]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched: Fix cgroup movement of forking process
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
ec12cb7f
PT
419static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
c09595f6
PZ
779#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780static void
781add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782{
783 cfs_rq->task_weight += weight;
784}
785#else
786static inline void
787add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788{
789}
790#endif
791
30cfdcfc
DA
792static void
793account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 798 if (entity_is_task(se)) {
c09595f6 799 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
800 list_add(&se->group_node, &cfs_rq->tasks);
801 }
30cfdcfc 802 cfs_rq->nr_running++;
30cfdcfc
DA
803}
804
805static void
806account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 809 if (!parent_entity(se))
029632fb 810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 811 if (entity_is_task(se)) {
c09595f6 812 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
813 list_del_init(&se->group_node);
814 }
30cfdcfc 815 cfs_rq->nr_running--;
30cfdcfc
DA
816}
817
3ff6dcac 818#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
819/* we need this in update_cfs_load and load-balance functions below */
820static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 821# ifdef CONFIG_SMP
d6b55918
PT
822static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
824{
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
827
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
830
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
834 }
835}
836
837static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 838{
a7a4f8a7 839 u64 period = sysctl_sched_shares_window;
2069dd75 840 u64 now, delta;
e33078ba 841 unsigned long load = cfs_rq->load.weight;
2069dd75 842
64660c86 843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
844 return;
845
05ca62c6 846 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
847 delta = now - cfs_rq->load_stamp;
848
e33078ba
PT
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
f07333bf 854 delta = period - 1;
e33078ba
PT
855 }
856
2069dd75 857 cfs_rq->load_stamp = now;
3b3d190e 858 cfs_rq->load_unacc_exec_time = 0;
2069dd75 859 cfs_rq->load_period += delta;
e33078ba
PT
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
863 }
2069dd75 864
d6b55918
PT
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
869
2069dd75
PZ
870 while (cfs_rq->load_period > period) {
871 /*
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
875 */
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
879 }
3d4b47b4 880
e33078ba
PT
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
883}
884
cf5f0acf
PZ
885static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886{
887 long tg_weight;
888
889 /*
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
893 */
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
897
898 return tg_weight;
899}
900
6d5ab293 901static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 902{
cf5f0acf 903 long tg_weight, load, shares;
3ff6dcac 904
cf5f0acf 905 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 906 load = cfs_rq->load.weight;
3ff6dcac 907
3ff6dcac 908 shares = (tg->shares * load);
cf5f0acf
PZ
909 if (tg_weight)
910 shares /= tg_weight;
3ff6dcac
YZ
911
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
916
917 return shares;
918}
919
920static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921{
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
6d5ab293 924 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
925 }
926}
927# else /* CONFIG_SMP */
928static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929{
930}
931
6d5ab293 932static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
933{
934 return tg->shares;
935}
936
937static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938{
939}
940# endif /* CONFIG_SMP */
2069dd75
PZ
941static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
943{
19e5eebb
PT
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
2069dd75 948 account_entity_dequeue(cfs_rq, se);
19e5eebb 949 }
2069dd75
PZ
950
951 update_load_set(&se->load, weight);
952
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
955}
956
6d5ab293 957static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
958{
959 struct task_group *tg;
960 struct sched_entity *se;
3ff6dcac 961 long shares;
2069dd75 962
2069dd75
PZ
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 965 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 966 return;
3ff6dcac
YZ
967#ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970#endif
6d5ab293 971 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
972
973 reweight_entity(cfs_rq_of(se), se, shares);
974}
975#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 976static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
977{
978}
979
6d5ab293 980static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
981{
982}
43365bd7
PT
983
984static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985{
986}
2069dd75
PZ
987#endif /* CONFIG_FAIR_GROUP_SCHED */
988
2396af69 989static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 990{
bf0f6f24 991#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
992 struct task_struct *tsk = NULL;
993
994 if (entity_is_task(se))
995 tsk = task_of(se);
996
41acab88
LDM
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
999
1000 if ((s64)delta < 0)
1001 delta = 0;
1002
41acab88
LDM
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
bf0f6f24 1005
41acab88
LDM
1006 se->statistics.sleep_start = 0;
1007 se->statistics.sum_sleep_runtime += delta;
9745512c 1008
768d0c27 1009 if (tsk) {
e414314c 1010 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1011 trace_sched_stat_sleep(tsk, delta);
1012 }
bf0f6f24 1013 }
41acab88
LDM
1014 if (se->statistics.block_start) {
1015 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1016
1017 if ((s64)delta < 0)
1018 delta = 0;
1019
41acab88
LDM
1020 if (unlikely(delta > se->statistics.block_max))
1021 se->statistics.block_max = delta;
bf0f6f24 1022
41acab88
LDM
1023 se->statistics.block_start = 0;
1024 se->statistics.sum_sleep_runtime += delta;
30084fbd 1025
e414314c 1026 if (tsk) {
8f0dfc34 1027 if (tsk->in_iowait) {
41acab88
LDM
1028 se->statistics.iowait_sum += delta;
1029 se->statistics.iowait_count++;
768d0c27 1030 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1031 }
1032
b781a602
AV
1033 trace_sched_stat_blocked(tsk, delta);
1034
e414314c
PZ
1035 /*
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 profile_hits(SLEEP_PROFILING,
1042 (void *)get_wchan(tsk),
1043 delta >> 20);
1044 }
1045 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1046 }
bf0f6f24
IM
1047 }
1048#endif
1049}
1050
ddc97297
PZ
1051static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052{
1053#ifdef CONFIG_SCHED_DEBUG
1054 s64 d = se->vruntime - cfs_rq->min_vruntime;
1055
1056 if (d < 0)
1057 d = -d;
1058
1059 if (d > 3*sysctl_sched_latency)
1060 schedstat_inc(cfs_rq, nr_spread_over);
1061#endif
1062}
1063
aeb73b04
PZ
1064static void
1065place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1066{
1af5f730 1067 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1068
2cb8600e
PZ
1069 /*
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1074 */
94dfb5e7 1075 if (initial && sched_feat(START_DEBIT))
f9c0b095 1076 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1077
a2e7a7eb 1078 /* sleeps up to a single latency don't count. */
5ca9880c 1079 if (!initial) {
a2e7a7eb 1080 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1081
a2e7a7eb
MG
1082 /*
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1085 */
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1087 thresh >>= 1;
51e0304c 1088
a2e7a7eb 1089 vruntime -= thresh;
aeb73b04
PZ
1090 }
1091
b5d9d734
MG
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime = max_vruntime(se->vruntime, vruntime);
1094
67e9fb2a 1095 se->vruntime = vruntime;
aeb73b04
PZ
1096}
1097
d3d9dc33
PT
1098static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1099
bf0f6f24 1100static void
88ec22d3 1101enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1102{
88ec22d3
PZ
1103 /*
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1106 */
371fd7e7 1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1108 se->vruntime += cfs_rq->min_vruntime;
1109
bf0f6f24 1110 /*
a2a2d680 1111 * Update run-time statistics of the 'current'.
bf0f6f24 1112 */
b7cc0896 1113 update_curr(cfs_rq);
d6b55918 1114 update_cfs_load(cfs_rq, 0);
a992241d 1115 account_entity_enqueue(cfs_rq, se);
6d5ab293 1116 update_cfs_shares(cfs_rq);
bf0f6f24 1117
88ec22d3 1118 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1119 place_entity(cfs_rq, se, 0);
2396af69 1120 enqueue_sleeper(cfs_rq, se);
e9acbff6 1121 }
bf0f6f24 1122
d2417e5a 1123 update_stats_enqueue(cfs_rq, se);
ddc97297 1124 check_spread(cfs_rq, se);
83b699ed
SV
1125 if (se != cfs_rq->curr)
1126 __enqueue_entity(cfs_rq, se);
2069dd75 1127 se->on_rq = 1;
3d4b47b4 1128
d3d9dc33 1129 if (cfs_rq->nr_running == 1) {
3d4b47b4 1130 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1131 check_enqueue_throttle(cfs_rq);
1132 }
bf0f6f24
IM
1133}
1134
2c13c919 1135static void __clear_buddies_last(struct sched_entity *se)
2002c695 1136{
2c13c919
RR
1137 for_each_sched_entity(se) {
1138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1139 if (cfs_rq->last == se)
1140 cfs_rq->last = NULL;
1141 else
1142 break;
1143 }
1144}
2002c695 1145
2c13c919
RR
1146static void __clear_buddies_next(struct sched_entity *se)
1147{
1148 for_each_sched_entity(se) {
1149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1150 if (cfs_rq->next == se)
1151 cfs_rq->next = NULL;
1152 else
1153 break;
1154 }
2002c695
PZ
1155}
1156
ac53db59
RR
1157static void __clear_buddies_skip(struct sched_entity *se)
1158{
1159 for_each_sched_entity(se) {
1160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1161 if (cfs_rq->skip == se)
1162 cfs_rq->skip = NULL;
1163 else
1164 break;
1165 }
1166}
1167
a571bbea
PZ
1168static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1169{
2c13c919
RR
1170 if (cfs_rq->last == se)
1171 __clear_buddies_last(se);
1172
1173 if (cfs_rq->next == se)
1174 __clear_buddies_next(se);
ac53db59
RR
1175
1176 if (cfs_rq->skip == se)
1177 __clear_buddies_skip(se);
a571bbea
PZ
1178}
1179
d8b4986d
PT
1180static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1181
bf0f6f24 1182static void
371fd7e7 1183dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1184{
a2a2d680
DA
1185 /*
1186 * Update run-time statistics of the 'current'.
1187 */
1188 update_curr(cfs_rq);
1189
19b6a2e3 1190 update_stats_dequeue(cfs_rq, se);
371fd7e7 1191 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1192#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1193 if (entity_is_task(se)) {
1194 struct task_struct *tsk = task_of(se);
1195
1196 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1198 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1199 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1200 }
db36cc7d 1201#endif
67e9fb2a
PZ
1202 }
1203
2002c695 1204 clear_buddies(cfs_rq, se);
4793241b 1205
83b699ed 1206 if (se != cfs_rq->curr)
30cfdcfc 1207 __dequeue_entity(cfs_rq, se);
2069dd75 1208 se->on_rq = 0;
d6b55918 1209 update_cfs_load(cfs_rq, 0);
30cfdcfc 1210 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1211
1212 /*
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1216 */
371fd7e7 1217 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1218 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1219
d8b4986d
PT
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq);
1222
1e876231
PZ
1223 update_min_vruntime(cfs_rq);
1224 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1225}
1226
1227/*
1228 * Preempt the current task with a newly woken task if needed:
1229 */
7c92e54f 1230static void
2e09bf55 1231check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1232{
11697830 1233 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1234 struct sched_entity *se;
1235 s64 delta;
11697830 1236
6d0f0ebd 1237 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1239 if (delta_exec > ideal_runtime) {
bf0f6f24 1240 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1241 /*
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1244 */
1245 clear_buddies(cfs_rq, curr);
f685ceac
MG
1246 return;
1247 }
1248
1249 /*
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1253 */
f685ceac
MG
1254 if (delta_exec < sysctl_sched_min_granularity)
1255 return;
1256
f4cfb33e
WX
1257 se = __pick_first_entity(cfs_rq);
1258 delta = curr->vruntime - se->vruntime;
f685ceac 1259
f4cfb33e
WX
1260 if (delta < 0)
1261 return;
d7d82944 1262
f4cfb33e
WX
1263 if (delta > ideal_runtime)
1264 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1265}
1266
83b699ed 1267static void
8494f412 1268set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1269{
83b699ed
SV
1270 /* 'current' is not kept within the tree. */
1271 if (se->on_rq) {
1272 /*
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1275 * runqueue.
1276 */
1277 update_stats_wait_end(cfs_rq, se);
1278 __dequeue_entity(cfs_rq, se);
1279 }
1280
79303e9e 1281 update_stats_curr_start(cfs_rq, se);
429d43bc 1282 cfs_rq->curr = se;
eba1ed4b
IM
1283#ifdef CONFIG_SCHEDSTATS
1284 /*
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1288 */
495eca49 1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1290 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1291 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1292 }
1293#endif
4a55b450 1294 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1295}
1296
3f3a4904
PZ
1297static int
1298wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299
ac53db59
RR
1300/*
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1306 */
f4b6755f 1307static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1308{
ac53db59 1309 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1310 struct sched_entity *left = se;
f4b6755f 1311
ac53db59
RR
1312 /*
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1315 */
1316 if (cfs_rq->skip == se) {
1317 struct sched_entity *second = __pick_next_entity(se);
1318 if (second && wakeup_preempt_entity(second, left) < 1)
1319 se = second;
1320 }
aa2ac252 1321
f685ceac
MG
1322 /*
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1324 */
1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1326 se = cfs_rq->last;
1327
ac53db59
RR
1328 /*
1329 * Someone really wants this to run. If it's not unfair, run it.
1330 */
1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1332 se = cfs_rq->next;
1333
f685ceac 1334 clear_buddies(cfs_rq, se);
4793241b
PZ
1335
1336 return se;
aa2ac252
PZ
1337}
1338
d3d9dc33
PT
1339static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1340
ab6cde26 1341static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1342{
1343 /*
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1346 */
1347 if (prev->on_rq)
b7cc0896 1348 update_curr(cfs_rq);
bf0f6f24 1349
d3d9dc33
PT
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq);
1352
ddc97297 1353 check_spread(cfs_rq, prev);
30cfdcfc 1354 if (prev->on_rq) {
5870db5b 1355 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq, prev);
1358 }
429d43bc 1359 cfs_rq->curr = NULL;
bf0f6f24
IM
1360}
1361
8f4d37ec
PZ
1362static void
1363entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1364{
bf0f6f24 1365 /*
30cfdcfc 1366 * Update run-time statistics of the 'current'.
bf0f6f24 1367 */
30cfdcfc 1368 update_curr(cfs_rq);
bf0f6f24 1369
43365bd7
PT
1370 /*
1371 * Update share accounting for long-running entities.
1372 */
1373 update_entity_shares_tick(cfs_rq);
1374
8f4d37ec
PZ
1375#ifdef CONFIG_SCHED_HRTICK
1376 /*
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1379 */
983ed7a6
HH
1380 if (queued) {
1381 resched_task(rq_of(cfs_rq)->curr);
1382 return;
1383 }
8f4d37ec
PZ
1384 /*
1385 * don't let the period tick interfere with the hrtick preemption
1386 */
1387 if (!sched_feat(DOUBLE_TICK) &&
1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1389 return;
1390#endif
1391
2c2efaed 1392 if (cfs_rq->nr_running > 1)
2e09bf55 1393 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1394}
1395
ab84d31e
PT
1396
1397/**************************************************
1398 * CFS bandwidth control machinery
1399 */
1400
1401#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1402
1403#ifdef HAVE_JUMP_LABEL
1404static struct jump_label_key __cfs_bandwidth_used;
1405
1406static inline bool cfs_bandwidth_used(void)
1407{
1408 return static_branch(&__cfs_bandwidth_used);
1409}
1410
1411void account_cfs_bandwidth_used(int enabled, int was_enabled)
1412{
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled && !was_enabled)
1415 jump_label_inc(&__cfs_bandwidth_used);
1416 else if (!enabled && was_enabled)
1417 jump_label_dec(&__cfs_bandwidth_used);
1418}
1419#else /* HAVE_JUMP_LABEL */
1420static bool cfs_bandwidth_used(void)
1421{
1422 return true;
1423}
1424
1425void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1426#endif /* HAVE_JUMP_LABEL */
1427
ab84d31e
PT
1428/*
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1431 */
1432static inline u64 default_cfs_period(void)
1433{
1434 return 100000000ULL;
1435}
ec12cb7f
PT
1436
1437static inline u64 sched_cfs_bandwidth_slice(void)
1438{
1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1440}
1441
a9cf55b2
PT
1442/*
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1446 *
1447 * requires cfs_b->lock
1448 */
029632fb 1449void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1450{
1451 u64 now;
1452
1453 if (cfs_b->quota == RUNTIME_INF)
1454 return;
1455
1456 now = sched_clock_cpu(smp_processor_id());
1457 cfs_b->runtime = cfs_b->quota;
1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459}
1460
029632fb
PZ
1461static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1462{
1463 return &tg->cfs_bandwidth;
1464}
1465
85dac906
PT
1466/* returns 0 on failure to allocate runtime */
1467static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1468{
1469 struct task_group *tg = cfs_rq->tg;
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1471 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1472
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1475
1476 raw_spin_lock(&cfs_b->lock);
1477 if (cfs_b->quota == RUNTIME_INF)
1478 amount = min_amount;
58088ad0 1479 else {
a9cf55b2
PT
1480 /*
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1484 * active.
1485 */
1486 if (!cfs_b->timer_active) {
1487 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1488 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1489 }
58088ad0
PT
1490
1491 if (cfs_b->runtime > 0) {
1492 amount = min(cfs_b->runtime, min_amount);
1493 cfs_b->runtime -= amount;
1494 cfs_b->idle = 0;
1495 }
ec12cb7f 1496 }
a9cf55b2 1497 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1498 raw_spin_unlock(&cfs_b->lock);
1499
1500 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1501 /*
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1504 * issued.
1505 */
1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1507 cfs_rq->runtime_expires = expires;
85dac906
PT
1508
1509 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1510}
1511
a9cf55b2
PT
1512/*
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1515 */
1516static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1517{
a9cf55b2
PT
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct rq *rq = rq_of(cfs_rq);
1520
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1523 return;
1524
a9cf55b2
PT
1525 if (cfs_rq->runtime_remaining < 0)
1526 return;
1527
1528 /*
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1532 *
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1535 */
1536
1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq->runtime_expires += TICK_NSEC;
1540 } else {
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq->runtime_remaining = 0;
1543 }
1544}
1545
1546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1547 unsigned long delta_exec)
1548{
1549 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1550 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1551 expire_cfs_rq_runtime(cfs_rq);
1552
1553 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1554 return;
1555
85dac906
PT
1556 /*
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1559 */
1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1561 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1562}
1563
1564static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1565 unsigned long delta_exec)
1566{
56f570e5 1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1568 return;
1569
1570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571}
1572
85dac906
PT
1573static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1574{
56f570e5 1575 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1576}
1577
64660c86
PT
1578/* check whether cfs_rq, or any parent, is throttled */
1579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1580{
56f570e5 1581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1582}
1583
1584/*
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1588 */
1589static inline int throttled_lb_pair(struct task_group *tg,
1590 int src_cpu, int dest_cpu)
1591{
1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1593
1594 src_cfs_rq = tg->cfs_rq[src_cpu];
1595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1596
1597 return throttled_hierarchy(src_cfs_rq) ||
1598 throttled_hierarchy(dest_cfs_rq);
1599}
1600
1601/* updated child weight may affect parent so we have to do this bottom up */
1602static int tg_unthrottle_up(struct task_group *tg, void *data)
1603{
1604 struct rq *rq = data;
1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1606
1607 cfs_rq->throttle_count--;
1608#ifdef CONFIG_SMP
1609 if (!cfs_rq->throttle_count) {
1610 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1611
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq->load_stamp += delta;
1614 cfs_rq->load_last += delta;
1615
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq);
1618 }
1619#endif
1620
1621 return 0;
1622}
1623
1624static int tg_throttle_down(struct task_group *tg, void *data)
1625{
1626 struct rq *rq = data;
1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1628
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq->throttle_count)
1631 update_cfs_load(cfs_rq, 0);
1632 cfs_rq->throttle_count++;
1633
1634 return 0;
1635}
1636
d3d9dc33 1637static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1638{
1639 struct rq *rq = rq_of(cfs_rq);
1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1641 struct sched_entity *se;
1642 long task_delta, dequeue = 1;
1643
1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1645
1646 /* account load preceding throttle */
64660c86
PT
1647 rcu_read_lock();
1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1649 rcu_read_unlock();
85dac906
PT
1650
1651 task_delta = cfs_rq->h_nr_running;
1652 for_each_sched_entity(se) {
1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1654 /* throttled entity or throttle-on-deactivate */
1655 if (!se->on_rq)
1656 break;
1657
1658 if (dequeue)
1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1660 qcfs_rq->h_nr_running -= task_delta;
1661
1662 if (qcfs_rq->load.weight)
1663 dequeue = 0;
1664 }
1665
1666 if (!se)
1667 rq->nr_running -= task_delta;
1668
1669 cfs_rq->throttled = 1;
e8da1b18 1670 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1671 raw_spin_lock(&cfs_b->lock);
1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1673 raw_spin_unlock(&cfs_b->lock);
1674}
1675
029632fb 1676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1677{
1678 struct rq *rq = rq_of(cfs_rq);
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1680 struct sched_entity *se;
1681 int enqueue = 1;
1682 long task_delta;
1683
1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1685
1686 cfs_rq->throttled = 0;
1687 raw_spin_lock(&cfs_b->lock);
e8da1b18 1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1689 list_del_rcu(&cfs_rq->throttled_list);
1690 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1691 cfs_rq->throttled_timestamp = 0;
671fd9da 1692
64660c86
PT
1693 update_rq_clock(rq);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1696
671fd9da
PT
1697 if (!cfs_rq->load.weight)
1698 return;
1699
1700 task_delta = cfs_rq->h_nr_running;
1701 for_each_sched_entity(se) {
1702 if (se->on_rq)
1703 enqueue = 0;
1704
1705 cfs_rq = cfs_rq_of(se);
1706 if (enqueue)
1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1708 cfs_rq->h_nr_running += task_delta;
1709
1710 if (cfs_rq_throttled(cfs_rq))
1711 break;
1712 }
1713
1714 if (!se)
1715 rq->nr_running += task_delta;
1716
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq->curr == rq->idle && rq->cfs.nr_running)
1719 resched_task(rq->curr);
1720}
1721
1722static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1723 u64 remaining, u64 expires)
1724{
1725 struct cfs_rq *cfs_rq;
1726 u64 runtime = remaining;
1727
1728 rcu_read_lock();
1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1730 throttled_list) {
1731 struct rq *rq = rq_of(cfs_rq);
1732
1733 raw_spin_lock(&rq->lock);
1734 if (!cfs_rq_throttled(cfs_rq))
1735 goto next;
1736
1737 runtime = -cfs_rq->runtime_remaining + 1;
1738 if (runtime > remaining)
1739 runtime = remaining;
1740 remaining -= runtime;
1741
1742 cfs_rq->runtime_remaining += runtime;
1743 cfs_rq->runtime_expires = expires;
1744
1745 /* we check whether we're throttled above */
1746 if (cfs_rq->runtime_remaining > 0)
1747 unthrottle_cfs_rq(cfs_rq);
1748
1749next:
1750 raw_spin_unlock(&rq->lock);
1751
1752 if (!remaining)
1753 break;
1754 }
1755 rcu_read_unlock();
1756
1757 return remaining;
1758}
1759
58088ad0
PT
1760/*
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1765 */
1766static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1767{
671fd9da
PT
1768 u64 runtime, runtime_expires;
1769 int idle = 1, throttled;
58088ad0
PT
1770
1771 raw_spin_lock(&cfs_b->lock);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b->quota == RUNTIME_INF)
1774 goto out_unlock;
1775
671fd9da
PT
1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle = cfs_b->idle && !throttled;
e8da1b18 1779 cfs_b->nr_periods += overrun;
671fd9da 1780
a9cf55b2
PT
1781 /* if we're going inactive then everything else can be deferred */
1782 if (idle)
1783 goto out_unlock;
1784
1785 __refill_cfs_bandwidth_runtime(cfs_b);
1786
671fd9da
PT
1787 if (!throttled) {
1788 /* mark as potentially idle for the upcoming period */
1789 cfs_b->idle = 1;
1790 goto out_unlock;
1791 }
1792
e8da1b18
NR
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b->nr_throttled += overrun;
1795
671fd9da
PT
1796 /*
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1800 * allowed to run.
1801 */
1802 runtime = cfs_b->runtime;
1803 runtime_expires = cfs_b->runtime_expires;
1804 cfs_b->runtime = 0;
1805
1806 /*
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1810 */
1811 while (throttled && runtime > 0) {
1812 raw_spin_unlock(&cfs_b->lock);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime = distribute_cfs_runtime(cfs_b, runtime,
1815 runtime_expires);
1816 raw_spin_lock(&cfs_b->lock);
1817
1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 }
58088ad0 1820
671fd9da
PT
1821 /* return (any) remaining runtime */
1822 cfs_b->runtime = runtime;
1823 /*
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1828 */
1829 cfs_b->idle = 0;
58088ad0
PT
1830out_unlock:
1831 if (idle)
1832 cfs_b->timer_active = 0;
1833 raw_spin_unlock(&cfs_b->lock);
1834
1835 return idle;
1836}
d3d9dc33 1837
d8b4986d
PT
1838/* a cfs_rq won't donate quota below this amount */
1839static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1840/* minimum remaining period time to redistribute slack quota */
1841static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1842/* how long we wait to gather additional slack before distributing */
1843static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1844
1845/* are we near the end of the current quota period? */
1846static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1847{
1848 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1849 u64 remaining;
1850
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer))
1853 return 1;
1854
1855 /* is a quota refresh about to occur? */
1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1857 if (remaining < min_expire)
1858 return 1;
1859
1860 return 0;
1861}
1862
1863static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1864{
1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1866
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b, min_left))
1869 return;
1870
1871 start_bandwidth_timer(&cfs_b->slack_timer,
1872 ns_to_ktime(cfs_bandwidth_slack_period));
1873}
1874
1875/* we know any runtime found here is valid as update_curr() precedes return */
1876static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1877{
1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1880
1881 if (slack_runtime <= 0)
1882 return;
1883
1884 raw_spin_lock(&cfs_b->lock);
1885 if (cfs_b->quota != RUNTIME_INF &&
1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1887 cfs_b->runtime += slack_runtime;
1888
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b->throttled_cfs_rq))
1892 start_cfs_slack_bandwidth(cfs_b);
1893 }
1894 raw_spin_unlock(&cfs_b->lock);
1895
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq->runtime_remaining -= slack_runtime;
1898}
1899
1900static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1901{
56f570e5
PT
1902 if (!cfs_bandwidth_used())
1903 return;
1904
fccfdc6f 1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1906 return;
1907
1908 __return_cfs_rq_runtime(cfs_rq);
1909}
1910
1911/*
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1914 */
1915static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1916{
1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1918 u64 expires;
1919
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1922 return;
1923
1924 raw_spin_lock(&cfs_b->lock);
1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1926 runtime = cfs_b->runtime;
1927 cfs_b->runtime = 0;
1928 }
1929 expires = cfs_b->runtime_expires;
1930 raw_spin_unlock(&cfs_b->lock);
1931
1932 if (!runtime)
1933 return;
1934
1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 if (expires == cfs_b->runtime_expires)
1939 cfs_b->runtime = runtime;
1940 raw_spin_unlock(&cfs_b->lock);
1941}
1942
d3d9dc33
PT
1943/*
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1947 */
1948static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1949{
56f570e5
PT
1950 if (!cfs_bandwidth_used())
1951 return;
1952
d3d9dc33
PT
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1955 return;
1956
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq))
1959 return;
1960
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq, 0);
1963 if (cfs_rq->runtime_remaining <= 0)
1964 throttle_cfs_rq(cfs_rq);
1965}
1966
1967/* conditionally throttle active cfs_rq's from put_prev_entity() */
1968static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1969{
56f570e5
PT
1970 if (!cfs_bandwidth_used())
1971 return;
1972
d3d9dc33
PT
1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1974 return;
1975
1976 /*
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1979 */
1980 if (cfs_rq_throttled(cfs_rq))
1981 return;
1982
1983 throttle_cfs_rq(cfs_rq);
1984}
029632fb
PZ
1985
1986static inline u64 default_cfs_period(void);
1987static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1988static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1989
1990static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1991{
1992 struct cfs_bandwidth *cfs_b =
1993 container_of(timer, struct cfs_bandwidth, slack_timer);
1994 do_sched_cfs_slack_timer(cfs_b);
1995
1996 return HRTIMER_NORESTART;
1997}
1998
1999static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2000{
2001 struct cfs_bandwidth *cfs_b =
2002 container_of(timer, struct cfs_bandwidth, period_timer);
2003 ktime_t now;
2004 int overrun;
2005 int idle = 0;
2006
2007 for (;;) {
2008 now = hrtimer_cb_get_time(timer);
2009 overrun = hrtimer_forward(timer, now, cfs_b->period);
2010
2011 if (!overrun)
2012 break;
2013
2014 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 }
2016
2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018}
2019
2020void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2021{
2022 raw_spin_lock_init(&cfs_b->lock);
2023 cfs_b->runtime = 0;
2024 cfs_b->quota = RUNTIME_INF;
2025 cfs_b->period = ns_to_ktime(default_cfs_period());
2026
2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->period_timer.function = sched_cfs_period_timer;
2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032}
2033
2034static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2035{
2036 cfs_rq->runtime_enabled = 0;
2037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038}
2039
2040/* requires cfs_b->lock, may release to reprogram timer */
2041void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042{
2043 /*
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2048 */
2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2050 raw_spin_unlock(&cfs_b->lock);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b->period_timer);
2053
2054 raw_spin_lock(&cfs_b->lock);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b->timer_active)
2057 return;
2058 }
2059
2060 cfs_b->timer_active = 1;
2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062}
2063
2064static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2065{
2066 hrtimer_cancel(&cfs_b->period_timer);
2067 hrtimer_cancel(&cfs_b->slack_timer);
2068}
2069
2070void unthrottle_offline_cfs_rqs(struct rq *rq)
2071{
2072 struct cfs_rq *cfs_rq;
2073
2074 for_each_leaf_cfs_rq(rq, cfs_rq) {
2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2076
2077 if (!cfs_rq->runtime_enabled)
2078 continue;
2079
2080 /*
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2083 */
2084 cfs_rq->runtime_remaining = cfs_b->quota;
2085 if (cfs_rq_throttled(cfs_rq))
2086 unthrottle_cfs_rq(cfs_rq);
2087 }
2088}
2089
2090#else /* CONFIG_CFS_BANDWIDTH */
ec12cb7f
PT
2091static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2092 unsigned long delta_exec) {}
d3d9dc33
PT
2093static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 2095static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2096
2097static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2098{
2099 return 0;
2100}
64660c86
PT
2101
2102static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2103{
2104 return 0;
2105}
2106
2107static inline int throttled_lb_pair(struct task_group *tg,
2108 int src_cpu, int dest_cpu)
2109{
2110 return 0;
2111}
029632fb
PZ
2112
2113void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2114
2115#ifdef CONFIG_FAIR_GROUP_SCHED
2116static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2117#endif
2118
029632fb
PZ
2119static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2120{
2121 return NULL;
2122}
2123static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2124void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2125
2126#endif /* CONFIG_CFS_BANDWIDTH */
2127
bf0f6f24
IM
2128/**************************************************
2129 * CFS operations on tasks:
2130 */
2131
8f4d37ec
PZ
2132#ifdef CONFIG_SCHED_HRTICK
2133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2134{
8f4d37ec
PZ
2135 struct sched_entity *se = &p->se;
2136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137
2138 WARN_ON(task_rq(p) != rq);
2139
b39e66ea 2140 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2141 u64 slice = sched_slice(cfs_rq, se);
2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2143 s64 delta = slice - ran;
2144
2145 if (delta < 0) {
2146 if (rq->curr == p)
2147 resched_task(p);
2148 return;
2149 }
2150
2151 /*
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2154 */
31656519 2155 if (rq->curr != p)
157124c1 2156 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2157
31656519 2158 hrtick_start(rq, delta);
8f4d37ec
PZ
2159 }
2160}
a4c2f00f
PZ
2161
2162/*
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2165 * to matter.
2166 */
2167static void hrtick_update(struct rq *rq)
2168{
2169 struct task_struct *curr = rq->curr;
2170
b39e66ea 2171 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2172 return;
2173
2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2175 hrtick_start_fair(rq, curr);
2176}
55e12e5e 2177#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2178static inline void
2179hrtick_start_fair(struct rq *rq, struct task_struct *p)
2180{
2181}
a4c2f00f
PZ
2182
2183static inline void hrtick_update(struct rq *rq)
2184{
2185}
8f4d37ec
PZ
2186#endif
2187
bf0f6f24
IM
2188/*
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2192 */
ea87bb78 2193static void
371fd7e7 2194enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2195{
2196 struct cfs_rq *cfs_rq;
62fb1851 2197 struct sched_entity *se = &p->se;
bf0f6f24
IM
2198
2199 for_each_sched_entity(se) {
62fb1851 2200 if (se->on_rq)
bf0f6f24
IM
2201 break;
2202 cfs_rq = cfs_rq_of(se);
88ec22d3 2203 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2204
2205 /*
2206 * end evaluation on encountering a throttled cfs_rq
2207 *
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2210 */
2211 if (cfs_rq_throttled(cfs_rq))
2212 break;
953bfcd1 2213 cfs_rq->h_nr_running++;
85dac906 2214
88ec22d3 2215 flags = ENQUEUE_WAKEUP;
bf0f6f24 2216 }
8f4d37ec 2217
2069dd75 2218 for_each_sched_entity(se) {
0f317143 2219 cfs_rq = cfs_rq_of(se);
953bfcd1 2220 cfs_rq->h_nr_running++;
2069dd75 2221
85dac906
PT
2222 if (cfs_rq_throttled(cfs_rq))
2223 break;
2224
d6b55918 2225 update_cfs_load(cfs_rq, 0);
6d5ab293 2226 update_cfs_shares(cfs_rq);
2069dd75
PZ
2227 }
2228
85dac906
PT
2229 if (!se)
2230 inc_nr_running(rq);
a4c2f00f 2231 hrtick_update(rq);
bf0f6f24
IM
2232}
2233
2f36825b
VP
2234static void set_next_buddy(struct sched_entity *se);
2235
bf0f6f24
IM
2236/*
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2240 */
371fd7e7 2241static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2242{
2243 struct cfs_rq *cfs_rq;
62fb1851 2244 struct sched_entity *se = &p->se;
2f36825b 2245 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2246
2247 for_each_sched_entity(se) {
2248 cfs_rq = cfs_rq_of(se);
371fd7e7 2249 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2250
2251 /*
2252 * end evaluation on encountering a throttled cfs_rq
2253 *
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2256 */
2257 if (cfs_rq_throttled(cfs_rq))
2258 break;
953bfcd1 2259 cfs_rq->h_nr_running--;
2069dd75 2260
bf0f6f24 2261 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2262 if (cfs_rq->load.weight) {
2263 /*
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2266 */
2267 if (task_sleep && parent_entity(se))
2268 set_next_buddy(parent_entity(se));
9598c82d
PT
2269
2270 /* avoid re-evaluating load for this entity */
2271 se = parent_entity(se);
bf0f6f24 2272 break;
2f36825b 2273 }
371fd7e7 2274 flags |= DEQUEUE_SLEEP;
bf0f6f24 2275 }
8f4d37ec 2276
2069dd75 2277 for_each_sched_entity(se) {
0f317143 2278 cfs_rq = cfs_rq_of(se);
953bfcd1 2279 cfs_rq->h_nr_running--;
2069dd75 2280
85dac906
PT
2281 if (cfs_rq_throttled(cfs_rq))
2282 break;
2283
d6b55918 2284 update_cfs_load(cfs_rq, 0);
6d5ab293 2285 update_cfs_shares(cfs_rq);
2069dd75
PZ
2286 }
2287
85dac906
PT
2288 if (!se)
2289 dec_nr_running(rq);
a4c2f00f 2290 hrtick_update(rq);
bf0f6f24
IM
2291}
2292
e7693a36 2293#ifdef CONFIG_SMP
029632fb
PZ
2294/* Used instead of source_load when we know the type == 0 */
2295static unsigned long weighted_cpuload(const int cpu)
2296{
2297 return cpu_rq(cpu)->load.weight;
2298}
2299
2300/*
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2303 *
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2306 */
2307static unsigned long source_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return min(rq->cpu_load[type-1], total);
2316}
2317
2318/*
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2321 */
2322static unsigned long target_load(int cpu, int type)
2323{
2324 struct rq *rq = cpu_rq(cpu);
2325 unsigned long total = weighted_cpuload(cpu);
2326
2327 if (type == 0 || !sched_feat(LB_BIAS))
2328 return total;
2329
2330 return max(rq->cpu_load[type-1], total);
2331}
2332
2333static unsigned long power_of(int cpu)
2334{
2335 return cpu_rq(cpu)->cpu_power;
2336}
2337
2338static unsigned long cpu_avg_load_per_task(int cpu)
2339{
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2342
2343 if (nr_running)
2344 return rq->load.weight / nr_running;
2345
2346 return 0;
2347}
2348
098fb9db 2349
74f8e4b2 2350static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2351{
2352 struct sched_entity *se = &p->se;
2353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2354 u64 min_vruntime;
2355
2356#ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy;
88ec22d3 2358
3fe1698b
PZ
2359 do {
2360 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2361 smp_rmb();
2362 min_vruntime = cfs_rq->min_vruntime;
2363 } while (min_vruntime != min_vruntime_copy);
2364#else
2365 min_vruntime = cfs_rq->min_vruntime;
2366#endif
88ec22d3 2367
3fe1698b 2368 se->vruntime -= min_vruntime;
88ec22d3
PZ
2369}
2370
bb3469ac 2371#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2372/*
2373 * effective_load() calculates the load change as seen from the root_task_group
2374 *
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
cf5f0acf
PZ
2378 *
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2382 *
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2385 *
2386 * s_i = rw_i / \Sum rw_j (1)
2387 *
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2391 *
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2394 *
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2399 *
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2402 *
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2404 *
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2408 *
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2411 *
2412 * We can then compute the difference in effective weight by using:
2413 *
2414 * dw_i = S * (s'_i - s_i) (3)
2415 *
2416 * Where 'S' is the group weight as seen by its parent.
2417 *
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
f5bfb7d9 2421 */
2069dd75 2422static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2423{
4be9daaa 2424 struct sched_entity *se = tg->se[cpu];
f1d239f7 2425
cf5f0acf 2426 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2427 return wl;
2428
4be9daaa 2429 for_each_sched_entity(se) {
cf5f0acf 2430 long w, W;
4be9daaa 2431
977dda7c 2432 tg = se->my_q->tg;
bb3469ac 2433
cf5f0acf
PZ
2434 /*
2435 * W = @wg + \Sum rw_j
2436 */
2437 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2438
cf5f0acf
PZ
2439 /*
2440 * w = rw_i + @wl
2441 */
2442 w = se->my_q->load.weight + wl;
940959e9 2443
cf5f0acf
PZ
2444 /*
2445 * wl = S * s'_i; see (2)
2446 */
2447 if (W > 0 && w < W)
2448 wl = (w * tg->shares) / W;
977dda7c
PT
2449 else
2450 wl = tg->shares;
940959e9 2451
cf5f0acf
PZ
2452 /*
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2456 */
977dda7c
PT
2457 if (wl < MIN_SHARES)
2458 wl = MIN_SHARES;
cf5f0acf
PZ
2459
2460 /*
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2462 */
977dda7c 2463 wl -= se->load.weight;
cf5f0acf
PZ
2464
2465 /*
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2471 */
4be9daaa 2472 wg = 0;
4be9daaa 2473 }
bb3469ac 2474
4be9daaa 2475 return wl;
bb3469ac
PZ
2476}
2477#else
4be9daaa 2478
83378269
PZ
2479static inline unsigned long effective_load(struct task_group *tg, int cpu,
2480 unsigned long wl, unsigned long wg)
4be9daaa 2481{
83378269 2482 return wl;
bb3469ac 2483}
4be9daaa 2484
bb3469ac
PZ
2485#endif
2486
c88d5910 2487static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2488{
e37b6a7b 2489 s64 this_load, load;
c88d5910 2490 int idx, this_cpu, prev_cpu;
098fb9db 2491 unsigned long tl_per_task;
c88d5910 2492 struct task_group *tg;
83378269 2493 unsigned long weight;
b3137bc8 2494 int balanced;
098fb9db 2495
c88d5910
PZ
2496 idx = sd->wake_idx;
2497 this_cpu = smp_processor_id();
2498 prev_cpu = task_cpu(p);
2499 load = source_load(prev_cpu, idx);
2500 this_load = target_load(this_cpu, idx);
098fb9db 2501
b3137bc8
MG
2502 /*
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2506 */
83378269
PZ
2507 if (sync) {
2508 tg = task_group(current);
2509 weight = current->se.load.weight;
2510
c88d5910 2511 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2512 load += effective_load(tg, prev_cpu, 0, -weight);
2513 }
b3137bc8 2514
83378269
PZ
2515 tg = task_group(p);
2516 weight = p->se.load.weight;
b3137bc8 2517
71a29aa7
PZ
2518 /*
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
71a29aa7
PZ
2523 *
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2526 */
e37b6a7b
PT
2527 if (this_load > 0) {
2528 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2529
2530 this_eff_load = 100;
2531 this_eff_load *= power_of(prev_cpu);
2532 this_eff_load *= this_load +
2533 effective_load(tg, this_cpu, weight, weight);
2534
2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2536 prev_eff_load *= power_of(this_cpu);
2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2538
2539 balanced = this_eff_load <= prev_eff_load;
2540 } else
2541 balanced = true;
b3137bc8 2542
098fb9db 2543 /*
4ae7d5ce
IM
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2546 * woken task:
098fb9db 2547 */
2fb7635c
PZ
2548 if (sync && balanced)
2549 return 1;
098fb9db 2550
41acab88 2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2552 tl_per_task = cpu_avg_load_per_task(this_cpu);
2553
c88d5910
PZ
2554 if (balanced ||
2555 (this_load <= load &&
2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2557 /*
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2561 */
c88d5910 2562 schedstat_inc(sd, ttwu_move_affine);
41acab88 2563 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2564
2565 return 1;
2566 }
2567 return 0;
2568}
2569
aaee1203
PZ
2570/*
2571 * find_idlest_group finds and returns the least busy CPU group within the
2572 * domain.
2573 */
2574static struct sched_group *
78e7ed53 2575find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2576 int this_cpu, int load_idx)
e7693a36 2577{
b3bd3de6 2578 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2579 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2580 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2581
aaee1203
PZ
2582 do {
2583 unsigned long load, avg_load;
2584 int local_group;
2585 int i;
e7693a36 2586
aaee1203
PZ
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2589 tsk_cpus_allowed(p)))
aaee1203
PZ
2590 continue;
2591
2592 local_group = cpumask_test_cpu(this_cpu,
2593 sched_group_cpus(group));
2594
2595 /* Tally up the load of all CPUs in the group */
2596 avg_load = 0;
2597
2598 for_each_cpu(i, sched_group_cpus(group)) {
2599 /* Bias balancing toward cpus of our domain */
2600 if (local_group)
2601 load = source_load(i, load_idx);
2602 else
2603 load = target_load(i, load_idx);
2604
2605 avg_load += load;
2606 }
2607
2608 /* Adjust by relative CPU power of the group */
9c3f75cb 2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2610
2611 if (local_group) {
2612 this_load = avg_load;
aaee1203
PZ
2613 } else if (avg_load < min_load) {
2614 min_load = avg_load;
2615 idlest = group;
2616 }
2617 } while (group = group->next, group != sd->groups);
2618
2619 if (!idlest || 100*this_load < imbalance*min_load)
2620 return NULL;
2621 return idlest;
2622}
2623
2624/*
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2626 */
2627static int
2628find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2629{
2630 unsigned long load, min_load = ULONG_MAX;
2631 int idlest = -1;
2632 int i;
2633
2634 /* Traverse only the allowed CPUs */
fa17b507 2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2636 load = weighted_cpuload(i);
2637
2638 if (load < min_load || (load == min_load && i == this_cpu)) {
2639 min_load = load;
2640 idlest = i;
e7693a36
GH
2641 }
2642 }
2643
aaee1203
PZ
2644 return idlest;
2645}
e7693a36 2646
a50bde51
PZ
2647/*
2648 * Try and locate an idle CPU in the sched_domain.
2649 */
99bd5e2f 2650static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2651{
2652 int cpu = smp_processor_id();
2653 int prev_cpu = task_cpu(p);
99bd5e2f 2654 struct sched_domain *sd;
4dcfe102 2655 struct sched_group *sg;
77e81365 2656 int i;
a50bde51
PZ
2657
2658 /*
99bd5e2f
SS
2659 * If the task is going to be woken-up on this cpu and if it is
2660 * already idle, then it is the right target.
a50bde51 2661 */
99bd5e2f
SS
2662 if (target == cpu && idle_cpu(cpu))
2663 return cpu;
2664
2665 /*
2666 * If the task is going to be woken-up on the cpu where it previously
2667 * ran and if it is currently idle, then it the right target.
2668 */
2669 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2670 return prev_cpu;
a50bde51
PZ
2671
2672 /*
99bd5e2f 2673 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2674 */
dce840a0 2675 rcu_read_lock();
99bd5e2f 2676
518cd623 2677 sd = rcu_dereference(per_cpu(sd_llc, target));
77e81365 2678 for_each_lower_domain(sd) {
4dcfe102
PZ
2679 sg = sd->groups;
2680 do {
2681 if (!cpumask_intersects(sched_group_cpus(sg),
2682 tsk_cpus_allowed(p)))
2683 goto next;
2684
2685 for_each_cpu(i, sched_group_cpus(sg)) {
2686 if (!idle_cpu(i))
2687 goto next;
2688 }
2689
2690 target = cpumask_first_and(sched_group_cpus(sg),
2691 tsk_cpus_allowed(p));
2692 goto done;
2693next:
2694 sg = sg->next;
2695 } while (sg != sd->groups);
a50bde51 2696 }
4dcfe102 2697done:
dce840a0 2698 rcu_read_unlock();
a50bde51
PZ
2699
2700 return target;
2701}
2702
aaee1203
PZ
2703/*
2704 * sched_balance_self: balance the current task (running on cpu) in domains
2705 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2706 * SD_BALANCE_EXEC.
2707 *
2708 * Balance, ie. select the least loaded group.
2709 *
2710 * Returns the target CPU number, or the same CPU if no balancing is needed.
2711 *
2712 * preempt must be disabled.
2713 */
0017d735 2714static int
7608dec2 2715select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2716{
29cd8bae 2717 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2718 int cpu = smp_processor_id();
2719 int prev_cpu = task_cpu(p);
2720 int new_cpu = cpu;
99bd5e2f 2721 int want_affine = 0;
29cd8bae 2722 int want_sd = 1;
5158f4e4 2723 int sync = wake_flags & WF_SYNC;
c88d5910 2724
76854c7e
MG
2725 if (p->rt.nr_cpus_allowed == 1)
2726 return prev_cpu;
2727
0763a660 2728 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2729 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2730 want_affine = 1;
2731 new_cpu = prev_cpu;
2732 }
aaee1203 2733
dce840a0 2734 rcu_read_lock();
aaee1203 2735 for_each_domain(cpu, tmp) {
e4f42888
PZ
2736 if (!(tmp->flags & SD_LOAD_BALANCE))
2737 continue;
2738
aaee1203 2739 /*
ae154be1
PZ
2740 * If power savings logic is enabled for a domain, see if we
2741 * are not overloaded, if so, don't balance wider.
aaee1203 2742 */
59abf026 2743 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2744 unsigned long power = 0;
2745 unsigned long nr_running = 0;
2746 unsigned long capacity;
2747 int i;
2748
2749 for_each_cpu(i, sched_domain_span(tmp)) {
2750 power += power_of(i);
2751 nr_running += cpu_rq(i)->cfs.nr_running;
2752 }
2753
1399fa78 2754 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2755
59abf026
PZ
2756 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2757 nr_running /= 2;
2758
2759 if (nr_running < capacity)
29cd8bae 2760 want_sd = 0;
ae154be1 2761 }
aaee1203 2762
fe3bcfe1 2763 /*
99bd5e2f
SS
2764 * If both cpu and prev_cpu are part of this domain,
2765 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2766 */
99bd5e2f
SS
2767 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2768 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2769 affine_sd = tmp;
2770 want_affine = 0;
c88d5910
PZ
2771 }
2772
29cd8bae
PZ
2773 if (!want_sd && !want_affine)
2774 break;
2775
0763a660 2776 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2777 continue;
2778
29cd8bae
PZ
2779 if (want_sd)
2780 sd = tmp;
2781 }
2782
8b911acd 2783 if (affine_sd) {
99bd5e2f 2784 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2785 prev_cpu = cpu;
2786
2787 new_cpu = select_idle_sibling(p, prev_cpu);
2788 goto unlock;
8b911acd 2789 }
e7693a36 2790
aaee1203 2791 while (sd) {
5158f4e4 2792 int load_idx = sd->forkexec_idx;
aaee1203 2793 struct sched_group *group;
c88d5910 2794 int weight;
098fb9db 2795
0763a660 2796 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2797 sd = sd->child;
2798 continue;
2799 }
098fb9db 2800
5158f4e4
PZ
2801 if (sd_flag & SD_BALANCE_WAKE)
2802 load_idx = sd->wake_idx;
098fb9db 2803
5158f4e4 2804 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2805 if (!group) {
2806 sd = sd->child;
2807 continue;
2808 }
4ae7d5ce 2809
d7c33c49 2810 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2811 if (new_cpu == -1 || new_cpu == cpu) {
2812 /* Now try balancing at a lower domain level of cpu */
2813 sd = sd->child;
2814 continue;
e7693a36 2815 }
aaee1203
PZ
2816
2817 /* Now try balancing at a lower domain level of new_cpu */
2818 cpu = new_cpu;
669c55e9 2819 weight = sd->span_weight;
aaee1203
PZ
2820 sd = NULL;
2821 for_each_domain(cpu, tmp) {
669c55e9 2822 if (weight <= tmp->span_weight)
aaee1203 2823 break;
0763a660 2824 if (tmp->flags & sd_flag)
aaee1203
PZ
2825 sd = tmp;
2826 }
2827 /* while loop will break here if sd == NULL */
e7693a36 2828 }
dce840a0
PZ
2829unlock:
2830 rcu_read_unlock();
e7693a36 2831
c88d5910 2832 return new_cpu;
e7693a36
GH
2833}
2834#endif /* CONFIG_SMP */
2835
e52fb7c0
PZ
2836static unsigned long
2837wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2838{
2839 unsigned long gran = sysctl_sched_wakeup_granularity;
2840
2841 /*
e52fb7c0
PZ
2842 * Since its curr running now, convert the gran from real-time
2843 * to virtual-time in his units.
13814d42
MG
2844 *
2845 * By using 'se' instead of 'curr' we penalize light tasks, so
2846 * they get preempted easier. That is, if 'se' < 'curr' then
2847 * the resulting gran will be larger, therefore penalizing the
2848 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2849 * be smaller, again penalizing the lighter task.
2850 *
2851 * This is especially important for buddies when the leftmost
2852 * task is higher priority than the buddy.
0bbd3336 2853 */
f4ad9bd2 2854 return calc_delta_fair(gran, se);
0bbd3336
PZ
2855}
2856
464b7527
PZ
2857/*
2858 * Should 'se' preempt 'curr'.
2859 *
2860 * |s1
2861 * |s2
2862 * |s3
2863 * g
2864 * |<--->|c
2865 *
2866 * w(c, s1) = -1
2867 * w(c, s2) = 0
2868 * w(c, s3) = 1
2869 *
2870 */
2871static int
2872wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2873{
2874 s64 gran, vdiff = curr->vruntime - se->vruntime;
2875
2876 if (vdiff <= 0)
2877 return -1;
2878
e52fb7c0 2879 gran = wakeup_gran(curr, se);
464b7527
PZ
2880 if (vdiff > gran)
2881 return 1;
2882
2883 return 0;
2884}
2885
02479099
PZ
2886static void set_last_buddy(struct sched_entity *se)
2887{
69c80f3e
VP
2888 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2889 return;
2890
2891 for_each_sched_entity(se)
2892 cfs_rq_of(se)->last = se;
02479099
PZ
2893}
2894
2895static void set_next_buddy(struct sched_entity *se)
2896{
69c80f3e
VP
2897 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2898 return;
2899
2900 for_each_sched_entity(se)
2901 cfs_rq_of(se)->next = se;
02479099
PZ
2902}
2903
ac53db59
RR
2904static void set_skip_buddy(struct sched_entity *se)
2905{
69c80f3e
VP
2906 for_each_sched_entity(se)
2907 cfs_rq_of(se)->skip = se;
ac53db59
RR
2908}
2909
bf0f6f24
IM
2910/*
2911 * Preempt the current task with a newly woken task if needed:
2912 */
5a9b86f6 2913static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2914{
2915 struct task_struct *curr = rq->curr;
8651a86c 2916 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2917 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2918 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2919 int next_buddy_marked = 0;
bf0f6f24 2920
4ae7d5ce
IM
2921 if (unlikely(se == pse))
2922 return;
2923
5238cdd3
PT
2924 /*
2925 * This is possible from callers such as pull_task(), in which we
2926 * unconditionally check_prempt_curr() after an enqueue (which may have
2927 * lead to a throttle). This both saves work and prevents false
2928 * next-buddy nomination below.
2929 */
2930 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2931 return;
2932
2f36825b 2933 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2934 set_next_buddy(pse);
2f36825b
VP
2935 next_buddy_marked = 1;
2936 }
57fdc26d 2937
aec0a514
BR
2938 /*
2939 * We can come here with TIF_NEED_RESCHED already set from new task
2940 * wake up path.
5238cdd3
PT
2941 *
2942 * Note: this also catches the edge-case of curr being in a throttled
2943 * group (e.g. via set_curr_task), since update_curr() (in the
2944 * enqueue of curr) will have resulted in resched being set. This
2945 * prevents us from potentially nominating it as a false LAST_BUDDY
2946 * below.
aec0a514
BR
2947 */
2948 if (test_tsk_need_resched(curr))
2949 return;
2950
a2f5c9ab
DH
2951 /* Idle tasks are by definition preempted by non-idle tasks. */
2952 if (unlikely(curr->policy == SCHED_IDLE) &&
2953 likely(p->policy != SCHED_IDLE))
2954 goto preempt;
2955
91c234b4 2956 /*
a2f5c9ab
DH
2957 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2958 * is driven by the tick):
91c234b4 2959 */
6bc912b7 2960 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2961 return;
bf0f6f24 2962
464b7527 2963 find_matching_se(&se, &pse);
9bbd7374 2964 update_curr(cfs_rq_of(se));
002f128b 2965 BUG_ON(!pse);
2f36825b
VP
2966 if (wakeup_preempt_entity(se, pse) == 1) {
2967 /*
2968 * Bias pick_next to pick the sched entity that is
2969 * triggering this preemption.
2970 */
2971 if (!next_buddy_marked)
2972 set_next_buddy(pse);
3a7e73a2 2973 goto preempt;
2f36825b 2974 }
464b7527 2975
3a7e73a2 2976 return;
a65ac745 2977
3a7e73a2
PZ
2978preempt:
2979 resched_task(curr);
2980 /*
2981 * Only set the backward buddy when the current task is still
2982 * on the rq. This can happen when a wakeup gets interleaved
2983 * with schedule on the ->pre_schedule() or idle_balance()
2984 * point, either of which can * drop the rq lock.
2985 *
2986 * Also, during early boot the idle thread is in the fair class,
2987 * for obvious reasons its a bad idea to schedule back to it.
2988 */
2989 if (unlikely(!se->on_rq || curr == rq->idle))
2990 return;
2991
2992 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2993 set_last_buddy(se);
bf0f6f24
IM
2994}
2995
fb8d4724 2996static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2997{
8f4d37ec 2998 struct task_struct *p;
bf0f6f24
IM
2999 struct cfs_rq *cfs_rq = &rq->cfs;
3000 struct sched_entity *se;
3001
36ace27e 3002 if (!cfs_rq->nr_running)
bf0f6f24
IM
3003 return NULL;
3004
3005 do {
9948f4b2 3006 se = pick_next_entity(cfs_rq);
f4b6755f 3007 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3008 cfs_rq = group_cfs_rq(se);
3009 } while (cfs_rq);
3010
8f4d37ec 3011 p = task_of(se);
b39e66ea
MG
3012 if (hrtick_enabled(rq))
3013 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3014
3015 return p;
bf0f6f24
IM
3016}
3017
3018/*
3019 * Account for a descheduled task:
3020 */
31ee529c 3021static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3022{
3023 struct sched_entity *se = &prev->se;
3024 struct cfs_rq *cfs_rq;
3025
3026 for_each_sched_entity(se) {
3027 cfs_rq = cfs_rq_of(se);
ab6cde26 3028 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3029 }
3030}
3031
ac53db59
RR
3032/*
3033 * sched_yield() is very simple
3034 *
3035 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3036 */
3037static void yield_task_fair(struct rq *rq)
3038{
3039 struct task_struct *curr = rq->curr;
3040 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3041 struct sched_entity *se = &curr->se;
3042
3043 /*
3044 * Are we the only task in the tree?
3045 */
3046 if (unlikely(rq->nr_running == 1))
3047 return;
3048
3049 clear_buddies(cfs_rq, se);
3050
3051 if (curr->policy != SCHED_BATCH) {
3052 update_rq_clock(rq);
3053 /*
3054 * Update run-time statistics of the 'current'.
3055 */
3056 update_curr(cfs_rq);
916671c0
MG
3057 /*
3058 * Tell update_rq_clock() that we've just updated,
3059 * so we don't do microscopic update in schedule()
3060 * and double the fastpath cost.
3061 */
3062 rq->skip_clock_update = 1;
ac53db59
RR
3063 }
3064
3065 set_skip_buddy(se);
3066}
3067
d95f4122
MG
3068static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3069{
3070 struct sched_entity *se = &p->se;
3071
5238cdd3
PT
3072 /* throttled hierarchies are not runnable */
3073 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3074 return false;
3075
3076 /* Tell the scheduler that we'd really like pse to run next. */
3077 set_next_buddy(se);
3078
d95f4122
MG
3079 yield_task_fair(rq);
3080
3081 return true;
3082}
3083
681f3e68 3084#ifdef CONFIG_SMP
bf0f6f24
IM
3085/**************************************************
3086 * Fair scheduling class load-balancing methods:
3087 */
3088
1e3c88bd
PZ
3089/*
3090 * pull_task - move a task from a remote runqueue to the local runqueue.
3091 * Both runqueues must be locked.
3092 */
3093static void pull_task(struct rq *src_rq, struct task_struct *p,
3094 struct rq *this_rq, int this_cpu)
3095{
3096 deactivate_task(src_rq, p, 0);
3097 set_task_cpu(p, this_cpu);
3098 activate_task(this_rq, p, 0);
3099 check_preempt_curr(this_rq, p, 0);
3100}
3101
029632fb
PZ
3102/*
3103 * Is this task likely cache-hot:
3104 */
3105static int
3106task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3107{
3108 s64 delta;
3109
3110 if (p->sched_class != &fair_sched_class)
3111 return 0;
3112
3113 if (unlikely(p->policy == SCHED_IDLE))
3114 return 0;
3115
3116 /*
3117 * Buddy candidates are cache hot:
3118 */
3119 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3120 (&p->se == cfs_rq_of(&p->se)->next ||
3121 &p->se == cfs_rq_of(&p->se)->last))
3122 return 1;
3123
3124 if (sysctl_sched_migration_cost == -1)
3125 return 1;
3126 if (sysctl_sched_migration_cost == 0)
3127 return 0;
3128
3129 delta = now - p->se.exec_start;
3130
3131 return delta < (s64)sysctl_sched_migration_cost;
3132}
3133
5b54b56b 3134#define LBF_ALL_PINNED 0x01
a195f004
PZ
3135#define LBF_NEED_BREAK 0x02
3136#define LBF_ABORT 0x04
5b54b56b 3137
1e3c88bd
PZ
3138/*
3139 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3140 */
3141static
3142int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3143 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3144 int *lb_flags)
1e3c88bd
PZ
3145{
3146 int tsk_cache_hot = 0;
3147 /*
3148 * We do not migrate tasks that are:
3149 * 1) running (obviously), or
3150 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3151 * 3) are cache-hot on their current CPU.
3152 */
fa17b507 3153 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
41acab88 3154 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3155 return 0;
3156 }
5b54b56b 3157 *lb_flags &= ~LBF_ALL_PINNED;
1e3c88bd
PZ
3158
3159 if (task_running(rq, p)) {
41acab88 3160 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3161 return 0;
3162 }
3163
3164 /*
3165 * Aggressive migration if:
3166 * 1) task is cache cold, or
3167 * 2) too many balance attempts have failed.
3168 */
3169
305e6835 3170 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
3171 if (!tsk_cache_hot ||
3172 sd->nr_balance_failed > sd->cache_nice_tries) {
3173#ifdef CONFIG_SCHEDSTATS
3174 if (tsk_cache_hot) {
3175 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 3176 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3177 }
3178#endif
3179 return 1;
3180 }
3181
3182 if (tsk_cache_hot) {
41acab88 3183 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3184 return 0;
3185 }
3186 return 1;
3187}
3188
897c395f
PZ
3189/*
3190 * move_one_task tries to move exactly one task from busiest to this_rq, as
3191 * part of active balancing operations within "domain".
3192 * Returns 1 if successful and 0 otherwise.
3193 *
3194 * Called with both runqueues locked.
3195 */
3196static int
3197move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3198 struct sched_domain *sd, enum cpu_idle_type idle)
3199{
3200 struct task_struct *p, *n;
3201 struct cfs_rq *cfs_rq;
3202 int pinned = 0;
3203
3204 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3205 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
3206 if (throttled_lb_pair(task_group(p),
3207 busiest->cpu, this_cpu))
3208 break;
897c395f
PZ
3209
3210 if (!can_migrate_task(p, busiest, this_cpu,
3211 sd, idle, &pinned))
3212 continue;
3213
3214 pull_task(busiest, p, this_rq, this_cpu);
3215 /*
3216 * Right now, this is only the second place pull_task()
3217 * is called, so we can safely collect pull_task()
3218 * stats here rather than inside pull_task().
3219 */
3220 schedstat_inc(sd, lb_gained[idle]);
3221 return 1;
3222 }
3223 }
3224
3225 return 0;
3226}
3227
1e3c88bd
PZ
3228static unsigned long
3229balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3230 unsigned long max_load_move, struct sched_domain *sd,
5b54b56b 3231 enum cpu_idle_type idle, int *lb_flags,
931aeeda 3232 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 3233{
b30aef17 3234 int loops = 0, pulled = 0;
1e3c88bd 3235 long rem_load_move = max_load_move;
ee00e66f 3236 struct task_struct *p, *n;
1e3c88bd
PZ
3237
3238 if (max_load_move == 0)
3239 goto out;
3240
ee00e66f 3241 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
a195f004
PZ
3242 if (loops++ > sysctl_sched_nr_migrate) {
3243 *lb_flags |= LBF_NEED_BREAK;
ee00e66f 3244 break;
a195f004 3245 }
1e3c88bd 3246
ee00e66f 3247 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17 3248 !can_migrate_task(p, busiest, this_cpu, sd, idle,
5b54b56b 3249 lb_flags))
ee00e66f 3250 continue;
1e3c88bd 3251
ee00e66f
PZ
3252 pull_task(busiest, p, this_rq, this_cpu);
3253 pulled++;
3254 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
3255
3256#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3257 /*
3258 * NEWIDLE balancing is a source of latency, so preemptible
3259 * kernels will stop after the first task is pulled to minimize
3260 * the critical section.
3261 */
a195f004
PZ
3262 if (idle == CPU_NEWLY_IDLE) {
3263 *lb_flags |= LBF_ABORT;
ee00e66f 3264 break;
a195f004 3265 }
1e3c88bd
PZ
3266#endif
3267
ee00e66f
PZ
3268 /*
3269 * We only want to steal up to the prescribed amount of
3270 * weighted load.
3271 */
3272 if (rem_load_move <= 0)
3273 break;
1e3c88bd
PZ
3274 }
3275out:
3276 /*
3277 * Right now, this is one of only two places pull_task() is called,
3278 * so we can safely collect pull_task() stats here rather than
3279 * inside pull_task().
3280 */
3281 schedstat_add(sd, lb_gained[idle], pulled);
3282
1e3c88bd
PZ
3283 return max_load_move - rem_load_move;
3284}
3285
230059de 3286#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3287/*
3288 * update tg->load_weight by folding this cpu's load_avg
3289 */
67e86250 3290static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3291{
3292 struct cfs_rq *cfs_rq;
3293 unsigned long flags;
3294 struct rq *rq;
9e3081ca
PZ
3295
3296 if (!tg->se[cpu])
3297 return 0;
3298
3299 rq = cpu_rq(cpu);
3300 cfs_rq = tg->cfs_rq[cpu];
3301
3302 raw_spin_lock_irqsave(&rq->lock, flags);
3303
3304 update_rq_clock(rq);
d6b55918 3305 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3306
3307 /*
3308 * We need to update shares after updating tg->load_weight in
3309 * order to adjust the weight of groups with long running tasks.
3310 */
6d5ab293 3311 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3312
3313 raw_spin_unlock_irqrestore(&rq->lock, flags);
3314
3315 return 0;
3316}
3317
3318static void update_shares(int cpu)
3319{
3320 struct cfs_rq *cfs_rq;
3321 struct rq *rq = cpu_rq(cpu);
3322
3323 rcu_read_lock();
9763b67f
PZ
3324 /*
3325 * Iterates the task_group tree in a bottom up fashion, see
3326 * list_add_leaf_cfs_rq() for details.
3327 */
64660c86
PT
3328 for_each_leaf_cfs_rq(rq, cfs_rq) {
3329 /* throttled entities do not contribute to load */
3330 if (throttled_hierarchy(cfs_rq))
3331 continue;
3332
67e86250 3333 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3334 }
9e3081ca
PZ
3335 rcu_read_unlock();
3336}
3337
9763b67f
PZ
3338/*
3339 * Compute the cpu's hierarchical load factor for each task group.
3340 * This needs to be done in a top-down fashion because the load of a child
3341 * group is a fraction of its parents load.
3342 */
3343static int tg_load_down(struct task_group *tg, void *data)
3344{
3345 unsigned long load;
3346 long cpu = (long)data;
3347
3348 if (!tg->parent) {
3349 load = cpu_rq(cpu)->load.weight;
3350 } else {
3351 load = tg->parent->cfs_rq[cpu]->h_load;
3352 load *= tg->se[cpu]->load.weight;
3353 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3354 }
3355
3356 tg->cfs_rq[cpu]->h_load = load;
3357
3358 return 0;
3359}
3360
3361static void update_h_load(long cpu)
3362{
3363 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3364}
3365
230059de
PZ
3366static unsigned long
3367load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3368 unsigned long max_load_move,
3369 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3370 int *lb_flags)
230059de
PZ
3371{
3372 long rem_load_move = max_load_move;
9763b67f 3373 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
3374
3375 rcu_read_lock();
9763b67f 3376 update_h_load(cpu_of(busiest));
230059de 3377
9763b67f 3378 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
3379 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3380 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3381 u64 rem_load, moved_load;
3382
a195f004
PZ
3383 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3384 break;
3385
230059de 3386 /*
64660c86 3387 * empty group or part of a throttled hierarchy
230059de 3388 */
64660c86
PT
3389 if (!busiest_cfs_rq->task_weight ||
3390 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
3391 continue;
3392
3393 rem_load = (u64)rem_load_move * busiest_weight;
3394 rem_load = div_u64(rem_load, busiest_h_load + 1);
3395
3396 moved_load = balance_tasks(this_rq, this_cpu, busiest,
5b54b56b 3397 rem_load, sd, idle, lb_flags,
230059de
PZ
3398 busiest_cfs_rq);
3399
3400 if (!moved_load)
3401 continue;
3402
3403 moved_load *= busiest_h_load;
3404 moved_load = div_u64(moved_load, busiest_weight + 1);
3405
3406 rem_load_move -= moved_load;
3407 if (rem_load_move < 0)
3408 break;
3409 }
3410 rcu_read_unlock();
3411
3412 return max_load_move - rem_load_move;
3413}
3414#else
9e3081ca
PZ
3415static inline void update_shares(int cpu)
3416{
3417}
3418
230059de
PZ
3419static unsigned long
3420load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3421 unsigned long max_load_move,
3422 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3423 int *lb_flags)
230059de
PZ
3424{
3425 return balance_tasks(this_rq, this_cpu, busiest,
5b54b56b 3426 max_load_move, sd, idle, lb_flags,
931aeeda 3427 &busiest->cfs);
230059de
PZ
3428}
3429#endif
3430
1e3c88bd
PZ
3431/*
3432 * move_tasks tries to move up to max_load_move weighted load from busiest to
3433 * this_rq, as part of a balancing operation within domain "sd".
3434 * Returns 1 if successful and 0 otherwise.
3435 *
3436 * Called with both runqueues locked.
3437 */
3438static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3439 unsigned long max_load_move,
3440 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3441 int *lb_flags)
1e3c88bd 3442{
3d45fd80 3443 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
3444
3445 do {
3d45fd80 3446 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 3447 max_load_move - total_load_moved,
5b54b56b 3448 sd, idle, lb_flags);
3d45fd80
PZ
3449
3450 total_load_moved += load_moved;
1e3c88bd 3451
a195f004
PZ
3452 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3453 break;
3454
1e3c88bd
PZ
3455#ifdef CONFIG_PREEMPT
3456 /*
3457 * NEWIDLE balancing is a source of latency, so preemptible
3458 * kernels will stop after the first task is pulled to minimize
3459 * the critical section.
3460 */
a195f004
PZ
3461 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
3462 *lb_flags |= LBF_ABORT;
baa8c110 3463 break;
a195f004 3464 }
1e3c88bd 3465#endif
3d45fd80 3466 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3467
3468 return total_load_moved > 0;
3469}
3470
1e3c88bd
PZ
3471/********** Helpers for find_busiest_group ************************/
3472/*
3473 * sd_lb_stats - Structure to store the statistics of a sched_domain
3474 * during load balancing.
3475 */
3476struct sd_lb_stats {
3477 struct sched_group *busiest; /* Busiest group in this sd */
3478 struct sched_group *this; /* Local group in this sd */
3479 unsigned long total_load; /* Total load of all groups in sd */
3480 unsigned long total_pwr; /* Total power of all groups in sd */
3481 unsigned long avg_load; /* Average load across all groups in sd */
3482
3483 /** Statistics of this group */
3484 unsigned long this_load;
3485 unsigned long this_load_per_task;
3486 unsigned long this_nr_running;
fab47622 3487 unsigned long this_has_capacity;
aae6d3dd 3488 unsigned int this_idle_cpus;
1e3c88bd
PZ
3489
3490 /* Statistics of the busiest group */
aae6d3dd 3491 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3492 unsigned long max_load;
3493 unsigned long busiest_load_per_task;
3494 unsigned long busiest_nr_running;
dd5feea1 3495 unsigned long busiest_group_capacity;
fab47622 3496 unsigned long busiest_has_capacity;
aae6d3dd 3497 unsigned int busiest_group_weight;
1e3c88bd
PZ
3498
3499 int group_imb; /* Is there imbalance in this sd */
3500#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3501 int power_savings_balance; /* Is powersave balance needed for this sd */
3502 struct sched_group *group_min; /* Least loaded group in sd */
3503 struct sched_group *group_leader; /* Group which relieves group_min */
3504 unsigned long min_load_per_task; /* load_per_task in group_min */
3505 unsigned long leader_nr_running; /* Nr running of group_leader */
3506 unsigned long min_nr_running; /* Nr running of group_min */
3507#endif
3508};
3509
3510/*
3511 * sg_lb_stats - stats of a sched_group required for load_balancing
3512 */
3513struct sg_lb_stats {
3514 unsigned long avg_load; /*Avg load across the CPUs of the group */
3515 unsigned long group_load; /* Total load over the CPUs of the group */
3516 unsigned long sum_nr_running; /* Nr tasks running in the group */
3517 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3518 unsigned long group_capacity;
aae6d3dd
SS
3519 unsigned long idle_cpus;
3520 unsigned long group_weight;
1e3c88bd 3521 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3522 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3523};
3524
1e3c88bd
PZ
3525/**
3526 * get_sd_load_idx - Obtain the load index for a given sched domain.
3527 * @sd: The sched_domain whose load_idx is to be obtained.
3528 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3529 */
3530static inline int get_sd_load_idx(struct sched_domain *sd,
3531 enum cpu_idle_type idle)
3532{
3533 int load_idx;
3534
3535 switch (idle) {
3536 case CPU_NOT_IDLE:
3537 load_idx = sd->busy_idx;
3538 break;
3539
3540 case CPU_NEWLY_IDLE:
3541 load_idx = sd->newidle_idx;
3542 break;
3543 default:
3544 load_idx = sd->idle_idx;
3545 break;
3546 }
3547
3548 return load_idx;
3549}
3550
3551
3552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3553/**
3554 * init_sd_power_savings_stats - Initialize power savings statistics for
3555 * the given sched_domain, during load balancing.
3556 *
3557 * @sd: Sched domain whose power-savings statistics are to be initialized.
3558 * @sds: Variable containing the statistics for sd.
3559 * @idle: Idle status of the CPU at which we're performing load-balancing.
3560 */
3561static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3562 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3563{
3564 /*
3565 * Busy processors will not participate in power savings
3566 * balance.
3567 */
3568 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3569 sds->power_savings_balance = 0;
3570 else {
3571 sds->power_savings_balance = 1;
3572 sds->min_nr_running = ULONG_MAX;
3573 sds->leader_nr_running = 0;
3574 }
3575}
3576
3577/**
3578 * update_sd_power_savings_stats - Update the power saving stats for a
3579 * sched_domain while performing load balancing.
3580 *
3581 * @group: sched_group belonging to the sched_domain under consideration.
3582 * @sds: Variable containing the statistics of the sched_domain
3583 * @local_group: Does group contain the CPU for which we're performing
3584 * load balancing ?
3585 * @sgs: Variable containing the statistics of the group.
3586 */
3587static inline void update_sd_power_savings_stats(struct sched_group *group,
3588 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3589{
3590
3591 if (!sds->power_savings_balance)
3592 return;
3593
3594 /*
3595 * If the local group is idle or completely loaded
3596 * no need to do power savings balance at this domain
3597 */
3598 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3599 !sds->this_nr_running))
3600 sds->power_savings_balance = 0;
3601
3602 /*
3603 * If a group is already running at full capacity or idle,
3604 * don't include that group in power savings calculations
3605 */
3606 if (!sds->power_savings_balance ||
3607 sgs->sum_nr_running >= sgs->group_capacity ||
3608 !sgs->sum_nr_running)
3609 return;
3610
3611 /*
3612 * Calculate the group which has the least non-idle load.
3613 * This is the group from where we need to pick up the load
3614 * for saving power
3615 */
3616 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3617 (sgs->sum_nr_running == sds->min_nr_running &&
3618 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3619 sds->group_min = group;
3620 sds->min_nr_running = sgs->sum_nr_running;
3621 sds->min_load_per_task = sgs->sum_weighted_load /
3622 sgs->sum_nr_running;
3623 }
3624
3625 /*
3626 * Calculate the group which is almost near its
3627 * capacity but still has some space to pick up some load
3628 * from other group and save more power
3629 */
3630 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3631 return;
3632
3633 if (sgs->sum_nr_running > sds->leader_nr_running ||
3634 (sgs->sum_nr_running == sds->leader_nr_running &&
3635 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3636 sds->group_leader = group;
3637 sds->leader_nr_running = sgs->sum_nr_running;
3638 }
3639}
3640
3641/**
3642 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3643 * @sds: Variable containing the statistics of the sched_domain
3644 * under consideration.
3645 * @this_cpu: Cpu at which we're currently performing load-balancing.
3646 * @imbalance: Variable to store the imbalance.
3647 *
3648 * Description:
3649 * Check if we have potential to perform some power-savings balance.
3650 * If yes, set the busiest group to be the least loaded group in the
3651 * sched_domain, so that it's CPUs can be put to idle.
3652 *
3653 * Returns 1 if there is potential to perform power-savings balance.
3654 * Else returns 0.
3655 */
3656static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3657 int this_cpu, unsigned long *imbalance)
3658{
3659 if (!sds->power_savings_balance)
3660 return 0;
3661
3662 if (sds->this != sds->group_leader ||
3663 sds->group_leader == sds->group_min)
3664 return 0;
3665
3666 *imbalance = sds->min_load_per_task;
3667 sds->busiest = sds->group_min;
3668
3669 return 1;
3670
3671}
3672#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3673static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3674 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3675{
3676 return;
3677}
3678
3679static inline void update_sd_power_savings_stats(struct sched_group *group,
3680 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3681{
3682 return;
3683}
3684
3685static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3686 int this_cpu, unsigned long *imbalance)
3687{
3688 return 0;
3689}
3690#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3691
3692
3693unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3694{
1399fa78 3695 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3696}
3697
3698unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3699{
3700 return default_scale_freq_power(sd, cpu);
3701}
3702
3703unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3704{
669c55e9 3705 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3706 unsigned long smt_gain = sd->smt_gain;
3707
3708 smt_gain /= weight;
3709
3710 return smt_gain;
3711}
3712
3713unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3714{
3715 return default_scale_smt_power(sd, cpu);
3716}
3717
3718unsigned long scale_rt_power(int cpu)
3719{
3720 struct rq *rq = cpu_rq(cpu);
3721 u64 total, available;
3722
1e3c88bd 3723 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3724
3725 if (unlikely(total < rq->rt_avg)) {
3726 /* Ensures that power won't end up being negative */
3727 available = 0;
3728 } else {
3729 available = total - rq->rt_avg;
3730 }
1e3c88bd 3731
1399fa78
NR
3732 if (unlikely((s64)total < SCHED_POWER_SCALE))
3733 total = SCHED_POWER_SCALE;
1e3c88bd 3734
1399fa78 3735 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3736
3737 return div_u64(available, total);
3738}
3739
3740static void update_cpu_power(struct sched_domain *sd, int cpu)
3741{
669c55e9 3742 unsigned long weight = sd->span_weight;
1399fa78 3743 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3744 struct sched_group *sdg = sd->groups;
3745
1e3c88bd
PZ
3746 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3747 if (sched_feat(ARCH_POWER))
3748 power *= arch_scale_smt_power(sd, cpu);
3749 else
3750 power *= default_scale_smt_power(sd, cpu);
3751
1399fa78 3752 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3753 }
3754
9c3f75cb 3755 sdg->sgp->power_orig = power;
9d5efe05
SV
3756
3757 if (sched_feat(ARCH_POWER))
3758 power *= arch_scale_freq_power(sd, cpu);
3759 else
3760 power *= default_scale_freq_power(sd, cpu);
3761
1399fa78 3762 power >>= SCHED_POWER_SHIFT;
9d5efe05 3763
1e3c88bd 3764 power *= scale_rt_power(cpu);
1399fa78 3765 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3766
3767 if (!power)
3768 power = 1;
3769
e51fd5e2 3770 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3771 sdg->sgp->power = power;
1e3c88bd
PZ
3772}
3773
029632fb 3774void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3775{
3776 struct sched_domain *child = sd->child;
3777 struct sched_group *group, *sdg = sd->groups;
3778 unsigned long power;
3779
3780 if (!child) {
3781 update_cpu_power(sd, cpu);
3782 return;
3783 }
3784
3785 power = 0;
3786
3787 group = child->groups;
3788 do {
9c3f75cb 3789 power += group->sgp->power;
1e3c88bd
PZ
3790 group = group->next;
3791 } while (group != child->groups);
3792
9c3f75cb 3793 sdg->sgp->power = power;
1e3c88bd
PZ
3794}
3795
9d5efe05
SV
3796/*
3797 * Try and fix up capacity for tiny siblings, this is needed when
3798 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3799 * which on its own isn't powerful enough.
3800 *
3801 * See update_sd_pick_busiest() and check_asym_packing().
3802 */
3803static inline int
3804fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3805{
3806 /*
1399fa78 3807 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3808 */
a6c75f2f 3809 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3810 return 0;
3811
3812 /*
3813 * If ~90% of the cpu_power is still there, we're good.
3814 */
9c3f75cb 3815 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3816 return 1;
3817
3818 return 0;
3819}
3820
1e3c88bd
PZ
3821/**
3822 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3823 * @sd: The sched_domain whose statistics are to be updated.
3824 * @group: sched_group whose statistics are to be updated.
3825 * @this_cpu: Cpu for which load balance is currently performed.
3826 * @idle: Idle status of this_cpu
3827 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3828 * @local_group: Does group contain this_cpu.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sgs: variable to hold the statistics for this group.
3832 */
3833static inline void update_sg_lb_stats(struct sched_domain *sd,
3834 struct sched_group *group, int this_cpu,
46e49b38 3835 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3836 int local_group, const struct cpumask *cpus,
3837 int *balance, struct sg_lb_stats *sgs)
3838{
2582f0eb 3839 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3840 int i;
3841 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3842 unsigned long avg_load_per_task = 0;
1e3c88bd 3843
871e35bc 3844 if (local_group)
1e3c88bd 3845 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3846
3847 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3848 max_cpu_load = 0;
3849 min_cpu_load = ~0UL;
2582f0eb 3850 max_nr_running = 0;
1e3c88bd
PZ
3851
3852 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3853 struct rq *rq = cpu_rq(i);
3854
1e3c88bd
PZ
3855 /* Bias balancing toward cpus of our domain */
3856 if (local_group) {
3857 if (idle_cpu(i) && !first_idle_cpu) {
3858 first_idle_cpu = 1;
3859 balance_cpu = i;
3860 }
3861
3862 load = target_load(i, load_idx);
3863 } else {
3864 load = source_load(i, load_idx);
2582f0eb 3865 if (load > max_cpu_load) {
1e3c88bd 3866 max_cpu_load = load;
2582f0eb
NR
3867 max_nr_running = rq->nr_running;
3868 }
1e3c88bd
PZ
3869 if (min_cpu_load > load)
3870 min_cpu_load = load;
3871 }
3872
3873 sgs->group_load += load;
3874 sgs->sum_nr_running += rq->nr_running;
3875 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3876 if (idle_cpu(i))
3877 sgs->idle_cpus++;
1e3c88bd
PZ
3878 }
3879
3880 /*
3881 * First idle cpu or the first cpu(busiest) in this sched group
3882 * is eligible for doing load balancing at this and above
3883 * domains. In the newly idle case, we will allow all the cpu's
3884 * to do the newly idle load balance.
3885 */
bbc8cb5b
PZ
3886 if (idle != CPU_NEWLY_IDLE && local_group) {
3887 if (balance_cpu != this_cpu) {
3888 *balance = 0;
3889 return;
3890 }
3891 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3892 }
3893
3894 /* Adjust by relative CPU power of the group */
9c3f75cb 3895 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3896
1e3c88bd
PZ
3897 /*
3898 * Consider the group unbalanced when the imbalance is larger
866ab43e 3899 * than the average weight of a task.
1e3c88bd
PZ
3900 *
3901 * APZ: with cgroup the avg task weight can vary wildly and
3902 * might not be a suitable number - should we keep a
3903 * normalized nr_running number somewhere that negates
3904 * the hierarchy?
3905 */
dd5feea1
SS
3906 if (sgs->sum_nr_running)
3907 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3908
866ab43e 3909 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3910 sgs->group_imb = 1;
3911
9c3f75cb 3912 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3913 SCHED_POWER_SCALE);
9d5efe05
SV
3914 if (!sgs->group_capacity)
3915 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3916 sgs->group_weight = group->group_weight;
fab47622
NR
3917
3918 if (sgs->group_capacity > sgs->sum_nr_running)
3919 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3920}
3921
532cb4c4
MN
3922/**
3923 * update_sd_pick_busiest - return 1 on busiest group
3924 * @sd: sched_domain whose statistics are to be checked
3925 * @sds: sched_domain statistics
3926 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3927 * @sgs: sched_group statistics
3928 * @this_cpu: the current cpu
532cb4c4
MN
3929 *
3930 * Determine if @sg is a busier group than the previously selected
3931 * busiest group.
3932 */
3933static bool update_sd_pick_busiest(struct sched_domain *sd,
3934 struct sd_lb_stats *sds,
3935 struct sched_group *sg,
3936 struct sg_lb_stats *sgs,
3937 int this_cpu)
3938{
3939 if (sgs->avg_load <= sds->max_load)
3940 return false;
3941
3942 if (sgs->sum_nr_running > sgs->group_capacity)
3943 return true;
3944
3945 if (sgs->group_imb)
3946 return true;
3947
3948 /*
3949 * ASYM_PACKING needs to move all the work to the lowest
3950 * numbered CPUs in the group, therefore mark all groups
3951 * higher than ourself as busy.
3952 */
3953 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3954 this_cpu < group_first_cpu(sg)) {
3955 if (!sds->busiest)
3956 return true;
3957
3958 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3959 return true;
3960 }
3961
3962 return false;
3963}
3964
1e3c88bd 3965/**
461819ac 3966 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3967 * @sd: sched_domain whose statistics are to be updated.
3968 * @this_cpu: Cpu for which load balance is currently performed.
3969 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3970 * @cpus: Set of cpus considered for load balancing.
3971 * @balance: Should we balance.
3972 * @sds: variable to hold the statistics for this sched_domain.
3973 */
3974static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3975 enum cpu_idle_type idle, const struct cpumask *cpus,
3976 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3977{
3978 struct sched_domain *child = sd->child;
532cb4c4 3979 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3980 struct sg_lb_stats sgs;
3981 int load_idx, prefer_sibling = 0;
3982
3983 if (child && child->flags & SD_PREFER_SIBLING)
3984 prefer_sibling = 1;
3985
3986 init_sd_power_savings_stats(sd, sds, idle);
3987 load_idx = get_sd_load_idx(sd, idle);
3988
3989 do {
3990 int local_group;
3991
532cb4c4 3992 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3993 memset(&sgs, 0, sizeof(sgs));
46e49b38 3994 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3995 local_group, cpus, balance, &sgs);
3996
8f190fb3 3997 if (local_group && !(*balance))
1e3c88bd
PZ
3998 return;
3999
4000 sds->total_load += sgs.group_load;
9c3f75cb 4001 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4002
4003 /*
4004 * In case the child domain prefers tasks go to siblings
532cb4c4 4005 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4006 * and move all the excess tasks away. We lower the capacity
4007 * of a group only if the local group has the capacity to fit
4008 * these excess tasks, i.e. nr_running < group_capacity. The
4009 * extra check prevents the case where you always pull from the
4010 * heaviest group when it is already under-utilized (possible
4011 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4012 */
75dd321d 4013 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4014 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4015
4016 if (local_group) {
4017 sds->this_load = sgs.avg_load;
532cb4c4 4018 sds->this = sg;
1e3c88bd
PZ
4019 sds->this_nr_running = sgs.sum_nr_running;
4020 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4021 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4022 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 4023 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 4024 sds->max_load = sgs.avg_load;
532cb4c4 4025 sds->busiest = sg;
1e3c88bd 4026 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4027 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4028 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4029 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4030 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4031 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4032 sds->group_imb = sgs.group_imb;
4033 }
4034
532cb4c4
MN
4035 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4036 sg = sg->next;
4037 } while (sg != sd->groups);
4038}
4039
532cb4c4
MN
4040/**
4041 * check_asym_packing - Check to see if the group is packed into the
4042 * sched doman.
4043 *
4044 * This is primarily intended to used at the sibling level. Some
4045 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4046 * case of POWER7, it can move to lower SMT modes only when higher
4047 * threads are idle. When in lower SMT modes, the threads will
4048 * perform better since they share less core resources. Hence when we
4049 * have idle threads, we want them to be the higher ones.
4050 *
4051 * This packing function is run on idle threads. It checks to see if
4052 * the busiest CPU in this domain (core in the P7 case) has a higher
4053 * CPU number than the packing function is being run on. Here we are
4054 * assuming lower CPU number will be equivalent to lower a SMT thread
4055 * number.
4056 *
b6b12294
MN
4057 * Returns 1 when packing is required and a task should be moved to
4058 * this CPU. The amount of the imbalance is returned in *imbalance.
4059 *
532cb4c4
MN
4060 * @sd: The sched_domain whose packing is to be checked.
4061 * @sds: Statistics of the sched_domain which is to be packed
4062 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4063 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
4064 */
4065static int check_asym_packing(struct sched_domain *sd,
4066 struct sd_lb_stats *sds,
4067 int this_cpu, unsigned long *imbalance)
4068{
4069 int busiest_cpu;
4070
4071 if (!(sd->flags & SD_ASYM_PACKING))
4072 return 0;
4073
4074 if (!sds->busiest)
4075 return 0;
4076
4077 busiest_cpu = group_first_cpu(sds->busiest);
4078 if (this_cpu > busiest_cpu)
4079 return 0;
4080
9c3f75cb 4081 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 4082 SCHED_POWER_SCALE);
532cb4c4 4083 return 1;
1e3c88bd
PZ
4084}
4085
4086/**
4087 * fix_small_imbalance - Calculate the minor imbalance that exists
4088 * amongst the groups of a sched_domain, during
4089 * load balancing.
4090 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4091 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4092 * @imbalance: Variable to store the imbalance.
4093 */
4094static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4095 int this_cpu, unsigned long *imbalance)
4096{
4097 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4098 unsigned int imbn = 2;
dd5feea1 4099 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4100
4101 if (sds->this_nr_running) {
4102 sds->this_load_per_task /= sds->this_nr_running;
4103 if (sds->busiest_load_per_task >
4104 sds->this_load_per_task)
4105 imbn = 1;
4106 } else
4107 sds->this_load_per_task =
4108 cpu_avg_load_per_task(this_cpu);
4109
dd5feea1 4110 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4111 * SCHED_POWER_SCALE;
9c3f75cb 4112 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4113
4114 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4115 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
4116 *imbalance = sds->busiest_load_per_task;
4117 return;
4118 }
4119
4120 /*
4121 * OK, we don't have enough imbalance to justify moving tasks,
4122 * however we may be able to increase total CPU power used by
4123 * moving them.
4124 */
4125
9c3f75cb 4126 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4127 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4128 pwr_now += sds->this->sgp->power *
1e3c88bd 4129 min(sds->this_load_per_task, sds->this_load);
1399fa78 4130 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4131
4132 /* Amount of load we'd subtract */
1399fa78 4133 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4134 sds->busiest->sgp->power;
1e3c88bd 4135 if (sds->max_load > tmp)
9c3f75cb 4136 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4137 min(sds->busiest_load_per_task, sds->max_load - tmp);
4138
4139 /* Amount of load we'd add */
9c3f75cb 4140 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4141 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4142 tmp = (sds->max_load * sds->busiest->sgp->power) /
4143 sds->this->sgp->power;
1e3c88bd 4144 else
1399fa78 4145 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4146 sds->this->sgp->power;
4147 pwr_move += sds->this->sgp->power *
1e3c88bd 4148 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4149 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4150
4151 /* Move if we gain throughput */
4152 if (pwr_move > pwr_now)
4153 *imbalance = sds->busiest_load_per_task;
4154}
4155
4156/**
4157 * calculate_imbalance - Calculate the amount of imbalance present within the
4158 * groups of a given sched_domain during load balance.
4159 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4160 * @this_cpu: Cpu for which currently load balance is being performed.
4161 * @imbalance: The variable to store the imbalance.
4162 */
4163static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4164 unsigned long *imbalance)
4165{
dd5feea1
SS
4166 unsigned long max_pull, load_above_capacity = ~0UL;
4167
4168 sds->busiest_load_per_task /= sds->busiest_nr_running;
4169 if (sds->group_imb) {
4170 sds->busiest_load_per_task =
4171 min(sds->busiest_load_per_task, sds->avg_load);
4172 }
4173
1e3c88bd
PZ
4174 /*
4175 * In the presence of smp nice balancing, certain scenarios can have
4176 * max load less than avg load(as we skip the groups at or below
4177 * its cpu_power, while calculating max_load..)
4178 */
4179 if (sds->max_load < sds->avg_load) {
4180 *imbalance = 0;
4181 return fix_small_imbalance(sds, this_cpu, imbalance);
4182 }
4183
dd5feea1
SS
4184 if (!sds->group_imb) {
4185 /*
4186 * Don't want to pull so many tasks that a group would go idle.
4187 */
4188 load_above_capacity = (sds->busiest_nr_running -
4189 sds->busiest_group_capacity);
4190
1399fa78 4191 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4192
9c3f75cb 4193 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4194 }
4195
4196 /*
4197 * We're trying to get all the cpus to the average_load, so we don't
4198 * want to push ourselves above the average load, nor do we wish to
4199 * reduce the max loaded cpu below the average load. At the same time,
4200 * we also don't want to reduce the group load below the group capacity
4201 * (so that we can implement power-savings policies etc). Thus we look
4202 * for the minimum possible imbalance.
4203 * Be careful of negative numbers as they'll appear as very large values
4204 * with unsigned longs.
4205 */
4206 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4207
4208 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
4209 *imbalance = min(max_pull * sds->busiest->sgp->power,
4210 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4211 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4212
4213 /*
4214 * if *imbalance is less than the average load per runnable task
25985edc 4215 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4216 * a think about bumping its value to force at least one task to be
4217 * moved
4218 */
4219 if (*imbalance < sds->busiest_load_per_task)
4220 return fix_small_imbalance(sds, this_cpu, imbalance);
4221
4222}
fab47622 4223
1e3c88bd
PZ
4224/******* find_busiest_group() helpers end here *********************/
4225
4226/**
4227 * find_busiest_group - Returns the busiest group within the sched_domain
4228 * if there is an imbalance. If there isn't an imbalance, and
4229 * the user has opted for power-savings, it returns a group whose
4230 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4231 * such a group exists.
4232 *
4233 * Also calculates the amount of weighted load which should be moved
4234 * to restore balance.
4235 *
4236 * @sd: The sched_domain whose busiest group is to be returned.
4237 * @this_cpu: The cpu for which load balancing is currently being performed.
4238 * @imbalance: Variable which stores amount of weighted load which should
4239 * be moved to restore balance/put a group to idle.
4240 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4241 * @cpus: The set of CPUs under consideration for load-balancing.
4242 * @balance: Pointer to a variable indicating if this_cpu
4243 * is the appropriate cpu to perform load balancing at this_level.
4244 *
4245 * Returns: - the busiest group if imbalance exists.
4246 * - If no imbalance and user has opted for power-savings balance,
4247 * return the least loaded group whose CPUs can be
4248 * put to idle by rebalancing its tasks onto our group.
4249 */
4250static struct sched_group *
4251find_busiest_group(struct sched_domain *sd, int this_cpu,
4252 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 4253 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4254{
4255 struct sd_lb_stats sds;
4256
4257 memset(&sds, 0, sizeof(sds));
4258
4259 /*
4260 * Compute the various statistics relavent for load balancing at
4261 * this level.
4262 */
46e49b38 4263 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 4264
cc57aa8f
PZ
4265 /*
4266 * this_cpu is not the appropriate cpu to perform load balancing at
4267 * this level.
1e3c88bd 4268 */
8f190fb3 4269 if (!(*balance))
1e3c88bd
PZ
4270 goto ret;
4271
532cb4c4
MN
4272 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4273 check_asym_packing(sd, &sds, this_cpu, imbalance))
4274 return sds.busiest;
4275
cc57aa8f 4276 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4277 if (!sds.busiest || sds.busiest_nr_running == 0)
4278 goto out_balanced;
4279
1399fa78 4280 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4281
866ab43e
PZ
4282 /*
4283 * If the busiest group is imbalanced the below checks don't
4284 * work because they assumes all things are equal, which typically
4285 * isn't true due to cpus_allowed constraints and the like.
4286 */
4287 if (sds.group_imb)
4288 goto force_balance;
4289
cc57aa8f 4290 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
4291 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4292 !sds.busiest_has_capacity)
4293 goto force_balance;
4294
cc57aa8f
PZ
4295 /*
4296 * If the local group is more busy than the selected busiest group
4297 * don't try and pull any tasks.
4298 */
1e3c88bd
PZ
4299 if (sds.this_load >= sds.max_load)
4300 goto out_balanced;
4301
cc57aa8f
PZ
4302 /*
4303 * Don't pull any tasks if this group is already above the domain
4304 * average load.
4305 */
1e3c88bd
PZ
4306 if (sds.this_load >= sds.avg_load)
4307 goto out_balanced;
4308
c186fafe 4309 if (idle == CPU_IDLE) {
aae6d3dd
SS
4310 /*
4311 * This cpu is idle. If the busiest group load doesn't
4312 * have more tasks than the number of available cpu's and
4313 * there is no imbalance between this and busiest group
4314 * wrt to idle cpu's, it is balanced.
4315 */
c186fafe 4316 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4317 sds.busiest_nr_running <= sds.busiest_group_weight)
4318 goto out_balanced;
c186fafe
PZ
4319 } else {
4320 /*
4321 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4322 * imbalance_pct to be conservative.
4323 */
4324 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4325 goto out_balanced;
aae6d3dd 4326 }
1e3c88bd 4327
fab47622 4328force_balance:
1e3c88bd
PZ
4329 /* Looks like there is an imbalance. Compute it */
4330 calculate_imbalance(&sds, this_cpu, imbalance);
4331 return sds.busiest;
4332
4333out_balanced:
4334 /*
4335 * There is no obvious imbalance. But check if we can do some balancing
4336 * to save power.
4337 */
4338 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4339 return sds.busiest;
4340ret:
4341 *imbalance = 0;
4342 return NULL;
4343}
4344
4345/*
4346 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4347 */
4348static struct rq *
9d5efe05
SV
4349find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4350 enum cpu_idle_type idle, unsigned long imbalance,
4351 const struct cpumask *cpus)
1e3c88bd
PZ
4352{
4353 struct rq *busiest = NULL, *rq;
4354 unsigned long max_load = 0;
4355 int i;
4356
4357 for_each_cpu(i, sched_group_cpus(group)) {
4358 unsigned long power = power_of(i);
1399fa78
NR
4359 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4360 SCHED_POWER_SCALE);
1e3c88bd
PZ
4361 unsigned long wl;
4362
9d5efe05
SV
4363 if (!capacity)
4364 capacity = fix_small_capacity(sd, group);
4365
1e3c88bd
PZ
4366 if (!cpumask_test_cpu(i, cpus))
4367 continue;
4368
4369 rq = cpu_rq(i);
6e40f5bb 4370 wl = weighted_cpuload(i);
1e3c88bd 4371
6e40f5bb
TG
4372 /*
4373 * When comparing with imbalance, use weighted_cpuload()
4374 * which is not scaled with the cpu power.
4375 */
1e3c88bd
PZ
4376 if (capacity && rq->nr_running == 1 && wl > imbalance)
4377 continue;
4378
6e40f5bb
TG
4379 /*
4380 * For the load comparisons with the other cpu's, consider
4381 * the weighted_cpuload() scaled with the cpu power, so that
4382 * the load can be moved away from the cpu that is potentially
4383 * running at a lower capacity.
4384 */
1399fa78 4385 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4386
1e3c88bd
PZ
4387 if (wl > max_load) {
4388 max_load = wl;
4389 busiest = rq;
4390 }
4391 }
4392
4393 return busiest;
4394}
4395
4396/*
4397 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4398 * so long as it is large enough.
4399 */
4400#define MAX_PINNED_INTERVAL 512
4401
4402/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4403DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4404
46e49b38 4405static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4406 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4407{
4408 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4409
4410 /*
4411 * ASYM_PACKING needs to force migrate tasks from busy but
4412 * higher numbered CPUs in order to pack all tasks in the
4413 * lowest numbered CPUs.
4414 */
4415 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4416 return 1;
4417
1af3ed3d
PZ
4418 /*
4419 * The only task running in a non-idle cpu can be moved to this
4420 * cpu in an attempt to completely freeup the other CPU
4421 * package.
4422 *
4423 * The package power saving logic comes from
4424 * find_busiest_group(). If there are no imbalance, then
4425 * f_b_g() will return NULL. However when sched_mc={1,2} then
4426 * f_b_g() will select a group from which a running task may be
4427 * pulled to this cpu in order to make the other package idle.
4428 * If there is no opportunity to make a package idle and if
4429 * there are no imbalance, then f_b_g() will return NULL and no
4430 * action will be taken in load_balance_newidle().
4431 *
4432 * Under normal task pull operation due to imbalance, there
4433 * will be more than one task in the source run queue and
4434 * move_tasks() will succeed. ld_moved will be true and this
4435 * active balance code will not be triggered.
4436 */
1af3ed3d
PZ
4437 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4438 return 0;
4439 }
4440
4441 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4442}
4443
969c7921
TH
4444static int active_load_balance_cpu_stop(void *data);
4445
1e3c88bd
PZ
4446/*
4447 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4448 * tasks if there is an imbalance.
4449 */
4450static int load_balance(int this_cpu, struct rq *this_rq,
4451 struct sched_domain *sd, enum cpu_idle_type idle,
4452 int *balance)
4453{
5b54b56b 4454 int ld_moved, lb_flags = 0, active_balance = 0;
1e3c88bd
PZ
4455 struct sched_group *group;
4456 unsigned long imbalance;
4457 struct rq *busiest;
4458 unsigned long flags;
4459 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4460
4461 cpumask_copy(cpus, cpu_active_mask);
4462
1e3c88bd
PZ
4463 schedstat_inc(sd, lb_count[idle]);
4464
4465redo:
46e49b38 4466 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4467 cpus, balance);
4468
4469 if (*balance == 0)
4470 goto out_balanced;
4471
4472 if (!group) {
4473 schedstat_inc(sd, lb_nobusyg[idle]);
4474 goto out_balanced;
4475 }
4476
9d5efe05 4477 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4478 if (!busiest) {
4479 schedstat_inc(sd, lb_nobusyq[idle]);
4480 goto out_balanced;
4481 }
4482
4483 BUG_ON(busiest == this_rq);
4484
4485 schedstat_add(sd, lb_imbalance[idle], imbalance);
4486
4487 ld_moved = 0;
4488 if (busiest->nr_running > 1) {
4489 /*
4490 * Attempt to move tasks. If find_busiest_group has found
4491 * an imbalance but busiest->nr_running <= 1, the group is
4492 * still unbalanced. ld_moved simply stays zero, so it is
4493 * correctly treated as an imbalance.
4494 */
5b54b56b 4495 lb_flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4496 local_irq_save(flags);
4497 double_rq_lock(this_rq, busiest);
4498 ld_moved = move_tasks(this_rq, this_cpu, busiest,
5b54b56b 4499 imbalance, sd, idle, &lb_flags);
1e3c88bd
PZ
4500 double_rq_unlock(this_rq, busiest);
4501 local_irq_restore(flags);
4502
4503 /*
4504 * some other cpu did the load balance for us.
4505 */
4506 if (ld_moved && this_cpu != smp_processor_id())
4507 resched_cpu(this_cpu);
4508
a195f004
PZ
4509 if (lb_flags & LBF_ABORT)
4510 goto out_balanced;
4511
4512 if (lb_flags & LBF_NEED_BREAK) {
4513 lb_flags &= ~LBF_NEED_BREAK;
4514 goto redo;
4515 }
4516
1e3c88bd 4517 /* All tasks on this runqueue were pinned by CPU affinity */
5b54b56b 4518 if (unlikely(lb_flags & LBF_ALL_PINNED)) {
1e3c88bd
PZ
4519 cpumask_clear_cpu(cpu_of(busiest), cpus);
4520 if (!cpumask_empty(cpus))
4521 goto redo;
4522 goto out_balanced;
4523 }
4524 }
4525
4526 if (!ld_moved) {
4527 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4528 /*
4529 * Increment the failure counter only on periodic balance.
4530 * We do not want newidle balance, which can be very
4531 * frequent, pollute the failure counter causing
4532 * excessive cache_hot migrations and active balances.
4533 */
4534 if (idle != CPU_NEWLY_IDLE)
4535 sd->nr_balance_failed++;
1e3c88bd 4536
46e49b38 4537 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4538 raw_spin_lock_irqsave(&busiest->lock, flags);
4539
969c7921
TH
4540 /* don't kick the active_load_balance_cpu_stop,
4541 * if the curr task on busiest cpu can't be
4542 * moved to this_cpu
1e3c88bd
PZ
4543 */
4544 if (!cpumask_test_cpu(this_cpu,
fa17b507 4545 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4546 raw_spin_unlock_irqrestore(&busiest->lock,
4547 flags);
5b54b56b 4548 lb_flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4549 goto out_one_pinned;
4550 }
4551
969c7921
TH
4552 /*
4553 * ->active_balance synchronizes accesses to
4554 * ->active_balance_work. Once set, it's cleared
4555 * only after active load balance is finished.
4556 */
1e3c88bd
PZ
4557 if (!busiest->active_balance) {
4558 busiest->active_balance = 1;
4559 busiest->push_cpu = this_cpu;
4560 active_balance = 1;
4561 }
4562 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4563
1e3c88bd 4564 if (active_balance)
969c7921
TH
4565 stop_one_cpu_nowait(cpu_of(busiest),
4566 active_load_balance_cpu_stop, busiest,
4567 &busiest->active_balance_work);
1e3c88bd
PZ
4568
4569 /*
4570 * We've kicked active balancing, reset the failure
4571 * counter.
4572 */
4573 sd->nr_balance_failed = sd->cache_nice_tries+1;
4574 }
4575 } else
4576 sd->nr_balance_failed = 0;
4577
4578 if (likely(!active_balance)) {
4579 /* We were unbalanced, so reset the balancing interval */
4580 sd->balance_interval = sd->min_interval;
4581 } else {
4582 /*
4583 * If we've begun active balancing, start to back off. This
4584 * case may not be covered by the all_pinned logic if there
4585 * is only 1 task on the busy runqueue (because we don't call
4586 * move_tasks).
4587 */
4588 if (sd->balance_interval < sd->max_interval)
4589 sd->balance_interval *= 2;
4590 }
4591
1e3c88bd
PZ
4592 goto out;
4593
4594out_balanced:
4595 schedstat_inc(sd, lb_balanced[idle]);
4596
4597 sd->nr_balance_failed = 0;
4598
4599out_one_pinned:
4600 /* tune up the balancing interval */
5b54b56b
PZ
4601 if (((lb_flags & LBF_ALL_PINNED) &&
4602 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4603 (sd->balance_interval < sd->max_interval))
4604 sd->balance_interval *= 2;
4605
46e49b38 4606 ld_moved = 0;
1e3c88bd 4607out:
1e3c88bd
PZ
4608 return ld_moved;
4609}
4610
1e3c88bd
PZ
4611/*
4612 * idle_balance is called by schedule() if this_cpu is about to become
4613 * idle. Attempts to pull tasks from other CPUs.
4614 */
029632fb 4615void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4616{
4617 struct sched_domain *sd;
4618 int pulled_task = 0;
4619 unsigned long next_balance = jiffies + HZ;
4620
4621 this_rq->idle_stamp = this_rq->clock;
4622
4623 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4624 return;
4625
f492e12e
PZ
4626 /*
4627 * Drop the rq->lock, but keep IRQ/preempt disabled.
4628 */
4629 raw_spin_unlock(&this_rq->lock);
4630
c66eaf61 4631 update_shares(this_cpu);
dce840a0 4632 rcu_read_lock();
1e3c88bd
PZ
4633 for_each_domain(this_cpu, sd) {
4634 unsigned long interval;
f492e12e 4635 int balance = 1;
1e3c88bd
PZ
4636
4637 if (!(sd->flags & SD_LOAD_BALANCE))
4638 continue;
4639
f492e12e 4640 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4641 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4642 pulled_task = load_balance(this_cpu, this_rq,
4643 sd, CPU_NEWLY_IDLE, &balance);
4644 }
1e3c88bd
PZ
4645
4646 interval = msecs_to_jiffies(sd->balance_interval);
4647 if (time_after(next_balance, sd->last_balance + interval))
4648 next_balance = sd->last_balance + interval;
d5ad140b
NR
4649 if (pulled_task) {
4650 this_rq->idle_stamp = 0;
1e3c88bd 4651 break;
d5ad140b 4652 }
1e3c88bd 4653 }
dce840a0 4654 rcu_read_unlock();
f492e12e
PZ
4655
4656 raw_spin_lock(&this_rq->lock);
4657
1e3c88bd
PZ
4658 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4659 /*
4660 * We are going idle. next_balance may be set based on
4661 * a busy processor. So reset next_balance.
4662 */
4663 this_rq->next_balance = next_balance;
4664 }
4665}
4666
4667/*
969c7921
TH
4668 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4669 * running tasks off the busiest CPU onto idle CPUs. It requires at
4670 * least 1 task to be running on each physical CPU where possible, and
4671 * avoids physical / logical imbalances.
1e3c88bd 4672 */
969c7921 4673static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4674{
969c7921
TH
4675 struct rq *busiest_rq = data;
4676 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4677 int target_cpu = busiest_rq->push_cpu;
969c7921 4678 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4679 struct sched_domain *sd;
969c7921
TH
4680
4681 raw_spin_lock_irq(&busiest_rq->lock);
4682
4683 /* make sure the requested cpu hasn't gone down in the meantime */
4684 if (unlikely(busiest_cpu != smp_processor_id() ||
4685 !busiest_rq->active_balance))
4686 goto out_unlock;
1e3c88bd
PZ
4687
4688 /* Is there any task to move? */
4689 if (busiest_rq->nr_running <= 1)
969c7921 4690 goto out_unlock;
1e3c88bd
PZ
4691
4692 /*
4693 * This condition is "impossible", if it occurs
4694 * we need to fix it. Originally reported by
4695 * Bjorn Helgaas on a 128-cpu setup.
4696 */
4697 BUG_ON(busiest_rq == target_rq);
4698
4699 /* move a task from busiest_rq to target_rq */
4700 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4701
4702 /* Search for an sd spanning us and the target CPU. */
dce840a0 4703 rcu_read_lock();
1e3c88bd
PZ
4704 for_each_domain(target_cpu, sd) {
4705 if ((sd->flags & SD_LOAD_BALANCE) &&
4706 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4707 break;
4708 }
4709
4710 if (likely(sd)) {
4711 schedstat_inc(sd, alb_count);
4712
4713 if (move_one_task(target_rq, target_cpu, busiest_rq,
4714 sd, CPU_IDLE))
4715 schedstat_inc(sd, alb_pushed);
4716 else
4717 schedstat_inc(sd, alb_failed);
4718 }
dce840a0 4719 rcu_read_unlock();
1e3c88bd 4720 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4721out_unlock:
4722 busiest_rq->active_balance = 0;
4723 raw_spin_unlock_irq(&busiest_rq->lock);
4724 return 0;
1e3c88bd
PZ
4725}
4726
4727#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4728/*
4729 * idle load balancing details
83cd4fe2
VP
4730 * - When one of the busy CPUs notice that there may be an idle rebalancing
4731 * needed, they will kick the idle load balancer, which then does idle
4732 * load balancing for all the idle CPUs.
4733 */
1e3c88bd 4734static struct {
83cd4fe2 4735 cpumask_var_t idle_cpus_mask;
0b005cf5 4736 atomic_t nr_cpus;
83cd4fe2
VP
4737 unsigned long next_balance; /* in jiffy units */
4738} nohz ____cacheline_aligned;
1e3c88bd 4739
1e3c88bd
PZ
4740#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4741/**
4742 * lowest_flag_domain - Return lowest sched_domain containing flag.
4743 * @cpu: The cpu whose lowest level of sched domain is to
4744 * be returned.
4745 * @flag: The flag to check for the lowest sched_domain
4746 * for the given cpu.
4747 *
4748 * Returns the lowest sched_domain of a cpu which contains the given flag.
4749 */
4750static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4751{
4752 struct sched_domain *sd;
4753
4754 for_each_domain(cpu, sd)
08354716 4755 if (sd->flags & flag)
1e3c88bd
PZ
4756 break;
4757
4758 return sd;
4759}
4760
4761/**
4762 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4763 * @cpu: The cpu whose domains we're iterating over.
4764 * @sd: variable holding the value of the power_savings_sd
4765 * for cpu.
4766 * @flag: The flag to filter the sched_domains to be iterated.
4767 *
4768 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4769 * set, starting from the lowest sched_domain to the highest.
4770 */
4771#define for_each_flag_domain(cpu, sd, flag) \
4772 for (sd = lowest_flag_domain(cpu, flag); \
4773 (sd && (sd->flags & flag)); sd = sd->parent)
4774
1e3c88bd
PZ
4775/**
4776 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4777 * @cpu: The cpu which is nominating a new idle_load_balancer.
4778 *
4779 * Returns: Returns the id of the idle load balancer if it exists,
4780 * Else, returns >= nr_cpu_ids.
4781 *
4782 * This algorithm picks the idle load balancer such that it belongs to a
4783 * semi-idle powersavings sched_domain. The idea is to try and avoid
4784 * completely idle packages/cores just for the purpose of idle load balancing
4785 * when there are other idle cpu's which are better suited for that job.
4786 */
4787static int find_new_ilb(int cpu)
4788{
0b005cf5 4789 int ilb = cpumask_first(nohz.idle_cpus_mask);
786d6dc7 4790 struct sched_group *ilbg;
1e3c88bd 4791 struct sched_domain *sd;
1e3c88bd
PZ
4792
4793 /*
4794 * Have idle load balancer selection from semi-idle packages only
4795 * when power-aware load balancing is enabled
4796 */
4797 if (!(sched_smt_power_savings || sched_mc_power_savings))
4798 goto out_done;
4799
4800 /*
4801 * Optimize for the case when we have no idle CPUs or only one
4802 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4803 */
83cd4fe2 4804 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4805 goto out_done;
4806
dce840a0 4807 rcu_read_lock();
1e3c88bd 4808 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
786d6dc7 4809 ilbg = sd->groups;
1e3c88bd
PZ
4810
4811 do {
786d6dc7
SS
4812 if (ilbg->group_weight !=
4813 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4814 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4815 sched_group_cpus(ilbg));
dce840a0
PZ
4816 goto unlock;
4817 }
1e3c88bd 4818
786d6dc7 4819 ilbg = ilbg->next;
1e3c88bd 4820
786d6dc7 4821 } while (ilbg != sd->groups);
1e3c88bd 4822 }
dce840a0
PZ
4823unlock:
4824 rcu_read_unlock();
1e3c88bd
PZ
4825
4826out_done:
786d6dc7
SS
4827 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4828 return ilb;
4829
4830 return nr_cpu_ids;
1e3c88bd
PZ
4831}
4832#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4833static inline int find_new_ilb(int call_cpu)
4834{
83cd4fe2 4835 return nr_cpu_ids;
1e3c88bd
PZ
4836}
4837#endif
4838
83cd4fe2
VP
4839/*
4840 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4841 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4842 * CPU (if there is one).
4843 */
4844static void nohz_balancer_kick(int cpu)
4845{
4846 int ilb_cpu;
4847
4848 nohz.next_balance++;
4849
0b005cf5 4850 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4851
0b005cf5
SS
4852 if (ilb_cpu >= nr_cpu_ids)
4853 return;
83cd4fe2 4854
cd490c5b 4855 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4856 return;
4857 /*
4858 * Use smp_send_reschedule() instead of resched_cpu().
4859 * This way we generate a sched IPI on the target cpu which
4860 * is idle. And the softirq performing nohz idle load balance
4861 * will be run before returning from the IPI.
4862 */
4863 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4864 return;
4865}
4866
69e1e811
SS
4867static inline void set_cpu_sd_state_busy(void)
4868{
4869 struct sched_domain *sd;
4870 int cpu = smp_processor_id();
4871
4872 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4873 return;
4874 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4875
4876 rcu_read_lock();
4877 for_each_domain(cpu, sd)
4878 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4879 rcu_read_unlock();
4880}
4881
4882void set_cpu_sd_state_idle(void)
4883{
4884 struct sched_domain *sd;
4885 int cpu = smp_processor_id();
4886
4887 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4888 return;
4889 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4890
4891 rcu_read_lock();
4892 for_each_domain(cpu, sd)
4893 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4894 rcu_read_unlock();
4895}
4896
1e3c88bd 4897/*
0b005cf5
SS
4898 * This routine will record that this cpu is going idle with tick stopped.
4899 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4900 */
83cd4fe2 4901void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4902{
4903 int cpu = smp_processor_id();
4904
4905 if (stop_tick) {
0b005cf5 4906 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
83cd4fe2 4907 return;
1e3c88bd 4908
83cd4fe2 4909 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
0b005cf5 4910 atomic_inc(&nohz.nr_cpus);
1c792db7 4911 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4912 }
83cd4fe2 4913 return;
1e3c88bd
PZ
4914}
4915#endif
4916
4917static DEFINE_SPINLOCK(balancing);
4918
49c022e6
PZ
4919static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4920
4921/*
4922 * Scale the max load_balance interval with the number of CPUs in the system.
4923 * This trades load-balance latency on larger machines for less cross talk.
4924 */
029632fb 4925void update_max_interval(void)
49c022e6
PZ
4926{
4927 max_load_balance_interval = HZ*num_online_cpus()/10;
4928}
4929
1e3c88bd
PZ
4930/*
4931 * It checks each scheduling domain to see if it is due to be balanced,
4932 * and initiates a balancing operation if so.
4933 *
4934 * Balancing parameters are set up in arch_init_sched_domains.
4935 */
4936static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4937{
4938 int balance = 1;
4939 struct rq *rq = cpu_rq(cpu);
4940 unsigned long interval;
4941 struct sched_domain *sd;
4942 /* Earliest time when we have to do rebalance again */
4943 unsigned long next_balance = jiffies + 60*HZ;
4944 int update_next_balance = 0;
4945 int need_serialize;
4946
2069dd75
PZ
4947 update_shares(cpu);
4948
dce840a0 4949 rcu_read_lock();
1e3c88bd
PZ
4950 for_each_domain(cpu, sd) {
4951 if (!(sd->flags & SD_LOAD_BALANCE))
4952 continue;
4953
4954 interval = sd->balance_interval;
4955 if (idle != CPU_IDLE)
4956 interval *= sd->busy_factor;
4957
4958 /* scale ms to jiffies */
4959 interval = msecs_to_jiffies(interval);
49c022e6 4960 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4961
4962 need_serialize = sd->flags & SD_SERIALIZE;
4963
4964 if (need_serialize) {
4965 if (!spin_trylock(&balancing))
4966 goto out;
4967 }
4968
4969 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4970 if (load_balance(cpu, rq, sd, idle, &balance)) {
4971 /*
4972 * We've pulled tasks over so either we're no
c186fafe 4973 * longer idle.
1e3c88bd
PZ
4974 */
4975 idle = CPU_NOT_IDLE;
4976 }
4977 sd->last_balance = jiffies;
4978 }
4979 if (need_serialize)
4980 spin_unlock(&balancing);
4981out:
4982 if (time_after(next_balance, sd->last_balance + interval)) {
4983 next_balance = sd->last_balance + interval;
4984 update_next_balance = 1;
4985 }
4986
4987 /*
4988 * Stop the load balance at this level. There is another
4989 * CPU in our sched group which is doing load balancing more
4990 * actively.
4991 */
4992 if (!balance)
4993 break;
4994 }
dce840a0 4995 rcu_read_unlock();
1e3c88bd
PZ
4996
4997 /*
4998 * next_balance will be updated only when there is a need.
4999 * When the cpu is attached to null domain for ex, it will not be
5000 * updated.
5001 */
5002 if (likely(update_next_balance))
5003 rq->next_balance = next_balance;
5004}
5005
83cd4fe2 5006#ifdef CONFIG_NO_HZ
1e3c88bd 5007/*
83cd4fe2 5008 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5009 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5010 */
83cd4fe2
VP
5011static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5012{
5013 struct rq *this_rq = cpu_rq(this_cpu);
5014 struct rq *rq;
5015 int balance_cpu;
5016
1c792db7
SS
5017 if (idle != CPU_IDLE ||
5018 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5019 goto end;
83cd4fe2
VP
5020
5021 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5022 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5023 continue;
5024
5025 /*
5026 * If this cpu gets work to do, stop the load balancing
5027 * work being done for other cpus. Next load
5028 * balancing owner will pick it up.
5029 */
1c792db7 5030 if (need_resched())
83cd4fe2 5031 break;
83cd4fe2
VP
5032
5033 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5034 update_rq_clock(this_rq);
83cd4fe2
VP
5035 update_cpu_load(this_rq);
5036 raw_spin_unlock_irq(&this_rq->lock);
5037
5038 rebalance_domains(balance_cpu, CPU_IDLE);
5039
5040 rq = cpu_rq(balance_cpu);
5041 if (time_after(this_rq->next_balance, rq->next_balance))
5042 this_rq->next_balance = rq->next_balance;
5043 }
5044 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5045end:
5046 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5047}
5048
5049/*
0b005cf5
SS
5050 * Current heuristic for kicking the idle load balancer in the presence
5051 * of an idle cpu is the system.
5052 * - This rq has more than one task.
5053 * - At any scheduler domain level, this cpu's scheduler group has multiple
5054 * busy cpu's exceeding the group's power.
5055 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5056 * domain span are idle.
83cd4fe2
VP
5057 */
5058static inline int nohz_kick_needed(struct rq *rq, int cpu)
5059{
5060 unsigned long now = jiffies;
0b005cf5 5061 struct sched_domain *sd;
83cd4fe2 5062
1c792db7 5063 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5064 return 0;
5065
1c792db7
SS
5066 /*
5067 * We may be recently in ticked or tickless idle mode. At the first
5068 * busy tick after returning from idle, we will update the busy stats.
5069 */
69e1e811 5070 set_cpu_sd_state_busy();
0b005cf5 5071 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
1c792db7 5072 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
0b005cf5
SS
5073 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5074 atomic_dec(&nohz.nr_cpus);
5075 }
5076
5077 /*
5078 * None are in tickless mode and hence no need for NOHZ idle load
5079 * balancing.
5080 */
5081 if (likely(!atomic_read(&nohz.nr_cpus)))
5082 return 0;
1c792db7
SS
5083
5084 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5085 return 0;
5086
0b005cf5
SS
5087 if (rq->nr_running >= 2)
5088 goto need_kick;
83cd4fe2 5089
067491b7 5090 rcu_read_lock();
0b005cf5
SS
5091 for_each_domain(cpu, sd) {
5092 struct sched_group *sg = sd->groups;
5093 struct sched_group_power *sgp = sg->sgp;
5094 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5095
0b005cf5 5096 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5097 goto need_kick_unlock;
0b005cf5
SS
5098
5099 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5100 && (cpumask_first_and(nohz.idle_cpus_mask,
5101 sched_domain_span(sd)) < cpu))
067491b7 5102 goto need_kick_unlock;
0b005cf5
SS
5103
5104 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5105 break;
83cd4fe2 5106 }
067491b7 5107 rcu_read_unlock();
83cd4fe2 5108 return 0;
067491b7
PZ
5109
5110need_kick_unlock:
5111 rcu_read_unlock();
0b005cf5
SS
5112need_kick:
5113 return 1;
83cd4fe2
VP
5114}
5115#else
5116static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5117#endif
5118
5119/*
5120 * run_rebalance_domains is triggered when needed from the scheduler tick.
5121 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5122 */
1e3c88bd
PZ
5123static void run_rebalance_domains(struct softirq_action *h)
5124{
5125 int this_cpu = smp_processor_id();
5126 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5127 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5128 CPU_IDLE : CPU_NOT_IDLE;
5129
5130 rebalance_domains(this_cpu, idle);
5131
1e3c88bd 5132 /*
83cd4fe2 5133 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5134 * balancing on behalf of the other idle cpus whose ticks are
5135 * stopped.
5136 */
83cd4fe2 5137 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5138}
5139
5140static inline int on_null_domain(int cpu)
5141{
90a6501f 5142 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5143}
5144
5145/*
5146 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5147 */
029632fb 5148void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5149{
1e3c88bd
PZ
5150 /* Don't need to rebalance while attached to NULL domain */
5151 if (time_after_eq(jiffies, rq->next_balance) &&
5152 likely(!on_null_domain(cpu)))
5153 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5154#ifdef CONFIG_NO_HZ
1c792db7 5155 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5156 nohz_balancer_kick(cpu);
5157#endif
1e3c88bd
PZ
5158}
5159
0bcdcf28
CE
5160static void rq_online_fair(struct rq *rq)
5161{
5162 update_sysctl();
5163}
5164
5165static void rq_offline_fair(struct rq *rq)
5166{
5167 update_sysctl();
5168}
5169
55e12e5e 5170#endif /* CONFIG_SMP */
e1d1484f 5171
bf0f6f24
IM
5172/*
5173 * scheduler tick hitting a task of our scheduling class:
5174 */
8f4d37ec 5175static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5176{
5177 struct cfs_rq *cfs_rq;
5178 struct sched_entity *se = &curr->se;
5179
5180 for_each_sched_entity(se) {
5181 cfs_rq = cfs_rq_of(se);
8f4d37ec 5182 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5183 }
5184}
5185
5186/*
cd29fe6f
PZ
5187 * called on fork with the child task as argument from the parent's context
5188 * - child not yet on the tasklist
5189 * - preemption disabled
bf0f6f24 5190 */
cd29fe6f 5191static void task_fork_fair(struct task_struct *p)
bf0f6f24 5192{
4fc420c9
DN
5193 struct cfs_rq *cfs_rq;
5194 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5195 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5196 struct rq *rq = this_rq();
5197 unsigned long flags;
5198
05fa785c 5199 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5200
861d034e
PZ
5201 update_rq_clock(rq);
5202
4fc420c9
DN
5203 cfs_rq = task_cfs_rq(current);
5204 curr = cfs_rq->curr;
5205
b0a0f667
PM
5206 if (unlikely(task_cpu(p) != this_cpu)) {
5207 rcu_read_lock();
cd29fe6f 5208 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5209 rcu_read_unlock();
5210 }
bf0f6f24 5211
7109c442 5212 update_curr(cfs_rq);
cd29fe6f 5213
b5d9d734
MG
5214 if (curr)
5215 se->vruntime = curr->vruntime;
aeb73b04 5216 place_entity(cfs_rq, se, 1);
4d78e7b6 5217
cd29fe6f 5218 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5219 /*
edcb60a3
IM
5220 * Upon rescheduling, sched_class::put_prev_task() will place
5221 * 'current' within the tree based on its new key value.
5222 */
4d78e7b6 5223 swap(curr->vruntime, se->vruntime);
aec0a514 5224 resched_task(rq->curr);
4d78e7b6 5225 }
bf0f6f24 5226
88ec22d3
PZ
5227 se->vruntime -= cfs_rq->min_vruntime;
5228
05fa785c 5229 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5230}
5231
cb469845
SR
5232/*
5233 * Priority of the task has changed. Check to see if we preempt
5234 * the current task.
5235 */
da7a735e
PZ
5236static void
5237prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5238{
da7a735e
PZ
5239 if (!p->se.on_rq)
5240 return;
5241
cb469845
SR
5242 /*
5243 * Reschedule if we are currently running on this runqueue and
5244 * our priority decreased, or if we are not currently running on
5245 * this runqueue and our priority is higher than the current's
5246 */
da7a735e 5247 if (rq->curr == p) {
cb469845
SR
5248 if (p->prio > oldprio)
5249 resched_task(rq->curr);
5250 } else
15afe09b 5251 check_preempt_curr(rq, p, 0);
cb469845
SR
5252}
5253
da7a735e
PZ
5254static void switched_from_fair(struct rq *rq, struct task_struct *p)
5255{
5256 struct sched_entity *se = &p->se;
5257 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5258
5259 /*
5260 * Ensure the task's vruntime is normalized, so that when its
5261 * switched back to the fair class the enqueue_entity(.flags=0) will
5262 * do the right thing.
5263 *
5264 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5265 * have normalized the vruntime, if it was !on_rq, then only when
5266 * the task is sleeping will it still have non-normalized vruntime.
5267 */
5268 if (!se->on_rq && p->state != TASK_RUNNING) {
5269 /*
5270 * Fix up our vruntime so that the current sleep doesn't
5271 * cause 'unlimited' sleep bonus.
5272 */
5273 place_entity(cfs_rq, se, 0);
5274 se->vruntime -= cfs_rq->min_vruntime;
5275 }
5276}
5277
cb469845
SR
5278/*
5279 * We switched to the sched_fair class.
5280 */
da7a735e 5281static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5282{
da7a735e
PZ
5283 if (!p->se.on_rq)
5284 return;
5285
cb469845
SR
5286 /*
5287 * We were most likely switched from sched_rt, so
5288 * kick off the schedule if running, otherwise just see
5289 * if we can still preempt the current task.
5290 */
da7a735e 5291 if (rq->curr == p)
cb469845
SR
5292 resched_task(rq->curr);
5293 else
15afe09b 5294 check_preempt_curr(rq, p, 0);
cb469845
SR
5295}
5296
83b699ed
SV
5297/* Account for a task changing its policy or group.
5298 *
5299 * This routine is mostly called to set cfs_rq->curr field when a task
5300 * migrates between groups/classes.
5301 */
5302static void set_curr_task_fair(struct rq *rq)
5303{
5304 struct sched_entity *se = &rq->curr->se;
5305
ec12cb7f
PT
5306 for_each_sched_entity(se) {
5307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5308
5309 set_next_entity(cfs_rq, se);
5310 /* ensure bandwidth has been allocated on our new cfs_rq */
5311 account_cfs_rq_runtime(cfs_rq, 0);
5312 }
83b699ed
SV
5313}
5314
029632fb
PZ
5315void init_cfs_rq(struct cfs_rq *cfs_rq)
5316{
5317 cfs_rq->tasks_timeline = RB_ROOT;
5318 INIT_LIST_HEAD(&cfs_rq->tasks);
5319 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5320#ifndef CONFIG_64BIT
5321 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5322#endif
5323}
5324
810b3817 5325#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5326static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5327{
b2b5ce02
PZ
5328 /*
5329 * If the task was not on the rq at the time of this cgroup movement
5330 * it must have been asleep, sleeping tasks keep their ->vruntime
5331 * absolute on their old rq until wakeup (needed for the fair sleeper
5332 * bonus in place_entity()).
5333 *
5334 * If it was on the rq, we've just 'preempted' it, which does convert
5335 * ->vruntime to a relative base.
5336 *
5337 * Make sure both cases convert their relative position when migrating
5338 * to another cgroup's rq. This does somewhat interfere with the
5339 * fair sleeper stuff for the first placement, but who cares.
5340 */
5341 if (!on_rq)
5342 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5343 set_task_rq(p, task_cpu(p));
88ec22d3 5344 if (!on_rq)
b2b5ce02 5345 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5346}
029632fb
PZ
5347
5348void free_fair_sched_group(struct task_group *tg)
5349{
5350 int i;
5351
5352 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5353
5354 for_each_possible_cpu(i) {
5355 if (tg->cfs_rq)
5356 kfree(tg->cfs_rq[i]);
5357 if (tg->se)
5358 kfree(tg->se[i]);
5359 }
5360
5361 kfree(tg->cfs_rq);
5362 kfree(tg->se);
5363}
5364
5365int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5366{
5367 struct cfs_rq *cfs_rq;
5368 struct sched_entity *se;
5369 int i;
5370
5371 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5372 if (!tg->cfs_rq)
5373 goto err;
5374 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5375 if (!tg->se)
5376 goto err;
5377
5378 tg->shares = NICE_0_LOAD;
5379
5380 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5381
5382 for_each_possible_cpu(i) {
5383 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5384 GFP_KERNEL, cpu_to_node(i));
5385 if (!cfs_rq)
5386 goto err;
5387
5388 se = kzalloc_node(sizeof(struct sched_entity),
5389 GFP_KERNEL, cpu_to_node(i));
5390 if (!se)
5391 goto err_free_rq;
5392
5393 init_cfs_rq(cfs_rq);
5394 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5395 }
5396
5397 return 1;
5398
5399err_free_rq:
5400 kfree(cfs_rq);
5401err:
5402 return 0;
5403}
5404
5405void unregister_fair_sched_group(struct task_group *tg, int cpu)
5406{
5407 struct rq *rq = cpu_rq(cpu);
5408 unsigned long flags;
5409
5410 /*
5411 * Only empty task groups can be destroyed; so we can speculatively
5412 * check on_list without danger of it being re-added.
5413 */
5414 if (!tg->cfs_rq[cpu]->on_list)
5415 return;
5416
5417 raw_spin_lock_irqsave(&rq->lock, flags);
5418 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5419 raw_spin_unlock_irqrestore(&rq->lock, flags);
5420}
5421
5422void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5423 struct sched_entity *se, int cpu,
5424 struct sched_entity *parent)
5425{
5426 struct rq *rq = cpu_rq(cpu);
5427
5428 cfs_rq->tg = tg;
5429 cfs_rq->rq = rq;
5430#ifdef CONFIG_SMP
5431 /* allow initial update_cfs_load() to truncate */
5432 cfs_rq->load_stamp = 1;
810b3817 5433#endif
029632fb
PZ
5434 init_cfs_rq_runtime(cfs_rq);
5435
5436 tg->cfs_rq[cpu] = cfs_rq;
5437 tg->se[cpu] = se;
5438
5439 /* se could be NULL for root_task_group */
5440 if (!se)
5441 return;
5442
5443 if (!parent)
5444 se->cfs_rq = &rq->cfs;
5445 else
5446 se->cfs_rq = parent->my_q;
5447
5448 se->my_q = cfs_rq;
5449 update_load_set(&se->load, 0);
5450 se->parent = parent;
5451}
5452
5453static DEFINE_MUTEX(shares_mutex);
5454
5455int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5456{
5457 int i;
5458 unsigned long flags;
5459
5460 /*
5461 * We can't change the weight of the root cgroup.
5462 */
5463 if (!tg->se[0])
5464 return -EINVAL;
5465
5466 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5467
5468 mutex_lock(&shares_mutex);
5469 if (tg->shares == shares)
5470 goto done;
5471
5472 tg->shares = shares;
5473 for_each_possible_cpu(i) {
5474 struct rq *rq = cpu_rq(i);
5475 struct sched_entity *se;
5476
5477 se = tg->se[i];
5478 /* Propagate contribution to hierarchy */
5479 raw_spin_lock_irqsave(&rq->lock, flags);
5480 for_each_sched_entity(se)
5481 update_cfs_shares(group_cfs_rq(se));
5482 raw_spin_unlock_irqrestore(&rq->lock, flags);
5483 }
5484
5485done:
5486 mutex_unlock(&shares_mutex);
5487 return 0;
5488}
5489#else /* CONFIG_FAIR_GROUP_SCHED */
5490
5491void free_fair_sched_group(struct task_group *tg) { }
5492
5493int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5494{
5495 return 1;
5496}
5497
5498void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5499
5500#endif /* CONFIG_FAIR_GROUP_SCHED */
5501
810b3817 5502
6d686f45 5503static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5504{
5505 struct sched_entity *se = &task->se;
0d721cea
PW
5506 unsigned int rr_interval = 0;
5507
5508 /*
5509 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5510 * idle runqueue:
5511 */
0d721cea
PW
5512 if (rq->cfs.load.weight)
5513 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5514
5515 return rr_interval;
5516}
5517
bf0f6f24
IM
5518/*
5519 * All the scheduling class methods:
5520 */
029632fb 5521const struct sched_class fair_sched_class = {
5522d5d5 5522 .next = &idle_sched_class,
bf0f6f24
IM
5523 .enqueue_task = enqueue_task_fair,
5524 .dequeue_task = dequeue_task_fair,
5525 .yield_task = yield_task_fair,
d95f4122 5526 .yield_to_task = yield_to_task_fair,
bf0f6f24 5527
2e09bf55 5528 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5529
5530 .pick_next_task = pick_next_task_fair,
5531 .put_prev_task = put_prev_task_fair,
5532
681f3e68 5533#ifdef CONFIG_SMP
4ce72a2c
LZ
5534 .select_task_rq = select_task_rq_fair,
5535
0bcdcf28
CE
5536 .rq_online = rq_online_fair,
5537 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5538
5539 .task_waking = task_waking_fair,
681f3e68 5540#endif
bf0f6f24 5541
83b699ed 5542 .set_curr_task = set_curr_task_fair,
bf0f6f24 5543 .task_tick = task_tick_fair,
cd29fe6f 5544 .task_fork = task_fork_fair,
cb469845
SR
5545
5546 .prio_changed = prio_changed_fair,
da7a735e 5547 .switched_from = switched_from_fair,
cb469845 5548 .switched_to = switched_to_fair,
810b3817 5549
0d721cea
PW
5550 .get_rr_interval = get_rr_interval_fair,
5551
810b3817 5552#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5553 .task_move_group = task_move_group_fair,
810b3817 5554#endif
bf0f6f24
IM
5555};
5556
5557#ifdef CONFIG_SCHED_DEBUG
029632fb 5558void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5559{
bf0f6f24
IM
5560 struct cfs_rq *cfs_rq;
5561
5973e5b9 5562 rcu_read_lock();
c3b64f1e 5563 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5564 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5565 rcu_read_unlock();
bf0f6f24
IM
5566}
5567#endif
029632fb
PZ
5568
5569__init void init_sched_fair_class(void)
5570{
5571#ifdef CONFIG_SMP
5572 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5573
5574#ifdef CONFIG_NO_HZ
5575 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
5576#endif
5577#endif /* SMP */
5578
5579}