]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/core: Add preempt checks in preempt_schedule() code
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
cb251765
MG
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780}
3ea94de1 781
bf0f6f24
IM
782/*
783 * Task is being enqueued - update stats:
784 */
cb251765
MG
785static inline void
786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 787{
bf0f6f24
IM
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
429d43bc 792 if (se != cfs_rq->curr)
5870db5b 793 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
794}
795
bf0f6f24 796static inline void
cb251765 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 798{
bf0f6f24
IM
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
429d43bc 803 if (se != cfs_rq->curr)
9ef0a961 804 update_stats_wait_end(cfs_rq, se);
cb251765
MG
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817}
818#else
819static inline void
820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821{
822}
823
824static inline void
825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827}
828
829static inline void
830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832}
833
834static inline void
835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836{
bf0f6f24 837}
cb251765 838#endif
bf0f6f24
IM
839
840/*
841 * We are picking a new current task - update its stats:
842 */
843static inline void
79303e9e 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
845{
846 /*
847 * We are starting a new run period:
848 */
78becc27 849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
850}
851
bf0f6f24
IM
852/**************************************************
853 * Scheduling class queueing methods:
854 */
855
cbee9f88
PZ
856#ifdef CONFIG_NUMA_BALANCING
857/*
598f0ec0
MG
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
cbee9f88 861 */
598f0ec0
MG
862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
864
865/* Portion of address space to scan in MB */
866unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 867
4b96a29b
PZ
868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
598f0ec0
MG
871static unsigned int task_nr_scan_windows(struct task_struct *p)
872{
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888}
889
890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891#define MAX_SCAN_WINDOW 2560
892
893static unsigned int task_scan_min(struct task_struct *p)
894{
316c1608 895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
64192658
KT
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905}
906
907static unsigned int task_scan_max(struct task_struct *p)
908{
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915}
916
0ec8aa00
PZ
917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918{
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921}
922
923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924{
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927}
928
8c8a743c
PZ
929struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
e29cf08b 934 pid_t gid;
4142c3eb 935 int active_nodes;
8c8a743c
PZ
936
937 struct rcu_head rcu;
989348b5 938 unsigned long total_faults;
4142c3eb 939 unsigned long max_faults_cpu;
7e2703e6
RR
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
50ec8a40 945 unsigned long *faults_cpu;
989348b5 946 unsigned long faults[0];
8c8a743c
PZ
947};
948
be1e4e76
RR
949/* Shared or private faults. */
950#define NR_NUMA_HINT_FAULT_TYPES 2
951
952/* Memory and CPU locality */
953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955/* Averaged statistics, and temporary buffers. */
956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
e29cf08b
MG
958pid_t task_numa_group_id(struct task_struct *p)
959{
960 return p->numa_group ? p->numa_group->gid : 0;
961}
962
44dba3d5
IM
963/*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 970{
44dba3d5 971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
972}
973
974static inline unsigned long task_faults(struct task_struct *p, int nid)
975{
44dba3d5 976 if (!p->numa_faults)
ac8e895b
MG
977 return 0;
978
44dba3d5
IM
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
981}
982
83e1d2cd
MG
983static inline unsigned long group_faults(struct task_struct *p, int nid)
984{
985 if (!p->numa_group)
986 return 0;
987
44dba3d5
IM
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
990}
991
20e07dea
RR
992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993{
44dba3d5
IM
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
996}
997
4142c3eb
RR
998/*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
6c6b1193
RR
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013{
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073}
1074
83e1d2cd
MG
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
7bd95320
RR
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
83e1d2cd 1083{
7bd95320 1084 unsigned long faults, total_faults;
83e1d2cd 1085
44dba3d5 1086 if (!p->numa_faults)
83e1d2cd
MG
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
7bd95320 1094 faults = task_faults(p, nid);
6c6b1193
RR
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
7bd95320 1097 return 1000 * faults / total_faults;
83e1d2cd
MG
1098}
1099
7bd95320
RR
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
83e1d2cd 1102{
7bd95320
RR
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
83e1d2cd
MG
1111 return 0;
1112
7bd95320 1113 faults = group_faults(p, nid);
6c6b1193
RR
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
7bd95320 1116 return 1000 * faults / total_faults;
83e1d2cd
MG
1117}
1118
10f39042
RR
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121{
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
4142c3eb
RR
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
10f39042 1161 */
4142c3eb
RR
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
10f39042
RR
1164 return true;
1165
1166 /*
4142c3eb
RR
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
10f39042 1173 */
4142c3eb
RR
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1176}
1177
e6628d5b 1178static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
ced549fa 1181static unsigned long capacity_of(int cpu);
58d081b5
MG
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
fb13c7ee 1184/* Cached statistics for all CPUs within a node */
58d081b5 1185struct numa_stats {
fb13c7ee 1186 unsigned long nr_running;
58d081b5 1187 unsigned long load;
fb13c7ee
MG
1188
1189 /* Total compute capacity of CPUs on a node */
5ef20ca1 1190 unsigned long compute_capacity;
fb13c7ee
MG
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1193 unsigned long task_capacity;
1b6a7495 1194 int has_free_capacity;
58d081b5 1195};
e6628d5b 1196
fb13c7ee
MG
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
83d7f242
RR
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
fb13c7ee
MG
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
ced549fa 1211 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1212
1213 cpus++;
fb13c7ee
MG
1214 }
1215
5eca82a9
PZ
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1b6a7495
NP
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
5eca82a9
PZ
1223 */
1224 if (!cpus)
1225 return;
1226
83d7f242
RR
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1234}
1235
58d081b5
MG
1236struct task_numa_env {
1237 struct task_struct *p;
e6628d5b 1238
58d081b5
MG
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
e6628d5b 1241
58d081b5 1242 struct numa_stats src_stats, dst_stats;
e6628d5b 1243
40ea2b42 1244 int imbalance_pct;
7bd95320 1245 int dist;
fb13c7ee
MG
1246
1247 struct task_struct *best_task;
1248 long best_imp;
58d081b5
MG
1249 int best_cpu;
1250};
1251
fb13c7ee
MG
1252static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254{
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
fb13c7ee
MG
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261}
1262
28a21745 1263static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1264 struct task_numa_env *env)
1265{
e4991b24
RR
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
28a21745
RR
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1279
1280 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
e63da036
RR
1283
1284 /* Is the difference below the threshold? */
e4991b24
RR
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
e4991b24 1292 * Compare it with the old imbalance.
e63da036 1293 */
28a21745 1294 orig_src_load = env->src_stats.load;
e4991b24 1295 orig_dst_load = env->dst_stats.load;
28a21745 1296
e4991b24
RR
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
e63da036 1299
e4991b24
RR
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
e63da036
RR
1305}
1306
fb13c7ee
MG
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
887c290e
RR
1313static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
fb13c7ee
MG
1315{
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
28a21745 1319 long src_load, dst_load;
fb13c7ee 1320 long load;
1c5d3eb3 1321 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1322 long moveimp = imp;
7bd95320 1323 int dist = env->dist;
1dff76b9 1324 bool assigned = false;
fb13c7ee
MG
1325
1326 rcu_read_lock();
1effd9f1
KT
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1dff76b9 1331 * No need to move the exiting task or idle task.
1effd9f1
KT
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1334 cur = NULL;
1dff76b9
GG
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1effd9f1 1348 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1349
7af68335
PZ
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
fb13c7ee
MG
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
887c290e
RR
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1371 * in any group then look only at task weights.
887c290e 1372 */
ca28aa53 1373 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
887c290e 1382 } else {
ca28aa53
RR
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
ca28aa53 1388 if (cur->numa_group)
7bd95320
RR
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
ca28aa53 1391 else
7bd95320
RR
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
887c290e 1394 }
fb13c7ee
MG
1395 }
1396
0132c3e1 1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
b932c03c 1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1403 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
fb13c7ee
MG
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417balance:
e720fff6
PZ
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
fb13c7ee 1421
0132c3e1
RR
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1dff76b9 1431 put_task_struct(cur);
0132c3e1
RR
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
fb13c7ee 1440 if (cur) {
e720fff6
PZ
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
fb13c7ee
MG
1444 }
1445
28a21745 1446 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1447 goto unlock;
1448
ba7e5a27
RR
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
fb13c7ee 1456assign:
1dff76b9 1457 assigned = true;
fb13c7ee
MG
1458 task_numa_assign(env, cur, imp);
1459unlock:
1460 rcu_read_unlock();
1dff76b9
GG
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
fb13c7ee
MG
1467}
1468
887c290e
RR
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
2c8a50aa
MG
1471{
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
887c290e 1480 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1481 }
1482}
1483
6f9aad0b
RR
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
44dcb04f
SD
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1504 return true;
1505
1506 return false;
1507}
1508
58d081b5
MG
1509static int task_numa_migrate(struct task_struct *p)
1510{
58d081b5
MG
1511 struct task_numa_env env = {
1512 .p = p,
fb13c7ee 1513
58d081b5 1514 .src_cpu = task_cpu(p),
b32e86b4 1515 .src_nid = task_node(p),
fb13c7ee
MG
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
4142c3eb 1521 .best_cpu = -1,
58d081b5
MG
1522 };
1523 struct sched_domain *sd;
887c290e 1524 unsigned long taskweight, groupweight;
7bd95320 1525 int nid, ret, dist;
887c290e 1526 long taskimp, groupimp;
e6628d5b 1527
58d081b5 1528 /*
fb13c7ee
MG
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
58d081b5
MG
1535 */
1536 rcu_read_lock();
fb13c7ee 1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1540 rcu_read_unlock();
1541
46a73e8a
RR
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
de1b301a 1549 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1550 return -EINVAL;
1551 }
1552
2c8a50aa 1553 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1560 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1561
a43455a1 1562 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1565
9de05d48
RR
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
4142c3eb 1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
58d081b5 1577
7bd95320 1578 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
7bd95320 1584
83e1d2cd 1585 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1588 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1589 continue;
1590
7bd95320 1591 env.dist = dist;
2c8a50aa
MG
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1596 }
1597 }
1598
68d1b02a
RR
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
db015dae 1607 if (p->numa_group) {
4142c3eb
RR
1608 struct numa_group *ng = p->numa_group;
1609
db015dae
RR
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
4142c3eb 1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
0ec8aa00 1622
04bb2f94
RR
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
fb13c7ee 1629 if (env.best_task == NULL) {
286549dc
MG
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
286549dc
MG
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1639 put_task_struct(env.best_task);
1640 return ret;
e6628d5b
MG
1641}
1642
6b9a7460
MG
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
5085e2a3
RR
1646 unsigned long interval = HZ;
1647
2739d3ee 1648 /* This task has no NUMA fault statistics yet */
44dba3d5 1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1650 return;
1651
2739d3ee 1652 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1655
1656 /* Success if task is already running on preferred CPU */
de1b301a 1657 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1661 task_numa_migrate(p);
6b9a7460
MG
1662}
1663
20e07dea 1664/*
4142c3eb 1665 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
20e07dea 1669 */
4142c3eb 1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1671{
1672 unsigned long faults, max_faults = 0;
4142c3eb 1673 int nid, active_nodes = 0;
20e07dea
RR
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
20e07dea 1685 }
4142c3eb
RR
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
20e07dea
RR
1689}
1690
04bb2f94
RR
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1697 */
1698#define NUMA_PERIOD_SLOTS 10
a22b4b01 1699#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709{
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
074c2381
MG
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
04bb2f94 1723 */
074c2381 1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
2847c90e 1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
7e2703e6
RR
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
9d89c257
YD
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
7e2703e6
RR
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793}
1794
54009416
RR
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
81907478 1842 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1876 if (!max_faults)
1877 break;
54009416
RR
1878 nodes = max_group;
1879 }
1880 return nid;
1881}
1882
cbee9f88
PZ
1883static void task_numa_placement(struct task_struct *p)
1884{
83e1d2cd
MG
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1887 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1888 unsigned long total_faults;
1889 u64 runtime, period;
7dbd13ed 1890 spinlock_t *group_lock = NULL;
cbee9f88 1891
7e5a2c17
JL
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
316c1608 1897 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
598f0ec0 1901 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1902
7e2703e6
RR
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
7dbd13ed
MG
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
60e69eed 1910 spin_lock_irq(group_lock);
7dbd13ed
MG
1911 }
1912
688b7585
MG
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
44dba3d5
IM
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1917 unsigned long faults = 0, group_faults = 0;
44dba3d5 1918 int priv;
745d6147 1919
be1e4e76 1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1921 long diff, f_diff, f_weight;
8c8a743c 1922
44dba3d5
IM
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1927
ac8e895b 1928 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1932
7e2703e6
RR
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1942 (total_faults + 1);
44dba3d5
IM
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1945
44dba3d5
IM
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
83e1d2cd 1949 p->total_numa_faults += diff;
8c8a743c 1950 if (p->numa_group) {
44dba3d5
IM
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1960 p->numa_group->total_faults += diff;
44dba3d5 1961 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1962 }
ac8e895b
MG
1963 }
1964
688b7585
MG
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
83e1d2cd
MG
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
04bb2f94
RR
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
7dbd13ed 1978 if (p->numa_group) {
4142c3eb 1979 numa_group_count_active_nodes(p->numa_group);
60e69eed 1980 spin_unlock_irq(group_lock);
54009416 1981 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1982 }
1983
bb97fc31
RR
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
3a7053b3 1991 }
cbee9f88
PZ
1992}
1993
8c8a743c
PZ
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996 return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003}
2004
3e6a9418
MG
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
8c8a743c
PZ
2007{
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2016 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
8c8a743c 2025 spin_lock_init(&grp->lock);
e29cf08b 2026 grp->gid = p->pid;
50ec8a40 2027 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
8c8a743c 2030
be1e4e76 2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2032 grp->faults[i] = p->numa_faults[i];
8c8a743c 2033
989348b5 2034 grp->total_faults = p->total_numa_faults;
83e1d2cd 2035
8c8a743c
PZ
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
316c1608 2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2044 goto no_join;
8c8a743c
PZ
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
3354781a 2048 goto no_join;
8c8a743c
PZ
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
3354781a 2052 goto no_join;
8c8a743c
PZ
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2059 goto no_join;
8c8a743c
PZ
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2065 goto no_join;
8c8a743c 2066
dabe1d99
RR
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
8c8a743c 2074
3e6a9418
MG
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
dabe1d99 2078 if (join && !get_numa_group(grp))
3354781a 2079 goto no_join;
8c8a743c 2080
8c8a743c
PZ
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
60e69eed
MG
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2088
be1e4e76 2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
8c8a743c 2092 }
989348b5
MG
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
8c8a743c 2095
8c8a743c
PZ
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
60e69eed 2100 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
3354781a
PZ
2105 return;
2106
2107no_join:
2108 rcu_read_unlock();
2109 return;
8c8a743c
PZ
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114 struct numa_group *grp = p->numa_group;
44dba3d5 2115 void *numa_faults = p->numa_faults;
e9dd685c
SR
2116 unsigned long flags;
2117 int i;
8c8a743c
PZ
2118
2119 if (grp) {
e9dd685c 2120 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2122 grp->faults[i] -= p->numa_faults[i];
989348b5 2123 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2124
8c8a743c 2125 grp->nr_tasks--;
e9dd685c 2126 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2127 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2128 put_numa_group(grp);
2129 }
2130
44dba3d5 2131 p->numa_faults = NULL;
82727018 2132 kfree(numa_faults);
8c8a743c
PZ
2133}
2134
cbee9f88
PZ
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
58b46da3 2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2139{
2140 struct task_struct *p = current;
6688cc05 2141 bool migrated = flags & TNF_MIGRATED;
58b46da3 2142 int cpu_node = task_node(current);
792568ec 2143 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2144 struct numa_group *ng;
ac8e895b 2145 int priv;
cbee9f88 2146
2a595721 2147 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2148 return;
2149
9ff1d9ff
MG
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
f809ca9a 2154 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
be1e4e76 2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2158
44dba3d5
IM
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
f809ca9a 2161 return;
745d6147 2162
83e1d2cd 2163 p->total_numa_faults = 0;
04bb2f94 2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2165 }
cbee9f88 2166
8c8a743c
PZ
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2175 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2176 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2177 }
2178
792568ec
RR
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
4142c3eb
RR
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
792568ec
RR
2189 local = 1;
2190
cbee9f88 2191 task_numa_placement(p);
f809ca9a 2192
2739d3ee
RR
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2198 numa_migrate_preferred(p);
2199
b32e86b4
IM
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
074c2381
MG
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
b32e86b4 2204
44dba3d5
IM
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2207 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2208}
2209
6e5fb223
PZ
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
7e5a2c17
JL
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
316c1608 2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2221 p->mm->numa_scan_offset = 0;
2222}
2223
cbee9f88
PZ
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
51170840 2233 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2234 struct vm_area_struct *vma;
9f40604c 2235 unsigned long start, end;
598f0ec0 2236 unsigned long nr_pte_updates = 0;
4620f8c1 2237 long pages, virtpages;
cbee9f88
PZ
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
930aa174 2253 if (!mm->numa_next_scan) {
7e8d16b6
MG
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2256 }
2257
cbee9f88
PZ
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
598f0ec0
MG
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
cbee9f88 2269
fb003b80 2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
19a78d11
PZ
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
9f40604c
MG
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2283 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2284 if (!pages)
2285 return;
cbee9f88 2286
4620f8c1 2287
6e5fb223 2288 down_read(&mm->mmap_sem);
9f40604c 2289 vma = find_vma(mm, start);
6e5fb223
PZ
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
9f40604c 2292 start = 0;
6e5fb223
PZ
2293 vma = mm->mmap;
2294 }
9f40604c 2295 for (; vma; vma = vma->vm_next) {
6b79c57b 2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2298 continue;
6b79c57b 2299 }
6e5fb223 2300
4591ce4f
MG
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
3c67f474
MG
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
4591ce4f 2317
9f40604c
MG
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
4620f8c1 2322 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2323
2324 /*
4620f8c1
RR
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
598f0ec0
MG
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2334 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2335
9f40604c 2336 start = end;
4620f8c1 2337 if (pages <= 0 || virtpages <= 0)
9f40604c 2338 goto out;
3cf1962c
RR
2339
2340 cond_resched();
9f40604c 2341 } while (end != vma->vm_end);
cbee9f88 2342 }
6e5fb223 2343
9f40604c 2344out:
6e5fb223 2345 /*
c69307d5
PZ
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
6e5fb223
PZ
2350 */
2351 if (vma)
9f40604c 2352 mm->numa_scan_offset = start;
6e5fb223
PZ
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
51170840
RR
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
cbee9f88
PZ
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
25b3e5a3 2392 if (now > curr->node_stamp + period) {
4b96a29b 2393 if (!curr->node_stamp)
598f0ec0 2394 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2395 curr->node_stamp += period;
cbee9f88
PZ
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
0ec8aa00
PZ
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
cbee9f88
PZ
2415#endif /* CONFIG_NUMA_BALANCING */
2416
30cfdcfc
DA
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2421 if (!parent_entity(se))
029632fb 2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2423#ifdef CONFIG_SMP
0ec8aa00
PZ
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
367456c7 2430#endif
30cfdcfc 2431 cfs_rq->nr_running++;
30cfdcfc
DA
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2438 if (!parent_entity(se))
029632fb 2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2440#ifdef CONFIG_SMP
0ec8aa00
PZ
2441 if (entity_is_task(se)) {
2442 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2443 list_del_init(&se->group_node);
0ec8aa00 2444 }
bfdb198c 2445#endif
30cfdcfc 2446 cfs_rq->nr_running--;
30cfdcfc
DA
2447}
2448
3ff6dcac
YZ
2449#ifdef CONFIG_FAIR_GROUP_SCHED
2450# ifdef CONFIG_SMP
cf5f0acf
PZ
2451static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2452{
2453 long tg_weight;
2454
2455 /*
9d89c257
YD
2456 * Use this CPU's real-time load instead of the last load contribution
2457 * as the updating of the contribution is delayed, and we will use the
2458 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2459 */
bf5b986e 2460 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2461 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2462 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2463
2464 return tg_weight;
2465}
2466
6d5ab293 2467static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2468{
cf5f0acf 2469 long tg_weight, load, shares;
3ff6dcac 2470
cf5f0acf 2471 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2472 load = cfs_rq->load.weight;
3ff6dcac 2473
3ff6dcac 2474 shares = (tg->shares * load);
cf5f0acf
PZ
2475 if (tg_weight)
2476 shares /= tg_weight;
3ff6dcac
YZ
2477
2478 if (shares < MIN_SHARES)
2479 shares = MIN_SHARES;
2480 if (shares > tg->shares)
2481 shares = tg->shares;
2482
2483 return shares;
2484}
3ff6dcac 2485# else /* CONFIG_SMP */
6d5ab293 2486static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2487{
2488 return tg->shares;
2489}
3ff6dcac 2490# endif /* CONFIG_SMP */
2069dd75
PZ
2491static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2492 unsigned long weight)
2493{
19e5eebb
PT
2494 if (se->on_rq) {
2495 /* commit outstanding execution time */
2496 if (cfs_rq->curr == se)
2497 update_curr(cfs_rq);
2069dd75 2498 account_entity_dequeue(cfs_rq, se);
19e5eebb 2499 }
2069dd75
PZ
2500
2501 update_load_set(&se->load, weight);
2502
2503 if (se->on_rq)
2504 account_entity_enqueue(cfs_rq, se);
2505}
2506
82958366
PT
2507static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2508
6d5ab293 2509static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2510{
2511 struct task_group *tg;
2512 struct sched_entity *se;
3ff6dcac 2513 long shares;
2069dd75 2514
2069dd75
PZ
2515 tg = cfs_rq->tg;
2516 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2517 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2518 return;
3ff6dcac
YZ
2519#ifndef CONFIG_SMP
2520 if (likely(se->load.weight == tg->shares))
2521 return;
2522#endif
6d5ab293 2523 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2524
2525 reweight_entity(cfs_rq_of(se), se, shares);
2526}
2527#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2528static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2529{
2530}
2531#endif /* CONFIG_FAIR_GROUP_SCHED */
2532
141965c7 2533#ifdef CONFIG_SMP
5b51f2f8
PT
2534/* Precomputed fixed inverse multiplies for multiplication by y^n */
2535static const u32 runnable_avg_yN_inv[] = {
2536 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2537 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2538 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2539 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2540 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2541 0x85aac367, 0x82cd8698,
2542};
2543
2544/*
2545 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2546 * over-estimates when re-combining.
2547 */
2548static const u32 runnable_avg_yN_sum[] = {
2549 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2550 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2551 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2552};
2553
9d85f21c
PT
2554/*
2555 * Approximate:
2556 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2557 */
2558static __always_inline u64 decay_load(u64 val, u64 n)
2559{
5b51f2f8
PT
2560 unsigned int local_n;
2561
2562 if (!n)
2563 return val;
2564 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2565 return 0;
2566
2567 /* after bounds checking we can collapse to 32-bit */
2568 local_n = n;
2569
2570 /*
2571 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2572 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2573 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2574 *
2575 * To achieve constant time decay_load.
2576 */
2577 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2578 val >>= local_n / LOAD_AVG_PERIOD;
2579 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2580 }
2581
9d89c257
YD
2582 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2583 return val;
5b51f2f8
PT
2584}
2585
2586/*
2587 * For updates fully spanning n periods, the contribution to runnable
2588 * average will be: \Sum 1024*y^n
2589 *
2590 * We can compute this reasonably efficiently by combining:
2591 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2592 */
2593static u32 __compute_runnable_contrib(u64 n)
2594{
2595 u32 contrib = 0;
2596
2597 if (likely(n <= LOAD_AVG_PERIOD))
2598 return runnable_avg_yN_sum[n];
2599 else if (unlikely(n >= LOAD_AVG_MAX_N))
2600 return LOAD_AVG_MAX;
2601
2602 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2603 do {
2604 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2605 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2606
2607 n -= LOAD_AVG_PERIOD;
2608 } while (n > LOAD_AVG_PERIOD);
2609
2610 contrib = decay_load(contrib, n);
2611 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2612}
2613
006cdf02
PZ
2614#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2615#error "load tracking assumes 2^10 as unit"
2616#endif
2617
54a21385 2618#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2619
9d85f21c
PT
2620/*
2621 * We can represent the historical contribution to runnable average as the
2622 * coefficients of a geometric series. To do this we sub-divide our runnable
2623 * history into segments of approximately 1ms (1024us); label the segment that
2624 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2625 *
2626 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2627 * p0 p1 p2
2628 * (now) (~1ms ago) (~2ms ago)
2629 *
2630 * Let u_i denote the fraction of p_i that the entity was runnable.
2631 *
2632 * We then designate the fractions u_i as our co-efficients, yielding the
2633 * following representation of historical load:
2634 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2635 *
2636 * We choose y based on the with of a reasonably scheduling period, fixing:
2637 * y^32 = 0.5
2638 *
2639 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2640 * approximately half as much as the contribution to load within the last ms
2641 * (u_0).
2642 *
2643 * When a period "rolls over" and we have new u_0`, multiplying the previous
2644 * sum again by y is sufficient to update:
2645 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2646 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2647 */
9d89c257
YD
2648static __always_inline int
2649__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2650 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2651{
e0f5f3af 2652 u64 delta, scaled_delta, periods;
9d89c257 2653 u32 contrib;
6115c793 2654 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2655 unsigned long scale_freq, scale_cpu;
9d85f21c 2656
9d89c257 2657 delta = now - sa->last_update_time;
9d85f21c
PT
2658 /*
2659 * This should only happen when time goes backwards, which it
2660 * unfortunately does during sched clock init when we swap over to TSC.
2661 */
2662 if ((s64)delta < 0) {
9d89c257 2663 sa->last_update_time = now;
9d85f21c
PT
2664 return 0;
2665 }
2666
2667 /*
2668 * Use 1024ns as the unit of measurement since it's a reasonable
2669 * approximation of 1us and fast to compute.
2670 */
2671 delta >>= 10;
2672 if (!delta)
2673 return 0;
9d89c257 2674 sa->last_update_time = now;
9d85f21c 2675
6f2b0452
DE
2676 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2677 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2678
9d85f21c 2679 /* delta_w is the amount already accumulated against our next period */
9d89c257 2680 delta_w = sa->period_contrib;
9d85f21c 2681 if (delta + delta_w >= 1024) {
9d85f21c
PT
2682 decayed = 1;
2683
9d89c257
YD
2684 /* how much left for next period will start over, we don't know yet */
2685 sa->period_contrib = 0;
2686
9d85f21c
PT
2687 /*
2688 * Now that we know we're crossing a period boundary, figure
2689 * out how much from delta we need to complete the current
2690 * period and accrue it.
2691 */
2692 delta_w = 1024 - delta_w;
54a21385 2693 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2694 if (weight) {
e0f5f3af
DE
2695 sa->load_sum += weight * scaled_delta_w;
2696 if (cfs_rq) {
2697 cfs_rq->runnable_load_sum +=
2698 weight * scaled_delta_w;
2699 }
13962234 2700 }
36ee28e4 2701 if (running)
006cdf02 2702 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2703
2704 delta -= delta_w;
2705
2706 /* Figure out how many additional periods this update spans */
2707 periods = delta / 1024;
2708 delta %= 1024;
2709
9d89c257 2710 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2711 if (cfs_rq) {
2712 cfs_rq->runnable_load_sum =
2713 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2714 }
9d89c257 2715 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2716
2717 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2718 contrib = __compute_runnable_contrib(periods);
54a21385 2719 contrib = cap_scale(contrib, scale_freq);
13962234 2720 if (weight) {
9d89c257 2721 sa->load_sum += weight * contrib;
13962234
YD
2722 if (cfs_rq)
2723 cfs_rq->runnable_load_sum += weight * contrib;
2724 }
36ee28e4 2725 if (running)
006cdf02 2726 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2727 }
2728
2729 /* Remainder of delta accrued against u_0` */
54a21385 2730 scaled_delta = cap_scale(delta, scale_freq);
13962234 2731 if (weight) {
e0f5f3af 2732 sa->load_sum += weight * scaled_delta;
13962234 2733 if (cfs_rq)
e0f5f3af 2734 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2735 }
36ee28e4 2736 if (running)
006cdf02 2737 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2738
9d89c257 2739 sa->period_contrib += delta;
9ee474f5 2740
9d89c257
YD
2741 if (decayed) {
2742 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2743 if (cfs_rq) {
2744 cfs_rq->runnable_load_avg =
2745 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2746 }
006cdf02 2747 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2748 }
aff3e498 2749
9d89c257 2750 return decayed;
9ee474f5
PT
2751}
2752
c566e8e9 2753#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2754/*
9d89c257
YD
2755 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2756 * and effective_load (which is not done because it is too costly).
bb17f655 2757 */
9d89c257 2758static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2759{
9d89c257 2760 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2761
aa0b7ae0
WL
2762 /*
2763 * No need to update load_avg for root_task_group as it is not used.
2764 */
2765 if (cfs_rq->tg == &root_task_group)
2766 return;
2767
9d89c257
YD
2768 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2769 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2770 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2771 }
8165e145 2772}
f5f9739d 2773
ad936d86
BP
2774/*
2775 * Called within set_task_rq() right before setting a task's cpu. The
2776 * caller only guarantees p->pi_lock is held; no other assumptions,
2777 * including the state of rq->lock, should be made.
2778 */
2779void set_task_rq_fair(struct sched_entity *se,
2780 struct cfs_rq *prev, struct cfs_rq *next)
2781{
2782 if (!sched_feat(ATTACH_AGE_LOAD))
2783 return;
2784
2785 /*
2786 * We are supposed to update the task to "current" time, then its up to
2787 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2788 * getting what current time is, so simply throw away the out-of-date
2789 * time. This will result in the wakee task is less decayed, but giving
2790 * the wakee more load sounds not bad.
2791 */
2792 if (se->avg.last_update_time && prev) {
2793 u64 p_last_update_time;
2794 u64 n_last_update_time;
2795
2796#ifndef CONFIG_64BIT
2797 u64 p_last_update_time_copy;
2798 u64 n_last_update_time_copy;
2799
2800 do {
2801 p_last_update_time_copy = prev->load_last_update_time_copy;
2802 n_last_update_time_copy = next->load_last_update_time_copy;
2803
2804 smp_rmb();
2805
2806 p_last_update_time = prev->avg.last_update_time;
2807 n_last_update_time = next->avg.last_update_time;
2808
2809 } while (p_last_update_time != p_last_update_time_copy ||
2810 n_last_update_time != n_last_update_time_copy);
2811#else
2812 p_last_update_time = prev->avg.last_update_time;
2813 n_last_update_time = next->avg.last_update_time;
2814#endif
2815 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2816 &se->avg, 0, 0, NULL);
2817 se->avg.last_update_time = n_last_update_time;
2818 }
2819}
6e83125c 2820#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2821static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2822#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2823
9d89c257 2824static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2825
9d89c257
YD
2826/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2827static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2828{
9d89c257 2829 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2830 int decayed, removed = 0;
2dac754e 2831
9d89c257 2832 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2833 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2834 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2835 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2836 removed = 1;
8165e145 2837 }
2dac754e 2838
9d89c257
YD
2839 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2840 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2841 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2842 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2843 }
36ee28e4 2844
9d89c257 2845 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2846 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2847
9d89c257
YD
2848#ifndef CONFIG_64BIT
2849 smp_wmb();
2850 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2851#endif
36ee28e4 2852
3e386d56 2853 return decayed || removed;
9ee474f5
PT
2854}
2855
9d89c257
YD
2856/* Update task and its cfs_rq load average */
2857static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2858{
2dac754e 2859 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2860 u64 now = cfs_rq_clock_task(cfs_rq);
34e2c555
RW
2861 struct rq *rq = rq_of(cfs_rq);
2862 int cpu = cpu_of(rq);
2dac754e 2863
f1b17280 2864 /*
9d89c257
YD
2865 * Track task load average for carrying it to new CPU after migrated, and
2866 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2867 */
9d89c257 2868 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2869 se->on_rq * scale_load_down(se->load.weight),
2870 cfs_rq->curr == se, NULL);
f1b17280 2871
9d89c257
YD
2872 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2873 update_tg_load_avg(cfs_rq, 0);
34e2c555
RW
2874
2875 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2876 unsigned long max = rq->cpu_capacity_orig;
2877
2878 /*
2879 * There are a few boundary cases this might miss but it should
2880 * get called often enough that that should (hopefully) not be
2881 * a real problem -- added to that it only calls on the local
2882 * CPU, so if we enqueue remotely we'll miss an update, but
2883 * the next tick/schedule should update.
2884 *
2885 * It will not get called when we go idle, because the idle
2886 * thread is a different class (!fair), nor will the utilization
2887 * number include things like RT tasks.
2888 *
2889 * As is, the util number is not freq-invariant (we'd have to
2890 * implement arch_scale_freq_capacity() for that).
2891 *
2892 * See cpu_util().
2893 */
2894 cpufreq_update_util(rq_clock(rq),
2895 min(cfs_rq->avg.util_avg, max), max);
2896 }
9ee474f5
PT
2897}
2898
a05e8c51
BP
2899static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2900{
a9280514
PZ
2901 if (!sched_feat(ATTACH_AGE_LOAD))
2902 goto skip_aging;
2903
6efdb105
BP
2904 /*
2905 * If we got migrated (either between CPUs or between cgroups) we'll
2906 * have aged the average right before clearing @last_update_time.
2907 */
2908 if (se->avg.last_update_time) {
2909 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2910 &se->avg, 0, 0, NULL);
2911
2912 /*
2913 * XXX: we could have just aged the entire load away if we've been
2914 * absent from the fair class for too long.
2915 */
2916 }
2917
a9280514 2918skip_aging:
a05e8c51
BP
2919 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2920 cfs_rq->avg.load_avg += se->avg.load_avg;
2921 cfs_rq->avg.load_sum += se->avg.load_sum;
2922 cfs_rq->avg.util_avg += se->avg.util_avg;
2923 cfs_rq->avg.util_sum += se->avg.util_sum;
2924}
2925
2926static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2927{
2928 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2929 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2930 cfs_rq->curr == se, NULL);
2931
2932 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2933 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2934 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2935 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2936}
2937
9d89c257
YD
2938/* Add the load generated by se into cfs_rq's load average */
2939static inline void
2940enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2941{
9d89c257
YD
2942 struct sched_avg *sa = &se->avg;
2943 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2944 int migrated, decayed;
9ee474f5 2945
a05e8c51
BP
2946 migrated = !sa->last_update_time;
2947 if (!migrated) {
9d89c257 2948 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2949 se->on_rq * scale_load_down(se->load.weight),
2950 cfs_rq->curr == se, NULL);
aff3e498 2951 }
c566e8e9 2952
9d89c257 2953 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2954
13962234
YD
2955 cfs_rq->runnable_load_avg += sa->load_avg;
2956 cfs_rq->runnable_load_sum += sa->load_sum;
2957
a05e8c51
BP
2958 if (migrated)
2959 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2960
9d89c257
YD
2961 if (decayed || migrated)
2962 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2963}
2964
13962234
YD
2965/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2966static inline void
2967dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2968{
2969 update_load_avg(se, 1);
2970
2971 cfs_rq->runnable_load_avg =
2972 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2973 cfs_rq->runnable_load_sum =
a05e8c51 2974 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2975}
2976
9d89c257 2977#ifndef CONFIG_64BIT
0905f04e
YD
2978static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2979{
9d89c257 2980 u64 last_update_time_copy;
0905f04e 2981 u64 last_update_time;
9ee474f5 2982
9d89c257
YD
2983 do {
2984 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2985 smp_rmb();
2986 last_update_time = cfs_rq->avg.last_update_time;
2987 } while (last_update_time != last_update_time_copy);
0905f04e
YD
2988
2989 return last_update_time;
2990}
9d89c257 2991#else
0905f04e
YD
2992static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2993{
2994 return cfs_rq->avg.last_update_time;
2995}
9d89c257
YD
2996#endif
2997
0905f04e
YD
2998/*
2999 * Task first catches up with cfs_rq, and then subtract
3000 * itself from the cfs_rq (task must be off the queue now).
3001 */
3002void remove_entity_load_avg(struct sched_entity *se)
3003{
3004 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3005 u64 last_update_time;
3006
3007 /*
3008 * Newly created task or never used group entity should not be removed
3009 * from its (source) cfs_rq
3010 */
3011 if (se->avg.last_update_time == 0)
3012 return;
3013
3014 last_update_time = cfs_rq_last_update_time(cfs_rq);
3015
13962234 3016 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3017 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3018 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3019}
642dbc39 3020
7ea241af
YD
3021static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3022{
3023 return cfs_rq->runnable_load_avg;
3024}
3025
3026static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3027{
3028 return cfs_rq->avg.load_avg;
3029}
3030
6e83125c
PZ
3031static int idle_balance(struct rq *this_rq);
3032
38033c37
PZ
3033#else /* CONFIG_SMP */
3034
9d89c257
YD
3035static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3036static inline void
3037enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3038static inline void
3039dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3040static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3041
a05e8c51
BP
3042static inline void
3043attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3044static inline void
3045detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3046
6e83125c
PZ
3047static inline int idle_balance(struct rq *rq)
3048{
3049 return 0;
3050}
3051
38033c37 3052#endif /* CONFIG_SMP */
9d85f21c 3053
2396af69 3054static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3055{
bf0f6f24 3056#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3057 struct task_struct *tsk = NULL;
3058
3059 if (entity_is_task(se))
3060 tsk = task_of(se);
3061
41acab88 3062 if (se->statistics.sleep_start) {
78becc27 3063 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3064
3065 if ((s64)delta < 0)
3066 delta = 0;
3067
41acab88
LDM
3068 if (unlikely(delta > se->statistics.sleep_max))
3069 se->statistics.sleep_max = delta;
bf0f6f24 3070
8c79a045 3071 se->statistics.sleep_start = 0;
41acab88 3072 se->statistics.sum_sleep_runtime += delta;
9745512c 3073
768d0c27 3074 if (tsk) {
e414314c 3075 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3076 trace_sched_stat_sleep(tsk, delta);
3077 }
bf0f6f24 3078 }
41acab88 3079 if (se->statistics.block_start) {
78becc27 3080 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3081
3082 if ((s64)delta < 0)
3083 delta = 0;
3084
41acab88
LDM
3085 if (unlikely(delta > se->statistics.block_max))
3086 se->statistics.block_max = delta;
bf0f6f24 3087
8c79a045 3088 se->statistics.block_start = 0;
41acab88 3089 se->statistics.sum_sleep_runtime += delta;
30084fbd 3090
e414314c 3091 if (tsk) {
8f0dfc34 3092 if (tsk->in_iowait) {
41acab88
LDM
3093 se->statistics.iowait_sum += delta;
3094 se->statistics.iowait_count++;
768d0c27 3095 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3096 }
3097
b781a602
AV
3098 trace_sched_stat_blocked(tsk, delta);
3099
e414314c
PZ
3100 /*
3101 * Blocking time is in units of nanosecs, so shift by
3102 * 20 to get a milliseconds-range estimation of the
3103 * amount of time that the task spent sleeping:
3104 */
3105 if (unlikely(prof_on == SLEEP_PROFILING)) {
3106 profile_hits(SLEEP_PROFILING,
3107 (void *)get_wchan(tsk),
3108 delta >> 20);
3109 }
3110 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3111 }
bf0f6f24
IM
3112 }
3113#endif
3114}
3115
ddc97297
PZ
3116static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3117{
3118#ifdef CONFIG_SCHED_DEBUG
3119 s64 d = se->vruntime - cfs_rq->min_vruntime;
3120
3121 if (d < 0)
3122 d = -d;
3123
3124 if (d > 3*sysctl_sched_latency)
3125 schedstat_inc(cfs_rq, nr_spread_over);
3126#endif
3127}
3128
aeb73b04
PZ
3129static void
3130place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3131{
1af5f730 3132 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3133
2cb8600e
PZ
3134 /*
3135 * The 'current' period is already promised to the current tasks,
3136 * however the extra weight of the new task will slow them down a
3137 * little, place the new task so that it fits in the slot that
3138 * stays open at the end.
3139 */
94dfb5e7 3140 if (initial && sched_feat(START_DEBIT))
f9c0b095 3141 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3142
a2e7a7eb 3143 /* sleeps up to a single latency don't count. */
5ca9880c 3144 if (!initial) {
a2e7a7eb 3145 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3146
a2e7a7eb
MG
3147 /*
3148 * Halve their sleep time's effect, to allow
3149 * for a gentler effect of sleepers:
3150 */
3151 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3152 thresh >>= 1;
51e0304c 3153
a2e7a7eb 3154 vruntime -= thresh;
aeb73b04
PZ
3155 }
3156
b5d9d734 3157 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3158 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3159}
3160
d3d9dc33
PT
3161static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3162
cb251765
MG
3163static inline void check_schedstat_required(void)
3164{
3165#ifdef CONFIG_SCHEDSTATS
3166 if (schedstat_enabled())
3167 return;
3168
3169 /* Force schedstat enabled if a dependent tracepoint is active */
3170 if (trace_sched_stat_wait_enabled() ||
3171 trace_sched_stat_sleep_enabled() ||
3172 trace_sched_stat_iowait_enabled() ||
3173 trace_sched_stat_blocked_enabled() ||
3174 trace_sched_stat_runtime_enabled()) {
3175 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3176 "stat_blocked and stat_runtime require the "
3177 "kernel parameter schedstats=enabled or "
3178 "kernel.sched_schedstats=1\n");
3179 }
3180#endif
3181}
3182
bf0f6f24 3183static void
88ec22d3 3184enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3185{
3a47d512
PZ
3186 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3187 bool curr = cfs_rq->curr == se;
3188
88ec22d3 3189 /*
3a47d512
PZ
3190 * If we're the current task, we must renormalise before calling
3191 * update_curr().
88ec22d3 3192 */
3a47d512 3193 if (renorm && curr)
88ec22d3
PZ
3194 se->vruntime += cfs_rq->min_vruntime;
3195
3a47d512
PZ
3196 update_curr(cfs_rq);
3197
bf0f6f24 3198 /*
3a47d512
PZ
3199 * Otherwise, renormalise after, such that we're placed at the current
3200 * moment in time, instead of some random moment in the past.
bf0f6f24 3201 */
3a47d512
PZ
3202 if (renorm && !curr)
3203 se->vruntime += cfs_rq->min_vruntime;
3204
9d89c257 3205 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3206 account_entity_enqueue(cfs_rq, se);
3207 update_cfs_shares(cfs_rq);
bf0f6f24 3208
88ec22d3 3209 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3210 place_entity(cfs_rq, se, 0);
cb251765
MG
3211 if (schedstat_enabled())
3212 enqueue_sleeper(cfs_rq, se);
e9acbff6 3213 }
bf0f6f24 3214
cb251765
MG
3215 check_schedstat_required();
3216 if (schedstat_enabled()) {
3217 update_stats_enqueue(cfs_rq, se);
3218 check_spread(cfs_rq, se);
3219 }
3a47d512 3220 if (!curr)
83b699ed 3221 __enqueue_entity(cfs_rq, se);
2069dd75 3222 se->on_rq = 1;
3d4b47b4 3223
d3d9dc33 3224 if (cfs_rq->nr_running == 1) {
3d4b47b4 3225 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3226 check_enqueue_throttle(cfs_rq);
3227 }
bf0f6f24
IM
3228}
3229
2c13c919 3230static void __clear_buddies_last(struct sched_entity *se)
2002c695 3231{
2c13c919
RR
3232 for_each_sched_entity(se) {
3233 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3234 if (cfs_rq->last != se)
2c13c919 3235 break;
f1044799
PZ
3236
3237 cfs_rq->last = NULL;
2c13c919
RR
3238 }
3239}
2002c695 3240
2c13c919
RR
3241static void __clear_buddies_next(struct sched_entity *se)
3242{
3243 for_each_sched_entity(se) {
3244 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3245 if (cfs_rq->next != se)
2c13c919 3246 break;
f1044799
PZ
3247
3248 cfs_rq->next = NULL;
2c13c919 3249 }
2002c695
PZ
3250}
3251
ac53db59
RR
3252static void __clear_buddies_skip(struct sched_entity *se)
3253{
3254 for_each_sched_entity(se) {
3255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3256 if (cfs_rq->skip != se)
ac53db59 3257 break;
f1044799
PZ
3258
3259 cfs_rq->skip = NULL;
ac53db59
RR
3260 }
3261}
3262
a571bbea
PZ
3263static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3264{
2c13c919
RR
3265 if (cfs_rq->last == se)
3266 __clear_buddies_last(se);
3267
3268 if (cfs_rq->next == se)
3269 __clear_buddies_next(se);
ac53db59
RR
3270
3271 if (cfs_rq->skip == se)
3272 __clear_buddies_skip(se);
a571bbea
PZ
3273}
3274
6c16a6dc 3275static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3276
bf0f6f24 3277static void
371fd7e7 3278dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3279{
a2a2d680
DA
3280 /*
3281 * Update run-time statistics of the 'current'.
3282 */
3283 update_curr(cfs_rq);
13962234 3284 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3285
cb251765
MG
3286 if (schedstat_enabled())
3287 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3288
2002c695 3289 clear_buddies(cfs_rq, se);
4793241b 3290
83b699ed 3291 if (se != cfs_rq->curr)
30cfdcfc 3292 __dequeue_entity(cfs_rq, se);
17bc14b7 3293 se->on_rq = 0;
30cfdcfc 3294 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3295
3296 /*
3297 * Normalize the entity after updating the min_vruntime because the
3298 * update can refer to the ->curr item and we need to reflect this
3299 * movement in our normalized position.
3300 */
371fd7e7 3301 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3302 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3303
d8b4986d
PT
3304 /* return excess runtime on last dequeue */
3305 return_cfs_rq_runtime(cfs_rq);
3306
1e876231 3307 update_min_vruntime(cfs_rq);
17bc14b7 3308 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3309}
3310
3311/*
3312 * Preempt the current task with a newly woken task if needed:
3313 */
7c92e54f 3314static void
2e09bf55 3315check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3316{
11697830 3317 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3318 struct sched_entity *se;
3319 s64 delta;
11697830 3320
6d0f0ebd 3321 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3322 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3323 if (delta_exec > ideal_runtime) {
8875125e 3324 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3325 /*
3326 * The current task ran long enough, ensure it doesn't get
3327 * re-elected due to buddy favours.
3328 */
3329 clear_buddies(cfs_rq, curr);
f685ceac
MG
3330 return;
3331 }
3332
3333 /*
3334 * Ensure that a task that missed wakeup preemption by a
3335 * narrow margin doesn't have to wait for a full slice.
3336 * This also mitigates buddy induced latencies under load.
3337 */
f685ceac
MG
3338 if (delta_exec < sysctl_sched_min_granularity)
3339 return;
3340
f4cfb33e
WX
3341 se = __pick_first_entity(cfs_rq);
3342 delta = curr->vruntime - se->vruntime;
f685ceac 3343
f4cfb33e
WX
3344 if (delta < 0)
3345 return;
d7d82944 3346
f4cfb33e 3347 if (delta > ideal_runtime)
8875125e 3348 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3349}
3350
83b699ed 3351static void
8494f412 3352set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3353{
83b699ed
SV
3354 /* 'current' is not kept within the tree. */
3355 if (se->on_rq) {
3356 /*
3357 * Any task has to be enqueued before it get to execute on
3358 * a CPU. So account for the time it spent waiting on the
3359 * runqueue.
3360 */
cb251765
MG
3361 if (schedstat_enabled())
3362 update_stats_wait_end(cfs_rq, se);
83b699ed 3363 __dequeue_entity(cfs_rq, se);
9d89c257 3364 update_load_avg(se, 1);
83b699ed
SV
3365 }
3366
79303e9e 3367 update_stats_curr_start(cfs_rq, se);
429d43bc 3368 cfs_rq->curr = se;
eba1ed4b
IM
3369#ifdef CONFIG_SCHEDSTATS
3370 /*
3371 * Track our maximum slice length, if the CPU's load is at
3372 * least twice that of our own weight (i.e. dont track it
3373 * when there are only lesser-weight tasks around):
3374 */
cb251765 3375 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3376 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3377 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3378 }
3379#endif
4a55b450 3380 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3381}
3382
3f3a4904
PZ
3383static int
3384wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3385
ac53db59
RR
3386/*
3387 * Pick the next process, keeping these things in mind, in this order:
3388 * 1) keep things fair between processes/task groups
3389 * 2) pick the "next" process, since someone really wants that to run
3390 * 3) pick the "last" process, for cache locality
3391 * 4) do not run the "skip" process, if something else is available
3392 */
678d5718
PZ
3393static struct sched_entity *
3394pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3395{
678d5718
PZ
3396 struct sched_entity *left = __pick_first_entity(cfs_rq);
3397 struct sched_entity *se;
3398
3399 /*
3400 * If curr is set we have to see if its left of the leftmost entity
3401 * still in the tree, provided there was anything in the tree at all.
3402 */
3403 if (!left || (curr && entity_before(curr, left)))
3404 left = curr;
3405
3406 se = left; /* ideally we run the leftmost entity */
f4b6755f 3407
ac53db59
RR
3408 /*
3409 * Avoid running the skip buddy, if running something else can
3410 * be done without getting too unfair.
3411 */
3412 if (cfs_rq->skip == se) {
678d5718
PZ
3413 struct sched_entity *second;
3414
3415 if (se == curr) {
3416 second = __pick_first_entity(cfs_rq);
3417 } else {
3418 second = __pick_next_entity(se);
3419 if (!second || (curr && entity_before(curr, second)))
3420 second = curr;
3421 }
3422
ac53db59
RR
3423 if (second && wakeup_preempt_entity(second, left) < 1)
3424 se = second;
3425 }
aa2ac252 3426
f685ceac
MG
3427 /*
3428 * Prefer last buddy, try to return the CPU to a preempted task.
3429 */
3430 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3431 se = cfs_rq->last;
3432
ac53db59
RR
3433 /*
3434 * Someone really wants this to run. If it's not unfair, run it.
3435 */
3436 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3437 se = cfs_rq->next;
3438
f685ceac 3439 clear_buddies(cfs_rq, se);
4793241b
PZ
3440
3441 return se;
aa2ac252
PZ
3442}
3443
678d5718 3444static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3445
ab6cde26 3446static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3447{
3448 /*
3449 * If still on the runqueue then deactivate_task()
3450 * was not called and update_curr() has to be done:
3451 */
3452 if (prev->on_rq)
b7cc0896 3453 update_curr(cfs_rq);
bf0f6f24 3454
d3d9dc33
PT
3455 /* throttle cfs_rqs exceeding runtime */
3456 check_cfs_rq_runtime(cfs_rq);
3457
cb251765
MG
3458 if (schedstat_enabled()) {
3459 check_spread(cfs_rq, prev);
3460 if (prev->on_rq)
3461 update_stats_wait_start(cfs_rq, prev);
3462 }
3463
30cfdcfc 3464 if (prev->on_rq) {
30cfdcfc
DA
3465 /* Put 'current' back into the tree. */
3466 __enqueue_entity(cfs_rq, prev);
9d85f21c 3467 /* in !on_rq case, update occurred at dequeue */
9d89c257 3468 update_load_avg(prev, 0);
30cfdcfc 3469 }
429d43bc 3470 cfs_rq->curr = NULL;
bf0f6f24
IM
3471}
3472
8f4d37ec
PZ
3473static void
3474entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3475{
bf0f6f24 3476 /*
30cfdcfc 3477 * Update run-time statistics of the 'current'.
bf0f6f24 3478 */
30cfdcfc 3479 update_curr(cfs_rq);
bf0f6f24 3480
9d85f21c
PT
3481 /*
3482 * Ensure that runnable average is periodically updated.
3483 */
9d89c257 3484 update_load_avg(curr, 1);
bf0bd948 3485 update_cfs_shares(cfs_rq);
9d85f21c 3486
8f4d37ec
PZ
3487#ifdef CONFIG_SCHED_HRTICK
3488 /*
3489 * queued ticks are scheduled to match the slice, so don't bother
3490 * validating it and just reschedule.
3491 */
983ed7a6 3492 if (queued) {
8875125e 3493 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3494 return;
3495 }
8f4d37ec
PZ
3496 /*
3497 * don't let the period tick interfere with the hrtick preemption
3498 */
3499 if (!sched_feat(DOUBLE_TICK) &&
3500 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3501 return;
3502#endif
3503
2c2efaed 3504 if (cfs_rq->nr_running > 1)
2e09bf55 3505 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3506}
3507
ab84d31e
PT
3508
3509/**************************************************
3510 * CFS bandwidth control machinery
3511 */
3512
3513#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3514
3515#ifdef HAVE_JUMP_LABEL
c5905afb 3516static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3517
3518static inline bool cfs_bandwidth_used(void)
3519{
c5905afb 3520 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3521}
3522
1ee14e6c 3523void cfs_bandwidth_usage_inc(void)
029632fb 3524{
1ee14e6c
BS
3525 static_key_slow_inc(&__cfs_bandwidth_used);
3526}
3527
3528void cfs_bandwidth_usage_dec(void)
3529{
3530 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3531}
3532#else /* HAVE_JUMP_LABEL */
3533static bool cfs_bandwidth_used(void)
3534{
3535 return true;
3536}
3537
1ee14e6c
BS
3538void cfs_bandwidth_usage_inc(void) {}
3539void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3540#endif /* HAVE_JUMP_LABEL */
3541
ab84d31e
PT
3542/*
3543 * default period for cfs group bandwidth.
3544 * default: 0.1s, units: nanoseconds
3545 */
3546static inline u64 default_cfs_period(void)
3547{
3548 return 100000000ULL;
3549}
ec12cb7f
PT
3550
3551static inline u64 sched_cfs_bandwidth_slice(void)
3552{
3553 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3554}
3555
a9cf55b2
PT
3556/*
3557 * Replenish runtime according to assigned quota and update expiration time.
3558 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3559 * additional synchronization around rq->lock.
3560 *
3561 * requires cfs_b->lock
3562 */
029632fb 3563void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3564{
3565 u64 now;
3566
3567 if (cfs_b->quota == RUNTIME_INF)
3568 return;
3569
3570 now = sched_clock_cpu(smp_processor_id());
3571 cfs_b->runtime = cfs_b->quota;
3572 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3573}
3574
029632fb
PZ
3575static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3576{
3577 return &tg->cfs_bandwidth;
3578}
3579
f1b17280
PT
3580/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3581static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3582{
3583 if (unlikely(cfs_rq->throttle_count))
3584 return cfs_rq->throttled_clock_task;
3585
78becc27 3586 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3587}
3588
85dac906
PT
3589/* returns 0 on failure to allocate runtime */
3590static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3591{
3592 struct task_group *tg = cfs_rq->tg;
3593 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3594 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3595
3596 /* note: this is a positive sum as runtime_remaining <= 0 */
3597 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3598
3599 raw_spin_lock(&cfs_b->lock);
3600 if (cfs_b->quota == RUNTIME_INF)
3601 amount = min_amount;
58088ad0 3602 else {
77a4d1a1 3603 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3604
3605 if (cfs_b->runtime > 0) {
3606 amount = min(cfs_b->runtime, min_amount);
3607 cfs_b->runtime -= amount;
3608 cfs_b->idle = 0;
3609 }
ec12cb7f 3610 }
a9cf55b2 3611 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3612 raw_spin_unlock(&cfs_b->lock);
3613
3614 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3615 /*
3616 * we may have advanced our local expiration to account for allowed
3617 * spread between our sched_clock and the one on which runtime was
3618 * issued.
3619 */
3620 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3621 cfs_rq->runtime_expires = expires;
85dac906
PT
3622
3623 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3624}
3625
a9cf55b2
PT
3626/*
3627 * Note: This depends on the synchronization provided by sched_clock and the
3628 * fact that rq->clock snapshots this value.
3629 */
3630static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3631{
a9cf55b2 3632 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3633
3634 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3635 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3636 return;
3637
a9cf55b2
PT
3638 if (cfs_rq->runtime_remaining < 0)
3639 return;
3640
3641 /*
3642 * If the local deadline has passed we have to consider the
3643 * possibility that our sched_clock is 'fast' and the global deadline
3644 * has not truly expired.
3645 *
3646 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3647 * whether the global deadline has advanced. It is valid to compare
3648 * cfs_b->runtime_expires without any locks since we only care about
3649 * exact equality, so a partial write will still work.
a9cf55b2
PT
3650 */
3651
51f2176d 3652 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3653 /* extend local deadline, drift is bounded above by 2 ticks */
3654 cfs_rq->runtime_expires += TICK_NSEC;
3655 } else {
3656 /* global deadline is ahead, expiration has passed */
3657 cfs_rq->runtime_remaining = 0;
3658 }
3659}
3660
9dbdb155 3661static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3662{
3663 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3664 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3665 expire_cfs_rq_runtime(cfs_rq);
3666
3667 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3668 return;
3669
85dac906
PT
3670 /*
3671 * if we're unable to extend our runtime we resched so that the active
3672 * hierarchy can be throttled
3673 */
3674 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3675 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3676}
3677
6c16a6dc 3678static __always_inline
9dbdb155 3679void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3680{
56f570e5 3681 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3682 return;
3683
3684 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3685}
3686
85dac906
PT
3687static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3688{
56f570e5 3689 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3690}
3691
64660c86
PT
3692/* check whether cfs_rq, or any parent, is throttled */
3693static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3694{
56f570e5 3695 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3696}
3697
3698/*
3699 * Ensure that neither of the group entities corresponding to src_cpu or
3700 * dest_cpu are members of a throttled hierarchy when performing group
3701 * load-balance operations.
3702 */
3703static inline int throttled_lb_pair(struct task_group *tg,
3704 int src_cpu, int dest_cpu)
3705{
3706 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3707
3708 src_cfs_rq = tg->cfs_rq[src_cpu];
3709 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3710
3711 return throttled_hierarchy(src_cfs_rq) ||
3712 throttled_hierarchy(dest_cfs_rq);
3713}
3714
3715/* updated child weight may affect parent so we have to do this bottom up */
3716static int tg_unthrottle_up(struct task_group *tg, void *data)
3717{
3718 struct rq *rq = data;
3719 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3720
3721 cfs_rq->throttle_count--;
3722#ifdef CONFIG_SMP
3723 if (!cfs_rq->throttle_count) {
f1b17280 3724 /* adjust cfs_rq_clock_task() */
78becc27 3725 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3726 cfs_rq->throttled_clock_task;
64660c86
PT
3727 }
3728#endif
3729
3730 return 0;
3731}
3732
3733static int tg_throttle_down(struct task_group *tg, void *data)
3734{
3735 struct rq *rq = data;
3736 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3737
82958366
PT
3738 /* group is entering throttled state, stop time */
3739 if (!cfs_rq->throttle_count)
78becc27 3740 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3741 cfs_rq->throttle_count++;
3742
3743 return 0;
3744}
3745
d3d9dc33 3746static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3747{
3748 struct rq *rq = rq_of(cfs_rq);
3749 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3750 struct sched_entity *se;
3751 long task_delta, dequeue = 1;
77a4d1a1 3752 bool empty;
85dac906
PT
3753
3754 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3755
f1b17280 3756 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3757 rcu_read_lock();
3758 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3759 rcu_read_unlock();
85dac906
PT
3760
3761 task_delta = cfs_rq->h_nr_running;
3762 for_each_sched_entity(se) {
3763 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3764 /* throttled entity or throttle-on-deactivate */
3765 if (!se->on_rq)
3766 break;
3767
3768 if (dequeue)
3769 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3770 qcfs_rq->h_nr_running -= task_delta;
3771
3772 if (qcfs_rq->load.weight)
3773 dequeue = 0;
3774 }
3775
3776 if (!se)
72465447 3777 sub_nr_running(rq, task_delta);
85dac906
PT
3778
3779 cfs_rq->throttled = 1;
78becc27 3780 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3781 raw_spin_lock(&cfs_b->lock);
d49db342 3782 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3783
c06f04c7
BS
3784 /*
3785 * Add to the _head_ of the list, so that an already-started
3786 * distribute_cfs_runtime will not see us
3787 */
3788 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3789
3790 /*
3791 * If we're the first throttled task, make sure the bandwidth
3792 * timer is running.
3793 */
3794 if (empty)
3795 start_cfs_bandwidth(cfs_b);
3796
85dac906
PT
3797 raw_spin_unlock(&cfs_b->lock);
3798}
3799
029632fb 3800void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3801{
3802 struct rq *rq = rq_of(cfs_rq);
3803 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3804 struct sched_entity *se;
3805 int enqueue = 1;
3806 long task_delta;
3807
22b958d8 3808 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3809
3810 cfs_rq->throttled = 0;
1a55af2e
FW
3811
3812 update_rq_clock(rq);
3813
671fd9da 3814 raw_spin_lock(&cfs_b->lock);
78becc27 3815 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3816 list_del_rcu(&cfs_rq->throttled_list);
3817 raw_spin_unlock(&cfs_b->lock);
3818
64660c86
PT
3819 /* update hierarchical throttle state */
3820 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3821
671fd9da
PT
3822 if (!cfs_rq->load.weight)
3823 return;
3824
3825 task_delta = cfs_rq->h_nr_running;
3826 for_each_sched_entity(se) {
3827 if (se->on_rq)
3828 enqueue = 0;
3829
3830 cfs_rq = cfs_rq_of(se);
3831 if (enqueue)
3832 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3833 cfs_rq->h_nr_running += task_delta;
3834
3835 if (cfs_rq_throttled(cfs_rq))
3836 break;
3837 }
3838
3839 if (!se)
72465447 3840 add_nr_running(rq, task_delta);
671fd9da
PT
3841
3842 /* determine whether we need to wake up potentially idle cpu */
3843 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3844 resched_curr(rq);
671fd9da
PT
3845}
3846
3847static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3848 u64 remaining, u64 expires)
3849{
3850 struct cfs_rq *cfs_rq;
c06f04c7
BS
3851 u64 runtime;
3852 u64 starting_runtime = remaining;
671fd9da
PT
3853
3854 rcu_read_lock();
3855 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3856 throttled_list) {
3857 struct rq *rq = rq_of(cfs_rq);
3858
3859 raw_spin_lock(&rq->lock);
3860 if (!cfs_rq_throttled(cfs_rq))
3861 goto next;
3862
3863 runtime = -cfs_rq->runtime_remaining + 1;
3864 if (runtime > remaining)
3865 runtime = remaining;
3866 remaining -= runtime;
3867
3868 cfs_rq->runtime_remaining += runtime;
3869 cfs_rq->runtime_expires = expires;
3870
3871 /* we check whether we're throttled above */
3872 if (cfs_rq->runtime_remaining > 0)
3873 unthrottle_cfs_rq(cfs_rq);
3874
3875next:
3876 raw_spin_unlock(&rq->lock);
3877
3878 if (!remaining)
3879 break;
3880 }
3881 rcu_read_unlock();
3882
c06f04c7 3883 return starting_runtime - remaining;
671fd9da
PT
3884}
3885
58088ad0
PT
3886/*
3887 * Responsible for refilling a task_group's bandwidth and unthrottling its
3888 * cfs_rqs as appropriate. If there has been no activity within the last
3889 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3890 * used to track this state.
3891 */
3892static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3893{
671fd9da 3894 u64 runtime, runtime_expires;
51f2176d 3895 int throttled;
58088ad0 3896
58088ad0
PT
3897 /* no need to continue the timer with no bandwidth constraint */
3898 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3899 goto out_deactivate;
58088ad0 3900
671fd9da 3901 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3902 cfs_b->nr_periods += overrun;
671fd9da 3903
51f2176d
BS
3904 /*
3905 * idle depends on !throttled (for the case of a large deficit), and if
3906 * we're going inactive then everything else can be deferred
3907 */
3908 if (cfs_b->idle && !throttled)
3909 goto out_deactivate;
a9cf55b2
PT
3910
3911 __refill_cfs_bandwidth_runtime(cfs_b);
3912
671fd9da
PT
3913 if (!throttled) {
3914 /* mark as potentially idle for the upcoming period */
3915 cfs_b->idle = 1;
51f2176d 3916 return 0;
671fd9da
PT
3917 }
3918
e8da1b18
NR
3919 /* account preceding periods in which throttling occurred */
3920 cfs_b->nr_throttled += overrun;
3921
671fd9da 3922 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3923
3924 /*
c06f04c7
BS
3925 * This check is repeated as we are holding onto the new bandwidth while
3926 * we unthrottle. This can potentially race with an unthrottled group
3927 * trying to acquire new bandwidth from the global pool. This can result
3928 * in us over-using our runtime if it is all used during this loop, but
3929 * only by limited amounts in that extreme case.
671fd9da 3930 */
c06f04c7
BS
3931 while (throttled && cfs_b->runtime > 0) {
3932 runtime = cfs_b->runtime;
671fd9da
PT
3933 raw_spin_unlock(&cfs_b->lock);
3934 /* we can't nest cfs_b->lock while distributing bandwidth */
3935 runtime = distribute_cfs_runtime(cfs_b, runtime,
3936 runtime_expires);
3937 raw_spin_lock(&cfs_b->lock);
3938
3939 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3940
3941 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3942 }
58088ad0 3943
671fd9da
PT
3944 /*
3945 * While we are ensured activity in the period following an
3946 * unthrottle, this also covers the case in which the new bandwidth is
3947 * insufficient to cover the existing bandwidth deficit. (Forcing the
3948 * timer to remain active while there are any throttled entities.)
3949 */
3950 cfs_b->idle = 0;
58088ad0 3951
51f2176d
BS
3952 return 0;
3953
3954out_deactivate:
51f2176d 3955 return 1;
58088ad0 3956}
d3d9dc33 3957
d8b4986d
PT
3958/* a cfs_rq won't donate quota below this amount */
3959static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3960/* minimum remaining period time to redistribute slack quota */
3961static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3962/* how long we wait to gather additional slack before distributing */
3963static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3964
db06e78c
BS
3965/*
3966 * Are we near the end of the current quota period?
3967 *
3968 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3969 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3970 * migrate_hrtimers, base is never cleared, so we are fine.
3971 */
d8b4986d
PT
3972static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3973{
3974 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3975 u64 remaining;
3976
3977 /* if the call-back is running a quota refresh is already occurring */
3978 if (hrtimer_callback_running(refresh_timer))
3979 return 1;
3980
3981 /* is a quota refresh about to occur? */
3982 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3983 if (remaining < min_expire)
3984 return 1;
3985
3986 return 0;
3987}
3988
3989static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3990{
3991 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3992
3993 /* if there's a quota refresh soon don't bother with slack */
3994 if (runtime_refresh_within(cfs_b, min_left))
3995 return;
3996
4cfafd30
PZ
3997 hrtimer_start(&cfs_b->slack_timer,
3998 ns_to_ktime(cfs_bandwidth_slack_period),
3999 HRTIMER_MODE_REL);
d8b4986d
PT
4000}
4001
4002/* we know any runtime found here is valid as update_curr() precedes return */
4003static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4004{
4005 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4006 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4007
4008 if (slack_runtime <= 0)
4009 return;
4010
4011 raw_spin_lock(&cfs_b->lock);
4012 if (cfs_b->quota != RUNTIME_INF &&
4013 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4014 cfs_b->runtime += slack_runtime;
4015
4016 /* we are under rq->lock, defer unthrottling using a timer */
4017 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4018 !list_empty(&cfs_b->throttled_cfs_rq))
4019 start_cfs_slack_bandwidth(cfs_b);
4020 }
4021 raw_spin_unlock(&cfs_b->lock);
4022
4023 /* even if it's not valid for return we don't want to try again */
4024 cfs_rq->runtime_remaining -= slack_runtime;
4025}
4026
4027static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4028{
56f570e5
PT
4029 if (!cfs_bandwidth_used())
4030 return;
4031
fccfdc6f 4032 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4033 return;
4034
4035 __return_cfs_rq_runtime(cfs_rq);
4036}
4037
4038/*
4039 * This is done with a timer (instead of inline with bandwidth return) since
4040 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4041 */
4042static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4043{
4044 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4045 u64 expires;
4046
4047 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4048 raw_spin_lock(&cfs_b->lock);
4049 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4050 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4051 return;
db06e78c 4052 }
d8b4986d 4053
c06f04c7 4054 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4055 runtime = cfs_b->runtime;
c06f04c7 4056
d8b4986d
PT
4057 expires = cfs_b->runtime_expires;
4058 raw_spin_unlock(&cfs_b->lock);
4059
4060 if (!runtime)
4061 return;
4062
4063 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4064
4065 raw_spin_lock(&cfs_b->lock);
4066 if (expires == cfs_b->runtime_expires)
c06f04c7 4067 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4068 raw_spin_unlock(&cfs_b->lock);
4069}
4070
d3d9dc33
PT
4071/*
4072 * When a group wakes up we want to make sure that its quota is not already
4073 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4074 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4075 */
4076static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4077{
56f570e5
PT
4078 if (!cfs_bandwidth_used())
4079 return;
4080
d3d9dc33
PT
4081 /* an active group must be handled by the update_curr()->put() path */
4082 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4083 return;
4084
4085 /* ensure the group is not already throttled */
4086 if (cfs_rq_throttled(cfs_rq))
4087 return;
4088
4089 /* update runtime allocation */
4090 account_cfs_rq_runtime(cfs_rq, 0);
4091 if (cfs_rq->runtime_remaining <= 0)
4092 throttle_cfs_rq(cfs_rq);
4093}
4094
4095/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4096static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4097{
56f570e5 4098 if (!cfs_bandwidth_used())
678d5718 4099 return false;
56f570e5 4100
d3d9dc33 4101 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4102 return false;
d3d9dc33
PT
4103
4104 /*
4105 * it's possible for a throttled entity to be forced into a running
4106 * state (e.g. set_curr_task), in this case we're finished.
4107 */
4108 if (cfs_rq_throttled(cfs_rq))
678d5718 4109 return true;
d3d9dc33
PT
4110
4111 throttle_cfs_rq(cfs_rq);
678d5718 4112 return true;
d3d9dc33 4113}
029632fb 4114
029632fb
PZ
4115static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4116{
4117 struct cfs_bandwidth *cfs_b =
4118 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4119
029632fb
PZ
4120 do_sched_cfs_slack_timer(cfs_b);
4121
4122 return HRTIMER_NORESTART;
4123}
4124
4125static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4126{
4127 struct cfs_bandwidth *cfs_b =
4128 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4129 int overrun;
4130 int idle = 0;
4131
51f2176d 4132 raw_spin_lock(&cfs_b->lock);
029632fb 4133 for (;;) {
77a4d1a1 4134 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4135 if (!overrun)
4136 break;
4137
4138 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4139 }
4cfafd30
PZ
4140 if (idle)
4141 cfs_b->period_active = 0;
51f2176d 4142 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4143
4144 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4145}
4146
4147void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4148{
4149 raw_spin_lock_init(&cfs_b->lock);
4150 cfs_b->runtime = 0;
4151 cfs_b->quota = RUNTIME_INF;
4152 cfs_b->period = ns_to_ktime(default_cfs_period());
4153
4154 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4155 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4156 cfs_b->period_timer.function = sched_cfs_period_timer;
4157 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4158 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4159}
4160
4161static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4162{
4163 cfs_rq->runtime_enabled = 0;
4164 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4165}
4166
77a4d1a1 4167void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4168{
4cfafd30 4169 lockdep_assert_held(&cfs_b->lock);
029632fb 4170
4cfafd30
PZ
4171 if (!cfs_b->period_active) {
4172 cfs_b->period_active = 1;
4173 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4174 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4175 }
029632fb
PZ
4176}
4177
4178static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4179{
7f1a169b
TH
4180 /* init_cfs_bandwidth() was not called */
4181 if (!cfs_b->throttled_cfs_rq.next)
4182 return;
4183
029632fb
PZ
4184 hrtimer_cancel(&cfs_b->period_timer);
4185 hrtimer_cancel(&cfs_b->slack_timer);
4186}
4187
0e59bdae
KT
4188static void __maybe_unused update_runtime_enabled(struct rq *rq)
4189{
4190 struct cfs_rq *cfs_rq;
4191
4192 for_each_leaf_cfs_rq(rq, cfs_rq) {
4193 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4194
4195 raw_spin_lock(&cfs_b->lock);
4196 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4197 raw_spin_unlock(&cfs_b->lock);
4198 }
4199}
4200
38dc3348 4201static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4202{
4203 struct cfs_rq *cfs_rq;
4204
4205 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4206 if (!cfs_rq->runtime_enabled)
4207 continue;
4208
4209 /*
4210 * clock_task is not advancing so we just need to make sure
4211 * there's some valid quota amount
4212 */
51f2176d 4213 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4214 /*
4215 * Offline rq is schedulable till cpu is completely disabled
4216 * in take_cpu_down(), so we prevent new cfs throttling here.
4217 */
4218 cfs_rq->runtime_enabled = 0;
4219
029632fb
PZ
4220 if (cfs_rq_throttled(cfs_rq))
4221 unthrottle_cfs_rq(cfs_rq);
4222 }
4223}
4224
4225#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4226static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4227{
78becc27 4228 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4229}
4230
9dbdb155 4231static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4232static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4233static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4234static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4235
4236static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4237{
4238 return 0;
4239}
64660c86
PT
4240
4241static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4242{
4243 return 0;
4244}
4245
4246static inline int throttled_lb_pair(struct task_group *tg,
4247 int src_cpu, int dest_cpu)
4248{
4249 return 0;
4250}
029632fb
PZ
4251
4252void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4253
4254#ifdef CONFIG_FAIR_GROUP_SCHED
4255static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4256#endif
4257
029632fb
PZ
4258static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4259{
4260 return NULL;
4261}
4262static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4263static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4264static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4265
4266#endif /* CONFIG_CFS_BANDWIDTH */
4267
bf0f6f24
IM
4268/**************************************************
4269 * CFS operations on tasks:
4270 */
4271
8f4d37ec
PZ
4272#ifdef CONFIG_SCHED_HRTICK
4273static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4274{
8f4d37ec
PZ
4275 struct sched_entity *se = &p->se;
4276 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4277
4278 WARN_ON(task_rq(p) != rq);
4279
b39e66ea 4280 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4281 u64 slice = sched_slice(cfs_rq, se);
4282 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4283 s64 delta = slice - ran;
4284
4285 if (delta < 0) {
4286 if (rq->curr == p)
8875125e 4287 resched_curr(rq);
8f4d37ec
PZ
4288 return;
4289 }
31656519 4290 hrtick_start(rq, delta);
8f4d37ec
PZ
4291 }
4292}
a4c2f00f
PZ
4293
4294/*
4295 * called from enqueue/dequeue and updates the hrtick when the
4296 * current task is from our class and nr_running is low enough
4297 * to matter.
4298 */
4299static void hrtick_update(struct rq *rq)
4300{
4301 struct task_struct *curr = rq->curr;
4302
b39e66ea 4303 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4304 return;
4305
4306 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4307 hrtick_start_fair(rq, curr);
4308}
55e12e5e 4309#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4310static inline void
4311hrtick_start_fair(struct rq *rq, struct task_struct *p)
4312{
4313}
a4c2f00f
PZ
4314
4315static inline void hrtick_update(struct rq *rq)
4316{
4317}
8f4d37ec
PZ
4318#endif
4319
bf0f6f24
IM
4320/*
4321 * The enqueue_task method is called before nr_running is
4322 * increased. Here we update the fair scheduling stats and
4323 * then put the task into the rbtree:
4324 */
ea87bb78 4325static void
371fd7e7 4326enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4327{
4328 struct cfs_rq *cfs_rq;
62fb1851 4329 struct sched_entity *se = &p->se;
bf0f6f24
IM
4330
4331 for_each_sched_entity(se) {
62fb1851 4332 if (se->on_rq)
bf0f6f24
IM
4333 break;
4334 cfs_rq = cfs_rq_of(se);
88ec22d3 4335 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4336
4337 /*
4338 * end evaluation on encountering a throttled cfs_rq
4339 *
4340 * note: in the case of encountering a throttled cfs_rq we will
4341 * post the final h_nr_running increment below.
4342 */
4343 if (cfs_rq_throttled(cfs_rq))
4344 break;
953bfcd1 4345 cfs_rq->h_nr_running++;
85dac906 4346
88ec22d3 4347 flags = ENQUEUE_WAKEUP;
bf0f6f24 4348 }
8f4d37ec 4349
2069dd75 4350 for_each_sched_entity(se) {
0f317143 4351 cfs_rq = cfs_rq_of(se);
953bfcd1 4352 cfs_rq->h_nr_running++;
2069dd75 4353
85dac906
PT
4354 if (cfs_rq_throttled(cfs_rq))
4355 break;
4356
9d89c257 4357 update_load_avg(se, 1);
17bc14b7 4358 update_cfs_shares(cfs_rq);
2069dd75
PZ
4359 }
4360
cd126afe 4361 if (!se)
72465447 4362 add_nr_running(rq, 1);
cd126afe 4363
a4c2f00f 4364 hrtick_update(rq);
bf0f6f24
IM
4365}
4366
2f36825b
VP
4367static void set_next_buddy(struct sched_entity *se);
4368
bf0f6f24
IM
4369/*
4370 * The dequeue_task method is called before nr_running is
4371 * decreased. We remove the task from the rbtree and
4372 * update the fair scheduling stats:
4373 */
371fd7e7 4374static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4375{
4376 struct cfs_rq *cfs_rq;
62fb1851 4377 struct sched_entity *se = &p->se;
2f36825b 4378 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4379
4380 for_each_sched_entity(se) {
4381 cfs_rq = cfs_rq_of(se);
371fd7e7 4382 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4383
4384 /*
4385 * end evaluation on encountering a throttled cfs_rq
4386 *
4387 * note: in the case of encountering a throttled cfs_rq we will
4388 * post the final h_nr_running decrement below.
4389 */
4390 if (cfs_rq_throttled(cfs_rq))
4391 break;
953bfcd1 4392 cfs_rq->h_nr_running--;
2069dd75 4393
bf0f6f24 4394 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4395 if (cfs_rq->load.weight) {
4396 /*
4397 * Bias pick_next to pick a task from this cfs_rq, as
4398 * p is sleeping when it is within its sched_slice.
4399 */
4400 if (task_sleep && parent_entity(se))
4401 set_next_buddy(parent_entity(se));
9598c82d
PT
4402
4403 /* avoid re-evaluating load for this entity */
4404 se = parent_entity(se);
bf0f6f24 4405 break;
2f36825b 4406 }
371fd7e7 4407 flags |= DEQUEUE_SLEEP;
bf0f6f24 4408 }
8f4d37ec 4409
2069dd75 4410 for_each_sched_entity(se) {
0f317143 4411 cfs_rq = cfs_rq_of(se);
953bfcd1 4412 cfs_rq->h_nr_running--;
2069dd75 4413
85dac906
PT
4414 if (cfs_rq_throttled(cfs_rq))
4415 break;
4416
9d89c257 4417 update_load_avg(se, 1);
17bc14b7 4418 update_cfs_shares(cfs_rq);
2069dd75
PZ
4419 }
4420
cd126afe 4421 if (!se)
72465447 4422 sub_nr_running(rq, 1);
cd126afe 4423
a4c2f00f 4424 hrtick_update(rq);
bf0f6f24
IM
4425}
4426
e7693a36 4427#ifdef CONFIG_SMP
3289bdb4
PZ
4428
4429/*
4430 * per rq 'load' arrray crap; XXX kill this.
4431 */
4432
4433/*
d937cdc5 4434 * The exact cpuload calculated at every tick would be:
3289bdb4 4435 *
d937cdc5
PZ
4436 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4437 *
4438 * If a cpu misses updates for n ticks (as it was idle) and update gets
4439 * called on the n+1-th tick when cpu may be busy, then we have:
4440 *
4441 * load_n = (1 - 1/2^i)^n * load_0
4442 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4443 *
4444 * decay_load_missed() below does efficient calculation of
3289bdb4 4445 *
d937cdc5
PZ
4446 * load' = (1 - 1/2^i)^n * load
4447 *
4448 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4449 * This allows us to precompute the above in said factors, thereby allowing the
4450 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4451 * fixed_power_int())
3289bdb4 4452 *
d937cdc5 4453 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4454 */
4455#define DEGRADE_SHIFT 7
d937cdc5
PZ
4456
4457static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4458static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4459 { 0, 0, 0, 0, 0, 0, 0, 0 },
4460 { 64, 32, 8, 0, 0, 0, 0, 0 },
4461 { 96, 72, 40, 12, 1, 0, 0, 0 },
4462 { 112, 98, 75, 43, 15, 1, 0, 0 },
4463 { 120, 112, 98, 76, 45, 16, 2, 0 }
4464};
3289bdb4
PZ
4465
4466/*
4467 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4468 * would be when CPU is idle and so we just decay the old load without
4469 * adding any new load.
4470 */
4471static unsigned long
4472decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4473{
4474 int j = 0;
4475
4476 if (!missed_updates)
4477 return load;
4478
4479 if (missed_updates >= degrade_zero_ticks[idx])
4480 return 0;
4481
4482 if (idx == 1)
4483 return load >> missed_updates;
4484
4485 while (missed_updates) {
4486 if (missed_updates % 2)
4487 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4488
4489 missed_updates >>= 1;
4490 j++;
4491 }
4492 return load;
4493}
4494
59543275
BP
4495/**
4496 * __update_cpu_load - update the rq->cpu_load[] statistics
4497 * @this_rq: The rq to update statistics for
4498 * @this_load: The current load
4499 * @pending_updates: The number of missed updates
4500 * @active: !0 for NOHZ_FULL
4501 *
3289bdb4 4502 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4503 * scheduler tick (TICK_NSEC).
4504 *
4505 * This function computes a decaying average:
4506 *
4507 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4508 *
4509 * Because of NOHZ it might not get called on every tick which gives need for
4510 * the @pending_updates argument.
4511 *
4512 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4513 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4514 * = A * (A * load[i]_n-2 + B) + B
4515 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4516 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4517 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4518 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4519 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4520 *
4521 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4522 * any change in load would have resulted in the tick being turned back on.
4523 *
4524 * For regular NOHZ, this reduces to:
4525 *
4526 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4527 *
4528 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4529 * term. See the @active paramter.
3289bdb4
PZ
4530 */
4531static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4532 unsigned long pending_updates, int active)
3289bdb4 4533{
59543275 4534 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4535 int i, scale;
4536
4537 this_rq->nr_load_updates++;
4538
4539 /* Update our load: */
4540 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4541 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4542 unsigned long old_load, new_load;
4543
4544 /* scale is effectively 1 << i now, and >> i divides by scale */
4545
7400d3bb 4546 old_load = this_rq->cpu_load[i];
3289bdb4 4547 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4548 if (tickless_load) {
4549 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4550 /*
4551 * old_load can never be a negative value because a
4552 * decayed tickless_load cannot be greater than the
4553 * original tickless_load.
4554 */
4555 old_load += tickless_load;
4556 }
3289bdb4
PZ
4557 new_load = this_load;
4558 /*
4559 * Round up the averaging division if load is increasing. This
4560 * prevents us from getting stuck on 9 if the load is 10, for
4561 * example.
4562 */
4563 if (new_load > old_load)
4564 new_load += scale - 1;
4565
4566 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4567 }
4568
4569 sched_avg_update(this_rq);
4570}
4571
7ea241af
YD
4572/* Used instead of source_load when we know the type == 0 */
4573static unsigned long weighted_cpuload(const int cpu)
4574{
4575 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4576}
4577
3289bdb4 4578#ifdef CONFIG_NO_HZ_COMMON
be68a682
FW
4579static void __update_cpu_load_nohz(struct rq *this_rq,
4580 unsigned long curr_jiffies,
4581 unsigned long load,
4582 int active)
4583{
4584 unsigned long pending_updates;
4585
4586 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4587 if (pending_updates) {
4588 this_rq->last_load_update_tick = curr_jiffies;
4589 /*
4590 * In the regular NOHZ case, we were idle, this means load 0.
4591 * In the NOHZ_FULL case, we were non-idle, we should consider
4592 * its weighted load.
4593 */
4594 __update_cpu_load(this_rq, load, pending_updates, active);
4595 }
4596}
4597
3289bdb4
PZ
4598/*
4599 * There is no sane way to deal with nohz on smp when using jiffies because the
4600 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4601 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4602 *
4603 * Therefore we cannot use the delta approach from the regular tick since that
4604 * would seriously skew the load calculation. However we'll make do for those
4605 * updates happening while idle (nohz_idle_balance) or coming out of idle
4606 * (tick_nohz_idle_exit).
4607 *
4608 * This means we might still be one tick off for nohz periods.
4609 */
4610
4611/*
4612 * Called from nohz_idle_balance() to update the load ratings before doing the
4613 * idle balance.
4614 */
be68a682 4615static void update_cpu_load_idle(struct rq *this_rq)
3289bdb4 4616{
3289bdb4
PZ
4617 /*
4618 * bail if there's load or we're actually up-to-date.
4619 */
be68a682 4620 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4621 return;
4622
be68a682 4623 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
3289bdb4
PZ
4624}
4625
4626/*
4627 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4628 */
525705d1 4629void update_cpu_load_nohz(int active)
3289bdb4
PZ
4630{
4631 struct rq *this_rq = this_rq();
316c1608 4632 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4633 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4634
4635 if (curr_jiffies == this_rq->last_load_update_tick)
4636 return;
4637
4638 raw_spin_lock(&this_rq->lock);
be68a682 4639 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
3289bdb4
PZ
4640 raw_spin_unlock(&this_rq->lock);
4641}
4642#endif /* CONFIG_NO_HZ */
4643
4644/*
4645 * Called from scheduler_tick()
4646 */
4647void update_cpu_load_active(struct rq *this_rq)
4648{
7ea241af 4649 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4650 /*
be68a682 4651 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
3289bdb4
PZ
4652 */
4653 this_rq->last_load_update_tick = jiffies;
59543275 4654 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4655}
4656
029632fb
PZ
4657/*
4658 * Return a low guess at the load of a migration-source cpu weighted
4659 * according to the scheduling class and "nice" value.
4660 *
4661 * We want to under-estimate the load of migration sources, to
4662 * balance conservatively.
4663 */
4664static unsigned long source_load(int cpu, int type)
4665{
4666 struct rq *rq = cpu_rq(cpu);
4667 unsigned long total = weighted_cpuload(cpu);
4668
4669 if (type == 0 || !sched_feat(LB_BIAS))
4670 return total;
4671
4672 return min(rq->cpu_load[type-1], total);
4673}
4674
4675/*
4676 * Return a high guess at the load of a migration-target cpu weighted
4677 * according to the scheduling class and "nice" value.
4678 */
4679static unsigned long target_load(int cpu, int type)
4680{
4681 struct rq *rq = cpu_rq(cpu);
4682 unsigned long total = weighted_cpuload(cpu);
4683
4684 if (type == 0 || !sched_feat(LB_BIAS))
4685 return total;
4686
4687 return max(rq->cpu_load[type-1], total);
4688}
4689
ced549fa 4690static unsigned long capacity_of(int cpu)
029632fb 4691{
ced549fa 4692 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4693}
4694
ca6d75e6
VG
4695static unsigned long capacity_orig_of(int cpu)
4696{
4697 return cpu_rq(cpu)->cpu_capacity_orig;
4698}
4699
029632fb
PZ
4700static unsigned long cpu_avg_load_per_task(int cpu)
4701{
4702 struct rq *rq = cpu_rq(cpu);
316c1608 4703 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4704 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4705
4706 if (nr_running)
b92486cb 4707 return load_avg / nr_running;
029632fb
PZ
4708
4709 return 0;
4710}
4711
62470419
MW
4712static void record_wakee(struct task_struct *p)
4713{
4714 /*
4715 * Rough decay (wiping) for cost saving, don't worry
4716 * about the boundary, really active task won't care
4717 * about the loss.
4718 */
2538d960 4719 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4720 current->wakee_flips >>= 1;
62470419
MW
4721 current->wakee_flip_decay_ts = jiffies;
4722 }
4723
4724 if (current->last_wakee != p) {
4725 current->last_wakee = p;
4726 current->wakee_flips++;
4727 }
4728}
098fb9db 4729
74f8e4b2 4730static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4731{
4732 struct sched_entity *se = &p->se;
4733 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4734 u64 min_vruntime;
4735
4736#ifndef CONFIG_64BIT
4737 u64 min_vruntime_copy;
88ec22d3 4738
3fe1698b
PZ
4739 do {
4740 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4741 smp_rmb();
4742 min_vruntime = cfs_rq->min_vruntime;
4743 } while (min_vruntime != min_vruntime_copy);
4744#else
4745 min_vruntime = cfs_rq->min_vruntime;
4746#endif
88ec22d3 4747
3fe1698b 4748 se->vruntime -= min_vruntime;
62470419 4749 record_wakee(p);
88ec22d3
PZ
4750}
4751
bb3469ac 4752#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4753/*
4754 * effective_load() calculates the load change as seen from the root_task_group
4755 *
4756 * Adding load to a group doesn't make a group heavier, but can cause movement
4757 * of group shares between cpus. Assuming the shares were perfectly aligned one
4758 * can calculate the shift in shares.
cf5f0acf
PZ
4759 *
4760 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4761 * on this @cpu and results in a total addition (subtraction) of @wg to the
4762 * total group weight.
4763 *
4764 * Given a runqueue weight distribution (rw_i) we can compute a shares
4765 * distribution (s_i) using:
4766 *
4767 * s_i = rw_i / \Sum rw_j (1)
4768 *
4769 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4770 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4771 * shares distribution (s_i):
4772 *
4773 * rw_i = { 2, 4, 1, 0 }
4774 * s_i = { 2/7, 4/7, 1/7, 0 }
4775 *
4776 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4777 * task used to run on and the CPU the waker is running on), we need to
4778 * compute the effect of waking a task on either CPU and, in case of a sync
4779 * wakeup, compute the effect of the current task going to sleep.
4780 *
4781 * So for a change of @wl to the local @cpu with an overall group weight change
4782 * of @wl we can compute the new shares distribution (s'_i) using:
4783 *
4784 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4785 *
4786 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4787 * differences in waking a task to CPU 0. The additional task changes the
4788 * weight and shares distributions like:
4789 *
4790 * rw'_i = { 3, 4, 1, 0 }
4791 * s'_i = { 3/8, 4/8, 1/8, 0 }
4792 *
4793 * We can then compute the difference in effective weight by using:
4794 *
4795 * dw_i = S * (s'_i - s_i) (3)
4796 *
4797 * Where 'S' is the group weight as seen by its parent.
4798 *
4799 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4800 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4801 * 4/7) times the weight of the group.
f5bfb7d9 4802 */
2069dd75 4803static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4804{
4be9daaa 4805 struct sched_entity *se = tg->se[cpu];
f1d239f7 4806
9722c2da 4807 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4808 return wl;
4809
4be9daaa 4810 for_each_sched_entity(se) {
cf5f0acf 4811 long w, W;
4be9daaa 4812
977dda7c 4813 tg = se->my_q->tg;
bb3469ac 4814
cf5f0acf
PZ
4815 /*
4816 * W = @wg + \Sum rw_j
4817 */
4818 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4819
cf5f0acf
PZ
4820 /*
4821 * w = rw_i + @wl
4822 */
7ea241af 4823 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4824
cf5f0acf
PZ
4825 /*
4826 * wl = S * s'_i; see (2)
4827 */
4828 if (W > 0 && w < W)
32a8df4e 4829 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4830 else
4831 wl = tg->shares;
940959e9 4832
cf5f0acf
PZ
4833 /*
4834 * Per the above, wl is the new se->load.weight value; since
4835 * those are clipped to [MIN_SHARES, ...) do so now. See
4836 * calc_cfs_shares().
4837 */
977dda7c
PT
4838 if (wl < MIN_SHARES)
4839 wl = MIN_SHARES;
cf5f0acf
PZ
4840
4841 /*
4842 * wl = dw_i = S * (s'_i - s_i); see (3)
4843 */
9d89c257 4844 wl -= se->avg.load_avg;
cf5f0acf
PZ
4845
4846 /*
4847 * Recursively apply this logic to all parent groups to compute
4848 * the final effective load change on the root group. Since
4849 * only the @tg group gets extra weight, all parent groups can
4850 * only redistribute existing shares. @wl is the shift in shares
4851 * resulting from this level per the above.
4852 */
4be9daaa 4853 wg = 0;
4be9daaa 4854 }
bb3469ac 4855
4be9daaa 4856 return wl;
bb3469ac
PZ
4857}
4858#else
4be9daaa 4859
58d081b5 4860static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4861{
83378269 4862 return wl;
bb3469ac 4863}
4be9daaa 4864
bb3469ac
PZ
4865#endif
4866
63b0e9ed
MG
4867/*
4868 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4869 * A waker of many should wake a different task than the one last awakened
4870 * at a frequency roughly N times higher than one of its wakees. In order
4871 * to determine whether we should let the load spread vs consolodating to
4872 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4873 * partner, and a factor of lls_size higher frequency in the other. With
4874 * both conditions met, we can be relatively sure that the relationship is
4875 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4876 * being client/server, worker/dispatcher, interrupt source or whatever is
4877 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4878 */
62470419
MW
4879static int wake_wide(struct task_struct *p)
4880{
63b0e9ed
MG
4881 unsigned int master = current->wakee_flips;
4882 unsigned int slave = p->wakee_flips;
7d9ffa89 4883 int factor = this_cpu_read(sd_llc_size);
62470419 4884
63b0e9ed
MG
4885 if (master < slave)
4886 swap(master, slave);
4887 if (slave < factor || master < slave * factor)
4888 return 0;
4889 return 1;
62470419
MW
4890}
4891
c88d5910 4892static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4893{
e37b6a7b 4894 s64 this_load, load;
bd61c98f 4895 s64 this_eff_load, prev_eff_load;
c88d5910 4896 int idx, this_cpu, prev_cpu;
c88d5910 4897 struct task_group *tg;
83378269 4898 unsigned long weight;
b3137bc8 4899 int balanced;
098fb9db 4900
c88d5910
PZ
4901 idx = sd->wake_idx;
4902 this_cpu = smp_processor_id();
4903 prev_cpu = task_cpu(p);
4904 load = source_load(prev_cpu, idx);
4905 this_load = target_load(this_cpu, idx);
098fb9db 4906
b3137bc8
MG
4907 /*
4908 * If sync wakeup then subtract the (maximum possible)
4909 * effect of the currently running task from the load
4910 * of the current CPU:
4911 */
83378269
PZ
4912 if (sync) {
4913 tg = task_group(current);
9d89c257 4914 weight = current->se.avg.load_avg;
83378269 4915
c88d5910 4916 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4917 load += effective_load(tg, prev_cpu, 0, -weight);
4918 }
b3137bc8 4919
83378269 4920 tg = task_group(p);
9d89c257 4921 weight = p->se.avg.load_avg;
b3137bc8 4922
71a29aa7
PZ
4923 /*
4924 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4925 * due to the sync cause above having dropped this_load to 0, we'll
4926 * always have an imbalance, but there's really nothing you can do
4927 * about that, so that's good too.
71a29aa7
PZ
4928 *
4929 * Otherwise check if either cpus are near enough in load to allow this
4930 * task to be woken on this_cpu.
4931 */
bd61c98f
VG
4932 this_eff_load = 100;
4933 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4934
bd61c98f
VG
4935 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4936 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4937
bd61c98f 4938 if (this_load > 0) {
e51fd5e2
PZ
4939 this_eff_load *= this_load +
4940 effective_load(tg, this_cpu, weight, weight);
4941
e51fd5e2 4942 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4943 }
e51fd5e2 4944
bd61c98f 4945 balanced = this_eff_load <= prev_eff_load;
098fb9db 4946
41acab88 4947 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4948
05bfb65f
VG
4949 if (!balanced)
4950 return 0;
098fb9db 4951
05bfb65f
VG
4952 schedstat_inc(sd, ttwu_move_affine);
4953 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4954
4955 return 1;
098fb9db
IM
4956}
4957
aaee1203
PZ
4958/*
4959 * find_idlest_group finds and returns the least busy CPU group within the
4960 * domain.
4961 */
4962static struct sched_group *
78e7ed53 4963find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4964 int this_cpu, int sd_flag)
e7693a36 4965{
b3bd3de6 4966 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4967 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4968 int load_idx = sd->forkexec_idx;
aaee1203 4969 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4970
c44f2a02
VG
4971 if (sd_flag & SD_BALANCE_WAKE)
4972 load_idx = sd->wake_idx;
4973
aaee1203
PZ
4974 do {
4975 unsigned long load, avg_load;
4976 int local_group;
4977 int i;
e7693a36 4978
aaee1203
PZ
4979 /* Skip over this group if it has no CPUs allowed */
4980 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4981 tsk_cpus_allowed(p)))
aaee1203
PZ
4982 continue;
4983
4984 local_group = cpumask_test_cpu(this_cpu,
4985 sched_group_cpus(group));
4986
4987 /* Tally up the load of all CPUs in the group */
4988 avg_load = 0;
4989
4990 for_each_cpu(i, sched_group_cpus(group)) {
4991 /* Bias balancing toward cpus of our domain */
4992 if (local_group)
4993 load = source_load(i, load_idx);
4994 else
4995 load = target_load(i, load_idx);
4996
4997 avg_load += load;
4998 }
4999
63b2ca30 5000 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5001 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5002
5003 if (local_group) {
5004 this_load = avg_load;
aaee1203
PZ
5005 } else if (avg_load < min_load) {
5006 min_load = avg_load;
5007 idlest = group;
5008 }
5009 } while (group = group->next, group != sd->groups);
5010
5011 if (!idlest || 100*this_load < imbalance*min_load)
5012 return NULL;
5013 return idlest;
5014}
5015
5016/*
5017 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5018 */
5019static int
5020find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5021{
5022 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5023 unsigned int min_exit_latency = UINT_MAX;
5024 u64 latest_idle_timestamp = 0;
5025 int least_loaded_cpu = this_cpu;
5026 int shallowest_idle_cpu = -1;
aaee1203
PZ
5027 int i;
5028
5029 /* Traverse only the allowed CPUs */
fa17b507 5030 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5031 if (idle_cpu(i)) {
5032 struct rq *rq = cpu_rq(i);
5033 struct cpuidle_state *idle = idle_get_state(rq);
5034 if (idle && idle->exit_latency < min_exit_latency) {
5035 /*
5036 * We give priority to a CPU whose idle state
5037 * has the smallest exit latency irrespective
5038 * of any idle timestamp.
5039 */
5040 min_exit_latency = idle->exit_latency;
5041 latest_idle_timestamp = rq->idle_stamp;
5042 shallowest_idle_cpu = i;
5043 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5044 rq->idle_stamp > latest_idle_timestamp) {
5045 /*
5046 * If equal or no active idle state, then
5047 * the most recently idled CPU might have
5048 * a warmer cache.
5049 */
5050 latest_idle_timestamp = rq->idle_stamp;
5051 shallowest_idle_cpu = i;
5052 }
9f96742a 5053 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5054 load = weighted_cpuload(i);
5055 if (load < min_load || (load == min_load && i == this_cpu)) {
5056 min_load = load;
5057 least_loaded_cpu = i;
5058 }
e7693a36
GH
5059 }
5060 }
5061
83a0a96a 5062 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5063}
e7693a36 5064
a50bde51
PZ
5065/*
5066 * Try and locate an idle CPU in the sched_domain.
5067 */
99bd5e2f 5068static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5069{
99bd5e2f 5070 struct sched_domain *sd;
37407ea7 5071 struct sched_group *sg;
e0a79f52 5072 int i = task_cpu(p);
a50bde51 5073
e0a79f52
MG
5074 if (idle_cpu(target))
5075 return target;
99bd5e2f
SS
5076
5077 /*
e0a79f52 5078 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5079 */
e0a79f52
MG
5080 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5081 return i;
a50bde51
PZ
5082
5083 /*
d4335581
MF
5084 * Otherwise, iterate the domains and find an eligible idle cpu.
5085 *
5086 * A completely idle sched group at higher domains is more
5087 * desirable than an idle group at a lower level, because lower
5088 * domains have smaller groups and usually share hardware
5089 * resources which causes tasks to contend on them, e.g. x86
5090 * hyperthread siblings in the lowest domain (SMT) can contend
5091 * on the shared cpu pipeline.
5092 *
5093 * However, while we prefer idle groups at higher domains
5094 * finding an idle cpu at the lowest domain is still better than
5095 * returning 'target', which we've already established, isn't
5096 * idle.
a50bde51 5097 */
518cd623 5098 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5099 for_each_lower_domain(sd) {
37407ea7
LT
5100 sg = sd->groups;
5101 do {
5102 if (!cpumask_intersects(sched_group_cpus(sg),
5103 tsk_cpus_allowed(p)))
5104 goto next;
5105
d4335581 5106 /* Ensure the entire group is idle */
37407ea7 5107 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5108 if (i == target || !idle_cpu(i))
37407ea7
LT
5109 goto next;
5110 }
970e1789 5111
d4335581
MF
5112 /*
5113 * It doesn't matter which cpu we pick, the
5114 * whole group is idle.
5115 */
37407ea7
LT
5116 target = cpumask_first_and(sched_group_cpus(sg),
5117 tsk_cpus_allowed(p));
5118 goto done;
5119next:
5120 sg = sg->next;
5121 } while (sg != sd->groups);
5122 }
5123done:
a50bde51
PZ
5124 return target;
5125}
231678b7 5126
8bb5b00c 5127/*
9e91d61d 5128 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5129 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5130 * compare the utilization with the capacity of the CPU that is available for
5131 * CFS task (ie cpu_capacity).
231678b7
DE
5132 *
5133 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5134 * recent utilization of currently non-runnable tasks on a CPU. It represents
5135 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5136 * capacity_orig is the cpu_capacity available at the highest frequency
5137 * (arch_scale_freq_capacity()).
5138 * The utilization of a CPU converges towards a sum equal to or less than the
5139 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5140 * the running time on this CPU scaled by capacity_curr.
5141 *
5142 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5143 * higher than capacity_orig because of unfortunate rounding in
5144 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5145 * the average stabilizes with the new running time. We need to check that the
5146 * utilization stays within the range of [0..capacity_orig] and cap it if
5147 * necessary. Without utilization capping, a group could be seen as overloaded
5148 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5149 * available capacity. We allow utilization to overshoot capacity_curr (but not
5150 * capacity_orig) as it useful for predicting the capacity required after task
5151 * migrations (scheduler-driven DVFS).
8bb5b00c 5152 */
9e91d61d 5153static int cpu_util(int cpu)
8bb5b00c 5154{
9e91d61d 5155 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5156 unsigned long capacity = capacity_orig_of(cpu);
5157
231678b7 5158 return (util >= capacity) ? capacity : util;
8bb5b00c 5159}
a50bde51 5160
aaee1203 5161/*
de91b9cb
MR
5162 * select_task_rq_fair: Select target runqueue for the waking task in domains
5163 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5164 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5165 *
de91b9cb
MR
5166 * Balances load by selecting the idlest cpu in the idlest group, or under
5167 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5168 *
de91b9cb 5169 * Returns the target cpu number.
aaee1203
PZ
5170 *
5171 * preempt must be disabled.
5172 */
0017d735 5173static int
ac66f547 5174select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5175{
29cd8bae 5176 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5177 int cpu = smp_processor_id();
63b0e9ed 5178 int new_cpu = prev_cpu;
99bd5e2f 5179 int want_affine = 0;
5158f4e4 5180 int sync = wake_flags & WF_SYNC;
c88d5910 5181
a8edd075 5182 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5183 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5184
dce840a0 5185 rcu_read_lock();
aaee1203 5186 for_each_domain(cpu, tmp) {
e4f42888 5187 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5188 break;
e4f42888 5189
fe3bcfe1 5190 /*
99bd5e2f
SS
5191 * If both cpu and prev_cpu are part of this domain,
5192 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5193 */
99bd5e2f
SS
5194 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5195 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5196 affine_sd = tmp;
29cd8bae 5197 break;
f03542a7 5198 }
29cd8bae 5199
f03542a7 5200 if (tmp->flags & sd_flag)
29cd8bae 5201 sd = tmp;
63b0e9ed
MG
5202 else if (!want_affine)
5203 break;
29cd8bae
PZ
5204 }
5205
63b0e9ed
MG
5206 if (affine_sd) {
5207 sd = NULL; /* Prefer wake_affine over balance flags */
5208 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5209 new_cpu = cpu;
8b911acd 5210 }
e7693a36 5211
63b0e9ed
MG
5212 if (!sd) {
5213 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5214 new_cpu = select_idle_sibling(p, new_cpu);
5215
5216 } else while (sd) {
aaee1203 5217 struct sched_group *group;
c88d5910 5218 int weight;
098fb9db 5219
0763a660 5220 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5221 sd = sd->child;
5222 continue;
5223 }
098fb9db 5224
c44f2a02 5225 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5226 if (!group) {
5227 sd = sd->child;
5228 continue;
5229 }
4ae7d5ce 5230
d7c33c49 5231 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5232 if (new_cpu == -1 || new_cpu == cpu) {
5233 /* Now try balancing at a lower domain level of cpu */
5234 sd = sd->child;
5235 continue;
e7693a36 5236 }
aaee1203
PZ
5237
5238 /* Now try balancing at a lower domain level of new_cpu */
5239 cpu = new_cpu;
669c55e9 5240 weight = sd->span_weight;
aaee1203
PZ
5241 sd = NULL;
5242 for_each_domain(cpu, tmp) {
669c55e9 5243 if (weight <= tmp->span_weight)
aaee1203 5244 break;
0763a660 5245 if (tmp->flags & sd_flag)
aaee1203
PZ
5246 sd = tmp;
5247 }
5248 /* while loop will break here if sd == NULL */
e7693a36 5249 }
dce840a0 5250 rcu_read_unlock();
e7693a36 5251
c88d5910 5252 return new_cpu;
e7693a36 5253}
0a74bef8
PT
5254
5255/*
5256 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5257 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5258 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5259 */
5a4fd036 5260static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5261{
aff3e498 5262 /*
9d89c257
YD
5263 * We are supposed to update the task to "current" time, then its up to date
5264 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5265 * what current time is, so simply throw away the out-of-date time. This
5266 * will result in the wakee task is less decayed, but giving the wakee more
5267 * load sounds not bad.
aff3e498 5268 */
9d89c257
YD
5269 remove_entity_load_avg(&p->se);
5270
5271 /* Tell new CPU we are migrated */
5272 p->se.avg.last_update_time = 0;
3944a927
BS
5273
5274 /* We have migrated, no longer consider this task hot */
9d89c257 5275 p->se.exec_start = 0;
0a74bef8 5276}
12695578
YD
5277
5278static void task_dead_fair(struct task_struct *p)
5279{
5280 remove_entity_load_avg(&p->se);
5281}
e7693a36
GH
5282#endif /* CONFIG_SMP */
5283
e52fb7c0
PZ
5284static unsigned long
5285wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5286{
5287 unsigned long gran = sysctl_sched_wakeup_granularity;
5288
5289 /*
e52fb7c0
PZ
5290 * Since its curr running now, convert the gran from real-time
5291 * to virtual-time in his units.
13814d42
MG
5292 *
5293 * By using 'se' instead of 'curr' we penalize light tasks, so
5294 * they get preempted easier. That is, if 'se' < 'curr' then
5295 * the resulting gran will be larger, therefore penalizing the
5296 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5297 * be smaller, again penalizing the lighter task.
5298 *
5299 * This is especially important for buddies when the leftmost
5300 * task is higher priority than the buddy.
0bbd3336 5301 */
f4ad9bd2 5302 return calc_delta_fair(gran, se);
0bbd3336
PZ
5303}
5304
464b7527
PZ
5305/*
5306 * Should 'se' preempt 'curr'.
5307 *
5308 * |s1
5309 * |s2
5310 * |s3
5311 * g
5312 * |<--->|c
5313 *
5314 * w(c, s1) = -1
5315 * w(c, s2) = 0
5316 * w(c, s3) = 1
5317 *
5318 */
5319static int
5320wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5321{
5322 s64 gran, vdiff = curr->vruntime - se->vruntime;
5323
5324 if (vdiff <= 0)
5325 return -1;
5326
e52fb7c0 5327 gran = wakeup_gran(curr, se);
464b7527
PZ
5328 if (vdiff > gran)
5329 return 1;
5330
5331 return 0;
5332}
5333
02479099
PZ
5334static void set_last_buddy(struct sched_entity *se)
5335{
69c80f3e
VP
5336 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5337 return;
5338
5339 for_each_sched_entity(se)
5340 cfs_rq_of(se)->last = se;
02479099
PZ
5341}
5342
5343static void set_next_buddy(struct sched_entity *se)
5344{
69c80f3e
VP
5345 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5346 return;
5347
5348 for_each_sched_entity(se)
5349 cfs_rq_of(se)->next = se;
02479099
PZ
5350}
5351
ac53db59
RR
5352static void set_skip_buddy(struct sched_entity *se)
5353{
69c80f3e
VP
5354 for_each_sched_entity(se)
5355 cfs_rq_of(se)->skip = se;
ac53db59
RR
5356}
5357
bf0f6f24
IM
5358/*
5359 * Preempt the current task with a newly woken task if needed:
5360 */
5a9b86f6 5361static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5362{
5363 struct task_struct *curr = rq->curr;
8651a86c 5364 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5365 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5366 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5367 int next_buddy_marked = 0;
bf0f6f24 5368
4ae7d5ce
IM
5369 if (unlikely(se == pse))
5370 return;
5371
5238cdd3 5372 /*
163122b7 5373 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5374 * unconditionally check_prempt_curr() after an enqueue (which may have
5375 * lead to a throttle). This both saves work and prevents false
5376 * next-buddy nomination below.
5377 */
5378 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5379 return;
5380
2f36825b 5381 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5382 set_next_buddy(pse);
2f36825b
VP
5383 next_buddy_marked = 1;
5384 }
57fdc26d 5385
aec0a514
BR
5386 /*
5387 * We can come here with TIF_NEED_RESCHED already set from new task
5388 * wake up path.
5238cdd3
PT
5389 *
5390 * Note: this also catches the edge-case of curr being in a throttled
5391 * group (e.g. via set_curr_task), since update_curr() (in the
5392 * enqueue of curr) will have resulted in resched being set. This
5393 * prevents us from potentially nominating it as a false LAST_BUDDY
5394 * below.
aec0a514
BR
5395 */
5396 if (test_tsk_need_resched(curr))
5397 return;
5398
a2f5c9ab
DH
5399 /* Idle tasks are by definition preempted by non-idle tasks. */
5400 if (unlikely(curr->policy == SCHED_IDLE) &&
5401 likely(p->policy != SCHED_IDLE))
5402 goto preempt;
5403
91c234b4 5404 /*
a2f5c9ab
DH
5405 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5406 * is driven by the tick):
91c234b4 5407 */
8ed92e51 5408 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5409 return;
bf0f6f24 5410
464b7527 5411 find_matching_se(&se, &pse);
9bbd7374 5412 update_curr(cfs_rq_of(se));
002f128b 5413 BUG_ON(!pse);
2f36825b
VP
5414 if (wakeup_preempt_entity(se, pse) == 1) {
5415 /*
5416 * Bias pick_next to pick the sched entity that is
5417 * triggering this preemption.
5418 */
5419 if (!next_buddy_marked)
5420 set_next_buddy(pse);
3a7e73a2 5421 goto preempt;
2f36825b 5422 }
464b7527 5423
3a7e73a2 5424 return;
a65ac745 5425
3a7e73a2 5426preempt:
8875125e 5427 resched_curr(rq);
3a7e73a2
PZ
5428 /*
5429 * Only set the backward buddy when the current task is still
5430 * on the rq. This can happen when a wakeup gets interleaved
5431 * with schedule on the ->pre_schedule() or idle_balance()
5432 * point, either of which can * drop the rq lock.
5433 *
5434 * Also, during early boot the idle thread is in the fair class,
5435 * for obvious reasons its a bad idea to schedule back to it.
5436 */
5437 if (unlikely(!se->on_rq || curr == rq->idle))
5438 return;
5439
5440 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5441 set_last_buddy(se);
bf0f6f24
IM
5442}
5443
606dba2e
PZ
5444static struct task_struct *
5445pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5446{
5447 struct cfs_rq *cfs_rq = &rq->cfs;
5448 struct sched_entity *se;
678d5718 5449 struct task_struct *p;
37e117c0 5450 int new_tasks;
678d5718 5451
6e83125c 5452again:
678d5718
PZ
5453#ifdef CONFIG_FAIR_GROUP_SCHED
5454 if (!cfs_rq->nr_running)
38033c37 5455 goto idle;
678d5718 5456
3f1d2a31 5457 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5458 goto simple;
5459
5460 /*
5461 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5462 * likely that a next task is from the same cgroup as the current.
5463 *
5464 * Therefore attempt to avoid putting and setting the entire cgroup
5465 * hierarchy, only change the part that actually changes.
5466 */
5467
5468 do {
5469 struct sched_entity *curr = cfs_rq->curr;
5470
5471 /*
5472 * Since we got here without doing put_prev_entity() we also
5473 * have to consider cfs_rq->curr. If it is still a runnable
5474 * entity, update_curr() will update its vruntime, otherwise
5475 * forget we've ever seen it.
5476 */
54d27365
BS
5477 if (curr) {
5478 if (curr->on_rq)
5479 update_curr(cfs_rq);
5480 else
5481 curr = NULL;
678d5718 5482
54d27365
BS
5483 /*
5484 * This call to check_cfs_rq_runtime() will do the
5485 * throttle and dequeue its entity in the parent(s).
5486 * Therefore the 'simple' nr_running test will indeed
5487 * be correct.
5488 */
5489 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5490 goto simple;
5491 }
678d5718
PZ
5492
5493 se = pick_next_entity(cfs_rq, curr);
5494 cfs_rq = group_cfs_rq(se);
5495 } while (cfs_rq);
5496
5497 p = task_of(se);
5498
5499 /*
5500 * Since we haven't yet done put_prev_entity and if the selected task
5501 * is a different task than we started out with, try and touch the
5502 * least amount of cfs_rqs.
5503 */
5504 if (prev != p) {
5505 struct sched_entity *pse = &prev->se;
5506
5507 while (!(cfs_rq = is_same_group(se, pse))) {
5508 int se_depth = se->depth;
5509 int pse_depth = pse->depth;
5510
5511 if (se_depth <= pse_depth) {
5512 put_prev_entity(cfs_rq_of(pse), pse);
5513 pse = parent_entity(pse);
5514 }
5515 if (se_depth >= pse_depth) {
5516 set_next_entity(cfs_rq_of(se), se);
5517 se = parent_entity(se);
5518 }
5519 }
5520
5521 put_prev_entity(cfs_rq, pse);
5522 set_next_entity(cfs_rq, se);
5523 }
5524
5525 if (hrtick_enabled(rq))
5526 hrtick_start_fair(rq, p);
5527
5528 return p;
5529simple:
5530 cfs_rq = &rq->cfs;
5531#endif
bf0f6f24 5532
36ace27e 5533 if (!cfs_rq->nr_running)
38033c37 5534 goto idle;
bf0f6f24 5535
3f1d2a31 5536 put_prev_task(rq, prev);
606dba2e 5537
bf0f6f24 5538 do {
678d5718 5539 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5540 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5541 cfs_rq = group_cfs_rq(se);
5542 } while (cfs_rq);
5543
8f4d37ec 5544 p = task_of(se);
678d5718 5545
b39e66ea
MG
5546 if (hrtick_enabled(rq))
5547 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5548
5549 return p;
38033c37
PZ
5550
5551idle:
cbce1a68
PZ
5552 /*
5553 * This is OK, because current is on_cpu, which avoids it being picked
5554 * for load-balance and preemption/IRQs are still disabled avoiding
5555 * further scheduler activity on it and we're being very careful to
5556 * re-start the picking loop.
5557 */
5558 lockdep_unpin_lock(&rq->lock);
e4aa358b 5559 new_tasks = idle_balance(rq);
cbce1a68 5560 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5561 /*
5562 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5563 * possible for any higher priority task to appear. In that case we
5564 * must re-start the pick_next_entity() loop.
5565 */
e4aa358b 5566 if (new_tasks < 0)
37e117c0
PZ
5567 return RETRY_TASK;
5568
e4aa358b 5569 if (new_tasks > 0)
38033c37 5570 goto again;
38033c37
PZ
5571
5572 return NULL;
bf0f6f24
IM
5573}
5574
5575/*
5576 * Account for a descheduled task:
5577 */
31ee529c 5578static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5579{
5580 struct sched_entity *se = &prev->se;
5581 struct cfs_rq *cfs_rq;
5582
5583 for_each_sched_entity(se) {
5584 cfs_rq = cfs_rq_of(se);
ab6cde26 5585 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5586 }
5587}
5588
ac53db59
RR
5589/*
5590 * sched_yield() is very simple
5591 *
5592 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5593 */
5594static void yield_task_fair(struct rq *rq)
5595{
5596 struct task_struct *curr = rq->curr;
5597 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5598 struct sched_entity *se = &curr->se;
5599
5600 /*
5601 * Are we the only task in the tree?
5602 */
5603 if (unlikely(rq->nr_running == 1))
5604 return;
5605
5606 clear_buddies(cfs_rq, se);
5607
5608 if (curr->policy != SCHED_BATCH) {
5609 update_rq_clock(rq);
5610 /*
5611 * Update run-time statistics of the 'current'.
5612 */
5613 update_curr(cfs_rq);
916671c0
MG
5614 /*
5615 * Tell update_rq_clock() that we've just updated,
5616 * so we don't do microscopic update in schedule()
5617 * and double the fastpath cost.
5618 */
9edfbfed 5619 rq_clock_skip_update(rq, true);
ac53db59
RR
5620 }
5621
5622 set_skip_buddy(se);
5623}
5624
d95f4122
MG
5625static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5626{
5627 struct sched_entity *se = &p->se;
5628
5238cdd3
PT
5629 /* throttled hierarchies are not runnable */
5630 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5631 return false;
5632
5633 /* Tell the scheduler that we'd really like pse to run next. */
5634 set_next_buddy(se);
5635
d95f4122
MG
5636 yield_task_fair(rq);
5637
5638 return true;
5639}
5640
681f3e68 5641#ifdef CONFIG_SMP
bf0f6f24 5642/**************************************************
e9c84cb8
PZ
5643 * Fair scheduling class load-balancing methods.
5644 *
5645 * BASICS
5646 *
5647 * The purpose of load-balancing is to achieve the same basic fairness the
5648 * per-cpu scheduler provides, namely provide a proportional amount of compute
5649 * time to each task. This is expressed in the following equation:
5650 *
5651 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5652 *
5653 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5654 * W_i,0 is defined as:
5655 *
5656 * W_i,0 = \Sum_j w_i,j (2)
5657 *
5658 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5659 * is derived from the nice value as per prio_to_weight[].
5660 *
5661 * The weight average is an exponential decay average of the instantaneous
5662 * weight:
5663 *
5664 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5665 *
ced549fa 5666 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5667 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5668 * can also include other factors [XXX].
5669 *
5670 * To achieve this balance we define a measure of imbalance which follows
5671 * directly from (1):
5672 *
ced549fa 5673 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5674 *
5675 * We them move tasks around to minimize the imbalance. In the continuous
5676 * function space it is obvious this converges, in the discrete case we get
5677 * a few fun cases generally called infeasible weight scenarios.
5678 *
5679 * [XXX expand on:
5680 * - infeasible weights;
5681 * - local vs global optima in the discrete case. ]
5682 *
5683 *
5684 * SCHED DOMAINS
5685 *
5686 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5687 * for all i,j solution, we create a tree of cpus that follows the hardware
5688 * topology where each level pairs two lower groups (or better). This results
5689 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5690 * tree to only the first of the previous level and we decrease the frequency
5691 * of load-balance at each level inv. proportional to the number of cpus in
5692 * the groups.
5693 *
5694 * This yields:
5695 *
5696 * log_2 n 1 n
5697 * \Sum { --- * --- * 2^i } = O(n) (5)
5698 * i = 0 2^i 2^i
5699 * `- size of each group
5700 * | | `- number of cpus doing load-balance
5701 * | `- freq
5702 * `- sum over all levels
5703 *
5704 * Coupled with a limit on how many tasks we can migrate every balance pass,
5705 * this makes (5) the runtime complexity of the balancer.
5706 *
5707 * An important property here is that each CPU is still (indirectly) connected
5708 * to every other cpu in at most O(log n) steps:
5709 *
5710 * The adjacency matrix of the resulting graph is given by:
5711 *
5712 * log_2 n
5713 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5714 * k = 0
5715 *
5716 * And you'll find that:
5717 *
5718 * A^(log_2 n)_i,j != 0 for all i,j (7)
5719 *
5720 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5721 * The task movement gives a factor of O(m), giving a convergence complexity
5722 * of:
5723 *
5724 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5725 *
5726 *
5727 * WORK CONSERVING
5728 *
5729 * In order to avoid CPUs going idle while there's still work to do, new idle
5730 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5731 * tree itself instead of relying on other CPUs to bring it work.
5732 *
5733 * This adds some complexity to both (5) and (8) but it reduces the total idle
5734 * time.
5735 *
5736 * [XXX more?]
5737 *
5738 *
5739 * CGROUPS
5740 *
5741 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5742 *
5743 * s_k,i
5744 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5745 * S_k
5746 *
5747 * Where
5748 *
5749 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5750 *
5751 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5752 *
5753 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5754 * property.
5755 *
5756 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5757 * rewrite all of this once again.]
5758 */
bf0f6f24 5759
ed387b78
HS
5760static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5761
0ec8aa00
PZ
5762enum fbq_type { regular, remote, all };
5763
ddcdf6e7 5764#define LBF_ALL_PINNED 0x01
367456c7 5765#define LBF_NEED_BREAK 0x02
6263322c
PZ
5766#define LBF_DST_PINNED 0x04
5767#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5768
5769struct lb_env {
5770 struct sched_domain *sd;
5771
ddcdf6e7 5772 struct rq *src_rq;
85c1e7da 5773 int src_cpu;
ddcdf6e7
PZ
5774
5775 int dst_cpu;
5776 struct rq *dst_rq;
5777
88b8dac0
SV
5778 struct cpumask *dst_grpmask;
5779 int new_dst_cpu;
ddcdf6e7 5780 enum cpu_idle_type idle;
bd939f45 5781 long imbalance;
b9403130
MW
5782 /* The set of CPUs under consideration for load-balancing */
5783 struct cpumask *cpus;
5784
ddcdf6e7 5785 unsigned int flags;
367456c7
PZ
5786
5787 unsigned int loop;
5788 unsigned int loop_break;
5789 unsigned int loop_max;
0ec8aa00
PZ
5790
5791 enum fbq_type fbq_type;
163122b7 5792 struct list_head tasks;
ddcdf6e7
PZ
5793};
5794
029632fb
PZ
5795/*
5796 * Is this task likely cache-hot:
5797 */
5d5e2b1b 5798static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5799{
5800 s64 delta;
5801
e5673f28
KT
5802 lockdep_assert_held(&env->src_rq->lock);
5803
029632fb
PZ
5804 if (p->sched_class != &fair_sched_class)
5805 return 0;
5806
5807 if (unlikely(p->policy == SCHED_IDLE))
5808 return 0;
5809
5810 /*
5811 * Buddy candidates are cache hot:
5812 */
5d5e2b1b 5813 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5814 (&p->se == cfs_rq_of(&p->se)->next ||
5815 &p->se == cfs_rq_of(&p->se)->last))
5816 return 1;
5817
5818 if (sysctl_sched_migration_cost == -1)
5819 return 1;
5820 if (sysctl_sched_migration_cost == 0)
5821 return 0;
5822
5d5e2b1b 5823 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5824
5825 return delta < (s64)sysctl_sched_migration_cost;
5826}
5827
3a7053b3 5828#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5829/*
2a1ed24c
SD
5830 * Returns 1, if task migration degrades locality
5831 * Returns 0, if task migration improves locality i.e migration preferred.
5832 * Returns -1, if task migration is not affected by locality.
c1ceac62 5833 */
2a1ed24c 5834static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5835{
b1ad065e 5836 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5837 unsigned long src_faults, dst_faults;
3a7053b3
MG
5838 int src_nid, dst_nid;
5839
2a595721 5840 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5841 return -1;
5842
c3b9bc5b 5843 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5844 return -1;
7a0f3083
MG
5845
5846 src_nid = cpu_to_node(env->src_cpu);
5847 dst_nid = cpu_to_node(env->dst_cpu);
5848
83e1d2cd 5849 if (src_nid == dst_nid)
2a1ed24c 5850 return -1;
7a0f3083 5851
2a1ed24c
SD
5852 /* Migrating away from the preferred node is always bad. */
5853 if (src_nid == p->numa_preferred_nid) {
5854 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5855 return 1;
5856 else
5857 return -1;
5858 }
b1ad065e 5859
c1ceac62
RR
5860 /* Encourage migration to the preferred node. */
5861 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5862 return 0;
b1ad065e 5863
c1ceac62
RR
5864 if (numa_group) {
5865 src_faults = group_faults(p, src_nid);
5866 dst_faults = group_faults(p, dst_nid);
5867 } else {
5868 src_faults = task_faults(p, src_nid);
5869 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5870 }
5871
c1ceac62 5872 return dst_faults < src_faults;
7a0f3083
MG
5873}
5874
3a7053b3 5875#else
2a1ed24c 5876static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5877 struct lb_env *env)
5878{
2a1ed24c 5879 return -1;
7a0f3083 5880}
3a7053b3
MG
5881#endif
5882
1e3c88bd
PZ
5883/*
5884 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5885 */
5886static
8e45cb54 5887int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5888{
2a1ed24c 5889 int tsk_cache_hot;
e5673f28
KT
5890
5891 lockdep_assert_held(&env->src_rq->lock);
5892
1e3c88bd
PZ
5893 /*
5894 * We do not migrate tasks that are:
d3198084 5895 * 1) throttled_lb_pair, or
1e3c88bd 5896 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5897 * 3) running (obviously), or
5898 * 4) are cache-hot on their current CPU.
1e3c88bd 5899 */
d3198084
JK
5900 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5901 return 0;
5902
ddcdf6e7 5903 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5904 int cpu;
88b8dac0 5905
41acab88 5906 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5907
6263322c
PZ
5908 env->flags |= LBF_SOME_PINNED;
5909
88b8dac0
SV
5910 /*
5911 * Remember if this task can be migrated to any other cpu in
5912 * our sched_group. We may want to revisit it if we couldn't
5913 * meet load balance goals by pulling other tasks on src_cpu.
5914 *
5915 * Also avoid computing new_dst_cpu if we have already computed
5916 * one in current iteration.
5917 */
6263322c 5918 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5919 return 0;
5920
e02e60c1
JK
5921 /* Prevent to re-select dst_cpu via env's cpus */
5922 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5923 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5924 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5925 env->new_dst_cpu = cpu;
5926 break;
5927 }
88b8dac0 5928 }
e02e60c1 5929
1e3c88bd
PZ
5930 return 0;
5931 }
88b8dac0
SV
5932
5933 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5934 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5935
ddcdf6e7 5936 if (task_running(env->src_rq, p)) {
41acab88 5937 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5938 return 0;
5939 }
5940
5941 /*
5942 * Aggressive migration if:
3a7053b3
MG
5943 * 1) destination numa is preferred
5944 * 2) task is cache cold, or
5945 * 3) too many balance attempts have failed.
1e3c88bd 5946 */
2a1ed24c
SD
5947 tsk_cache_hot = migrate_degrades_locality(p, env);
5948 if (tsk_cache_hot == -1)
5949 tsk_cache_hot = task_hot(p, env);
3a7053b3 5950
2a1ed24c 5951 if (tsk_cache_hot <= 0 ||
7a96c231 5952 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5953 if (tsk_cache_hot == 1) {
3a7053b3
MG
5954 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5955 schedstat_inc(p, se.statistics.nr_forced_migrations);
5956 }
1e3c88bd
PZ
5957 return 1;
5958 }
5959
4e2dcb73
ZH
5960 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5961 return 0;
1e3c88bd
PZ
5962}
5963
897c395f 5964/*
163122b7
KT
5965 * detach_task() -- detach the task for the migration specified in env
5966 */
5967static void detach_task(struct task_struct *p, struct lb_env *env)
5968{
5969 lockdep_assert_held(&env->src_rq->lock);
5970
163122b7 5971 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5972 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5973 set_task_cpu(p, env->dst_cpu);
5974}
5975
897c395f 5976/*
e5673f28 5977 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5978 * part of active balancing operations within "domain".
897c395f 5979 *
e5673f28 5980 * Returns a task if successful and NULL otherwise.
897c395f 5981 */
e5673f28 5982static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5983{
5984 struct task_struct *p, *n;
897c395f 5985
e5673f28
KT
5986 lockdep_assert_held(&env->src_rq->lock);
5987
367456c7 5988 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5989 if (!can_migrate_task(p, env))
5990 continue;
897c395f 5991
163122b7 5992 detach_task(p, env);
e5673f28 5993
367456c7 5994 /*
e5673f28 5995 * Right now, this is only the second place where
163122b7 5996 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5997 * so we can safely collect stats here rather than
163122b7 5998 * inside detach_tasks().
367456c7
PZ
5999 */
6000 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6001 return p;
897c395f 6002 }
e5673f28 6003 return NULL;
897c395f
PZ
6004}
6005
eb95308e
PZ
6006static const unsigned int sched_nr_migrate_break = 32;
6007
5d6523eb 6008/*
163122b7
KT
6009 * detach_tasks() -- tries to detach up to imbalance weighted load from
6010 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6011 *
163122b7 6012 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6013 */
163122b7 6014static int detach_tasks(struct lb_env *env)
1e3c88bd 6015{
5d6523eb
PZ
6016 struct list_head *tasks = &env->src_rq->cfs_tasks;
6017 struct task_struct *p;
367456c7 6018 unsigned long load;
163122b7
KT
6019 int detached = 0;
6020
6021 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6022
bd939f45 6023 if (env->imbalance <= 0)
5d6523eb 6024 return 0;
1e3c88bd 6025
5d6523eb 6026 while (!list_empty(tasks)) {
985d3a4c
YD
6027 /*
6028 * We don't want to steal all, otherwise we may be treated likewise,
6029 * which could at worst lead to a livelock crash.
6030 */
6031 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6032 break;
6033
5d6523eb 6034 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6035
367456c7
PZ
6036 env->loop++;
6037 /* We've more or less seen every task there is, call it quits */
5d6523eb 6038 if (env->loop > env->loop_max)
367456c7 6039 break;
5d6523eb
PZ
6040
6041 /* take a breather every nr_migrate tasks */
367456c7 6042 if (env->loop > env->loop_break) {
eb95308e 6043 env->loop_break += sched_nr_migrate_break;
8e45cb54 6044 env->flags |= LBF_NEED_BREAK;
ee00e66f 6045 break;
a195f004 6046 }
1e3c88bd 6047
d3198084 6048 if (!can_migrate_task(p, env))
367456c7
PZ
6049 goto next;
6050
6051 load = task_h_load(p);
5d6523eb 6052
eb95308e 6053 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6054 goto next;
6055
bd939f45 6056 if ((load / 2) > env->imbalance)
367456c7 6057 goto next;
1e3c88bd 6058
163122b7
KT
6059 detach_task(p, env);
6060 list_add(&p->se.group_node, &env->tasks);
6061
6062 detached++;
bd939f45 6063 env->imbalance -= load;
1e3c88bd
PZ
6064
6065#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6066 /*
6067 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6068 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6069 * the critical section.
6070 */
5d6523eb 6071 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6072 break;
1e3c88bd
PZ
6073#endif
6074
ee00e66f
PZ
6075 /*
6076 * We only want to steal up to the prescribed amount of
6077 * weighted load.
6078 */
bd939f45 6079 if (env->imbalance <= 0)
ee00e66f 6080 break;
367456c7
PZ
6081
6082 continue;
6083next:
5d6523eb 6084 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6085 }
5d6523eb 6086
1e3c88bd 6087 /*
163122b7
KT
6088 * Right now, this is one of only two places we collect this stat
6089 * so we can safely collect detach_one_task() stats here rather
6090 * than inside detach_one_task().
1e3c88bd 6091 */
163122b7 6092 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6093
163122b7
KT
6094 return detached;
6095}
6096
6097/*
6098 * attach_task() -- attach the task detached by detach_task() to its new rq.
6099 */
6100static void attach_task(struct rq *rq, struct task_struct *p)
6101{
6102 lockdep_assert_held(&rq->lock);
6103
6104 BUG_ON(task_rq(p) != rq);
163122b7 6105 activate_task(rq, p, 0);
3ea94de1 6106 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6107 check_preempt_curr(rq, p, 0);
6108}
6109
6110/*
6111 * attach_one_task() -- attaches the task returned from detach_one_task() to
6112 * its new rq.
6113 */
6114static void attach_one_task(struct rq *rq, struct task_struct *p)
6115{
6116 raw_spin_lock(&rq->lock);
6117 attach_task(rq, p);
6118 raw_spin_unlock(&rq->lock);
6119}
6120
6121/*
6122 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6123 * new rq.
6124 */
6125static void attach_tasks(struct lb_env *env)
6126{
6127 struct list_head *tasks = &env->tasks;
6128 struct task_struct *p;
6129
6130 raw_spin_lock(&env->dst_rq->lock);
6131
6132 while (!list_empty(tasks)) {
6133 p = list_first_entry(tasks, struct task_struct, se.group_node);
6134 list_del_init(&p->se.group_node);
1e3c88bd 6135
163122b7
KT
6136 attach_task(env->dst_rq, p);
6137 }
6138
6139 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6140}
6141
230059de 6142#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6143static void update_blocked_averages(int cpu)
9e3081ca 6144{
9e3081ca 6145 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6146 struct cfs_rq *cfs_rq;
6147 unsigned long flags;
9e3081ca 6148
48a16753
PT
6149 raw_spin_lock_irqsave(&rq->lock, flags);
6150 update_rq_clock(rq);
9d89c257 6151
9763b67f
PZ
6152 /*
6153 * Iterates the task_group tree in a bottom up fashion, see
6154 * list_add_leaf_cfs_rq() for details.
6155 */
64660c86 6156 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6157 /* throttled entities do not contribute to load */
6158 if (throttled_hierarchy(cfs_rq))
6159 continue;
48a16753 6160
9d89c257
YD
6161 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6162 update_tg_load_avg(cfs_rq, 0);
6163 }
48a16753 6164 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6165}
6166
9763b67f 6167/*
68520796 6168 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6169 * This needs to be done in a top-down fashion because the load of a child
6170 * group is a fraction of its parents load.
6171 */
68520796 6172static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6173{
68520796
VD
6174 struct rq *rq = rq_of(cfs_rq);
6175 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6176 unsigned long now = jiffies;
68520796 6177 unsigned long load;
a35b6466 6178
68520796 6179 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6180 return;
6181
68520796
VD
6182 cfs_rq->h_load_next = NULL;
6183 for_each_sched_entity(se) {
6184 cfs_rq = cfs_rq_of(se);
6185 cfs_rq->h_load_next = se;
6186 if (cfs_rq->last_h_load_update == now)
6187 break;
6188 }
a35b6466 6189
68520796 6190 if (!se) {
7ea241af 6191 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6192 cfs_rq->last_h_load_update = now;
6193 }
6194
6195 while ((se = cfs_rq->h_load_next) != NULL) {
6196 load = cfs_rq->h_load;
7ea241af
YD
6197 load = div64_ul(load * se->avg.load_avg,
6198 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6199 cfs_rq = group_cfs_rq(se);
6200 cfs_rq->h_load = load;
6201 cfs_rq->last_h_load_update = now;
6202 }
9763b67f
PZ
6203}
6204
367456c7 6205static unsigned long task_h_load(struct task_struct *p)
230059de 6206{
367456c7 6207 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6208
68520796 6209 update_cfs_rq_h_load(cfs_rq);
9d89c257 6210 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6211 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6212}
6213#else
48a16753 6214static inline void update_blocked_averages(int cpu)
9e3081ca 6215{
6c1d47c0
VG
6216 struct rq *rq = cpu_rq(cpu);
6217 struct cfs_rq *cfs_rq = &rq->cfs;
6218 unsigned long flags;
6219
6220 raw_spin_lock_irqsave(&rq->lock, flags);
6221 update_rq_clock(rq);
6222 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6223 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6224}
6225
367456c7 6226static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6227{
9d89c257 6228 return p->se.avg.load_avg;
1e3c88bd 6229}
230059de 6230#endif
1e3c88bd 6231
1e3c88bd 6232/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6233
6234enum group_type {
6235 group_other = 0,
6236 group_imbalanced,
6237 group_overloaded,
6238};
6239
1e3c88bd
PZ
6240/*
6241 * sg_lb_stats - stats of a sched_group required for load_balancing
6242 */
6243struct sg_lb_stats {
6244 unsigned long avg_load; /*Avg load across the CPUs of the group */
6245 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6246 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6247 unsigned long load_per_task;
63b2ca30 6248 unsigned long group_capacity;
9e91d61d 6249 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6250 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6251 unsigned int idle_cpus;
6252 unsigned int group_weight;
caeb178c 6253 enum group_type group_type;
ea67821b 6254 int group_no_capacity;
0ec8aa00
PZ
6255#ifdef CONFIG_NUMA_BALANCING
6256 unsigned int nr_numa_running;
6257 unsigned int nr_preferred_running;
6258#endif
1e3c88bd
PZ
6259};
6260
56cf515b
JK
6261/*
6262 * sd_lb_stats - Structure to store the statistics of a sched_domain
6263 * during load balancing.
6264 */
6265struct sd_lb_stats {
6266 struct sched_group *busiest; /* Busiest group in this sd */
6267 struct sched_group *local; /* Local group in this sd */
6268 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6269 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6270 unsigned long avg_load; /* Average load across all groups in sd */
6271
56cf515b 6272 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6273 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6274};
6275
147c5fc2
PZ
6276static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6277{
6278 /*
6279 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6280 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6281 * We must however clear busiest_stat::avg_load because
6282 * update_sd_pick_busiest() reads this before assignment.
6283 */
6284 *sds = (struct sd_lb_stats){
6285 .busiest = NULL,
6286 .local = NULL,
6287 .total_load = 0UL,
63b2ca30 6288 .total_capacity = 0UL,
147c5fc2
PZ
6289 .busiest_stat = {
6290 .avg_load = 0UL,
caeb178c
RR
6291 .sum_nr_running = 0,
6292 .group_type = group_other,
147c5fc2
PZ
6293 },
6294 };
6295}
6296
1e3c88bd
PZ
6297/**
6298 * get_sd_load_idx - Obtain the load index for a given sched domain.
6299 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6300 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6301 *
6302 * Return: The load index.
1e3c88bd
PZ
6303 */
6304static inline int get_sd_load_idx(struct sched_domain *sd,
6305 enum cpu_idle_type idle)
6306{
6307 int load_idx;
6308
6309 switch (idle) {
6310 case CPU_NOT_IDLE:
6311 load_idx = sd->busy_idx;
6312 break;
6313
6314 case CPU_NEWLY_IDLE:
6315 load_idx = sd->newidle_idx;
6316 break;
6317 default:
6318 load_idx = sd->idle_idx;
6319 break;
6320 }
6321
6322 return load_idx;
6323}
6324
ced549fa 6325static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6326{
6327 struct rq *rq = cpu_rq(cpu);
b5b4860d 6328 u64 total, used, age_stamp, avg;
cadefd3d 6329 s64 delta;
1e3c88bd 6330
b654f7de
PZ
6331 /*
6332 * Since we're reading these variables without serialization make sure
6333 * we read them once before doing sanity checks on them.
6334 */
316c1608
JL
6335 age_stamp = READ_ONCE(rq->age_stamp);
6336 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6337 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6338
cadefd3d
PZ
6339 if (unlikely(delta < 0))
6340 delta = 0;
6341
6342 total = sched_avg_period() + delta;
aa483808 6343
b5b4860d 6344 used = div_u64(avg, total);
1e3c88bd 6345
b5b4860d
VG
6346 if (likely(used < SCHED_CAPACITY_SCALE))
6347 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6348
b5b4860d 6349 return 1;
1e3c88bd
PZ
6350}
6351
ced549fa 6352static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6353{
8cd5601c 6354 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6355 struct sched_group *sdg = sd->groups;
6356
ca6d75e6 6357 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6358
ced549fa 6359 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6360 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6361
ced549fa
NP
6362 if (!capacity)
6363 capacity = 1;
1e3c88bd 6364
ced549fa
NP
6365 cpu_rq(cpu)->cpu_capacity = capacity;
6366 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6367}
6368
63b2ca30 6369void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6370{
6371 struct sched_domain *child = sd->child;
6372 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6373 unsigned long capacity;
4ec4412e
VG
6374 unsigned long interval;
6375
6376 interval = msecs_to_jiffies(sd->balance_interval);
6377 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6378 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6379
6380 if (!child) {
ced549fa 6381 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6382 return;
6383 }
6384
dc7ff76e 6385 capacity = 0;
1e3c88bd 6386
74a5ce20
PZ
6387 if (child->flags & SD_OVERLAP) {
6388 /*
6389 * SD_OVERLAP domains cannot assume that child groups
6390 * span the current group.
6391 */
6392
863bffc8 6393 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6394 struct sched_group_capacity *sgc;
9abf24d4 6395 struct rq *rq = cpu_rq(cpu);
863bffc8 6396
9abf24d4 6397 /*
63b2ca30 6398 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6399 * gets here before we've attached the domains to the
6400 * runqueues.
6401 *
ced549fa
NP
6402 * Use capacity_of(), which is set irrespective of domains
6403 * in update_cpu_capacity().
9abf24d4 6404 *
dc7ff76e 6405 * This avoids capacity from being 0 and
9abf24d4 6406 * causing divide-by-zero issues on boot.
9abf24d4
SD
6407 */
6408 if (unlikely(!rq->sd)) {
ced549fa 6409 capacity += capacity_of(cpu);
9abf24d4
SD
6410 continue;
6411 }
863bffc8 6412
63b2ca30 6413 sgc = rq->sd->groups->sgc;
63b2ca30 6414 capacity += sgc->capacity;
863bffc8 6415 }
74a5ce20
PZ
6416 } else {
6417 /*
6418 * !SD_OVERLAP domains can assume that child groups
6419 * span the current group.
6420 */
6421
6422 group = child->groups;
6423 do {
63b2ca30 6424 capacity += group->sgc->capacity;
74a5ce20
PZ
6425 group = group->next;
6426 } while (group != child->groups);
6427 }
1e3c88bd 6428
63b2ca30 6429 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6430}
6431
9d5efe05 6432/*
ea67821b
VG
6433 * Check whether the capacity of the rq has been noticeably reduced by side
6434 * activity. The imbalance_pct is used for the threshold.
6435 * Return true is the capacity is reduced
9d5efe05
SV
6436 */
6437static inline int
ea67821b 6438check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6439{
ea67821b
VG
6440 return ((rq->cpu_capacity * sd->imbalance_pct) <
6441 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6442}
6443
30ce5dab
PZ
6444/*
6445 * Group imbalance indicates (and tries to solve) the problem where balancing
6446 * groups is inadequate due to tsk_cpus_allowed() constraints.
6447 *
6448 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6449 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6450 * Something like:
6451 *
6452 * { 0 1 2 3 } { 4 5 6 7 }
6453 * * * * *
6454 *
6455 * If we were to balance group-wise we'd place two tasks in the first group and
6456 * two tasks in the second group. Clearly this is undesired as it will overload
6457 * cpu 3 and leave one of the cpus in the second group unused.
6458 *
6459 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6460 * by noticing the lower domain failed to reach balance and had difficulty
6461 * moving tasks due to affinity constraints.
30ce5dab
PZ
6462 *
6463 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6464 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6465 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6466 * to create an effective group imbalance.
6467 *
6468 * This is a somewhat tricky proposition since the next run might not find the
6469 * group imbalance and decide the groups need to be balanced again. A most
6470 * subtle and fragile situation.
6471 */
6472
6263322c 6473static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6474{
63b2ca30 6475 return group->sgc->imbalance;
30ce5dab
PZ
6476}
6477
b37d9316 6478/*
ea67821b
VG
6479 * group_has_capacity returns true if the group has spare capacity that could
6480 * be used by some tasks.
6481 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6482 * smaller than the number of CPUs or if the utilization is lower than the
6483 * available capacity for CFS tasks.
ea67821b
VG
6484 * For the latter, we use a threshold to stabilize the state, to take into
6485 * account the variance of the tasks' load and to return true if the available
6486 * capacity in meaningful for the load balancer.
6487 * As an example, an available capacity of 1% can appear but it doesn't make
6488 * any benefit for the load balance.
b37d9316 6489 */
ea67821b
VG
6490static inline bool
6491group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6492{
ea67821b
VG
6493 if (sgs->sum_nr_running < sgs->group_weight)
6494 return true;
c61037e9 6495
ea67821b 6496 if ((sgs->group_capacity * 100) >
9e91d61d 6497 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6498 return true;
b37d9316 6499
ea67821b
VG
6500 return false;
6501}
6502
6503/*
6504 * group_is_overloaded returns true if the group has more tasks than it can
6505 * handle.
6506 * group_is_overloaded is not equals to !group_has_capacity because a group
6507 * with the exact right number of tasks, has no more spare capacity but is not
6508 * overloaded so both group_has_capacity and group_is_overloaded return
6509 * false.
6510 */
6511static inline bool
6512group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6513{
6514 if (sgs->sum_nr_running <= sgs->group_weight)
6515 return false;
b37d9316 6516
ea67821b 6517 if ((sgs->group_capacity * 100) <
9e91d61d 6518 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6519 return true;
b37d9316 6520
ea67821b 6521 return false;
b37d9316
PZ
6522}
6523
79a89f92
LY
6524static inline enum
6525group_type group_classify(struct sched_group *group,
6526 struct sg_lb_stats *sgs)
caeb178c 6527{
ea67821b 6528 if (sgs->group_no_capacity)
caeb178c
RR
6529 return group_overloaded;
6530
6531 if (sg_imbalanced(group))
6532 return group_imbalanced;
6533
6534 return group_other;
6535}
6536
1e3c88bd
PZ
6537/**
6538 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6539 * @env: The load balancing environment.
1e3c88bd 6540 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6541 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6542 * @local_group: Does group contain this_cpu.
1e3c88bd 6543 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6544 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6545 */
bd939f45
PZ
6546static inline void update_sg_lb_stats(struct lb_env *env,
6547 struct sched_group *group, int load_idx,
4486edd1
TC
6548 int local_group, struct sg_lb_stats *sgs,
6549 bool *overload)
1e3c88bd 6550{
30ce5dab 6551 unsigned long load;
a426f99c 6552 int i, nr_running;
1e3c88bd 6553
b72ff13c
PZ
6554 memset(sgs, 0, sizeof(*sgs));
6555
b9403130 6556 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6557 struct rq *rq = cpu_rq(i);
6558
1e3c88bd 6559 /* Bias balancing toward cpus of our domain */
6263322c 6560 if (local_group)
04f733b4 6561 load = target_load(i, load_idx);
6263322c 6562 else
1e3c88bd 6563 load = source_load(i, load_idx);
1e3c88bd
PZ
6564
6565 sgs->group_load += load;
9e91d61d 6566 sgs->group_util += cpu_util(i);
65fdac08 6567 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6568
a426f99c
WL
6569 nr_running = rq->nr_running;
6570 if (nr_running > 1)
4486edd1
TC
6571 *overload = true;
6572
0ec8aa00
PZ
6573#ifdef CONFIG_NUMA_BALANCING
6574 sgs->nr_numa_running += rq->nr_numa_running;
6575 sgs->nr_preferred_running += rq->nr_preferred_running;
6576#endif
1e3c88bd 6577 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6578 /*
6579 * No need to call idle_cpu() if nr_running is not 0
6580 */
6581 if (!nr_running && idle_cpu(i))
aae6d3dd 6582 sgs->idle_cpus++;
1e3c88bd
PZ
6583 }
6584
63b2ca30
NP
6585 /* Adjust by relative CPU capacity of the group */
6586 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6587 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6588
dd5feea1 6589 if (sgs->sum_nr_running)
38d0f770 6590 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6591
aae6d3dd 6592 sgs->group_weight = group->group_weight;
b37d9316 6593
ea67821b 6594 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6595 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6596}
6597
532cb4c4
MN
6598/**
6599 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6600 * @env: The load balancing environment.
532cb4c4
MN
6601 * @sds: sched_domain statistics
6602 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6603 * @sgs: sched_group statistics
532cb4c4
MN
6604 *
6605 * Determine if @sg is a busier group than the previously selected
6606 * busiest group.
e69f6186
YB
6607 *
6608 * Return: %true if @sg is a busier group than the previously selected
6609 * busiest group. %false otherwise.
532cb4c4 6610 */
bd939f45 6611static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6612 struct sd_lb_stats *sds,
6613 struct sched_group *sg,
bd939f45 6614 struct sg_lb_stats *sgs)
532cb4c4 6615{
caeb178c 6616 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6617
caeb178c 6618 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6619 return true;
6620
caeb178c
RR
6621 if (sgs->group_type < busiest->group_type)
6622 return false;
6623
6624 if (sgs->avg_load <= busiest->avg_load)
6625 return false;
6626
6627 /* This is the busiest node in its class. */
6628 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6629 return true;
6630
6631 /*
6632 * ASYM_PACKING needs to move all the work to the lowest
6633 * numbered CPUs in the group, therefore mark all groups
6634 * higher than ourself as busy.
6635 */
caeb178c 6636 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6637 if (!sds->busiest)
6638 return true;
6639
6640 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6641 return true;
6642 }
6643
6644 return false;
6645}
6646
0ec8aa00
PZ
6647#ifdef CONFIG_NUMA_BALANCING
6648static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6649{
6650 if (sgs->sum_nr_running > sgs->nr_numa_running)
6651 return regular;
6652 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6653 return remote;
6654 return all;
6655}
6656
6657static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6658{
6659 if (rq->nr_running > rq->nr_numa_running)
6660 return regular;
6661 if (rq->nr_running > rq->nr_preferred_running)
6662 return remote;
6663 return all;
6664}
6665#else
6666static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6667{
6668 return all;
6669}
6670
6671static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6672{
6673 return regular;
6674}
6675#endif /* CONFIG_NUMA_BALANCING */
6676
1e3c88bd 6677/**
461819ac 6678 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6679 * @env: The load balancing environment.
1e3c88bd
PZ
6680 * @sds: variable to hold the statistics for this sched_domain.
6681 */
0ec8aa00 6682static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6683{
bd939f45
PZ
6684 struct sched_domain *child = env->sd->child;
6685 struct sched_group *sg = env->sd->groups;
56cf515b 6686 struct sg_lb_stats tmp_sgs;
1e3c88bd 6687 int load_idx, prefer_sibling = 0;
4486edd1 6688 bool overload = false;
1e3c88bd
PZ
6689
6690 if (child && child->flags & SD_PREFER_SIBLING)
6691 prefer_sibling = 1;
6692
bd939f45 6693 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6694
6695 do {
56cf515b 6696 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6697 int local_group;
6698
bd939f45 6699 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6700 if (local_group) {
6701 sds->local = sg;
6702 sgs = &sds->local_stat;
b72ff13c
PZ
6703
6704 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6705 time_after_eq(jiffies, sg->sgc->next_update))
6706 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6707 }
1e3c88bd 6708
4486edd1
TC
6709 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6710 &overload);
1e3c88bd 6711
b72ff13c
PZ
6712 if (local_group)
6713 goto next_group;
6714
1e3c88bd
PZ
6715 /*
6716 * In case the child domain prefers tasks go to siblings
ea67821b 6717 * first, lower the sg capacity so that we'll try
75dd321d
NR
6718 * and move all the excess tasks away. We lower the capacity
6719 * of a group only if the local group has the capacity to fit
ea67821b
VG
6720 * these excess tasks. The extra check prevents the case where
6721 * you always pull from the heaviest group when it is already
6722 * under-utilized (possible with a large weight task outweighs
6723 * the tasks on the system).
1e3c88bd 6724 */
b72ff13c 6725 if (prefer_sibling && sds->local &&
ea67821b
VG
6726 group_has_capacity(env, &sds->local_stat) &&
6727 (sgs->sum_nr_running > 1)) {
6728 sgs->group_no_capacity = 1;
79a89f92 6729 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6730 }
1e3c88bd 6731
b72ff13c 6732 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6733 sds->busiest = sg;
56cf515b 6734 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6735 }
6736
b72ff13c
PZ
6737next_group:
6738 /* Now, start updating sd_lb_stats */
6739 sds->total_load += sgs->group_load;
63b2ca30 6740 sds->total_capacity += sgs->group_capacity;
b72ff13c 6741
532cb4c4 6742 sg = sg->next;
bd939f45 6743 } while (sg != env->sd->groups);
0ec8aa00
PZ
6744
6745 if (env->sd->flags & SD_NUMA)
6746 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6747
6748 if (!env->sd->parent) {
6749 /* update overload indicator if we are at root domain */
6750 if (env->dst_rq->rd->overload != overload)
6751 env->dst_rq->rd->overload = overload;
6752 }
6753
532cb4c4
MN
6754}
6755
532cb4c4
MN
6756/**
6757 * check_asym_packing - Check to see if the group is packed into the
6758 * sched doman.
6759 *
6760 * This is primarily intended to used at the sibling level. Some
6761 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6762 * case of POWER7, it can move to lower SMT modes only when higher
6763 * threads are idle. When in lower SMT modes, the threads will
6764 * perform better since they share less core resources. Hence when we
6765 * have idle threads, we want them to be the higher ones.
6766 *
6767 * This packing function is run on idle threads. It checks to see if
6768 * the busiest CPU in this domain (core in the P7 case) has a higher
6769 * CPU number than the packing function is being run on. Here we are
6770 * assuming lower CPU number will be equivalent to lower a SMT thread
6771 * number.
6772 *
e69f6186 6773 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6774 * this CPU. The amount of the imbalance is returned in *imbalance.
6775 *
cd96891d 6776 * @env: The load balancing environment.
532cb4c4 6777 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6778 */
bd939f45 6779static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6780{
6781 int busiest_cpu;
6782
bd939f45 6783 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6784 return 0;
6785
6786 if (!sds->busiest)
6787 return 0;
6788
6789 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6790 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6791 return 0;
6792
bd939f45 6793 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6794 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6795 SCHED_CAPACITY_SCALE);
bd939f45 6796
532cb4c4 6797 return 1;
1e3c88bd
PZ
6798}
6799
6800/**
6801 * fix_small_imbalance - Calculate the minor imbalance that exists
6802 * amongst the groups of a sched_domain, during
6803 * load balancing.
cd96891d 6804 * @env: The load balancing environment.
1e3c88bd 6805 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6806 */
bd939f45
PZ
6807static inline
6808void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6809{
63b2ca30 6810 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6811 unsigned int imbn = 2;
dd5feea1 6812 unsigned long scaled_busy_load_per_task;
56cf515b 6813 struct sg_lb_stats *local, *busiest;
1e3c88bd 6814
56cf515b
JK
6815 local = &sds->local_stat;
6816 busiest = &sds->busiest_stat;
1e3c88bd 6817
56cf515b
JK
6818 if (!local->sum_nr_running)
6819 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6820 else if (busiest->load_per_task > local->load_per_task)
6821 imbn = 1;
dd5feea1 6822
56cf515b 6823 scaled_busy_load_per_task =
ca8ce3d0 6824 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6825 busiest->group_capacity;
56cf515b 6826
3029ede3
VD
6827 if (busiest->avg_load + scaled_busy_load_per_task >=
6828 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6829 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6830 return;
6831 }
6832
6833 /*
6834 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6835 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6836 * moving them.
6837 */
6838
63b2ca30 6839 capa_now += busiest->group_capacity *
56cf515b 6840 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6841 capa_now += local->group_capacity *
56cf515b 6842 min(local->load_per_task, local->avg_load);
ca8ce3d0 6843 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6844
6845 /* Amount of load we'd subtract */
a2cd4260 6846 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6847 capa_move += busiest->group_capacity *
56cf515b 6848 min(busiest->load_per_task,
a2cd4260 6849 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6850 }
1e3c88bd
PZ
6851
6852 /* Amount of load we'd add */
63b2ca30 6853 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6854 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6855 tmp = (busiest->avg_load * busiest->group_capacity) /
6856 local->group_capacity;
56cf515b 6857 } else {
ca8ce3d0 6858 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6859 local->group_capacity;
56cf515b 6860 }
63b2ca30 6861 capa_move += local->group_capacity *
3ae11c90 6862 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6863 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6864
6865 /* Move if we gain throughput */
63b2ca30 6866 if (capa_move > capa_now)
56cf515b 6867 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6868}
6869
6870/**
6871 * calculate_imbalance - Calculate the amount of imbalance present within the
6872 * groups of a given sched_domain during load balance.
bd939f45 6873 * @env: load balance environment
1e3c88bd 6874 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6875 */
bd939f45 6876static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6877{
dd5feea1 6878 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6879 struct sg_lb_stats *local, *busiest;
6880
6881 local = &sds->local_stat;
56cf515b 6882 busiest = &sds->busiest_stat;
dd5feea1 6883
caeb178c 6884 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6885 /*
6886 * In the group_imb case we cannot rely on group-wide averages
6887 * to ensure cpu-load equilibrium, look at wider averages. XXX
6888 */
56cf515b
JK
6889 busiest->load_per_task =
6890 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6891 }
6892
1e3c88bd
PZ
6893 /*
6894 * In the presence of smp nice balancing, certain scenarios can have
6895 * max load less than avg load(as we skip the groups at or below
ced549fa 6896 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6897 */
b1885550
VD
6898 if (busiest->avg_load <= sds->avg_load ||
6899 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6900 env->imbalance = 0;
6901 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6902 }
6903
9a5d9ba6
PZ
6904 /*
6905 * If there aren't any idle cpus, avoid creating some.
6906 */
6907 if (busiest->group_type == group_overloaded &&
6908 local->group_type == group_overloaded) {
ea67821b
VG
6909 load_above_capacity = busiest->sum_nr_running *
6910 SCHED_LOAD_SCALE;
6911 if (load_above_capacity > busiest->group_capacity)
6912 load_above_capacity -= busiest->group_capacity;
6913 else
6914 load_above_capacity = ~0UL;
dd5feea1
SS
6915 }
6916
6917 /*
6918 * We're trying to get all the cpus to the average_load, so we don't
6919 * want to push ourselves above the average load, nor do we wish to
6920 * reduce the max loaded cpu below the average load. At the same time,
6921 * we also don't want to reduce the group load below the group capacity
6922 * (so that we can implement power-savings policies etc). Thus we look
6923 * for the minimum possible imbalance.
dd5feea1 6924 */
30ce5dab 6925 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6926
6927 /* How much load to actually move to equalise the imbalance */
56cf515b 6928 env->imbalance = min(
63b2ca30
NP
6929 max_pull * busiest->group_capacity,
6930 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6931 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6932
6933 /*
6934 * if *imbalance is less than the average load per runnable task
25985edc 6935 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6936 * a think about bumping its value to force at least one task to be
6937 * moved
6938 */
56cf515b 6939 if (env->imbalance < busiest->load_per_task)
bd939f45 6940 return fix_small_imbalance(env, sds);
1e3c88bd 6941}
fab47622 6942
1e3c88bd
PZ
6943/******* find_busiest_group() helpers end here *********************/
6944
6945/**
6946 * find_busiest_group - Returns the busiest group within the sched_domain
6947 * if there is an imbalance. If there isn't an imbalance, and
6948 * the user has opted for power-savings, it returns a group whose
6949 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6950 * such a group exists.
6951 *
6952 * Also calculates the amount of weighted load which should be moved
6953 * to restore balance.
6954 *
cd96891d 6955 * @env: The load balancing environment.
1e3c88bd 6956 *
e69f6186 6957 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6958 * - If no imbalance and user has opted for power-savings balance,
6959 * return the least loaded group whose CPUs can be
6960 * put to idle by rebalancing its tasks onto our group.
6961 */
56cf515b 6962static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6963{
56cf515b 6964 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6965 struct sd_lb_stats sds;
6966
147c5fc2 6967 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6968
6969 /*
6970 * Compute the various statistics relavent for load balancing at
6971 * this level.
6972 */
23f0d209 6973 update_sd_lb_stats(env, &sds);
56cf515b
JK
6974 local = &sds.local_stat;
6975 busiest = &sds.busiest_stat;
1e3c88bd 6976
ea67821b 6977 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6978 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6979 check_asym_packing(env, &sds))
532cb4c4
MN
6980 return sds.busiest;
6981
cc57aa8f 6982 /* There is no busy sibling group to pull tasks from */
56cf515b 6983 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6984 goto out_balanced;
6985
ca8ce3d0
NP
6986 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6987 / sds.total_capacity;
b0432d8f 6988
866ab43e
PZ
6989 /*
6990 * If the busiest group is imbalanced the below checks don't
30ce5dab 6991 * work because they assume all things are equal, which typically
866ab43e
PZ
6992 * isn't true due to cpus_allowed constraints and the like.
6993 */
caeb178c 6994 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6995 goto force_balance;
6996
cc57aa8f 6997 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6998 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6999 busiest->group_no_capacity)
fab47622
NR
7000 goto force_balance;
7001
cc57aa8f 7002 /*
9c58c79a 7003 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7004 * don't try and pull any tasks.
7005 */
56cf515b 7006 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7007 goto out_balanced;
7008
cc57aa8f
PZ
7009 /*
7010 * Don't pull any tasks if this group is already above the domain
7011 * average load.
7012 */
56cf515b 7013 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7014 goto out_balanced;
7015
bd939f45 7016 if (env->idle == CPU_IDLE) {
aae6d3dd 7017 /*
43f4d666
VG
7018 * This cpu is idle. If the busiest group is not overloaded
7019 * and there is no imbalance between this and busiest group
7020 * wrt idle cpus, it is balanced. The imbalance becomes
7021 * significant if the diff is greater than 1 otherwise we
7022 * might end up to just move the imbalance on another group
aae6d3dd 7023 */
43f4d666
VG
7024 if ((busiest->group_type != group_overloaded) &&
7025 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7026 goto out_balanced;
c186fafe
PZ
7027 } else {
7028 /*
7029 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7030 * imbalance_pct to be conservative.
7031 */
56cf515b
JK
7032 if (100 * busiest->avg_load <=
7033 env->sd->imbalance_pct * local->avg_load)
c186fafe 7034 goto out_balanced;
aae6d3dd 7035 }
1e3c88bd 7036
fab47622 7037force_balance:
1e3c88bd 7038 /* Looks like there is an imbalance. Compute it */
bd939f45 7039 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7040 return sds.busiest;
7041
7042out_balanced:
bd939f45 7043 env->imbalance = 0;
1e3c88bd
PZ
7044 return NULL;
7045}
7046
7047/*
7048 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7049 */
bd939f45 7050static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7051 struct sched_group *group)
1e3c88bd
PZ
7052{
7053 struct rq *busiest = NULL, *rq;
ced549fa 7054 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7055 int i;
7056
6906a408 7057 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7058 unsigned long capacity, wl;
0ec8aa00
PZ
7059 enum fbq_type rt;
7060
7061 rq = cpu_rq(i);
7062 rt = fbq_classify_rq(rq);
1e3c88bd 7063
0ec8aa00
PZ
7064 /*
7065 * We classify groups/runqueues into three groups:
7066 * - regular: there are !numa tasks
7067 * - remote: there are numa tasks that run on the 'wrong' node
7068 * - all: there is no distinction
7069 *
7070 * In order to avoid migrating ideally placed numa tasks,
7071 * ignore those when there's better options.
7072 *
7073 * If we ignore the actual busiest queue to migrate another
7074 * task, the next balance pass can still reduce the busiest
7075 * queue by moving tasks around inside the node.
7076 *
7077 * If we cannot move enough load due to this classification
7078 * the next pass will adjust the group classification and
7079 * allow migration of more tasks.
7080 *
7081 * Both cases only affect the total convergence complexity.
7082 */
7083 if (rt > env->fbq_type)
7084 continue;
7085
ced549fa 7086 capacity = capacity_of(i);
9d5efe05 7087
6e40f5bb 7088 wl = weighted_cpuload(i);
1e3c88bd 7089
6e40f5bb
TG
7090 /*
7091 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7092 * which is not scaled with the cpu capacity.
6e40f5bb 7093 */
ea67821b
VG
7094
7095 if (rq->nr_running == 1 && wl > env->imbalance &&
7096 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7097 continue;
7098
6e40f5bb
TG
7099 /*
7100 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7101 * the weighted_cpuload() scaled with the cpu capacity, so
7102 * that the load can be moved away from the cpu that is
7103 * potentially running at a lower capacity.
95a79b80 7104 *
ced549fa 7105 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7106 * multiplication to rid ourselves of the division works out
ced549fa
NP
7107 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7108 * our previous maximum.
6e40f5bb 7109 */
ced549fa 7110 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7111 busiest_load = wl;
ced549fa 7112 busiest_capacity = capacity;
1e3c88bd
PZ
7113 busiest = rq;
7114 }
7115 }
7116
7117 return busiest;
7118}
7119
7120/*
7121 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7122 * so long as it is large enough.
7123 */
7124#define MAX_PINNED_INTERVAL 512
7125
7126/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7127DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7128
bd939f45 7129static int need_active_balance(struct lb_env *env)
1af3ed3d 7130{
bd939f45
PZ
7131 struct sched_domain *sd = env->sd;
7132
7133 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7134
7135 /*
7136 * ASYM_PACKING needs to force migrate tasks from busy but
7137 * higher numbered CPUs in order to pack all tasks in the
7138 * lowest numbered CPUs.
7139 */
bd939f45 7140 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7141 return 1;
1af3ed3d
PZ
7142 }
7143
1aaf90a4
VG
7144 /*
7145 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7146 * It's worth migrating the task if the src_cpu's capacity is reduced
7147 * because of other sched_class or IRQs if more capacity stays
7148 * available on dst_cpu.
7149 */
7150 if ((env->idle != CPU_NOT_IDLE) &&
7151 (env->src_rq->cfs.h_nr_running == 1)) {
7152 if ((check_cpu_capacity(env->src_rq, sd)) &&
7153 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7154 return 1;
7155 }
7156
1af3ed3d
PZ
7157 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7158}
7159
969c7921
TH
7160static int active_load_balance_cpu_stop(void *data);
7161
23f0d209
JK
7162static int should_we_balance(struct lb_env *env)
7163{
7164 struct sched_group *sg = env->sd->groups;
7165 struct cpumask *sg_cpus, *sg_mask;
7166 int cpu, balance_cpu = -1;
7167
7168 /*
7169 * In the newly idle case, we will allow all the cpu's
7170 * to do the newly idle load balance.
7171 */
7172 if (env->idle == CPU_NEWLY_IDLE)
7173 return 1;
7174
7175 sg_cpus = sched_group_cpus(sg);
7176 sg_mask = sched_group_mask(sg);
7177 /* Try to find first idle cpu */
7178 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7179 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7180 continue;
7181
7182 balance_cpu = cpu;
7183 break;
7184 }
7185
7186 if (balance_cpu == -1)
7187 balance_cpu = group_balance_cpu(sg);
7188
7189 /*
7190 * First idle cpu or the first cpu(busiest) in this sched group
7191 * is eligible for doing load balancing at this and above domains.
7192 */
b0cff9d8 7193 return balance_cpu == env->dst_cpu;
23f0d209
JK
7194}
7195
1e3c88bd
PZ
7196/*
7197 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7198 * tasks if there is an imbalance.
7199 */
7200static int load_balance(int this_cpu, struct rq *this_rq,
7201 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7202 int *continue_balancing)
1e3c88bd 7203{
88b8dac0 7204 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7205 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7206 struct sched_group *group;
1e3c88bd
PZ
7207 struct rq *busiest;
7208 unsigned long flags;
4ba29684 7209 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7210
8e45cb54
PZ
7211 struct lb_env env = {
7212 .sd = sd,
ddcdf6e7
PZ
7213 .dst_cpu = this_cpu,
7214 .dst_rq = this_rq,
88b8dac0 7215 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7216 .idle = idle,
eb95308e 7217 .loop_break = sched_nr_migrate_break,
b9403130 7218 .cpus = cpus,
0ec8aa00 7219 .fbq_type = all,
163122b7 7220 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7221 };
7222
cfc03118
JK
7223 /*
7224 * For NEWLY_IDLE load_balancing, we don't need to consider
7225 * other cpus in our group
7226 */
e02e60c1 7227 if (idle == CPU_NEWLY_IDLE)
cfc03118 7228 env.dst_grpmask = NULL;
cfc03118 7229
1e3c88bd
PZ
7230 cpumask_copy(cpus, cpu_active_mask);
7231
1e3c88bd
PZ
7232 schedstat_inc(sd, lb_count[idle]);
7233
7234redo:
23f0d209
JK
7235 if (!should_we_balance(&env)) {
7236 *continue_balancing = 0;
1e3c88bd 7237 goto out_balanced;
23f0d209 7238 }
1e3c88bd 7239
23f0d209 7240 group = find_busiest_group(&env);
1e3c88bd
PZ
7241 if (!group) {
7242 schedstat_inc(sd, lb_nobusyg[idle]);
7243 goto out_balanced;
7244 }
7245
b9403130 7246 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7247 if (!busiest) {
7248 schedstat_inc(sd, lb_nobusyq[idle]);
7249 goto out_balanced;
7250 }
7251
78feefc5 7252 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7253
bd939f45 7254 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7255
1aaf90a4
VG
7256 env.src_cpu = busiest->cpu;
7257 env.src_rq = busiest;
7258
1e3c88bd
PZ
7259 ld_moved = 0;
7260 if (busiest->nr_running > 1) {
7261 /*
7262 * Attempt to move tasks. If find_busiest_group has found
7263 * an imbalance but busiest->nr_running <= 1, the group is
7264 * still unbalanced. ld_moved simply stays zero, so it is
7265 * correctly treated as an imbalance.
7266 */
8e45cb54 7267 env.flags |= LBF_ALL_PINNED;
c82513e5 7268 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7269
5d6523eb 7270more_balance:
163122b7 7271 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7272
7273 /*
7274 * cur_ld_moved - load moved in current iteration
7275 * ld_moved - cumulative load moved across iterations
7276 */
163122b7 7277 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7278
7279 /*
163122b7
KT
7280 * We've detached some tasks from busiest_rq. Every
7281 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7282 * unlock busiest->lock, and we are able to be sure
7283 * that nobody can manipulate the tasks in parallel.
7284 * See task_rq_lock() family for the details.
1e3c88bd 7285 */
163122b7
KT
7286
7287 raw_spin_unlock(&busiest->lock);
7288
7289 if (cur_ld_moved) {
7290 attach_tasks(&env);
7291 ld_moved += cur_ld_moved;
7292 }
7293
1e3c88bd 7294 local_irq_restore(flags);
88b8dac0 7295
f1cd0858
JK
7296 if (env.flags & LBF_NEED_BREAK) {
7297 env.flags &= ~LBF_NEED_BREAK;
7298 goto more_balance;
7299 }
7300
88b8dac0
SV
7301 /*
7302 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7303 * us and move them to an alternate dst_cpu in our sched_group
7304 * where they can run. The upper limit on how many times we
7305 * iterate on same src_cpu is dependent on number of cpus in our
7306 * sched_group.
7307 *
7308 * This changes load balance semantics a bit on who can move
7309 * load to a given_cpu. In addition to the given_cpu itself
7310 * (or a ilb_cpu acting on its behalf where given_cpu is
7311 * nohz-idle), we now have balance_cpu in a position to move
7312 * load to given_cpu. In rare situations, this may cause
7313 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7314 * _independently_ and at _same_ time to move some load to
7315 * given_cpu) causing exceess load to be moved to given_cpu.
7316 * This however should not happen so much in practice and
7317 * moreover subsequent load balance cycles should correct the
7318 * excess load moved.
7319 */
6263322c 7320 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7321
7aff2e3a
VD
7322 /* Prevent to re-select dst_cpu via env's cpus */
7323 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7324
78feefc5 7325 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7326 env.dst_cpu = env.new_dst_cpu;
6263322c 7327 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7328 env.loop = 0;
7329 env.loop_break = sched_nr_migrate_break;
e02e60c1 7330
88b8dac0
SV
7331 /*
7332 * Go back to "more_balance" rather than "redo" since we
7333 * need to continue with same src_cpu.
7334 */
7335 goto more_balance;
7336 }
1e3c88bd 7337
6263322c
PZ
7338 /*
7339 * We failed to reach balance because of affinity.
7340 */
7341 if (sd_parent) {
63b2ca30 7342 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7343
afdeee05 7344 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7345 *group_imbalance = 1;
6263322c
PZ
7346 }
7347
1e3c88bd 7348 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7349 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7350 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7351 if (!cpumask_empty(cpus)) {
7352 env.loop = 0;
7353 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7354 goto redo;
bbf18b19 7355 }
afdeee05 7356 goto out_all_pinned;
1e3c88bd
PZ
7357 }
7358 }
7359
7360 if (!ld_moved) {
7361 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7362 /*
7363 * Increment the failure counter only on periodic balance.
7364 * We do not want newidle balance, which can be very
7365 * frequent, pollute the failure counter causing
7366 * excessive cache_hot migrations and active balances.
7367 */
7368 if (idle != CPU_NEWLY_IDLE)
7369 sd->nr_balance_failed++;
1e3c88bd 7370
bd939f45 7371 if (need_active_balance(&env)) {
1e3c88bd
PZ
7372 raw_spin_lock_irqsave(&busiest->lock, flags);
7373
969c7921
TH
7374 /* don't kick the active_load_balance_cpu_stop,
7375 * if the curr task on busiest cpu can't be
7376 * moved to this_cpu
1e3c88bd
PZ
7377 */
7378 if (!cpumask_test_cpu(this_cpu,
fa17b507 7379 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7380 raw_spin_unlock_irqrestore(&busiest->lock,
7381 flags);
8e45cb54 7382 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7383 goto out_one_pinned;
7384 }
7385
969c7921
TH
7386 /*
7387 * ->active_balance synchronizes accesses to
7388 * ->active_balance_work. Once set, it's cleared
7389 * only after active load balance is finished.
7390 */
1e3c88bd
PZ
7391 if (!busiest->active_balance) {
7392 busiest->active_balance = 1;
7393 busiest->push_cpu = this_cpu;
7394 active_balance = 1;
7395 }
7396 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7397
bd939f45 7398 if (active_balance) {
969c7921
TH
7399 stop_one_cpu_nowait(cpu_of(busiest),
7400 active_load_balance_cpu_stop, busiest,
7401 &busiest->active_balance_work);
bd939f45 7402 }
1e3c88bd 7403
d02c0711 7404 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7405 sd->nr_balance_failed = sd->cache_nice_tries+1;
7406 }
7407 } else
7408 sd->nr_balance_failed = 0;
7409
7410 if (likely(!active_balance)) {
7411 /* We were unbalanced, so reset the balancing interval */
7412 sd->balance_interval = sd->min_interval;
7413 } else {
7414 /*
7415 * If we've begun active balancing, start to back off. This
7416 * case may not be covered by the all_pinned logic if there
7417 * is only 1 task on the busy runqueue (because we don't call
163122b7 7418 * detach_tasks).
1e3c88bd
PZ
7419 */
7420 if (sd->balance_interval < sd->max_interval)
7421 sd->balance_interval *= 2;
7422 }
7423
1e3c88bd
PZ
7424 goto out;
7425
7426out_balanced:
afdeee05
VG
7427 /*
7428 * We reach balance although we may have faced some affinity
7429 * constraints. Clear the imbalance flag if it was set.
7430 */
7431 if (sd_parent) {
7432 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7433
7434 if (*group_imbalance)
7435 *group_imbalance = 0;
7436 }
7437
7438out_all_pinned:
7439 /*
7440 * We reach balance because all tasks are pinned at this level so
7441 * we can't migrate them. Let the imbalance flag set so parent level
7442 * can try to migrate them.
7443 */
1e3c88bd
PZ
7444 schedstat_inc(sd, lb_balanced[idle]);
7445
7446 sd->nr_balance_failed = 0;
7447
7448out_one_pinned:
7449 /* tune up the balancing interval */
8e45cb54 7450 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7451 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7452 (sd->balance_interval < sd->max_interval))
7453 sd->balance_interval *= 2;
7454
46e49b38 7455 ld_moved = 0;
1e3c88bd 7456out:
1e3c88bd
PZ
7457 return ld_moved;
7458}
7459
52a08ef1
JL
7460static inline unsigned long
7461get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7462{
7463 unsigned long interval = sd->balance_interval;
7464
7465 if (cpu_busy)
7466 interval *= sd->busy_factor;
7467
7468 /* scale ms to jiffies */
7469 interval = msecs_to_jiffies(interval);
7470 interval = clamp(interval, 1UL, max_load_balance_interval);
7471
7472 return interval;
7473}
7474
7475static inline void
7476update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7477{
7478 unsigned long interval, next;
7479
7480 interval = get_sd_balance_interval(sd, cpu_busy);
7481 next = sd->last_balance + interval;
7482
7483 if (time_after(*next_balance, next))
7484 *next_balance = next;
7485}
7486
1e3c88bd
PZ
7487/*
7488 * idle_balance is called by schedule() if this_cpu is about to become
7489 * idle. Attempts to pull tasks from other CPUs.
7490 */
6e83125c 7491static int idle_balance(struct rq *this_rq)
1e3c88bd 7492{
52a08ef1
JL
7493 unsigned long next_balance = jiffies + HZ;
7494 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7495 struct sched_domain *sd;
7496 int pulled_task = 0;
9bd721c5 7497 u64 curr_cost = 0;
1e3c88bd 7498
6e83125c
PZ
7499 /*
7500 * We must set idle_stamp _before_ calling idle_balance(), such that we
7501 * measure the duration of idle_balance() as idle time.
7502 */
7503 this_rq->idle_stamp = rq_clock(this_rq);
7504
4486edd1
TC
7505 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7506 !this_rq->rd->overload) {
52a08ef1
JL
7507 rcu_read_lock();
7508 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7509 if (sd)
7510 update_next_balance(sd, 0, &next_balance);
7511 rcu_read_unlock();
7512
6e83125c 7513 goto out;
52a08ef1 7514 }
1e3c88bd 7515
f492e12e
PZ
7516 raw_spin_unlock(&this_rq->lock);
7517
48a16753 7518 update_blocked_averages(this_cpu);
dce840a0 7519 rcu_read_lock();
1e3c88bd 7520 for_each_domain(this_cpu, sd) {
23f0d209 7521 int continue_balancing = 1;
9bd721c5 7522 u64 t0, domain_cost;
1e3c88bd
PZ
7523
7524 if (!(sd->flags & SD_LOAD_BALANCE))
7525 continue;
7526
52a08ef1
JL
7527 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7528 update_next_balance(sd, 0, &next_balance);
9bd721c5 7529 break;
52a08ef1 7530 }
9bd721c5 7531
f492e12e 7532 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7533 t0 = sched_clock_cpu(this_cpu);
7534
f492e12e 7535 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7536 sd, CPU_NEWLY_IDLE,
7537 &continue_balancing);
9bd721c5
JL
7538
7539 domain_cost = sched_clock_cpu(this_cpu) - t0;
7540 if (domain_cost > sd->max_newidle_lb_cost)
7541 sd->max_newidle_lb_cost = domain_cost;
7542
7543 curr_cost += domain_cost;
f492e12e 7544 }
1e3c88bd 7545
52a08ef1 7546 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7547
7548 /*
7549 * Stop searching for tasks to pull if there are
7550 * now runnable tasks on this rq.
7551 */
7552 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7553 break;
1e3c88bd 7554 }
dce840a0 7555 rcu_read_unlock();
f492e12e
PZ
7556
7557 raw_spin_lock(&this_rq->lock);
7558
0e5b5337
JL
7559 if (curr_cost > this_rq->max_idle_balance_cost)
7560 this_rq->max_idle_balance_cost = curr_cost;
7561
e5fc6611 7562 /*
0e5b5337
JL
7563 * While browsing the domains, we released the rq lock, a task could
7564 * have been enqueued in the meantime. Since we're not going idle,
7565 * pretend we pulled a task.
e5fc6611 7566 */
0e5b5337 7567 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7568 pulled_task = 1;
e5fc6611 7569
52a08ef1
JL
7570out:
7571 /* Move the next balance forward */
7572 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7573 this_rq->next_balance = next_balance;
9bd721c5 7574
e4aa358b 7575 /* Is there a task of a high priority class? */
46383648 7576 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7577 pulled_task = -1;
7578
38c6ade2 7579 if (pulled_task)
6e83125c
PZ
7580 this_rq->idle_stamp = 0;
7581
3c4017c1 7582 return pulled_task;
1e3c88bd
PZ
7583}
7584
7585/*
969c7921
TH
7586 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7587 * running tasks off the busiest CPU onto idle CPUs. It requires at
7588 * least 1 task to be running on each physical CPU where possible, and
7589 * avoids physical / logical imbalances.
1e3c88bd 7590 */
969c7921 7591static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7592{
969c7921
TH
7593 struct rq *busiest_rq = data;
7594 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7595 int target_cpu = busiest_rq->push_cpu;
969c7921 7596 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7597 struct sched_domain *sd;
e5673f28 7598 struct task_struct *p = NULL;
969c7921
TH
7599
7600 raw_spin_lock_irq(&busiest_rq->lock);
7601
7602 /* make sure the requested cpu hasn't gone down in the meantime */
7603 if (unlikely(busiest_cpu != smp_processor_id() ||
7604 !busiest_rq->active_balance))
7605 goto out_unlock;
1e3c88bd
PZ
7606
7607 /* Is there any task to move? */
7608 if (busiest_rq->nr_running <= 1)
969c7921 7609 goto out_unlock;
1e3c88bd
PZ
7610
7611 /*
7612 * This condition is "impossible", if it occurs
7613 * we need to fix it. Originally reported by
7614 * Bjorn Helgaas on a 128-cpu setup.
7615 */
7616 BUG_ON(busiest_rq == target_rq);
7617
1e3c88bd 7618 /* Search for an sd spanning us and the target CPU. */
dce840a0 7619 rcu_read_lock();
1e3c88bd
PZ
7620 for_each_domain(target_cpu, sd) {
7621 if ((sd->flags & SD_LOAD_BALANCE) &&
7622 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7623 break;
7624 }
7625
7626 if (likely(sd)) {
8e45cb54
PZ
7627 struct lb_env env = {
7628 .sd = sd,
ddcdf6e7
PZ
7629 .dst_cpu = target_cpu,
7630 .dst_rq = target_rq,
7631 .src_cpu = busiest_rq->cpu,
7632 .src_rq = busiest_rq,
8e45cb54
PZ
7633 .idle = CPU_IDLE,
7634 };
7635
1e3c88bd
PZ
7636 schedstat_inc(sd, alb_count);
7637
e5673f28 7638 p = detach_one_task(&env);
d02c0711 7639 if (p) {
1e3c88bd 7640 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7641 /* Active balancing done, reset the failure counter. */
7642 sd->nr_balance_failed = 0;
7643 } else {
1e3c88bd 7644 schedstat_inc(sd, alb_failed);
d02c0711 7645 }
1e3c88bd 7646 }
dce840a0 7647 rcu_read_unlock();
969c7921
TH
7648out_unlock:
7649 busiest_rq->active_balance = 0;
e5673f28
KT
7650 raw_spin_unlock(&busiest_rq->lock);
7651
7652 if (p)
7653 attach_one_task(target_rq, p);
7654
7655 local_irq_enable();
7656
969c7921 7657 return 0;
1e3c88bd
PZ
7658}
7659
d987fc7f
MG
7660static inline int on_null_domain(struct rq *rq)
7661{
7662 return unlikely(!rcu_dereference_sched(rq->sd));
7663}
7664
3451d024 7665#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7666/*
7667 * idle load balancing details
83cd4fe2
VP
7668 * - When one of the busy CPUs notice that there may be an idle rebalancing
7669 * needed, they will kick the idle load balancer, which then does idle
7670 * load balancing for all the idle CPUs.
7671 */
1e3c88bd 7672static struct {
83cd4fe2 7673 cpumask_var_t idle_cpus_mask;
0b005cf5 7674 atomic_t nr_cpus;
83cd4fe2
VP
7675 unsigned long next_balance; /* in jiffy units */
7676} nohz ____cacheline_aligned;
1e3c88bd 7677
3dd0337d 7678static inline int find_new_ilb(void)
1e3c88bd 7679{
0b005cf5 7680 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7681
786d6dc7
SS
7682 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7683 return ilb;
7684
7685 return nr_cpu_ids;
1e3c88bd 7686}
1e3c88bd 7687
83cd4fe2
VP
7688/*
7689 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7690 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7691 * CPU (if there is one).
7692 */
0aeeeeba 7693static void nohz_balancer_kick(void)
83cd4fe2
VP
7694{
7695 int ilb_cpu;
7696
7697 nohz.next_balance++;
7698
3dd0337d 7699 ilb_cpu = find_new_ilb();
83cd4fe2 7700
0b005cf5
SS
7701 if (ilb_cpu >= nr_cpu_ids)
7702 return;
83cd4fe2 7703
cd490c5b 7704 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7705 return;
7706 /*
7707 * Use smp_send_reschedule() instead of resched_cpu().
7708 * This way we generate a sched IPI on the target cpu which
7709 * is idle. And the softirq performing nohz idle load balance
7710 * will be run before returning from the IPI.
7711 */
7712 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7713 return;
7714}
7715
c1cc017c 7716static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7717{
7718 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7719 /*
7720 * Completely isolated CPUs don't ever set, so we must test.
7721 */
7722 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7723 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7724 atomic_dec(&nohz.nr_cpus);
7725 }
71325960
SS
7726 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7727 }
7728}
7729
69e1e811
SS
7730static inline void set_cpu_sd_state_busy(void)
7731{
7732 struct sched_domain *sd;
37dc6b50 7733 int cpu = smp_processor_id();
69e1e811 7734
69e1e811 7735 rcu_read_lock();
37dc6b50 7736 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7737
7738 if (!sd || !sd->nohz_idle)
7739 goto unlock;
7740 sd->nohz_idle = 0;
7741
63b2ca30 7742 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7743unlock:
69e1e811
SS
7744 rcu_read_unlock();
7745}
7746
7747void set_cpu_sd_state_idle(void)
7748{
7749 struct sched_domain *sd;
37dc6b50 7750 int cpu = smp_processor_id();
69e1e811 7751
69e1e811 7752 rcu_read_lock();
37dc6b50 7753 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7754
7755 if (!sd || sd->nohz_idle)
7756 goto unlock;
7757 sd->nohz_idle = 1;
7758
63b2ca30 7759 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7760unlock:
69e1e811
SS
7761 rcu_read_unlock();
7762}
7763
1e3c88bd 7764/*
c1cc017c 7765 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7766 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7767 */
c1cc017c 7768void nohz_balance_enter_idle(int cpu)
1e3c88bd 7769{
71325960
SS
7770 /*
7771 * If this cpu is going down, then nothing needs to be done.
7772 */
7773 if (!cpu_active(cpu))
7774 return;
7775
c1cc017c
AS
7776 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7777 return;
1e3c88bd 7778
d987fc7f
MG
7779 /*
7780 * If we're a completely isolated CPU, we don't play.
7781 */
7782 if (on_null_domain(cpu_rq(cpu)))
7783 return;
7784
c1cc017c
AS
7785 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7786 atomic_inc(&nohz.nr_cpus);
7787 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7788}
71325960 7789
0db0628d 7790static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7791 unsigned long action, void *hcpu)
7792{
7793 switch (action & ~CPU_TASKS_FROZEN) {
7794 case CPU_DYING:
c1cc017c 7795 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7796 return NOTIFY_OK;
7797 default:
7798 return NOTIFY_DONE;
7799 }
7800}
1e3c88bd
PZ
7801#endif
7802
7803static DEFINE_SPINLOCK(balancing);
7804
49c022e6
PZ
7805/*
7806 * Scale the max load_balance interval with the number of CPUs in the system.
7807 * This trades load-balance latency on larger machines for less cross talk.
7808 */
029632fb 7809void update_max_interval(void)
49c022e6
PZ
7810{
7811 max_load_balance_interval = HZ*num_online_cpus()/10;
7812}
7813
1e3c88bd
PZ
7814/*
7815 * It checks each scheduling domain to see if it is due to be balanced,
7816 * and initiates a balancing operation if so.
7817 *
b9b0853a 7818 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7819 */
f7ed0a89 7820static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7821{
23f0d209 7822 int continue_balancing = 1;
f7ed0a89 7823 int cpu = rq->cpu;
1e3c88bd 7824 unsigned long interval;
04f733b4 7825 struct sched_domain *sd;
1e3c88bd
PZ
7826 /* Earliest time when we have to do rebalance again */
7827 unsigned long next_balance = jiffies + 60*HZ;
7828 int update_next_balance = 0;
f48627e6
JL
7829 int need_serialize, need_decay = 0;
7830 u64 max_cost = 0;
1e3c88bd 7831
48a16753 7832 update_blocked_averages(cpu);
2069dd75 7833
dce840a0 7834 rcu_read_lock();
1e3c88bd 7835 for_each_domain(cpu, sd) {
f48627e6
JL
7836 /*
7837 * Decay the newidle max times here because this is a regular
7838 * visit to all the domains. Decay ~1% per second.
7839 */
7840 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7841 sd->max_newidle_lb_cost =
7842 (sd->max_newidle_lb_cost * 253) / 256;
7843 sd->next_decay_max_lb_cost = jiffies + HZ;
7844 need_decay = 1;
7845 }
7846 max_cost += sd->max_newidle_lb_cost;
7847
1e3c88bd
PZ
7848 if (!(sd->flags & SD_LOAD_BALANCE))
7849 continue;
7850
f48627e6
JL
7851 /*
7852 * Stop the load balance at this level. There is another
7853 * CPU in our sched group which is doing load balancing more
7854 * actively.
7855 */
7856 if (!continue_balancing) {
7857 if (need_decay)
7858 continue;
7859 break;
7860 }
7861
52a08ef1 7862 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7863
7864 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7865 if (need_serialize) {
7866 if (!spin_trylock(&balancing))
7867 goto out;
7868 }
7869
7870 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7871 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7872 /*
6263322c 7873 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7874 * env->dst_cpu, so we can't know our idle
7875 * state even if we migrated tasks. Update it.
1e3c88bd 7876 */
de5eb2dd 7877 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7878 }
7879 sd->last_balance = jiffies;
52a08ef1 7880 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7881 }
7882 if (need_serialize)
7883 spin_unlock(&balancing);
7884out:
7885 if (time_after(next_balance, sd->last_balance + interval)) {
7886 next_balance = sd->last_balance + interval;
7887 update_next_balance = 1;
7888 }
f48627e6
JL
7889 }
7890 if (need_decay) {
1e3c88bd 7891 /*
f48627e6
JL
7892 * Ensure the rq-wide value also decays but keep it at a
7893 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7894 */
f48627e6
JL
7895 rq->max_idle_balance_cost =
7896 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7897 }
dce840a0 7898 rcu_read_unlock();
1e3c88bd
PZ
7899
7900 /*
7901 * next_balance will be updated only when there is a need.
7902 * When the cpu is attached to null domain for ex, it will not be
7903 * updated.
7904 */
c5afb6a8 7905 if (likely(update_next_balance)) {
1e3c88bd 7906 rq->next_balance = next_balance;
c5afb6a8
VG
7907
7908#ifdef CONFIG_NO_HZ_COMMON
7909 /*
7910 * If this CPU has been elected to perform the nohz idle
7911 * balance. Other idle CPUs have already rebalanced with
7912 * nohz_idle_balance() and nohz.next_balance has been
7913 * updated accordingly. This CPU is now running the idle load
7914 * balance for itself and we need to update the
7915 * nohz.next_balance accordingly.
7916 */
7917 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7918 nohz.next_balance = rq->next_balance;
7919#endif
7920 }
1e3c88bd
PZ
7921}
7922
3451d024 7923#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7924/*
3451d024 7925 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7926 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7927 */
208cb16b 7928static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7929{
208cb16b 7930 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7931 struct rq *rq;
7932 int balance_cpu;
c5afb6a8
VG
7933 /* Earliest time when we have to do rebalance again */
7934 unsigned long next_balance = jiffies + 60*HZ;
7935 int update_next_balance = 0;
83cd4fe2 7936
1c792db7
SS
7937 if (idle != CPU_IDLE ||
7938 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7939 goto end;
83cd4fe2
VP
7940
7941 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7942 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7943 continue;
7944
7945 /*
7946 * If this cpu gets work to do, stop the load balancing
7947 * work being done for other cpus. Next load
7948 * balancing owner will pick it up.
7949 */
1c792db7 7950 if (need_resched())
83cd4fe2 7951 break;
83cd4fe2 7952
5ed4f1d9
VG
7953 rq = cpu_rq(balance_cpu);
7954
ed61bbc6
TC
7955 /*
7956 * If time for next balance is due,
7957 * do the balance.
7958 */
7959 if (time_after_eq(jiffies, rq->next_balance)) {
7960 raw_spin_lock_irq(&rq->lock);
7961 update_rq_clock(rq);
be68a682 7962 update_cpu_load_idle(rq);
ed61bbc6
TC
7963 raw_spin_unlock_irq(&rq->lock);
7964 rebalance_domains(rq, CPU_IDLE);
7965 }
83cd4fe2 7966
c5afb6a8
VG
7967 if (time_after(next_balance, rq->next_balance)) {
7968 next_balance = rq->next_balance;
7969 update_next_balance = 1;
7970 }
83cd4fe2 7971 }
c5afb6a8
VG
7972
7973 /*
7974 * next_balance will be updated only when there is a need.
7975 * When the CPU is attached to null domain for ex, it will not be
7976 * updated.
7977 */
7978 if (likely(update_next_balance))
7979 nohz.next_balance = next_balance;
1c792db7
SS
7980end:
7981 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7982}
7983
7984/*
0b005cf5 7985 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7986 * of an idle cpu in the system.
0b005cf5 7987 * - This rq has more than one task.
1aaf90a4
VG
7988 * - This rq has at least one CFS task and the capacity of the CPU is
7989 * significantly reduced because of RT tasks or IRQs.
7990 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7991 * multiple busy cpu.
0b005cf5
SS
7992 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7993 * domain span are idle.
83cd4fe2 7994 */
1aaf90a4 7995static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7996{
7997 unsigned long now = jiffies;
0b005cf5 7998 struct sched_domain *sd;
63b2ca30 7999 struct sched_group_capacity *sgc;
4a725627 8000 int nr_busy, cpu = rq->cpu;
1aaf90a4 8001 bool kick = false;
83cd4fe2 8002
4a725627 8003 if (unlikely(rq->idle_balance))
1aaf90a4 8004 return false;
83cd4fe2 8005
1c792db7
SS
8006 /*
8007 * We may be recently in ticked or tickless idle mode. At the first
8008 * busy tick after returning from idle, we will update the busy stats.
8009 */
69e1e811 8010 set_cpu_sd_state_busy();
c1cc017c 8011 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8012
8013 /*
8014 * None are in tickless mode and hence no need for NOHZ idle load
8015 * balancing.
8016 */
8017 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8018 return false;
1c792db7
SS
8019
8020 if (time_before(now, nohz.next_balance))
1aaf90a4 8021 return false;
83cd4fe2 8022
0b005cf5 8023 if (rq->nr_running >= 2)
1aaf90a4 8024 return true;
83cd4fe2 8025
067491b7 8026 rcu_read_lock();
37dc6b50 8027 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8028 if (sd) {
63b2ca30
NP
8029 sgc = sd->groups->sgc;
8030 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8031
1aaf90a4
VG
8032 if (nr_busy > 1) {
8033 kick = true;
8034 goto unlock;
8035 }
8036
83cd4fe2 8037 }
37dc6b50 8038
1aaf90a4
VG
8039 sd = rcu_dereference(rq->sd);
8040 if (sd) {
8041 if ((rq->cfs.h_nr_running >= 1) &&
8042 check_cpu_capacity(rq, sd)) {
8043 kick = true;
8044 goto unlock;
8045 }
8046 }
37dc6b50 8047
1aaf90a4 8048 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8049 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8050 sched_domain_span(sd)) < cpu)) {
8051 kick = true;
8052 goto unlock;
8053 }
067491b7 8054
1aaf90a4 8055unlock:
067491b7 8056 rcu_read_unlock();
1aaf90a4 8057 return kick;
83cd4fe2
VP
8058}
8059#else
208cb16b 8060static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8061#endif
8062
8063/*
8064 * run_rebalance_domains is triggered when needed from the scheduler tick.
8065 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8066 */
1e3c88bd
PZ
8067static void run_rebalance_domains(struct softirq_action *h)
8068{
208cb16b 8069 struct rq *this_rq = this_rq();
6eb57e0d 8070 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8071 CPU_IDLE : CPU_NOT_IDLE;
8072
1e3c88bd 8073 /*
83cd4fe2 8074 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8075 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8076 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8077 * give the idle cpus a chance to load balance. Else we may
8078 * load balance only within the local sched_domain hierarchy
8079 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8080 */
208cb16b 8081 nohz_idle_balance(this_rq, idle);
d4573c3e 8082 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8083}
8084
1e3c88bd
PZ
8085/*
8086 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8087 */
7caff66f 8088void trigger_load_balance(struct rq *rq)
1e3c88bd 8089{
1e3c88bd 8090 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8091 if (unlikely(on_null_domain(rq)))
8092 return;
8093
8094 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8095 raise_softirq(SCHED_SOFTIRQ);
3451d024 8096#ifdef CONFIG_NO_HZ_COMMON
c726099e 8097 if (nohz_kick_needed(rq))
0aeeeeba 8098 nohz_balancer_kick();
83cd4fe2 8099#endif
1e3c88bd
PZ
8100}
8101
0bcdcf28
CE
8102static void rq_online_fair(struct rq *rq)
8103{
8104 update_sysctl();
0e59bdae
KT
8105
8106 update_runtime_enabled(rq);
0bcdcf28
CE
8107}
8108
8109static void rq_offline_fair(struct rq *rq)
8110{
8111 update_sysctl();
a4c96ae3
PB
8112
8113 /* Ensure any throttled groups are reachable by pick_next_task */
8114 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8115}
8116
55e12e5e 8117#endif /* CONFIG_SMP */
e1d1484f 8118
bf0f6f24
IM
8119/*
8120 * scheduler tick hitting a task of our scheduling class:
8121 */
8f4d37ec 8122static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8123{
8124 struct cfs_rq *cfs_rq;
8125 struct sched_entity *se = &curr->se;
8126
8127 for_each_sched_entity(se) {
8128 cfs_rq = cfs_rq_of(se);
8f4d37ec 8129 entity_tick(cfs_rq, se, queued);
bf0f6f24 8130 }
18bf2805 8131
b52da86e 8132 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8133 task_tick_numa(rq, curr);
bf0f6f24
IM
8134}
8135
8136/*
cd29fe6f
PZ
8137 * called on fork with the child task as argument from the parent's context
8138 * - child not yet on the tasklist
8139 * - preemption disabled
bf0f6f24 8140 */
cd29fe6f 8141static void task_fork_fair(struct task_struct *p)
bf0f6f24 8142{
4fc420c9
DN
8143 struct cfs_rq *cfs_rq;
8144 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8145 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8146 struct rq *rq = this_rq();
8147 unsigned long flags;
8148
05fa785c 8149 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8150
861d034e
PZ
8151 update_rq_clock(rq);
8152
4fc420c9
DN
8153 cfs_rq = task_cfs_rq(current);
8154 curr = cfs_rq->curr;
8155
6c9a27f5
DN
8156 /*
8157 * Not only the cpu but also the task_group of the parent might have
8158 * been changed after parent->se.parent,cfs_rq were copied to
8159 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8160 * of child point to valid ones.
8161 */
8162 rcu_read_lock();
8163 __set_task_cpu(p, this_cpu);
8164 rcu_read_unlock();
bf0f6f24 8165
7109c442 8166 update_curr(cfs_rq);
cd29fe6f 8167
b5d9d734
MG
8168 if (curr)
8169 se->vruntime = curr->vruntime;
aeb73b04 8170 place_entity(cfs_rq, se, 1);
4d78e7b6 8171
cd29fe6f 8172 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8173 /*
edcb60a3
IM
8174 * Upon rescheduling, sched_class::put_prev_task() will place
8175 * 'current' within the tree based on its new key value.
8176 */
4d78e7b6 8177 swap(curr->vruntime, se->vruntime);
8875125e 8178 resched_curr(rq);
4d78e7b6 8179 }
bf0f6f24 8180
88ec22d3
PZ
8181 se->vruntime -= cfs_rq->min_vruntime;
8182
05fa785c 8183 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8184}
8185
cb469845
SR
8186/*
8187 * Priority of the task has changed. Check to see if we preempt
8188 * the current task.
8189 */
da7a735e
PZ
8190static void
8191prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8192{
da0c1e65 8193 if (!task_on_rq_queued(p))
da7a735e
PZ
8194 return;
8195
cb469845
SR
8196 /*
8197 * Reschedule if we are currently running on this runqueue and
8198 * our priority decreased, or if we are not currently running on
8199 * this runqueue and our priority is higher than the current's
8200 */
da7a735e 8201 if (rq->curr == p) {
cb469845 8202 if (p->prio > oldprio)
8875125e 8203 resched_curr(rq);
cb469845 8204 } else
15afe09b 8205 check_preempt_curr(rq, p, 0);
cb469845
SR
8206}
8207
daa59407 8208static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8209{
8210 struct sched_entity *se = &p->se;
da7a735e
PZ
8211
8212 /*
daa59407
BP
8213 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8214 * the dequeue_entity(.flags=0) will already have normalized the
8215 * vruntime.
8216 */
8217 if (p->on_rq)
8218 return true;
8219
8220 /*
8221 * When !on_rq, vruntime of the task has usually NOT been normalized.
8222 * But there are some cases where it has already been normalized:
da7a735e 8223 *
daa59407
BP
8224 * - A forked child which is waiting for being woken up by
8225 * wake_up_new_task().
8226 * - A task which has been woken up by try_to_wake_up() and
8227 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8228 */
daa59407
BP
8229 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8230 return true;
8231
8232 return false;
8233}
8234
8235static void detach_task_cfs_rq(struct task_struct *p)
8236{
8237 struct sched_entity *se = &p->se;
8238 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8239
8240 if (!vruntime_normalized(p)) {
da7a735e
PZ
8241 /*
8242 * Fix up our vruntime so that the current sleep doesn't
8243 * cause 'unlimited' sleep bonus.
8244 */
8245 place_entity(cfs_rq, se, 0);
8246 se->vruntime -= cfs_rq->min_vruntime;
8247 }
9ee474f5 8248
9d89c257 8249 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8250 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8251}
8252
daa59407 8253static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8254{
f36c019c 8255 struct sched_entity *se = &p->se;
daa59407 8256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8259 /*
8260 * Since the real-depth could have been changed (only FAIR
8261 * class maintain depth value), reset depth properly.
8262 */
8263 se->depth = se->parent ? se->parent->depth + 1 : 0;
8264#endif
7855a35a 8265
6efdb105 8266 /* Synchronize task with its cfs_rq */
daa59407
BP
8267 attach_entity_load_avg(cfs_rq, se);
8268
8269 if (!vruntime_normalized(p))
8270 se->vruntime += cfs_rq->min_vruntime;
8271}
6efdb105 8272
daa59407
BP
8273static void switched_from_fair(struct rq *rq, struct task_struct *p)
8274{
8275 detach_task_cfs_rq(p);
8276}
8277
8278static void switched_to_fair(struct rq *rq, struct task_struct *p)
8279{
8280 attach_task_cfs_rq(p);
7855a35a 8281
daa59407 8282 if (task_on_rq_queued(p)) {
7855a35a 8283 /*
daa59407
BP
8284 * We were most likely switched from sched_rt, so
8285 * kick off the schedule if running, otherwise just see
8286 * if we can still preempt the current task.
7855a35a 8287 */
daa59407
BP
8288 if (rq->curr == p)
8289 resched_curr(rq);
8290 else
8291 check_preempt_curr(rq, p, 0);
7855a35a 8292 }
cb469845
SR
8293}
8294
83b699ed
SV
8295/* Account for a task changing its policy or group.
8296 *
8297 * This routine is mostly called to set cfs_rq->curr field when a task
8298 * migrates between groups/classes.
8299 */
8300static void set_curr_task_fair(struct rq *rq)
8301{
8302 struct sched_entity *se = &rq->curr->se;
8303
ec12cb7f
PT
8304 for_each_sched_entity(se) {
8305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8306
8307 set_next_entity(cfs_rq, se);
8308 /* ensure bandwidth has been allocated on our new cfs_rq */
8309 account_cfs_rq_runtime(cfs_rq, 0);
8310 }
83b699ed
SV
8311}
8312
029632fb
PZ
8313void init_cfs_rq(struct cfs_rq *cfs_rq)
8314{
8315 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8316 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8317#ifndef CONFIG_64BIT
8318 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8319#endif
141965c7 8320#ifdef CONFIG_SMP
9d89c257
YD
8321 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8322 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8323#endif
029632fb
PZ
8324}
8325
810b3817 8326#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8327static void task_move_group_fair(struct task_struct *p)
810b3817 8328{
daa59407 8329 detach_task_cfs_rq(p);
b2b5ce02 8330 set_task_rq(p, task_cpu(p));
6efdb105
BP
8331
8332#ifdef CONFIG_SMP
8333 /* Tell se's cfs_rq has been changed -- migrated */
8334 p->se.avg.last_update_time = 0;
8335#endif
daa59407 8336 attach_task_cfs_rq(p);
810b3817 8337}
029632fb
PZ
8338
8339void free_fair_sched_group(struct task_group *tg)
8340{
8341 int i;
8342
8343 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8344
8345 for_each_possible_cpu(i) {
8346 if (tg->cfs_rq)
8347 kfree(tg->cfs_rq[i]);
6fe1f348 8348 if (tg->se)
029632fb
PZ
8349 kfree(tg->se[i]);
8350 }
8351
8352 kfree(tg->cfs_rq);
8353 kfree(tg->se);
8354}
8355
8356int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8357{
8358 struct cfs_rq *cfs_rq;
8359 struct sched_entity *se;
8360 int i;
8361
8362 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8363 if (!tg->cfs_rq)
8364 goto err;
8365 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8366 if (!tg->se)
8367 goto err;
8368
8369 tg->shares = NICE_0_LOAD;
8370
8371 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8372
8373 for_each_possible_cpu(i) {
8374 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8375 GFP_KERNEL, cpu_to_node(i));
8376 if (!cfs_rq)
8377 goto err;
8378
8379 se = kzalloc_node(sizeof(struct sched_entity),
8380 GFP_KERNEL, cpu_to_node(i));
8381 if (!se)
8382 goto err_free_rq;
8383
8384 init_cfs_rq(cfs_rq);
8385 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8386 init_entity_runnable_average(se);
029632fb
PZ
8387 }
8388
8389 return 1;
8390
8391err_free_rq:
8392 kfree(cfs_rq);
8393err:
8394 return 0;
8395}
8396
6fe1f348 8397void unregister_fair_sched_group(struct task_group *tg)
029632fb 8398{
029632fb 8399 unsigned long flags;
6fe1f348
PZ
8400 struct rq *rq;
8401 int cpu;
029632fb 8402
6fe1f348
PZ
8403 for_each_possible_cpu(cpu) {
8404 if (tg->se[cpu])
8405 remove_entity_load_avg(tg->se[cpu]);
029632fb 8406
6fe1f348
PZ
8407 /*
8408 * Only empty task groups can be destroyed; so we can speculatively
8409 * check on_list without danger of it being re-added.
8410 */
8411 if (!tg->cfs_rq[cpu]->on_list)
8412 continue;
8413
8414 rq = cpu_rq(cpu);
8415
8416 raw_spin_lock_irqsave(&rq->lock, flags);
8417 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8418 raw_spin_unlock_irqrestore(&rq->lock, flags);
8419 }
029632fb
PZ
8420}
8421
8422void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8423 struct sched_entity *se, int cpu,
8424 struct sched_entity *parent)
8425{
8426 struct rq *rq = cpu_rq(cpu);
8427
8428 cfs_rq->tg = tg;
8429 cfs_rq->rq = rq;
029632fb
PZ
8430 init_cfs_rq_runtime(cfs_rq);
8431
8432 tg->cfs_rq[cpu] = cfs_rq;
8433 tg->se[cpu] = se;
8434
8435 /* se could be NULL for root_task_group */
8436 if (!se)
8437 return;
8438
fed14d45 8439 if (!parent) {
029632fb 8440 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8441 se->depth = 0;
8442 } else {
029632fb 8443 se->cfs_rq = parent->my_q;
fed14d45
PZ
8444 se->depth = parent->depth + 1;
8445 }
029632fb
PZ
8446
8447 se->my_q = cfs_rq;
0ac9b1c2
PT
8448 /* guarantee group entities always have weight */
8449 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8450 se->parent = parent;
8451}
8452
8453static DEFINE_MUTEX(shares_mutex);
8454
8455int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8456{
8457 int i;
8458 unsigned long flags;
8459
8460 /*
8461 * We can't change the weight of the root cgroup.
8462 */
8463 if (!tg->se[0])
8464 return -EINVAL;
8465
8466 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8467
8468 mutex_lock(&shares_mutex);
8469 if (tg->shares == shares)
8470 goto done;
8471
8472 tg->shares = shares;
8473 for_each_possible_cpu(i) {
8474 struct rq *rq = cpu_rq(i);
8475 struct sched_entity *se;
8476
8477 se = tg->se[i];
8478 /* Propagate contribution to hierarchy */
8479 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8480
8481 /* Possible calls to update_curr() need rq clock */
8482 update_rq_clock(rq);
17bc14b7 8483 for_each_sched_entity(se)
029632fb
PZ
8484 update_cfs_shares(group_cfs_rq(se));
8485 raw_spin_unlock_irqrestore(&rq->lock, flags);
8486 }
8487
8488done:
8489 mutex_unlock(&shares_mutex);
8490 return 0;
8491}
8492#else /* CONFIG_FAIR_GROUP_SCHED */
8493
8494void free_fair_sched_group(struct task_group *tg) { }
8495
8496int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8497{
8498 return 1;
8499}
8500
6fe1f348 8501void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8502
8503#endif /* CONFIG_FAIR_GROUP_SCHED */
8504
810b3817 8505
6d686f45 8506static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8507{
8508 struct sched_entity *se = &task->se;
0d721cea
PW
8509 unsigned int rr_interval = 0;
8510
8511 /*
8512 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8513 * idle runqueue:
8514 */
0d721cea 8515 if (rq->cfs.load.weight)
a59f4e07 8516 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8517
8518 return rr_interval;
8519}
8520
bf0f6f24
IM
8521/*
8522 * All the scheduling class methods:
8523 */
029632fb 8524const struct sched_class fair_sched_class = {
5522d5d5 8525 .next = &idle_sched_class,
bf0f6f24
IM
8526 .enqueue_task = enqueue_task_fair,
8527 .dequeue_task = dequeue_task_fair,
8528 .yield_task = yield_task_fair,
d95f4122 8529 .yield_to_task = yield_to_task_fair,
bf0f6f24 8530
2e09bf55 8531 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8532
8533 .pick_next_task = pick_next_task_fair,
8534 .put_prev_task = put_prev_task_fair,
8535
681f3e68 8536#ifdef CONFIG_SMP
4ce72a2c 8537 .select_task_rq = select_task_rq_fair,
0a74bef8 8538 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8539
0bcdcf28
CE
8540 .rq_online = rq_online_fair,
8541 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8542
8543 .task_waking = task_waking_fair,
12695578 8544 .task_dead = task_dead_fair,
c5b28038 8545 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8546#endif
bf0f6f24 8547
83b699ed 8548 .set_curr_task = set_curr_task_fair,
bf0f6f24 8549 .task_tick = task_tick_fair,
cd29fe6f 8550 .task_fork = task_fork_fair,
cb469845
SR
8551
8552 .prio_changed = prio_changed_fair,
da7a735e 8553 .switched_from = switched_from_fair,
cb469845 8554 .switched_to = switched_to_fair,
810b3817 8555
0d721cea
PW
8556 .get_rr_interval = get_rr_interval_fair,
8557
6e998916
SG
8558 .update_curr = update_curr_fair,
8559
810b3817 8560#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8561 .task_move_group = task_move_group_fair,
810b3817 8562#endif
bf0f6f24
IM
8563};
8564
8565#ifdef CONFIG_SCHED_DEBUG
029632fb 8566void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8567{
bf0f6f24
IM
8568 struct cfs_rq *cfs_rq;
8569
5973e5b9 8570 rcu_read_lock();
c3b64f1e 8571 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8572 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8573 rcu_read_unlock();
bf0f6f24 8574}
397f2378
SD
8575
8576#ifdef CONFIG_NUMA_BALANCING
8577void show_numa_stats(struct task_struct *p, struct seq_file *m)
8578{
8579 int node;
8580 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8581
8582 for_each_online_node(node) {
8583 if (p->numa_faults) {
8584 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8585 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8586 }
8587 if (p->numa_group) {
8588 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8589 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8590 }
8591 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8592 }
8593}
8594#endif /* CONFIG_NUMA_BALANCING */
8595#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8596
8597__init void init_sched_fair_class(void)
8598{
8599#ifdef CONFIG_SMP
8600 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8601
3451d024 8602#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8603 nohz.next_balance = jiffies;
029632fb 8604 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8605 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8606#endif
8607#endif /* SMP */
8608
8609}