]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/fair: Propagate asynchrous detach
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
ec12cb7f
PT
96#ifdef CONFIG_CFS_BANDWIDTH
97/*
98 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
99 * each time a cfs_rq requests quota.
100 *
101 * Note: in the case that the slice exceeds the runtime remaining (either due
102 * to consumption or the quota being specified to be smaller than the slice)
103 * we will always only issue the remaining available time.
104 *
105 * default: 5 msec, units: microseconds
106 */
107unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
108#endif
109
3273163c
MR
110/*
111 * The margin used when comparing utilization with CPU capacity:
893c5d22 112 * util * margin < capacity * 1024
3273163c
MR
113 */
114unsigned int capacity_margin = 1280; /* ~20% */
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
58ac93e4 143static unsigned int get_update_sysctl_factor(void)
029632fb 144{
58ac93e4 145 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
1c3de5e1 206 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
9148a3a1 258 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
3d4b47b4
PZ
283static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284{
285 if (!cfs_rq->on_list) {
9c2791f9
VG
286 struct rq *rq = rq_of(cfs_rq);
287 int cpu = cpu_of(rq);
67e86250
PT
288 /*
289 * Ensure we either appear before our parent (if already
290 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
291 * enqueued. The fact that we always enqueue bottom-up
292 * reduces this to two cases and a special case for the root
293 * cfs_rq. Furthermore, it also means that we will always reset
294 * tmp_alone_branch either when the branch is connected
295 * to a tree or when we reach the beg of the tree
67e86250
PT
296 */
297 if (cfs_rq->tg->parent &&
9c2791f9
VG
298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
299 /*
300 * If parent is already on the list, we add the child
301 * just before. Thanks to circular linked property of
302 * the list, this means to put the child at the tail
303 * of the list that starts by parent.
304 */
305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 /*
308 * The branch is now connected to its tree so we can
309 * reset tmp_alone_branch to the beginning of the
310 * list.
311 */
312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
313 } else if (!cfs_rq->tg->parent) {
314 /*
315 * cfs rq without parent should be put
316 * at the tail of the list.
317 */
67e86250 318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
319 &rq->leaf_cfs_rq_list);
320 /*
321 * We have reach the beg of a tree so we can reset
322 * tmp_alone_branch to the beginning of the list.
323 */
324 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
325 } else {
326 /*
327 * The parent has not already been added so we want to
328 * make sure that it will be put after us.
329 * tmp_alone_branch points to the beg of the branch
330 * where we will add parent.
331 */
332 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
333 rq->tmp_alone_branch);
334 /*
335 * update tmp_alone_branch to points to the new beg
336 * of the branch
337 */
338 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 339 }
3d4b47b4
PZ
340
341 cfs_rq->on_list = 1;
342 }
343}
344
345static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
346{
347 if (cfs_rq->on_list) {
348 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
349 cfs_rq->on_list = 0;
350 }
351}
352
b758149c
PZ
353/* Iterate thr' all leaf cfs_rq's on a runqueue */
354#define for_each_leaf_cfs_rq(rq, cfs_rq) \
355 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
356
357/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 358static inline struct cfs_rq *
b758149c
PZ
359is_same_group(struct sched_entity *se, struct sched_entity *pse)
360{
361 if (se->cfs_rq == pse->cfs_rq)
fed14d45 362 return se->cfs_rq;
b758149c 363
fed14d45 364 return NULL;
b758149c
PZ
365}
366
367static inline struct sched_entity *parent_entity(struct sched_entity *se)
368{
369 return se->parent;
370}
371
464b7527
PZ
372static void
373find_matching_se(struct sched_entity **se, struct sched_entity **pse)
374{
375 int se_depth, pse_depth;
376
377 /*
378 * preemption test can be made between sibling entities who are in the
379 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
380 * both tasks until we find their ancestors who are siblings of common
381 * parent.
382 */
383
384 /* First walk up until both entities are at same depth */
fed14d45
PZ
385 se_depth = (*se)->depth;
386 pse_depth = (*pse)->depth;
464b7527
PZ
387
388 while (se_depth > pse_depth) {
389 se_depth--;
390 *se = parent_entity(*se);
391 }
392
393 while (pse_depth > se_depth) {
394 pse_depth--;
395 *pse = parent_entity(*pse);
396 }
397
398 while (!is_same_group(*se, *pse)) {
399 *se = parent_entity(*se);
400 *pse = parent_entity(*pse);
401 }
402}
403
8f48894f
PZ
404#else /* !CONFIG_FAIR_GROUP_SCHED */
405
406static inline struct task_struct *task_of(struct sched_entity *se)
407{
408 return container_of(se, struct task_struct, se);
409}
bf0f6f24 410
62160e3f
IM
411static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
412{
413 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
414}
415
416#define entity_is_task(se) 1
417
b758149c
PZ
418#define for_each_sched_entity(se) \
419 for (; se; se = NULL)
bf0f6f24 420
b758149c 421static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 422{
b758149c 423 return &task_rq(p)->cfs;
bf0f6f24
IM
424}
425
b758149c
PZ
426static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
427{
428 struct task_struct *p = task_of(se);
429 struct rq *rq = task_rq(p);
430
431 return &rq->cfs;
432}
433
434/* runqueue "owned" by this group */
435static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
436{
437 return NULL;
438}
439
3d4b47b4
PZ
440static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
441{
442}
443
444static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
445{
446}
447
b758149c
PZ
448#define for_each_leaf_cfs_rq(rq, cfs_rq) \
449 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
450
b758149c
PZ
451static inline struct sched_entity *parent_entity(struct sched_entity *se)
452{
453 return NULL;
454}
455
464b7527
PZ
456static inline void
457find_matching_se(struct sched_entity **se, struct sched_entity **pse)
458{
459}
460
b758149c
PZ
461#endif /* CONFIG_FAIR_GROUP_SCHED */
462
6c16a6dc 463static __always_inline
9dbdb155 464void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
465
466/**************************************************************
467 * Scheduling class tree data structure manipulation methods:
468 */
469
1bf08230 470static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 471{
1bf08230 472 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 473 if (delta > 0)
1bf08230 474 max_vruntime = vruntime;
02e0431a 475
1bf08230 476 return max_vruntime;
02e0431a
PZ
477}
478
0702e3eb 479static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
480{
481 s64 delta = (s64)(vruntime - min_vruntime);
482 if (delta < 0)
483 min_vruntime = vruntime;
484
485 return min_vruntime;
486}
487
54fdc581
FC
488static inline int entity_before(struct sched_entity *a,
489 struct sched_entity *b)
490{
491 return (s64)(a->vruntime - b->vruntime) < 0;
492}
493
1af5f730
PZ
494static void update_min_vruntime(struct cfs_rq *cfs_rq)
495{
b60205c7
PZ
496 struct sched_entity *curr = cfs_rq->curr;
497
1af5f730
PZ
498 u64 vruntime = cfs_rq->min_vruntime;
499
b60205c7
PZ
500 if (curr) {
501 if (curr->on_rq)
502 vruntime = curr->vruntime;
503 else
504 curr = NULL;
505 }
1af5f730
PZ
506
507 if (cfs_rq->rb_leftmost) {
508 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
509 struct sched_entity,
510 run_node);
511
b60205c7 512 if (!curr)
1af5f730
PZ
513 vruntime = se->vruntime;
514 else
515 vruntime = min_vruntime(vruntime, se->vruntime);
516 }
517
1bf08230 518 /* ensure we never gain time by being placed backwards. */
1af5f730 519 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
520#ifndef CONFIG_64BIT
521 smp_wmb();
522 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
523#endif
1af5f730
PZ
524}
525
bf0f6f24
IM
526/*
527 * Enqueue an entity into the rb-tree:
528 */
0702e3eb 529static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
530{
531 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
532 struct rb_node *parent = NULL;
533 struct sched_entity *entry;
bf0f6f24
IM
534 int leftmost = 1;
535
536 /*
537 * Find the right place in the rbtree:
538 */
539 while (*link) {
540 parent = *link;
541 entry = rb_entry(parent, struct sched_entity, run_node);
542 /*
543 * We dont care about collisions. Nodes with
544 * the same key stay together.
545 */
2bd2d6f2 546 if (entity_before(se, entry)) {
bf0f6f24
IM
547 link = &parent->rb_left;
548 } else {
549 link = &parent->rb_right;
550 leftmost = 0;
551 }
552 }
553
554 /*
555 * Maintain a cache of leftmost tree entries (it is frequently
556 * used):
557 */
1af5f730 558 if (leftmost)
57cb499d 559 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
560
561 rb_link_node(&se->run_node, parent, link);
562 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
563}
564
0702e3eb 565static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
3fe69747
PZ
567 if (cfs_rq->rb_leftmost == &se->run_node) {
568 struct rb_node *next_node;
3fe69747
PZ
569
570 next_node = rb_next(&se->run_node);
571 cfs_rq->rb_leftmost = next_node;
3fe69747 572 }
e9acbff6 573
bf0f6f24 574 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
575}
576
029632fb 577struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 578{
f4b6755f
PZ
579 struct rb_node *left = cfs_rq->rb_leftmost;
580
581 if (!left)
582 return NULL;
583
584 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
585}
586
ac53db59
RR
587static struct sched_entity *__pick_next_entity(struct sched_entity *se)
588{
589 struct rb_node *next = rb_next(&se->run_node);
590
591 if (!next)
592 return NULL;
593
594 return rb_entry(next, struct sched_entity, run_node);
595}
596
597#ifdef CONFIG_SCHED_DEBUG
029632fb 598struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 599{
7eee3e67 600 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 601
70eee74b
BS
602 if (!last)
603 return NULL;
7eee3e67
IM
604
605 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
606}
607
bf0f6f24
IM
608/**************************************************************
609 * Scheduling class statistics methods:
610 */
611
acb4a848 612int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 613 void __user *buffer, size_t *lenp,
b2be5e96
PZ
614 loff_t *ppos)
615{
8d65af78 616 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 617 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
618
619 if (ret || !write)
620 return ret;
621
622 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
623 sysctl_sched_min_granularity);
624
acb4a848
CE
625#define WRT_SYSCTL(name) \
626 (normalized_sysctl_##name = sysctl_##name / (factor))
627 WRT_SYSCTL(sched_min_granularity);
628 WRT_SYSCTL(sched_latency);
629 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
630#undef WRT_SYSCTL
631
b2be5e96
PZ
632 return 0;
633}
634#endif
647e7cac 635
a7be37ac 636/*
f9c0b095 637 * delta /= w
a7be37ac 638 */
9dbdb155 639static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 640{
f9c0b095 641 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 642 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
643
644 return delta;
645}
646
647e7cac
IM
647/*
648 * The idea is to set a period in which each task runs once.
649 *
532b1858 650 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
651 * this period because otherwise the slices get too small.
652 *
653 * p = (nr <= nl) ? l : l*nr/nl
654 */
4d78e7b6
PZ
655static u64 __sched_period(unsigned long nr_running)
656{
8e2b0bf3
BF
657 if (unlikely(nr_running > sched_nr_latency))
658 return nr_running * sysctl_sched_min_granularity;
659 else
660 return sysctl_sched_latency;
4d78e7b6
PZ
661}
662
647e7cac
IM
663/*
664 * We calculate the wall-time slice from the period by taking a part
665 * proportional to the weight.
666 *
f9c0b095 667 * s = p*P[w/rw]
647e7cac 668 */
6d0f0ebd 669static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 670{
0a582440 671 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 672
0a582440 673 for_each_sched_entity(se) {
6272d68c 674 struct load_weight *load;
3104bf03 675 struct load_weight lw;
6272d68c
LM
676
677 cfs_rq = cfs_rq_of(se);
678 load = &cfs_rq->load;
f9c0b095 679
0a582440 680 if (unlikely(!se->on_rq)) {
3104bf03 681 lw = cfs_rq->load;
0a582440
MG
682
683 update_load_add(&lw, se->load.weight);
684 load = &lw;
685 }
9dbdb155 686 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
687 }
688 return slice;
bf0f6f24
IM
689}
690
647e7cac 691/*
660cc00f 692 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 693 *
f9c0b095 694 * vs = s/w
647e7cac 695 */
f9c0b095 696static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 697{
f9c0b095 698 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
699}
700
a75cdaa9 701#ifdef CONFIG_SMP
772bd008 702static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
703static unsigned long task_h_load(struct task_struct *p);
704
9d89c257
YD
705/*
706 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
707 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
708 * dependent on this value.
9d89c257
YD
709 */
710#define LOAD_AVG_PERIOD 32
711#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 712#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 713
540247fb
YD
714/* Give new sched_entity start runnable values to heavy its load in infant time */
715void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 716{
540247fb 717 struct sched_avg *sa = &se->avg;
a75cdaa9 718
9d89c257
YD
719 sa->last_update_time = 0;
720 /*
721 * sched_avg's period_contrib should be strictly less then 1024, so
722 * we give it 1023 to make sure it is almost a period (1024us), and
723 * will definitely be update (after enqueue).
724 */
725 sa->period_contrib = 1023;
b5a9b340
VG
726 /*
727 * Tasks are intialized with full load to be seen as heavy tasks until
728 * they get a chance to stabilize to their real load level.
729 * Group entities are intialized with zero load to reflect the fact that
730 * nothing has been attached to the task group yet.
731 */
732 if (entity_is_task(se))
733 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 734 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
735 /*
736 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 */
738 sa->util_avg = 0;
739 sa->util_sum = 0;
9d89c257 740 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 741}
7ea241af 742
7dc603c9 743static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 744static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 745
2b8c41da
YD
746/*
747 * With new tasks being created, their initial util_avgs are extrapolated
748 * based on the cfs_rq's current util_avg:
749 *
750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751 *
752 * However, in many cases, the above util_avg does not give a desired
753 * value. Moreover, the sum of the util_avgs may be divergent, such
754 * as when the series is a harmonic series.
755 *
756 * To solve this problem, we also cap the util_avg of successive tasks to
757 * only 1/2 of the left utilization budget:
758 *
759 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760 *
761 * where n denotes the nth task.
762 *
763 * For example, a simplest series from the beginning would be like:
764 *
765 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
766 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767 *
768 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769 * if util_avg > util_avg_cap.
770 */
771void post_init_entity_util_avg(struct sched_entity *se)
772{
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
172895e6 775 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
776
777 if (cap > 0) {
778 if (cfs_rq->avg.util_avg != 0) {
779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
780 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781
782 if (sa->util_avg > cap)
783 sa->util_avg = cap;
784 } else {
785 sa->util_avg = cap;
786 }
787 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 }
7dc603c9
PZ
789
790 if (entity_is_task(se)) {
791 struct task_struct *p = task_of(se);
792 if (p->sched_class != &fair_sched_class) {
793 /*
794 * For !fair tasks do:
795 *
796 update_cfs_rq_load_avg(now, cfs_rq, false);
797 attach_entity_load_avg(cfs_rq, se);
798 switched_from_fair(rq, p);
799 *
800 * such that the next switched_to_fair() has the
801 * expected state.
802 */
df217913 803 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
804 return;
805 }
806 }
807
df217913 808 attach_entity_cfs_rq(se);
2b8c41da
YD
809}
810
7dc603c9 811#else /* !CONFIG_SMP */
540247fb 812void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
813{
814}
2b8c41da
YD
815void post_init_entity_util_avg(struct sched_entity *se)
816{
817}
3d30544f
PZ
818static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819{
820}
7dc603c9 821#endif /* CONFIG_SMP */
a75cdaa9 822
bf0f6f24 823/*
9dbdb155 824 * Update the current task's runtime statistics.
bf0f6f24 825 */
b7cc0896 826static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 827{
429d43bc 828 struct sched_entity *curr = cfs_rq->curr;
78becc27 829 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 830 u64 delta_exec;
bf0f6f24
IM
831
832 if (unlikely(!curr))
833 return;
834
9dbdb155
PZ
835 delta_exec = now - curr->exec_start;
836 if (unlikely((s64)delta_exec <= 0))
34f28ecd 837 return;
bf0f6f24 838
8ebc91d9 839 curr->exec_start = now;
d842de87 840
9dbdb155
PZ
841 schedstat_set(curr->statistics.exec_max,
842 max(delta_exec, curr->statistics.exec_max));
843
844 curr->sum_exec_runtime += delta_exec;
ae92882e 845 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
846
847 curr->vruntime += calc_delta_fair(delta_exec, curr);
848 update_min_vruntime(cfs_rq);
849
d842de87
SV
850 if (entity_is_task(curr)) {
851 struct task_struct *curtask = task_of(curr);
852
f977bb49 853 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 854 cpuacct_charge(curtask, delta_exec);
f06febc9 855 account_group_exec_runtime(curtask, delta_exec);
d842de87 856 }
ec12cb7f
PT
857
858 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
859}
860
6e998916
SG
861static void update_curr_fair(struct rq *rq)
862{
863 update_curr(cfs_rq_of(&rq->curr->se));
864}
865
bf0f6f24 866static inline void
5870db5b 867update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 868{
4fa8d299
JP
869 u64 wait_start, prev_wait_start;
870
871 if (!schedstat_enabled())
872 return;
873
874 wait_start = rq_clock(rq_of(cfs_rq));
875 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
876
877 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
878 likely(wait_start > prev_wait_start))
879 wait_start -= prev_wait_start;
3ea94de1 880
4fa8d299 881 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
882}
883
4fa8d299 884static inline void
3ea94de1
JP
885update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886{
887 struct task_struct *p;
cb251765
MG
888 u64 delta;
889
4fa8d299
JP
890 if (!schedstat_enabled())
891 return;
892
893 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se)) {
896 p = task_of(se);
897 if (task_on_rq_migrating(p)) {
898 /*
899 * Preserve migrating task's wait time so wait_start
900 * time stamp can be adjusted to accumulate wait time
901 * prior to migration.
902 */
4fa8d299 903 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
904 return;
905 }
906 trace_sched_stat_wait(p, delta);
907 }
908
4fa8d299
JP
909 schedstat_set(se->statistics.wait_max,
910 max(schedstat_val(se->statistics.wait_max), delta));
911 schedstat_inc(se->statistics.wait_count);
912 schedstat_add(se->statistics.wait_sum, delta);
913 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 914}
3ea94de1 915
4fa8d299 916static inline void
1a3d027c
JP
917update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918{
919 struct task_struct *tsk = NULL;
4fa8d299
JP
920 u64 sleep_start, block_start;
921
922 if (!schedstat_enabled())
923 return;
924
925 sleep_start = schedstat_val(se->statistics.sleep_start);
926 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
927
928 if (entity_is_task(se))
929 tsk = task_of(se);
930
4fa8d299
JP
931 if (sleep_start) {
932 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
933
934 if ((s64)delta < 0)
935 delta = 0;
936
4fa8d299
JP
937 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 939
4fa8d299
JP
940 schedstat_set(se->statistics.sleep_start, 0);
941 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
942
943 if (tsk) {
944 account_scheduler_latency(tsk, delta >> 10, 1);
945 trace_sched_stat_sleep(tsk, delta);
946 }
947 }
4fa8d299
JP
948 if (block_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 schedstat_set(se->statistics.block_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.block_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 if (tsk->in_iowait) {
4fa8d299
JP
962 schedstat_add(se->statistics.iowait_sum, delta);
963 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
964 trace_sched_stat_iowait(tsk, delta);
965 }
966
967 trace_sched_stat_blocked(tsk, delta);
968
969 /*
970 * Blocking time is in units of nanosecs, so shift by
971 * 20 to get a milliseconds-range estimation of the
972 * amount of time that the task spent sleeping:
973 */
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 profile_hits(SLEEP_PROFILING,
976 (void *)get_wchan(tsk),
977 delta >> 20);
978 }
979 account_scheduler_latency(tsk, delta >> 10, 0);
980 }
981 }
3ea94de1 982}
3ea94de1 983
bf0f6f24
IM
984/*
985 * Task is being enqueued - update stats:
986 */
cb251765 987static inline void
1a3d027c 988update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 989{
4fa8d299
JP
990 if (!schedstat_enabled())
991 return;
992
bf0f6f24
IM
993 /*
994 * Are we enqueueing a waiting task? (for current tasks
995 * a dequeue/enqueue event is a NOP)
996 */
429d43bc 997 if (se != cfs_rq->curr)
5870db5b 998 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
999
1000 if (flags & ENQUEUE_WAKEUP)
1001 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1002}
1003
bf0f6f24 1004static inline void
cb251765 1005update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Mark the end of the wait period if dequeueing a
1013 * waiting task:
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
9ef0a961 1016 update_stats_wait_end(cfs_rq, se);
cb251765 1017
4fa8d299
JP
1018 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 struct task_struct *tsk = task_of(se);
cb251765 1020
4fa8d299
JP
1021 if (tsk->state & TASK_INTERRUPTIBLE)
1022 schedstat_set(se->statistics.sleep_start,
1023 rq_clock(rq_of(cfs_rq)));
1024 if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 schedstat_set(se->statistics.block_start,
1026 rq_clock(rq_of(cfs_rq)));
cb251765 1027 }
cb251765
MG
1028}
1029
bf0f6f24
IM
1030/*
1031 * We are picking a new current task - update its stats:
1032 */
1033static inline void
79303e9e 1034update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1035{
1036 /*
1037 * We are starting a new run period:
1038 */
78becc27 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1040}
1041
bf0f6f24
IM
1042/**************************************************
1043 * Scheduling class queueing methods:
1044 */
1045
cbee9f88
PZ
1046#ifdef CONFIG_NUMA_BALANCING
1047/*
598f0ec0
MG
1048 * Approximate time to scan a full NUMA task in ms. The task scan period is
1049 * calculated based on the tasks virtual memory size and
1050 * numa_balancing_scan_size.
cbee9f88 1051 */
598f0ec0
MG
1052unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1054
1055/* Portion of address space to scan in MB */
1056unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1057
4b96a29b
PZ
1058/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060
598f0ec0
MG
1061static unsigned int task_nr_scan_windows(struct task_struct *p)
1062{
1063 unsigned long rss = 0;
1064 unsigned long nr_scan_pages;
1065
1066 /*
1067 * Calculations based on RSS as non-present and empty pages are skipped
1068 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 * on resident pages
1070 */
1071 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 rss = get_mm_rss(p->mm);
1073 if (!rss)
1074 rss = nr_scan_pages;
1075
1076 rss = round_up(rss, nr_scan_pages);
1077 return rss / nr_scan_pages;
1078}
1079
1080/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081#define MAX_SCAN_WINDOW 2560
1082
1083static unsigned int task_scan_min(struct task_struct *p)
1084{
316c1608 1085 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1086 unsigned int scan, floor;
1087 unsigned int windows = 1;
1088
64192658
KT
1089 if (scan_size < MAX_SCAN_WINDOW)
1090 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1091 floor = 1000 / windows;
1092
1093 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 return max_t(unsigned int, floor, scan);
1095}
1096
1097static unsigned int task_scan_max(struct task_struct *p)
1098{
1099 unsigned int smin = task_scan_min(p);
1100 unsigned int smax;
1101
1102 /* Watch for min being lower than max due to floor calculations */
1103 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1104 return max(smin, smax);
1105}
1106
0ec8aa00
PZ
1107static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1108{
1109 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1110 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1111}
1112
1113static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1114{
1115 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1116 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1117}
1118
8c8a743c
PZ
1119struct numa_group {
1120 atomic_t refcount;
1121
1122 spinlock_t lock; /* nr_tasks, tasks */
1123 int nr_tasks;
e29cf08b 1124 pid_t gid;
4142c3eb 1125 int active_nodes;
8c8a743c
PZ
1126
1127 struct rcu_head rcu;
989348b5 1128 unsigned long total_faults;
4142c3eb 1129 unsigned long max_faults_cpu;
7e2703e6
RR
1130 /*
1131 * Faults_cpu is used to decide whether memory should move
1132 * towards the CPU. As a consequence, these stats are weighted
1133 * more by CPU use than by memory faults.
1134 */
50ec8a40 1135 unsigned long *faults_cpu;
989348b5 1136 unsigned long faults[0];
8c8a743c
PZ
1137};
1138
be1e4e76
RR
1139/* Shared or private faults. */
1140#define NR_NUMA_HINT_FAULT_TYPES 2
1141
1142/* Memory and CPU locality */
1143#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1144
1145/* Averaged statistics, and temporary buffers. */
1146#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1147
e29cf08b
MG
1148pid_t task_numa_group_id(struct task_struct *p)
1149{
1150 return p->numa_group ? p->numa_group->gid : 0;
1151}
1152
44dba3d5
IM
1153/*
1154 * The averaged statistics, shared & private, memory & cpu,
1155 * occupy the first half of the array. The second half of the
1156 * array is for current counters, which are averaged into the
1157 * first set by task_numa_placement.
1158 */
1159static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1160{
44dba3d5 1161 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1162}
1163
1164static inline unsigned long task_faults(struct task_struct *p, int nid)
1165{
44dba3d5 1166 if (!p->numa_faults)
ac8e895b
MG
1167 return 0;
1168
44dba3d5
IM
1169 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1170 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1171}
1172
83e1d2cd
MG
1173static inline unsigned long group_faults(struct task_struct *p, int nid)
1174{
1175 if (!p->numa_group)
1176 return 0;
1177
44dba3d5
IM
1178 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1179 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1180}
1181
20e07dea
RR
1182static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1183{
44dba3d5
IM
1184 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1185 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1186}
1187
4142c3eb
RR
1188/*
1189 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1190 * considered part of a numa group's pseudo-interleaving set. Migrations
1191 * between these nodes are slowed down, to allow things to settle down.
1192 */
1193#define ACTIVE_NODE_FRACTION 3
1194
1195static bool numa_is_active_node(int nid, struct numa_group *ng)
1196{
1197 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1198}
1199
6c6b1193
RR
1200/* Handle placement on systems where not all nodes are directly connected. */
1201static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1202 int maxdist, bool task)
1203{
1204 unsigned long score = 0;
1205 int node;
1206
1207 /*
1208 * All nodes are directly connected, and the same distance
1209 * from each other. No need for fancy placement algorithms.
1210 */
1211 if (sched_numa_topology_type == NUMA_DIRECT)
1212 return 0;
1213
1214 /*
1215 * This code is called for each node, introducing N^2 complexity,
1216 * which should be ok given the number of nodes rarely exceeds 8.
1217 */
1218 for_each_online_node(node) {
1219 unsigned long faults;
1220 int dist = node_distance(nid, node);
1221
1222 /*
1223 * The furthest away nodes in the system are not interesting
1224 * for placement; nid was already counted.
1225 */
1226 if (dist == sched_max_numa_distance || node == nid)
1227 continue;
1228
1229 /*
1230 * On systems with a backplane NUMA topology, compare groups
1231 * of nodes, and move tasks towards the group with the most
1232 * memory accesses. When comparing two nodes at distance
1233 * "hoplimit", only nodes closer by than "hoplimit" are part
1234 * of each group. Skip other nodes.
1235 */
1236 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1237 dist > maxdist)
1238 continue;
1239
1240 /* Add up the faults from nearby nodes. */
1241 if (task)
1242 faults = task_faults(p, node);
1243 else
1244 faults = group_faults(p, node);
1245
1246 /*
1247 * On systems with a glueless mesh NUMA topology, there are
1248 * no fixed "groups of nodes". Instead, nodes that are not
1249 * directly connected bounce traffic through intermediate
1250 * nodes; a numa_group can occupy any set of nodes.
1251 * The further away a node is, the less the faults count.
1252 * This seems to result in good task placement.
1253 */
1254 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1255 faults *= (sched_max_numa_distance - dist);
1256 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1257 }
1258
1259 score += faults;
1260 }
1261
1262 return score;
1263}
1264
83e1d2cd
MG
1265/*
1266 * These return the fraction of accesses done by a particular task, or
1267 * task group, on a particular numa node. The group weight is given a
1268 * larger multiplier, in order to group tasks together that are almost
1269 * evenly spread out between numa nodes.
1270 */
7bd95320
RR
1271static inline unsigned long task_weight(struct task_struct *p, int nid,
1272 int dist)
83e1d2cd 1273{
7bd95320 1274 unsigned long faults, total_faults;
83e1d2cd 1275
44dba3d5 1276 if (!p->numa_faults)
83e1d2cd
MG
1277 return 0;
1278
1279 total_faults = p->total_numa_faults;
1280
1281 if (!total_faults)
1282 return 0;
1283
7bd95320 1284 faults = task_faults(p, nid);
6c6b1193
RR
1285 faults += score_nearby_nodes(p, nid, dist, true);
1286
7bd95320 1287 return 1000 * faults / total_faults;
83e1d2cd
MG
1288}
1289
7bd95320
RR
1290static inline unsigned long group_weight(struct task_struct *p, int nid,
1291 int dist)
83e1d2cd 1292{
7bd95320
RR
1293 unsigned long faults, total_faults;
1294
1295 if (!p->numa_group)
1296 return 0;
1297
1298 total_faults = p->numa_group->total_faults;
1299
1300 if (!total_faults)
83e1d2cd
MG
1301 return 0;
1302
7bd95320 1303 faults = group_faults(p, nid);
6c6b1193
RR
1304 faults += score_nearby_nodes(p, nid, dist, false);
1305
7bd95320 1306 return 1000 * faults / total_faults;
83e1d2cd
MG
1307}
1308
10f39042
RR
1309bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1310 int src_nid, int dst_cpu)
1311{
1312 struct numa_group *ng = p->numa_group;
1313 int dst_nid = cpu_to_node(dst_cpu);
1314 int last_cpupid, this_cpupid;
1315
1316 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1317
1318 /*
1319 * Multi-stage node selection is used in conjunction with a periodic
1320 * migration fault to build a temporal task<->page relation. By using
1321 * a two-stage filter we remove short/unlikely relations.
1322 *
1323 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1324 * a task's usage of a particular page (n_p) per total usage of this
1325 * page (n_t) (in a given time-span) to a probability.
1326 *
1327 * Our periodic faults will sample this probability and getting the
1328 * same result twice in a row, given these samples are fully
1329 * independent, is then given by P(n)^2, provided our sample period
1330 * is sufficiently short compared to the usage pattern.
1331 *
1332 * This quadric squishes small probabilities, making it less likely we
1333 * act on an unlikely task<->page relation.
1334 */
1335 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1336 if (!cpupid_pid_unset(last_cpupid) &&
1337 cpupid_to_nid(last_cpupid) != dst_nid)
1338 return false;
1339
1340 /* Always allow migrate on private faults */
1341 if (cpupid_match_pid(p, last_cpupid))
1342 return true;
1343
1344 /* A shared fault, but p->numa_group has not been set up yet. */
1345 if (!ng)
1346 return true;
1347
1348 /*
4142c3eb
RR
1349 * Destination node is much more heavily used than the source
1350 * node? Allow migration.
10f39042 1351 */
4142c3eb
RR
1352 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1353 ACTIVE_NODE_FRACTION)
10f39042
RR
1354 return true;
1355
1356 /*
4142c3eb
RR
1357 * Distribute memory according to CPU & memory use on each node,
1358 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1359 *
1360 * faults_cpu(dst) 3 faults_cpu(src)
1361 * --------------- * - > ---------------
1362 * faults_mem(dst) 4 faults_mem(src)
10f39042 1363 */
4142c3eb
RR
1364 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1365 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1366}
1367
e6628d5b 1368static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1369static unsigned long source_load(int cpu, int type);
1370static unsigned long target_load(int cpu, int type);
ced549fa 1371static unsigned long capacity_of(int cpu);
58d081b5
MG
1372static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1373
fb13c7ee 1374/* Cached statistics for all CPUs within a node */
58d081b5 1375struct numa_stats {
fb13c7ee 1376 unsigned long nr_running;
58d081b5 1377 unsigned long load;
fb13c7ee
MG
1378
1379 /* Total compute capacity of CPUs on a node */
5ef20ca1 1380 unsigned long compute_capacity;
fb13c7ee
MG
1381
1382 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1383 unsigned long task_capacity;
1b6a7495 1384 int has_free_capacity;
58d081b5 1385};
e6628d5b 1386
fb13c7ee
MG
1387/*
1388 * XXX borrowed from update_sg_lb_stats
1389 */
1390static void update_numa_stats(struct numa_stats *ns, int nid)
1391{
83d7f242
RR
1392 int smt, cpu, cpus = 0;
1393 unsigned long capacity;
fb13c7ee
MG
1394
1395 memset(ns, 0, sizeof(*ns));
1396 for_each_cpu(cpu, cpumask_of_node(nid)) {
1397 struct rq *rq = cpu_rq(cpu);
1398
1399 ns->nr_running += rq->nr_running;
1400 ns->load += weighted_cpuload(cpu);
ced549fa 1401 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1402
1403 cpus++;
fb13c7ee
MG
1404 }
1405
5eca82a9
PZ
1406 /*
1407 * If we raced with hotplug and there are no CPUs left in our mask
1408 * the @ns structure is NULL'ed and task_numa_compare() will
1409 * not find this node attractive.
1410 *
1b6a7495
NP
1411 * We'll either bail at !has_free_capacity, or we'll detect a huge
1412 * imbalance and bail there.
5eca82a9
PZ
1413 */
1414 if (!cpus)
1415 return;
1416
83d7f242
RR
1417 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1418 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1419 capacity = cpus / smt; /* cores */
1420
1421 ns->task_capacity = min_t(unsigned, capacity,
1422 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1423 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1424}
1425
58d081b5
MG
1426struct task_numa_env {
1427 struct task_struct *p;
e6628d5b 1428
58d081b5
MG
1429 int src_cpu, src_nid;
1430 int dst_cpu, dst_nid;
e6628d5b 1431
58d081b5 1432 struct numa_stats src_stats, dst_stats;
e6628d5b 1433
40ea2b42 1434 int imbalance_pct;
7bd95320 1435 int dist;
fb13c7ee
MG
1436
1437 struct task_struct *best_task;
1438 long best_imp;
58d081b5
MG
1439 int best_cpu;
1440};
1441
fb13c7ee
MG
1442static void task_numa_assign(struct task_numa_env *env,
1443 struct task_struct *p, long imp)
1444{
1445 if (env->best_task)
1446 put_task_struct(env->best_task);
bac78573
ON
1447 if (p)
1448 get_task_struct(p);
fb13c7ee
MG
1449
1450 env->best_task = p;
1451 env->best_imp = imp;
1452 env->best_cpu = env->dst_cpu;
1453}
1454
28a21745 1455static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1456 struct task_numa_env *env)
1457{
e4991b24
RR
1458 long imb, old_imb;
1459 long orig_src_load, orig_dst_load;
28a21745
RR
1460 long src_capacity, dst_capacity;
1461
1462 /*
1463 * The load is corrected for the CPU capacity available on each node.
1464 *
1465 * src_load dst_load
1466 * ------------ vs ---------
1467 * src_capacity dst_capacity
1468 */
1469 src_capacity = env->src_stats.compute_capacity;
1470 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1471
1472 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1473 if (dst_load < src_load)
1474 swap(dst_load, src_load);
e63da036
RR
1475
1476 /* Is the difference below the threshold? */
e4991b24
RR
1477 imb = dst_load * src_capacity * 100 -
1478 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1479 if (imb <= 0)
1480 return false;
1481
1482 /*
1483 * The imbalance is above the allowed threshold.
e4991b24 1484 * Compare it with the old imbalance.
e63da036 1485 */
28a21745 1486 orig_src_load = env->src_stats.load;
e4991b24 1487 orig_dst_load = env->dst_stats.load;
28a21745 1488
e4991b24
RR
1489 if (orig_dst_load < orig_src_load)
1490 swap(orig_dst_load, orig_src_load);
e63da036 1491
e4991b24
RR
1492 old_imb = orig_dst_load * src_capacity * 100 -
1493 orig_src_load * dst_capacity * env->imbalance_pct;
1494
1495 /* Would this change make things worse? */
1496 return (imb > old_imb);
e63da036
RR
1497}
1498
fb13c7ee
MG
1499/*
1500 * This checks if the overall compute and NUMA accesses of the system would
1501 * be improved if the source tasks was migrated to the target dst_cpu taking
1502 * into account that it might be best if task running on the dst_cpu should
1503 * be exchanged with the source task
1504 */
887c290e
RR
1505static void task_numa_compare(struct task_numa_env *env,
1506 long taskimp, long groupimp)
fb13c7ee
MG
1507{
1508 struct rq *src_rq = cpu_rq(env->src_cpu);
1509 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1510 struct task_struct *cur;
28a21745 1511 long src_load, dst_load;
fb13c7ee 1512 long load;
1c5d3eb3 1513 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1514 long moveimp = imp;
7bd95320 1515 int dist = env->dist;
fb13c7ee
MG
1516
1517 rcu_read_lock();
bac78573
ON
1518 cur = task_rcu_dereference(&dst_rq->curr);
1519 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1520 cur = NULL;
1521
7af68335
PZ
1522 /*
1523 * Because we have preemption enabled we can get migrated around and
1524 * end try selecting ourselves (current == env->p) as a swap candidate.
1525 */
1526 if (cur == env->p)
1527 goto unlock;
1528
fb13c7ee
MG
1529 /*
1530 * "imp" is the fault differential for the source task between the
1531 * source and destination node. Calculate the total differential for
1532 * the source task and potential destination task. The more negative
1533 * the value is, the more rmeote accesses that would be expected to
1534 * be incurred if the tasks were swapped.
1535 */
1536 if (cur) {
1537 /* Skip this swap candidate if cannot move to the source cpu */
1538 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1539 goto unlock;
1540
887c290e
RR
1541 /*
1542 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1543 * in any group then look only at task weights.
887c290e 1544 */
ca28aa53 1545 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1546 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1547 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1548 /*
1549 * Add some hysteresis to prevent swapping the
1550 * tasks within a group over tiny differences.
1551 */
1552 if (cur->numa_group)
1553 imp -= imp/16;
887c290e 1554 } else {
ca28aa53
RR
1555 /*
1556 * Compare the group weights. If a task is all by
1557 * itself (not part of a group), use the task weight
1558 * instead.
1559 */
ca28aa53 1560 if (cur->numa_group)
7bd95320
RR
1561 imp += group_weight(cur, env->src_nid, dist) -
1562 group_weight(cur, env->dst_nid, dist);
ca28aa53 1563 else
7bd95320
RR
1564 imp += task_weight(cur, env->src_nid, dist) -
1565 task_weight(cur, env->dst_nid, dist);
887c290e 1566 }
fb13c7ee
MG
1567 }
1568
0132c3e1 1569 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1570 goto unlock;
1571
1572 if (!cur) {
1573 /* Is there capacity at our destination? */
b932c03c 1574 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1575 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1576 goto unlock;
1577
1578 goto balance;
1579 }
1580
1581 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1582 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1583 dst_rq->nr_running == 1)
fb13c7ee
MG
1584 goto assign;
1585
1586 /*
1587 * In the overloaded case, try and keep the load balanced.
1588 */
1589balance:
e720fff6
PZ
1590 load = task_h_load(env->p);
1591 dst_load = env->dst_stats.load + load;
1592 src_load = env->src_stats.load - load;
fb13c7ee 1593
0132c3e1
RR
1594 if (moveimp > imp && moveimp > env->best_imp) {
1595 /*
1596 * If the improvement from just moving env->p direction is
1597 * better than swapping tasks around, check if a move is
1598 * possible. Store a slightly smaller score than moveimp,
1599 * so an actually idle CPU will win.
1600 */
1601 if (!load_too_imbalanced(src_load, dst_load, env)) {
1602 imp = moveimp - 1;
1603 cur = NULL;
1604 goto assign;
1605 }
1606 }
1607
1608 if (imp <= env->best_imp)
1609 goto unlock;
1610
fb13c7ee 1611 if (cur) {
e720fff6
PZ
1612 load = task_h_load(cur);
1613 dst_load -= load;
1614 src_load += load;
fb13c7ee
MG
1615 }
1616
28a21745 1617 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1618 goto unlock;
1619
ba7e5a27
RR
1620 /*
1621 * One idle CPU per node is evaluated for a task numa move.
1622 * Call select_idle_sibling to maybe find a better one.
1623 */
10e2f1ac
PZ
1624 if (!cur) {
1625 /*
1626 * select_idle_siblings() uses an per-cpu cpumask that
1627 * can be used from IRQ context.
1628 */
1629 local_irq_disable();
772bd008
MR
1630 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1631 env->dst_cpu);
10e2f1ac
PZ
1632 local_irq_enable();
1633 }
ba7e5a27 1634
fb13c7ee
MG
1635assign:
1636 task_numa_assign(env, cur, imp);
1637unlock:
1638 rcu_read_unlock();
1639}
1640
887c290e
RR
1641static void task_numa_find_cpu(struct task_numa_env *env,
1642 long taskimp, long groupimp)
2c8a50aa
MG
1643{
1644 int cpu;
1645
1646 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1647 /* Skip this CPU if the source task cannot migrate */
1648 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1649 continue;
1650
1651 env->dst_cpu = cpu;
887c290e 1652 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1653 }
1654}
1655
6f9aad0b
RR
1656/* Only move tasks to a NUMA node less busy than the current node. */
1657static bool numa_has_capacity(struct task_numa_env *env)
1658{
1659 struct numa_stats *src = &env->src_stats;
1660 struct numa_stats *dst = &env->dst_stats;
1661
1662 if (src->has_free_capacity && !dst->has_free_capacity)
1663 return false;
1664
1665 /*
1666 * Only consider a task move if the source has a higher load
1667 * than the destination, corrected for CPU capacity on each node.
1668 *
1669 * src->load dst->load
1670 * --------------------- vs ---------------------
1671 * src->compute_capacity dst->compute_capacity
1672 */
44dcb04f
SD
1673 if (src->load * dst->compute_capacity * env->imbalance_pct >
1674
1675 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1676 return true;
1677
1678 return false;
1679}
1680
58d081b5
MG
1681static int task_numa_migrate(struct task_struct *p)
1682{
58d081b5
MG
1683 struct task_numa_env env = {
1684 .p = p,
fb13c7ee 1685
58d081b5 1686 .src_cpu = task_cpu(p),
b32e86b4 1687 .src_nid = task_node(p),
fb13c7ee
MG
1688
1689 .imbalance_pct = 112,
1690
1691 .best_task = NULL,
1692 .best_imp = 0,
4142c3eb 1693 .best_cpu = -1,
58d081b5
MG
1694 };
1695 struct sched_domain *sd;
887c290e 1696 unsigned long taskweight, groupweight;
7bd95320 1697 int nid, ret, dist;
887c290e 1698 long taskimp, groupimp;
e6628d5b 1699
58d081b5 1700 /*
fb13c7ee
MG
1701 * Pick the lowest SD_NUMA domain, as that would have the smallest
1702 * imbalance and would be the first to start moving tasks about.
1703 *
1704 * And we want to avoid any moving of tasks about, as that would create
1705 * random movement of tasks -- counter the numa conditions we're trying
1706 * to satisfy here.
58d081b5
MG
1707 */
1708 rcu_read_lock();
fb13c7ee 1709 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1710 if (sd)
1711 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1712 rcu_read_unlock();
1713
46a73e8a
RR
1714 /*
1715 * Cpusets can break the scheduler domain tree into smaller
1716 * balance domains, some of which do not cross NUMA boundaries.
1717 * Tasks that are "trapped" in such domains cannot be migrated
1718 * elsewhere, so there is no point in (re)trying.
1719 */
1720 if (unlikely(!sd)) {
de1b301a 1721 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1722 return -EINVAL;
1723 }
1724
2c8a50aa 1725 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1726 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1727 taskweight = task_weight(p, env.src_nid, dist);
1728 groupweight = group_weight(p, env.src_nid, dist);
1729 update_numa_stats(&env.src_stats, env.src_nid);
1730 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1731 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1732 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1733
a43455a1 1734 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1735 if (numa_has_capacity(&env))
1736 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1737
9de05d48
RR
1738 /*
1739 * Look at other nodes in these cases:
1740 * - there is no space available on the preferred_nid
1741 * - the task is part of a numa_group that is interleaved across
1742 * multiple NUMA nodes; in order to better consolidate the group,
1743 * we need to check other locations.
1744 */
4142c3eb 1745 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1746 for_each_online_node(nid) {
1747 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1748 continue;
58d081b5 1749
7bd95320 1750 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1751 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1752 dist != env.dist) {
1753 taskweight = task_weight(p, env.src_nid, dist);
1754 groupweight = group_weight(p, env.src_nid, dist);
1755 }
7bd95320 1756
83e1d2cd 1757 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1758 taskimp = task_weight(p, nid, dist) - taskweight;
1759 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1760 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1761 continue;
1762
7bd95320 1763 env.dist = dist;
2c8a50aa
MG
1764 env.dst_nid = nid;
1765 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1766 if (numa_has_capacity(&env))
1767 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1768 }
1769 }
1770
68d1b02a
RR
1771 /*
1772 * If the task is part of a workload that spans multiple NUMA nodes,
1773 * and is migrating into one of the workload's active nodes, remember
1774 * this node as the task's preferred numa node, so the workload can
1775 * settle down.
1776 * A task that migrated to a second choice node will be better off
1777 * trying for a better one later. Do not set the preferred node here.
1778 */
db015dae 1779 if (p->numa_group) {
4142c3eb
RR
1780 struct numa_group *ng = p->numa_group;
1781
db015dae
RR
1782 if (env.best_cpu == -1)
1783 nid = env.src_nid;
1784 else
1785 nid = env.dst_nid;
1786
4142c3eb 1787 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1788 sched_setnuma(p, env.dst_nid);
1789 }
1790
1791 /* No better CPU than the current one was found. */
1792 if (env.best_cpu == -1)
1793 return -EAGAIN;
0ec8aa00 1794
04bb2f94
RR
1795 /*
1796 * Reset the scan period if the task is being rescheduled on an
1797 * alternative node to recheck if the tasks is now properly placed.
1798 */
1799 p->numa_scan_period = task_scan_min(p);
1800
fb13c7ee 1801 if (env.best_task == NULL) {
286549dc
MG
1802 ret = migrate_task_to(p, env.best_cpu);
1803 if (ret != 0)
1804 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1805 return ret;
1806 }
1807
1808 ret = migrate_swap(p, env.best_task);
286549dc
MG
1809 if (ret != 0)
1810 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1811 put_task_struct(env.best_task);
1812 return ret;
e6628d5b
MG
1813}
1814
6b9a7460
MG
1815/* Attempt to migrate a task to a CPU on the preferred node. */
1816static void numa_migrate_preferred(struct task_struct *p)
1817{
5085e2a3
RR
1818 unsigned long interval = HZ;
1819
2739d3ee 1820 /* This task has no NUMA fault statistics yet */
44dba3d5 1821 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1822 return;
1823
2739d3ee 1824 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1825 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1826 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1827
1828 /* Success if task is already running on preferred CPU */
de1b301a 1829 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1830 return;
1831
1832 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1833 task_numa_migrate(p);
6b9a7460
MG
1834}
1835
20e07dea 1836/*
4142c3eb 1837 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1838 * tracking the nodes from which NUMA hinting faults are triggered. This can
1839 * be different from the set of nodes where the workload's memory is currently
1840 * located.
20e07dea 1841 */
4142c3eb 1842static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1843{
1844 unsigned long faults, max_faults = 0;
4142c3eb 1845 int nid, active_nodes = 0;
20e07dea
RR
1846
1847 for_each_online_node(nid) {
1848 faults = group_faults_cpu(numa_group, nid);
1849 if (faults > max_faults)
1850 max_faults = faults;
1851 }
1852
1853 for_each_online_node(nid) {
1854 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1855 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1856 active_nodes++;
20e07dea 1857 }
4142c3eb
RR
1858
1859 numa_group->max_faults_cpu = max_faults;
1860 numa_group->active_nodes = active_nodes;
20e07dea
RR
1861}
1862
04bb2f94
RR
1863/*
1864 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1865 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1866 * period will be for the next scan window. If local/(local+remote) ratio is
1867 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1868 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1869 */
1870#define NUMA_PERIOD_SLOTS 10
a22b4b01 1871#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1872
1873/*
1874 * Increase the scan period (slow down scanning) if the majority of
1875 * our memory is already on our local node, or if the majority of
1876 * the page accesses are shared with other processes.
1877 * Otherwise, decrease the scan period.
1878 */
1879static void update_task_scan_period(struct task_struct *p,
1880 unsigned long shared, unsigned long private)
1881{
1882 unsigned int period_slot;
1883 int ratio;
1884 int diff;
1885
1886 unsigned long remote = p->numa_faults_locality[0];
1887 unsigned long local = p->numa_faults_locality[1];
1888
1889 /*
1890 * If there were no record hinting faults then either the task is
1891 * completely idle or all activity is areas that are not of interest
074c2381
MG
1892 * to automatic numa balancing. Related to that, if there were failed
1893 * migration then it implies we are migrating too quickly or the local
1894 * node is overloaded. In either case, scan slower
04bb2f94 1895 */
074c2381 1896 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1897 p->numa_scan_period = min(p->numa_scan_period_max,
1898 p->numa_scan_period << 1);
1899
1900 p->mm->numa_next_scan = jiffies +
1901 msecs_to_jiffies(p->numa_scan_period);
1902
1903 return;
1904 }
1905
1906 /*
1907 * Prepare to scale scan period relative to the current period.
1908 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1909 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1910 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1911 */
1912 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1913 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1914 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1915 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1916 if (!slot)
1917 slot = 1;
1918 diff = slot * period_slot;
1919 } else {
1920 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1921
1922 /*
1923 * Scale scan rate increases based on sharing. There is an
1924 * inverse relationship between the degree of sharing and
1925 * the adjustment made to the scanning period. Broadly
1926 * speaking the intent is that there is little point
1927 * scanning faster if shared accesses dominate as it may
1928 * simply bounce migrations uselessly
1929 */
2847c90e 1930 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1931 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1932 }
1933
1934 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1935 task_scan_min(p), task_scan_max(p));
1936 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1937}
1938
7e2703e6
RR
1939/*
1940 * Get the fraction of time the task has been running since the last
1941 * NUMA placement cycle. The scheduler keeps similar statistics, but
1942 * decays those on a 32ms period, which is orders of magnitude off
1943 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1944 * stats only if the task is so new there are no NUMA statistics yet.
1945 */
1946static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1947{
1948 u64 runtime, delta, now;
1949 /* Use the start of this time slice to avoid calculations. */
1950 now = p->se.exec_start;
1951 runtime = p->se.sum_exec_runtime;
1952
1953 if (p->last_task_numa_placement) {
1954 delta = runtime - p->last_sum_exec_runtime;
1955 *period = now - p->last_task_numa_placement;
1956 } else {
9d89c257
YD
1957 delta = p->se.avg.load_sum / p->se.load.weight;
1958 *period = LOAD_AVG_MAX;
7e2703e6
RR
1959 }
1960
1961 p->last_sum_exec_runtime = runtime;
1962 p->last_task_numa_placement = now;
1963
1964 return delta;
1965}
1966
54009416
RR
1967/*
1968 * Determine the preferred nid for a task in a numa_group. This needs to
1969 * be done in a way that produces consistent results with group_weight,
1970 * otherwise workloads might not converge.
1971 */
1972static int preferred_group_nid(struct task_struct *p, int nid)
1973{
1974 nodemask_t nodes;
1975 int dist;
1976
1977 /* Direct connections between all NUMA nodes. */
1978 if (sched_numa_topology_type == NUMA_DIRECT)
1979 return nid;
1980
1981 /*
1982 * On a system with glueless mesh NUMA topology, group_weight
1983 * scores nodes according to the number of NUMA hinting faults on
1984 * both the node itself, and on nearby nodes.
1985 */
1986 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1987 unsigned long score, max_score = 0;
1988 int node, max_node = nid;
1989
1990 dist = sched_max_numa_distance;
1991
1992 for_each_online_node(node) {
1993 score = group_weight(p, node, dist);
1994 if (score > max_score) {
1995 max_score = score;
1996 max_node = node;
1997 }
1998 }
1999 return max_node;
2000 }
2001
2002 /*
2003 * Finding the preferred nid in a system with NUMA backplane
2004 * interconnect topology is more involved. The goal is to locate
2005 * tasks from numa_groups near each other in the system, and
2006 * untangle workloads from different sides of the system. This requires
2007 * searching down the hierarchy of node groups, recursively searching
2008 * inside the highest scoring group of nodes. The nodemask tricks
2009 * keep the complexity of the search down.
2010 */
2011 nodes = node_online_map;
2012 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2013 unsigned long max_faults = 0;
81907478 2014 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2015 int a, b;
2016
2017 /* Are there nodes at this distance from each other? */
2018 if (!find_numa_distance(dist))
2019 continue;
2020
2021 for_each_node_mask(a, nodes) {
2022 unsigned long faults = 0;
2023 nodemask_t this_group;
2024 nodes_clear(this_group);
2025
2026 /* Sum group's NUMA faults; includes a==b case. */
2027 for_each_node_mask(b, nodes) {
2028 if (node_distance(a, b) < dist) {
2029 faults += group_faults(p, b);
2030 node_set(b, this_group);
2031 node_clear(b, nodes);
2032 }
2033 }
2034
2035 /* Remember the top group. */
2036 if (faults > max_faults) {
2037 max_faults = faults;
2038 max_group = this_group;
2039 /*
2040 * subtle: at the smallest distance there is
2041 * just one node left in each "group", the
2042 * winner is the preferred nid.
2043 */
2044 nid = a;
2045 }
2046 }
2047 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2048 if (!max_faults)
2049 break;
54009416
RR
2050 nodes = max_group;
2051 }
2052 return nid;
2053}
2054
cbee9f88
PZ
2055static void task_numa_placement(struct task_struct *p)
2056{
83e1d2cd
MG
2057 int seq, nid, max_nid = -1, max_group_nid = -1;
2058 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2059 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2060 unsigned long total_faults;
2061 u64 runtime, period;
7dbd13ed 2062 spinlock_t *group_lock = NULL;
cbee9f88 2063
7e5a2c17
JL
2064 /*
2065 * The p->mm->numa_scan_seq field gets updated without
2066 * exclusive access. Use READ_ONCE() here to ensure
2067 * that the field is read in a single access:
2068 */
316c1608 2069 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2070 if (p->numa_scan_seq == seq)
2071 return;
2072 p->numa_scan_seq = seq;
598f0ec0 2073 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2074
7e2703e6
RR
2075 total_faults = p->numa_faults_locality[0] +
2076 p->numa_faults_locality[1];
2077 runtime = numa_get_avg_runtime(p, &period);
2078
7dbd13ed
MG
2079 /* If the task is part of a group prevent parallel updates to group stats */
2080 if (p->numa_group) {
2081 group_lock = &p->numa_group->lock;
60e69eed 2082 spin_lock_irq(group_lock);
7dbd13ed
MG
2083 }
2084
688b7585
MG
2085 /* Find the node with the highest number of faults */
2086 for_each_online_node(nid) {
44dba3d5
IM
2087 /* Keep track of the offsets in numa_faults array */
2088 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2089 unsigned long faults = 0, group_faults = 0;
44dba3d5 2090 int priv;
745d6147 2091
be1e4e76 2092 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2093 long diff, f_diff, f_weight;
8c8a743c 2094
44dba3d5
IM
2095 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2096 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2097 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2098 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2099
ac8e895b 2100 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2101 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2102 fault_types[priv] += p->numa_faults[membuf_idx];
2103 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2104
7e2703e6
RR
2105 /*
2106 * Normalize the faults_from, so all tasks in a group
2107 * count according to CPU use, instead of by the raw
2108 * number of faults. Tasks with little runtime have
2109 * little over-all impact on throughput, and thus their
2110 * faults are less important.
2111 */
2112 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2113 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2114 (total_faults + 1);
44dba3d5
IM
2115 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2116 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2117
44dba3d5
IM
2118 p->numa_faults[mem_idx] += diff;
2119 p->numa_faults[cpu_idx] += f_diff;
2120 faults += p->numa_faults[mem_idx];
83e1d2cd 2121 p->total_numa_faults += diff;
8c8a743c 2122 if (p->numa_group) {
44dba3d5
IM
2123 /*
2124 * safe because we can only change our own group
2125 *
2126 * mem_idx represents the offset for a given
2127 * nid and priv in a specific region because it
2128 * is at the beginning of the numa_faults array.
2129 */
2130 p->numa_group->faults[mem_idx] += diff;
2131 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2132 p->numa_group->total_faults += diff;
44dba3d5 2133 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2134 }
ac8e895b
MG
2135 }
2136
688b7585
MG
2137 if (faults > max_faults) {
2138 max_faults = faults;
2139 max_nid = nid;
2140 }
83e1d2cd
MG
2141
2142 if (group_faults > max_group_faults) {
2143 max_group_faults = group_faults;
2144 max_group_nid = nid;
2145 }
2146 }
2147
04bb2f94
RR
2148 update_task_scan_period(p, fault_types[0], fault_types[1]);
2149
7dbd13ed 2150 if (p->numa_group) {
4142c3eb 2151 numa_group_count_active_nodes(p->numa_group);
60e69eed 2152 spin_unlock_irq(group_lock);
54009416 2153 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2154 }
2155
bb97fc31
RR
2156 if (max_faults) {
2157 /* Set the new preferred node */
2158 if (max_nid != p->numa_preferred_nid)
2159 sched_setnuma(p, max_nid);
2160
2161 if (task_node(p) != p->numa_preferred_nid)
2162 numa_migrate_preferred(p);
3a7053b3 2163 }
cbee9f88
PZ
2164}
2165
8c8a743c
PZ
2166static inline int get_numa_group(struct numa_group *grp)
2167{
2168 return atomic_inc_not_zero(&grp->refcount);
2169}
2170
2171static inline void put_numa_group(struct numa_group *grp)
2172{
2173 if (atomic_dec_and_test(&grp->refcount))
2174 kfree_rcu(grp, rcu);
2175}
2176
3e6a9418
MG
2177static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2178 int *priv)
8c8a743c
PZ
2179{
2180 struct numa_group *grp, *my_grp;
2181 struct task_struct *tsk;
2182 bool join = false;
2183 int cpu = cpupid_to_cpu(cpupid);
2184 int i;
2185
2186 if (unlikely(!p->numa_group)) {
2187 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2188 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2189
2190 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2191 if (!grp)
2192 return;
2193
2194 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2195 grp->active_nodes = 1;
2196 grp->max_faults_cpu = 0;
8c8a743c 2197 spin_lock_init(&grp->lock);
e29cf08b 2198 grp->gid = p->pid;
50ec8a40 2199 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2200 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2201 nr_node_ids;
8c8a743c 2202
be1e4e76 2203 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2204 grp->faults[i] = p->numa_faults[i];
8c8a743c 2205
989348b5 2206 grp->total_faults = p->total_numa_faults;
83e1d2cd 2207
8c8a743c
PZ
2208 grp->nr_tasks++;
2209 rcu_assign_pointer(p->numa_group, grp);
2210 }
2211
2212 rcu_read_lock();
316c1608 2213 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2214
2215 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2216 goto no_join;
8c8a743c
PZ
2217
2218 grp = rcu_dereference(tsk->numa_group);
2219 if (!grp)
3354781a 2220 goto no_join;
8c8a743c
PZ
2221
2222 my_grp = p->numa_group;
2223 if (grp == my_grp)
3354781a 2224 goto no_join;
8c8a743c
PZ
2225
2226 /*
2227 * Only join the other group if its bigger; if we're the bigger group,
2228 * the other task will join us.
2229 */
2230 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2231 goto no_join;
8c8a743c
PZ
2232
2233 /*
2234 * Tie-break on the grp address.
2235 */
2236 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2237 goto no_join;
8c8a743c 2238
dabe1d99
RR
2239 /* Always join threads in the same process. */
2240 if (tsk->mm == current->mm)
2241 join = true;
2242
2243 /* Simple filter to avoid false positives due to PID collisions */
2244 if (flags & TNF_SHARED)
2245 join = true;
8c8a743c 2246
3e6a9418
MG
2247 /* Update priv based on whether false sharing was detected */
2248 *priv = !join;
2249
dabe1d99 2250 if (join && !get_numa_group(grp))
3354781a 2251 goto no_join;
8c8a743c 2252
8c8a743c
PZ
2253 rcu_read_unlock();
2254
2255 if (!join)
2256 return;
2257
60e69eed
MG
2258 BUG_ON(irqs_disabled());
2259 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2260
be1e4e76 2261 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2262 my_grp->faults[i] -= p->numa_faults[i];
2263 grp->faults[i] += p->numa_faults[i];
8c8a743c 2264 }
989348b5
MG
2265 my_grp->total_faults -= p->total_numa_faults;
2266 grp->total_faults += p->total_numa_faults;
8c8a743c 2267
8c8a743c
PZ
2268 my_grp->nr_tasks--;
2269 grp->nr_tasks++;
2270
2271 spin_unlock(&my_grp->lock);
60e69eed 2272 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2273
2274 rcu_assign_pointer(p->numa_group, grp);
2275
2276 put_numa_group(my_grp);
3354781a
PZ
2277 return;
2278
2279no_join:
2280 rcu_read_unlock();
2281 return;
8c8a743c
PZ
2282}
2283
2284void task_numa_free(struct task_struct *p)
2285{
2286 struct numa_group *grp = p->numa_group;
44dba3d5 2287 void *numa_faults = p->numa_faults;
e9dd685c
SR
2288 unsigned long flags;
2289 int i;
8c8a743c
PZ
2290
2291 if (grp) {
e9dd685c 2292 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2293 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2294 grp->faults[i] -= p->numa_faults[i];
989348b5 2295 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2296
8c8a743c 2297 grp->nr_tasks--;
e9dd685c 2298 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2299 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2300 put_numa_group(grp);
2301 }
2302
44dba3d5 2303 p->numa_faults = NULL;
82727018 2304 kfree(numa_faults);
8c8a743c
PZ
2305}
2306
cbee9f88
PZ
2307/*
2308 * Got a PROT_NONE fault for a page on @node.
2309 */
58b46da3 2310void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2311{
2312 struct task_struct *p = current;
6688cc05 2313 bool migrated = flags & TNF_MIGRATED;
58b46da3 2314 int cpu_node = task_node(current);
792568ec 2315 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2316 struct numa_group *ng;
ac8e895b 2317 int priv;
cbee9f88 2318
2a595721 2319 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2320 return;
2321
9ff1d9ff
MG
2322 /* for example, ksmd faulting in a user's mm */
2323 if (!p->mm)
2324 return;
2325
f809ca9a 2326 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2327 if (unlikely(!p->numa_faults)) {
2328 int size = sizeof(*p->numa_faults) *
be1e4e76 2329 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2330
44dba3d5
IM
2331 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2332 if (!p->numa_faults)
f809ca9a 2333 return;
745d6147 2334
83e1d2cd 2335 p->total_numa_faults = 0;
04bb2f94 2336 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2337 }
cbee9f88 2338
8c8a743c
PZ
2339 /*
2340 * First accesses are treated as private, otherwise consider accesses
2341 * to be private if the accessing pid has not changed
2342 */
2343 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2344 priv = 1;
2345 } else {
2346 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2347 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2348 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2349 }
2350
792568ec
RR
2351 /*
2352 * If a workload spans multiple NUMA nodes, a shared fault that
2353 * occurs wholly within the set of nodes that the workload is
2354 * actively using should be counted as local. This allows the
2355 * scan rate to slow down when a workload has settled down.
2356 */
4142c3eb
RR
2357 ng = p->numa_group;
2358 if (!priv && !local && ng && ng->active_nodes > 1 &&
2359 numa_is_active_node(cpu_node, ng) &&
2360 numa_is_active_node(mem_node, ng))
792568ec
RR
2361 local = 1;
2362
cbee9f88 2363 task_numa_placement(p);
f809ca9a 2364
2739d3ee
RR
2365 /*
2366 * Retry task to preferred node migration periodically, in case it
2367 * case it previously failed, or the scheduler moved us.
2368 */
2369 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2370 numa_migrate_preferred(p);
2371
b32e86b4
IM
2372 if (migrated)
2373 p->numa_pages_migrated += pages;
074c2381
MG
2374 if (flags & TNF_MIGRATE_FAIL)
2375 p->numa_faults_locality[2] += pages;
b32e86b4 2376
44dba3d5
IM
2377 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2378 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2379 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2380}
2381
6e5fb223
PZ
2382static void reset_ptenuma_scan(struct task_struct *p)
2383{
7e5a2c17
JL
2384 /*
2385 * We only did a read acquisition of the mmap sem, so
2386 * p->mm->numa_scan_seq is written to without exclusive access
2387 * and the update is not guaranteed to be atomic. That's not
2388 * much of an issue though, since this is just used for
2389 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2390 * expensive, to avoid any form of compiler optimizations:
2391 */
316c1608 2392 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2393 p->mm->numa_scan_offset = 0;
2394}
2395
cbee9f88
PZ
2396/*
2397 * The expensive part of numa migration is done from task_work context.
2398 * Triggered from task_tick_numa().
2399 */
2400void task_numa_work(struct callback_head *work)
2401{
2402 unsigned long migrate, next_scan, now = jiffies;
2403 struct task_struct *p = current;
2404 struct mm_struct *mm = p->mm;
51170840 2405 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2406 struct vm_area_struct *vma;
9f40604c 2407 unsigned long start, end;
598f0ec0 2408 unsigned long nr_pte_updates = 0;
4620f8c1 2409 long pages, virtpages;
cbee9f88 2410
9148a3a1 2411 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2412
2413 work->next = work; /* protect against double add */
2414 /*
2415 * Who cares about NUMA placement when they're dying.
2416 *
2417 * NOTE: make sure not to dereference p->mm before this check,
2418 * exit_task_work() happens _after_ exit_mm() so we could be called
2419 * without p->mm even though we still had it when we enqueued this
2420 * work.
2421 */
2422 if (p->flags & PF_EXITING)
2423 return;
2424
930aa174 2425 if (!mm->numa_next_scan) {
7e8d16b6
MG
2426 mm->numa_next_scan = now +
2427 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2428 }
2429
cbee9f88
PZ
2430 /*
2431 * Enforce maximal scan/migration frequency..
2432 */
2433 migrate = mm->numa_next_scan;
2434 if (time_before(now, migrate))
2435 return;
2436
598f0ec0
MG
2437 if (p->numa_scan_period == 0) {
2438 p->numa_scan_period_max = task_scan_max(p);
2439 p->numa_scan_period = task_scan_min(p);
2440 }
cbee9f88 2441
fb003b80 2442 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2443 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2444 return;
2445
19a78d11
PZ
2446 /*
2447 * Delay this task enough that another task of this mm will likely win
2448 * the next time around.
2449 */
2450 p->node_stamp += 2 * TICK_NSEC;
2451
9f40604c
MG
2452 start = mm->numa_scan_offset;
2453 pages = sysctl_numa_balancing_scan_size;
2454 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2455 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2456 if (!pages)
2457 return;
cbee9f88 2458
4620f8c1 2459
6e5fb223 2460 down_read(&mm->mmap_sem);
9f40604c 2461 vma = find_vma(mm, start);
6e5fb223
PZ
2462 if (!vma) {
2463 reset_ptenuma_scan(p);
9f40604c 2464 start = 0;
6e5fb223
PZ
2465 vma = mm->mmap;
2466 }
9f40604c 2467 for (; vma; vma = vma->vm_next) {
6b79c57b 2468 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2469 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2470 continue;
6b79c57b 2471 }
6e5fb223 2472
4591ce4f
MG
2473 /*
2474 * Shared library pages mapped by multiple processes are not
2475 * migrated as it is expected they are cache replicated. Avoid
2476 * hinting faults in read-only file-backed mappings or the vdso
2477 * as migrating the pages will be of marginal benefit.
2478 */
2479 if (!vma->vm_mm ||
2480 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2481 continue;
2482
3c67f474
MG
2483 /*
2484 * Skip inaccessible VMAs to avoid any confusion between
2485 * PROT_NONE and NUMA hinting ptes
2486 */
2487 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2488 continue;
4591ce4f 2489
9f40604c
MG
2490 do {
2491 start = max(start, vma->vm_start);
2492 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2493 end = min(end, vma->vm_end);
4620f8c1 2494 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2495
2496 /*
4620f8c1
RR
2497 * Try to scan sysctl_numa_balancing_size worth of
2498 * hpages that have at least one present PTE that
2499 * is not already pte-numa. If the VMA contains
2500 * areas that are unused or already full of prot_numa
2501 * PTEs, scan up to virtpages, to skip through those
2502 * areas faster.
598f0ec0
MG
2503 */
2504 if (nr_pte_updates)
2505 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2506 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2507
9f40604c 2508 start = end;
4620f8c1 2509 if (pages <= 0 || virtpages <= 0)
9f40604c 2510 goto out;
3cf1962c
RR
2511
2512 cond_resched();
9f40604c 2513 } while (end != vma->vm_end);
cbee9f88 2514 }
6e5fb223 2515
9f40604c 2516out:
6e5fb223 2517 /*
c69307d5
PZ
2518 * It is possible to reach the end of the VMA list but the last few
2519 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2520 * would find the !migratable VMA on the next scan but not reset the
2521 * scanner to the start so check it now.
6e5fb223
PZ
2522 */
2523 if (vma)
9f40604c 2524 mm->numa_scan_offset = start;
6e5fb223
PZ
2525 else
2526 reset_ptenuma_scan(p);
2527 up_read(&mm->mmap_sem);
51170840
RR
2528
2529 /*
2530 * Make sure tasks use at least 32x as much time to run other code
2531 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2532 * Usually update_task_scan_period slows down scanning enough; on an
2533 * overloaded system we need to limit overhead on a per task basis.
2534 */
2535 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2536 u64 diff = p->se.sum_exec_runtime - runtime;
2537 p->node_stamp += 32 * diff;
2538 }
cbee9f88
PZ
2539}
2540
2541/*
2542 * Drive the periodic memory faults..
2543 */
2544void task_tick_numa(struct rq *rq, struct task_struct *curr)
2545{
2546 struct callback_head *work = &curr->numa_work;
2547 u64 period, now;
2548
2549 /*
2550 * We don't care about NUMA placement if we don't have memory.
2551 */
2552 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2553 return;
2554
2555 /*
2556 * Using runtime rather than walltime has the dual advantage that
2557 * we (mostly) drive the selection from busy threads and that the
2558 * task needs to have done some actual work before we bother with
2559 * NUMA placement.
2560 */
2561 now = curr->se.sum_exec_runtime;
2562 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2563
25b3e5a3 2564 if (now > curr->node_stamp + period) {
4b96a29b 2565 if (!curr->node_stamp)
598f0ec0 2566 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2567 curr->node_stamp += period;
cbee9f88
PZ
2568
2569 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2570 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2571 task_work_add(curr, work, true);
2572 }
2573 }
2574}
2575#else
2576static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2577{
2578}
0ec8aa00
PZ
2579
2580static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2581{
2582}
2583
2584static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2585{
2586}
cbee9f88
PZ
2587#endif /* CONFIG_NUMA_BALANCING */
2588
30cfdcfc
DA
2589static void
2590account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2591{
2592 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2593 if (!parent_entity(se))
029632fb 2594 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2595#ifdef CONFIG_SMP
0ec8aa00
PZ
2596 if (entity_is_task(se)) {
2597 struct rq *rq = rq_of(cfs_rq);
2598
2599 account_numa_enqueue(rq, task_of(se));
2600 list_add(&se->group_node, &rq->cfs_tasks);
2601 }
367456c7 2602#endif
30cfdcfc 2603 cfs_rq->nr_running++;
30cfdcfc
DA
2604}
2605
2606static void
2607account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2608{
2609 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2610 if (!parent_entity(se))
029632fb 2611 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2612#ifdef CONFIG_SMP
0ec8aa00
PZ
2613 if (entity_is_task(se)) {
2614 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2615 list_del_init(&se->group_node);
0ec8aa00 2616 }
bfdb198c 2617#endif
30cfdcfc 2618 cfs_rq->nr_running--;
30cfdcfc
DA
2619}
2620
3ff6dcac
YZ
2621#ifdef CONFIG_FAIR_GROUP_SCHED
2622# ifdef CONFIG_SMP
ea1dc6fc 2623static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2624{
ea1dc6fc 2625 long tg_weight, load, shares;
cf5f0acf
PZ
2626
2627 /*
ea1dc6fc
PZ
2628 * This really should be: cfs_rq->avg.load_avg, but instead we use
2629 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2630 * the shares for small weight interactive tasks.
cf5f0acf 2631 */
ea1dc6fc 2632 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2633
ea1dc6fc 2634 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2635
ea1dc6fc
PZ
2636 /* Ensure tg_weight >= load */
2637 tg_weight -= cfs_rq->tg_load_avg_contrib;
2638 tg_weight += load;
3ff6dcac 2639
3ff6dcac 2640 shares = (tg->shares * load);
cf5f0acf
PZ
2641 if (tg_weight)
2642 shares /= tg_weight;
3ff6dcac
YZ
2643
2644 if (shares < MIN_SHARES)
2645 shares = MIN_SHARES;
2646 if (shares > tg->shares)
2647 shares = tg->shares;
2648
2649 return shares;
2650}
3ff6dcac 2651# else /* CONFIG_SMP */
6d5ab293 2652static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2653{
2654 return tg->shares;
2655}
3ff6dcac 2656# endif /* CONFIG_SMP */
ea1dc6fc 2657
2069dd75
PZ
2658static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2659 unsigned long weight)
2660{
19e5eebb
PT
2661 if (se->on_rq) {
2662 /* commit outstanding execution time */
2663 if (cfs_rq->curr == se)
2664 update_curr(cfs_rq);
2069dd75 2665 account_entity_dequeue(cfs_rq, se);
19e5eebb 2666 }
2069dd75
PZ
2667
2668 update_load_set(&se->load, weight);
2669
2670 if (se->on_rq)
2671 account_entity_enqueue(cfs_rq, se);
2672}
2673
82958366
PT
2674static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2675
6d5ab293 2676static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2677{
2678 struct task_group *tg;
2679 struct sched_entity *se;
3ff6dcac 2680 long shares;
2069dd75 2681
2069dd75
PZ
2682 tg = cfs_rq->tg;
2683 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2684 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2685 return;
3ff6dcac
YZ
2686#ifndef CONFIG_SMP
2687 if (likely(se->load.weight == tg->shares))
2688 return;
2689#endif
6d5ab293 2690 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2691
2692 reweight_entity(cfs_rq_of(se), se, shares);
2693}
2694#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2695static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2696{
2697}
2698#endif /* CONFIG_FAIR_GROUP_SCHED */
2699
141965c7 2700#ifdef CONFIG_SMP
5b51f2f8
PT
2701/* Precomputed fixed inverse multiplies for multiplication by y^n */
2702static const u32 runnable_avg_yN_inv[] = {
2703 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2704 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2705 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2706 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2707 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2708 0x85aac367, 0x82cd8698,
2709};
2710
2711/*
2712 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2713 * over-estimates when re-combining.
2714 */
2715static const u32 runnable_avg_yN_sum[] = {
2716 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2717 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2718 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2719};
2720
7b20b916
YD
2721/*
2722 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2723 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2724 * were generated:
2725 */
2726static const u32 __accumulated_sum_N32[] = {
2727 0, 23371, 35056, 40899, 43820, 45281,
2728 46011, 46376, 46559, 46650, 46696, 46719,
2729};
2730
9d85f21c
PT
2731/*
2732 * Approximate:
2733 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2734 */
2735static __always_inline u64 decay_load(u64 val, u64 n)
2736{
5b51f2f8
PT
2737 unsigned int local_n;
2738
2739 if (!n)
2740 return val;
2741 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2742 return 0;
2743
2744 /* after bounds checking we can collapse to 32-bit */
2745 local_n = n;
2746
2747 /*
2748 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2749 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2750 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2751 *
2752 * To achieve constant time decay_load.
2753 */
2754 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2755 val >>= local_n / LOAD_AVG_PERIOD;
2756 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2757 }
2758
9d89c257
YD
2759 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2760 return val;
5b51f2f8
PT
2761}
2762
2763/*
2764 * For updates fully spanning n periods, the contribution to runnable
2765 * average will be: \Sum 1024*y^n
2766 *
2767 * We can compute this reasonably efficiently by combining:
2768 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2769 */
2770static u32 __compute_runnable_contrib(u64 n)
2771{
2772 u32 contrib = 0;
2773
2774 if (likely(n <= LOAD_AVG_PERIOD))
2775 return runnable_avg_yN_sum[n];
2776 else if (unlikely(n >= LOAD_AVG_MAX_N))
2777 return LOAD_AVG_MAX;
2778
7b20b916
YD
2779 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2780 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2781 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2782 contrib = decay_load(contrib, n);
2783 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2784}
2785
54a21385 2786#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2787
9d85f21c
PT
2788/*
2789 * We can represent the historical contribution to runnable average as the
2790 * coefficients of a geometric series. To do this we sub-divide our runnable
2791 * history into segments of approximately 1ms (1024us); label the segment that
2792 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2793 *
2794 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2795 * p0 p1 p2
2796 * (now) (~1ms ago) (~2ms ago)
2797 *
2798 * Let u_i denote the fraction of p_i that the entity was runnable.
2799 *
2800 * We then designate the fractions u_i as our co-efficients, yielding the
2801 * following representation of historical load:
2802 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2803 *
2804 * We choose y based on the with of a reasonably scheduling period, fixing:
2805 * y^32 = 0.5
2806 *
2807 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2808 * approximately half as much as the contribution to load within the last ms
2809 * (u_0).
2810 *
2811 * When a period "rolls over" and we have new u_0`, multiplying the previous
2812 * sum again by y is sufficient to update:
2813 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2814 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2815 */
9d89c257
YD
2816static __always_inline int
2817__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2818 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2819{
e0f5f3af 2820 u64 delta, scaled_delta, periods;
9d89c257 2821 u32 contrib;
6115c793 2822 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2823 unsigned long scale_freq, scale_cpu;
9d85f21c 2824
9d89c257 2825 delta = now - sa->last_update_time;
9d85f21c
PT
2826 /*
2827 * This should only happen when time goes backwards, which it
2828 * unfortunately does during sched clock init when we swap over to TSC.
2829 */
2830 if ((s64)delta < 0) {
9d89c257 2831 sa->last_update_time = now;
9d85f21c
PT
2832 return 0;
2833 }
2834
2835 /*
2836 * Use 1024ns as the unit of measurement since it's a reasonable
2837 * approximation of 1us and fast to compute.
2838 */
2839 delta >>= 10;
2840 if (!delta)
2841 return 0;
9d89c257 2842 sa->last_update_time = now;
9d85f21c 2843
6f2b0452
DE
2844 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2845 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2846
9d85f21c 2847 /* delta_w is the amount already accumulated against our next period */
9d89c257 2848 delta_w = sa->period_contrib;
9d85f21c 2849 if (delta + delta_w >= 1024) {
9d85f21c
PT
2850 decayed = 1;
2851
9d89c257
YD
2852 /* how much left for next period will start over, we don't know yet */
2853 sa->period_contrib = 0;
2854
9d85f21c
PT
2855 /*
2856 * Now that we know we're crossing a period boundary, figure
2857 * out how much from delta we need to complete the current
2858 * period and accrue it.
2859 */
2860 delta_w = 1024 - delta_w;
54a21385 2861 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2862 if (weight) {
e0f5f3af
DE
2863 sa->load_sum += weight * scaled_delta_w;
2864 if (cfs_rq) {
2865 cfs_rq->runnable_load_sum +=
2866 weight * scaled_delta_w;
2867 }
13962234 2868 }
36ee28e4 2869 if (running)
006cdf02 2870 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2871
2872 delta -= delta_w;
2873
2874 /* Figure out how many additional periods this update spans */
2875 periods = delta / 1024;
2876 delta %= 1024;
2877
9d89c257 2878 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2879 if (cfs_rq) {
2880 cfs_rq->runnable_load_sum =
2881 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2882 }
9d89c257 2883 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2884
2885 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2886 contrib = __compute_runnable_contrib(periods);
54a21385 2887 contrib = cap_scale(contrib, scale_freq);
13962234 2888 if (weight) {
9d89c257 2889 sa->load_sum += weight * contrib;
13962234
YD
2890 if (cfs_rq)
2891 cfs_rq->runnable_load_sum += weight * contrib;
2892 }
36ee28e4 2893 if (running)
006cdf02 2894 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2895 }
2896
2897 /* Remainder of delta accrued against u_0` */
54a21385 2898 scaled_delta = cap_scale(delta, scale_freq);
13962234 2899 if (weight) {
e0f5f3af 2900 sa->load_sum += weight * scaled_delta;
13962234 2901 if (cfs_rq)
e0f5f3af 2902 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2903 }
36ee28e4 2904 if (running)
006cdf02 2905 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2906
9d89c257 2907 sa->period_contrib += delta;
9ee474f5 2908
9d89c257
YD
2909 if (decayed) {
2910 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2911 if (cfs_rq) {
2912 cfs_rq->runnable_load_avg =
2913 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2914 }
006cdf02 2915 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2916 }
aff3e498 2917
9d89c257 2918 return decayed;
9ee474f5
PT
2919}
2920
09a43ace
VG
2921/*
2922 * Signed add and clamp on underflow.
2923 *
2924 * Explicitly do a load-store to ensure the intermediate value never hits
2925 * memory. This allows lockless observations without ever seeing the negative
2926 * values.
2927 */
2928#define add_positive(_ptr, _val) do { \
2929 typeof(_ptr) ptr = (_ptr); \
2930 typeof(_val) val = (_val); \
2931 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2932 \
2933 res = var + val; \
2934 \
2935 if (val < 0 && res > var) \
2936 res = 0; \
2937 \
2938 WRITE_ONCE(*ptr, res); \
2939} while (0)
2940
c566e8e9 2941#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2942/**
2943 * update_tg_load_avg - update the tg's load avg
2944 * @cfs_rq: the cfs_rq whose avg changed
2945 * @force: update regardless of how small the difference
2946 *
2947 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2948 * However, because tg->load_avg is a global value there are performance
2949 * considerations.
2950 *
2951 * In order to avoid having to look at the other cfs_rq's, we use a
2952 * differential update where we store the last value we propagated. This in
2953 * turn allows skipping updates if the differential is 'small'.
2954 *
2955 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2956 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2957 */
9d89c257 2958static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2959{
9d89c257 2960 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2961
aa0b7ae0
WL
2962 /*
2963 * No need to update load_avg for root_task_group as it is not used.
2964 */
2965 if (cfs_rq->tg == &root_task_group)
2966 return;
2967
9d89c257
YD
2968 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2969 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2970 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2971 }
8165e145 2972}
f5f9739d 2973
ad936d86
BP
2974/*
2975 * Called within set_task_rq() right before setting a task's cpu. The
2976 * caller only guarantees p->pi_lock is held; no other assumptions,
2977 * including the state of rq->lock, should be made.
2978 */
2979void set_task_rq_fair(struct sched_entity *se,
2980 struct cfs_rq *prev, struct cfs_rq *next)
2981{
2982 if (!sched_feat(ATTACH_AGE_LOAD))
2983 return;
2984
2985 /*
2986 * We are supposed to update the task to "current" time, then its up to
2987 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2988 * getting what current time is, so simply throw away the out-of-date
2989 * time. This will result in the wakee task is less decayed, but giving
2990 * the wakee more load sounds not bad.
2991 */
2992 if (se->avg.last_update_time && prev) {
2993 u64 p_last_update_time;
2994 u64 n_last_update_time;
2995
2996#ifndef CONFIG_64BIT
2997 u64 p_last_update_time_copy;
2998 u64 n_last_update_time_copy;
2999
3000 do {
3001 p_last_update_time_copy = prev->load_last_update_time_copy;
3002 n_last_update_time_copy = next->load_last_update_time_copy;
3003
3004 smp_rmb();
3005
3006 p_last_update_time = prev->avg.last_update_time;
3007 n_last_update_time = next->avg.last_update_time;
3008
3009 } while (p_last_update_time != p_last_update_time_copy ||
3010 n_last_update_time != n_last_update_time_copy);
3011#else
3012 p_last_update_time = prev->avg.last_update_time;
3013 n_last_update_time = next->avg.last_update_time;
3014#endif
3015 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3016 &se->avg, 0, 0, NULL);
3017 se->avg.last_update_time = n_last_update_time;
3018 }
3019}
09a43ace
VG
3020
3021/* Take into account change of utilization of a child task group */
3022static inline void
3023update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3024{
3025 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3026 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3027
3028 /* Nothing to update */
3029 if (!delta)
3030 return;
3031
3032 /* Set new sched_entity's utilization */
3033 se->avg.util_avg = gcfs_rq->avg.util_avg;
3034 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3035
3036 /* Update parent cfs_rq utilization */
3037 add_positive(&cfs_rq->avg.util_avg, delta);
3038 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3039}
3040
3041/* Take into account change of load of a child task group */
3042static inline void
3043update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3044{
3045 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3046 long delta, load = gcfs_rq->avg.load_avg;
3047
3048 /*
3049 * If the load of group cfs_rq is null, the load of the
3050 * sched_entity will also be null so we can skip the formula
3051 */
3052 if (load) {
3053 long tg_load;
3054
3055 /* Get tg's load and ensure tg_load > 0 */
3056 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3057
3058 /* Ensure tg_load >= load and updated with current load*/
3059 tg_load -= gcfs_rq->tg_load_avg_contrib;
3060 tg_load += load;
3061
3062 /*
3063 * We need to compute a correction term in the case that the
3064 * task group is consuming more CPU than a task of equal
3065 * weight. A task with a weight equals to tg->shares will have
3066 * a load less or equal to scale_load_down(tg->shares).
3067 * Similarly, the sched_entities that represent the task group
3068 * at parent level, can't have a load higher than
3069 * scale_load_down(tg->shares). And the Sum of sched_entities'
3070 * load must be <= scale_load_down(tg->shares).
3071 */
3072 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3073 /* scale gcfs_rq's load into tg's shares*/
3074 load *= scale_load_down(gcfs_rq->tg->shares);
3075 load /= tg_load;
3076 }
3077 }
3078
3079 delta = load - se->avg.load_avg;
3080
3081 /* Nothing to update */
3082 if (!delta)
3083 return;
3084
3085 /* Set new sched_entity's load */
3086 se->avg.load_avg = load;
3087 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3088
3089 /* Update parent cfs_rq load */
3090 add_positive(&cfs_rq->avg.load_avg, delta);
3091 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3092
3093 /*
3094 * If the sched_entity is already enqueued, we also have to update the
3095 * runnable load avg.
3096 */
3097 if (se->on_rq) {
3098 /* Update parent cfs_rq runnable_load_avg */
3099 add_positive(&cfs_rq->runnable_load_avg, delta);
3100 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3101 }
3102}
3103
3104static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3105{
3106 cfs_rq->propagate_avg = 1;
3107}
3108
3109static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3110{
3111 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3112
3113 if (!cfs_rq->propagate_avg)
3114 return 0;
3115
3116 cfs_rq->propagate_avg = 0;
3117 return 1;
3118}
3119
3120/* Update task and its cfs_rq load average */
3121static inline int propagate_entity_load_avg(struct sched_entity *se)
3122{
3123 struct cfs_rq *cfs_rq;
3124
3125 if (entity_is_task(se))
3126 return 0;
3127
3128 if (!test_and_clear_tg_cfs_propagate(se))
3129 return 0;
3130
3131 cfs_rq = cfs_rq_of(se);
3132
3133 set_tg_cfs_propagate(cfs_rq);
3134
3135 update_tg_cfs_util(cfs_rq, se);
3136 update_tg_cfs_load(cfs_rq, se);
3137
3138 return 1;
3139}
3140
6e83125c 3141#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3142
9d89c257 3143static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3144
3145static inline int propagate_entity_load_avg(struct sched_entity *se)
3146{
3147 return 0;
3148}
3149
3150static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3151
6e83125c 3152#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3153
a2c6c91f
SM
3154static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3155{
58919e83 3156 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3157 /*
3158 * There are a few boundary cases this might miss but it should
3159 * get called often enough that that should (hopefully) not be
3160 * a real problem -- added to that it only calls on the local
3161 * CPU, so if we enqueue remotely we'll miss an update, but
3162 * the next tick/schedule should update.
3163 *
3164 * It will not get called when we go idle, because the idle
3165 * thread is a different class (!fair), nor will the utilization
3166 * number include things like RT tasks.
3167 *
3168 * As is, the util number is not freq-invariant (we'd have to
3169 * implement arch_scale_freq_capacity() for that).
3170 *
3171 * See cpu_util().
3172 */
12bde33d 3173 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3174 }
3175}
3176
89741892
PZ
3177/*
3178 * Unsigned subtract and clamp on underflow.
3179 *
3180 * Explicitly do a load-store to ensure the intermediate value never hits
3181 * memory. This allows lockless observations without ever seeing the negative
3182 * values.
3183 */
3184#define sub_positive(_ptr, _val) do { \
3185 typeof(_ptr) ptr = (_ptr); \
3186 typeof(*ptr) val = (_val); \
3187 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3188 res = var - val; \
3189 if (res > var) \
3190 res = 0; \
3191 WRITE_ONCE(*ptr, res); \
3192} while (0)
3193
3d30544f
PZ
3194/**
3195 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3196 * @now: current time, as per cfs_rq_clock_task()
3197 * @cfs_rq: cfs_rq to update
3198 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3199 *
3200 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3201 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3202 * post_init_entity_util_avg().
3203 *
3204 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3205 *
7c3edd2c
PZ
3206 * Returns true if the load decayed or we removed load.
3207 *
3208 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3209 * call update_tg_load_avg() when this function returns true.
3d30544f 3210 */
a2c6c91f
SM
3211static inline int
3212update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3213{
9d89c257 3214 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3215 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3216
9d89c257 3217 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3218 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3219 sub_positive(&sa->load_avg, r);
3220 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3221 removed_load = 1;
4e516076 3222 set_tg_cfs_propagate(cfs_rq);
8165e145 3223 }
2dac754e 3224
9d89c257
YD
3225 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3226 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3227 sub_positive(&sa->util_avg, r);
3228 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3229 removed_util = 1;
4e516076 3230 set_tg_cfs_propagate(cfs_rq);
9d89c257 3231 }
36ee28e4 3232
a2c6c91f 3233 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3234 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3235
9d89c257
YD
3236#ifndef CONFIG_64BIT
3237 smp_wmb();
3238 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3239#endif
36ee28e4 3240
a2c6c91f
SM
3241 if (update_freq && (decayed || removed_util))
3242 cfs_rq_util_change(cfs_rq);
21e96f88 3243
41e0d37f 3244 return decayed || removed_load;
21e96f88
SM
3245}
3246
d31b1a66
VG
3247/*
3248 * Optional action to be done while updating the load average
3249 */
3250#define UPDATE_TG 0x1
3251#define SKIP_AGE_LOAD 0x2
3252
21e96f88 3253/* Update task and its cfs_rq load average */
d31b1a66 3254static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3255{
3256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3257 u64 now = cfs_rq_clock_task(cfs_rq);
3258 struct rq *rq = rq_of(cfs_rq);
3259 int cpu = cpu_of(rq);
09a43ace 3260 int decayed;
21e96f88
SM
3261
3262 /*
3263 * Track task load average for carrying it to new CPU after migrated, and
3264 * track group sched_entity load average for task_h_load calc in migration
3265 */
d31b1a66
VG
3266 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3267 __update_load_avg(now, cpu, &se->avg,
21e96f88
SM
3268 se->on_rq * scale_load_down(se->load.weight),
3269 cfs_rq->curr == se, NULL);
d31b1a66 3270 }
21e96f88 3271
09a43ace
VG
3272 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3273 decayed |= propagate_entity_load_avg(se);
3274
3275 if (decayed && (flags & UPDATE_TG))
21e96f88 3276 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3277}
3278
3d30544f
PZ
3279/**
3280 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3281 * @cfs_rq: cfs_rq to attach to
3282 * @se: sched_entity to attach
3283 *
3284 * Must call update_cfs_rq_load_avg() before this, since we rely on
3285 * cfs_rq->avg.last_update_time being current.
3286 */
a05e8c51
BP
3287static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3288{
3289 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3290 cfs_rq->avg.load_avg += se->avg.load_avg;
3291 cfs_rq->avg.load_sum += se->avg.load_sum;
3292 cfs_rq->avg.util_avg += se->avg.util_avg;
3293 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3294 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3295
3296 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3297}
3298
3d30544f
PZ
3299/**
3300 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3301 * @cfs_rq: cfs_rq to detach from
3302 * @se: sched_entity to detach
3303 *
3304 * Must call update_cfs_rq_load_avg() before this, since we rely on
3305 * cfs_rq->avg.last_update_time being current.
3306 */
a05e8c51
BP
3307static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3308{
a05e8c51 3309
89741892
PZ
3310 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3311 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3312 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3313 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3314 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3315
3316 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3317}
3318
9d89c257
YD
3319/* Add the load generated by se into cfs_rq's load average */
3320static inline void
3321enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3322{
9d89c257 3323 struct sched_avg *sa = &se->avg;
18bf2805 3324
13962234
YD
3325 cfs_rq->runnable_load_avg += sa->load_avg;
3326 cfs_rq->runnable_load_sum += sa->load_sum;
3327
d31b1a66 3328 if (!sa->last_update_time) {
a05e8c51 3329 attach_entity_load_avg(cfs_rq, se);
9d89c257 3330 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3331 }
2dac754e
PT
3332}
3333
13962234
YD
3334/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3335static inline void
3336dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3337{
13962234
YD
3338 cfs_rq->runnable_load_avg =
3339 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3340 cfs_rq->runnable_load_sum =
a05e8c51 3341 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3342}
3343
9d89c257 3344#ifndef CONFIG_64BIT
0905f04e
YD
3345static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3346{
9d89c257 3347 u64 last_update_time_copy;
0905f04e 3348 u64 last_update_time;
9ee474f5 3349
9d89c257
YD
3350 do {
3351 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3352 smp_rmb();
3353 last_update_time = cfs_rq->avg.last_update_time;
3354 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3355
3356 return last_update_time;
3357}
9d89c257 3358#else
0905f04e
YD
3359static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3360{
3361 return cfs_rq->avg.last_update_time;
3362}
9d89c257
YD
3363#endif
3364
104cb16d
MR
3365/*
3366 * Synchronize entity load avg of dequeued entity without locking
3367 * the previous rq.
3368 */
3369void sync_entity_load_avg(struct sched_entity *se)
3370{
3371 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3372 u64 last_update_time;
3373
3374 last_update_time = cfs_rq_last_update_time(cfs_rq);
3375 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3376}
3377
0905f04e
YD
3378/*
3379 * Task first catches up with cfs_rq, and then subtract
3380 * itself from the cfs_rq (task must be off the queue now).
3381 */
3382void remove_entity_load_avg(struct sched_entity *se)
3383{
3384 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3385
3386 /*
7dc603c9
PZ
3387 * tasks cannot exit without having gone through wake_up_new_task() ->
3388 * post_init_entity_util_avg() which will have added things to the
3389 * cfs_rq, so we can remove unconditionally.
3390 *
3391 * Similarly for groups, they will have passed through
3392 * post_init_entity_util_avg() before unregister_sched_fair_group()
3393 * calls this.
0905f04e 3394 */
0905f04e 3395
104cb16d 3396 sync_entity_load_avg(se);
9d89c257
YD
3397 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3398 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3399}
642dbc39 3400
7ea241af
YD
3401static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3402{
3403 return cfs_rq->runnable_load_avg;
3404}
3405
3406static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3407{
3408 return cfs_rq->avg.load_avg;
3409}
3410
6e83125c
PZ
3411static int idle_balance(struct rq *this_rq);
3412
38033c37
PZ
3413#else /* CONFIG_SMP */
3414
01011473
PZ
3415static inline int
3416update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3417{
3418 return 0;
3419}
3420
d31b1a66
VG
3421#define UPDATE_TG 0x0
3422#define SKIP_AGE_LOAD 0x0
3423
3424static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3425{
12bde33d 3426 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3427}
3428
9d89c257
YD
3429static inline void
3430enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3431static inline void
3432dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3433static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3434
a05e8c51
BP
3435static inline void
3436attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3437static inline void
3438detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3439
6e83125c
PZ
3440static inline int idle_balance(struct rq *rq)
3441{
3442 return 0;
3443}
3444
38033c37 3445#endif /* CONFIG_SMP */
9d85f21c 3446
ddc97297
PZ
3447static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3448{
3449#ifdef CONFIG_SCHED_DEBUG
3450 s64 d = se->vruntime - cfs_rq->min_vruntime;
3451
3452 if (d < 0)
3453 d = -d;
3454
3455 if (d > 3*sysctl_sched_latency)
ae92882e 3456 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3457#endif
3458}
3459
aeb73b04
PZ
3460static void
3461place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3462{
1af5f730 3463 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3464
2cb8600e
PZ
3465 /*
3466 * The 'current' period is already promised to the current tasks,
3467 * however the extra weight of the new task will slow them down a
3468 * little, place the new task so that it fits in the slot that
3469 * stays open at the end.
3470 */
94dfb5e7 3471 if (initial && sched_feat(START_DEBIT))
f9c0b095 3472 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3473
a2e7a7eb 3474 /* sleeps up to a single latency don't count. */
5ca9880c 3475 if (!initial) {
a2e7a7eb 3476 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3477
a2e7a7eb
MG
3478 /*
3479 * Halve their sleep time's effect, to allow
3480 * for a gentler effect of sleepers:
3481 */
3482 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3483 thresh >>= 1;
51e0304c 3484
a2e7a7eb 3485 vruntime -= thresh;
aeb73b04
PZ
3486 }
3487
b5d9d734 3488 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3489 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3490}
3491
d3d9dc33
PT
3492static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3493
cb251765
MG
3494static inline void check_schedstat_required(void)
3495{
3496#ifdef CONFIG_SCHEDSTATS
3497 if (schedstat_enabled())
3498 return;
3499
3500 /* Force schedstat enabled if a dependent tracepoint is active */
3501 if (trace_sched_stat_wait_enabled() ||
3502 trace_sched_stat_sleep_enabled() ||
3503 trace_sched_stat_iowait_enabled() ||
3504 trace_sched_stat_blocked_enabled() ||
3505 trace_sched_stat_runtime_enabled()) {
eda8dca5 3506 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3507 "stat_blocked and stat_runtime require the "
3508 "kernel parameter schedstats=enabled or "
3509 "kernel.sched_schedstats=1\n");
3510 }
3511#endif
3512}
3513
b5179ac7
PZ
3514
3515/*
3516 * MIGRATION
3517 *
3518 * dequeue
3519 * update_curr()
3520 * update_min_vruntime()
3521 * vruntime -= min_vruntime
3522 *
3523 * enqueue
3524 * update_curr()
3525 * update_min_vruntime()
3526 * vruntime += min_vruntime
3527 *
3528 * this way the vruntime transition between RQs is done when both
3529 * min_vruntime are up-to-date.
3530 *
3531 * WAKEUP (remote)
3532 *
59efa0ba 3533 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3534 * vruntime -= min_vruntime
3535 *
3536 * enqueue
3537 * update_curr()
3538 * update_min_vruntime()
3539 * vruntime += min_vruntime
3540 *
3541 * this way we don't have the most up-to-date min_vruntime on the originating
3542 * CPU and an up-to-date min_vruntime on the destination CPU.
3543 */
3544
bf0f6f24 3545static void
88ec22d3 3546enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3547{
2f950354
PZ
3548 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3549 bool curr = cfs_rq->curr == se;
3550
88ec22d3 3551 /*
2f950354
PZ
3552 * If we're the current task, we must renormalise before calling
3553 * update_curr().
88ec22d3 3554 */
2f950354 3555 if (renorm && curr)
88ec22d3
PZ
3556 se->vruntime += cfs_rq->min_vruntime;
3557
2f950354
PZ
3558 update_curr(cfs_rq);
3559
bf0f6f24 3560 /*
2f950354
PZ
3561 * Otherwise, renormalise after, such that we're placed at the current
3562 * moment in time, instead of some random moment in the past. Being
3563 * placed in the past could significantly boost this task to the
3564 * fairness detriment of existing tasks.
bf0f6f24 3565 */
2f950354
PZ
3566 if (renorm && !curr)
3567 se->vruntime += cfs_rq->min_vruntime;
3568
d31b1a66 3569 update_load_avg(se, UPDATE_TG);
9d89c257 3570 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3571 account_entity_enqueue(cfs_rq, se);
3572 update_cfs_shares(cfs_rq);
bf0f6f24 3573
1a3d027c 3574 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3575 place_entity(cfs_rq, se, 0);
bf0f6f24 3576
cb251765 3577 check_schedstat_required();
4fa8d299
JP
3578 update_stats_enqueue(cfs_rq, se, flags);
3579 check_spread(cfs_rq, se);
2f950354 3580 if (!curr)
83b699ed 3581 __enqueue_entity(cfs_rq, se);
2069dd75 3582 se->on_rq = 1;
3d4b47b4 3583
d3d9dc33 3584 if (cfs_rq->nr_running == 1) {
3d4b47b4 3585 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3586 check_enqueue_throttle(cfs_rq);
3587 }
bf0f6f24
IM
3588}
3589
2c13c919 3590static void __clear_buddies_last(struct sched_entity *se)
2002c695 3591{
2c13c919
RR
3592 for_each_sched_entity(se) {
3593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3594 if (cfs_rq->last != se)
2c13c919 3595 break;
f1044799
PZ
3596
3597 cfs_rq->last = NULL;
2c13c919
RR
3598 }
3599}
2002c695 3600
2c13c919
RR
3601static void __clear_buddies_next(struct sched_entity *se)
3602{
3603 for_each_sched_entity(se) {
3604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3605 if (cfs_rq->next != se)
2c13c919 3606 break;
f1044799
PZ
3607
3608 cfs_rq->next = NULL;
2c13c919 3609 }
2002c695
PZ
3610}
3611
ac53db59
RR
3612static void __clear_buddies_skip(struct sched_entity *se)
3613{
3614 for_each_sched_entity(se) {
3615 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3616 if (cfs_rq->skip != se)
ac53db59 3617 break;
f1044799
PZ
3618
3619 cfs_rq->skip = NULL;
ac53db59
RR
3620 }
3621}
3622
a571bbea
PZ
3623static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3624{
2c13c919
RR
3625 if (cfs_rq->last == se)
3626 __clear_buddies_last(se);
3627
3628 if (cfs_rq->next == se)
3629 __clear_buddies_next(se);
ac53db59
RR
3630
3631 if (cfs_rq->skip == se)
3632 __clear_buddies_skip(se);
a571bbea
PZ
3633}
3634
6c16a6dc 3635static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3636
bf0f6f24 3637static void
371fd7e7 3638dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3639{
a2a2d680
DA
3640 /*
3641 * Update run-time statistics of the 'current'.
3642 */
3643 update_curr(cfs_rq);
d31b1a66 3644 update_load_avg(se, UPDATE_TG);
13962234 3645 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3646
4fa8d299 3647 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3648
2002c695 3649 clear_buddies(cfs_rq, se);
4793241b 3650
83b699ed 3651 if (se != cfs_rq->curr)
30cfdcfc 3652 __dequeue_entity(cfs_rq, se);
17bc14b7 3653 se->on_rq = 0;
30cfdcfc 3654 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3655
3656 /*
b60205c7
PZ
3657 * Normalize after update_curr(); which will also have moved
3658 * min_vruntime if @se is the one holding it back. But before doing
3659 * update_min_vruntime() again, which will discount @se's position and
3660 * can move min_vruntime forward still more.
88ec22d3 3661 */
371fd7e7 3662 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3663 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3664
d8b4986d
PT
3665 /* return excess runtime on last dequeue */
3666 return_cfs_rq_runtime(cfs_rq);
3667
17bc14b7 3668 update_cfs_shares(cfs_rq);
b60205c7
PZ
3669
3670 /*
3671 * Now advance min_vruntime if @se was the entity holding it back,
3672 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3673 * put back on, and if we advance min_vruntime, we'll be placed back
3674 * further than we started -- ie. we'll be penalized.
3675 */
3676 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3677 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3678}
3679
3680/*
3681 * Preempt the current task with a newly woken task if needed:
3682 */
7c92e54f 3683static void
2e09bf55 3684check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3685{
11697830 3686 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3687 struct sched_entity *se;
3688 s64 delta;
11697830 3689
6d0f0ebd 3690 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3691 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3692 if (delta_exec > ideal_runtime) {
8875125e 3693 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3694 /*
3695 * The current task ran long enough, ensure it doesn't get
3696 * re-elected due to buddy favours.
3697 */
3698 clear_buddies(cfs_rq, curr);
f685ceac
MG
3699 return;
3700 }
3701
3702 /*
3703 * Ensure that a task that missed wakeup preemption by a
3704 * narrow margin doesn't have to wait for a full slice.
3705 * This also mitigates buddy induced latencies under load.
3706 */
f685ceac
MG
3707 if (delta_exec < sysctl_sched_min_granularity)
3708 return;
3709
f4cfb33e
WX
3710 se = __pick_first_entity(cfs_rq);
3711 delta = curr->vruntime - se->vruntime;
f685ceac 3712
f4cfb33e
WX
3713 if (delta < 0)
3714 return;
d7d82944 3715
f4cfb33e 3716 if (delta > ideal_runtime)
8875125e 3717 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3718}
3719
83b699ed 3720static void
8494f412 3721set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3722{
83b699ed
SV
3723 /* 'current' is not kept within the tree. */
3724 if (se->on_rq) {
3725 /*
3726 * Any task has to be enqueued before it get to execute on
3727 * a CPU. So account for the time it spent waiting on the
3728 * runqueue.
3729 */
4fa8d299 3730 update_stats_wait_end(cfs_rq, se);
83b699ed 3731 __dequeue_entity(cfs_rq, se);
d31b1a66 3732 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3733 }
3734
79303e9e 3735 update_stats_curr_start(cfs_rq, se);
429d43bc 3736 cfs_rq->curr = se;
4fa8d299 3737
eba1ed4b
IM
3738 /*
3739 * Track our maximum slice length, if the CPU's load is at
3740 * least twice that of our own weight (i.e. dont track it
3741 * when there are only lesser-weight tasks around):
3742 */
cb251765 3743 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3744 schedstat_set(se->statistics.slice_max,
3745 max((u64)schedstat_val(se->statistics.slice_max),
3746 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3747 }
4fa8d299 3748
4a55b450 3749 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3750}
3751
3f3a4904
PZ
3752static int
3753wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3754
ac53db59
RR
3755/*
3756 * Pick the next process, keeping these things in mind, in this order:
3757 * 1) keep things fair between processes/task groups
3758 * 2) pick the "next" process, since someone really wants that to run
3759 * 3) pick the "last" process, for cache locality
3760 * 4) do not run the "skip" process, if something else is available
3761 */
678d5718
PZ
3762static struct sched_entity *
3763pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3764{
678d5718
PZ
3765 struct sched_entity *left = __pick_first_entity(cfs_rq);
3766 struct sched_entity *se;
3767
3768 /*
3769 * If curr is set we have to see if its left of the leftmost entity
3770 * still in the tree, provided there was anything in the tree at all.
3771 */
3772 if (!left || (curr && entity_before(curr, left)))
3773 left = curr;
3774
3775 se = left; /* ideally we run the leftmost entity */
f4b6755f 3776
ac53db59
RR
3777 /*
3778 * Avoid running the skip buddy, if running something else can
3779 * be done without getting too unfair.
3780 */
3781 if (cfs_rq->skip == se) {
678d5718
PZ
3782 struct sched_entity *second;
3783
3784 if (se == curr) {
3785 second = __pick_first_entity(cfs_rq);
3786 } else {
3787 second = __pick_next_entity(se);
3788 if (!second || (curr && entity_before(curr, second)))
3789 second = curr;
3790 }
3791
ac53db59
RR
3792 if (second && wakeup_preempt_entity(second, left) < 1)
3793 se = second;
3794 }
aa2ac252 3795
f685ceac
MG
3796 /*
3797 * Prefer last buddy, try to return the CPU to a preempted task.
3798 */
3799 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3800 se = cfs_rq->last;
3801
ac53db59
RR
3802 /*
3803 * Someone really wants this to run. If it's not unfair, run it.
3804 */
3805 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3806 se = cfs_rq->next;
3807
f685ceac 3808 clear_buddies(cfs_rq, se);
4793241b
PZ
3809
3810 return se;
aa2ac252
PZ
3811}
3812
678d5718 3813static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3814
ab6cde26 3815static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3816{
3817 /*
3818 * If still on the runqueue then deactivate_task()
3819 * was not called and update_curr() has to be done:
3820 */
3821 if (prev->on_rq)
b7cc0896 3822 update_curr(cfs_rq);
bf0f6f24 3823
d3d9dc33
PT
3824 /* throttle cfs_rqs exceeding runtime */
3825 check_cfs_rq_runtime(cfs_rq);
3826
4fa8d299 3827 check_spread(cfs_rq, prev);
cb251765 3828
30cfdcfc 3829 if (prev->on_rq) {
4fa8d299 3830 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3831 /* Put 'current' back into the tree. */
3832 __enqueue_entity(cfs_rq, prev);
9d85f21c 3833 /* in !on_rq case, update occurred at dequeue */
9d89c257 3834 update_load_avg(prev, 0);
30cfdcfc 3835 }
429d43bc 3836 cfs_rq->curr = NULL;
bf0f6f24
IM
3837}
3838
8f4d37ec
PZ
3839static void
3840entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3841{
bf0f6f24 3842 /*
30cfdcfc 3843 * Update run-time statistics of the 'current'.
bf0f6f24 3844 */
30cfdcfc 3845 update_curr(cfs_rq);
bf0f6f24 3846
9d85f21c
PT
3847 /*
3848 * Ensure that runnable average is periodically updated.
3849 */
d31b1a66 3850 update_load_avg(curr, UPDATE_TG);
bf0bd948 3851 update_cfs_shares(cfs_rq);
9d85f21c 3852
8f4d37ec
PZ
3853#ifdef CONFIG_SCHED_HRTICK
3854 /*
3855 * queued ticks are scheduled to match the slice, so don't bother
3856 * validating it and just reschedule.
3857 */
983ed7a6 3858 if (queued) {
8875125e 3859 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3860 return;
3861 }
8f4d37ec
PZ
3862 /*
3863 * don't let the period tick interfere with the hrtick preemption
3864 */
3865 if (!sched_feat(DOUBLE_TICK) &&
3866 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3867 return;
3868#endif
3869
2c2efaed 3870 if (cfs_rq->nr_running > 1)
2e09bf55 3871 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3872}
3873
ab84d31e
PT
3874
3875/**************************************************
3876 * CFS bandwidth control machinery
3877 */
3878
3879#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3880
3881#ifdef HAVE_JUMP_LABEL
c5905afb 3882static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3883
3884static inline bool cfs_bandwidth_used(void)
3885{
c5905afb 3886 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3887}
3888
1ee14e6c 3889void cfs_bandwidth_usage_inc(void)
029632fb 3890{
1ee14e6c
BS
3891 static_key_slow_inc(&__cfs_bandwidth_used);
3892}
3893
3894void cfs_bandwidth_usage_dec(void)
3895{
3896 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3897}
3898#else /* HAVE_JUMP_LABEL */
3899static bool cfs_bandwidth_used(void)
3900{
3901 return true;
3902}
3903
1ee14e6c
BS
3904void cfs_bandwidth_usage_inc(void) {}
3905void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3906#endif /* HAVE_JUMP_LABEL */
3907
ab84d31e
PT
3908/*
3909 * default period for cfs group bandwidth.
3910 * default: 0.1s, units: nanoseconds
3911 */
3912static inline u64 default_cfs_period(void)
3913{
3914 return 100000000ULL;
3915}
ec12cb7f
PT
3916
3917static inline u64 sched_cfs_bandwidth_slice(void)
3918{
3919 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3920}
3921
a9cf55b2
PT
3922/*
3923 * Replenish runtime according to assigned quota and update expiration time.
3924 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3925 * additional synchronization around rq->lock.
3926 *
3927 * requires cfs_b->lock
3928 */
029632fb 3929void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3930{
3931 u64 now;
3932
3933 if (cfs_b->quota == RUNTIME_INF)
3934 return;
3935
3936 now = sched_clock_cpu(smp_processor_id());
3937 cfs_b->runtime = cfs_b->quota;
3938 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3939}
3940
029632fb
PZ
3941static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3942{
3943 return &tg->cfs_bandwidth;
3944}
3945
f1b17280
PT
3946/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3947static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3948{
3949 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3950 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3951
78becc27 3952 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3953}
3954
85dac906
PT
3955/* returns 0 on failure to allocate runtime */
3956static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3957{
3958 struct task_group *tg = cfs_rq->tg;
3959 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3960 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3961
3962 /* note: this is a positive sum as runtime_remaining <= 0 */
3963 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3964
3965 raw_spin_lock(&cfs_b->lock);
3966 if (cfs_b->quota == RUNTIME_INF)
3967 amount = min_amount;
58088ad0 3968 else {
77a4d1a1 3969 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3970
3971 if (cfs_b->runtime > 0) {
3972 amount = min(cfs_b->runtime, min_amount);
3973 cfs_b->runtime -= amount;
3974 cfs_b->idle = 0;
3975 }
ec12cb7f 3976 }
a9cf55b2 3977 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3978 raw_spin_unlock(&cfs_b->lock);
3979
3980 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3981 /*
3982 * we may have advanced our local expiration to account for allowed
3983 * spread between our sched_clock and the one on which runtime was
3984 * issued.
3985 */
3986 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3987 cfs_rq->runtime_expires = expires;
85dac906
PT
3988
3989 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3990}
3991
a9cf55b2
PT
3992/*
3993 * Note: This depends on the synchronization provided by sched_clock and the
3994 * fact that rq->clock snapshots this value.
3995 */
3996static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3997{
a9cf55b2 3998 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3999
4000 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4001 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4002 return;
4003
a9cf55b2
PT
4004 if (cfs_rq->runtime_remaining < 0)
4005 return;
4006
4007 /*
4008 * If the local deadline has passed we have to consider the
4009 * possibility that our sched_clock is 'fast' and the global deadline
4010 * has not truly expired.
4011 *
4012 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4013 * whether the global deadline has advanced. It is valid to compare
4014 * cfs_b->runtime_expires without any locks since we only care about
4015 * exact equality, so a partial write will still work.
a9cf55b2
PT
4016 */
4017
51f2176d 4018 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4019 /* extend local deadline, drift is bounded above by 2 ticks */
4020 cfs_rq->runtime_expires += TICK_NSEC;
4021 } else {
4022 /* global deadline is ahead, expiration has passed */
4023 cfs_rq->runtime_remaining = 0;
4024 }
4025}
4026
9dbdb155 4027static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4028{
4029 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4030 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4031 expire_cfs_rq_runtime(cfs_rq);
4032
4033 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4034 return;
4035
85dac906
PT
4036 /*
4037 * if we're unable to extend our runtime we resched so that the active
4038 * hierarchy can be throttled
4039 */
4040 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4041 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4042}
4043
6c16a6dc 4044static __always_inline
9dbdb155 4045void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4046{
56f570e5 4047 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4048 return;
4049
4050 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4051}
4052
85dac906
PT
4053static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4054{
56f570e5 4055 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4056}
4057
64660c86
PT
4058/* check whether cfs_rq, or any parent, is throttled */
4059static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4060{
56f570e5 4061 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4062}
4063
4064/*
4065 * Ensure that neither of the group entities corresponding to src_cpu or
4066 * dest_cpu are members of a throttled hierarchy when performing group
4067 * load-balance operations.
4068 */
4069static inline int throttled_lb_pair(struct task_group *tg,
4070 int src_cpu, int dest_cpu)
4071{
4072 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4073
4074 src_cfs_rq = tg->cfs_rq[src_cpu];
4075 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4076
4077 return throttled_hierarchy(src_cfs_rq) ||
4078 throttled_hierarchy(dest_cfs_rq);
4079}
4080
4081/* updated child weight may affect parent so we have to do this bottom up */
4082static int tg_unthrottle_up(struct task_group *tg, void *data)
4083{
4084 struct rq *rq = data;
4085 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4086
4087 cfs_rq->throttle_count--;
64660c86 4088 if (!cfs_rq->throttle_count) {
f1b17280 4089 /* adjust cfs_rq_clock_task() */
78becc27 4090 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4091 cfs_rq->throttled_clock_task;
64660c86 4092 }
64660c86
PT
4093
4094 return 0;
4095}
4096
4097static int tg_throttle_down(struct task_group *tg, void *data)
4098{
4099 struct rq *rq = data;
4100 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4101
82958366
PT
4102 /* group is entering throttled state, stop time */
4103 if (!cfs_rq->throttle_count)
78becc27 4104 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4105 cfs_rq->throttle_count++;
4106
4107 return 0;
4108}
4109
d3d9dc33 4110static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4111{
4112 struct rq *rq = rq_of(cfs_rq);
4113 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4114 struct sched_entity *se;
4115 long task_delta, dequeue = 1;
77a4d1a1 4116 bool empty;
85dac906
PT
4117
4118 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4119
f1b17280 4120 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4121 rcu_read_lock();
4122 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4123 rcu_read_unlock();
85dac906
PT
4124
4125 task_delta = cfs_rq->h_nr_running;
4126 for_each_sched_entity(se) {
4127 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4128 /* throttled entity or throttle-on-deactivate */
4129 if (!se->on_rq)
4130 break;
4131
4132 if (dequeue)
4133 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4134 qcfs_rq->h_nr_running -= task_delta;
4135
4136 if (qcfs_rq->load.weight)
4137 dequeue = 0;
4138 }
4139
4140 if (!se)
72465447 4141 sub_nr_running(rq, task_delta);
85dac906
PT
4142
4143 cfs_rq->throttled = 1;
78becc27 4144 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4145 raw_spin_lock(&cfs_b->lock);
d49db342 4146 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4147
c06f04c7
BS
4148 /*
4149 * Add to the _head_ of the list, so that an already-started
4150 * distribute_cfs_runtime will not see us
4151 */
4152 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4153
4154 /*
4155 * If we're the first throttled task, make sure the bandwidth
4156 * timer is running.
4157 */
4158 if (empty)
4159 start_cfs_bandwidth(cfs_b);
4160
85dac906
PT
4161 raw_spin_unlock(&cfs_b->lock);
4162}
4163
029632fb 4164void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4165{
4166 struct rq *rq = rq_of(cfs_rq);
4167 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4168 struct sched_entity *se;
4169 int enqueue = 1;
4170 long task_delta;
4171
22b958d8 4172 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4173
4174 cfs_rq->throttled = 0;
1a55af2e
FW
4175
4176 update_rq_clock(rq);
4177
671fd9da 4178 raw_spin_lock(&cfs_b->lock);
78becc27 4179 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4180 list_del_rcu(&cfs_rq->throttled_list);
4181 raw_spin_unlock(&cfs_b->lock);
4182
64660c86
PT
4183 /* update hierarchical throttle state */
4184 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4185
671fd9da
PT
4186 if (!cfs_rq->load.weight)
4187 return;
4188
4189 task_delta = cfs_rq->h_nr_running;
4190 for_each_sched_entity(se) {
4191 if (se->on_rq)
4192 enqueue = 0;
4193
4194 cfs_rq = cfs_rq_of(se);
4195 if (enqueue)
4196 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4197 cfs_rq->h_nr_running += task_delta;
4198
4199 if (cfs_rq_throttled(cfs_rq))
4200 break;
4201 }
4202
4203 if (!se)
72465447 4204 add_nr_running(rq, task_delta);
671fd9da
PT
4205
4206 /* determine whether we need to wake up potentially idle cpu */
4207 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4208 resched_curr(rq);
671fd9da
PT
4209}
4210
4211static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4212 u64 remaining, u64 expires)
4213{
4214 struct cfs_rq *cfs_rq;
c06f04c7
BS
4215 u64 runtime;
4216 u64 starting_runtime = remaining;
671fd9da
PT
4217
4218 rcu_read_lock();
4219 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4220 throttled_list) {
4221 struct rq *rq = rq_of(cfs_rq);
4222
4223 raw_spin_lock(&rq->lock);
4224 if (!cfs_rq_throttled(cfs_rq))
4225 goto next;
4226
4227 runtime = -cfs_rq->runtime_remaining + 1;
4228 if (runtime > remaining)
4229 runtime = remaining;
4230 remaining -= runtime;
4231
4232 cfs_rq->runtime_remaining += runtime;
4233 cfs_rq->runtime_expires = expires;
4234
4235 /* we check whether we're throttled above */
4236 if (cfs_rq->runtime_remaining > 0)
4237 unthrottle_cfs_rq(cfs_rq);
4238
4239next:
4240 raw_spin_unlock(&rq->lock);
4241
4242 if (!remaining)
4243 break;
4244 }
4245 rcu_read_unlock();
4246
c06f04c7 4247 return starting_runtime - remaining;
671fd9da
PT
4248}
4249
58088ad0
PT
4250/*
4251 * Responsible for refilling a task_group's bandwidth and unthrottling its
4252 * cfs_rqs as appropriate. If there has been no activity within the last
4253 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4254 * used to track this state.
4255 */
4256static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4257{
671fd9da 4258 u64 runtime, runtime_expires;
51f2176d 4259 int throttled;
58088ad0 4260
58088ad0
PT
4261 /* no need to continue the timer with no bandwidth constraint */
4262 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4263 goto out_deactivate;
58088ad0 4264
671fd9da 4265 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4266 cfs_b->nr_periods += overrun;
671fd9da 4267
51f2176d
BS
4268 /*
4269 * idle depends on !throttled (for the case of a large deficit), and if
4270 * we're going inactive then everything else can be deferred
4271 */
4272 if (cfs_b->idle && !throttled)
4273 goto out_deactivate;
a9cf55b2
PT
4274
4275 __refill_cfs_bandwidth_runtime(cfs_b);
4276
671fd9da
PT
4277 if (!throttled) {
4278 /* mark as potentially idle for the upcoming period */
4279 cfs_b->idle = 1;
51f2176d 4280 return 0;
671fd9da
PT
4281 }
4282
e8da1b18
NR
4283 /* account preceding periods in which throttling occurred */
4284 cfs_b->nr_throttled += overrun;
4285
671fd9da 4286 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4287
4288 /*
c06f04c7
BS
4289 * This check is repeated as we are holding onto the new bandwidth while
4290 * we unthrottle. This can potentially race with an unthrottled group
4291 * trying to acquire new bandwidth from the global pool. This can result
4292 * in us over-using our runtime if it is all used during this loop, but
4293 * only by limited amounts in that extreme case.
671fd9da 4294 */
c06f04c7
BS
4295 while (throttled && cfs_b->runtime > 0) {
4296 runtime = cfs_b->runtime;
671fd9da
PT
4297 raw_spin_unlock(&cfs_b->lock);
4298 /* we can't nest cfs_b->lock while distributing bandwidth */
4299 runtime = distribute_cfs_runtime(cfs_b, runtime,
4300 runtime_expires);
4301 raw_spin_lock(&cfs_b->lock);
4302
4303 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4304
4305 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4306 }
58088ad0 4307
671fd9da
PT
4308 /*
4309 * While we are ensured activity in the period following an
4310 * unthrottle, this also covers the case in which the new bandwidth is
4311 * insufficient to cover the existing bandwidth deficit. (Forcing the
4312 * timer to remain active while there are any throttled entities.)
4313 */
4314 cfs_b->idle = 0;
58088ad0 4315
51f2176d
BS
4316 return 0;
4317
4318out_deactivate:
51f2176d 4319 return 1;
58088ad0 4320}
d3d9dc33 4321
d8b4986d
PT
4322/* a cfs_rq won't donate quota below this amount */
4323static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4324/* minimum remaining period time to redistribute slack quota */
4325static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4326/* how long we wait to gather additional slack before distributing */
4327static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4328
db06e78c
BS
4329/*
4330 * Are we near the end of the current quota period?
4331 *
4332 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4333 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4334 * migrate_hrtimers, base is never cleared, so we are fine.
4335 */
d8b4986d
PT
4336static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4337{
4338 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4339 u64 remaining;
4340
4341 /* if the call-back is running a quota refresh is already occurring */
4342 if (hrtimer_callback_running(refresh_timer))
4343 return 1;
4344
4345 /* is a quota refresh about to occur? */
4346 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4347 if (remaining < min_expire)
4348 return 1;
4349
4350 return 0;
4351}
4352
4353static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4354{
4355 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4356
4357 /* if there's a quota refresh soon don't bother with slack */
4358 if (runtime_refresh_within(cfs_b, min_left))
4359 return;
4360
4cfafd30
PZ
4361 hrtimer_start(&cfs_b->slack_timer,
4362 ns_to_ktime(cfs_bandwidth_slack_period),
4363 HRTIMER_MODE_REL);
d8b4986d
PT
4364}
4365
4366/* we know any runtime found here is valid as update_curr() precedes return */
4367static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4368{
4369 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4370 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4371
4372 if (slack_runtime <= 0)
4373 return;
4374
4375 raw_spin_lock(&cfs_b->lock);
4376 if (cfs_b->quota != RUNTIME_INF &&
4377 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4378 cfs_b->runtime += slack_runtime;
4379
4380 /* we are under rq->lock, defer unthrottling using a timer */
4381 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4382 !list_empty(&cfs_b->throttled_cfs_rq))
4383 start_cfs_slack_bandwidth(cfs_b);
4384 }
4385 raw_spin_unlock(&cfs_b->lock);
4386
4387 /* even if it's not valid for return we don't want to try again */
4388 cfs_rq->runtime_remaining -= slack_runtime;
4389}
4390
4391static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4392{
56f570e5
PT
4393 if (!cfs_bandwidth_used())
4394 return;
4395
fccfdc6f 4396 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4397 return;
4398
4399 __return_cfs_rq_runtime(cfs_rq);
4400}
4401
4402/*
4403 * This is done with a timer (instead of inline with bandwidth return) since
4404 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4405 */
4406static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4407{
4408 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4409 u64 expires;
4410
4411 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4412 raw_spin_lock(&cfs_b->lock);
4413 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4414 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4415 return;
db06e78c 4416 }
d8b4986d 4417
c06f04c7 4418 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4419 runtime = cfs_b->runtime;
c06f04c7 4420
d8b4986d
PT
4421 expires = cfs_b->runtime_expires;
4422 raw_spin_unlock(&cfs_b->lock);
4423
4424 if (!runtime)
4425 return;
4426
4427 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4428
4429 raw_spin_lock(&cfs_b->lock);
4430 if (expires == cfs_b->runtime_expires)
c06f04c7 4431 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4432 raw_spin_unlock(&cfs_b->lock);
4433}
4434
d3d9dc33
PT
4435/*
4436 * When a group wakes up we want to make sure that its quota is not already
4437 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4438 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4439 */
4440static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4441{
56f570e5
PT
4442 if (!cfs_bandwidth_used())
4443 return;
4444
d3d9dc33
PT
4445 /* an active group must be handled by the update_curr()->put() path */
4446 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4447 return;
4448
4449 /* ensure the group is not already throttled */
4450 if (cfs_rq_throttled(cfs_rq))
4451 return;
4452
4453 /* update runtime allocation */
4454 account_cfs_rq_runtime(cfs_rq, 0);
4455 if (cfs_rq->runtime_remaining <= 0)
4456 throttle_cfs_rq(cfs_rq);
4457}
4458
55e16d30
PZ
4459static void sync_throttle(struct task_group *tg, int cpu)
4460{
4461 struct cfs_rq *pcfs_rq, *cfs_rq;
4462
4463 if (!cfs_bandwidth_used())
4464 return;
4465
4466 if (!tg->parent)
4467 return;
4468
4469 cfs_rq = tg->cfs_rq[cpu];
4470 pcfs_rq = tg->parent->cfs_rq[cpu];
4471
4472 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4473 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4474}
4475
d3d9dc33 4476/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4477static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4478{
56f570e5 4479 if (!cfs_bandwidth_used())
678d5718 4480 return false;
56f570e5 4481
d3d9dc33 4482 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4483 return false;
d3d9dc33
PT
4484
4485 /*
4486 * it's possible for a throttled entity to be forced into a running
4487 * state (e.g. set_curr_task), in this case we're finished.
4488 */
4489 if (cfs_rq_throttled(cfs_rq))
678d5718 4490 return true;
d3d9dc33
PT
4491
4492 throttle_cfs_rq(cfs_rq);
678d5718 4493 return true;
d3d9dc33 4494}
029632fb 4495
029632fb
PZ
4496static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4497{
4498 struct cfs_bandwidth *cfs_b =
4499 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4500
029632fb
PZ
4501 do_sched_cfs_slack_timer(cfs_b);
4502
4503 return HRTIMER_NORESTART;
4504}
4505
4506static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4507{
4508 struct cfs_bandwidth *cfs_b =
4509 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4510 int overrun;
4511 int idle = 0;
4512
51f2176d 4513 raw_spin_lock(&cfs_b->lock);
029632fb 4514 for (;;) {
77a4d1a1 4515 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4516 if (!overrun)
4517 break;
4518
4519 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4520 }
4cfafd30
PZ
4521 if (idle)
4522 cfs_b->period_active = 0;
51f2176d 4523 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4524
4525 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4526}
4527
4528void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4529{
4530 raw_spin_lock_init(&cfs_b->lock);
4531 cfs_b->runtime = 0;
4532 cfs_b->quota = RUNTIME_INF;
4533 cfs_b->period = ns_to_ktime(default_cfs_period());
4534
4535 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4536 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4537 cfs_b->period_timer.function = sched_cfs_period_timer;
4538 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4539 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4540}
4541
4542static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4543{
4544 cfs_rq->runtime_enabled = 0;
4545 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4546}
4547
77a4d1a1 4548void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4549{
4cfafd30 4550 lockdep_assert_held(&cfs_b->lock);
029632fb 4551
4cfafd30
PZ
4552 if (!cfs_b->period_active) {
4553 cfs_b->period_active = 1;
4554 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4555 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4556 }
029632fb
PZ
4557}
4558
4559static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4560{
7f1a169b
TH
4561 /* init_cfs_bandwidth() was not called */
4562 if (!cfs_b->throttled_cfs_rq.next)
4563 return;
4564
029632fb
PZ
4565 hrtimer_cancel(&cfs_b->period_timer);
4566 hrtimer_cancel(&cfs_b->slack_timer);
4567}
4568
0e59bdae
KT
4569static void __maybe_unused update_runtime_enabled(struct rq *rq)
4570{
4571 struct cfs_rq *cfs_rq;
4572
4573 for_each_leaf_cfs_rq(rq, cfs_rq) {
4574 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4575
4576 raw_spin_lock(&cfs_b->lock);
4577 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4578 raw_spin_unlock(&cfs_b->lock);
4579 }
4580}
4581
38dc3348 4582static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4583{
4584 struct cfs_rq *cfs_rq;
4585
4586 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4587 if (!cfs_rq->runtime_enabled)
4588 continue;
4589
4590 /*
4591 * clock_task is not advancing so we just need to make sure
4592 * there's some valid quota amount
4593 */
51f2176d 4594 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4595 /*
4596 * Offline rq is schedulable till cpu is completely disabled
4597 * in take_cpu_down(), so we prevent new cfs throttling here.
4598 */
4599 cfs_rq->runtime_enabled = 0;
4600
029632fb
PZ
4601 if (cfs_rq_throttled(cfs_rq))
4602 unthrottle_cfs_rq(cfs_rq);
4603 }
4604}
4605
4606#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4607static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4608{
78becc27 4609 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4610}
4611
9dbdb155 4612static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4613static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4614static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4615static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4616static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4617
4618static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4619{
4620 return 0;
4621}
64660c86
PT
4622
4623static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4624{
4625 return 0;
4626}
4627
4628static inline int throttled_lb_pair(struct task_group *tg,
4629 int src_cpu, int dest_cpu)
4630{
4631 return 0;
4632}
029632fb
PZ
4633
4634void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4635
4636#ifdef CONFIG_FAIR_GROUP_SCHED
4637static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4638#endif
4639
029632fb
PZ
4640static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4641{
4642 return NULL;
4643}
4644static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4645static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4646static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4647
4648#endif /* CONFIG_CFS_BANDWIDTH */
4649
bf0f6f24
IM
4650/**************************************************
4651 * CFS operations on tasks:
4652 */
4653
8f4d37ec
PZ
4654#ifdef CONFIG_SCHED_HRTICK
4655static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4656{
8f4d37ec
PZ
4657 struct sched_entity *se = &p->se;
4658 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4659
9148a3a1 4660 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4661
8bf46a39 4662 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4663 u64 slice = sched_slice(cfs_rq, se);
4664 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4665 s64 delta = slice - ran;
4666
4667 if (delta < 0) {
4668 if (rq->curr == p)
8875125e 4669 resched_curr(rq);
8f4d37ec
PZ
4670 return;
4671 }
31656519 4672 hrtick_start(rq, delta);
8f4d37ec
PZ
4673 }
4674}
a4c2f00f
PZ
4675
4676/*
4677 * called from enqueue/dequeue and updates the hrtick when the
4678 * current task is from our class and nr_running is low enough
4679 * to matter.
4680 */
4681static void hrtick_update(struct rq *rq)
4682{
4683 struct task_struct *curr = rq->curr;
4684
b39e66ea 4685 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4686 return;
4687
4688 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4689 hrtick_start_fair(rq, curr);
4690}
55e12e5e 4691#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4692static inline void
4693hrtick_start_fair(struct rq *rq, struct task_struct *p)
4694{
4695}
a4c2f00f
PZ
4696
4697static inline void hrtick_update(struct rq *rq)
4698{
4699}
8f4d37ec
PZ
4700#endif
4701
bf0f6f24
IM
4702/*
4703 * The enqueue_task method is called before nr_running is
4704 * increased. Here we update the fair scheduling stats and
4705 * then put the task into the rbtree:
4706 */
ea87bb78 4707static void
371fd7e7 4708enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4709{
4710 struct cfs_rq *cfs_rq;
62fb1851 4711 struct sched_entity *se = &p->se;
bf0f6f24 4712
8c34ab19
RW
4713 /*
4714 * If in_iowait is set, the code below may not trigger any cpufreq
4715 * utilization updates, so do it here explicitly with the IOWAIT flag
4716 * passed.
4717 */
4718 if (p->in_iowait)
4719 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4720
bf0f6f24 4721 for_each_sched_entity(se) {
62fb1851 4722 if (se->on_rq)
bf0f6f24
IM
4723 break;
4724 cfs_rq = cfs_rq_of(se);
88ec22d3 4725 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4726
4727 /*
4728 * end evaluation on encountering a throttled cfs_rq
4729 *
4730 * note: in the case of encountering a throttled cfs_rq we will
4731 * post the final h_nr_running increment below.
e210bffd 4732 */
85dac906
PT
4733 if (cfs_rq_throttled(cfs_rq))
4734 break;
953bfcd1 4735 cfs_rq->h_nr_running++;
85dac906 4736
88ec22d3 4737 flags = ENQUEUE_WAKEUP;
bf0f6f24 4738 }
8f4d37ec 4739
2069dd75 4740 for_each_sched_entity(se) {
0f317143 4741 cfs_rq = cfs_rq_of(se);
953bfcd1 4742 cfs_rq->h_nr_running++;
2069dd75 4743
85dac906
PT
4744 if (cfs_rq_throttled(cfs_rq))
4745 break;
4746
d31b1a66 4747 update_load_avg(se, UPDATE_TG);
17bc14b7 4748 update_cfs_shares(cfs_rq);
2069dd75
PZ
4749 }
4750
cd126afe 4751 if (!se)
72465447 4752 add_nr_running(rq, 1);
cd126afe 4753
a4c2f00f 4754 hrtick_update(rq);
bf0f6f24
IM
4755}
4756
2f36825b
VP
4757static void set_next_buddy(struct sched_entity *se);
4758
bf0f6f24
IM
4759/*
4760 * The dequeue_task method is called before nr_running is
4761 * decreased. We remove the task from the rbtree and
4762 * update the fair scheduling stats:
4763 */
371fd7e7 4764static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4765{
4766 struct cfs_rq *cfs_rq;
62fb1851 4767 struct sched_entity *se = &p->se;
2f36825b 4768 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4769
4770 for_each_sched_entity(se) {
4771 cfs_rq = cfs_rq_of(se);
371fd7e7 4772 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4773
4774 /*
4775 * end evaluation on encountering a throttled cfs_rq
4776 *
4777 * note: in the case of encountering a throttled cfs_rq we will
4778 * post the final h_nr_running decrement below.
4779 */
4780 if (cfs_rq_throttled(cfs_rq))
4781 break;
953bfcd1 4782 cfs_rq->h_nr_running--;
2069dd75 4783
bf0f6f24 4784 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4785 if (cfs_rq->load.weight) {
754bd598
KK
4786 /* Avoid re-evaluating load for this entity: */
4787 se = parent_entity(se);
2f36825b
VP
4788 /*
4789 * Bias pick_next to pick a task from this cfs_rq, as
4790 * p is sleeping when it is within its sched_slice.
4791 */
754bd598
KK
4792 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4793 set_next_buddy(se);
bf0f6f24 4794 break;
2f36825b 4795 }
371fd7e7 4796 flags |= DEQUEUE_SLEEP;
bf0f6f24 4797 }
8f4d37ec 4798
2069dd75 4799 for_each_sched_entity(se) {
0f317143 4800 cfs_rq = cfs_rq_of(se);
953bfcd1 4801 cfs_rq->h_nr_running--;
2069dd75 4802
85dac906
PT
4803 if (cfs_rq_throttled(cfs_rq))
4804 break;
4805
d31b1a66 4806 update_load_avg(se, UPDATE_TG);
17bc14b7 4807 update_cfs_shares(cfs_rq);
2069dd75
PZ
4808 }
4809
cd126afe 4810 if (!se)
72465447 4811 sub_nr_running(rq, 1);
cd126afe 4812
a4c2f00f 4813 hrtick_update(rq);
bf0f6f24
IM
4814}
4815
e7693a36 4816#ifdef CONFIG_SMP
10e2f1ac
PZ
4817
4818/* Working cpumask for: load_balance, load_balance_newidle. */
4819DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4820DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4821
9fd81dd5 4822#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4823/*
4824 * per rq 'load' arrray crap; XXX kill this.
4825 */
4826
4827/*
d937cdc5 4828 * The exact cpuload calculated at every tick would be:
3289bdb4 4829 *
d937cdc5
PZ
4830 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4831 *
4832 * If a cpu misses updates for n ticks (as it was idle) and update gets
4833 * called on the n+1-th tick when cpu may be busy, then we have:
4834 *
4835 * load_n = (1 - 1/2^i)^n * load_0
4836 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4837 *
4838 * decay_load_missed() below does efficient calculation of
3289bdb4 4839 *
d937cdc5
PZ
4840 * load' = (1 - 1/2^i)^n * load
4841 *
4842 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4843 * This allows us to precompute the above in said factors, thereby allowing the
4844 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4845 * fixed_power_int())
3289bdb4 4846 *
d937cdc5 4847 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4848 */
4849#define DEGRADE_SHIFT 7
d937cdc5
PZ
4850
4851static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4852static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4853 { 0, 0, 0, 0, 0, 0, 0, 0 },
4854 { 64, 32, 8, 0, 0, 0, 0, 0 },
4855 { 96, 72, 40, 12, 1, 0, 0, 0 },
4856 { 112, 98, 75, 43, 15, 1, 0, 0 },
4857 { 120, 112, 98, 76, 45, 16, 2, 0 }
4858};
3289bdb4
PZ
4859
4860/*
4861 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4862 * would be when CPU is idle and so we just decay the old load without
4863 * adding any new load.
4864 */
4865static unsigned long
4866decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4867{
4868 int j = 0;
4869
4870 if (!missed_updates)
4871 return load;
4872
4873 if (missed_updates >= degrade_zero_ticks[idx])
4874 return 0;
4875
4876 if (idx == 1)
4877 return load >> missed_updates;
4878
4879 while (missed_updates) {
4880 if (missed_updates % 2)
4881 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4882
4883 missed_updates >>= 1;
4884 j++;
4885 }
4886 return load;
4887}
9fd81dd5 4888#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4889
59543275 4890/**
cee1afce 4891 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4892 * @this_rq: The rq to update statistics for
4893 * @this_load: The current load
4894 * @pending_updates: The number of missed updates
59543275 4895 *
3289bdb4 4896 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4897 * scheduler tick (TICK_NSEC).
4898 *
4899 * This function computes a decaying average:
4900 *
4901 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4902 *
4903 * Because of NOHZ it might not get called on every tick which gives need for
4904 * the @pending_updates argument.
4905 *
4906 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4907 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4908 * = A * (A * load[i]_n-2 + B) + B
4909 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4910 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4911 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4912 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4913 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4914 *
4915 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4916 * any change in load would have resulted in the tick being turned back on.
4917 *
4918 * For regular NOHZ, this reduces to:
4919 *
4920 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4921 *
4922 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4923 * term.
3289bdb4 4924 */
1f41906a
FW
4925static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4926 unsigned long pending_updates)
3289bdb4 4927{
9fd81dd5 4928 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4929 int i, scale;
4930
4931 this_rq->nr_load_updates++;
4932
4933 /* Update our load: */
4934 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4935 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4936 unsigned long old_load, new_load;
4937
4938 /* scale is effectively 1 << i now, and >> i divides by scale */
4939
7400d3bb 4940 old_load = this_rq->cpu_load[i];
9fd81dd5 4941#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4942 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4943 if (tickless_load) {
4944 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4945 /*
4946 * old_load can never be a negative value because a
4947 * decayed tickless_load cannot be greater than the
4948 * original tickless_load.
4949 */
4950 old_load += tickless_load;
4951 }
9fd81dd5 4952#endif
3289bdb4
PZ
4953 new_load = this_load;
4954 /*
4955 * Round up the averaging division if load is increasing. This
4956 * prevents us from getting stuck on 9 if the load is 10, for
4957 * example.
4958 */
4959 if (new_load > old_load)
4960 new_load += scale - 1;
4961
4962 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4963 }
4964
4965 sched_avg_update(this_rq);
4966}
4967
7ea241af
YD
4968/* Used instead of source_load when we know the type == 0 */
4969static unsigned long weighted_cpuload(const int cpu)
4970{
4971 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4972}
4973
3289bdb4 4974#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4975/*
4976 * There is no sane way to deal with nohz on smp when using jiffies because the
4977 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4978 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4979 *
4980 * Therefore we need to avoid the delta approach from the regular tick when
4981 * possible since that would seriously skew the load calculation. This is why we
4982 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4983 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4984 * loop exit, nohz_idle_balance, nohz full exit...)
4985 *
4986 * This means we might still be one tick off for nohz periods.
4987 */
4988
4989static void cpu_load_update_nohz(struct rq *this_rq,
4990 unsigned long curr_jiffies,
4991 unsigned long load)
be68a682
FW
4992{
4993 unsigned long pending_updates;
4994
4995 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4996 if (pending_updates) {
4997 this_rq->last_load_update_tick = curr_jiffies;
4998 /*
4999 * In the regular NOHZ case, we were idle, this means load 0.
5000 * In the NOHZ_FULL case, we were non-idle, we should consider
5001 * its weighted load.
5002 */
1f41906a 5003 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5004 }
5005}
5006
3289bdb4
PZ
5007/*
5008 * Called from nohz_idle_balance() to update the load ratings before doing the
5009 * idle balance.
5010 */
cee1afce 5011static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5012{
3289bdb4
PZ
5013 /*
5014 * bail if there's load or we're actually up-to-date.
5015 */
be68a682 5016 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5017 return;
5018
1f41906a 5019 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5020}
5021
5022/*
1f41906a
FW
5023 * Record CPU load on nohz entry so we know the tickless load to account
5024 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5025 * than other cpu_load[idx] but it should be fine as cpu_load readers
5026 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5027 */
1f41906a 5028void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5029{
5030 struct rq *this_rq = this_rq();
1f41906a
FW
5031
5032 /*
5033 * This is all lockless but should be fine. If weighted_cpuload changes
5034 * concurrently we'll exit nohz. And cpu_load write can race with
5035 * cpu_load_update_idle() but both updater would be writing the same.
5036 */
5037 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5038}
5039
5040/*
5041 * Account the tickless load in the end of a nohz frame.
5042 */
5043void cpu_load_update_nohz_stop(void)
5044{
316c1608 5045 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5046 struct rq *this_rq = this_rq();
5047 unsigned long load;
3289bdb4
PZ
5048
5049 if (curr_jiffies == this_rq->last_load_update_tick)
5050 return;
5051
1f41906a 5052 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 5053 raw_spin_lock(&this_rq->lock);
b52fad2d 5054 update_rq_clock(this_rq);
1f41906a 5055 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
5056 raw_spin_unlock(&this_rq->lock);
5057}
1f41906a
FW
5058#else /* !CONFIG_NO_HZ_COMMON */
5059static inline void cpu_load_update_nohz(struct rq *this_rq,
5060 unsigned long curr_jiffies,
5061 unsigned long load) { }
5062#endif /* CONFIG_NO_HZ_COMMON */
5063
5064static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5065{
9fd81dd5 5066#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5067 /* See the mess around cpu_load_update_nohz(). */
5068 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5069#endif
1f41906a
FW
5070 cpu_load_update(this_rq, load, 1);
5071}
3289bdb4
PZ
5072
5073/*
5074 * Called from scheduler_tick()
5075 */
cee1afce 5076void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5077{
7ea241af 5078 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5079
5080 if (tick_nohz_tick_stopped())
5081 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5082 else
5083 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5084}
5085
029632fb
PZ
5086/*
5087 * Return a low guess at the load of a migration-source cpu weighted
5088 * according to the scheduling class and "nice" value.
5089 *
5090 * We want to under-estimate the load of migration sources, to
5091 * balance conservatively.
5092 */
5093static unsigned long source_load(int cpu, int type)
5094{
5095 struct rq *rq = cpu_rq(cpu);
5096 unsigned long total = weighted_cpuload(cpu);
5097
5098 if (type == 0 || !sched_feat(LB_BIAS))
5099 return total;
5100
5101 return min(rq->cpu_load[type-1], total);
5102}
5103
5104/*
5105 * Return a high guess at the load of a migration-target cpu weighted
5106 * according to the scheduling class and "nice" value.
5107 */
5108static unsigned long target_load(int cpu, int type)
5109{
5110 struct rq *rq = cpu_rq(cpu);
5111 unsigned long total = weighted_cpuload(cpu);
5112
5113 if (type == 0 || !sched_feat(LB_BIAS))
5114 return total;
5115
5116 return max(rq->cpu_load[type-1], total);
5117}
5118
ced549fa 5119static unsigned long capacity_of(int cpu)
029632fb 5120{
ced549fa 5121 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5122}
5123
ca6d75e6
VG
5124static unsigned long capacity_orig_of(int cpu)
5125{
5126 return cpu_rq(cpu)->cpu_capacity_orig;
5127}
5128
029632fb
PZ
5129static unsigned long cpu_avg_load_per_task(int cpu)
5130{
5131 struct rq *rq = cpu_rq(cpu);
316c1608 5132 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5133 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5134
5135 if (nr_running)
b92486cb 5136 return load_avg / nr_running;
029632fb
PZ
5137
5138 return 0;
5139}
5140
bb3469ac 5141#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5142/*
5143 * effective_load() calculates the load change as seen from the root_task_group
5144 *
5145 * Adding load to a group doesn't make a group heavier, but can cause movement
5146 * of group shares between cpus. Assuming the shares were perfectly aligned one
5147 * can calculate the shift in shares.
cf5f0acf
PZ
5148 *
5149 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5150 * on this @cpu and results in a total addition (subtraction) of @wg to the
5151 * total group weight.
5152 *
5153 * Given a runqueue weight distribution (rw_i) we can compute a shares
5154 * distribution (s_i) using:
5155 *
5156 * s_i = rw_i / \Sum rw_j (1)
5157 *
5158 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5159 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5160 * shares distribution (s_i):
5161 *
5162 * rw_i = { 2, 4, 1, 0 }
5163 * s_i = { 2/7, 4/7, 1/7, 0 }
5164 *
5165 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5166 * task used to run on and the CPU the waker is running on), we need to
5167 * compute the effect of waking a task on either CPU and, in case of a sync
5168 * wakeup, compute the effect of the current task going to sleep.
5169 *
5170 * So for a change of @wl to the local @cpu with an overall group weight change
5171 * of @wl we can compute the new shares distribution (s'_i) using:
5172 *
5173 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5174 *
5175 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5176 * differences in waking a task to CPU 0. The additional task changes the
5177 * weight and shares distributions like:
5178 *
5179 * rw'_i = { 3, 4, 1, 0 }
5180 * s'_i = { 3/8, 4/8, 1/8, 0 }
5181 *
5182 * We can then compute the difference in effective weight by using:
5183 *
5184 * dw_i = S * (s'_i - s_i) (3)
5185 *
5186 * Where 'S' is the group weight as seen by its parent.
5187 *
5188 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5189 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5190 * 4/7) times the weight of the group.
f5bfb7d9 5191 */
2069dd75 5192static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5193{
4be9daaa 5194 struct sched_entity *se = tg->se[cpu];
f1d239f7 5195
9722c2da 5196 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5197 return wl;
5198
4be9daaa 5199 for_each_sched_entity(se) {
7dd49125
PZ
5200 struct cfs_rq *cfs_rq = se->my_q;
5201 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5202
7dd49125 5203 tg = cfs_rq->tg;
bb3469ac 5204
cf5f0acf
PZ
5205 /*
5206 * W = @wg + \Sum rw_j
5207 */
7dd49125
PZ
5208 W = wg + atomic_long_read(&tg->load_avg);
5209
5210 /* Ensure \Sum rw_j >= rw_i */
5211 W -= cfs_rq->tg_load_avg_contrib;
5212 W += w;
4be9daaa 5213
cf5f0acf
PZ
5214 /*
5215 * w = rw_i + @wl
5216 */
7dd49125 5217 w += wl;
940959e9 5218
cf5f0acf
PZ
5219 /*
5220 * wl = S * s'_i; see (2)
5221 */
5222 if (W > 0 && w < W)
ab522e33 5223 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5224 else
ab522e33 5225 wl = scale_load_down(tg->shares);
940959e9 5226
cf5f0acf
PZ
5227 /*
5228 * Per the above, wl is the new se->load.weight value; since
5229 * those are clipped to [MIN_SHARES, ...) do so now. See
5230 * calc_cfs_shares().
5231 */
977dda7c
PT
5232 if (wl < MIN_SHARES)
5233 wl = MIN_SHARES;
cf5f0acf
PZ
5234
5235 /*
5236 * wl = dw_i = S * (s'_i - s_i); see (3)
5237 */
9d89c257 5238 wl -= se->avg.load_avg;
cf5f0acf
PZ
5239
5240 /*
5241 * Recursively apply this logic to all parent groups to compute
5242 * the final effective load change on the root group. Since
5243 * only the @tg group gets extra weight, all parent groups can
5244 * only redistribute existing shares. @wl is the shift in shares
5245 * resulting from this level per the above.
5246 */
4be9daaa 5247 wg = 0;
4be9daaa 5248 }
bb3469ac 5249
4be9daaa 5250 return wl;
bb3469ac
PZ
5251}
5252#else
4be9daaa 5253
58d081b5 5254static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5255{
83378269 5256 return wl;
bb3469ac 5257}
4be9daaa 5258
bb3469ac
PZ
5259#endif
5260
c58d25f3
PZ
5261static void record_wakee(struct task_struct *p)
5262{
5263 /*
5264 * Only decay a single time; tasks that have less then 1 wakeup per
5265 * jiffy will not have built up many flips.
5266 */
5267 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5268 current->wakee_flips >>= 1;
5269 current->wakee_flip_decay_ts = jiffies;
5270 }
5271
5272 if (current->last_wakee != p) {
5273 current->last_wakee = p;
5274 current->wakee_flips++;
5275 }
5276}
5277
63b0e9ed
MG
5278/*
5279 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5280 *
63b0e9ed 5281 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5282 * at a frequency roughly N times higher than one of its wakees.
5283 *
5284 * In order to determine whether we should let the load spread vs consolidating
5285 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5286 * partner, and a factor of lls_size higher frequency in the other.
5287 *
5288 * With both conditions met, we can be relatively sure that the relationship is
5289 * non-monogamous, with partner count exceeding socket size.
5290 *
5291 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5292 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5293 * socket size.
63b0e9ed 5294 */
62470419
MW
5295static int wake_wide(struct task_struct *p)
5296{
63b0e9ed
MG
5297 unsigned int master = current->wakee_flips;
5298 unsigned int slave = p->wakee_flips;
7d9ffa89 5299 int factor = this_cpu_read(sd_llc_size);
62470419 5300
63b0e9ed
MG
5301 if (master < slave)
5302 swap(master, slave);
5303 if (slave < factor || master < slave * factor)
5304 return 0;
5305 return 1;
62470419
MW
5306}
5307
772bd008
MR
5308static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5309 int prev_cpu, int sync)
098fb9db 5310{
e37b6a7b 5311 s64 this_load, load;
bd61c98f 5312 s64 this_eff_load, prev_eff_load;
772bd008 5313 int idx, this_cpu;
c88d5910 5314 struct task_group *tg;
83378269 5315 unsigned long weight;
b3137bc8 5316 int balanced;
098fb9db 5317
c88d5910
PZ
5318 idx = sd->wake_idx;
5319 this_cpu = smp_processor_id();
c88d5910
PZ
5320 load = source_load(prev_cpu, idx);
5321 this_load = target_load(this_cpu, idx);
098fb9db 5322
b3137bc8
MG
5323 /*
5324 * If sync wakeup then subtract the (maximum possible)
5325 * effect of the currently running task from the load
5326 * of the current CPU:
5327 */
83378269
PZ
5328 if (sync) {
5329 tg = task_group(current);
9d89c257 5330 weight = current->se.avg.load_avg;
83378269 5331
c88d5910 5332 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5333 load += effective_load(tg, prev_cpu, 0, -weight);
5334 }
b3137bc8 5335
83378269 5336 tg = task_group(p);
9d89c257 5337 weight = p->se.avg.load_avg;
b3137bc8 5338
71a29aa7
PZ
5339 /*
5340 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5341 * due to the sync cause above having dropped this_load to 0, we'll
5342 * always have an imbalance, but there's really nothing you can do
5343 * about that, so that's good too.
71a29aa7
PZ
5344 *
5345 * Otherwise check if either cpus are near enough in load to allow this
5346 * task to be woken on this_cpu.
5347 */
bd61c98f
VG
5348 this_eff_load = 100;
5349 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5350
bd61c98f
VG
5351 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5352 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5353
bd61c98f 5354 if (this_load > 0) {
e51fd5e2
PZ
5355 this_eff_load *= this_load +
5356 effective_load(tg, this_cpu, weight, weight);
5357
e51fd5e2 5358 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5359 }
e51fd5e2 5360
bd61c98f 5361 balanced = this_eff_load <= prev_eff_load;
098fb9db 5362
ae92882e 5363 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5364
05bfb65f
VG
5365 if (!balanced)
5366 return 0;
098fb9db 5367
ae92882e
JP
5368 schedstat_inc(sd->ttwu_move_affine);
5369 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5370
5371 return 1;
098fb9db
IM
5372}
5373
6a0b19c0
MR
5374static inline int task_util(struct task_struct *p);
5375static int cpu_util_wake(int cpu, struct task_struct *p);
5376
5377static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5378{
5379 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5380}
5381
aaee1203
PZ
5382/*
5383 * find_idlest_group finds and returns the least busy CPU group within the
5384 * domain.
5385 */
5386static struct sched_group *
78e7ed53 5387find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5388 int this_cpu, int sd_flag)
e7693a36 5389{
b3bd3de6 5390 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5391 struct sched_group *most_spare_sg = NULL;
aaee1203 5392 unsigned long min_load = ULONG_MAX, this_load = 0;
6a0b19c0 5393 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5394 int load_idx = sd->forkexec_idx;
aaee1203 5395 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5396
c44f2a02
VG
5397 if (sd_flag & SD_BALANCE_WAKE)
5398 load_idx = sd->wake_idx;
5399
aaee1203 5400 do {
6a0b19c0 5401 unsigned long load, avg_load, spare_cap, max_spare_cap;
aaee1203
PZ
5402 int local_group;
5403 int i;
e7693a36 5404
aaee1203
PZ
5405 /* Skip over this group if it has no CPUs allowed */
5406 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5407 tsk_cpus_allowed(p)))
aaee1203
PZ
5408 continue;
5409
5410 local_group = cpumask_test_cpu(this_cpu,
5411 sched_group_cpus(group));
5412
6a0b19c0
MR
5413 /*
5414 * Tally up the load of all CPUs in the group and find
5415 * the group containing the CPU with most spare capacity.
5416 */
aaee1203 5417 avg_load = 0;
6a0b19c0 5418 max_spare_cap = 0;
aaee1203
PZ
5419
5420 for_each_cpu(i, sched_group_cpus(group)) {
5421 /* Bias balancing toward cpus of our domain */
5422 if (local_group)
5423 load = source_load(i, load_idx);
5424 else
5425 load = target_load(i, load_idx);
5426
5427 avg_load += load;
6a0b19c0
MR
5428
5429 spare_cap = capacity_spare_wake(i, p);
5430
5431 if (spare_cap > max_spare_cap)
5432 max_spare_cap = spare_cap;
aaee1203
PZ
5433 }
5434
63b2ca30 5435 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5436 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5437
5438 if (local_group) {
5439 this_load = avg_load;
6a0b19c0
MR
5440 this_spare = max_spare_cap;
5441 } else {
5442 if (avg_load < min_load) {
5443 min_load = avg_load;
5444 idlest = group;
5445 }
5446
5447 if (most_spare < max_spare_cap) {
5448 most_spare = max_spare_cap;
5449 most_spare_sg = group;
5450 }
aaee1203
PZ
5451 }
5452 } while (group = group->next, group != sd->groups);
5453
6a0b19c0
MR
5454 /*
5455 * The cross-over point between using spare capacity or least load
5456 * is too conservative for high utilization tasks on partially
5457 * utilized systems if we require spare_capacity > task_util(p),
5458 * so we allow for some task stuffing by using
5459 * spare_capacity > task_util(p)/2.
5460 */
5461 if (this_spare > task_util(p) / 2 &&
5462 imbalance*this_spare > 100*most_spare)
5463 return NULL;
5464 else if (most_spare > task_util(p) / 2)
5465 return most_spare_sg;
5466
aaee1203
PZ
5467 if (!idlest || 100*this_load < imbalance*min_load)
5468 return NULL;
5469 return idlest;
5470}
5471
5472/*
5473 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5474 */
5475static int
5476find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5477{
5478 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5479 unsigned int min_exit_latency = UINT_MAX;
5480 u64 latest_idle_timestamp = 0;
5481 int least_loaded_cpu = this_cpu;
5482 int shallowest_idle_cpu = -1;
aaee1203
PZ
5483 int i;
5484
eaecf41f
MR
5485 /* Check if we have any choice: */
5486 if (group->group_weight == 1)
5487 return cpumask_first(sched_group_cpus(group));
5488
aaee1203 5489 /* Traverse only the allowed CPUs */
fa17b507 5490 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5491 if (idle_cpu(i)) {
5492 struct rq *rq = cpu_rq(i);
5493 struct cpuidle_state *idle = idle_get_state(rq);
5494 if (idle && idle->exit_latency < min_exit_latency) {
5495 /*
5496 * We give priority to a CPU whose idle state
5497 * has the smallest exit latency irrespective
5498 * of any idle timestamp.
5499 */
5500 min_exit_latency = idle->exit_latency;
5501 latest_idle_timestamp = rq->idle_stamp;
5502 shallowest_idle_cpu = i;
5503 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5504 rq->idle_stamp > latest_idle_timestamp) {
5505 /*
5506 * If equal or no active idle state, then
5507 * the most recently idled CPU might have
5508 * a warmer cache.
5509 */
5510 latest_idle_timestamp = rq->idle_stamp;
5511 shallowest_idle_cpu = i;
5512 }
9f96742a 5513 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5514 load = weighted_cpuload(i);
5515 if (load < min_load || (load == min_load && i == this_cpu)) {
5516 min_load = load;
5517 least_loaded_cpu = i;
5518 }
e7693a36
GH
5519 }
5520 }
5521
83a0a96a 5522 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5523}
e7693a36 5524
a50bde51 5525/*
10e2f1ac
PZ
5526 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5527 * (@start), and wraps around.
5528 *
5529 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5530 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5531 * through the LLC domain.
5532 *
5533 * Especially tbench is found sensitive to this.
5534 */
5535
5536static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5537{
5538 int next;
5539
5540again:
5541 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5542
5543 if (*wrapped) {
5544 if (next >= start)
5545 return nr_cpumask_bits;
5546 } else {
5547 if (next >= nr_cpumask_bits) {
5548 *wrapped = 1;
5549 n = -1;
5550 goto again;
5551 }
5552 }
5553
5554 return next;
5555}
5556
5557#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5558 for ((wrap) = 0, (cpu) = (start)-1; \
5559 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5560 (cpu) < nr_cpumask_bits; )
5561
5562#ifdef CONFIG_SCHED_SMT
5563
5564static inline void set_idle_cores(int cpu, int val)
5565{
5566 struct sched_domain_shared *sds;
5567
5568 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5569 if (sds)
5570 WRITE_ONCE(sds->has_idle_cores, val);
5571}
5572
5573static inline bool test_idle_cores(int cpu, bool def)
5574{
5575 struct sched_domain_shared *sds;
5576
5577 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5578 if (sds)
5579 return READ_ONCE(sds->has_idle_cores);
5580
5581 return def;
5582}
5583
5584/*
5585 * Scans the local SMT mask to see if the entire core is idle, and records this
5586 * information in sd_llc_shared->has_idle_cores.
5587 *
5588 * Since SMT siblings share all cache levels, inspecting this limited remote
5589 * state should be fairly cheap.
5590 */
1b568f0a 5591void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5592{
5593 int core = cpu_of(rq);
5594 int cpu;
5595
5596 rcu_read_lock();
5597 if (test_idle_cores(core, true))
5598 goto unlock;
5599
5600 for_each_cpu(cpu, cpu_smt_mask(core)) {
5601 if (cpu == core)
5602 continue;
5603
5604 if (!idle_cpu(cpu))
5605 goto unlock;
5606 }
5607
5608 set_idle_cores(core, 1);
5609unlock:
5610 rcu_read_unlock();
5611}
5612
5613/*
5614 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5615 * there are no idle cores left in the system; tracked through
5616 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5617 */
5618static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5619{
5620 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5621 int core, cpu, wrap;
5622
1b568f0a
PZ
5623 if (!static_branch_likely(&sched_smt_present))
5624 return -1;
5625
10e2f1ac
PZ
5626 if (!test_idle_cores(target, false))
5627 return -1;
5628
5629 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5630
5631 for_each_cpu_wrap(core, cpus, target, wrap) {
5632 bool idle = true;
5633
5634 for_each_cpu(cpu, cpu_smt_mask(core)) {
5635 cpumask_clear_cpu(cpu, cpus);
5636 if (!idle_cpu(cpu))
5637 idle = false;
5638 }
5639
5640 if (idle)
5641 return core;
5642 }
5643
5644 /*
5645 * Failed to find an idle core; stop looking for one.
5646 */
5647 set_idle_cores(target, 0);
5648
5649 return -1;
5650}
5651
5652/*
5653 * Scan the local SMT mask for idle CPUs.
5654 */
5655static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5656{
5657 int cpu;
5658
1b568f0a
PZ
5659 if (!static_branch_likely(&sched_smt_present))
5660 return -1;
5661
10e2f1ac
PZ
5662 for_each_cpu(cpu, cpu_smt_mask(target)) {
5663 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5664 continue;
5665 if (idle_cpu(cpu))
5666 return cpu;
5667 }
5668
5669 return -1;
5670}
5671
5672#else /* CONFIG_SCHED_SMT */
5673
5674static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5675{
5676 return -1;
5677}
5678
5679static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5680{
5681 return -1;
5682}
5683
5684#endif /* CONFIG_SCHED_SMT */
5685
5686/*
5687 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5688 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5689 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5690 */
10e2f1ac
PZ
5691static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5692{
9cfb38a7
WL
5693 struct sched_domain *this_sd;
5694 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5695 u64 time, cost;
5696 s64 delta;
5697 int cpu, wrap;
5698
9cfb38a7
WL
5699 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5700 if (!this_sd)
5701 return -1;
5702
5703 avg_cost = this_sd->avg_scan_cost;
5704
10e2f1ac
PZ
5705 /*
5706 * Due to large variance we need a large fuzz factor; hackbench in
5707 * particularly is sensitive here.
5708 */
5709 if ((avg_idle / 512) < avg_cost)
5710 return -1;
5711
5712 time = local_clock();
5713
5714 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5715 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5716 continue;
5717 if (idle_cpu(cpu))
5718 break;
5719 }
5720
5721 time = local_clock() - time;
5722 cost = this_sd->avg_scan_cost;
5723 delta = (s64)(time - cost) / 8;
5724 this_sd->avg_scan_cost += delta;
5725
5726 return cpu;
5727}
5728
5729/*
5730 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5731 */
772bd008 5732static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5733{
99bd5e2f 5734 struct sched_domain *sd;
10e2f1ac 5735 int i;
a50bde51 5736
e0a79f52
MG
5737 if (idle_cpu(target))
5738 return target;
99bd5e2f
SS
5739
5740 /*
10e2f1ac 5741 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5742 */
772bd008
MR
5743 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5744 return prev;
a50bde51 5745
518cd623 5746 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5747 if (!sd)
5748 return target;
772bd008 5749
10e2f1ac
PZ
5750 i = select_idle_core(p, sd, target);
5751 if ((unsigned)i < nr_cpumask_bits)
5752 return i;
37407ea7 5753
10e2f1ac
PZ
5754 i = select_idle_cpu(p, sd, target);
5755 if ((unsigned)i < nr_cpumask_bits)
5756 return i;
5757
5758 i = select_idle_smt(p, sd, target);
5759 if ((unsigned)i < nr_cpumask_bits)
5760 return i;
970e1789 5761
a50bde51
PZ
5762 return target;
5763}
231678b7 5764
8bb5b00c 5765/*
9e91d61d 5766 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5767 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5768 * compare the utilization with the capacity of the CPU that is available for
5769 * CFS task (ie cpu_capacity).
231678b7
DE
5770 *
5771 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5772 * recent utilization of currently non-runnable tasks on a CPU. It represents
5773 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5774 * capacity_orig is the cpu_capacity available at the highest frequency
5775 * (arch_scale_freq_capacity()).
5776 * The utilization of a CPU converges towards a sum equal to or less than the
5777 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5778 * the running time on this CPU scaled by capacity_curr.
5779 *
5780 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5781 * higher than capacity_orig because of unfortunate rounding in
5782 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5783 * the average stabilizes with the new running time. We need to check that the
5784 * utilization stays within the range of [0..capacity_orig] and cap it if
5785 * necessary. Without utilization capping, a group could be seen as overloaded
5786 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5787 * available capacity. We allow utilization to overshoot capacity_curr (but not
5788 * capacity_orig) as it useful for predicting the capacity required after task
5789 * migrations (scheduler-driven DVFS).
8bb5b00c 5790 */
9e91d61d 5791static int cpu_util(int cpu)
8bb5b00c 5792{
9e91d61d 5793 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5794 unsigned long capacity = capacity_orig_of(cpu);
5795
231678b7 5796 return (util >= capacity) ? capacity : util;
8bb5b00c 5797}
a50bde51 5798
3273163c
MR
5799static inline int task_util(struct task_struct *p)
5800{
5801 return p->se.avg.util_avg;
5802}
5803
104cb16d
MR
5804/*
5805 * cpu_util_wake: Compute cpu utilization with any contributions from
5806 * the waking task p removed.
5807 */
5808static int cpu_util_wake(int cpu, struct task_struct *p)
5809{
5810 unsigned long util, capacity;
5811
5812 /* Task has no contribution or is new */
5813 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5814 return cpu_util(cpu);
5815
5816 capacity = capacity_orig_of(cpu);
5817 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5818
5819 return (util >= capacity) ? capacity : util;
5820}
5821
3273163c
MR
5822/*
5823 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5824 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5825 *
5826 * In that case WAKE_AFFINE doesn't make sense and we'll let
5827 * BALANCE_WAKE sort things out.
5828 */
5829static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5830{
5831 long min_cap, max_cap;
5832
5833 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5834 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5835
5836 /* Minimum capacity is close to max, no need to abort wake_affine */
5837 if (max_cap - min_cap < max_cap >> 3)
5838 return 0;
5839
104cb16d
MR
5840 /* Bring task utilization in sync with prev_cpu */
5841 sync_entity_load_avg(&p->se);
5842
3273163c
MR
5843 return min_cap * 1024 < task_util(p) * capacity_margin;
5844}
5845
aaee1203 5846/*
de91b9cb
MR
5847 * select_task_rq_fair: Select target runqueue for the waking task in domains
5848 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5849 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5850 *
de91b9cb
MR
5851 * Balances load by selecting the idlest cpu in the idlest group, or under
5852 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5853 *
de91b9cb 5854 * Returns the target cpu number.
aaee1203
PZ
5855 *
5856 * preempt must be disabled.
5857 */
0017d735 5858static int
ac66f547 5859select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5860{
29cd8bae 5861 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5862 int cpu = smp_processor_id();
63b0e9ed 5863 int new_cpu = prev_cpu;
99bd5e2f 5864 int want_affine = 0;
5158f4e4 5865 int sync = wake_flags & WF_SYNC;
c88d5910 5866
c58d25f3
PZ
5867 if (sd_flag & SD_BALANCE_WAKE) {
5868 record_wakee(p);
3273163c
MR
5869 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5870 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5871 }
aaee1203 5872
dce840a0 5873 rcu_read_lock();
aaee1203 5874 for_each_domain(cpu, tmp) {
e4f42888 5875 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5876 break;
e4f42888 5877
fe3bcfe1 5878 /*
99bd5e2f
SS
5879 * If both cpu and prev_cpu are part of this domain,
5880 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5881 */
99bd5e2f
SS
5882 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5883 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5884 affine_sd = tmp;
29cd8bae 5885 break;
f03542a7 5886 }
29cd8bae 5887
f03542a7 5888 if (tmp->flags & sd_flag)
29cd8bae 5889 sd = tmp;
63b0e9ed
MG
5890 else if (!want_affine)
5891 break;
29cd8bae
PZ
5892 }
5893
63b0e9ed
MG
5894 if (affine_sd) {
5895 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5896 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5897 new_cpu = cpu;
8b911acd 5898 }
e7693a36 5899
63b0e9ed
MG
5900 if (!sd) {
5901 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5902 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5903
5904 } else while (sd) {
aaee1203 5905 struct sched_group *group;
c88d5910 5906 int weight;
098fb9db 5907
0763a660 5908 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5909 sd = sd->child;
5910 continue;
5911 }
098fb9db 5912
c44f2a02 5913 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5914 if (!group) {
5915 sd = sd->child;
5916 continue;
5917 }
4ae7d5ce 5918
d7c33c49 5919 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5920 if (new_cpu == -1 || new_cpu == cpu) {
5921 /* Now try balancing at a lower domain level of cpu */
5922 sd = sd->child;
5923 continue;
e7693a36 5924 }
aaee1203
PZ
5925
5926 /* Now try balancing at a lower domain level of new_cpu */
5927 cpu = new_cpu;
669c55e9 5928 weight = sd->span_weight;
aaee1203
PZ
5929 sd = NULL;
5930 for_each_domain(cpu, tmp) {
669c55e9 5931 if (weight <= tmp->span_weight)
aaee1203 5932 break;
0763a660 5933 if (tmp->flags & sd_flag)
aaee1203
PZ
5934 sd = tmp;
5935 }
5936 /* while loop will break here if sd == NULL */
e7693a36 5937 }
dce840a0 5938 rcu_read_unlock();
e7693a36 5939
c88d5910 5940 return new_cpu;
e7693a36 5941}
0a74bef8
PT
5942
5943/*
5944 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5945 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5946 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5947 */
5a4fd036 5948static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5949{
59efa0ba
PZ
5950 /*
5951 * As blocked tasks retain absolute vruntime the migration needs to
5952 * deal with this by subtracting the old and adding the new
5953 * min_vruntime -- the latter is done by enqueue_entity() when placing
5954 * the task on the new runqueue.
5955 */
5956 if (p->state == TASK_WAKING) {
5957 struct sched_entity *se = &p->se;
5958 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5959 u64 min_vruntime;
5960
5961#ifndef CONFIG_64BIT
5962 u64 min_vruntime_copy;
5963
5964 do {
5965 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5966 smp_rmb();
5967 min_vruntime = cfs_rq->min_vruntime;
5968 } while (min_vruntime != min_vruntime_copy);
5969#else
5970 min_vruntime = cfs_rq->min_vruntime;
5971#endif
5972
5973 se->vruntime -= min_vruntime;
5974 }
5975
aff3e498 5976 /*
9d89c257
YD
5977 * We are supposed to update the task to "current" time, then its up to date
5978 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5979 * what current time is, so simply throw away the out-of-date time. This
5980 * will result in the wakee task is less decayed, but giving the wakee more
5981 * load sounds not bad.
aff3e498 5982 */
9d89c257
YD
5983 remove_entity_load_avg(&p->se);
5984
5985 /* Tell new CPU we are migrated */
5986 p->se.avg.last_update_time = 0;
3944a927
BS
5987
5988 /* We have migrated, no longer consider this task hot */
9d89c257 5989 p->se.exec_start = 0;
0a74bef8 5990}
12695578
YD
5991
5992static void task_dead_fair(struct task_struct *p)
5993{
5994 remove_entity_load_avg(&p->se);
5995}
e7693a36
GH
5996#endif /* CONFIG_SMP */
5997
e52fb7c0
PZ
5998static unsigned long
5999wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6000{
6001 unsigned long gran = sysctl_sched_wakeup_granularity;
6002
6003 /*
e52fb7c0
PZ
6004 * Since its curr running now, convert the gran from real-time
6005 * to virtual-time in his units.
13814d42
MG
6006 *
6007 * By using 'se' instead of 'curr' we penalize light tasks, so
6008 * they get preempted easier. That is, if 'se' < 'curr' then
6009 * the resulting gran will be larger, therefore penalizing the
6010 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6011 * be smaller, again penalizing the lighter task.
6012 *
6013 * This is especially important for buddies when the leftmost
6014 * task is higher priority than the buddy.
0bbd3336 6015 */
f4ad9bd2 6016 return calc_delta_fair(gran, se);
0bbd3336
PZ
6017}
6018
464b7527
PZ
6019/*
6020 * Should 'se' preempt 'curr'.
6021 *
6022 * |s1
6023 * |s2
6024 * |s3
6025 * g
6026 * |<--->|c
6027 *
6028 * w(c, s1) = -1
6029 * w(c, s2) = 0
6030 * w(c, s3) = 1
6031 *
6032 */
6033static int
6034wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6035{
6036 s64 gran, vdiff = curr->vruntime - se->vruntime;
6037
6038 if (vdiff <= 0)
6039 return -1;
6040
e52fb7c0 6041 gran = wakeup_gran(curr, se);
464b7527
PZ
6042 if (vdiff > gran)
6043 return 1;
6044
6045 return 0;
6046}
6047
02479099
PZ
6048static void set_last_buddy(struct sched_entity *se)
6049{
69c80f3e
VP
6050 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6051 return;
6052
6053 for_each_sched_entity(se)
6054 cfs_rq_of(se)->last = se;
02479099
PZ
6055}
6056
6057static void set_next_buddy(struct sched_entity *se)
6058{
69c80f3e
VP
6059 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6060 return;
6061
6062 for_each_sched_entity(se)
6063 cfs_rq_of(se)->next = se;
02479099
PZ
6064}
6065
ac53db59
RR
6066static void set_skip_buddy(struct sched_entity *se)
6067{
69c80f3e
VP
6068 for_each_sched_entity(se)
6069 cfs_rq_of(se)->skip = se;
ac53db59
RR
6070}
6071
bf0f6f24
IM
6072/*
6073 * Preempt the current task with a newly woken task if needed:
6074 */
5a9b86f6 6075static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6076{
6077 struct task_struct *curr = rq->curr;
8651a86c 6078 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6079 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6080 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6081 int next_buddy_marked = 0;
bf0f6f24 6082
4ae7d5ce
IM
6083 if (unlikely(se == pse))
6084 return;
6085
5238cdd3 6086 /*
163122b7 6087 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6088 * unconditionally check_prempt_curr() after an enqueue (which may have
6089 * lead to a throttle). This both saves work and prevents false
6090 * next-buddy nomination below.
6091 */
6092 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6093 return;
6094
2f36825b 6095 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6096 set_next_buddy(pse);
2f36825b
VP
6097 next_buddy_marked = 1;
6098 }
57fdc26d 6099
aec0a514
BR
6100 /*
6101 * We can come here with TIF_NEED_RESCHED already set from new task
6102 * wake up path.
5238cdd3
PT
6103 *
6104 * Note: this also catches the edge-case of curr being in a throttled
6105 * group (e.g. via set_curr_task), since update_curr() (in the
6106 * enqueue of curr) will have resulted in resched being set. This
6107 * prevents us from potentially nominating it as a false LAST_BUDDY
6108 * below.
aec0a514
BR
6109 */
6110 if (test_tsk_need_resched(curr))
6111 return;
6112
a2f5c9ab
DH
6113 /* Idle tasks are by definition preempted by non-idle tasks. */
6114 if (unlikely(curr->policy == SCHED_IDLE) &&
6115 likely(p->policy != SCHED_IDLE))
6116 goto preempt;
6117
91c234b4 6118 /*
a2f5c9ab
DH
6119 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6120 * is driven by the tick):
91c234b4 6121 */
8ed92e51 6122 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6123 return;
bf0f6f24 6124
464b7527 6125 find_matching_se(&se, &pse);
9bbd7374 6126 update_curr(cfs_rq_of(se));
002f128b 6127 BUG_ON(!pse);
2f36825b
VP
6128 if (wakeup_preempt_entity(se, pse) == 1) {
6129 /*
6130 * Bias pick_next to pick the sched entity that is
6131 * triggering this preemption.
6132 */
6133 if (!next_buddy_marked)
6134 set_next_buddy(pse);
3a7e73a2 6135 goto preempt;
2f36825b 6136 }
464b7527 6137
3a7e73a2 6138 return;
a65ac745 6139
3a7e73a2 6140preempt:
8875125e 6141 resched_curr(rq);
3a7e73a2
PZ
6142 /*
6143 * Only set the backward buddy when the current task is still
6144 * on the rq. This can happen when a wakeup gets interleaved
6145 * with schedule on the ->pre_schedule() or idle_balance()
6146 * point, either of which can * drop the rq lock.
6147 *
6148 * Also, during early boot the idle thread is in the fair class,
6149 * for obvious reasons its a bad idea to schedule back to it.
6150 */
6151 if (unlikely(!se->on_rq || curr == rq->idle))
6152 return;
6153
6154 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6155 set_last_buddy(se);
bf0f6f24
IM
6156}
6157
606dba2e 6158static struct task_struct *
e7904a28 6159pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
6160{
6161 struct cfs_rq *cfs_rq = &rq->cfs;
6162 struct sched_entity *se;
678d5718 6163 struct task_struct *p;
37e117c0 6164 int new_tasks;
678d5718 6165
6e83125c 6166again:
678d5718
PZ
6167#ifdef CONFIG_FAIR_GROUP_SCHED
6168 if (!cfs_rq->nr_running)
38033c37 6169 goto idle;
678d5718 6170
3f1d2a31 6171 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6172 goto simple;
6173
6174 /*
6175 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6176 * likely that a next task is from the same cgroup as the current.
6177 *
6178 * Therefore attempt to avoid putting and setting the entire cgroup
6179 * hierarchy, only change the part that actually changes.
6180 */
6181
6182 do {
6183 struct sched_entity *curr = cfs_rq->curr;
6184
6185 /*
6186 * Since we got here without doing put_prev_entity() we also
6187 * have to consider cfs_rq->curr. If it is still a runnable
6188 * entity, update_curr() will update its vruntime, otherwise
6189 * forget we've ever seen it.
6190 */
54d27365
BS
6191 if (curr) {
6192 if (curr->on_rq)
6193 update_curr(cfs_rq);
6194 else
6195 curr = NULL;
678d5718 6196
54d27365
BS
6197 /*
6198 * This call to check_cfs_rq_runtime() will do the
6199 * throttle and dequeue its entity in the parent(s).
6200 * Therefore the 'simple' nr_running test will indeed
6201 * be correct.
6202 */
6203 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6204 goto simple;
6205 }
678d5718
PZ
6206
6207 se = pick_next_entity(cfs_rq, curr);
6208 cfs_rq = group_cfs_rq(se);
6209 } while (cfs_rq);
6210
6211 p = task_of(se);
6212
6213 /*
6214 * Since we haven't yet done put_prev_entity and if the selected task
6215 * is a different task than we started out with, try and touch the
6216 * least amount of cfs_rqs.
6217 */
6218 if (prev != p) {
6219 struct sched_entity *pse = &prev->se;
6220
6221 while (!(cfs_rq = is_same_group(se, pse))) {
6222 int se_depth = se->depth;
6223 int pse_depth = pse->depth;
6224
6225 if (se_depth <= pse_depth) {
6226 put_prev_entity(cfs_rq_of(pse), pse);
6227 pse = parent_entity(pse);
6228 }
6229 if (se_depth >= pse_depth) {
6230 set_next_entity(cfs_rq_of(se), se);
6231 se = parent_entity(se);
6232 }
6233 }
6234
6235 put_prev_entity(cfs_rq, pse);
6236 set_next_entity(cfs_rq, se);
6237 }
6238
6239 if (hrtick_enabled(rq))
6240 hrtick_start_fair(rq, p);
6241
6242 return p;
6243simple:
6244 cfs_rq = &rq->cfs;
6245#endif
bf0f6f24 6246
36ace27e 6247 if (!cfs_rq->nr_running)
38033c37 6248 goto idle;
bf0f6f24 6249
3f1d2a31 6250 put_prev_task(rq, prev);
606dba2e 6251
bf0f6f24 6252 do {
678d5718 6253 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6254 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6255 cfs_rq = group_cfs_rq(se);
6256 } while (cfs_rq);
6257
8f4d37ec 6258 p = task_of(se);
678d5718 6259
b39e66ea
MG
6260 if (hrtick_enabled(rq))
6261 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6262
6263 return p;
38033c37
PZ
6264
6265idle:
cbce1a68
PZ
6266 /*
6267 * This is OK, because current is on_cpu, which avoids it being picked
6268 * for load-balance and preemption/IRQs are still disabled avoiding
6269 * further scheduler activity on it and we're being very careful to
6270 * re-start the picking loop.
6271 */
e7904a28 6272 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 6273 new_tasks = idle_balance(rq);
e7904a28 6274 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
6275 /*
6276 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6277 * possible for any higher priority task to appear. In that case we
6278 * must re-start the pick_next_entity() loop.
6279 */
e4aa358b 6280 if (new_tasks < 0)
37e117c0
PZ
6281 return RETRY_TASK;
6282
e4aa358b 6283 if (new_tasks > 0)
38033c37 6284 goto again;
38033c37
PZ
6285
6286 return NULL;
bf0f6f24
IM
6287}
6288
6289/*
6290 * Account for a descheduled task:
6291 */
31ee529c 6292static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6293{
6294 struct sched_entity *se = &prev->se;
6295 struct cfs_rq *cfs_rq;
6296
6297 for_each_sched_entity(se) {
6298 cfs_rq = cfs_rq_of(se);
ab6cde26 6299 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6300 }
6301}
6302
ac53db59
RR
6303/*
6304 * sched_yield() is very simple
6305 *
6306 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6307 */
6308static void yield_task_fair(struct rq *rq)
6309{
6310 struct task_struct *curr = rq->curr;
6311 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6312 struct sched_entity *se = &curr->se;
6313
6314 /*
6315 * Are we the only task in the tree?
6316 */
6317 if (unlikely(rq->nr_running == 1))
6318 return;
6319
6320 clear_buddies(cfs_rq, se);
6321
6322 if (curr->policy != SCHED_BATCH) {
6323 update_rq_clock(rq);
6324 /*
6325 * Update run-time statistics of the 'current'.
6326 */
6327 update_curr(cfs_rq);
916671c0
MG
6328 /*
6329 * Tell update_rq_clock() that we've just updated,
6330 * so we don't do microscopic update in schedule()
6331 * and double the fastpath cost.
6332 */
9edfbfed 6333 rq_clock_skip_update(rq, true);
ac53db59
RR
6334 }
6335
6336 set_skip_buddy(se);
6337}
6338
d95f4122
MG
6339static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6340{
6341 struct sched_entity *se = &p->se;
6342
5238cdd3
PT
6343 /* throttled hierarchies are not runnable */
6344 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6345 return false;
6346
6347 /* Tell the scheduler that we'd really like pse to run next. */
6348 set_next_buddy(se);
6349
d95f4122
MG
6350 yield_task_fair(rq);
6351
6352 return true;
6353}
6354
681f3e68 6355#ifdef CONFIG_SMP
bf0f6f24 6356/**************************************************
e9c84cb8
PZ
6357 * Fair scheduling class load-balancing methods.
6358 *
6359 * BASICS
6360 *
6361 * The purpose of load-balancing is to achieve the same basic fairness the
6362 * per-cpu scheduler provides, namely provide a proportional amount of compute
6363 * time to each task. This is expressed in the following equation:
6364 *
6365 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6366 *
6367 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6368 * W_i,0 is defined as:
6369 *
6370 * W_i,0 = \Sum_j w_i,j (2)
6371 *
6372 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6373 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6374 *
6375 * The weight average is an exponential decay average of the instantaneous
6376 * weight:
6377 *
6378 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6379 *
ced549fa 6380 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6381 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6382 * can also include other factors [XXX].
6383 *
6384 * To achieve this balance we define a measure of imbalance which follows
6385 * directly from (1):
6386 *
ced549fa 6387 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6388 *
6389 * We them move tasks around to minimize the imbalance. In the continuous
6390 * function space it is obvious this converges, in the discrete case we get
6391 * a few fun cases generally called infeasible weight scenarios.
6392 *
6393 * [XXX expand on:
6394 * - infeasible weights;
6395 * - local vs global optima in the discrete case. ]
6396 *
6397 *
6398 * SCHED DOMAINS
6399 *
6400 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6401 * for all i,j solution, we create a tree of cpus that follows the hardware
6402 * topology where each level pairs two lower groups (or better). This results
6403 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6404 * tree to only the first of the previous level and we decrease the frequency
6405 * of load-balance at each level inv. proportional to the number of cpus in
6406 * the groups.
6407 *
6408 * This yields:
6409 *
6410 * log_2 n 1 n
6411 * \Sum { --- * --- * 2^i } = O(n) (5)
6412 * i = 0 2^i 2^i
6413 * `- size of each group
6414 * | | `- number of cpus doing load-balance
6415 * | `- freq
6416 * `- sum over all levels
6417 *
6418 * Coupled with a limit on how many tasks we can migrate every balance pass,
6419 * this makes (5) the runtime complexity of the balancer.
6420 *
6421 * An important property here is that each CPU is still (indirectly) connected
6422 * to every other cpu in at most O(log n) steps:
6423 *
6424 * The adjacency matrix of the resulting graph is given by:
6425 *
97a7142f 6426 * log_2 n
e9c84cb8
PZ
6427 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6428 * k = 0
6429 *
6430 * And you'll find that:
6431 *
6432 * A^(log_2 n)_i,j != 0 for all i,j (7)
6433 *
6434 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6435 * The task movement gives a factor of O(m), giving a convergence complexity
6436 * of:
6437 *
6438 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6439 *
6440 *
6441 * WORK CONSERVING
6442 *
6443 * In order to avoid CPUs going idle while there's still work to do, new idle
6444 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6445 * tree itself instead of relying on other CPUs to bring it work.
6446 *
6447 * This adds some complexity to both (5) and (8) but it reduces the total idle
6448 * time.
6449 *
6450 * [XXX more?]
6451 *
6452 *
6453 * CGROUPS
6454 *
6455 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6456 *
6457 * s_k,i
6458 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6459 * S_k
6460 *
6461 * Where
6462 *
6463 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6464 *
6465 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6466 *
6467 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6468 * property.
6469 *
6470 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6471 * rewrite all of this once again.]
97a7142f 6472 */
bf0f6f24 6473
ed387b78
HS
6474static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6475
0ec8aa00
PZ
6476enum fbq_type { regular, remote, all };
6477
ddcdf6e7 6478#define LBF_ALL_PINNED 0x01
367456c7 6479#define LBF_NEED_BREAK 0x02
6263322c
PZ
6480#define LBF_DST_PINNED 0x04
6481#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6482
6483struct lb_env {
6484 struct sched_domain *sd;
6485
ddcdf6e7 6486 struct rq *src_rq;
85c1e7da 6487 int src_cpu;
ddcdf6e7
PZ
6488
6489 int dst_cpu;
6490 struct rq *dst_rq;
6491
88b8dac0
SV
6492 struct cpumask *dst_grpmask;
6493 int new_dst_cpu;
ddcdf6e7 6494 enum cpu_idle_type idle;
bd939f45 6495 long imbalance;
b9403130
MW
6496 /* The set of CPUs under consideration for load-balancing */
6497 struct cpumask *cpus;
6498
ddcdf6e7 6499 unsigned int flags;
367456c7
PZ
6500
6501 unsigned int loop;
6502 unsigned int loop_break;
6503 unsigned int loop_max;
0ec8aa00
PZ
6504
6505 enum fbq_type fbq_type;
163122b7 6506 struct list_head tasks;
ddcdf6e7
PZ
6507};
6508
029632fb
PZ
6509/*
6510 * Is this task likely cache-hot:
6511 */
5d5e2b1b 6512static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6513{
6514 s64 delta;
6515
e5673f28
KT
6516 lockdep_assert_held(&env->src_rq->lock);
6517
029632fb
PZ
6518 if (p->sched_class != &fair_sched_class)
6519 return 0;
6520
6521 if (unlikely(p->policy == SCHED_IDLE))
6522 return 0;
6523
6524 /*
6525 * Buddy candidates are cache hot:
6526 */
5d5e2b1b 6527 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6528 (&p->se == cfs_rq_of(&p->se)->next ||
6529 &p->se == cfs_rq_of(&p->se)->last))
6530 return 1;
6531
6532 if (sysctl_sched_migration_cost == -1)
6533 return 1;
6534 if (sysctl_sched_migration_cost == 0)
6535 return 0;
6536
5d5e2b1b 6537 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6538
6539 return delta < (s64)sysctl_sched_migration_cost;
6540}
6541
3a7053b3 6542#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6543/*
2a1ed24c
SD
6544 * Returns 1, if task migration degrades locality
6545 * Returns 0, if task migration improves locality i.e migration preferred.
6546 * Returns -1, if task migration is not affected by locality.
c1ceac62 6547 */
2a1ed24c 6548static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6549{
b1ad065e 6550 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6551 unsigned long src_faults, dst_faults;
3a7053b3
MG
6552 int src_nid, dst_nid;
6553
2a595721 6554 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6555 return -1;
6556
c3b9bc5b 6557 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6558 return -1;
7a0f3083
MG
6559
6560 src_nid = cpu_to_node(env->src_cpu);
6561 dst_nid = cpu_to_node(env->dst_cpu);
6562
83e1d2cd 6563 if (src_nid == dst_nid)
2a1ed24c 6564 return -1;
7a0f3083 6565
2a1ed24c
SD
6566 /* Migrating away from the preferred node is always bad. */
6567 if (src_nid == p->numa_preferred_nid) {
6568 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6569 return 1;
6570 else
6571 return -1;
6572 }
b1ad065e 6573
c1ceac62
RR
6574 /* Encourage migration to the preferred node. */
6575 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6576 return 0;
b1ad065e 6577
c1ceac62
RR
6578 if (numa_group) {
6579 src_faults = group_faults(p, src_nid);
6580 dst_faults = group_faults(p, dst_nid);
6581 } else {
6582 src_faults = task_faults(p, src_nid);
6583 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6584 }
6585
c1ceac62 6586 return dst_faults < src_faults;
7a0f3083
MG
6587}
6588
3a7053b3 6589#else
2a1ed24c 6590static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6591 struct lb_env *env)
6592{
2a1ed24c 6593 return -1;
7a0f3083 6594}
3a7053b3
MG
6595#endif
6596
1e3c88bd
PZ
6597/*
6598 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6599 */
6600static
8e45cb54 6601int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6602{
2a1ed24c 6603 int tsk_cache_hot;
e5673f28
KT
6604
6605 lockdep_assert_held(&env->src_rq->lock);
6606
1e3c88bd
PZ
6607 /*
6608 * We do not migrate tasks that are:
d3198084 6609 * 1) throttled_lb_pair, or
1e3c88bd 6610 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6611 * 3) running (obviously), or
6612 * 4) are cache-hot on their current CPU.
1e3c88bd 6613 */
d3198084
JK
6614 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6615 return 0;
6616
ddcdf6e7 6617 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6618 int cpu;
88b8dac0 6619
ae92882e 6620 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6621
6263322c
PZ
6622 env->flags |= LBF_SOME_PINNED;
6623
88b8dac0
SV
6624 /*
6625 * Remember if this task can be migrated to any other cpu in
6626 * our sched_group. We may want to revisit it if we couldn't
6627 * meet load balance goals by pulling other tasks on src_cpu.
6628 *
6629 * Also avoid computing new_dst_cpu if we have already computed
6630 * one in current iteration.
6631 */
6263322c 6632 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6633 return 0;
6634
e02e60c1
JK
6635 /* Prevent to re-select dst_cpu via env's cpus */
6636 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6637 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6638 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6639 env->new_dst_cpu = cpu;
6640 break;
6641 }
88b8dac0 6642 }
e02e60c1 6643
1e3c88bd
PZ
6644 return 0;
6645 }
88b8dac0
SV
6646
6647 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6648 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6649
ddcdf6e7 6650 if (task_running(env->src_rq, p)) {
ae92882e 6651 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6652 return 0;
6653 }
6654
6655 /*
6656 * Aggressive migration if:
3a7053b3
MG
6657 * 1) destination numa is preferred
6658 * 2) task is cache cold, or
6659 * 3) too many balance attempts have failed.
1e3c88bd 6660 */
2a1ed24c
SD
6661 tsk_cache_hot = migrate_degrades_locality(p, env);
6662 if (tsk_cache_hot == -1)
6663 tsk_cache_hot = task_hot(p, env);
3a7053b3 6664
2a1ed24c 6665 if (tsk_cache_hot <= 0 ||
7a96c231 6666 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6667 if (tsk_cache_hot == 1) {
ae92882e
JP
6668 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6669 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6670 }
1e3c88bd
PZ
6671 return 1;
6672 }
6673
ae92882e 6674 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6675 return 0;
1e3c88bd
PZ
6676}
6677
897c395f 6678/*
163122b7
KT
6679 * detach_task() -- detach the task for the migration specified in env
6680 */
6681static void detach_task(struct task_struct *p, struct lb_env *env)
6682{
6683 lockdep_assert_held(&env->src_rq->lock);
6684
163122b7 6685 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6686 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6687 set_task_cpu(p, env->dst_cpu);
6688}
6689
897c395f 6690/*
e5673f28 6691 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6692 * part of active balancing operations within "domain".
897c395f 6693 *
e5673f28 6694 * Returns a task if successful and NULL otherwise.
897c395f 6695 */
e5673f28 6696static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6697{
6698 struct task_struct *p, *n;
897c395f 6699
e5673f28
KT
6700 lockdep_assert_held(&env->src_rq->lock);
6701
367456c7 6702 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6703 if (!can_migrate_task(p, env))
6704 continue;
897c395f 6705
163122b7 6706 detach_task(p, env);
e5673f28 6707
367456c7 6708 /*
e5673f28 6709 * Right now, this is only the second place where
163122b7 6710 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6711 * so we can safely collect stats here rather than
163122b7 6712 * inside detach_tasks().
367456c7 6713 */
ae92882e 6714 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6715 return p;
897c395f 6716 }
e5673f28 6717 return NULL;
897c395f
PZ
6718}
6719
eb95308e
PZ
6720static const unsigned int sched_nr_migrate_break = 32;
6721
5d6523eb 6722/*
163122b7
KT
6723 * detach_tasks() -- tries to detach up to imbalance weighted load from
6724 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6725 *
163122b7 6726 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6727 */
163122b7 6728static int detach_tasks(struct lb_env *env)
1e3c88bd 6729{
5d6523eb
PZ
6730 struct list_head *tasks = &env->src_rq->cfs_tasks;
6731 struct task_struct *p;
367456c7 6732 unsigned long load;
163122b7
KT
6733 int detached = 0;
6734
6735 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6736
bd939f45 6737 if (env->imbalance <= 0)
5d6523eb 6738 return 0;
1e3c88bd 6739
5d6523eb 6740 while (!list_empty(tasks)) {
985d3a4c
YD
6741 /*
6742 * We don't want to steal all, otherwise we may be treated likewise,
6743 * which could at worst lead to a livelock crash.
6744 */
6745 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6746 break;
6747
5d6523eb 6748 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6749
367456c7
PZ
6750 env->loop++;
6751 /* We've more or less seen every task there is, call it quits */
5d6523eb 6752 if (env->loop > env->loop_max)
367456c7 6753 break;
5d6523eb
PZ
6754
6755 /* take a breather every nr_migrate tasks */
367456c7 6756 if (env->loop > env->loop_break) {
eb95308e 6757 env->loop_break += sched_nr_migrate_break;
8e45cb54 6758 env->flags |= LBF_NEED_BREAK;
ee00e66f 6759 break;
a195f004 6760 }
1e3c88bd 6761
d3198084 6762 if (!can_migrate_task(p, env))
367456c7
PZ
6763 goto next;
6764
6765 load = task_h_load(p);
5d6523eb 6766
eb95308e 6767 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6768 goto next;
6769
bd939f45 6770 if ((load / 2) > env->imbalance)
367456c7 6771 goto next;
1e3c88bd 6772
163122b7
KT
6773 detach_task(p, env);
6774 list_add(&p->se.group_node, &env->tasks);
6775
6776 detached++;
bd939f45 6777 env->imbalance -= load;
1e3c88bd
PZ
6778
6779#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6780 /*
6781 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6782 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6783 * the critical section.
6784 */
5d6523eb 6785 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6786 break;
1e3c88bd
PZ
6787#endif
6788
ee00e66f
PZ
6789 /*
6790 * We only want to steal up to the prescribed amount of
6791 * weighted load.
6792 */
bd939f45 6793 if (env->imbalance <= 0)
ee00e66f 6794 break;
367456c7
PZ
6795
6796 continue;
6797next:
5d6523eb 6798 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6799 }
5d6523eb 6800
1e3c88bd 6801 /*
163122b7
KT
6802 * Right now, this is one of only two places we collect this stat
6803 * so we can safely collect detach_one_task() stats here rather
6804 * than inside detach_one_task().
1e3c88bd 6805 */
ae92882e 6806 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6807
163122b7
KT
6808 return detached;
6809}
6810
6811/*
6812 * attach_task() -- attach the task detached by detach_task() to its new rq.
6813 */
6814static void attach_task(struct rq *rq, struct task_struct *p)
6815{
6816 lockdep_assert_held(&rq->lock);
6817
6818 BUG_ON(task_rq(p) != rq);
163122b7 6819 activate_task(rq, p, 0);
3ea94de1 6820 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6821 check_preempt_curr(rq, p, 0);
6822}
6823
6824/*
6825 * attach_one_task() -- attaches the task returned from detach_one_task() to
6826 * its new rq.
6827 */
6828static void attach_one_task(struct rq *rq, struct task_struct *p)
6829{
6830 raw_spin_lock(&rq->lock);
6831 attach_task(rq, p);
6832 raw_spin_unlock(&rq->lock);
6833}
6834
6835/*
6836 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6837 * new rq.
6838 */
6839static void attach_tasks(struct lb_env *env)
6840{
6841 struct list_head *tasks = &env->tasks;
6842 struct task_struct *p;
6843
6844 raw_spin_lock(&env->dst_rq->lock);
6845
6846 while (!list_empty(tasks)) {
6847 p = list_first_entry(tasks, struct task_struct, se.group_node);
6848 list_del_init(&p->se.group_node);
1e3c88bd 6849
163122b7
KT
6850 attach_task(env->dst_rq, p);
6851 }
6852
6853 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6854}
6855
230059de 6856#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6857static void update_blocked_averages(int cpu)
9e3081ca 6858{
9e3081ca 6859 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6860 struct cfs_rq *cfs_rq;
6861 unsigned long flags;
9e3081ca 6862
48a16753
PT
6863 raw_spin_lock_irqsave(&rq->lock, flags);
6864 update_rq_clock(rq);
9d89c257 6865
9763b67f
PZ
6866 /*
6867 * Iterates the task_group tree in a bottom up fashion, see
6868 * list_add_leaf_cfs_rq() for details.
6869 */
64660c86 6870 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6871 /* throttled entities do not contribute to load */
6872 if (throttled_hierarchy(cfs_rq))
6873 continue;
48a16753 6874
a2c6c91f 6875 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 6876 update_tg_load_avg(cfs_rq, 0);
4e516076
VG
6877
6878 /* Propagate pending load changes to the parent */
6879 if (cfs_rq->tg->se[cpu])
6880 update_load_avg(cfs_rq->tg->se[cpu], 0);
9d89c257 6881 }
48a16753 6882 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6883}
6884
9763b67f 6885/*
68520796 6886 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6887 * This needs to be done in a top-down fashion because the load of a child
6888 * group is a fraction of its parents load.
6889 */
68520796 6890static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6891{
68520796
VD
6892 struct rq *rq = rq_of(cfs_rq);
6893 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6894 unsigned long now = jiffies;
68520796 6895 unsigned long load;
a35b6466 6896
68520796 6897 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6898 return;
6899
68520796
VD
6900 cfs_rq->h_load_next = NULL;
6901 for_each_sched_entity(se) {
6902 cfs_rq = cfs_rq_of(se);
6903 cfs_rq->h_load_next = se;
6904 if (cfs_rq->last_h_load_update == now)
6905 break;
6906 }
a35b6466 6907
68520796 6908 if (!se) {
7ea241af 6909 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6910 cfs_rq->last_h_load_update = now;
6911 }
6912
6913 while ((se = cfs_rq->h_load_next) != NULL) {
6914 load = cfs_rq->h_load;
7ea241af
YD
6915 load = div64_ul(load * se->avg.load_avg,
6916 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6917 cfs_rq = group_cfs_rq(se);
6918 cfs_rq->h_load = load;
6919 cfs_rq->last_h_load_update = now;
6920 }
9763b67f
PZ
6921}
6922
367456c7 6923static unsigned long task_h_load(struct task_struct *p)
230059de 6924{
367456c7 6925 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6926
68520796 6927 update_cfs_rq_h_load(cfs_rq);
9d89c257 6928 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6929 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6930}
6931#else
48a16753 6932static inline void update_blocked_averages(int cpu)
9e3081ca 6933{
6c1d47c0
VG
6934 struct rq *rq = cpu_rq(cpu);
6935 struct cfs_rq *cfs_rq = &rq->cfs;
6936 unsigned long flags;
6937
6938 raw_spin_lock_irqsave(&rq->lock, flags);
6939 update_rq_clock(rq);
a2c6c91f 6940 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6941 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6942}
6943
367456c7 6944static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6945{
9d89c257 6946 return p->se.avg.load_avg;
1e3c88bd 6947}
230059de 6948#endif
1e3c88bd 6949
1e3c88bd 6950/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6951
6952enum group_type {
6953 group_other = 0,
6954 group_imbalanced,
6955 group_overloaded,
6956};
6957
1e3c88bd
PZ
6958/*
6959 * sg_lb_stats - stats of a sched_group required for load_balancing
6960 */
6961struct sg_lb_stats {
6962 unsigned long avg_load; /*Avg load across the CPUs of the group */
6963 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6964 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6965 unsigned long load_per_task;
63b2ca30 6966 unsigned long group_capacity;
9e91d61d 6967 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6968 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6969 unsigned int idle_cpus;
6970 unsigned int group_weight;
caeb178c 6971 enum group_type group_type;
ea67821b 6972 int group_no_capacity;
0ec8aa00
PZ
6973#ifdef CONFIG_NUMA_BALANCING
6974 unsigned int nr_numa_running;
6975 unsigned int nr_preferred_running;
6976#endif
1e3c88bd
PZ
6977};
6978
56cf515b
JK
6979/*
6980 * sd_lb_stats - Structure to store the statistics of a sched_domain
6981 * during load balancing.
6982 */
6983struct sd_lb_stats {
6984 struct sched_group *busiest; /* Busiest group in this sd */
6985 struct sched_group *local; /* Local group in this sd */
6986 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6987 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6988 unsigned long avg_load; /* Average load across all groups in sd */
6989
56cf515b 6990 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6991 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6992};
6993
147c5fc2
PZ
6994static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6995{
6996 /*
6997 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6998 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6999 * We must however clear busiest_stat::avg_load because
7000 * update_sd_pick_busiest() reads this before assignment.
7001 */
7002 *sds = (struct sd_lb_stats){
7003 .busiest = NULL,
7004 .local = NULL,
7005 .total_load = 0UL,
63b2ca30 7006 .total_capacity = 0UL,
147c5fc2
PZ
7007 .busiest_stat = {
7008 .avg_load = 0UL,
caeb178c
RR
7009 .sum_nr_running = 0,
7010 .group_type = group_other,
147c5fc2
PZ
7011 },
7012 };
7013}
7014
1e3c88bd
PZ
7015/**
7016 * get_sd_load_idx - Obtain the load index for a given sched domain.
7017 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7018 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7019 *
7020 * Return: The load index.
1e3c88bd
PZ
7021 */
7022static inline int get_sd_load_idx(struct sched_domain *sd,
7023 enum cpu_idle_type idle)
7024{
7025 int load_idx;
7026
7027 switch (idle) {
7028 case CPU_NOT_IDLE:
7029 load_idx = sd->busy_idx;
7030 break;
7031
7032 case CPU_NEWLY_IDLE:
7033 load_idx = sd->newidle_idx;
7034 break;
7035 default:
7036 load_idx = sd->idle_idx;
7037 break;
7038 }
7039
7040 return load_idx;
7041}
7042
ced549fa 7043static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7044{
7045 struct rq *rq = cpu_rq(cpu);
b5b4860d 7046 u64 total, used, age_stamp, avg;
cadefd3d 7047 s64 delta;
1e3c88bd 7048
b654f7de
PZ
7049 /*
7050 * Since we're reading these variables without serialization make sure
7051 * we read them once before doing sanity checks on them.
7052 */
316c1608
JL
7053 age_stamp = READ_ONCE(rq->age_stamp);
7054 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7055 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7056
cadefd3d
PZ
7057 if (unlikely(delta < 0))
7058 delta = 0;
7059
7060 total = sched_avg_period() + delta;
aa483808 7061
b5b4860d 7062 used = div_u64(avg, total);
1e3c88bd 7063
b5b4860d
VG
7064 if (likely(used < SCHED_CAPACITY_SCALE))
7065 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7066
b5b4860d 7067 return 1;
1e3c88bd
PZ
7068}
7069
ced549fa 7070static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7071{
8cd5601c 7072 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7073 struct sched_group *sdg = sd->groups;
7074
ca6d75e6 7075 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7076
ced549fa 7077 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7078 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7079
ced549fa
NP
7080 if (!capacity)
7081 capacity = 1;
1e3c88bd 7082
ced549fa
NP
7083 cpu_rq(cpu)->cpu_capacity = capacity;
7084 sdg->sgc->capacity = capacity;
bf475ce0 7085 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7086}
7087
63b2ca30 7088void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7089{
7090 struct sched_domain *child = sd->child;
7091 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7092 unsigned long capacity, min_capacity;
4ec4412e
VG
7093 unsigned long interval;
7094
7095 interval = msecs_to_jiffies(sd->balance_interval);
7096 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7097 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7098
7099 if (!child) {
ced549fa 7100 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7101 return;
7102 }
7103
dc7ff76e 7104 capacity = 0;
bf475ce0 7105 min_capacity = ULONG_MAX;
1e3c88bd 7106
74a5ce20
PZ
7107 if (child->flags & SD_OVERLAP) {
7108 /*
7109 * SD_OVERLAP domains cannot assume that child groups
7110 * span the current group.
7111 */
7112
863bffc8 7113 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7114 struct sched_group_capacity *sgc;
9abf24d4 7115 struct rq *rq = cpu_rq(cpu);
863bffc8 7116
9abf24d4 7117 /*
63b2ca30 7118 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7119 * gets here before we've attached the domains to the
7120 * runqueues.
7121 *
ced549fa
NP
7122 * Use capacity_of(), which is set irrespective of domains
7123 * in update_cpu_capacity().
9abf24d4 7124 *
dc7ff76e 7125 * This avoids capacity from being 0 and
9abf24d4 7126 * causing divide-by-zero issues on boot.
9abf24d4
SD
7127 */
7128 if (unlikely(!rq->sd)) {
ced549fa 7129 capacity += capacity_of(cpu);
bf475ce0
MR
7130 } else {
7131 sgc = rq->sd->groups->sgc;
7132 capacity += sgc->capacity;
9abf24d4 7133 }
863bffc8 7134
bf475ce0 7135 min_capacity = min(capacity, min_capacity);
863bffc8 7136 }
74a5ce20
PZ
7137 } else {
7138 /*
7139 * !SD_OVERLAP domains can assume that child groups
7140 * span the current group.
97a7142f 7141 */
74a5ce20
PZ
7142
7143 group = child->groups;
7144 do {
bf475ce0
MR
7145 struct sched_group_capacity *sgc = group->sgc;
7146
7147 capacity += sgc->capacity;
7148 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7149 group = group->next;
7150 } while (group != child->groups);
7151 }
1e3c88bd 7152
63b2ca30 7153 sdg->sgc->capacity = capacity;
bf475ce0 7154 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7155}
7156
9d5efe05 7157/*
ea67821b
VG
7158 * Check whether the capacity of the rq has been noticeably reduced by side
7159 * activity. The imbalance_pct is used for the threshold.
7160 * Return true is the capacity is reduced
9d5efe05
SV
7161 */
7162static inline int
ea67821b 7163check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7164{
ea67821b
VG
7165 return ((rq->cpu_capacity * sd->imbalance_pct) <
7166 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7167}
7168
30ce5dab
PZ
7169/*
7170 * Group imbalance indicates (and tries to solve) the problem where balancing
7171 * groups is inadequate due to tsk_cpus_allowed() constraints.
7172 *
7173 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7174 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7175 * Something like:
7176 *
7177 * { 0 1 2 3 } { 4 5 6 7 }
7178 * * * * *
7179 *
7180 * If we were to balance group-wise we'd place two tasks in the first group and
7181 * two tasks in the second group. Clearly this is undesired as it will overload
7182 * cpu 3 and leave one of the cpus in the second group unused.
7183 *
7184 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7185 * by noticing the lower domain failed to reach balance and had difficulty
7186 * moving tasks due to affinity constraints.
30ce5dab
PZ
7187 *
7188 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7189 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7190 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7191 * to create an effective group imbalance.
7192 *
7193 * This is a somewhat tricky proposition since the next run might not find the
7194 * group imbalance and decide the groups need to be balanced again. A most
7195 * subtle and fragile situation.
7196 */
7197
6263322c 7198static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7199{
63b2ca30 7200 return group->sgc->imbalance;
30ce5dab
PZ
7201}
7202
b37d9316 7203/*
ea67821b
VG
7204 * group_has_capacity returns true if the group has spare capacity that could
7205 * be used by some tasks.
7206 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7207 * smaller than the number of CPUs or if the utilization is lower than the
7208 * available capacity for CFS tasks.
ea67821b
VG
7209 * For the latter, we use a threshold to stabilize the state, to take into
7210 * account the variance of the tasks' load and to return true if the available
7211 * capacity in meaningful for the load balancer.
7212 * As an example, an available capacity of 1% can appear but it doesn't make
7213 * any benefit for the load balance.
b37d9316 7214 */
ea67821b
VG
7215static inline bool
7216group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7217{
ea67821b
VG
7218 if (sgs->sum_nr_running < sgs->group_weight)
7219 return true;
c61037e9 7220
ea67821b 7221 if ((sgs->group_capacity * 100) >
9e91d61d 7222 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7223 return true;
b37d9316 7224
ea67821b
VG
7225 return false;
7226}
7227
7228/*
7229 * group_is_overloaded returns true if the group has more tasks than it can
7230 * handle.
7231 * group_is_overloaded is not equals to !group_has_capacity because a group
7232 * with the exact right number of tasks, has no more spare capacity but is not
7233 * overloaded so both group_has_capacity and group_is_overloaded return
7234 * false.
7235 */
7236static inline bool
7237group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7238{
7239 if (sgs->sum_nr_running <= sgs->group_weight)
7240 return false;
b37d9316 7241
ea67821b 7242 if ((sgs->group_capacity * 100) <
9e91d61d 7243 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7244 return true;
b37d9316 7245
ea67821b 7246 return false;
b37d9316
PZ
7247}
7248
9e0994c0
MR
7249/*
7250 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7251 * per-CPU capacity than sched_group ref.
7252 */
7253static inline bool
7254group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7255{
7256 return sg->sgc->min_capacity * capacity_margin <
7257 ref->sgc->min_capacity * 1024;
7258}
7259
79a89f92
LY
7260static inline enum
7261group_type group_classify(struct sched_group *group,
7262 struct sg_lb_stats *sgs)
caeb178c 7263{
ea67821b 7264 if (sgs->group_no_capacity)
caeb178c
RR
7265 return group_overloaded;
7266
7267 if (sg_imbalanced(group))
7268 return group_imbalanced;
7269
7270 return group_other;
7271}
7272
1e3c88bd
PZ
7273/**
7274 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7275 * @env: The load balancing environment.
1e3c88bd 7276 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7277 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7278 * @local_group: Does group contain this_cpu.
1e3c88bd 7279 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7280 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7281 */
bd939f45
PZ
7282static inline void update_sg_lb_stats(struct lb_env *env,
7283 struct sched_group *group, int load_idx,
4486edd1
TC
7284 int local_group, struct sg_lb_stats *sgs,
7285 bool *overload)
1e3c88bd 7286{
30ce5dab 7287 unsigned long load;
a426f99c 7288 int i, nr_running;
1e3c88bd 7289
b72ff13c
PZ
7290 memset(sgs, 0, sizeof(*sgs));
7291
b9403130 7292 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7293 struct rq *rq = cpu_rq(i);
7294
1e3c88bd 7295 /* Bias balancing toward cpus of our domain */
6263322c 7296 if (local_group)
04f733b4 7297 load = target_load(i, load_idx);
6263322c 7298 else
1e3c88bd 7299 load = source_load(i, load_idx);
1e3c88bd
PZ
7300
7301 sgs->group_load += load;
9e91d61d 7302 sgs->group_util += cpu_util(i);
65fdac08 7303 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7304
a426f99c
WL
7305 nr_running = rq->nr_running;
7306 if (nr_running > 1)
4486edd1
TC
7307 *overload = true;
7308
0ec8aa00
PZ
7309#ifdef CONFIG_NUMA_BALANCING
7310 sgs->nr_numa_running += rq->nr_numa_running;
7311 sgs->nr_preferred_running += rq->nr_preferred_running;
7312#endif
1e3c88bd 7313 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7314 /*
7315 * No need to call idle_cpu() if nr_running is not 0
7316 */
7317 if (!nr_running && idle_cpu(i))
aae6d3dd 7318 sgs->idle_cpus++;
1e3c88bd
PZ
7319 }
7320
63b2ca30
NP
7321 /* Adjust by relative CPU capacity of the group */
7322 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7323 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7324
dd5feea1 7325 if (sgs->sum_nr_running)
38d0f770 7326 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7327
aae6d3dd 7328 sgs->group_weight = group->group_weight;
b37d9316 7329
ea67821b 7330 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7331 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7332}
7333
532cb4c4
MN
7334/**
7335 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7336 * @env: The load balancing environment.
532cb4c4
MN
7337 * @sds: sched_domain statistics
7338 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7339 * @sgs: sched_group statistics
532cb4c4
MN
7340 *
7341 * Determine if @sg is a busier group than the previously selected
7342 * busiest group.
e69f6186
YB
7343 *
7344 * Return: %true if @sg is a busier group than the previously selected
7345 * busiest group. %false otherwise.
532cb4c4 7346 */
bd939f45 7347static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7348 struct sd_lb_stats *sds,
7349 struct sched_group *sg,
bd939f45 7350 struct sg_lb_stats *sgs)
532cb4c4 7351{
caeb178c 7352 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7353
caeb178c 7354 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7355 return true;
7356
caeb178c
RR
7357 if (sgs->group_type < busiest->group_type)
7358 return false;
7359
7360 if (sgs->avg_load <= busiest->avg_load)
7361 return false;
7362
9e0994c0
MR
7363 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7364 goto asym_packing;
7365
7366 /*
7367 * Candidate sg has no more than one task per CPU and
7368 * has higher per-CPU capacity. Migrating tasks to less
7369 * capable CPUs may harm throughput. Maximize throughput,
7370 * power/energy consequences are not considered.
7371 */
7372 if (sgs->sum_nr_running <= sgs->group_weight &&
7373 group_smaller_cpu_capacity(sds->local, sg))
7374 return false;
7375
7376asym_packing:
caeb178c
RR
7377 /* This is the busiest node in its class. */
7378 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7379 return true;
7380
1f621e02
SD
7381 /* No ASYM_PACKING if target cpu is already busy */
7382 if (env->idle == CPU_NOT_IDLE)
7383 return true;
532cb4c4
MN
7384 /*
7385 * ASYM_PACKING needs to move all the work to the lowest
7386 * numbered CPUs in the group, therefore mark all groups
7387 * higher than ourself as busy.
7388 */
caeb178c 7389 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
7390 if (!sds->busiest)
7391 return true;
7392
1f621e02
SD
7393 /* Prefer to move from highest possible cpu's work */
7394 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
7395 return true;
7396 }
7397
7398 return false;
7399}
7400
0ec8aa00
PZ
7401#ifdef CONFIG_NUMA_BALANCING
7402static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7403{
7404 if (sgs->sum_nr_running > sgs->nr_numa_running)
7405 return regular;
7406 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7407 return remote;
7408 return all;
7409}
7410
7411static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7412{
7413 if (rq->nr_running > rq->nr_numa_running)
7414 return regular;
7415 if (rq->nr_running > rq->nr_preferred_running)
7416 return remote;
7417 return all;
7418}
7419#else
7420static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7421{
7422 return all;
7423}
7424
7425static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7426{
7427 return regular;
7428}
7429#endif /* CONFIG_NUMA_BALANCING */
7430
1e3c88bd 7431/**
461819ac 7432 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7433 * @env: The load balancing environment.
1e3c88bd
PZ
7434 * @sds: variable to hold the statistics for this sched_domain.
7435 */
0ec8aa00 7436static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7437{
bd939f45
PZ
7438 struct sched_domain *child = env->sd->child;
7439 struct sched_group *sg = env->sd->groups;
56cf515b 7440 struct sg_lb_stats tmp_sgs;
1e3c88bd 7441 int load_idx, prefer_sibling = 0;
4486edd1 7442 bool overload = false;
1e3c88bd
PZ
7443
7444 if (child && child->flags & SD_PREFER_SIBLING)
7445 prefer_sibling = 1;
7446
bd939f45 7447 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7448
7449 do {
56cf515b 7450 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7451 int local_group;
7452
bd939f45 7453 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7454 if (local_group) {
7455 sds->local = sg;
7456 sgs = &sds->local_stat;
b72ff13c
PZ
7457
7458 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7459 time_after_eq(jiffies, sg->sgc->next_update))
7460 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7461 }
1e3c88bd 7462
4486edd1
TC
7463 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7464 &overload);
1e3c88bd 7465
b72ff13c
PZ
7466 if (local_group)
7467 goto next_group;
7468
1e3c88bd
PZ
7469 /*
7470 * In case the child domain prefers tasks go to siblings
ea67821b 7471 * first, lower the sg capacity so that we'll try
75dd321d
NR
7472 * and move all the excess tasks away. We lower the capacity
7473 * of a group only if the local group has the capacity to fit
ea67821b
VG
7474 * these excess tasks. The extra check prevents the case where
7475 * you always pull from the heaviest group when it is already
7476 * under-utilized (possible with a large weight task outweighs
7477 * the tasks on the system).
1e3c88bd 7478 */
b72ff13c 7479 if (prefer_sibling && sds->local &&
ea67821b
VG
7480 group_has_capacity(env, &sds->local_stat) &&
7481 (sgs->sum_nr_running > 1)) {
7482 sgs->group_no_capacity = 1;
79a89f92 7483 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7484 }
1e3c88bd 7485
b72ff13c 7486 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7487 sds->busiest = sg;
56cf515b 7488 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7489 }
7490
b72ff13c
PZ
7491next_group:
7492 /* Now, start updating sd_lb_stats */
7493 sds->total_load += sgs->group_load;
63b2ca30 7494 sds->total_capacity += sgs->group_capacity;
b72ff13c 7495
532cb4c4 7496 sg = sg->next;
bd939f45 7497 } while (sg != env->sd->groups);
0ec8aa00
PZ
7498
7499 if (env->sd->flags & SD_NUMA)
7500 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7501
7502 if (!env->sd->parent) {
7503 /* update overload indicator if we are at root domain */
7504 if (env->dst_rq->rd->overload != overload)
7505 env->dst_rq->rd->overload = overload;
7506 }
7507
532cb4c4
MN
7508}
7509
532cb4c4
MN
7510/**
7511 * check_asym_packing - Check to see if the group is packed into the
7512 * sched doman.
7513 *
7514 * This is primarily intended to used at the sibling level. Some
7515 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7516 * case of POWER7, it can move to lower SMT modes only when higher
7517 * threads are idle. When in lower SMT modes, the threads will
7518 * perform better since they share less core resources. Hence when we
7519 * have idle threads, we want them to be the higher ones.
7520 *
7521 * This packing function is run on idle threads. It checks to see if
7522 * the busiest CPU in this domain (core in the P7 case) has a higher
7523 * CPU number than the packing function is being run on. Here we are
7524 * assuming lower CPU number will be equivalent to lower a SMT thread
7525 * number.
7526 *
e69f6186 7527 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7528 * this CPU. The amount of the imbalance is returned in *imbalance.
7529 *
cd96891d 7530 * @env: The load balancing environment.
532cb4c4 7531 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7532 */
bd939f45 7533static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7534{
7535 int busiest_cpu;
7536
bd939f45 7537 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7538 return 0;
7539
1f621e02
SD
7540 if (env->idle == CPU_NOT_IDLE)
7541 return 0;
7542
532cb4c4
MN
7543 if (!sds->busiest)
7544 return 0;
7545
7546 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7547 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7548 return 0;
7549
bd939f45 7550 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7551 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7552 SCHED_CAPACITY_SCALE);
bd939f45 7553
532cb4c4 7554 return 1;
1e3c88bd
PZ
7555}
7556
7557/**
7558 * fix_small_imbalance - Calculate the minor imbalance that exists
7559 * amongst the groups of a sched_domain, during
7560 * load balancing.
cd96891d 7561 * @env: The load balancing environment.
1e3c88bd 7562 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7563 */
bd939f45
PZ
7564static inline
7565void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7566{
63b2ca30 7567 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7568 unsigned int imbn = 2;
dd5feea1 7569 unsigned long scaled_busy_load_per_task;
56cf515b 7570 struct sg_lb_stats *local, *busiest;
1e3c88bd 7571
56cf515b
JK
7572 local = &sds->local_stat;
7573 busiest = &sds->busiest_stat;
1e3c88bd 7574
56cf515b
JK
7575 if (!local->sum_nr_running)
7576 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7577 else if (busiest->load_per_task > local->load_per_task)
7578 imbn = 1;
dd5feea1 7579
56cf515b 7580 scaled_busy_load_per_task =
ca8ce3d0 7581 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7582 busiest->group_capacity;
56cf515b 7583
3029ede3
VD
7584 if (busiest->avg_load + scaled_busy_load_per_task >=
7585 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7586 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7587 return;
7588 }
7589
7590 /*
7591 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7592 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7593 * moving them.
7594 */
7595
63b2ca30 7596 capa_now += busiest->group_capacity *
56cf515b 7597 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7598 capa_now += local->group_capacity *
56cf515b 7599 min(local->load_per_task, local->avg_load);
ca8ce3d0 7600 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7601
7602 /* Amount of load we'd subtract */
a2cd4260 7603 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7604 capa_move += busiest->group_capacity *
56cf515b 7605 min(busiest->load_per_task,
a2cd4260 7606 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7607 }
1e3c88bd
PZ
7608
7609 /* Amount of load we'd add */
63b2ca30 7610 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7611 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7612 tmp = (busiest->avg_load * busiest->group_capacity) /
7613 local->group_capacity;
56cf515b 7614 } else {
ca8ce3d0 7615 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7616 local->group_capacity;
56cf515b 7617 }
63b2ca30 7618 capa_move += local->group_capacity *
3ae11c90 7619 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7620 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7621
7622 /* Move if we gain throughput */
63b2ca30 7623 if (capa_move > capa_now)
56cf515b 7624 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7625}
7626
7627/**
7628 * calculate_imbalance - Calculate the amount of imbalance present within the
7629 * groups of a given sched_domain during load balance.
bd939f45 7630 * @env: load balance environment
1e3c88bd 7631 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7632 */
bd939f45 7633static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7634{
dd5feea1 7635 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7636 struct sg_lb_stats *local, *busiest;
7637
7638 local = &sds->local_stat;
56cf515b 7639 busiest = &sds->busiest_stat;
dd5feea1 7640
caeb178c 7641 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7642 /*
7643 * In the group_imb case we cannot rely on group-wide averages
7644 * to ensure cpu-load equilibrium, look at wider averages. XXX
7645 */
56cf515b
JK
7646 busiest->load_per_task =
7647 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7648 }
7649
1e3c88bd 7650 /*
885e542c
DE
7651 * Avg load of busiest sg can be less and avg load of local sg can
7652 * be greater than avg load across all sgs of sd because avg load
7653 * factors in sg capacity and sgs with smaller group_type are
7654 * skipped when updating the busiest sg:
1e3c88bd 7655 */
b1885550
VD
7656 if (busiest->avg_load <= sds->avg_load ||
7657 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7658 env->imbalance = 0;
7659 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7660 }
7661
9a5d9ba6
PZ
7662 /*
7663 * If there aren't any idle cpus, avoid creating some.
7664 */
7665 if (busiest->group_type == group_overloaded &&
7666 local->group_type == group_overloaded) {
1be0eb2a 7667 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7668 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7669 load_above_capacity -= busiest->group_capacity;
26656215 7670 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7671 load_above_capacity /= busiest->group_capacity;
7672 } else
ea67821b 7673 load_above_capacity = ~0UL;
dd5feea1
SS
7674 }
7675
7676 /*
7677 * We're trying to get all the cpus to the average_load, so we don't
7678 * want to push ourselves above the average load, nor do we wish to
7679 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7680 * we also don't want to reduce the group load below the group
7681 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7682 */
30ce5dab 7683 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7684
7685 /* How much load to actually move to equalise the imbalance */
56cf515b 7686 env->imbalance = min(
63b2ca30
NP
7687 max_pull * busiest->group_capacity,
7688 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7689 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7690
7691 /*
7692 * if *imbalance is less than the average load per runnable task
25985edc 7693 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7694 * a think about bumping its value to force at least one task to be
7695 * moved
7696 */
56cf515b 7697 if (env->imbalance < busiest->load_per_task)
bd939f45 7698 return fix_small_imbalance(env, sds);
1e3c88bd 7699}
fab47622 7700
1e3c88bd
PZ
7701/******* find_busiest_group() helpers end here *********************/
7702
7703/**
7704 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7705 * if there is an imbalance.
1e3c88bd
PZ
7706 *
7707 * Also calculates the amount of weighted load which should be moved
7708 * to restore balance.
7709 *
cd96891d 7710 * @env: The load balancing environment.
1e3c88bd 7711 *
e69f6186 7712 * Return: - The busiest group if imbalance exists.
1e3c88bd 7713 */
56cf515b 7714static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7715{
56cf515b 7716 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7717 struct sd_lb_stats sds;
7718
147c5fc2 7719 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7720
7721 /*
7722 * Compute the various statistics relavent for load balancing at
7723 * this level.
7724 */
23f0d209 7725 update_sd_lb_stats(env, &sds);
56cf515b
JK
7726 local = &sds.local_stat;
7727 busiest = &sds.busiest_stat;
1e3c88bd 7728
ea67821b 7729 /* ASYM feature bypasses nice load balance check */
1f621e02 7730 if (check_asym_packing(env, &sds))
532cb4c4
MN
7731 return sds.busiest;
7732
cc57aa8f 7733 /* There is no busy sibling group to pull tasks from */
56cf515b 7734 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7735 goto out_balanced;
7736
ca8ce3d0
NP
7737 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7738 / sds.total_capacity;
b0432d8f 7739
866ab43e
PZ
7740 /*
7741 * If the busiest group is imbalanced the below checks don't
30ce5dab 7742 * work because they assume all things are equal, which typically
866ab43e
PZ
7743 * isn't true due to cpus_allowed constraints and the like.
7744 */
caeb178c 7745 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7746 goto force_balance;
7747
cc57aa8f 7748 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7749 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7750 busiest->group_no_capacity)
fab47622
NR
7751 goto force_balance;
7752
cc57aa8f 7753 /*
9c58c79a 7754 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7755 * don't try and pull any tasks.
7756 */
56cf515b 7757 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7758 goto out_balanced;
7759
cc57aa8f
PZ
7760 /*
7761 * Don't pull any tasks if this group is already above the domain
7762 * average load.
7763 */
56cf515b 7764 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7765 goto out_balanced;
7766
bd939f45 7767 if (env->idle == CPU_IDLE) {
aae6d3dd 7768 /*
43f4d666
VG
7769 * This cpu is idle. If the busiest group is not overloaded
7770 * and there is no imbalance between this and busiest group
7771 * wrt idle cpus, it is balanced. The imbalance becomes
7772 * significant if the diff is greater than 1 otherwise we
7773 * might end up to just move the imbalance on another group
aae6d3dd 7774 */
43f4d666
VG
7775 if ((busiest->group_type != group_overloaded) &&
7776 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7777 goto out_balanced;
c186fafe
PZ
7778 } else {
7779 /*
7780 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7781 * imbalance_pct to be conservative.
7782 */
56cf515b
JK
7783 if (100 * busiest->avg_load <=
7784 env->sd->imbalance_pct * local->avg_load)
c186fafe 7785 goto out_balanced;
aae6d3dd 7786 }
1e3c88bd 7787
fab47622 7788force_balance:
1e3c88bd 7789 /* Looks like there is an imbalance. Compute it */
bd939f45 7790 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7791 return sds.busiest;
7792
7793out_balanced:
bd939f45 7794 env->imbalance = 0;
1e3c88bd
PZ
7795 return NULL;
7796}
7797
7798/*
7799 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7800 */
bd939f45 7801static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7802 struct sched_group *group)
1e3c88bd
PZ
7803{
7804 struct rq *busiest = NULL, *rq;
ced549fa 7805 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7806 int i;
7807
6906a408 7808 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7809 unsigned long capacity, wl;
0ec8aa00
PZ
7810 enum fbq_type rt;
7811
7812 rq = cpu_rq(i);
7813 rt = fbq_classify_rq(rq);
1e3c88bd 7814
0ec8aa00
PZ
7815 /*
7816 * We classify groups/runqueues into three groups:
7817 * - regular: there are !numa tasks
7818 * - remote: there are numa tasks that run on the 'wrong' node
7819 * - all: there is no distinction
7820 *
7821 * In order to avoid migrating ideally placed numa tasks,
7822 * ignore those when there's better options.
7823 *
7824 * If we ignore the actual busiest queue to migrate another
7825 * task, the next balance pass can still reduce the busiest
7826 * queue by moving tasks around inside the node.
7827 *
7828 * If we cannot move enough load due to this classification
7829 * the next pass will adjust the group classification and
7830 * allow migration of more tasks.
7831 *
7832 * Both cases only affect the total convergence complexity.
7833 */
7834 if (rt > env->fbq_type)
7835 continue;
7836
ced549fa 7837 capacity = capacity_of(i);
9d5efe05 7838
6e40f5bb 7839 wl = weighted_cpuload(i);
1e3c88bd 7840
6e40f5bb
TG
7841 /*
7842 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7843 * which is not scaled with the cpu capacity.
6e40f5bb 7844 */
ea67821b
VG
7845
7846 if (rq->nr_running == 1 && wl > env->imbalance &&
7847 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7848 continue;
7849
6e40f5bb
TG
7850 /*
7851 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7852 * the weighted_cpuload() scaled with the cpu capacity, so
7853 * that the load can be moved away from the cpu that is
7854 * potentially running at a lower capacity.
95a79b80 7855 *
ced549fa 7856 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7857 * multiplication to rid ourselves of the division works out
ced549fa
NP
7858 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7859 * our previous maximum.
6e40f5bb 7860 */
ced549fa 7861 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7862 busiest_load = wl;
ced549fa 7863 busiest_capacity = capacity;
1e3c88bd
PZ
7864 busiest = rq;
7865 }
7866 }
7867
7868 return busiest;
7869}
7870
7871/*
7872 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7873 * so long as it is large enough.
7874 */
7875#define MAX_PINNED_INTERVAL 512
7876
bd939f45 7877static int need_active_balance(struct lb_env *env)
1af3ed3d 7878{
bd939f45
PZ
7879 struct sched_domain *sd = env->sd;
7880
7881 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7882
7883 /*
7884 * ASYM_PACKING needs to force migrate tasks from busy but
7885 * higher numbered CPUs in order to pack all tasks in the
7886 * lowest numbered CPUs.
7887 */
bd939f45 7888 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7889 return 1;
1af3ed3d
PZ
7890 }
7891
1aaf90a4
VG
7892 /*
7893 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7894 * It's worth migrating the task if the src_cpu's capacity is reduced
7895 * because of other sched_class or IRQs if more capacity stays
7896 * available on dst_cpu.
7897 */
7898 if ((env->idle != CPU_NOT_IDLE) &&
7899 (env->src_rq->cfs.h_nr_running == 1)) {
7900 if ((check_cpu_capacity(env->src_rq, sd)) &&
7901 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7902 return 1;
7903 }
7904
1af3ed3d
PZ
7905 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7906}
7907
969c7921
TH
7908static int active_load_balance_cpu_stop(void *data);
7909
23f0d209
JK
7910static int should_we_balance(struct lb_env *env)
7911{
7912 struct sched_group *sg = env->sd->groups;
7913 struct cpumask *sg_cpus, *sg_mask;
7914 int cpu, balance_cpu = -1;
7915
7916 /*
7917 * In the newly idle case, we will allow all the cpu's
7918 * to do the newly idle load balance.
7919 */
7920 if (env->idle == CPU_NEWLY_IDLE)
7921 return 1;
7922
7923 sg_cpus = sched_group_cpus(sg);
7924 sg_mask = sched_group_mask(sg);
7925 /* Try to find first idle cpu */
7926 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7927 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7928 continue;
7929
7930 balance_cpu = cpu;
7931 break;
7932 }
7933
7934 if (balance_cpu == -1)
7935 balance_cpu = group_balance_cpu(sg);
7936
7937 /*
7938 * First idle cpu or the first cpu(busiest) in this sched group
7939 * is eligible for doing load balancing at this and above domains.
7940 */
b0cff9d8 7941 return balance_cpu == env->dst_cpu;
23f0d209
JK
7942}
7943
1e3c88bd
PZ
7944/*
7945 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7946 * tasks if there is an imbalance.
7947 */
7948static int load_balance(int this_cpu, struct rq *this_rq,
7949 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7950 int *continue_balancing)
1e3c88bd 7951{
88b8dac0 7952 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7953 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7954 struct sched_group *group;
1e3c88bd
PZ
7955 struct rq *busiest;
7956 unsigned long flags;
4ba29684 7957 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7958
8e45cb54
PZ
7959 struct lb_env env = {
7960 .sd = sd,
ddcdf6e7
PZ
7961 .dst_cpu = this_cpu,
7962 .dst_rq = this_rq,
88b8dac0 7963 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7964 .idle = idle,
eb95308e 7965 .loop_break = sched_nr_migrate_break,
b9403130 7966 .cpus = cpus,
0ec8aa00 7967 .fbq_type = all,
163122b7 7968 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7969 };
7970
cfc03118
JK
7971 /*
7972 * For NEWLY_IDLE load_balancing, we don't need to consider
7973 * other cpus in our group
7974 */
e02e60c1 7975 if (idle == CPU_NEWLY_IDLE)
cfc03118 7976 env.dst_grpmask = NULL;
cfc03118 7977
1e3c88bd
PZ
7978 cpumask_copy(cpus, cpu_active_mask);
7979
ae92882e 7980 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
7981
7982redo:
23f0d209
JK
7983 if (!should_we_balance(&env)) {
7984 *continue_balancing = 0;
1e3c88bd 7985 goto out_balanced;
23f0d209 7986 }
1e3c88bd 7987
23f0d209 7988 group = find_busiest_group(&env);
1e3c88bd 7989 if (!group) {
ae92882e 7990 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
7991 goto out_balanced;
7992 }
7993
b9403130 7994 busiest = find_busiest_queue(&env, group);
1e3c88bd 7995 if (!busiest) {
ae92882e 7996 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
7997 goto out_balanced;
7998 }
7999
78feefc5 8000 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8001
ae92882e 8002 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8003
1aaf90a4
VG
8004 env.src_cpu = busiest->cpu;
8005 env.src_rq = busiest;
8006
1e3c88bd
PZ
8007 ld_moved = 0;
8008 if (busiest->nr_running > 1) {
8009 /*
8010 * Attempt to move tasks. If find_busiest_group has found
8011 * an imbalance but busiest->nr_running <= 1, the group is
8012 * still unbalanced. ld_moved simply stays zero, so it is
8013 * correctly treated as an imbalance.
8014 */
8e45cb54 8015 env.flags |= LBF_ALL_PINNED;
c82513e5 8016 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8017
5d6523eb 8018more_balance:
163122b7 8019 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
8020
8021 /*
8022 * cur_ld_moved - load moved in current iteration
8023 * ld_moved - cumulative load moved across iterations
8024 */
163122b7 8025 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8026
8027 /*
163122b7
KT
8028 * We've detached some tasks from busiest_rq. Every
8029 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8030 * unlock busiest->lock, and we are able to be sure
8031 * that nobody can manipulate the tasks in parallel.
8032 * See task_rq_lock() family for the details.
1e3c88bd 8033 */
163122b7
KT
8034
8035 raw_spin_unlock(&busiest->lock);
8036
8037 if (cur_ld_moved) {
8038 attach_tasks(&env);
8039 ld_moved += cur_ld_moved;
8040 }
8041
1e3c88bd 8042 local_irq_restore(flags);
88b8dac0 8043
f1cd0858
JK
8044 if (env.flags & LBF_NEED_BREAK) {
8045 env.flags &= ~LBF_NEED_BREAK;
8046 goto more_balance;
8047 }
8048
88b8dac0
SV
8049 /*
8050 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8051 * us and move them to an alternate dst_cpu in our sched_group
8052 * where they can run. The upper limit on how many times we
8053 * iterate on same src_cpu is dependent on number of cpus in our
8054 * sched_group.
8055 *
8056 * This changes load balance semantics a bit on who can move
8057 * load to a given_cpu. In addition to the given_cpu itself
8058 * (or a ilb_cpu acting on its behalf where given_cpu is
8059 * nohz-idle), we now have balance_cpu in a position to move
8060 * load to given_cpu. In rare situations, this may cause
8061 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8062 * _independently_ and at _same_ time to move some load to
8063 * given_cpu) causing exceess load to be moved to given_cpu.
8064 * This however should not happen so much in practice and
8065 * moreover subsequent load balance cycles should correct the
8066 * excess load moved.
8067 */
6263322c 8068 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8069
7aff2e3a
VD
8070 /* Prevent to re-select dst_cpu via env's cpus */
8071 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8072
78feefc5 8073 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8074 env.dst_cpu = env.new_dst_cpu;
6263322c 8075 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8076 env.loop = 0;
8077 env.loop_break = sched_nr_migrate_break;
e02e60c1 8078
88b8dac0
SV
8079 /*
8080 * Go back to "more_balance" rather than "redo" since we
8081 * need to continue with same src_cpu.
8082 */
8083 goto more_balance;
8084 }
1e3c88bd 8085
6263322c
PZ
8086 /*
8087 * We failed to reach balance because of affinity.
8088 */
8089 if (sd_parent) {
63b2ca30 8090 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8091
afdeee05 8092 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8093 *group_imbalance = 1;
6263322c
PZ
8094 }
8095
1e3c88bd 8096 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8097 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8098 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8099 if (!cpumask_empty(cpus)) {
8100 env.loop = 0;
8101 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8102 goto redo;
bbf18b19 8103 }
afdeee05 8104 goto out_all_pinned;
1e3c88bd
PZ
8105 }
8106 }
8107
8108 if (!ld_moved) {
ae92882e 8109 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8110 /*
8111 * Increment the failure counter only on periodic balance.
8112 * We do not want newidle balance, which can be very
8113 * frequent, pollute the failure counter causing
8114 * excessive cache_hot migrations and active balances.
8115 */
8116 if (idle != CPU_NEWLY_IDLE)
8117 sd->nr_balance_failed++;
1e3c88bd 8118
bd939f45 8119 if (need_active_balance(&env)) {
1e3c88bd
PZ
8120 raw_spin_lock_irqsave(&busiest->lock, flags);
8121
969c7921
TH
8122 /* don't kick the active_load_balance_cpu_stop,
8123 * if the curr task on busiest cpu can't be
8124 * moved to this_cpu
1e3c88bd
PZ
8125 */
8126 if (!cpumask_test_cpu(this_cpu,
fa17b507 8127 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
8128 raw_spin_unlock_irqrestore(&busiest->lock,
8129 flags);
8e45cb54 8130 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8131 goto out_one_pinned;
8132 }
8133
969c7921
TH
8134 /*
8135 * ->active_balance synchronizes accesses to
8136 * ->active_balance_work. Once set, it's cleared
8137 * only after active load balance is finished.
8138 */
1e3c88bd
PZ
8139 if (!busiest->active_balance) {
8140 busiest->active_balance = 1;
8141 busiest->push_cpu = this_cpu;
8142 active_balance = 1;
8143 }
8144 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8145
bd939f45 8146 if (active_balance) {
969c7921
TH
8147 stop_one_cpu_nowait(cpu_of(busiest),
8148 active_load_balance_cpu_stop, busiest,
8149 &busiest->active_balance_work);
bd939f45 8150 }
1e3c88bd 8151
d02c0711 8152 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8153 sd->nr_balance_failed = sd->cache_nice_tries+1;
8154 }
8155 } else
8156 sd->nr_balance_failed = 0;
8157
8158 if (likely(!active_balance)) {
8159 /* We were unbalanced, so reset the balancing interval */
8160 sd->balance_interval = sd->min_interval;
8161 } else {
8162 /*
8163 * If we've begun active balancing, start to back off. This
8164 * case may not be covered by the all_pinned logic if there
8165 * is only 1 task on the busy runqueue (because we don't call
163122b7 8166 * detach_tasks).
1e3c88bd
PZ
8167 */
8168 if (sd->balance_interval < sd->max_interval)
8169 sd->balance_interval *= 2;
8170 }
8171
1e3c88bd
PZ
8172 goto out;
8173
8174out_balanced:
afdeee05
VG
8175 /*
8176 * We reach balance although we may have faced some affinity
8177 * constraints. Clear the imbalance flag if it was set.
8178 */
8179 if (sd_parent) {
8180 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8181
8182 if (*group_imbalance)
8183 *group_imbalance = 0;
8184 }
8185
8186out_all_pinned:
8187 /*
8188 * We reach balance because all tasks are pinned at this level so
8189 * we can't migrate them. Let the imbalance flag set so parent level
8190 * can try to migrate them.
8191 */
ae92882e 8192 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8193
8194 sd->nr_balance_failed = 0;
8195
8196out_one_pinned:
8197 /* tune up the balancing interval */
8e45cb54 8198 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8199 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8200 (sd->balance_interval < sd->max_interval))
8201 sd->balance_interval *= 2;
8202
46e49b38 8203 ld_moved = 0;
1e3c88bd 8204out:
1e3c88bd
PZ
8205 return ld_moved;
8206}
8207
52a08ef1
JL
8208static inline unsigned long
8209get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8210{
8211 unsigned long interval = sd->balance_interval;
8212
8213 if (cpu_busy)
8214 interval *= sd->busy_factor;
8215
8216 /* scale ms to jiffies */
8217 interval = msecs_to_jiffies(interval);
8218 interval = clamp(interval, 1UL, max_load_balance_interval);
8219
8220 return interval;
8221}
8222
8223static inline void
31851a98 8224update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8225{
8226 unsigned long interval, next;
8227
31851a98
LY
8228 /* used by idle balance, so cpu_busy = 0 */
8229 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8230 next = sd->last_balance + interval;
8231
8232 if (time_after(*next_balance, next))
8233 *next_balance = next;
8234}
8235
1e3c88bd
PZ
8236/*
8237 * idle_balance is called by schedule() if this_cpu is about to become
8238 * idle. Attempts to pull tasks from other CPUs.
8239 */
6e83125c 8240static int idle_balance(struct rq *this_rq)
1e3c88bd 8241{
52a08ef1
JL
8242 unsigned long next_balance = jiffies + HZ;
8243 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8244 struct sched_domain *sd;
8245 int pulled_task = 0;
9bd721c5 8246 u64 curr_cost = 0;
1e3c88bd 8247
6e83125c
PZ
8248 /*
8249 * We must set idle_stamp _before_ calling idle_balance(), such that we
8250 * measure the duration of idle_balance() as idle time.
8251 */
8252 this_rq->idle_stamp = rq_clock(this_rq);
8253
4486edd1
TC
8254 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8255 !this_rq->rd->overload) {
52a08ef1
JL
8256 rcu_read_lock();
8257 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8258 if (sd)
31851a98 8259 update_next_balance(sd, &next_balance);
52a08ef1
JL
8260 rcu_read_unlock();
8261
6e83125c 8262 goto out;
52a08ef1 8263 }
1e3c88bd 8264
f492e12e
PZ
8265 raw_spin_unlock(&this_rq->lock);
8266
48a16753 8267 update_blocked_averages(this_cpu);
dce840a0 8268 rcu_read_lock();
1e3c88bd 8269 for_each_domain(this_cpu, sd) {
23f0d209 8270 int continue_balancing = 1;
9bd721c5 8271 u64 t0, domain_cost;
1e3c88bd
PZ
8272
8273 if (!(sd->flags & SD_LOAD_BALANCE))
8274 continue;
8275
52a08ef1 8276 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8277 update_next_balance(sd, &next_balance);
9bd721c5 8278 break;
52a08ef1 8279 }
9bd721c5 8280
f492e12e 8281 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8282 t0 = sched_clock_cpu(this_cpu);
8283
f492e12e 8284 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8285 sd, CPU_NEWLY_IDLE,
8286 &continue_balancing);
9bd721c5
JL
8287
8288 domain_cost = sched_clock_cpu(this_cpu) - t0;
8289 if (domain_cost > sd->max_newidle_lb_cost)
8290 sd->max_newidle_lb_cost = domain_cost;
8291
8292 curr_cost += domain_cost;
f492e12e 8293 }
1e3c88bd 8294
31851a98 8295 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8296
8297 /*
8298 * Stop searching for tasks to pull if there are
8299 * now runnable tasks on this rq.
8300 */
8301 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8302 break;
1e3c88bd 8303 }
dce840a0 8304 rcu_read_unlock();
f492e12e
PZ
8305
8306 raw_spin_lock(&this_rq->lock);
8307
0e5b5337
JL
8308 if (curr_cost > this_rq->max_idle_balance_cost)
8309 this_rq->max_idle_balance_cost = curr_cost;
8310
e5fc6611 8311 /*
0e5b5337
JL
8312 * While browsing the domains, we released the rq lock, a task could
8313 * have been enqueued in the meantime. Since we're not going idle,
8314 * pretend we pulled a task.
e5fc6611 8315 */
0e5b5337 8316 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8317 pulled_task = 1;
e5fc6611 8318
52a08ef1
JL
8319out:
8320 /* Move the next balance forward */
8321 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8322 this_rq->next_balance = next_balance;
9bd721c5 8323
e4aa358b 8324 /* Is there a task of a high priority class? */
46383648 8325 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8326 pulled_task = -1;
8327
38c6ade2 8328 if (pulled_task)
6e83125c
PZ
8329 this_rq->idle_stamp = 0;
8330
3c4017c1 8331 return pulled_task;
1e3c88bd
PZ
8332}
8333
8334/*
969c7921
TH
8335 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8336 * running tasks off the busiest CPU onto idle CPUs. It requires at
8337 * least 1 task to be running on each physical CPU where possible, and
8338 * avoids physical / logical imbalances.
1e3c88bd 8339 */
969c7921 8340static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8341{
969c7921
TH
8342 struct rq *busiest_rq = data;
8343 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8344 int target_cpu = busiest_rq->push_cpu;
969c7921 8345 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8346 struct sched_domain *sd;
e5673f28 8347 struct task_struct *p = NULL;
969c7921
TH
8348
8349 raw_spin_lock_irq(&busiest_rq->lock);
8350
8351 /* make sure the requested cpu hasn't gone down in the meantime */
8352 if (unlikely(busiest_cpu != smp_processor_id() ||
8353 !busiest_rq->active_balance))
8354 goto out_unlock;
1e3c88bd
PZ
8355
8356 /* Is there any task to move? */
8357 if (busiest_rq->nr_running <= 1)
969c7921 8358 goto out_unlock;
1e3c88bd
PZ
8359
8360 /*
8361 * This condition is "impossible", if it occurs
8362 * we need to fix it. Originally reported by
8363 * Bjorn Helgaas on a 128-cpu setup.
8364 */
8365 BUG_ON(busiest_rq == target_rq);
8366
1e3c88bd 8367 /* Search for an sd spanning us and the target CPU. */
dce840a0 8368 rcu_read_lock();
1e3c88bd
PZ
8369 for_each_domain(target_cpu, sd) {
8370 if ((sd->flags & SD_LOAD_BALANCE) &&
8371 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8372 break;
8373 }
8374
8375 if (likely(sd)) {
8e45cb54
PZ
8376 struct lb_env env = {
8377 .sd = sd,
ddcdf6e7
PZ
8378 .dst_cpu = target_cpu,
8379 .dst_rq = target_rq,
8380 .src_cpu = busiest_rq->cpu,
8381 .src_rq = busiest_rq,
8e45cb54
PZ
8382 .idle = CPU_IDLE,
8383 };
8384
ae92882e 8385 schedstat_inc(sd->alb_count);
1e3c88bd 8386
e5673f28 8387 p = detach_one_task(&env);
d02c0711 8388 if (p) {
ae92882e 8389 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8390 /* Active balancing done, reset the failure counter. */
8391 sd->nr_balance_failed = 0;
8392 } else {
ae92882e 8393 schedstat_inc(sd->alb_failed);
d02c0711 8394 }
1e3c88bd 8395 }
dce840a0 8396 rcu_read_unlock();
969c7921
TH
8397out_unlock:
8398 busiest_rq->active_balance = 0;
e5673f28
KT
8399 raw_spin_unlock(&busiest_rq->lock);
8400
8401 if (p)
8402 attach_one_task(target_rq, p);
8403
8404 local_irq_enable();
8405
969c7921 8406 return 0;
1e3c88bd
PZ
8407}
8408
d987fc7f
MG
8409static inline int on_null_domain(struct rq *rq)
8410{
8411 return unlikely(!rcu_dereference_sched(rq->sd));
8412}
8413
3451d024 8414#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8415/*
8416 * idle load balancing details
83cd4fe2
VP
8417 * - When one of the busy CPUs notice that there may be an idle rebalancing
8418 * needed, they will kick the idle load balancer, which then does idle
8419 * load balancing for all the idle CPUs.
8420 */
1e3c88bd 8421static struct {
83cd4fe2 8422 cpumask_var_t idle_cpus_mask;
0b005cf5 8423 atomic_t nr_cpus;
83cd4fe2
VP
8424 unsigned long next_balance; /* in jiffy units */
8425} nohz ____cacheline_aligned;
1e3c88bd 8426
3dd0337d 8427static inline int find_new_ilb(void)
1e3c88bd 8428{
0b005cf5 8429 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8430
786d6dc7
SS
8431 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8432 return ilb;
8433
8434 return nr_cpu_ids;
1e3c88bd 8435}
1e3c88bd 8436
83cd4fe2
VP
8437/*
8438 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8439 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8440 * CPU (if there is one).
8441 */
0aeeeeba 8442static void nohz_balancer_kick(void)
83cd4fe2
VP
8443{
8444 int ilb_cpu;
8445
8446 nohz.next_balance++;
8447
3dd0337d 8448 ilb_cpu = find_new_ilb();
83cd4fe2 8449
0b005cf5
SS
8450 if (ilb_cpu >= nr_cpu_ids)
8451 return;
83cd4fe2 8452
cd490c5b 8453 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8454 return;
8455 /*
8456 * Use smp_send_reschedule() instead of resched_cpu().
8457 * This way we generate a sched IPI on the target cpu which
8458 * is idle. And the softirq performing nohz idle load balance
8459 * will be run before returning from the IPI.
8460 */
8461 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8462 return;
8463}
8464
20a5c8cc 8465void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8466{
8467 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8468 /*
8469 * Completely isolated CPUs don't ever set, so we must test.
8470 */
8471 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8472 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8473 atomic_dec(&nohz.nr_cpus);
8474 }
71325960
SS
8475 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8476 }
8477}
8478
69e1e811
SS
8479static inline void set_cpu_sd_state_busy(void)
8480{
8481 struct sched_domain *sd;
37dc6b50 8482 int cpu = smp_processor_id();
69e1e811 8483
69e1e811 8484 rcu_read_lock();
0e369d75 8485 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8486
8487 if (!sd || !sd->nohz_idle)
8488 goto unlock;
8489 sd->nohz_idle = 0;
8490
0e369d75 8491 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8492unlock:
69e1e811
SS
8493 rcu_read_unlock();
8494}
8495
8496void set_cpu_sd_state_idle(void)
8497{
8498 struct sched_domain *sd;
37dc6b50 8499 int cpu = smp_processor_id();
69e1e811 8500
69e1e811 8501 rcu_read_lock();
0e369d75 8502 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8503
8504 if (!sd || sd->nohz_idle)
8505 goto unlock;
8506 sd->nohz_idle = 1;
8507
0e369d75 8508 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8509unlock:
69e1e811
SS
8510 rcu_read_unlock();
8511}
8512
1e3c88bd 8513/*
c1cc017c 8514 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8515 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8516 */
c1cc017c 8517void nohz_balance_enter_idle(int cpu)
1e3c88bd 8518{
71325960
SS
8519 /*
8520 * If this cpu is going down, then nothing needs to be done.
8521 */
8522 if (!cpu_active(cpu))
8523 return;
8524
c1cc017c
AS
8525 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8526 return;
1e3c88bd 8527
d987fc7f
MG
8528 /*
8529 * If we're a completely isolated CPU, we don't play.
8530 */
8531 if (on_null_domain(cpu_rq(cpu)))
8532 return;
8533
c1cc017c
AS
8534 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8535 atomic_inc(&nohz.nr_cpus);
8536 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8537}
8538#endif
8539
8540static DEFINE_SPINLOCK(balancing);
8541
49c022e6
PZ
8542/*
8543 * Scale the max load_balance interval with the number of CPUs in the system.
8544 * This trades load-balance latency on larger machines for less cross talk.
8545 */
029632fb 8546void update_max_interval(void)
49c022e6
PZ
8547{
8548 max_load_balance_interval = HZ*num_online_cpus()/10;
8549}
8550
1e3c88bd
PZ
8551/*
8552 * It checks each scheduling domain to see if it is due to be balanced,
8553 * and initiates a balancing operation if so.
8554 *
b9b0853a 8555 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8556 */
f7ed0a89 8557static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8558{
23f0d209 8559 int continue_balancing = 1;
f7ed0a89 8560 int cpu = rq->cpu;
1e3c88bd 8561 unsigned long interval;
04f733b4 8562 struct sched_domain *sd;
1e3c88bd
PZ
8563 /* Earliest time when we have to do rebalance again */
8564 unsigned long next_balance = jiffies + 60*HZ;
8565 int update_next_balance = 0;
f48627e6
JL
8566 int need_serialize, need_decay = 0;
8567 u64 max_cost = 0;
1e3c88bd 8568
48a16753 8569 update_blocked_averages(cpu);
2069dd75 8570
dce840a0 8571 rcu_read_lock();
1e3c88bd 8572 for_each_domain(cpu, sd) {
f48627e6
JL
8573 /*
8574 * Decay the newidle max times here because this is a regular
8575 * visit to all the domains. Decay ~1% per second.
8576 */
8577 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8578 sd->max_newidle_lb_cost =
8579 (sd->max_newidle_lb_cost * 253) / 256;
8580 sd->next_decay_max_lb_cost = jiffies + HZ;
8581 need_decay = 1;
8582 }
8583 max_cost += sd->max_newidle_lb_cost;
8584
1e3c88bd
PZ
8585 if (!(sd->flags & SD_LOAD_BALANCE))
8586 continue;
8587
f48627e6
JL
8588 /*
8589 * Stop the load balance at this level. There is another
8590 * CPU in our sched group which is doing load balancing more
8591 * actively.
8592 */
8593 if (!continue_balancing) {
8594 if (need_decay)
8595 continue;
8596 break;
8597 }
8598
52a08ef1 8599 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8600
8601 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8602 if (need_serialize) {
8603 if (!spin_trylock(&balancing))
8604 goto out;
8605 }
8606
8607 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8608 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8609 /*
6263322c 8610 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8611 * env->dst_cpu, so we can't know our idle
8612 * state even if we migrated tasks. Update it.
1e3c88bd 8613 */
de5eb2dd 8614 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8615 }
8616 sd->last_balance = jiffies;
52a08ef1 8617 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8618 }
8619 if (need_serialize)
8620 spin_unlock(&balancing);
8621out:
8622 if (time_after(next_balance, sd->last_balance + interval)) {
8623 next_balance = sd->last_balance + interval;
8624 update_next_balance = 1;
8625 }
f48627e6
JL
8626 }
8627 if (need_decay) {
1e3c88bd 8628 /*
f48627e6
JL
8629 * Ensure the rq-wide value also decays but keep it at a
8630 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8631 */
f48627e6
JL
8632 rq->max_idle_balance_cost =
8633 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8634 }
dce840a0 8635 rcu_read_unlock();
1e3c88bd
PZ
8636
8637 /*
8638 * next_balance will be updated only when there is a need.
8639 * When the cpu is attached to null domain for ex, it will not be
8640 * updated.
8641 */
c5afb6a8 8642 if (likely(update_next_balance)) {
1e3c88bd 8643 rq->next_balance = next_balance;
c5afb6a8
VG
8644
8645#ifdef CONFIG_NO_HZ_COMMON
8646 /*
8647 * If this CPU has been elected to perform the nohz idle
8648 * balance. Other idle CPUs have already rebalanced with
8649 * nohz_idle_balance() and nohz.next_balance has been
8650 * updated accordingly. This CPU is now running the idle load
8651 * balance for itself and we need to update the
8652 * nohz.next_balance accordingly.
8653 */
8654 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8655 nohz.next_balance = rq->next_balance;
8656#endif
8657 }
1e3c88bd
PZ
8658}
8659
3451d024 8660#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8661/*
3451d024 8662 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8663 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8664 */
208cb16b 8665static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8666{
208cb16b 8667 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8668 struct rq *rq;
8669 int balance_cpu;
c5afb6a8
VG
8670 /* Earliest time when we have to do rebalance again */
8671 unsigned long next_balance = jiffies + 60*HZ;
8672 int update_next_balance = 0;
83cd4fe2 8673
1c792db7
SS
8674 if (idle != CPU_IDLE ||
8675 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8676 goto end;
83cd4fe2
VP
8677
8678 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8679 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8680 continue;
8681
8682 /*
8683 * If this cpu gets work to do, stop the load balancing
8684 * work being done for other cpus. Next load
8685 * balancing owner will pick it up.
8686 */
1c792db7 8687 if (need_resched())
83cd4fe2 8688 break;
83cd4fe2 8689
5ed4f1d9
VG
8690 rq = cpu_rq(balance_cpu);
8691
ed61bbc6
TC
8692 /*
8693 * If time for next balance is due,
8694 * do the balance.
8695 */
8696 if (time_after_eq(jiffies, rq->next_balance)) {
8697 raw_spin_lock_irq(&rq->lock);
8698 update_rq_clock(rq);
cee1afce 8699 cpu_load_update_idle(rq);
ed61bbc6
TC
8700 raw_spin_unlock_irq(&rq->lock);
8701 rebalance_domains(rq, CPU_IDLE);
8702 }
83cd4fe2 8703
c5afb6a8
VG
8704 if (time_after(next_balance, rq->next_balance)) {
8705 next_balance = rq->next_balance;
8706 update_next_balance = 1;
8707 }
83cd4fe2 8708 }
c5afb6a8
VG
8709
8710 /*
8711 * next_balance will be updated only when there is a need.
8712 * When the CPU is attached to null domain for ex, it will not be
8713 * updated.
8714 */
8715 if (likely(update_next_balance))
8716 nohz.next_balance = next_balance;
1c792db7
SS
8717end:
8718 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8719}
8720
8721/*
0b005cf5 8722 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8723 * of an idle cpu in the system.
0b005cf5 8724 * - This rq has more than one task.
1aaf90a4
VG
8725 * - This rq has at least one CFS task and the capacity of the CPU is
8726 * significantly reduced because of RT tasks or IRQs.
8727 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8728 * multiple busy cpu.
0b005cf5
SS
8729 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8730 * domain span are idle.
83cd4fe2 8731 */
1aaf90a4 8732static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8733{
8734 unsigned long now = jiffies;
0e369d75 8735 struct sched_domain_shared *sds;
0b005cf5 8736 struct sched_domain *sd;
4a725627 8737 int nr_busy, cpu = rq->cpu;
1aaf90a4 8738 bool kick = false;
83cd4fe2 8739
4a725627 8740 if (unlikely(rq->idle_balance))
1aaf90a4 8741 return false;
83cd4fe2 8742
1c792db7
SS
8743 /*
8744 * We may be recently in ticked or tickless idle mode. At the first
8745 * busy tick after returning from idle, we will update the busy stats.
8746 */
69e1e811 8747 set_cpu_sd_state_busy();
c1cc017c 8748 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8749
8750 /*
8751 * None are in tickless mode and hence no need for NOHZ idle load
8752 * balancing.
8753 */
8754 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8755 return false;
1c792db7
SS
8756
8757 if (time_before(now, nohz.next_balance))
1aaf90a4 8758 return false;
83cd4fe2 8759
0b005cf5 8760 if (rq->nr_running >= 2)
1aaf90a4 8761 return true;
83cd4fe2 8762
067491b7 8763 rcu_read_lock();
0e369d75
PZ
8764 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8765 if (sds) {
8766 /*
8767 * XXX: write a coherent comment on why we do this.
8768 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8769 */
8770 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8771 if (nr_busy > 1) {
8772 kick = true;
8773 goto unlock;
8774 }
8775
83cd4fe2 8776 }
37dc6b50 8777
1aaf90a4
VG
8778 sd = rcu_dereference(rq->sd);
8779 if (sd) {
8780 if ((rq->cfs.h_nr_running >= 1) &&
8781 check_cpu_capacity(rq, sd)) {
8782 kick = true;
8783 goto unlock;
8784 }
8785 }
37dc6b50 8786
1aaf90a4 8787 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8788 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8789 sched_domain_span(sd)) < cpu)) {
8790 kick = true;
8791 goto unlock;
8792 }
067491b7 8793
1aaf90a4 8794unlock:
067491b7 8795 rcu_read_unlock();
1aaf90a4 8796 return kick;
83cd4fe2
VP
8797}
8798#else
208cb16b 8799static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8800#endif
8801
8802/*
8803 * run_rebalance_domains is triggered when needed from the scheduler tick.
8804 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8805 */
0766f788 8806static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8807{
208cb16b 8808 struct rq *this_rq = this_rq();
6eb57e0d 8809 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8810 CPU_IDLE : CPU_NOT_IDLE;
8811
1e3c88bd 8812 /*
83cd4fe2 8813 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8814 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8815 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8816 * give the idle cpus a chance to load balance. Else we may
8817 * load balance only within the local sched_domain hierarchy
8818 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8819 */
208cb16b 8820 nohz_idle_balance(this_rq, idle);
d4573c3e 8821 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8822}
8823
1e3c88bd
PZ
8824/*
8825 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8826 */
7caff66f 8827void trigger_load_balance(struct rq *rq)
1e3c88bd 8828{
1e3c88bd 8829 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8830 if (unlikely(on_null_domain(rq)))
8831 return;
8832
8833 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8834 raise_softirq(SCHED_SOFTIRQ);
3451d024 8835#ifdef CONFIG_NO_HZ_COMMON
c726099e 8836 if (nohz_kick_needed(rq))
0aeeeeba 8837 nohz_balancer_kick();
83cd4fe2 8838#endif
1e3c88bd
PZ
8839}
8840
0bcdcf28
CE
8841static void rq_online_fair(struct rq *rq)
8842{
8843 update_sysctl();
0e59bdae
KT
8844
8845 update_runtime_enabled(rq);
0bcdcf28
CE
8846}
8847
8848static void rq_offline_fair(struct rq *rq)
8849{
8850 update_sysctl();
a4c96ae3
PB
8851
8852 /* Ensure any throttled groups are reachable by pick_next_task */
8853 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8854}
8855
55e12e5e 8856#endif /* CONFIG_SMP */
e1d1484f 8857
bf0f6f24
IM
8858/*
8859 * scheduler tick hitting a task of our scheduling class:
8860 */
8f4d37ec 8861static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8862{
8863 struct cfs_rq *cfs_rq;
8864 struct sched_entity *se = &curr->se;
8865
8866 for_each_sched_entity(se) {
8867 cfs_rq = cfs_rq_of(se);
8f4d37ec 8868 entity_tick(cfs_rq, se, queued);
bf0f6f24 8869 }
18bf2805 8870
b52da86e 8871 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8872 task_tick_numa(rq, curr);
bf0f6f24
IM
8873}
8874
8875/*
cd29fe6f
PZ
8876 * called on fork with the child task as argument from the parent's context
8877 * - child not yet on the tasklist
8878 * - preemption disabled
bf0f6f24 8879 */
cd29fe6f 8880static void task_fork_fair(struct task_struct *p)
bf0f6f24 8881{
4fc420c9
DN
8882 struct cfs_rq *cfs_rq;
8883 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8884 struct rq *rq = this_rq();
bf0f6f24 8885
e210bffd 8886 raw_spin_lock(&rq->lock);
861d034e
PZ
8887 update_rq_clock(rq);
8888
4fc420c9
DN
8889 cfs_rq = task_cfs_rq(current);
8890 curr = cfs_rq->curr;
e210bffd
PZ
8891 if (curr) {
8892 update_curr(cfs_rq);
b5d9d734 8893 se->vruntime = curr->vruntime;
e210bffd 8894 }
aeb73b04 8895 place_entity(cfs_rq, se, 1);
4d78e7b6 8896
cd29fe6f 8897 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8898 /*
edcb60a3
IM
8899 * Upon rescheduling, sched_class::put_prev_task() will place
8900 * 'current' within the tree based on its new key value.
8901 */
4d78e7b6 8902 swap(curr->vruntime, se->vruntime);
8875125e 8903 resched_curr(rq);
4d78e7b6 8904 }
bf0f6f24 8905
88ec22d3 8906 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8907 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8908}
8909
cb469845
SR
8910/*
8911 * Priority of the task has changed. Check to see if we preempt
8912 * the current task.
8913 */
da7a735e
PZ
8914static void
8915prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8916{
da0c1e65 8917 if (!task_on_rq_queued(p))
da7a735e
PZ
8918 return;
8919
cb469845
SR
8920 /*
8921 * Reschedule if we are currently running on this runqueue and
8922 * our priority decreased, or if we are not currently running on
8923 * this runqueue and our priority is higher than the current's
8924 */
da7a735e 8925 if (rq->curr == p) {
cb469845 8926 if (p->prio > oldprio)
8875125e 8927 resched_curr(rq);
cb469845 8928 } else
15afe09b 8929 check_preempt_curr(rq, p, 0);
cb469845
SR
8930}
8931
daa59407 8932static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8933{
8934 struct sched_entity *se = &p->se;
da7a735e
PZ
8935
8936 /*
daa59407
BP
8937 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8938 * the dequeue_entity(.flags=0) will already have normalized the
8939 * vruntime.
8940 */
8941 if (p->on_rq)
8942 return true;
8943
8944 /*
8945 * When !on_rq, vruntime of the task has usually NOT been normalized.
8946 * But there are some cases where it has already been normalized:
da7a735e 8947 *
daa59407
BP
8948 * - A forked child which is waiting for being woken up by
8949 * wake_up_new_task().
8950 * - A task which has been woken up by try_to_wake_up() and
8951 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8952 */
daa59407
BP
8953 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8954 return true;
8955
8956 return false;
8957}
8958
09a43ace
VG
8959#ifdef CONFIG_FAIR_GROUP_SCHED
8960/*
8961 * Propagate the changes of the sched_entity across the tg tree to make it
8962 * visible to the root
8963 */
8964static void propagate_entity_cfs_rq(struct sched_entity *se)
8965{
8966 struct cfs_rq *cfs_rq;
8967
8968 /* Start to propagate at parent */
8969 se = se->parent;
8970
8971 for_each_sched_entity(se) {
8972 cfs_rq = cfs_rq_of(se);
8973
8974 if (cfs_rq_throttled(cfs_rq))
8975 break;
8976
8977 update_load_avg(se, UPDATE_TG);
8978 }
8979}
8980#else
8981static void propagate_entity_cfs_rq(struct sched_entity *se) { }
8982#endif
8983
df217913 8984static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 8985{
daa59407
BP
8986 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8987
9d89c257 8988 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 8989 update_load_avg(se, 0);
a05e8c51 8990 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8991 update_tg_load_avg(cfs_rq, false);
09a43ace 8992 propagate_entity_cfs_rq(se);
da7a735e
PZ
8993}
8994
df217913 8995static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 8996{
daa59407 8997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8998
8999#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9000 /*
9001 * Since the real-depth could have been changed (only FAIR
9002 * class maintain depth value), reset depth properly.
9003 */
9004 se->depth = se->parent ? se->parent->depth + 1 : 0;
9005#endif
7855a35a 9006
df217913 9007 /* Synchronize entity with its cfs_rq */
d31b1a66 9008 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9009 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9010 update_tg_load_avg(cfs_rq, false);
09a43ace 9011 propagate_entity_cfs_rq(se);
df217913
VG
9012}
9013
9014static void detach_task_cfs_rq(struct task_struct *p)
9015{
9016 struct sched_entity *se = &p->se;
9017 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9018
9019 if (!vruntime_normalized(p)) {
9020 /*
9021 * Fix up our vruntime so that the current sleep doesn't
9022 * cause 'unlimited' sleep bonus.
9023 */
9024 place_entity(cfs_rq, se, 0);
9025 se->vruntime -= cfs_rq->min_vruntime;
9026 }
9027
9028 detach_entity_cfs_rq(se);
9029}
9030
9031static void attach_task_cfs_rq(struct task_struct *p)
9032{
9033 struct sched_entity *se = &p->se;
9034 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9035
9036 attach_entity_cfs_rq(se);
daa59407
BP
9037
9038 if (!vruntime_normalized(p))
9039 se->vruntime += cfs_rq->min_vruntime;
9040}
6efdb105 9041
daa59407
BP
9042static void switched_from_fair(struct rq *rq, struct task_struct *p)
9043{
9044 detach_task_cfs_rq(p);
9045}
9046
9047static void switched_to_fair(struct rq *rq, struct task_struct *p)
9048{
9049 attach_task_cfs_rq(p);
7855a35a 9050
daa59407 9051 if (task_on_rq_queued(p)) {
7855a35a 9052 /*
daa59407
BP
9053 * We were most likely switched from sched_rt, so
9054 * kick off the schedule if running, otherwise just see
9055 * if we can still preempt the current task.
7855a35a 9056 */
daa59407
BP
9057 if (rq->curr == p)
9058 resched_curr(rq);
9059 else
9060 check_preempt_curr(rq, p, 0);
7855a35a 9061 }
cb469845
SR
9062}
9063
83b699ed
SV
9064/* Account for a task changing its policy or group.
9065 *
9066 * This routine is mostly called to set cfs_rq->curr field when a task
9067 * migrates between groups/classes.
9068 */
9069static void set_curr_task_fair(struct rq *rq)
9070{
9071 struct sched_entity *se = &rq->curr->se;
9072
ec12cb7f
PT
9073 for_each_sched_entity(se) {
9074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9075
9076 set_next_entity(cfs_rq, se);
9077 /* ensure bandwidth has been allocated on our new cfs_rq */
9078 account_cfs_rq_runtime(cfs_rq, 0);
9079 }
83b699ed
SV
9080}
9081
029632fb
PZ
9082void init_cfs_rq(struct cfs_rq *cfs_rq)
9083{
9084 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9085 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9086#ifndef CONFIG_64BIT
9087 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9088#endif
141965c7 9089#ifdef CONFIG_SMP
09a43ace
VG
9090#ifdef CONFIG_FAIR_GROUP_SCHED
9091 cfs_rq->propagate_avg = 0;
9092#endif
9d89c257
YD
9093 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9094 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9095#endif
029632fb
PZ
9096}
9097
810b3817 9098#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9099static void task_set_group_fair(struct task_struct *p)
9100{
9101 struct sched_entity *se = &p->se;
9102
9103 set_task_rq(p, task_cpu(p));
9104 se->depth = se->parent ? se->parent->depth + 1 : 0;
9105}
9106
bc54da21 9107static void task_move_group_fair(struct task_struct *p)
810b3817 9108{
daa59407 9109 detach_task_cfs_rq(p);
b2b5ce02 9110 set_task_rq(p, task_cpu(p));
6efdb105
BP
9111
9112#ifdef CONFIG_SMP
9113 /* Tell se's cfs_rq has been changed -- migrated */
9114 p->se.avg.last_update_time = 0;
9115#endif
daa59407 9116 attach_task_cfs_rq(p);
810b3817 9117}
029632fb 9118
ea86cb4b
VG
9119static void task_change_group_fair(struct task_struct *p, int type)
9120{
9121 switch (type) {
9122 case TASK_SET_GROUP:
9123 task_set_group_fair(p);
9124 break;
9125
9126 case TASK_MOVE_GROUP:
9127 task_move_group_fair(p);
9128 break;
9129 }
9130}
9131
029632fb
PZ
9132void free_fair_sched_group(struct task_group *tg)
9133{
9134 int i;
9135
9136 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9137
9138 for_each_possible_cpu(i) {
9139 if (tg->cfs_rq)
9140 kfree(tg->cfs_rq[i]);
6fe1f348 9141 if (tg->se)
029632fb
PZ
9142 kfree(tg->se[i]);
9143 }
9144
9145 kfree(tg->cfs_rq);
9146 kfree(tg->se);
9147}
9148
9149int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9150{
029632fb 9151 struct sched_entity *se;
b7fa30c9 9152 struct cfs_rq *cfs_rq;
029632fb
PZ
9153 int i;
9154
9155 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9156 if (!tg->cfs_rq)
9157 goto err;
9158 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9159 if (!tg->se)
9160 goto err;
9161
9162 tg->shares = NICE_0_LOAD;
9163
9164 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9165
9166 for_each_possible_cpu(i) {
9167 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9168 GFP_KERNEL, cpu_to_node(i));
9169 if (!cfs_rq)
9170 goto err;
9171
9172 se = kzalloc_node(sizeof(struct sched_entity),
9173 GFP_KERNEL, cpu_to_node(i));
9174 if (!se)
9175 goto err_free_rq;
9176
9177 init_cfs_rq(cfs_rq);
9178 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9179 init_entity_runnable_average(se);
029632fb
PZ
9180 }
9181
9182 return 1;
9183
9184err_free_rq:
9185 kfree(cfs_rq);
9186err:
9187 return 0;
9188}
9189
8663e24d
PZ
9190void online_fair_sched_group(struct task_group *tg)
9191{
9192 struct sched_entity *se;
9193 struct rq *rq;
9194 int i;
9195
9196 for_each_possible_cpu(i) {
9197 rq = cpu_rq(i);
9198 se = tg->se[i];
9199
9200 raw_spin_lock_irq(&rq->lock);
9201 post_init_entity_util_avg(se);
55e16d30 9202 sync_throttle(tg, i);
8663e24d
PZ
9203 raw_spin_unlock_irq(&rq->lock);
9204 }
9205}
9206
6fe1f348 9207void unregister_fair_sched_group(struct task_group *tg)
029632fb 9208{
029632fb 9209 unsigned long flags;
6fe1f348
PZ
9210 struct rq *rq;
9211 int cpu;
029632fb 9212
6fe1f348
PZ
9213 for_each_possible_cpu(cpu) {
9214 if (tg->se[cpu])
9215 remove_entity_load_avg(tg->se[cpu]);
029632fb 9216
6fe1f348
PZ
9217 /*
9218 * Only empty task groups can be destroyed; so we can speculatively
9219 * check on_list without danger of it being re-added.
9220 */
9221 if (!tg->cfs_rq[cpu]->on_list)
9222 continue;
9223
9224 rq = cpu_rq(cpu);
9225
9226 raw_spin_lock_irqsave(&rq->lock, flags);
9227 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9228 raw_spin_unlock_irqrestore(&rq->lock, flags);
9229 }
029632fb
PZ
9230}
9231
9232void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9233 struct sched_entity *se, int cpu,
9234 struct sched_entity *parent)
9235{
9236 struct rq *rq = cpu_rq(cpu);
9237
9238 cfs_rq->tg = tg;
9239 cfs_rq->rq = rq;
029632fb
PZ
9240 init_cfs_rq_runtime(cfs_rq);
9241
9242 tg->cfs_rq[cpu] = cfs_rq;
9243 tg->se[cpu] = se;
9244
9245 /* se could be NULL for root_task_group */
9246 if (!se)
9247 return;
9248
fed14d45 9249 if (!parent) {
029632fb 9250 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9251 se->depth = 0;
9252 } else {
029632fb 9253 se->cfs_rq = parent->my_q;
fed14d45
PZ
9254 se->depth = parent->depth + 1;
9255 }
029632fb
PZ
9256
9257 se->my_q = cfs_rq;
0ac9b1c2
PT
9258 /* guarantee group entities always have weight */
9259 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9260 se->parent = parent;
9261}
9262
9263static DEFINE_MUTEX(shares_mutex);
9264
9265int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9266{
9267 int i;
9268 unsigned long flags;
9269
9270 /*
9271 * We can't change the weight of the root cgroup.
9272 */
9273 if (!tg->se[0])
9274 return -EINVAL;
9275
9276 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9277
9278 mutex_lock(&shares_mutex);
9279 if (tg->shares == shares)
9280 goto done;
9281
9282 tg->shares = shares;
9283 for_each_possible_cpu(i) {
9284 struct rq *rq = cpu_rq(i);
9285 struct sched_entity *se;
9286
9287 se = tg->se[i];
9288 /* Propagate contribution to hierarchy */
9289 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
9290
9291 /* Possible calls to update_curr() need rq clock */
9292 update_rq_clock(rq);
17bc14b7 9293 for_each_sched_entity(se)
029632fb
PZ
9294 update_cfs_shares(group_cfs_rq(se));
9295 raw_spin_unlock_irqrestore(&rq->lock, flags);
9296 }
9297
9298done:
9299 mutex_unlock(&shares_mutex);
9300 return 0;
9301}
9302#else /* CONFIG_FAIR_GROUP_SCHED */
9303
9304void free_fair_sched_group(struct task_group *tg) { }
9305
9306int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9307{
9308 return 1;
9309}
9310
8663e24d
PZ
9311void online_fair_sched_group(struct task_group *tg) { }
9312
6fe1f348 9313void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9314
9315#endif /* CONFIG_FAIR_GROUP_SCHED */
9316
810b3817 9317
6d686f45 9318static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9319{
9320 struct sched_entity *se = &task->se;
0d721cea
PW
9321 unsigned int rr_interval = 0;
9322
9323 /*
9324 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9325 * idle runqueue:
9326 */
0d721cea 9327 if (rq->cfs.load.weight)
a59f4e07 9328 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9329
9330 return rr_interval;
9331}
9332
bf0f6f24
IM
9333/*
9334 * All the scheduling class methods:
9335 */
029632fb 9336const struct sched_class fair_sched_class = {
5522d5d5 9337 .next = &idle_sched_class,
bf0f6f24
IM
9338 .enqueue_task = enqueue_task_fair,
9339 .dequeue_task = dequeue_task_fair,
9340 .yield_task = yield_task_fair,
d95f4122 9341 .yield_to_task = yield_to_task_fair,
bf0f6f24 9342
2e09bf55 9343 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9344
9345 .pick_next_task = pick_next_task_fair,
9346 .put_prev_task = put_prev_task_fair,
9347
681f3e68 9348#ifdef CONFIG_SMP
4ce72a2c 9349 .select_task_rq = select_task_rq_fair,
0a74bef8 9350 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9351
0bcdcf28
CE
9352 .rq_online = rq_online_fair,
9353 .rq_offline = rq_offline_fair,
88ec22d3 9354
12695578 9355 .task_dead = task_dead_fair,
c5b28038 9356 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9357#endif
bf0f6f24 9358
83b699ed 9359 .set_curr_task = set_curr_task_fair,
bf0f6f24 9360 .task_tick = task_tick_fair,
cd29fe6f 9361 .task_fork = task_fork_fair,
cb469845
SR
9362
9363 .prio_changed = prio_changed_fair,
da7a735e 9364 .switched_from = switched_from_fair,
cb469845 9365 .switched_to = switched_to_fair,
810b3817 9366
0d721cea
PW
9367 .get_rr_interval = get_rr_interval_fair,
9368
6e998916
SG
9369 .update_curr = update_curr_fair,
9370
810b3817 9371#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9372 .task_change_group = task_change_group_fair,
810b3817 9373#endif
bf0f6f24
IM
9374};
9375
9376#ifdef CONFIG_SCHED_DEBUG
029632fb 9377void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9378{
bf0f6f24
IM
9379 struct cfs_rq *cfs_rq;
9380
5973e5b9 9381 rcu_read_lock();
c3b64f1e 9382 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9383 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9384 rcu_read_unlock();
bf0f6f24 9385}
397f2378
SD
9386
9387#ifdef CONFIG_NUMA_BALANCING
9388void show_numa_stats(struct task_struct *p, struct seq_file *m)
9389{
9390 int node;
9391 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9392
9393 for_each_online_node(node) {
9394 if (p->numa_faults) {
9395 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9396 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9397 }
9398 if (p->numa_group) {
9399 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9400 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9401 }
9402 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9403 }
9404}
9405#endif /* CONFIG_NUMA_BALANCING */
9406#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9407
9408__init void init_sched_fair_class(void)
9409{
9410#ifdef CONFIG_SMP
9411 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9412
3451d024 9413#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9414 nohz.next_balance = jiffies;
029632fb 9415 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9416#endif
9417#endif /* SMP */
9418
9419}