]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
Merge branches 'pm-cpu', 'pm-cpuidle' and 'pm-domains'
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
10e84b97 2072 if (!numabalancing_enabled)
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2366 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2376 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
2518/*
2519 * We can represent the historical contribution to runnable average as the
2520 * coefficients of a geometric series. To do this we sub-divide our runnable
2521 * history into segments of approximately 1ms (1024us); label the segment that
2522 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2523 *
2524 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2525 * p0 p1 p2
2526 * (now) (~1ms ago) (~2ms ago)
2527 *
2528 * Let u_i denote the fraction of p_i that the entity was runnable.
2529 *
2530 * We then designate the fractions u_i as our co-efficients, yielding the
2531 * following representation of historical load:
2532 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2533 *
2534 * We choose y based on the with of a reasonably scheduling period, fixing:
2535 * y^32 = 0.5
2536 *
2537 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2538 * approximately half as much as the contribution to load within the last ms
2539 * (u_0).
2540 *
2541 * When a period "rolls over" and we have new u_0`, multiplying the previous
2542 * sum again by y is sufficient to update:
2543 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2544 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2545 */
9d89c257
YD
2546static __always_inline int
2547__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2548 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2549{
5b51f2f8 2550 u64 delta, periods;
9d89c257 2551 u32 contrib;
9d85f21c 2552 int delta_w, decayed = 0;
0c1dc6b2 2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c 2554
9d89c257 2555 delta = now - sa->last_update_time;
9d85f21c
PT
2556 /*
2557 * This should only happen when time goes backwards, which it
2558 * unfortunately does during sched clock init when we swap over to TSC.
2559 */
2560 if ((s64)delta < 0) {
9d89c257 2561 sa->last_update_time = now;
9d85f21c
PT
2562 return 0;
2563 }
2564
2565 /*
2566 * Use 1024ns as the unit of measurement since it's a reasonable
2567 * approximation of 1us and fast to compute.
2568 */
2569 delta >>= 10;
2570 if (!delta)
2571 return 0;
9d89c257 2572 sa->last_update_time = now;
9d85f21c
PT
2573
2574 /* delta_w is the amount already accumulated against our next period */
9d89c257 2575 delta_w = sa->period_contrib;
9d85f21c 2576 if (delta + delta_w >= 1024) {
9d85f21c
PT
2577 decayed = 1;
2578
9d89c257
YD
2579 /* how much left for next period will start over, we don't know yet */
2580 sa->period_contrib = 0;
2581
9d85f21c
PT
2582 /*
2583 * Now that we know we're crossing a period boundary, figure
2584 * out how much from delta we need to complete the current
2585 * period and accrue it.
2586 */
2587 delta_w = 1024 - delta_w;
13962234 2588 if (weight) {
9d89c257 2589 sa->load_sum += weight * delta_w;
13962234
YD
2590 if (cfs_rq)
2591 cfs_rq->runnable_load_sum += weight * delta_w;
2592 }
36ee28e4 2593 if (running)
9d89c257 2594 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
5b51f2f8
PT
2595
2596 delta -= delta_w;
2597
2598 /* Figure out how many additional periods this update spans */
2599 periods = delta / 1024;
2600 delta %= 1024;
2601
9d89c257 2602 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2603 if (cfs_rq) {
2604 cfs_rq->runnable_load_sum =
2605 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606 }
9d89c257 2607 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2608
2609 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2610 contrib = __compute_runnable_contrib(periods);
13962234 2611 if (weight) {
9d89c257 2612 sa->load_sum += weight * contrib;
13962234
YD
2613 if (cfs_rq)
2614 cfs_rq->runnable_load_sum += weight * contrib;
2615 }
36ee28e4 2616 if (running)
9d89c257 2617 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
9d85f21c
PT
2618 }
2619
2620 /* Remainder of delta accrued against u_0` */
13962234 2621 if (weight) {
9d89c257 2622 sa->load_sum += weight * delta;
13962234
YD
2623 if (cfs_rq)
2624 cfs_rq->runnable_load_sum += weight * delta;
2625 }
36ee28e4 2626 if (running)
9d89c257 2627 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
9ee474f5 2628
9d89c257 2629 sa->period_contrib += delta;
9ee474f5 2630
9d89c257
YD
2631 if (decayed) {
2632 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2633 if (cfs_rq) {
2634 cfs_rq->runnable_load_avg =
2635 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636 }
9d89c257
YD
2637 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638 }
aff3e498 2639
9d89c257 2640 return decayed;
9ee474f5
PT
2641}
2642
c566e8e9 2643#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2644/*
9d89c257
YD
2645 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2646 * and effective_load (which is not done because it is too costly).
bb17f655 2647 */
9d89c257 2648static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2649{
9d89c257 2650 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2651
9d89c257
YD
2652 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2655 }
8165e145 2656}
f5f9739d 2657
6e83125c 2658#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2659static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2660#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2661
9d89c257 2662static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2663
9d89c257
YD
2664/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2665static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2666{
9d89c257
YD
2667 int decayed;
2668 struct sched_avg *sa = &cfs_rq->avg;
2dac754e 2669
9d89c257
YD
2670 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2674 }
2dac754e 2675
9d89c257
YD
2676 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2677 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2678 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2679 sa->util_sum = max_t(s32, sa->util_sum -
2680 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2681 }
36ee28e4 2682
9d89c257 2683 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2684 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2685
9d89c257
YD
2686#ifndef CONFIG_64BIT
2687 smp_wmb();
2688 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2689#endif
36ee28e4 2690
9d89c257 2691 return decayed;
9ee474f5
PT
2692}
2693
9d89c257
YD
2694/* Update task and its cfs_rq load average */
2695static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2696{
2dac754e 2697 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0c1dc6b2 2698 int cpu = cpu_of(rq_of(cfs_rq));
9d89c257 2699 u64 now = cfs_rq_clock_task(cfs_rq);
2dac754e 2700
f1b17280 2701 /*
9d89c257
YD
2702 * Track task load average for carrying it to new CPU after migrated, and
2703 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2704 */
9d89c257 2705 __update_load_avg(now, cpu, &se->avg,
13962234 2706 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
f1b17280 2707
9d89c257
YD
2708 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2709 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2710}
2711
9d89c257
YD
2712/* Add the load generated by se into cfs_rq's load average */
2713static inline void
2714enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2715{
9d89c257
YD
2716 struct sched_avg *sa = &se->avg;
2717 u64 now = cfs_rq_clock_task(cfs_rq);
2718 int migrated = 0, decayed;
9ee474f5 2719
9d89c257
YD
2720 if (sa->last_update_time == 0) {
2721 sa->last_update_time = now;
2722 migrated = 1;
aff3e498 2723 }
9d89c257
YD
2724 else {
2725 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2726 se->on_rq * scale_load_down(se->load.weight),
2727 cfs_rq->curr == se, NULL);
aff3e498 2728 }
c566e8e9 2729
9d89c257 2730 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2731
13962234
YD
2732 cfs_rq->runnable_load_avg += sa->load_avg;
2733 cfs_rq->runnable_load_sum += sa->load_sum;
2734
9d89c257
YD
2735 if (migrated) {
2736 cfs_rq->avg.load_avg += sa->load_avg;
2737 cfs_rq->avg.load_sum += sa->load_sum;
2738 cfs_rq->avg.util_avg += sa->util_avg;
2739 cfs_rq->avg.util_sum += sa->util_sum;
9ee474f5
PT
2740 }
2741
9d89c257
YD
2742 if (decayed || migrated)
2743 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2744}
2745
13962234
YD
2746/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2747static inline void
2748dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2749{
2750 update_load_avg(se, 1);
2751
2752 cfs_rq->runnable_load_avg =
2753 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2754 cfs_rq->runnable_load_sum =
2755 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2756}
2757
9ee474f5 2758/*
9d89c257
YD
2759 * Task first catches up with cfs_rq, and then subtract
2760 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2761 */
9d89c257 2762void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2763{
9d89c257
YD
2764 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2765 u64 last_update_time;
2766
2767#ifndef CONFIG_64BIT
2768 u64 last_update_time_copy;
9ee474f5 2769
9d89c257
YD
2770 do {
2771 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2772 smp_rmb();
2773 last_update_time = cfs_rq->avg.last_update_time;
2774 } while (last_update_time != last_update_time_copy);
2775#else
2776 last_update_time = cfs_rq->avg.last_update_time;
2777#endif
2778
13962234 2779 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2780 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2781 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2782}
642dbc39
VG
2783
2784/*
2785 * Update the rq's load with the elapsed running time before entering
2786 * idle. if the last scheduled task is not a CFS task, idle_enter will
2787 * be the only way to update the runnable statistic.
2788 */
2789void idle_enter_fair(struct rq *this_rq)
2790{
642dbc39
VG
2791}
2792
2793/*
2794 * Update the rq's load with the elapsed idle time before a task is
2795 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2796 * be the only way to update the runnable statistic.
2797 */
2798void idle_exit_fair(struct rq *this_rq)
2799{
642dbc39
VG
2800}
2801
7ea241af
YD
2802static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2803{
2804 return cfs_rq->runnable_load_avg;
2805}
2806
2807static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2808{
2809 return cfs_rq->avg.load_avg;
2810}
2811
6e83125c
PZ
2812static int idle_balance(struct rq *this_rq);
2813
38033c37
PZ
2814#else /* CONFIG_SMP */
2815
9d89c257
YD
2816static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2817static inline void
2818enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2819static inline void
2820dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2821static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c
PZ
2822
2823static inline int idle_balance(struct rq *rq)
2824{
2825 return 0;
2826}
2827
38033c37 2828#endif /* CONFIG_SMP */
9d85f21c 2829
2396af69 2830static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2831{
bf0f6f24 2832#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2833 struct task_struct *tsk = NULL;
2834
2835 if (entity_is_task(se))
2836 tsk = task_of(se);
2837
41acab88 2838 if (se->statistics.sleep_start) {
78becc27 2839 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2840
2841 if ((s64)delta < 0)
2842 delta = 0;
2843
41acab88
LDM
2844 if (unlikely(delta > se->statistics.sleep_max))
2845 se->statistics.sleep_max = delta;
bf0f6f24 2846
8c79a045 2847 se->statistics.sleep_start = 0;
41acab88 2848 se->statistics.sum_sleep_runtime += delta;
9745512c 2849
768d0c27 2850 if (tsk) {
e414314c 2851 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2852 trace_sched_stat_sleep(tsk, delta);
2853 }
bf0f6f24 2854 }
41acab88 2855 if (se->statistics.block_start) {
78becc27 2856 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2857
2858 if ((s64)delta < 0)
2859 delta = 0;
2860
41acab88
LDM
2861 if (unlikely(delta > se->statistics.block_max))
2862 se->statistics.block_max = delta;
bf0f6f24 2863
8c79a045 2864 se->statistics.block_start = 0;
41acab88 2865 se->statistics.sum_sleep_runtime += delta;
30084fbd 2866
e414314c 2867 if (tsk) {
8f0dfc34 2868 if (tsk->in_iowait) {
41acab88
LDM
2869 se->statistics.iowait_sum += delta;
2870 se->statistics.iowait_count++;
768d0c27 2871 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2872 }
2873
b781a602
AV
2874 trace_sched_stat_blocked(tsk, delta);
2875
e414314c
PZ
2876 /*
2877 * Blocking time is in units of nanosecs, so shift by
2878 * 20 to get a milliseconds-range estimation of the
2879 * amount of time that the task spent sleeping:
2880 */
2881 if (unlikely(prof_on == SLEEP_PROFILING)) {
2882 profile_hits(SLEEP_PROFILING,
2883 (void *)get_wchan(tsk),
2884 delta >> 20);
2885 }
2886 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2887 }
bf0f6f24
IM
2888 }
2889#endif
2890}
2891
ddc97297
PZ
2892static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2893{
2894#ifdef CONFIG_SCHED_DEBUG
2895 s64 d = se->vruntime - cfs_rq->min_vruntime;
2896
2897 if (d < 0)
2898 d = -d;
2899
2900 if (d > 3*sysctl_sched_latency)
2901 schedstat_inc(cfs_rq, nr_spread_over);
2902#endif
2903}
2904
aeb73b04
PZ
2905static void
2906place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2907{
1af5f730 2908 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2909
2cb8600e
PZ
2910 /*
2911 * The 'current' period is already promised to the current tasks,
2912 * however the extra weight of the new task will slow them down a
2913 * little, place the new task so that it fits in the slot that
2914 * stays open at the end.
2915 */
94dfb5e7 2916 if (initial && sched_feat(START_DEBIT))
f9c0b095 2917 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2918
a2e7a7eb 2919 /* sleeps up to a single latency don't count. */
5ca9880c 2920 if (!initial) {
a2e7a7eb 2921 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2922
a2e7a7eb
MG
2923 /*
2924 * Halve their sleep time's effect, to allow
2925 * for a gentler effect of sleepers:
2926 */
2927 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2928 thresh >>= 1;
51e0304c 2929
a2e7a7eb 2930 vruntime -= thresh;
aeb73b04
PZ
2931 }
2932
b5d9d734 2933 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2934 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2935}
2936
d3d9dc33
PT
2937static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2938
bf0f6f24 2939static void
88ec22d3 2940enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2941{
88ec22d3
PZ
2942 /*
2943 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2944 * through calling update_curr().
88ec22d3 2945 */
371fd7e7 2946 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2947 se->vruntime += cfs_rq->min_vruntime;
2948
bf0f6f24 2949 /*
a2a2d680 2950 * Update run-time statistics of the 'current'.
bf0f6f24 2951 */
b7cc0896 2952 update_curr(cfs_rq);
9d89c257 2953 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2954 account_entity_enqueue(cfs_rq, se);
2955 update_cfs_shares(cfs_rq);
bf0f6f24 2956
88ec22d3 2957 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2958 place_entity(cfs_rq, se, 0);
2396af69 2959 enqueue_sleeper(cfs_rq, se);
e9acbff6 2960 }
bf0f6f24 2961
d2417e5a 2962 update_stats_enqueue(cfs_rq, se);
ddc97297 2963 check_spread(cfs_rq, se);
83b699ed
SV
2964 if (se != cfs_rq->curr)
2965 __enqueue_entity(cfs_rq, se);
2069dd75 2966 se->on_rq = 1;
3d4b47b4 2967
d3d9dc33 2968 if (cfs_rq->nr_running == 1) {
3d4b47b4 2969 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2970 check_enqueue_throttle(cfs_rq);
2971 }
bf0f6f24
IM
2972}
2973
2c13c919 2974static void __clear_buddies_last(struct sched_entity *se)
2002c695 2975{
2c13c919
RR
2976 for_each_sched_entity(se) {
2977 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2978 if (cfs_rq->last != se)
2c13c919 2979 break;
f1044799
PZ
2980
2981 cfs_rq->last = NULL;
2c13c919
RR
2982 }
2983}
2002c695 2984
2c13c919
RR
2985static void __clear_buddies_next(struct sched_entity *se)
2986{
2987 for_each_sched_entity(se) {
2988 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2989 if (cfs_rq->next != se)
2c13c919 2990 break;
f1044799
PZ
2991
2992 cfs_rq->next = NULL;
2c13c919 2993 }
2002c695
PZ
2994}
2995
ac53db59
RR
2996static void __clear_buddies_skip(struct sched_entity *se)
2997{
2998 for_each_sched_entity(se) {
2999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3000 if (cfs_rq->skip != se)
ac53db59 3001 break;
f1044799
PZ
3002
3003 cfs_rq->skip = NULL;
ac53db59
RR
3004 }
3005}
3006
a571bbea
PZ
3007static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3008{
2c13c919
RR
3009 if (cfs_rq->last == se)
3010 __clear_buddies_last(se);
3011
3012 if (cfs_rq->next == se)
3013 __clear_buddies_next(se);
ac53db59
RR
3014
3015 if (cfs_rq->skip == se)
3016 __clear_buddies_skip(se);
a571bbea
PZ
3017}
3018
6c16a6dc 3019static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3020
bf0f6f24 3021static void
371fd7e7 3022dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3023{
a2a2d680
DA
3024 /*
3025 * Update run-time statistics of the 'current'.
3026 */
3027 update_curr(cfs_rq);
13962234 3028 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3029
19b6a2e3 3030 update_stats_dequeue(cfs_rq, se);
371fd7e7 3031 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3032#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3033 if (entity_is_task(se)) {
3034 struct task_struct *tsk = task_of(se);
3035
3036 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3037 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3038 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3039 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3040 }
db36cc7d 3041#endif
67e9fb2a
PZ
3042 }
3043
2002c695 3044 clear_buddies(cfs_rq, se);
4793241b 3045
83b699ed 3046 if (se != cfs_rq->curr)
30cfdcfc 3047 __dequeue_entity(cfs_rq, se);
17bc14b7 3048 se->on_rq = 0;
30cfdcfc 3049 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3050
3051 /*
3052 * Normalize the entity after updating the min_vruntime because the
3053 * update can refer to the ->curr item and we need to reflect this
3054 * movement in our normalized position.
3055 */
371fd7e7 3056 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3057 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3058
d8b4986d
PT
3059 /* return excess runtime on last dequeue */
3060 return_cfs_rq_runtime(cfs_rq);
3061
1e876231 3062 update_min_vruntime(cfs_rq);
17bc14b7 3063 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3064}
3065
3066/*
3067 * Preempt the current task with a newly woken task if needed:
3068 */
7c92e54f 3069static void
2e09bf55 3070check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3071{
11697830 3072 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3073 struct sched_entity *se;
3074 s64 delta;
11697830 3075
6d0f0ebd 3076 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3077 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3078 if (delta_exec > ideal_runtime) {
8875125e 3079 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3080 /*
3081 * The current task ran long enough, ensure it doesn't get
3082 * re-elected due to buddy favours.
3083 */
3084 clear_buddies(cfs_rq, curr);
f685ceac
MG
3085 return;
3086 }
3087
3088 /*
3089 * Ensure that a task that missed wakeup preemption by a
3090 * narrow margin doesn't have to wait for a full slice.
3091 * This also mitigates buddy induced latencies under load.
3092 */
f685ceac
MG
3093 if (delta_exec < sysctl_sched_min_granularity)
3094 return;
3095
f4cfb33e
WX
3096 se = __pick_first_entity(cfs_rq);
3097 delta = curr->vruntime - se->vruntime;
f685ceac 3098
f4cfb33e
WX
3099 if (delta < 0)
3100 return;
d7d82944 3101
f4cfb33e 3102 if (delta > ideal_runtime)
8875125e 3103 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3104}
3105
83b699ed 3106static void
8494f412 3107set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3108{
83b699ed
SV
3109 /* 'current' is not kept within the tree. */
3110 if (se->on_rq) {
3111 /*
3112 * Any task has to be enqueued before it get to execute on
3113 * a CPU. So account for the time it spent waiting on the
3114 * runqueue.
3115 */
3116 update_stats_wait_end(cfs_rq, se);
3117 __dequeue_entity(cfs_rq, se);
9d89c257 3118 update_load_avg(se, 1);
83b699ed
SV
3119 }
3120
79303e9e 3121 update_stats_curr_start(cfs_rq, se);
429d43bc 3122 cfs_rq->curr = se;
eba1ed4b
IM
3123#ifdef CONFIG_SCHEDSTATS
3124 /*
3125 * Track our maximum slice length, if the CPU's load is at
3126 * least twice that of our own weight (i.e. dont track it
3127 * when there are only lesser-weight tasks around):
3128 */
495eca49 3129 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3130 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3131 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3132 }
3133#endif
4a55b450 3134 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3135}
3136
3f3a4904
PZ
3137static int
3138wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3139
ac53db59
RR
3140/*
3141 * Pick the next process, keeping these things in mind, in this order:
3142 * 1) keep things fair between processes/task groups
3143 * 2) pick the "next" process, since someone really wants that to run
3144 * 3) pick the "last" process, for cache locality
3145 * 4) do not run the "skip" process, if something else is available
3146 */
678d5718
PZ
3147static struct sched_entity *
3148pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3149{
678d5718
PZ
3150 struct sched_entity *left = __pick_first_entity(cfs_rq);
3151 struct sched_entity *se;
3152
3153 /*
3154 * If curr is set we have to see if its left of the leftmost entity
3155 * still in the tree, provided there was anything in the tree at all.
3156 */
3157 if (!left || (curr && entity_before(curr, left)))
3158 left = curr;
3159
3160 se = left; /* ideally we run the leftmost entity */
f4b6755f 3161
ac53db59
RR
3162 /*
3163 * Avoid running the skip buddy, if running something else can
3164 * be done without getting too unfair.
3165 */
3166 if (cfs_rq->skip == se) {
678d5718
PZ
3167 struct sched_entity *second;
3168
3169 if (se == curr) {
3170 second = __pick_first_entity(cfs_rq);
3171 } else {
3172 second = __pick_next_entity(se);
3173 if (!second || (curr && entity_before(curr, second)))
3174 second = curr;
3175 }
3176
ac53db59
RR
3177 if (second && wakeup_preempt_entity(second, left) < 1)
3178 se = second;
3179 }
aa2ac252 3180
f685ceac
MG
3181 /*
3182 * Prefer last buddy, try to return the CPU to a preempted task.
3183 */
3184 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3185 se = cfs_rq->last;
3186
ac53db59
RR
3187 /*
3188 * Someone really wants this to run. If it's not unfair, run it.
3189 */
3190 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3191 se = cfs_rq->next;
3192
f685ceac 3193 clear_buddies(cfs_rq, se);
4793241b
PZ
3194
3195 return se;
aa2ac252
PZ
3196}
3197
678d5718 3198static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3199
ab6cde26 3200static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3201{
3202 /*
3203 * If still on the runqueue then deactivate_task()
3204 * was not called and update_curr() has to be done:
3205 */
3206 if (prev->on_rq)
b7cc0896 3207 update_curr(cfs_rq);
bf0f6f24 3208
d3d9dc33
PT
3209 /* throttle cfs_rqs exceeding runtime */
3210 check_cfs_rq_runtime(cfs_rq);
3211
ddc97297 3212 check_spread(cfs_rq, prev);
30cfdcfc 3213 if (prev->on_rq) {
5870db5b 3214 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3215 /* Put 'current' back into the tree. */
3216 __enqueue_entity(cfs_rq, prev);
9d85f21c 3217 /* in !on_rq case, update occurred at dequeue */
9d89c257 3218 update_load_avg(prev, 0);
30cfdcfc 3219 }
429d43bc 3220 cfs_rq->curr = NULL;
bf0f6f24
IM
3221}
3222
8f4d37ec
PZ
3223static void
3224entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3225{
bf0f6f24 3226 /*
30cfdcfc 3227 * Update run-time statistics of the 'current'.
bf0f6f24 3228 */
30cfdcfc 3229 update_curr(cfs_rq);
bf0f6f24 3230
9d85f21c
PT
3231 /*
3232 * Ensure that runnable average is periodically updated.
3233 */
9d89c257 3234 update_load_avg(curr, 1);
bf0bd948 3235 update_cfs_shares(cfs_rq);
9d85f21c 3236
8f4d37ec
PZ
3237#ifdef CONFIG_SCHED_HRTICK
3238 /*
3239 * queued ticks are scheduled to match the slice, so don't bother
3240 * validating it and just reschedule.
3241 */
983ed7a6 3242 if (queued) {
8875125e 3243 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3244 return;
3245 }
8f4d37ec
PZ
3246 /*
3247 * don't let the period tick interfere with the hrtick preemption
3248 */
3249 if (!sched_feat(DOUBLE_TICK) &&
3250 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3251 return;
3252#endif
3253
2c2efaed 3254 if (cfs_rq->nr_running > 1)
2e09bf55 3255 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3256}
3257
ab84d31e
PT
3258
3259/**************************************************
3260 * CFS bandwidth control machinery
3261 */
3262
3263#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3264
3265#ifdef HAVE_JUMP_LABEL
c5905afb 3266static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3267
3268static inline bool cfs_bandwidth_used(void)
3269{
c5905afb 3270 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3271}
3272
1ee14e6c 3273void cfs_bandwidth_usage_inc(void)
029632fb 3274{
1ee14e6c
BS
3275 static_key_slow_inc(&__cfs_bandwidth_used);
3276}
3277
3278void cfs_bandwidth_usage_dec(void)
3279{
3280 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3281}
3282#else /* HAVE_JUMP_LABEL */
3283static bool cfs_bandwidth_used(void)
3284{
3285 return true;
3286}
3287
1ee14e6c
BS
3288void cfs_bandwidth_usage_inc(void) {}
3289void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3290#endif /* HAVE_JUMP_LABEL */
3291
ab84d31e
PT
3292/*
3293 * default period for cfs group bandwidth.
3294 * default: 0.1s, units: nanoseconds
3295 */
3296static inline u64 default_cfs_period(void)
3297{
3298 return 100000000ULL;
3299}
ec12cb7f
PT
3300
3301static inline u64 sched_cfs_bandwidth_slice(void)
3302{
3303 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3304}
3305
a9cf55b2
PT
3306/*
3307 * Replenish runtime according to assigned quota and update expiration time.
3308 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3309 * additional synchronization around rq->lock.
3310 *
3311 * requires cfs_b->lock
3312 */
029632fb 3313void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3314{
3315 u64 now;
3316
3317 if (cfs_b->quota == RUNTIME_INF)
3318 return;
3319
3320 now = sched_clock_cpu(smp_processor_id());
3321 cfs_b->runtime = cfs_b->quota;
3322 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3323}
3324
029632fb
PZ
3325static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3326{
3327 return &tg->cfs_bandwidth;
3328}
3329
f1b17280
PT
3330/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3331static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3332{
3333 if (unlikely(cfs_rq->throttle_count))
3334 return cfs_rq->throttled_clock_task;
3335
78becc27 3336 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3337}
3338
85dac906
PT
3339/* returns 0 on failure to allocate runtime */
3340static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3341{
3342 struct task_group *tg = cfs_rq->tg;
3343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3344 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3345
3346 /* note: this is a positive sum as runtime_remaining <= 0 */
3347 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3348
3349 raw_spin_lock(&cfs_b->lock);
3350 if (cfs_b->quota == RUNTIME_INF)
3351 amount = min_amount;
58088ad0 3352 else {
77a4d1a1 3353 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3354
3355 if (cfs_b->runtime > 0) {
3356 amount = min(cfs_b->runtime, min_amount);
3357 cfs_b->runtime -= amount;
3358 cfs_b->idle = 0;
3359 }
ec12cb7f 3360 }
a9cf55b2 3361 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3362 raw_spin_unlock(&cfs_b->lock);
3363
3364 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3365 /*
3366 * we may have advanced our local expiration to account for allowed
3367 * spread between our sched_clock and the one on which runtime was
3368 * issued.
3369 */
3370 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3371 cfs_rq->runtime_expires = expires;
85dac906
PT
3372
3373 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3374}
3375
a9cf55b2
PT
3376/*
3377 * Note: This depends on the synchronization provided by sched_clock and the
3378 * fact that rq->clock snapshots this value.
3379 */
3380static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3381{
a9cf55b2 3382 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3383
3384 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3385 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3386 return;
3387
a9cf55b2
PT
3388 if (cfs_rq->runtime_remaining < 0)
3389 return;
3390
3391 /*
3392 * If the local deadline has passed we have to consider the
3393 * possibility that our sched_clock is 'fast' and the global deadline
3394 * has not truly expired.
3395 *
3396 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3397 * whether the global deadline has advanced. It is valid to compare
3398 * cfs_b->runtime_expires without any locks since we only care about
3399 * exact equality, so a partial write will still work.
a9cf55b2
PT
3400 */
3401
51f2176d 3402 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3403 /* extend local deadline, drift is bounded above by 2 ticks */
3404 cfs_rq->runtime_expires += TICK_NSEC;
3405 } else {
3406 /* global deadline is ahead, expiration has passed */
3407 cfs_rq->runtime_remaining = 0;
3408 }
3409}
3410
9dbdb155 3411static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3412{
3413 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3414 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3415 expire_cfs_rq_runtime(cfs_rq);
3416
3417 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3418 return;
3419
85dac906
PT
3420 /*
3421 * if we're unable to extend our runtime we resched so that the active
3422 * hierarchy can be throttled
3423 */
3424 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3425 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3426}
3427
6c16a6dc 3428static __always_inline
9dbdb155 3429void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3430{
56f570e5 3431 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3432 return;
3433
3434 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3435}
3436
85dac906
PT
3437static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3438{
56f570e5 3439 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3440}
3441
64660c86
PT
3442/* check whether cfs_rq, or any parent, is throttled */
3443static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3444{
56f570e5 3445 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3446}
3447
3448/*
3449 * Ensure that neither of the group entities corresponding to src_cpu or
3450 * dest_cpu are members of a throttled hierarchy when performing group
3451 * load-balance operations.
3452 */
3453static inline int throttled_lb_pair(struct task_group *tg,
3454 int src_cpu, int dest_cpu)
3455{
3456 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3457
3458 src_cfs_rq = tg->cfs_rq[src_cpu];
3459 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3460
3461 return throttled_hierarchy(src_cfs_rq) ||
3462 throttled_hierarchy(dest_cfs_rq);
3463}
3464
3465/* updated child weight may affect parent so we have to do this bottom up */
3466static int tg_unthrottle_up(struct task_group *tg, void *data)
3467{
3468 struct rq *rq = data;
3469 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3470
3471 cfs_rq->throttle_count--;
3472#ifdef CONFIG_SMP
3473 if (!cfs_rq->throttle_count) {
f1b17280 3474 /* adjust cfs_rq_clock_task() */
78becc27 3475 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3476 cfs_rq->throttled_clock_task;
64660c86
PT
3477 }
3478#endif
3479
3480 return 0;
3481}
3482
3483static int tg_throttle_down(struct task_group *tg, void *data)
3484{
3485 struct rq *rq = data;
3486 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3487
82958366
PT
3488 /* group is entering throttled state, stop time */
3489 if (!cfs_rq->throttle_count)
78becc27 3490 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3491 cfs_rq->throttle_count++;
3492
3493 return 0;
3494}
3495
d3d9dc33 3496static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3497{
3498 struct rq *rq = rq_of(cfs_rq);
3499 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3500 struct sched_entity *se;
3501 long task_delta, dequeue = 1;
77a4d1a1 3502 bool empty;
85dac906
PT
3503
3504 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3505
f1b17280 3506 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3507 rcu_read_lock();
3508 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3509 rcu_read_unlock();
85dac906
PT
3510
3511 task_delta = cfs_rq->h_nr_running;
3512 for_each_sched_entity(se) {
3513 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3514 /* throttled entity or throttle-on-deactivate */
3515 if (!se->on_rq)
3516 break;
3517
3518 if (dequeue)
3519 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3520 qcfs_rq->h_nr_running -= task_delta;
3521
3522 if (qcfs_rq->load.weight)
3523 dequeue = 0;
3524 }
3525
3526 if (!se)
72465447 3527 sub_nr_running(rq, task_delta);
85dac906
PT
3528
3529 cfs_rq->throttled = 1;
78becc27 3530 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3531 raw_spin_lock(&cfs_b->lock);
d49db342 3532 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3533
c06f04c7
BS
3534 /*
3535 * Add to the _head_ of the list, so that an already-started
3536 * distribute_cfs_runtime will not see us
3537 */
3538 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3539
3540 /*
3541 * If we're the first throttled task, make sure the bandwidth
3542 * timer is running.
3543 */
3544 if (empty)
3545 start_cfs_bandwidth(cfs_b);
3546
85dac906
PT
3547 raw_spin_unlock(&cfs_b->lock);
3548}
3549
029632fb 3550void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3551{
3552 struct rq *rq = rq_of(cfs_rq);
3553 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3554 struct sched_entity *se;
3555 int enqueue = 1;
3556 long task_delta;
3557
22b958d8 3558 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3559
3560 cfs_rq->throttled = 0;
1a55af2e
FW
3561
3562 update_rq_clock(rq);
3563
671fd9da 3564 raw_spin_lock(&cfs_b->lock);
78becc27 3565 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3566 list_del_rcu(&cfs_rq->throttled_list);
3567 raw_spin_unlock(&cfs_b->lock);
3568
64660c86
PT
3569 /* update hierarchical throttle state */
3570 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3571
671fd9da
PT
3572 if (!cfs_rq->load.weight)
3573 return;
3574
3575 task_delta = cfs_rq->h_nr_running;
3576 for_each_sched_entity(se) {
3577 if (se->on_rq)
3578 enqueue = 0;
3579
3580 cfs_rq = cfs_rq_of(se);
3581 if (enqueue)
3582 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3583 cfs_rq->h_nr_running += task_delta;
3584
3585 if (cfs_rq_throttled(cfs_rq))
3586 break;
3587 }
3588
3589 if (!se)
72465447 3590 add_nr_running(rq, task_delta);
671fd9da
PT
3591
3592 /* determine whether we need to wake up potentially idle cpu */
3593 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3594 resched_curr(rq);
671fd9da
PT
3595}
3596
3597static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3598 u64 remaining, u64 expires)
3599{
3600 struct cfs_rq *cfs_rq;
c06f04c7
BS
3601 u64 runtime;
3602 u64 starting_runtime = remaining;
671fd9da
PT
3603
3604 rcu_read_lock();
3605 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3606 throttled_list) {
3607 struct rq *rq = rq_of(cfs_rq);
3608
3609 raw_spin_lock(&rq->lock);
3610 if (!cfs_rq_throttled(cfs_rq))
3611 goto next;
3612
3613 runtime = -cfs_rq->runtime_remaining + 1;
3614 if (runtime > remaining)
3615 runtime = remaining;
3616 remaining -= runtime;
3617
3618 cfs_rq->runtime_remaining += runtime;
3619 cfs_rq->runtime_expires = expires;
3620
3621 /* we check whether we're throttled above */
3622 if (cfs_rq->runtime_remaining > 0)
3623 unthrottle_cfs_rq(cfs_rq);
3624
3625next:
3626 raw_spin_unlock(&rq->lock);
3627
3628 if (!remaining)
3629 break;
3630 }
3631 rcu_read_unlock();
3632
c06f04c7 3633 return starting_runtime - remaining;
671fd9da
PT
3634}
3635
58088ad0
PT
3636/*
3637 * Responsible for refilling a task_group's bandwidth and unthrottling its
3638 * cfs_rqs as appropriate. If there has been no activity within the last
3639 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3640 * used to track this state.
3641 */
3642static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3643{
671fd9da 3644 u64 runtime, runtime_expires;
51f2176d 3645 int throttled;
58088ad0 3646
58088ad0
PT
3647 /* no need to continue the timer with no bandwidth constraint */
3648 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3649 goto out_deactivate;
58088ad0 3650
671fd9da 3651 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3652 cfs_b->nr_periods += overrun;
671fd9da 3653
51f2176d
BS
3654 /*
3655 * idle depends on !throttled (for the case of a large deficit), and if
3656 * we're going inactive then everything else can be deferred
3657 */
3658 if (cfs_b->idle && !throttled)
3659 goto out_deactivate;
a9cf55b2
PT
3660
3661 __refill_cfs_bandwidth_runtime(cfs_b);
3662
671fd9da
PT
3663 if (!throttled) {
3664 /* mark as potentially idle for the upcoming period */
3665 cfs_b->idle = 1;
51f2176d 3666 return 0;
671fd9da
PT
3667 }
3668
e8da1b18
NR
3669 /* account preceding periods in which throttling occurred */
3670 cfs_b->nr_throttled += overrun;
3671
671fd9da 3672 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3673
3674 /*
c06f04c7
BS
3675 * This check is repeated as we are holding onto the new bandwidth while
3676 * we unthrottle. This can potentially race with an unthrottled group
3677 * trying to acquire new bandwidth from the global pool. This can result
3678 * in us over-using our runtime if it is all used during this loop, but
3679 * only by limited amounts in that extreme case.
671fd9da 3680 */
c06f04c7
BS
3681 while (throttled && cfs_b->runtime > 0) {
3682 runtime = cfs_b->runtime;
671fd9da
PT
3683 raw_spin_unlock(&cfs_b->lock);
3684 /* we can't nest cfs_b->lock while distributing bandwidth */
3685 runtime = distribute_cfs_runtime(cfs_b, runtime,
3686 runtime_expires);
3687 raw_spin_lock(&cfs_b->lock);
3688
3689 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3690
3691 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3692 }
58088ad0 3693
671fd9da
PT
3694 /*
3695 * While we are ensured activity in the period following an
3696 * unthrottle, this also covers the case in which the new bandwidth is
3697 * insufficient to cover the existing bandwidth deficit. (Forcing the
3698 * timer to remain active while there are any throttled entities.)
3699 */
3700 cfs_b->idle = 0;
58088ad0 3701
51f2176d
BS
3702 return 0;
3703
3704out_deactivate:
51f2176d 3705 return 1;
58088ad0 3706}
d3d9dc33 3707
d8b4986d
PT
3708/* a cfs_rq won't donate quota below this amount */
3709static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3710/* minimum remaining period time to redistribute slack quota */
3711static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3712/* how long we wait to gather additional slack before distributing */
3713static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3714
db06e78c
BS
3715/*
3716 * Are we near the end of the current quota period?
3717 *
3718 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3719 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3720 * migrate_hrtimers, base is never cleared, so we are fine.
3721 */
d8b4986d
PT
3722static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3723{
3724 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3725 u64 remaining;
3726
3727 /* if the call-back is running a quota refresh is already occurring */
3728 if (hrtimer_callback_running(refresh_timer))
3729 return 1;
3730
3731 /* is a quota refresh about to occur? */
3732 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3733 if (remaining < min_expire)
3734 return 1;
3735
3736 return 0;
3737}
3738
3739static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3740{
3741 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3742
3743 /* if there's a quota refresh soon don't bother with slack */
3744 if (runtime_refresh_within(cfs_b, min_left))
3745 return;
3746
4cfafd30
PZ
3747 hrtimer_start(&cfs_b->slack_timer,
3748 ns_to_ktime(cfs_bandwidth_slack_period),
3749 HRTIMER_MODE_REL);
d8b4986d
PT
3750}
3751
3752/* we know any runtime found here is valid as update_curr() precedes return */
3753static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3754{
3755 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3756 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3757
3758 if (slack_runtime <= 0)
3759 return;
3760
3761 raw_spin_lock(&cfs_b->lock);
3762 if (cfs_b->quota != RUNTIME_INF &&
3763 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3764 cfs_b->runtime += slack_runtime;
3765
3766 /* we are under rq->lock, defer unthrottling using a timer */
3767 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3768 !list_empty(&cfs_b->throttled_cfs_rq))
3769 start_cfs_slack_bandwidth(cfs_b);
3770 }
3771 raw_spin_unlock(&cfs_b->lock);
3772
3773 /* even if it's not valid for return we don't want to try again */
3774 cfs_rq->runtime_remaining -= slack_runtime;
3775}
3776
3777static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3778{
56f570e5
PT
3779 if (!cfs_bandwidth_used())
3780 return;
3781
fccfdc6f 3782 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3783 return;
3784
3785 __return_cfs_rq_runtime(cfs_rq);
3786}
3787
3788/*
3789 * This is done with a timer (instead of inline with bandwidth return) since
3790 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3791 */
3792static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3793{
3794 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3795 u64 expires;
3796
3797 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3798 raw_spin_lock(&cfs_b->lock);
3799 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3800 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3801 return;
db06e78c 3802 }
d8b4986d 3803
c06f04c7 3804 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3805 runtime = cfs_b->runtime;
c06f04c7 3806
d8b4986d
PT
3807 expires = cfs_b->runtime_expires;
3808 raw_spin_unlock(&cfs_b->lock);
3809
3810 if (!runtime)
3811 return;
3812
3813 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3814
3815 raw_spin_lock(&cfs_b->lock);
3816 if (expires == cfs_b->runtime_expires)
c06f04c7 3817 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3818 raw_spin_unlock(&cfs_b->lock);
3819}
3820
d3d9dc33
PT
3821/*
3822 * When a group wakes up we want to make sure that its quota is not already
3823 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3824 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3825 */
3826static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3827{
56f570e5
PT
3828 if (!cfs_bandwidth_used())
3829 return;
3830
d3d9dc33
PT
3831 /* an active group must be handled by the update_curr()->put() path */
3832 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3833 return;
3834
3835 /* ensure the group is not already throttled */
3836 if (cfs_rq_throttled(cfs_rq))
3837 return;
3838
3839 /* update runtime allocation */
3840 account_cfs_rq_runtime(cfs_rq, 0);
3841 if (cfs_rq->runtime_remaining <= 0)
3842 throttle_cfs_rq(cfs_rq);
3843}
3844
3845/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3846static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3847{
56f570e5 3848 if (!cfs_bandwidth_used())
678d5718 3849 return false;
56f570e5 3850
d3d9dc33 3851 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3852 return false;
d3d9dc33
PT
3853
3854 /*
3855 * it's possible for a throttled entity to be forced into a running
3856 * state (e.g. set_curr_task), in this case we're finished.
3857 */
3858 if (cfs_rq_throttled(cfs_rq))
678d5718 3859 return true;
d3d9dc33
PT
3860
3861 throttle_cfs_rq(cfs_rq);
678d5718 3862 return true;
d3d9dc33 3863}
029632fb 3864
029632fb
PZ
3865static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3866{
3867 struct cfs_bandwidth *cfs_b =
3868 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3869
029632fb
PZ
3870 do_sched_cfs_slack_timer(cfs_b);
3871
3872 return HRTIMER_NORESTART;
3873}
3874
3875static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3876{
3877 struct cfs_bandwidth *cfs_b =
3878 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3879 int overrun;
3880 int idle = 0;
3881
51f2176d 3882 raw_spin_lock(&cfs_b->lock);
029632fb 3883 for (;;) {
77a4d1a1 3884 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3885 if (!overrun)
3886 break;
3887
3888 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3889 }
4cfafd30
PZ
3890 if (idle)
3891 cfs_b->period_active = 0;
51f2176d 3892 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3893
3894 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3895}
3896
3897void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3898{
3899 raw_spin_lock_init(&cfs_b->lock);
3900 cfs_b->runtime = 0;
3901 cfs_b->quota = RUNTIME_INF;
3902 cfs_b->period = ns_to_ktime(default_cfs_period());
3903
3904 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3905 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3906 cfs_b->period_timer.function = sched_cfs_period_timer;
3907 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3908 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3909}
3910
3911static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3912{
3913 cfs_rq->runtime_enabled = 0;
3914 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3915}
3916
77a4d1a1 3917void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3918{
4cfafd30 3919 lockdep_assert_held(&cfs_b->lock);
029632fb 3920
4cfafd30
PZ
3921 if (!cfs_b->period_active) {
3922 cfs_b->period_active = 1;
3923 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3924 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3925 }
029632fb
PZ
3926}
3927
3928static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3929{
7f1a169b
TH
3930 /* init_cfs_bandwidth() was not called */
3931 if (!cfs_b->throttled_cfs_rq.next)
3932 return;
3933
029632fb
PZ
3934 hrtimer_cancel(&cfs_b->period_timer);
3935 hrtimer_cancel(&cfs_b->slack_timer);
3936}
3937
0e59bdae
KT
3938static void __maybe_unused update_runtime_enabled(struct rq *rq)
3939{
3940 struct cfs_rq *cfs_rq;
3941
3942 for_each_leaf_cfs_rq(rq, cfs_rq) {
3943 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3944
3945 raw_spin_lock(&cfs_b->lock);
3946 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3947 raw_spin_unlock(&cfs_b->lock);
3948 }
3949}
3950
38dc3348 3951static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3952{
3953 struct cfs_rq *cfs_rq;
3954
3955 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3956 if (!cfs_rq->runtime_enabled)
3957 continue;
3958
3959 /*
3960 * clock_task is not advancing so we just need to make sure
3961 * there's some valid quota amount
3962 */
51f2176d 3963 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3964 /*
3965 * Offline rq is schedulable till cpu is completely disabled
3966 * in take_cpu_down(), so we prevent new cfs throttling here.
3967 */
3968 cfs_rq->runtime_enabled = 0;
3969
029632fb
PZ
3970 if (cfs_rq_throttled(cfs_rq))
3971 unthrottle_cfs_rq(cfs_rq);
3972 }
3973}
3974
3975#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3976static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3977{
78becc27 3978 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3979}
3980
9dbdb155 3981static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3982static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3983static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3984static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3985
3986static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3987{
3988 return 0;
3989}
64660c86
PT
3990
3991static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3992{
3993 return 0;
3994}
3995
3996static inline int throttled_lb_pair(struct task_group *tg,
3997 int src_cpu, int dest_cpu)
3998{
3999 return 0;
4000}
029632fb
PZ
4001
4002void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4003
4004#ifdef CONFIG_FAIR_GROUP_SCHED
4005static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4006#endif
4007
029632fb
PZ
4008static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4009{
4010 return NULL;
4011}
4012static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4013static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4014static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4015
4016#endif /* CONFIG_CFS_BANDWIDTH */
4017
bf0f6f24
IM
4018/**************************************************
4019 * CFS operations on tasks:
4020 */
4021
8f4d37ec
PZ
4022#ifdef CONFIG_SCHED_HRTICK
4023static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4024{
8f4d37ec
PZ
4025 struct sched_entity *se = &p->se;
4026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4027
4028 WARN_ON(task_rq(p) != rq);
4029
b39e66ea 4030 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4031 u64 slice = sched_slice(cfs_rq, se);
4032 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4033 s64 delta = slice - ran;
4034
4035 if (delta < 0) {
4036 if (rq->curr == p)
8875125e 4037 resched_curr(rq);
8f4d37ec
PZ
4038 return;
4039 }
31656519 4040 hrtick_start(rq, delta);
8f4d37ec
PZ
4041 }
4042}
a4c2f00f
PZ
4043
4044/*
4045 * called from enqueue/dequeue and updates the hrtick when the
4046 * current task is from our class and nr_running is low enough
4047 * to matter.
4048 */
4049static void hrtick_update(struct rq *rq)
4050{
4051 struct task_struct *curr = rq->curr;
4052
b39e66ea 4053 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4054 return;
4055
4056 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4057 hrtick_start_fair(rq, curr);
4058}
55e12e5e 4059#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4060static inline void
4061hrtick_start_fair(struct rq *rq, struct task_struct *p)
4062{
4063}
a4c2f00f
PZ
4064
4065static inline void hrtick_update(struct rq *rq)
4066{
4067}
8f4d37ec
PZ
4068#endif
4069
bf0f6f24
IM
4070/*
4071 * The enqueue_task method is called before nr_running is
4072 * increased. Here we update the fair scheduling stats and
4073 * then put the task into the rbtree:
4074 */
ea87bb78 4075static void
371fd7e7 4076enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4077{
4078 struct cfs_rq *cfs_rq;
62fb1851 4079 struct sched_entity *se = &p->se;
bf0f6f24
IM
4080
4081 for_each_sched_entity(se) {
62fb1851 4082 if (se->on_rq)
bf0f6f24
IM
4083 break;
4084 cfs_rq = cfs_rq_of(se);
88ec22d3 4085 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4086
4087 /*
4088 * end evaluation on encountering a throttled cfs_rq
4089 *
4090 * note: in the case of encountering a throttled cfs_rq we will
4091 * post the final h_nr_running increment below.
4092 */
4093 if (cfs_rq_throttled(cfs_rq))
4094 break;
953bfcd1 4095 cfs_rq->h_nr_running++;
85dac906 4096
88ec22d3 4097 flags = ENQUEUE_WAKEUP;
bf0f6f24 4098 }
8f4d37ec 4099
2069dd75 4100 for_each_sched_entity(se) {
0f317143 4101 cfs_rq = cfs_rq_of(se);
953bfcd1 4102 cfs_rq->h_nr_running++;
2069dd75 4103
85dac906
PT
4104 if (cfs_rq_throttled(cfs_rq))
4105 break;
4106
9d89c257 4107 update_load_avg(se, 1);
17bc14b7 4108 update_cfs_shares(cfs_rq);
2069dd75
PZ
4109 }
4110
cd126afe 4111 if (!se)
72465447 4112 add_nr_running(rq, 1);
cd126afe 4113
a4c2f00f 4114 hrtick_update(rq);
bf0f6f24
IM
4115}
4116
2f36825b
VP
4117static void set_next_buddy(struct sched_entity *se);
4118
bf0f6f24
IM
4119/*
4120 * The dequeue_task method is called before nr_running is
4121 * decreased. We remove the task from the rbtree and
4122 * update the fair scheduling stats:
4123 */
371fd7e7 4124static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4125{
4126 struct cfs_rq *cfs_rq;
62fb1851 4127 struct sched_entity *se = &p->se;
2f36825b 4128 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4129
4130 for_each_sched_entity(se) {
4131 cfs_rq = cfs_rq_of(se);
371fd7e7 4132 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4133
4134 /*
4135 * end evaluation on encountering a throttled cfs_rq
4136 *
4137 * note: in the case of encountering a throttled cfs_rq we will
4138 * post the final h_nr_running decrement below.
4139 */
4140 if (cfs_rq_throttled(cfs_rq))
4141 break;
953bfcd1 4142 cfs_rq->h_nr_running--;
2069dd75 4143
bf0f6f24 4144 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4145 if (cfs_rq->load.weight) {
4146 /*
4147 * Bias pick_next to pick a task from this cfs_rq, as
4148 * p is sleeping when it is within its sched_slice.
4149 */
4150 if (task_sleep && parent_entity(se))
4151 set_next_buddy(parent_entity(se));
9598c82d
PT
4152
4153 /* avoid re-evaluating load for this entity */
4154 se = parent_entity(se);
bf0f6f24 4155 break;
2f36825b 4156 }
371fd7e7 4157 flags |= DEQUEUE_SLEEP;
bf0f6f24 4158 }
8f4d37ec 4159
2069dd75 4160 for_each_sched_entity(se) {
0f317143 4161 cfs_rq = cfs_rq_of(se);
953bfcd1 4162 cfs_rq->h_nr_running--;
2069dd75 4163
85dac906
PT
4164 if (cfs_rq_throttled(cfs_rq))
4165 break;
4166
9d89c257 4167 update_load_avg(se, 1);
17bc14b7 4168 update_cfs_shares(cfs_rq);
2069dd75
PZ
4169 }
4170
cd126afe 4171 if (!se)
72465447 4172 sub_nr_running(rq, 1);
cd126afe 4173
a4c2f00f 4174 hrtick_update(rq);
bf0f6f24
IM
4175}
4176
e7693a36 4177#ifdef CONFIG_SMP
3289bdb4
PZ
4178
4179/*
4180 * per rq 'load' arrray crap; XXX kill this.
4181 */
4182
4183/*
4184 * The exact cpuload at various idx values, calculated at every tick would be
4185 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4186 *
4187 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4188 * on nth tick when cpu may be busy, then we have:
4189 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4190 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4191 *
4192 * decay_load_missed() below does efficient calculation of
4193 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4194 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4195 *
4196 * The calculation is approximated on a 128 point scale.
4197 * degrade_zero_ticks is the number of ticks after which load at any
4198 * particular idx is approximated to be zero.
4199 * degrade_factor is a precomputed table, a row for each load idx.
4200 * Each column corresponds to degradation factor for a power of two ticks,
4201 * based on 128 point scale.
4202 * Example:
4203 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4204 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4205 *
4206 * With this power of 2 load factors, we can degrade the load n times
4207 * by looking at 1 bits in n and doing as many mult/shift instead of
4208 * n mult/shifts needed by the exact degradation.
4209 */
4210#define DEGRADE_SHIFT 7
4211static const unsigned char
4212 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4213static const unsigned char
4214 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4215 {0, 0, 0, 0, 0, 0, 0, 0},
4216 {64, 32, 8, 0, 0, 0, 0, 0},
4217 {96, 72, 40, 12, 1, 0, 0},
4218 {112, 98, 75, 43, 15, 1, 0},
4219 {120, 112, 98, 76, 45, 16, 2} };
4220
4221/*
4222 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4223 * would be when CPU is idle and so we just decay the old load without
4224 * adding any new load.
4225 */
4226static unsigned long
4227decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4228{
4229 int j = 0;
4230
4231 if (!missed_updates)
4232 return load;
4233
4234 if (missed_updates >= degrade_zero_ticks[idx])
4235 return 0;
4236
4237 if (idx == 1)
4238 return load >> missed_updates;
4239
4240 while (missed_updates) {
4241 if (missed_updates % 2)
4242 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4243
4244 missed_updates >>= 1;
4245 j++;
4246 }
4247 return load;
4248}
4249
4250/*
4251 * Update rq->cpu_load[] statistics. This function is usually called every
4252 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4253 * every tick. We fix it up based on jiffies.
4254 */
4255static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4256 unsigned long pending_updates)
4257{
4258 int i, scale;
4259
4260 this_rq->nr_load_updates++;
4261
4262 /* Update our load: */
4263 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4264 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4265 unsigned long old_load, new_load;
4266
4267 /* scale is effectively 1 << i now, and >> i divides by scale */
4268
4269 old_load = this_rq->cpu_load[i];
4270 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4271 new_load = this_load;
4272 /*
4273 * Round up the averaging division if load is increasing. This
4274 * prevents us from getting stuck on 9 if the load is 10, for
4275 * example.
4276 */
4277 if (new_load > old_load)
4278 new_load += scale - 1;
4279
4280 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4281 }
4282
4283 sched_avg_update(this_rq);
4284}
4285
7ea241af
YD
4286/* Used instead of source_load when we know the type == 0 */
4287static unsigned long weighted_cpuload(const int cpu)
4288{
4289 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4290}
4291
3289bdb4
PZ
4292#ifdef CONFIG_NO_HZ_COMMON
4293/*
4294 * There is no sane way to deal with nohz on smp when using jiffies because the
4295 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4296 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4297 *
4298 * Therefore we cannot use the delta approach from the regular tick since that
4299 * would seriously skew the load calculation. However we'll make do for those
4300 * updates happening while idle (nohz_idle_balance) or coming out of idle
4301 * (tick_nohz_idle_exit).
4302 *
4303 * This means we might still be one tick off for nohz periods.
4304 */
4305
4306/*
4307 * Called from nohz_idle_balance() to update the load ratings before doing the
4308 * idle balance.
4309 */
4310static void update_idle_cpu_load(struct rq *this_rq)
4311{
316c1608 4312 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4313 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4314 unsigned long pending_updates;
4315
4316 /*
4317 * bail if there's load or we're actually up-to-date.
4318 */
4319 if (load || curr_jiffies == this_rq->last_load_update_tick)
4320 return;
4321
4322 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4323 this_rq->last_load_update_tick = curr_jiffies;
4324
4325 __update_cpu_load(this_rq, load, pending_updates);
4326}
4327
4328/*
4329 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4330 */
4331void update_cpu_load_nohz(void)
4332{
4333 struct rq *this_rq = this_rq();
316c1608 4334 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4335 unsigned long pending_updates;
4336
4337 if (curr_jiffies == this_rq->last_load_update_tick)
4338 return;
4339
4340 raw_spin_lock(&this_rq->lock);
4341 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4342 if (pending_updates) {
4343 this_rq->last_load_update_tick = curr_jiffies;
4344 /*
4345 * We were idle, this means load 0, the current load might be
4346 * !0 due to remote wakeups and the sort.
4347 */
4348 __update_cpu_load(this_rq, 0, pending_updates);
4349 }
4350 raw_spin_unlock(&this_rq->lock);
4351}
4352#endif /* CONFIG_NO_HZ */
4353
4354/*
4355 * Called from scheduler_tick()
4356 */
4357void update_cpu_load_active(struct rq *this_rq)
4358{
7ea241af 4359 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4360 /*
4361 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4362 */
4363 this_rq->last_load_update_tick = jiffies;
4364 __update_cpu_load(this_rq, load, 1);
4365}
4366
029632fb
PZ
4367/*
4368 * Return a low guess at the load of a migration-source cpu weighted
4369 * according to the scheduling class and "nice" value.
4370 *
4371 * We want to under-estimate the load of migration sources, to
4372 * balance conservatively.
4373 */
4374static unsigned long source_load(int cpu, int type)
4375{
4376 struct rq *rq = cpu_rq(cpu);
4377 unsigned long total = weighted_cpuload(cpu);
4378
4379 if (type == 0 || !sched_feat(LB_BIAS))
4380 return total;
4381
4382 return min(rq->cpu_load[type-1], total);
4383}
4384
4385/*
4386 * Return a high guess at the load of a migration-target cpu weighted
4387 * according to the scheduling class and "nice" value.
4388 */
4389static unsigned long target_load(int cpu, int type)
4390{
4391 struct rq *rq = cpu_rq(cpu);
4392 unsigned long total = weighted_cpuload(cpu);
4393
4394 if (type == 0 || !sched_feat(LB_BIAS))
4395 return total;
4396
4397 return max(rq->cpu_load[type-1], total);
4398}
4399
ced549fa 4400static unsigned long capacity_of(int cpu)
029632fb 4401{
ced549fa 4402 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4403}
4404
ca6d75e6
VG
4405static unsigned long capacity_orig_of(int cpu)
4406{
4407 return cpu_rq(cpu)->cpu_capacity_orig;
4408}
4409
029632fb
PZ
4410static unsigned long cpu_avg_load_per_task(int cpu)
4411{
4412 struct rq *rq = cpu_rq(cpu);
316c1608 4413 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4414 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4415
4416 if (nr_running)
b92486cb 4417 return load_avg / nr_running;
029632fb
PZ
4418
4419 return 0;
4420}
4421
62470419
MW
4422static void record_wakee(struct task_struct *p)
4423{
4424 /*
4425 * Rough decay (wiping) for cost saving, don't worry
4426 * about the boundary, really active task won't care
4427 * about the loss.
4428 */
2538d960 4429 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4430 current->wakee_flips >>= 1;
62470419
MW
4431 current->wakee_flip_decay_ts = jiffies;
4432 }
4433
4434 if (current->last_wakee != p) {
4435 current->last_wakee = p;
4436 current->wakee_flips++;
4437 }
4438}
098fb9db 4439
74f8e4b2 4440static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4441{
4442 struct sched_entity *se = &p->se;
4443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4444 u64 min_vruntime;
4445
4446#ifndef CONFIG_64BIT
4447 u64 min_vruntime_copy;
88ec22d3 4448
3fe1698b
PZ
4449 do {
4450 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4451 smp_rmb();
4452 min_vruntime = cfs_rq->min_vruntime;
4453 } while (min_vruntime != min_vruntime_copy);
4454#else
4455 min_vruntime = cfs_rq->min_vruntime;
4456#endif
88ec22d3 4457
3fe1698b 4458 se->vruntime -= min_vruntime;
62470419 4459 record_wakee(p);
88ec22d3
PZ
4460}
4461
bb3469ac 4462#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4463/*
4464 * effective_load() calculates the load change as seen from the root_task_group
4465 *
4466 * Adding load to a group doesn't make a group heavier, but can cause movement
4467 * of group shares between cpus. Assuming the shares were perfectly aligned one
4468 * can calculate the shift in shares.
cf5f0acf
PZ
4469 *
4470 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4471 * on this @cpu and results in a total addition (subtraction) of @wg to the
4472 * total group weight.
4473 *
4474 * Given a runqueue weight distribution (rw_i) we can compute a shares
4475 * distribution (s_i) using:
4476 *
4477 * s_i = rw_i / \Sum rw_j (1)
4478 *
4479 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4480 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4481 * shares distribution (s_i):
4482 *
4483 * rw_i = { 2, 4, 1, 0 }
4484 * s_i = { 2/7, 4/7, 1/7, 0 }
4485 *
4486 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4487 * task used to run on and the CPU the waker is running on), we need to
4488 * compute the effect of waking a task on either CPU and, in case of a sync
4489 * wakeup, compute the effect of the current task going to sleep.
4490 *
4491 * So for a change of @wl to the local @cpu with an overall group weight change
4492 * of @wl we can compute the new shares distribution (s'_i) using:
4493 *
4494 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4495 *
4496 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4497 * differences in waking a task to CPU 0. The additional task changes the
4498 * weight and shares distributions like:
4499 *
4500 * rw'_i = { 3, 4, 1, 0 }
4501 * s'_i = { 3/8, 4/8, 1/8, 0 }
4502 *
4503 * We can then compute the difference in effective weight by using:
4504 *
4505 * dw_i = S * (s'_i - s_i) (3)
4506 *
4507 * Where 'S' is the group weight as seen by its parent.
4508 *
4509 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4510 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4511 * 4/7) times the weight of the group.
f5bfb7d9 4512 */
2069dd75 4513static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4514{
4be9daaa 4515 struct sched_entity *se = tg->se[cpu];
f1d239f7 4516
9722c2da 4517 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4518 return wl;
4519
4be9daaa 4520 for_each_sched_entity(se) {
cf5f0acf 4521 long w, W;
4be9daaa 4522
977dda7c 4523 tg = se->my_q->tg;
bb3469ac 4524
cf5f0acf
PZ
4525 /*
4526 * W = @wg + \Sum rw_j
4527 */
4528 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4529
cf5f0acf
PZ
4530 /*
4531 * w = rw_i + @wl
4532 */
7ea241af 4533 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4534
cf5f0acf
PZ
4535 /*
4536 * wl = S * s'_i; see (2)
4537 */
4538 if (W > 0 && w < W)
32a8df4e 4539 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4540 else
4541 wl = tg->shares;
940959e9 4542
cf5f0acf
PZ
4543 /*
4544 * Per the above, wl is the new se->load.weight value; since
4545 * those are clipped to [MIN_SHARES, ...) do so now. See
4546 * calc_cfs_shares().
4547 */
977dda7c
PT
4548 if (wl < MIN_SHARES)
4549 wl = MIN_SHARES;
cf5f0acf
PZ
4550
4551 /*
4552 * wl = dw_i = S * (s'_i - s_i); see (3)
4553 */
9d89c257 4554 wl -= se->avg.load_avg;
cf5f0acf
PZ
4555
4556 /*
4557 * Recursively apply this logic to all parent groups to compute
4558 * the final effective load change on the root group. Since
4559 * only the @tg group gets extra weight, all parent groups can
4560 * only redistribute existing shares. @wl is the shift in shares
4561 * resulting from this level per the above.
4562 */
4be9daaa 4563 wg = 0;
4be9daaa 4564 }
bb3469ac 4565
4be9daaa 4566 return wl;
bb3469ac
PZ
4567}
4568#else
4be9daaa 4569
58d081b5 4570static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4571{
83378269 4572 return wl;
bb3469ac 4573}
4be9daaa 4574
bb3469ac
PZ
4575#endif
4576
63b0e9ed
MG
4577/*
4578 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4579 * A waker of many should wake a different task than the one last awakened
4580 * at a frequency roughly N times higher than one of its wakees. In order
4581 * to determine whether we should let the load spread vs consolodating to
4582 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4583 * partner, and a factor of lls_size higher frequency in the other. With
4584 * both conditions met, we can be relatively sure that the relationship is
4585 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4586 * being client/server, worker/dispatcher, interrupt source or whatever is
4587 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4588 */
62470419
MW
4589static int wake_wide(struct task_struct *p)
4590{
63b0e9ed
MG
4591 unsigned int master = current->wakee_flips;
4592 unsigned int slave = p->wakee_flips;
7d9ffa89 4593 int factor = this_cpu_read(sd_llc_size);
62470419 4594
63b0e9ed
MG
4595 if (master < slave)
4596 swap(master, slave);
4597 if (slave < factor || master < slave * factor)
4598 return 0;
4599 return 1;
62470419
MW
4600}
4601
c88d5910 4602static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4603{
e37b6a7b 4604 s64 this_load, load;
bd61c98f 4605 s64 this_eff_load, prev_eff_load;
c88d5910 4606 int idx, this_cpu, prev_cpu;
c88d5910 4607 struct task_group *tg;
83378269 4608 unsigned long weight;
b3137bc8 4609 int balanced;
098fb9db 4610
c88d5910
PZ
4611 idx = sd->wake_idx;
4612 this_cpu = smp_processor_id();
4613 prev_cpu = task_cpu(p);
4614 load = source_load(prev_cpu, idx);
4615 this_load = target_load(this_cpu, idx);
098fb9db 4616
b3137bc8
MG
4617 /*
4618 * If sync wakeup then subtract the (maximum possible)
4619 * effect of the currently running task from the load
4620 * of the current CPU:
4621 */
83378269
PZ
4622 if (sync) {
4623 tg = task_group(current);
9d89c257 4624 weight = current->se.avg.load_avg;
83378269 4625
c88d5910 4626 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4627 load += effective_load(tg, prev_cpu, 0, -weight);
4628 }
b3137bc8 4629
83378269 4630 tg = task_group(p);
9d89c257 4631 weight = p->se.avg.load_avg;
b3137bc8 4632
71a29aa7
PZ
4633 /*
4634 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4635 * due to the sync cause above having dropped this_load to 0, we'll
4636 * always have an imbalance, but there's really nothing you can do
4637 * about that, so that's good too.
71a29aa7
PZ
4638 *
4639 * Otherwise check if either cpus are near enough in load to allow this
4640 * task to be woken on this_cpu.
4641 */
bd61c98f
VG
4642 this_eff_load = 100;
4643 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4644
bd61c98f
VG
4645 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4646 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4647
bd61c98f 4648 if (this_load > 0) {
e51fd5e2
PZ
4649 this_eff_load *= this_load +
4650 effective_load(tg, this_cpu, weight, weight);
4651
e51fd5e2 4652 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4653 }
e51fd5e2 4654
bd61c98f 4655 balanced = this_eff_load <= prev_eff_load;
098fb9db 4656
41acab88 4657 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4658
05bfb65f
VG
4659 if (!balanced)
4660 return 0;
098fb9db 4661
05bfb65f
VG
4662 schedstat_inc(sd, ttwu_move_affine);
4663 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4664
4665 return 1;
098fb9db
IM
4666}
4667
aaee1203
PZ
4668/*
4669 * find_idlest_group finds and returns the least busy CPU group within the
4670 * domain.
4671 */
4672static struct sched_group *
78e7ed53 4673find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4674 int this_cpu, int sd_flag)
e7693a36 4675{
b3bd3de6 4676 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4677 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4678 int load_idx = sd->forkexec_idx;
aaee1203 4679 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4680
c44f2a02
VG
4681 if (sd_flag & SD_BALANCE_WAKE)
4682 load_idx = sd->wake_idx;
4683
aaee1203
PZ
4684 do {
4685 unsigned long load, avg_load;
4686 int local_group;
4687 int i;
e7693a36 4688
aaee1203
PZ
4689 /* Skip over this group if it has no CPUs allowed */
4690 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4691 tsk_cpus_allowed(p)))
aaee1203
PZ
4692 continue;
4693
4694 local_group = cpumask_test_cpu(this_cpu,
4695 sched_group_cpus(group));
4696
4697 /* Tally up the load of all CPUs in the group */
4698 avg_load = 0;
4699
4700 for_each_cpu(i, sched_group_cpus(group)) {
4701 /* Bias balancing toward cpus of our domain */
4702 if (local_group)
4703 load = source_load(i, load_idx);
4704 else
4705 load = target_load(i, load_idx);
4706
4707 avg_load += load;
4708 }
4709
63b2ca30 4710 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4711 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4712
4713 if (local_group) {
4714 this_load = avg_load;
aaee1203
PZ
4715 } else if (avg_load < min_load) {
4716 min_load = avg_load;
4717 idlest = group;
4718 }
4719 } while (group = group->next, group != sd->groups);
4720
4721 if (!idlest || 100*this_load < imbalance*min_load)
4722 return NULL;
4723 return idlest;
4724}
4725
4726/*
4727 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4728 */
4729static int
4730find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4731{
4732 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4733 unsigned int min_exit_latency = UINT_MAX;
4734 u64 latest_idle_timestamp = 0;
4735 int least_loaded_cpu = this_cpu;
4736 int shallowest_idle_cpu = -1;
aaee1203
PZ
4737 int i;
4738
4739 /* Traverse only the allowed CPUs */
fa17b507 4740 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4741 if (idle_cpu(i)) {
4742 struct rq *rq = cpu_rq(i);
4743 struct cpuidle_state *idle = idle_get_state(rq);
4744 if (idle && idle->exit_latency < min_exit_latency) {
4745 /*
4746 * We give priority to a CPU whose idle state
4747 * has the smallest exit latency irrespective
4748 * of any idle timestamp.
4749 */
4750 min_exit_latency = idle->exit_latency;
4751 latest_idle_timestamp = rq->idle_stamp;
4752 shallowest_idle_cpu = i;
4753 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4754 rq->idle_stamp > latest_idle_timestamp) {
4755 /*
4756 * If equal or no active idle state, then
4757 * the most recently idled CPU might have
4758 * a warmer cache.
4759 */
4760 latest_idle_timestamp = rq->idle_stamp;
4761 shallowest_idle_cpu = i;
4762 }
9f96742a 4763 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4764 load = weighted_cpuload(i);
4765 if (load < min_load || (load == min_load && i == this_cpu)) {
4766 min_load = load;
4767 least_loaded_cpu = i;
4768 }
e7693a36
GH
4769 }
4770 }
4771
83a0a96a 4772 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4773}
e7693a36 4774
a50bde51
PZ
4775/*
4776 * Try and locate an idle CPU in the sched_domain.
4777 */
99bd5e2f 4778static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4779{
99bd5e2f 4780 struct sched_domain *sd;
37407ea7 4781 struct sched_group *sg;
e0a79f52 4782 int i = task_cpu(p);
a50bde51 4783
e0a79f52
MG
4784 if (idle_cpu(target))
4785 return target;
99bd5e2f
SS
4786
4787 /*
e0a79f52 4788 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4789 */
e0a79f52
MG
4790 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4791 return i;
a50bde51
PZ
4792
4793 /*
37407ea7 4794 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4795 */
518cd623 4796 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4797 for_each_lower_domain(sd) {
37407ea7
LT
4798 sg = sd->groups;
4799 do {
4800 if (!cpumask_intersects(sched_group_cpus(sg),
4801 tsk_cpus_allowed(p)))
4802 goto next;
4803
4804 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4805 if (i == target || !idle_cpu(i))
37407ea7
LT
4806 goto next;
4807 }
970e1789 4808
37407ea7
LT
4809 target = cpumask_first_and(sched_group_cpus(sg),
4810 tsk_cpus_allowed(p));
4811 goto done;
4812next:
4813 sg = sg->next;
4814 } while (sg != sd->groups);
4815 }
4816done:
a50bde51
PZ
4817 return target;
4818}
8bb5b00c
VG
4819/*
4820 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4821 * tasks. The unit of the return value must be the one of capacity so we can
4822 * compare the usage with the capacity of the CPU that is available for CFS
4823 * task (ie cpu_capacity).
9d89c257 4824 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4825 * CPU. It represents the amount of utilization of a CPU in the range
4826 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4827 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4828 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4829 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4830 * after migrating tasks until the average stabilizes with the new running
4831 * time. So we need to check that the usage stays into the range
4832 * [0..cpu_capacity_orig] and cap if necessary.
4833 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4834 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4835 */
4836static int get_cpu_usage(int cpu)
4837{
9d89c257 4838 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4839 unsigned long capacity = capacity_orig_of(cpu);
4840
4841 if (usage >= SCHED_LOAD_SCALE)
4842 return capacity;
4843
4844 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4845}
a50bde51 4846
aaee1203 4847/*
de91b9cb
MR
4848 * select_task_rq_fair: Select target runqueue for the waking task in domains
4849 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4850 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4851 *
de91b9cb
MR
4852 * Balances load by selecting the idlest cpu in the idlest group, or under
4853 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4854 *
de91b9cb 4855 * Returns the target cpu number.
aaee1203
PZ
4856 *
4857 * preempt must be disabled.
4858 */
0017d735 4859static int
ac66f547 4860select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4861{
29cd8bae 4862 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4863 int cpu = smp_processor_id();
63b0e9ed 4864 int new_cpu = prev_cpu;
99bd5e2f 4865 int want_affine = 0;
5158f4e4 4866 int sync = wake_flags & WF_SYNC;
c88d5910 4867
a8edd075 4868 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4869 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4870
dce840a0 4871 rcu_read_lock();
aaee1203 4872 for_each_domain(cpu, tmp) {
e4f42888 4873 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4874 break;
e4f42888 4875
fe3bcfe1 4876 /*
99bd5e2f
SS
4877 * If both cpu and prev_cpu are part of this domain,
4878 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4879 */
99bd5e2f
SS
4880 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4881 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4882 affine_sd = tmp;
29cd8bae 4883 break;
f03542a7 4884 }
29cd8bae 4885
f03542a7 4886 if (tmp->flags & sd_flag)
29cd8bae 4887 sd = tmp;
63b0e9ed
MG
4888 else if (!want_affine)
4889 break;
29cd8bae
PZ
4890 }
4891
63b0e9ed
MG
4892 if (affine_sd) {
4893 sd = NULL; /* Prefer wake_affine over balance flags */
4894 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4895 new_cpu = cpu;
8b911acd 4896 }
e7693a36 4897
63b0e9ed
MG
4898 if (!sd) {
4899 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4900 new_cpu = select_idle_sibling(p, new_cpu);
4901
4902 } else while (sd) {
aaee1203 4903 struct sched_group *group;
c88d5910 4904 int weight;
098fb9db 4905
0763a660 4906 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4907 sd = sd->child;
4908 continue;
4909 }
098fb9db 4910
c44f2a02 4911 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4912 if (!group) {
4913 sd = sd->child;
4914 continue;
4915 }
4ae7d5ce 4916
d7c33c49 4917 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4918 if (new_cpu == -1 || new_cpu == cpu) {
4919 /* Now try balancing at a lower domain level of cpu */
4920 sd = sd->child;
4921 continue;
e7693a36 4922 }
aaee1203
PZ
4923
4924 /* Now try balancing at a lower domain level of new_cpu */
4925 cpu = new_cpu;
669c55e9 4926 weight = sd->span_weight;
aaee1203
PZ
4927 sd = NULL;
4928 for_each_domain(cpu, tmp) {
669c55e9 4929 if (weight <= tmp->span_weight)
aaee1203 4930 break;
0763a660 4931 if (tmp->flags & sd_flag)
aaee1203
PZ
4932 sd = tmp;
4933 }
4934 /* while loop will break here if sd == NULL */
e7693a36 4935 }
dce840a0 4936 rcu_read_unlock();
e7693a36 4937
c88d5910 4938 return new_cpu;
e7693a36 4939}
0a74bef8
PT
4940
4941/*
4942 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4943 * cfs_rq_of(p) references at time of call are still valid and identify the
4944 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4945 * other assumptions, including the state of rq->lock, should be made.
4946 */
9d89c257 4947static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4948{
aff3e498 4949 /*
9d89c257
YD
4950 * We are supposed to update the task to "current" time, then its up to date
4951 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4952 * what current time is, so simply throw away the out-of-date time. This
4953 * will result in the wakee task is less decayed, but giving the wakee more
4954 * load sounds not bad.
aff3e498 4955 */
9d89c257
YD
4956 remove_entity_load_avg(&p->se);
4957
4958 /* Tell new CPU we are migrated */
4959 p->se.avg.last_update_time = 0;
3944a927
BS
4960
4961 /* We have migrated, no longer consider this task hot */
9d89c257 4962 p->se.exec_start = 0;
0a74bef8 4963}
12695578
YD
4964
4965static void task_dead_fair(struct task_struct *p)
4966{
4967 remove_entity_load_avg(&p->se);
4968}
e7693a36
GH
4969#endif /* CONFIG_SMP */
4970
e52fb7c0
PZ
4971static unsigned long
4972wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4973{
4974 unsigned long gran = sysctl_sched_wakeup_granularity;
4975
4976 /*
e52fb7c0
PZ
4977 * Since its curr running now, convert the gran from real-time
4978 * to virtual-time in his units.
13814d42
MG
4979 *
4980 * By using 'se' instead of 'curr' we penalize light tasks, so
4981 * they get preempted easier. That is, if 'se' < 'curr' then
4982 * the resulting gran will be larger, therefore penalizing the
4983 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4984 * be smaller, again penalizing the lighter task.
4985 *
4986 * This is especially important for buddies when the leftmost
4987 * task is higher priority than the buddy.
0bbd3336 4988 */
f4ad9bd2 4989 return calc_delta_fair(gran, se);
0bbd3336
PZ
4990}
4991
464b7527
PZ
4992/*
4993 * Should 'se' preempt 'curr'.
4994 *
4995 * |s1
4996 * |s2
4997 * |s3
4998 * g
4999 * |<--->|c
5000 *
5001 * w(c, s1) = -1
5002 * w(c, s2) = 0
5003 * w(c, s3) = 1
5004 *
5005 */
5006static int
5007wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5008{
5009 s64 gran, vdiff = curr->vruntime - se->vruntime;
5010
5011 if (vdiff <= 0)
5012 return -1;
5013
e52fb7c0 5014 gran = wakeup_gran(curr, se);
464b7527
PZ
5015 if (vdiff > gran)
5016 return 1;
5017
5018 return 0;
5019}
5020
02479099
PZ
5021static void set_last_buddy(struct sched_entity *se)
5022{
69c80f3e
VP
5023 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5024 return;
5025
5026 for_each_sched_entity(se)
5027 cfs_rq_of(se)->last = se;
02479099
PZ
5028}
5029
5030static void set_next_buddy(struct sched_entity *se)
5031{
69c80f3e
VP
5032 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5033 return;
5034
5035 for_each_sched_entity(se)
5036 cfs_rq_of(se)->next = se;
02479099
PZ
5037}
5038
ac53db59
RR
5039static void set_skip_buddy(struct sched_entity *se)
5040{
69c80f3e
VP
5041 for_each_sched_entity(se)
5042 cfs_rq_of(se)->skip = se;
ac53db59
RR
5043}
5044
bf0f6f24
IM
5045/*
5046 * Preempt the current task with a newly woken task if needed:
5047 */
5a9b86f6 5048static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5049{
5050 struct task_struct *curr = rq->curr;
8651a86c 5051 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5052 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5053 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5054 int next_buddy_marked = 0;
bf0f6f24 5055
4ae7d5ce
IM
5056 if (unlikely(se == pse))
5057 return;
5058
5238cdd3 5059 /*
163122b7 5060 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5061 * unconditionally check_prempt_curr() after an enqueue (which may have
5062 * lead to a throttle). This both saves work and prevents false
5063 * next-buddy nomination below.
5064 */
5065 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5066 return;
5067
2f36825b 5068 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5069 set_next_buddy(pse);
2f36825b
VP
5070 next_buddy_marked = 1;
5071 }
57fdc26d 5072
aec0a514
BR
5073 /*
5074 * We can come here with TIF_NEED_RESCHED already set from new task
5075 * wake up path.
5238cdd3
PT
5076 *
5077 * Note: this also catches the edge-case of curr being in a throttled
5078 * group (e.g. via set_curr_task), since update_curr() (in the
5079 * enqueue of curr) will have resulted in resched being set. This
5080 * prevents us from potentially nominating it as a false LAST_BUDDY
5081 * below.
aec0a514
BR
5082 */
5083 if (test_tsk_need_resched(curr))
5084 return;
5085
a2f5c9ab
DH
5086 /* Idle tasks are by definition preempted by non-idle tasks. */
5087 if (unlikely(curr->policy == SCHED_IDLE) &&
5088 likely(p->policy != SCHED_IDLE))
5089 goto preempt;
5090
91c234b4 5091 /*
a2f5c9ab
DH
5092 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5093 * is driven by the tick):
91c234b4 5094 */
8ed92e51 5095 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5096 return;
bf0f6f24 5097
464b7527 5098 find_matching_se(&se, &pse);
9bbd7374 5099 update_curr(cfs_rq_of(se));
002f128b 5100 BUG_ON(!pse);
2f36825b
VP
5101 if (wakeup_preempt_entity(se, pse) == 1) {
5102 /*
5103 * Bias pick_next to pick the sched entity that is
5104 * triggering this preemption.
5105 */
5106 if (!next_buddy_marked)
5107 set_next_buddy(pse);
3a7e73a2 5108 goto preempt;
2f36825b 5109 }
464b7527 5110
3a7e73a2 5111 return;
a65ac745 5112
3a7e73a2 5113preempt:
8875125e 5114 resched_curr(rq);
3a7e73a2
PZ
5115 /*
5116 * Only set the backward buddy when the current task is still
5117 * on the rq. This can happen when a wakeup gets interleaved
5118 * with schedule on the ->pre_schedule() or idle_balance()
5119 * point, either of which can * drop the rq lock.
5120 *
5121 * Also, during early boot the idle thread is in the fair class,
5122 * for obvious reasons its a bad idea to schedule back to it.
5123 */
5124 if (unlikely(!se->on_rq || curr == rq->idle))
5125 return;
5126
5127 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5128 set_last_buddy(se);
bf0f6f24
IM
5129}
5130
606dba2e
PZ
5131static struct task_struct *
5132pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5133{
5134 struct cfs_rq *cfs_rq = &rq->cfs;
5135 struct sched_entity *se;
678d5718 5136 struct task_struct *p;
37e117c0 5137 int new_tasks;
678d5718 5138
6e83125c 5139again:
678d5718
PZ
5140#ifdef CONFIG_FAIR_GROUP_SCHED
5141 if (!cfs_rq->nr_running)
38033c37 5142 goto idle;
678d5718 5143
3f1d2a31 5144 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5145 goto simple;
5146
5147 /*
5148 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5149 * likely that a next task is from the same cgroup as the current.
5150 *
5151 * Therefore attempt to avoid putting and setting the entire cgroup
5152 * hierarchy, only change the part that actually changes.
5153 */
5154
5155 do {
5156 struct sched_entity *curr = cfs_rq->curr;
5157
5158 /*
5159 * Since we got here without doing put_prev_entity() we also
5160 * have to consider cfs_rq->curr. If it is still a runnable
5161 * entity, update_curr() will update its vruntime, otherwise
5162 * forget we've ever seen it.
5163 */
54d27365
BS
5164 if (curr) {
5165 if (curr->on_rq)
5166 update_curr(cfs_rq);
5167 else
5168 curr = NULL;
678d5718 5169
54d27365
BS
5170 /*
5171 * This call to check_cfs_rq_runtime() will do the
5172 * throttle and dequeue its entity in the parent(s).
5173 * Therefore the 'simple' nr_running test will indeed
5174 * be correct.
5175 */
5176 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5177 goto simple;
5178 }
678d5718
PZ
5179
5180 se = pick_next_entity(cfs_rq, curr);
5181 cfs_rq = group_cfs_rq(se);
5182 } while (cfs_rq);
5183
5184 p = task_of(se);
5185
5186 /*
5187 * Since we haven't yet done put_prev_entity and if the selected task
5188 * is a different task than we started out with, try and touch the
5189 * least amount of cfs_rqs.
5190 */
5191 if (prev != p) {
5192 struct sched_entity *pse = &prev->se;
5193
5194 while (!(cfs_rq = is_same_group(se, pse))) {
5195 int se_depth = se->depth;
5196 int pse_depth = pse->depth;
5197
5198 if (se_depth <= pse_depth) {
5199 put_prev_entity(cfs_rq_of(pse), pse);
5200 pse = parent_entity(pse);
5201 }
5202 if (se_depth >= pse_depth) {
5203 set_next_entity(cfs_rq_of(se), se);
5204 se = parent_entity(se);
5205 }
5206 }
5207
5208 put_prev_entity(cfs_rq, pse);
5209 set_next_entity(cfs_rq, se);
5210 }
5211
5212 if (hrtick_enabled(rq))
5213 hrtick_start_fair(rq, p);
5214
5215 return p;
5216simple:
5217 cfs_rq = &rq->cfs;
5218#endif
bf0f6f24 5219
36ace27e 5220 if (!cfs_rq->nr_running)
38033c37 5221 goto idle;
bf0f6f24 5222
3f1d2a31 5223 put_prev_task(rq, prev);
606dba2e 5224
bf0f6f24 5225 do {
678d5718 5226 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5227 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5228 cfs_rq = group_cfs_rq(se);
5229 } while (cfs_rq);
5230
8f4d37ec 5231 p = task_of(se);
678d5718 5232
b39e66ea
MG
5233 if (hrtick_enabled(rq))
5234 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5235
5236 return p;
38033c37
PZ
5237
5238idle:
cbce1a68
PZ
5239 /*
5240 * This is OK, because current is on_cpu, which avoids it being picked
5241 * for load-balance and preemption/IRQs are still disabled avoiding
5242 * further scheduler activity on it and we're being very careful to
5243 * re-start the picking loop.
5244 */
5245 lockdep_unpin_lock(&rq->lock);
e4aa358b 5246 new_tasks = idle_balance(rq);
cbce1a68 5247 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5248 /*
5249 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5250 * possible for any higher priority task to appear. In that case we
5251 * must re-start the pick_next_entity() loop.
5252 */
e4aa358b 5253 if (new_tasks < 0)
37e117c0
PZ
5254 return RETRY_TASK;
5255
e4aa358b 5256 if (new_tasks > 0)
38033c37 5257 goto again;
38033c37
PZ
5258
5259 return NULL;
bf0f6f24
IM
5260}
5261
5262/*
5263 * Account for a descheduled task:
5264 */
31ee529c 5265static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5266{
5267 struct sched_entity *se = &prev->se;
5268 struct cfs_rq *cfs_rq;
5269
5270 for_each_sched_entity(se) {
5271 cfs_rq = cfs_rq_of(se);
ab6cde26 5272 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5273 }
5274}
5275
ac53db59
RR
5276/*
5277 * sched_yield() is very simple
5278 *
5279 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5280 */
5281static void yield_task_fair(struct rq *rq)
5282{
5283 struct task_struct *curr = rq->curr;
5284 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5285 struct sched_entity *se = &curr->se;
5286
5287 /*
5288 * Are we the only task in the tree?
5289 */
5290 if (unlikely(rq->nr_running == 1))
5291 return;
5292
5293 clear_buddies(cfs_rq, se);
5294
5295 if (curr->policy != SCHED_BATCH) {
5296 update_rq_clock(rq);
5297 /*
5298 * Update run-time statistics of the 'current'.
5299 */
5300 update_curr(cfs_rq);
916671c0
MG
5301 /*
5302 * Tell update_rq_clock() that we've just updated,
5303 * so we don't do microscopic update in schedule()
5304 * and double the fastpath cost.
5305 */
9edfbfed 5306 rq_clock_skip_update(rq, true);
ac53db59
RR
5307 }
5308
5309 set_skip_buddy(se);
5310}
5311
d95f4122
MG
5312static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5313{
5314 struct sched_entity *se = &p->se;
5315
5238cdd3
PT
5316 /* throttled hierarchies are not runnable */
5317 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5318 return false;
5319
5320 /* Tell the scheduler that we'd really like pse to run next. */
5321 set_next_buddy(se);
5322
d95f4122
MG
5323 yield_task_fair(rq);
5324
5325 return true;
5326}
5327
681f3e68 5328#ifdef CONFIG_SMP
bf0f6f24 5329/**************************************************
e9c84cb8
PZ
5330 * Fair scheduling class load-balancing methods.
5331 *
5332 * BASICS
5333 *
5334 * The purpose of load-balancing is to achieve the same basic fairness the
5335 * per-cpu scheduler provides, namely provide a proportional amount of compute
5336 * time to each task. This is expressed in the following equation:
5337 *
5338 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5339 *
5340 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5341 * W_i,0 is defined as:
5342 *
5343 * W_i,0 = \Sum_j w_i,j (2)
5344 *
5345 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5346 * is derived from the nice value as per prio_to_weight[].
5347 *
5348 * The weight average is an exponential decay average of the instantaneous
5349 * weight:
5350 *
5351 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5352 *
ced549fa 5353 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5354 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5355 * can also include other factors [XXX].
5356 *
5357 * To achieve this balance we define a measure of imbalance which follows
5358 * directly from (1):
5359 *
ced549fa 5360 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5361 *
5362 * We them move tasks around to minimize the imbalance. In the continuous
5363 * function space it is obvious this converges, in the discrete case we get
5364 * a few fun cases generally called infeasible weight scenarios.
5365 *
5366 * [XXX expand on:
5367 * - infeasible weights;
5368 * - local vs global optima in the discrete case. ]
5369 *
5370 *
5371 * SCHED DOMAINS
5372 *
5373 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5374 * for all i,j solution, we create a tree of cpus that follows the hardware
5375 * topology where each level pairs two lower groups (or better). This results
5376 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5377 * tree to only the first of the previous level and we decrease the frequency
5378 * of load-balance at each level inv. proportional to the number of cpus in
5379 * the groups.
5380 *
5381 * This yields:
5382 *
5383 * log_2 n 1 n
5384 * \Sum { --- * --- * 2^i } = O(n) (5)
5385 * i = 0 2^i 2^i
5386 * `- size of each group
5387 * | | `- number of cpus doing load-balance
5388 * | `- freq
5389 * `- sum over all levels
5390 *
5391 * Coupled with a limit on how many tasks we can migrate every balance pass,
5392 * this makes (5) the runtime complexity of the balancer.
5393 *
5394 * An important property here is that each CPU is still (indirectly) connected
5395 * to every other cpu in at most O(log n) steps:
5396 *
5397 * The adjacency matrix of the resulting graph is given by:
5398 *
5399 * log_2 n
5400 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5401 * k = 0
5402 *
5403 * And you'll find that:
5404 *
5405 * A^(log_2 n)_i,j != 0 for all i,j (7)
5406 *
5407 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5408 * The task movement gives a factor of O(m), giving a convergence complexity
5409 * of:
5410 *
5411 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5412 *
5413 *
5414 * WORK CONSERVING
5415 *
5416 * In order to avoid CPUs going idle while there's still work to do, new idle
5417 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5418 * tree itself instead of relying on other CPUs to bring it work.
5419 *
5420 * This adds some complexity to both (5) and (8) but it reduces the total idle
5421 * time.
5422 *
5423 * [XXX more?]
5424 *
5425 *
5426 * CGROUPS
5427 *
5428 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5429 *
5430 * s_k,i
5431 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5432 * S_k
5433 *
5434 * Where
5435 *
5436 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5437 *
5438 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5439 *
5440 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5441 * property.
5442 *
5443 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5444 * rewrite all of this once again.]
5445 */
bf0f6f24 5446
ed387b78
HS
5447static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5448
0ec8aa00
PZ
5449enum fbq_type { regular, remote, all };
5450
ddcdf6e7 5451#define LBF_ALL_PINNED 0x01
367456c7 5452#define LBF_NEED_BREAK 0x02
6263322c
PZ
5453#define LBF_DST_PINNED 0x04
5454#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5455
5456struct lb_env {
5457 struct sched_domain *sd;
5458
ddcdf6e7 5459 struct rq *src_rq;
85c1e7da 5460 int src_cpu;
ddcdf6e7
PZ
5461
5462 int dst_cpu;
5463 struct rq *dst_rq;
5464
88b8dac0
SV
5465 struct cpumask *dst_grpmask;
5466 int new_dst_cpu;
ddcdf6e7 5467 enum cpu_idle_type idle;
bd939f45 5468 long imbalance;
b9403130
MW
5469 /* The set of CPUs under consideration for load-balancing */
5470 struct cpumask *cpus;
5471
ddcdf6e7 5472 unsigned int flags;
367456c7
PZ
5473
5474 unsigned int loop;
5475 unsigned int loop_break;
5476 unsigned int loop_max;
0ec8aa00
PZ
5477
5478 enum fbq_type fbq_type;
163122b7 5479 struct list_head tasks;
ddcdf6e7
PZ
5480};
5481
029632fb
PZ
5482/*
5483 * Is this task likely cache-hot:
5484 */
5d5e2b1b 5485static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5486{
5487 s64 delta;
5488
e5673f28
KT
5489 lockdep_assert_held(&env->src_rq->lock);
5490
029632fb
PZ
5491 if (p->sched_class != &fair_sched_class)
5492 return 0;
5493
5494 if (unlikely(p->policy == SCHED_IDLE))
5495 return 0;
5496
5497 /*
5498 * Buddy candidates are cache hot:
5499 */
5d5e2b1b 5500 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5501 (&p->se == cfs_rq_of(&p->se)->next ||
5502 &p->se == cfs_rq_of(&p->se)->last))
5503 return 1;
5504
5505 if (sysctl_sched_migration_cost == -1)
5506 return 1;
5507 if (sysctl_sched_migration_cost == 0)
5508 return 0;
5509
5d5e2b1b 5510 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5511
5512 return delta < (s64)sysctl_sched_migration_cost;
5513}
5514
3a7053b3 5515#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5516/*
2a1ed24c
SD
5517 * Returns 1, if task migration degrades locality
5518 * Returns 0, if task migration improves locality i.e migration preferred.
5519 * Returns -1, if task migration is not affected by locality.
c1ceac62 5520 */
2a1ed24c 5521static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5522{
b1ad065e 5523 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5524 unsigned long src_faults, dst_faults;
3a7053b3
MG
5525 int src_nid, dst_nid;
5526
44dba3d5 5527 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5528 return -1;
5529
5530 if (!sched_feat(NUMA))
5531 return -1;
7a0f3083
MG
5532
5533 src_nid = cpu_to_node(env->src_cpu);
5534 dst_nid = cpu_to_node(env->dst_cpu);
5535
83e1d2cd 5536 if (src_nid == dst_nid)
2a1ed24c 5537 return -1;
7a0f3083 5538
2a1ed24c
SD
5539 /* Migrating away from the preferred node is always bad. */
5540 if (src_nid == p->numa_preferred_nid) {
5541 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5542 return 1;
5543 else
5544 return -1;
5545 }
b1ad065e 5546
c1ceac62
RR
5547 /* Encourage migration to the preferred node. */
5548 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5549 return 0;
b1ad065e 5550
c1ceac62
RR
5551 if (numa_group) {
5552 src_faults = group_faults(p, src_nid);
5553 dst_faults = group_faults(p, dst_nid);
5554 } else {
5555 src_faults = task_faults(p, src_nid);
5556 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5557 }
5558
c1ceac62 5559 return dst_faults < src_faults;
7a0f3083
MG
5560}
5561
3a7053b3 5562#else
2a1ed24c 5563static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5564 struct lb_env *env)
5565{
2a1ed24c 5566 return -1;
7a0f3083 5567}
3a7053b3
MG
5568#endif
5569
1e3c88bd
PZ
5570/*
5571 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5572 */
5573static
8e45cb54 5574int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5575{
2a1ed24c 5576 int tsk_cache_hot;
e5673f28
KT
5577
5578 lockdep_assert_held(&env->src_rq->lock);
5579
1e3c88bd
PZ
5580 /*
5581 * We do not migrate tasks that are:
d3198084 5582 * 1) throttled_lb_pair, or
1e3c88bd 5583 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5584 * 3) running (obviously), or
5585 * 4) are cache-hot on their current CPU.
1e3c88bd 5586 */
d3198084
JK
5587 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5588 return 0;
5589
ddcdf6e7 5590 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5591 int cpu;
88b8dac0 5592
41acab88 5593 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5594
6263322c
PZ
5595 env->flags |= LBF_SOME_PINNED;
5596
88b8dac0
SV
5597 /*
5598 * Remember if this task can be migrated to any other cpu in
5599 * our sched_group. We may want to revisit it if we couldn't
5600 * meet load balance goals by pulling other tasks on src_cpu.
5601 *
5602 * Also avoid computing new_dst_cpu if we have already computed
5603 * one in current iteration.
5604 */
6263322c 5605 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5606 return 0;
5607
e02e60c1
JK
5608 /* Prevent to re-select dst_cpu via env's cpus */
5609 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5610 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5611 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5612 env->new_dst_cpu = cpu;
5613 break;
5614 }
88b8dac0 5615 }
e02e60c1 5616
1e3c88bd
PZ
5617 return 0;
5618 }
88b8dac0
SV
5619
5620 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5621 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5622
ddcdf6e7 5623 if (task_running(env->src_rq, p)) {
41acab88 5624 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5625 return 0;
5626 }
5627
5628 /*
5629 * Aggressive migration if:
3a7053b3
MG
5630 * 1) destination numa is preferred
5631 * 2) task is cache cold, or
5632 * 3) too many balance attempts have failed.
1e3c88bd 5633 */
2a1ed24c
SD
5634 tsk_cache_hot = migrate_degrades_locality(p, env);
5635 if (tsk_cache_hot == -1)
5636 tsk_cache_hot = task_hot(p, env);
3a7053b3 5637
2a1ed24c 5638 if (tsk_cache_hot <= 0 ||
7a96c231 5639 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5640 if (tsk_cache_hot == 1) {
3a7053b3
MG
5641 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5642 schedstat_inc(p, se.statistics.nr_forced_migrations);
5643 }
1e3c88bd
PZ
5644 return 1;
5645 }
5646
4e2dcb73
ZH
5647 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5648 return 0;
1e3c88bd
PZ
5649}
5650
897c395f 5651/*
163122b7
KT
5652 * detach_task() -- detach the task for the migration specified in env
5653 */
5654static void detach_task(struct task_struct *p, struct lb_env *env)
5655{
5656 lockdep_assert_held(&env->src_rq->lock);
5657
5658 deactivate_task(env->src_rq, p, 0);
5659 p->on_rq = TASK_ON_RQ_MIGRATING;
5660 set_task_cpu(p, env->dst_cpu);
5661}
5662
897c395f 5663/*
e5673f28 5664 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5665 * part of active balancing operations within "domain".
897c395f 5666 *
e5673f28 5667 * Returns a task if successful and NULL otherwise.
897c395f 5668 */
e5673f28 5669static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5670{
5671 struct task_struct *p, *n;
897c395f 5672
e5673f28
KT
5673 lockdep_assert_held(&env->src_rq->lock);
5674
367456c7 5675 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5676 if (!can_migrate_task(p, env))
5677 continue;
897c395f 5678
163122b7 5679 detach_task(p, env);
e5673f28 5680
367456c7 5681 /*
e5673f28 5682 * Right now, this is only the second place where
163122b7 5683 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5684 * so we can safely collect stats here rather than
163122b7 5685 * inside detach_tasks().
367456c7
PZ
5686 */
5687 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5688 return p;
897c395f 5689 }
e5673f28 5690 return NULL;
897c395f
PZ
5691}
5692
eb95308e
PZ
5693static const unsigned int sched_nr_migrate_break = 32;
5694
5d6523eb 5695/*
163122b7
KT
5696 * detach_tasks() -- tries to detach up to imbalance weighted load from
5697 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5698 *
163122b7 5699 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5700 */
163122b7 5701static int detach_tasks(struct lb_env *env)
1e3c88bd 5702{
5d6523eb
PZ
5703 struct list_head *tasks = &env->src_rq->cfs_tasks;
5704 struct task_struct *p;
367456c7 5705 unsigned long load;
163122b7
KT
5706 int detached = 0;
5707
5708 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5709
bd939f45 5710 if (env->imbalance <= 0)
5d6523eb 5711 return 0;
1e3c88bd 5712
5d6523eb 5713 while (!list_empty(tasks)) {
985d3a4c
YD
5714 /*
5715 * We don't want to steal all, otherwise we may be treated likewise,
5716 * which could at worst lead to a livelock crash.
5717 */
5718 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5719 break;
5720
5d6523eb 5721 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5722
367456c7
PZ
5723 env->loop++;
5724 /* We've more or less seen every task there is, call it quits */
5d6523eb 5725 if (env->loop > env->loop_max)
367456c7 5726 break;
5d6523eb
PZ
5727
5728 /* take a breather every nr_migrate tasks */
367456c7 5729 if (env->loop > env->loop_break) {
eb95308e 5730 env->loop_break += sched_nr_migrate_break;
8e45cb54 5731 env->flags |= LBF_NEED_BREAK;
ee00e66f 5732 break;
a195f004 5733 }
1e3c88bd 5734
d3198084 5735 if (!can_migrate_task(p, env))
367456c7
PZ
5736 goto next;
5737
5738 load = task_h_load(p);
5d6523eb 5739
eb95308e 5740 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5741 goto next;
5742
bd939f45 5743 if ((load / 2) > env->imbalance)
367456c7 5744 goto next;
1e3c88bd 5745
163122b7
KT
5746 detach_task(p, env);
5747 list_add(&p->se.group_node, &env->tasks);
5748
5749 detached++;
bd939f45 5750 env->imbalance -= load;
1e3c88bd
PZ
5751
5752#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5753 /*
5754 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5755 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5756 * the critical section.
5757 */
5d6523eb 5758 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5759 break;
1e3c88bd
PZ
5760#endif
5761
ee00e66f
PZ
5762 /*
5763 * We only want to steal up to the prescribed amount of
5764 * weighted load.
5765 */
bd939f45 5766 if (env->imbalance <= 0)
ee00e66f 5767 break;
367456c7
PZ
5768
5769 continue;
5770next:
5d6523eb 5771 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5772 }
5d6523eb 5773
1e3c88bd 5774 /*
163122b7
KT
5775 * Right now, this is one of only two places we collect this stat
5776 * so we can safely collect detach_one_task() stats here rather
5777 * than inside detach_one_task().
1e3c88bd 5778 */
163122b7 5779 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5780
163122b7
KT
5781 return detached;
5782}
5783
5784/*
5785 * attach_task() -- attach the task detached by detach_task() to its new rq.
5786 */
5787static void attach_task(struct rq *rq, struct task_struct *p)
5788{
5789 lockdep_assert_held(&rq->lock);
5790
5791 BUG_ON(task_rq(p) != rq);
5792 p->on_rq = TASK_ON_RQ_QUEUED;
5793 activate_task(rq, p, 0);
5794 check_preempt_curr(rq, p, 0);
5795}
5796
5797/*
5798 * attach_one_task() -- attaches the task returned from detach_one_task() to
5799 * its new rq.
5800 */
5801static void attach_one_task(struct rq *rq, struct task_struct *p)
5802{
5803 raw_spin_lock(&rq->lock);
5804 attach_task(rq, p);
5805 raw_spin_unlock(&rq->lock);
5806}
5807
5808/*
5809 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5810 * new rq.
5811 */
5812static void attach_tasks(struct lb_env *env)
5813{
5814 struct list_head *tasks = &env->tasks;
5815 struct task_struct *p;
5816
5817 raw_spin_lock(&env->dst_rq->lock);
5818
5819 while (!list_empty(tasks)) {
5820 p = list_first_entry(tasks, struct task_struct, se.group_node);
5821 list_del_init(&p->se.group_node);
1e3c88bd 5822
163122b7
KT
5823 attach_task(env->dst_rq, p);
5824 }
5825
5826 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5827}
5828
230059de 5829#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5830static void update_blocked_averages(int cpu)
9e3081ca 5831{
9e3081ca 5832 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5833 struct cfs_rq *cfs_rq;
5834 unsigned long flags;
9e3081ca 5835
48a16753
PT
5836 raw_spin_lock_irqsave(&rq->lock, flags);
5837 update_rq_clock(rq);
9d89c257 5838
9763b67f
PZ
5839 /*
5840 * Iterates the task_group tree in a bottom up fashion, see
5841 * list_add_leaf_cfs_rq() for details.
5842 */
64660c86 5843 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5844 /* throttled entities do not contribute to load */
5845 if (throttled_hierarchy(cfs_rq))
5846 continue;
48a16753 5847
9d89c257
YD
5848 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5849 update_tg_load_avg(cfs_rq, 0);
5850 }
48a16753 5851 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5852}
5853
9763b67f 5854/*
68520796 5855 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5856 * This needs to be done in a top-down fashion because the load of a child
5857 * group is a fraction of its parents load.
5858 */
68520796 5859static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5860{
68520796
VD
5861 struct rq *rq = rq_of(cfs_rq);
5862 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5863 unsigned long now = jiffies;
68520796 5864 unsigned long load;
a35b6466 5865
68520796 5866 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5867 return;
5868
68520796
VD
5869 cfs_rq->h_load_next = NULL;
5870 for_each_sched_entity(se) {
5871 cfs_rq = cfs_rq_of(se);
5872 cfs_rq->h_load_next = se;
5873 if (cfs_rq->last_h_load_update == now)
5874 break;
5875 }
a35b6466 5876
68520796 5877 if (!se) {
7ea241af 5878 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5879 cfs_rq->last_h_load_update = now;
5880 }
5881
5882 while ((se = cfs_rq->h_load_next) != NULL) {
5883 load = cfs_rq->h_load;
7ea241af
YD
5884 load = div64_ul(load * se->avg.load_avg,
5885 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5886 cfs_rq = group_cfs_rq(se);
5887 cfs_rq->h_load = load;
5888 cfs_rq->last_h_load_update = now;
5889 }
9763b67f
PZ
5890}
5891
367456c7 5892static unsigned long task_h_load(struct task_struct *p)
230059de 5893{
367456c7 5894 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5895
68520796 5896 update_cfs_rq_h_load(cfs_rq);
9d89c257 5897 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5898 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5899}
5900#else
48a16753 5901static inline void update_blocked_averages(int cpu)
9e3081ca 5902{
6c1d47c0
VG
5903 struct rq *rq = cpu_rq(cpu);
5904 struct cfs_rq *cfs_rq = &rq->cfs;
5905 unsigned long flags;
5906
5907 raw_spin_lock_irqsave(&rq->lock, flags);
5908 update_rq_clock(rq);
5909 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5910 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5911}
5912
367456c7 5913static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5914{
9d89c257 5915 return p->se.avg.load_avg;
1e3c88bd 5916}
230059de 5917#endif
1e3c88bd 5918
1e3c88bd 5919/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5920
5921enum group_type {
5922 group_other = 0,
5923 group_imbalanced,
5924 group_overloaded,
5925};
5926
1e3c88bd
PZ
5927/*
5928 * sg_lb_stats - stats of a sched_group required for load_balancing
5929 */
5930struct sg_lb_stats {
5931 unsigned long avg_load; /*Avg load across the CPUs of the group */
5932 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5933 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5934 unsigned long load_per_task;
63b2ca30 5935 unsigned long group_capacity;
8bb5b00c 5936 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5937 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5938 unsigned int idle_cpus;
5939 unsigned int group_weight;
caeb178c 5940 enum group_type group_type;
ea67821b 5941 int group_no_capacity;
0ec8aa00
PZ
5942#ifdef CONFIG_NUMA_BALANCING
5943 unsigned int nr_numa_running;
5944 unsigned int nr_preferred_running;
5945#endif
1e3c88bd
PZ
5946};
5947
56cf515b
JK
5948/*
5949 * sd_lb_stats - Structure to store the statistics of a sched_domain
5950 * during load balancing.
5951 */
5952struct sd_lb_stats {
5953 struct sched_group *busiest; /* Busiest group in this sd */
5954 struct sched_group *local; /* Local group in this sd */
5955 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5956 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5957 unsigned long avg_load; /* Average load across all groups in sd */
5958
56cf515b 5959 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5960 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5961};
5962
147c5fc2
PZ
5963static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5964{
5965 /*
5966 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5967 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5968 * We must however clear busiest_stat::avg_load because
5969 * update_sd_pick_busiest() reads this before assignment.
5970 */
5971 *sds = (struct sd_lb_stats){
5972 .busiest = NULL,
5973 .local = NULL,
5974 .total_load = 0UL,
63b2ca30 5975 .total_capacity = 0UL,
147c5fc2
PZ
5976 .busiest_stat = {
5977 .avg_load = 0UL,
caeb178c
RR
5978 .sum_nr_running = 0,
5979 .group_type = group_other,
147c5fc2
PZ
5980 },
5981 };
5982}
5983
1e3c88bd
PZ
5984/**
5985 * get_sd_load_idx - Obtain the load index for a given sched domain.
5986 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5987 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5988 *
5989 * Return: The load index.
1e3c88bd
PZ
5990 */
5991static inline int get_sd_load_idx(struct sched_domain *sd,
5992 enum cpu_idle_type idle)
5993{
5994 int load_idx;
5995
5996 switch (idle) {
5997 case CPU_NOT_IDLE:
5998 load_idx = sd->busy_idx;
5999 break;
6000
6001 case CPU_NEWLY_IDLE:
6002 load_idx = sd->newidle_idx;
6003 break;
6004 default:
6005 load_idx = sd->idle_idx;
6006 break;
6007 }
6008
6009 return load_idx;
6010}
6011
26bc3c50 6012static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6013{
26bc3c50
VG
6014 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6015 return sd->smt_gain / sd->span_weight;
1e3c88bd 6016
26bc3c50 6017 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6018}
6019
26bc3c50 6020unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6021{
26bc3c50 6022 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6023}
6024
ced549fa 6025static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6026{
6027 struct rq *rq = cpu_rq(cpu);
b5b4860d 6028 u64 total, used, age_stamp, avg;
cadefd3d 6029 s64 delta;
1e3c88bd 6030
b654f7de
PZ
6031 /*
6032 * Since we're reading these variables without serialization make sure
6033 * we read them once before doing sanity checks on them.
6034 */
316c1608
JL
6035 age_stamp = READ_ONCE(rq->age_stamp);
6036 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6037 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6038
cadefd3d
PZ
6039 if (unlikely(delta < 0))
6040 delta = 0;
6041
6042 total = sched_avg_period() + delta;
aa483808 6043
b5b4860d 6044 used = div_u64(avg, total);
1e3c88bd 6045
b5b4860d
VG
6046 if (likely(used < SCHED_CAPACITY_SCALE))
6047 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6048
b5b4860d 6049 return 1;
1e3c88bd
PZ
6050}
6051
ced549fa 6052static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6053{
ca8ce3d0 6054 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6055 struct sched_group *sdg = sd->groups;
6056
26bc3c50
VG
6057 if (sched_feat(ARCH_CAPACITY))
6058 capacity *= arch_scale_cpu_capacity(sd, cpu);
6059 else
6060 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6061
26bc3c50 6062 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6063
ca6d75e6 6064 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6065
ced549fa 6066 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6067 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6068
ced549fa
NP
6069 if (!capacity)
6070 capacity = 1;
1e3c88bd 6071
ced549fa
NP
6072 cpu_rq(cpu)->cpu_capacity = capacity;
6073 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6074}
6075
63b2ca30 6076void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6077{
6078 struct sched_domain *child = sd->child;
6079 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6080 unsigned long capacity;
4ec4412e
VG
6081 unsigned long interval;
6082
6083 interval = msecs_to_jiffies(sd->balance_interval);
6084 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6085 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6086
6087 if (!child) {
ced549fa 6088 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6089 return;
6090 }
6091
dc7ff76e 6092 capacity = 0;
1e3c88bd 6093
74a5ce20
PZ
6094 if (child->flags & SD_OVERLAP) {
6095 /*
6096 * SD_OVERLAP domains cannot assume that child groups
6097 * span the current group.
6098 */
6099
863bffc8 6100 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6101 struct sched_group_capacity *sgc;
9abf24d4 6102 struct rq *rq = cpu_rq(cpu);
863bffc8 6103
9abf24d4 6104 /*
63b2ca30 6105 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6106 * gets here before we've attached the domains to the
6107 * runqueues.
6108 *
ced549fa
NP
6109 * Use capacity_of(), which is set irrespective of domains
6110 * in update_cpu_capacity().
9abf24d4 6111 *
dc7ff76e 6112 * This avoids capacity from being 0 and
9abf24d4 6113 * causing divide-by-zero issues on boot.
9abf24d4
SD
6114 */
6115 if (unlikely(!rq->sd)) {
ced549fa 6116 capacity += capacity_of(cpu);
9abf24d4
SD
6117 continue;
6118 }
863bffc8 6119
63b2ca30 6120 sgc = rq->sd->groups->sgc;
63b2ca30 6121 capacity += sgc->capacity;
863bffc8 6122 }
74a5ce20
PZ
6123 } else {
6124 /*
6125 * !SD_OVERLAP domains can assume that child groups
6126 * span the current group.
6127 */
6128
6129 group = child->groups;
6130 do {
63b2ca30 6131 capacity += group->sgc->capacity;
74a5ce20
PZ
6132 group = group->next;
6133 } while (group != child->groups);
6134 }
1e3c88bd 6135
63b2ca30 6136 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6137}
6138
9d5efe05 6139/*
ea67821b
VG
6140 * Check whether the capacity of the rq has been noticeably reduced by side
6141 * activity. The imbalance_pct is used for the threshold.
6142 * Return true is the capacity is reduced
9d5efe05
SV
6143 */
6144static inline int
ea67821b 6145check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6146{
ea67821b
VG
6147 return ((rq->cpu_capacity * sd->imbalance_pct) <
6148 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6149}
6150
30ce5dab
PZ
6151/*
6152 * Group imbalance indicates (and tries to solve) the problem where balancing
6153 * groups is inadequate due to tsk_cpus_allowed() constraints.
6154 *
6155 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6156 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6157 * Something like:
6158 *
6159 * { 0 1 2 3 } { 4 5 6 7 }
6160 * * * * *
6161 *
6162 * If we were to balance group-wise we'd place two tasks in the first group and
6163 * two tasks in the second group. Clearly this is undesired as it will overload
6164 * cpu 3 and leave one of the cpus in the second group unused.
6165 *
6166 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6167 * by noticing the lower domain failed to reach balance and had difficulty
6168 * moving tasks due to affinity constraints.
30ce5dab
PZ
6169 *
6170 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6171 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6172 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6173 * to create an effective group imbalance.
6174 *
6175 * This is a somewhat tricky proposition since the next run might not find the
6176 * group imbalance and decide the groups need to be balanced again. A most
6177 * subtle and fragile situation.
6178 */
6179
6263322c 6180static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6181{
63b2ca30 6182 return group->sgc->imbalance;
30ce5dab
PZ
6183}
6184
b37d9316 6185/*
ea67821b
VG
6186 * group_has_capacity returns true if the group has spare capacity that could
6187 * be used by some tasks.
6188 * We consider that a group has spare capacity if the * number of task is
6189 * smaller than the number of CPUs or if the usage is lower than the available
6190 * capacity for CFS tasks.
6191 * For the latter, we use a threshold to stabilize the state, to take into
6192 * account the variance of the tasks' load and to return true if the available
6193 * capacity in meaningful for the load balancer.
6194 * As an example, an available capacity of 1% can appear but it doesn't make
6195 * any benefit for the load balance.
b37d9316 6196 */
ea67821b
VG
6197static inline bool
6198group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6199{
ea67821b
VG
6200 if (sgs->sum_nr_running < sgs->group_weight)
6201 return true;
c61037e9 6202
ea67821b
VG
6203 if ((sgs->group_capacity * 100) >
6204 (sgs->group_usage * env->sd->imbalance_pct))
6205 return true;
b37d9316 6206
ea67821b
VG
6207 return false;
6208}
6209
6210/*
6211 * group_is_overloaded returns true if the group has more tasks than it can
6212 * handle.
6213 * group_is_overloaded is not equals to !group_has_capacity because a group
6214 * with the exact right number of tasks, has no more spare capacity but is not
6215 * overloaded so both group_has_capacity and group_is_overloaded return
6216 * false.
6217 */
6218static inline bool
6219group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6220{
6221 if (sgs->sum_nr_running <= sgs->group_weight)
6222 return false;
b37d9316 6223
ea67821b
VG
6224 if ((sgs->group_capacity * 100) <
6225 (sgs->group_usage * env->sd->imbalance_pct))
6226 return true;
b37d9316 6227
ea67821b 6228 return false;
b37d9316
PZ
6229}
6230
ea67821b
VG
6231static enum group_type group_classify(struct lb_env *env,
6232 struct sched_group *group,
6233 struct sg_lb_stats *sgs)
caeb178c 6234{
ea67821b 6235 if (sgs->group_no_capacity)
caeb178c
RR
6236 return group_overloaded;
6237
6238 if (sg_imbalanced(group))
6239 return group_imbalanced;
6240
6241 return group_other;
6242}
6243
1e3c88bd
PZ
6244/**
6245 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6246 * @env: The load balancing environment.
1e3c88bd 6247 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6248 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6249 * @local_group: Does group contain this_cpu.
1e3c88bd 6250 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6251 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6252 */
bd939f45
PZ
6253static inline void update_sg_lb_stats(struct lb_env *env,
6254 struct sched_group *group, int load_idx,
4486edd1
TC
6255 int local_group, struct sg_lb_stats *sgs,
6256 bool *overload)
1e3c88bd 6257{
30ce5dab 6258 unsigned long load;
bd939f45 6259 int i;
1e3c88bd 6260
b72ff13c
PZ
6261 memset(sgs, 0, sizeof(*sgs));
6262
b9403130 6263 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6264 struct rq *rq = cpu_rq(i);
6265
1e3c88bd 6266 /* Bias balancing toward cpus of our domain */
6263322c 6267 if (local_group)
04f733b4 6268 load = target_load(i, load_idx);
6263322c 6269 else
1e3c88bd 6270 load = source_load(i, load_idx);
1e3c88bd
PZ
6271
6272 sgs->group_load += load;
8bb5b00c 6273 sgs->group_usage += get_cpu_usage(i);
65fdac08 6274 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6275
6276 if (rq->nr_running > 1)
6277 *overload = true;
6278
0ec8aa00
PZ
6279#ifdef CONFIG_NUMA_BALANCING
6280 sgs->nr_numa_running += rq->nr_numa_running;
6281 sgs->nr_preferred_running += rq->nr_preferred_running;
6282#endif
1e3c88bd 6283 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6284 if (idle_cpu(i))
6285 sgs->idle_cpus++;
1e3c88bd
PZ
6286 }
6287
63b2ca30
NP
6288 /* Adjust by relative CPU capacity of the group */
6289 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6290 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6291
dd5feea1 6292 if (sgs->sum_nr_running)
38d0f770 6293 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6294
aae6d3dd 6295 sgs->group_weight = group->group_weight;
b37d9316 6296
ea67821b
VG
6297 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6298 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6299}
6300
532cb4c4
MN
6301/**
6302 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6303 * @env: The load balancing environment.
532cb4c4
MN
6304 * @sds: sched_domain statistics
6305 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6306 * @sgs: sched_group statistics
532cb4c4
MN
6307 *
6308 * Determine if @sg is a busier group than the previously selected
6309 * busiest group.
e69f6186
YB
6310 *
6311 * Return: %true if @sg is a busier group than the previously selected
6312 * busiest group. %false otherwise.
532cb4c4 6313 */
bd939f45 6314static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6315 struct sd_lb_stats *sds,
6316 struct sched_group *sg,
bd939f45 6317 struct sg_lb_stats *sgs)
532cb4c4 6318{
caeb178c 6319 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6320
caeb178c 6321 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6322 return true;
6323
caeb178c
RR
6324 if (sgs->group_type < busiest->group_type)
6325 return false;
6326
6327 if (sgs->avg_load <= busiest->avg_load)
6328 return false;
6329
6330 /* This is the busiest node in its class. */
6331 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6332 return true;
6333
6334 /*
6335 * ASYM_PACKING needs to move all the work to the lowest
6336 * numbered CPUs in the group, therefore mark all groups
6337 * higher than ourself as busy.
6338 */
caeb178c 6339 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6340 if (!sds->busiest)
6341 return true;
6342
6343 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6344 return true;
6345 }
6346
6347 return false;
6348}
6349
0ec8aa00
PZ
6350#ifdef CONFIG_NUMA_BALANCING
6351static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6352{
6353 if (sgs->sum_nr_running > sgs->nr_numa_running)
6354 return regular;
6355 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6356 return remote;
6357 return all;
6358}
6359
6360static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6361{
6362 if (rq->nr_running > rq->nr_numa_running)
6363 return regular;
6364 if (rq->nr_running > rq->nr_preferred_running)
6365 return remote;
6366 return all;
6367}
6368#else
6369static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6370{
6371 return all;
6372}
6373
6374static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6375{
6376 return regular;
6377}
6378#endif /* CONFIG_NUMA_BALANCING */
6379
1e3c88bd 6380/**
461819ac 6381 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6382 * @env: The load balancing environment.
1e3c88bd
PZ
6383 * @sds: variable to hold the statistics for this sched_domain.
6384 */
0ec8aa00 6385static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6386{
bd939f45
PZ
6387 struct sched_domain *child = env->sd->child;
6388 struct sched_group *sg = env->sd->groups;
56cf515b 6389 struct sg_lb_stats tmp_sgs;
1e3c88bd 6390 int load_idx, prefer_sibling = 0;
4486edd1 6391 bool overload = false;
1e3c88bd
PZ
6392
6393 if (child && child->flags & SD_PREFER_SIBLING)
6394 prefer_sibling = 1;
6395
bd939f45 6396 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6397
6398 do {
56cf515b 6399 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6400 int local_group;
6401
bd939f45 6402 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6403 if (local_group) {
6404 sds->local = sg;
6405 sgs = &sds->local_stat;
b72ff13c
PZ
6406
6407 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6408 time_after_eq(jiffies, sg->sgc->next_update))
6409 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6410 }
1e3c88bd 6411
4486edd1
TC
6412 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6413 &overload);
1e3c88bd 6414
b72ff13c
PZ
6415 if (local_group)
6416 goto next_group;
6417
1e3c88bd
PZ
6418 /*
6419 * In case the child domain prefers tasks go to siblings
ea67821b 6420 * first, lower the sg capacity so that we'll try
75dd321d
NR
6421 * and move all the excess tasks away. We lower the capacity
6422 * of a group only if the local group has the capacity to fit
ea67821b
VG
6423 * these excess tasks. The extra check prevents the case where
6424 * you always pull from the heaviest group when it is already
6425 * under-utilized (possible with a large weight task outweighs
6426 * the tasks on the system).
1e3c88bd 6427 */
b72ff13c 6428 if (prefer_sibling && sds->local &&
ea67821b
VG
6429 group_has_capacity(env, &sds->local_stat) &&
6430 (sgs->sum_nr_running > 1)) {
6431 sgs->group_no_capacity = 1;
6432 sgs->group_type = group_overloaded;
cb0b9f24 6433 }
1e3c88bd 6434
b72ff13c 6435 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6436 sds->busiest = sg;
56cf515b 6437 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6438 }
6439
b72ff13c
PZ
6440next_group:
6441 /* Now, start updating sd_lb_stats */
6442 sds->total_load += sgs->group_load;
63b2ca30 6443 sds->total_capacity += sgs->group_capacity;
b72ff13c 6444
532cb4c4 6445 sg = sg->next;
bd939f45 6446 } while (sg != env->sd->groups);
0ec8aa00
PZ
6447
6448 if (env->sd->flags & SD_NUMA)
6449 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6450
6451 if (!env->sd->parent) {
6452 /* update overload indicator if we are at root domain */
6453 if (env->dst_rq->rd->overload != overload)
6454 env->dst_rq->rd->overload = overload;
6455 }
6456
532cb4c4
MN
6457}
6458
532cb4c4
MN
6459/**
6460 * check_asym_packing - Check to see if the group is packed into the
6461 * sched doman.
6462 *
6463 * This is primarily intended to used at the sibling level. Some
6464 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6465 * case of POWER7, it can move to lower SMT modes only when higher
6466 * threads are idle. When in lower SMT modes, the threads will
6467 * perform better since they share less core resources. Hence when we
6468 * have idle threads, we want them to be the higher ones.
6469 *
6470 * This packing function is run on idle threads. It checks to see if
6471 * the busiest CPU in this domain (core in the P7 case) has a higher
6472 * CPU number than the packing function is being run on. Here we are
6473 * assuming lower CPU number will be equivalent to lower a SMT thread
6474 * number.
6475 *
e69f6186 6476 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6477 * this CPU. The amount of the imbalance is returned in *imbalance.
6478 *
cd96891d 6479 * @env: The load balancing environment.
532cb4c4 6480 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6481 */
bd939f45 6482static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6483{
6484 int busiest_cpu;
6485
bd939f45 6486 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6487 return 0;
6488
6489 if (!sds->busiest)
6490 return 0;
6491
6492 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6493 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6494 return 0;
6495
bd939f45 6496 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6497 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6498 SCHED_CAPACITY_SCALE);
bd939f45 6499
532cb4c4 6500 return 1;
1e3c88bd
PZ
6501}
6502
6503/**
6504 * fix_small_imbalance - Calculate the minor imbalance that exists
6505 * amongst the groups of a sched_domain, during
6506 * load balancing.
cd96891d 6507 * @env: The load balancing environment.
1e3c88bd 6508 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6509 */
bd939f45
PZ
6510static inline
6511void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6512{
63b2ca30 6513 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6514 unsigned int imbn = 2;
dd5feea1 6515 unsigned long scaled_busy_load_per_task;
56cf515b 6516 struct sg_lb_stats *local, *busiest;
1e3c88bd 6517
56cf515b
JK
6518 local = &sds->local_stat;
6519 busiest = &sds->busiest_stat;
1e3c88bd 6520
56cf515b
JK
6521 if (!local->sum_nr_running)
6522 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6523 else if (busiest->load_per_task > local->load_per_task)
6524 imbn = 1;
dd5feea1 6525
56cf515b 6526 scaled_busy_load_per_task =
ca8ce3d0 6527 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6528 busiest->group_capacity;
56cf515b 6529
3029ede3
VD
6530 if (busiest->avg_load + scaled_busy_load_per_task >=
6531 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6532 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6533 return;
6534 }
6535
6536 /*
6537 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6538 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6539 * moving them.
6540 */
6541
63b2ca30 6542 capa_now += busiest->group_capacity *
56cf515b 6543 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6544 capa_now += local->group_capacity *
56cf515b 6545 min(local->load_per_task, local->avg_load);
ca8ce3d0 6546 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6547
6548 /* Amount of load we'd subtract */
a2cd4260 6549 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6550 capa_move += busiest->group_capacity *
56cf515b 6551 min(busiest->load_per_task,
a2cd4260 6552 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6553 }
1e3c88bd
PZ
6554
6555 /* Amount of load we'd add */
63b2ca30 6556 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6557 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6558 tmp = (busiest->avg_load * busiest->group_capacity) /
6559 local->group_capacity;
56cf515b 6560 } else {
ca8ce3d0 6561 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6562 local->group_capacity;
56cf515b 6563 }
63b2ca30 6564 capa_move += local->group_capacity *
3ae11c90 6565 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6566 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6567
6568 /* Move if we gain throughput */
63b2ca30 6569 if (capa_move > capa_now)
56cf515b 6570 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6571}
6572
6573/**
6574 * calculate_imbalance - Calculate the amount of imbalance present within the
6575 * groups of a given sched_domain during load balance.
bd939f45 6576 * @env: load balance environment
1e3c88bd 6577 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6578 */
bd939f45 6579static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6580{
dd5feea1 6581 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6582 struct sg_lb_stats *local, *busiest;
6583
6584 local = &sds->local_stat;
56cf515b 6585 busiest = &sds->busiest_stat;
dd5feea1 6586
caeb178c 6587 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6588 /*
6589 * In the group_imb case we cannot rely on group-wide averages
6590 * to ensure cpu-load equilibrium, look at wider averages. XXX
6591 */
56cf515b
JK
6592 busiest->load_per_task =
6593 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6594 }
6595
1e3c88bd
PZ
6596 /*
6597 * In the presence of smp nice balancing, certain scenarios can have
6598 * max load less than avg load(as we skip the groups at or below
ced549fa 6599 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6600 */
b1885550
VD
6601 if (busiest->avg_load <= sds->avg_load ||
6602 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6603 env->imbalance = 0;
6604 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6605 }
6606
9a5d9ba6
PZ
6607 /*
6608 * If there aren't any idle cpus, avoid creating some.
6609 */
6610 if (busiest->group_type == group_overloaded &&
6611 local->group_type == group_overloaded) {
ea67821b
VG
6612 load_above_capacity = busiest->sum_nr_running *
6613 SCHED_LOAD_SCALE;
6614 if (load_above_capacity > busiest->group_capacity)
6615 load_above_capacity -= busiest->group_capacity;
6616 else
6617 load_above_capacity = ~0UL;
dd5feea1
SS
6618 }
6619
6620 /*
6621 * We're trying to get all the cpus to the average_load, so we don't
6622 * want to push ourselves above the average load, nor do we wish to
6623 * reduce the max loaded cpu below the average load. At the same time,
6624 * we also don't want to reduce the group load below the group capacity
6625 * (so that we can implement power-savings policies etc). Thus we look
6626 * for the minimum possible imbalance.
dd5feea1 6627 */
30ce5dab 6628 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6629
6630 /* How much load to actually move to equalise the imbalance */
56cf515b 6631 env->imbalance = min(
63b2ca30
NP
6632 max_pull * busiest->group_capacity,
6633 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6634 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6635
6636 /*
6637 * if *imbalance is less than the average load per runnable task
25985edc 6638 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6639 * a think about bumping its value to force at least one task to be
6640 * moved
6641 */
56cf515b 6642 if (env->imbalance < busiest->load_per_task)
bd939f45 6643 return fix_small_imbalance(env, sds);
1e3c88bd 6644}
fab47622 6645
1e3c88bd
PZ
6646/******* find_busiest_group() helpers end here *********************/
6647
6648/**
6649 * find_busiest_group - Returns the busiest group within the sched_domain
6650 * if there is an imbalance. If there isn't an imbalance, and
6651 * the user has opted for power-savings, it returns a group whose
6652 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6653 * such a group exists.
6654 *
6655 * Also calculates the amount of weighted load which should be moved
6656 * to restore balance.
6657 *
cd96891d 6658 * @env: The load balancing environment.
1e3c88bd 6659 *
e69f6186 6660 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6661 * - If no imbalance and user has opted for power-savings balance,
6662 * return the least loaded group whose CPUs can be
6663 * put to idle by rebalancing its tasks onto our group.
6664 */
56cf515b 6665static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6666{
56cf515b 6667 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6668 struct sd_lb_stats sds;
6669
147c5fc2 6670 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6671
6672 /*
6673 * Compute the various statistics relavent for load balancing at
6674 * this level.
6675 */
23f0d209 6676 update_sd_lb_stats(env, &sds);
56cf515b
JK
6677 local = &sds.local_stat;
6678 busiest = &sds.busiest_stat;
1e3c88bd 6679
ea67821b 6680 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6681 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6682 check_asym_packing(env, &sds))
532cb4c4
MN
6683 return sds.busiest;
6684
cc57aa8f 6685 /* There is no busy sibling group to pull tasks from */
56cf515b 6686 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6687 goto out_balanced;
6688
ca8ce3d0
NP
6689 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6690 / sds.total_capacity;
b0432d8f 6691
866ab43e
PZ
6692 /*
6693 * If the busiest group is imbalanced the below checks don't
30ce5dab 6694 * work because they assume all things are equal, which typically
866ab43e
PZ
6695 * isn't true due to cpus_allowed constraints and the like.
6696 */
caeb178c 6697 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6698 goto force_balance;
6699
cc57aa8f 6700 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6701 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6702 busiest->group_no_capacity)
fab47622
NR
6703 goto force_balance;
6704
cc57aa8f 6705 /*
9c58c79a 6706 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6707 * don't try and pull any tasks.
6708 */
56cf515b 6709 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6710 goto out_balanced;
6711
cc57aa8f
PZ
6712 /*
6713 * Don't pull any tasks if this group is already above the domain
6714 * average load.
6715 */
56cf515b 6716 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6717 goto out_balanced;
6718
bd939f45 6719 if (env->idle == CPU_IDLE) {
aae6d3dd 6720 /*
43f4d666
VG
6721 * This cpu is idle. If the busiest group is not overloaded
6722 * and there is no imbalance between this and busiest group
6723 * wrt idle cpus, it is balanced. The imbalance becomes
6724 * significant if the diff is greater than 1 otherwise we
6725 * might end up to just move the imbalance on another group
aae6d3dd 6726 */
43f4d666
VG
6727 if ((busiest->group_type != group_overloaded) &&
6728 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6729 goto out_balanced;
c186fafe
PZ
6730 } else {
6731 /*
6732 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6733 * imbalance_pct to be conservative.
6734 */
56cf515b
JK
6735 if (100 * busiest->avg_load <=
6736 env->sd->imbalance_pct * local->avg_load)
c186fafe 6737 goto out_balanced;
aae6d3dd 6738 }
1e3c88bd 6739
fab47622 6740force_balance:
1e3c88bd 6741 /* Looks like there is an imbalance. Compute it */
bd939f45 6742 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6743 return sds.busiest;
6744
6745out_balanced:
bd939f45 6746 env->imbalance = 0;
1e3c88bd
PZ
6747 return NULL;
6748}
6749
6750/*
6751 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6752 */
bd939f45 6753static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6754 struct sched_group *group)
1e3c88bd
PZ
6755{
6756 struct rq *busiest = NULL, *rq;
ced549fa 6757 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6758 int i;
6759
6906a408 6760 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6761 unsigned long capacity, wl;
0ec8aa00
PZ
6762 enum fbq_type rt;
6763
6764 rq = cpu_rq(i);
6765 rt = fbq_classify_rq(rq);
1e3c88bd 6766
0ec8aa00
PZ
6767 /*
6768 * We classify groups/runqueues into three groups:
6769 * - regular: there are !numa tasks
6770 * - remote: there are numa tasks that run on the 'wrong' node
6771 * - all: there is no distinction
6772 *
6773 * In order to avoid migrating ideally placed numa tasks,
6774 * ignore those when there's better options.
6775 *
6776 * If we ignore the actual busiest queue to migrate another
6777 * task, the next balance pass can still reduce the busiest
6778 * queue by moving tasks around inside the node.
6779 *
6780 * If we cannot move enough load due to this classification
6781 * the next pass will adjust the group classification and
6782 * allow migration of more tasks.
6783 *
6784 * Both cases only affect the total convergence complexity.
6785 */
6786 if (rt > env->fbq_type)
6787 continue;
6788
ced549fa 6789 capacity = capacity_of(i);
9d5efe05 6790
6e40f5bb 6791 wl = weighted_cpuload(i);
1e3c88bd 6792
6e40f5bb
TG
6793 /*
6794 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6795 * which is not scaled with the cpu capacity.
6e40f5bb 6796 */
ea67821b
VG
6797
6798 if (rq->nr_running == 1 && wl > env->imbalance &&
6799 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6800 continue;
6801
6e40f5bb
TG
6802 /*
6803 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6804 * the weighted_cpuload() scaled with the cpu capacity, so
6805 * that the load can be moved away from the cpu that is
6806 * potentially running at a lower capacity.
95a79b80 6807 *
ced549fa 6808 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6809 * multiplication to rid ourselves of the division works out
ced549fa
NP
6810 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6811 * our previous maximum.
6e40f5bb 6812 */
ced549fa 6813 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6814 busiest_load = wl;
ced549fa 6815 busiest_capacity = capacity;
1e3c88bd
PZ
6816 busiest = rq;
6817 }
6818 }
6819
6820 return busiest;
6821}
6822
6823/*
6824 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6825 * so long as it is large enough.
6826 */
6827#define MAX_PINNED_INTERVAL 512
6828
6829/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6830DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6831
bd939f45 6832static int need_active_balance(struct lb_env *env)
1af3ed3d 6833{
bd939f45
PZ
6834 struct sched_domain *sd = env->sd;
6835
6836 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6837
6838 /*
6839 * ASYM_PACKING needs to force migrate tasks from busy but
6840 * higher numbered CPUs in order to pack all tasks in the
6841 * lowest numbered CPUs.
6842 */
bd939f45 6843 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6844 return 1;
1af3ed3d
PZ
6845 }
6846
1aaf90a4
VG
6847 /*
6848 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6849 * It's worth migrating the task if the src_cpu's capacity is reduced
6850 * because of other sched_class or IRQs if more capacity stays
6851 * available on dst_cpu.
6852 */
6853 if ((env->idle != CPU_NOT_IDLE) &&
6854 (env->src_rq->cfs.h_nr_running == 1)) {
6855 if ((check_cpu_capacity(env->src_rq, sd)) &&
6856 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6857 return 1;
6858 }
6859
1af3ed3d
PZ
6860 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6861}
6862
969c7921
TH
6863static int active_load_balance_cpu_stop(void *data);
6864
23f0d209
JK
6865static int should_we_balance(struct lb_env *env)
6866{
6867 struct sched_group *sg = env->sd->groups;
6868 struct cpumask *sg_cpus, *sg_mask;
6869 int cpu, balance_cpu = -1;
6870
6871 /*
6872 * In the newly idle case, we will allow all the cpu's
6873 * to do the newly idle load balance.
6874 */
6875 if (env->idle == CPU_NEWLY_IDLE)
6876 return 1;
6877
6878 sg_cpus = sched_group_cpus(sg);
6879 sg_mask = sched_group_mask(sg);
6880 /* Try to find first idle cpu */
6881 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6882 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6883 continue;
6884
6885 balance_cpu = cpu;
6886 break;
6887 }
6888
6889 if (balance_cpu == -1)
6890 balance_cpu = group_balance_cpu(sg);
6891
6892 /*
6893 * First idle cpu or the first cpu(busiest) in this sched group
6894 * is eligible for doing load balancing at this and above domains.
6895 */
b0cff9d8 6896 return balance_cpu == env->dst_cpu;
23f0d209
JK
6897}
6898
1e3c88bd
PZ
6899/*
6900 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6901 * tasks if there is an imbalance.
6902 */
6903static int load_balance(int this_cpu, struct rq *this_rq,
6904 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6905 int *continue_balancing)
1e3c88bd 6906{
88b8dac0 6907 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6908 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6909 struct sched_group *group;
1e3c88bd
PZ
6910 struct rq *busiest;
6911 unsigned long flags;
4ba29684 6912 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6913
8e45cb54
PZ
6914 struct lb_env env = {
6915 .sd = sd,
ddcdf6e7
PZ
6916 .dst_cpu = this_cpu,
6917 .dst_rq = this_rq,
88b8dac0 6918 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6919 .idle = idle,
eb95308e 6920 .loop_break = sched_nr_migrate_break,
b9403130 6921 .cpus = cpus,
0ec8aa00 6922 .fbq_type = all,
163122b7 6923 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6924 };
6925
cfc03118
JK
6926 /*
6927 * For NEWLY_IDLE load_balancing, we don't need to consider
6928 * other cpus in our group
6929 */
e02e60c1 6930 if (idle == CPU_NEWLY_IDLE)
cfc03118 6931 env.dst_grpmask = NULL;
cfc03118 6932
1e3c88bd
PZ
6933 cpumask_copy(cpus, cpu_active_mask);
6934
1e3c88bd
PZ
6935 schedstat_inc(sd, lb_count[idle]);
6936
6937redo:
23f0d209
JK
6938 if (!should_we_balance(&env)) {
6939 *continue_balancing = 0;
1e3c88bd 6940 goto out_balanced;
23f0d209 6941 }
1e3c88bd 6942
23f0d209 6943 group = find_busiest_group(&env);
1e3c88bd
PZ
6944 if (!group) {
6945 schedstat_inc(sd, lb_nobusyg[idle]);
6946 goto out_balanced;
6947 }
6948
b9403130 6949 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6950 if (!busiest) {
6951 schedstat_inc(sd, lb_nobusyq[idle]);
6952 goto out_balanced;
6953 }
6954
78feefc5 6955 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6956
bd939f45 6957 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6958
1aaf90a4
VG
6959 env.src_cpu = busiest->cpu;
6960 env.src_rq = busiest;
6961
1e3c88bd
PZ
6962 ld_moved = 0;
6963 if (busiest->nr_running > 1) {
6964 /*
6965 * Attempt to move tasks. If find_busiest_group has found
6966 * an imbalance but busiest->nr_running <= 1, the group is
6967 * still unbalanced. ld_moved simply stays zero, so it is
6968 * correctly treated as an imbalance.
6969 */
8e45cb54 6970 env.flags |= LBF_ALL_PINNED;
c82513e5 6971 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6972
5d6523eb 6973more_balance:
163122b7 6974 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6975
6976 /*
6977 * cur_ld_moved - load moved in current iteration
6978 * ld_moved - cumulative load moved across iterations
6979 */
163122b7 6980 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6981
6982 /*
163122b7
KT
6983 * We've detached some tasks from busiest_rq. Every
6984 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6985 * unlock busiest->lock, and we are able to be sure
6986 * that nobody can manipulate the tasks in parallel.
6987 * See task_rq_lock() family for the details.
1e3c88bd 6988 */
163122b7
KT
6989
6990 raw_spin_unlock(&busiest->lock);
6991
6992 if (cur_ld_moved) {
6993 attach_tasks(&env);
6994 ld_moved += cur_ld_moved;
6995 }
6996
1e3c88bd 6997 local_irq_restore(flags);
88b8dac0 6998
f1cd0858
JK
6999 if (env.flags & LBF_NEED_BREAK) {
7000 env.flags &= ~LBF_NEED_BREAK;
7001 goto more_balance;
7002 }
7003
88b8dac0
SV
7004 /*
7005 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7006 * us and move them to an alternate dst_cpu in our sched_group
7007 * where they can run. The upper limit on how many times we
7008 * iterate on same src_cpu is dependent on number of cpus in our
7009 * sched_group.
7010 *
7011 * This changes load balance semantics a bit on who can move
7012 * load to a given_cpu. In addition to the given_cpu itself
7013 * (or a ilb_cpu acting on its behalf where given_cpu is
7014 * nohz-idle), we now have balance_cpu in a position to move
7015 * load to given_cpu. In rare situations, this may cause
7016 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7017 * _independently_ and at _same_ time to move some load to
7018 * given_cpu) causing exceess load to be moved to given_cpu.
7019 * This however should not happen so much in practice and
7020 * moreover subsequent load balance cycles should correct the
7021 * excess load moved.
7022 */
6263322c 7023 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7024
7aff2e3a
VD
7025 /* Prevent to re-select dst_cpu via env's cpus */
7026 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7027
78feefc5 7028 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7029 env.dst_cpu = env.new_dst_cpu;
6263322c 7030 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7031 env.loop = 0;
7032 env.loop_break = sched_nr_migrate_break;
e02e60c1 7033
88b8dac0
SV
7034 /*
7035 * Go back to "more_balance" rather than "redo" since we
7036 * need to continue with same src_cpu.
7037 */
7038 goto more_balance;
7039 }
1e3c88bd 7040
6263322c
PZ
7041 /*
7042 * We failed to reach balance because of affinity.
7043 */
7044 if (sd_parent) {
63b2ca30 7045 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7046
afdeee05 7047 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7048 *group_imbalance = 1;
6263322c
PZ
7049 }
7050
1e3c88bd 7051 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7052 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7053 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7054 if (!cpumask_empty(cpus)) {
7055 env.loop = 0;
7056 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7057 goto redo;
bbf18b19 7058 }
afdeee05 7059 goto out_all_pinned;
1e3c88bd
PZ
7060 }
7061 }
7062
7063 if (!ld_moved) {
7064 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7065 /*
7066 * Increment the failure counter only on periodic balance.
7067 * We do not want newidle balance, which can be very
7068 * frequent, pollute the failure counter causing
7069 * excessive cache_hot migrations and active balances.
7070 */
7071 if (idle != CPU_NEWLY_IDLE)
7072 sd->nr_balance_failed++;
1e3c88bd 7073
bd939f45 7074 if (need_active_balance(&env)) {
1e3c88bd
PZ
7075 raw_spin_lock_irqsave(&busiest->lock, flags);
7076
969c7921
TH
7077 /* don't kick the active_load_balance_cpu_stop,
7078 * if the curr task on busiest cpu can't be
7079 * moved to this_cpu
1e3c88bd
PZ
7080 */
7081 if (!cpumask_test_cpu(this_cpu,
fa17b507 7082 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7083 raw_spin_unlock_irqrestore(&busiest->lock,
7084 flags);
8e45cb54 7085 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7086 goto out_one_pinned;
7087 }
7088
969c7921
TH
7089 /*
7090 * ->active_balance synchronizes accesses to
7091 * ->active_balance_work. Once set, it's cleared
7092 * only after active load balance is finished.
7093 */
1e3c88bd
PZ
7094 if (!busiest->active_balance) {
7095 busiest->active_balance = 1;
7096 busiest->push_cpu = this_cpu;
7097 active_balance = 1;
7098 }
7099 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7100
bd939f45 7101 if (active_balance) {
969c7921
TH
7102 stop_one_cpu_nowait(cpu_of(busiest),
7103 active_load_balance_cpu_stop, busiest,
7104 &busiest->active_balance_work);
bd939f45 7105 }
1e3c88bd
PZ
7106
7107 /*
7108 * We've kicked active balancing, reset the failure
7109 * counter.
7110 */
7111 sd->nr_balance_failed = sd->cache_nice_tries+1;
7112 }
7113 } else
7114 sd->nr_balance_failed = 0;
7115
7116 if (likely(!active_balance)) {
7117 /* We were unbalanced, so reset the balancing interval */
7118 sd->balance_interval = sd->min_interval;
7119 } else {
7120 /*
7121 * If we've begun active balancing, start to back off. This
7122 * case may not be covered by the all_pinned logic if there
7123 * is only 1 task on the busy runqueue (because we don't call
163122b7 7124 * detach_tasks).
1e3c88bd
PZ
7125 */
7126 if (sd->balance_interval < sd->max_interval)
7127 sd->balance_interval *= 2;
7128 }
7129
1e3c88bd
PZ
7130 goto out;
7131
7132out_balanced:
afdeee05
VG
7133 /*
7134 * We reach balance although we may have faced some affinity
7135 * constraints. Clear the imbalance flag if it was set.
7136 */
7137 if (sd_parent) {
7138 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7139
7140 if (*group_imbalance)
7141 *group_imbalance = 0;
7142 }
7143
7144out_all_pinned:
7145 /*
7146 * We reach balance because all tasks are pinned at this level so
7147 * we can't migrate them. Let the imbalance flag set so parent level
7148 * can try to migrate them.
7149 */
1e3c88bd
PZ
7150 schedstat_inc(sd, lb_balanced[idle]);
7151
7152 sd->nr_balance_failed = 0;
7153
7154out_one_pinned:
7155 /* tune up the balancing interval */
8e45cb54 7156 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7157 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7158 (sd->balance_interval < sd->max_interval))
7159 sd->balance_interval *= 2;
7160
46e49b38 7161 ld_moved = 0;
1e3c88bd 7162out:
1e3c88bd
PZ
7163 return ld_moved;
7164}
7165
52a08ef1
JL
7166static inline unsigned long
7167get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7168{
7169 unsigned long interval = sd->balance_interval;
7170
7171 if (cpu_busy)
7172 interval *= sd->busy_factor;
7173
7174 /* scale ms to jiffies */
7175 interval = msecs_to_jiffies(interval);
7176 interval = clamp(interval, 1UL, max_load_balance_interval);
7177
7178 return interval;
7179}
7180
7181static inline void
7182update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7183{
7184 unsigned long interval, next;
7185
7186 interval = get_sd_balance_interval(sd, cpu_busy);
7187 next = sd->last_balance + interval;
7188
7189 if (time_after(*next_balance, next))
7190 *next_balance = next;
7191}
7192
1e3c88bd
PZ
7193/*
7194 * idle_balance is called by schedule() if this_cpu is about to become
7195 * idle. Attempts to pull tasks from other CPUs.
7196 */
6e83125c 7197static int idle_balance(struct rq *this_rq)
1e3c88bd 7198{
52a08ef1
JL
7199 unsigned long next_balance = jiffies + HZ;
7200 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7201 struct sched_domain *sd;
7202 int pulled_task = 0;
9bd721c5 7203 u64 curr_cost = 0;
1e3c88bd 7204
6e83125c 7205 idle_enter_fair(this_rq);
0e5b5337 7206
6e83125c
PZ
7207 /*
7208 * We must set idle_stamp _before_ calling idle_balance(), such that we
7209 * measure the duration of idle_balance() as idle time.
7210 */
7211 this_rq->idle_stamp = rq_clock(this_rq);
7212
4486edd1
TC
7213 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7214 !this_rq->rd->overload) {
52a08ef1
JL
7215 rcu_read_lock();
7216 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7217 if (sd)
7218 update_next_balance(sd, 0, &next_balance);
7219 rcu_read_unlock();
7220
6e83125c 7221 goto out;
52a08ef1 7222 }
1e3c88bd 7223
f492e12e
PZ
7224 raw_spin_unlock(&this_rq->lock);
7225
48a16753 7226 update_blocked_averages(this_cpu);
dce840a0 7227 rcu_read_lock();
1e3c88bd 7228 for_each_domain(this_cpu, sd) {
23f0d209 7229 int continue_balancing = 1;
9bd721c5 7230 u64 t0, domain_cost;
1e3c88bd
PZ
7231
7232 if (!(sd->flags & SD_LOAD_BALANCE))
7233 continue;
7234
52a08ef1
JL
7235 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7236 update_next_balance(sd, 0, &next_balance);
9bd721c5 7237 break;
52a08ef1 7238 }
9bd721c5 7239
f492e12e 7240 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7241 t0 = sched_clock_cpu(this_cpu);
7242
f492e12e 7243 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7244 sd, CPU_NEWLY_IDLE,
7245 &continue_balancing);
9bd721c5
JL
7246
7247 domain_cost = sched_clock_cpu(this_cpu) - t0;
7248 if (domain_cost > sd->max_newidle_lb_cost)
7249 sd->max_newidle_lb_cost = domain_cost;
7250
7251 curr_cost += domain_cost;
f492e12e 7252 }
1e3c88bd 7253
52a08ef1 7254 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7255
7256 /*
7257 * Stop searching for tasks to pull if there are
7258 * now runnable tasks on this rq.
7259 */
7260 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7261 break;
1e3c88bd 7262 }
dce840a0 7263 rcu_read_unlock();
f492e12e
PZ
7264
7265 raw_spin_lock(&this_rq->lock);
7266
0e5b5337
JL
7267 if (curr_cost > this_rq->max_idle_balance_cost)
7268 this_rq->max_idle_balance_cost = curr_cost;
7269
e5fc6611 7270 /*
0e5b5337
JL
7271 * While browsing the domains, we released the rq lock, a task could
7272 * have been enqueued in the meantime. Since we're not going idle,
7273 * pretend we pulled a task.
e5fc6611 7274 */
0e5b5337 7275 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7276 pulled_task = 1;
e5fc6611 7277
52a08ef1
JL
7278out:
7279 /* Move the next balance forward */
7280 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7281 this_rq->next_balance = next_balance;
9bd721c5 7282
e4aa358b 7283 /* Is there a task of a high priority class? */
46383648 7284 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7285 pulled_task = -1;
7286
7287 if (pulled_task) {
7288 idle_exit_fair(this_rq);
6e83125c 7289 this_rq->idle_stamp = 0;
e4aa358b 7290 }
6e83125c 7291
3c4017c1 7292 return pulled_task;
1e3c88bd
PZ
7293}
7294
7295/*
969c7921
TH
7296 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7297 * running tasks off the busiest CPU onto idle CPUs. It requires at
7298 * least 1 task to be running on each physical CPU where possible, and
7299 * avoids physical / logical imbalances.
1e3c88bd 7300 */
969c7921 7301static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7302{
969c7921
TH
7303 struct rq *busiest_rq = data;
7304 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7305 int target_cpu = busiest_rq->push_cpu;
969c7921 7306 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7307 struct sched_domain *sd;
e5673f28 7308 struct task_struct *p = NULL;
969c7921
TH
7309
7310 raw_spin_lock_irq(&busiest_rq->lock);
7311
7312 /* make sure the requested cpu hasn't gone down in the meantime */
7313 if (unlikely(busiest_cpu != smp_processor_id() ||
7314 !busiest_rq->active_balance))
7315 goto out_unlock;
1e3c88bd
PZ
7316
7317 /* Is there any task to move? */
7318 if (busiest_rq->nr_running <= 1)
969c7921 7319 goto out_unlock;
1e3c88bd
PZ
7320
7321 /*
7322 * This condition is "impossible", if it occurs
7323 * we need to fix it. Originally reported by
7324 * Bjorn Helgaas on a 128-cpu setup.
7325 */
7326 BUG_ON(busiest_rq == target_rq);
7327
1e3c88bd 7328 /* Search for an sd spanning us and the target CPU. */
dce840a0 7329 rcu_read_lock();
1e3c88bd
PZ
7330 for_each_domain(target_cpu, sd) {
7331 if ((sd->flags & SD_LOAD_BALANCE) &&
7332 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7333 break;
7334 }
7335
7336 if (likely(sd)) {
8e45cb54
PZ
7337 struct lb_env env = {
7338 .sd = sd,
ddcdf6e7
PZ
7339 .dst_cpu = target_cpu,
7340 .dst_rq = target_rq,
7341 .src_cpu = busiest_rq->cpu,
7342 .src_rq = busiest_rq,
8e45cb54
PZ
7343 .idle = CPU_IDLE,
7344 };
7345
1e3c88bd
PZ
7346 schedstat_inc(sd, alb_count);
7347
e5673f28
KT
7348 p = detach_one_task(&env);
7349 if (p)
1e3c88bd
PZ
7350 schedstat_inc(sd, alb_pushed);
7351 else
7352 schedstat_inc(sd, alb_failed);
7353 }
dce840a0 7354 rcu_read_unlock();
969c7921
TH
7355out_unlock:
7356 busiest_rq->active_balance = 0;
e5673f28
KT
7357 raw_spin_unlock(&busiest_rq->lock);
7358
7359 if (p)
7360 attach_one_task(target_rq, p);
7361
7362 local_irq_enable();
7363
969c7921 7364 return 0;
1e3c88bd
PZ
7365}
7366
d987fc7f
MG
7367static inline int on_null_domain(struct rq *rq)
7368{
7369 return unlikely(!rcu_dereference_sched(rq->sd));
7370}
7371
3451d024 7372#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7373/*
7374 * idle load balancing details
83cd4fe2
VP
7375 * - When one of the busy CPUs notice that there may be an idle rebalancing
7376 * needed, they will kick the idle load balancer, which then does idle
7377 * load balancing for all the idle CPUs.
7378 */
1e3c88bd 7379static struct {
83cd4fe2 7380 cpumask_var_t idle_cpus_mask;
0b005cf5 7381 atomic_t nr_cpus;
83cd4fe2
VP
7382 unsigned long next_balance; /* in jiffy units */
7383} nohz ____cacheline_aligned;
1e3c88bd 7384
3dd0337d 7385static inline int find_new_ilb(void)
1e3c88bd 7386{
0b005cf5 7387 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7388
786d6dc7
SS
7389 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7390 return ilb;
7391
7392 return nr_cpu_ids;
1e3c88bd 7393}
1e3c88bd 7394
83cd4fe2
VP
7395/*
7396 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7397 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7398 * CPU (if there is one).
7399 */
0aeeeeba 7400static void nohz_balancer_kick(void)
83cd4fe2
VP
7401{
7402 int ilb_cpu;
7403
7404 nohz.next_balance++;
7405
3dd0337d 7406 ilb_cpu = find_new_ilb();
83cd4fe2 7407
0b005cf5
SS
7408 if (ilb_cpu >= nr_cpu_ids)
7409 return;
83cd4fe2 7410
cd490c5b 7411 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7412 return;
7413 /*
7414 * Use smp_send_reschedule() instead of resched_cpu().
7415 * This way we generate a sched IPI on the target cpu which
7416 * is idle. And the softirq performing nohz idle load balance
7417 * will be run before returning from the IPI.
7418 */
7419 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7420 return;
7421}
7422
c1cc017c 7423static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7424{
7425 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7426 /*
7427 * Completely isolated CPUs don't ever set, so we must test.
7428 */
7429 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7430 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7431 atomic_dec(&nohz.nr_cpus);
7432 }
71325960
SS
7433 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7434 }
7435}
7436
69e1e811
SS
7437static inline void set_cpu_sd_state_busy(void)
7438{
7439 struct sched_domain *sd;
37dc6b50 7440 int cpu = smp_processor_id();
69e1e811 7441
69e1e811 7442 rcu_read_lock();
37dc6b50 7443 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7444
7445 if (!sd || !sd->nohz_idle)
7446 goto unlock;
7447 sd->nohz_idle = 0;
7448
63b2ca30 7449 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7450unlock:
69e1e811
SS
7451 rcu_read_unlock();
7452}
7453
7454void set_cpu_sd_state_idle(void)
7455{
7456 struct sched_domain *sd;
37dc6b50 7457 int cpu = smp_processor_id();
69e1e811 7458
69e1e811 7459 rcu_read_lock();
37dc6b50 7460 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7461
7462 if (!sd || sd->nohz_idle)
7463 goto unlock;
7464 sd->nohz_idle = 1;
7465
63b2ca30 7466 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7467unlock:
69e1e811
SS
7468 rcu_read_unlock();
7469}
7470
1e3c88bd 7471/*
c1cc017c 7472 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7473 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7474 */
c1cc017c 7475void nohz_balance_enter_idle(int cpu)
1e3c88bd 7476{
71325960
SS
7477 /*
7478 * If this cpu is going down, then nothing needs to be done.
7479 */
7480 if (!cpu_active(cpu))
7481 return;
7482
c1cc017c
AS
7483 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7484 return;
1e3c88bd 7485
d987fc7f
MG
7486 /*
7487 * If we're a completely isolated CPU, we don't play.
7488 */
7489 if (on_null_domain(cpu_rq(cpu)))
7490 return;
7491
c1cc017c
AS
7492 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7493 atomic_inc(&nohz.nr_cpus);
7494 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7495}
71325960 7496
0db0628d 7497static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7498 unsigned long action, void *hcpu)
7499{
7500 switch (action & ~CPU_TASKS_FROZEN) {
7501 case CPU_DYING:
c1cc017c 7502 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7503 return NOTIFY_OK;
7504 default:
7505 return NOTIFY_DONE;
7506 }
7507}
1e3c88bd
PZ
7508#endif
7509
7510static DEFINE_SPINLOCK(balancing);
7511
49c022e6
PZ
7512/*
7513 * Scale the max load_balance interval with the number of CPUs in the system.
7514 * This trades load-balance latency on larger machines for less cross talk.
7515 */
029632fb 7516void update_max_interval(void)
49c022e6
PZ
7517{
7518 max_load_balance_interval = HZ*num_online_cpus()/10;
7519}
7520
1e3c88bd
PZ
7521/*
7522 * It checks each scheduling domain to see if it is due to be balanced,
7523 * and initiates a balancing operation if so.
7524 *
b9b0853a 7525 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7526 */
f7ed0a89 7527static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7528{
23f0d209 7529 int continue_balancing = 1;
f7ed0a89 7530 int cpu = rq->cpu;
1e3c88bd 7531 unsigned long interval;
04f733b4 7532 struct sched_domain *sd;
1e3c88bd
PZ
7533 /* Earliest time when we have to do rebalance again */
7534 unsigned long next_balance = jiffies + 60*HZ;
7535 int update_next_balance = 0;
f48627e6
JL
7536 int need_serialize, need_decay = 0;
7537 u64 max_cost = 0;
1e3c88bd 7538
48a16753 7539 update_blocked_averages(cpu);
2069dd75 7540
dce840a0 7541 rcu_read_lock();
1e3c88bd 7542 for_each_domain(cpu, sd) {
f48627e6
JL
7543 /*
7544 * Decay the newidle max times here because this is a regular
7545 * visit to all the domains. Decay ~1% per second.
7546 */
7547 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7548 sd->max_newidle_lb_cost =
7549 (sd->max_newidle_lb_cost * 253) / 256;
7550 sd->next_decay_max_lb_cost = jiffies + HZ;
7551 need_decay = 1;
7552 }
7553 max_cost += sd->max_newidle_lb_cost;
7554
1e3c88bd
PZ
7555 if (!(sd->flags & SD_LOAD_BALANCE))
7556 continue;
7557
f48627e6
JL
7558 /*
7559 * Stop the load balance at this level. There is another
7560 * CPU in our sched group which is doing load balancing more
7561 * actively.
7562 */
7563 if (!continue_balancing) {
7564 if (need_decay)
7565 continue;
7566 break;
7567 }
7568
52a08ef1 7569 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7570
7571 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7572 if (need_serialize) {
7573 if (!spin_trylock(&balancing))
7574 goto out;
7575 }
7576
7577 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7578 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7579 /*
6263322c 7580 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7581 * env->dst_cpu, so we can't know our idle
7582 * state even if we migrated tasks. Update it.
1e3c88bd 7583 */
de5eb2dd 7584 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7585 }
7586 sd->last_balance = jiffies;
52a08ef1 7587 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7588 }
7589 if (need_serialize)
7590 spin_unlock(&balancing);
7591out:
7592 if (time_after(next_balance, sd->last_balance + interval)) {
7593 next_balance = sd->last_balance + interval;
7594 update_next_balance = 1;
7595 }
f48627e6
JL
7596 }
7597 if (need_decay) {
1e3c88bd 7598 /*
f48627e6
JL
7599 * Ensure the rq-wide value also decays but keep it at a
7600 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7601 */
f48627e6
JL
7602 rq->max_idle_balance_cost =
7603 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7604 }
dce840a0 7605 rcu_read_unlock();
1e3c88bd
PZ
7606
7607 /*
7608 * next_balance will be updated only when there is a need.
7609 * When the cpu is attached to null domain for ex, it will not be
7610 * updated.
7611 */
7612 if (likely(update_next_balance))
7613 rq->next_balance = next_balance;
7614}
7615
3451d024 7616#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7617/*
3451d024 7618 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7619 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7620 */
208cb16b 7621static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7622{
208cb16b 7623 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7624 struct rq *rq;
7625 int balance_cpu;
7626
1c792db7
SS
7627 if (idle != CPU_IDLE ||
7628 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7629 goto end;
83cd4fe2
VP
7630
7631 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7632 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7633 continue;
7634
7635 /*
7636 * If this cpu gets work to do, stop the load balancing
7637 * work being done for other cpus. Next load
7638 * balancing owner will pick it up.
7639 */
1c792db7 7640 if (need_resched())
83cd4fe2 7641 break;
83cd4fe2 7642
5ed4f1d9
VG
7643 rq = cpu_rq(balance_cpu);
7644
ed61bbc6
TC
7645 /*
7646 * If time for next balance is due,
7647 * do the balance.
7648 */
7649 if (time_after_eq(jiffies, rq->next_balance)) {
7650 raw_spin_lock_irq(&rq->lock);
7651 update_rq_clock(rq);
7652 update_idle_cpu_load(rq);
7653 raw_spin_unlock_irq(&rq->lock);
7654 rebalance_domains(rq, CPU_IDLE);
7655 }
83cd4fe2 7656
83cd4fe2
VP
7657 if (time_after(this_rq->next_balance, rq->next_balance))
7658 this_rq->next_balance = rq->next_balance;
7659 }
7660 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7661end:
7662 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7663}
7664
7665/*
0b005cf5 7666 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7667 * of an idle cpu in the system.
0b005cf5 7668 * - This rq has more than one task.
1aaf90a4
VG
7669 * - This rq has at least one CFS task and the capacity of the CPU is
7670 * significantly reduced because of RT tasks or IRQs.
7671 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7672 * multiple busy cpu.
0b005cf5
SS
7673 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7674 * domain span are idle.
83cd4fe2 7675 */
1aaf90a4 7676static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7677{
7678 unsigned long now = jiffies;
0b005cf5 7679 struct sched_domain *sd;
63b2ca30 7680 struct sched_group_capacity *sgc;
4a725627 7681 int nr_busy, cpu = rq->cpu;
1aaf90a4 7682 bool kick = false;
83cd4fe2 7683
4a725627 7684 if (unlikely(rq->idle_balance))
1aaf90a4 7685 return false;
83cd4fe2 7686
1c792db7
SS
7687 /*
7688 * We may be recently in ticked or tickless idle mode. At the first
7689 * busy tick after returning from idle, we will update the busy stats.
7690 */
69e1e811 7691 set_cpu_sd_state_busy();
c1cc017c 7692 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7693
7694 /*
7695 * None are in tickless mode and hence no need for NOHZ idle load
7696 * balancing.
7697 */
7698 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7699 return false;
1c792db7
SS
7700
7701 if (time_before(now, nohz.next_balance))
1aaf90a4 7702 return false;
83cd4fe2 7703
0b005cf5 7704 if (rq->nr_running >= 2)
1aaf90a4 7705 return true;
83cd4fe2 7706
067491b7 7707 rcu_read_lock();
37dc6b50 7708 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7709 if (sd) {
63b2ca30
NP
7710 sgc = sd->groups->sgc;
7711 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7712
1aaf90a4
VG
7713 if (nr_busy > 1) {
7714 kick = true;
7715 goto unlock;
7716 }
7717
83cd4fe2 7718 }
37dc6b50 7719
1aaf90a4
VG
7720 sd = rcu_dereference(rq->sd);
7721 if (sd) {
7722 if ((rq->cfs.h_nr_running >= 1) &&
7723 check_cpu_capacity(rq, sd)) {
7724 kick = true;
7725 goto unlock;
7726 }
7727 }
37dc6b50 7728
1aaf90a4 7729 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7730 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7731 sched_domain_span(sd)) < cpu)) {
7732 kick = true;
7733 goto unlock;
7734 }
067491b7 7735
1aaf90a4 7736unlock:
067491b7 7737 rcu_read_unlock();
1aaf90a4 7738 return kick;
83cd4fe2
VP
7739}
7740#else
208cb16b 7741static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7742#endif
7743
7744/*
7745 * run_rebalance_domains is triggered when needed from the scheduler tick.
7746 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7747 */
1e3c88bd
PZ
7748static void run_rebalance_domains(struct softirq_action *h)
7749{
208cb16b 7750 struct rq *this_rq = this_rq();
6eb57e0d 7751 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7752 CPU_IDLE : CPU_NOT_IDLE;
7753
1e3c88bd 7754 /*
83cd4fe2 7755 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7756 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7757 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7758 * give the idle cpus a chance to load balance. Else we may
7759 * load balance only within the local sched_domain hierarchy
7760 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7761 */
208cb16b 7762 nohz_idle_balance(this_rq, idle);
d4573c3e 7763 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7764}
7765
1e3c88bd
PZ
7766/*
7767 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7768 */
7caff66f 7769void trigger_load_balance(struct rq *rq)
1e3c88bd 7770{
1e3c88bd 7771 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7772 if (unlikely(on_null_domain(rq)))
7773 return;
7774
7775 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7776 raise_softirq(SCHED_SOFTIRQ);
3451d024 7777#ifdef CONFIG_NO_HZ_COMMON
c726099e 7778 if (nohz_kick_needed(rq))
0aeeeeba 7779 nohz_balancer_kick();
83cd4fe2 7780#endif
1e3c88bd
PZ
7781}
7782
0bcdcf28
CE
7783static void rq_online_fair(struct rq *rq)
7784{
7785 update_sysctl();
0e59bdae
KT
7786
7787 update_runtime_enabled(rq);
0bcdcf28
CE
7788}
7789
7790static void rq_offline_fair(struct rq *rq)
7791{
7792 update_sysctl();
a4c96ae3
PB
7793
7794 /* Ensure any throttled groups are reachable by pick_next_task */
7795 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7796}
7797
55e12e5e 7798#endif /* CONFIG_SMP */
e1d1484f 7799
bf0f6f24
IM
7800/*
7801 * scheduler tick hitting a task of our scheduling class:
7802 */
8f4d37ec 7803static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7804{
7805 struct cfs_rq *cfs_rq;
7806 struct sched_entity *se = &curr->se;
7807
7808 for_each_sched_entity(se) {
7809 cfs_rq = cfs_rq_of(se);
8f4d37ec 7810 entity_tick(cfs_rq, se, queued);
bf0f6f24 7811 }
18bf2805 7812
10e84b97 7813 if (numabalancing_enabled)
cbee9f88 7814 task_tick_numa(rq, curr);
bf0f6f24
IM
7815}
7816
7817/*
cd29fe6f
PZ
7818 * called on fork with the child task as argument from the parent's context
7819 * - child not yet on the tasklist
7820 * - preemption disabled
bf0f6f24 7821 */
cd29fe6f 7822static void task_fork_fair(struct task_struct *p)
bf0f6f24 7823{
4fc420c9
DN
7824 struct cfs_rq *cfs_rq;
7825 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7826 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7827 struct rq *rq = this_rq();
7828 unsigned long flags;
7829
05fa785c 7830 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7831
861d034e
PZ
7832 update_rq_clock(rq);
7833
4fc420c9
DN
7834 cfs_rq = task_cfs_rq(current);
7835 curr = cfs_rq->curr;
7836
6c9a27f5
DN
7837 /*
7838 * Not only the cpu but also the task_group of the parent might have
7839 * been changed after parent->se.parent,cfs_rq were copied to
7840 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7841 * of child point to valid ones.
7842 */
7843 rcu_read_lock();
7844 __set_task_cpu(p, this_cpu);
7845 rcu_read_unlock();
bf0f6f24 7846
7109c442 7847 update_curr(cfs_rq);
cd29fe6f 7848
b5d9d734
MG
7849 if (curr)
7850 se->vruntime = curr->vruntime;
aeb73b04 7851 place_entity(cfs_rq, se, 1);
4d78e7b6 7852
cd29fe6f 7853 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7854 /*
edcb60a3
IM
7855 * Upon rescheduling, sched_class::put_prev_task() will place
7856 * 'current' within the tree based on its new key value.
7857 */
4d78e7b6 7858 swap(curr->vruntime, se->vruntime);
8875125e 7859 resched_curr(rq);
4d78e7b6 7860 }
bf0f6f24 7861
88ec22d3
PZ
7862 se->vruntime -= cfs_rq->min_vruntime;
7863
05fa785c 7864 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7865}
7866
cb469845
SR
7867/*
7868 * Priority of the task has changed. Check to see if we preempt
7869 * the current task.
7870 */
da7a735e
PZ
7871static void
7872prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7873{
da0c1e65 7874 if (!task_on_rq_queued(p))
da7a735e
PZ
7875 return;
7876
cb469845
SR
7877 /*
7878 * Reschedule if we are currently running on this runqueue and
7879 * our priority decreased, or if we are not currently running on
7880 * this runqueue and our priority is higher than the current's
7881 */
da7a735e 7882 if (rq->curr == p) {
cb469845 7883 if (p->prio > oldprio)
8875125e 7884 resched_curr(rq);
cb469845 7885 } else
15afe09b 7886 check_preempt_curr(rq, p, 0);
cb469845
SR
7887}
7888
da7a735e
PZ
7889static void switched_from_fair(struct rq *rq, struct task_struct *p)
7890{
7891 struct sched_entity *se = &p->se;
7892 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7893
7894 /*
791c9e02 7895 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7896 * switched back to the fair class the enqueue_entity(.flags=0) will
7897 * do the right thing.
7898 *
da0c1e65
KT
7899 * If it's queued, then the dequeue_entity(.flags=0) will already
7900 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7901 * the task is sleeping will it still have non-normalized vruntime.
7902 */
da0c1e65 7903 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7904 /*
7905 * Fix up our vruntime so that the current sleep doesn't
7906 * cause 'unlimited' sleep bonus.
7907 */
7908 place_entity(cfs_rq, se, 0);
7909 se->vruntime -= cfs_rq->min_vruntime;
7910 }
9ee474f5 7911
141965c7 7912#ifdef CONFIG_SMP
9d89c257
YD
7913 /* Catch up with the cfs_rq and remove our load when we leave */
7914 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
13962234 7915 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
9d89c257
YD
7916
7917 cfs_rq->avg.load_avg =
7918 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7919 cfs_rq->avg.load_sum =
7920 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7921 cfs_rq->avg.util_avg =
7922 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7923 cfs_rq->avg.util_sum =
7924 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
9ee474f5 7925#endif
da7a735e
PZ
7926}
7927
cb469845
SR
7928/*
7929 * We switched to the sched_fair class.
7930 */
da7a735e 7931static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7932{
f36c019c 7933 struct sched_entity *se = &p->se;
7855a35a
BP
7934
7935#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
7936 /*
7937 * Since the real-depth could have been changed (only FAIR
7938 * class maintain depth value), reset depth properly.
7939 */
7940 se->depth = se->parent ? se->parent->depth + 1 : 0;
7941#endif
7855a35a
BP
7942
7943 if (!task_on_rq_queued(p)) {
7944
7945 /*
7946 * Ensure the task has a non-normalized vruntime when it is switched
7947 * back to the fair class with !queued, so that enqueue_entity() at
7948 * wake-up time will do the right thing.
7949 *
7950 * If it's queued, then the enqueue_entity(.flags=0) makes the task
7951 * has non-normalized vruntime, if it's !queued, then it still has
7952 * normalized vruntime.
7953 */
7954 if (p->state != TASK_RUNNING)
7955 se->vruntime += cfs_rq_of(se)->min_vruntime;
da7a735e 7956 return;
7855a35a 7957 }
da7a735e 7958
cb469845
SR
7959 /*
7960 * We were most likely switched from sched_rt, so
7961 * kick off the schedule if running, otherwise just see
7962 * if we can still preempt the current task.
7963 */
da7a735e 7964 if (rq->curr == p)
8875125e 7965 resched_curr(rq);
cb469845 7966 else
15afe09b 7967 check_preempt_curr(rq, p, 0);
cb469845
SR
7968}
7969
83b699ed
SV
7970/* Account for a task changing its policy or group.
7971 *
7972 * This routine is mostly called to set cfs_rq->curr field when a task
7973 * migrates between groups/classes.
7974 */
7975static void set_curr_task_fair(struct rq *rq)
7976{
7977 struct sched_entity *se = &rq->curr->se;
7978
ec12cb7f
PT
7979 for_each_sched_entity(se) {
7980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7981
7982 set_next_entity(cfs_rq, se);
7983 /* ensure bandwidth has been allocated on our new cfs_rq */
7984 account_cfs_rq_runtime(cfs_rq, 0);
7985 }
83b699ed
SV
7986}
7987
029632fb
PZ
7988void init_cfs_rq(struct cfs_rq *cfs_rq)
7989{
7990 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7991 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7992#ifndef CONFIG_64BIT
7993 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7994#endif
141965c7 7995#ifdef CONFIG_SMP
9d89c257
YD
7996 atomic_long_set(&cfs_rq->removed_load_avg, 0);
7997 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 7998#endif
029632fb
PZ
7999}
8000
810b3817 8001#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8002static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8003{
fed14d45 8004 struct sched_entity *se = &p->se;
aff3e498 8005 struct cfs_rq *cfs_rq;
fed14d45 8006
b2b5ce02
PZ
8007 /*
8008 * If the task was not on the rq at the time of this cgroup movement
8009 * it must have been asleep, sleeping tasks keep their ->vruntime
8010 * absolute on their old rq until wakeup (needed for the fair sleeper
8011 * bonus in place_entity()).
8012 *
8013 * If it was on the rq, we've just 'preempted' it, which does convert
8014 * ->vruntime to a relative base.
8015 *
8016 * Make sure both cases convert their relative position when migrating
8017 * to another cgroup's rq. This does somewhat interfere with the
8018 * fair sleeper stuff for the first placement, but who cares.
8019 */
7ceff013 8020 /*
da0c1e65 8021 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8022 * But there are some cases where it has already been normalized:
8023 *
8024 * - Moving a forked child which is waiting for being woken up by
8025 * wake_up_new_task().
62af3783
DN
8026 * - Moving a task which has been woken up by try_to_wake_up() and
8027 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8028 *
8029 * To prevent boost or penalty in the new cfs_rq caused by delta
8030 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8031 */
da0c1e65
KT
8032 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8033 queued = 1;
7ceff013 8034
da0c1e65 8035 if (!queued)
fed14d45 8036 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8037 set_task_rq(p, task_cpu(p));
fed14d45 8038 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8039 if (!queued) {
fed14d45
PZ
8040 cfs_rq = cfs_rq_of(se);
8041 se->vruntime += cfs_rq->min_vruntime;
9d89c257 8042
aff3e498 8043#ifdef CONFIG_SMP
9d89c257
YD
8044 /* Virtually synchronize task with its new cfs_rq */
8045 p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8046 cfs_rq->avg.load_avg += p->se.avg.load_avg;
8047 cfs_rq->avg.load_sum += p->se.avg.load_sum;
8048 cfs_rq->avg.util_avg += p->se.avg.util_avg;
8049 cfs_rq->avg.util_sum += p->se.avg.util_sum;
aff3e498
PT
8050#endif
8051 }
810b3817 8052}
029632fb
PZ
8053
8054void free_fair_sched_group(struct task_group *tg)
8055{
8056 int i;
8057
8058 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8059
8060 for_each_possible_cpu(i) {
8061 if (tg->cfs_rq)
8062 kfree(tg->cfs_rq[i]);
12695578
YD
8063 if (tg->se) {
8064 if (tg->se[i])
8065 remove_entity_load_avg(tg->se[i]);
029632fb 8066 kfree(tg->se[i]);
12695578 8067 }
029632fb
PZ
8068 }
8069
8070 kfree(tg->cfs_rq);
8071 kfree(tg->se);
8072}
8073
8074int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8075{
8076 struct cfs_rq *cfs_rq;
8077 struct sched_entity *se;
8078 int i;
8079
8080 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8081 if (!tg->cfs_rq)
8082 goto err;
8083 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8084 if (!tg->se)
8085 goto err;
8086
8087 tg->shares = NICE_0_LOAD;
8088
8089 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8090
8091 for_each_possible_cpu(i) {
8092 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8093 GFP_KERNEL, cpu_to_node(i));
8094 if (!cfs_rq)
8095 goto err;
8096
8097 se = kzalloc_node(sizeof(struct sched_entity),
8098 GFP_KERNEL, cpu_to_node(i));
8099 if (!se)
8100 goto err_free_rq;
8101
8102 init_cfs_rq(cfs_rq);
8103 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8104 init_entity_runnable_average(se);
029632fb
PZ
8105 }
8106
8107 return 1;
8108
8109err_free_rq:
8110 kfree(cfs_rq);
8111err:
8112 return 0;
8113}
8114
8115void unregister_fair_sched_group(struct task_group *tg, int cpu)
8116{
8117 struct rq *rq = cpu_rq(cpu);
8118 unsigned long flags;
8119
8120 /*
8121 * Only empty task groups can be destroyed; so we can speculatively
8122 * check on_list without danger of it being re-added.
8123 */
8124 if (!tg->cfs_rq[cpu]->on_list)
8125 return;
8126
8127 raw_spin_lock_irqsave(&rq->lock, flags);
8128 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8129 raw_spin_unlock_irqrestore(&rq->lock, flags);
8130}
8131
8132void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8133 struct sched_entity *se, int cpu,
8134 struct sched_entity *parent)
8135{
8136 struct rq *rq = cpu_rq(cpu);
8137
8138 cfs_rq->tg = tg;
8139 cfs_rq->rq = rq;
029632fb
PZ
8140 init_cfs_rq_runtime(cfs_rq);
8141
8142 tg->cfs_rq[cpu] = cfs_rq;
8143 tg->se[cpu] = se;
8144
8145 /* se could be NULL for root_task_group */
8146 if (!se)
8147 return;
8148
fed14d45 8149 if (!parent) {
029632fb 8150 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8151 se->depth = 0;
8152 } else {
029632fb 8153 se->cfs_rq = parent->my_q;
fed14d45
PZ
8154 se->depth = parent->depth + 1;
8155 }
029632fb
PZ
8156
8157 se->my_q = cfs_rq;
0ac9b1c2
PT
8158 /* guarantee group entities always have weight */
8159 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8160 se->parent = parent;
8161}
8162
8163static DEFINE_MUTEX(shares_mutex);
8164
8165int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8166{
8167 int i;
8168 unsigned long flags;
8169
8170 /*
8171 * We can't change the weight of the root cgroup.
8172 */
8173 if (!tg->se[0])
8174 return -EINVAL;
8175
8176 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8177
8178 mutex_lock(&shares_mutex);
8179 if (tg->shares == shares)
8180 goto done;
8181
8182 tg->shares = shares;
8183 for_each_possible_cpu(i) {
8184 struct rq *rq = cpu_rq(i);
8185 struct sched_entity *se;
8186
8187 se = tg->se[i];
8188 /* Propagate contribution to hierarchy */
8189 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8190
8191 /* Possible calls to update_curr() need rq clock */
8192 update_rq_clock(rq);
17bc14b7 8193 for_each_sched_entity(se)
029632fb
PZ
8194 update_cfs_shares(group_cfs_rq(se));
8195 raw_spin_unlock_irqrestore(&rq->lock, flags);
8196 }
8197
8198done:
8199 mutex_unlock(&shares_mutex);
8200 return 0;
8201}
8202#else /* CONFIG_FAIR_GROUP_SCHED */
8203
8204void free_fair_sched_group(struct task_group *tg) { }
8205
8206int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8207{
8208 return 1;
8209}
8210
8211void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8212
8213#endif /* CONFIG_FAIR_GROUP_SCHED */
8214
810b3817 8215
6d686f45 8216static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8217{
8218 struct sched_entity *se = &task->se;
0d721cea
PW
8219 unsigned int rr_interval = 0;
8220
8221 /*
8222 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8223 * idle runqueue:
8224 */
0d721cea 8225 if (rq->cfs.load.weight)
a59f4e07 8226 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8227
8228 return rr_interval;
8229}
8230
bf0f6f24
IM
8231/*
8232 * All the scheduling class methods:
8233 */
029632fb 8234const struct sched_class fair_sched_class = {
5522d5d5 8235 .next = &idle_sched_class,
bf0f6f24
IM
8236 .enqueue_task = enqueue_task_fair,
8237 .dequeue_task = dequeue_task_fair,
8238 .yield_task = yield_task_fair,
d95f4122 8239 .yield_to_task = yield_to_task_fair,
bf0f6f24 8240
2e09bf55 8241 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8242
8243 .pick_next_task = pick_next_task_fair,
8244 .put_prev_task = put_prev_task_fair,
8245
681f3e68 8246#ifdef CONFIG_SMP
4ce72a2c 8247 .select_task_rq = select_task_rq_fair,
0a74bef8 8248 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8249
0bcdcf28
CE
8250 .rq_online = rq_online_fair,
8251 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8252
8253 .task_waking = task_waking_fair,
12695578 8254 .task_dead = task_dead_fair,
c5b28038 8255 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8256#endif
bf0f6f24 8257
83b699ed 8258 .set_curr_task = set_curr_task_fair,
bf0f6f24 8259 .task_tick = task_tick_fair,
cd29fe6f 8260 .task_fork = task_fork_fair,
cb469845
SR
8261
8262 .prio_changed = prio_changed_fair,
da7a735e 8263 .switched_from = switched_from_fair,
cb469845 8264 .switched_to = switched_to_fair,
810b3817 8265
0d721cea
PW
8266 .get_rr_interval = get_rr_interval_fair,
8267
6e998916
SG
8268 .update_curr = update_curr_fair,
8269
810b3817 8270#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8271 .task_move_group = task_move_group_fair,
810b3817 8272#endif
bf0f6f24
IM
8273};
8274
8275#ifdef CONFIG_SCHED_DEBUG
029632fb 8276void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8277{
bf0f6f24
IM
8278 struct cfs_rq *cfs_rq;
8279
5973e5b9 8280 rcu_read_lock();
c3b64f1e 8281 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8282 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8283 rcu_read_unlock();
bf0f6f24 8284}
397f2378
SD
8285
8286#ifdef CONFIG_NUMA_BALANCING
8287void show_numa_stats(struct task_struct *p, struct seq_file *m)
8288{
8289 int node;
8290 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8291
8292 for_each_online_node(node) {
8293 if (p->numa_faults) {
8294 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8295 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8296 }
8297 if (p->numa_group) {
8298 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8299 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8300 }
8301 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8302 }
8303}
8304#endif /* CONFIG_NUMA_BALANCING */
8305#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8306
8307__init void init_sched_fair_class(void)
8308{
8309#ifdef CONFIG_SMP
8310 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8311
3451d024 8312#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8313 nohz.next_balance = jiffies;
029632fb 8314 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8315 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8316#endif
8317#endif /* SMP */
8318
8319}