]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/numa: Consider 'imbalance_pct' when comparing loads in numa_has_capacity()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 579 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
316c1608 837 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
e4991b24
RR
1201 long imb, old_imb;
1202 long orig_src_load, orig_dst_load;
28a21745
RR
1203 long src_capacity, dst_capacity;
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1214
1215 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1216 if (dst_load < src_load)
1217 swap(dst_load, src_load);
e63da036
RR
1218
1219 /* Is the difference below the threshold? */
e4991b24
RR
1220 imb = dst_load * src_capacity * 100 -
1221 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1222 if (imb <= 0)
1223 return false;
1224
1225 /*
1226 * The imbalance is above the allowed threshold.
e4991b24 1227 * Compare it with the old imbalance.
e63da036 1228 */
28a21745 1229 orig_src_load = env->src_stats.load;
e4991b24 1230 orig_dst_load = env->dst_stats.load;
28a21745 1231
e4991b24
RR
1232 if (orig_dst_load < orig_src_load)
1233 swap(orig_dst_load, orig_src_load);
e63da036 1234
e4991b24
RR
1235 old_imb = orig_dst_load * src_capacity * 100 -
1236 orig_src_load * dst_capacity * env->imbalance_pct;
1237
1238 /* Would this change make things worse? */
1239 return (imb > old_imb);
e63da036
RR
1240}
1241
fb13c7ee
MG
1242/*
1243 * This checks if the overall compute and NUMA accesses of the system would
1244 * be improved if the source tasks was migrated to the target dst_cpu taking
1245 * into account that it might be best if task running on the dst_cpu should
1246 * be exchanged with the source task
1247 */
887c290e
RR
1248static void task_numa_compare(struct task_numa_env *env,
1249 long taskimp, long groupimp)
fb13c7ee
MG
1250{
1251 struct rq *src_rq = cpu_rq(env->src_cpu);
1252 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1253 struct task_struct *cur;
28a21745 1254 long src_load, dst_load;
fb13c7ee 1255 long load;
1c5d3eb3 1256 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1257 long moveimp = imp;
7bd95320 1258 int dist = env->dist;
fb13c7ee
MG
1259
1260 rcu_read_lock();
1effd9f1
KT
1261
1262 raw_spin_lock_irq(&dst_rq->lock);
1263 cur = dst_rq->curr;
1264 /*
1265 * No need to move the exiting task, and this ensures that ->curr
1266 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1267 * is safe under RCU read lock.
1268 * Note that rcu_read_lock() itself can't protect from the final
1269 * put_task_struct() after the last schedule().
1270 */
1271 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1272 cur = NULL;
1effd9f1 1273 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1274
7af68335
PZ
1275 /*
1276 * Because we have preemption enabled we can get migrated around and
1277 * end try selecting ourselves (current == env->p) as a swap candidate.
1278 */
1279 if (cur == env->p)
1280 goto unlock;
1281
fb13c7ee
MG
1282 /*
1283 * "imp" is the fault differential for the source task between the
1284 * source and destination node. Calculate the total differential for
1285 * the source task and potential destination task. The more negative
1286 * the value is, the more rmeote accesses that would be expected to
1287 * be incurred if the tasks were swapped.
1288 */
1289 if (cur) {
1290 /* Skip this swap candidate if cannot move to the source cpu */
1291 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1292 goto unlock;
1293
887c290e
RR
1294 /*
1295 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1296 * in any group then look only at task weights.
887c290e 1297 */
ca28aa53 1298 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1299 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1300 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1301 /*
1302 * Add some hysteresis to prevent swapping the
1303 * tasks within a group over tiny differences.
1304 */
1305 if (cur->numa_group)
1306 imp -= imp/16;
887c290e 1307 } else {
ca28aa53
RR
1308 /*
1309 * Compare the group weights. If a task is all by
1310 * itself (not part of a group), use the task weight
1311 * instead.
1312 */
ca28aa53 1313 if (cur->numa_group)
7bd95320
RR
1314 imp += group_weight(cur, env->src_nid, dist) -
1315 group_weight(cur, env->dst_nid, dist);
ca28aa53 1316 else
7bd95320
RR
1317 imp += task_weight(cur, env->src_nid, dist) -
1318 task_weight(cur, env->dst_nid, dist);
887c290e 1319 }
fb13c7ee
MG
1320 }
1321
0132c3e1 1322 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1323 goto unlock;
1324
1325 if (!cur) {
1326 /* Is there capacity at our destination? */
b932c03c 1327 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1328 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1329 goto unlock;
1330
1331 goto balance;
1332 }
1333
1334 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1335 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1336 dst_rq->nr_running == 1)
fb13c7ee
MG
1337 goto assign;
1338
1339 /*
1340 * In the overloaded case, try and keep the load balanced.
1341 */
1342balance:
e720fff6
PZ
1343 load = task_h_load(env->p);
1344 dst_load = env->dst_stats.load + load;
1345 src_load = env->src_stats.load - load;
fb13c7ee 1346
0132c3e1
RR
1347 if (moveimp > imp && moveimp > env->best_imp) {
1348 /*
1349 * If the improvement from just moving env->p direction is
1350 * better than swapping tasks around, check if a move is
1351 * possible. Store a slightly smaller score than moveimp,
1352 * so an actually idle CPU will win.
1353 */
1354 if (!load_too_imbalanced(src_load, dst_load, env)) {
1355 imp = moveimp - 1;
1356 cur = NULL;
1357 goto assign;
1358 }
1359 }
1360
1361 if (imp <= env->best_imp)
1362 goto unlock;
1363
fb13c7ee 1364 if (cur) {
e720fff6
PZ
1365 load = task_h_load(cur);
1366 dst_load -= load;
1367 src_load += load;
fb13c7ee
MG
1368 }
1369
28a21745 1370 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1371 goto unlock;
1372
ba7e5a27
RR
1373 /*
1374 * One idle CPU per node is evaluated for a task numa move.
1375 * Call select_idle_sibling to maybe find a better one.
1376 */
1377 if (!cur)
1378 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1379
fb13c7ee
MG
1380assign:
1381 task_numa_assign(env, cur, imp);
1382unlock:
1383 rcu_read_unlock();
1384}
1385
887c290e
RR
1386static void task_numa_find_cpu(struct task_numa_env *env,
1387 long taskimp, long groupimp)
2c8a50aa
MG
1388{
1389 int cpu;
1390
1391 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1392 /* Skip this CPU if the source task cannot migrate */
1393 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1394 continue;
1395
1396 env->dst_cpu = cpu;
887c290e 1397 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1398 }
1399}
1400
6f9aad0b
RR
1401/* Only move tasks to a NUMA node less busy than the current node. */
1402static bool numa_has_capacity(struct task_numa_env *env)
1403{
1404 struct numa_stats *src = &env->src_stats;
1405 struct numa_stats *dst = &env->dst_stats;
1406
1407 if (src->has_free_capacity && !dst->has_free_capacity)
1408 return false;
1409
1410 /*
1411 * Only consider a task move if the source has a higher load
1412 * than the destination, corrected for CPU capacity on each node.
1413 *
1414 * src->load dst->load
1415 * --------------------- vs ---------------------
1416 * src->compute_capacity dst->compute_capacity
1417 */
44dcb04f
SD
1418 if (src->load * dst->compute_capacity * env->imbalance_pct >
1419
1420 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1421 return true;
1422
1423 return false;
1424}
1425
58d081b5
MG
1426static int task_numa_migrate(struct task_struct *p)
1427{
58d081b5
MG
1428 struct task_numa_env env = {
1429 .p = p,
fb13c7ee 1430
58d081b5 1431 .src_cpu = task_cpu(p),
b32e86b4 1432 .src_nid = task_node(p),
fb13c7ee
MG
1433
1434 .imbalance_pct = 112,
1435
1436 .best_task = NULL,
1437 .best_imp = 0,
1438 .best_cpu = -1
58d081b5
MG
1439 };
1440 struct sched_domain *sd;
887c290e 1441 unsigned long taskweight, groupweight;
7bd95320 1442 int nid, ret, dist;
887c290e 1443 long taskimp, groupimp;
e6628d5b 1444
58d081b5 1445 /*
fb13c7ee
MG
1446 * Pick the lowest SD_NUMA domain, as that would have the smallest
1447 * imbalance and would be the first to start moving tasks about.
1448 *
1449 * And we want to avoid any moving of tasks about, as that would create
1450 * random movement of tasks -- counter the numa conditions we're trying
1451 * to satisfy here.
58d081b5
MG
1452 */
1453 rcu_read_lock();
fb13c7ee 1454 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1455 if (sd)
1456 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1457 rcu_read_unlock();
1458
46a73e8a
RR
1459 /*
1460 * Cpusets can break the scheduler domain tree into smaller
1461 * balance domains, some of which do not cross NUMA boundaries.
1462 * Tasks that are "trapped" in such domains cannot be migrated
1463 * elsewhere, so there is no point in (re)trying.
1464 */
1465 if (unlikely(!sd)) {
de1b301a 1466 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1467 return -EINVAL;
1468 }
1469
2c8a50aa 1470 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1471 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1472 taskweight = task_weight(p, env.src_nid, dist);
1473 groupweight = group_weight(p, env.src_nid, dist);
1474 update_numa_stats(&env.src_stats, env.src_nid);
1475 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1476 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1477 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1478
a43455a1 1479 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1480 if (numa_has_capacity(&env))
1481 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1482
9de05d48
RR
1483 /*
1484 * Look at other nodes in these cases:
1485 * - there is no space available on the preferred_nid
1486 * - the task is part of a numa_group that is interleaved across
1487 * multiple NUMA nodes; in order to better consolidate the group,
1488 * we need to check other locations.
1489 */
1490 if (env.best_cpu == -1 || (p->numa_group &&
1491 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1492 for_each_online_node(nid) {
1493 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1494 continue;
58d081b5 1495
7bd95320 1496 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1497 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1498 dist != env.dist) {
1499 taskweight = task_weight(p, env.src_nid, dist);
1500 groupweight = group_weight(p, env.src_nid, dist);
1501 }
7bd95320 1502
83e1d2cd 1503 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1504 taskimp = task_weight(p, nid, dist) - taskweight;
1505 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1506 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1507 continue;
1508
7bd95320 1509 env.dist = dist;
2c8a50aa
MG
1510 env.dst_nid = nid;
1511 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1512 if (numa_has_capacity(&env))
1513 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1514 }
1515 }
1516
68d1b02a
RR
1517 /*
1518 * If the task is part of a workload that spans multiple NUMA nodes,
1519 * and is migrating into one of the workload's active nodes, remember
1520 * this node as the task's preferred numa node, so the workload can
1521 * settle down.
1522 * A task that migrated to a second choice node will be better off
1523 * trying for a better one later. Do not set the preferred node here.
1524 */
db015dae
RR
1525 if (p->numa_group) {
1526 if (env.best_cpu == -1)
1527 nid = env.src_nid;
1528 else
1529 nid = env.dst_nid;
1530
1531 if (node_isset(nid, p->numa_group->active_nodes))
1532 sched_setnuma(p, env.dst_nid);
1533 }
1534
1535 /* No better CPU than the current one was found. */
1536 if (env.best_cpu == -1)
1537 return -EAGAIN;
0ec8aa00 1538
04bb2f94
RR
1539 /*
1540 * Reset the scan period if the task is being rescheduled on an
1541 * alternative node to recheck if the tasks is now properly placed.
1542 */
1543 p->numa_scan_period = task_scan_min(p);
1544
fb13c7ee 1545 if (env.best_task == NULL) {
286549dc
MG
1546 ret = migrate_task_to(p, env.best_cpu);
1547 if (ret != 0)
1548 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1549 return ret;
1550 }
1551
1552 ret = migrate_swap(p, env.best_task);
286549dc
MG
1553 if (ret != 0)
1554 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1555 put_task_struct(env.best_task);
1556 return ret;
e6628d5b
MG
1557}
1558
6b9a7460
MG
1559/* Attempt to migrate a task to a CPU on the preferred node. */
1560static void numa_migrate_preferred(struct task_struct *p)
1561{
5085e2a3
RR
1562 unsigned long interval = HZ;
1563
2739d3ee 1564 /* This task has no NUMA fault statistics yet */
44dba3d5 1565 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1566 return;
1567
2739d3ee 1568 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1569 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1570 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1571
1572 /* Success if task is already running on preferred CPU */
de1b301a 1573 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1574 return;
1575
1576 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1577 task_numa_migrate(p);
6b9a7460
MG
1578}
1579
20e07dea
RR
1580/*
1581 * Find the nodes on which the workload is actively running. We do this by
1582 * tracking the nodes from which NUMA hinting faults are triggered. This can
1583 * be different from the set of nodes where the workload's memory is currently
1584 * located.
1585 *
1586 * The bitmask is used to make smarter decisions on when to do NUMA page
1587 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1588 * are added when they cause over 6/16 of the maximum number of faults, but
1589 * only removed when they drop below 3/16.
1590 */
1591static void update_numa_active_node_mask(struct numa_group *numa_group)
1592{
1593 unsigned long faults, max_faults = 0;
1594 int nid;
1595
1596 for_each_online_node(nid) {
1597 faults = group_faults_cpu(numa_group, nid);
1598 if (faults > max_faults)
1599 max_faults = faults;
1600 }
1601
1602 for_each_online_node(nid) {
1603 faults = group_faults_cpu(numa_group, nid);
1604 if (!node_isset(nid, numa_group->active_nodes)) {
1605 if (faults > max_faults * 6 / 16)
1606 node_set(nid, numa_group->active_nodes);
1607 } else if (faults < max_faults * 3 / 16)
1608 node_clear(nid, numa_group->active_nodes);
1609 }
1610}
1611
04bb2f94
RR
1612/*
1613 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1614 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1615 * period will be for the next scan window. If local/(local+remote) ratio is
1616 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1617 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1618 */
1619#define NUMA_PERIOD_SLOTS 10
a22b4b01 1620#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1621
1622/*
1623 * Increase the scan period (slow down scanning) if the majority of
1624 * our memory is already on our local node, or if the majority of
1625 * the page accesses are shared with other processes.
1626 * Otherwise, decrease the scan period.
1627 */
1628static void update_task_scan_period(struct task_struct *p,
1629 unsigned long shared, unsigned long private)
1630{
1631 unsigned int period_slot;
1632 int ratio;
1633 int diff;
1634
1635 unsigned long remote = p->numa_faults_locality[0];
1636 unsigned long local = p->numa_faults_locality[1];
1637
1638 /*
1639 * If there were no record hinting faults then either the task is
1640 * completely idle or all activity is areas that are not of interest
074c2381
MG
1641 * to automatic numa balancing. Related to that, if there were failed
1642 * migration then it implies we are migrating too quickly or the local
1643 * node is overloaded. In either case, scan slower
04bb2f94 1644 */
074c2381 1645 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1646 p->numa_scan_period = min(p->numa_scan_period_max,
1647 p->numa_scan_period << 1);
1648
1649 p->mm->numa_next_scan = jiffies +
1650 msecs_to_jiffies(p->numa_scan_period);
1651
1652 return;
1653 }
1654
1655 /*
1656 * Prepare to scale scan period relative to the current period.
1657 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1658 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1659 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1660 */
1661 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1662 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1663 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1664 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1665 if (!slot)
1666 slot = 1;
1667 diff = slot * period_slot;
1668 } else {
1669 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1670
1671 /*
1672 * Scale scan rate increases based on sharing. There is an
1673 * inverse relationship between the degree of sharing and
1674 * the adjustment made to the scanning period. Broadly
1675 * speaking the intent is that there is little point
1676 * scanning faster if shared accesses dominate as it may
1677 * simply bounce migrations uselessly
1678 */
2847c90e 1679 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1680 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1681 }
1682
1683 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1684 task_scan_min(p), task_scan_max(p));
1685 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1686}
1687
7e2703e6
RR
1688/*
1689 * Get the fraction of time the task has been running since the last
1690 * NUMA placement cycle. The scheduler keeps similar statistics, but
1691 * decays those on a 32ms period, which is orders of magnitude off
1692 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1693 * stats only if the task is so new there are no NUMA statistics yet.
1694 */
1695static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1696{
1697 u64 runtime, delta, now;
1698 /* Use the start of this time slice to avoid calculations. */
1699 now = p->se.exec_start;
1700 runtime = p->se.sum_exec_runtime;
1701
1702 if (p->last_task_numa_placement) {
1703 delta = runtime - p->last_sum_exec_runtime;
1704 *period = now - p->last_task_numa_placement;
1705 } else {
1706 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1707 *period = p->se.avg.avg_period;
7e2703e6
RR
1708 }
1709
1710 p->last_sum_exec_runtime = runtime;
1711 p->last_task_numa_placement = now;
1712
1713 return delta;
1714}
1715
54009416
RR
1716/*
1717 * Determine the preferred nid for a task in a numa_group. This needs to
1718 * be done in a way that produces consistent results with group_weight,
1719 * otherwise workloads might not converge.
1720 */
1721static int preferred_group_nid(struct task_struct *p, int nid)
1722{
1723 nodemask_t nodes;
1724 int dist;
1725
1726 /* Direct connections between all NUMA nodes. */
1727 if (sched_numa_topology_type == NUMA_DIRECT)
1728 return nid;
1729
1730 /*
1731 * On a system with glueless mesh NUMA topology, group_weight
1732 * scores nodes according to the number of NUMA hinting faults on
1733 * both the node itself, and on nearby nodes.
1734 */
1735 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 unsigned long score, max_score = 0;
1737 int node, max_node = nid;
1738
1739 dist = sched_max_numa_distance;
1740
1741 for_each_online_node(node) {
1742 score = group_weight(p, node, dist);
1743 if (score > max_score) {
1744 max_score = score;
1745 max_node = node;
1746 }
1747 }
1748 return max_node;
1749 }
1750
1751 /*
1752 * Finding the preferred nid in a system with NUMA backplane
1753 * interconnect topology is more involved. The goal is to locate
1754 * tasks from numa_groups near each other in the system, and
1755 * untangle workloads from different sides of the system. This requires
1756 * searching down the hierarchy of node groups, recursively searching
1757 * inside the highest scoring group of nodes. The nodemask tricks
1758 * keep the complexity of the search down.
1759 */
1760 nodes = node_online_map;
1761 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1762 unsigned long max_faults = 0;
81907478 1763 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1764 int a, b;
1765
1766 /* Are there nodes at this distance from each other? */
1767 if (!find_numa_distance(dist))
1768 continue;
1769
1770 for_each_node_mask(a, nodes) {
1771 unsigned long faults = 0;
1772 nodemask_t this_group;
1773 nodes_clear(this_group);
1774
1775 /* Sum group's NUMA faults; includes a==b case. */
1776 for_each_node_mask(b, nodes) {
1777 if (node_distance(a, b) < dist) {
1778 faults += group_faults(p, b);
1779 node_set(b, this_group);
1780 node_clear(b, nodes);
1781 }
1782 }
1783
1784 /* Remember the top group. */
1785 if (faults > max_faults) {
1786 max_faults = faults;
1787 max_group = this_group;
1788 /*
1789 * subtle: at the smallest distance there is
1790 * just one node left in each "group", the
1791 * winner is the preferred nid.
1792 */
1793 nid = a;
1794 }
1795 }
1796 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1797 if (!max_faults)
1798 break;
54009416
RR
1799 nodes = max_group;
1800 }
1801 return nid;
1802}
1803
cbee9f88
PZ
1804static void task_numa_placement(struct task_struct *p)
1805{
83e1d2cd
MG
1806 int seq, nid, max_nid = -1, max_group_nid = -1;
1807 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1808 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1809 unsigned long total_faults;
1810 u64 runtime, period;
7dbd13ed 1811 spinlock_t *group_lock = NULL;
cbee9f88 1812
7e5a2c17
JL
1813 /*
1814 * The p->mm->numa_scan_seq field gets updated without
1815 * exclusive access. Use READ_ONCE() here to ensure
1816 * that the field is read in a single access:
1817 */
316c1608 1818 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1819 if (p->numa_scan_seq == seq)
1820 return;
1821 p->numa_scan_seq = seq;
598f0ec0 1822 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1823
7e2703e6
RR
1824 total_faults = p->numa_faults_locality[0] +
1825 p->numa_faults_locality[1];
1826 runtime = numa_get_avg_runtime(p, &period);
1827
7dbd13ed
MG
1828 /* If the task is part of a group prevent parallel updates to group stats */
1829 if (p->numa_group) {
1830 group_lock = &p->numa_group->lock;
60e69eed 1831 spin_lock_irq(group_lock);
7dbd13ed
MG
1832 }
1833
688b7585
MG
1834 /* Find the node with the highest number of faults */
1835 for_each_online_node(nid) {
44dba3d5
IM
1836 /* Keep track of the offsets in numa_faults array */
1837 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1838 unsigned long faults = 0, group_faults = 0;
44dba3d5 1839 int priv;
745d6147 1840
be1e4e76 1841 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1842 long diff, f_diff, f_weight;
8c8a743c 1843
44dba3d5
IM
1844 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1845 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1846 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1847 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1848
ac8e895b 1849 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1850 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1851 fault_types[priv] += p->numa_faults[membuf_idx];
1852 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1853
7e2703e6
RR
1854 /*
1855 * Normalize the faults_from, so all tasks in a group
1856 * count according to CPU use, instead of by the raw
1857 * number of faults. Tasks with little runtime have
1858 * little over-all impact on throughput, and thus their
1859 * faults are less important.
1860 */
1861 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1862 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1863 (total_faults + 1);
44dba3d5
IM
1864 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1865 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1866
44dba3d5
IM
1867 p->numa_faults[mem_idx] += diff;
1868 p->numa_faults[cpu_idx] += f_diff;
1869 faults += p->numa_faults[mem_idx];
83e1d2cd 1870 p->total_numa_faults += diff;
8c8a743c 1871 if (p->numa_group) {
44dba3d5
IM
1872 /*
1873 * safe because we can only change our own group
1874 *
1875 * mem_idx represents the offset for a given
1876 * nid and priv in a specific region because it
1877 * is at the beginning of the numa_faults array.
1878 */
1879 p->numa_group->faults[mem_idx] += diff;
1880 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1881 p->numa_group->total_faults += diff;
44dba3d5 1882 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1883 }
ac8e895b
MG
1884 }
1885
688b7585
MG
1886 if (faults > max_faults) {
1887 max_faults = faults;
1888 max_nid = nid;
1889 }
83e1d2cd
MG
1890
1891 if (group_faults > max_group_faults) {
1892 max_group_faults = group_faults;
1893 max_group_nid = nid;
1894 }
1895 }
1896
04bb2f94
RR
1897 update_task_scan_period(p, fault_types[0], fault_types[1]);
1898
7dbd13ed 1899 if (p->numa_group) {
20e07dea 1900 update_numa_active_node_mask(p->numa_group);
60e69eed 1901 spin_unlock_irq(group_lock);
54009416 1902 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1903 }
1904
bb97fc31
RR
1905 if (max_faults) {
1906 /* Set the new preferred node */
1907 if (max_nid != p->numa_preferred_nid)
1908 sched_setnuma(p, max_nid);
1909
1910 if (task_node(p) != p->numa_preferred_nid)
1911 numa_migrate_preferred(p);
3a7053b3 1912 }
cbee9f88
PZ
1913}
1914
8c8a743c
PZ
1915static inline int get_numa_group(struct numa_group *grp)
1916{
1917 return atomic_inc_not_zero(&grp->refcount);
1918}
1919
1920static inline void put_numa_group(struct numa_group *grp)
1921{
1922 if (atomic_dec_and_test(&grp->refcount))
1923 kfree_rcu(grp, rcu);
1924}
1925
3e6a9418
MG
1926static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1927 int *priv)
8c8a743c
PZ
1928{
1929 struct numa_group *grp, *my_grp;
1930 struct task_struct *tsk;
1931 bool join = false;
1932 int cpu = cpupid_to_cpu(cpupid);
1933 int i;
1934
1935 if (unlikely(!p->numa_group)) {
1936 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1937 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1938
1939 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1940 if (!grp)
1941 return;
1942
1943 atomic_set(&grp->refcount, 1);
1944 spin_lock_init(&grp->lock);
e29cf08b 1945 grp->gid = p->pid;
50ec8a40 1946 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1947 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1948 nr_node_ids;
8c8a743c 1949
20e07dea
RR
1950 node_set(task_node(current), grp->active_nodes);
1951
be1e4e76 1952 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1953 grp->faults[i] = p->numa_faults[i];
8c8a743c 1954
989348b5 1955 grp->total_faults = p->total_numa_faults;
83e1d2cd 1956
8c8a743c
PZ
1957 grp->nr_tasks++;
1958 rcu_assign_pointer(p->numa_group, grp);
1959 }
1960
1961 rcu_read_lock();
316c1608 1962 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1963
1964 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1965 goto no_join;
8c8a743c
PZ
1966
1967 grp = rcu_dereference(tsk->numa_group);
1968 if (!grp)
3354781a 1969 goto no_join;
8c8a743c
PZ
1970
1971 my_grp = p->numa_group;
1972 if (grp == my_grp)
3354781a 1973 goto no_join;
8c8a743c
PZ
1974
1975 /*
1976 * Only join the other group if its bigger; if we're the bigger group,
1977 * the other task will join us.
1978 */
1979 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1980 goto no_join;
8c8a743c
PZ
1981
1982 /*
1983 * Tie-break on the grp address.
1984 */
1985 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1986 goto no_join;
8c8a743c 1987
dabe1d99
RR
1988 /* Always join threads in the same process. */
1989 if (tsk->mm == current->mm)
1990 join = true;
1991
1992 /* Simple filter to avoid false positives due to PID collisions */
1993 if (flags & TNF_SHARED)
1994 join = true;
8c8a743c 1995
3e6a9418
MG
1996 /* Update priv based on whether false sharing was detected */
1997 *priv = !join;
1998
dabe1d99 1999 if (join && !get_numa_group(grp))
3354781a 2000 goto no_join;
8c8a743c 2001
8c8a743c
PZ
2002 rcu_read_unlock();
2003
2004 if (!join)
2005 return;
2006
60e69eed
MG
2007 BUG_ON(irqs_disabled());
2008 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2009
be1e4e76 2010 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2011 my_grp->faults[i] -= p->numa_faults[i];
2012 grp->faults[i] += p->numa_faults[i];
8c8a743c 2013 }
989348b5
MG
2014 my_grp->total_faults -= p->total_numa_faults;
2015 grp->total_faults += p->total_numa_faults;
8c8a743c 2016
8c8a743c
PZ
2017 my_grp->nr_tasks--;
2018 grp->nr_tasks++;
2019
2020 spin_unlock(&my_grp->lock);
60e69eed 2021 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2022
2023 rcu_assign_pointer(p->numa_group, grp);
2024
2025 put_numa_group(my_grp);
3354781a
PZ
2026 return;
2027
2028no_join:
2029 rcu_read_unlock();
2030 return;
8c8a743c
PZ
2031}
2032
2033void task_numa_free(struct task_struct *p)
2034{
2035 struct numa_group *grp = p->numa_group;
44dba3d5 2036 void *numa_faults = p->numa_faults;
e9dd685c
SR
2037 unsigned long flags;
2038 int i;
8c8a743c
PZ
2039
2040 if (grp) {
e9dd685c 2041 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2043 grp->faults[i] -= p->numa_faults[i];
989348b5 2044 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2045
8c8a743c 2046 grp->nr_tasks--;
e9dd685c 2047 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2048 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2049 put_numa_group(grp);
2050 }
2051
44dba3d5 2052 p->numa_faults = NULL;
82727018 2053 kfree(numa_faults);
8c8a743c
PZ
2054}
2055
cbee9f88
PZ
2056/*
2057 * Got a PROT_NONE fault for a page on @node.
2058 */
58b46da3 2059void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2060{
2061 struct task_struct *p = current;
6688cc05 2062 bool migrated = flags & TNF_MIGRATED;
58b46da3 2063 int cpu_node = task_node(current);
792568ec 2064 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2065 int priv;
cbee9f88 2066
10e84b97 2067 if (!numabalancing_enabled)
1a687c2e
MG
2068 return;
2069
9ff1d9ff
MG
2070 /* for example, ksmd faulting in a user's mm */
2071 if (!p->mm)
2072 return;
2073
f809ca9a 2074 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2075 if (unlikely(!p->numa_faults)) {
2076 int size = sizeof(*p->numa_faults) *
be1e4e76 2077 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2078
44dba3d5
IM
2079 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2080 if (!p->numa_faults)
f809ca9a 2081 return;
745d6147 2082
83e1d2cd 2083 p->total_numa_faults = 0;
04bb2f94 2084 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2085 }
cbee9f88 2086
8c8a743c
PZ
2087 /*
2088 * First accesses are treated as private, otherwise consider accesses
2089 * to be private if the accessing pid has not changed
2090 */
2091 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2092 priv = 1;
2093 } else {
2094 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2095 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2096 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2097 }
2098
792568ec
RR
2099 /*
2100 * If a workload spans multiple NUMA nodes, a shared fault that
2101 * occurs wholly within the set of nodes that the workload is
2102 * actively using should be counted as local. This allows the
2103 * scan rate to slow down when a workload has settled down.
2104 */
2105 if (!priv && !local && p->numa_group &&
2106 node_isset(cpu_node, p->numa_group->active_nodes) &&
2107 node_isset(mem_node, p->numa_group->active_nodes))
2108 local = 1;
2109
cbee9f88 2110 task_numa_placement(p);
f809ca9a 2111
2739d3ee
RR
2112 /*
2113 * Retry task to preferred node migration periodically, in case it
2114 * case it previously failed, or the scheduler moved us.
2115 */
2116 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2117 numa_migrate_preferred(p);
2118
b32e86b4
IM
2119 if (migrated)
2120 p->numa_pages_migrated += pages;
074c2381
MG
2121 if (flags & TNF_MIGRATE_FAIL)
2122 p->numa_faults_locality[2] += pages;
b32e86b4 2123
44dba3d5
IM
2124 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2125 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2126 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2127}
2128
6e5fb223
PZ
2129static void reset_ptenuma_scan(struct task_struct *p)
2130{
7e5a2c17
JL
2131 /*
2132 * We only did a read acquisition of the mmap sem, so
2133 * p->mm->numa_scan_seq is written to without exclusive access
2134 * and the update is not guaranteed to be atomic. That's not
2135 * much of an issue though, since this is just used for
2136 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2137 * expensive, to avoid any form of compiler optimizations:
2138 */
316c1608 2139 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2140 p->mm->numa_scan_offset = 0;
2141}
2142
cbee9f88
PZ
2143/*
2144 * The expensive part of numa migration is done from task_work context.
2145 * Triggered from task_tick_numa().
2146 */
2147void task_numa_work(struct callback_head *work)
2148{
2149 unsigned long migrate, next_scan, now = jiffies;
2150 struct task_struct *p = current;
2151 struct mm_struct *mm = p->mm;
6e5fb223 2152 struct vm_area_struct *vma;
9f40604c 2153 unsigned long start, end;
598f0ec0 2154 unsigned long nr_pte_updates = 0;
9f40604c 2155 long pages;
cbee9f88
PZ
2156
2157 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2158
2159 work->next = work; /* protect against double add */
2160 /*
2161 * Who cares about NUMA placement when they're dying.
2162 *
2163 * NOTE: make sure not to dereference p->mm before this check,
2164 * exit_task_work() happens _after_ exit_mm() so we could be called
2165 * without p->mm even though we still had it when we enqueued this
2166 * work.
2167 */
2168 if (p->flags & PF_EXITING)
2169 return;
2170
930aa174 2171 if (!mm->numa_next_scan) {
7e8d16b6
MG
2172 mm->numa_next_scan = now +
2173 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2174 }
2175
cbee9f88
PZ
2176 /*
2177 * Enforce maximal scan/migration frequency..
2178 */
2179 migrate = mm->numa_next_scan;
2180 if (time_before(now, migrate))
2181 return;
2182
598f0ec0
MG
2183 if (p->numa_scan_period == 0) {
2184 p->numa_scan_period_max = task_scan_max(p);
2185 p->numa_scan_period = task_scan_min(p);
2186 }
cbee9f88 2187
fb003b80 2188 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2189 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2190 return;
2191
19a78d11
PZ
2192 /*
2193 * Delay this task enough that another task of this mm will likely win
2194 * the next time around.
2195 */
2196 p->node_stamp += 2 * TICK_NSEC;
2197
9f40604c
MG
2198 start = mm->numa_scan_offset;
2199 pages = sysctl_numa_balancing_scan_size;
2200 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2201 if (!pages)
2202 return;
cbee9f88 2203
6e5fb223 2204 down_read(&mm->mmap_sem);
9f40604c 2205 vma = find_vma(mm, start);
6e5fb223
PZ
2206 if (!vma) {
2207 reset_ptenuma_scan(p);
9f40604c 2208 start = 0;
6e5fb223
PZ
2209 vma = mm->mmap;
2210 }
9f40604c 2211 for (; vma; vma = vma->vm_next) {
6b79c57b 2212 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2213 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2214 continue;
6b79c57b 2215 }
6e5fb223 2216
4591ce4f
MG
2217 /*
2218 * Shared library pages mapped by multiple processes are not
2219 * migrated as it is expected they are cache replicated. Avoid
2220 * hinting faults in read-only file-backed mappings or the vdso
2221 * as migrating the pages will be of marginal benefit.
2222 */
2223 if (!vma->vm_mm ||
2224 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2225 continue;
2226
3c67f474
MG
2227 /*
2228 * Skip inaccessible VMAs to avoid any confusion between
2229 * PROT_NONE and NUMA hinting ptes
2230 */
2231 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2232 continue;
4591ce4f 2233
9f40604c
MG
2234 do {
2235 start = max(start, vma->vm_start);
2236 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2237 end = min(end, vma->vm_end);
598f0ec0
MG
2238 nr_pte_updates += change_prot_numa(vma, start, end);
2239
2240 /*
2241 * Scan sysctl_numa_balancing_scan_size but ensure that
2242 * at least one PTE is updated so that unused virtual
2243 * address space is quickly skipped.
2244 */
2245 if (nr_pte_updates)
2246 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2247
9f40604c
MG
2248 start = end;
2249 if (pages <= 0)
2250 goto out;
3cf1962c
RR
2251
2252 cond_resched();
9f40604c 2253 } while (end != vma->vm_end);
cbee9f88 2254 }
6e5fb223 2255
9f40604c 2256out:
6e5fb223 2257 /*
c69307d5
PZ
2258 * It is possible to reach the end of the VMA list but the last few
2259 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2260 * would find the !migratable VMA on the next scan but not reset the
2261 * scanner to the start so check it now.
6e5fb223
PZ
2262 */
2263 if (vma)
9f40604c 2264 mm->numa_scan_offset = start;
6e5fb223
PZ
2265 else
2266 reset_ptenuma_scan(p);
2267 up_read(&mm->mmap_sem);
cbee9f88
PZ
2268}
2269
2270/*
2271 * Drive the periodic memory faults..
2272 */
2273void task_tick_numa(struct rq *rq, struct task_struct *curr)
2274{
2275 struct callback_head *work = &curr->numa_work;
2276 u64 period, now;
2277
2278 /*
2279 * We don't care about NUMA placement if we don't have memory.
2280 */
2281 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2282 return;
2283
2284 /*
2285 * Using runtime rather than walltime has the dual advantage that
2286 * we (mostly) drive the selection from busy threads and that the
2287 * task needs to have done some actual work before we bother with
2288 * NUMA placement.
2289 */
2290 now = curr->se.sum_exec_runtime;
2291 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2292
2293 if (now - curr->node_stamp > period) {
4b96a29b 2294 if (!curr->node_stamp)
598f0ec0 2295 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2296 curr->node_stamp += period;
cbee9f88
PZ
2297
2298 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2299 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2300 task_work_add(curr, work, true);
2301 }
2302 }
2303}
2304#else
2305static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2306{
2307}
0ec8aa00
PZ
2308
2309static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2310{
2311}
2312
2313static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2314{
2315}
cbee9f88
PZ
2316#endif /* CONFIG_NUMA_BALANCING */
2317
30cfdcfc
DA
2318static void
2319account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2320{
2321 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2322 if (!parent_entity(se))
029632fb 2323 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2324#ifdef CONFIG_SMP
0ec8aa00
PZ
2325 if (entity_is_task(se)) {
2326 struct rq *rq = rq_of(cfs_rq);
2327
2328 account_numa_enqueue(rq, task_of(se));
2329 list_add(&se->group_node, &rq->cfs_tasks);
2330 }
367456c7 2331#endif
30cfdcfc 2332 cfs_rq->nr_running++;
30cfdcfc
DA
2333}
2334
2335static void
2336account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2337{
2338 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2339 if (!parent_entity(se))
029632fb 2340 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2341 if (entity_is_task(se)) {
2342 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2343 list_del_init(&se->group_node);
0ec8aa00 2344 }
30cfdcfc 2345 cfs_rq->nr_running--;
30cfdcfc
DA
2346}
2347
3ff6dcac
YZ
2348#ifdef CONFIG_FAIR_GROUP_SCHED
2349# ifdef CONFIG_SMP
cf5f0acf
PZ
2350static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2351{
2352 long tg_weight;
2353
2354 /*
2355 * Use this CPU's actual weight instead of the last load_contribution
2356 * to gain a more accurate current total weight. See
2357 * update_cfs_rq_load_contribution().
2358 */
bf5b986e 2359 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2360 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2361 tg_weight += cfs_rq->load.weight;
2362
2363 return tg_weight;
2364}
2365
6d5ab293 2366static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2367{
cf5f0acf 2368 long tg_weight, load, shares;
3ff6dcac 2369
cf5f0acf 2370 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2371 load = cfs_rq->load.weight;
3ff6dcac 2372
3ff6dcac 2373 shares = (tg->shares * load);
cf5f0acf
PZ
2374 if (tg_weight)
2375 shares /= tg_weight;
3ff6dcac
YZ
2376
2377 if (shares < MIN_SHARES)
2378 shares = MIN_SHARES;
2379 if (shares > tg->shares)
2380 shares = tg->shares;
2381
2382 return shares;
2383}
3ff6dcac 2384# else /* CONFIG_SMP */
6d5ab293 2385static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2386{
2387 return tg->shares;
2388}
3ff6dcac 2389# endif /* CONFIG_SMP */
2069dd75
PZ
2390static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2391 unsigned long weight)
2392{
19e5eebb
PT
2393 if (se->on_rq) {
2394 /* commit outstanding execution time */
2395 if (cfs_rq->curr == se)
2396 update_curr(cfs_rq);
2069dd75 2397 account_entity_dequeue(cfs_rq, se);
19e5eebb 2398 }
2069dd75
PZ
2399
2400 update_load_set(&se->load, weight);
2401
2402 if (se->on_rq)
2403 account_entity_enqueue(cfs_rq, se);
2404}
2405
82958366
PT
2406static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2407
6d5ab293 2408static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2409{
2410 struct task_group *tg;
2411 struct sched_entity *se;
3ff6dcac 2412 long shares;
2069dd75 2413
2069dd75
PZ
2414 tg = cfs_rq->tg;
2415 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2416 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2417 return;
3ff6dcac
YZ
2418#ifndef CONFIG_SMP
2419 if (likely(se->load.weight == tg->shares))
2420 return;
2421#endif
6d5ab293 2422 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2423
2424 reweight_entity(cfs_rq_of(se), se, shares);
2425}
2426#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2427static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2428{
2429}
2430#endif /* CONFIG_FAIR_GROUP_SCHED */
2431
141965c7 2432#ifdef CONFIG_SMP
5b51f2f8
PT
2433/*
2434 * We choose a half-life close to 1 scheduling period.
2435 * Note: The tables below are dependent on this value.
2436 */
2437#define LOAD_AVG_PERIOD 32
2438#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2439#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2440
2441/* Precomputed fixed inverse multiplies for multiplication by y^n */
2442static const u32 runnable_avg_yN_inv[] = {
2443 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2444 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2445 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2446 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2447 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2448 0x85aac367, 0x82cd8698,
2449};
2450
2451/*
2452 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2453 * over-estimates when re-combining.
2454 */
2455static const u32 runnable_avg_yN_sum[] = {
2456 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2457 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2458 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2459};
2460
9d85f21c
PT
2461/*
2462 * Approximate:
2463 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2464 */
2465static __always_inline u64 decay_load(u64 val, u64 n)
2466{
5b51f2f8
PT
2467 unsigned int local_n;
2468
2469 if (!n)
2470 return val;
2471 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2472 return 0;
2473
2474 /* after bounds checking we can collapse to 32-bit */
2475 local_n = n;
2476
2477 /*
2478 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2479 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2480 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2481 *
2482 * To achieve constant time decay_load.
2483 */
2484 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2485 val >>= local_n / LOAD_AVG_PERIOD;
2486 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2487 }
2488
5b51f2f8
PT
2489 val *= runnable_avg_yN_inv[local_n];
2490 /* We don't use SRR here since we always want to round down. */
2491 return val >> 32;
2492}
2493
2494/*
2495 * For updates fully spanning n periods, the contribution to runnable
2496 * average will be: \Sum 1024*y^n
2497 *
2498 * We can compute this reasonably efficiently by combining:
2499 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2500 */
2501static u32 __compute_runnable_contrib(u64 n)
2502{
2503 u32 contrib = 0;
2504
2505 if (likely(n <= LOAD_AVG_PERIOD))
2506 return runnable_avg_yN_sum[n];
2507 else if (unlikely(n >= LOAD_AVG_MAX_N))
2508 return LOAD_AVG_MAX;
2509
2510 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2511 do {
2512 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2513 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2514
2515 n -= LOAD_AVG_PERIOD;
2516 } while (n > LOAD_AVG_PERIOD);
2517
2518 contrib = decay_load(contrib, n);
2519 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2520}
2521
2522/*
2523 * We can represent the historical contribution to runnable average as the
2524 * coefficients of a geometric series. To do this we sub-divide our runnable
2525 * history into segments of approximately 1ms (1024us); label the segment that
2526 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2527 *
2528 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2529 * p0 p1 p2
2530 * (now) (~1ms ago) (~2ms ago)
2531 *
2532 * Let u_i denote the fraction of p_i that the entity was runnable.
2533 *
2534 * We then designate the fractions u_i as our co-efficients, yielding the
2535 * following representation of historical load:
2536 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2537 *
2538 * We choose y based on the with of a reasonably scheduling period, fixing:
2539 * y^32 = 0.5
2540 *
2541 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2542 * approximately half as much as the contribution to load within the last ms
2543 * (u_0).
2544 *
2545 * When a period "rolls over" and we have new u_0`, multiplying the previous
2546 * sum again by y is sufficient to update:
2547 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2548 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2549 */
0c1dc6b2 2550static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2551 struct sched_avg *sa,
36ee28e4
VG
2552 int runnable,
2553 int running)
9d85f21c 2554{
5b51f2f8
PT
2555 u64 delta, periods;
2556 u32 runnable_contrib;
9d85f21c 2557 int delta_w, decayed = 0;
0c1dc6b2 2558 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2559
2560 delta = now - sa->last_runnable_update;
2561 /*
2562 * This should only happen when time goes backwards, which it
2563 * unfortunately does during sched clock init when we swap over to TSC.
2564 */
2565 if ((s64)delta < 0) {
2566 sa->last_runnable_update = now;
2567 return 0;
2568 }
2569
2570 /*
2571 * Use 1024ns as the unit of measurement since it's a reasonable
2572 * approximation of 1us and fast to compute.
2573 */
2574 delta >>= 10;
2575 if (!delta)
2576 return 0;
2577 sa->last_runnable_update = now;
2578
2579 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2580 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2581 if (delta + delta_w >= 1024) {
2582 /* period roll-over */
2583 decayed = 1;
2584
2585 /*
2586 * Now that we know we're crossing a period boundary, figure
2587 * out how much from delta we need to complete the current
2588 * period and accrue it.
2589 */
2590 delta_w = 1024 - delta_w;
5b51f2f8
PT
2591 if (runnable)
2592 sa->runnable_avg_sum += delta_w;
36ee28e4 2593 if (running)
0c1dc6b2
MR
2594 sa->running_avg_sum += delta_w * scale_freq
2595 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2596 sa->avg_period += delta_w;
5b51f2f8
PT
2597
2598 delta -= delta_w;
2599
2600 /* Figure out how many additional periods this update spans */
2601 periods = delta / 1024;
2602 delta %= 1024;
2603
2604 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2605 periods + 1);
36ee28e4
VG
2606 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2607 periods + 1);
2608 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2609 periods + 1);
2610
2611 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2612 runnable_contrib = __compute_runnable_contrib(periods);
2613 if (runnable)
2614 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2615 if (running)
0c1dc6b2
MR
2616 sa->running_avg_sum += runnable_contrib * scale_freq
2617 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2618 sa->avg_period += runnable_contrib;
9d85f21c
PT
2619 }
2620
2621 /* Remainder of delta accrued against u_0` */
2622 if (runnable)
2623 sa->runnable_avg_sum += delta;
36ee28e4 2624 if (running)
0c1dc6b2
MR
2625 sa->running_avg_sum += delta * scale_freq
2626 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2627 sa->avg_period += delta;
9d85f21c
PT
2628
2629 return decayed;
2630}
2631
9ee474f5 2632/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2633static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2634{
2635 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2636 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2637
2638 decays -= se->avg.decay_count;
63847600 2639 se->avg.decay_count = 0;
9ee474f5 2640 if (!decays)
aff3e498 2641 return 0;
9ee474f5
PT
2642
2643 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2644 se->avg.utilization_avg_contrib =
2645 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2646
2647 return decays;
9ee474f5
PT
2648}
2649
c566e8e9
PT
2650#ifdef CONFIG_FAIR_GROUP_SCHED
2651static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2652 int force_update)
2653{
2654 struct task_group *tg = cfs_rq->tg;
bf5b986e 2655 long tg_contrib;
c566e8e9
PT
2656
2657 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2658 tg_contrib -= cfs_rq->tg_load_contrib;
2659
8236d907
JL
2660 if (!tg_contrib)
2661 return;
2662
bf5b986e
AS
2663 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2664 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2665 cfs_rq->tg_load_contrib += tg_contrib;
2666 }
2667}
8165e145 2668
bb17f655
PT
2669/*
2670 * Aggregate cfs_rq runnable averages into an equivalent task_group
2671 * representation for computing load contributions.
2672 */
2673static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2674 struct cfs_rq *cfs_rq)
2675{
2676 struct task_group *tg = cfs_rq->tg;
2677 long contrib;
2678
2679 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2680 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2681 sa->avg_period + 1);
bb17f655
PT
2682 contrib -= cfs_rq->tg_runnable_contrib;
2683
2684 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2685 atomic_add(contrib, &tg->runnable_avg);
2686 cfs_rq->tg_runnable_contrib += contrib;
2687 }
2688}
2689
8165e145
PT
2690static inline void __update_group_entity_contrib(struct sched_entity *se)
2691{
2692 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2693 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2694 int runnable_avg;
2695
8165e145
PT
2696 u64 contrib;
2697
2698 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2699 se->avg.load_avg_contrib = div_u64(contrib,
2700 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2701
2702 /*
2703 * For group entities we need to compute a correction term in the case
2704 * that they are consuming <1 cpu so that we would contribute the same
2705 * load as a task of equal weight.
2706 *
2707 * Explicitly co-ordinating this measurement would be expensive, but
2708 * fortunately the sum of each cpus contribution forms a usable
2709 * lower-bound on the true value.
2710 *
2711 * Consider the aggregate of 2 contributions. Either they are disjoint
2712 * (and the sum represents true value) or they are disjoint and we are
2713 * understating by the aggregate of their overlap.
2714 *
2715 * Extending this to N cpus, for a given overlap, the maximum amount we
2716 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2717 * cpus that overlap for this interval and w_i is the interval width.
2718 *
2719 * On a small machine; the first term is well-bounded which bounds the
2720 * total error since w_i is a subset of the period. Whereas on a
2721 * larger machine, while this first term can be larger, if w_i is the
2722 * of consequential size guaranteed to see n_i*w_i quickly converge to
2723 * our upper bound of 1-cpu.
2724 */
2725 runnable_avg = atomic_read(&tg->runnable_avg);
2726 if (runnable_avg < NICE_0_LOAD) {
2727 se->avg.load_avg_contrib *= runnable_avg;
2728 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2729 }
8165e145 2730}
f5f9739d
DE
2731
2732static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2733{
0c1dc6b2
MR
2734 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2735 runnable, runnable);
f5f9739d
DE
2736 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2737}
6e83125c 2738#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2739static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2740 int force_update) {}
bb17f655
PT
2741static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2742 struct cfs_rq *cfs_rq) {}
8165e145 2743static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2744static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2745#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2746
8165e145
PT
2747static inline void __update_task_entity_contrib(struct sched_entity *se)
2748{
2749 u32 contrib;
2750
2751 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2752 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2753 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2754 se->avg.load_avg_contrib = scale_load(contrib);
2755}
2756
2dac754e
PT
2757/* Compute the current contribution to load_avg by se, return any delta */
2758static long __update_entity_load_avg_contrib(struct sched_entity *se)
2759{
2760 long old_contrib = se->avg.load_avg_contrib;
2761
8165e145
PT
2762 if (entity_is_task(se)) {
2763 __update_task_entity_contrib(se);
2764 } else {
bb17f655 2765 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2766 __update_group_entity_contrib(se);
2767 }
2dac754e
PT
2768
2769 return se->avg.load_avg_contrib - old_contrib;
2770}
2771
36ee28e4
VG
2772
2773static inline void __update_task_entity_utilization(struct sched_entity *se)
2774{
2775 u32 contrib;
2776
2777 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2778 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2779 contrib /= (se->avg.avg_period + 1);
2780 se->avg.utilization_avg_contrib = scale_load(contrib);
2781}
2782
2783static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2784{
2785 long old_contrib = se->avg.utilization_avg_contrib;
2786
2787 if (entity_is_task(se))
2788 __update_task_entity_utilization(se);
21f44866
MR
2789 else
2790 se->avg.utilization_avg_contrib =
2791 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2792
2793 return se->avg.utilization_avg_contrib - old_contrib;
2794}
2795
9ee474f5
PT
2796static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2797 long load_contrib)
2798{
2799 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2800 cfs_rq->blocked_load_avg -= load_contrib;
2801 else
2802 cfs_rq->blocked_load_avg = 0;
2803}
2804
f1b17280
PT
2805static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2806
9d85f21c 2807/* Update a sched_entity's runnable average */
9ee474f5
PT
2808static inline void update_entity_load_avg(struct sched_entity *se,
2809 int update_cfs_rq)
9d85f21c 2810{
2dac754e 2811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2812 long contrib_delta, utilization_delta;
0c1dc6b2 2813 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2814 u64 now;
2dac754e 2815
f1b17280
PT
2816 /*
2817 * For a group entity we need to use their owned cfs_rq_clock_task() in
2818 * case they are the parent of a throttled hierarchy.
2819 */
2820 if (entity_is_task(se))
2821 now = cfs_rq_clock_task(cfs_rq);
2822 else
2823 now = cfs_rq_clock_task(group_cfs_rq(se));
2824
0c1dc6b2 2825 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2826 cfs_rq->curr == se))
2dac754e
PT
2827 return;
2828
2829 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2830 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2831
2832 if (!update_cfs_rq)
2833 return;
2834
36ee28e4 2835 if (se->on_rq) {
2dac754e 2836 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2837 cfs_rq->utilization_load_avg += utilization_delta;
2838 } else {
9ee474f5 2839 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2840 }
9ee474f5
PT
2841}
2842
2843/*
2844 * Decay the load contributed by all blocked children and account this so that
2845 * their contribution may appropriately discounted when they wake up.
2846 */
aff3e498 2847static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2848{
f1b17280 2849 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2850 u64 decays;
2851
2852 decays = now - cfs_rq->last_decay;
aff3e498 2853 if (!decays && !force_update)
9ee474f5
PT
2854 return;
2855
2509940f
AS
2856 if (atomic_long_read(&cfs_rq->removed_load)) {
2857 unsigned long removed_load;
2858 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2859 subtract_blocked_load_contrib(cfs_rq, removed_load);
2860 }
9ee474f5 2861
aff3e498
PT
2862 if (decays) {
2863 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2864 decays);
2865 atomic64_add(decays, &cfs_rq->decay_counter);
2866 cfs_rq->last_decay = now;
2867 }
c566e8e9
PT
2868
2869 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2870}
18bf2805 2871
2dac754e
PT
2872/* Add the load generated by se into cfs_rq's child load-average */
2873static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2874 struct sched_entity *se,
2875 int wakeup)
2dac754e 2876{
aff3e498
PT
2877 /*
2878 * We track migrations using entity decay_count <= 0, on a wake-up
2879 * migration we use a negative decay count to track the remote decays
2880 * accumulated while sleeping.
a75cdaa9
AS
2881 *
2882 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2883 * are seen by enqueue_entity_load_avg() as a migration with an already
2884 * constructed load_avg_contrib.
aff3e498
PT
2885 */
2886 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2887 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2888 if (se->avg.decay_count) {
2889 /*
2890 * In a wake-up migration we have to approximate the
2891 * time sleeping. This is because we can't synchronize
2892 * clock_task between the two cpus, and it is not
2893 * guaranteed to be read-safe. Instead, we can
2894 * approximate this using our carried decays, which are
2895 * explicitly atomically readable.
2896 */
2897 se->avg.last_runnable_update -= (-se->avg.decay_count)
2898 << 20;
2899 update_entity_load_avg(se, 0);
2900 /* Indicate that we're now synchronized and on-rq */
2901 se->avg.decay_count = 0;
2902 }
9ee474f5
PT
2903 wakeup = 0;
2904 } else {
9390675a 2905 __synchronize_entity_decay(se);
9ee474f5
PT
2906 }
2907
aff3e498
PT
2908 /* migrated tasks did not contribute to our blocked load */
2909 if (wakeup) {
9ee474f5 2910 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2911 update_entity_load_avg(se, 0);
2912 }
9ee474f5 2913
2dac754e 2914 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2915 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2916 /* we force update consideration on load-balancer moves */
2917 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2918}
2919
9ee474f5
PT
2920/*
2921 * Remove se's load from this cfs_rq child load-average, if the entity is
2922 * transitioning to a blocked state we track its projected decay using
2923 * blocked_load_avg.
2924 */
2dac754e 2925static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2926 struct sched_entity *se,
2927 int sleep)
2dac754e 2928{
9ee474f5 2929 update_entity_load_avg(se, 1);
aff3e498
PT
2930 /* we force update consideration on load-balancer moves */
2931 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2932
2dac754e 2933 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2934 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2935 if (sleep) {
2936 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2937 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2938 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2939}
642dbc39
VG
2940
2941/*
2942 * Update the rq's load with the elapsed running time before entering
2943 * idle. if the last scheduled task is not a CFS task, idle_enter will
2944 * be the only way to update the runnable statistic.
2945 */
2946void idle_enter_fair(struct rq *this_rq)
2947{
2948 update_rq_runnable_avg(this_rq, 1);
2949}
2950
2951/*
2952 * Update the rq's load with the elapsed idle time before a task is
2953 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2954 * be the only way to update the runnable statistic.
2955 */
2956void idle_exit_fair(struct rq *this_rq)
2957{
2958 update_rq_runnable_avg(this_rq, 0);
2959}
2960
6e83125c
PZ
2961static int idle_balance(struct rq *this_rq);
2962
38033c37
PZ
2963#else /* CONFIG_SMP */
2964
9ee474f5
PT
2965static inline void update_entity_load_avg(struct sched_entity *se,
2966 int update_cfs_rq) {}
18bf2805 2967static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2968static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2969 struct sched_entity *se,
2970 int wakeup) {}
2dac754e 2971static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2972 struct sched_entity *se,
2973 int sleep) {}
aff3e498
PT
2974static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2975 int force_update) {}
6e83125c
PZ
2976
2977static inline int idle_balance(struct rq *rq)
2978{
2979 return 0;
2980}
2981
38033c37 2982#endif /* CONFIG_SMP */
9d85f21c 2983
2396af69 2984static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2985{
bf0f6f24 2986#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2987 struct task_struct *tsk = NULL;
2988
2989 if (entity_is_task(se))
2990 tsk = task_of(se);
2991
41acab88 2992 if (se->statistics.sleep_start) {
78becc27 2993 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2994
2995 if ((s64)delta < 0)
2996 delta = 0;
2997
41acab88
LDM
2998 if (unlikely(delta > se->statistics.sleep_max))
2999 se->statistics.sleep_max = delta;
bf0f6f24 3000
8c79a045 3001 se->statistics.sleep_start = 0;
41acab88 3002 se->statistics.sum_sleep_runtime += delta;
9745512c 3003
768d0c27 3004 if (tsk) {
e414314c 3005 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3006 trace_sched_stat_sleep(tsk, delta);
3007 }
bf0f6f24 3008 }
41acab88 3009 if (se->statistics.block_start) {
78becc27 3010 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3011
3012 if ((s64)delta < 0)
3013 delta = 0;
3014
41acab88
LDM
3015 if (unlikely(delta > se->statistics.block_max))
3016 se->statistics.block_max = delta;
bf0f6f24 3017
8c79a045 3018 se->statistics.block_start = 0;
41acab88 3019 se->statistics.sum_sleep_runtime += delta;
30084fbd 3020
e414314c 3021 if (tsk) {
8f0dfc34 3022 if (tsk->in_iowait) {
41acab88
LDM
3023 se->statistics.iowait_sum += delta;
3024 se->statistics.iowait_count++;
768d0c27 3025 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3026 }
3027
b781a602
AV
3028 trace_sched_stat_blocked(tsk, delta);
3029
e414314c
PZ
3030 /*
3031 * Blocking time is in units of nanosecs, so shift by
3032 * 20 to get a milliseconds-range estimation of the
3033 * amount of time that the task spent sleeping:
3034 */
3035 if (unlikely(prof_on == SLEEP_PROFILING)) {
3036 profile_hits(SLEEP_PROFILING,
3037 (void *)get_wchan(tsk),
3038 delta >> 20);
3039 }
3040 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3041 }
bf0f6f24
IM
3042 }
3043#endif
3044}
3045
ddc97297
PZ
3046static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3047{
3048#ifdef CONFIG_SCHED_DEBUG
3049 s64 d = se->vruntime - cfs_rq->min_vruntime;
3050
3051 if (d < 0)
3052 d = -d;
3053
3054 if (d > 3*sysctl_sched_latency)
3055 schedstat_inc(cfs_rq, nr_spread_over);
3056#endif
3057}
3058
aeb73b04
PZ
3059static void
3060place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3061{
1af5f730 3062 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3063
2cb8600e
PZ
3064 /*
3065 * The 'current' period is already promised to the current tasks,
3066 * however the extra weight of the new task will slow them down a
3067 * little, place the new task so that it fits in the slot that
3068 * stays open at the end.
3069 */
94dfb5e7 3070 if (initial && sched_feat(START_DEBIT))
f9c0b095 3071 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3072
a2e7a7eb 3073 /* sleeps up to a single latency don't count. */
5ca9880c 3074 if (!initial) {
a2e7a7eb 3075 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3076
a2e7a7eb
MG
3077 /*
3078 * Halve their sleep time's effect, to allow
3079 * for a gentler effect of sleepers:
3080 */
3081 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3082 thresh >>= 1;
51e0304c 3083
a2e7a7eb 3084 vruntime -= thresh;
aeb73b04
PZ
3085 }
3086
b5d9d734 3087 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3088 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3089}
3090
d3d9dc33
PT
3091static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3092
bf0f6f24 3093static void
88ec22d3 3094enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3095{
88ec22d3
PZ
3096 /*
3097 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3098 * through calling update_curr().
88ec22d3 3099 */
371fd7e7 3100 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3101 se->vruntime += cfs_rq->min_vruntime;
3102
bf0f6f24 3103 /*
a2a2d680 3104 * Update run-time statistics of the 'current'.
bf0f6f24 3105 */
b7cc0896 3106 update_curr(cfs_rq);
f269ae04 3107 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3108 account_entity_enqueue(cfs_rq, se);
3109 update_cfs_shares(cfs_rq);
bf0f6f24 3110
88ec22d3 3111 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3112 place_entity(cfs_rq, se, 0);
2396af69 3113 enqueue_sleeper(cfs_rq, se);
e9acbff6 3114 }
bf0f6f24 3115
d2417e5a 3116 update_stats_enqueue(cfs_rq, se);
ddc97297 3117 check_spread(cfs_rq, se);
83b699ed
SV
3118 if (se != cfs_rq->curr)
3119 __enqueue_entity(cfs_rq, se);
2069dd75 3120 se->on_rq = 1;
3d4b47b4 3121
d3d9dc33 3122 if (cfs_rq->nr_running == 1) {
3d4b47b4 3123 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3124 check_enqueue_throttle(cfs_rq);
3125 }
bf0f6f24
IM
3126}
3127
2c13c919 3128static void __clear_buddies_last(struct sched_entity *se)
2002c695 3129{
2c13c919
RR
3130 for_each_sched_entity(se) {
3131 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3132 if (cfs_rq->last != se)
2c13c919 3133 break;
f1044799
PZ
3134
3135 cfs_rq->last = NULL;
2c13c919
RR
3136 }
3137}
2002c695 3138
2c13c919
RR
3139static void __clear_buddies_next(struct sched_entity *se)
3140{
3141 for_each_sched_entity(se) {
3142 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3143 if (cfs_rq->next != se)
2c13c919 3144 break;
f1044799
PZ
3145
3146 cfs_rq->next = NULL;
2c13c919 3147 }
2002c695
PZ
3148}
3149
ac53db59
RR
3150static void __clear_buddies_skip(struct sched_entity *se)
3151{
3152 for_each_sched_entity(se) {
3153 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3154 if (cfs_rq->skip != se)
ac53db59 3155 break;
f1044799
PZ
3156
3157 cfs_rq->skip = NULL;
ac53db59
RR
3158 }
3159}
3160
a571bbea
PZ
3161static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3162{
2c13c919
RR
3163 if (cfs_rq->last == se)
3164 __clear_buddies_last(se);
3165
3166 if (cfs_rq->next == se)
3167 __clear_buddies_next(se);
ac53db59
RR
3168
3169 if (cfs_rq->skip == se)
3170 __clear_buddies_skip(se);
a571bbea
PZ
3171}
3172
6c16a6dc 3173static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3174
bf0f6f24 3175static void
371fd7e7 3176dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3177{
a2a2d680
DA
3178 /*
3179 * Update run-time statistics of the 'current'.
3180 */
3181 update_curr(cfs_rq);
17bc14b7 3182 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3183
19b6a2e3 3184 update_stats_dequeue(cfs_rq, se);
371fd7e7 3185 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3186#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3187 if (entity_is_task(se)) {
3188 struct task_struct *tsk = task_of(se);
3189
3190 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3191 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3192 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3193 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3194 }
db36cc7d 3195#endif
67e9fb2a
PZ
3196 }
3197
2002c695 3198 clear_buddies(cfs_rq, se);
4793241b 3199
83b699ed 3200 if (se != cfs_rq->curr)
30cfdcfc 3201 __dequeue_entity(cfs_rq, se);
17bc14b7 3202 se->on_rq = 0;
30cfdcfc 3203 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3204
3205 /*
3206 * Normalize the entity after updating the min_vruntime because the
3207 * update can refer to the ->curr item and we need to reflect this
3208 * movement in our normalized position.
3209 */
371fd7e7 3210 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3211 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3212
d8b4986d
PT
3213 /* return excess runtime on last dequeue */
3214 return_cfs_rq_runtime(cfs_rq);
3215
1e876231 3216 update_min_vruntime(cfs_rq);
17bc14b7 3217 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3218}
3219
3220/*
3221 * Preempt the current task with a newly woken task if needed:
3222 */
7c92e54f 3223static void
2e09bf55 3224check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3225{
11697830 3226 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3227 struct sched_entity *se;
3228 s64 delta;
11697830 3229
6d0f0ebd 3230 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3231 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3232 if (delta_exec > ideal_runtime) {
8875125e 3233 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3234 /*
3235 * The current task ran long enough, ensure it doesn't get
3236 * re-elected due to buddy favours.
3237 */
3238 clear_buddies(cfs_rq, curr);
f685ceac
MG
3239 return;
3240 }
3241
3242 /*
3243 * Ensure that a task that missed wakeup preemption by a
3244 * narrow margin doesn't have to wait for a full slice.
3245 * This also mitigates buddy induced latencies under load.
3246 */
f685ceac
MG
3247 if (delta_exec < sysctl_sched_min_granularity)
3248 return;
3249
f4cfb33e
WX
3250 se = __pick_first_entity(cfs_rq);
3251 delta = curr->vruntime - se->vruntime;
f685ceac 3252
f4cfb33e
WX
3253 if (delta < 0)
3254 return;
d7d82944 3255
f4cfb33e 3256 if (delta > ideal_runtime)
8875125e 3257 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3258}
3259
83b699ed 3260static void
8494f412 3261set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3262{
83b699ed
SV
3263 /* 'current' is not kept within the tree. */
3264 if (se->on_rq) {
3265 /*
3266 * Any task has to be enqueued before it get to execute on
3267 * a CPU. So account for the time it spent waiting on the
3268 * runqueue.
3269 */
3270 update_stats_wait_end(cfs_rq, se);
3271 __dequeue_entity(cfs_rq, se);
36ee28e4 3272 update_entity_load_avg(se, 1);
83b699ed
SV
3273 }
3274
79303e9e 3275 update_stats_curr_start(cfs_rq, se);
429d43bc 3276 cfs_rq->curr = se;
eba1ed4b
IM
3277#ifdef CONFIG_SCHEDSTATS
3278 /*
3279 * Track our maximum slice length, if the CPU's load is at
3280 * least twice that of our own weight (i.e. dont track it
3281 * when there are only lesser-weight tasks around):
3282 */
495eca49 3283 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3284 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3285 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3286 }
3287#endif
4a55b450 3288 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3289}
3290
3f3a4904
PZ
3291static int
3292wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3293
ac53db59
RR
3294/*
3295 * Pick the next process, keeping these things in mind, in this order:
3296 * 1) keep things fair between processes/task groups
3297 * 2) pick the "next" process, since someone really wants that to run
3298 * 3) pick the "last" process, for cache locality
3299 * 4) do not run the "skip" process, if something else is available
3300 */
678d5718
PZ
3301static struct sched_entity *
3302pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3303{
678d5718
PZ
3304 struct sched_entity *left = __pick_first_entity(cfs_rq);
3305 struct sched_entity *se;
3306
3307 /*
3308 * If curr is set we have to see if its left of the leftmost entity
3309 * still in the tree, provided there was anything in the tree at all.
3310 */
3311 if (!left || (curr && entity_before(curr, left)))
3312 left = curr;
3313
3314 se = left; /* ideally we run the leftmost entity */
f4b6755f 3315
ac53db59
RR
3316 /*
3317 * Avoid running the skip buddy, if running something else can
3318 * be done without getting too unfair.
3319 */
3320 if (cfs_rq->skip == se) {
678d5718
PZ
3321 struct sched_entity *second;
3322
3323 if (se == curr) {
3324 second = __pick_first_entity(cfs_rq);
3325 } else {
3326 second = __pick_next_entity(se);
3327 if (!second || (curr && entity_before(curr, second)))
3328 second = curr;
3329 }
3330
ac53db59
RR
3331 if (second && wakeup_preempt_entity(second, left) < 1)
3332 se = second;
3333 }
aa2ac252 3334
f685ceac
MG
3335 /*
3336 * Prefer last buddy, try to return the CPU to a preempted task.
3337 */
3338 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3339 se = cfs_rq->last;
3340
ac53db59
RR
3341 /*
3342 * Someone really wants this to run. If it's not unfair, run it.
3343 */
3344 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3345 se = cfs_rq->next;
3346
f685ceac 3347 clear_buddies(cfs_rq, se);
4793241b
PZ
3348
3349 return se;
aa2ac252
PZ
3350}
3351
678d5718 3352static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3353
ab6cde26 3354static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3355{
3356 /*
3357 * If still on the runqueue then deactivate_task()
3358 * was not called and update_curr() has to be done:
3359 */
3360 if (prev->on_rq)
b7cc0896 3361 update_curr(cfs_rq);
bf0f6f24 3362
d3d9dc33
PT
3363 /* throttle cfs_rqs exceeding runtime */
3364 check_cfs_rq_runtime(cfs_rq);
3365
ddc97297 3366 check_spread(cfs_rq, prev);
30cfdcfc 3367 if (prev->on_rq) {
5870db5b 3368 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3369 /* Put 'current' back into the tree. */
3370 __enqueue_entity(cfs_rq, prev);
9d85f21c 3371 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3372 update_entity_load_avg(prev, 1);
30cfdcfc 3373 }
429d43bc 3374 cfs_rq->curr = NULL;
bf0f6f24
IM
3375}
3376
8f4d37ec
PZ
3377static void
3378entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3379{
bf0f6f24 3380 /*
30cfdcfc 3381 * Update run-time statistics of the 'current'.
bf0f6f24 3382 */
30cfdcfc 3383 update_curr(cfs_rq);
bf0f6f24 3384
9d85f21c
PT
3385 /*
3386 * Ensure that runnable average is periodically updated.
3387 */
9ee474f5 3388 update_entity_load_avg(curr, 1);
aff3e498 3389 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3390 update_cfs_shares(cfs_rq);
9d85f21c 3391
8f4d37ec
PZ
3392#ifdef CONFIG_SCHED_HRTICK
3393 /*
3394 * queued ticks are scheduled to match the slice, so don't bother
3395 * validating it and just reschedule.
3396 */
983ed7a6 3397 if (queued) {
8875125e 3398 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3399 return;
3400 }
8f4d37ec
PZ
3401 /*
3402 * don't let the period tick interfere with the hrtick preemption
3403 */
3404 if (!sched_feat(DOUBLE_TICK) &&
3405 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3406 return;
3407#endif
3408
2c2efaed 3409 if (cfs_rq->nr_running > 1)
2e09bf55 3410 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3411}
3412
ab84d31e
PT
3413
3414/**************************************************
3415 * CFS bandwidth control machinery
3416 */
3417
3418#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3419
3420#ifdef HAVE_JUMP_LABEL
c5905afb 3421static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3422
3423static inline bool cfs_bandwidth_used(void)
3424{
c5905afb 3425 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3426}
3427
1ee14e6c 3428void cfs_bandwidth_usage_inc(void)
029632fb 3429{
1ee14e6c
BS
3430 static_key_slow_inc(&__cfs_bandwidth_used);
3431}
3432
3433void cfs_bandwidth_usage_dec(void)
3434{
3435 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3436}
3437#else /* HAVE_JUMP_LABEL */
3438static bool cfs_bandwidth_used(void)
3439{
3440 return true;
3441}
3442
1ee14e6c
BS
3443void cfs_bandwidth_usage_inc(void) {}
3444void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3445#endif /* HAVE_JUMP_LABEL */
3446
ab84d31e
PT
3447/*
3448 * default period for cfs group bandwidth.
3449 * default: 0.1s, units: nanoseconds
3450 */
3451static inline u64 default_cfs_period(void)
3452{
3453 return 100000000ULL;
3454}
ec12cb7f
PT
3455
3456static inline u64 sched_cfs_bandwidth_slice(void)
3457{
3458 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3459}
3460
a9cf55b2
PT
3461/*
3462 * Replenish runtime according to assigned quota and update expiration time.
3463 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3464 * additional synchronization around rq->lock.
3465 *
3466 * requires cfs_b->lock
3467 */
029632fb 3468void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3469{
3470 u64 now;
3471
3472 if (cfs_b->quota == RUNTIME_INF)
3473 return;
3474
3475 now = sched_clock_cpu(smp_processor_id());
3476 cfs_b->runtime = cfs_b->quota;
3477 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3478}
3479
029632fb
PZ
3480static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3481{
3482 return &tg->cfs_bandwidth;
3483}
3484
f1b17280
PT
3485/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3486static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3487{
3488 if (unlikely(cfs_rq->throttle_count))
3489 return cfs_rq->throttled_clock_task;
3490
78becc27 3491 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3492}
3493
85dac906
PT
3494/* returns 0 on failure to allocate runtime */
3495static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3496{
3497 struct task_group *tg = cfs_rq->tg;
3498 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3499 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3500
3501 /* note: this is a positive sum as runtime_remaining <= 0 */
3502 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3503
3504 raw_spin_lock(&cfs_b->lock);
3505 if (cfs_b->quota == RUNTIME_INF)
3506 amount = min_amount;
58088ad0 3507 else {
77a4d1a1 3508 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3509
3510 if (cfs_b->runtime > 0) {
3511 amount = min(cfs_b->runtime, min_amount);
3512 cfs_b->runtime -= amount;
3513 cfs_b->idle = 0;
3514 }
ec12cb7f 3515 }
a9cf55b2 3516 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3517 raw_spin_unlock(&cfs_b->lock);
3518
3519 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3520 /*
3521 * we may have advanced our local expiration to account for allowed
3522 * spread between our sched_clock and the one on which runtime was
3523 * issued.
3524 */
3525 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3526 cfs_rq->runtime_expires = expires;
85dac906
PT
3527
3528 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3529}
3530
a9cf55b2
PT
3531/*
3532 * Note: This depends on the synchronization provided by sched_clock and the
3533 * fact that rq->clock snapshots this value.
3534 */
3535static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3536{
a9cf55b2 3537 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3538
3539 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3540 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3541 return;
3542
a9cf55b2
PT
3543 if (cfs_rq->runtime_remaining < 0)
3544 return;
3545
3546 /*
3547 * If the local deadline has passed we have to consider the
3548 * possibility that our sched_clock is 'fast' and the global deadline
3549 * has not truly expired.
3550 *
3551 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3552 * whether the global deadline has advanced. It is valid to compare
3553 * cfs_b->runtime_expires without any locks since we only care about
3554 * exact equality, so a partial write will still work.
a9cf55b2
PT
3555 */
3556
51f2176d 3557 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3558 /* extend local deadline, drift is bounded above by 2 ticks */
3559 cfs_rq->runtime_expires += TICK_NSEC;
3560 } else {
3561 /* global deadline is ahead, expiration has passed */
3562 cfs_rq->runtime_remaining = 0;
3563 }
3564}
3565
9dbdb155 3566static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3567{
3568 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3569 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3570 expire_cfs_rq_runtime(cfs_rq);
3571
3572 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3573 return;
3574
85dac906
PT
3575 /*
3576 * if we're unable to extend our runtime we resched so that the active
3577 * hierarchy can be throttled
3578 */
3579 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3580 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3581}
3582
6c16a6dc 3583static __always_inline
9dbdb155 3584void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3585{
56f570e5 3586 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3587 return;
3588
3589 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3590}
3591
85dac906
PT
3592static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3593{
56f570e5 3594 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3595}
3596
64660c86
PT
3597/* check whether cfs_rq, or any parent, is throttled */
3598static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3599{
56f570e5 3600 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3601}
3602
3603/*
3604 * Ensure that neither of the group entities corresponding to src_cpu or
3605 * dest_cpu are members of a throttled hierarchy when performing group
3606 * load-balance operations.
3607 */
3608static inline int throttled_lb_pair(struct task_group *tg,
3609 int src_cpu, int dest_cpu)
3610{
3611 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3612
3613 src_cfs_rq = tg->cfs_rq[src_cpu];
3614 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3615
3616 return throttled_hierarchy(src_cfs_rq) ||
3617 throttled_hierarchy(dest_cfs_rq);
3618}
3619
3620/* updated child weight may affect parent so we have to do this bottom up */
3621static int tg_unthrottle_up(struct task_group *tg, void *data)
3622{
3623 struct rq *rq = data;
3624 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3625
3626 cfs_rq->throttle_count--;
3627#ifdef CONFIG_SMP
3628 if (!cfs_rq->throttle_count) {
f1b17280 3629 /* adjust cfs_rq_clock_task() */
78becc27 3630 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3631 cfs_rq->throttled_clock_task;
64660c86
PT
3632 }
3633#endif
3634
3635 return 0;
3636}
3637
3638static int tg_throttle_down(struct task_group *tg, void *data)
3639{
3640 struct rq *rq = data;
3641 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3642
82958366
PT
3643 /* group is entering throttled state, stop time */
3644 if (!cfs_rq->throttle_count)
78becc27 3645 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3646 cfs_rq->throttle_count++;
3647
3648 return 0;
3649}
3650
d3d9dc33 3651static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3652{
3653 struct rq *rq = rq_of(cfs_rq);
3654 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3655 struct sched_entity *se;
3656 long task_delta, dequeue = 1;
77a4d1a1 3657 bool empty;
85dac906
PT
3658
3659 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3660
f1b17280 3661 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3662 rcu_read_lock();
3663 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3664 rcu_read_unlock();
85dac906
PT
3665
3666 task_delta = cfs_rq->h_nr_running;
3667 for_each_sched_entity(se) {
3668 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3669 /* throttled entity or throttle-on-deactivate */
3670 if (!se->on_rq)
3671 break;
3672
3673 if (dequeue)
3674 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3675 qcfs_rq->h_nr_running -= task_delta;
3676
3677 if (qcfs_rq->load.weight)
3678 dequeue = 0;
3679 }
3680
3681 if (!se)
72465447 3682 sub_nr_running(rq, task_delta);
85dac906
PT
3683
3684 cfs_rq->throttled = 1;
78becc27 3685 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3686 raw_spin_lock(&cfs_b->lock);
d49db342 3687 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3688
c06f04c7
BS
3689 /*
3690 * Add to the _head_ of the list, so that an already-started
3691 * distribute_cfs_runtime will not see us
3692 */
3693 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3694
3695 /*
3696 * If we're the first throttled task, make sure the bandwidth
3697 * timer is running.
3698 */
3699 if (empty)
3700 start_cfs_bandwidth(cfs_b);
3701
85dac906
PT
3702 raw_spin_unlock(&cfs_b->lock);
3703}
3704
029632fb 3705void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3706{
3707 struct rq *rq = rq_of(cfs_rq);
3708 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3709 struct sched_entity *se;
3710 int enqueue = 1;
3711 long task_delta;
3712
22b958d8 3713 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3714
3715 cfs_rq->throttled = 0;
1a55af2e
FW
3716
3717 update_rq_clock(rq);
3718
671fd9da 3719 raw_spin_lock(&cfs_b->lock);
78becc27 3720 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3721 list_del_rcu(&cfs_rq->throttled_list);
3722 raw_spin_unlock(&cfs_b->lock);
3723
64660c86
PT
3724 /* update hierarchical throttle state */
3725 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3726
671fd9da
PT
3727 if (!cfs_rq->load.weight)
3728 return;
3729
3730 task_delta = cfs_rq->h_nr_running;
3731 for_each_sched_entity(se) {
3732 if (se->on_rq)
3733 enqueue = 0;
3734
3735 cfs_rq = cfs_rq_of(se);
3736 if (enqueue)
3737 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3738 cfs_rq->h_nr_running += task_delta;
3739
3740 if (cfs_rq_throttled(cfs_rq))
3741 break;
3742 }
3743
3744 if (!se)
72465447 3745 add_nr_running(rq, task_delta);
671fd9da
PT
3746
3747 /* determine whether we need to wake up potentially idle cpu */
3748 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3749 resched_curr(rq);
671fd9da
PT
3750}
3751
3752static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3753 u64 remaining, u64 expires)
3754{
3755 struct cfs_rq *cfs_rq;
c06f04c7
BS
3756 u64 runtime;
3757 u64 starting_runtime = remaining;
671fd9da
PT
3758
3759 rcu_read_lock();
3760 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3761 throttled_list) {
3762 struct rq *rq = rq_of(cfs_rq);
3763
3764 raw_spin_lock(&rq->lock);
3765 if (!cfs_rq_throttled(cfs_rq))
3766 goto next;
3767
3768 runtime = -cfs_rq->runtime_remaining + 1;
3769 if (runtime > remaining)
3770 runtime = remaining;
3771 remaining -= runtime;
3772
3773 cfs_rq->runtime_remaining += runtime;
3774 cfs_rq->runtime_expires = expires;
3775
3776 /* we check whether we're throttled above */
3777 if (cfs_rq->runtime_remaining > 0)
3778 unthrottle_cfs_rq(cfs_rq);
3779
3780next:
3781 raw_spin_unlock(&rq->lock);
3782
3783 if (!remaining)
3784 break;
3785 }
3786 rcu_read_unlock();
3787
c06f04c7 3788 return starting_runtime - remaining;
671fd9da
PT
3789}
3790
58088ad0
PT
3791/*
3792 * Responsible for refilling a task_group's bandwidth and unthrottling its
3793 * cfs_rqs as appropriate. If there has been no activity within the last
3794 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3795 * used to track this state.
3796 */
3797static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3798{
671fd9da 3799 u64 runtime, runtime_expires;
51f2176d 3800 int throttled;
58088ad0 3801
58088ad0
PT
3802 /* no need to continue the timer with no bandwidth constraint */
3803 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3804 goto out_deactivate;
58088ad0 3805
671fd9da 3806 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3807 cfs_b->nr_periods += overrun;
671fd9da 3808
51f2176d
BS
3809 /*
3810 * idle depends on !throttled (for the case of a large deficit), and if
3811 * we're going inactive then everything else can be deferred
3812 */
3813 if (cfs_b->idle && !throttled)
3814 goto out_deactivate;
a9cf55b2
PT
3815
3816 __refill_cfs_bandwidth_runtime(cfs_b);
3817
671fd9da
PT
3818 if (!throttled) {
3819 /* mark as potentially idle for the upcoming period */
3820 cfs_b->idle = 1;
51f2176d 3821 return 0;
671fd9da
PT
3822 }
3823
e8da1b18
NR
3824 /* account preceding periods in which throttling occurred */
3825 cfs_b->nr_throttled += overrun;
3826
671fd9da 3827 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3828
3829 /*
c06f04c7
BS
3830 * This check is repeated as we are holding onto the new bandwidth while
3831 * we unthrottle. This can potentially race with an unthrottled group
3832 * trying to acquire new bandwidth from the global pool. This can result
3833 * in us over-using our runtime if it is all used during this loop, but
3834 * only by limited amounts in that extreme case.
671fd9da 3835 */
c06f04c7
BS
3836 while (throttled && cfs_b->runtime > 0) {
3837 runtime = cfs_b->runtime;
671fd9da
PT
3838 raw_spin_unlock(&cfs_b->lock);
3839 /* we can't nest cfs_b->lock while distributing bandwidth */
3840 runtime = distribute_cfs_runtime(cfs_b, runtime,
3841 runtime_expires);
3842 raw_spin_lock(&cfs_b->lock);
3843
3844 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3845
3846 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3847 }
58088ad0 3848
671fd9da
PT
3849 /*
3850 * While we are ensured activity in the period following an
3851 * unthrottle, this also covers the case in which the new bandwidth is
3852 * insufficient to cover the existing bandwidth deficit. (Forcing the
3853 * timer to remain active while there are any throttled entities.)
3854 */
3855 cfs_b->idle = 0;
58088ad0 3856
51f2176d
BS
3857 return 0;
3858
3859out_deactivate:
51f2176d 3860 return 1;
58088ad0 3861}
d3d9dc33 3862
d8b4986d
PT
3863/* a cfs_rq won't donate quota below this amount */
3864static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3865/* minimum remaining period time to redistribute slack quota */
3866static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3867/* how long we wait to gather additional slack before distributing */
3868static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3869
db06e78c
BS
3870/*
3871 * Are we near the end of the current quota period?
3872 *
3873 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3874 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3875 * migrate_hrtimers, base is never cleared, so we are fine.
3876 */
d8b4986d
PT
3877static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3878{
3879 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3880 u64 remaining;
3881
3882 /* if the call-back is running a quota refresh is already occurring */
3883 if (hrtimer_callback_running(refresh_timer))
3884 return 1;
3885
3886 /* is a quota refresh about to occur? */
3887 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3888 if (remaining < min_expire)
3889 return 1;
3890
3891 return 0;
3892}
3893
3894static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3895{
3896 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3897
3898 /* if there's a quota refresh soon don't bother with slack */
3899 if (runtime_refresh_within(cfs_b, min_left))
3900 return;
3901
4cfafd30
PZ
3902 hrtimer_start(&cfs_b->slack_timer,
3903 ns_to_ktime(cfs_bandwidth_slack_period),
3904 HRTIMER_MODE_REL);
d8b4986d
PT
3905}
3906
3907/* we know any runtime found here is valid as update_curr() precedes return */
3908static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3909{
3910 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3911 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3912
3913 if (slack_runtime <= 0)
3914 return;
3915
3916 raw_spin_lock(&cfs_b->lock);
3917 if (cfs_b->quota != RUNTIME_INF &&
3918 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3919 cfs_b->runtime += slack_runtime;
3920
3921 /* we are under rq->lock, defer unthrottling using a timer */
3922 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3923 !list_empty(&cfs_b->throttled_cfs_rq))
3924 start_cfs_slack_bandwidth(cfs_b);
3925 }
3926 raw_spin_unlock(&cfs_b->lock);
3927
3928 /* even if it's not valid for return we don't want to try again */
3929 cfs_rq->runtime_remaining -= slack_runtime;
3930}
3931
3932static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3933{
56f570e5
PT
3934 if (!cfs_bandwidth_used())
3935 return;
3936
fccfdc6f 3937 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3938 return;
3939
3940 __return_cfs_rq_runtime(cfs_rq);
3941}
3942
3943/*
3944 * This is done with a timer (instead of inline with bandwidth return) since
3945 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3946 */
3947static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3948{
3949 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3950 u64 expires;
3951
3952 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3953 raw_spin_lock(&cfs_b->lock);
3954 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3955 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3956 return;
db06e78c 3957 }
d8b4986d 3958
c06f04c7 3959 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3960 runtime = cfs_b->runtime;
c06f04c7 3961
d8b4986d
PT
3962 expires = cfs_b->runtime_expires;
3963 raw_spin_unlock(&cfs_b->lock);
3964
3965 if (!runtime)
3966 return;
3967
3968 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3969
3970 raw_spin_lock(&cfs_b->lock);
3971 if (expires == cfs_b->runtime_expires)
c06f04c7 3972 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3973 raw_spin_unlock(&cfs_b->lock);
3974}
3975
d3d9dc33
PT
3976/*
3977 * When a group wakes up we want to make sure that its quota is not already
3978 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3979 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3980 */
3981static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3982{
56f570e5
PT
3983 if (!cfs_bandwidth_used())
3984 return;
3985
d3d9dc33
PT
3986 /* an active group must be handled by the update_curr()->put() path */
3987 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3988 return;
3989
3990 /* ensure the group is not already throttled */
3991 if (cfs_rq_throttled(cfs_rq))
3992 return;
3993
3994 /* update runtime allocation */
3995 account_cfs_rq_runtime(cfs_rq, 0);
3996 if (cfs_rq->runtime_remaining <= 0)
3997 throttle_cfs_rq(cfs_rq);
3998}
3999
4000/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4001static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4002{
56f570e5 4003 if (!cfs_bandwidth_used())
678d5718 4004 return false;
56f570e5 4005
d3d9dc33 4006 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4007 return false;
d3d9dc33
PT
4008
4009 /*
4010 * it's possible for a throttled entity to be forced into a running
4011 * state (e.g. set_curr_task), in this case we're finished.
4012 */
4013 if (cfs_rq_throttled(cfs_rq))
678d5718 4014 return true;
d3d9dc33
PT
4015
4016 throttle_cfs_rq(cfs_rq);
678d5718 4017 return true;
d3d9dc33 4018}
029632fb 4019
029632fb
PZ
4020static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4021{
4022 struct cfs_bandwidth *cfs_b =
4023 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4024
029632fb
PZ
4025 do_sched_cfs_slack_timer(cfs_b);
4026
4027 return HRTIMER_NORESTART;
4028}
4029
4030static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4031{
4032 struct cfs_bandwidth *cfs_b =
4033 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4034 int overrun;
4035 int idle = 0;
4036
51f2176d 4037 raw_spin_lock(&cfs_b->lock);
029632fb 4038 for (;;) {
77a4d1a1 4039 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4040 if (!overrun)
4041 break;
4042
4043 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4044 }
4cfafd30
PZ
4045 if (idle)
4046 cfs_b->period_active = 0;
51f2176d 4047 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4048
4049 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4050}
4051
4052void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4053{
4054 raw_spin_lock_init(&cfs_b->lock);
4055 cfs_b->runtime = 0;
4056 cfs_b->quota = RUNTIME_INF;
4057 cfs_b->period = ns_to_ktime(default_cfs_period());
4058
4059 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4060 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4061 cfs_b->period_timer.function = sched_cfs_period_timer;
4062 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4063 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4064}
4065
4066static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4067{
4068 cfs_rq->runtime_enabled = 0;
4069 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4070}
4071
77a4d1a1 4072void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4073{
4cfafd30 4074 lockdep_assert_held(&cfs_b->lock);
029632fb 4075
4cfafd30
PZ
4076 if (!cfs_b->period_active) {
4077 cfs_b->period_active = 1;
4078 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4079 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4080 }
029632fb
PZ
4081}
4082
4083static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4084{
7f1a169b
TH
4085 /* init_cfs_bandwidth() was not called */
4086 if (!cfs_b->throttled_cfs_rq.next)
4087 return;
4088
029632fb
PZ
4089 hrtimer_cancel(&cfs_b->period_timer);
4090 hrtimer_cancel(&cfs_b->slack_timer);
4091}
4092
0e59bdae
KT
4093static void __maybe_unused update_runtime_enabled(struct rq *rq)
4094{
4095 struct cfs_rq *cfs_rq;
4096
4097 for_each_leaf_cfs_rq(rq, cfs_rq) {
4098 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4099
4100 raw_spin_lock(&cfs_b->lock);
4101 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4102 raw_spin_unlock(&cfs_b->lock);
4103 }
4104}
4105
38dc3348 4106static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4107{
4108 struct cfs_rq *cfs_rq;
4109
4110 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4111 if (!cfs_rq->runtime_enabled)
4112 continue;
4113
4114 /*
4115 * clock_task is not advancing so we just need to make sure
4116 * there's some valid quota amount
4117 */
51f2176d 4118 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4119 /*
4120 * Offline rq is schedulable till cpu is completely disabled
4121 * in take_cpu_down(), so we prevent new cfs throttling here.
4122 */
4123 cfs_rq->runtime_enabled = 0;
4124
029632fb
PZ
4125 if (cfs_rq_throttled(cfs_rq))
4126 unthrottle_cfs_rq(cfs_rq);
4127 }
4128}
4129
4130#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4131static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4132{
78becc27 4133 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4134}
4135
9dbdb155 4136static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4137static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4138static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4139static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4140
4141static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4142{
4143 return 0;
4144}
64660c86
PT
4145
4146static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4147{
4148 return 0;
4149}
4150
4151static inline int throttled_lb_pair(struct task_group *tg,
4152 int src_cpu, int dest_cpu)
4153{
4154 return 0;
4155}
029632fb
PZ
4156
4157void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4158
4159#ifdef CONFIG_FAIR_GROUP_SCHED
4160static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4161#endif
4162
029632fb
PZ
4163static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4164{
4165 return NULL;
4166}
4167static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4168static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4169static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4170
4171#endif /* CONFIG_CFS_BANDWIDTH */
4172
bf0f6f24
IM
4173/**************************************************
4174 * CFS operations on tasks:
4175 */
4176
8f4d37ec
PZ
4177#ifdef CONFIG_SCHED_HRTICK
4178static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4179{
8f4d37ec
PZ
4180 struct sched_entity *se = &p->se;
4181 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4182
4183 WARN_ON(task_rq(p) != rq);
4184
b39e66ea 4185 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4186 u64 slice = sched_slice(cfs_rq, se);
4187 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4188 s64 delta = slice - ran;
4189
4190 if (delta < 0) {
4191 if (rq->curr == p)
8875125e 4192 resched_curr(rq);
8f4d37ec
PZ
4193 return;
4194 }
31656519 4195 hrtick_start(rq, delta);
8f4d37ec
PZ
4196 }
4197}
a4c2f00f
PZ
4198
4199/*
4200 * called from enqueue/dequeue and updates the hrtick when the
4201 * current task is from our class and nr_running is low enough
4202 * to matter.
4203 */
4204static void hrtick_update(struct rq *rq)
4205{
4206 struct task_struct *curr = rq->curr;
4207
b39e66ea 4208 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4209 return;
4210
4211 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4212 hrtick_start_fair(rq, curr);
4213}
55e12e5e 4214#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4215static inline void
4216hrtick_start_fair(struct rq *rq, struct task_struct *p)
4217{
4218}
a4c2f00f
PZ
4219
4220static inline void hrtick_update(struct rq *rq)
4221{
4222}
8f4d37ec
PZ
4223#endif
4224
bf0f6f24
IM
4225/*
4226 * The enqueue_task method is called before nr_running is
4227 * increased. Here we update the fair scheduling stats and
4228 * then put the task into the rbtree:
4229 */
ea87bb78 4230static void
371fd7e7 4231enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4232{
4233 struct cfs_rq *cfs_rq;
62fb1851 4234 struct sched_entity *se = &p->se;
bf0f6f24
IM
4235
4236 for_each_sched_entity(se) {
62fb1851 4237 if (se->on_rq)
bf0f6f24
IM
4238 break;
4239 cfs_rq = cfs_rq_of(se);
88ec22d3 4240 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4241
4242 /*
4243 * end evaluation on encountering a throttled cfs_rq
4244 *
4245 * note: in the case of encountering a throttled cfs_rq we will
4246 * post the final h_nr_running increment below.
4247 */
4248 if (cfs_rq_throttled(cfs_rq))
4249 break;
953bfcd1 4250 cfs_rq->h_nr_running++;
85dac906 4251
88ec22d3 4252 flags = ENQUEUE_WAKEUP;
bf0f6f24 4253 }
8f4d37ec 4254
2069dd75 4255 for_each_sched_entity(se) {
0f317143 4256 cfs_rq = cfs_rq_of(se);
953bfcd1 4257 cfs_rq->h_nr_running++;
2069dd75 4258
85dac906
PT
4259 if (cfs_rq_throttled(cfs_rq))
4260 break;
4261
17bc14b7 4262 update_cfs_shares(cfs_rq);
9ee474f5 4263 update_entity_load_avg(se, 1);
2069dd75
PZ
4264 }
4265
18bf2805
BS
4266 if (!se) {
4267 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4268 add_nr_running(rq, 1);
18bf2805 4269 }
a4c2f00f 4270 hrtick_update(rq);
bf0f6f24
IM
4271}
4272
2f36825b
VP
4273static void set_next_buddy(struct sched_entity *se);
4274
bf0f6f24
IM
4275/*
4276 * The dequeue_task method is called before nr_running is
4277 * decreased. We remove the task from the rbtree and
4278 * update the fair scheduling stats:
4279 */
371fd7e7 4280static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4281{
4282 struct cfs_rq *cfs_rq;
62fb1851 4283 struct sched_entity *se = &p->se;
2f36825b 4284 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4285
4286 for_each_sched_entity(se) {
4287 cfs_rq = cfs_rq_of(se);
371fd7e7 4288 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4289
4290 /*
4291 * end evaluation on encountering a throttled cfs_rq
4292 *
4293 * note: in the case of encountering a throttled cfs_rq we will
4294 * post the final h_nr_running decrement below.
4295 */
4296 if (cfs_rq_throttled(cfs_rq))
4297 break;
953bfcd1 4298 cfs_rq->h_nr_running--;
2069dd75 4299
bf0f6f24 4300 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4301 if (cfs_rq->load.weight) {
4302 /*
4303 * Bias pick_next to pick a task from this cfs_rq, as
4304 * p is sleeping when it is within its sched_slice.
4305 */
4306 if (task_sleep && parent_entity(se))
4307 set_next_buddy(parent_entity(se));
9598c82d
PT
4308
4309 /* avoid re-evaluating load for this entity */
4310 se = parent_entity(se);
bf0f6f24 4311 break;
2f36825b 4312 }
371fd7e7 4313 flags |= DEQUEUE_SLEEP;
bf0f6f24 4314 }
8f4d37ec 4315
2069dd75 4316 for_each_sched_entity(se) {
0f317143 4317 cfs_rq = cfs_rq_of(se);
953bfcd1 4318 cfs_rq->h_nr_running--;
2069dd75 4319
85dac906
PT
4320 if (cfs_rq_throttled(cfs_rq))
4321 break;
4322
17bc14b7 4323 update_cfs_shares(cfs_rq);
9ee474f5 4324 update_entity_load_avg(se, 1);
2069dd75
PZ
4325 }
4326
18bf2805 4327 if (!se) {
72465447 4328 sub_nr_running(rq, 1);
18bf2805
BS
4329 update_rq_runnable_avg(rq, 1);
4330 }
a4c2f00f 4331 hrtick_update(rq);
bf0f6f24
IM
4332}
4333
e7693a36 4334#ifdef CONFIG_SMP
3289bdb4
PZ
4335
4336/*
4337 * per rq 'load' arrray crap; XXX kill this.
4338 */
4339
4340/*
4341 * The exact cpuload at various idx values, calculated at every tick would be
4342 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4343 *
4344 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4345 * on nth tick when cpu may be busy, then we have:
4346 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4347 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4348 *
4349 * decay_load_missed() below does efficient calculation of
4350 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4351 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4352 *
4353 * The calculation is approximated on a 128 point scale.
4354 * degrade_zero_ticks is the number of ticks after which load at any
4355 * particular idx is approximated to be zero.
4356 * degrade_factor is a precomputed table, a row for each load idx.
4357 * Each column corresponds to degradation factor for a power of two ticks,
4358 * based on 128 point scale.
4359 * Example:
4360 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4361 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4362 *
4363 * With this power of 2 load factors, we can degrade the load n times
4364 * by looking at 1 bits in n and doing as many mult/shift instead of
4365 * n mult/shifts needed by the exact degradation.
4366 */
4367#define DEGRADE_SHIFT 7
4368static const unsigned char
4369 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4370static const unsigned char
4371 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4372 {0, 0, 0, 0, 0, 0, 0, 0},
4373 {64, 32, 8, 0, 0, 0, 0, 0},
4374 {96, 72, 40, 12, 1, 0, 0},
4375 {112, 98, 75, 43, 15, 1, 0},
4376 {120, 112, 98, 76, 45, 16, 2} };
4377
4378/*
4379 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4380 * would be when CPU is idle and so we just decay the old load without
4381 * adding any new load.
4382 */
4383static unsigned long
4384decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4385{
4386 int j = 0;
4387
4388 if (!missed_updates)
4389 return load;
4390
4391 if (missed_updates >= degrade_zero_ticks[idx])
4392 return 0;
4393
4394 if (idx == 1)
4395 return load >> missed_updates;
4396
4397 while (missed_updates) {
4398 if (missed_updates % 2)
4399 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4400
4401 missed_updates >>= 1;
4402 j++;
4403 }
4404 return load;
4405}
4406
4407/*
4408 * Update rq->cpu_load[] statistics. This function is usually called every
4409 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4410 * every tick. We fix it up based on jiffies.
4411 */
4412static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4413 unsigned long pending_updates)
4414{
4415 int i, scale;
4416
4417 this_rq->nr_load_updates++;
4418
4419 /* Update our load: */
4420 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4421 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4422 unsigned long old_load, new_load;
4423
4424 /* scale is effectively 1 << i now, and >> i divides by scale */
4425
4426 old_load = this_rq->cpu_load[i];
4427 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4428 new_load = this_load;
4429 /*
4430 * Round up the averaging division if load is increasing. This
4431 * prevents us from getting stuck on 9 if the load is 10, for
4432 * example.
4433 */
4434 if (new_load > old_load)
4435 new_load += scale - 1;
4436
4437 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4438 }
4439
4440 sched_avg_update(this_rq);
4441}
4442
4443#ifdef CONFIG_NO_HZ_COMMON
4444/*
4445 * There is no sane way to deal with nohz on smp when using jiffies because the
4446 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4447 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4448 *
4449 * Therefore we cannot use the delta approach from the regular tick since that
4450 * would seriously skew the load calculation. However we'll make do for those
4451 * updates happening while idle (nohz_idle_balance) or coming out of idle
4452 * (tick_nohz_idle_exit).
4453 *
4454 * This means we might still be one tick off for nohz periods.
4455 */
4456
4457/*
4458 * Called from nohz_idle_balance() to update the load ratings before doing the
4459 * idle balance.
4460 */
4461static void update_idle_cpu_load(struct rq *this_rq)
4462{
316c1608 4463 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4464 unsigned long load = this_rq->cfs.runnable_load_avg;
4465 unsigned long pending_updates;
4466
4467 /*
4468 * bail if there's load or we're actually up-to-date.
4469 */
4470 if (load || curr_jiffies == this_rq->last_load_update_tick)
4471 return;
4472
4473 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4474 this_rq->last_load_update_tick = curr_jiffies;
4475
4476 __update_cpu_load(this_rq, load, pending_updates);
4477}
4478
4479/*
4480 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4481 */
4482void update_cpu_load_nohz(void)
4483{
4484 struct rq *this_rq = this_rq();
316c1608 4485 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4486 unsigned long pending_updates;
4487
4488 if (curr_jiffies == this_rq->last_load_update_tick)
4489 return;
4490
4491 raw_spin_lock(&this_rq->lock);
4492 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4493 if (pending_updates) {
4494 this_rq->last_load_update_tick = curr_jiffies;
4495 /*
4496 * We were idle, this means load 0, the current load might be
4497 * !0 due to remote wakeups and the sort.
4498 */
4499 __update_cpu_load(this_rq, 0, pending_updates);
4500 }
4501 raw_spin_unlock(&this_rq->lock);
4502}
4503#endif /* CONFIG_NO_HZ */
4504
4505/*
4506 * Called from scheduler_tick()
4507 */
4508void update_cpu_load_active(struct rq *this_rq)
4509{
4510 unsigned long load = this_rq->cfs.runnable_load_avg;
4511 /*
4512 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4513 */
4514 this_rq->last_load_update_tick = jiffies;
4515 __update_cpu_load(this_rq, load, 1);
4516}
4517
029632fb
PZ
4518/* Used instead of source_load when we know the type == 0 */
4519static unsigned long weighted_cpuload(const int cpu)
4520{
b92486cb 4521 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4522}
4523
4524/*
4525 * Return a low guess at the load of a migration-source cpu weighted
4526 * according to the scheduling class and "nice" value.
4527 *
4528 * We want to under-estimate the load of migration sources, to
4529 * balance conservatively.
4530 */
4531static unsigned long source_load(int cpu, int type)
4532{
4533 struct rq *rq = cpu_rq(cpu);
4534 unsigned long total = weighted_cpuload(cpu);
4535
4536 if (type == 0 || !sched_feat(LB_BIAS))
4537 return total;
4538
4539 return min(rq->cpu_load[type-1], total);
4540}
4541
4542/*
4543 * Return a high guess at the load of a migration-target cpu weighted
4544 * according to the scheduling class and "nice" value.
4545 */
4546static unsigned long target_load(int cpu, int type)
4547{
4548 struct rq *rq = cpu_rq(cpu);
4549 unsigned long total = weighted_cpuload(cpu);
4550
4551 if (type == 0 || !sched_feat(LB_BIAS))
4552 return total;
4553
4554 return max(rq->cpu_load[type-1], total);
4555}
4556
ced549fa 4557static unsigned long capacity_of(int cpu)
029632fb 4558{
ced549fa 4559 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4560}
4561
ca6d75e6
VG
4562static unsigned long capacity_orig_of(int cpu)
4563{
4564 return cpu_rq(cpu)->cpu_capacity_orig;
4565}
4566
029632fb
PZ
4567static unsigned long cpu_avg_load_per_task(int cpu)
4568{
4569 struct rq *rq = cpu_rq(cpu);
316c1608 4570 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
b92486cb 4571 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4572
4573 if (nr_running)
b92486cb 4574 return load_avg / nr_running;
029632fb
PZ
4575
4576 return 0;
4577}
4578
62470419
MW
4579static void record_wakee(struct task_struct *p)
4580{
4581 /*
4582 * Rough decay (wiping) for cost saving, don't worry
4583 * about the boundary, really active task won't care
4584 * about the loss.
4585 */
2538d960 4586 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4587 current->wakee_flips >>= 1;
62470419
MW
4588 current->wakee_flip_decay_ts = jiffies;
4589 }
4590
4591 if (current->last_wakee != p) {
4592 current->last_wakee = p;
4593 current->wakee_flips++;
4594 }
4595}
098fb9db 4596
74f8e4b2 4597static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4598{
4599 struct sched_entity *se = &p->se;
4600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4601 u64 min_vruntime;
4602
4603#ifndef CONFIG_64BIT
4604 u64 min_vruntime_copy;
88ec22d3 4605
3fe1698b
PZ
4606 do {
4607 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4608 smp_rmb();
4609 min_vruntime = cfs_rq->min_vruntime;
4610 } while (min_vruntime != min_vruntime_copy);
4611#else
4612 min_vruntime = cfs_rq->min_vruntime;
4613#endif
88ec22d3 4614
3fe1698b 4615 se->vruntime -= min_vruntime;
62470419 4616 record_wakee(p);
88ec22d3
PZ
4617}
4618
bb3469ac 4619#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4620/*
4621 * effective_load() calculates the load change as seen from the root_task_group
4622 *
4623 * Adding load to a group doesn't make a group heavier, but can cause movement
4624 * of group shares between cpus. Assuming the shares were perfectly aligned one
4625 * can calculate the shift in shares.
cf5f0acf
PZ
4626 *
4627 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4628 * on this @cpu and results in a total addition (subtraction) of @wg to the
4629 * total group weight.
4630 *
4631 * Given a runqueue weight distribution (rw_i) we can compute a shares
4632 * distribution (s_i) using:
4633 *
4634 * s_i = rw_i / \Sum rw_j (1)
4635 *
4636 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4637 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4638 * shares distribution (s_i):
4639 *
4640 * rw_i = { 2, 4, 1, 0 }
4641 * s_i = { 2/7, 4/7, 1/7, 0 }
4642 *
4643 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4644 * task used to run on and the CPU the waker is running on), we need to
4645 * compute the effect of waking a task on either CPU and, in case of a sync
4646 * wakeup, compute the effect of the current task going to sleep.
4647 *
4648 * So for a change of @wl to the local @cpu with an overall group weight change
4649 * of @wl we can compute the new shares distribution (s'_i) using:
4650 *
4651 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4652 *
4653 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4654 * differences in waking a task to CPU 0. The additional task changes the
4655 * weight and shares distributions like:
4656 *
4657 * rw'_i = { 3, 4, 1, 0 }
4658 * s'_i = { 3/8, 4/8, 1/8, 0 }
4659 *
4660 * We can then compute the difference in effective weight by using:
4661 *
4662 * dw_i = S * (s'_i - s_i) (3)
4663 *
4664 * Where 'S' is the group weight as seen by its parent.
4665 *
4666 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4667 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4668 * 4/7) times the weight of the group.
f5bfb7d9 4669 */
2069dd75 4670static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4671{
4be9daaa 4672 struct sched_entity *se = tg->se[cpu];
f1d239f7 4673
9722c2da 4674 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4675 return wl;
4676
4be9daaa 4677 for_each_sched_entity(se) {
cf5f0acf 4678 long w, W;
4be9daaa 4679
977dda7c 4680 tg = se->my_q->tg;
bb3469ac 4681
cf5f0acf
PZ
4682 /*
4683 * W = @wg + \Sum rw_j
4684 */
4685 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4686
cf5f0acf
PZ
4687 /*
4688 * w = rw_i + @wl
4689 */
4690 w = se->my_q->load.weight + wl;
940959e9 4691
cf5f0acf
PZ
4692 /*
4693 * wl = S * s'_i; see (2)
4694 */
4695 if (W > 0 && w < W)
32a8df4e 4696 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4697 else
4698 wl = tg->shares;
940959e9 4699
cf5f0acf
PZ
4700 /*
4701 * Per the above, wl is the new se->load.weight value; since
4702 * those are clipped to [MIN_SHARES, ...) do so now. See
4703 * calc_cfs_shares().
4704 */
977dda7c
PT
4705 if (wl < MIN_SHARES)
4706 wl = MIN_SHARES;
cf5f0acf
PZ
4707
4708 /*
4709 * wl = dw_i = S * (s'_i - s_i); see (3)
4710 */
977dda7c 4711 wl -= se->load.weight;
cf5f0acf
PZ
4712
4713 /*
4714 * Recursively apply this logic to all parent groups to compute
4715 * the final effective load change on the root group. Since
4716 * only the @tg group gets extra weight, all parent groups can
4717 * only redistribute existing shares. @wl is the shift in shares
4718 * resulting from this level per the above.
4719 */
4be9daaa 4720 wg = 0;
4be9daaa 4721 }
bb3469ac 4722
4be9daaa 4723 return wl;
bb3469ac
PZ
4724}
4725#else
4be9daaa 4726
58d081b5 4727static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4728{
83378269 4729 return wl;
bb3469ac 4730}
4be9daaa 4731
bb3469ac
PZ
4732#endif
4733
62470419
MW
4734static int wake_wide(struct task_struct *p)
4735{
7d9ffa89 4736 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4737
4738 /*
4739 * Yeah, it's the switching-frequency, could means many wakee or
4740 * rapidly switch, use factor here will just help to automatically
4741 * adjust the loose-degree, so bigger node will lead to more pull.
4742 */
4743 if (p->wakee_flips > factor) {
4744 /*
4745 * wakee is somewhat hot, it needs certain amount of cpu
4746 * resource, so if waker is far more hot, prefer to leave
4747 * it alone.
4748 */
4749 if (current->wakee_flips > (factor * p->wakee_flips))
4750 return 1;
4751 }
4752
4753 return 0;
4754}
4755
c88d5910 4756static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4757{
e37b6a7b 4758 s64 this_load, load;
bd61c98f 4759 s64 this_eff_load, prev_eff_load;
c88d5910 4760 int idx, this_cpu, prev_cpu;
c88d5910 4761 struct task_group *tg;
83378269 4762 unsigned long weight;
b3137bc8 4763 int balanced;
098fb9db 4764
62470419
MW
4765 /*
4766 * If we wake multiple tasks be careful to not bounce
4767 * ourselves around too much.
4768 */
4769 if (wake_wide(p))
4770 return 0;
4771
c88d5910
PZ
4772 idx = sd->wake_idx;
4773 this_cpu = smp_processor_id();
4774 prev_cpu = task_cpu(p);
4775 load = source_load(prev_cpu, idx);
4776 this_load = target_load(this_cpu, idx);
098fb9db 4777
b3137bc8
MG
4778 /*
4779 * If sync wakeup then subtract the (maximum possible)
4780 * effect of the currently running task from the load
4781 * of the current CPU:
4782 */
83378269
PZ
4783 if (sync) {
4784 tg = task_group(current);
4785 weight = current->se.load.weight;
4786
c88d5910 4787 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4788 load += effective_load(tg, prev_cpu, 0, -weight);
4789 }
b3137bc8 4790
83378269
PZ
4791 tg = task_group(p);
4792 weight = p->se.load.weight;
b3137bc8 4793
71a29aa7
PZ
4794 /*
4795 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4796 * due to the sync cause above having dropped this_load to 0, we'll
4797 * always have an imbalance, but there's really nothing you can do
4798 * about that, so that's good too.
71a29aa7
PZ
4799 *
4800 * Otherwise check if either cpus are near enough in load to allow this
4801 * task to be woken on this_cpu.
4802 */
bd61c98f
VG
4803 this_eff_load = 100;
4804 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4805
bd61c98f
VG
4806 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4807 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4808
bd61c98f 4809 if (this_load > 0) {
e51fd5e2
PZ
4810 this_eff_load *= this_load +
4811 effective_load(tg, this_cpu, weight, weight);
4812
e51fd5e2 4813 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4814 }
e51fd5e2 4815
bd61c98f 4816 balanced = this_eff_load <= prev_eff_load;
098fb9db 4817
41acab88 4818 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4819
05bfb65f
VG
4820 if (!balanced)
4821 return 0;
098fb9db 4822
05bfb65f
VG
4823 schedstat_inc(sd, ttwu_move_affine);
4824 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4825
4826 return 1;
098fb9db
IM
4827}
4828
aaee1203
PZ
4829/*
4830 * find_idlest_group finds and returns the least busy CPU group within the
4831 * domain.
4832 */
4833static struct sched_group *
78e7ed53 4834find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4835 int this_cpu, int sd_flag)
e7693a36 4836{
b3bd3de6 4837 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4838 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4839 int load_idx = sd->forkexec_idx;
aaee1203 4840 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4841
c44f2a02
VG
4842 if (sd_flag & SD_BALANCE_WAKE)
4843 load_idx = sd->wake_idx;
4844
aaee1203
PZ
4845 do {
4846 unsigned long load, avg_load;
4847 int local_group;
4848 int i;
e7693a36 4849
aaee1203
PZ
4850 /* Skip over this group if it has no CPUs allowed */
4851 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4852 tsk_cpus_allowed(p)))
aaee1203
PZ
4853 continue;
4854
4855 local_group = cpumask_test_cpu(this_cpu,
4856 sched_group_cpus(group));
4857
4858 /* Tally up the load of all CPUs in the group */
4859 avg_load = 0;
4860
4861 for_each_cpu(i, sched_group_cpus(group)) {
4862 /* Bias balancing toward cpus of our domain */
4863 if (local_group)
4864 load = source_load(i, load_idx);
4865 else
4866 load = target_load(i, load_idx);
4867
4868 avg_load += load;
4869 }
4870
63b2ca30 4871 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4872 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4873
4874 if (local_group) {
4875 this_load = avg_load;
aaee1203
PZ
4876 } else if (avg_load < min_load) {
4877 min_load = avg_load;
4878 idlest = group;
4879 }
4880 } while (group = group->next, group != sd->groups);
4881
4882 if (!idlest || 100*this_load < imbalance*min_load)
4883 return NULL;
4884 return idlest;
4885}
4886
4887/*
4888 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4889 */
4890static int
4891find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4892{
4893 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4894 unsigned int min_exit_latency = UINT_MAX;
4895 u64 latest_idle_timestamp = 0;
4896 int least_loaded_cpu = this_cpu;
4897 int shallowest_idle_cpu = -1;
aaee1203
PZ
4898 int i;
4899
4900 /* Traverse only the allowed CPUs */
fa17b507 4901 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4902 if (idle_cpu(i)) {
4903 struct rq *rq = cpu_rq(i);
4904 struct cpuidle_state *idle = idle_get_state(rq);
4905 if (idle && idle->exit_latency < min_exit_latency) {
4906 /*
4907 * We give priority to a CPU whose idle state
4908 * has the smallest exit latency irrespective
4909 * of any idle timestamp.
4910 */
4911 min_exit_latency = idle->exit_latency;
4912 latest_idle_timestamp = rq->idle_stamp;
4913 shallowest_idle_cpu = i;
4914 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4915 rq->idle_stamp > latest_idle_timestamp) {
4916 /*
4917 * If equal or no active idle state, then
4918 * the most recently idled CPU might have
4919 * a warmer cache.
4920 */
4921 latest_idle_timestamp = rq->idle_stamp;
4922 shallowest_idle_cpu = i;
4923 }
9f96742a 4924 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4925 load = weighted_cpuload(i);
4926 if (load < min_load || (load == min_load && i == this_cpu)) {
4927 min_load = load;
4928 least_loaded_cpu = i;
4929 }
e7693a36
GH
4930 }
4931 }
4932
83a0a96a 4933 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4934}
e7693a36 4935
a50bde51
PZ
4936/*
4937 * Try and locate an idle CPU in the sched_domain.
4938 */
99bd5e2f 4939static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4940{
99bd5e2f 4941 struct sched_domain *sd;
37407ea7 4942 struct sched_group *sg;
e0a79f52 4943 int i = task_cpu(p);
a50bde51 4944
e0a79f52
MG
4945 if (idle_cpu(target))
4946 return target;
99bd5e2f
SS
4947
4948 /*
e0a79f52 4949 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4950 */
e0a79f52
MG
4951 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4952 return i;
a50bde51
PZ
4953
4954 /*
37407ea7 4955 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4956 */
518cd623 4957 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4958 for_each_lower_domain(sd) {
37407ea7
LT
4959 sg = sd->groups;
4960 do {
4961 if (!cpumask_intersects(sched_group_cpus(sg),
4962 tsk_cpus_allowed(p)))
4963 goto next;
4964
4965 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4966 if (i == target || !idle_cpu(i))
37407ea7
LT
4967 goto next;
4968 }
970e1789 4969
37407ea7
LT
4970 target = cpumask_first_and(sched_group_cpus(sg),
4971 tsk_cpus_allowed(p));
4972 goto done;
4973next:
4974 sg = sg->next;
4975 } while (sg != sd->groups);
4976 }
4977done:
a50bde51
PZ
4978 return target;
4979}
8bb5b00c
VG
4980/*
4981 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4982 * tasks. The unit of the return value must be the one of capacity so we can
4983 * compare the usage with the capacity of the CPU that is available for CFS
4984 * task (ie cpu_capacity).
4985 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4986 * CPU. It represents the amount of utilization of a CPU in the range
4987 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4988 * capacity of the CPU because it's about the running time on this CPU.
4989 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4990 * because of unfortunate rounding in avg_period and running_load_avg or just
4991 * after migrating tasks until the average stabilizes with the new running
4992 * time. So we need to check that the usage stays into the range
4993 * [0..cpu_capacity_orig] and cap if necessary.
4994 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4995 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4996 */
4997static int get_cpu_usage(int cpu)
4998{
4999 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
5000 unsigned long capacity = capacity_orig_of(cpu);
5001
5002 if (usage >= SCHED_LOAD_SCALE)
5003 return capacity;
5004
5005 return (usage * capacity) >> SCHED_LOAD_SHIFT;
5006}
a50bde51 5007
aaee1203 5008/*
de91b9cb
MR
5009 * select_task_rq_fair: Select target runqueue for the waking task in domains
5010 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5011 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5012 *
de91b9cb
MR
5013 * Balances load by selecting the idlest cpu in the idlest group, or under
5014 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5015 *
de91b9cb 5016 * Returns the target cpu number.
aaee1203
PZ
5017 *
5018 * preempt must be disabled.
5019 */
0017d735 5020static int
ac66f547 5021select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5022{
29cd8bae 5023 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5024 int cpu = smp_processor_id();
c88d5910 5025 int new_cpu = cpu;
99bd5e2f 5026 int want_affine = 0;
5158f4e4 5027 int sync = wake_flags & WF_SYNC;
c88d5910 5028
a8edd075
KT
5029 if (sd_flag & SD_BALANCE_WAKE)
5030 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5031
dce840a0 5032 rcu_read_lock();
aaee1203 5033 for_each_domain(cpu, tmp) {
e4f42888
PZ
5034 if (!(tmp->flags & SD_LOAD_BALANCE))
5035 continue;
5036
fe3bcfe1 5037 /*
99bd5e2f
SS
5038 * If both cpu and prev_cpu are part of this domain,
5039 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5040 */
99bd5e2f
SS
5041 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5042 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5043 affine_sd = tmp;
29cd8bae 5044 break;
f03542a7 5045 }
29cd8bae 5046
f03542a7 5047 if (tmp->flags & sd_flag)
29cd8bae
PZ
5048 sd = tmp;
5049 }
5050
8bf21433
RR
5051 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5052 prev_cpu = cpu;
dce840a0 5053
8bf21433 5054 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
5055 new_cpu = select_idle_sibling(p, prev_cpu);
5056 goto unlock;
8b911acd 5057 }
e7693a36 5058
aaee1203
PZ
5059 while (sd) {
5060 struct sched_group *group;
c88d5910 5061 int weight;
098fb9db 5062
0763a660 5063 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5064 sd = sd->child;
5065 continue;
5066 }
098fb9db 5067
c44f2a02 5068 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5069 if (!group) {
5070 sd = sd->child;
5071 continue;
5072 }
4ae7d5ce 5073
d7c33c49 5074 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5075 if (new_cpu == -1 || new_cpu == cpu) {
5076 /* Now try balancing at a lower domain level of cpu */
5077 sd = sd->child;
5078 continue;
e7693a36 5079 }
aaee1203
PZ
5080
5081 /* Now try balancing at a lower domain level of new_cpu */
5082 cpu = new_cpu;
669c55e9 5083 weight = sd->span_weight;
aaee1203
PZ
5084 sd = NULL;
5085 for_each_domain(cpu, tmp) {
669c55e9 5086 if (weight <= tmp->span_weight)
aaee1203 5087 break;
0763a660 5088 if (tmp->flags & sd_flag)
aaee1203
PZ
5089 sd = tmp;
5090 }
5091 /* while loop will break here if sd == NULL */
e7693a36 5092 }
dce840a0
PZ
5093unlock:
5094 rcu_read_unlock();
e7693a36 5095
c88d5910 5096 return new_cpu;
e7693a36 5097}
0a74bef8
PT
5098
5099/*
5100 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5101 * cfs_rq_of(p) references at time of call are still valid and identify the
5102 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5103 * other assumptions, including the state of rq->lock, should be made.
5104 */
5105static void
5106migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5107{
aff3e498
PT
5108 struct sched_entity *se = &p->se;
5109 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5110
5111 /*
5112 * Load tracking: accumulate removed load so that it can be processed
5113 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5114 * to blocked load iff they have a positive decay-count. It can never
5115 * be negative here since on-rq tasks have decay-count == 0.
5116 */
5117 if (se->avg.decay_count) {
5118 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
5119 atomic_long_add(se->avg.load_avg_contrib,
5120 &cfs_rq->removed_load);
aff3e498 5121 }
3944a927
BS
5122
5123 /* We have migrated, no longer consider this task hot */
5124 se->exec_start = 0;
0a74bef8 5125}
e7693a36
GH
5126#endif /* CONFIG_SMP */
5127
e52fb7c0
PZ
5128static unsigned long
5129wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5130{
5131 unsigned long gran = sysctl_sched_wakeup_granularity;
5132
5133 /*
e52fb7c0
PZ
5134 * Since its curr running now, convert the gran from real-time
5135 * to virtual-time in his units.
13814d42
MG
5136 *
5137 * By using 'se' instead of 'curr' we penalize light tasks, so
5138 * they get preempted easier. That is, if 'se' < 'curr' then
5139 * the resulting gran will be larger, therefore penalizing the
5140 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5141 * be smaller, again penalizing the lighter task.
5142 *
5143 * This is especially important for buddies when the leftmost
5144 * task is higher priority than the buddy.
0bbd3336 5145 */
f4ad9bd2 5146 return calc_delta_fair(gran, se);
0bbd3336
PZ
5147}
5148
464b7527
PZ
5149/*
5150 * Should 'se' preempt 'curr'.
5151 *
5152 * |s1
5153 * |s2
5154 * |s3
5155 * g
5156 * |<--->|c
5157 *
5158 * w(c, s1) = -1
5159 * w(c, s2) = 0
5160 * w(c, s3) = 1
5161 *
5162 */
5163static int
5164wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5165{
5166 s64 gran, vdiff = curr->vruntime - se->vruntime;
5167
5168 if (vdiff <= 0)
5169 return -1;
5170
e52fb7c0 5171 gran = wakeup_gran(curr, se);
464b7527
PZ
5172 if (vdiff > gran)
5173 return 1;
5174
5175 return 0;
5176}
5177
02479099
PZ
5178static void set_last_buddy(struct sched_entity *se)
5179{
69c80f3e
VP
5180 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5181 return;
5182
5183 for_each_sched_entity(se)
5184 cfs_rq_of(se)->last = se;
02479099
PZ
5185}
5186
5187static void set_next_buddy(struct sched_entity *se)
5188{
69c80f3e
VP
5189 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5190 return;
5191
5192 for_each_sched_entity(se)
5193 cfs_rq_of(se)->next = se;
02479099
PZ
5194}
5195
ac53db59
RR
5196static void set_skip_buddy(struct sched_entity *se)
5197{
69c80f3e
VP
5198 for_each_sched_entity(se)
5199 cfs_rq_of(se)->skip = se;
ac53db59
RR
5200}
5201
bf0f6f24
IM
5202/*
5203 * Preempt the current task with a newly woken task if needed:
5204 */
5a9b86f6 5205static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5206{
5207 struct task_struct *curr = rq->curr;
8651a86c 5208 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5209 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5210 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5211 int next_buddy_marked = 0;
bf0f6f24 5212
4ae7d5ce
IM
5213 if (unlikely(se == pse))
5214 return;
5215
5238cdd3 5216 /*
163122b7 5217 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5218 * unconditionally check_prempt_curr() after an enqueue (which may have
5219 * lead to a throttle). This both saves work and prevents false
5220 * next-buddy nomination below.
5221 */
5222 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5223 return;
5224
2f36825b 5225 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5226 set_next_buddy(pse);
2f36825b
VP
5227 next_buddy_marked = 1;
5228 }
57fdc26d 5229
aec0a514
BR
5230 /*
5231 * We can come here with TIF_NEED_RESCHED already set from new task
5232 * wake up path.
5238cdd3
PT
5233 *
5234 * Note: this also catches the edge-case of curr being in a throttled
5235 * group (e.g. via set_curr_task), since update_curr() (in the
5236 * enqueue of curr) will have resulted in resched being set. This
5237 * prevents us from potentially nominating it as a false LAST_BUDDY
5238 * below.
aec0a514
BR
5239 */
5240 if (test_tsk_need_resched(curr))
5241 return;
5242
a2f5c9ab
DH
5243 /* Idle tasks are by definition preempted by non-idle tasks. */
5244 if (unlikely(curr->policy == SCHED_IDLE) &&
5245 likely(p->policy != SCHED_IDLE))
5246 goto preempt;
5247
91c234b4 5248 /*
a2f5c9ab
DH
5249 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5250 * is driven by the tick):
91c234b4 5251 */
8ed92e51 5252 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5253 return;
bf0f6f24 5254
464b7527 5255 find_matching_se(&se, &pse);
9bbd7374 5256 update_curr(cfs_rq_of(se));
002f128b 5257 BUG_ON(!pse);
2f36825b
VP
5258 if (wakeup_preempt_entity(se, pse) == 1) {
5259 /*
5260 * Bias pick_next to pick the sched entity that is
5261 * triggering this preemption.
5262 */
5263 if (!next_buddy_marked)
5264 set_next_buddy(pse);
3a7e73a2 5265 goto preempt;
2f36825b 5266 }
464b7527 5267
3a7e73a2 5268 return;
a65ac745 5269
3a7e73a2 5270preempt:
8875125e 5271 resched_curr(rq);
3a7e73a2
PZ
5272 /*
5273 * Only set the backward buddy when the current task is still
5274 * on the rq. This can happen when a wakeup gets interleaved
5275 * with schedule on the ->pre_schedule() or idle_balance()
5276 * point, either of which can * drop the rq lock.
5277 *
5278 * Also, during early boot the idle thread is in the fair class,
5279 * for obvious reasons its a bad idea to schedule back to it.
5280 */
5281 if (unlikely(!se->on_rq || curr == rq->idle))
5282 return;
5283
5284 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5285 set_last_buddy(se);
bf0f6f24
IM
5286}
5287
606dba2e
PZ
5288static struct task_struct *
5289pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5290{
5291 struct cfs_rq *cfs_rq = &rq->cfs;
5292 struct sched_entity *se;
678d5718 5293 struct task_struct *p;
37e117c0 5294 int new_tasks;
678d5718 5295
6e83125c 5296again:
678d5718
PZ
5297#ifdef CONFIG_FAIR_GROUP_SCHED
5298 if (!cfs_rq->nr_running)
38033c37 5299 goto idle;
678d5718 5300
3f1d2a31 5301 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5302 goto simple;
5303
5304 /*
5305 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5306 * likely that a next task is from the same cgroup as the current.
5307 *
5308 * Therefore attempt to avoid putting and setting the entire cgroup
5309 * hierarchy, only change the part that actually changes.
5310 */
5311
5312 do {
5313 struct sched_entity *curr = cfs_rq->curr;
5314
5315 /*
5316 * Since we got here without doing put_prev_entity() we also
5317 * have to consider cfs_rq->curr. If it is still a runnable
5318 * entity, update_curr() will update its vruntime, otherwise
5319 * forget we've ever seen it.
5320 */
54d27365
BS
5321 if (curr) {
5322 if (curr->on_rq)
5323 update_curr(cfs_rq);
5324 else
5325 curr = NULL;
678d5718 5326
54d27365
BS
5327 /*
5328 * This call to check_cfs_rq_runtime() will do the
5329 * throttle and dequeue its entity in the parent(s).
5330 * Therefore the 'simple' nr_running test will indeed
5331 * be correct.
5332 */
5333 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5334 goto simple;
5335 }
678d5718
PZ
5336
5337 se = pick_next_entity(cfs_rq, curr);
5338 cfs_rq = group_cfs_rq(se);
5339 } while (cfs_rq);
5340
5341 p = task_of(se);
5342
5343 /*
5344 * Since we haven't yet done put_prev_entity and if the selected task
5345 * is a different task than we started out with, try and touch the
5346 * least amount of cfs_rqs.
5347 */
5348 if (prev != p) {
5349 struct sched_entity *pse = &prev->se;
5350
5351 while (!(cfs_rq = is_same_group(se, pse))) {
5352 int se_depth = se->depth;
5353 int pse_depth = pse->depth;
5354
5355 if (se_depth <= pse_depth) {
5356 put_prev_entity(cfs_rq_of(pse), pse);
5357 pse = parent_entity(pse);
5358 }
5359 if (se_depth >= pse_depth) {
5360 set_next_entity(cfs_rq_of(se), se);
5361 se = parent_entity(se);
5362 }
5363 }
5364
5365 put_prev_entity(cfs_rq, pse);
5366 set_next_entity(cfs_rq, se);
5367 }
5368
5369 if (hrtick_enabled(rq))
5370 hrtick_start_fair(rq, p);
5371
5372 return p;
5373simple:
5374 cfs_rq = &rq->cfs;
5375#endif
bf0f6f24 5376
36ace27e 5377 if (!cfs_rq->nr_running)
38033c37 5378 goto idle;
bf0f6f24 5379
3f1d2a31 5380 put_prev_task(rq, prev);
606dba2e 5381
bf0f6f24 5382 do {
678d5718 5383 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5384 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5385 cfs_rq = group_cfs_rq(se);
5386 } while (cfs_rq);
5387
8f4d37ec 5388 p = task_of(se);
678d5718 5389
b39e66ea
MG
5390 if (hrtick_enabled(rq))
5391 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5392
5393 return p;
38033c37
PZ
5394
5395idle:
cbce1a68
PZ
5396 /*
5397 * This is OK, because current is on_cpu, which avoids it being picked
5398 * for load-balance and preemption/IRQs are still disabled avoiding
5399 * further scheduler activity on it and we're being very careful to
5400 * re-start the picking loop.
5401 */
5402 lockdep_unpin_lock(&rq->lock);
e4aa358b 5403 new_tasks = idle_balance(rq);
cbce1a68 5404 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5405 /*
5406 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5407 * possible for any higher priority task to appear. In that case we
5408 * must re-start the pick_next_entity() loop.
5409 */
e4aa358b 5410 if (new_tasks < 0)
37e117c0
PZ
5411 return RETRY_TASK;
5412
e4aa358b 5413 if (new_tasks > 0)
38033c37 5414 goto again;
38033c37
PZ
5415
5416 return NULL;
bf0f6f24
IM
5417}
5418
5419/*
5420 * Account for a descheduled task:
5421 */
31ee529c 5422static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5423{
5424 struct sched_entity *se = &prev->se;
5425 struct cfs_rq *cfs_rq;
5426
5427 for_each_sched_entity(se) {
5428 cfs_rq = cfs_rq_of(se);
ab6cde26 5429 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5430 }
5431}
5432
ac53db59
RR
5433/*
5434 * sched_yield() is very simple
5435 *
5436 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5437 */
5438static void yield_task_fair(struct rq *rq)
5439{
5440 struct task_struct *curr = rq->curr;
5441 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5442 struct sched_entity *se = &curr->se;
5443
5444 /*
5445 * Are we the only task in the tree?
5446 */
5447 if (unlikely(rq->nr_running == 1))
5448 return;
5449
5450 clear_buddies(cfs_rq, se);
5451
5452 if (curr->policy != SCHED_BATCH) {
5453 update_rq_clock(rq);
5454 /*
5455 * Update run-time statistics of the 'current'.
5456 */
5457 update_curr(cfs_rq);
916671c0
MG
5458 /*
5459 * Tell update_rq_clock() that we've just updated,
5460 * so we don't do microscopic update in schedule()
5461 * and double the fastpath cost.
5462 */
9edfbfed 5463 rq_clock_skip_update(rq, true);
ac53db59
RR
5464 }
5465
5466 set_skip_buddy(se);
5467}
5468
d95f4122
MG
5469static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5470{
5471 struct sched_entity *se = &p->se;
5472
5238cdd3
PT
5473 /* throttled hierarchies are not runnable */
5474 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5475 return false;
5476
5477 /* Tell the scheduler that we'd really like pse to run next. */
5478 set_next_buddy(se);
5479
d95f4122
MG
5480 yield_task_fair(rq);
5481
5482 return true;
5483}
5484
681f3e68 5485#ifdef CONFIG_SMP
bf0f6f24 5486/**************************************************
e9c84cb8
PZ
5487 * Fair scheduling class load-balancing methods.
5488 *
5489 * BASICS
5490 *
5491 * The purpose of load-balancing is to achieve the same basic fairness the
5492 * per-cpu scheduler provides, namely provide a proportional amount of compute
5493 * time to each task. This is expressed in the following equation:
5494 *
5495 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5496 *
5497 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5498 * W_i,0 is defined as:
5499 *
5500 * W_i,0 = \Sum_j w_i,j (2)
5501 *
5502 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5503 * is derived from the nice value as per prio_to_weight[].
5504 *
5505 * The weight average is an exponential decay average of the instantaneous
5506 * weight:
5507 *
5508 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5509 *
ced549fa 5510 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5511 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5512 * can also include other factors [XXX].
5513 *
5514 * To achieve this balance we define a measure of imbalance which follows
5515 * directly from (1):
5516 *
ced549fa 5517 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5518 *
5519 * We them move tasks around to minimize the imbalance. In the continuous
5520 * function space it is obvious this converges, in the discrete case we get
5521 * a few fun cases generally called infeasible weight scenarios.
5522 *
5523 * [XXX expand on:
5524 * - infeasible weights;
5525 * - local vs global optima in the discrete case. ]
5526 *
5527 *
5528 * SCHED DOMAINS
5529 *
5530 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5531 * for all i,j solution, we create a tree of cpus that follows the hardware
5532 * topology where each level pairs two lower groups (or better). This results
5533 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5534 * tree to only the first of the previous level and we decrease the frequency
5535 * of load-balance at each level inv. proportional to the number of cpus in
5536 * the groups.
5537 *
5538 * This yields:
5539 *
5540 * log_2 n 1 n
5541 * \Sum { --- * --- * 2^i } = O(n) (5)
5542 * i = 0 2^i 2^i
5543 * `- size of each group
5544 * | | `- number of cpus doing load-balance
5545 * | `- freq
5546 * `- sum over all levels
5547 *
5548 * Coupled with a limit on how many tasks we can migrate every balance pass,
5549 * this makes (5) the runtime complexity of the balancer.
5550 *
5551 * An important property here is that each CPU is still (indirectly) connected
5552 * to every other cpu in at most O(log n) steps:
5553 *
5554 * The adjacency matrix of the resulting graph is given by:
5555 *
5556 * log_2 n
5557 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5558 * k = 0
5559 *
5560 * And you'll find that:
5561 *
5562 * A^(log_2 n)_i,j != 0 for all i,j (7)
5563 *
5564 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5565 * The task movement gives a factor of O(m), giving a convergence complexity
5566 * of:
5567 *
5568 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5569 *
5570 *
5571 * WORK CONSERVING
5572 *
5573 * In order to avoid CPUs going idle while there's still work to do, new idle
5574 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5575 * tree itself instead of relying on other CPUs to bring it work.
5576 *
5577 * This adds some complexity to both (5) and (8) but it reduces the total idle
5578 * time.
5579 *
5580 * [XXX more?]
5581 *
5582 *
5583 * CGROUPS
5584 *
5585 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5586 *
5587 * s_k,i
5588 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5589 * S_k
5590 *
5591 * Where
5592 *
5593 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5594 *
5595 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5596 *
5597 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5598 * property.
5599 *
5600 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5601 * rewrite all of this once again.]
5602 */
bf0f6f24 5603
ed387b78
HS
5604static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5605
0ec8aa00
PZ
5606enum fbq_type { regular, remote, all };
5607
ddcdf6e7 5608#define LBF_ALL_PINNED 0x01
367456c7 5609#define LBF_NEED_BREAK 0x02
6263322c
PZ
5610#define LBF_DST_PINNED 0x04
5611#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5612
5613struct lb_env {
5614 struct sched_domain *sd;
5615
ddcdf6e7 5616 struct rq *src_rq;
85c1e7da 5617 int src_cpu;
ddcdf6e7
PZ
5618
5619 int dst_cpu;
5620 struct rq *dst_rq;
5621
88b8dac0
SV
5622 struct cpumask *dst_grpmask;
5623 int new_dst_cpu;
ddcdf6e7 5624 enum cpu_idle_type idle;
bd939f45 5625 long imbalance;
b9403130
MW
5626 /* The set of CPUs under consideration for load-balancing */
5627 struct cpumask *cpus;
5628
ddcdf6e7 5629 unsigned int flags;
367456c7
PZ
5630
5631 unsigned int loop;
5632 unsigned int loop_break;
5633 unsigned int loop_max;
0ec8aa00
PZ
5634
5635 enum fbq_type fbq_type;
163122b7 5636 struct list_head tasks;
ddcdf6e7
PZ
5637};
5638
029632fb
PZ
5639/*
5640 * Is this task likely cache-hot:
5641 */
5d5e2b1b 5642static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5643{
5644 s64 delta;
5645
e5673f28
KT
5646 lockdep_assert_held(&env->src_rq->lock);
5647
029632fb
PZ
5648 if (p->sched_class != &fair_sched_class)
5649 return 0;
5650
5651 if (unlikely(p->policy == SCHED_IDLE))
5652 return 0;
5653
5654 /*
5655 * Buddy candidates are cache hot:
5656 */
5d5e2b1b 5657 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5658 (&p->se == cfs_rq_of(&p->se)->next ||
5659 &p->se == cfs_rq_of(&p->se)->last))
5660 return 1;
5661
5662 if (sysctl_sched_migration_cost == -1)
5663 return 1;
5664 if (sysctl_sched_migration_cost == 0)
5665 return 0;
5666
5d5e2b1b 5667 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5668
5669 return delta < (s64)sysctl_sched_migration_cost;
5670}
5671
3a7053b3 5672#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5673/*
2a1ed24c
SD
5674 * Returns 1, if task migration degrades locality
5675 * Returns 0, if task migration improves locality i.e migration preferred.
5676 * Returns -1, if task migration is not affected by locality.
c1ceac62 5677 */
2a1ed24c 5678static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5679{
b1ad065e 5680 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5681 unsigned long src_faults, dst_faults;
3a7053b3
MG
5682 int src_nid, dst_nid;
5683
44dba3d5 5684 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5685 return -1;
5686
5687 if (!sched_feat(NUMA))
5688 return -1;
7a0f3083
MG
5689
5690 src_nid = cpu_to_node(env->src_cpu);
5691 dst_nid = cpu_to_node(env->dst_cpu);
5692
83e1d2cd 5693 if (src_nid == dst_nid)
2a1ed24c 5694 return -1;
7a0f3083 5695
2a1ed24c
SD
5696 /* Migrating away from the preferred node is always bad. */
5697 if (src_nid == p->numa_preferred_nid) {
5698 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5699 return 1;
5700 else
5701 return -1;
5702 }
b1ad065e 5703
c1ceac62
RR
5704 /* Encourage migration to the preferred node. */
5705 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5706 return 0;
b1ad065e 5707
c1ceac62
RR
5708 if (numa_group) {
5709 src_faults = group_faults(p, src_nid);
5710 dst_faults = group_faults(p, dst_nid);
5711 } else {
5712 src_faults = task_faults(p, src_nid);
5713 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5714 }
5715
c1ceac62 5716 return dst_faults < src_faults;
7a0f3083
MG
5717}
5718
3a7053b3 5719#else
2a1ed24c 5720static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5721 struct lb_env *env)
5722{
2a1ed24c 5723 return -1;
7a0f3083 5724}
3a7053b3
MG
5725#endif
5726
1e3c88bd
PZ
5727/*
5728 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5729 */
5730static
8e45cb54 5731int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5732{
2a1ed24c 5733 int tsk_cache_hot;
e5673f28
KT
5734
5735 lockdep_assert_held(&env->src_rq->lock);
5736
1e3c88bd
PZ
5737 /*
5738 * We do not migrate tasks that are:
d3198084 5739 * 1) throttled_lb_pair, or
1e3c88bd 5740 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5741 * 3) running (obviously), or
5742 * 4) are cache-hot on their current CPU.
1e3c88bd 5743 */
d3198084
JK
5744 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5745 return 0;
5746
ddcdf6e7 5747 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5748 int cpu;
88b8dac0 5749
41acab88 5750 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5751
6263322c
PZ
5752 env->flags |= LBF_SOME_PINNED;
5753
88b8dac0
SV
5754 /*
5755 * Remember if this task can be migrated to any other cpu in
5756 * our sched_group. We may want to revisit it if we couldn't
5757 * meet load balance goals by pulling other tasks on src_cpu.
5758 *
5759 * Also avoid computing new_dst_cpu if we have already computed
5760 * one in current iteration.
5761 */
6263322c 5762 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5763 return 0;
5764
e02e60c1
JK
5765 /* Prevent to re-select dst_cpu via env's cpus */
5766 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5767 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5768 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5769 env->new_dst_cpu = cpu;
5770 break;
5771 }
88b8dac0 5772 }
e02e60c1 5773
1e3c88bd
PZ
5774 return 0;
5775 }
88b8dac0
SV
5776
5777 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5778 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5779
ddcdf6e7 5780 if (task_running(env->src_rq, p)) {
41acab88 5781 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5782 return 0;
5783 }
5784
5785 /*
5786 * Aggressive migration if:
3a7053b3
MG
5787 * 1) destination numa is preferred
5788 * 2) task is cache cold, or
5789 * 3) too many balance attempts have failed.
1e3c88bd 5790 */
2a1ed24c
SD
5791 tsk_cache_hot = migrate_degrades_locality(p, env);
5792 if (tsk_cache_hot == -1)
5793 tsk_cache_hot = task_hot(p, env);
3a7053b3 5794
2a1ed24c 5795 if (tsk_cache_hot <= 0 ||
7a96c231 5796 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5797 if (tsk_cache_hot == 1) {
3a7053b3
MG
5798 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5799 schedstat_inc(p, se.statistics.nr_forced_migrations);
5800 }
1e3c88bd
PZ
5801 return 1;
5802 }
5803
4e2dcb73
ZH
5804 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5805 return 0;
1e3c88bd
PZ
5806}
5807
897c395f 5808/*
163122b7
KT
5809 * detach_task() -- detach the task for the migration specified in env
5810 */
5811static void detach_task(struct task_struct *p, struct lb_env *env)
5812{
5813 lockdep_assert_held(&env->src_rq->lock);
5814
5815 deactivate_task(env->src_rq, p, 0);
5816 p->on_rq = TASK_ON_RQ_MIGRATING;
5817 set_task_cpu(p, env->dst_cpu);
5818}
5819
897c395f 5820/*
e5673f28 5821 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5822 * part of active balancing operations within "domain".
897c395f 5823 *
e5673f28 5824 * Returns a task if successful and NULL otherwise.
897c395f 5825 */
e5673f28 5826static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5827{
5828 struct task_struct *p, *n;
897c395f 5829
e5673f28
KT
5830 lockdep_assert_held(&env->src_rq->lock);
5831
367456c7 5832 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5833 if (!can_migrate_task(p, env))
5834 continue;
897c395f 5835
163122b7 5836 detach_task(p, env);
e5673f28 5837
367456c7 5838 /*
e5673f28 5839 * Right now, this is only the second place where
163122b7 5840 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5841 * so we can safely collect stats here rather than
163122b7 5842 * inside detach_tasks().
367456c7
PZ
5843 */
5844 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5845 return p;
897c395f 5846 }
e5673f28 5847 return NULL;
897c395f
PZ
5848}
5849
eb95308e
PZ
5850static const unsigned int sched_nr_migrate_break = 32;
5851
5d6523eb 5852/*
163122b7
KT
5853 * detach_tasks() -- tries to detach up to imbalance weighted load from
5854 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5855 *
163122b7 5856 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5857 */
163122b7 5858static int detach_tasks(struct lb_env *env)
1e3c88bd 5859{
5d6523eb
PZ
5860 struct list_head *tasks = &env->src_rq->cfs_tasks;
5861 struct task_struct *p;
367456c7 5862 unsigned long load;
163122b7
KT
5863 int detached = 0;
5864
5865 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5866
bd939f45 5867 if (env->imbalance <= 0)
5d6523eb 5868 return 0;
1e3c88bd 5869
5d6523eb
PZ
5870 while (!list_empty(tasks)) {
5871 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5872
367456c7
PZ
5873 env->loop++;
5874 /* We've more or less seen every task there is, call it quits */
5d6523eb 5875 if (env->loop > env->loop_max)
367456c7 5876 break;
5d6523eb
PZ
5877
5878 /* take a breather every nr_migrate tasks */
367456c7 5879 if (env->loop > env->loop_break) {
eb95308e 5880 env->loop_break += sched_nr_migrate_break;
8e45cb54 5881 env->flags |= LBF_NEED_BREAK;
ee00e66f 5882 break;
a195f004 5883 }
1e3c88bd 5884
d3198084 5885 if (!can_migrate_task(p, env))
367456c7
PZ
5886 goto next;
5887
5888 load = task_h_load(p);
5d6523eb 5889
eb95308e 5890 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5891 goto next;
5892
bd939f45 5893 if ((load / 2) > env->imbalance)
367456c7 5894 goto next;
1e3c88bd 5895
163122b7
KT
5896 detach_task(p, env);
5897 list_add(&p->se.group_node, &env->tasks);
5898
5899 detached++;
bd939f45 5900 env->imbalance -= load;
1e3c88bd
PZ
5901
5902#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5903 /*
5904 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5905 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5906 * the critical section.
5907 */
5d6523eb 5908 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5909 break;
1e3c88bd
PZ
5910#endif
5911
ee00e66f
PZ
5912 /*
5913 * We only want to steal up to the prescribed amount of
5914 * weighted load.
5915 */
bd939f45 5916 if (env->imbalance <= 0)
ee00e66f 5917 break;
367456c7
PZ
5918
5919 continue;
5920next:
5d6523eb 5921 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5922 }
5d6523eb 5923
1e3c88bd 5924 /*
163122b7
KT
5925 * Right now, this is one of only two places we collect this stat
5926 * so we can safely collect detach_one_task() stats here rather
5927 * than inside detach_one_task().
1e3c88bd 5928 */
163122b7 5929 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5930
163122b7
KT
5931 return detached;
5932}
5933
5934/*
5935 * attach_task() -- attach the task detached by detach_task() to its new rq.
5936 */
5937static void attach_task(struct rq *rq, struct task_struct *p)
5938{
5939 lockdep_assert_held(&rq->lock);
5940
5941 BUG_ON(task_rq(p) != rq);
5942 p->on_rq = TASK_ON_RQ_QUEUED;
5943 activate_task(rq, p, 0);
5944 check_preempt_curr(rq, p, 0);
5945}
5946
5947/*
5948 * attach_one_task() -- attaches the task returned from detach_one_task() to
5949 * its new rq.
5950 */
5951static void attach_one_task(struct rq *rq, struct task_struct *p)
5952{
5953 raw_spin_lock(&rq->lock);
5954 attach_task(rq, p);
5955 raw_spin_unlock(&rq->lock);
5956}
5957
5958/*
5959 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5960 * new rq.
5961 */
5962static void attach_tasks(struct lb_env *env)
5963{
5964 struct list_head *tasks = &env->tasks;
5965 struct task_struct *p;
5966
5967 raw_spin_lock(&env->dst_rq->lock);
5968
5969 while (!list_empty(tasks)) {
5970 p = list_first_entry(tasks, struct task_struct, se.group_node);
5971 list_del_init(&p->se.group_node);
1e3c88bd 5972
163122b7
KT
5973 attach_task(env->dst_rq, p);
5974 }
5975
5976 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5977}
5978
230059de 5979#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5980/*
5981 * update tg->load_weight by folding this cpu's load_avg
5982 */
48a16753 5983static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5984{
48a16753
PT
5985 struct sched_entity *se = tg->se[cpu];
5986 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5987
48a16753
PT
5988 /* throttled entities do not contribute to load */
5989 if (throttled_hierarchy(cfs_rq))
5990 return;
9e3081ca 5991
aff3e498 5992 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5993
82958366
PT
5994 if (se) {
5995 update_entity_load_avg(se, 1);
5996 /*
5997 * We pivot on our runnable average having decayed to zero for
5998 * list removal. This generally implies that all our children
5999 * have also been removed (modulo rounding error or bandwidth
6000 * control); however, such cases are rare and we can fix these
6001 * at enqueue.
6002 *
6003 * TODO: fix up out-of-order children on enqueue.
6004 */
6005 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6006 list_del_leaf_cfs_rq(cfs_rq);
6007 } else {
48a16753 6008 struct rq *rq = rq_of(cfs_rq);
82958366
PT
6009 update_rq_runnable_avg(rq, rq->nr_running);
6010 }
9e3081ca
PZ
6011}
6012
48a16753 6013static void update_blocked_averages(int cpu)
9e3081ca 6014{
9e3081ca 6015 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6016 struct cfs_rq *cfs_rq;
6017 unsigned long flags;
9e3081ca 6018
48a16753
PT
6019 raw_spin_lock_irqsave(&rq->lock, flags);
6020 update_rq_clock(rq);
9763b67f
PZ
6021 /*
6022 * Iterates the task_group tree in a bottom up fashion, see
6023 * list_add_leaf_cfs_rq() for details.
6024 */
64660c86 6025 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
6026 /*
6027 * Note: We may want to consider periodically releasing
6028 * rq->lock about these updates so that creating many task
6029 * groups does not result in continually extending hold time.
6030 */
6031 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 6032 }
48a16753
PT
6033
6034 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6035}
6036
9763b67f 6037/*
68520796 6038 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6039 * This needs to be done in a top-down fashion because the load of a child
6040 * group is a fraction of its parents load.
6041 */
68520796 6042static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6043{
68520796
VD
6044 struct rq *rq = rq_of(cfs_rq);
6045 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6046 unsigned long now = jiffies;
68520796 6047 unsigned long load;
a35b6466 6048
68520796 6049 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6050 return;
6051
68520796
VD
6052 cfs_rq->h_load_next = NULL;
6053 for_each_sched_entity(se) {
6054 cfs_rq = cfs_rq_of(se);
6055 cfs_rq->h_load_next = se;
6056 if (cfs_rq->last_h_load_update == now)
6057 break;
6058 }
a35b6466 6059
68520796 6060 if (!se) {
7e3115ef 6061 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
6062 cfs_rq->last_h_load_update = now;
6063 }
6064
6065 while ((se = cfs_rq->h_load_next) != NULL) {
6066 load = cfs_rq->h_load;
6067 load = div64_ul(load * se->avg.load_avg_contrib,
6068 cfs_rq->runnable_load_avg + 1);
6069 cfs_rq = group_cfs_rq(se);
6070 cfs_rq->h_load = load;
6071 cfs_rq->last_h_load_update = now;
6072 }
9763b67f
PZ
6073}
6074
367456c7 6075static unsigned long task_h_load(struct task_struct *p)
230059de 6076{
367456c7 6077 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6078
68520796 6079 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
6080 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6081 cfs_rq->runnable_load_avg + 1);
230059de
PZ
6082}
6083#else
48a16753 6084static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
6085{
6086}
6087
367456c7 6088static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6089{
a003a25b 6090 return p->se.avg.load_avg_contrib;
1e3c88bd 6091}
230059de 6092#endif
1e3c88bd 6093
1e3c88bd 6094/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6095
6096enum group_type {
6097 group_other = 0,
6098 group_imbalanced,
6099 group_overloaded,
6100};
6101
1e3c88bd
PZ
6102/*
6103 * sg_lb_stats - stats of a sched_group required for load_balancing
6104 */
6105struct sg_lb_stats {
6106 unsigned long avg_load; /*Avg load across the CPUs of the group */
6107 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6108 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6109 unsigned long load_per_task;
63b2ca30 6110 unsigned long group_capacity;
8bb5b00c 6111 unsigned long group_usage; /* Total usage of the group */
147c5fc2 6112 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6113 unsigned int idle_cpus;
6114 unsigned int group_weight;
caeb178c 6115 enum group_type group_type;
ea67821b 6116 int group_no_capacity;
0ec8aa00
PZ
6117#ifdef CONFIG_NUMA_BALANCING
6118 unsigned int nr_numa_running;
6119 unsigned int nr_preferred_running;
6120#endif
1e3c88bd
PZ
6121};
6122
56cf515b
JK
6123/*
6124 * sd_lb_stats - Structure to store the statistics of a sched_domain
6125 * during load balancing.
6126 */
6127struct sd_lb_stats {
6128 struct sched_group *busiest; /* Busiest group in this sd */
6129 struct sched_group *local; /* Local group in this sd */
6130 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6131 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6132 unsigned long avg_load; /* Average load across all groups in sd */
6133
56cf515b 6134 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6135 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6136};
6137
147c5fc2
PZ
6138static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6139{
6140 /*
6141 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6142 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6143 * We must however clear busiest_stat::avg_load because
6144 * update_sd_pick_busiest() reads this before assignment.
6145 */
6146 *sds = (struct sd_lb_stats){
6147 .busiest = NULL,
6148 .local = NULL,
6149 .total_load = 0UL,
63b2ca30 6150 .total_capacity = 0UL,
147c5fc2
PZ
6151 .busiest_stat = {
6152 .avg_load = 0UL,
caeb178c
RR
6153 .sum_nr_running = 0,
6154 .group_type = group_other,
147c5fc2
PZ
6155 },
6156 };
6157}
6158
1e3c88bd
PZ
6159/**
6160 * get_sd_load_idx - Obtain the load index for a given sched domain.
6161 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6162 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6163 *
6164 * Return: The load index.
1e3c88bd
PZ
6165 */
6166static inline int get_sd_load_idx(struct sched_domain *sd,
6167 enum cpu_idle_type idle)
6168{
6169 int load_idx;
6170
6171 switch (idle) {
6172 case CPU_NOT_IDLE:
6173 load_idx = sd->busy_idx;
6174 break;
6175
6176 case CPU_NEWLY_IDLE:
6177 load_idx = sd->newidle_idx;
6178 break;
6179 default:
6180 load_idx = sd->idle_idx;
6181 break;
6182 }
6183
6184 return load_idx;
6185}
6186
26bc3c50 6187static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6188{
26bc3c50
VG
6189 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6190 return sd->smt_gain / sd->span_weight;
1e3c88bd 6191
26bc3c50 6192 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6193}
6194
26bc3c50 6195unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6196{
26bc3c50 6197 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6198}
6199
ced549fa 6200static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6201{
6202 struct rq *rq = cpu_rq(cpu);
b5b4860d 6203 u64 total, used, age_stamp, avg;
cadefd3d 6204 s64 delta;
1e3c88bd 6205
b654f7de
PZ
6206 /*
6207 * Since we're reading these variables without serialization make sure
6208 * we read them once before doing sanity checks on them.
6209 */
316c1608
JL
6210 age_stamp = READ_ONCE(rq->age_stamp);
6211 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6212 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6213
cadefd3d
PZ
6214 if (unlikely(delta < 0))
6215 delta = 0;
6216
6217 total = sched_avg_period() + delta;
aa483808 6218
b5b4860d 6219 used = div_u64(avg, total);
1e3c88bd 6220
b5b4860d
VG
6221 if (likely(used < SCHED_CAPACITY_SCALE))
6222 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6223
b5b4860d 6224 return 1;
1e3c88bd
PZ
6225}
6226
ced549fa 6227static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6228{
ca8ce3d0 6229 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6230 struct sched_group *sdg = sd->groups;
6231
26bc3c50
VG
6232 if (sched_feat(ARCH_CAPACITY))
6233 capacity *= arch_scale_cpu_capacity(sd, cpu);
6234 else
6235 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6236
26bc3c50 6237 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6238
ca6d75e6 6239 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6240
ced549fa 6241 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6242 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6243
ced549fa
NP
6244 if (!capacity)
6245 capacity = 1;
1e3c88bd 6246
ced549fa
NP
6247 cpu_rq(cpu)->cpu_capacity = capacity;
6248 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6249}
6250
63b2ca30 6251void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6252{
6253 struct sched_domain *child = sd->child;
6254 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6255 unsigned long capacity;
4ec4412e
VG
6256 unsigned long interval;
6257
6258 interval = msecs_to_jiffies(sd->balance_interval);
6259 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6260 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6261
6262 if (!child) {
ced549fa 6263 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6264 return;
6265 }
6266
dc7ff76e 6267 capacity = 0;
1e3c88bd 6268
74a5ce20
PZ
6269 if (child->flags & SD_OVERLAP) {
6270 /*
6271 * SD_OVERLAP domains cannot assume that child groups
6272 * span the current group.
6273 */
6274
863bffc8 6275 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6276 struct sched_group_capacity *sgc;
9abf24d4 6277 struct rq *rq = cpu_rq(cpu);
863bffc8 6278
9abf24d4 6279 /*
63b2ca30 6280 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6281 * gets here before we've attached the domains to the
6282 * runqueues.
6283 *
ced549fa
NP
6284 * Use capacity_of(), which is set irrespective of domains
6285 * in update_cpu_capacity().
9abf24d4 6286 *
dc7ff76e 6287 * This avoids capacity from being 0 and
9abf24d4 6288 * causing divide-by-zero issues on boot.
9abf24d4
SD
6289 */
6290 if (unlikely(!rq->sd)) {
ced549fa 6291 capacity += capacity_of(cpu);
9abf24d4
SD
6292 continue;
6293 }
863bffc8 6294
63b2ca30 6295 sgc = rq->sd->groups->sgc;
63b2ca30 6296 capacity += sgc->capacity;
863bffc8 6297 }
74a5ce20
PZ
6298 } else {
6299 /*
6300 * !SD_OVERLAP domains can assume that child groups
6301 * span the current group.
6302 */
6303
6304 group = child->groups;
6305 do {
63b2ca30 6306 capacity += group->sgc->capacity;
74a5ce20
PZ
6307 group = group->next;
6308 } while (group != child->groups);
6309 }
1e3c88bd 6310
63b2ca30 6311 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6312}
6313
9d5efe05 6314/*
ea67821b
VG
6315 * Check whether the capacity of the rq has been noticeably reduced by side
6316 * activity. The imbalance_pct is used for the threshold.
6317 * Return true is the capacity is reduced
9d5efe05
SV
6318 */
6319static inline int
ea67821b 6320check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6321{
ea67821b
VG
6322 return ((rq->cpu_capacity * sd->imbalance_pct) <
6323 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6324}
6325
30ce5dab
PZ
6326/*
6327 * Group imbalance indicates (and tries to solve) the problem where balancing
6328 * groups is inadequate due to tsk_cpus_allowed() constraints.
6329 *
6330 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6331 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6332 * Something like:
6333 *
6334 * { 0 1 2 3 } { 4 5 6 7 }
6335 * * * * *
6336 *
6337 * If we were to balance group-wise we'd place two tasks in the first group and
6338 * two tasks in the second group. Clearly this is undesired as it will overload
6339 * cpu 3 and leave one of the cpus in the second group unused.
6340 *
6341 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6342 * by noticing the lower domain failed to reach balance and had difficulty
6343 * moving tasks due to affinity constraints.
30ce5dab
PZ
6344 *
6345 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6346 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6347 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6348 * to create an effective group imbalance.
6349 *
6350 * This is a somewhat tricky proposition since the next run might not find the
6351 * group imbalance and decide the groups need to be balanced again. A most
6352 * subtle and fragile situation.
6353 */
6354
6263322c 6355static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6356{
63b2ca30 6357 return group->sgc->imbalance;
30ce5dab
PZ
6358}
6359
b37d9316 6360/*
ea67821b
VG
6361 * group_has_capacity returns true if the group has spare capacity that could
6362 * be used by some tasks.
6363 * We consider that a group has spare capacity if the * number of task is
6364 * smaller than the number of CPUs or if the usage is lower than the available
6365 * capacity for CFS tasks.
6366 * For the latter, we use a threshold to stabilize the state, to take into
6367 * account the variance of the tasks' load and to return true if the available
6368 * capacity in meaningful for the load balancer.
6369 * As an example, an available capacity of 1% can appear but it doesn't make
6370 * any benefit for the load balance.
b37d9316 6371 */
ea67821b
VG
6372static inline bool
6373group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6374{
ea67821b
VG
6375 if (sgs->sum_nr_running < sgs->group_weight)
6376 return true;
c61037e9 6377
ea67821b
VG
6378 if ((sgs->group_capacity * 100) >
6379 (sgs->group_usage * env->sd->imbalance_pct))
6380 return true;
b37d9316 6381
ea67821b
VG
6382 return false;
6383}
6384
6385/*
6386 * group_is_overloaded returns true if the group has more tasks than it can
6387 * handle.
6388 * group_is_overloaded is not equals to !group_has_capacity because a group
6389 * with the exact right number of tasks, has no more spare capacity but is not
6390 * overloaded so both group_has_capacity and group_is_overloaded return
6391 * false.
6392 */
6393static inline bool
6394group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6395{
6396 if (sgs->sum_nr_running <= sgs->group_weight)
6397 return false;
b37d9316 6398
ea67821b
VG
6399 if ((sgs->group_capacity * 100) <
6400 (sgs->group_usage * env->sd->imbalance_pct))
6401 return true;
b37d9316 6402
ea67821b 6403 return false;
b37d9316
PZ
6404}
6405
ea67821b
VG
6406static enum group_type group_classify(struct lb_env *env,
6407 struct sched_group *group,
6408 struct sg_lb_stats *sgs)
caeb178c 6409{
ea67821b 6410 if (sgs->group_no_capacity)
caeb178c
RR
6411 return group_overloaded;
6412
6413 if (sg_imbalanced(group))
6414 return group_imbalanced;
6415
6416 return group_other;
6417}
6418
1e3c88bd
PZ
6419/**
6420 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6421 * @env: The load balancing environment.
1e3c88bd 6422 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6423 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6424 * @local_group: Does group contain this_cpu.
1e3c88bd 6425 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6426 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6427 */
bd939f45
PZ
6428static inline void update_sg_lb_stats(struct lb_env *env,
6429 struct sched_group *group, int load_idx,
4486edd1
TC
6430 int local_group, struct sg_lb_stats *sgs,
6431 bool *overload)
1e3c88bd 6432{
30ce5dab 6433 unsigned long load;
bd939f45 6434 int i;
1e3c88bd 6435
b72ff13c
PZ
6436 memset(sgs, 0, sizeof(*sgs));
6437
b9403130 6438 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6439 struct rq *rq = cpu_rq(i);
6440
1e3c88bd 6441 /* Bias balancing toward cpus of our domain */
6263322c 6442 if (local_group)
04f733b4 6443 load = target_load(i, load_idx);
6263322c 6444 else
1e3c88bd 6445 load = source_load(i, load_idx);
1e3c88bd
PZ
6446
6447 sgs->group_load += load;
8bb5b00c 6448 sgs->group_usage += get_cpu_usage(i);
65fdac08 6449 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6450
6451 if (rq->nr_running > 1)
6452 *overload = true;
6453
0ec8aa00
PZ
6454#ifdef CONFIG_NUMA_BALANCING
6455 sgs->nr_numa_running += rq->nr_numa_running;
6456 sgs->nr_preferred_running += rq->nr_preferred_running;
6457#endif
1e3c88bd 6458 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6459 if (idle_cpu(i))
6460 sgs->idle_cpus++;
1e3c88bd
PZ
6461 }
6462
63b2ca30
NP
6463 /* Adjust by relative CPU capacity of the group */
6464 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6465 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6466
dd5feea1 6467 if (sgs->sum_nr_running)
38d0f770 6468 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6469
aae6d3dd 6470 sgs->group_weight = group->group_weight;
b37d9316 6471
ea67821b
VG
6472 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6473 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6474}
6475
532cb4c4
MN
6476/**
6477 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6478 * @env: The load balancing environment.
532cb4c4
MN
6479 * @sds: sched_domain statistics
6480 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6481 * @sgs: sched_group statistics
532cb4c4
MN
6482 *
6483 * Determine if @sg is a busier group than the previously selected
6484 * busiest group.
e69f6186
YB
6485 *
6486 * Return: %true if @sg is a busier group than the previously selected
6487 * busiest group. %false otherwise.
532cb4c4 6488 */
bd939f45 6489static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6490 struct sd_lb_stats *sds,
6491 struct sched_group *sg,
bd939f45 6492 struct sg_lb_stats *sgs)
532cb4c4 6493{
caeb178c 6494 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6495
caeb178c 6496 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6497 return true;
6498
caeb178c
RR
6499 if (sgs->group_type < busiest->group_type)
6500 return false;
6501
6502 if (sgs->avg_load <= busiest->avg_load)
6503 return false;
6504
6505 /* This is the busiest node in its class. */
6506 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6507 return true;
6508
6509 /*
6510 * ASYM_PACKING needs to move all the work to the lowest
6511 * numbered CPUs in the group, therefore mark all groups
6512 * higher than ourself as busy.
6513 */
caeb178c 6514 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6515 if (!sds->busiest)
6516 return true;
6517
6518 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6519 return true;
6520 }
6521
6522 return false;
6523}
6524
0ec8aa00
PZ
6525#ifdef CONFIG_NUMA_BALANCING
6526static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6527{
6528 if (sgs->sum_nr_running > sgs->nr_numa_running)
6529 return regular;
6530 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6531 return remote;
6532 return all;
6533}
6534
6535static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6536{
6537 if (rq->nr_running > rq->nr_numa_running)
6538 return regular;
6539 if (rq->nr_running > rq->nr_preferred_running)
6540 return remote;
6541 return all;
6542}
6543#else
6544static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6545{
6546 return all;
6547}
6548
6549static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6550{
6551 return regular;
6552}
6553#endif /* CONFIG_NUMA_BALANCING */
6554
1e3c88bd 6555/**
461819ac 6556 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6557 * @env: The load balancing environment.
1e3c88bd
PZ
6558 * @sds: variable to hold the statistics for this sched_domain.
6559 */
0ec8aa00 6560static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6561{
bd939f45
PZ
6562 struct sched_domain *child = env->sd->child;
6563 struct sched_group *sg = env->sd->groups;
56cf515b 6564 struct sg_lb_stats tmp_sgs;
1e3c88bd 6565 int load_idx, prefer_sibling = 0;
4486edd1 6566 bool overload = false;
1e3c88bd
PZ
6567
6568 if (child && child->flags & SD_PREFER_SIBLING)
6569 prefer_sibling = 1;
6570
bd939f45 6571 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6572
6573 do {
56cf515b 6574 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6575 int local_group;
6576
bd939f45 6577 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6578 if (local_group) {
6579 sds->local = sg;
6580 sgs = &sds->local_stat;
b72ff13c
PZ
6581
6582 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6583 time_after_eq(jiffies, sg->sgc->next_update))
6584 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6585 }
1e3c88bd 6586
4486edd1
TC
6587 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6588 &overload);
1e3c88bd 6589
b72ff13c
PZ
6590 if (local_group)
6591 goto next_group;
6592
1e3c88bd
PZ
6593 /*
6594 * In case the child domain prefers tasks go to siblings
ea67821b 6595 * first, lower the sg capacity so that we'll try
75dd321d
NR
6596 * and move all the excess tasks away. We lower the capacity
6597 * of a group only if the local group has the capacity to fit
ea67821b
VG
6598 * these excess tasks. The extra check prevents the case where
6599 * you always pull from the heaviest group when it is already
6600 * under-utilized (possible with a large weight task outweighs
6601 * the tasks on the system).
1e3c88bd 6602 */
b72ff13c 6603 if (prefer_sibling && sds->local &&
ea67821b
VG
6604 group_has_capacity(env, &sds->local_stat) &&
6605 (sgs->sum_nr_running > 1)) {
6606 sgs->group_no_capacity = 1;
6607 sgs->group_type = group_overloaded;
cb0b9f24 6608 }
1e3c88bd 6609
b72ff13c 6610 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6611 sds->busiest = sg;
56cf515b 6612 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6613 }
6614
b72ff13c
PZ
6615next_group:
6616 /* Now, start updating sd_lb_stats */
6617 sds->total_load += sgs->group_load;
63b2ca30 6618 sds->total_capacity += sgs->group_capacity;
b72ff13c 6619
532cb4c4 6620 sg = sg->next;
bd939f45 6621 } while (sg != env->sd->groups);
0ec8aa00
PZ
6622
6623 if (env->sd->flags & SD_NUMA)
6624 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6625
6626 if (!env->sd->parent) {
6627 /* update overload indicator if we are at root domain */
6628 if (env->dst_rq->rd->overload != overload)
6629 env->dst_rq->rd->overload = overload;
6630 }
6631
532cb4c4
MN
6632}
6633
532cb4c4
MN
6634/**
6635 * check_asym_packing - Check to see if the group is packed into the
6636 * sched doman.
6637 *
6638 * This is primarily intended to used at the sibling level. Some
6639 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6640 * case of POWER7, it can move to lower SMT modes only when higher
6641 * threads are idle. When in lower SMT modes, the threads will
6642 * perform better since they share less core resources. Hence when we
6643 * have idle threads, we want them to be the higher ones.
6644 *
6645 * This packing function is run on idle threads. It checks to see if
6646 * the busiest CPU in this domain (core in the P7 case) has a higher
6647 * CPU number than the packing function is being run on. Here we are
6648 * assuming lower CPU number will be equivalent to lower a SMT thread
6649 * number.
6650 *
e69f6186 6651 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6652 * this CPU. The amount of the imbalance is returned in *imbalance.
6653 *
cd96891d 6654 * @env: The load balancing environment.
532cb4c4 6655 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6656 */
bd939f45 6657static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6658{
6659 int busiest_cpu;
6660
bd939f45 6661 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6662 return 0;
6663
6664 if (!sds->busiest)
6665 return 0;
6666
6667 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6668 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6669 return 0;
6670
bd939f45 6671 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6672 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6673 SCHED_CAPACITY_SCALE);
bd939f45 6674
532cb4c4 6675 return 1;
1e3c88bd
PZ
6676}
6677
6678/**
6679 * fix_small_imbalance - Calculate the minor imbalance that exists
6680 * amongst the groups of a sched_domain, during
6681 * load balancing.
cd96891d 6682 * @env: The load balancing environment.
1e3c88bd 6683 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6684 */
bd939f45
PZ
6685static inline
6686void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6687{
63b2ca30 6688 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6689 unsigned int imbn = 2;
dd5feea1 6690 unsigned long scaled_busy_load_per_task;
56cf515b 6691 struct sg_lb_stats *local, *busiest;
1e3c88bd 6692
56cf515b
JK
6693 local = &sds->local_stat;
6694 busiest = &sds->busiest_stat;
1e3c88bd 6695
56cf515b
JK
6696 if (!local->sum_nr_running)
6697 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6698 else if (busiest->load_per_task > local->load_per_task)
6699 imbn = 1;
dd5feea1 6700
56cf515b 6701 scaled_busy_load_per_task =
ca8ce3d0 6702 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6703 busiest->group_capacity;
56cf515b 6704
3029ede3
VD
6705 if (busiest->avg_load + scaled_busy_load_per_task >=
6706 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6707 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6708 return;
6709 }
6710
6711 /*
6712 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6713 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6714 * moving them.
6715 */
6716
63b2ca30 6717 capa_now += busiest->group_capacity *
56cf515b 6718 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6719 capa_now += local->group_capacity *
56cf515b 6720 min(local->load_per_task, local->avg_load);
ca8ce3d0 6721 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6722
6723 /* Amount of load we'd subtract */
a2cd4260 6724 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6725 capa_move += busiest->group_capacity *
56cf515b 6726 min(busiest->load_per_task,
a2cd4260 6727 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6728 }
1e3c88bd
PZ
6729
6730 /* Amount of load we'd add */
63b2ca30 6731 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6732 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6733 tmp = (busiest->avg_load * busiest->group_capacity) /
6734 local->group_capacity;
56cf515b 6735 } else {
ca8ce3d0 6736 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6737 local->group_capacity;
56cf515b 6738 }
63b2ca30 6739 capa_move += local->group_capacity *
3ae11c90 6740 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6741 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6742
6743 /* Move if we gain throughput */
63b2ca30 6744 if (capa_move > capa_now)
56cf515b 6745 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6746}
6747
6748/**
6749 * calculate_imbalance - Calculate the amount of imbalance present within the
6750 * groups of a given sched_domain during load balance.
bd939f45 6751 * @env: load balance environment
1e3c88bd 6752 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6753 */
bd939f45 6754static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6755{
dd5feea1 6756 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6757 struct sg_lb_stats *local, *busiest;
6758
6759 local = &sds->local_stat;
56cf515b 6760 busiest = &sds->busiest_stat;
dd5feea1 6761
caeb178c 6762 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6763 /*
6764 * In the group_imb case we cannot rely on group-wide averages
6765 * to ensure cpu-load equilibrium, look at wider averages. XXX
6766 */
56cf515b
JK
6767 busiest->load_per_task =
6768 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6769 }
6770
1e3c88bd
PZ
6771 /*
6772 * In the presence of smp nice balancing, certain scenarios can have
6773 * max load less than avg load(as we skip the groups at or below
ced549fa 6774 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6775 */
b1885550
VD
6776 if (busiest->avg_load <= sds->avg_load ||
6777 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6778 env->imbalance = 0;
6779 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6780 }
6781
9a5d9ba6
PZ
6782 /*
6783 * If there aren't any idle cpus, avoid creating some.
6784 */
6785 if (busiest->group_type == group_overloaded &&
6786 local->group_type == group_overloaded) {
ea67821b
VG
6787 load_above_capacity = busiest->sum_nr_running *
6788 SCHED_LOAD_SCALE;
6789 if (load_above_capacity > busiest->group_capacity)
6790 load_above_capacity -= busiest->group_capacity;
6791 else
6792 load_above_capacity = ~0UL;
dd5feea1
SS
6793 }
6794
6795 /*
6796 * We're trying to get all the cpus to the average_load, so we don't
6797 * want to push ourselves above the average load, nor do we wish to
6798 * reduce the max loaded cpu below the average load. At the same time,
6799 * we also don't want to reduce the group load below the group capacity
6800 * (so that we can implement power-savings policies etc). Thus we look
6801 * for the minimum possible imbalance.
dd5feea1 6802 */
30ce5dab 6803 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6804
6805 /* How much load to actually move to equalise the imbalance */
56cf515b 6806 env->imbalance = min(
63b2ca30
NP
6807 max_pull * busiest->group_capacity,
6808 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6809 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6810
6811 /*
6812 * if *imbalance is less than the average load per runnable task
25985edc 6813 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6814 * a think about bumping its value to force at least one task to be
6815 * moved
6816 */
56cf515b 6817 if (env->imbalance < busiest->load_per_task)
bd939f45 6818 return fix_small_imbalance(env, sds);
1e3c88bd 6819}
fab47622 6820
1e3c88bd
PZ
6821/******* find_busiest_group() helpers end here *********************/
6822
6823/**
6824 * find_busiest_group - Returns the busiest group within the sched_domain
6825 * if there is an imbalance. If there isn't an imbalance, and
6826 * the user has opted for power-savings, it returns a group whose
6827 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6828 * such a group exists.
6829 *
6830 * Also calculates the amount of weighted load which should be moved
6831 * to restore balance.
6832 *
cd96891d 6833 * @env: The load balancing environment.
1e3c88bd 6834 *
e69f6186 6835 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6836 * - If no imbalance and user has opted for power-savings balance,
6837 * return the least loaded group whose CPUs can be
6838 * put to idle by rebalancing its tasks onto our group.
6839 */
56cf515b 6840static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6841{
56cf515b 6842 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6843 struct sd_lb_stats sds;
6844
147c5fc2 6845 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6846
6847 /*
6848 * Compute the various statistics relavent for load balancing at
6849 * this level.
6850 */
23f0d209 6851 update_sd_lb_stats(env, &sds);
56cf515b
JK
6852 local = &sds.local_stat;
6853 busiest = &sds.busiest_stat;
1e3c88bd 6854
ea67821b 6855 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6856 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6857 check_asym_packing(env, &sds))
532cb4c4
MN
6858 return sds.busiest;
6859
cc57aa8f 6860 /* There is no busy sibling group to pull tasks from */
56cf515b 6861 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6862 goto out_balanced;
6863
ca8ce3d0
NP
6864 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6865 / sds.total_capacity;
b0432d8f 6866
866ab43e
PZ
6867 /*
6868 * If the busiest group is imbalanced the below checks don't
30ce5dab 6869 * work because they assume all things are equal, which typically
866ab43e
PZ
6870 * isn't true due to cpus_allowed constraints and the like.
6871 */
caeb178c 6872 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6873 goto force_balance;
6874
cc57aa8f 6875 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6876 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6877 busiest->group_no_capacity)
fab47622
NR
6878 goto force_balance;
6879
cc57aa8f 6880 /*
9c58c79a 6881 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6882 * don't try and pull any tasks.
6883 */
56cf515b 6884 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6885 goto out_balanced;
6886
cc57aa8f
PZ
6887 /*
6888 * Don't pull any tasks if this group is already above the domain
6889 * average load.
6890 */
56cf515b 6891 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6892 goto out_balanced;
6893
bd939f45 6894 if (env->idle == CPU_IDLE) {
aae6d3dd 6895 /*
43f4d666
VG
6896 * This cpu is idle. If the busiest group is not overloaded
6897 * and there is no imbalance between this and busiest group
6898 * wrt idle cpus, it is balanced. The imbalance becomes
6899 * significant if the diff is greater than 1 otherwise we
6900 * might end up to just move the imbalance on another group
aae6d3dd 6901 */
43f4d666
VG
6902 if ((busiest->group_type != group_overloaded) &&
6903 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6904 goto out_balanced;
c186fafe
PZ
6905 } else {
6906 /*
6907 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6908 * imbalance_pct to be conservative.
6909 */
56cf515b
JK
6910 if (100 * busiest->avg_load <=
6911 env->sd->imbalance_pct * local->avg_load)
c186fafe 6912 goto out_balanced;
aae6d3dd 6913 }
1e3c88bd 6914
fab47622 6915force_balance:
1e3c88bd 6916 /* Looks like there is an imbalance. Compute it */
bd939f45 6917 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6918 return sds.busiest;
6919
6920out_balanced:
bd939f45 6921 env->imbalance = 0;
1e3c88bd
PZ
6922 return NULL;
6923}
6924
6925/*
6926 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6927 */
bd939f45 6928static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6929 struct sched_group *group)
1e3c88bd
PZ
6930{
6931 struct rq *busiest = NULL, *rq;
ced549fa 6932 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6933 int i;
6934
6906a408 6935 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6936 unsigned long capacity, wl;
0ec8aa00
PZ
6937 enum fbq_type rt;
6938
6939 rq = cpu_rq(i);
6940 rt = fbq_classify_rq(rq);
1e3c88bd 6941
0ec8aa00
PZ
6942 /*
6943 * We classify groups/runqueues into three groups:
6944 * - regular: there are !numa tasks
6945 * - remote: there are numa tasks that run on the 'wrong' node
6946 * - all: there is no distinction
6947 *
6948 * In order to avoid migrating ideally placed numa tasks,
6949 * ignore those when there's better options.
6950 *
6951 * If we ignore the actual busiest queue to migrate another
6952 * task, the next balance pass can still reduce the busiest
6953 * queue by moving tasks around inside the node.
6954 *
6955 * If we cannot move enough load due to this classification
6956 * the next pass will adjust the group classification and
6957 * allow migration of more tasks.
6958 *
6959 * Both cases only affect the total convergence complexity.
6960 */
6961 if (rt > env->fbq_type)
6962 continue;
6963
ced549fa 6964 capacity = capacity_of(i);
9d5efe05 6965
6e40f5bb 6966 wl = weighted_cpuload(i);
1e3c88bd 6967
6e40f5bb
TG
6968 /*
6969 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6970 * which is not scaled with the cpu capacity.
6e40f5bb 6971 */
ea67821b
VG
6972
6973 if (rq->nr_running == 1 && wl > env->imbalance &&
6974 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6975 continue;
6976
6e40f5bb
TG
6977 /*
6978 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6979 * the weighted_cpuload() scaled with the cpu capacity, so
6980 * that the load can be moved away from the cpu that is
6981 * potentially running at a lower capacity.
95a79b80 6982 *
ced549fa 6983 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6984 * multiplication to rid ourselves of the division works out
ced549fa
NP
6985 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6986 * our previous maximum.
6e40f5bb 6987 */
ced549fa 6988 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6989 busiest_load = wl;
ced549fa 6990 busiest_capacity = capacity;
1e3c88bd
PZ
6991 busiest = rq;
6992 }
6993 }
6994
6995 return busiest;
6996}
6997
6998/*
6999 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7000 * so long as it is large enough.
7001 */
7002#define MAX_PINNED_INTERVAL 512
7003
7004/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7005DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7006
bd939f45 7007static int need_active_balance(struct lb_env *env)
1af3ed3d 7008{
bd939f45
PZ
7009 struct sched_domain *sd = env->sd;
7010
7011 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7012
7013 /*
7014 * ASYM_PACKING needs to force migrate tasks from busy but
7015 * higher numbered CPUs in order to pack all tasks in the
7016 * lowest numbered CPUs.
7017 */
bd939f45 7018 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7019 return 1;
1af3ed3d
PZ
7020 }
7021
1aaf90a4
VG
7022 /*
7023 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7024 * It's worth migrating the task if the src_cpu's capacity is reduced
7025 * because of other sched_class or IRQs if more capacity stays
7026 * available on dst_cpu.
7027 */
7028 if ((env->idle != CPU_NOT_IDLE) &&
7029 (env->src_rq->cfs.h_nr_running == 1)) {
7030 if ((check_cpu_capacity(env->src_rq, sd)) &&
7031 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7032 return 1;
7033 }
7034
1af3ed3d
PZ
7035 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7036}
7037
969c7921
TH
7038static int active_load_balance_cpu_stop(void *data);
7039
23f0d209
JK
7040static int should_we_balance(struct lb_env *env)
7041{
7042 struct sched_group *sg = env->sd->groups;
7043 struct cpumask *sg_cpus, *sg_mask;
7044 int cpu, balance_cpu = -1;
7045
7046 /*
7047 * In the newly idle case, we will allow all the cpu's
7048 * to do the newly idle load balance.
7049 */
7050 if (env->idle == CPU_NEWLY_IDLE)
7051 return 1;
7052
7053 sg_cpus = sched_group_cpus(sg);
7054 sg_mask = sched_group_mask(sg);
7055 /* Try to find first idle cpu */
7056 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7057 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7058 continue;
7059
7060 balance_cpu = cpu;
7061 break;
7062 }
7063
7064 if (balance_cpu == -1)
7065 balance_cpu = group_balance_cpu(sg);
7066
7067 /*
7068 * First idle cpu or the first cpu(busiest) in this sched group
7069 * is eligible for doing load balancing at this and above domains.
7070 */
b0cff9d8 7071 return balance_cpu == env->dst_cpu;
23f0d209
JK
7072}
7073
1e3c88bd
PZ
7074/*
7075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7076 * tasks if there is an imbalance.
7077 */
7078static int load_balance(int this_cpu, struct rq *this_rq,
7079 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7080 int *continue_balancing)
1e3c88bd 7081{
88b8dac0 7082 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7083 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7084 struct sched_group *group;
1e3c88bd
PZ
7085 struct rq *busiest;
7086 unsigned long flags;
4ba29684 7087 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7088
8e45cb54
PZ
7089 struct lb_env env = {
7090 .sd = sd,
ddcdf6e7
PZ
7091 .dst_cpu = this_cpu,
7092 .dst_rq = this_rq,
88b8dac0 7093 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7094 .idle = idle,
eb95308e 7095 .loop_break = sched_nr_migrate_break,
b9403130 7096 .cpus = cpus,
0ec8aa00 7097 .fbq_type = all,
163122b7 7098 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7099 };
7100
cfc03118
JK
7101 /*
7102 * For NEWLY_IDLE load_balancing, we don't need to consider
7103 * other cpus in our group
7104 */
e02e60c1 7105 if (idle == CPU_NEWLY_IDLE)
cfc03118 7106 env.dst_grpmask = NULL;
cfc03118 7107
1e3c88bd
PZ
7108 cpumask_copy(cpus, cpu_active_mask);
7109
1e3c88bd
PZ
7110 schedstat_inc(sd, lb_count[idle]);
7111
7112redo:
23f0d209
JK
7113 if (!should_we_balance(&env)) {
7114 *continue_balancing = 0;
1e3c88bd 7115 goto out_balanced;
23f0d209 7116 }
1e3c88bd 7117
23f0d209 7118 group = find_busiest_group(&env);
1e3c88bd
PZ
7119 if (!group) {
7120 schedstat_inc(sd, lb_nobusyg[idle]);
7121 goto out_balanced;
7122 }
7123
b9403130 7124 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7125 if (!busiest) {
7126 schedstat_inc(sd, lb_nobusyq[idle]);
7127 goto out_balanced;
7128 }
7129
78feefc5 7130 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7131
bd939f45 7132 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7133
1aaf90a4
VG
7134 env.src_cpu = busiest->cpu;
7135 env.src_rq = busiest;
7136
1e3c88bd
PZ
7137 ld_moved = 0;
7138 if (busiest->nr_running > 1) {
7139 /*
7140 * Attempt to move tasks. If find_busiest_group has found
7141 * an imbalance but busiest->nr_running <= 1, the group is
7142 * still unbalanced. ld_moved simply stays zero, so it is
7143 * correctly treated as an imbalance.
7144 */
8e45cb54 7145 env.flags |= LBF_ALL_PINNED;
c82513e5 7146 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7147
5d6523eb 7148more_balance:
163122b7 7149 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7150
7151 /*
7152 * cur_ld_moved - load moved in current iteration
7153 * ld_moved - cumulative load moved across iterations
7154 */
163122b7 7155 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7156
7157 /*
163122b7
KT
7158 * We've detached some tasks from busiest_rq. Every
7159 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7160 * unlock busiest->lock, and we are able to be sure
7161 * that nobody can manipulate the tasks in parallel.
7162 * See task_rq_lock() family for the details.
1e3c88bd 7163 */
163122b7
KT
7164
7165 raw_spin_unlock(&busiest->lock);
7166
7167 if (cur_ld_moved) {
7168 attach_tasks(&env);
7169 ld_moved += cur_ld_moved;
7170 }
7171
1e3c88bd 7172 local_irq_restore(flags);
88b8dac0 7173
f1cd0858
JK
7174 if (env.flags & LBF_NEED_BREAK) {
7175 env.flags &= ~LBF_NEED_BREAK;
7176 goto more_balance;
7177 }
7178
88b8dac0
SV
7179 /*
7180 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7181 * us and move them to an alternate dst_cpu in our sched_group
7182 * where they can run. The upper limit on how many times we
7183 * iterate on same src_cpu is dependent on number of cpus in our
7184 * sched_group.
7185 *
7186 * This changes load balance semantics a bit on who can move
7187 * load to a given_cpu. In addition to the given_cpu itself
7188 * (or a ilb_cpu acting on its behalf where given_cpu is
7189 * nohz-idle), we now have balance_cpu in a position to move
7190 * load to given_cpu. In rare situations, this may cause
7191 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7192 * _independently_ and at _same_ time to move some load to
7193 * given_cpu) causing exceess load to be moved to given_cpu.
7194 * This however should not happen so much in practice and
7195 * moreover subsequent load balance cycles should correct the
7196 * excess load moved.
7197 */
6263322c 7198 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7199
7aff2e3a
VD
7200 /* Prevent to re-select dst_cpu via env's cpus */
7201 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7202
78feefc5 7203 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7204 env.dst_cpu = env.new_dst_cpu;
6263322c 7205 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7206 env.loop = 0;
7207 env.loop_break = sched_nr_migrate_break;
e02e60c1 7208
88b8dac0
SV
7209 /*
7210 * Go back to "more_balance" rather than "redo" since we
7211 * need to continue with same src_cpu.
7212 */
7213 goto more_balance;
7214 }
1e3c88bd 7215
6263322c
PZ
7216 /*
7217 * We failed to reach balance because of affinity.
7218 */
7219 if (sd_parent) {
63b2ca30 7220 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7221
afdeee05 7222 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7223 *group_imbalance = 1;
6263322c
PZ
7224 }
7225
1e3c88bd 7226 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7227 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7228 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7229 if (!cpumask_empty(cpus)) {
7230 env.loop = 0;
7231 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7232 goto redo;
bbf18b19 7233 }
afdeee05 7234 goto out_all_pinned;
1e3c88bd
PZ
7235 }
7236 }
7237
7238 if (!ld_moved) {
7239 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7240 /*
7241 * Increment the failure counter only on periodic balance.
7242 * We do not want newidle balance, which can be very
7243 * frequent, pollute the failure counter causing
7244 * excessive cache_hot migrations and active balances.
7245 */
7246 if (idle != CPU_NEWLY_IDLE)
7247 sd->nr_balance_failed++;
1e3c88bd 7248
bd939f45 7249 if (need_active_balance(&env)) {
1e3c88bd
PZ
7250 raw_spin_lock_irqsave(&busiest->lock, flags);
7251
969c7921
TH
7252 /* don't kick the active_load_balance_cpu_stop,
7253 * if the curr task on busiest cpu can't be
7254 * moved to this_cpu
1e3c88bd
PZ
7255 */
7256 if (!cpumask_test_cpu(this_cpu,
fa17b507 7257 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7258 raw_spin_unlock_irqrestore(&busiest->lock,
7259 flags);
8e45cb54 7260 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7261 goto out_one_pinned;
7262 }
7263
969c7921
TH
7264 /*
7265 * ->active_balance synchronizes accesses to
7266 * ->active_balance_work. Once set, it's cleared
7267 * only after active load balance is finished.
7268 */
1e3c88bd
PZ
7269 if (!busiest->active_balance) {
7270 busiest->active_balance = 1;
7271 busiest->push_cpu = this_cpu;
7272 active_balance = 1;
7273 }
7274 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7275
bd939f45 7276 if (active_balance) {
969c7921
TH
7277 stop_one_cpu_nowait(cpu_of(busiest),
7278 active_load_balance_cpu_stop, busiest,
7279 &busiest->active_balance_work);
bd939f45 7280 }
1e3c88bd
PZ
7281
7282 /*
7283 * We've kicked active balancing, reset the failure
7284 * counter.
7285 */
7286 sd->nr_balance_failed = sd->cache_nice_tries+1;
7287 }
7288 } else
7289 sd->nr_balance_failed = 0;
7290
7291 if (likely(!active_balance)) {
7292 /* We were unbalanced, so reset the balancing interval */
7293 sd->balance_interval = sd->min_interval;
7294 } else {
7295 /*
7296 * If we've begun active balancing, start to back off. This
7297 * case may not be covered by the all_pinned logic if there
7298 * is only 1 task on the busy runqueue (because we don't call
163122b7 7299 * detach_tasks).
1e3c88bd
PZ
7300 */
7301 if (sd->balance_interval < sd->max_interval)
7302 sd->balance_interval *= 2;
7303 }
7304
1e3c88bd
PZ
7305 goto out;
7306
7307out_balanced:
afdeee05
VG
7308 /*
7309 * We reach balance although we may have faced some affinity
7310 * constraints. Clear the imbalance flag if it was set.
7311 */
7312 if (sd_parent) {
7313 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7314
7315 if (*group_imbalance)
7316 *group_imbalance = 0;
7317 }
7318
7319out_all_pinned:
7320 /*
7321 * We reach balance because all tasks are pinned at this level so
7322 * we can't migrate them. Let the imbalance flag set so parent level
7323 * can try to migrate them.
7324 */
1e3c88bd
PZ
7325 schedstat_inc(sd, lb_balanced[idle]);
7326
7327 sd->nr_balance_failed = 0;
7328
7329out_one_pinned:
7330 /* tune up the balancing interval */
8e45cb54 7331 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7332 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7333 (sd->balance_interval < sd->max_interval))
7334 sd->balance_interval *= 2;
7335
46e49b38 7336 ld_moved = 0;
1e3c88bd 7337out:
1e3c88bd
PZ
7338 return ld_moved;
7339}
7340
52a08ef1
JL
7341static inline unsigned long
7342get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7343{
7344 unsigned long interval = sd->balance_interval;
7345
7346 if (cpu_busy)
7347 interval *= sd->busy_factor;
7348
7349 /* scale ms to jiffies */
7350 interval = msecs_to_jiffies(interval);
7351 interval = clamp(interval, 1UL, max_load_balance_interval);
7352
7353 return interval;
7354}
7355
7356static inline void
7357update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7358{
7359 unsigned long interval, next;
7360
7361 interval = get_sd_balance_interval(sd, cpu_busy);
7362 next = sd->last_balance + interval;
7363
7364 if (time_after(*next_balance, next))
7365 *next_balance = next;
7366}
7367
1e3c88bd
PZ
7368/*
7369 * idle_balance is called by schedule() if this_cpu is about to become
7370 * idle. Attempts to pull tasks from other CPUs.
7371 */
6e83125c 7372static int idle_balance(struct rq *this_rq)
1e3c88bd 7373{
52a08ef1
JL
7374 unsigned long next_balance = jiffies + HZ;
7375 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7376 struct sched_domain *sd;
7377 int pulled_task = 0;
9bd721c5 7378 u64 curr_cost = 0;
1e3c88bd 7379
6e83125c 7380 idle_enter_fair(this_rq);
0e5b5337 7381
6e83125c
PZ
7382 /*
7383 * We must set idle_stamp _before_ calling idle_balance(), such that we
7384 * measure the duration of idle_balance() as idle time.
7385 */
7386 this_rq->idle_stamp = rq_clock(this_rq);
7387
4486edd1
TC
7388 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7389 !this_rq->rd->overload) {
52a08ef1
JL
7390 rcu_read_lock();
7391 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7392 if (sd)
7393 update_next_balance(sd, 0, &next_balance);
7394 rcu_read_unlock();
7395
6e83125c 7396 goto out;
52a08ef1 7397 }
1e3c88bd 7398
f492e12e
PZ
7399 raw_spin_unlock(&this_rq->lock);
7400
48a16753 7401 update_blocked_averages(this_cpu);
dce840a0 7402 rcu_read_lock();
1e3c88bd 7403 for_each_domain(this_cpu, sd) {
23f0d209 7404 int continue_balancing = 1;
9bd721c5 7405 u64 t0, domain_cost;
1e3c88bd
PZ
7406
7407 if (!(sd->flags & SD_LOAD_BALANCE))
7408 continue;
7409
52a08ef1
JL
7410 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7411 update_next_balance(sd, 0, &next_balance);
9bd721c5 7412 break;
52a08ef1 7413 }
9bd721c5 7414
f492e12e 7415 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7416 t0 = sched_clock_cpu(this_cpu);
7417
f492e12e 7418 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7419 sd, CPU_NEWLY_IDLE,
7420 &continue_balancing);
9bd721c5
JL
7421
7422 domain_cost = sched_clock_cpu(this_cpu) - t0;
7423 if (domain_cost > sd->max_newidle_lb_cost)
7424 sd->max_newidle_lb_cost = domain_cost;
7425
7426 curr_cost += domain_cost;
f492e12e 7427 }
1e3c88bd 7428
52a08ef1 7429 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7430
7431 /*
7432 * Stop searching for tasks to pull if there are
7433 * now runnable tasks on this rq.
7434 */
7435 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7436 break;
1e3c88bd 7437 }
dce840a0 7438 rcu_read_unlock();
f492e12e
PZ
7439
7440 raw_spin_lock(&this_rq->lock);
7441
0e5b5337
JL
7442 if (curr_cost > this_rq->max_idle_balance_cost)
7443 this_rq->max_idle_balance_cost = curr_cost;
7444
e5fc6611 7445 /*
0e5b5337
JL
7446 * While browsing the domains, we released the rq lock, a task could
7447 * have been enqueued in the meantime. Since we're not going idle,
7448 * pretend we pulled a task.
e5fc6611 7449 */
0e5b5337 7450 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7451 pulled_task = 1;
e5fc6611 7452
52a08ef1
JL
7453out:
7454 /* Move the next balance forward */
7455 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7456 this_rq->next_balance = next_balance;
9bd721c5 7457
e4aa358b 7458 /* Is there a task of a high priority class? */
46383648 7459 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7460 pulled_task = -1;
7461
7462 if (pulled_task) {
7463 idle_exit_fair(this_rq);
6e83125c 7464 this_rq->idle_stamp = 0;
e4aa358b 7465 }
6e83125c 7466
3c4017c1 7467 return pulled_task;
1e3c88bd
PZ
7468}
7469
7470/*
969c7921
TH
7471 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7472 * running tasks off the busiest CPU onto idle CPUs. It requires at
7473 * least 1 task to be running on each physical CPU where possible, and
7474 * avoids physical / logical imbalances.
1e3c88bd 7475 */
969c7921 7476static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7477{
969c7921
TH
7478 struct rq *busiest_rq = data;
7479 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7480 int target_cpu = busiest_rq->push_cpu;
969c7921 7481 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7482 struct sched_domain *sd;
e5673f28 7483 struct task_struct *p = NULL;
969c7921
TH
7484
7485 raw_spin_lock_irq(&busiest_rq->lock);
7486
7487 /* make sure the requested cpu hasn't gone down in the meantime */
7488 if (unlikely(busiest_cpu != smp_processor_id() ||
7489 !busiest_rq->active_balance))
7490 goto out_unlock;
1e3c88bd
PZ
7491
7492 /* Is there any task to move? */
7493 if (busiest_rq->nr_running <= 1)
969c7921 7494 goto out_unlock;
1e3c88bd
PZ
7495
7496 /*
7497 * This condition is "impossible", if it occurs
7498 * we need to fix it. Originally reported by
7499 * Bjorn Helgaas on a 128-cpu setup.
7500 */
7501 BUG_ON(busiest_rq == target_rq);
7502
1e3c88bd 7503 /* Search for an sd spanning us and the target CPU. */
dce840a0 7504 rcu_read_lock();
1e3c88bd
PZ
7505 for_each_domain(target_cpu, sd) {
7506 if ((sd->flags & SD_LOAD_BALANCE) &&
7507 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7508 break;
7509 }
7510
7511 if (likely(sd)) {
8e45cb54
PZ
7512 struct lb_env env = {
7513 .sd = sd,
ddcdf6e7
PZ
7514 .dst_cpu = target_cpu,
7515 .dst_rq = target_rq,
7516 .src_cpu = busiest_rq->cpu,
7517 .src_rq = busiest_rq,
8e45cb54
PZ
7518 .idle = CPU_IDLE,
7519 };
7520
1e3c88bd
PZ
7521 schedstat_inc(sd, alb_count);
7522
e5673f28
KT
7523 p = detach_one_task(&env);
7524 if (p)
1e3c88bd
PZ
7525 schedstat_inc(sd, alb_pushed);
7526 else
7527 schedstat_inc(sd, alb_failed);
7528 }
dce840a0 7529 rcu_read_unlock();
969c7921
TH
7530out_unlock:
7531 busiest_rq->active_balance = 0;
e5673f28
KT
7532 raw_spin_unlock(&busiest_rq->lock);
7533
7534 if (p)
7535 attach_one_task(target_rq, p);
7536
7537 local_irq_enable();
7538
969c7921 7539 return 0;
1e3c88bd
PZ
7540}
7541
d987fc7f
MG
7542static inline int on_null_domain(struct rq *rq)
7543{
7544 return unlikely(!rcu_dereference_sched(rq->sd));
7545}
7546
3451d024 7547#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7548/*
7549 * idle load balancing details
83cd4fe2
VP
7550 * - When one of the busy CPUs notice that there may be an idle rebalancing
7551 * needed, they will kick the idle load balancer, which then does idle
7552 * load balancing for all the idle CPUs.
7553 */
1e3c88bd 7554static struct {
83cd4fe2 7555 cpumask_var_t idle_cpus_mask;
0b005cf5 7556 atomic_t nr_cpus;
83cd4fe2
VP
7557 unsigned long next_balance; /* in jiffy units */
7558} nohz ____cacheline_aligned;
1e3c88bd 7559
3dd0337d 7560static inline int find_new_ilb(void)
1e3c88bd 7561{
0b005cf5 7562 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7563
786d6dc7
SS
7564 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7565 return ilb;
7566
7567 return nr_cpu_ids;
1e3c88bd 7568}
1e3c88bd 7569
83cd4fe2
VP
7570/*
7571 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7572 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7573 * CPU (if there is one).
7574 */
0aeeeeba 7575static void nohz_balancer_kick(void)
83cd4fe2
VP
7576{
7577 int ilb_cpu;
7578
7579 nohz.next_balance++;
7580
3dd0337d 7581 ilb_cpu = find_new_ilb();
83cd4fe2 7582
0b005cf5
SS
7583 if (ilb_cpu >= nr_cpu_ids)
7584 return;
83cd4fe2 7585
cd490c5b 7586 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7587 return;
7588 /*
7589 * Use smp_send_reschedule() instead of resched_cpu().
7590 * This way we generate a sched IPI on the target cpu which
7591 * is idle. And the softirq performing nohz idle load balance
7592 * will be run before returning from the IPI.
7593 */
7594 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7595 return;
7596}
7597
c1cc017c 7598static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7599{
7600 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7601 /*
7602 * Completely isolated CPUs don't ever set, so we must test.
7603 */
7604 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7605 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7606 atomic_dec(&nohz.nr_cpus);
7607 }
71325960
SS
7608 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7609 }
7610}
7611
69e1e811
SS
7612static inline void set_cpu_sd_state_busy(void)
7613{
7614 struct sched_domain *sd;
37dc6b50 7615 int cpu = smp_processor_id();
69e1e811 7616
69e1e811 7617 rcu_read_lock();
37dc6b50 7618 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7619
7620 if (!sd || !sd->nohz_idle)
7621 goto unlock;
7622 sd->nohz_idle = 0;
7623
63b2ca30 7624 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7625unlock:
69e1e811
SS
7626 rcu_read_unlock();
7627}
7628
7629void set_cpu_sd_state_idle(void)
7630{
7631 struct sched_domain *sd;
37dc6b50 7632 int cpu = smp_processor_id();
69e1e811 7633
69e1e811 7634 rcu_read_lock();
37dc6b50 7635 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7636
7637 if (!sd || sd->nohz_idle)
7638 goto unlock;
7639 sd->nohz_idle = 1;
7640
63b2ca30 7641 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7642unlock:
69e1e811
SS
7643 rcu_read_unlock();
7644}
7645
1e3c88bd 7646/*
c1cc017c 7647 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7648 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7649 */
c1cc017c 7650void nohz_balance_enter_idle(int cpu)
1e3c88bd 7651{
71325960
SS
7652 /*
7653 * If this cpu is going down, then nothing needs to be done.
7654 */
7655 if (!cpu_active(cpu))
7656 return;
7657
c1cc017c
AS
7658 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7659 return;
1e3c88bd 7660
d987fc7f
MG
7661 /*
7662 * If we're a completely isolated CPU, we don't play.
7663 */
7664 if (on_null_domain(cpu_rq(cpu)))
7665 return;
7666
c1cc017c
AS
7667 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7668 atomic_inc(&nohz.nr_cpus);
7669 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7670}
71325960 7671
0db0628d 7672static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7673 unsigned long action, void *hcpu)
7674{
7675 switch (action & ~CPU_TASKS_FROZEN) {
7676 case CPU_DYING:
c1cc017c 7677 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7678 return NOTIFY_OK;
7679 default:
7680 return NOTIFY_DONE;
7681 }
7682}
1e3c88bd
PZ
7683#endif
7684
7685static DEFINE_SPINLOCK(balancing);
7686
49c022e6
PZ
7687/*
7688 * Scale the max load_balance interval with the number of CPUs in the system.
7689 * This trades load-balance latency on larger machines for less cross talk.
7690 */
029632fb 7691void update_max_interval(void)
49c022e6
PZ
7692{
7693 max_load_balance_interval = HZ*num_online_cpus()/10;
7694}
7695
1e3c88bd
PZ
7696/*
7697 * It checks each scheduling domain to see if it is due to be balanced,
7698 * and initiates a balancing operation if so.
7699 *
b9b0853a 7700 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7701 */
f7ed0a89 7702static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7703{
23f0d209 7704 int continue_balancing = 1;
f7ed0a89 7705 int cpu = rq->cpu;
1e3c88bd 7706 unsigned long interval;
04f733b4 7707 struct sched_domain *sd;
1e3c88bd
PZ
7708 /* Earliest time when we have to do rebalance again */
7709 unsigned long next_balance = jiffies + 60*HZ;
7710 int update_next_balance = 0;
f48627e6
JL
7711 int need_serialize, need_decay = 0;
7712 u64 max_cost = 0;
1e3c88bd 7713
48a16753 7714 update_blocked_averages(cpu);
2069dd75 7715
dce840a0 7716 rcu_read_lock();
1e3c88bd 7717 for_each_domain(cpu, sd) {
f48627e6
JL
7718 /*
7719 * Decay the newidle max times here because this is a regular
7720 * visit to all the domains. Decay ~1% per second.
7721 */
7722 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7723 sd->max_newidle_lb_cost =
7724 (sd->max_newidle_lb_cost * 253) / 256;
7725 sd->next_decay_max_lb_cost = jiffies + HZ;
7726 need_decay = 1;
7727 }
7728 max_cost += sd->max_newidle_lb_cost;
7729
1e3c88bd
PZ
7730 if (!(sd->flags & SD_LOAD_BALANCE))
7731 continue;
7732
f48627e6
JL
7733 /*
7734 * Stop the load balance at this level. There is another
7735 * CPU in our sched group which is doing load balancing more
7736 * actively.
7737 */
7738 if (!continue_balancing) {
7739 if (need_decay)
7740 continue;
7741 break;
7742 }
7743
52a08ef1 7744 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7745
7746 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7747 if (need_serialize) {
7748 if (!spin_trylock(&balancing))
7749 goto out;
7750 }
7751
7752 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7753 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7754 /*
6263322c 7755 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7756 * env->dst_cpu, so we can't know our idle
7757 * state even if we migrated tasks. Update it.
1e3c88bd 7758 */
de5eb2dd 7759 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7760 }
7761 sd->last_balance = jiffies;
52a08ef1 7762 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7763 }
7764 if (need_serialize)
7765 spin_unlock(&balancing);
7766out:
7767 if (time_after(next_balance, sd->last_balance + interval)) {
7768 next_balance = sd->last_balance + interval;
7769 update_next_balance = 1;
7770 }
f48627e6
JL
7771 }
7772 if (need_decay) {
1e3c88bd 7773 /*
f48627e6
JL
7774 * Ensure the rq-wide value also decays but keep it at a
7775 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7776 */
f48627e6
JL
7777 rq->max_idle_balance_cost =
7778 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7779 }
dce840a0 7780 rcu_read_unlock();
1e3c88bd
PZ
7781
7782 /*
7783 * next_balance will be updated only when there is a need.
7784 * When the cpu is attached to null domain for ex, it will not be
7785 * updated.
7786 */
7787 if (likely(update_next_balance))
7788 rq->next_balance = next_balance;
7789}
7790
3451d024 7791#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7792/*
3451d024 7793 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7794 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7795 */
208cb16b 7796static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7797{
208cb16b 7798 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7799 struct rq *rq;
7800 int balance_cpu;
7801
1c792db7
SS
7802 if (idle != CPU_IDLE ||
7803 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7804 goto end;
83cd4fe2
VP
7805
7806 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7807 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7808 continue;
7809
7810 /*
7811 * If this cpu gets work to do, stop the load balancing
7812 * work being done for other cpus. Next load
7813 * balancing owner will pick it up.
7814 */
1c792db7 7815 if (need_resched())
83cd4fe2 7816 break;
83cd4fe2 7817
5ed4f1d9
VG
7818 rq = cpu_rq(balance_cpu);
7819
ed61bbc6
TC
7820 /*
7821 * If time for next balance is due,
7822 * do the balance.
7823 */
7824 if (time_after_eq(jiffies, rq->next_balance)) {
7825 raw_spin_lock_irq(&rq->lock);
7826 update_rq_clock(rq);
7827 update_idle_cpu_load(rq);
7828 raw_spin_unlock_irq(&rq->lock);
7829 rebalance_domains(rq, CPU_IDLE);
7830 }
83cd4fe2 7831
83cd4fe2
VP
7832 if (time_after(this_rq->next_balance, rq->next_balance))
7833 this_rq->next_balance = rq->next_balance;
7834 }
7835 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7836end:
7837 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7838}
7839
7840/*
0b005cf5 7841 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7842 * of an idle cpu in the system.
0b005cf5 7843 * - This rq has more than one task.
1aaf90a4
VG
7844 * - This rq has at least one CFS task and the capacity of the CPU is
7845 * significantly reduced because of RT tasks or IRQs.
7846 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7847 * multiple busy cpu.
0b005cf5
SS
7848 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7849 * domain span are idle.
83cd4fe2 7850 */
1aaf90a4 7851static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7852{
7853 unsigned long now = jiffies;
0b005cf5 7854 struct sched_domain *sd;
63b2ca30 7855 struct sched_group_capacity *sgc;
4a725627 7856 int nr_busy, cpu = rq->cpu;
1aaf90a4 7857 bool kick = false;
83cd4fe2 7858
4a725627 7859 if (unlikely(rq->idle_balance))
1aaf90a4 7860 return false;
83cd4fe2 7861
1c792db7
SS
7862 /*
7863 * We may be recently in ticked or tickless idle mode. At the first
7864 * busy tick after returning from idle, we will update the busy stats.
7865 */
69e1e811 7866 set_cpu_sd_state_busy();
c1cc017c 7867 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7868
7869 /*
7870 * None are in tickless mode and hence no need for NOHZ idle load
7871 * balancing.
7872 */
7873 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7874 return false;
1c792db7
SS
7875
7876 if (time_before(now, nohz.next_balance))
1aaf90a4 7877 return false;
83cd4fe2 7878
0b005cf5 7879 if (rq->nr_running >= 2)
1aaf90a4 7880 return true;
83cd4fe2 7881
067491b7 7882 rcu_read_lock();
37dc6b50 7883 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7884 if (sd) {
63b2ca30
NP
7885 sgc = sd->groups->sgc;
7886 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7887
1aaf90a4
VG
7888 if (nr_busy > 1) {
7889 kick = true;
7890 goto unlock;
7891 }
7892
83cd4fe2 7893 }
37dc6b50 7894
1aaf90a4
VG
7895 sd = rcu_dereference(rq->sd);
7896 if (sd) {
7897 if ((rq->cfs.h_nr_running >= 1) &&
7898 check_cpu_capacity(rq, sd)) {
7899 kick = true;
7900 goto unlock;
7901 }
7902 }
37dc6b50 7903
1aaf90a4 7904 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7905 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7906 sched_domain_span(sd)) < cpu)) {
7907 kick = true;
7908 goto unlock;
7909 }
067491b7 7910
1aaf90a4 7911unlock:
067491b7 7912 rcu_read_unlock();
1aaf90a4 7913 return kick;
83cd4fe2
VP
7914}
7915#else
208cb16b 7916static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7917#endif
7918
7919/*
7920 * run_rebalance_domains is triggered when needed from the scheduler tick.
7921 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7922 */
1e3c88bd
PZ
7923static void run_rebalance_domains(struct softirq_action *h)
7924{
208cb16b 7925 struct rq *this_rq = this_rq();
6eb57e0d 7926 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7927 CPU_IDLE : CPU_NOT_IDLE;
7928
1e3c88bd 7929 /*
83cd4fe2 7930 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7931 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7932 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7933 * give the idle cpus a chance to load balance. Else we may
7934 * load balance only within the local sched_domain hierarchy
7935 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7936 */
208cb16b 7937 nohz_idle_balance(this_rq, idle);
d4573c3e 7938 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7939}
7940
1e3c88bd
PZ
7941/*
7942 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7943 */
7caff66f 7944void trigger_load_balance(struct rq *rq)
1e3c88bd 7945{
1e3c88bd 7946 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7947 if (unlikely(on_null_domain(rq)))
7948 return;
7949
7950 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7951 raise_softirq(SCHED_SOFTIRQ);
3451d024 7952#ifdef CONFIG_NO_HZ_COMMON
c726099e 7953 if (nohz_kick_needed(rq))
0aeeeeba 7954 nohz_balancer_kick();
83cd4fe2 7955#endif
1e3c88bd
PZ
7956}
7957
0bcdcf28
CE
7958static void rq_online_fair(struct rq *rq)
7959{
7960 update_sysctl();
0e59bdae
KT
7961
7962 update_runtime_enabled(rq);
0bcdcf28
CE
7963}
7964
7965static void rq_offline_fair(struct rq *rq)
7966{
7967 update_sysctl();
a4c96ae3
PB
7968
7969 /* Ensure any throttled groups are reachable by pick_next_task */
7970 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7971}
7972
55e12e5e 7973#endif /* CONFIG_SMP */
e1d1484f 7974
bf0f6f24
IM
7975/*
7976 * scheduler tick hitting a task of our scheduling class:
7977 */
8f4d37ec 7978static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7979{
7980 struct cfs_rq *cfs_rq;
7981 struct sched_entity *se = &curr->se;
7982
7983 for_each_sched_entity(se) {
7984 cfs_rq = cfs_rq_of(se);
8f4d37ec 7985 entity_tick(cfs_rq, se, queued);
bf0f6f24 7986 }
18bf2805 7987
10e84b97 7988 if (numabalancing_enabled)
cbee9f88 7989 task_tick_numa(rq, curr);
3d59eebc 7990
18bf2805 7991 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7992}
7993
7994/*
cd29fe6f
PZ
7995 * called on fork with the child task as argument from the parent's context
7996 * - child not yet on the tasklist
7997 * - preemption disabled
bf0f6f24 7998 */
cd29fe6f 7999static void task_fork_fair(struct task_struct *p)
bf0f6f24 8000{
4fc420c9
DN
8001 struct cfs_rq *cfs_rq;
8002 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8003 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8004 struct rq *rq = this_rq();
8005 unsigned long flags;
8006
05fa785c 8007 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8008
861d034e
PZ
8009 update_rq_clock(rq);
8010
4fc420c9
DN
8011 cfs_rq = task_cfs_rq(current);
8012 curr = cfs_rq->curr;
8013
6c9a27f5
DN
8014 /*
8015 * Not only the cpu but also the task_group of the parent might have
8016 * been changed after parent->se.parent,cfs_rq were copied to
8017 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8018 * of child point to valid ones.
8019 */
8020 rcu_read_lock();
8021 __set_task_cpu(p, this_cpu);
8022 rcu_read_unlock();
bf0f6f24 8023
7109c442 8024 update_curr(cfs_rq);
cd29fe6f 8025
b5d9d734
MG
8026 if (curr)
8027 se->vruntime = curr->vruntime;
aeb73b04 8028 place_entity(cfs_rq, se, 1);
4d78e7b6 8029
cd29fe6f 8030 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8031 /*
edcb60a3
IM
8032 * Upon rescheduling, sched_class::put_prev_task() will place
8033 * 'current' within the tree based on its new key value.
8034 */
4d78e7b6 8035 swap(curr->vruntime, se->vruntime);
8875125e 8036 resched_curr(rq);
4d78e7b6 8037 }
bf0f6f24 8038
88ec22d3
PZ
8039 se->vruntime -= cfs_rq->min_vruntime;
8040
05fa785c 8041 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8042}
8043
cb469845
SR
8044/*
8045 * Priority of the task has changed. Check to see if we preempt
8046 * the current task.
8047 */
da7a735e
PZ
8048static void
8049prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8050{
da0c1e65 8051 if (!task_on_rq_queued(p))
da7a735e
PZ
8052 return;
8053
cb469845
SR
8054 /*
8055 * Reschedule if we are currently running on this runqueue and
8056 * our priority decreased, or if we are not currently running on
8057 * this runqueue and our priority is higher than the current's
8058 */
da7a735e 8059 if (rq->curr == p) {
cb469845 8060 if (p->prio > oldprio)
8875125e 8061 resched_curr(rq);
cb469845 8062 } else
15afe09b 8063 check_preempt_curr(rq, p, 0);
cb469845
SR
8064}
8065
da7a735e
PZ
8066static void switched_from_fair(struct rq *rq, struct task_struct *p)
8067{
8068 struct sched_entity *se = &p->se;
8069 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8070
8071 /*
791c9e02 8072 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
8073 * switched back to the fair class the enqueue_entity(.flags=0) will
8074 * do the right thing.
8075 *
da0c1e65
KT
8076 * If it's queued, then the dequeue_entity(.flags=0) will already
8077 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
8078 * the task is sleeping will it still have non-normalized vruntime.
8079 */
da0c1e65 8080 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
8081 /*
8082 * Fix up our vruntime so that the current sleep doesn't
8083 * cause 'unlimited' sleep bonus.
8084 */
8085 place_entity(cfs_rq, se, 0);
8086 se->vruntime -= cfs_rq->min_vruntime;
8087 }
9ee474f5 8088
141965c7 8089#ifdef CONFIG_SMP
9ee474f5
PT
8090 /*
8091 * Remove our load from contribution when we leave sched_fair
8092 * and ensure we don't carry in an old decay_count if we
8093 * switch back.
8094 */
87e3c8ae
KT
8095 if (se->avg.decay_count) {
8096 __synchronize_entity_decay(se);
8097 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
8098 }
8099#endif
da7a735e
PZ
8100}
8101
cb469845
SR
8102/*
8103 * We switched to the sched_fair class.
8104 */
da7a735e 8105static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 8106{
eb7a59b2 8107#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 8108 struct sched_entity *se = &p->se;
eb7a59b2
M
8109 /*
8110 * Since the real-depth could have been changed (only FAIR
8111 * class maintain depth value), reset depth properly.
8112 */
8113 se->depth = se->parent ? se->parent->depth + 1 : 0;
8114#endif
da0c1e65 8115 if (!task_on_rq_queued(p))
da7a735e
PZ
8116 return;
8117
cb469845
SR
8118 /*
8119 * We were most likely switched from sched_rt, so
8120 * kick off the schedule if running, otherwise just see
8121 * if we can still preempt the current task.
8122 */
da7a735e 8123 if (rq->curr == p)
8875125e 8124 resched_curr(rq);
cb469845 8125 else
15afe09b 8126 check_preempt_curr(rq, p, 0);
cb469845
SR
8127}
8128
83b699ed
SV
8129/* Account for a task changing its policy or group.
8130 *
8131 * This routine is mostly called to set cfs_rq->curr field when a task
8132 * migrates between groups/classes.
8133 */
8134static void set_curr_task_fair(struct rq *rq)
8135{
8136 struct sched_entity *se = &rq->curr->se;
8137
ec12cb7f
PT
8138 for_each_sched_entity(se) {
8139 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8140
8141 set_next_entity(cfs_rq, se);
8142 /* ensure bandwidth has been allocated on our new cfs_rq */
8143 account_cfs_rq_runtime(cfs_rq, 0);
8144 }
83b699ed
SV
8145}
8146
029632fb
PZ
8147void init_cfs_rq(struct cfs_rq *cfs_rq)
8148{
8149 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8150 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8151#ifndef CONFIG_64BIT
8152 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8153#endif
141965c7 8154#ifdef CONFIG_SMP
9ee474f5 8155 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 8156 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 8157#endif
029632fb
PZ
8158}
8159
810b3817 8160#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8161static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8162{
fed14d45 8163 struct sched_entity *se = &p->se;
aff3e498 8164 struct cfs_rq *cfs_rq;
fed14d45 8165
b2b5ce02
PZ
8166 /*
8167 * If the task was not on the rq at the time of this cgroup movement
8168 * it must have been asleep, sleeping tasks keep their ->vruntime
8169 * absolute on their old rq until wakeup (needed for the fair sleeper
8170 * bonus in place_entity()).
8171 *
8172 * If it was on the rq, we've just 'preempted' it, which does convert
8173 * ->vruntime to a relative base.
8174 *
8175 * Make sure both cases convert their relative position when migrating
8176 * to another cgroup's rq. This does somewhat interfere with the
8177 * fair sleeper stuff for the first placement, but who cares.
8178 */
7ceff013 8179 /*
da0c1e65 8180 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8181 * But there are some cases where it has already been normalized:
8182 *
8183 * - Moving a forked child which is waiting for being woken up by
8184 * wake_up_new_task().
62af3783
DN
8185 * - Moving a task which has been woken up by try_to_wake_up() and
8186 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8187 *
8188 * To prevent boost or penalty in the new cfs_rq caused by delta
8189 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8190 */
da0c1e65
KT
8191 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8192 queued = 1;
7ceff013 8193
da0c1e65 8194 if (!queued)
fed14d45 8195 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8196 set_task_rq(p, task_cpu(p));
fed14d45 8197 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8198 if (!queued) {
fed14d45
PZ
8199 cfs_rq = cfs_rq_of(se);
8200 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8201#ifdef CONFIG_SMP
8202 /*
8203 * migrate_task_rq_fair() will have removed our previous
8204 * contribution, but we must synchronize for ongoing future
8205 * decay.
8206 */
fed14d45
PZ
8207 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8208 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8209#endif
8210 }
810b3817 8211}
029632fb
PZ
8212
8213void free_fair_sched_group(struct task_group *tg)
8214{
8215 int i;
8216
8217 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8218
8219 for_each_possible_cpu(i) {
8220 if (tg->cfs_rq)
8221 kfree(tg->cfs_rq[i]);
8222 if (tg->se)
8223 kfree(tg->se[i]);
8224 }
8225
8226 kfree(tg->cfs_rq);
8227 kfree(tg->se);
8228}
8229
8230int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8231{
8232 struct cfs_rq *cfs_rq;
8233 struct sched_entity *se;
8234 int i;
8235
8236 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8237 if (!tg->cfs_rq)
8238 goto err;
8239 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8240 if (!tg->se)
8241 goto err;
8242
8243 tg->shares = NICE_0_LOAD;
8244
8245 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8246
8247 for_each_possible_cpu(i) {
8248 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8249 GFP_KERNEL, cpu_to_node(i));
8250 if (!cfs_rq)
8251 goto err;
8252
8253 se = kzalloc_node(sizeof(struct sched_entity),
8254 GFP_KERNEL, cpu_to_node(i));
8255 if (!se)
8256 goto err_free_rq;
8257
8258 init_cfs_rq(cfs_rq);
8259 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8260 }
8261
8262 return 1;
8263
8264err_free_rq:
8265 kfree(cfs_rq);
8266err:
8267 return 0;
8268}
8269
8270void unregister_fair_sched_group(struct task_group *tg, int cpu)
8271{
8272 struct rq *rq = cpu_rq(cpu);
8273 unsigned long flags;
8274
8275 /*
8276 * Only empty task groups can be destroyed; so we can speculatively
8277 * check on_list without danger of it being re-added.
8278 */
8279 if (!tg->cfs_rq[cpu]->on_list)
8280 return;
8281
8282 raw_spin_lock_irqsave(&rq->lock, flags);
8283 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8284 raw_spin_unlock_irqrestore(&rq->lock, flags);
8285}
8286
8287void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8288 struct sched_entity *se, int cpu,
8289 struct sched_entity *parent)
8290{
8291 struct rq *rq = cpu_rq(cpu);
8292
8293 cfs_rq->tg = tg;
8294 cfs_rq->rq = rq;
029632fb
PZ
8295 init_cfs_rq_runtime(cfs_rq);
8296
8297 tg->cfs_rq[cpu] = cfs_rq;
8298 tg->se[cpu] = se;
8299
8300 /* se could be NULL for root_task_group */
8301 if (!se)
8302 return;
8303
fed14d45 8304 if (!parent) {
029632fb 8305 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8306 se->depth = 0;
8307 } else {
029632fb 8308 se->cfs_rq = parent->my_q;
fed14d45
PZ
8309 se->depth = parent->depth + 1;
8310 }
029632fb
PZ
8311
8312 se->my_q = cfs_rq;
0ac9b1c2
PT
8313 /* guarantee group entities always have weight */
8314 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8315 se->parent = parent;
8316}
8317
8318static DEFINE_MUTEX(shares_mutex);
8319
8320int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8321{
8322 int i;
8323 unsigned long flags;
8324
8325 /*
8326 * We can't change the weight of the root cgroup.
8327 */
8328 if (!tg->se[0])
8329 return -EINVAL;
8330
8331 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8332
8333 mutex_lock(&shares_mutex);
8334 if (tg->shares == shares)
8335 goto done;
8336
8337 tg->shares = shares;
8338 for_each_possible_cpu(i) {
8339 struct rq *rq = cpu_rq(i);
8340 struct sched_entity *se;
8341
8342 se = tg->se[i];
8343 /* Propagate contribution to hierarchy */
8344 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8345
8346 /* Possible calls to update_curr() need rq clock */
8347 update_rq_clock(rq);
17bc14b7 8348 for_each_sched_entity(se)
029632fb
PZ
8349 update_cfs_shares(group_cfs_rq(se));
8350 raw_spin_unlock_irqrestore(&rq->lock, flags);
8351 }
8352
8353done:
8354 mutex_unlock(&shares_mutex);
8355 return 0;
8356}
8357#else /* CONFIG_FAIR_GROUP_SCHED */
8358
8359void free_fair_sched_group(struct task_group *tg) { }
8360
8361int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8362{
8363 return 1;
8364}
8365
8366void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8367
8368#endif /* CONFIG_FAIR_GROUP_SCHED */
8369
810b3817 8370
6d686f45 8371static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8372{
8373 struct sched_entity *se = &task->se;
0d721cea
PW
8374 unsigned int rr_interval = 0;
8375
8376 /*
8377 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8378 * idle runqueue:
8379 */
0d721cea 8380 if (rq->cfs.load.weight)
a59f4e07 8381 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8382
8383 return rr_interval;
8384}
8385
bf0f6f24
IM
8386/*
8387 * All the scheduling class methods:
8388 */
029632fb 8389const struct sched_class fair_sched_class = {
5522d5d5 8390 .next = &idle_sched_class,
bf0f6f24
IM
8391 .enqueue_task = enqueue_task_fair,
8392 .dequeue_task = dequeue_task_fair,
8393 .yield_task = yield_task_fair,
d95f4122 8394 .yield_to_task = yield_to_task_fair,
bf0f6f24 8395
2e09bf55 8396 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8397
8398 .pick_next_task = pick_next_task_fair,
8399 .put_prev_task = put_prev_task_fair,
8400
681f3e68 8401#ifdef CONFIG_SMP
4ce72a2c 8402 .select_task_rq = select_task_rq_fair,
0a74bef8 8403 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8404
0bcdcf28
CE
8405 .rq_online = rq_online_fair,
8406 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8407
8408 .task_waking = task_waking_fair,
681f3e68 8409#endif
bf0f6f24 8410
83b699ed 8411 .set_curr_task = set_curr_task_fair,
bf0f6f24 8412 .task_tick = task_tick_fair,
cd29fe6f 8413 .task_fork = task_fork_fair,
cb469845
SR
8414
8415 .prio_changed = prio_changed_fair,
da7a735e 8416 .switched_from = switched_from_fair,
cb469845 8417 .switched_to = switched_to_fair,
810b3817 8418
0d721cea
PW
8419 .get_rr_interval = get_rr_interval_fair,
8420
6e998916
SG
8421 .update_curr = update_curr_fair,
8422
810b3817 8423#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8424 .task_move_group = task_move_group_fair,
810b3817 8425#endif
bf0f6f24
IM
8426};
8427
8428#ifdef CONFIG_SCHED_DEBUG
029632fb 8429void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8430{
bf0f6f24
IM
8431 struct cfs_rq *cfs_rq;
8432
5973e5b9 8433 rcu_read_lock();
c3b64f1e 8434 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8435 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8436 rcu_read_unlock();
bf0f6f24 8437}
397f2378
SD
8438
8439#ifdef CONFIG_NUMA_BALANCING
8440void show_numa_stats(struct task_struct *p, struct seq_file *m)
8441{
8442 int node;
8443 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8444
8445 for_each_online_node(node) {
8446 if (p->numa_faults) {
8447 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8448 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8449 }
8450 if (p->numa_group) {
8451 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8452 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8453 }
8454 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8455 }
8456}
8457#endif /* CONFIG_NUMA_BALANCING */
8458#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8459
8460__init void init_sched_fair_class(void)
8461{
8462#ifdef CONFIG_SMP
8463 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8464
3451d024 8465#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8466 nohz.next_balance = jiffies;
029632fb 8467 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8468 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8469#endif
8470#endif /* SMP */
8471
8472}