capacity; |
26656215 | 7750 | load_above_capacity *= scale_load_down(NICE_0_LOAD); |
cfa10334 MR |
7751 | load_above_capacity /= busiest->group_capacity; |
7752 | } else | |
ea67821b | 7753 | load_above_capacity = ~0UL; |
dd5feea1 SS |
7754 | } |
7755 | ||
7756 | /* | |
7757 | * We're trying to get all the cpus to the average_load, so we don't | |
7758 | * want to push ourselves above the average load, nor do we wish to | |
7759 | * reduce the max loaded cpu below the average load. At the same time, | |
0a9b23ce DE |
7760 | * we also don't want to reduce the group load below the group |
7761 | * capacity. Thus we look for the minimum possible imbalance. | |
dd5feea1 | 7762 | */ |
30ce5dab | 7763 | max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); |
1e3c88bd PZ |
7764 | |
7765 | /* How much load to actually move to equalise the imbalance */ | |
56cf515b | 7766 | env->imbalance = min( |
63b2ca30 NP |
7767 | max_pull * busiest->group_capacity, |
7768 | (sds->avg_load - local->avg_load) * local->group_capacity | |
ca8ce3d0 | 7769 | ) / SCHED_CAPACITY_SCALE; |
1e3c88bd PZ |
7770 | |
7771 | /* | |
7772 | * if *imbalance is less than the average load per runnable task | |
25985edc | 7773 | * there is no guarantee that any tasks will be moved so we'll have |
1e3c88bd PZ |
7774 | * a think about bumping its value to force at least one task to be |
7775 | * moved | |
7776 | */ | |
56cf515b | 7777 | if (env->imbalance < busiest->load_per_task) |
bd939f45 | 7778 | return fix_small_imbalance(env, sds); |
1e3c88bd | 7779 | } |
fab47622 | 7780 | |
1e3c88bd PZ |
7781 | /******* find_busiest_group() helpers end here *********************/ |
7782 | ||
7783 | /** | |
7784 | * find_busiest_group - Returns the busiest group within the sched_domain | |
0a9b23ce | 7785 | * if there is an imbalance. |
1e3c88bd PZ |
7786 | * |
7787 | * Also calculates the amount of weighted load which should be moved | |
7788 | * to restore balance. | |
7789 | * | |
cd96891d | 7790 | * @env: The load balancing environment. |
1e3c88bd | 7791 | * |
e69f6186 | 7792 | * Return: - The busiest group if imbalance exists. |
1e3c88bd | 7793 | */ |
56cf515b | 7794 | static struct sched_group *find_busiest_group(struct lb_env *env) |
1e3c88bd | 7795 | { |
56cf515b | 7796 | struct sg_lb_stats *local, *busiest; |
1e3c88bd PZ |
7797 | struct sd_lb_stats sds; |
7798 | ||
147c5fc2 | 7799 | init_sd_lb_stats(&sds); |
1e3c88bd PZ |
7800 | |
7801 | /* | |
7802 | * Compute the various statistics relavent for load balancing at | |
7803 | * this level. | |
7804 | */ | |
23f0d209 | 7805 | update_sd_lb_stats(env, &sds); |
56cf515b JK |
7806 | local = &sds.local_stat; |
7807 | busiest = &sds.busiest_stat; | |
1e3c88bd | 7808 | |
ea67821b | 7809 | /* ASYM feature bypasses nice load balance check */ |
1f621e02 | 7810 | if (check_asym_packing(env, &sds)) |
532cb4c4 MN |
7811 | return sds.busiest; |
7812 | ||
cc57aa8f | 7813 | /* There is no busy sibling group to pull tasks from */ |
56cf515b | 7814 | if (!sds.busiest || busiest->sum_nr_running == 0) |
1e3c88bd PZ |
7815 | goto out_balanced; |
7816 | ||
ca8ce3d0 NP |
7817 | sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) |
7818 | / sds.total_capacity; | |
b0432d8f | 7819 | |
866ab43e PZ |
7820 | /* |
7821 | * If the busiest group is imbalanced the below checks don't | |
30ce5dab | 7822 | * work because they assume all things are equal, which typically |
866ab43e PZ |
7823 | * isn't true due to cpus_allowed constraints and the like. |
7824 | */ | |
caeb178c | 7825 | if (busiest->group_type == group_imbalanced) |
866ab43e PZ |
7826 | goto force_balance; |
7827 | ||
cc57aa8f | 7828 | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ |
ea67821b VG |
7829 | if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && |
7830 | busiest->group_no_capacity) | |
fab47622 NR |
7831 | goto force_balance; |
7832 | ||
cc57aa8f | 7833 | /* |
9c58c79a | 7834 | * If the local group is busier than the selected busiest group |
cc57aa8f PZ |
7835 | * don't try and pull any tasks. |
7836 | */ | |
56cf515b | 7837 | if (local->avg_load >= busiest->avg_load) |
1e3c88bd PZ |
7838 | goto out_balanced; |
7839 | ||
cc57aa8f PZ |
7840 | /* |
7841 | * Don't pull any tasks if this group is already above the domain | |
7842 | * average load. | |
7843 | */ | |
56cf515b | 7844 | if (local->avg_load >= sds.avg_load) |
1e3c88bd PZ |
7845 | goto out_balanced; |
7846 | ||
bd939f45 | 7847 | if (env->idle == CPU_IDLE) { |
aae6d3dd | 7848 | /* |
43f4d666 VG |
7849 | * This cpu is idle. If the busiest group is not overloaded |
7850 | * and there is no imbalance between this and busiest group | |
7851 | * wrt idle cpus, it is balanced. The imbalance becomes | |
7852 | * significant if the diff is greater than 1 otherwise we | |
7853 | * might end up to just move the imbalance on another group | |
aae6d3dd | 7854 | */ |
43f4d666 VG |
7855 | if ((busiest->group_type != group_overloaded) && |
7856 | (local->idle_cpus <= (busiest->idle_cpus + 1))) | |
aae6d3dd | 7857 | goto out_balanced; |
c186fafe PZ |
7858 | } else { |
7859 | /* | |
7860 | * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | |
7861 | * imbalance_pct to be conservative. | |
7862 | */ | |
56cf515b JK |
7863 | if (100 * busiest->avg_load <= |
7864 | env->sd->imbalance_pct * local->avg_load) | |
c186fafe | 7865 | goto out_balanced; |
aae6d3dd | 7866 | } |
1e3c88bd | 7867 | |
fab47622 | 7868 | force_balance: |
1e3c88bd | 7869 | /* Looks like there is an imbalance. Compute it */ |
bd939f45 | 7870 | calculate_imbalance(env, &sds); |
1e3c88bd PZ |
7871 | return sds.busiest; |
7872 | ||
7873 | out_balanced: | |
bd939f45 | 7874 | env->imbalance = 0; |
1e3c88bd PZ |
7875 | return NULL; |
7876 | } | |
7877 | ||
7878 | /* | |
7879 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
7880 | */ | |
bd939f45 | 7881 | static struct rq *find_busiest_queue(struct lb_env *env, |
b9403130 | 7882 | struct sched_group *group) |
1e3c88bd PZ |
7883 | { |
7884 | struct rq *busiest = NULL, *rq; | |
ced549fa | 7885 | unsigned long busiest_load = 0, busiest_capacity = 1; |
1e3c88bd PZ |
7886 | int i; |
7887 | ||
ae4df9d6 | 7888 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
ea67821b | 7889 | unsigned long capacity, wl; |
0ec8aa00 PZ |
7890 | enum fbq_type rt; |
7891 | ||
7892 | rq = cpu_rq(i); | |
7893 | rt = fbq_classify_rq(rq); | |
1e3c88bd | 7894 | |
0ec8aa00 PZ |
7895 | /* |
7896 | * We classify groups/runqueues into three groups: | |
7897 | * - regular: there are !numa tasks | |
7898 | * - remote: there are numa tasks that run on the 'wrong' node | |
7899 | * - all: there is no distinction | |
7900 | * | |
7901 | * In order to avoid migrating ideally placed numa tasks, | |
7902 | * ignore those when there's better options. | |
7903 | * | |
7904 | * If we ignore the actual busiest queue to migrate another | |
7905 | * task, the next balance pass can still reduce the busiest | |
7906 | * queue by moving tasks around inside the node. | |
7907 | * | |
7908 | * If we cannot move enough load due to this classification | |
7909 | * the next pass will adjust the group classification and | |
7910 | * allow migration of more tasks. | |
7911 | * | |
7912 | * Both cases only affect the total convergence complexity. | |
7913 | */ | |
7914 | if (rt > env->fbq_type) | |
7915 | continue; | |
7916 | ||
ced549fa | 7917 | capacity = capacity_of(i); |
9d5efe05 | 7918 | |
c7132dd6 | 7919 | wl = weighted_cpuload(rq); |
1e3c88bd | 7920 | |
6e40f5bb TG |
7921 | /* |
7922 | * When comparing with imbalance, use weighted_cpuload() | |
ced549fa | 7923 | * which is not scaled with the cpu capacity. |
6e40f5bb | 7924 | */ |
ea67821b VG |
7925 | |
7926 | if (rq->nr_running == 1 && wl > env->imbalance && | |
7927 | !check_cpu_capacity(rq, env->sd)) | |
1e3c88bd PZ |
7928 | continue; |
7929 | ||
6e40f5bb TG |
7930 | /* |
7931 | * For the load comparisons with the other cpu's, consider | |
ced549fa NP |
7932 | * the weighted_cpuload() scaled with the cpu capacity, so |
7933 | * that the load can be moved away from the cpu that is | |
7934 | * potentially running at a lower capacity. | |
95a79b80 | 7935 | * |
ced549fa | 7936 | * Thus we're looking for max(wl_i / capacity_i), crosswise |
95a79b80 | 7937 | * multiplication to rid ourselves of the division works out |
ced549fa NP |
7938 | * to: wl_i * capacity_j > wl_j * capacity_i; where j is |
7939 | * our previous maximum. | |
6e40f5bb | 7940 | */ |
ced549fa | 7941 | if (wl * busiest_capacity > busiest_load * capacity) { |
95a79b80 | 7942 | busiest_load = wl; |
ced549fa | 7943 | busiest_capacity = capacity; |
1e3c88bd PZ |
7944 | busiest = rq; |
7945 | } | |
7946 | } | |
7947 | ||
7948 | return busiest; | |
7949 | } | |
7950 | ||
7951 | /* | |
7952 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
7953 | * so long as it is large enough. | |
7954 | */ | |
7955 | #define MAX_PINNED_INTERVAL 512 | |
7956 | ||
bd939f45 | 7957 | static int need_active_balance(struct lb_env *env) |
1af3ed3d | 7958 | { |
bd939f45 PZ |
7959 | struct sched_domain *sd = env->sd; |
7960 | ||
7961 | if (env->idle == CPU_NEWLY_IDLE) { | |
532cb4c4 MN |
7962 | |
7963 | /* | |
7964 | * ASYM_PACKING needs to force migrate tasks from busy but | |
afe06efd TC |
7965 | * lower priority CPUs in order to pack all tasks in the |
7966 | * highest priority CPUs. | |
532cb4c4 | 7967 | */ |
afe06efd TC |
7968 | if ((sd->flags & SD_ASYM_PACKING) && |
7969 | sched_asym_prefer(env->dst_cpu, env->src_cpu)) | |
532cb4c4 | 7970 | return 1; |
1af3ed3d PZ |
7971 | } |
7972 | ||
1aaf90a4 VG |
7973 | /* |
7974 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | |
7975 | * It's worth migrating the task if the src_cpu's capacity is reduced | |
7976 | * because of other sched_class or IRQs if more capacity stays | |
7977 | * available on dst_cpu. | |
7978 | */ | |
7979 | if ((env->idle != CPU_NOT_IDLE) && | |
7980 | (env->src_rq->cfs.h_nr_running == 1)) { | |
7981 | if ((check_cpu_capacity(env->src_rq, sd)) && | |
7982 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | |
7983 | return 1; | |
7984 | } | |
7985 | ||
1af3ed3d PZ |
7986 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
7987 | } | |
7988 | ||
969c7921 TH |
7989 | static int active_load_balance_cpu_stop(void *data); |
7990 | ||
23f0d209 JK |
7991 | static int should_we_balance(struct lb_env *env) |
7992 | { | |
7993 | struct sched_group *sg = env->sd->groups; | |
23f0d209 JK |
7994 | int cpu, balance_cpu = -1; |
7995 | ||
7996 | /* | |
7997 | * In the newly idle case, we will allow all the cpu's | |
7998 | * to do the newly idle load balance. | |
7999 | */ | |
8000 | if (env->idle == CPU_NEWLY_IDLE) | |
8001 | return 1; | |
8002 | ||
23f0d209 | 8003 | /* Try to find first idle cpu */ |
e5c14b1f | 8004 | for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { |
af218122 | 8005 | if (!idle_cpu(cpu)) |
23f0d209 JK |
8006 | continue; |
8007 | ||
8008 | balance_cpu = cpu; | |
8009 | break; | |
8010 | } | |
8011 | ||
8012 | if (balance_cpu == -1) | |
8013 | balance_cpu = group_balance_cpu(sg); | |
8014 | ||
8015 | /* | |
8016 | * First idle cpu or the first cpu(busiest) in this sched group | |
8017 | * is eligible for doing load balancing at this and above domains. | |
8018 | */ | |
b0cff9d8 | 8019 | return balance_cpu == env->dst_cpu; |
23f0d209 JK |
8020 | } |
8021 | ||
1e3c88bd PZ |
8022 | /* |
8023 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
8024 | * tasks if there is an imbalance. | |
8025 | */ | |
8026 | static int load_balance(int this_cpu, struct rq *this_rq, | |
8027 | struct sched_domain *sd, enum cpu_idle_type idle, | |
23f0d209 | 8028 | int *continue_balancing) |
1e3c88bd | 8029 | { |
88b8dac0 | 8030 | int ld_moved, cur_ld_moved, active_balance = 0; |
6263322c | 8031 | struct sched_domain *sd_parent = sd->parent; |
1e3c88bd | 8032 | struct sched_group *group; |
1e3c88bd | 8033 | struct rq *busiest; |
8a8c69c3 | 8034 | struct rq_flags rf; |
4ba29684 | 8035 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
1e3c88bd | 8036 | |
8e45cb54 PZ |
8037 | struct lb_env env = { |
8038 | .sd = sd, | |
ddcdf6e7 PZ |
8039 | .dst_cpu = this_cpu, |
8040 | .dst_rq = this_rq, | |
ae4df9d6 | 8041 | .dst_grpmask = sched_group_span(sd->groups), |
8e45cb54 | 8042 | .idle = idle, |
eb95308e | 8043 | .loop_break = sched_nr_migrate_break, |
b9403130 | 8044 | .cpus = cpus, |
0ec8aa00 | 8045 | .fbq_type = all, |
163122b7 | 8046 | .tasks = LIST_HEAD_INIT(env.tasks), |
8e45cb54 PZ |
8047 | }; |
8048 | ||
65a4433a | 8049 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
1e3c88bd | 8050 | |
ae92882e | 8051 | schedstat_inc(sd->lb_count[idle]); |
1e3c88bd PZ |
8052 | |
8053 | redo: | |
23f0d209 JK |
8054 | if (!should_we_balance(&env)) { |
8055 | *continue_balancing = 0; | |
1e3c88bd | 8056 | goto out_balanced; |
23f0d209 | 8057 | } |
1e3c88bd | 8058 | |
23f0d209 | 8059 | group = find_busiest_group(&env); |
1e3c88bd | 8060 | if (!group) { |
ae92882e | 8061 | schedstat_inc(sd->lb_nobusyg[idle]); |
1e3c88bd PZ |
8062 | goto out_balanced; |
8063 | } | |
8064 | ||
b9403130 | 8065 | busiest = find_busiest_queue(&env, group); |
1e3c88bd | 8066 | if (!busiest) { |
ae92882e | 8067 | schedstat_inc(sd->lb_nobusyq[idle]); |
1e3c88bd PZ |
8068 | goto out_balanced; |
8069 | } | |
8070 | ||
78feefc5 | 8071 | BUG_ON(busiest == env.dst_rq); |
1e3c88bd | 8072 | |
ae92882e | 8073 | schedstat_add(sd->lb_imbalance[idle], env.imbalance); |
1e3c88bd | 8074 | |
1aaf90a4 VG |
8075 | env.src_cpu = busiest->cpu; |
8076 | env.src_rq = busiest; | |
8077 | ||
1e3c88bd PZ |
8078 | ld_moved = 0; |
8079 | if (busiest->nr_running > 1) { | |
8080 | /* | |
8081 | * Attempt to move tasks. If find_busiest_group has found | |
8082 | * an imbalance but busiest->nr_running <= 1, the group is | |
8083 | * still unbalanced. ld_moved simply stays zero, so it is | |
8084 | * correctly treated as an imbalance. | |
8085 | */ | |
8e45cb54 | 8086 | env.flags |= LBF_ALL_PINNED; |
c82513e5 | 8087 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
8e45cb54 | 8088 | |
5d6523eb | 8089 | more_balance: |
8a8c69c3 | 8090 | rq_lock_irqsave(busiest, &rf); |
3bed5e21 | 8091 | update_rq_clock(busiest); |
88b8dac0 SV |
8092 | |
8093 | /* | |
8094 | * cur_ld_moved - load moved in current iteration | |
8095 | * ld_moved - cumulative load moved across iterations | |
8096 | */ | |
163122b7 | 8097 | cur_ld_moved = detach_tasks(&env); |
1e3c88bd PZ |
8098 | |
8099 | /* | |
163122b7 KT |
8100 | * We've detached some tasks from busiest_rq. Every |
8101 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | |
8102 | * unlock busiest->lock, and we are able to be sure | |
8103 | * that nobody can manipulate the tasks in parallel. | |
8104 | * See task_rq_lock() family for the details. | |
1e3c88bd | 8105 | */ |
163122b7 | 8106 | |
8a8c69c3 | 8107 | rq_unlock(busiest, &rf); |
163122b7 KT |
8108 | |
8109 | if (cur_ld_moved) { | |
8110 | attach_tasks(&env); | |
8111 | ld_moved += cur_ld_moved; | |
8112 | } | |
8113 | ||
8a8c69c3 | 8114 | local_irq_restore(rf.flags); |
88b8dac0 | 8115 | |
f1cd0858 JK |
8116 | if (env.flags & LBF_NEED_BREAK) { |
8117 | env.flags &= ~LBF_NEED_BREAK; | |
8118 | goto more_balance; | |
8119 | } | |
8120 | ||
88b8dac0 SV |
8121 | /* |
8122 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | |
8123 | * us and move them to an alternate dst_cpu in our sched_group | |
8124 | * where they can run. The upper limit on how many times we | |
8125 | * iterate on same src_cpu is dependent on number of cpus in our | |
8126 | * sched_group. | |
8127 | * | |
8128 | * This changes load balance semantics a bit on who can move | |
8129 | * load to a given_cpu. In addition to the given_cpu itself | |
8130 | * (or a ilb_cpu acting on its behalf where given_cpu is | |
8131 | * nohz-idle), we now have balance_cpu in a position to move | |
8132 | * load to given_cpu. In rare situations, this may cause | |
8133 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | |
8134 | * _independently_ and at _same_ time to move some load to | |
8135 | * given_cpu) causing exceess load to be moved to given_cpu. | |
8136 | * This however should not happen so much in practice and | |
8137 | * moreover subsequent load balance cycles should correct the | |
8138 | * excess load moved. | |
8139 | */ | |
6263322c | 8140 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
88b8dac0 | 8141 | |
7aff2e3a VD |
8142 | /* Prevent to re-select dst_cpu via env's cpus */ |
8143 | cpumask_clear_cpu(env.dst_cpu, env.cpus); | |
8144 | ||
78feefc5 | 8145 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
88b8dac0 | 8146 | env.dst_cpu = env.new_dst_cpu; |
6263322c | 8147 | env.flags &= ~LBF_DST_PINNED; |
88b8dac0 SV |
8148 | env.loop = 0; |
8149 | env.loop_break = sched_nr_migrate_break; | |
e02e60c1 | 8150 | |
88b8dac0 SV |
8151 | /* |
8152 | * Go back to "more_balance" rather than "redo" since we | |
8153 | * need to continue with same src_cpu. | |
8154 | */ | |
8155 | goto more_balance; | |
8156 | } | |
1e3c88bd | 8157 | |
6263322c PZ |
8158 | /* |
8159 | * We failed to reach balance because of affinity. | |
8160 | */ | |
8161 | if (sd_parent) { | |
63b2ca30 | 8162 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
6263322c | 8163 | |
afdeee05 | 8164 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
6263322c | 8165 | *group_imbalance = 1; |
6263322c PZ |
8166 | } |
8167 | ||
1e3c88bd | 8168 | /* All tasks on this runqueue were pinned by CPU affinity */ |
8e45cb54 | 8169 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
1e3c88bd | 8170 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
65a4433a JH |
8171 | /* |
8172 | * Attempting to continue load balancing at the current | |
8173 | * sched_domain level only makes sense if there are | |
8174 | * active CPUs remaining as possible busiest CPUs to | |
8175 | * pull load from which are not contained within the | |
8176 | * destination group that is receiving any migrated | |
8177 | * load. | |
8178 | */ | |
8179 | if (!cpumask_subset(cpus, env.dst_grpmask)) { | |
bbf18b19 PN |
8180 | env.loop = 0; |
8181 | env.loop_break = sched_nr_migrate_break; | |
1e3c88bd | 8182 | goto redo; |
bbf18b19 | 8183 | } |
afdeee05 | 8184 | goto out_all_pinned; |
1e3c88bd PZ |
8185 | } |
8186 | } | |
8187 | ||
8188 | if (!ld_moved) { | |
ae92882e | 8189 | schedstat_inc(sd->lb_failed[idle]); |
58b26c4c VP |
8190 | /* |
8191 | * Increment the failure counter only on periodic balance. | |
8192 | * We do not want newidle balance, which can be very | |
8193 | * frequent, pollute the failure counter causing | |
8194 | * excessive cache_hot migrations and active balances. | |
8195 | */ | |
8196 | if (idle != CPU_NEWLY_IDLE) | |
8197 | sd->nr_balance_failed++; | |
1e3c88bd | 8198 | |
bd939f45 | 8199 | if (need_active_balance(&env)) { |
8a8c69c3 PZ |
8200 | unsigned long flags; |
8201 | ||
1e3c88bd PZ |
8202 | raw_spin_lock_irqsave(&busiest->lock, flags); |
8203 | ||
969c7921 TH |
8204 | /* don't kick the active_load_balance_cpu_stop, |
8205 | * if the curr task on busiest cpu can't be | |
8206 | * moved to this_cpu | |
1e3c88bd | 8207 | */ |
0c98d344 | 8208 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { |
1e3c88bd PZ |
8209 | raw_spin_unlock_irqrestore(&busiest->lock, |
8210 | flags); | |
8e45cb54 | 8211 | env.flags |= LBF_ALL_PINNED; |
1e3c88bd PZ |
8212 | goto out_one_pinned; |
8213 | } | |
8214 | ||
969c7921 TH |
8215 | /* |
8216 | * ->active_balance synchronizes accesses to | |
8217 | * ->active_balance_work. Once set, it's cleared | |
8218 | * only after active load balance is finished. | |
8219 | */ | |
1e3c88bd PZ |
8220 | if (!busiest->active_balance) { |
8221 | busiest->active_balance = 1; | |
8222 | busiest->push_cpu = this_cpu; | |
8223 | active_balance = 1; | |
8224 | } | |
8225 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | |
969c7921 | 8226 | |
bd939f45 | 8227 | if (active_balance) { |
969c7921 TH |
8228 | stop_one_cpu_nowait(cpu_of(busiest), |
8229 | active_load_balance_cpu_stop, busiest, | |
8230 | &busiest->active_balance_work); | |
bd939f45 | 8231 | } |
1e3c88bd | 8232 | |
d02c0711 | 8233 | /* We've kicked active balancing, force task migration. */ |
1e3c88bd PZ |
8234 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
8235 | } | |
8236 | } else | |
8237 | sd->nr_balance_failed = 0; | |
8238 | ||
8239 | if (likely(!active_balance)) { | |
8240 | /* We were unbalanced, so reset the balancing interval */ | |
8241 | sd->balance_interval = sd->min_interval; | |
8242 | } else { | |
8243 | /* | |
8244 | * If we've begun active balancing, start to back off. This | |
8245 | * case may not be covered by the all_pinned logic if there | |
8246 | * is only 1 task on the busy runqueue (because we don't call | |
163122b7 | 8247 | * detach_tasks). |
1e3c88bd PZ |
8248 | */ |
8249 | if (sd->balance_interval < sd->max_interval) | |
8250 | sd->balance_interval *= 2; | |
8251 | } | |
8252 | ||
1e3c88bd PZ |
8253 | goto out; |
8254 | ||
8255 | out_balanced: | |
afdeee05 VG |
8256 | /* |
8257 | * We reach balance although we may have faced some affinity | |
8258 | * constraints. Clear the imbalance flag if it was set. | |
8259 | */ | |
8260 | if (sd_parent) { | |
8261 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; | |
8262 | ||
8263 | if (*group_imbalance) | |
8264 | *group_imbalance = 0; | |
8265 | } | |
8266 | ||
8267 | out_all_pinned: | |
8268 | /* | |
8269 | * We reach balance because all tasks are pinned at this level so | |
8270 | * we can't migrate them. Let the imbalance flag set so parent level | |
8271 | * can try to migrate them. | |
8272 | */ | |
ae92882e | 8273 | schedstat_inc(sd->lb_balanced[idle]); |
1e3c88bd PZ |
8274 | |
8275 | sd->nr_balance_failed = 0; | |
8276 | ||
8277 | out_one_pinned: | |
8278 | /* tune up the balancing interval */ | |
8e45cb54 | 8279 | if (((env.flags & LBF_ALL_PINNED) && |
5b54b56b | 8280 | sd->balance_interval < MAX_PINNED_INTERVAL) || |
1e3c88bd PZ |
8281 | (sd->balance_interval < sd->max_interval)) |
8282 | sd->balance_interval *= 2; | |
8283 | ||
46e49b38 | 8284 | ld_moved = 0; |
1e3c88bd | 8285 | out: |
1e3c88bd PZ |
8286 | return ld_moved; |
8287 | } | |
8288 | ||
52a08ef1 JL |
8289 | static inline unsigned long |
8290 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | |
8291 | { | |
8292 | unsigned long interval = sd->balance_interval; | |
8293 | ||
8294 | if (cpu_busy) | |
8295 | interval *= sd->busy_factor; | |
8296 | ||
8297 | /* scale ms to jiffies */ | |
8298 | interval = msecs_to_jiffies(interval); | |
8299 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
8300 | ||
8301 | return interval; | |
8302 | } | |
8303 | ||
8304 | static inline void | |
31851a98 | 8305 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
52a08ef1 JL |
8306 | { |
8307 | unsigned long interval, next; | |
8308 | ||
31851a98 LY |
8309 | /* used by idle balance, so cpu_busy = 0 */ |
8310 | interval = get_sd_balance_interval(sd, 0); | |
52a08ef1 JL |
8311 | next = sd->last_balance + interval; |
8312 | ||
8313 | if (time_after(*next_balance, next)) | |
8314 | *next_balance = next; | |
8315 | } | |
8316 | ||
1e3c88bd PZ |
8317 | /* |
8318 | * idle_balance is called by schedule() if this_cpu is about to become | |
8319 | * idle. Attempts to pull tasks from other CPUs. | |
8320 | */ | |
46f69fa3 | 8321 | static int idle_balance(struct rq *this_rq, struct rq_flags *rf) |
1e3c88bd | 8322 | { |
52a08ef1 JL |
8323 | unsigned long next_balance = jiffies + HZ; |
8324 | int this_cpu = this_rq->cpu; | |
1e3c88bd PZ |
8325 | struct sched_domain *sd; |
8326 | int pulled_task = 0; | |
9bd721c5 | 8327 | u64 curr_cost = 0; |
1e3c88bd | 8328 | |
6e83125c PZ |
8329 | /* |
8330 | * We must set idle_stamp _before_ calling idle_balance(), such that we | |
8331 | * measure the duration of idle_balance() as idle time. | |
8332 | */ | |
8333 | this_rq->idle_stamp = rq_clock(this_rq); | |
8334 | ||
46f69fa3 MF |
8335 | /* |
8336 | * This is OK, because current is on_cpu, which avoids it being picked | |
8337 | * for load-balance and preemption/IRQs are still disabled avoiding | |
8338 | * further scheduler activity on it and we're being very careful to | |
8339 | * re-start the picking loop. | |
8340 | */ | |
8341 | rq_unpin_lock(this_rq, rf); | |
8342 | ||
4486edd1 TC |
8343 | if (this_rq->avg_idle < sysctl_sched_migration_cost || |
8344 | !this_rq->rd->overload) { | |
52a08ef1 JL |
8345 | rcu_read_lock(); |
8346 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | |
8347 | if (sd) | |
31851a98 | 8348 | update_next_balance(sd, &next_balance); |
52a08ef1 JL |
8349 | rcu_read_unlock(); |
8350 | ||
6e83125c | 8351 | goto out; |
52a08ef1 | 8352 | } |
1e3c88bd | 8353 | |
f492e12e PZ |
8354 | raw_spin_unlock(&this_rq->lock); |
8355 | ||
48a16753 | 8356 | update_blocked_averages(this_cpu); |
dce840a0 | 8357 | rcu_read_lock(); |
1e3c88bd | 8358 | for_each_domain(this_cpu, sd) { |
23f0d209 | 8359 | int continue_balancing = 1; |
9bd721c5 | 8360 | u64 t0, domain_cost; |
1e3c88bd PZ |
8361 | |
8362 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
8363 | continue; | |
8364 | ||
52a08ef1 | 8365 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { |
31851a98 | 8366 | update_next_balance(sd, &next_balance); |
9bd721c5 | 8367 | break; |
52a08ef1 | 8368 | } |
9bd721c5 | 8369 | |
f492e12e | 8370 | if (sd->flags & SD_BALANCE_NEWIDLE) { |
9bd721c5 JL |
8371 | t0 = sched_clock_cpu(this_cpu); |
8372 | ||
f492e12e | 8373 | pulled_task = load_balance(this_cpu, this_rq, |
23f0d209 JK |
8374 | sd, CPU_NEWLY_IDLE, |
8375 | &continue_balancing); | |
9bd721c5 JL |
8376 | |
8377 | domain_cost = sched_clock_cpu(this_cpu) - t0; | |
8378 | if (domain_cost > sd->max_newidle_lb_cost) | |
8379 | sd->max_newidle_lb_cost = domain_cost; | |
8380 | ||
8381 | curr_cost += domain_cost; | |
f492e12e | 8382 | } |
1e3c88bd | 8383 | |
31851a98 | 8384 | update_next_balance(sd, &next_balance); |
39a4d9ca JL |
8385 | |
8386 | /* | |
8387 | * Stop searching for tasks to pull if there are | |
8388 | * now runnable tasks on this rq. | |
8389 | */ | |
8390 | if (pulled_task || this_rq->nr_running > 0) | |
1e3c88bd | 8391 | break; |
1e3c88bd | 8392 | } |
dce840a0 | 8393 | rcu_read_unlock(); |
f492e12e PZ |
8394 | |
8395 | raw_spin_lock(&this_rq->lock); | |
8396 | ||
0e5b5337 JL |
8397 | if (curr_cost > this_rq->max_idle_balance_cost) |
8398 | this_rq->max_idle_balance_cost = curr_cost; | |
8399 | ||
e5fc6611 | 8400 | /* |
0e5b5337 JL |
8401 | * While browsing the domains, we released the rq lock, a task could |
8402 | * have been enqueued in the meantime. Since we're not going idle, | |
8403 | * pretend we pulled a task. | |
e5fc6611 | 8404 | */ |
0e5b5337 | 8405 | if (this_rq->cfs.h_nr_running && !pulled_task) |
6e83125c | 8406 | pulled_task = 1; |
e5fc6611 | 8407 | |
52a08ef1 JL |
8408 | out: |
8409 | /* Move the next balance forward */ | |
8410 | if (time_after(this_rq->next_balance, next_balance)) | |
1e3c88bd | 8411 | this_rq->next_balance = next_balance; |
9bd721c5 | 8412 | |
e4aa358b | 8413 | /* Is there a task of a high priority class? */ |
46383648 | 8414 | if (this_rq->nr_running != this_rq->cfs.h_nr_running) |
e4aa358b KT |
8415 | pulled_task = -1; |
8416 | ||
38c6ade2 | 8417 | if (pulled_task) |
6e83125c PZ |
8418 | this_rq->idle_stamp = 0; |
8419 | ||
46f69fa3 MF |
8420 | rq_repin_lock(this_rq, rf); |
8421 | ||
3c4017c1 | 8422 | return pulled_task; |
1e3c88bd PZ |
8423 | } |
8424 | ||
8425 | /* | |
969c7921 TH |
8426 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes |
8427 | * running tasks off the busiest CPU onto idle CPUs. It requires at | |
8428 | * least 1 task to be running on each physical CPU where possible, and | |
8429 | * avoids physical / logical imbalances. | |
1e3c88bd | 8430 | */ |
969c7921 | 8431 | static int active_load_balance_cpu_stop(void *data) |
1e3c88bd | 8432 | { |
969c7921 TH |
8433 | struct rq *busiest_rq = data; |
8434 | int busiest_cpu = cpu_of(busiest_rq); | |
1e3c88bd | 8435 | int target_cpu = busiest_rq->push_cpu; |
969c7921 | 8436 | struct rq *target_rq = cpu_rq(target_cpu); |
1e3c88bd | 8437 | struct sched_domain *sd; |
e5673f28 | 8438 | struct task_struct *p = NULL; |
8a8c69c3 | 8439 | struct rq_flags rf; |
969c7921 | 8440 | |
8a8c69c3 | 8441 | rq_lock_irq(busiest_rq, &rf); |
969c7921 TH |
8442 | |
8443 | /* make sure the requested cpu hasn't gone down in the meantime */ | |
8444 | if (unlikely(busiest_cpu != smp_processor_id() || | |
8445 | !busiest_rq->active_balance)) | |
8446 | goto out_unlock; | |
1e3c88bd PZ |
8447 | |
8448 | /* Is there any task to move? */ | |
8449 | if (busiest_rq->nr_running <= 1) | |
969c7921 | 8450 | goto out_unlock; |
1e3c88bd PZ |
8451 | |
8452 | /* | |
8453 | * This condition is "impossible", if it occurs | |
8454 | * we need to fix it. Originally reported by | |
8455 | * Bjorn Helgaas on a 128-cpu setup. | |
8456 | */ | |
8457 | BUG_ON(busiest_rq == target_rq); | |
8458 | ||
1e3c88bd | 8459 | /* Search for an sd spanning us and the target CPU. */ |
dce840a0 | 8460 | rcu_read_lock(); |
1e3c88bd PZ |
8461 | for_each_domain(target_cpu, sd) { |
8462 | if ((sd->flags & SD_LOAD_BALANCE) && | |
8463 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | |
8464 | break; | |
8465 | } | |
8466 | ||
8467 | if (likely(sd)) { | |
8e45cb54 PZ |
8468 | struct lb_env env = { |
8469 | .sd = sd, | |
ddcdf6e7 PZ |
8470 | .dst_cpu = target_cpu, |
8471 | .dst_rq = target_rq, | |
8472 | .src_cpu = busiest_rq->cpu, | |
8473 | .src_rq = busiest_rq, | |
8e45cb54 | 8474 | .idle = CPU_IDLE, |
65a4433a JH |
8475 | /* |
8476 | * can_migrate_task() doesn't need to compute new_dst_cpu | |
8477 | * for active balancing. Since we have CPU_IDLE, but no | |
8478 | * @dst_grpmask we need to make that test go away with lying | |
8479 | * about DST_PINNED. | |
8480 | */ | |
8481 | .flags = LBF_DST_PINNED, | |
8e45cb54 PZ |
8482 | }; |
8483 | ||
ae92882e | 8484 | schedstat_inc(sd->alb_count); |
3bed5e21 | 8485 | update_rq_clock(busiest_rq); |
1e3c88bd | 8486 | |
e5673f28 | 8487 | p = detach_one_task(&env); |
d02c0711 | 8488 | if (p) { |
ae92882e | 8489 | schedstat_inc(sd->alb_pushed); |
d02c0711 SD |
8490 | /* Active balancing done, reset the failure counter. */ |
8491 | sd->nr_balance_failed = 0; | |
8492 | } else { | |
ae92882e | 8493 | schedstat_inc(sd->alb_failed); |
d02c0711 | 8494 | } |
1e3c88bd | 8495 | } |
dce840a0 | 8496 | rcu_read_unlock(); |
969c7921 TH |
8497 | out_unlock: |
8498 | busiest_rq->active_balance = 0; | |
8a8c69c3 | 8499 | rq_unlock(busiest_rq, &rf); |
e5673f28 KT |
8500 | |
8501 | if (p) | |
8502 | attach_one_task(target_rq, p); | |
8503 | ||
8504 | local_irq_enable(); | |
8505 | ||
969c7921 | 8506 | return 0; |
1e3c88bd PZ |
8507 | } |
8508 | ||
d987fc7f MG |
8509 | static inline int on_null_domain(struct rq *rq) |
8510 | { | |
8511 | return unlikely(!rcu_dereference_sched(rq->sd)); | |
8512 | } | |
8513 | ||
3451d024 | 8514 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 VP |
8515 | /* |
8516 | * idle load balancing details | |
83cd4fe2 VP |
8517 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
8518 | * needed, they will kick the idle load balancer, which then does idle | |
8519 | * load balancing for all the idle CPUs. | |
8520 | */ | |
1e3c88bd | 8521 | static struct { |
83cd4fe2 | 8522 | cpumask_var_t idle_cpus_mask; |
0b005cf5 | 8523 | atomic_t nr_cpus; |
83cd4fe2 VP |
8524 | unsigned long next_balance; /* in jiffy units */ |
8525 | } nohz ____cacheline_aligned; | |
1e3c88bd | 8526 | |
3dd0337d | 8527 | static inline int find_new_ilb(void) |
1e3c88bd | 8528 | { |
0b005cf5 | 8529 | int ilb = cpumask_first(nohz.idle_cpus_mask); |
1e3c88bd | 8530 | |
786d6dc7 SS |
8531 | if (ilb < nr_cpu_ids && idle_cpu(ilb)) |
8532 | return ilb; | |
8533 | ||
8534 | return nr_cpu_ids; | |
1e3c88bd | 8535 | } |
1e3c88bd | 8536 | |
83cd4fe2 VP |
8537 | /* |
8538 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | |
8539 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | |
8540 | * CPU (if there is one). | |
8541 | */ | |
0aeeeeba | 8542 | static void nohz_balancer_kick(void) |
83cd4fe2 VP |
8543 | { |
8544 | int ilb_cpu; | |
8545 | ||
8546 | nohz.next_balance++; | |
8547 | ||
3dd0337d | 8548 | ilb_cpu = find_new_ilb(); |
83cd4fe2 | 8549 | |
0b005cf5 SS |
8550 | if (ilb_cpu >= nr_cpu_ids) |
8551 | return; | |
83cd4fe2 | 8552 | |
cd490c5b | 8553 | if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) |
1c792db7 SS |
8554 | return; |
8555 | /* | |
8556 | * Use smp_send_reschedule() instead of resched_cpu(). | |
8557 | * This way we generate a sched IPI on the target cpu which | |
8558 | * is idle. And the softirq performing nohz idle load balance | |
8559 | * will be run before returning from the IPI. | |
8560 | */ | |
8561 | smp_send_reschedule(ilb_cpu); | |
83cd4fe2 VP |
8562 | return; |
8563 | } | |
8564 | ||
20a5c8cc | 8565 | void nohz_balance_exit_idle(unsigned int cpu) |
71325960 SS |
8566 | { |
8567 | if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { | |
d987fc7f MG |
8568 | /* |
8569 | * Completely isolated CPUs don't ever set, so we must test. | |
8570 | */ | |
8571 | if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { | |
8572 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | |
8573 | atomic_dec(&nohz.nr_cpus); | |
8574 | } | |
71325960 SS |
8575 | clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); |
8576 | } | |
8577 | } | |
8578 | ||
69e1e811 SS |
8579 | static inline void set_cpu_sd_state_busy(void) |
8580 | { | |
8581 | struct sched_domain *sd; | |
37dc6b50 | 8582 | int cpu = smp_processor_id(); |
69e1e811 | 8583 | |
69e1e811 | 8584 | rcu_read_lock(); |
0e369d75 | 8585 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
8586 | |
8587 | if (!sd || !sd->nohz_idle) | |
8588 | goto unlock; | |
8589 | sd->nohz_idle = 0; | |
8590 | ||
0e369d75 | 8591 | atomic_inc(&sd->shared->nr_busy_cpus); |
25f55d9d | 8592 | unlock: |
69e1e811 SS |
8593 | rcu_read_unlock(); |
8594 | } | |
8595 | ||
8596 | void set_cpu_sd_state_idle(void) | |
8597 | { | |
8598 | struct sched_domain *sd; | |
37dc6b50 | 8599 | int cpu = smp_processor_id(); |
69e1e811 | 8600 | |
69e1e811 | 8601 | rcu_read_lock(); |
0e369d75 | 8602 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
8603 | |
8604 | if (!sd || sd->nohz_idle) | |
8605 | goto unlock; | |
8606 | sd->nohz_idle = 1; | |
8607 | ||
0e369d75 | 8608 | atomic_dec(&sd->shared->nr_busy_cpus); |
25f55d9d | 8609 | unlock: |
69e1e811 SS |
8610 | rcu_read_unlock(); |
8611 | } | |
8612 | ||
1e3c88bd | 8613 | /* |
c1cc017c | 8614 | * This routine will record that the cpu is going idle with tick stopped. |
0b005cf5 | 8615 | * This info will be used in performing idle load balancing in the future. |
1e3c88bd | 8616 | */ |
c1cc017c | 8617 | void nohz_balance_enter_idle(int cpu) |
1e3c88bd | 8618 | { |
71325960 SS |
8619 | /* |
8620 | * If this cpu is going down, then nothing needs to be done. | |
8621 | */ | |
8622 | if (!cpu_active(cpu)) | |
8623 | return; | |
8624 | ||
387bc8b5 FW |
8625 | /* Spare idle load balancing on CPUs that don't want to be disturbed: */ |
8626 | if (!is_housekeeping_cpu(cpu)) | |
8627 | return; | |
8628 | ||
c1cc017c AS |
8629 | if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) |
8630 | return; | |
1e3c88bd | 8631 | |
d987fc7f MG |
8632 | /* |
8633 | * If we're a completely isolated CPU, we don't play. | |
8634 | */ | |
8635 | if (on_null_domain(cpu_rq(cpu))) | |
8636 | return; | |
8637 | ||
c1cc017c AS |
8638 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
8639 | atomic_inc(&nohz.nr_cpus); | |
8640 | set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | |
1e3c88bd PZ |
8641 | } |
8642 | #endif | |
8643 | ||
8644 | static DEFINE_SPINLOCK(balancing); | |
8645 | ||
49c022e6 PZ |
8646 | /* |
8647 | * Scale the max load_balance interval with the number of CPUs in the system. | |
8648 | * This trades load-balance latency on larger machines for less cross talk. | |
8649 | */ | |
029632fb | 8650 | void update_max_interval(void) |
49c022e6 PZ |
8651 | { |
8652 | max_load_balance_interval = HZ*num_online_cpus()/10; | |
8653 | } | |
8654 | ||
1e3c88bd PZ |
8655 | /* |
8656 | * It checks each scheduling domain to see if it is due to be balanced, | |
8657 | * and initiates a balancing operation if so. | |
8658 | * | |
b9b0853a | 8659 | * Balancing parameters are set up in init_sched_domains. |
1e3c88bd | 8660 | */ |
f7ed0a89 | 8661 | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) |
1e3c88bd | 8662 | { |
23f0d209 | 8663 | int continue_balancing = 1; |
f7ed0a89 | 8664 | int cpu = rq->cpu; |
1e3c88bd | 8665 | unsigned long interval; |
04f733b4 | 8666 | struct sched_domain *sd; |
1e3c88bd PZ |
8667 | /* Earliest time when we have to do rebalance again */ |
8668 | unsigned long next_balance = jiffies + 60*HZ; | |
8669 | int update_next_balance = 0; | |
f48627e6 JL |
8670 | int need_serialize, need_decay = 0; |
8671 | u64 max_cost = 0; | |
1e3c88bd | 8672 | |
48a16753 | 8673 | update_blocked_averages(cpu); |
2069dd75 | 8674 | |
dce840a0 | 8675 | rcu_read_lock(); |
1e3c88bd | 8676 | for_each_domain(cpu, sd) { |
f48627e6 JL |
8677 | /* |
8678 | * Decay the newidle max times here because this is a regular | |
8679 | * visit to all the domains. Decay ~1% per second. | |
8680 | */ | |
8681 | if (time_after(jiffies, sd->next_decay_max_lb_cost)) { | |
8682 | sd->max_newidle_lb_cost = | |
8683 | (sd->max_newidle_lb_cost * 253) / 256; | |
8684 | sd->next_decay_max_lb_cost = jiffies + HZ; | |
8685 | need_decay = 1; | |
8686 | } | |
8687 | max_cost += sd->max_newidle_lb_cost; | |
8688 | ||
1e3c88bd PZ |
8689 | if (!(sd->flags & SD_LOAD_BALANCE)) |
8690 | continue; | |
8691 | ||
f48627e6 JL |
8692 | /* |
8693 | * Stop the load balance at this level. There is another | |
8694 | * CPU in our sched group which is doing load balancing more | |
8695 | * actively. | |
8696 | */ | |
8697 | if (!continue_balancing) { | |
8698 | if (need_decay) | |
8699 | continue; | |
8700 | break; | |
8701 | } | |
8702 | ||
52a08ef1 | 8703 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); |
1e3c88bd PZ |
8704 | |
8705 | need_serialize = sd->flags & SD_SERIALIZE; | |
1e3c88bd PZ |
8706 | if (need_serialize) { |
8707 | if (!spin_trylock(&balancing)) | |
8708 | goto out; | |
8709 | } | |
8710 | ||
8711 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | |
23f0d209 | 8712 | if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { |
1e3c88bd | 8713 | /* |
6263322c | 8714 | * The LBF_DST_PINNED logic could have changed |
de5eb2dd JK |
8715 | * env->dst_cpu, so we can't know our idle |
8716 | * state even if we migrated tasks. Update it. | |
1e3c88bd | 8717 | */ |
de5eb2dd | 8718 | idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; |
1e3c88bd PZ |
8719 | } |
8720 | sd->last_balance = jiffies; | |
52a08ef1 | 8721 | interval = get_sd_balance_interval(sd, idle != CPU_IDLE); |
1e3c88bd PZ |
8722 | } |
8723 | if (need_serialize) | |
8724 | spin_unlock(&balancing); | |
8725 | out: | |
8726 | if (time_after(next_balance, sd->last_balance + interval)) { | |
8727 | next_balance = sd->last_balance + interval; | |
8728 | update_next_balance = 1; | |
8729 | } | |
f48627e6 JL |
8730 | } |
8731 | if (need_decay) { | |
1e3c88bd | 8732 | /* |
f48627e6 JL |
8733 | * Ensure the rq-wide value also decays but keep it at a |
8734 | * reasonable floor to avoid funnies with rq->avg_idle. | |
1e3c88bd | 8735 | */ |
f48627e6 JL |
8736 | rq->max_idle_balance_cost = |
8737 | max((u64)sysctl_sched_migration_cost, max_cost); | |
1e3c88bd | 8738 | } |
dce840a0 | 8739 | rcu_read_unlock(); |
1e3c88bd PZ |
8740 | |
8741 | /* | |
8742 | * next_balance will be updated only when there is a need. | |
8743 | * When the cpu is attached to null domain for ex, it will not be | |
8744 | * updated. | |
8745 | */ | |
c5afb6a8 | 8746 | if (likely(update_next_balance)) { |
1e3c88bd | 8747 | rq->next_balance = next_balance; |
c5afb6a8 VG |
8748 | |
8749 | #ifdef CONFIG_NO_HZ_COMMON | |
8750 | /* | |
8751 | * If this CPU has been elected to perform the nohz idle | |
8752 | * balance. Other idle CPUs have already rebalanced with | |
8753 | * nohz_idle_balance() and nohz.next_balance has been | |
8754 | * updated accordingly. This CPU is now running the idle load | |
8755 | * balance for itself and we need to update the | |
8756 | * nohz.next_balance accordingly. | |
8757 | */ | |
8758 | if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) | |
8759 | nohz.next_balance = rq->next_balance; | |
8760 | #endif | |
8761 | } | |
1e3c88bd PZ |
8762 | } |
8763 | ||
3451d024 | 8764 | #ifdef CONFIG_NO_HZ_COMMON |
1e3c88bd | 8765 | /* |
3451d024 | 8766 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the |
1e3c88bd PZ |
8767 | * rebalancing for all the cpus for whom scheduler ticks are stopped. |
8768 | */ | |
208cb16b | 8769 | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
83cd4fe2 | 8770 | { |
208cb16b | 8771 | int this_cpu = this_rq->cpu; |
83cd4fe2 VP |
8772 | struct rq *rq; |
8773 | int balance_cpu; | |
c5afb6a8 VG |
8774 | /* Earliest time when we have to do rebalance again */ |
8775 | unsigned long next_balance = jiffies + 60*HZ; | |
8776 | int update_next_balance = 0; | |
83cd4fe2 | 8777 | |
1c792db7 SS |
8778 | if (idle != CPU_IDLE || |
8779 | !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) | |
8780 | goto end; | |
83cd4fe2 VP |
8781 | |
8782 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | |
8a6d42d1 | 8783 | if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) |
83cd4fe2 VP |
8784 | continue; |
8785 | ||
8786 | /* | |
8787 | * If this cpu gets work to do, stop the load balancing | |
8788 | * work being done for other cpus. Next load | |
8789 | * balancing owner will pick it up. | |
8790 | */ | |
1c792db7 | 8791 | if (need_resched()) |
83cd4fe2 | 8792 | break; |
83cd4fe2 | 8793 | |
5ed4f1d9 VG |
8794 | rq = cpu_rq(balance_cpu); |
8795 | ||
ed61bbc6 TC |
8796 | /* |
8797 | * If time for next balance is due, | |
8798 | * do the balance. | |
8799 | */ | |
8800 | if (time_after_eq(jiffies, rq->next_balance)) { | |
8a8c69c3 PZ |
8801 | struct rq_flags rf; |
8802 | ||
8803 | rq_lock_irq(rq, &rf); | |
ed61bbc6 | 8804 | update_rq_clock(rq); |
cee1afce | 8805 | cpu_load_update_idle(rq); |
8a8c69c3 PZ |
8806 | rq_unlock_irq(rq, &rf); |
8807 | ||
ed61bbc6 TC |
8808 | rebalance_domains(rq, CPU_IDLE); |
8809 | } | |
83cd4fe2 | 8810 | |
c5afb6a8 VG |
8811 | if (time_after(next_balance, rq->next_balance)) { |
8812 | next_balance = rq->next_balance; | |
8813 | update_next_balance = 1; | |
8814 | } | |
83cd4fe2 | 8815 | } |
c5afb6a8 VG |
8816 | |
8817 | /* | |
8818 | * next_balance will be updated only when there is a need. | |
8819 | * When the CPU is attached to null domain for ex, it will not be | |
8820 | * updated. | |
8821 | */ | |
8822 | if (likely(update_next_balance)) | |
8823 | nohz.next_balance = next_balance; | |
1c792db7 SS |
8824 | end: |
8825 | clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); | |
83cd4fe2 VP |
8826 | } |
8827 | ||
8828 | /* | |
0b005cf5 | 8829 | * Current heuristic for kicking the idle load balancer in the presence |
1aaf90a4 | 8830 | * of an idle cpu in the system. |
0b005cf5 | 8831 | * - This rq has more than one task. |
1aaf90a4 VG |
8832 | * - This rq has at least one CFS task and the capacity of the CPU is |
8833 | * significantly reduced because of RT tasks or IRQs. | |
8834 | * - At parent of LLC scheduler domain level, this cpu's scheduler group has | |
8835 | * multiple busy cpu. | |
0b005cf5 SS |
8836 | * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler |
8837 | * domain span are idle. | |
83cd4fe2 | 8838 | */ |
1aaf90a4 | 8839 | static inline bool nohz_kick_needed(struct rq *rq) |
83cd4fe2 VP |
8840 | { |
8841 | unsigned long now = jiffies; | |
0e369d75 | 8842 | struct sched_domain_shared *sds; |
0b005cf5 | 8843 | struct sched_domain *sd; |
afe06efd | 8844 | int nr_busy, i, cpu = rq->cpu; |
1aaf90a4 | 8845 | bool kick = false; |
83cd4fe2 | 8846 | |
4a725627 | 8847 | if (unlikely(rq->idle_balance)) |
1aaf90a4 | 8848 | return false; |
83cd4fe2 | 8849 | |
1c792db7 SS |
8850 | /* |
8851 | * We may be recently in ticked or tickless idle mode. At the first | |
8852 | * busy tick after returning from idle, we will update the busy stats. | |
8853 | */ | |
69e1e811 | 8854 | set_cpu_sd_state_busy(); |
c1cc017c | 8855 | nohz_balance_exit_idle(cpu); |
0b005cf5 SS |
8856 | |
8857 | /* | |
8858 | * None are in tickless mode and hence no need for NOHZ idle load | |
8859 | * balancing. | |
8860 | */ | |
8861 | if (likely(!atomic_read(&nohz.nr_cpus))) | |
1aaf90a4 | 8862 | return false; |
1c792db7 SS |
8863 | |
8864 | if (time_before(now, nohz.next_balance)) | |
1aaf90a4 | 8865 | return false; |
83cd4fe2 | 8866 | |
0b005cf5 | 8867 | if (rq->nr_running >= 2) |
1aaf90a4 | 8868 | return true; |
83cd4fe2 | 8869 | |
067491b7 | 8870 | rcu_read_lock(); |
0e369d75 PZ |
8871 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
8872 | if (sds) { | |
8873 | /* | |
8874 | * XXX: write a coherent comment on why we do this. | |
8875 | * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com | |
8876 | */ | |
8877 | nr_busy = atomic_read(&sds->nr_busy_cpus); | |
1aaf90a4 VG |
8878 | if (nr_busy > 1) { |
8879 | kick = true; | |
8880 | goto unlock; | |
8881 | } | |
8882 | ||
83cd4fe2 | 8883 | } |
37dc6b50 | 8884 | |
1aaf90a4 VG |
8885 | sd = rcu_dereference(rq->sd); |
8886 | if (sd) { | |
8887 | if ((rq->cfs.h_nr_running >= 1) && | |
8888 | check_cpu_capacity(rq, sd)) { | |
8889 | kick = true; | |
8890 | goto unlock; | |
8891 | } | |
8892 | } | |
37dc6b50 | 8893 | |
1aaf90a4 | 8894 | sd = rcu_dereference(per_cpu(sd_asym, cpu)); |
afe06efd TC |
8895 | if (sd) { |
8896 | for_each_cpu(i, sched_domain_span(sd)) { | |
8897 | if (i == cpu || | |
8898 | !cpumask_test_cpu(i, nohz.idle_cpus_mask)) | |
8899 | continue; | |
067491b7 | 8900 | |
afe06efd TC |
8901 | if (sched_asym_prefer(i, cpu)) { |
8902 | kick = true; | |
8903 | goto unlock; | |
8904 | } | |
8905 | } | |
8906 | } | |
1aaf90a4 | 8907 | unlock: |
067491b7 | 8908 | rcu_read_unlock(); |
1aaf90a4 | 8909 | return kick; |
83cd4fe2 VP |
8910 | } |
8911 | #else | |
208cb16b | 8912 | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } |
83cd4fe2 VP |
8913 | #endif |
8914 | ||
8915 | /* | |
8916 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
8917 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | |
8918 | */ | |
0766f788 | 8919 | static __latent_entropy void run_rebalance_domains(struct softirq_action *h) |
1e3c88bd | 8920 | { |
208cb16b | 8921 | struct rq *this_rq = this_rq(); |
6eb57e0d | 8922 | enum cpu_idle_type idle = this_rq->idle_balance ? |
1e3c88bd PZ |
8923 | CPU_IDLE : CPU_NOT_IDLE; |
8924 | ||
1e3c88bd | 8925 | /* |
83cd4fe2 | 8926 | * If this cpu has a pending nohz_balance_kick, then do the |
1e3c88bd | 8927 | * balancing on behalf of the other idle cpus whose ticks are |
d4573c3e PM |
8928 | * stopped. Do nohz_idle_balance *before* rebalance_domains to |
8929 | * give the idle cpus a chance to load balance. Else we may | |
8930 | * load balance only within the local sched_domain hierarchy | |
8931 | * and abort nohz_idle_balance altogether if we pull some load. | |
1e3c88bd | 8932 | */ |
208cb16b | 8933 | nohz_idle_balance(this_rq, idle); |
d4573c3e | 8934 | rebalance_domains(this_rq, idle); |
1e3c88bd PZ |
8935 | } |
8936 | ||
1e3c88bd PZ |
8937 | /* |
8938 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
1e3c88bd | 8939 | */ |
7caff66f | 8940 | void trigger_load_balance(struct rq *rq) |
1e3c88bd | 8941 | { |
1e3c88bd | 8942 | /* Don't need to rebalance while attached to NULL domain */ |
c726099e DL |
8943 | if (unlikely(on_null_domain(rq))) |
8944 | return; | |
8945 | ||
8946 | if (time_after_eq(jiffies, rq->next_balance)) | |
1e3c88bd | 8947 | raise_softirq(SCHED_SOFTIRQ); |
3451d024 | 8948 | #ifdef CONFIG_NO_HZ_COMMON |
c726099e | 8949 | if (nohz_kick_needed(rq)) |
0aeeeeba | 8950 | nohz_balancer_kick(); |
83cd4fe2 | 8951 | #endif |
1e3c88bd PZ |
8952 | } |
8953 | ||
0bcdcf28 CE |
8954 | static void rq_online_fair(struct rq *rq) |
8955 | { | |
8956 | update_sysctl(); | |
0e59bdae KT |
8957 | |
8958 | update_runtime_enabled(rq); | |
0bcdcf28 CE |
8959 | } |
8960 | ||
8961 | static void rq_offline_fair(struct rq *rq) | |
8962 | { | |
8963 | update_sysctl(); | |
a4c96ae3 PB |
8964 | |
8965 | /* Ensure any throttled groups are reachable by pick_next_task */ | |
8966 | unthrottle_offline_cfs_rqs(rq); | |
0bcdcf28 CE |
8967 | } |
8968 | ||
55e12e5e | 8969 | #endif /* CONFIG_SMP */ |
e1d1484f | 8970 | |
bf0f6f24 IM |
8971 | /* |
8972 | * scheduler tick hitting a task of our scheduling class: | |
8973 | */ | |
8f4d37ec | 8974 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
8975 | { |
8976 | struct cfs_rq *cfs_rq; | |
8977 | struct sched_entity *se = &curr->se; | |
8978 | ||
8979 | for_each_sched_entity(se) { | |
8980 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 8981 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 | 8982 | } |
18bf2805 | 8983 | |
b52da86e | 8984 | if (static_branch_unlikely(&sched_numa_balancing)) |
cbee9f88 | 8985 | task_tick_numa(rq, curr); |
bf0f6f24 IM |
8986 | } |
8987 | ||
8988 | /* | |
cd29fe6f PZ |
8989 | * called on fork with the child task as argument from the parent's context |
8990 | * - child not yet on the tasklist | |
8991 | * - preemption disabled | |
bf0f6f24 | 8992 | */ |
cd29fe6f | 8993 | static void task_fork_fair(struct task_struct *p) |
bf0f6f24 | 8994 | { |
4fc420c9 DN |
8995 | struct cfs_rq *cfs_rq; |
8996 | struct sched_entity *se = &p->se, *curr; | |
cd29fe6f | 8997 | struct rq *rq = this_rq(); |
8a8c69c3 | 8998 | struct rq_flags rf; |
bf0f6f24 | 8999 | |
8a8c69c3 | 9000 | rq_lock(rq, &rf); |
861d034e PZ |
9001 | update_rq_clock(rq); |
9002 | ||
4fc420c9 DN |
9003 | cfs_rq = task_cfs_rq(current); |
9004 | curr = cfs_rq->curr; | |
e210bffd PZ |
9005 | if (curr) { |
9006 | update_curr(cfs_rq); | |
b5d9d734 | 9007 | se->vruntime = curr->vruntime; |
e210bffd | 9008 | } |
aeb73b04 | 9009 | place_entity(cfs_rq, se, 1); |
4d78e7b6 | 9010 | |
cd29fe6f | 9011 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { |
87fefa38 | 9012 | /* |
edcb60a3 IM |
9013 | * Upon rescheduling, sched_class::put_prev_task() will place |
9014 | * 'current' within the tree based on its new key value. | |
9015 | */ | |
4d78e7b6 | 9016 | swap(curr->vruntime, se->vruntime); |
8875125e | 9017 | resched_curr(rq); |
4d78e7b6 | 9018 | } |
bf0f6f24 | 9019 | |
88ec22d3 | 9020 | se->vruntime -= cfs_rq->min_vruntime; |
8a8c69c3 | 9021 | rq_unlock(rq, &rf); |
bf0f6f24 IM |
9022 | } |
9023 | ||
cb469845 SR |
9024 | /* |
9025 | * Priority of the task has changed. Check to see if we preempt | |
9026 | * the current task. | |
9027 | */ | |
da7a735e PZ |
9028 | static void |
9029 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 9030 | { |
da0c1e65 | 9031 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
9032 | return; |
9033 | ||
cb469845 SR |
9034 | /* |
9035 | * Reschedule if we are currently running on this runqueue and | |
9036 | * our priority decreased, or if we are not currently running on | |
9037 | * this runqueue and our priority is higher than the current's | |
9038 | */ | |
da7a735e | 9039 | if (rq->curr == p) { |
cb469845 | 9040 | if (p->prio > oldprio) |
8875125e | 9041 | resched_curr(rq); |
cb469845 | 9042 | } else |
15afe09b | 9043 | check_preempt_curr(rq, p, 0); |
cb469845 SR |
9044 | } |
9045 | ||
daa59407 | 9046 | static inline bool vruntime_normalized(struct task_struct *p) |
da7a735e PZ |
9047 | { |
9048 | struct sched_entity *se = &p->se; | |
da7a735e PZ |
9049 | |
9050 | /* | |
daa59407 BP |
9051 | * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, |
9052 | * the dequeue_entity(.flags=0) will already have normalized the | |
9053 | * vruntime. | |
9054 | */ | |
9055 | if (p->on_rq) | |
9056 | return true; | |
9057 | ||
9058 | /* | |
9059 | * When !on_rq, vruntime of the task has usually NOT been normalized. | |
9060 | * But there are some cases where it has already been normalized: | |
da7a735e | 9061 | * |
daa59407 BP |
9062 | * - A forked child which is waiting for being woken up by |
9063 | * wake_up_new_task(). | |
9064 | * - A task which has been woken up by try_to_wake_up() and | |
9065 | * waiting for actually being woken up by sched_ttwu_pending(). | |
da7a735e | 9066 | */ |
daa59407 BP |
9067 | if (!se->sum_exec_runtime || p->state == TASK_WAKING) |
9068 | return true; | |
9069 | ||
9070 | return false; | |
9071 | } | |
9072 | ||
09a43ace VG |
9073 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9074 | /* | |
9075 | * Propagate the changes of the sched_entity across the tg tree to make it | |
9076 | * visible to the root | |
9077 | */ | |
9078 | static void propagate_entity_cfs_rq(struct sched_entity *se) | |
9079 | { | |
9080 | struct cfs_rq *cfs_rq; | |
9081 | ||
9082 | /* Start to propagate at parent */ | |
9083 | se = se->parent; | |
9084 | ||
9085 | for_each_sched_entity(se) { | |
9086 | cfs_rq = cfs_rq_of(se); | |
9087 | ||
9088 | if (cfs_rq_throttled(cfs_rq)) | |
9089 | break; | |
9090 | ||
9091 | update_load_avg(se, UPDATE_TG); | |
9092 | } | |
9093 | } | |
9094 | #else | |
9095 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | |
9096 | #endif | |
9097 | ||
df217913 | 9098 | static void detach_entity_cfs_rq(struct sched_entity *se) |
daa59407 | 9099 | { |
daa59407 BP |
9100 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
9101 | ||
9d89c257 | 9102 | /* Catch up with the cfs_rq and remove our load when we leave */ |
d31b1a66 | 9103 | update_load_avg(se, 0); |
a05e8c51 | 9104 | detach_entity_load_avg(cfs_rq, se); |
7c3edd2c | 9105 | update_tg_load_avg(cfs_rq, false); |
09a43ace | 9106 | propagate_entity_cfs_rq(se); |
da7a735e PZ |
9107 | } |
9108 | ||
df217913 | 9109 | static void attach_entity_cfs_rq(struct sched_entity *se) |
cb469845 | 9110 | { |
daa59407 | 9111 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
7855a35a BP |
9112 | |
9113 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
eb7a59b2 M |
9114 | /* |
9115 | * Since the real-depth could have been changed (only FAIR | |
9116 | * class maintain depth value), reset depth properly. | |
9117 | */ | |
9118 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
9119 | #endif | |
7855a35a | 9120 | |
df217913 | 9121 | /* Synchronize entity with its cfs_rq */ |
d31b1a66 | 9122 | update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
daa59407 | 9123 | attach_entity_load_avg(cfs_rq, se); |
7c3edd2c | 9124 | update_tg_load_avg(cfs_rq, false); |
09a43ace | 9125 | propagate_entity_cfs_rq(se); |
df217913 VG |
9126 | } |
9127 | ||
9128 | static void detach_task_cfs_rq(struct task_struct *p) | |
9129 | { | |
9130 | struct sched_entity *se = &p->se; | |
9131 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
9132 | ||
9133 | if (!vruntime_normalized(p)) { | |
9134 | /* | |
9135 | * Fix up our vruntime so that the current sleep doesn't | |
9136 | * cause 'unlimited' sleep bonus. | |
9137 | */ | |
9138 | place_entity(cfs_rq, se, 0); | |
9139 | se->vruntime -= cfs_rq->min_vruntime; | |
9140 | } | |
9141 | ||
9142 | detach_entity_cfs_rq(se); | |
9143 | } | |
9144 | ||
9145 | static void attach_task_cfs_rq(struct task_struct *p) | |
9146 | { | |
9147 | struct sched_entity *se = &p->se; | |
9148 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
9149 | ||
9150 | attach_entity_cfs_rq(se); | |
daa59407 BP |
9151 | |
9152 | if (!vruntime_normalized(p)) | |
9153 | se->vruntime += cfs_rq->min_vruntime; | |
9154 | } | |
6efdb105 | 9155 | |
daa59407 BP |
9156 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
9157 | { | |
9158 | detach_task_cfs_rq(p); | |
9159 | } | |
9160 | ||
9161 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | |
9162 | { | |
9163 | attach_task_cfs_rq(p); | |
7855a35a | 9164 | |
daa59407 | 9165 | if (task_on_rq_queued(p)) { |
7855a35a | 9166 | /* |
daa59407 BP |
9167 | * We were most likely switched from sched_rt, so |
9168 | * kick off the schedule if running, otherwise just see | |
9169 | * if we can still preempt the current task. | |
7855a35a | 9170 | */ |
daa59407 BP |
9171 | if (rq->curr == p) |
9172 | resched_curr(rq); | |
9173 | else | |
9174 | check_preempt_curr(rq, p, 0); | |
7855a35a | 9175 | } |
cb469845 SR |
9176 | } |
9177 | ||
83b699ed SV |
9178 | /* Account for a task changing its policy or group. |
9179 | * | |
9180 | * This routine is mostly called to set cfs_rq->curr field when a task | |
9181 | * migrates between groups/classes. | |
9182 | */ | |
9183 | static void set_curr_task_fair(struct rq *rq) | |
9184 | { | |
9185 | struct sched_entity *se = &rq->curr->se; | |
9186 | ||
ec12cb7f PT |
9187 | for_each_sched_entity(se) { |
9188 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
9189 | ||
9190 | set_next_entity(cfs_rq, se); | |
9191 | /* ensure bandwidth has been allocated on our new cfs_rq */ | |
9192 | account_cfs_rq_runtime(cfs_rq, 0); | |
9193 | } | |
83b699ed SV |
9194 | } |
9195 | ||
029632fb PZ |
9196 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
9197 | { | |
9198 | cfs_rq->tasks_timeline = RB_ROOT; | |
029632fb PZ |
9199 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
9200 | #ifndef CONFIG_64BIT | |
9201 | cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | |
9202 | #endif | |
141965c7 | 9203 | #ifdef CONFIG_SMP |
09a43ace VG |
9204 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9205 | cfs_rq->propagate_avg = 0; | |
9206 | #endif | |
9d89c257 YD |
9207 | atomic_long_set(&cfs_rq->removed_load_avg, 0); |
9208 | atomic_long_set(&cfs_rq->removed_util_avg, 0); | |
9ee474f5 | 9209 | #endif |
029632fb PZ |
9210 | } |
9211 | ||
810b3817 | 9212 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b VG |
9213 | static void task_set_group_fair(struct task_struct *p) |
9214 | { | |
9215 | struct sched_entity *se = &p->se; | |
9216 | ||
9217 | set_task_rq(p, task_cpu(p)); | |
9218 | se->depth = se->parent ? se->parent->depth + 1 : 0; | |
9219 | } | |
9220 | ||
bc54da21 | 9221 | static void task_move_group_fair(struct task_struct *p) |
810b3817 | 9222 | { |
daa59407 | 9223 | detach_task_cfs_rq(p); |
b2b5ce02 | 9224 | set_task_rq(p, task_cpu(p)); |
6efdb105 BP |
9225 | |
9226 | #ifdef CONFIG_SMP | |
9227 | /* Tell se's cfs_rq has been changed -- migrated */ | |
9228 | p->se.avg.last_update_time = 0; | |
9229 | #endif | |
daa59407 | 9230 | attach_task_cfs_rq(p); |
810b3817 | 9231 | } |
029632fb | 9232 | |
ea86cb4b VG |
9233 | static void task_change_group_fair(struct task_struct *p, int type) |
9234 | { | |
9235 | switch (type) { | |
9236 | case TASK_SET_GROUP: | |
9237 | task_set_group_fair(p); | |
9238 | break; | |
9239 | ||
9240 | case TASK_MOVE_GROUP: | |
9241 | task_move_group_fair(p); | |
9242 | break; | |
9243 | } | |
9244 | } | |
9245 | ||
029632fb PZ |
9246 | void free_fair_sched_group(struct task_group *tg) |
9247 | { | |
9248 | int i; | |
9249 | ||
9250 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
9251 | ||
9252 | for_each_possible_cpu(i) { | |
9253 | if (tg->cfs_rq) | |
9254 | kfree(tg->cfs_rq[i]); | |
6fe1f348 | 9255 | if (tg->se) |
029632fb PZ |
9256 | kfree(tg->se[i]); |
9257 | } | |
9258 | ||
9259 | kfree(tg->cfs_rq); | |
9260 | kfree(tg->se); | |
9261 | } | |
9262 | ||
9263 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
9264 | { | |
029632fb | 9265 | struct sched_entity *se; |
b7fa30c9 | 9266 | struct cfs_rq *cfs_rq; |
029632fb PZ |
9267 | int i; |
9268 | ||
9269 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | |
9270 | if (!tg->cfs_rq) | |
9271 | goto err; | |
9272 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | |
9273 | if (!tg->se) | |
9274 | goto err; | |
9275 | ||
9276 | tg->shares = NICE_0_LOAD; | |
9277 | ||
9278 | init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | |
9279 | ||
9280 | for_each_possible_cpu(i) { | |
9281 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
9282 | GFP_KERNEL, cpu_to_node(i)); | |
9283 | if (!cfs_rq) | |
9284 | goto err; | |
9285 | ||
9286 | se = kzalloc_node(sizeof(struct sched_entity), | |
9287 | GFP_KERNEL, cpu_to_node(i)); | |
9288 | if (!se) | |
9289 | goto err_free_rq; | |
9290 | ||
9291 | init_cfs_rq(cfs_rq); | |
9292 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | |
540247fb | 9293 | init_entity_runnable_average(se); |
029632fb PZ |
9294 | } |
9295 | ||
9296 | return 1; | |
9297 | ||
9298 | err_free_rq: | |
9299 | kfree(cfs_rq); | |
9300 | err: | |
9301 | return 0; | |
9302 | } | |
9303 | ||
8663e24d PZ |
9304 | void online_fair_sched_group(struct task_group *tg) |
9305 | { | |
9306 | struct sched_entity *se; | |
9307 | struct rq *rq; | |
9308 | int i; | |
9309 | ||
9310 | for_each_possible_cpu(i) { | |
9311 | rq = cpu_rq(i); | |
9312 | se = tg->se[i]; | |
9313 | ||
9314 | raw_spin_lock_irq(&rq->lock); | |
4126bad6 | 9315 | update_rq_clock(rq); |
d0326691 | 9316 | attach_entity_cfs_rq(se); |
55e16d30 | 9317 | sync_throttle(tg, i); |
8663e24d PZ |
9318 | raw_spin_unlock_irq(&rq->lock); |
9319 | } | |
9320 | } | |
9321 | ||
6fe1f348 | 9322 | void unregister_fair_sched_group(struct task_group *tg) |
029632fb | 9323 | { |
029632fb | 9324 | unsigned long flags; |
6fe1f348 PZ |
9325 | struct rq *rq; |
9326 | int cpu; | |
029632fb | 9327 | |
6fe1f348 PZ |
9328 | for_each_possible_cpu(cpu) { |
9329 | if (tg->se[cpu]) | |
9330 | remove_entity_load_avg(tg->se[cpu]); | |
029632fb | 9331 | |
6fe1f348 PZ |
9332 | /* |
9333 | * Only empty task groups can be destroyed; so we can speculatively | |
9334 | * check on_list without danger of it being re-added. | |
9335 | */ | |
9336 | if (!tg->cfs_rq[cpu]->on_list) | |
9337 | continue; | |
9338 | ||
9339 | rq = cpu_rq(cpu); | |
9340 | ||
9341 | raw_spin_lock_irqsave(&rq->lock, flags); | |
9342 | list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | |
9343 | raw_spin_unlock_irqrestore(&rq->lock, flags); | |
9344 | } | |
029632fb PZ |
9345 | } |
9346 | ||
9347 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
9348 | struct sched_entity *se, int cpu, | |
9349 | struct sched_entity *parent) | |
9350 | { | |
9351 | struct rq *rq = cpu_rq(cpu); | |
9352 | ||
9353 | cfs_rq->tg = tg; | |
9354 | cfs_rq->rq = rq; | |
029632fb PZ |
9355 | init_cfs_rq_runtime(cfs_rq); |
9356 | ||
9357 | tg->cfs_rq[cpu] = cfs_rq; | |
9358 | tg->se[cpu] = se; | |
9359 | ||
9360 | /* se could be NULL for root_task_group */ | |
9361 | if (!se) | |
9362 | return; | |
9363 | ||
fed14d45 | 9364 | if (!parent) { |
029632fb | 9365 | se->cfs_rq = &rq->cfs; |
fed14d45 PZ |
9366 | se->depth = 0; |
9367 | } else { | |
029632fb | 9368 | se->cfs_rq = parent->my_q; |
fed14d45 PZ |
9369 | se->depth = parent->depth + 1; |
9370 | } | |
029632fb PZ |
9371 | |
9372 | se->my_q = cfs_rq; | |
0ac9b1c2 PT |
9373 | /* guarantee group entities always have weight */ |
9374 | update_load_set(&se->load, NICE_0_LOAD); | |
029632fb PZ |
9375 | se->parent = parent; |
9376 | } | |
9377 | ||
9378 | static DEFINE_MUTEX(shares_mutex); | |
9379 | ||
9380 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
9381 | { | |
9382 | int i; | |
029632fb PZ |
9383 | |
9384 | /* | |
9385 | * We can't change the weight of the root cgroup. | |
9386 | */ | |
9387 | if (!tg->se[0]) | |
9388 | return -EINVAL; | |
9389 | ||
9390 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | |
9391 | ||
9392 | mutex_lock(&shares_mutex); | |
9393 | if (tg->shares == shares) | |
9394 | goto done; | |
9395 | ||
9396 | tg->shares = shares; | |
9397 | for_each_possible_cpu(i) { | |
9398 | struct rq *rq = cpu_rq(i); | |
8a8c69c3 PZ |
9399 | struct sched_entity *se = tg->se[i]; |
9400 | struct rq_flags rf; | |
029632fb | 9401 | |
029632fb | 9402 | /* Propagate contribution to hierarchy */ |
8a8c69c3 | 9403 | rq_lock_irqsave(rq, &rf); |
71b1da46 | 9404 | update_rq_clock(rq); |
89ee048f VG |
9405 | for_each_sched_entity(se) { |
9406 | update_load_avg(se, UPDATE_TG); | |
9407 | update_cfs_shares(se); | |
9408 | } | |
8a8c69c3 | 9409 | rq_unlock_irqrestore(rq, &rf); |
029632fb PZ |
9410 | } |
9411 | ||
9412 | done: | |
9413 | mutex_unlock(&shares_mutex); | |
9414 | return 0; | |
9415 | } | |
9416 | #else /* CONFIG_FAIR_GROUP_SCHED */ | |
9417 | ||
9418 | void free_fair_sched_group(struct task_group *tg) { } | |
9419 | ||
9420 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
9421 | { | |
9422 | return 1; | |
9423 | } | |
9424 | ||
8663e24d PZ |
9425 | void online_fair_sched_group(struct task_group *tg) { } |
9426 | ||
6fe1f348 | 9427 | void unregister_fair_sched_group(struct task_group *tg) { } |
029632fb PZ |
9428 | |
9429 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
9430 | ||
810b3817 | 9431 | |
6d686f45 | 9432 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
0d721cea PW |
9433 | { |
9434 | struct sched_entity *se = &task->se; | |
0d721cea PW |
9435 | unsigned int rr_interval = 0; |
9436 | ||
9437 | /* | |
9438 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | |
9439 | * idle runqueue: | |
9440 | */ | |
0d721cea | 9441 | if (rq->cfs.load.weight) |
a59f4e07 | 9442 | rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); |
0d721cea PW |
9443 | |
9444 | return rr_interval; | |
9445 | } | |
9446 | ||
bf0f6f24 IM |
9447 | /* |
9448 | * All the scheduling class methods: | |
9449 | */ | |
029632fb | 9450 | const struct sched_class fair_sched_class = { |
5522d5d5 | 9451 | .next = &idle_sched_class, |
bf0f6f24 IM |
9452 | .enqueue_task = enqueue_task_fair, |
9453 | .dequeue_task = dequeue_task_fair, | |
9454 | .yield_task = yield_task_fair, | |
d95f4122 | 9455 | .yield_to_task = yield_to_task_fair, |
bf0f6f24 | 9456 | |
2e09bf55 | 9457 | .check_preempt_curr = check_preempt_wakeup, |
bf0f6f24 IM |
9458 | |
9459 | .pick_next_task = pick_next_task_fair, | |
9460 | .put_prev_task = put_prev_task_fair, | |
9461 | ||
681f3e68 | 9462 | #ifdef CONFIG_SMP |
4ce72a2c | 9463 | .select_task_rq = select_task_rq_fair, |
0a74bef8 | 9464 | .migrate_task_rq = migrate_task_rq_fair, |
141965c7 | 9465 | |
0bcdcf28 CE |
9466 | .rq_online = rq_online_fair, |
9467 | .rq_offline = rq_offline_fair, | |
88ec22d3 | 9468 | |
12695578 | 9469 | .task_dead = task_dead_fair, |
c5b28038 | 9470 | .set_cpus_allowed = set_cpus_allowed_common, |
681f3e68 | 9471 | #endif |
bf0f6f24 | 9472 | |
83b699ed | 9473 | .set_curr_task = set_curr_task_fair, |
bf0f6f24 | 9474 | .task_tick = task_tick_fair, |
cd29fe6f | 9475 | .task_fork = task_fork_fair, |
cb469845 SR |
9476 | |
9477 | .prio_changed = prio_changed_fair, | |
da7a735e | 9478 | .switched_from = switched_from_fair, |
cb469845 | 9479 | .switched_to = switched_to_fair, |
810b3817 | 9480 | |
0d721cea PW |
9481 | .get_rr_interval = get_rr_interval_fair, |
9482 | ||
6e998916 SG |
9483 | .update_curr = update_curr_fair, |
9484 | ||
810b3817 | 9485 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b | 9486 | .task_change_group = task_change_group_fair, |
810b3817 | 9487 | #endif |
bf0f6f24 IM |
9488 | }; |
9489 | ||
9490 | #ifdef CONFIG_SCHED_DEBUG | |
029632fb | 9491 | void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 9492 | { |
a9e7f654 | 9493 | struct cfs_rq *cfs_rq, *pos; |
bf0f6f24 | 9494 | |
5973e5b9 | 9495 | rcu_read_lock(); |
a9e7f654 | 9496 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
5cef9eca | 9497 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 9498 | rcu_read_unlock(); |
bf0f6f24 | 9499 | } |
397f2378 SD |
9500 | |
9501 | #ifdef CONFIG_NUMA_BALANCING | |
9502 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | |
9503 | { | |
9504 | int node; | |
9505 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | |
9506 | ||
9507 | for_each_online_node(node) { | |
9508 | if (p->numa_faults) { | |
9509 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
9510 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
9511 | } | |
9512 | if (p->numa_group) { | |
9513 | gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], | |
9514 | gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
9515 | } | |
9516 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | |
9517 | } | |
9518 | } | |
9519 | #endif /* CONFIG_NUMA_BALANCING */ | |
9520 | #endif /* CONFIG_SCHED_DEBUG */ | |
029632fb PZ |
9521 | |
9522 | __init void init_sched_fair_class(void) | |
9523 | { | |
9524 | #ifdef CONFIG_SMP | |
9525 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | |
9526 | ||
3451d024 | 9527 | #ifdef CONFIG_NO_HZ_COMMON |
554cecaf | 9528 | nohz.next_balance = jiffies; |
029632fb | 9529 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
029632fb PZ |
9530 | #endif |
9531 | #endif /* SMP */ | |
9532 | ||
9533 | } |