]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/core: Make dl_b->lock IRQ safe
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
de1c9ce6
RR
822/*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
598f0ec0
MG
830static unsigned int task_nr_scan_windows(struct task_struct *p)
831{
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847}
848
849/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850#define MAX_SCAN_WINDOW 2560
851
852static unsigned int task_scan_min(struct task_struct *p)
853{
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863}
864
865static unsigned int task_scan_max(struct task_struct *p)
866{
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873}
874
0ec8aa00
PZ
875static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
876{
877 rq->nr_numa_running += (p->numa_preferred_nid != -1);
878 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
879}
880
881static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
882{
883 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
884 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
885}
886
8c8a743c
PZ
887struct numa_group {
888 atomic_t refcount;
889
890 spinlock_t lock; /* nr_tasks, tasks */
891 int nr_tasks;
e29cf08b 892 pid_t gid;
8c8a743c
PZ
893 struct list_head task_list;
894
895 struct rcu_head rcu;
989348b5
MG
896 unsigned long total_faults;
897 unsigned long faults[0];
8c8a743c
PZ
898};
899
e29cf08b
MG
900pid_t task_numa_group_id(struct task_struct *p)
901{
902 return p->numa_group ? p->numa_group->gid : 0;
903}
904
ac8e895b
MG
905static inline int task_faults_idx(int nid, int priv)
906{
907 return 2 * nid + priv;
908}
909
910static inline unsigned long task_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_faults)
913 return 0;
914
915 return p->numa_faults[task_faults_idx(nid, 0)] +
916 p->numa_faults[task_faults_idx(nid, 1)];
917}
918
83e1d2cd
MG
919static inline unsigned long group_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_group)
922 return 0;
923
82897b4f
WL
924 return p->numa_group->faults[task_faults_idx(nid, 0)] +
925 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
926}
927
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934static inline unsigned long task_weight(struct task_struct *p, int nid)
935{
936 unsigned long total_faults;
937
938 if (!p->numa_faults)
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947}
948
949static inline unsigned long group_weight(struct task_struct *p, int nid)
950{
989348b5 951 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
952 return 0;
953
989348b5 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
955}
956
e6628d5b 957static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
958static unsigned long source_load(int cpu, int type);
959static unsigned long target_load(int cpu, int type);
960static unsigned long power_of(int cpu);
961static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
962
fb13c7ee 963/* Cached statistics for all CPUs within a node */
58d081b5 964struct numa_stats {
fb13c7ee 965 unsigned long nr_running;
58d081b5 966 unsigned long load;
fb13c7ee
MG
967
968 /* Total compute capacity of CPUs on a node */
969 unsigned long power;
970
971 /* Approximate capacity in terms of runnable tasks on a node */
972 unsigned long capacity;
973 int has_capacity;
58d081b5 974};
e6628d5b 975
fb13c7ee
MG
976/*
977 * XXX borrowed from update_sg_lb_stats
978 */
979static void update_numa_stats(struct numa_stats *ns, int nid)
980{
5eca82a9 981 int cpu, cpus = 0;
fb13c7ee
MG
982
983 memset(ns, 0, sizeof(*ns));
984 for_each_cpu(cpu, cpumask_of_node(nid)) {
985 struct rq *rq = cpu_rq(cpu);
986
987 ns->nr_running += rq->nr_running;
988 ns->load += weighted_cpuload(cpu);
989 ns->power += power_of(cpu);
5eca82a9
PZ
990
991 cpus++;
fb13c7ee
MG
992 }
993
5eca82a9
PZ
994 /*
995 * If we raced with hotplug and there are no CPUs left in our mask
996 * the @ns structure is NULL'ed and task_numa_compare() will
997 * not find this node attractive.
998 *
999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1000 * and bail there.
1001 */
1002 if (!cpus)
1003 return;
1004
fb13c7ee
MG
1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1007 ns->has_capacity = (ns->nr_running < ns->capacity);
1008}
1009
58d081b5
MG
1010struct task_numa_env {
1011 struct task_struct *p;
e6628d5b 1012
58d081b5
MG
1013 int src_cpu, src_nid;
1014 int dst_cpu, dst_nid;
e6628d5b 1015
58d081b5 1016 struct numa_stats src_stats, dst_stats;
e6628d5b 1017
40ea2b42 1018 int imbalance_pct;
fb13c7ee
MG
1019
1020 struct task_struct *best_task;
1021 long best_imp;
58d081b5
MG
1022 int best_cpu;
1023};
1024
fb13c7ee
MG
1025static void task_numa_assign(struct task_numa_env *env,
1026 struct task_struct *p, long imp)
1027{
1028 if (env->best_task)
1029 put_task_struct(env->best_task);
1030 if (p)
1031 get_task_struct(p);
1032
1033 env->best_task = p;
1034 env->best_imp = imp;
1035 env->best_cpu = env->dst_cpu;
1036}
1037
1038/*
1039 * This checks if the overall compute and NUMA accesses of the system would
1040 * be improved if the source tasks was migrated to the target dst_cpu taking
1041 * into account that it might be best if task running on the dst_cpu should
1042 * be exchanged with the source task
1043 */
887c290e
RR
1044static void task_numa_compare(struct task_numa_env *env,
1045 long taskimp, long groupimp)
fb13c7ee
MG
1046{
1047 struct rq *src_rq = cpu_rq(env->src_cpu);
1048 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1049 struct task_struct *cur;
1050 long dst_load, src_load;
1051 long load;
887c290e 1052 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1053
1054 rcu_read_lock();
1055 cur = ACCESS_ONCE(dst_rq->curr);
1056 if (cur->pid == 0) /* idle */
1057 cur = NULL;
1058
1059 /*
1060 * "imp" is the fault differential for the source task between the
1061 * source and destination node. Calculate the total differential for
1062 * the source task and potential destination task. The more negative
1063 * the value is, the more rmeote accesses that would be expected to
1064 * be incurred if the tasks were swapped.
1065 */
1066 if (cur) {
1067 /* Skip this swap candidate if cannot move to the source cpu */
1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1069 goto unlock;
1070
887c290e
RR
1071 /*
1072 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1073 * in any group then look only at task weights.
887c290e 1074 */
ca28aa53 1075 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
ca28aa53
RR
1078 /*
1079 * Add some hysteresis to prevent swapping the
1080 * tasks within a group over tiny differences.
1081 */
1082 if (cur->numa_group)
1083 imp -= imp/16;
887c290e 1084 } else {
ca28aa53
RR
1085 /*
1086 * Compare the group weights. If a task is all by
1087 * itself (not part of a group), use the task weight
1088 * instead.
1089 */
1090 if (env->p->numa_group)
1091 imp = groupimp;
1092 else
1093 imp = taskimp;
1094
1095 if (cur->numa_group)
1096 imp += group_weight(cur, env->src_nid) -
1097 group_weight(cur, env->dst_nid);
1098 else
1099 imp += task_weight(cur, env->src_nid) -
1100 task_weight(cur, env->dst_nid);
887c290e 1101 }
fb13c7ee
MG
1102 }
1103
1104 if (imp < env->best_imp)
1105 goto unlock;
1106
1107 if (!cur) {
1108 /* Is there capacity at our destination? */
1109 if (env->src_stats.has_capacity &&
1110 !env->dst_stats.has_capacity)
1111 goto unlock;
1112
1113 goto balance;
1114 }
1115
1116 /* Balance doesn't matter much if we're running a task per cpu */
1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1118 goto assign;
1119
1120 /*
1121 * In the overloaded case, try and keep the load balanced.
1122 */
1123balance:
1124 dst_load = env->dst_stats.load;
1125 src_load = env->src_stats.load;
1126
1127 /* XXX missing power terms */
1128 load = task_h_load(env->p);
1129 dst_load += load;
1130 src_load -= load;
1131
1132 if (cur) {
1133 load = task_h_load(cur);
1134 dst_load -= load;
1135 src_load += load;
1136 }
1137
1138 /* make src_load the smaller */
1139 if (dst_load < src_load)
1140 swap(dst_load, src_load);
1141
1142 if (src_load * env->imbalance_pct < dst_load * 100)
1143 goto unlock;
1144
1145assign:
1146 task_numa_assign(env, cur, imp);
1147unlock:
1148 rcu_read_unlock();
1149}
1150
887c290e
RR
1151static void task_numa_find_cpu(struct task_numa_env *env,
1152 long taskimp, long groupimp)
2c8a50aa
MG
1153{
1154 int cpu;
1155
1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1157 /* Skip this CPU if the source task cannot migrate */
1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1159 continue;
1160
1161 env->dst_cpu = cpu;
887c290e 1162 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1163 }
1164}
1165
58d081b5
MG
1166static int task_numa_migrate(struct task_struct *p)
1167{
58d081b5
MG
1168 struct task_numa_env env = {
1169 .p = p,
fb13c7ee 1170
58d081b5 1171 .src_cpu = task_cpu(p),
b32e86b4 1172 .src_nid = task_node(p),
fb13c7ee
MG
1173
1174 .imbalance_pct = 112,
1175
1176 .best_task = NULL,
1177 .best_imp = 0,
1178 .best_cpu = -1
58d081b5
MG
1179 };
1180 struct sched_domain *sd;
887c290e 1181 unsigned long taskweight, groupweight;
2c8a50aa 1182 int nid, ret;
887c290e 1183 long taskimp, groupimp;
e6628d5b 1184
58d081b5 1185 /*
fb13c7ee
MG
1186 * Pick the lowest SD_NUMA domain, as that would have the smallest
1187 * imbalance and would be the first to start moving tasks about.
1188 *
1189 * And we want to avoid any moving of tasks about, as that would create
1190 * random movement of tasks -- counter the numa conditions we're trying
1191 * to satisfy here.
58d081b5
MG
1192 */
1193 rcu_read_lock();
fb13c7ee 1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1195 if (sd)
1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1197 rcu_read_unlock();
1198
46a73e8a
RR
1199 /*
1200 * Cpusets can break the scheduler domain tree into smaller
1201 * balance domains, some of which do not cross NUMA boundaries.
1202 * Tasks that are "trapped" in such domains cannot be migrated
1203 * elsewhere, so there is no point in (re)trying.
1204 */
1205 if (unlikely(!sd)) {
de1b301a 1206 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1207 return -EINVAL;
1208 }
1209
887c290e
RR
1210 taskweight = task_weight(p, env.src_nid);
1211 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1212 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1213 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1214 taskimp = task_weight(p, env.dst_nid) - taskweight;
1215 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1216 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1217
e1dda8a7
RR
1218 /* If the preferred nid has capacity, try to use it. */
1219 if (env.dst_stats.has_capacity)
887c290e 1220 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1221
1222 /* No space available on the preferred nid. Look elsewhere. */
1223 if (env.best_cpu == -1) {
2c8a50aa
MG
1224 for_each_online_node(nid) {
1225 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1226 continue;
58d081b5 1227
83e1d2cd 1228 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1229 taskimp = task_weight(p, nid) - taskweight;
1230 groupimp = group_weight(p, nid) - groupweight;
1231 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1232 continue;
1233
2c8a50aa
MG
1234 env.dst_nid = nid;
1235 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1236 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1237 }
1238 }
1239
fb13c7ee
MG
1240 /* No better CPU than the current one was found. */
1241 if (env.best_cpu == -1)
1242 return -EAGAIN;
1243
0ec8aa00
PZ
1244 sched_setnuma(p, env.dst_nid);
1245
04bb2f94
RR
1246 /*
1247 * Reset the scan period if the task is being rescheduled on an
1248 * alternative node to recheck if the tasks is now properly placed.
1249 */
1250 p->numa_scan_period = task_scan_min(p);
1251
fb13c7ee 1252 if (env.best_task == NULL) {
286549dc
MG
1253 ret = migrate_task_to(p, env.best_cpu);
1254 if (ret != 0)
1255 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1256 return ret;
1257 }
1258
1259 ret = migrate_swap(p, env.best_task);
286549dc
MG
1260 if (ret != 0)
1261 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1262 put_task_struct(env.best_task);
1263 return ret;
e6628d5b
MG
1264}
1265
6b9a7460
MG
1266/* Attempt to migrate a task to a CPU on the preferred node. */
1267static void numa_migrate_preferred(struct task_struct *p)
1268{
2739d3ee
RR
1269 /* This task has no NUMA fault statistics yet */
1270 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1271 return;
1272
2739d3ee
RR
1273 /* Periodically retry migrating the task to the preferred node */
1274 p->numa_migrate_retry = jiffies + HZ;
1275
1276 /* Success if task is already running on preferred CPU */
de1b301a 1277 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1278 return;
1279
1280 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1281 task_numa_migrate(p);
6b9a7460
MG
1282}
1283
04bb2f94
RR
1284/*
1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1286 * increments. The more local the fault statistics are, the higher the scan
1287 * period will be for the next scan window. If local/remote ratio is below
1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1289 * scan period will decrease
1290 */
1291#define NUMA_PERIOD_SLOTS 10
1292#define NUMA_PERIOD_THRESHOLD 3
1293
1294/*
1295 * Increase the scan period (slow down scanning) if the majority of
1296 * our memory is already on our local node, or if the majority of
1297 * the page accesses are shared with other processes.
1298 * Otherwise, decrease the scan period.
1299 */
1300static void update_task_scan_period(struct task_struct *p,
1301 unsigned long shared, unsigned long private)
1302{
1303 unsigned int period_slot;
1304 int ratio;
1305 int diff;
1306
1307 unsigned long remote = p->numa_faults_locality[0];
1308 unsigned long local = p->numa_faults_locality[1];
1309
1310 /*
1311 * If there were no record hinting faults then either the task is
1312 * completely idle or all activity is areas that are not of interest
1313 * to automatic numa balancing. Scan slower
1314 */
1315 if (local + shared == 0) {
1316 p->numa_scan_period = min(p->numa_scan_period_max,
1317 p->numa_scan_period << 1);
1318
1319 p->mm->numa_next_scan = jiffies +
1320 msecs_to_jiffies(p->numa_scan_period);
1321
1322 return;
1323 }
1324
1325 /*
1326 * Prepare to scale scan period relative to the current period.
1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1330 */
1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1333 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1334 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1335 if (!slot)
1336 slot = 1;
1337 diff = slot * period_slot;
1338 } else {
1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1340
1341 /*
1342 * Scale scan rate increases based on sharing. There is an
1343 * inverse relationship between the degree of sharing and
1344 * the adjustment made to the scanning period. Broadly
1345 * speaking the intent is that there is little point
1346 * scanning faster if shared accesses dominate as it may
1347 * simply bounce migrations uselessly
1348 */
04bb2f94
RR
1349 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1350 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1351 }
1352
1353 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1354 task_scan_min(p), task_scan_max(p));
1355 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1356}
1357
cbee9f88
PZ
1358static void task_numa_placement(struct task_struct *p)
1359{
83e1d2cd
MG
1360 int seq, nid, max_nid = -1, max_group_nid = -1;
1361 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1362 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1363 spinlock_t *group_lock = NULL;
cbee9f88 1364
2832bc19 1365 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1366 if (p->numa_scan_seq == seq)
1367 return;
1368 p->numa_scan_seq = seq;
598f0ec0 1369 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1370
7dbd13ed
MG
1371 /* If the task is part of a group prevent parallel updates to group stats */
1372 if (p->numa_group) {
1373 group_lock = &p->numa_group->lock;
1374 spin_lock(group_lock);
1375 }
1376
688b7585
MG
1377 /* Find the node with the highest number of faults */
1378 for_each_online_node(nid) {
83e1d2cd 1379 unsigned long faults = 0, group_faults = 0;
ac8e895b 1380 int priv, i;
745d6147 1381
ac8e895b 1382 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1383 long diff;
1384
ac8e895b 1385 i = task_faults_idx(nid, priv);
8c8a743c 1386 diff = -p->numa_faults[i];
745d6147 1387
ac8e895b
MG
1388 /* Decay existing window, copy faults since last scan */
1389 p->numa_faults[i] >>= 1;
1390 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1391 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1392 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1393
1394 faults += p->numa_faults[i];
8c8a743c 1395 diff += p->numa_faults[i];
83e1d2cd 1396 p->total_numa_faults += diff;
8c8a743c
PZ
1397 if (p->numa_group) {
1398 /* safe because we can only change our own group */
989348b5
MG
1399 p->numa_group->faults[i] += diff;
1400 p->numa_group->total_faults += diff;
1401 group_faults += p->numa_group->faults[i];
8c8a743c 1402 }
ac8e895b
MG
1403 }
1404
688b7585
MG
1405 if (faults > max_faults) {
1406 max_faults = faults;
1407 max_nid = nid;
1408 }
83e1d2cd
MG
1409
1410 if (group_faults > max_group_faults) {
1411 max_group_faults = group_faults;
1412 max_group_nid = nid;
1413 }
1414 }
1415
04bb2f94
RR
1416 update_task_scan_period(p, fault_types[0], fault_types[1]);
1417
7dbd13ed
MG
1418 if (p->numa_group) {
1419 /*
1420 * If the preferred task and group nids are different,
1421 * iterate over the nodes again to find the best place.
1422 */
1423 if (max_nid != max_group_nid) {
1424 unsigned long weight, max_weight = 0;
1425
1426 for_each_online_node(nid) {
1427 weight = task_weight(p, nid) + group_weight(p, nid);
1428 if (weight > max_weight) {
1429 max_weight = weight;
1430 max_nid = nid;
1431 }
83e1d2cd
MG
1432 }
1433 }
7dbd13ed
MG
1434
1435 spin_unlock(group_lock);
688b7585
MG
1436 }
1437
6b9a7460 1438 /* Preferred node as the node with the most faults */
3a7053b3 1439 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1440 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1441 sched_setnuma(p, max_nid);
6b9a7460 1442 numa_migrate_preferred(p);
3a7053b3 1443 }
cbee9f88
PZ
1444}
1445
8c8a743c
PZ
1446static inline int get_numa_group(struct numa_group *grp)
1447{
1448 return atomic_inc_not_zero(&grp->refcount);
1449}
1450
1451static inline void put_numa_group(struct numa_group *grp)
1452{
1453 if (atomic_dec_and_test(&grp->refcount))
1454 kfree_rcu(grp, rcu);
1455}
1456
3e6a9418
MG
1457static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1458 int *priv)
8c8a743c
PZ
1459{
1460 struct numa_group *grp, *my_grp;
1461 struct task_struct *tsk;
1462 bool join = false;
1463 int cpu = cpupid_to_cpu(cpupid);
1464 int i;
1465
1466 if (unlikely(!p->numa_group)) {
1467 unsigned int size = sizeof(struct numa_group) +
989348b5 1468 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1469
1470 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1471 if (!grp)
1472 return;
1473
1474 atomic_set(&grp->refcount, 1);
1475 spin_lock_init(&grp->lock);
1476 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1477 grp->gid = p->pid;
8c8a743c
PZ
1478
1479 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1480 grp->faults[i] = p->numa_faults[i];
8c8a743c 1481
989348b5 1482 grp->total_faults = p->total_numa_faults;
83e1d2cd 1483
8c8a743c
PZ
1484 list_add(&p->numa_entry, &grp->task_list);
1485 grp->nr_tasks++;
1486 rcu_assign_pointer(p->numa_group, grp);
1487 }
1488
1489 rcu_read_lock();
1490 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1491
1492 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1493 goto no_join;
8c8a743c
PZ
1494
1495 grp = rcu_dereference(tsk->numa_group);
1496 if (!grp)
3354781a 1497 goto no_join;
8c8a743c
PZ
1498
1499 my_grp = p->numa_group;
1500 if (grp == my_grp)
3354781a 1501 goto no_join;
8c8a743c
PZ
1502
1503 /*
1504 * Only join the other group if its bigger; if we're the bigger group,
1505 * the other task will join us.
1506 */
1507 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1508 goto no_join;
8c8a743c
PZ
1509
1510 /*
1511 * Tie-break on the grp address.
1512 */
1513 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1514 goto no_join;
8c8a743c 1515
dabe1d99
RR
1516 /* Always join threads in the same process. */
1517 if (tsk->mm == current->mm)
1518 join = true;
1519
1520 /* Simple filter to avoid false positives due to PID collisions */
1521 if (flags & TNF_SHARED)
1522 join = true;
8c8a743c 1523
3e6a9418
MG
1524 /* Update priv based on whether false sharing was detected */
1525 *priv = !join;
1526
dabe1d99 1527 if (join && !get_numa_group(grp))
3354781a 1528 goto no_join;
8c8a743c 1529
8c8a743c
PZ
1530 rcu_read_unlock();
1531
1532 if (!join)
1533 return;
1534
989348b5
MG
1535 double_lock(&my_grp->lock, &grp->lock);
1536
8c8a743c 1537 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1538 my_grp->faults[i] -= p->numa_faults[i];
1539 grp->faults[i] += p->numa_faults[i];
8c8a743c 1540 }
989348b5
MG
1541 my_grp->total_faults -= p->total_numa_faults;
1542 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1543
1544 list_move(&p->numa_entry, &grp->task_list);
1545 my_grp->nr_tasks--;
1546 grp->nr_tasks++;
1547
1548 spin_unlock(&my_grp->lock);
1549 spin_unlock(&grp->lock);
1550
1551 rcu_assign_pointer(p->numa_group, grp);
1552
1553 put_numa_group(my_grp);
3354781a
PZ
1554 return;
1555
1556no_join:
1557 rcu_read_unlock();
1558 return;
8c8a743c
PZ
1559}
1560
1561void task_numa_free(struct task_struct *p)
1562{
1563 struct numa_group *grp = p->numa_group;
1564 int i;
82727018 1565 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1566
1567 if (grp) {
989348b5 1568 spin_lock(&grp->lock);
8c8a743c 1569 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1570 grp->faults[i] -= p->numa_faults[i];
1571 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1572
8c8a743c
PZ
1573 list_del(&p->numa_entry);
1574 grp->nr_tasks--;
1575 spin_unlock(&grp->lock);
1576 rcu_assign_pointer(p->numa_group, NULL);
1577 put_numa_group(grp);
1578 }
1579
82727018
RR
1580 p->numa_faults = NULL;
1581 p->numa_faults_buffer = NULL;
1582 kfree(numa_faults);
8c8a743c
PZ
1583}
1584
cbee9f88
PZ
1585/*
1586 * Got a PROT_NONE fault for a page on @node.
1587 */
6688cc05 1588void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1589{
1590 struct task_struct *p = current;
6688cc05 1591 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1592 int priv;
cbee9f88 1593
10e84b97 1594 if (!numabalancing_enabled)
1a687c2e
MG
1595 return;
1596
9ff1d9ff
MG
1597 /* for example, ksmd faulting in a user's mm */
1598 if (!p->mm)
1599 return;
1600
82727018
RR
1601 /* Do not worry about placement if exiting */
1602 if (p->state == TASK_DEAD)
1603 return;
1604
f809ca9a
MG
1605 /* Allocate buffer to track faults on a per-node basis */
1606 if (unlikely(!p->numa_faults)) {
ac8e895b 1607 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1608
745d6147
MG
1609 /* numa_faults and numa_faults_buffer share the allocation */
1610 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1611 if (!p->numa_faults)
1612 return;
745d6147
MG
1613
1614 BUG_ON(p->numa_faults_buffer);
ac8e895b 1615 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1616 p->total_numa_faults = 0;
04bb2f94 1617 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1618 }
cbee9f88 1619
8c8a743c
PZ
1620 /*
1621 * First accesses are treated as private, otherwise consider accesses
1622 * to be private if the accessing pid has not changed
1623 */
1624 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1625 priv = 1;
1626 } else {
1627 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1628 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1629 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1630 }
1631
cbee9f88 1632 task_numa_placement(p);
f809ca9a 1633
2739d3ee
RR
1634 /*
1635 * Retry task to preferred node migration periodically, in case it
1636 * case it previously failed, or the scheduler moved us.
1637 */
1638 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1639 numa_migrate_preferred(p);
1640
b32e86b4
IM
1641 if (migrated)
1642 p->numa_pages_migrated += pages;
1643
ac8e895b 1644 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1645 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1646}
1647
6e5fb223
PZ
1648static void reset_ptenuma_scan(struct task_struct *p)
1649{
1650 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1651 p->mm->numa_scan_offset = 0;
1652}
1653
cbee9f88
PZ
1654/*
1655 * The expensive part of numa migration is done from task_work context.
1656 * Triggered from task_tick_numa().
1657 */
1658void task_numa_work(struct callback_head *work)
1659{
1660 unsigned long migrate, next_scan, now = jiffies;
1661 struct task_struct *p = current;
1662 struct mm_struct *mm = p->mm;
6e5fb223 1663 struct vm_area_struct *vma;
9f40604c 1664 unsigned long start, end;
598f0ec0 1665 unsigned long nr_pte_updates = 0;
9f40604c 1666 long pages;
cbee9f88
PZ
1667
1668 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1669
1670 work->next = work; /* protect against double add */
1671 /*
1672 * Who cares about NUMA placement when they're dying.
1673 *
1674 * NOTE: make sure not to dereference p->mm before this check,
1675 * exit_task_work() happens _after_ exit_mm() so we could be called
1676 * without p->mm even though we still had it when we enqueued this
1677 * work.
1678 */
1679 if (p->flags & PF_EXITING)
1680 return;
1681
930aa174 1682 if (!mm->numa_next_scan) {
7e8d16b6
MG
1683 mm->numa_next_scan = now +
1684 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1685 }
1686
cbee9f88
PZ
1687 /*
1688 * Enforce maximal scan/migration frequency..
1689 */
1690 migrate = mm->numa_next_scan;
1691 if (time_before(now, migrate))
1692 return;
1693
598f0ec0
MG
1694 if (p->numa_scan_period == 0) {
1695 p->numa_scan_period_max = task_scan_max(p);
1696 p->numa_scan_period = task_scan_min(p);
1697 }
cbee9f88 1698
fb003b80 1699 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1700 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1701 return;
1702
19a78d11
PZ
1703 /*
1704 * Delay this task enough that another task of this mm will likely win
1705 * the next time around.
1706 */
1707 p->node_stamp += 2 * TICK_NSEC;
1708
9f40604c
MG
1709 start = mm->numa_scan_offset;
1710 pages = sysctl_numa_balancing_scan_size;
1711 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1712 if (!pages)
1713 return;
cbee9f88 1714
6e5fb223 1715 down_read(&mm->mmap_sem);
9f40604c 1716 vma = find_vma(mm, start);
6e5fb223
PZ
1717 if (!vma) {
1718 reset_ptenuma_scan(p);
9f40604c 1719 start = 0;
6e5fb223
PZ
1720 vma = mm->mmap;
1721 }
9f40604c 1722 for (; vma; vma = vma->vm_next) {
fc314724 1723 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1724 continue;
1725
4591ce4f
MG
1726 /*
1727 * Shared library pages mapped by multiple processes are not
1728 * migrated as it is expected they are cache replicated. Avoid
1729 * hinting faults in read-only file-backed mappings or the vdso
1730 * as migrating the pages will be of marginal benefit.
1731 */
1732 if (!vma->vm_mm ||
1733 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1734 continue;
1735
3c67f474
MG
1736 /*
1737 * Skip inaccessible VMAs to avoid any confusion between
1738 * PROT_NONE and NUMA hinting ptes
1739 */
1740 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1741 continue;
4591ce4f 1742
9f40604c
MG
1743 do {
1744 start = max(start, vma->vm_start);
1745 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1746 end = min(end, vma->vm_end);
598f0ec0
MG
1747 nr_pte_updates += change_prot_numa(vma, start, end);
1748
1749 /*
1750 * Scan sysctl_numa_balancing_scan_size but ensure that
1751 * at least one PTE is updated so that unused virtual
1752 * address space is quickly skipped.
1753 */
1754 if (nr_pte_updates)
1755 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1756
9f40604c
MG
1757 start = end;
1758 if (pages <= 0)
1759 goto out;
1760 } while (end != vma->vm_end);
cbee9f88 1761 }
6e5fb223 1762
9f40604c 1763out:
6e5fb223 1764 /*
c69307d5
PZ
1765 * It is possible to reach the end of the VMA list but the last few
1766 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1767 * would find the !migratable VMA on the next scan but not reset the
1768 * scanner to the start so check it now.
6e5fb223
PZ
1769 */
1770 if (vma)
9f40604c 1771 mm->numa_scan_offset = start;
6e5fb223
PZ
1772 else
1773 reset_ptenuma_scan(p);
1774 up_read(&mm->mmap_sem);
cbee9f88
PZ
1775}
1776
1777/*
1778 * Drive the periodic memory faults..
1779 */
1780void task_tick_numa(struct rq *rq, struct task_struct *curr)
1781{
1782 struct callback_head *work = &curr->numa_work;
1783 u64 period, now;
1784
1785 /*
1786 * We don't care about NUMA placement if we don't have memory.
1787 */
1788 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1789 return;
1790
1791 /*
1792 * Using runtime rather than walltime has the dual advantage that
1793 * we (mostly) drive the selection from busy threads and that the
1794 * task needs to have done some actual work before we bother with
1795 * NUMA placement.
1796 */
1797 now = curr->se.sum_exec_runtime;
1798 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1799
1800 if (now - curr->node_stamp > period) {
4b96a29b 1801 if (!curr->node_stamp)
598f0ec0 1802 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1803 curr->node_stamp += period;
cbee9f88
PZ
1804
1805 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1806 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1807 task_work_add(curr, work, true);
1808 }
1809 }
1810}
1811#else
1812static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1813{
1814}
0ec8aa00
PZ
1815
1816static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1817{
1818}
1819
1820static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1821{
1822}
cbee9f88
PZ
1823#endif /* CONFIG_NUMA_BALANCING */
1824
30cfdcfc
DA
1825static void
1826account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1827{
1828 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1829 if (!parent_entity(se))
029632fb 1830 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1831#ifdef CONFIG_SMP
0ec8aa00
PZ
1832 if (entity_is_task(se)) {
1833 struct rq *rq = rq_of(cfs_rq);
1834
1835 account_numa_enqueue(rq, task_of(se));
1836 list_add(&se->group_node, &rq->cfs_tasks);
1837 }
367456c7 1838#endif
30cfdcfc 1839 cfs_rq->nr_running++;
30cfdcfc
DA
1840}
1841
1842static void
1843account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1844{
1845 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1846 if (!parent_entity(se))
029632fb 1847 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1848 if (entity_is_task(se)) {
1849 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1850 list_del_init(&se->group_node);
0ec8aa00 1851 }
30cfdcfc 1852 cfs_rq->nr_running--;
30cfdcfc
DA
1853}
1854
3ff6dcac
YZ
1855#ifdef CONFIG_FAIR_GROUP_SCHED
1856# ifdef CONFIG_SMP
cf5f0acf
PZ
1857static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1858{
1859 long tg_weight;
1860
1861 /*
1862 * Use this CPU's actual weight instead of the last load_contribution
1863 * to gain a more accurate current total weight. See
1864 * update_cfs_rq_load_contribution().
1865 */
bf5b986e 1866 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1867 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1868 tg_weight += cfs_rq->load.weight;
1869
1870 return tg_weight;
1871}
1872
6d5ab293 1873static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1874{
cf5f0acf 1875 long tg_weight, load, shares;
3ff6dcac 1876
cf5f0acf 1877 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1878 load = cfs_rq->load.weight;
3ff6dcac 1879
3ff6dcac 1880 shares = (tg->shares * load);
cf5f0acf
PZ
1881 if (tg_weight)
1882 shares /= tg_weight;
3ff6dcac
YZ
1883
1884 if (shares < MIN_SHARES)
1885 shares = MIN_SHARES;
1886 if (shares > tg->shares)
1887 shares = tg->shares;
1888
1889 return shares;
1890}
3ff6dcac 1891# else /* CONFIG_SMP */
6d5ab293 1892static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1893{
1894 return tg->shares;
1895}
3ff6dcac 1896# endif /* CONFIG_SMP */
2069dd75
PZ
1897static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1898 unsigned long weight)
1899{
19e5eebb
PT
1900 if (se->on_rq) {
1901 /* commit outstanding execution time */
1902 if (cfs_rq->curr == se)
1903 update_curr(cfs_rq);
2069dd75 1904 account_entity_dequeue(cfs_rq, se);
19e5eebb 1905 }
2069dd75
PZ
1906
1907 update_load_set(&se->load, weight);
1908
1909 if (se->on_rq)
1910 account_entity_enqueue(cfs_rq, se);
1911}
1912
82958366
PT
1913static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1914
6d5ab293 1915static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1916{
1917 struct task_group *tg;
1918 struct sched_entity *se;
3ff6dcac 1919 long shares;
2069dd75 1920
2069dd75
PZ
1921 tg = cfs_rq->tg;
1922 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1923 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1924 return;
3ff6dcac
YZ
1925#ifndef CONFIG_SMP
1926 if (likely(se->load.weight == tg->shares))
1927 return;
1928#endif
6d5ab293 1929 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1930
1931 reweight_entity(cfs_rq_of(se), se, shares);
1932}
1933#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1934static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1935{
1936}
1937#endif /* CONFIG_FAIR_GROUP_SCHED */
1938
141965c7 1939#ifdef CONFIG_SMP
5b51f2f8
PT
1940/*
1941 * We choose a half-life close to 1 scheduling period.
1942 * Note: The tables below are dependent on this value.
1943 */
1944#define LOAD_AVG_PERIOD 32
1945#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1946#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1947
1948/* Precomputed fixed inverse multiplies for multiplication by y^n */
1949static const u32 runnable_avg_yN_inv[] = {
1950 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1951 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1952 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1953 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1954 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1955 0x85aac367, 0x82cd8698,
1956};
1957
1958/*
1959 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1960 * over-estimates when re-combining.
1961 */
1962static const u32 runnable_avg_yN_sum[] = {
1963 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1964 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1965 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1966};
1967
9d85f21c
PT
1968/*
1969 * Approximate:
1970 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1971 */
1972static __always_inline u64 decay_load(u64 val, u64 n)
1973{
5b51f2f8
PT
1974 unsigned int local_n;
1975
1976 if (!n)
1977 return val;
1978 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1979 return 0;
1980
1981 /* after bounds checking we can collapse to 32-bit */
1982 local_n = n;
1983
1984 /*
1985 * As y^PERIOD = 1/2, we can combine
1986 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1987 * With a look-up table which covers k^n (n<PERIOD)
1988 *
1989 * To achieve constant time decay_load.
1990 */
1991 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1992 val >>= local_n / LOAD_AVG_PERIOD;
1993 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1994 }
1995
5b51f2f8
PT
1996 val *= runnable_avg_yN_inv[local_n];
1997 /* We don't use SRR here since we always want to round down. */
1998 return val >> 32;
1999}
2000
2001/*
2002 * For updates fully spanning n periods, the contribution to runnable
2003 * average will be: \Sum 1024*y^n
2004 *
2005 * We can compute this reasonably efficiently by combining:
2006 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2007 */
2008static u32 __compute_runnable_contrib(u64 n)
2009{
2010 u32 contrib = 0;
2011
2012 if (likely(n <= LOAD_AVG_PERIOD))
2013 return runnable_avg_yN_sum[n];
2014 else if (unlikely(n >= LOAD_AVG_MAX_N))
2015 return LOAD_AVG_MAX;
2016
2017 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2018 do {
2019 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2020 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2021
2022 n -= LOAD_AVG_PERIOD;
2023 } while (n > LOAD_AVG_PERIOD);
2024
2025 contrib = decay_load(contrib, n);
2026 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2027}
2028
2029/*
2030 * We can represent the historical contribution to runnable average as the
2031 * coefficients of a geometric series. To do this we sub-divide our runnable
2032 * history into segments of approximately 1ms (1024us); label the segment that
2033 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2034 *
2035 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2036 * p0 p1 p2
2037 * (now) (~1ms ago) (~2ms ago)
2038 *
2039 * Let u_i denote the fraction of p_i that the entity was runnable.
2040 *
2041 * We then designate the fractions u_i as our co-efficients, yielding the
2042 * following representation of historical load:
2043 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2044 *
2045 * We choose y based on the with of a reasonably scheduling period, fixing:
2046 * y^32 = 0.5
2047 *
2048 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2049 * approximately half as much as the contribution to load within the last ms
2050 * (u_0).
2051 *
2052 * When a period "rolls over" and we have new u_0`, multiplying the previous
2053 * sum again by y is sufficient to update:
2054 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2055 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2056 */
2057static __always_inline int __update_entity_runnable_avg(u64 now,
2058 struct sched_avg *sa,
2059 int runnable)
2060{
5b51f2f8
PT
2061 u64 delta, periods;
2062 u32 runnable_contrib;
9d85f21c
PT
2063 int delta_w, decayed = 0;
2064
2065 delta = now - sa->last_runnable_update;
2066 /*
2067 * This should only happen when time goes backwards, which it
2068 * unfortunately does during sched clock init when we swap over to TSC.
2069 */
2070 if ((s64)delta < 0) {
2071 sa->last_runnable_update = now;
2072 return 0;
2073 }
2074
2075 /*
2076 * Use 1024ns as the unit of measurement since it's a reasonable
2077 * approximation of 1us and fast to compute.
2078 */
2079 delta >>= 10;
2080 if (!delta)
2081 return 0;
2082 sa->last_runnable_update = now;
2083
2084 /* delta_w is the amount already accumulated against our next period */
2085 delta_w = sa->runnable_avg_period % 1024;
2086 if (delta + delta_w >= 1024) {
2087 /* period roll-over */
2088 decayed = 1;
2089
2090 /*
2091 * Now that we know we're crossing a period boundary, figure
2092 * out how much from delta we need to complete the current
2093 * period and accrue it.
2094 */
2095 delta_w = 1024 - delta_w;
5b51f2f8
PT
2096 if (runnable)
2097 sa->runnable_avg_sum += delta_w;
2098 sa->runnable_avg_period += delta_w;
2099
2100 delta -= delta_w;
2101
2102 /* Figure out how many additional periods this update spans */
2103 periods = delta / 1024;
2104 delta %= 1024;
2105
2106 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2107 periods + 1);
2108 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2109 periods + 1);
2110
2111 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2112 runnable_contrib = __compute_runnable_contrib(periods);
2113 if (runnable)
2114 sa->runnable_avg_sum += runnable_contrib;
2115 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2116 }
2117
2118 /* Remainder of delta accrued against u_0` */
2119 if (runnable)
2120 sa->runnable_avg_sum += delta;
2121 sa->runnable_avg_period += delta;
2122
2123 return decayed;
2124}
2125
9ee474f5 2126/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2127static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2128{
2129 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2130 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2131
2132 decays -= se->avg.decay_count;
2133 if (!decays)
aff3e498 2134 return 0;
9ee474f5
PT
2135
2136 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2137 se->avg.decay_count = 0;
aff3e498
PT
2138
2139 return decays;
9ee474f5
PT
2140}
2141
c566e8e9
PT
2142#ifdef CONFIG_FAIR_GROUP_SCHED
2143static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2144 int force_update)
2145{
2146 struct task_group *tg = cfs_rq->tg;
bf5b986e 2147 long tg_contrib;
c566e8e9
PT
2148
2149 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2150 tg_contrib -= cfs_rq->tg_load_contrib;
2151
bf5b986e
AS
2152 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2153 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2154 cfs_rq->tg_load_contrib += tg_contrib;
2155 }
2156}
8165e145 2157
bb17f655
PT
2158/*
2159 * Aggregate cfs_rq runnable averages into an equivalent task_group
2160 * representation for computing load contributions.
2161 */
2162static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2163 struct cfs_rq *cfs_rq)
2164{
2165 struct task_group *tg = cfs_rq->tg;
2166 long contrib;
2167
2168 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2169 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2170 sa->runnable_avg_period + 1);
2171 contrib -= cfs_rq->tg_runnable_contrib;
2172
2173 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2174 atomic_add(contrib, &tg->runnable_avg);
2175 cfs_rq->tg_runnable_contrib += contrib;
2176 }
2177}
2178
8165e145
PT
2179static inline void __update_group_entity_contrib(struct sched_entity *se)
2180{
2181 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2182 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2183 int runnable_avg;
2184
8165e145
PT
2185 u64 contrib;
2186
2187 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2188 se->avg.load_avg_contrib = div_u64(contrib,
2189 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2190
2191 /*
2192 * For group entities we need to compute a correction term in the case
2193 * that they are consuming <1 cpu so that we would contribute the same
2194 * load as a task of equal weight.
2195 *
2196 * Explicitly co-ordinating this measurement would be expensive, but
2197 * fortunately the sum of each cpus contribution forms a usable
2198 * lower-bound on the true value.
2199 *
2200 * Consider the aggregate of 2 contributions. Either they are disjoint
2201 * (and the sum represents true value) or they are disjoint and we are
2202 * understating by the aggregate of their overlap.
2203 *
2204 * Extending this to N cpus, for a given overlap, the maximum amount we
2205 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2206 * cpus that overlap for this interval and w_i is the interval width.
2207 *
2208 * On a small machine; the first term is well-bounded which bounds the
2209 * total error since w_i is a subset of the period. Whereas on a
2210 * larger machine, while this first term can be larger, if w_i is the
2211 * of consequential size guaranteed to see n_i*w_i quickly converge to
2212 * our upper bound of 1-cpu.
2213 */
2214 runnable_avg = atomic_read(&tg->runnable_avg);
2215 if (runnable_avg < NICE_0_LOAD) {
2216 se->avg.load_avg_contrib *= runnable_avg;
2217 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2218 }
8165e145 2219}
c566e8e9
PT
2220#else
2221static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2222 int force_update) {}
bb17f655
PT
2223static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2224 struct cfs_rq *cfs_rq) {}
8165e145 2225static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2226#endif
2227
8165e145
PT
2228static inline void __update_task_entity_contrib(struct sched_entity *se)
2229{
2230 u32 contrib;
2231
2232 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2233 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2234 contrib /= (se->avg.runnable_avg_period + 1);
2235 se->avg.load_avg_contrib = scale_load(contrib);
2236}
2237
2dac754e
PT
2238/* Compute the current contribution to load_avg by se, return any delta */
2239static long __update_entity_load_avg_contrib(struct sched_entity *se)
2240{
2241 long old_contrib = se->avg.load_avg_contrib;
2242
8165e145
PT
2243 if (entity_is_task(se)) {
2244 __update_task_entity_contrib(se);
2245 } else {
bb17f655 2246 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2247 __update_group_entity_contrib(se);
2248 }
2dac754e
PT
2249
2250 return se->avg.load_avg_contrib - old_contrib;
2251}
2252
9ee474f5
PT
2253static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2254 long load_contrib)
2255{
2256 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2257 cfs_rq->blocked_load_avg -= load_contrib;
2258 else
2259 cfs_rq->blocked_load_avg = 0;
2260}
2261
f1b17280
PT
2262static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2263
9d85f21c 2264/* Update a sched_entity's runnable average */
9ee474f5
PT
2265static inline void update_entity_load_avg(struct sched_entity *se,
2266 int update_cfs_rq)
9d85f21c 2267{
2dac754e
PT
2268 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2269 long contrib_delta;
f1b17280 2270 u64 now;
2dac754e 2271
f1b17280
PT
2272 /*
2273 * For a group entity we need to use their owned cfs_rq_clock_task() in
2274 * case they are the parent of a throttled hierarchy.
2275 */
2276 if (entity_is_task(se))
2277 now = cfs_rq_clock_task(cfs_rq);
2278 else
2279 now = cfs_rq_clock_task(group_cfs_rq(se));
2280
2281 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2282 return;
2283
2284 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2285
2286 if (!update_cfs_rq)
2287 return;
2288
2dac754e
PT
2289 if (se->on_rq)
2290 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2291 else
2292 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2293}
2294
2295/*
2296 * Decay the load contributed by all blocked children and account this so that
2297 * their contribution may appropriately discounted when they wake up.
2298 */
aff3e498 2299static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2300{
f1b17280 2301 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2302 u64 decays;
2303
2304 decays = now - cfs_rq->last_decay;
aff3e498 2305 if (!decays && !force_update)
9ee474f5
PT
2306 return;
2307
2509940f
AS
2308 if (atomic_long_read(&cfs_rq->removed_load)) {
2309 unsigned long removed_load;
2310 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2311 subtract_blocked_load_contrib(cfs_rq, removed_load);
2312 }
9ee474f5 2313
aff3e498
PT
2314 if (decays) {
2315 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2316 decays);
2317 atomic64_add(decays, &cfs_rq->decay_counter);
2318 cfs_rq->last_decay = now;
2319 }
c566e8e9
PT
2320
2321 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2322}
18bf2805
BS
2323
2324static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2325{
78becc27 2326 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2327 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2328}
2dac754e
PT
2329
2330/* Add the load generated by se into cfs_rq's child load-average */
2331static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2332 struct sched_entity *se,
2333 int wakeup)
2dac754e 2334{
aff3e498
PT
2335 /*
2336 * We track migrations using entity decay_count <= 0, on a wake-up
2337 * migration we use a negative decay count to track the remote decays
2338 * accumulated while sleeping.
a75cdaa9
AS
2339 *
2340 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2341 * are seen by enqueue_entity_load_avg() as a migration with an already
2342 * constructed load_avg_contrib.
aff3e498
PT
2343 */
2344 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2345 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2346 if (se->avg.decay_count) {
2347 /*
2348 * In a wake-up migration we have to approximate the
2349 * time sleeping. This is because we can't synchronize
2350 * clock_task between the two cpus, and it is not
2351 * guaranteed to be read-safe. Instead, we can
2352 * approximate this using our carried decays, which are
2353 * explicitly atomically readable.
2354 */
2355 se->avg.last_runnable_update -= (-se->avg.decay_count)
2356 << 20;
2357 update_entity_load_avg(se, 0);
2358 /* Indicate that we're now synchronized and on-rq */
2359 se->avg.decay_count = 0;
2360 }
9ee474f5
PT
2361 wakeup = 0;
2362 } else {
9390675a 2363 __synchronize_entity_decay(se);
9ee474f5
PT
2364 }
2365
aff3e498
PT
2366 /* migrated tasks did not contribute to our blocked load */
2367 if (wakeup) {
9ee474f5 2368 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2369 update_entity_load_avg(se, 0);
2370 }
9ee474f5 2371
2dac754e 2372 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2373 /* we force update consideration on load-balancer moves */
2374 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2375}
2376
9ee474f5
PT
2377/*
2378 * Remove se's load from this cfs_rq child load-average, if the entity is
2379 * transitioning to a blocked state we track its projected decay using
2380 * blocked_load_avg.
2381 */
2dac754e 2382static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2383 struct sched_entity *se,
2384 int sleep)
2dac754e 2385{
9ee474f5 2386 update_entity_load_avg(se, 1);
aff3e498
PT
2387 /* we force update consideration on load-balancer moves */
2388 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2389
2dac754e 2390 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2391 if (sleep) {
2392 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2393 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2394 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2395}
642dbc39
VG
2396
2397/*
2398 * Update the rq's load with the elapsed running time before entering
2399 * idle. if the last scheduled task is not a CFS task, idle_enter will
2400 * be the only way to update the runnable statistic.
2401 */
2402void idle_enter_fair(struct rq *this_rq)
2403{
2404 update_rq_runnable_avg(this_rq, 1);
2405}
2406
2407/*
2408 * Update the rq's load with the elapsed idle time before a task is
2409 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2410 * be the only way to update the runnable statistic.
2411 */
2412void idle_exit_fair(struct rq *this_rq)
2413{
2414 update_rq_runnable_avg(this_rq, 0);
2415}
2416
9d85f21c 2417#else
9ee474f5
PT
2418static inline void update_entity_load_avg(struct sched_entity *se,
2419 int update_cfs_rq) {}
18bf2805 2420static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2421static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2422 struct sched_entity *se,
2423 int wakeup) {}
2dac754e 2424static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2425 struct sched_entity *se,
2426 int sleep) {}
aff3e498
PT
2427static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2428 int force_update) {}
9d85f21c
PT
2429#endif
2430
2396af69 2431static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2432{
bf0f6f24 2433#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2434 struct task_struct *tsk = NULL;
2435
2436 if (entity_is_task(se))
2437 tsk = task_of(se);
2438
41acab88 2439 if (se->statistics.sleep_start) {
78becc27 2440 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2441
2442 if ((s64)delta < 0)
2443 delta = 0;
2444
41acab88
LDM
2445 if (unlikely(delta > se->statistics.sleep_max))
2446 se->statistics.sleep_max = delta;
bf0f6f24 2447
8c79a045 2448 se->statistics.sleep_start = 0;
41acab88 2449 se->statistics.sum_sleep_runtime += delta;
9745512c 2450
768d0c27 2451 if (tsk) {
e414314c 2452 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2453 trace_sched_stat_sleep(tsk, delta);
2454 }
bf0f6f24 2455 }
41acab88 2456 if (se->statistics.block_start) {
78becc27 2457 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2458
2459 if ((s64)delta < 0)
2460 delta = 0;
2461
41acab88
LDM
2462 if (unlikely(delta > se->statistics.block_max))
2463 se->statistics.block_max = delta;
bf0f6f24 2464
8c79a045 2465 se->statistics.block_start = 0;
41acab88 2466 se->statistics.sum_sleep_runtime += delta;
30084fbd 2467
e414314c 2468 if (tsk) {
8f0dfc34 2469 if (tsk->in_iowait) {
41acab88
LDM
2470 se->statistics.iowait_sum += delta;
2471 se->statistics.iowait_count++;
768d0c27 2472 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2473 }
2474
b781a602
AV
2475 trace_sched_stat_blocked(tsk, delta);
2476
e414314c
PZ
2477 /*
2478 * Blocking time is in units of nanosecs, so shift by
2479 * 20 to get a milliseconds-range estimation of the
2480 * amount of time that the task spent sleeping:
2481 */
2482 if (unlikely(prof_on == SLEEP_PROFILING)) {
2483 profile_hits(SLEEP_PROFILING,
2484 (void *)get_wchan(tsk),
2485 delta >> 20);
2486 }
2487 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2488 }
bf0f6f24
IM
2489 }
2490#endif
2491}
2492
ddc97297
PZ
2493static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2494{
2495#ifdef CONFIG_SCHED_DEBUG
2496 s64 d = se->vruntime - cfs_rq->min_vruntime;
2497
2498 if (d < 0)
2499 d = -d;
2500
2501 if (d > 3*sysctl_sched_latency)
2502 schedstat_inc(cfs_rq, nr_spread_over);
2503#endif
2504}
2505
aeb73b04
PZ
2506static void
2507place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2508{
1af5f730 2509 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2510
2cb8600e
PZ
2511 /*
2512 * The 'current' period is already promised to the current tasks,
2513 * however the extra weight of the new task will slow them down a
2514 * little, place the new task so that it fits in the slot that
2515 * stays open at the end.
2516 */
94dfb5e7 2517 if (initial && sched_feat(START_DEBIT))
f9c0b095 2518 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2519
a2e7a7eb 2520 /* sleeps up to a single latency don't count. */
5ca9880c 2521 if (!initial) {
a2e7a7eb 2522 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2523
a2e7a7eb
MG
2524 /*
2525 * Halve their sleep time's effect, to allow
2526 * for a gentler effect of sleepers:
2527 */
2528 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2529 thresh >>= 1;
51e0304c 2530
a2e7a7eb 2531 vruntime -= thresh;
aeb73b04
PZ
2532 }
2533
b5d9d734 2534 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2535 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2536}
2537
d3d9dc33
PT
2538static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2539
bf0f6f24 2540static void
88ec22d3 2541enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2542{
88ec22d3
PZ
2543 /*
2544 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2545 * through calling update_curr().
88ec22d3 2546 */
371fd7e7 2547 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2548 se->vruntime += cfs_rq->min_vruntime;
2549
bf0f6f24 2550 /*
a2a2d680 2551 * Update run-time statistics of the 'current'.
bf0f6f24 2552 */
b7cc0896 2553 update_curr(cfs_rq);
f269ae04 2554 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2555 account_entity_enqueue(cfs_rq, se);
2556 update_cfs_shares(cfs_rq);
bf0f6f24 2557
88ec22d3 2558 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2559 place_entity(cfs_rq, se, 0);
2396af69 2560 enqueue_sleeper(cfs_rq, se);
e9acbff6 2561 }
bf0f6f24 2562
d2417e5a 2563 update_stats_enqueue(cfs_rq, se);
ddc97297 2564 check_spread(cfs_rq, se);
83b699ed
SV
2565 if (se != cfs_rq->curr)
2566 __enqueue_entity(cfs_rq, se);
2069dd75 2567 se->on_rq = 1;
3d4b47b4 2568
d3d9dc33 2569 if (cfs_rq->nr_running == 1) {
3d4b47b4 2570 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2571 check_enqueue_throttle(cfs_rq);
2572 }
bf0f6f24
IM
2573}
2574
2c13c919 2575static void __clear_buddies_last(struct sched_entity *se)
2002c695 2576{
2c13c919
RR
2577 for_each_sched_entity(se) {
2578 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2579 if (cfs_rq->last == se)
2580 cfs_rq->last = NULL;
2581 else
2582 break;
2583 }
2584}
2002c695 2585
2c13c919
RR
2586static void __clear_buddies_next(struct sched_entity *se)
2587{
2588 for_each_sched_entity(se) {
2589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2590 if (cfs_rq->next == se)
2591 cfs_rq->next = NULL;
2592 else
2593 break;
2594 }
2002c695
PZ
2595}
2596
ac53db59
RR
2597static void __clear_buddies_skip(struct sched_entity *se)
2598{
2599 for_each_sched_entity(se) {
2600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2601 if (cfs_rq->skip == se)
2602 cfs_rq->skip = NULL;
2603 else
2604 break;
2605 }
2606}
2607
a571bbea
PZ
2608static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2609{
2c13c919
RR
2610 if (cfs_rq->last == se)
2611 __clear_buddies_last(se);
2612
2613 if (cfs_rq->next == se)
2614 __clear_buddies_next(se);
ac53db59
RR
2615
2616 if (cfs_rq->skip == se)
2617 __clear_buddies_skip(se);
a571bbea
PZ
2618}
2619
6c16a6dc 2620static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2621
bf0f6f24 2622static void
371fd7e7 2623dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2624{
a2a2d680
DA
2625 /*
2626 * Update run-time statistics of the 'current'.
2627 */
2628 update_curr(cfs_rq);
17bc14b7 2629 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2630
19b6a2e3 2631 update_stats_dequeue(cfs_rq, se);
371fd7e7 2632 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2633#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2634 if (entity_is_task(se)) {
2635 struct task_struct *tsk = task_of(se);
2636
2637 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2638 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2639 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2640 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2641 }
db36cc7d 2642#endif
67e9fb2a
PZ
2643 }
2644
2002c695 2645 clear_buddies(cfs_rq, se);
4793241b 2646
83b699ed 2647 if (se != cfs_rq->curr)
30cfdcfc 2648 __dequeue_entity(cfs_rq, se);
17bc14b7 2649 se->on_rq = 0;
30cfdcfc 2650 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2651
2652 /*
2653 * Normalize the entity after updating the min_vruntime because the
2654 * update can refer to the ->curr item and we need to reflect this
2655 * movement in our normalized position.
2656 */
371fd7e7 2657 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2658 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2659
d8b4986d
PT
2660 /* return excess runtime on last dequeue */
2661 return_cfs_rq_runtime(cfs_rq);
2662
1e876231 2663 update_min_vruntime(cfs_rq);
17bc14b7 2664 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2665}
2666
2667/*
2668 * Preempt the current task with a newly woken task if needed:
2669 */
7c92e54f 2670static void
2e09bf55 2671check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2672{
11697830 2673 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2674 struct sched_entity *se;
2675 s64 delta;
11697830 2676
6d0f0ebd 2677 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2678 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2679 if (delta_exec > ideal_runtime) {
bf0f6f24 2680 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2681 /*
2682 * The current task ran long enough, ensure it doesn't get
2683 * re-elected due to buddy favours.
2684 */
2685 clear_buddies(cfs_rq, curr);
f685ceac
MG
2686 return;
2687 }
2688
2689 /*
2690 * Ensure that a task that missed wakeup preemption by a
2691 * narrow margin doesn't have to wait for a full slice.
2692 * This also mitigates buddy induced latencies under load.
2693 */
f685ceac
MG
2694 if (delta_exec < sysctl_sched_min_granularity)
2695 return;
2696
f4cfb33e
WX
2697 se = __pick_first_entity(cfs_rq);
2698 delta = curr->vruntime - se->vruntime;
f685ceac 2699
f4cfb33e
WX
2700 if (delta < 0)
2701 return;
d7d82944 2702
f4cfb33e
WX
2703 if (delta > ideal_runtime)
2704 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2705}
2706
83b699ed 2707static void
8494f412 2708set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2709{
83b699ed
SV
2710 /* 'current' is not kept within the tree. */
2711 if (se->on_rq) {
2712 /*
2713 * Any task has to be enqueued before it get to execute on
2714 * a CPU. So account for the time it spent waiting on the
2715 * runqueue.
2716 */
2717 update_stats_wait_end(cfs_rq, se);
2718 __dequeue_entity(cfs_rq, se);
2719 }
2720
79303e9e 2721 update_stats_curr_start(cfs_rq, se);
429d43bc 2722 cfs_rq->curr = se;
eba1ed4b
IM
2723#ifdef CONFIG_SCHEDSTATS
2724 /*
2725 * Track our maximum slice length, if the CPU's load is at
2726 * least twice that of our own weight (i.e. dont track it
2727 * when there are only lesser-weight tasks around):
2728 */
495eca49 2729 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2730 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2731 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2732 }
2733#endif
4a55b450 2734 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2735}
2736
3f3a4904
PZ
2737static int
2738wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2739
ac53db59
RR
2740/*
2741 * Pick the next process, keeping these things in mind, in this order:
2742 * 1) keep things fair between processes/task groups
2743 * 2) pick the "next" process, since someone really wants that to run
2744 * 3) pick the "last" process, for cache locality
2745 * 4) do not run the "skip" process, if something else is available
2746 */
f4b6755f 2747static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2748{
ac53db59 2749 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2750 struct sched_entity *left = se;
f4b6755f 2751
ac53db59
RR
2752 /*
2753 * Avoid running the skip buddy, if running something else can
2754 * be done without getting too unfair.
2755 */
2756 if (cfs_rq->skip == se) {
2757 struct sched_entity *second = __pick_next_entity(se);
2758 if (second && wakeup_preempt_entity(second, left) < 1)
2759 se = second;
2760 }
aa2ac252 2761
f685ceac
MG
2762 /*
2763 * Prefer last buddy, try to return the CPU to a preempted task.
2764 */
2765 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2766 se = cfs_rq->last;
2767
ac53db59
RR
2768 /*
2769 * Someone really wants this to run. If it's not unfair, run it.
2770 */
2771 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2772 se = cfs_rq->next;
2773
f685ceac 2774 clear_buddies(cfs_rq, se);
4793241b
PZ
2775
2776 return se;
aa2ac252
PZ
2777}
2778
d3d9dc33
PT
2779static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2780
ab6cde26 2781static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2782{
2783 /*
2784 * If still on the runqueue then deactivate_task()
2785 * was not called and update_curr() has to be done:
2786 */
2787 if (prev->on_rq)
b7cc0896 2788 update_curr(cfs_rq);
bf0f6f24 2789
d3d9dc33
PT
2790 /* throttle cfs_rqs exceeding runtime */
2791 check_cfs_rq_runtime(cfs_rq);
2792
ddc97297 2793 check_spread(cfs_rq, prev);
30cfdcfc 2794 if (prev->on_rq) {
5870db5b 2795 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2796 /* Put 'current' back into the tree. */
2797 __enqueue_entity(cfs_rq, prev);
9d85f21c 2798 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2799 update_entity_load_avg(prev, 1);
30cfdcfc 2800 }
429d43bc 2801 cfs_rq->curr = NULL;
bf0f6f24
IM
2802}
2803
8f4d37ec
PZ
2804static void
2805entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2806{
bf0f6f24 2807 /*
30cfdcfc 2808 * Update run-time statistics of the 'current'.
bf0f6f24 2809 */
30cfdcfc 2810 update_curr(cfs_rq);
bf0f6f24 2811
9d85f21c
PT
2812 /*
2813 * Ensure that runnable average is periodically updated.
2814 */
9ee474f5 2815 update_entity_load_avg(curr, 1);
aff3e498 2816 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2817 update_cfs_shares(cfs_rq);
9d85f21c 2818
8f4d37ec
PZ
2819#ifdef CONFIG_SCHED_HRTICK
2820 /*
2821 * queued ticks are scheduled to match the slice, so don't bother
2822 * validating it and just reschedule.
2823 */
983ed7a6
HH
2824 if (queued) {
2825 resched_task(rq_of(cfs_rq)->curr);
2826 return;
2827 }
8f4d37ec
PZ
2828 /*
2829 * don't let the period tick interfere with the hrtick preemption
2830 */
2831 if (!sched_feat(DOUBLE_TICK) &&
2832 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2833 return;
2834#endif
2835
2c2efaed 2836 if (cfs_rq->nr_running > 1)
2e09bf55 2837 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2838}
2839
ab84d31e
PT
2840
2841/**************************************************
2842 * CFS bandwidth control machinery
2843 */
2844
2845#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2846
2847#ifdef HAVE_JUMP_LABEL
c5905afb 2848static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2849
2850static inline bool cfs_bandwidth_used(void)
2851{
c5905afb 2852 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2853}
2854
1ee14e6c 2855void cfs_bandwidth_usage_inc(void)
029632fb 2856{
1ee14e6c
BS
2857 static_key_slow_inc(&__cfs_bandwidth_used);
2858}
2859
2860void cfs_bandwidth_usage_dec(void)
2861{
2862 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2863}
2864#else /* HAVE_JUMP_LABEL */
2865static bool cfs_bandwidth_used(void)
2866{
2867 return true;
2868}
2869
1ee14e6c
BS
2870void cfs_bandwidth_usage_inc(void) {}
2871void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2872#endif /* HAVE_JUMP_LABEL */
2873
ab84d31e
PT
2874/*
2875 * default period for cfs group bandwidth.
2876 * default: 0.1s, units: nanoseconds
2877 */
2878static inline u64 default_cfs_period(void)
2879{
2880 return 100000000ULL;
2881}
ec12cb7f
PT
2882
2883static inline u64 sched_cfs_bandwidth_slice(void)
2884{
2885 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2886}
2887
a9cf55b2
PT
2888/*
2889 * Replenish runtime according to assigned quota and update expiration time.
2890 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2891 * additional synchronization around rq->lock.
2892 *
2893 * requires cfs_b->lock
2894 */
029632fb 2895void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2896{
2897 u64 now;
2898
2899 if (cfs_b->quota == RUNTIME_INF)
2900 return;
2901
2902 now = sched_clock_cpu(smp_processor_id());
2903 cfs_b->runtime = cfs_b->quota;
2904 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2905}
2906
029632fb
PZ
2907static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2908{
2909 return &tg->cfs_bandwidth;
2910}
2911
f1b17280
PT
2912/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2913static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2914{
2915 if (unlikely(cfs_rq->throttle_count))
2916 return cfs_rq->throttled_clock_task;
2917
78becc27 2918 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2919}
2920
85dac906
PT
2921/* returns 0 on failure to allocate runtime */
2922static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2923{
2924 struct task_group *tg = cfs_rq->tg;
2925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2926 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2927
2928 /* note: this is a positive sum as runtime_remaining <= 0 */
2929 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2930
2931 raw_spin_lock(&cfs_b->lock);
2932 if (cfs_b->quota == RUNTIME_INF)
2933 amount = min_amount;
58088ad0 2934 else {
a9cf55b2
PT
2935 /*
2936 * If the bandwidth pool has become inactive, then at least one
2937 * period must have elapsed since the last consumption.
2938 * Refresh the global state and ensure bandwidth timer becomes
2939 * active.
2940 */
2941 if (!cfs_b->timer_active) {
2942 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2943 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2944 }
58088ad0
PT
2945
2946 if (cfs_b->runtime > 0) {
2947 amount = min(cfs_b->runtime, min_amount);
2948 cfs_b->runtime -= amount;
2949 cfs_b->idle = 0;
2950 }
ec12cb7f 2951 }
a9cf55b2 2952 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2953 raw_spin_unlock(&cfs_b->lock);
2954
2955 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2956 /*
2957 * we may have advanced our local expiration to account for allowed
2958 * spread between our sched_clock and the one on which runtime was
2959 * issued.
2960 */
2961 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2962 cfs_rq->runtime_expires = expires;
85dac906
PT
2963
2964 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2965}
2966
a9cf55b2
PT
2967/*
2968 * Note: This depends on the synchronization provided by sched_clock and the
2969 * fact that rq->clock snapshots this value.
2970 */
2971static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2972{
a9cf55b2 2973 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2974
2975 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2976 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2977 return;
2978
a9cf55b2
PT
2979 if (cfs_rq->runtime_remaining < 0)
2980 return;
2981
2982 /*
2983 * If the local deadline has passed we have to consider the
2984 * possibility that our sched_clock is 'fast' and the global deadline
2985 * has not truly expired.
2986 *
2987 * Fortunately we can check determine whether this the case by checking
2988 * whether the global deadline has advanced.
2989 */
2990
2991 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2992 /* extend local deadline, drift is bounded above by 2 ticks */
2993 cfs_rq->runtime_expires += TICK_NSEC;
2994 } else {
2995 /* global deadline is ahead, expiration has passed */
2996 cfs_rq->runtime_remaining = 0;
2997 }
2998}
2999
9dbdb155 3000static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3001{
3002 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3003 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3004 expire_cfs_rq_runtime(cfs_rq);
3005
3006 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3007 return;
3008
85dac906
PT
3009 /*
3010 * if we're unable to extend our runtime we resched so that the active
3011 * hierarchy can be throttled
3012 */
3013 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3014 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3015}
3016
6c16a6dc 3017static __always_inline
9dbdb155 3018void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3019{
56f570e5 3020 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3021 return;
3022
3023 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3024}
3025
85dac906
PT
3026static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3027{
56f570e5 3028 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3029}
3030
64660c86
PT
3031/* check whether cfs_rq, or any parent, is throttled */
3032static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3033{
56f570e5 3034 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3035}
3036
3037/*
3038 * Ensure that neither of the group entities corresponding to src_cpu or
3039 * dest_cpu are members of a throttled hierarchy when performing group
3040 * load-balance operations.
3041 */
3042static inline int throttled_lb_pair(struct task_group *tg,
3043 int src_cpu, int dest_cpu)
3044{
3045 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3046
3047 src_cfs_rq = tg->cfs_rq[src_cpu];
3048 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3049
3050 return throttled_hierarchy(src_cfs_rq) ||
3051 throttled_hierarchy(dest_cfs_rq);
3052}
3053
3054/* updated child weight may affect parent so we have to do this bottom up */
3055static int tg_unthrottle_up(struct task_group *tg, void *data)
3056{
3057 struct rq *rq = data;
3058 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3059
3060 cfs_rq->throttle_count--;
3061#ifdef CONFIG_SMP
3062 if (!cfs_rq->throttle_count) {
f1b17280 3063 /* adjust cfs_rq_clock_task() */
78becc27 3064 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3065 cfs_rq->throttled_clock_task;
64660c86
PT
3066 }
3067#endif
3068
3069 return 0;
3070}
3071
3072static int tg_throttle_down(struct task_group *tg, void *data)
3073{
3074 struct rq *rq = data;
3075 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3076
82958366
PT
3077 /* group is entering throttled state, stop time */
3078 if (!cfs_rq->throttle_count)
78becc27 3079 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3080 cfs_rq->throttle_count++;
3081
3082 return 0;
3083}
3084
d3d9dc33 3085static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3086{
3087 struct rq *rq = rq_of(cfs_rq);
3088 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3089 struct sched_entity *se;
3090 long task_delta, dequeue = 1;
3091
3092 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3093
f1b17280 3094 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3095 rcu_read_lock();
3096 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3097 rcu_read_unlock();
85dac906
PT
3098
3099 task_delta = cfs_rq->h_nr_running;
3100 for_each_sched_entity(se) {
3101 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3102 /* throttled entity or throttle-on-deactivate */
3103 if (!se->on_rq)
3104 break;
3105
3106 if (dequeue)
3107 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3108 qcfs_rq->h_nr_running -= task_delta;
3109
3110 if (qcfs_rq->load.weight)
3111 dequeue = 0;
3112 }
3113
3114 if (!se)
3115 rq->nr_running -= task_delta;
3116
3117 cfs_rq->throttled = 1;
78becc27 3118 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3119 raw_spin_lock(&cfs_b->lock);
3120 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3121 if (!cfs_b->timer_active)
3122 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3123 raw_spin_unlock(&cfs_b->lock);
3124}
3125
029632fb 3126void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3127{
3128 struct rq *rq = rq_of(cfs_rq);
3129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3130 struct sched_entity *se;
3131 int enqueue = 1;
3132 long task_delta;
3133
22b958d8 3134 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3135
3136 cfs_rq->throttled = 0;
1a55af2e
FW
3137
3138 update_rq_clock(rq);
3139
671fd9da 3140 raw_spin_lock(&cfs_b->lock);
78becc27 3141 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3142 list_del_rcu(&cfs_rq->throttled_list);
3143 raw_spin_unlock(&cfs_b->lock);
3144
64660c86
PT
3145 /* update hierarchical throttle state */
3146 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3147
671fd9da
PT
3148 if (!cfs_rq->load.weight)
3149 return;
3150
3151 task_delta = cfs_rq->h_nr_running;
3152 for_each_sched_entity(se) {
3153 if (se->on_rq)
3154 enqueue = 0;
3155
3156 cfs_rq = cfs_rq_of(se);
3157 if (enqueue)
3158 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3159 cfs_rq->h_nr_running += task_delta;
3160
3161 if (cfs_rq_throttled(cfs_rq))
3162 break;
3163 }
3164
3165 if (!se)
3166 rq->nr_running += task_delta;
3167
3168 /* determine whether we need to wake up potentially idle cpu */
3169 if (rq->curr == rq->idle && rq->cfs.nr_running)
3170 resched_task(rq->curr);
3171}
3172
3173static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3174 u64 remaining, u64 expires)
3175{
3176 struct cfs_rq *cfs_rq;
3177 u64 runtime = remaining;
3178
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3181 throttled_list) {
3182 struct rq *rq = rq_of(cfs_rq);
3183
3184 raw_spin_lock(&rq->lock);
3185 if (!cfs_rq_throttled(cfs_rq))
3186 goto next;
3187
3188 runtime = -cfs_rq->runtime_remaining + 1;
3189 if (runtime > remaining)
3190 runtime = remaining;
3191 remaining -= runtime;
3192
3193 cfs_rq->runtime_remaining += runtime;
3194 cfs_rq->runtime_expires = expires;
3195
3196 /* we check whether we're throttled above */
3197 if (cfs_rq->runtime_remaining > 0)
3198 unthrottle_cfs_rq(cfs_rq);
3199
3200next:
3201 raw_spin_unlock(&rq->lock);
3202
3203 if (!remaining)
3204 break;
3205 }
3206 rcu_read_unlock();
3207
3208 return remaining;
3209}
3210
58088ad0
PT
3211/*
3212 * Responsible for refilling a task_group's bandwidth and unthrottling its
3213 * cfs_rqs as appropriate. If there has been no activity within the last
3214 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3215 * used to track this state.
3216 */
3217static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3218{
671fd9da
PT
3219 u64 runtime, runtime_expires;
3220 int idle = 1, throttled;
58088ad0
PT
3221
3222 raw_spin_lock(&cfs_b->lock);
3223 /* no need to continue the timer with no bandwidth constraint */
3224 if (cfs_b->quota == RUNTIME_INF)
3225 goto out_unlock;
3226
671fd9da
PT
3227 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3228 /* idle depends on !throttled (for the case of a large deficit) */
3229 idle = cfs_b->idle && !throttled;
e8da1b18 3230 cfs_b->nr_periods += overrun;
671fd9da 3231
a9cf55b2
PT
3232 /* if we're going inactive then everything else can be deferred */
3233 if (idle)
3234 goto out_unlock;
3235
927b54fc
BS
3236 /*
3237 * if we have relooped after returning idle once, we need to update our
3238 * status as actually running, so that other cpus doing
3239 * __start_cfs_bandwidth will stop trying to cancel us.
3240 */
3241 cfs_b->timer_active = 1;
3242
a9cf55b2
PT
3243 __refill_cfs_bandwidth_runtime(cfs_b);
3244
671fd9da
PT
3245 if (!throttled) {
3246 /* mark as potentially idle for the upcoming period */
3247 cfs_b->idle = 1;
3248 goto out_unlock;
3249 }
3250
e8da1b18
NR
3251 /* account preceding periods in which throttling occurred */
3252 cfs_b->nr_throttled += overrun;
3253
671fd9da
PT
3254 /*
3255 * There are throttled entities so we must first use the new bandwidth
3256 * to unthrottle them before making it generally available. This
3257 * ensures that all existing debts will be paid before a new cfs_rq is
3258 * allowed to run.
3259 */
3260 runtime = cfs_b->runtime;
3261 runtime_expires = cfs_b->runtime_expires;
3262 cfs_b->runtime = 0;
3263
3264 /*
3265 * This check is repeated as we are holding onto the new bandwidth
3266 * while we unthrottle. This can potentially race with an unthrottled
3267 * group trying to acquire new bandwidth from the global pool.
3268 */
3269 while (throttled && runtime > 0) {
3270 raw_spin_unlock(&cfs_b->lock);
3271 /* we can't nest cfs_b->lock while distributing bandwidth */
3272 runtime = distribute_cfs_runtime(cfs_b, runtime,
3273 runtime_expires);
3274 raw_spin_lock(&cfs_b->lock);
3275
3276 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3277 }
58088ad0 3278
671fd9da
PT
3279 /* return (any) remaining runtime */
3280 cfs_b->runtime = runtime;
3281 /*
3282 * While we are ensured activity in the period following an
3283 * unthrottle, this also covers the case in which the new bandwidth is
3284 * insufficient to cover the existing bandwidth deficit. (Forcing the
3285 * timer to remain active while there are any throttled entities.)
3286 */
3287 cfs_b->idle = 0;
58088ad0
PT
3288out_unlock:
3289 if (idle)
3290 cfs_b->timer_active = 0;
3291 raw_spin_unlock(&cfs_b->lock);
3292
3293 return idle;
3294}
d3d9dc33 3295
d8b4986d
PT
3296/* a cfs_rq won't donate quota below this amount */
3297static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3298/* minimum remaining period time to redistribute slack quota */
3299static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3300/* how long we wait to gather additional slack before distributing */
3301static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3302
db06e78c
BS
3303/*
3304 * Are we near the end of the current quota period?
3305 *
3306 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3307 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3308 * migrate_hrtimers, base is never cleared, so we are fine.
3309 */
d8b4986d
PT
3310static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3311{
3312 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3313 u64 remaining;
3314
3315 /* if the call-back is running a quota refresh is already occurring */
3316 if (hrtimer_callback_running(refresh_timer))
3317 return 1;
3318
3319 /* is a quota refresh about to occur? */
3320 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3321 if (remaining < min_expire)
3322 return 1;
3323
3324 return 0;
3325}
3326
3327static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3328{
3329 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3330
3331 /* if there's a quota refresh soon don't bother with slack */
3332 if (runtime_refresh_within(cfs_b, min_left))
3333 return;
3334
3335 start_bandwidth_timer(&cfs_b->slack_timer,
3336 ns_to_ktime(cfs_bandwidth_slack_period));
3337}
3338
3339/* we know any runtime found here is valid as update_curr() precedes return */
3340static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3341{
3342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3343 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3344
3345 if (slack_runtime <= 0)
3346 return;
3347
3348 raw_spin_lock(&cfs_b->lock);
3349 if (cfs_b->quota != RUNTIME_INF &&
3350 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3351 cfs_b->runtime += slack_runtime;
3352
3353 /* we are under rq->lock, defer unthrottling using a timer */
3354 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3355 !list_empty(&cfs_b->throttled_cfs_rq))
3356 start_cfs_slack_bandwidth(cfs_b);
3357 }
3358 raw_spin_unlock(&cfs_b->lock);
3359
3360 /* even if it's not valid for return we don't want to try again */
3361 cfs_rq->runtime_remaining -= slack_runtime;
3362}
3363
3364static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3365{
56f570e5
PT
3366 if (!cfs_bandwidth_used())
3367 return;
3368
fccfdc6f 3369 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3370 return;
3371
3372 __return_cfs_rq_runtime(cfs_rq);
3373}
3374
3375/*
3376 * This is done with a timer (instead of inline with bandwidth return) since
3377 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3378 */
3379static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3380{
3381 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3382 u64 expires;
3383
3384 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3385 raw_spin_lock(&cfs_b->lock);
3386 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3387 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3388 return;
db06e78c 3389 }
d8b4986d 3390
d8b4986d
PT
3391 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3392 runtime = cfs_b->runtime;
3393 cfs_b->runtime = 0;
3394 }
3395 expires = cfs_b->runtime_expires;
3396 raw_spin_unlock(&cfs_b->lock);
3397
3398 if (!runtime)
3399 return;
3400
3401 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3402
3403 raw_spin_lock(&cfs_b->lock);
3404 if (expires == cfs_b->runtime_expires)
3405 cfs_b->runtime = runtime;
3406 raw_spin_unlock(&cfs_b->lock);
3407}
3408
d3d9dc33
PT
3409/*
3410 * When a group wakes up we want to make sure that its quota is not already
3411 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3412 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3413 */
3414static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3415{
56f570e5
PT
3416 if (!cfs_bandwidth_used())
3417 return;
3418
d3d9dc33
PT
3419 /* an active group must be handled by the update_curr()->put() path */
3420 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3421 return;
3422
3423 /* ensure the group is not already throttled */
3424 if (cfs_rq_throttled(cfs_rq))
3425 return;
3426
3427 /* update runtime allocation */
3428 account_cfs_rq_runtime(cfs_rq, 0);
3429 if (cfs_rq->runtime_remaining <= 0)
3430 throttle_cfs_rq(cfs_rq);
3431}
3432
3433/* conditionally throttle active cfs_rq's from put_prev_entity() */
3434static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3435{
56f570e5
PT
3436 if (!cfs_bandwidth_used())
3437 return;
3438
d3d9dc33
PT
3439 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3440 return;
3441
3442 /*
3443 * it's possible for a throttled entity to be forced into a running
3444 * state (e.g. set_curr_task), in this case we're finished.
3445 */
3446 if (cfs_rq_throttled(cfs_rq))
3447 return;
3448
3449 throttle_cfs_rq(cfs_rq);
3450}
029632fb 3451
029632fb
PZ
3452static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3453{
3454 struct cfs_bandwidth *cfs_b =
3455 container_of(timer, struct cfs_bandwidth, slack_timer);
3456 do_sched_cfs_slack_timer(cfs_b);
3457
3458 return HRTIMER_NORESTART;
3459}
3460
3461static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3462{
3463 struct cfs_bandwidth *cfs_b =
3464 container_of(timer, struct cfs_bandwidth, period_timer);
3465 ktime_t now;
3466 int overrun;
3467 int idle = 0;
3468
3469 for (;;) {
3470 now = hrtimer_cb_get_time(timer);
3471 overrun = hrtimer_forward(timer, now, cfs_b->period);
3472
3473 if (!overrun)
3474 break;
3475
3476 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3477 }
3478
3479 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3480}
3481
3482void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3483{
3484 raw_spin_lock_init(&cfs_b->lock);
3485 cfs_b->runtime = 0;
3486 cfs_b->quota = RUNTIME_INF;
3487 cfs_b->period = ns_to_ktime(default_cfs_period());
3488
3489 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3490 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3491 cfs_b->period_timer.function = sched_cfs_period_timer;
3492 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3493 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3494}
3495
3496static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3497{
3498 cfs_rq->runtime_enabled = 0;
3499 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3500}
3501
3502/* requires cfs_b->lock, may release to reprogram timer */
3503void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3504{
3505 /*
3506 * The timer may be active because we're trying to set a new bandwidth
3507 * period or because we're racing with the tear-down path
3508 * (timer_active==0 becomes visible before the hrtimer call-back
3509 * terminates). In either case we ensure that it's re-programmed
3510 */
927b54fc
BS
3511 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3512 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3513 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3514 raw_spin_unlock(&cfs_b->lock);
927b54fc 3515 cpu_relax();
029632fb
PZ
3516 raw_spin_lock(&cfs_b->lock);
3517 /* if someone else restarted the timer then we're done */
3518 if (cfs_b->timer_active)
3519 return;
3520 }
3521
3522 cfs_b->timer_active = 1;
3523 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3524}
3525
3526static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3527{
3528 hrtimer_cancel(&cfs_b->period_timer);
3529 hrtimer_cancel(&cfs_b->slack_timer);
3530}
3531
38dc3348 3532static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3533{
3534 struct cfs_rq *cfs_rq;
3535
3536 for_each_leaf_cfs_rq(rq, cfs_rq) {
3537 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3538
3539 if (!cfs_rq->runtime_enabled)
3540 continue;
3541
3542 /*
3543 * clock_task is not advancing so we just need to make sure
3544 * there's some valid quota amount
3545 */
3546 cfs_rq->runtime_remaining = cfs_b->quota;
3547 if (cfs_rq_throttled(cfs_rq))
3548 unthrottle_cfs_rq(cfs_rq);
3549 }
3550}
3551
3552#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3553static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3554{
78becc27 3555 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3556}
3557
9dbdb155 3558static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3559static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3560static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3561static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3562
3563static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3564{
3565 return 0;
3566}
64660c86
PT
3567
3568static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3569{
3570 return 0;
3571}
3572
3573static inline int throttled_lb_pair(struct task_group *tg,
3574 int src_cpu, int dest_cpu)
3575{
3576 return 0;
3577}
029632fb
PZ
3578
3579void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3580
3581#ifdef CONFIG_FAIR_GROUP_SCHED
3582static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3583#endif
3584
029632fb
PZ
3585static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3586{
3587 return NULL;
3588}
3589static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3590static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3591
3592#endif /* CONFIG_CFS_BANDWIDTH */
3593
bf0f6f24
IM
3594/**************************************************
3595 * CFS operations on tasks:
3596 */
3597
8f4d37ec
PZ
3598#ifdef CONFIG_SCHED_HRTICK
3599static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3600{
8f4d37ec
PZ
3601 struct sched_entity *se = &p->se;
3602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3603
3604 WARN_ON(task_rq(p) != rq);
3605
b39e66ea 3606 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3607 u64 slice = sched_slice(cfs_rq, se);
3608 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3609 s64 delta = slice - ran;
3610
3611 if (delta < 0) {
3612 if (rq->curr == p)
3613 resched_task(p);
3614 return;
3615 }
3616
3617 /*
3618 * Don't schedule slices shorter than 10000ns, that just
3619 * doesn't make sense. Rely on vruntime for fairness.
3620 */
31656519 3621 if (rq->curr != p)
157124c1 3622 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3623
31656519 3624 hrtick_start(rq, delta);
8f4d37ec
PZ
3625 }
3626}
a4c2f00f
PZ
3627
3628/*
3629 * called from enqueue/dequeue and updates the hrtick when the
3630 * current task is from our class and nr_running is low enough
3631 * to matter.
3632 */
3633static void hrtick_update(struct rq *rq)
3634{
3635 struct task_struct *curr = rq->curr;
3636
b39e66ea 3637 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3638 return;
3639
3640 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3641 hrtick_start_fair(rq, curr);
3642}
55e12e5e 3643#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3644static inline void
3645hrtick_start_fair(struct rq *rq, struct task_struct *p)
3646{
3647}
a4c2f00f
PZ
3648
3649static inline void hrtick_update(struct rq *rq)
3650{
3651}
8f4d37ec
PZ
3652#endif
3653
bf0f6f24
IM
3654/*
3655 * The enqueue_task method is called before nr_running is
3656 * increased. Here we update the fair scheduling stats and
3657 * then put the task into the rbtree:
3658 */
ea87bb78 3659static void
371fd7e7 3660enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3661{
3662 struct cfs_rq *cfs_rq;
62fb1851 3663 struct sched_entity *se = &p->se;
bf0f6f24
IM
3664
3665 for_each_sched_entity(se) {
62fb1851 3666 if (se->on_rq)
bf0f6f24
IM
3667 break;
3668 cfs_rq = cfs_rq_of(se);
88ec22d3 3669 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3670
3671 /*
3672 * end evaluation on encountering a throttled cfs_rq
3673 *
3674 * note: in the case of encountering a throttled cfs_rq we will
3675 * post the final h_nr_running increment below.
3676 */
3677 if (cfs_rq_throttled(cfs_rq))
3678 break;
953bfcd1 3679 cfs_rq->h_nr_running++;
85dac906 3680
88ec22d3 3681 flags = ENQUEUE_WAKEUP;
bf0f6f24 3682 }
8f4d37ec 3683
2069dd75 3684 for_each_sched_entity(se) {
0f317143 3685 cfs_rq = cfs_rq_of(se);
953bfcd1 3686 cfs_rq->h_nr_running++;
2069dd75 3687
85dac906
PT
3688 if (cfs_rq_throttled(cfs_rq))
3689 break;
3690
17bc14b7 3691 update_cfs_shares(cfs_rq);
9ee474f5 3692 update_entity_load_avg(se, 1);
2069dd75
PZ
3693 }
3694
18bf2805
BS
3695 if (!se) {
3696 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3697 inc_nr_running(rq);
18bf2805 3698 }
a4c2f00f 3699 hrtick_update(rq);
bf0f6f24
IM
3700}
3701
2f36825b
VP
3702static void set_next_buddy(struct sched_entity *se);
3703
bf0f6f24
IM
3704/*
3705 * The dequeue_task method is called before nr_running is
3706 * decreased. We remove the task from the rbtree and
3707 * update the fair scheduling stats:
3708 */
371fd7e7 3709static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3710{
3711 struct cfs_rq *cfs_rq;
62fb1851 3712 struct sched_entity *se = &p->se;
2f36825b 3713 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3714
3715 for_each_sched_entity(se) {
3716 cfs_rq = cfs_rq_of(se);
371fd7e7 3717 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3718
3719 /*
3720 * end evaluation on encountering a throttled cfs_rq
3721 *
3722 * note: in the case of encountering a throttled cfs_rq we will
3723 * post the final h_nr_running decrement below.
3724 */
3725 if (cfs_rq_throttled(cfs_rq))
3726 break;
953bfcd1 3727 cfs_rq->h_nr_running--;
2069dd75 3728
bf0f6f24 3729 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3730 if (cfs_rq->load.weight) {
3731 /*
3732 * Bias pick_next to pick a task from this cfs_rq, as
3733 * p is sleeping when it is within its sched_slice.
3734 */
3735 if (task_sleep && parent_entity(se))
3736 set_next_buddy(parent_entity(se));
9598c82d
PT
3737
3738 /* avoid re-evaluating load for this entity */
3739 se = parent_entity(se);
bf0f6f24 3740 break;
2f36825b 3741 }
371fd7e7 3742 flags |= DEQUEUE_SLEEP;
bf0f6f24 3743 }
8f4d37ec 3744
2069dd75 3745 for_each_sched_entity(se) {
0f317143 3746 cfs_rq = cfs_rq_of(se);
953bfcd1 3747 cfs_rq->h_nr_running--;
2069dd75 3748
85dac906
PT
3749 if (cfs_rq_throttled(cfs_rq))
3750 break;
3751
17bc14b7 3752 update_cfs_shares(cfs_rq);
9ee474f5 3753 update_entity_load_avg(se, 1);
2069dd75
PZ
3754 }
3755
18bf2805 3756 if (!se) {
85dac906 3757 dec_nr_running(rq);
18bf2805
BS
3758 update_rq_runnable_avg(rq, 1);
3759 }
a4c2f00f 3760 hrtick_update(rq);
bf0f6f24
IM
3761}
3762
e7693a36 3763#ifdef CONFIG_SMP
029632fb
PZ
3764/* Used instead of source_load when we know the type == 0 */
3765static unsigned long weighted_cpuload(const int cpu)
3766{
b92486cb 3767 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3768}
3769
3770/*
3771 * Return a low guess at the load of a migration-source cpu weighted
3772 * according to the scheduling class and "nice" value.
3773 *
3774 * We want to under-estimate the load of migration sources, to
3775 * balance conservatively.
3776 */
3777static unsigned long source_load(int cpu, int type)
3778{
3779 struct rq *rq = cpu_rq(cpu);
3780 unsigned long total = weighted_cpuload(cpu);
3781
3782 if (type == 0 || !sched_feat(LB_BIAS))
3783 return total;
3784
3785 return min(rq->cpu_load[type-1], total);
3786}
3787
3788/*
3789 * Return a high guess at the load of a migration-target cpu weighted
3790 * according to the scheduling class and "nice" value.
3791 */
3792static unsigned long target_load(int cpu, int type)
3793{
3794 struct rq *rq = cpu_rq(cpu);
3795 unsigned long total = weighted_cpuload(cpu);
3796
3797 if (type == 0 || !sched_feat(LB_BIAS))
3798 return total;
3799
3800 return max(rq->cpu_load[type-1], total);
3801}
3802
3803static unsigned long power_of(int cpu)
3804{
3805 return cpu_rq(cpu)->cpu_power;
3806}
3807
3808static unsigned long cpu_avg_load_per_task(int cpu)
3809{
3810 struct rq *rq = cpu_rq(cpu);
3811 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3812 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3813
3814 if (nr_running)
b92486cb 3815 return load_avg / nr_running;
029632fb
PZ
3816
3817 return 0;
3818}
3819
62470419
MW
3820static void record_wakee(struct task_struct *p)
3821{
3822 /*
3823 * Rough decay (wiping) for cost saving, don't worry
3824 * about the boundary, really active task won't care
3825 * about the loss.
3826 */
3827 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3828 current->wakee_flips = 0;
3829 current->wakee_flip_decay_ts = jiffies;
3830 }
3831
3832 if (current->last_wakee != p) {
3833 current->last_wakee = p;
3834 current->wakee_flips++;
3835 }
3836}
098fb9db 3837
74f8e4b2 3838static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3839{
3840 struct sched_entity *se = &p->se;
3841 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3842 u64 min_vruntime;
3843
3844#ifndef CONFIG_64BIT
3845 u64 min_vruntime_copy;
88ec22d3 3846
3fe1698b
PZ
3847 do {
3848 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3849 smp_rmb();
3850 min_vruntime = cfs_rq->min_vruntime;
3851 } while (min_vruntime != min_vruntime_copy);
3852#else
3853 min_vruntime = cfs_rq->min_vruntime;
3854#endif
88ec22d3 3855
3fe1698b 3856 se->vruntime -= min_vruntime;
62470419 3857 record_wakee(p);
88ec22d3
PZ
3858}
3859
bb3469ac 3860#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3861/*
3862 * effective_load() calculates the load change as seen from the root_task_group
3863 *
3864 * Adding load to a group doesn't make a group heavier, but can cause movement
3865 * of group shares between cpus. Assuming the shares were perfectly aligned one
3866 * can calculate the shift in shares.
cf5f0acf
PZ
3867 *
3868 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3869 * on this @cpu and results in a total addition (subtraction) of @wg to the
3870 * total group weight.
3871 *
3872 * Given a runqueue weight distribution (rw_i) we can compute a shares
3873 * distribution (s_i) using:
3874 *
3875 * s_i = rw_i / \Sum rw_j (1)
3876 *
3877 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3878 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3879 * shares distribution (s_i):
3880 *
3881 * rw_i = { 2, 4, 1, 0 }
3882 * s_i = { 2/7, 4/7, 1/7, 0 }
3883 *
3884 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3885 * task used to run on and the CPU the waker is running on), we need to
3886 * compute the effect of waking a task on either CPU and, in case of a sync
3887 * wakeup, compute the effect of the current task going to sleep.
3888 *
3889 * So for a change of @wl to the local @cpu with an overall group weight change
3890 * of @wl we can compute the new shares distribution (s'_i) using:
3891 *
3892 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3893 *
3894 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3895 * differences in waking a task to CPU 0. The additional task changes the
3896 * weight and shares distributions like:
3897 *
3898 * rw'_i = { 3, 4, 1, 0 }
3899 * s'_i = { 3/8, 4/8, 1/8, 0 }
3900 *
3901 * We can then compute the difference in effective weight by using:
3902 *
3903 * dw_i = S * (s'_i - s_i) (3)
3904 *
3905 * Where 'S' is the group weight as seen by its parent.
3906 *
3907 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3908 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3909 * 4/7) times the weight of the group.
f5bfb7d9 3910 */
2069dd75 3911static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3912{
4be9daaa 3913 struct sched_entity *se = tg->se[cpu];
f1d239f7 3914
9722c2da 3915 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3916 return wl;
3917
4be9daaa 3918 for_each_sched_entity(se) {
cf5f0acf 3919 long w, W;
4be9daaa 3920
977dda7c 3921 tg = se->my_q->tg;
bb3469ac 3922
cf5f0acf
PZ
3923 /*
3924 * W = @wg + \Sum rw_j
3925 */
3926 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3927
cf5f0acf
PZ
3928 /*
3929 * w = rw_i + @wl
3930 */
3931 w = se->my_q->load.weight + wl;
940959e9 3932
cf5f0acf
PZ
3933 /*
3934 * wl = S * s'_i; see (2)
3935 */
3936 if (W > 0 && w < W)
3937 wl = (w * tg->shares) / W;
977dda7c
PT
3938 else
3939 wl = tg->shares;
940959e9 3940
cf5f0acf
PZ
3941 /*
3942 * Per the above, wl is the new se->load.weight value; since
3943 * those are clipped to [MIN_SHARES, ...) do so now. See
3944 * calc_cfs_shares().
3945 */
977dda7c
PT
3946 if (wl < MIN_SHARES)
3947 wl = MIN_SHARES;
cf5f0acf
PZ
3948
3949 /*
3950 * wl = dw_i = S * (s'_i - s_i); see (3)
3951 */
977dda7c 3952 wl -= se->load.weight;
cf5f0acf
PZ
3953
3954 /*
3955 * Recursively apply this logic to all parent groups to compute
3956 * the final effective load change on the root group. Since
3957 * only the @tg group gets extra weight, all parent groups can
3958 * only redistribute existing shares. @wl is the shift in shares
3959 * resulting from this level per the above.
3960 */
4be9daaa 3961 wg = 0;
4be9daaa 3962 }
bb3469ac 3963
4be9daaa 3964 return wl;
bb3469ac
PZ
3965}
3966#else
4be9daaa 3967
58d081b5 3968static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3969{
83378269 3970 return wl;
bb3469ac 3971}
4be9daaa 3972
bb3469ac
PZ
3973#endif
3974
62470419
MW
3975static int wake_wide(struct task_struct *p)
3976{
7d9ffa89 3977 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3978
3979 /*
3980 * Yeah, it's the switching-frequency, could means many wakee or
3981 * rapidly switch, use factor here will just help to automatically
3982 * adjust the loose-degree, so bigger node will lead to more pull.
3983 */
3984 if (p->wakee_flips > factor) {
3985 /*
3986 * wakee is somewhat hot, it needs certain amount of cpu
3987 * resource, so if waker is far more hot, prefer to leave
3988 * it alone.
3989 */
3990 if (current->wakee_flips > (factor * p->wakee_flips))
3991 return 1;
3992 }
3993
3994 return 0;
3995}
3996
c88d5910 3997static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3998{
e37b6a7b 3999 s64 this_load, load;
c88d5910 4000 int idx, this_cpu, prev_cpu;
098fb9db 4001 unsigned long tl_per_task;
c88d5910 4002 struct task_group *tg;
83378269 4003 unsigned long weight;
b3137bc8 4004 int balanced;
098fb9db 4005
62470419
MW
4006 /*
4007 * If we wake multiple tasks be careful to not bounce
4008 * ourselves around too much.
4009 */
4010 if (wake_wide(p))
4011 return 0;
4012
c88d5910
PZ
4013 idx = sd->wake_idx;
4014 this_cpu = smp_processor_id();
4015 prev_cpu = task_cpu(p);
4016 load = source_load(prev_cpu, idx);
4017 this_load = target_load(this_cpu, idx);
098fb9db 4018
b3137bc8
MG
4019 /*
4020 * If sync wakeup then subtract the (maximum possible)
4021 * effect of the currently running task from the load
4022 * of the current CPU:
4023 */
83378269
PZ
4024 if (sync) {
4025 tg = task_group(current);
4026 weight = current->se.load.weight;
4027
c88d5910 4028 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4029 load += effective_load(tg, prev_cpu, 0, -weight);
4030 }
b3137bc8 4031
83378269
PZ
4032 tg = task_group(p);
4033 weight = p->se.load.weight;
b3137bc8 4034
71a29aa7
PZ
4035 /*
4036 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4037 * due to the sync cause above having dropped this_load to 0, we'll
4038 * always have an imbalance, but there's really nothing you can do
4039 * about that, so that's good too.
71a29aa7
PZ
4040 *
4041 * Otherwise check if either cpus are near enough in load to allow this
4042 * task to be woken on this_cpu.
4043 */
e37b6a7b
PT
4044 if (this_load > 0) {
4045 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4046
4047 this_eff_load = 100;
4048 this_eff_load *= power_of(prev_cpu);
4049 this_eff_load *= this_load +
4050 effective_load(tg, this_cpu, weight, weight);
4051
4052 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4053 prev_eff_load *= power_of(this_cpu);
4054 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4055
4056 balanced = this_eff_load <= prev_eff_load;
4057 } else
4058 balanced = true;
b3137bc8 4059
098fb9db 4060 /*
4ae7d5ce
IM
4061 * If the currently running task will sleep within
4062 * a reasonable amount of time then attract this newly
4063 * woken task:
098fb9db 4064 */
2fb7635c
PZ
4065 if (sync && balanced)
4066 return 1;
098fb9db 4067
41acab88 4068 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4069 tl_per_task = cpu_avg_load_per_task(this_cpu);
4070
c88d5910
PZ
4071 if (balanced ||
4072 (this_load <= load &&
4073 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4074 /*
4075 * This domain has SD_WAKE_AFFINE and
4076 * p is cache cold in this domain, and
4077 * there is no bad imbalance.
4078 */
c88d5910 4079 schedstat_inc(sd, ttwu_move_affine);
41acab88 4080 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4081
4082 return 1;
4083 }
4084 return 0;
4085}
4086
aaee1203
PZ
4087/*
4088 * find_idlest_group finds and returns the least busy CPU group within the
4089 * domain.
4090 */
4091static struct sched_group *
78e7ed53 4092find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4093 int this_cpu, int sd_flag)
e7693a36 4094{
b3bd3de6 4095 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4096 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4097 int load_idx = sd->forkexec_idx;
aaee1203 4098 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4099
c44f2a02
VG
4100 if (sd_flag & SD_BALANCE_WAKE)
4101 load_idx = sd->wake_idx;
4102
aaee1203
PZ
4103 do {
4104 unsigned long load, avg_load;
4105 int local_group;
4106 int i;
e7693a36 4107
aaee1203
PZ
4108 /* Skip over this group if it has no CPUs allowed */
4109 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4110 tsk_cpus_allowed(p)))
aaee1203
PZ
4111 continue;
4112
4113 local_group = cpumask_test_cpu(this_cpu,
4114 sched_group_cpus(group));
4115
4116 /* Tally up the load of all CPUs in the group */
4117 avg_load = 0;
4118
4119 for_each_cpu(i, sched_group_cpus(group)) {
4120 /* Bias balancing toward cpus of our domain */
4121 if (local_group)
4122 load = source_load(i, load_idx);
4123 else
4124 load = target_load(i, load_idx);
4125
4126 avg_load += load;
4127 }
4128
4129 /* Adjust by relative CPU power of the group */
9c3f75cb 4130 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4131
4132 if (local_group) {
4133 this_load = avg_load;
aaee1203
PZ
4134 } else if (avg_load < min_load) {
4135 min_load = avg_load;
4136 idlest = group;
4137 }
4138 } while (group = group->next, group != sd->groups);
4139
4140 if (!idlest || 100*this_load < imbalance*min_load)
4141 return NULL;
4142 return idlest;
4143}
4144
4145/*
4146 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4147 */
4148static int
4149find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4150{
4151 unsigned long load, min_load = ULONG_MAX;
4152 int idlest = -1;
4153 int i;
4154
4155 /* Traverse only the allowed CPUs */
fa17b507 4156 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4157 load = weighted_cpuload(i);
4158
4159 if (load < min_load || (load == min_load && i == this_cpu)) {
4160 min_load = load;
4161 idlest = i;
e7693a36
GH
4162 }
4163 }
4164
aaee1203
PZ
4165 return idlest;
4166}
e7693a36 4167
a50bde51
PZ
4168/*
4169 * Try and locate an idle CPU in the sched_domain.
4170 */
99bd5e2f 4171static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4172{
99bd5e2f 4173 struct sched_domain *sd;
37407ea7 4174 struct sched_group *sg;
e0a79f52 4175 int i = task_cpu(p);
a50bde51 4176
e0a79f52
MG
4177 if (idle_cpu(target))
4178 return target;
99bd5e2f
SS
4179
4180 /*
e0a79f52 4181 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4182 */
e0a79f52
MG
4183 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4184 return i;
a50bde51
PZ
4185
4186 /*
37407ea7 4187 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4188 */
518cd623 4189 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4190 for_each_lower_domain(sd) {
37407ea7
LT
4191 sg = sd->groups;
4192 do {
4193 if (!cpumask_intersects(sched_group_cpus(sg),
4194 tsk_cpus_allowed(p)))
4195 goto next;
4196
4197 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4198 if (i == target || !idle_cpu(i))
37407ea7
LT
4199 goto next;
4200 }
970e1789 4201
37407ea7
LT
4202 target = cpumask_first_and(sched_group_cpus(sg),
4203 tsk_cpus_allowed(p));
4204 goto done;
4205next:
4206 sg = sg->next;
4207 } while (sg != sd->groups);
4208 }
4209done:
a50bde51
PZ
4210 return target;
4211}
4212
aaee1203
PZ
4213/*
4214 * sched_balance_self: balance the current task (running on cpu) in domains
4215 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4216 * SD_BALANCE_EXEC.
4217 *
4218 * Balance, ie. select the least loaded group.
4219 *
4220 * Returns the target CPU number, or the same CPU if no balancing is needed.
4221 *
4222 * preempt must be disabled.
4223 */
0017d735 4224static int
ac66f547 4225select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4226{
29cd8bae 4227 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4228 int cpu = smp_processor_id();
c88d5910 4229 int new_cpu = cpu;
99bd5e2f 4230 int want_affine = 0;
5158f4e4 4231 int sync = wake_flags & WF_SYNC;
c88d5910 4232
29baa747 4233 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4234 return prev_cpu;
4235
0763a660 4236 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4237 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4238 want_affine = 1;
4239 new_cpu = prev_cpu;
4240 }
aaee1203 4241
dce840a0 4242 rcu_read_lock();
aaee1203 4243 for_each_domain(cpu, tmp) {
e4f42888
PZ
4244 if (!(tmp->flags & SD_LOAD_BALANCE))
4245 continue;
4246
fe3bcfe1 4247 /*
99bd5e2f
SS
4248 * If both cpu and prev_cpu are part of this domain,
4249 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4250 */
99bd5e2f
SS
4251 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4252 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4253 affine_sd = tmp;
29cd8bae 4254 break;
f03542a7 4255 }
29cd8bae 4256
f03542a7 4257 if (tmp->flags & sd_flag)
29cd8bae
PZ
4258 sd = tmp;
4259 }
4260
8b911acd 4261 if (affine_sd) {
f03542a7 4262 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4263 prev_cpu = cpu;
4264
4265 new_cpu = select_idle_sibling(p, prev_cpu);
4266 goto unlock;
8b911acd 4267 }
e7693a36 4268
aaee1203
PZ
4269 while (sd) {
4270 struct sched_group *group;
c88d5910 4271 int weight;
098fb9db 4272
0763a660 4273 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4274 sd = sd->child;
4275 continue;
4276 }
098fb9db 4277
c44f2a02 4278 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4279 if (!group) {
4280 sd = sd->child;
4281 continue;
4282 }
4ae7d5ce 4283
d7c33c49 4284 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4285 if (new_cpu == -1 || new_cpu == cpu) {
4286 /* Now try balancing at a lower domain level of cpu */
4287 sd = sd->child;
4288 continue;
e7693a36 4289 }
aaee1203
PZ
4290
4291 /* Now try balancing at a lower domain level of new_cpu */
4292 cpu = new_cpu;
669c55e9 4293 weight = sd->span_weight;
aaee1203
PZ
4294 sd = NULL;
4295 for_each_domain(cpu, tmp) {
669c55e9 4296 if (weight <= tmp->span_weight)
aaee1203 4297 break;
0763a660 4298 if (tmp->flags & sd_flag)
aaee1203
PZ
4299 sd = tmp;
4300 }
4301 /* while loop will break here if sd == NULL */
e7693a36 4302 }
dce840a0
PZ
4303unlock:
4304 rcu_read_unlock();
e7693a36 4305
c88d5910 4306 return new_cpu;
e7693a36 4307}
0a74bef8
PT
4308
4309/*
4310 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4311 * cfs_rq_of(p) references at time of call are still valid and identify the
4312 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4313 * other assumptions, including the state of rq->lock, should be made.
4314 */
4315static void
4316migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4317{
aff3e498
PT
4318 struct sched_entity *se = &p->se;
4319 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4320
4321 /*
4322 * Load tracking: accumulate removed load so that it can be processed
4323 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4324 * to blocked load iff they have a positive decay-count. It can never
4325 * be negative here since on-rq tasks have decay-count == 0.
4326 */
4327 if (se->avg.decay_count) {
4328 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4329 atomic_long_add(se->avg.load_avg_contrib,
4330 &cfs_rq->removed_load);
aff3e498 4331 }
0a74bef8 4332}
e7693a36
GH
4333#endif /* CONFIG_SMP */
4334
e52fb7c0
PZ
4335static unsigned long
4336wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4337{
4338 unsigned long gran = sysctl_sched_wakeup_granularity;
4339
4340 /*
e52fb7c0
PZ
4341 * Since its curr running now, convert the gran from real-time
4342 * to virtual-time in his units.
13814d42
MG
4343 *
4344 * By using 'se' instead of 'curr' we penalize light tasks, so
4345 * they get preempted easier. That is, if 'se' < 'curr' then
4346 * the resulting gran will be larger, therefore penalizing the
4347 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4348 * be smaller, again penalizing the lighter task.
4349 *
4350 * This is especially important for buddies when the leftmost
4351 * task is higher priority than the buddy.
0bbd3336 4352 */
f4ad9bd2 4353 return calc_delta_fair(gran, se);
0bbd3336
PZ
4354}
4355
464b7527
PZ
4356/*
4357 * Should 'se' preempt 'curr'.
4358 *
4359 * |s1
4360 * |s2
4361 * |s3
4362 * g
4363 * |<--->|c
4364 *
4365 * w(c, s1) = -1
4366 * w(c, s2) = 0
4367 * w(c, s3) = 1
4368 *
4369 */
4370static int
4371wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4372{
4373 s64 gran, vdiff = curr->vruntime - se->vruntime;
4374
4375 if (vdiff <= 0)
4376 return -1;
4377
e52fb7c0 4378 gran = wakeup_gran(curr, se);
464b7527
PZ
4379 if (vdiff > gran)
4380 return 1;
4381
4382 return 0;
4383}
4384
02479099
PZ
4385static void set_last_buddy(struct sched_entity *se)
4386{
69c80f3e
VP
4387 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4388 return;
4389
4390 for_each_sched_entity(se)
4391 cfs_rq_of(se)->last = se;
02479099
PZ
4392}
4393
4394static void set_next_buddy(struct sched_entity *se)
4395{
69c80f3e
VP
4396 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4397 return;
4398
4399 for_each_sched_entity(se)
4400 cfs_rq_of(se)->next = se;
02479099
PZ
4401}
4402
ac53db59
RR
4403static void set_skip_buddy(struct sched_entity *se)
4404{
69c80f3e
VP
4405 for_each_sched_entity(se)
4406 cfs_rq_of(se)->skip = se;
ac53db59
RR
4407}
4408
bf0f6f24
IM
4409/*
4410 * Preempt the current task with a newly woken task if needed:
4411 */
5a9b86f6 4412static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4413{
4414 struct task_struct *curr = rq->curr;
8651a86c 4415 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4416 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4417 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4418 int next_buddy_marked = 0;
bf0f6f24 4419
4ae7d5ce
IM
4420 if (unlikely(se == pse))
4421 return;
4422
5238cdd3 4423 /*
ddcdf6e7 4424 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4425 * unconditionally check_prempt_curr() after an enqueue (which may have
4426 * lead to a throttle). This both saves work and prevents false
4427 * next-buddy nomination below.
4428 */
4429 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4430 return;
4431
2f36825b 4432 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4433 set_next_buddy(pse);
2f36825b
VP
4434 next_buddy_marked = 1;
4435 }
57fdc26d 4436
aec0a514
BR
4437 /*
4438 * We can come here with TIF_NEED_RESCHED already set from new task
4439 * wake up path.
5238cdd3
PT
4440 *
4441 * Note: this also catches the edge-case of curr being in a throttled
4442 * group (e.g. via set_curr_task), since update_curr() (in the
4443 * enqueue of curr) will have resulted in resched being set. This
4444 * prevents us from potentially nominating it as a false LAST_BUDDY
4445 * below.
aec0a514
BR
4446 */
4447 if (test_tsk_need_resched(curr))
4448 return;
4449
a2f5c9ab
DH
4450 /* Idle tasks are by definition preempted by non-idle tasks. */
4451 if (unlikely(curr->policy == SCHED_IDLE) &&
4452 likely(p->policy != SCHED_IDLE))
4453 goto preempt;
4454
91c234b4 4455 /*
a2f5c9ab
DH
4456 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4457 * is driven by the tick):
91c234b4 4458 */
8ed92e51 4459 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4460 return;
bf0f6f24 4461
464b7527 4462 find_matching_se(&se, &pse);
9bbd7374 4463 update_curr(cfs_rq_of(se));
002f128b 4464 BUG_ON(!pse);
2f36825b
VP
4465 if (wakeup_preempt_entity(se, pse) == 1) {
4466 /*
4467 * Bias pick_next to pick the sched entity that is
4468 * triggering this preemption.
4469 */
4470 if (!next_buddy_marked)
4471 set_next_buddy(pse);
3a7e73a2 4472 goto preempt;
2f36825b 4473 }
464b7527 4474
3a7e73a2 4475 return;
a65ac745 4476
3a7e73a2
PZ
4477preempt:
4478 resched_task(curr);
4479 /*
4480 * Only set the backward buddy when the current task is still
4481 * on the rq. This can happen when a wakeup gets interleaved
4482 * with schedule on the ->pre_schedule() or idle_balance()
4483 * point, either of which can * drop the rq lock.
4484 *
4485 * Also, during early boot the idle thread is in the fair class,
4486 * for obvious reasons its a bad idea to schedule back to it.
4487 */
4488 if (unlikely(!se->on_rq || curr == rq->idle))
4489 return;
4490
4491 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4492 set_last_buddy(se);
bf0f6f24
IM
4493}
4494
fb8d4724 4495static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4496{
8f4d37ec 4497 struct task_struct *p;
bf0f6f24
IM
4498 struct cfs_rq *cfs_rq = &rq->cfs;
4499 struct sched_entity *se;
4500
36ace27e 4501 if (!cfs_rq->nr_running)
bf0f6f24
IM
4502 return NULL;
4503
4504 do {
9948f4b2 4505 se = pick_next_entity(cfs_rq);
f4b6755f 4506 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4507 cfs_rq = group_cfs_rq(se);
4508 } while (cfs_rq);
4509
8f4d37ec 4510 p = task_of(se);
b39e66ea
MG
4511 if (hrtick_enabled(rq))
4512 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4513
4514 return p;
bf0f6f24
IM
4515}
4516
4517/*
4518 * Account for a descheduled task:
4519 */
31ee529c 4520static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4521{
4522 struct sched_entity *se = &prev->se;
4523 struct cfs_rq *cfs_rq;
4524
4525 for_each_sched_entity(se) {
4526 cfs_rq = cfs_rq_of(se);
ab6cde26 4527 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4528 }
4529}
4530
ac53db59
RR
4531/*
4532 * sched_yield() is very simple
4533 *
4534 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4535 */
4536static void yield_task_fair(struct rq *rq)
4537{
4538 struct task_struct *curr = rq->curr;
4539 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4540 struct sched_entity *se = &curr->se;
4541
4542 /*
4543 * Are we the only task in the tree?
4544 */
4545 if (unlikely(rq->nr_running == 1))
4546 return;
4547
4548 clear_buddies(cfs_rq, se);
4549
4550 if (curr->policy != SCHED_BATCH) {
4551 update_rq_clock(rq);
4552 /*
4553 * Update run-time statistics of the 'current'.
4554 */
4555 update_curr(cfs_rq);
916671c0
MG
4556 /*
4557 * Tell update_rq_clock() that we've just updated,
4558 * so we don't do microscopic update in schedule()
4559 * and double the fastpath cost.
4560 */
4561 rq->skip_clock_update = 1;
ac53db59
RR
4562 }
4563
4564 set_skip_buddy(se);
4565}
4566
d95f4122
MG
4567static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4568{
4569 struct sched_entity *se = &p->se;
4570
5238cdd3
PT
4571 /* throttled hierarchies are not runnable */
4572 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4573 return false;
4574
4575 /* Tell the scheduler that we'd really like pse to run next. */
4576 set_next_buddy(se);
4577
d95f4122
MG
4578 yield_task_fair(rq);
4579
4580 return true;
4581}
4582
681f3e68 4583#ifdef CONFIG_SMP
bf0f6f24 4584/**************************************************
e9c84cb8
PZ
4585 * Fair scheduling class load-balancing methods.
4586 *
4587 * BASICS
4588 *
4589 * The purpose of load-balancing is to achieve the same basic fairness the
4590 * per-cpu scheduler provides, namely provide a proportional amount of compute
4591 * time to each task. This is expressed in the following equation:
4592 *
4593 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4594 *
4595 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4596 * W_i,0 is defined as:
4597 *
4598 * W_i,0 = \Sum_j w_i,j (2)
4599 *
4600 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4601 * is derived from the nice value as per prio_to_weight[].
4602 *
4603 * The weight average is an exponential decay average of the instantaneous
4604 * weight:
4605 *
4606 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4607 *
4608 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4609 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4610 * can also include other factors [XXX].
4611 *
4612 * To achieve this balance we define a measure of imbalance which follows
4613 * directly from (1):
4614 *
4615 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4616 *
4617 * We them move tasks around to minimize the imbalance. In the continuous
4618 * function space it is obvious this converges, in the discrete case we get
4619 * a few fun cases generally called infeasible weight scenarios.
4620 *
4621 * [XXX expand on:
4622 * - infeasible weights;
4623 * - local vs global optima in the discrete case. ]
4624 *
4625 *
4626 * SCHED DOMAINS
4627 *
4628 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4629 * for all i,j solution, we create a tree of cpus that follows the hardware
4630 * topology where each level pairs two lower groups (or better). This results
4631 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4632 * tree to only the first of the previous level and we decrease the frequency
4633 * of load-balance at each level inv. proportional to the number of cpus in
4634 * the groups.
4635 *
4636 * This yields:
4637 *
4638 * log_2 n 1 n
4639 * \Sum { --- * --- * 2^i } = O(n) (5)
4640 * i = 0 2^i 2^i
4641 * `- size of each group
4642 * | | `- number of cpus doing load-balance
4643 * | `- freq
4644 * `- sum over all levels
4645 *
4646 * Coupled with a limit on how many tasks we can migrate every balance pass,
4647 * this makes (5) the runtime complexity of the balancer.
4648 *
4649 * An important property here is that each CPU is still (indirectly) connected
4650 * to every other cpu in at most O(log n) steps:
4651 *
4652 * The adjacency matrix of the resulting graph is given by:
4653 *
4654 * log_2 n
4655 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4656 * k = 0
4657 *
4658 * And you'll find that:
4659 *
4660 * A^(log_2 n)_i,j != 0 for all i,j (7)
4661 *
4662 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4663 * The task movement gives a factor of O(m), giving a convergence complexity
4664 * of:
4665 *
4666 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4667 *
4668 *
4669 * WORK CONSERVING
4670 *
4671 * In order to avoid CPUs going idle while there's still work to do, new idle
4672 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4673 * tree itself instead of relying on other CPUs to bring it work.
4674 *
4675 * This adds some complexity to both (5) and (8) but it reduces the total idle
4676 * time.
4677 *
4678 * [XXX more?]
4679 *
4680 *
4681 * CGROUPS
4682 *
4683 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4684 *
4685 * s_k,i
4686 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4687 * S_k
4688 *
4689 * Where
4690 *
4691 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4692 *
4693 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4694 *
4695 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4696 * property.
4697 *
4698 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4699 * rewrite all of this once again.]
4700 */
bf0f6f24 4701
ed387b78
HS
4702static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4703
0ec8aa00
PZ
4704enum fbq_type { regular, remote, all };
4705
ddcdf6e7 4706#define LBF_ALL_PINNED 0x01
367456c7 4707#define LBF_NEED_BREAK 0x02
6263322c
PZ
4708#define LBF_DST_PINNED 0x04
4709#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4710
4711struct lb_env {
4712 struct sched_domain *sd;
4713
ddcdf6e7 4714 struct rq *src_rq;
85c1e7da 4715 int src_cpu;
ddcdf6e7
PZ
4716
4717 int dst_cpu;
4718 struct rq *dst_rq;
4719
88b8dac0
SV
4720 struct cpumask *dst_grpmask;
4721 int new_dst_cpu;
ddcdf6e7 4722 enum cpu_idle_type idle;
bd939f45 4723 long imbalance;
b9403130
MW
4724 /* The set of CPUs under consideration for load-balancing */
4725 struct cpumask *cpus;
4726
ddcdf6e7 4727 unsigned int flags;
367456c7
PZ
4728
4729 unsigned int loop;
4730 unsigned int loop_break;
4731 unsigned int loop_max;
0ec8aa00
PZ
4732
4733 enum fbq_type fbq_type;
ddcdf6e7
PZ
4734};
4735
1e3c88bd 4736/*
ddcdf6e7 4737 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4738 * Both runqueues must be locked.
4739 */
ddcdf6e7 4740static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4741{
ddcdf6e7
PZ
4742 deactivate_task(env->src_rq, p, 0);
4743 set_task_cpu(p, env->dst_cpu);
4744 activate_task(env->dst_rq, p, 0);
4745 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4746}
4747
029632fb
PZ
4748/*
4749 * Is this task likely cache-hot:
4750 */
4751static int
4752task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4753{
4754 s64 delta;
4755
4756 if (p->sched_class != &fair_sched_class)
4757 return 0;
4758
4759 if (unlikely(p->policy == SCHED_IDLE))
4760 return 0;
4761
4762 /*
4763 * Buddy candidates are cache hot:
4764 */
4765 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4766 (&p->se == cfs_rq_of(&p->se)->next ||
4767 &p->se == cfs_rq_of(&p->se)->last))
4768 return 1;
4769
4770 if (sysctl_sched_migration_cost == -1)
4771 return 1;
4772 if (sysctl_sched_migration_cost == 0)
4773 return 0;
4774
4775 delta = now - p->se.exec_start;
4776
4777 return delta < (s64)sysctl_sched_migration_cost;
4778}
4779
3a7053b3
MG
4780#ifdef CONFIG_NUMA_BALANCING
4781/* Returns true if the destination node has incurred more faults */
4782static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4783{
4784 int src_nid, dst_nid;
4785
4786 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4787 !(env->sd->flags & SD_NUMA)) {
4788 return false;
4789 }
4790
4791 src_nid = cpu_to_node(env->src_cpu);
4792 dst_nid = cpu_to_node(env->dst_cpu);
4793
83e1d2cd 4794 if (src_nid == dst_nid)
3a7053b3
MG
4795 return false;
4796
83e1d2cd
MG
4797 /* Always encourage migration to the preferred node. */
4798 if (dst_nid == p->numa_preferred_nid)
4799 return true;
4800
887c290e
RR
4801 /* If both task and group weight improve, this move is a winner. */
4802 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4803 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4804 return true;
4805
4806 return false;
4807}
7a0f3083
MG
4808
4809
4810static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4811{
4812 int src_nid, dst_nid;
4813
4814 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4815 return false;
4816
4817 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4818 return false;
4819
4820 src_nid = cpu_to_node(env->src_cpu);
4821 dst_nid = cpu_to_node(env->dst_cpu);
4822
83e1d2cd 4823 if (src_nid == dst_nid)
7a0f3083
MG
4824 return false;
4825
83e1d2cd
MG
4826 /* Migrating away from the preferred node is always bad. */
4827 if (src_nid == p->numa_preferred_nid)
4828 return true;
4829
887c290e
RR
4830 /* If either task or group weight get worse, don't do it. */
4831 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4832 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4833 return true;
4834
4835 return false;
4836}
4837
3a7053b3
MG
4838#else
4839static inline bool migrate_improves_locality(struct task_struct *p,
4840 struct lb_env *env)
4841{
4842 return false;
4843}
7a0f3083
MG
4844
4845static inline bool migrate_degrades_locality(struct task_struct *p,
4846 struct lb_env *env)
4847{
4848 return false;
4849}
3a7053b3
MG
4850#endif
4851
1e3c88bd
PZ
4852/*
4853 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4854 */
4855static
8e45cb54 4856int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4857{
4858 int tsk_cache_hot = 0;
4859 /*
4860 * We do not migrate tasks that are:
d3198084 4861 * 1) throttled_lb_pair, or
1e3c88bd 4862 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4863 * 3) running (obviously), or
4864 * 4) are cache-hot on their current CPU.
1e3c88bd 4865 */
d3198084
JK
4866 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4867 return 0;
4868
ddcdf6e7 4869 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4870 int cpu;
88b8dac0 4871
41acab88 4872 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4873
6263322c
PZ
4874 env->flags |= LBF_SOME_PINNED;
4875
88b8dac0
SV
4876 /*
4877 * Remember if this task can be migrated to any other cpu in
4878 * our sched_group. We may want to revisit it if we couldn't
4879 * meet load balance goals by pulling other tasks on src_cpu.
4880 *
4881 * Also avoid computing new_dst_cpu if we have already computed
4882 * one in current iteration.
4883 */
6263322c 4884 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4885 return 0;
4886
e02e60c1
JK
4887 /* Prevent to re-select dst_cpu via env's cpus */
4888 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4889 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4890 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4891 env->new_dst_cpu = cpu;
4892 break;
4893 }
88b8dac0 4894 }
e02e60c1 4895
1e3c88bd
PZ
4896 return 0;
4897 }
88b8dac0
SV
4898
4899 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4900 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4901
ddcdf6e7 4902 if (task_running(env->src_rq, p)) {
41acab88 4903 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4904 return 0;
4905 }
4906
4907 /*
4908 * Aggressive migration if:
3a7053b3
MG
4909 * 1) destination numa is preferred
4910 * 2) task is cache cold, or
4911 * 3) too many balance attempts have failed.
1e3c88bd 4912 */
78becc27 4913 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4914 if (!tsk_cache_hot)
4915 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4916
4917 if (migrate_improves_locality(p, env)) {
4918#ifdef CONFIG_SCHEDSTATS
4919 if (tsk_cache_hot) {
4920 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4921 schedstat_inc(p, se.statistics.nr_forced_migrations);
4922 }
4923#endif
4924 return 1;
4925 }
4926
1e3c88bd 4927 if (!tsk_cache_hot ||
8e45cb54 4928 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4929
1e3c88bd 4930 if (tsk_cache_hot) {
8e45cb54 4931 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4932 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4933 }
4e2dcb73 4934
1e3c88bd
PZ
4935 return 1;
4936 }
4937
4e2dcb73
ZH
4938 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4939 return 0;
1e3c88bd
PZ
4940}
4941
897c395f
PZ
4942/*
4943 * move_one_task tries to move exactly one task from busiest to this_rq, as
4944 * part of active balancing operations within "domain".
4945 * Returns 1 if successful and 0 otherwise.
4946 *
4947 * Called with both runqueues locked.
4948 */
8e45cb54 4949static int move_one_task(struct lb_env *env)
897c395f
PZ
4950{
4951 struct task_struct *p, *n;
897c395f 4952
367456c7 4953 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4954 if (!can_migrate_task(p, env))
4955 continue;
897c395f 4956
367456c7
PZ
4957 move_task(p, env);
4958 /*
4959 * Right now, this is only the second place move_task()
4960 * is called, so we can safely collect move_task()
4961 * stats here rather than inside move_task().
4962 */
4963 schedstat_inc(env->sd, lb_gained[env->idle]);
4964 return 1;
897c395f 4965 }
897c395f
PZ
4966 return 0;
4967}
4968
eb95308e
PZ
4969static const unsigned int sched_nr_migrate_break = 32;
4970
5d6523eb 4971/*
bd939f45 4972 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4973 * this_rq, as part of a balancing operation within domain "sd".
4974 * Returns 1 if successful and 0 otherwise.
4975 *
4976 * Called with both runqueues locked.
4977 */
4978static int move_tasks(struct lb_env *env)
1e3c88bd 4979{
5d6523eb
PZ
4980 struct list_head *tasks = &env->src_rq->cfs_tasks;
4981 struct task_struct *p;
367456c7
PZ
4982 unsigned long load;
4983 int pulled = 0;
1e3c88bd 4984
bd939f45 4985 if (env->imbalance <= 0)
5d6523eb 4986 return 0;
1e3c88bd 4987
5d6523eb
PZ
4988 while (!list_empty(tasks)) {
4989 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4990
367456c7
PZ
4991 env->loop++;
4992 /* We've more or less seen every task there is, call it quits */
5d6523eb 4993 if (env->loop > env->loop_max)
367456c7 4994 break;
5d6523eb
PZ
4995
4996 /* take a breather every nr_migrate tasks */
367456c7 4997 if (env->loop > env->loop_break) {
eb95308e 4998 env->loop_break += sched_nr_migrate_break;
8e45cb54 4999 env->flags |= LBF_NEED_BREAK;
ee00e66f 5000 break;
a195f004 5001 }
1e3c88bd 5002
d3198084 5003 if (!can_migrate_task(p, env))
367456c7
PZ
5004 goto next;
5005
5006 load = task_h_load(p);
5d6523eb 5007
eb95308e 5008 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5009 goto next;
5010
bd939f45 5011 if ((load / 2) > env->imbalance)
367456c7 5012 goto next;
1e3c88bd 5013
ddcdf6e7 5014 move_task(p, env);
ee00e66f 5015 pulled++;
bd939f45 5016 env->imbalance -= load;
1e3c88bd
PZ
5017
5018#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5019 /*
5020 * NEWIDLE balancing is a source of latency, so preemptible
5021 * kernels will stop after the first task is pulled to minimize
5022 * the critical section.
5023 */
5d6523eb 5024 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5025 break;
1e3c88bd
PZ
5026#endif
5027
ee00e66f
PZ
5028 /*
5029 * We only want to steal up to the prescribed amount of
5030 * weighted load.
5031 */
bd939f45 5032 if (env->imbalance <= 0)
ee00e66f 5033 break;
367456c7
PZ
5034
5035 continue;
5036next:
5d6523eb 5037 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5038 }
5d6523eb 5039
1e3c88bd 5040 /*
ddcdf6e7
PZ
5041 * Right now, this is one of only two places move_task() is called,
5042 * so we can safely collect move_task() stats here rather than
5043 * inside move_task().
1e3c88bd 5044 */
8e45cb54 5045 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5046
5d6523eb 5047 return pulled;
1e3c88bd
PZ
5048}
5049
230059de 5050#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5051/*
5052 * update tg->load_weight by folding this cpu's load_avg
5053 */
48a16753 5054static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5055{
48a16753
PT
5056 struct sched_entity *se = tg->se[cpu];
5057 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5058
48a16753
PT
5059 /* throttled entities do not contribute to load */
5060 if (throttled_hierarchy(cfs_rq))
5061 return;
9e3081ca 5062
aff3e498 5063 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5064
82958366
PT
5065 if (se) {
5066 update_entity_load_avg(se, 1);
5067 /*
5068 * We pivot on our runnable average having decayed to zero for
5069 * list removal. This generally implies that all our children
5070 * have also been removed (modulo rounding error or bandwidth
5071 * control); however, such cases are rare and we can fix these
5072 * at enqueue.
5073 *
5074 * TODO: fix up out-of-order children on enqueue.
5075 */
5076 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5077 list_del_leaf_cfs_rq(cfs_rq);
5078 } else {
48a16753 5079 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5080 update_rq_runnable_avg(rq, rq->nr_running);
5081 }
9e3081ca
PZ
5082}
5083
48a16753 5084static void update_blocked_averages(int cpu)
9e3081ca 5085{
9e3081ca 5086 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5087 struct cfs_rq *cfs_rq;
5088 unsigned long flags;
9e3081ca 5089
48a16753
PT
5090 raw_spin_lock_irqsave(&rq->lock, flags);
5091 update_rq_clock(rq);
9763b67f
PZ
5092 /*
5093 * Iterates the task_group tree in a bottom up fashion, see
5094 * list_add_leaf_cfs_rq() for details.
5095 */
64660c86 5096 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5097 /*
5098 * Note: We may want to consider periodically releasing
5099 * rq->lock about these updates so that creating many task
5100 * groups does not result in continually extending hold time.
5101 */
5102 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5103 }
48a16753
PT
5104
5105 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5106}
5107
9763b67f 5108/*
68520796 5109 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5110 * This needs to be done in a top-down fashion because the load of a child
5111 * group is a fraction of its parents load.
5112 */
68520796 5113static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5114{
68520796
VD
5115 struct rq *rq = rq_of(cfs_rq);
5116 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5117 unsigned long now = jiffies;
68520796 5118 unsigned long load;
a35b6466 5119
68520796 5120 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5121 return;
5122
68520796
VD
5123 cfs_rq->h_load_next = NULL;
5124 for_each_sched_entity(se) {
5125 cfs_rq = cfs_rq_of(se);
5126 cfs_rq->h_load_next = se;
5127 if (cfs_rq->last_h_load_update == now)
5128 break;
5129 }
a35b6466 5130
68520796 5131 if (!se) {
7e3115ef 5132 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5133 cfs_rq->last_h_load_update = now;
5134 }
5135
5136 while ((se = cfs_rq->h_load_next) != NULL) {
5137 load = cfs_rq->h_load;
5138 load = div64_ul(load * se->avg.load_avg_contrib,
5139 cfs_rq->runnable_load_avg + 1);
5140 cfs_rq = group_cfs_rq(se);
5141 cfs_rq->h_load = load;
5142 cfs_rq->last_h_load_update = now;
5143 }
9763b67f
PZ
5144}
5145
367456c7 5146static unsigned long task_h_load(struct task_struct *p)
230059de 5147{
367456c7 5148 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5149
68520796 5150 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5151 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5152 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5153}
5154#else
48a16753 5155static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5156{
5157}
5158
367456c7 5159static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5160{
a003a25b 5161 return p->se.avg.load_avg_contrib;
1e3c88bd 5162}
230059de 5163#endif
1e3c88bd 5164
1e3c88bd 5165/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5166/*
5167 * sg_lb_stats - stats of a sched_group required for load_balancing
5168 */
5169struct sg_lb_stats {
5170 unsigned long avg_load; /*Avg load across the CPUs of the group */
5171 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5172 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5173 unsigned long load_per_task;
3ae11c90 5174 unsigned long group_power;
147c5fc2
PZ
5175 unsigned int sum_nr_running; /* Nr tasks running in the group */
5176 unsigned int group_capacity;
5177 unsigned int idle_cpus;
5178 unsigned int group_weight;
1e3c88bd 5179 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5180 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5181#ifdef CONFIG_NUMA_BALANCING
5182 unsigned int nr_numa_running;
5183 unsigned int nr_preferred_running;
5184#endif
1e3c88bd
PZ
5185};
5186
56cf515b
JK
5187/*
5188 * sd_lb_stats - Structure to store the statistics of a sched_domain
5189 * during load balancing.
5190 */
5191struct sd_lb_stats {
5192 struct sched_group *busiest; /* Busiest group in this sd */
5193 struct sched_group *local; /* Local group in this sd */
5194 unsigned long total_load; /* Total load of all groups in sd */
5195 unsigned long total_pwr; /* Total power of all groups in sd */
5196 unsigned long avg_load; /* Average load across all groups in sd */
5197
56cf515b 5198 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5199 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5200};
5201
147c5fc2
PZ
5202static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5203{
5204 /*
5205 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5206 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5207 * We must however clear busiest_stat::avg_load because
5208 * update_sd_pick_busiest() reads this before assignment.
5209 */
5210 *sds = (struct sd_lb_stats){
5211 .busiest = NULL,
5212 .local = NULL,
5213 .total_load = 0UL,
5214 .total_pwr = 0UL,
5215 .busiest_stat = {
5216 .avg_load = 0UL,
5217 },
5218 };
5219}
5220
1e3c88bd
PZ
5221/**
5222 * get_sd_load_idx - Obtain the load index for a given sched domain.
5223 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5224 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5225 *
5226 * Return: The load index.
1e3c88bd
PZ
5227 */
5228static inline int get_sd_load_idx(struct sched_domain *sd,
5229 enum cpu_idle_type idle)
5230{
5231 int load_idx;
5232
5233 switch (idle) {
5234 case CPU_NOT_IDLE:
5235 load_idx = sd->busy_idx;
5236 break;
5237
5238 case CPU_NEWLY_IDLE:
5239 load_idx = sd->newidle_idx;
5240 break;
5241 default:
5242 load_idx = sd->idle_idx;
5243 break;
5244 }
5245
5246 return load_idx;
5247}
5248
15f803c9 5249static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5250{
1399fa78 5251 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5252}
5253
5254unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5255{
5256 return default_scale_freq_power(sd, cpu);
5257}
5258
15f803c9 5259static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5260{
669c55e9 5261 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5262 unsigned long smt_gain = sd->smt_gain;
5263
5264 smt_gain /= weight;
5265
5266 return smt_gain;
5267}
5268
5269unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5270{
5271 return default_scale_smt_power(sd, cpu);
5272}
5273
15f803c9 5274static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5275{
5276 struct rq *rq = cpu_rq(cpu);
b654f7de 5277 u64 total, available, age_stamp, avg;
1e3c88bd 5278
b654f7de
PZ
5279 /*
5280 * Since we're reading these variables without serialization make sure
5281 * we read them once before doing sanity checks on them.
5282 */
5283 age_stamp = ACCESS_ONCE(rq->age_stamp);
5284 avg = ACCESS_ONCE(rq->rt_avg);
5285
78becc27 5286 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5287
b654f7de 5288 if (unlikely(total < avg)) {
aa483808
VP
5289 /* Ensures that power won't end up being negative */
5290 available = 0;
5291 } else {
b654f7de 5292 available = total - avg;
aa483808 5293 }
1e3c88bd 5294
1399fa78
NR
5295 if (unlikely((s64)total < SCHED_POWER_SCALE))
5296 total = SCHED_POWER_SCALE;
1e3c88bd 5297
1399fa78 5298 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5299
5300 return div_u64(available, total);
5301}
5302
5303static void update_cpu_power(struct sched_domain *sd, int cpu)
5304{
669c55e9 5305 unsigned long weight = sd->span_weight;
1399fa78 5306 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5307 struct sched_group *sdg = sd->groups;
5308
1e3c88bd
PZ
5309 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5310 if (sched_feat(ARCH_POWER))
5311 power *= arch_scale_smt_power(sd, cpu);
5312 else
5313 power *= default_scale_smt_power(sd, cpu);
5314
1399fa78 5315 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5316 }
5317
9c3f75cb 5318 sdg->sgp->power_orig = power;
9d5efe05
SV
5319
5320 if (sched_feat(ARCH_POWER))
5321 power *= arch_scale_freq_power(sd, cpu);
5322 else
5323 power *= default_scale_freq_power(sd, cpu);
5324
1399fa78 5325 power >>= SCHED_POWER_SHIFT;
9d5efe05 5326
1e3c88bd 5327 power *= scale_rt_power(cpu);
1399fa78 5328 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5329
5330 if (!power)
5331 power = 1;
5332
e51fd5e2 5333 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5334 sdg->sgp->power = power;
1e3c88bd
PZ
5335}
5336
029632fb 5337void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5338{
5339 struct sched_domain *child = sd->child;
5340 struct sched_group *group, *sdg = sd->groups;
863bffc8 5341 unsigned long power, power_orig;
4ec4412e
VG
5342 unsigned long interval;
5343
5344 interval = msecs_to_jiffies(sd->balance_interval);
5345 interval = clamp(interval, 1UL, max_load_balance_interval);
5346 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5347
5348 if (!child) {
5349 update_cpu_power(sd, cpu);
5350 return;
5351 }
5352
863bffc8 5353 power_orig = power = 0;
1e3c88bd 5354
74a5ce20
PZ
5355 if (child->flags & SD_OVERLAP) {
5356 /*
5357 * SD_OVERLAP domains cannot assume that child groups
5358 * span the current group.
5359 */
5360
863bffc8 5361 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5362 struct sched_group_power *sgp;
5363 struct rq *rq = cpu_rq(cpu);
863bffc8 5364
9abf24d4
SD
5365 /*
5366 * build_sched_domains() -> init_sched_groups_power()
5367 * gets here before we've attached the domains to the
5368 * runqueues.
5369 *
5370 * Use power_of(), which is set irrespective of domains
5371 * in update_cpu_power().
5372 *
5373 * This avoids power/power_orig from being 0 and
5374 * causing divide-by-zero issues on boot.
5375 *
5376 * Runtime updates will correct power_orig.
5377 */
5378 if (unlikely(!rq->sd)) {
5379 power_orig += power_of(cpu);
5380 power += power_of(cpu);
5381 continue;
5382 }
863bffc8 5383
9abf24d4
SD
5384 sgp = rq->sd->groups->sgp;
5385 power_orig += sgp->power_orig;
5386 power += sgp->power;
863bffc8 5387 }
74a5ce20
PZ
5388 } else {
5389 /*
5390 * !SD_OVERLAP domains can assume that child groups
5391 * span the current group.
5392 */
5393
5394 group = child->groups;
5395 do {
863bffc8 5396 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5397 power += group->sgp->power;
5398 group = group->next;
5399 } while (group != child->groups);
5400 }
1e3c88bd 5401
863bffc8
PZ
5402 sdg->sgp->power_orig = power_orig;
5403 sdg->sgp->power = power;
1e3c88bd
PZ
5404}
5405
9d5efe05
SV
5406/*
5407 * Try and fix up capacity for tiny siblings, this is needed when
5408 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5409 * which on its own isn't powerful enough.
5410 *
5411 * See update_sd_pick_busiest() and check_asym_packing().
5412 */
5413static inline int
5414fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5415{
5416 /*
1399fa78 5417 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5418 */
a6c75f2f 5419 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5420 return 0;
5421
5422 /*
5423 * If ~90% of the cpu_power is still there, we're good.
5424 */
9c3f75cb 5425 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5426 return 1;
5427
5428 return 0;
5429}
5430
30ce5dab
PZ
5431/*
5432 * Group imbalance indicates (and tries to solve) the problem where balancing
5433 * groups is inadequate due to tsk_cpus_allowed() constraints.
5434 *
5435 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5436 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5437 * Something like:
5438 *
5439 * { 0 1 2 3 } { 4 5 6 7 }
5440 * * * * *
5441 *
5442 * If we were to balance group-wise we'd place two tasks in the first group and
5443 * two tasks in the second group. Clearly this is undesired as it will overload
5444 * cpu 3 and leave one of the cpus in the second group unused.
5445 *
5446 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5447 * by noticing the lower domain failed to reach balance and had difficulty
5448 * moving tasks due to affinity constraints.
30ce5dab
PZ
5449 *
5450 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5451 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5452 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5453 * to create an effective group imbalance.
5454 *
5455 * This is a somewhat tricky proposition since the next run might not find the
5456 * group imbalance and decide the groups need to be balanced again. A most
5457 * subtle and fragile situation.
5458 */
5459
6263322c 5460static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5461{
6263322c 5462 return group->sgp->imbalance;
30ce5dab
PZ
5463}
5464
b37d9316
PZ
5465/*
5466 * Compute the group capacity.
5467 *
c61037e9
PZ
5468 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5469 * first dividing out the smt factor and computing the actual number of cores
5470 * and limit power unit capacity with that.
b37d9316
PZ
5471 */
5472static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5473{
c61037e9
PZ
5474 unsigned int capacity, smt, cpus;
5475 unsigned int power, power_orig;
5476
5477 power = group->sgp->power;
5478 power_orig = group->sgp->power_orig;
5479 cpus = group->group_weight;
b37d9316 5480
c61037e9
PZ
5481 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5482 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5483 capacity = cpus / smt; /* cores */
b37d9316 5484
c61037e9 5485 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5486 if (!capacity)
5487 capacity = fix_small_capacity(env->sd, group);
5488
5489 return capacity;
5490}
5491
1e3c88bd
PZ
5492/**
5493 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5494 * @env: The load balancing environment.
1e3c88bd 5495 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5496 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5497 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5498 * @sgs: variable to hold the statistics for this group.
5499 */
bd939f45
PZ
5500static inline void update_sg_lb_stats(struct lb_env *env,
5501 struct sched_group *group, int load_idx,
23f0d209 5502 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5503{
30ce5dab 5504 unsigned long load;
bd939f45 5505 int i;
1e3c88bd 5506
b72ff13c
PZ
5507 memset(sgs, 0, sizeof(*sgs));
5508
b9403130 5509 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5510 struct rq *rq = cpu_rq(i);
5511
1e3c88bd 5512 /* Bias balancing toward cpus of our domain */
6263322c 5513 if (local_group)
04f733b4 5514 load = target_load(i, load_idx);
6263322c 5515 else
1e3c88bd 5516 load = source_load(i, load_idx);
1e3c88bd
PZ
5517
5518 sgs->group_load += load;
380c9077 5519 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5520#ifdef CONFIG_NUMA_BALANCING
5521 sgs->nr_numa_running += rq->nr_numa_running;
5522 sgs->nr_preferred_running += rq->nr_preferred_running;
5523#endif
1e3c88bd 5524 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5525 if (idle_cpu(i))
5526 sgs->idle_cpus++;
1e3c88bd
PZ
5527 }
5528
1e3c88bd 5529 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5530 sgs->group_power = group->sgp->power;
5531 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5532
dd5feea1 5533 if (sgs->sum_nr_running)
38d0f770 5534 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5535
aae6d3dd 5536 sgs->group_weight = group->group_weight;
fab47622 5537
b37d9316
PZ
5538 sgs->group_imb = sg_imbalanced(group);
5539 sgs->group_capacity = sg_capacity(env, group);
5540
fab47622
NR
5541 if (sgs->group_capacity > sgs->sum_nr_running)
5542 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5543}
5544
532cb4c4
MN
5545/**
5546 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5547 * @env: The load balancing environment.
532cb4c4
MN
5548 * @sds: sched_domain statistics
5549 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5550 * @sgs: sched_group statistics
532cb4c4
MN
5551 *
5552 * Determine if @sg is a busier group than the previously selected
5553 * busiest group.
e69f6186
YB
5554 *
5555 * Return: %true if @sg is a busier group than the previously selected
5556 * busiest group. %false otherwise.
532cb4c4 5557 */
bd939f45 5558static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5559 struct sd_lb_stats *sds,
5560 struct sched_group *sg,
bd939f45 5561 struct sg_lb_stats *sgs)
532cb4c4 5562{
56cf515b 5563 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5564 return false;
5565
5566 if (sgs->sum_nr_running > sgs->group_capacity)
5567 return true;
5568
5569 if (sgs->group_imb)
5570 return true;
5571
5572 /*
5573 * ASYM_PACKING needs to move all the work to the lowest
5574 * numbered CPUs in the group, therefore mark all groups
5575 * higher than ourself as busy.
5576 */
bd939f45
PZ
5577 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5578 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5579 if (!sds->busiest)
5580 return true;
5581
5582 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5583 return true;
5584 }
5585
5586 return false;
5587}
5588
0ec8aa00
PZ
5589#ifdef CONFIG_NUMA_BALANCING
5590static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5591{
5592 if (sgs->sum_nr_running > sgs->nr_numa_running)
5593 return regular;
5594 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5595 return remote;
5596 return all;
5597}
5598
5599static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5600{
5601 if (rq->nr_running > rq->nr_numa_running)
5602 return regular;
5603 if (rq->nr_running > rq->nr_preferred_running)
5604 return remote;
5605 return all;
5606}
5607#else
5608static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5609{
5610 return all;
5611}
5612
5613static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5614{
5615 return regular;
5616}
5617#endif /* CONFIG_NUMA_BALANCING */
5618
1e3c88bd 5619/**
461819ac 5620 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5621 * @env: The load balancing environment.
1e3c88bd
PZ
5622 * @sds: variable to hold the statistics for this sched_domain.
5623 */
0ec8aa00 5624static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5625{
bd939f45
PZ
5626 struct sched_domain *child = env->sd->child;
5627 struct sched_group *sg = env->sd->groups;
56cf515b 5628 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5629 int load_idx, prefer_sibling = 0;
5630
5631 if (child && child->flags & SD_PREFER_SIBLING)
5632 prefer_sibling = 1;
5633
bd939f45 5634 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5635
5636 do {
56cf515b 5637 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5638 int local_group;
5639
bd939f45 5640 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5641 if (local_group) {
5642 sds->local = sg;
5643 sgs = &sds->local_stat;
b72ff13c
PZ
5644
5645 if (env->idle != CPU_NEWLY_IDLE ||
5646 time_after_eq(jiffies, sg->sgp->next_update))
5647 update_group_power(env->sd, env->dst_cpu);
56cf515b 5648 }
1e3c88bd 5649
56cf515b 5650 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5651
b72ff13c
PZ
5652 if (local_group)
5653 goto next_group;
5654
1e3c88bd
PZ
5655 /*
5656 * In case the child domain prefers tasks go to siblings
532cb4c4 5657 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5658 * and move all the excess tasks away. We lower the capacity
5659 * of a group only if the local group has the capacity to fit
5660 * these excess tasks, i.e. nr_running < group_capacity. The
5661 * extra check prevents the case where you always pull from the
5662 * heaviest group when it is already under-utilized (possible
5663 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5664 */
b72ff13c
PZ
5665 if (prefer_sibling && sds->local &&
5666 sds->local_stat.group_has_capacity)
147c5fc2 5667 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5668
b72ff13c 5669 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5670 sds->busiest = sg;
56cf515b 5671 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5672 }
5673
b72ff13c
PZ
5674next_group:
5675 /* Now, start updating sd_lb_stats */
5676 sds->total_load += sgs->group_load;
5677 sds->total_pwr += sgs->group_power;
5678
532cb4c4 5679 sg = sg->next;
bd939f45 5680 } while (sg != env->sd->groups);
0ec8aa00
PZ
5681
5682 if (env->sd->flags & SD_NUMA)
5683 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5684}
5685
532cb4c4
MN
5686/**
5687 * check_asym_packing - Check to see if the group is packed into the
5688 * sched doman.
5689 *
5690 * This is primarily intended to used at the sibling level. Some
5691 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5692 * case of POWER7, it can move to lower SMT modes only when higher
5693 * threads are idle. When in lower SMT modes, the threads will
5694 * perform better since they share less core resources. Hence when we
5695 * have idle threads, we want them to be the higher ones.
5696 *
5697 * This packing function is run on idle threads. It checks to see if
5698 * the busiest CPU in this domain (core in the P7 case) has a higher
5699 * CPU number than the packing function is being run on. Here we are
5700 * assuming lower CPU number will be equivalent to lower a SMT thread
5701 * number.
5702 *
e69f6186 5703 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5704 * this CPU. The amount of the imbalance is returned in *imbalance.
5705 *
cd96891d 5706 * @env: The load balancing environment.
532cb4c4 5707 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5708 */
bd939f45 5709static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5710{
5711 int busiest_cpu;
5712
bd939f45 5713 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5714 return 0;
5715
5716 if (!sds->busiest)
5717 return 0;
5718
5719 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5720 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5721 return 0;
5722
bd939f45 5723 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5724 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5725 SCHED_POWER_SCALE);
bd939f45 5726
532cb4c4 5727 return 1;
1e3c88bd
PZ
5728}
5729
5730/**
5731 * fix_small_imbalance - Calculate the minor imbalance that exists
5732 * amongst the groups of a sched_domain, during
5733 * load balancing.
cd96891d 5734 * @env: The load balancing environment.
1e3c88bd 5735 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5736 */
bd939f45
PZ
5737static inline
5738void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5739{
5740 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5741 unsigned int imbn = 2;
dd5feea1 5742 unsigned long scaled_busy_load_per_task;
56cf515b 5743 struct sg_lb_stats *local, *busiest;
1e3c88bd 5744
56cf515b
JK
5745 local = &sds->local_stat;
5746 busiest = &sds->busiest_stat;
1e3c88bd 5747
56cf515b
JK
5748 if (!local->sum_nr_running)
5749 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5750 else if (busiest->load_per_task > local->load_per_task)
5751 imbn = 1;
dd5feea1 5752
56cf515b
JK
5753 scaled_busy_load_per_task =
5754 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5755 busiest->group_power;
56cf515b 5756
3029ede3
VD
5757 if (busiest->avg_load + scaled_busy_load_per_task >=
5758 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5759 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5760 return;
5761 }
5762
5763 /*
5764 * OK, we don't have enough imbalance to justify moving tasks,
5765 * however we may be able to increase total CPU power used by
5766 * moving them.
5767 */
5768
3ae11c90 5769 pwr_now += busiest->group_power *
56cf515b 5770 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5771 pwr_now += local->group_power *
56cf515b 5772 min(local->load_per_task, local->avg_load);
1399fa78 5773 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5774
5775 /* Amount of load we'd subtract */
56cf515b 5776 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5777 busiest->group_power;
56cf515b 5778 if (busiest->avg_load > tmp) {
3ae11c90 5779 pwr_move += busiest->group_power *
56cf515b
JK
5780 min(busiest->load_per_task,
5781 busiest->avg_load - tmp);
5782 }
1e3c88bd
PZ
5783
5784 /* Amount of load we'd add */
3ae11c90 5785 if (busiest->avg_load * busiest->group_power <
56cf515b 5786 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5787 tmp = (busiest->avg_load * busiest->group_power) /
5788 local->group_power;
56cf515b
JK
5789 } else {
5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5791 local->group_power;
56cf515b 5792 }
3ae11c90
PZ
5793 pwr_move += local->group_power *
5794 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5795 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5796
5797 /* Move if we gain throughput */
5798 if (pwr_move > pwr_now)
56cf515b 5799 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5800}
5801
5802/**
5803 * calculate_imbalance - Calculate the amount of imbalance present within the
5804 * groups of a given sched_domain during load balance.
bd939f45 5805 * @env: load balance environment
1e3c88bd 5806 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5807 */
bd939f45 5808static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5809{
dd5feea1 5810 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5811 struct sg_lb_stats *local, *busiest;
5812
5813 local = &sds->local_stat;
56cf515b 5814 busiest = &sds->busiest_stat;
dd5feea1 5815
56cf515b 5816 if (busiest->group_imb) {
30ce5dab
PZ
5817 /*
5818 * In the group_imb case we cannot rely on group-wide averages
5819 * to ensure cpu-load equilibrium, look at wider averages. XXX
5820 */
56cf515b
JK
5821 busiest->load_per_task =
5822 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5823 }
5824
1e3c88bd
PZ
5825 /*
5826 * In the presence of smp nice balancing, certain scenarios can have
5827 * max load less than avg load(as we skip the groups at or below
5828 * its cpu_power, while calculating max_load..)
5829 */
b1885550
VD
5830 if (busiest->avg_load <= sds->avg_load ||
5831 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5832 env->imbalance = 0;
5833 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5834 }
5835
56cf515b 5836 if (!busiest->group_imb) {
dd5feea1
SS
5837 /*
5838 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5839 * Except of course for the group_imb case, since then we might
5840 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5841 */
56cf515b
JK
5842 load_above_capacity =
5843 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5844
1399fa78 5845 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5846 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5847 }
5848
5849 /*
5850 * We're trying to get all the cpus to the average_load, so we don't
5851 * want to push ourselves above the average load, nor do we wish to
5852 * reduce the max loaded cpu below the average load. At the same time,
5853 * we also don't want to reduce the group load below the group capacity
5854 * (so that we can implement power-savings policies etc). Thus we look
5855 * for the minimum possible imbalance.
dd5feea1 5856 */
30ce5dab 5857 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5858
5859 /* How much load to actually move to equalise the imbalance */
56cf515b 5860 env->imbalance = min(
3ae11c90
PZ
5861 max_pull * busiest->group_power,
5862 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5863 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5864
5865 /*
5866 * if *imbalance is less than the average load per runnable task
25985edc 5867 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5868 * a think about bumping its value to force at least one task to be
5869 * moved
5870 */
56cf515b 5871 if (env->imbalance < busiest->load_per_task)
bd939f45 5872 return fix_small_imbalance(env, sds);
1e3c88bd 5873}
fab47622 5874
1e3c88bd
PZ
5875/******* find_busiest_group() helpers end here *********************/
5876
5877/**
5878 * find_busiest_group - Returns the busiest group within the sched_domain
5879 * if there is an imbalance. If there isn't an imbalance, and
5880 * the user has opted for power-savings, it returns a group whose
5881 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5882 * such a group exists.
5883 *
5884 * Also calculates the amount of weighted load which should be moved
5885 * to restore balance.
5886 *
cd96891d 5887 * @env: The load balancing environment.
1e3c88bd 5888 *
e69f6186 5889 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5890 * - If no imbalance and user has opted for power-savings balance,
5891 * return the least loaded group whose CPUs can be
5892 * put to idle by rebalancing its tasks onto our group.
5893 */
56cf515b 5894static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5895{
56cf515b 5896 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5897 struct sd_lb_stats sds;
5898
147c5fc2 5899 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5900
5901 /*
5902 * Compute the various statistics relavent for load balancing at
5903 * this level.
5904 */
23f0d209 5905 update_sd_lb_stats(env, &sds);
56cf515b
JK
5906 local = &sds.local_stat;
5907 busiest = &sds.busiest_stat;
1e3c88bd 5908
bd939f45
PZ
5909 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5910 check_asym_packing(env, &sds))
532cb4c4
MN
5911 return sds.busiest;
5912
cc57aa8f 5913 /* There is no busy sibling group to pull tasks from */
56cf515b 5914 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5915 goto out_balanced;
5916
1399fa78 5917 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5918
866ab43e
PZ
5919 /*
5920 * If the busiest group is imbalanced the below checks don't
30ce5dab 5921 * work because they assume all things are equal, which typically
866ab43e
PZ
5922 * isn't true due to cpus_allowed constraints and the like.
5923 */
56cf515b 5924 if (busiest->group_imb)
866ab43e
PZ
5925 goto force_balance;
5926
cc57aa8f 5927 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5928 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5929 !busiest->group_has_capacity)
fab47622
NR
5930 goto force_balance;
5931
cc57aa8f
PZ
5932 /*
5933 * If the local group is more busy than the selected busiest group
5934 * don't try and pull any tasks.
5935 */
56cf515b 5936 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5937 goto out_balanced;
5938
cc57aa8f
PZ
5939 /*
5940 * Don't pull any tasks if this group is already above the domain
5941 * average load.
5942 */
56cf515b 5943 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5944 goto out_balanced;
5945
bd939f45 5946 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5947 /*
5948 * This cpu is idle. If the busiest group load doesn't
5949 * have more tasks than the number of available cpu's and
5950 * there is no imbalance between this and busiest group
5951 * wrt to idle cpu's, it is balanced.
5952 */
56cf515b
JK
5953 if ((local->idle_cpus < busiest->idle_cpus) &&
5954 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5955 goto out_balanced;
c186fafe
PZ
5956 } else {
5957 /*
5958 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5959 * imbalance_pct to be conservative.
5960 */
56cf515b
JK
5961 if (100 * busiest->avg_load <=
5962 env->sd->imbalance_pct * local->avg_load)
c186fafe 5963 goto out_balanced;
aae6d3dd 5964 }
1e3c88bd 5965
fab47622 5966force_balance:
1e3c88bd 5967 /* Looks like there is an imbalance. Compute it */
bd939f45 5968 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5969 return sds.busiest;
5970
5971out_balanced:
bd939f45 5972 env->imbalance = 0;
1e3c88bd
PZ
5973 return NULL;
5974}
5975
5976/*
5977 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5978 */
bd939f45 5979static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5980 struct sched_group *group)
1e3c88bd
PZ
5981{
5982 struct rq *busiest = NULL, *rq;
95a79b80 5983 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5984 int i;
5985
6906a408 5986 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5987 unsigned long power, capacity, wl;
5988 enum fbq_type rt;
5989
5990 rq = cpu_rq(i);
5991 rt = fbq_classify_rq(rq);
1e3c88bd 5992
0ec8aa00
PZ
5993 /*
5994 * We classify groups/runqueues into three groups:
5995 * - regular: there are !numa tasks
5996 * - remote: there are numa tasks that run on the 'wrong' node
5997 * - all: there is no distinction
5998 *
5999 * In order to avoid migrating ideally placed numa tasks,
6000 * ignore those when there's better options.
6001 *
6002 * If we ignore the actual busiest queue to migrate another
6003 * task, the next balance pass can still reduce the busiest
6004 * queue by moving tasks around inside the node.
6005 *
6006 * If we cannot move enough load due to this classification
6007 * the next pass will adjust the group classification and
6008 * allow migration of more tasks.
6009 *
6010 * Both cases only affect the total convergence complexity.
6011 */
6012 if (rt > env->fbq_type)
6013 continue;
6014
6015 power = power_of(i);
6016 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6017 if (!capacity)
bd939f45 6018 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6019
6e40f5bb 6020 wl = weighted_cpuload(i);
1e3c88bd 6021
6e40f5bb
TG
6022 /*
6023 * When comparing with imbalance, use weighted_cpuload()
6024 * which is not scaled with the cpu power.
6025 */
bd939f45 6026 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6027 continue;
6028
6e40f5bb
TG
6029 /*
6030 * For the load comparisons with the other cpu's, consider
6031 * the weighted_cpuload() scaled with the cpu power, so that
6032 * the load can be moved away from the cpu that is potentially
6033 * running at a lower capacity.
95a79b80
JK
6034 *
6035 * Thus we're looking for max(wl_i / power_i), crosswise
6036 * multiplication to rid ourselves of the division works out
6037 * to: wl_i * power_j > wl_j * power_i; where j is our
6038 * previous maximum.
6e40f5bb 6039 */
95a79b80
JK
6040 if (wl * busiest_power > busiest_load * power) {
6041 busiest_load = wl;
6042 busiest_power = power;
1e3c88bd
PZ
6043 busiest = rq;
6044 }
6045 }
6046
6047 return busiest;
6048}
6049
6050/*
6051 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6052 * so long as it is large enough.
6053 */
6054#define MAX_PINNED_INTERVAL 512
6055
6056/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6057DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6058
bd939f45 6059static int need_active_balance(struct lb_env *env)
1af3ed3d 6060{
bd939f45
PZ
6061 struct sched_domain *sd = env->sd;
6062
6063 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6064
6065 /*
6066 * ASYM_PACKING needs to force migrate tasks from busy but
6067 * higher numbered CPUs in order to pack all tasks in the
6068 * lowest numbered CPUs.
6069 */
bd939f45 6070 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6071 return 1;
1af3ed3d
PZ
6072 }
6073
6074 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6075}
6076
969c7921
TH
6077static int active_load_balance_cpu_stop(void *data);
6078
23f0d209
JK
6079static int should_we_balance(struct lb_env *env)
6080{
6081 struct sched_group *sg = env->sd->groups;
6082 struct cpumask *sg_cpus, *sg_mask;
6083 int cpu, balance_cpu = -1;
6084
6085 /*
6086 * In the newly idle case, we will allow all the cpu's
6087 * to do the newly idle load balance.
6088 */
6089 if (env->idle == CPU_NEWLY_IDLE)
6090 return 1;
6091
6092 sg_cpus = sched_group_cpus(sg);
6093 sg_mask = sched_group_mask(sg);
6094 /* Try to find first idle cpu */
6095 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6096 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6097 continue;
6098
6099 balance_cpu = cpu;
6100 break;
6101 }
6102
6103 if (balance_cpu == -1)
6104 balance_cpu = group_balance_cpu(sg);
6105
6106 /*
6107 * First idle cpu or the first cpu(busiest) in this sched group
6108 * is eligible for doing load balancing at this and above domains.
6109 */
b0cff9d8 6110 return balance_cpu == env->dst_cpu;
23f0d209
JK
6111}
6112
1e3c88bd
PZ
6113/*
6114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6115 * tasks if there is an imbalance.
6116 */
6117static int load_balance(int this_cpu, struct rq *this_rq,
6118 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6119 int *continue_balancing)
1e3c88bd 6120{
88b8dac0 6121 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6122 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6123 struct sched_group *group;
1e3c88bd
PZ
6124 struct rq *busiest;
6125 unsigned long flags;
e6252c3e 6126 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6127
8e45cb54
PZ
6128 struct lb_env env = {
6129 .sd = sd,
ddcdf6e7
PZ
6130 .dst_cpu = this_cpu,
6131 .dst_rq = this_rq,
88b8dac0 6132 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6133 .idle = idle,
eb95308e 6134 .loop_break = sched_nr_migrate_break,
b9403130 6135 .cpus = cpus,
0ec8aa00 6136 .fbq_type = all,
8e45cb54
PZ
6137 };
6138
cfc03118
JK
6139 /*
6140 * For NEWLY_IDLE load_balancing, we don't need to consider
6141 * other cpus in our group
6142 */
e02e60c1 6143 if (idle == CPU_NEWLY_IDLE)
cfc03118 6144 env.dst_grpmask = NULL;
cfc03118 6145
1e3c88bd
PZ
6146 cpumask_copy(cpus, cpu_active_mask);
6147
1e3c88bd
PZ
6148 schedstat_inc(sd, lb_count[idle]);
6149
6150redo:
23f0d209
JK
6151 if (!should_we_balance(&env)) {
6152 *continue_balancing = 0;
1e3c88bd 6153 goto out_balanced;
23f0d209 6154 }
1e3c88bd 6155
23f0d209 6156 group = find_busiest_group(&env);
1e3c88bd
PZ
6157 if (!group) {
6158 schedstat_inc(sd, lb_nobusyg[idle]);
6159 goto out_balanced;
6160 }
6161
b9403130 6162 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6163 if (!busiest) {
6164 schedstat_inc(sd, lb_nobusyq[idle]);
6165 goto out_balanced;
6166 }
6167
78feefc5 6168 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6169
bd939f45 6170 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6171
6172 ld_moved = 0;
6173 if (busiest->nr_running > 1) {
6174 /*
6175 * Attempt to move tasks. If find_busiest_group has found
6176 * an imbalance but busiest->nr_running <= 1, the group is
6177 * still unbalanced. ld_moved simply stays zero, so it is
6178 * correctly treated as an imbalance.
6179 */
8e45cb54 6180 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6181 env.src_cpu = busiest->cpu;
6182 env.src_rq = busiest;
6183 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6184
5d6523eb 6185more_balance:
1e3c88bd 6186 local_irq_save(flags);
78feefc5 6187 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6188
6189 /*
6190 * cur_ld_moved - load moved in current iteration
6191 * ld_moved - cumulative load moved across iterations
6192 */
6193 cur_ld_moved = move_tasks(&env);
6194 ld_moved += cur_ld_moved;
78feefc5 6195 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6196 local_irq_restore(flags);
6197
6198 /*
6199 * some other cpu did the load balance for us.
6200 */
88b8dac0
SV
6201 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6202 resched_cpu(env.dst_cpu);
6203
f1cd0858
JK
6204 if (env.flags & LBF_NEED_BREAK) {
6205 env.flags &= ~LBF_NEED_BREAK;
6206 goto more_balance;
6207 }
6208
88b8dac0
SV
6209 /*
6210 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6211 * us and move them to an alternate dst_cpu in our sched_group
6212 * where they can run. The upper limit on how many times we
6213 * iterate on same src_cpu is dependent on number of cpus in our
6214 * sched_group.
6215 *
6216 * This changes load balance semantics a bit on who can move
6217 * load to a given_cpu. In addition to the given_cpu itself
6218 * (or a ilb_cpu acting on its behalf where given_cpu is
6219 * nohz-idle), we now have balance_cpu in a position to move
6220 * load to given_cpu. In rare situations, this may cause
6221 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6222 * _independently_ and at _same_ time to move some load to
6223 * given_cpu) causing exceess load to be moved to given_cpu.
6224 * This however should not happen so much in practice and
6225 * moreover subsequent load balance cycles should correct the
6226 * excess load moved.
6227 */
6263322c 6228 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6229
7aff2e3a
VD
6230 /* Prevent to re-select dst_cpu via env's cpus */
6231 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6232
78feefc5 6233 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6234 env.dst_cpu = env.new_dst_cpu;
6263322c 6235 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6236 env.loop = 0;
6237 env.loop_break = sched_nr_migrate_break;
e02e60c1 6238
88b8dac0
SV
6239 /*
6240 * Go back to "more_balance" rather than "redo" since we
6241 * need to continue with same src_cpu.
6242 */
6243 goto more_balance;
6244 }
1e3c88bd 6245
6263322c
PZ
6246 /*
6247 * We failed to reach balance because of affinity.
6248 */
6249 if (sd_parent) {
6250 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6251
6252 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6253 *group_imbalance = 1;
6254 } else if (*group_imbalance)
6255 *group_imbalance = 0;
6256 }
6257
1e3c88bd 6258 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6259 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6260 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6261 if (!cpumask_empty(cpus)) {
6262 env.loop = 0;
6263 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6264 goto redo;
bbf18b19 6265 }
1e3c88bd
PZ
6266 goto out_balanced;
6267 }
6268 }
6269
6270 if (!ld_moved) {
6271 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6272 /*
6273 * Increment the failure counter only on periodic balance.
6274 * We do not want newidle balance, which can be very
6275 * frequent, pollute the failure counter causing
6276 * excessive cache_hot migrations and active balances.
6277 */
6278 if (idle != CPU_NEWLY_IDLE)
6279 sd->nr_balance_failed++;
1e3c88bd 6280
bd939f45 6281 if (need_active_balance(&env)) {
1e3c88bd
PZ
6282 raw_spin_lock_irqsave(&busiest->lock, flags);
6283
969c7921
TH
6284 /* don't kick the active_load_balance_cpu_stop,
6285 * if the curr task on busiest cpu can't be
6286 * moved to this_cpu
1e3c88bd
PZ
6287 */
6288 if (!cpumask_test_cpu(this_cpu,
fa17b507 6289 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6290 raw_spin_unlock_irqrestore(&busiest->lock,
6291 flags);
8e45cb54 6292 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6293 goto out_one_pinned;
6294 }
6295
969c7921
TH
6296 /*
6297 * ->active_balance synchronizes accesses to
6298 * ->active_balance_work. Once set, it's cleared
6299 * only after active load balance is finished.
6300 */
1e3c88bd
PZ
6301 if (!busiest->active_balance) {
6302 busiest->active_balance = 1;
6303 busiest->push_cpu = this_cpu;
6304 active_balance = 1;
6305 }
6306 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6307
bd939f45 6308 if (active_balance) {
969c7921
TH
6309 stop_one_cpu_nowait(cpu_of(busiest),
6310 active_load_balance_cpu_stop, busiest,
6311 &busiest->active_balance_work);
bd939f45 6312 }
1e3c88bd
PZ
6313
6314 /*
6315 * We've kicked active balancing, reset the failure
6316 * counter.
6317 */
6318 sd->nr_balance_failed = sd->cache_nice_tries+1;
6319 }
6320 } else
6321 sd->nr_balance_failed = 0;
6322
6323 if (likely(!active_balance)) {
6324 /* We were unbalanced, so reset the balancing interval */
6325 sd->balance_interval = sd->min_interval;
6326 } else {
6327 /*
6328 * If we've begun active balancing, start to back off. This
6329 * case may not be covered by the all_pinned logic if there
6330 * is only 1 task on the busy runqueue (because we don't call
6331 * move_tasks).
6332 */
6333 if (sd->balance_interval < sd->max_interval)
6334 sd->balance_interval *= 2;
6335 }
6336
1e3c88bd
PZ
6337 goto out;
6338
6339out_balanced:
6340 schedstat_inc(sd, lb_balanced[idle]);
6341
6342 sd->nr_balance_failed = 0;
6343
6344out_one_pinned:
6345 /* tune up the balancing interval */
8e45cb54 6346 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6347 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6348 (sd->balance_interval < sd->max_interval))
6349 sd->balance_interval *= 2;
6350
46e49b38 6351 ld_moved = 0;
1e3c88bd 6352out:
1e3c88bd
PZ
6353 return ld_moved;
6354}
6355
1e3c88bd
PZ
6356/*
6357 * idle_balance is called by schedule() if this_cpu is about to become
6358 * idle. Attempts to pull tasks from other CPUs.
6359 */
029632fb 6360void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6361{
6362 struct sched_domain *sd;
6363 int pulled_task = 0;
6364 unsigned long next_balance = jiffies + HZ;
9bd721c5 6365 u64 curr_cost = 0;
1e3c88bd 6366
78becc27 6367 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6368
6369 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6370 return;
6371
f492e12e
PZ
6372 /*
6373 * Drop the rq->lock, but keep IRQ/preempt disabled.
6374 */
6375 raw_spin_unlock(&this_rq->lock);
6376
48a16753 6377 update_blocked_averages(this_cpu);
dce840a0 6378 rcu_read_lock();
1e3c88bd
PZ
6379 for_each_domain(this_cpu, sd) {
6380 unsigned long interval;
23f0d209 6381 int continue_balancing = 1;
9bd721c5 6382 u64 t0, domain_cost;
1e3c88bd
PZ
6383
6384 if (!(sd->flags & SD_LOAD_BALANCE))
6385 continue;
6386
9bd721c5
JL
6387 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6388 break;
6389
f492e12e 6390 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6391 t0 = sched_clock_cpu(this_cpu);
6392
1e3c88bd 6393 /* If we've pulled tasks over stop searching: */
f492e12e 6394 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6395 sd, CPU_NEWLY_IDLE,
6396 &continue_balancing);
9bd721c5
JL
6397
6398 domain_cost = sched_clock_cpu(this_cpu) - t0;
6399 if (domain_cost > sd->max_newidle_lb_cost)
6400 sd->max_newidle_lb_cost = domain_cost;
6401
6402 curr_cost += domain_cost;
f492e12e 6403 }
1e3c88bd
PZ
6404
6405 interval = msecs_to_jiffies(sd->balance_interval);
6406 if (time_after(next_balance, sd->last_balance + interval))
6407 next_balance = sd->last_balance + interval;
d5ad140b
NR
6408 if (pulled_task) {
6409 this_rq->idle_stamp = 0;
1e3c88bd 6410 break;
d5ad140b 6411 }
1e3c88bd 6412 }
dce840a0 6413 rcu_read_unlock();
f492e12e
PZ
6414
6415 raw_spin_lock(&this_rq->lock);
6416
1e3c88bd
PZ
6417 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6418 /*
6419 * We are going idle. next_balance may be set based on
6420 * a busy processor. So reset next_balance.
6421 */
6422 this_rq->next_balance = next_balance;
6423 }
9bd721c5
JL
6424
6425 if (curr_cost > this_rq->max_idle_balance_cost)
6426 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6427}
6428
6429/*
969c7921
TH
6430 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6431 * running tasks off the busiest CPU onto idle CPUs. It requires at
6432 * least 1 task to be running on each physical CPU where possible, and
6433 * avoids physical / logical imbalances.
1e3c88bd 6434 */
969c7921 6435static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6436{
969c7921
TH
6437 struct rq *busiest_rq = data;
6438 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6439 int target_cpu = busiest_rq->push_cpu;
969c7921 6440 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6441 struct sched_domain *sd;
969c7921
TH
6442
6443 raw_spin_lock_irq(&busiest_rq->lock);
6444
6445 /* make sure the requested cpu hasn't gone down in the meantime */
6446 if (unlikely(busiest_cpu != smp_processor_id() ||
6447 !busiest_rq->active_balance))
6448 goto out_unlock;
1e3c88bd
PZ
6449
6450 /* Is there any task to move? */
6451 if (busiest_rq->nr_running <= 1)
969c7921 6452 goto out_unlock;
1e3c88bd
PZ
6453
6454 /*
6455 * This condition is "impossible", if it occurs
6456 * we need to fix it. Originally reported by
6457 * Bjorn Helgaas on a 128-cpu setup.
6458 */
6459 BUG_ON(busiest_rq == target_rq);
6460
6461 /* move a task from busiest_rq to target_rq */
6462 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6463
6464 /* Search for an sd spanning us and the target CPU. */
dce840a0 6465 rcu_read_lock();
1e3c88bd
PZ
6466 for_each_domain(target_cpu, sd) {
6467 if ((sd->flags & SD_LOAD_BALANCE) &&
6468 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6469 break;
6470 }
6471
6472 if (likely(sd)) {
8e45cb54
PZ
6473 struct lb_env env = {
6474 .sd = sd,
ddcdf6e7
PZ
6475 .dst_cpu = target_cpu,
6476 .dst_rq = target_rq,
6477 .src_cpu = busiest_rq->cpu,
6478 .src_rq = busiest_rq,
8e45cb54
PZ
6479 .idle = CPU_IDLE,
6480 };
6481
1e3c88bd
PZ
6482 schedstat_inc(sd, alb_count);
6483
8e45cb54 6484 if (move_one_task(&env))
1e3c88bd
PZ
6485 schedstat_inc(sd, alb_pushed);
6486 else
6487 schedstat_inc(sd, alb_failed);
6488 }
dce840a0 6489 rcu_read_unlock();
1e3c88bd 6490 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6491out_unlock:
6492 busiest_rq->active_balance = 0;
6493 raw_spin_unlock_irq(&busiest_rq->lock);
6494 return 0;
1e3c88bd
PZ
6495}
6496
3451d024 6497#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6498/*
6499 * idle load balancing details
83cd4fe2
VP
6500 * - When one of the busy CPUs notice that there may be an idle rebalancing
6501 * needed, they will kick the idle load balancer, which then does idle
6502 * load balancing for all the idle CPUs.
6503 */
1e3c88bd 6504static struct {
83cd4fe2 6505 cpumask_var_t idle_cpus_mask;
0b005cf5 6506 atomic_t nr_cpus;
83cd4fe2
VP
6507 unsigned long next_balance; /* in jiffy units */
6508} nohz ____cacheline_aligned;
1e3c88bd 6509
3dd0337d 6510static inline int find_new_ilb(void)
1e3c88bd 6511{
0b005cf5 6512 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6513
786d6dc7
SS
6514 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6515 return ilb;
6516
6517 return nr_cpu_ids;
1e3c88bd 6518}
1e3c88bd 6519
83cd4fe2
VP
6520/*
6521 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6522 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6523 * CPU (if there is one).
6524 */
0aeeeeba 6525static void nohz_balancer_kick(void)
83cd4fe2
VP
6526{
6527 int ilb_cpu;
6528
6529 nohz.next_balance++;
6530
3dd0337d 6531 ilb_cpu = find_new_ilb();
83cd4fe2 6532
0b005cf5
SS
6533 if (ilb_cpu >= nr_cpu_ids)
6534 return;
83cd4fe2 6535
cd490c5b 6536 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6537 return;
6538 /*
6539 * Use smp_send_reschedule() instead of resched_cpu().
6540 * This way we generate a sched IPI on the target cpu which
6541 * is idle. And the softirq performing nohz idle load balance
6542 * will be run before returning from the IPI.
6543 */
6544 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6545 return;
6546}
6547
c1cc017c 6548static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6549{
6550 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6551 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6552 atomic_dec(&nohz.nr_cpus);
6553 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6554 }
6555}
6556
69e1e811
SS
6557static inline void set_cpu_sd_state_busy(void)
6558{
6559 struct sched_domain *sd;
37dc6b50 6560 int cpu = smp_processor_id();
69e1e811 6561
69e1e811 6562 rcu_read_lock();
37dc6b50 6563 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6564
6565 if (!sd || !sd->nohz_idle)
6566 goto unlock;
6567 sd->nohz_idle = 0;
6568
37dc6b50 6569 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6570unlock:
69e1e811
SS
6571 rcu_read_unlock();
6572}
6573
6574void set_cpu_sd_state_idle(void)
6575{
6576 struct sched_domain *sd;
37dc6b50 6577 int cpu = smp_processor_id();
69e1e811 6578
69e1e811 6579 rcu_read_lock();
37dc6b50 6580 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6581
6582 if (!sd || sd->nohz_idle)
6583 goto unlock;
6584 sd->nohz_idle = 1;
6585
37dc6b50 6586 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6587unlock:
69e1e811
SS
6588 rcu_read_unlock();
6589}
6590
1e3c88bd 6591/*
c1cc017c 6592 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6593 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6594 */
c1cc017c 6595void nohz_balance_enter_idle(int cpu)
1e3c88bd 6596{
71325960
SS
6597 /*
6598 * If this cpu is going down, then nothing needs to be done.
6599 */
6600 if (!cpu_active(cpu))
6601 return;
6602
c1cc017c
AS
6603 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6604 return;
1e3c88bd 6605
c1cc017c
AS
6606 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6607 atomic_inc(&nohz.nr_cpus);
6608 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6609}
71325960 6610
0db0628d 6611static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6612 unsigned long action, void *hcpu)
6613{
6614 switch (action & ~CPU_TASKS_FROZEN) {
6615 case CPU_DYING:
c1cc017c 6616 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6617 return NOTIFY_OK;
6618 default:
6619 return NOTIFY_DONE;
6620 }
6621}
1e3c88bd
PZ
6622#endif
6623
6624static DEFINE_SPINLOCK(balancing);
6625
49c022e6
PZ
6626/*
6627 * Scale the max load_balance interval with the number of CPUs in the system.
6628 * This trades load-balance latency on larger machines for less cross talk.
6629 */
029632fb 6630void update_max_interval(void)
49c022e6
PZ
6631{
6632 max_load_balance_interval = HZ*num_online_cpus()/10;
6633}
6634
1e3c88bd
PZ
6635/*
6636 * It checks each scheduling domain to see if it is due to be balanced,
6637 * and initiates a balancing operation if so.
6638 *
b9b0853a 6639 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6640 */
f7ed0a89 6641static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6642{
23f0d209 6643 int continue_balancing = 1;
f7ed0a89 6644 int cpu = rq->cpu;
1e3c88bd 6645 unsigned long interval;
04f733b4 6646 struct sched_domain *sd;
1e3c88bd
PZ
6647 /* Earliest time when we have to do rebalance again */
6648 unsigned long next_balance = jiffies + 60*HZ;
6649 int update_next_balance = 0;
f48627e6
JL
6650 int need_serialize, need_decay = 0;
6651 u64 max_cost = 0;
1e3c88bd 6652
48a16753 6653 update_blocked_averages(cpu);
2069dd75 6654
dce840a0 6655 rcu_read_lock();
1e3c88bd 6656 for_each_domain(cpu, sd) {
f48627e6
JL
6657 /*
6658 * Decay the newidle max times here because this is a regular
6659 * visit to all the domains. Decay ~1% per second.
6660 */
6661 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6662 sd->max_newidle_lb_cost =
6663 (sd->max_newidle_lb_cost * 253) / 256;
6664 sd->next_decay_max_lb_cost = jiffies + HZ;
6665 need_decay = 1;
6666 }
6667 max_cost += sd->max_newidle_lb_cost;
6668
1e3c88bd
PZ
6669 if (!(sd->flags & SD_LOAD_BALANCE))
6670 continue;
6671
f48627e6
JL
6672 /*
6673 * Stop the load balance at this level. There is another
6674 * CPU in our sched group which is doing load balancing more
6675 * actively.
6676 */
6677 if (!continue_balancing) {
6678 if (need_decay)
6679 continue;
6680 break;
6681 }
6682
1e3c88bd
PZ
6683 interval = sd->balance_interval;
6684 if (idle != CPU_IDLE)
6685 interval *= sd->busy_factor;
6686
6687 /* scale ms to jiffies */
6688 interval = msecs_to_jiffies(interval);
49c022e6 6689 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6690
6691 need_serialize = sd->flags & SD_SERIALIZE;
6692
6693 if (need_serialize) {
6694 if (!spin_trylock(&balancing))
6695 goto out;
6696 }
6697
6698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6699 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6700 /*
6263322c 6701 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6702 * env->dst_cpu, so we can't know our idle
6703 * state even if we migrated tasks. Update it.
1e3c88bd 6704 */
de5eb2dd 6705 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6706 }
6707 sd->last_balance = jiffies;
6708 }
6709 if (need_serialize)
6710 spin_unlock(&balancing);
6711out:
6712 if (time_after(next_balance, sd->last_balance + interval)) {
6713 next_balance = sd->last_balance + interval;
6714 update_next_balance = 1;
6715 }
f48627e6
JL
6716 }
6717 if (need_decay) {
1e3c88bd 6718 /*
f48627e6
JL
6719 * Ensure the rq-wide value also decays but keep it at a
6720 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6721 */
f48627e6
JL
6722 rq->max_idle_balance_cost =
6723 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6724 }
dce840a0 6725 rcu_read_unlock();
1e3c88bd
PZ
6726
6727 /*
6728 * next_balance will be updated only when there is a need.
6729 * When the cpu is attached to null domain for ex, it will not be
6730 * updated.
6731 */
6732 if (likely(update_next_balance))
6733 rq->next_balance = next_balance;
6734}
6735
3451d024 6736#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6737/*
3451d024 6738 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6739 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6740 */
208cb16b 6741static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 6742{
208cb16b 6743 int this_cpu = this_rq->cpu;
83cd4fe2
VP
6744 struct rq *rq;
6745 int balance_cpu;
6746
1c792db7
SS
6747 if (idle != CPU_IDLE ||
6748 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6749 goto end;
83cd4fe2
VP
6750
6751 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6752 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6753 continue;
6754
6755 /*
6756 * If this cpu gets work to do, stop the load balancing
6757 * work being done for other cpus. Next load
6758 * balancing owner will pick it up.
6759 */
1c792db7 6760 if (need_resched())
83cd4fe2 6761 break;
83cd4fe2 6762
5ed4f1d9
VG
6763 rq = cpu_rq(balance_cpu);
6764
6765 raw_spin_lock_irq(&rq->lock);
6766 update_rq_clock(rq);
6767 update_idle_cpu_load(rq);
6768 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 6769
f7ed0a89 6770 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 6771
83cd4fe2
VP
6772 if (time_after(this_rq->next_balance, rq->next_balance))
6773 this_rq->next_balance = rq->next_balance;
6774 }
6775 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6776end:
6777 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6778}
6779
6780/*
0b005cf5
SS
6781 * Current heuristic for kicking the idle load balancer in the presence
6782 * of an idle cpu is the system.
6783 * - This rq has more than one task.
6784 * - At any scheduler domain level, this cpu's scheduler group has multiple
6785 * busy cpu's exceeding the group's power.
6786 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6787 * domain span are idle.
83cd4fe2 6788 */
4a725627 6789static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
6790{
6791 unsigned long now = jiffies;
0b005cf5 6792 struct sched_domain *sd;
37dc6b50 6793 struct sched_group_power *sgp;
4a725627 6794 int nr_busy, cpu = rq->cpu;
83cd4fe2 6795
4a725627 6796 if (unlikely(rq->idle_balance))
83cd4fe2
VP
6797 return 0;
6798
1c792db7
SS
6799 /*
6800 * We may be recently in ticked or tickless idle mode. At the first
6801 * busy tick after returning from idle, we will update the busy stats.
6802 */
69e1e811 6803 set_cpu_sd_state_busy();
c1cc017c 6804 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6805
6806 /*
6807 * None are in tickless mode and hence no need for NOHZ idle load
6808 * balancing.
6809 */
6810 if (likely(!atomic_read(&nohz.nr_cpus)))
6811 return 0;
1c792db7
SS
6812
6813 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6814 return 0;
6815
0b005cf5
SS
6816 if (rq->nr_running >= 2)
6817 goto need_kick;
83cd4fe2 6818
067491b7 6819 rcu_read_lock();
37dc6b50 6820 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6821
37dc6b50
PM
6822 if (sd) {
6823 sgp = sd->groups->sgp;
6824 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6825
37dc6b50 6826 if (nr_busy > 1)
067491b7 6827 goto need_kick_unlock;
83cd4fe2 6828 }
37dc6b50
PM
6829
6830 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6831
6832 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6833 sched_domain_span(sd)) < cpu))
6834 goto need_kick_unlock;
6835
067491b7 6836 rcu_read_unlock();
83cd4fe2 6837 return 0;
067491b7
PZ
6838
6839need_kick_unlock:
6840 rcu_read_unlock();
0b005cf5
SS
6841need_kick:
6842 return 1;
83cd4fe2
VP
6843}
6844#else
208cb16b 6845static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
6846#endif
6847
6848/*
6849 * run_rebalance_domains is triggered when needed from the scheduler tick.
6850 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6851 */
1e3c88bd
PZ
6852static void run_rebalance_domains(struct softirq_action *h)
6853{
208cb16b 6854 struct rq *this_rq = this_rq();
6eb57e0d 6855 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6856 CPU_IDLE : CPU_NOT_IDLE;
6857
f7ed0a89 6858 rebalance_domains(this_rq, idle);
1e3c88bd 6859
1e3c88bd 6860 /*
83cd4fe2 6861 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6862 * balancing on behalf of the other idle cpus whose ticks are
6863 * stopped.
6864 */
208cb16b 6865 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
6866}
6867
63f609b1 6868static inline int on_null_domain(struct rq *rq)
1e3c88bd 6869{
63f609b1 6870 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
6871}
6872
6873/*
6874 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6875 */
7caff66f 6876void trigger_load_balance(struct rq *rq)
1e3c88bd 6877{
1e3c88bd 6878 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
6879 if (unlikely(on_null_domain(rq)))
6880 return;
6881
6882 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 6883 raise_softirq(SCHED_SOFTIRQ);
3451d024 6884#ifdef CONFIG_NO_HZ_COMMON
c726099e 6885 if (nohz_kick_needed(rq))
0aeeeeba 6886 nohz_balancer_kick();
83cd4fe2 6887#endif
1e3c88bd
PZ
6888}
6889
0bcdcf28
CE
6890static void rq_online_fair(struct rq *rq)
6891{
6892 update_sysctl();
6893}
6894
6895static void rq_offline_fair(struct rq *rq)
6896{
6897 update_sysctl();
a4c96ae3
PB
6898
6899 /* Ensure any throttled groups are reachable by pick_next_task */
6900 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6901}
6902
55e12e5e 6903#endif /* CONFIG_SMP */
e1d1484f 6904
bf0f6f24
IM
6905/*
6906 * scheduler tick hitting a task of our scheduling class:
6907 */
8f4d37ec 6908static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6909{
6910 struct cfs_rq *cfs_rq;
6911 struct sched_entity *se = &curr->se;
6912
6913 for_each_sched_entity(se) {
6914 cfs_rq = cfs_rq_of(se);
8f4d37ec 6915 entity_tick(cfs_rq, se, queued);
bf0f6f24 6916 }
18bf2805 6917
10e84b97 6918 if (numabalancing_enabled)
cbee9f88 6919 task_tick_numa(rq, curr);
3d59eebc 6920
18bf2805 6921 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6922}
6923
6924/*
cd29fe6f
PZ
6925 * called on fork with the child task as argument from the parent's context
6926 * - child not yet on the tasklist
6927 * - preemption disabled
bf0f6f24 6928 */
cd29fe6f 6929static void task_fork_fair(struct task_struct *p)
bf0f6f24 6930{
4fc420c9
DN
6931 struct cfs_rq *cfs_rq;
6932 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6933 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6934 struct rq *rq = this_rq();
6935 unsigned long flags;
6936
05fa785c 6937 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6938
861d034e
PZ
6939 update_rq_clock(rq);
6940
4fc420c9
DN
6941 cfs_rq = task_cfs_rq(current);
6942 curr = cfs_rq->curr;
6943
6c9a27f5
DN
6944 /*
6945 * Not only the cpu but also the task_group of the parent might have
6946 * been changed after parent->se.parent,cfs_rq were copied to
6947 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6948 * of child point to valid ones.
6949 */
6950 rcu_read_lock();
6951 __set_task_cpu(p, this_cpu);
6952 rcu_read_unlock();
bf0f6f24 6953
7109c442 6954 update_curr(cfs_rq);
cd29fe6f 6955
b5d9d734
MG
6956 if (curr)
6957 se->vruntime = curr->vruntime;
aeb73b04 6958 place_entity(cfs_rq, se, 1);
4d78e7b6 6959
cd29fe6f 6960 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6961 /*
edcb60a3
IM
6962 * Upon rescheduling, sched_class::put_prev_task() will place
6963 * 'current' within the tree based on its new key value.
6964 */
4d78e7b6 6965 swap(curr->vruntime, se->vruntime);
aec0a514 6966 resched_task(rq->curr);
4d78e7b6 6967 }
bf0f6f24 6968
88ec22d3
PZ
6969 se->vruntime -= cfs_rq->min_vruntime;
6970
05fa785c 6971 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6972}
6973
cb469845
SR
6974/*
6975 * Priority of the task has changed. Check to see if we preempt
6976 * the current task.
6977 */
da7a735e
PZ
6978static void
6979prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6980{
da7a735e
PZ
6981 if (!p->se.on_rq)
6982 return;
6983
cb469845
SR
6984 /*
6985 * Reschedule if we are currently running on this runqueue and
6986 * our priority decreased, or if we are not currently running on
6987 * this runqueue and our priority is higher than the current's
6988 */
da7a735e 6989 if (rq->curr == p) {
cb469845
SR
6990 if (p->prio > oldprio)
6991 resched_task(rq->curr);
6992 } else
15afe09b 6993 check_preempt_curr(rq, p, 0);
cb469845
SR
6994}
6995
da7a735e
PZ
6996static void switched_from_fair(struct rq *rq, struct task_struct *p)
6997{
6998 struct sched_entity *se = &p->se;
6999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7000
7001 /*
7002 * Ensure the task's vruntime is normalized, so that when its
7003 * switched back to the fair class the enqueue_entity(.flags=0) will
7004 * do the right thing.
7005 *
7006 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7007 * have normalized the vruntime, if it was !on_rq, then only when
7008 * the task is sleeping will it still have non-normalized vruntime.
7009 */
7010 if (!se->on_rq && p->state != TASK_RUNNING) {
7011 /*
7012 * Fix up our vruntime so that the current sleep doesn't
7013 * cause 'unlimited' sleep bonus.
7014 */
7015 place_entity(cfs_rq, se, 0);
7016 se->vruntime -= cfs_rq->min_vruntime;
7017 }
9ee474f5 7018
141965c7 7019#ifdef CONFIG_SMP
9ee474f5
PT
7020 /*
7021 * Remove our load from contribution when we leave sched_fair
7022 * and ensure we don't carry in an old decay_count if we
7023 * switch back.
7024 */
87e3c8ae
KT
7025 if (se->avg.decay_count) {
7026 __synchronize_entity_decay(se);
7027 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7028 }
7029#endif
da7a735e
PZ
7030}
7031
cb469845
SR
7032/*
7033 * We switched to the sched_fair class.
7034 */
da7a735e 7035static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7036{
da7a735e
PZ
7037 if (!p->se.on_rq)
7038 return;
7039
cb469845
SR
7040 /*
7041 * We were most likely switched from sched_rt, so
7042 * kick off the schedule if running, otherwise just see
7043 * if we can still preempt the current task.
7044 */
da7a735e 7045 if (rq->curr == p)
cb469845
SR
7046 resched_task(rq->curr);
7047 else
15afe09b 7048 check_preempt_curr(rq, p, 0);
cb469845
SR
7049}
7050
83b699ed
SV
7051/* Account for a task changing its policy or group.
7052 *
7053 * This routine is mostly called to set cfs_rq->curr field when a task
7054 * migrates between groups/classes.
7055 */
7056static void set_curr_task_fair(struct rq *rq)
7057{
7058 struct sched_entity *se = &rq->curr->se;
7059
ec12cb7f
PT
7060 for_each_sched_entity(se) {
7061 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7062
7063 set_next_entity(cfs_rq, se);
7064 /* ensure bandwidth has been allocated on our new cfs_rq */
7065 account_cfs_rq_runtime(cfs_rq, 0);
7066 }
83b699ed
SV
7067}
7068
029632fb
PZ
7069void init_cfs_rq(struct cfs_rq *cfs_rq)
7070{
7071 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7072 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7073#ifndef CONFIG_64BIT
7074 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7075#endif
141965c7 7076#ifdef CONFIG_SMP
9ee474f5 7077 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7078 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7079#endif
029632fb
PZ
7080}
7081
810b3817 7082#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7083static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7084{
aff3e498 7085 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7086 /*
7087 * If the task was not on the rq at the time of this cgroup movement
7088 * it must have been asleep, sleeping tasks keep their ->vruntime
7089 * absolute on their old rq until wakeup (needed for the fair sleeper
7090 * bonus in place_entity()).
7091 *
7092 * If it was on the rq, we've just 'preempted' it, which does convert
7093 * ->vruntime to a relative base.
7094 *
7095 * Make sure both cases convert their relative position when migrating
7096 * to another cgroup's rq. This does somewhat interfere with the
7097 * fair sleeper stuff for the first placement, but who cares.
7098 */
7ceff013
DN
7099 /*
7100 * When !on_rq, vruntime of the task has usually NOT been normalized.
7101 * But there are some cases where it has already been normalized:
7102 *
7103 * - Moving a forked child which is waiting for being woken up by
7104 * wake_up_new_task().
62af3783
DN
7105 * - Moving a task which has been woken up by try_to_wake_up() and
7106 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7107 *
7108 * To prevent boost or penalty in the new cfs_rq caused by delta
7109 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7110 */
62af3783 7111 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7112 on_rq = 1;
7113
b2b5ce02
PZ
7114 if (!on_rq)
7115 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7116 set_task_rq(p, task_cpu(p));
aff3e498
PT
7117 if (!on_rq) {
7118 cfs_rq = cfs_rq_of(&p->se);
7119 p->se.vruntime += cfs_rq->min_vruntime;
7120#ifdef CONFIG_SMP
7121 /*
7122 * migrate_task_rq_fair() will have removed our previous
7123 * contribution, but we must synchronize for ongoing future
7124 * decay.
7125 */
7126 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7127 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7128#endif
7129 }
810b3817 7130}
029632fb
PZ
7131
7132void free_fair_sched_group(struct task_group *tg)
7133{
7134 int i;
7135
7136 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7137
7138 for_each_possible_cpu(i) {
7139 if (tg->cfs_rq)
7140 kfree(tg->cfs_rq[i]);
7141 if (tg->se)
7142 kfree(tg->se[i]);
7143 }
7144
7145 kfree(tg->cfs_rq);
7146 kfree(tg->se);
7147}
7148
7149int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7150{
7151 struct cfs_rq *cfs_rq;
7152 struct sched_entity *se;
7153 int i;
7154
7155 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7156 if (!tg->cfs_rq)
7157 goto err;
7158 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7159 if (!tg->se)
7160 goto err;
7161
7162 tg->shares = NICE_0_LOAD;
7163
7164 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7165
7166 for_each_possible_cpu(i) {
7167 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7168 GFP_KERNEL, cpu_to_node(i));
7169 if (!cfs_rq)
7170 goto err;
7171
7172 se = kzalloc_node(sizeof(struct sched_entity),
7173 GFP_KERNEL, cpu_to_node(i));
7174 if (!se)
7175 goto err_free_rq;
7176
7177 init_cfs_rq(cfs_rq);
7178 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7179 }
7180
7181 return 1;
7182
7183err_free_rq:
7184 kfree(cfs_rq);
7185err:
7186 return 0;
7187}
7188
7189void unregister_fair_sched_group(struct task_group *tg, int cpu)
7190{
7191 struct rq *rq = cpu_rq(cpu);
7192 unsigned long flags;
7193
7194 /*
7195 * Only empty task groups can be destroyed; so we can speculatively
7196 * check on_list without danger of it being re-added.
7197 */
7198 if (!tg->cfs_rq[cpu]->on_list)
7199 return;
7200
7201 raw_spin_lock_irqsave(&rq->lock, flags);
7202 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7203 raw_spin_unlock_irqrestore(&rq->lock, flags);
7204}
7205
7206void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7207 struct sched_entity *se, int cpu,
7208 struct sched_entity *parent)
7209{
7210 struct rq *rq = cpu_rq(cpu);
7211
7212 cfs_rq->tg = tg;
7213 cfs_rq->rq = rq;
029632fb
PZ
7214 init_cfs_rq_runtime(cfs_rq);
7215
7216 tg->cfs_rq[cpu] = cfs_rq;
7217 tg->se[cpu] = se;
7218
7219 /* se could be NULL for root_task_group */
7220 if (!se)
7221 return;
7222
7223 if (!parent)
7224 se->cfs_rq = &rq->cfs;
7225 else
7226 se->cfs_rq = parent->my_q;
7227
7228 se->my_q = cfs_rq;
0ac9b1c2
PT
7229 /* guarantee group entities always have weight */
7230 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7231 se->parent = parent;
7232}
7233
7234static DEFINE_MUTEX(shares_mutex);
7235
7236int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7237{
7238 int i;
7239 unsigned long flags;
7240
7241 /*
7242 * We can't change the weight of the root cgroup.
7243 */
7244 if (!tg->se[0])
7245 return -EINVAL;
7246
7247 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7248
7249 mutex_lock(&shares_mutex);
7250 if (tg->shares == shares)
7251 goto done;
7252
7253 tg->shares = shares;
7254 for_each_possible_cpu(i) {
7255 struct rq *rq = cpu_rq(i);
7256 struct sched_entity *se;
7257
7258 se = tg->se[i];
7259 /* Propagate contribution to hierarchy */
7260 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7261
7262 /* Possible calls to update_curr() need rq clock */
7263 update_rq_clock(rq);
17bc14b7 7264 for_each_sched_entity(se)
029632fb
PZ
7265 update_cfs_shares(group_cfs_rq(se));
7266 raw_spin_unlock_irqrestore(&rq->lock, flags);
7267 }
7268
7269done:
7270 mutex_unlock(&shares_mutex);
7271 return 0;
7272}
7273#else /* CONFIG_FAIR_GROUP_SCHED */
7274
7275void free_fair_sched_group(struct task_group *tg) { }
7276
7277int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7278{
7279 return 1;
7280}
7281
7282void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7283
7284#endif /* CONFIG_FAIR_GROUP_SCHED */
7285
810b3817 7286
6d686f45 7287static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7288{
7289 struct sched_entity *se = &task->se;
0d721cea
PW
7290 unsigned int rr_interval = 0;
7291
7292 /*
7293 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7294 * idle runqueue:
7295 */
0d721cea 7296 if (rq->cfs.load.weight)
a59f4e07 7297 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7298
7299 return rr_interval;
7300}
7301
bf0f6f24
IM
7302/*
7303 * All the scheduling class methods:
7304 */
029632fb 7305const struct sched_class fair_sched_class = {
5522d5d5 7306 .next = &idle_sched_class,
bf0f6f24
IM
7307 .enqueue_task = enqueue_task_fair,
7308 .dequeue_task = dequeue_task_fair,
7309 .yield_task = yield_task_fair,
d95f4122 7310 .yield_to_task = yield_to_task_fair,
bf0f6f24 7311
2e09bf55 7312 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7313
7314 .pick_next_task = pick_next_task_fair,
7315 .put_prev_task = put_prev_task_fair,
7316
681f3e68 7317#ifdef CONFIG_SMP
4ce72a2c 7318 .select_task_rq = select_task_rq_fair,
0a74bef8 7319 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7320
0bcdcf28
CE
7321 .rq_online = rq_online_fair,
7322 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7323
7324 .task_waking = task_waking_fair,
681f3e68 7325#endif
bf0f6f24 7326
83b699ed 7327 .set_curr_task = set_curr_task_fair,
bf0f6f24 7328 .task_tick = task_tick_fair,
cd29fe6f 7329 .task_fork = task_fork_fair,
cb469845
SR
7330
7331 .prio_changed = prio_changed_fair,
da7a735e 7332 .switched_from = switched_from_fair,
cb469845 7333 .switched_to = switched_to_fair,
810b3817 7334
0d721cea
PW
7335 .get_rr_interval = get_rr_interval_fair,
7336
810b3817 7337#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7338 .task_move_group = task_move_group_fair,
810b3817 7339#endif
bf0f6f24
IM
7340};
7341
7342#ifdef CONFIG_SCHED_DEBUG
029632fb 7343void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7344{
bf0f6f24
IM
7345 struct cfs_rq *cfs_rq;
7346
5973e5b9 7347 rcu_read_lock();
c3b64f1e 7348 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7349 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7350 rcu_read_unlock();
bf0f6f24
IM
7351}
7352#endif
029632fb
PZ
7353
7354__init void init_sched_fair_class(void)
7355{
7356#ifdef CONFIG_SMP
7357 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7358
3451d024 7359#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7360 nohz.next_balance = jiffies;
029632fb 7361 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7362 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7363#endif
7364#endif /* SMP */
7365
7366}