]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/fair: Carve out logic to mark a group for asymmetric packing
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
8a99b683 52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
4aed8aa4
VS
116/*
117 * The margin used when comparing CPU capacities.
118 * is 'cap1' noticeably greater than 'cap2'
119 *
120 * (default: ~5%)
121 */
122#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
123#endif
124
ec12cb7f
PT
125#ifdef CONFIG_CFS_BANDWIDTH
126/*
127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128 * each time a cfs_rq requests quota.
129 *
130 * Note: in the case that the slice exceeds the runtime remaining (either due
131 * to consumption or the quota being specified to be smaller than the slice)
132 * we will always only issue the remaining available time.
133 *
2b4d5b25
IM
134 * (default: 5 msec, units: microseconds)
135 */
136unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
137#endif
138
8527632d
PG
139static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140{
141 lw->weight += inc;
142 lw->inv_weight = 0;
143}
144
145static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146{
147 lw->weight -= dec;
148 lw->inv_weight = 0;
149}
150
151static inline void update_load_set(struct load_weight *lw, unsigned long w)
152{
153 lw->weight = w;
154 lw->inv_weight = 0;
155}
156
029632fb
PZ
157/*
158 * Increase the granularity value when there are more CPUs,
159 * because with more CPUs the 'effective latency' as visible
160 * to users decreases. But the relationship is not linear,
161 * so pick a second-best guess by going with the log2 of the
162 * number of CPUs.
163 *
164 * This idea comes from the SD scheduler of Con Kolivas:
165 */
58ac93e4 166static unsigned int get_update_sysctl_factor(void)
029632fb 167{
58ac93e4 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
169 unsigned int factor;
170
171 switch (sysctl_sched_tunable_scaling) {
172 case SCHED_TUNABLESCALING_NONE:
173 factor = 1;
174 break;
175 case SCHED_TUNABLESCALING_LINEAR:
176 factor = cpus;
177 break;
178 case SCHED_TUNABLESCALING_LOG:
179 default:
180 factor = 1 + ilog2(cpus);
181 break;
182 }
183
184 return factor;
185}
186
187static void update_sysctl(void)
188{
189 unsigned int factor = get_update_sysctl_factor();
190
191#define SET_SYSCTL(name) \
192 (sysctl_##name = (factor) * normalized_sysctl_##name)
193 SET_SYSCTL(sched_min_granularity);
194 SET_SYSCTL(sched_latency);
195 SET_SYSCTL(sched_wakeup_granularity);
196#undef SET_SYSCTL
197}
198
f38f12d1 199void __init sched_init_granularity(void)
029632fb
PZ
200{
201 update_sysctl();
202}
203
9dbdb155 204#define WMULT_CONST (~0U)
029632fb
PZ
205#define WMULT_SHIFT 32
206
9dbdb155
PZ
207static void __update_inv_weight(struct load_weight *lw)
208{
209 unsigned long w;
210
211 if (likely(lw->inv_weight))
212 return;
213
214 w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222}
029632fb
PZ
223
224/*
9dbdb155
PZ
225 * delta_exec * weight / lw.weight
226 * OR
227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228 *
1c3de5e1 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232 *
233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 235 */
9dbdb155 236static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 237{
9dbdb155 238 u64 fact = scale_load_down(weight);
1e17fb8e 239 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 240 int shift = WMULT_SHIFT;
1e17fb8e 241 int fs;
029632fb 242
9dbdb155 243 __update_inv_weight(lw);
029632fb 244
1e17fb8e
CC
245 if (unlikely(fact_hi)) {
246 fs = fls(fact_hi);
247 shift -= fs;
248 fact >>= fs;
029632fb
PZ
249 }
250
2eeb01a2 251 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 252
1e17fb8e
CC
253 fact_hi = (u32)(fact >> 32);
254 if (fact_hi) {
255 fs = fls(fact_hi);
256 shift -= fs;
257 fact >>= fs;
9dbdb155 258 }
029632fb 259
9dbdb155 260 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
261}
262
263
264const struct sched_class fair_sched_class;
a4c2f00f 265
bf0f6f24
IM
266/**************************************************************
267 * CFS operations on generic schedulable entities:
268 */
269
62160e3f 270#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f 271
b758149c
PZ
272/* Walk up scheduling entities hierarchy */
273#define for_each_sched_entity(se) \
274 for (; se; se = se->parent)
275
3c93a0c0
QY
276static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
277{
278 if (!path)
279 return;
280
281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 autogroup_path(cfs_rq->tg, path, len);
283 else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
285 else
286 strlcpy(path, "(null)", len);
287}
288
f6783319 289static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 290{
5d299eab
PZ
291 struct rq *rq = rq_of(cfs_rq);
292 int cpu = cpu_of(rq);
293
294 if (cfs_rq->on_list)
f6783319 295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
296
297 cfs_rq->on_list = 1;
298
299 /*
300 * Ensure we either appear before our parent (if already
301 * enqueued) or force our parent to appear after us when it is
302 * enqueued. The fact that we always enqueue bottom-up
303 * reduces this to two cases and a special case for the root
304 * cfs_rq. Furthermore, it also means that we will always reset
305 * tmp_alone_branch either when the branch is connected
306 * to a tree or when we reach the top of the tree
307 */
308 if (cfs_rq->tg->parent &&
309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 310 /*
5d299eab
PZ
311 * If parent is already on the list, we add the child
312 * just before. Thanks to circular linked property of
313 * the list, this means to put the child at the tail
314 * of the list that starts by parent.
67e86250 315 */
5d299eab
PZ
316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
318 /*
319 * The branch is now connected to its tree so we can
320 * reset tmp_alone_branch to the beginning of the
321 * list.
322 */
323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 324 return true;
5d299eab 325 }
3d4b47b4 326
5d299eab
PZ
327 if (!cfs_rq->tg->parent) {
328 /*
329 * cfs rq without parent should be put
330 * at the tail of the list.
331 */
332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 &rq->leaf_cfs_rq_list);
334 /*
335 * We have reach the top of a tree so we can reset
336 * tmp_alone_branch to the beginning of the list.
337 */
338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 339 return true;
3d4b47b4 340 }
5d299eab
PZ
341
342 /*
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the begin of the branch
346 * where we will add parent.
347 */
348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
349 /*
350 * update tmp_alone_branch to points to the new begin
351 * of the branch
352 */
353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 354 return false;
3d4b47b4
PZ
355}
356
357static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
358{
359 if (cfs_rq->on_list) {
31bc6aea
VG
360 struct rq *rq = rq_of(cfs_rq);
361
362 /*
363 * With cfs_rq being unthrottled/throttled during an enqueue,
364 * it can happen the tmp_alone_branch points the a leaf that
365 * we finally want to del. In this case, tmp_alone_branch moves
366 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 * at the end of the enqueue.
368 */
369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
371
3d4b47b4
PZ
372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
373 cfs_rq->on_list = 0;
374 }
375}
376
5d299eab
PZ
377static inline void assert_list_leaf_cfs_rq(struct rq *rq)
378{
379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
380}
381
039ae8bc
VG
382/* Iterate thr' all leaf cfs_rq's on a runqueue */
383#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
385 leaf_cfs_rq_list)
b758149c
PZ
386
387/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 388static inline struct cfs_rq *
b758149c
PZ
389is_same_group(struct sched_entity *se, struct sched_entity *pse)
390{
391 if (se->cfs_rq == pse->cfs_rq)
fed14d45 392 return se->cfs_rq;
b758149c 393
fed14d45 394 return NULL;
b758149c
PZ
395}
396
397static inline struct sched_entity *parent_entity(struct sched_entity *se)
398{
399 return se->parent;
400}
401
464b7527
PZ
402static void
403find_matching_se(struct sched_entity **se, struct sched_entity **pse)
404{
405 int se_depth, pse_depth;
406
407 /*
408 * preemption test can be made between sibling entities who are in the
409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 * both tasks until we find their ancestors who are siblings of common
411 * parent.
412 */
413
414 /* First walk up until both entities are at same depth */
fed14d45
PZ
415 se_depth = (*se)->depth;
416 pse_depth = (*pse)->depth;
464b7527
PZ
417
418 while (se_depth > pse_depth) {
419 se_depth--;
420 *se = parent_entity(*se);
421 }
422
423 while (pse_depth > se_depth) {
424 pse_depth--;
425 *pse = parent_entity(*pse);
426 }
427
428 while (!is_same_group(*se, *pse)) {
429 *se = parent_entity(*se);
430 *pse = parent_entity(*pse);
431 }
432}
433
30400039
JD
434static int tg_is_idle(struct task_group *tg)
435{
436 return tg->idle > 0;
437}
438
439static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
440{
441 return cfs_rq->idle > 0;
442}
443
444static int se_is_idle(struct sched_entity *se)
445{
446 if (entity_is_task(se))
447 return task_has_idle_policy(task_of(se));
448 return cfs_rq_is_idle(group_cfs_rq(se));
449}
450
8f48894f
PZ
451#else /* !CONFIG_FAIR_GROUP_SCHED */
452
b758149c
PZ
453#define for_each_sched_entity(se) \
454 for (; se; se = NULL)
bf0f6f24 455
3c93a0c0
QY
456static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
457{
458 if (path)
459 strlcpy(path, "(null)", len);
460}
461
f6783319 462static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 463{
f6783319 464 return true;
3d4b47b4
PZ
465}
466
467static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
468{
469}
470
5d299eab
PZ
471static inline void assert_list_leaf_cfs_rq(struct rq *rq)
472{
473}
474
039ae8bc
VG
475#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
476 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 477
b758149c
PZ
478static inline struct sched_entity *parent_entity(struct sched_entity *se)
479{
480 return NULL;
481}
482
464b7527
PZ
483static inline void
484find_matching_se(struct sched_entity **se, struct sched_entity **pse)
485{
486}
487
366e7ad6 488static inline int tg_is_idle(struct task_group *tg)
30400039
JD
489{
490 return 0;
491}
492
493static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
494{
495 return 0;
496}
497
498static int se_is_idle(struct sched_entity *se)
499{
500 return 0;
501}
502
b758149c
PZ
503#endif /* CONFIG_FAIR_GROUP_SCHED */
504
6c16a6dc 505static __always_inline
9dbdb155 506void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
507
508/**************************************************************
509 * Scheduling class tree data structure manipulation methods:
510 */
511
1bf08230 512static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 513{
1bf08230 514 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 515 if (delta > 0)
1bf08230 516 max_vruntime = vruntime;
02e0431a 517
1bf08230 518 return max_vruntime;
02e0431a
PZ
519}
520
0702e3eb 521static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
522{
523 s64 delta = (s64)(vruntime - min_vruntime);
524 if (delta < 0)
525 min_vruntime = vruntime;
526
527 return min_vruntime;
528}
529
bf9be9a1 530static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
531 struct sched_entity *b)
532{
533 return (s64)(a->vruntime - b->vruntime) < 0;
534}
535
bf9be9a1
PZ
536#define __node_2_se(node) \
537 rb_entry((node), struct sched_entity, run_node)
538
1af5f730
PZ
539static void update_min_vruntime(struct cfs_rq *cfs_rq)
540{
b60205c7 541 struct sched_entity *curr = cfs_rq->curr;
bfb06889 542 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 543
1af5f730
PZ
544 u64 vruntime = cfs_rq->min_vruntime;
545
b60205c7
PZ
546 if (curr) {
547 if (curr->on_rq)
548 vruntime = curr->vruntime;
549 else
550 curr = NULL;
551 }
1af5f730 552
bfb06889 553 if (leftmost) { /* non-empty tree */
bf9be9a1 554 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 555
b60205c7 556 if (!curr)
1af5f730
PZ
557 vruntime = se->vruntime;
558 else
559 vruntime = min_vruntime(vruntime, se->vruntime);
560 }
561
1bf08230 562 /* ensure we never gain time by being placed backwards. */
1af5f730 563 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
564#ifndef CONFIG_64BIT
565 smp_wmb();
566 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
567#endif
1af5f730
PZ
568}
569
bf9be9a1
PZ
570static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
571{
572 return entity_before(__node_2_se(a), __node_2_se(b));
573}
574
bf0f6f24
IM
575/*
576 * Enqueue an entity into the rb-tree:
577 */
0702e3eb 578static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 579{
bf9be9a1 580 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
581}
582
0702e3eb 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 584{
bfb06889 585 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
586}
587
029632fb 588struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 589{
bfb06889 590 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
591
592 if (!left)
593 return NULL;
594
bf9be9a1 595 return __node_2_se(left);
bf0f6f24
IM
596}
597
ac53db59
RR
598static struct sched_entity *__pick_next_entity(struct sched_entity *se)
599{
600 struct rb_node *next = rb_next(&se->run_node);
601
602 if (!next)
603 return NULL;
604
bf9be9a1 605 return __node_2_se(next);
ac53db59
RR
606}
607
608#ifdef CONFIG_SCHED_DEBUG
029632fb 609struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 610{
bfb06889 611 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 612
70eee74b
BS
613 if (!last)
614 return NULL;
7eee3e67 615
bf9be9a1 616 return __node_2_se(last);
aeb73b04
PZ
617}
618
bf0f6f24
IM
619/**************************************************************
620 * Scheduling class statistics methods:
621 */
622
8a99b683 623int sched_update_scaling(void)
b2be5e96 624{
58ac93e4 625 unsigned int factor = get_update_sysctl_factor();
b2be5e96 626
b2be5e96
PZ
627 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
628 sysctl_sched_min_granularity);
629
acb4a848
CE
630#define WRT_SYSCTL(name) \
631 (normalized_sysctl_##name = sysctl_##name / (factor))
632 WRT_SYSCTL(sched_min_granularity);
633 WRT_SYSCTL(sched_latency);
634 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
635#undef WRT_SYSCTL
636
b2be5e96
PZ
637 return 0;
638}
639#endif
647e7cac 640
a7be37ac 641/*
f9c0b095 642 * delta /= w
a7be37ac 643 */
9dbdb155 644static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 645{
f9c0b095 646 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 647 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
648
649 return delta;
650}
651
647e7cac
IM
652/*
653 * The idea is to set a period in which each task runs once.
654 *
532b1858 655 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
656 * this period because otherwise the slices get too small.
657 *
658 * p = (nr <= nl) ? l : l*nr/nl
659 */
4d78e7b6
PZ
660static u64 __sched_period(unsigned long nr_running)
661{
8e2b0bf3
BF
662 if (unlikely(nr_running > sched_nr_latency))
663 return nr_running * sysctl_sched_min_granularity;
664 else
665 return sysctl_sched_latency;
4d78e7b6
PZ
666}
667
647e7cac
IM
668/*
669 * We calculate the wall-time slice from the period by taking a part
670 * proportional to the weight.
671 *
f9c0b095 672 * s = p*P[w/rw]
647e7cac 673 */
6d0f0ebd 674static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 675{
0c2de3f0
PZ
676 unsigned int nr_running = cfs_rq->nr_running;
677 u64 slice;
678
679 if (sched_feat(ALT_PERIOD))
680 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
681
682 slice = __sched_period(nr_running + !se->on_rq);
f9c0b095 683
0a582440 684 for_each_sched_entity(se) {
6272d68c 685 struct load_weight *load;
3104bf03 686 struct load_weight lw;
6272d68c
LM
687
688 cfs_rq = cfs_rq_of(se);
689 load = &cfs_rq->load;
f9c0b095 690
0a582440 691 if (unlikely(!se->on_rq)) {
3104bf03 692 lw = cfs_rq->load;
0a582440
MG
693
694 update_load_add(&lw, se->load.weight);
695 load = &lw;
696 }
9dbdb155 697 slice = __calc_delta(slice, se->load.weight, load);
0a582440 698 }
0c2de3f0
PZ
699
700 if (sched_feat(BASE_SLICE))
701 slice = max(slice, (u64)sysctl_sched_min_granularity);
702
0a582440 703 return slice;
bf0f6f24
IM
704}
705
647e7cac 706/*
660cc00f 707 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 708 *
f9c0b095 709 * vs = s/w
647e7cac 710 */
f9c0b095 711static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 712{
f9c0b095 713 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
714}
715
c0796298 716#include "pelt.h"
23127296 717#ifdef CONFIG_SMP
283e2ed3 718
772bd008 719static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 720static unsigned long task_h_load(struct task_struct *p);
3b1baa64 721static unsigned long capacity_of(int cpu);
fb13c7ee 722
540247fb
YD
723/* Give new sched_entity start runnable values to heavy its load in infant time */
724void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 725{
540247fb 726 struct sched_avg *sa = &se->avg;
a75cdaa9 727
f207934f
PZ
728 memset(sa, 0, sizeof(*sa));
729
b5a9b340 730 /*
dfcb245e 731 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 732 * they get a chance to stabilize to their real load level.
dfcb245e 733 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
734 * nothing has been attached to the task group yet.
735 */
736 if (entity_is_task(se))
0dacee1b 737 sa->load_avg = scale_load_down(se->load.weight);
f207934f 738
9d89c257 739 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 740}
7ea241af 741
df217913 742static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 743
2b8c41da
YD
744/*
745 * With new tasks being created, their initial util_avgs are extrapolated
746 * based on the cfs_rq's current util_avg:
747 *
748 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
749 *
750 * However, in many cases, the above util_avg does not give a desired
751 * value. Moreover, the sum of the util_avgs may be divergent, such
752 * as when the series is a harmonic series.
753 *
754 * To solve this problem, we also cap the util_avg of successive tasks to
755 * only 1/2 of the left utilization budget:
756 *
8fe5c5a9 757 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 758 *
8fe5c5a9 759 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 760 *
8fe5c5a9
QP
761 * For example, for a CPU with 1024 of capacity, a simplest series from
762 * the beginning would be like:
2b8c41da
YD
763 *
764 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
765 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
766 *
767 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
768 * if util_avg > util_avg_cap.
769 */
d0fe0b9c 770void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 771{
d0fe0b9c 772 struct sched_entity *se = &p->se;
2b8c41da
YD
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
8ec59c0f 775 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 776 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
777
778 if (cap > 0) {
779 if (cfs_rq->avg.util_avg != 0) {
780 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
781 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
782
783 if (sa->util_avg > cap)
784 sa->util_avg = cap;
785 } else {
786 sa->util_avg = cap;
787 }
2b8c41da 788 }
7dc603c9 789
e21cf434 790 sa->runnable_avg = sa->util_avg;
9f683953 791
d0fe0b9c
DE
792 if (p->sched_class != &fair_sched_class) {
793 /*
794 * For !fair tasks do:
795 *
796 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 797 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
798 switched_from_fair(rq, p);
799 *
800 * such that the next switched_to_fair() has the
801 * expected state.
802 */
803 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
804 return;
7dc603c9
PZ
805 }
806
df217913 807 attach_entity_cfs_rq(se);
2b8c41da
YD
808}
809
7dc603c9 810#else /* !CONFIG_SMP */
540247fb 811void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
812{
813}
d0fe0b9c 814void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
815{
816}
fe749158 817static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
818{
819}
7dc603c9 820#endif /* CONFIG_SMP */
a75cdaa9 821
bf0f6f24 822/*
9dbdb155 823 * Update the current task's runtime statistics.
bf0f6f24 824 */
b7cc0896 825static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 826{
429d43bc 827 struct sched_entity *curr = cfs_rq->curr;
78becc27 828 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 829 u64 delta_exec;
bf0f6f24
IM
830
831 if (unlikely(!curr))
832 return;
833
9dbdb155
PZ
834 delta_exec = now - curr->exec_start;
835 if (unlikely((s64)delta_exec <= 0))
34f28ecd 836 return;
bf0f6f24 837
8ebc91d9 838 curr->exec_start = now;
d842de87 839
9dbdb155
PZ
840 schedstat_set(curr->statistics.exec_max,
841 max(delta_exec, curr->statistics.exec_max));
842
843 curr->sum_exec_runtime += delta_exec;
ae92882e 844 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
845
846 curr->vruntime += calc_delta_fair(delta_exec, curr);
847 update_min_vruntime(cfs_rq);
848
d842de87
SV
849 if (entity_is_task(curr)) {
850 struct task_struct *curtask = task_of(curr);
851
f977bb49 852 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 853 cgroup_account_cputime(curtask, delta_exec);
f06febc9 854 account_group_exec_runtime(curtask, delta_exec);
d842de87 855 }
ec12cb7f
PT
856
857 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
858}
859
6e998916
SG
860static void update_curr_fair(struct rq *rq)
861{
862 update_curr(cfs_rq_of(&rq->curr->se));
863}
864
bf0f6f24 865static inline void
5870db5b 866update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 867{
4fa8d299
JP
868 u64 wait_start, prev_wait_start;
869
870 if (!schedstat_enabled())
871 return;
872
873 wait_start = rq_clock(rq_of(cfs_rq));
874 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
875
876 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
877 likely(wait_start > prev_wait_start))
878 wait_start -= prev_wait_start;
3ea94de1 879
2ed41a55 880 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
881}
882
4fa8d299 883static inline void
3ea94de1
JP
884update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
885{
886 struct task_struct *p;
cb251765
MG
887 u64 delta;
888
4fa8d299
JP
889 if (!schedstat_enabled())
890 return;
891
b9c88f75 892 /*
893 * When the sched_schedstat changes from 0 to 1, some sched se
894 * maybe already in the runqueue, the se->statistics.wait_start
895 * will be 0.So it will let the delta wrong. We need to avoid this
896 * scenario.
897 */
898 if (unlikely(!schedstat_val(se->statistics.wait_start)))
899 return;
900
4fa8d299 901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
902
903 if (entity_is_task(se)) {
904 p = task_of(se);
905 if (task_on_rq_migrating(p)) {
906 /*
907 * Preserve migrating task's wait time so wait_start
908 * time stamp can be adjusted to accumulate wait time
909 * prior to migration.
910 */
2ed41a55 911 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
912 return;
913 }
914 trace_sched_stat_wait(p, delta);
915 }
916
2ed41a55 917 __schedstat_set(se->statistics.wait_max,
4fa8d299 918 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
919 __schedstat_inc(se->statistics.wait_count);
920 __schedstat_add(se->statistics.wait_sum, delta);
921 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 922}
3ea94de1 923
4fa8d299 924static inline void
1a3d027c
JP
925update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927 struct task_struct *tsk = NULL;
4fa8d299
JP
928 u64 sleep_start, block_start;
929
930 if (!schedstat_enabled())
931 return;
932
933 sleep_start = schedstat_val(se->statistics.sleep_start);
934 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
935
936 if (entity_is_task(se))
937 tsk = task_of(se);
938
4fa8d299
JP
939 if (sleep_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
941
942 if ((s64)delta < 0)
943 delta = 0;
944
4fa8d299 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 946 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 947
2ed41a55
PZ
948 __schedstat_set(se->statistics.sleep_start, 0);
949 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
950
951 if (tsk) {
952 account_scheduler_latency(tsk, delta >> 10, 1);
953 trace_sched_stat_sleep(tsk, delta);
954 }
955 }
4fa8d299
JP
956 if (block_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 963 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.block_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 if (tsk->in_iowait) {
2ed41a55
PZ
970 __schedstat_add(se->statistics.iowait_sum, delta);
971 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
972 trace_sched_stat_iowait(tsk, delta);
973 }
974
975 trace_sched_stat_blocked(tsk, delta);
976
977 /*
978 * Blocking time is in units of nanosecs, so shift by
979 * 20 to get a milliseconds-range estimation of the
980 * amount of time that the task spent sleeping:
981 */
982 if (unlikely(prof_on == SLEEP_PROFILING)) {
983 profile_hits(SLEEP_PROFILING,
984 (void *)get_wchan(tsk),
985 delta >> 20);
986 }
987 account_scheduler_latency(tsk, delta >> 10, 0);
988 }
989 }
3ea94de1 990}
3ea94de1 991
bf0f6f24
IM
992/*
993 * Task is being enqueued - update stats:
994 */
cb251765 995static inline void
1a3d027c 996update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 997{
4fa8d299
JP
998 if (!schedstat_enabled())
999 return;
1000
bf0f6f24
IM
1001 /*
1002 * Are we enqueueing a waiting task? (for current tasks
1003 * a dequeue/enqueue event is a NOP)
1004 */
429d43bc 1005 if (se != cfs_rq->curr)
5870db5b 1006 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1007
1008 if (flags & ENQUEUE_WAKEUP)
1009 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1010}
1011
bf0f6f24 1012static inline void
cb251765 1013update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015
1016 if (!schedstat_enabled())
1017 return;
1018
bf0f6f24
IM
1019 /*
1020 * Mark the end of the wait period if dequeueing a
1021 * waiting task:
1022 */
429d43bc 1023 if (se != cfs_rq->curr)
9ef0a961 1024 update_stats_wait_end(cfs_rq, se);
cb251765 1025
4fa8d299
JP
1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 struct task_struct *tsk = task_of(se);
2f064a59 1028 unsigned int state;
cb251765 1029
2f064a59
PZ
1030 /* XXX racy against TTWU */
1031 state = READ_ONCE(tsk->__state);
1032 if (state & TASK_INTERRUPTIBLE)
2ed41a55 1033 __schedstat_set(se->statistics.sleep_start,
4fa8d299 1034 rq_clock(rq_of(cfs_rq)));
2f064a59 1035 if (state & TASK_UNINTERRUPTIBLE)
2ed41a55 1036 __schedstat_set(se->statistics.block_start,
4fa8d299 1037 rq_clock(rq_of(cfs_rq)));
cb251765 1038 }
cb251765
MG
1039}
1040
bf0f6f24
IM
1041/*
1042 * We are picking a new current task - update its stats:
1043 */
1044static inline void
79303e9e 1045update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1046{
1047 /*
1048 * We are starting a new run period:
1049 */
78becc27 1050 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1051}
1052
bf0f6f24
IM
1053/**************************************************
1054 * Scheduling class queueing methods:
1055 */
1056
cbee9f88
PZ
1057#ifdef CONFIG_NUMA_BALANCING
1058/*
598f0ec0
MG
1059 * Approximate time to scan a full NUMA task in ms. The task scan period is
1060 * calculated based on the tasks virtual memory size and
1061 * numa_balancing_scan_size.
cbee9f88 1062 */
598f0ec0
MG
1063unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1064unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1065
1066/* Portion of address space to scan in MB */
1067unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1068
4b96a29b
PZ
1069/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1070unsigned int sysctl_numa_balancing_scan_delay = 1000;
1071
b5dd77c8 1072struct numa_group {
c45a7795 1073 refcount_t refcount;
b5dd77c8
RR
1074
1075 spinlock_t lock; /* nr_tasks, tasks */
1076 int nr_tasks;
1077 pid_t gid;
1078 int active_nodes;
1079
1080 struct rcu_head rcu;
1081 unsigned long total_faults;
1082 unsigned long max_faults_cpu;
1083 /*
1084 * Faults_cpu is used to decide whether memory should move
1085 * towards the CPU. As a consequence, these stats are weighted
1086 * more by CPU use than by memory faults.
1087 */
1088 unsigned long *faults_cpu;
04f5c362 1089 unsigned long faults[];
b5dd77c8
RR
1090};
1091
cb361d8c
JH
1092/*
1093 * For functions that can be called in multiple contexts that permit reading
1094 * ->numa_group (see struct task_struct for locking rules).
1095 */
1096static struct numa_group *deref_task_numa_group(struct task_struct *p)
1097{
1098 return rcu_dereference_check(p->numa_group, p == current ||
9ef7e7e3 1099 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
cb361d8c
JH
1100}
1101
1102static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1103{
1104 return rcu_dereference_protected(p->numa_group, p == current);
1105}
1106
b5dd77c8
RR
1107static inline unsigned long group_faults_priv(struct numa_group *ng);
1108static inline unsigned long group_faults_shared(struct numa_group *ng);
1109
598f0ec0
MG
1110static unsigned int task_nr_scan_windows(struct task_struct *p)
1111{
1112 unsigned long rss = 0;
1113 unsigned long nr_scan_pages;
1114
1115 /*
1116 * Calculations based on RSS as non-present and empty pages are skipped
1117 * by the PTE scanner and NUMA hinting faults should be trapped based
1118 * on resident pages
1119 */
1120 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1121 rss = get_mm_rss(p->mm);
1122 if (!rss)
1123 rss = nr_scan_pages;
1124
1125 rss = round_up(rss, nr_scan_pages);
1126 return rss / nr_scan_pages;
1127}
1128
3b03706f 1129/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1130#define MAX_SCAN_WINDOW 2560
1131
1132static unsigned int task_scan_min(struct task_struct *p)
1133{
316c1608 1134 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1135 unsigned int scan, floor;
1136 unsigned int windows = 1;
1137
64192658
KT
1138 if (scan_size < MAX_SCAN_WINDOW)
1139 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1140 floor = 1000 / windows;
1141
1142 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1143 return max_t(unsigned int, floor, scan);
1144}
1145
b5dd77c8
RR
1146static unsigned int task_scan_start(struct task_struct *p)
1147{
1148 unsigned long smin = task_scan_min(p);
1149 unsigned long period = smin;
cb361d8c 1150 struct numa_group *ng;
b5dd77c8
RR
1151
1152 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1153 rcu_read_lock();
1154 ng = rcu_dereference(p->numa_group);
1155 if (ng) {
b5dd77c8
RR
1156 unsigned long shared = group_faults_shared(ng);
1157 unsigned long private = group_faults_priv(ng);
1158
c45a7795 1159 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1160 period *= shared + 1;
1161 period /= private + shared + 1;
1162 }
cb361d8c 1163 rcu_read_unlock();
b5dd77c8
RR
1164
1165 return max(smin, period);
1166}
1167
598f0ec0
MG
1168static unsigned int task_scan_max(struct task_struct *p)
1169{
b5dd77c8
RR
1170 unsigned long smin = task_scan_min(p);
1171 unsigned long smax;
cb361d8c 1172 struct numa_group *ng;
598f0ec0
MG
1173
1174 /* Watch for min being lower than max due to floor calculations */
1175 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1176
1177 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1178 ng = deref_curr_numa_group(p);
1179 if (ng) {
b5dd77c8
RR
1180 unsigned long shared = group_faults_shared(ng);
1181 unsigned long private = group_faults_priv(ng);
1182 unsigned long period = smax;
1183
c45a7795 1184 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1185 period *= shared + 1;
1186 period /= private + shared + 1;
1187
1188 smax = max(smax, period);
1189 }
1190
598f0ec0
MG
1191 return max(smin, smax);
1192}
1193
0ec8aa00
PZ
1194static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195{
98fa15f3 1196 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198}
1199
1200static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201{
98fa15f3 1202 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204}
1205
be1e4e76
RR
1206/* Shared or private faults. */
1207#define NR_NUMA_HINT_FAULT_TYPES 2
1208
1209/* Memory and CPU locality */
1210#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211
1212/* Averaged statistics, and temporary buffers. */
1213#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214
e29cf08b
MG
1215pid_t task_numa_group_id(struct task_struct *p)
1216{
cb361d8c
JH
1217 struct numa_group *ng;
1218 pid_t gid = 0;
1219
1220 rcu_read_lock();
1221 ng = rcu_dereference(p->numa_group);
1222 if (ng)
1223 gid = ng->gid;
1224 rcu_read_unlock();
1225
1226 return gid;
e29cf08b
MG
1227}
1228
44dba3d5 1229/*
97fb7a0a 1230 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1231 * occupy the first half of the array. The second half of the
1232 * array is for current counters, which are averaged into the
1233 * first set by task_numa_placement.
1234 */
1235static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1236{
44dba3d5 1237 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1238}
1239
1240static inline unsigned long task_faults(struct task_struct *p, int nid)
1241{
44dba3d5 1242 if (!p->numa_faults)
ac8e895b
MG
1243 return 0;
1244
44dba3d5
IM
1245 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1247}
1248
83e1d2cd
MG
1249static inline unsigned long group_faults(struct task_struct *p, int nid)
1250{
cb361d8c
JH
1251 struct numa_group *ng = deref_task_numa_group(p);
1252
1253 if (!ng)
83e1d2cd
MG
1254 return 0;
1255
cb361d8c
JH
1256 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1258}
1259
20e07dea
RR
1260static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1261{
44dba3d5
IM
1262 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1263 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1264}
1265
b5dd77c8
RR
1266static inline unsigned long group_faults_priv(struct numa_group *ng)
1267{
1268 unsigned long faults = 0;
1269 int node;
1270
1271 for_each_online_node(node) {
1272 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1273 }
1274
1275 return faults;
1276}
1277
1278static inline unsigned long group_faults_shared(struct numa_group *ng)
1279{
1280 unsigned long faults = 0;
1281 int node;
1282
1283 for_each_online_node(node) {
1284 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1285 }
1286
1287 return faults;
1288}
1289
4142c3eb
RR
1290/*
1291 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1292 * considered part of a numa group's pseudo-interleaving set. Migrations
1293 * between these nodes are slowed down, to allow things to settle down.
1294 */
1295#define ACTIVE_NODE_FRACTION 3
1296
1297static bool numa_is_active_node(int nid, struct numa_group *ng)
1298{
1299 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1300}
1301
6c6b1193
RR
1302/* Handle placement on systems where not all nodes are directly connected. */
1303static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1304 int maxdist, bool task)
1305{
1306 unsigned long score = 0;
1307 int node;
1308
1309 /*
1310 * All nodes are directly connected, and the same distance
1311 * from each other. No need for fancy placement algorithms.
1312 */
1313 if (sched_numa_topology_type == NUMA_DIRECT)
1314 return 0;
1315
1316 /*
1317 * This code is called for each node, introducing N^2 complexity,
1318 * which should be ok given the number of nodes rarely exceeds 8.
1319 */
1320 for_each_online_node(node) {
1321 unsigned long faults;
1322 int dist = node_distance(nid, node);
1323
1324 /*
1325 * The furthest away nodes in the system are not interesting
1326 * for placement; nid was already counted.
1327 */
1328 if (dist == sched_max_numa_distance || node == nid)
1329 continue;
1330
1331 /*
1332 * On systems with a backplane NUMA topology, compare groups
1333 * of nodes, and move tasks towards the group with the most
1334 * memory accesses. When comparing two nodes at distance
1335 * "hoplimit", only nodes closer by than "hoplimit" are part
1336 * of each group. Skip other nodes.
1337 */
1338 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1339 dist >= maxdist)
6c6b1193
RR
1340 continue;
1341
1342 /* Add up the faults from nearby nodes. */
1343 if (task)
1344 faults = task_faults(p, node);
1345 else
1346 faults = group_faults(p, node);
1347
1348 /*
1349 * On systems with a glueless mesh NUMA topology, there are
1350 * no fixed "groups of nodes". Instead, nodes that are not
1351 * directly connected bounce traffic through intermediate
1352 * nodes; a numa_group can occupy any set of nodes.
1353 * The further away a node is, the less the faults count.
1354 * This seems to result in good task placement.
1355 */
1356 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1357 faults *= (sched_max_numa_distance - dist);
1358 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1359 }
1360
1361 score += faults;
1362 }
1363
1364 return score;
1365}
1366
83e1d2cd
MG
1367/*
1368 * These return the fraction of accesses done by a particular task, or
1369 * task group, on a particular numa node. The group weight is given a
1370 * larger multiplier, in order to group tasks together that are almost
1371 * evenly spread out between numa nodes.
1372 */
7bd95320
RR
1373static inline unsigned long task_weight(struct task_struct *p, int nid,
1374 int dist)
83e1d2cd 1375{
7bd95320 1376 unsigned long faults, total_faults;
83e1d2cd 1377
44dba3d5 1378 if (!p->numa_faults)
83e1d2cd
MG
1379 return 0;
1380
1381 total_faults = p->total_numa_faults;
1382
1383 if (!total_faults)
1384 return 0;
1385
7bd95320 1386 faults = task_faults(p, nid);
6c6b1193
RR
1387 faults += score_nearby_nodes(p, nid, dist, true);
1388
7bd95320 1389 return 1000 * faults / total_faults;
83e1d2cd
MG
1390}
1391
7bd95320
RR
1392static inline unsigned long group_weight(struct task_struct *p, int nid,
1393 int dist)
83e1d2cd 1394{
cb361d8c 1395 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1396 unsigned long faults, total_faults;
1397
cb361d8c 1398 if (!ng)
7bd95320
RR
1399 return 0;
1400
cb361d8c 1401 total_faults = ng->total_faults;
7bd95320
RR
1402
1403 if (!total_faults)
83e1d2cd
MG
1404 return 0;
1405
7bd95320 1406 faults = group_faults(p, nid);
6c6b1193
RR
1407 faults += score_nearby_nodes(p, nid, dist, false);
1408
7bd95320 1409 return 1000 * faults / total_faults;
83e1d2cd
MG
1410}
1411
10f39042
RR
1412bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1413 int src_nid, int dst_cpu)
1414{
cb361d8c 1415 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1416 int dst_nid = cpu_to_node(dst_cpu);
1417 int last_cpupid, this_cpupid;
1418
1419 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1420 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1421
1422 /*
1423 * Allow first faults or private faults to migrate immediately early in
1424 * the lifetime of a task. The magic number 4 is based on waiting for
1425 * two full passes of the "multi-stage node selection" test that is
1426 * executed below.
1427 */
98fa15f3 1428 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1429 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1430 return true;
10f39042
RR
1431
1432 /*
1433 * Multi-stage node selection is used in conjunction with a periodic
1434 * migration fault to build a temporal task<->page relation. By using
1435 * a two-stage filter we remove short/unlikely relations.
1436 *
1437 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1438 * a task's usage of a particular page (n_p) per total usage of this
1439 * page (n_t) (in a given time-span) to a probability.
1440 *
1441 * Our periodic faults will sample this probability and getting the
1442 * same result twice in a row, given these samples are fully
1443 * independent, is then given by P(n)^2, provided our sample period
1444 * is sufficiently short compared to the usage pattern.
1445 *
1446 * This quadric squishes small probabilities, making it less likely we
1447 * act on an unlikely task<->page relation.
1448 */
10f39042
RR
1449 if (!cpupid_pid_unset(last_cpupid) &&
1450 cpupid_to_nid(last_cpupid) != dst_nid)
1451 return false;
1452
1453 /* Always allow migrate on private faults */
1454 if (cpupid_match_pid(p, last_cpupid))
1455 return true;
1456
1457 /* A shared fault, but p->numa_group has not been set up yet. */
1458 if (!ng)
1459 return true;
1460
1461 /*
4142c3eb
RR
1462 * Destination node is much more heavily used than the source
1463 * node? Allow migration.
10f39042 1464 */
4142c3eb
RR
1465 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1466 ACTIVE_NODE_FRACTION)
10f39042
RR
1467 return true;
1468
1469 /*
4142c3eb
RR
1470 * Distribute memory according to CPU & memory use on each node,
1471 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1472 *
1473 * faults_cpu(dst) 3 faults_cpu(src)
1474 * --------------- * - > ---------------
1475 * faults_mem(dst) 4 faults_mem(src)
10f39042 1476 */
4142c3eb
RR
1477 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1478 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1479}
1480
6499b1b2
VG
1481/*
1482 * 'numa_type' describes the node at the moment of load balancing.
1483 */
1484enum numa_type {
1485 /* The node has spare capacity that can be used to run more tasks. */
1486 node_has_spare = 0,
1487 /*
1488 * The node is fully used and the tasks don't compete for more CPU
1489 * cycles. Nevertheless, some tasks might wait before running.
1490 */
1491 node_fully_busy,
1492 /*
1493 * The node is overloaded and can't provide expected CPU cycles to all
1494 * tasks.
1495 */
1496 node_overloaded
1497};
58d081b5 1498
fb13c7ee 1499/* Cached statistics for all CPUs within a node */
58d081b5
MG
1500struct numa_stats {
1501 unsigned long load;
8e0e0eda 1502 unsigned long runnable;
6499b1b2 1503 unsigned long util;
fb13c7ee 1504 /* Total compute capacity of CPUs on a node */
5ef20ca1 1505 unsigned long compute_capacity;
6499b1b2
VG
1506 unsigned int nr_running;
1507 unsigned int weight;
1508 enum numa_type node_type;
ff7db0bf 1509 int idle_cpu;
58d081b5 1510};
e6628d5b 1511
ff7db0bf
MG
1512static inline bool is_core_idle(int cpu)
1513{
1514#ifdef CONFIG_SCHED_SMT
1515 int sibling;
1516
1517 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1518 if (cpu == sibling)
1519 continue;
1520
1c6829cf 1521 if (!idle_cpu(sibling))
ff7db0bf
MG
1522 return false;
1523 }
1524#endif
1525
1526 return true;
1527}
1528
58d081b5
MG
1529struct task_numa_env {
1530 struct task_struct *p;
e6628d5b 1531
58d081b5
MG
1532 int src_cpu, src_nid;
1533 int dst_cpu, dst_nid;
e6628d5b 1534
58d081b5 1535 struct numa_stats src_stats, dst_stats;
e6628d5b 1536
40ea2b42 1537 int imbalance_pct;
7bd95320 1538 int dist;
fb13c7ee
MG
1539
1540 struct task_struct *best_task;
1541 long best_imp;
58d081b5
MG
1542 int best_cpu;
1543};
1544
6499b1b2 1545static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1546static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1547static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1548static inline long adjust_numa_imbalance(int imbalance,
1549 int dst_running, int dst_weight);
6499b1b2
VG
1550
1551static inline enum
1552numa_type numa_classify(unsigned int imbalance_pct,
1553 struct numa_stats *ns)
1554{
1555 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1556 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1557 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1558 return node_overloaded;
1559
1560 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1561 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1562 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1563 return node_has_spare;
1564
1565 return node_fully_busy;
1566}
1567
76c389ab
VS
1568#ifdef CONFIG_SCHED_SMT
1569/* Forward declarations of select_idle_sibling helpers */
1570static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1571static inline int numa_idle_core(int idle_core, int cpu)
1572{
ff7db0bf
MG
1573 if (!static_branch_likely(&sched_smt_present) ||
1574 idle_core >= 0 || !test_idle_cores(cpu, false))
1575 return idle_core;
1576
1577 /*
1578 * Prefer cores instead of packing HT siblings
1579 * and triggering future load balancing.
1580 */
1581 if (is_core_idle(cpu))
1582 idle_core = cpu;
ff7db0bf
MG
1583
1584 return idle_core;
1585}
76c389ab
VS
1586#else
1587static inline int numa_idle_core(int idle_core, int cpu)
1588{
1589 return idle_core;
1590}
1591#endif
ff7db0bf 1592
6499b1b2 1593/*
ff7db0bf
MG
1594 * Gather all necessary information to make NUMA balancing placement
1595 * decisions that are compatible with standard load balancer. This
1596 * borrows code and logic from update_sg_lb_stats but sharing a
1597 * common implementation is impractical.
6499b1b2
VG
1598 */
1599static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1600 struct numa_stats *ns, int nid,
1601 bool find_idle)
6499b1b2 1602{
ff7db0bf 1603 int cpu, idle_core = -1;
6499b1b2
VG
1604
1605 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1606 ns->idle_cpu = -1;
1607
0621df31 1608 rcu_read_lock();
6499b1b2
VG
1609 for_each_cpu(cpu, cpumask_of_node(nid)) {
1610 struct rq *rq = cpu_rq(cpu);
1611
1612 ns->load += cpu_load(rq);
8e0e0eda 1613 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1614 ns->util += cpu_util(cpu);
1615 ns->nr_running += rq->cfs.h_nr_running;
1616 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1617
1618 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1619 if (READ_ONCE(rq->numa_migrate_on) ||
1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1621 continue;
1622
1623 if (ns->idle_cpu == -1)
1624 ns->idle_cpu = cpu;
1625
1626 idle_core = numa_idle_core(idle_core, cpu);
1627 }
6499b1b2 1628 }
0621df31 1629 rcu_read_unlock();
6499b1b2
VG
1630
1631 ns->weight = cpumask_weight(cpumask_of_node(nid));
1632
1633 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1634
1635 if (idle_core >= 0)
1636 ns->idle_cpu = idle_core;
6499b1b2
VG
1637}
1638
fb13c7ee
MG
1639static void task_numa_assign(struct task_numa_env *env,
1640 struct task_struct *p, long imp)
1641{
a4739eca
SD
1642 struct rq *rq = cpu_rq(env->dst_cpu);
1643
5fb52dd9
MG
1644 /* Check if run-queue part of active NUMA balance. */
1645 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1646 int cpu;
1647 int start = env->dst_cpu;
1648
1649 /* Find alternative idle CPU. */
1650 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1651 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1652 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1653 continue;
1654 }
1655
1656 env->dst_cpu = cpu;
1657 rq = cpu_rq(env->dst_cpu);
1658 if (!xchg(&rq->numa_migrate_on, 1))
1659 goto assign;
1660 }
1661
1662 /* Failed to find an alternative idle CPU */
a4739eca 1663 return;
5fb52dd9 1664 }
a4739eca 1665
5fb52dd9 1666assign:
a4739eca
SD
1667 /*
1668 * Clear previous best_cpu/rq numa-migrate flag, since task now
1669 * found a better CPU to move/swap.
1670 */
5fb52dd9 1671 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1672 rq = cpu_rq(env->best_cpu);
1673 WRITE_ONCE(rq->numa_migrate_on, 0);
1674 }
1675
fb13c7ee
MG
1676 if (env->best_task)
1677 put_task_struct(env->best_task);
bac78573
ON
1678 if (p)
1679 get_task_struct(p);
fb13c7ee
MG
1680
1681 env->best_task = p;
1682 env->best_imp = imp;
1683 env->best_cpu = env->dst_cpu;
1684}
1685
28a21745 1686static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1687 struct task_numa_env *env)
1688{
e4991b24
RR
1689 long imb, old_imb;
1690 long orig_src_load, orig_dst_load;
28a21745
RR
1691 long src_capacity, dst_capacity;
1692
1693 /*
1694 * The load is corrected for the CPU capacity available on each node.
1695 *
1696 * src_load dst_load
1697 * ------------ vs ---------
1698 * src_capacity dst_capacity
1699 */
1700 src_capacity = env->src_stats.compute_capacity;
1701 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1702
5f95ba7a 1703 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1704
28a21745 1705 orig_src_load = env->src_stats.load;
e4991b24 1706 orig_dst_load = env->dst_stats.load;
28a21745 1707
5f95ba7a 1708 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1709
1710 /* Would this change make things worse? */
1711 return (imb > old_imb);
e63da036
RR
1712}
1713
6fd98e77
SD
1714/*
1715 * Maximum NUMA importance can be 1998 (2*999);
1716 * SMALLIMP @ 30 would be close to 1998/64.
1717 * Used to deter task migration.
1718 */
1719#define SMALLIMP 30
1720
fb13c7ee
MG
1721/*
1722 * This checks if the overall compute and NUMA accesses of the system would
1723 * be improved if the source tasks was migrated to the target dst_cpu taking
1724 * into account that it might be best if task running on the dst_cpu should
1725 * be exchanged with the source task
1726 */
a0f03b61 1727static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1728 long taskimp, long groupimp, bool maymove)
fb13c7ee 1729{
cb361d8c 1730 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1731 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1732 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1733 struct task_struct *cur;
28a21745 1734 long src_load, dst_load;
7bd95320 1735 int dist = env->dist;
cb361d8c
JH
1736 long moveimp = imp;
1737 long load;
a0f03b61 1738 bool stopsearch = false;
fb13c7ee 1739
a4739eca 1740 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1741 return false;
a4739eca 1742
fb13c7ee 1743 rcu_read_lock();
154abafc 1744 cur = rcu_dereference(dst_rq->curr);
bac78573 1745 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1746 cur = NULL;
1747
7af68335
PZ
1748 /*
1749 * Because we have preemption enabled we can get migrated around and
1750 * end try selecting ourselves (current == env->p) as a swap candidate.
1751 */
a0f03b61
MG
1752 if (cur == env->p) {
1753 stopsearch = true;
7af68335 1754 goto unlock;
a0f03b61 1755 }
7af68335 1756
305c1fac 1757 if (!cur) {
6fd98e77 1758 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1759 goto assign;
1760 else
1761 goto unlock;
1762 }
1763
88cca72c
MG
1764 /* Skip this swap candidate if cannot move to the source cpu. */
1765 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1766 goto unlock;
1767
1768 /*
1769 * Skip this swap candidate if it is not moving to its preferred
1770 * node and the best task is.
1771 */
1772 if (env->best_task &&
1773 env->best_task->numa_preferred_nid == env->src_nid &&
1774 cur->numa_preferred_nid != env->src_nid) {
1775 goto unlock;
1776 }
1777
fb13c7ee
MG
1778 /*
1779 * "imp" is the fault differential for the source task between the
1780 * source and destination node. Calculate the total differential for
1781 * the source task and potential destination task. The more negative
305c1fac 1782 * the value is, the more remote accesses that would be expected to
fb13c7ee 1783 * be incurred if the tasks were swapped.
88cca72c 1784 *
305c1fac
SD
1785 * If dst and source tasks are in the same NUMA group, or not
1786 * in any group then look only at task weights.
1787 */
cb361d8c
JH
1788 cur_ng = rcu_dereference(cur->numa_group);
1789 if (cur_ng == p_ng) {
305c1fac
SD
1790 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1791 task_weight(cur, env->dst_nid, dist);
887c290e 1792 /*
305c1fac
SD
1793 * Add some hysteresis to prevent swapping the
1794 * tasks within a group over tiny differences.
887c290e 1795 */
cb361d8c 1796 if (cur_ng)
305c1fac
SD
1797 imp -= imp / 16;
1798 } else {
1799 /*
1800 * Compare the group weights. If a task is all by itself
1801 * (not part of a group), use the task weight instead.
1802 */
cb361d8c 1803 if (cur_ng && p_ng)
305c1fac
SD
1804 imp += group_weight(cur, env->src_nid, dist) -
1805 group_weight(cur, env->dst_nid, dist);
1806 else
1807 imp += task_weight(cur, env->src_nid, dist) -
1808 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1809 }
1810
88cca72c
MG
1811 /* Discourage picking a task already on its preferred node */
1812 if (cur->numa_preferred_nid == env->dst_nid)
1813 imp -= imp / 16;
1814
1815 /*
1816 * Encourage picking a task that moves to its preferred node.
1817 * This potentially makes imp larger than it's maximum of
1818 * 1998 (see SMALLIMP and task_weight for why) but in this
1819 * case, it does not matter.
1820 */
1821 if (cur->numa_preferred_nid == env->src_nid)
1822 imp += imp / 8;
1823
305c1fac 1824 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1825 imp = moveimp;
305c1fac 1826 cur = NULL;
fb13c7ee 1827 goto assign;
305c1fac 1828 }
fb13c7ee 1829
88cca72c
MG
1830 /*
1831 * Prefer swapping with a task moving to its preferred node over a
1832 * task that is not.
1833 */
1834 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1835 env->best_task->numa_preferred_nid != env->src_nid) {
1836 goto assign;
1837 }
1838
6fd98e77
SD
1839 /*
1840 * If the NUMA importance is less than SMALLIMP,
1841 * task migration might only result in ping pong
1842 * of tasks and also hurt performance due to cache
1843 * misses.
1844 */
1845 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1846 goto unlock;
1847
fb13c7ee
MG
1848 /*
1849 * In the overloaded case, try and keep the load balanced.
1850 */
305c1fac
SD
1851 load = task_h_load(env->p) - task_h_load(cur);
1852 if (!load)
1853 goto assign;
1854
e720fff6
PZ
1855 dst_load = env->dst_stats.load + load;
1856 src_load = env->src_stats.load - load;
fb13c7ee 1857
28a21745 1858 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1859 goto unlock;
1860
305c1fac 1861assign:
ff7db0bf 1862 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1863 if (!cur) {
ff7db0bf
MG
1864 int cpu = env->dst_stats.idle_cpu;
1865
1866 /* Nothing cached so current CPU went idle since the search. */
1867 if (cpu < 0)
1868 cpu = env->dst_cpu;
1869
10e2f1ac 1870 /*
ff7db0bf
MG
1871 * If the CPU is no longer truly idle and the previous best CPU
1872 * is, keep using it.
10e2f1ac 1873 */
ff7db0bf
MG
1874 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1875 idle_cpu(env->best_cpu)) {
1876 cpu = env->best_cpu;
1877 }
1878
ff7db0bf 1879 env->dst_cpu = cpu;
10e2f1ac 1880 }
ba7e5a27 1881
fb13c7ee 1882 task_numa_assign(env, cur, imp);
a0f03b61
MG
1883
1884 /*
1885 * If a move to idle is allowed because there is capacity or load
1886 * balance improves then stop the search. While a better swap
1887 * candidate may exist, a search is not free.
1888 */
1889 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1890 stopsearch = true;
1891
1892 /*
1893 * If a swap candidate must be identified and the current best task
1894 * moves its preferred node then stop the search.
1895 */
1896 if (!maymove && env->best_task &&
1897 env->best_task->numa_preferred_nid == env->src_nid) {
1898 stopsearch = true;
1899 }
fb13c7ee
MG
1900unlock:
1901 rcu_read_unlock();
a0f03b61
MG
1902
1903 return stopsearch;
fb13c7ee
MG
1904}
1905
887c290e
RR
1906static void task_numa_find_cpu(struct task_numa_env *env,
1907 long taskimp, long groupimp)
2c8a50aa 1908{
305c1fac 1909 bool maymove = false;
2c8a50aa
MG
1910 int cpu;
1911
305c1fac 1912 /*
fb86f5b2
MG
1913 * If dst node has spare capacity, then check if there is an
1914 * imbalance that would be overruled by the load balancer.
305c1fac 1915 */
fb86f5b2
MG
1916 if (env->dst_stats.node_type == node_has_spare) {
1917 unsigned int imbalance;
1918 int src_running, dst_running;
1919
1920 /*
1921 * Would movement cause an imbalance? Note that if src has
1922 * more running tasks that the imbalance is ignored as the
1923 * move improves the imbalance from the perspective of the
1924 * CPU load balancer.
1925 * */
1926 src_running = env->src_stats.nr_running - 1;
1927 dst_running = env->dst_stats.nr_running + 1;
1928 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1929 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1930 env->dst_stats.weight);
fb86f5b2
MG
1931
1932 /* Use idle CPU if there is no imbalance */
ff7db0bf 1933 if (!imbalance) {
fb86f5b2 1934 maymove = true;
ff7db0bf
MG
1935 if (env->dst_stats.idle_cpu >= 0) {
1936 env->dst_cpu = env->dst_stats.idle_cpu;
1937 task_numa_assign(env, NULL, 0);
1938 return;
1939 }
1940 }
fb86f5b2
MG
1941 } else {
1942 long src_load, dst_load, load;
1943 /*
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1946 */
1947 load = task_h_load(env->p);
1948 dst_load = env->dst_stats.load + load;
1949 src_load = env->src_stats.load - load;
1950 maymove = !load_too_imbalanced(src_load, dst_load, env);
1951 }
305c1fac 1952
2c8a50aa
MG
1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 /* Skip this CPU if the source task cannot migrate */
3bd37062 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1956 continue;
1957
1958 env->dst_cpu = cpu;
a0f03b61
MG
1959 if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 break;
2c8a50aa
MG
1961 }
1962}
1963
58d081b5
MG
1964static int task_numa_migrate(struct task_struct *p)
1965{
58d081b5
MG
1966 struct task_numa_env env = {
1967 .p = p,
fb13c7ee 1968
58d081b5 1969 .src_cpu = task_cpu(p),
b32e86b4 1970 .src_nid = task_node(p),
fb13c7ee
MG
1971
1972 .imbalance_pct = 112,
1973
1974 .best_task = NULL,
1975 .best_imp = 0,
4142c3eb 1976 .best_cpu = -1,
58d081b5 1977 };
cb361d8c 1978 unsigned long taskweight, groupweight;
58d081b5 1979 struct sched_domain *sd;
cb361d8c
JH
1980 long taskimp, groupimp;
1981 struct numa_group *ng;
a4739eca 1982 struct rq *best_rq;
7bd95320 1983 int nid, ret, dist;
e6628d5b 1984
58d081b5 1985 /*
fb13c7ee
MG
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1988 *
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1991 * to satisfy here.
58d081b5
MG
1992 */
1993 rcu_read_lock();
fb13c7ee 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1995 if (sd)
1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1997 rcu_read_unlock();
1998
46a73e8a
RR
1999 /*
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2004 */
2005 if (unlikely(!sd)) {
8cd45eee 2006 sched_setnuma(p, task_node(p));
46a73e8a
RR
2007 return -EINVAL;
2008 }
2009
2c8a50aa 2010 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 taskweight = task_weight(p, env.src_nid, dist);
2013 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2018
a43455a1 2019 /* Try to find a spot on the preferred nid. */
2d4056fa 2020 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2021
9de05d48
RR
2022 /*
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2028 */
cb361d8c
JH
2029 ng = deref_curr_numa_group(p);
2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2031 for_each_online_node(nid) {
2032 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 continue;
58d081b5 2034
7bd95320 2035 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2036 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 dist != env.dist) {
2038 taskweight = task_weight(p, env.src_nid, dist);
2039 groupweight = group_weight(p, env.src_nid, dist);
2040 }
7bd95320 2041
83e1d2cd 2042 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2043 taskimp = task_weight(p, nid, dist) - taskweight;
2044 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2045 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2046 continue;
2047
7bd95320 2048 env.dist = dist;
2c8a50aa 2049 env.dst_nid = nid;
ff7db0bf 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2051 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2052 }
2053 }
2054
68d1b02a
RR
2055 /*
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2059 * settle down.
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2062 */
cb361d8c 2063 if (ng) {
db015dae
RR
2064 if (env.best_cpu == -1)
2065 nid = env.src_nid;
2066 else
8cd45eee 2067 nid = cpu_to_node(env.best_cpu);
db015dae 2068
8cd45eee
SD
2069 if (nid != p->numa_preferred_nid)
2070 sched_setnuma(p, nid);
db015dae
RR
2071 }
2072
2073 /* No better CPU than the current one was found. */
f22aef4a 2074 if (env.best_cpu == -1) {
b2b2042b 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2076 return -EAGAIN;
f22aef4a 2077 }
0ec8aa00 2078
a4739eca 2079 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2080 if (env.best_task == NULL) {
286549dc 2081 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2083 if (ret != 0)
b2b2042b 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2085 return ret;
2086 }
2087
0ad4e3df 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2090
286549dc 2091 if (ret != 0)
b2b2042b 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2093 put_task_struct(env.best_task);
2094 return ret;
e6628d5b
MG
2095}
2096
6b9a7460
MG
2097/* Attempt to migrate a task to a CPU on the preferred node. */
2098static void numa_migrate_preferred(struct task_struct *p)
2099{
5085e2a3
RR
2100 unsigned long interval = HZ;
2101
2739d3ee 2102 /* This task has no NUMA fault statistics yet */
98fa15f3 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2104 return;
2105
2739d3ee 2106 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2108 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2109
2110 /* Success if task is already running on preferred CPU */
de1b301a 2111 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2112 return;
2113
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2115 task_numa_migrate(p);
6b9a7460
MG
2116}
2117
20e07dea 2118/*
4142c3eb 2119 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2122 * located.
20e07dea 2123 */
4142c3eb 2124static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2125{
2126 unsigned long faults, max_faults = 0;
4142c3eb 2127 int nid, active_nodes = 0;
20e07dea
RR
2128
2129 for_each_online_node(nid) {
2130 faults = group_faults_cpu(numa_group, nid);
2131 if (faults > max_faults)
2132 max_faults = faults;
2133 }
2134
2135 for_each_online_node(nid) {
2136 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2137 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 active_nodes++;
20e07dea 2139 }
4142c3eb
RR
2140
2141 numa_group->max_faults_cpu = max_faults;
2142 numa_group->active_nodes = active_nodes;
20e07dea
RR
2143}
2144
04bb2f94
RR
2145/*
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2151 */
2152#define NUMA_PERIOD_SLOTS 10
a22b4b01 2153#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2154
2155/*
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2160 */
2161static void update_task_scan_period(struct task_struct *p,
2162 unsigned long shared, unsigned long private)
2163{
2164 unsigned int period_slot;
37ec97de 2165 int lr_ratio, ps_ratio;
04bb2f94
RR
2166 int diff;
2167
2168 unsigned long remote = p->numa_faults_locality[0];
2169 unsigned long local = p->numa_faults_locality[1];
2170
2171 /*
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
074c2381
MG
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
04bb2f94 2177 */
074c2381 2178 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2179 p->numa_scan_period = min(p->numa_scan_period_max,
2180 p->numa_scan_period << 1);
2181
2182 p->mm->numa_next_scan = jiffies +
2183 msecs_to_jiffies(p->numa_scan_period);
2184
2185 return;
2186 }
2187
2188 /*
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193 */
2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197
2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199 /*
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2202 */
2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 if (!slot)
2205 slot = 1;
2206 diff = slot * period_slot;
2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 /*
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2212 */
2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2214 if (!slot)
2215 slot = 1;
2216 diff = slot * period_slot;
2217 } else {
04bb2f94 2218 /*
37ec97de
RR
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
04bb2f94 2222 */
37ec97de
RR
2223 int ratio = max(lr_ratio, ps_ratio);
2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2225 }
2226
2227 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 task_scan_min(p), task_scan_max(p));
2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230}
2231
7e2703e6
RR
2232/*
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2238 */
2239static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240{
2241 u64 runtime, delta, now;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now = p->se.exec_start;
2244 runtime = p->se.sum_exec_runtime;
2245
2246 if (p->last_task_numa_placement) {
2247 delta = runtime - p->last_sum_exec_runtime;
2248 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2249
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64)*period < 0))
2252 *period = 0;
7e2703e6 2253 } else {
c7b50216 2254 delta = p->se.avg.load_sum;
9d89c257 2255 *period = LOAD_AVG_MAX;
7e2703e6
RR
2256 }
2257
2258 p->last_sum_exec_runtime = runtime;
2259 p->last_task_numa_placement = now;
2260
2261 return delta;
2262}
2263
54009416
RR
2264/*
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2268 */
2269static int preferred_group_nid(struct task_struct *p, int nid)
2270{
2271 nodemask_t nodes;
2272 int dist;
2273
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type == NUMA_DIRECT)
2276 return nid;
2277
2278 /*
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2282 */
2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 unsigned long score, max_score = 0;
2285 int node, max_node = nid;
2286
2287 dist = sched_max_numa_distance;
2288
2289 for_each_online_node(node) {
2290 score = group_weight(p, node, dist);
2291 if (score > max_score) {
2292 max_score = score;
2293 max_node = node;
2294 }
2295 }
2296 return max_node;
2297 }
2298
2299 /*
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2307 */
2308 nodes = node_online_map;
2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 unsigned long max_faults = 0;
81907478 2311 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2312 int a, b;
2313
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist))
2316 continue;
2317
2318 for_each_node_mask(a, nodes) {
2319 unsigned long faults = 0;
2320 nodemask_t this_group;
2321 nodes_clear(this_group);
2322
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b, nodes) {
2325 if (node_distance(a, b) < dist) {
2326 faults += group_faults(p, b);
2327 node_set(b, this_group);
2328 node_clear(b, nodes);
2329 }
2330 }
2331
2332 /* Remember the top group. */
2333 if (faults > max_faults) {
2334 max_faults = faults;
2335 max_group = this_group;
2336 /*
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2340 */
2341 nid = a;
2342 }
2343 }
2344 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2345 if (!max_faults)
2346 break;
54009416
RR
2347 nodes = max_group;
2348 }
2349 return nid;
2350}
2351
cbee9f88
PZ
2352static void task_numa_placement(struct task_struct *p)
2353{
98fa15f3 2354 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2355 unsigned long max_faults = 0;
04bb2f94 2356 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2357 unsigned long total_faults;
2358 u64 runtime, period;
7dbd13ed 2359 spinlock_t *group_lock = NULL;
cb361d8c 2360 struct numa_group *ng;
cbee9f88 2361
7e5a2c17
JL
2362 /*
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2366 */
316c1608 2367 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2368 if (p->numa_scan_seq == seq)
2369 return;
2370 p->numa_scan_seq = seq;
598f0ec0 2371 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2372
7e2703e6
RR
2373 total_faults = p->numa_faults_locality[0] +
2374 p->numa_faults_locality[1];
2375 runtime = numa_get_avg_runtime(p, &period);
2376
7dbd13ed 2377 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2378 ng = deref_curr_numa_group(p);
2379 if (ng) {
2380 group_lock = &ng->lock;
60e69eed 2381 spin_lock_irq(group_lock);
7dbd13ed
MG
2382 }
2383
688b7585
MG
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid) {
44dba3d5
IM
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2388 unsigned long faults = 0, group_faults = 0;
44dba3d5 2389 int priv;
745d6147 2390
be1e4e76 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2392 long diff, f_diff, f_weight;
8c8a743c 2393
44dba3d5
IM
2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2398
ac8e895b 2399 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 fault_types[priv] += p->numa_faults[membuf_idx];
2402 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2403
7e2703e6
RR
2404 /*
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2410 */
2411 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2413 (total_faults + 1);
44dba3d5
IM
2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2416
44dba3d5
IM
2417 p->numa_faults[mem_idx] += diff;
2418 p->numa_faults[cpu_idx] += f_diff;
2419 faults += p->numa_faults[mem_idx];
83e1d2cd 2420 p->total_numa_faults += diff;
cb361d8c 2421 if (ng) {
44dba3d5
IM
2422 /*
2423 * safe because we can only change our own group
2424 *
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2428 */
cb361d8c
JH
2429 ng->faults[mem_idx] += diff;
2430 ng->faults_cpu[mem_idx] += f_diff;
2431 ng->total_faults += diff;
2432 group_faults += ng->faults[mem_idx];
8c8a743c 2433 }
ac8e895b
MG
2434 }
2435
cb361d8c 2436 if (!ng) {
f03bb676
SD
2437 if (faults > max_faults) {
2438 max_faults = faults;
2439 max_nid = nid;
2440 }
2441 } else if (group_faults > max_faults) {
2442 max_faults = group_faults;
688b7585
MG
2443 max_nid = nid;
2444 }
83e1d2cd
MG
2445 }
2446
cb361d8c
JH
2447 if (ng) {
2448 numa_group_count_active_nodes(ng);
60e69eed 2449 spin_unlock_irq(group_lock);
f03bb676 2450 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2451 }
2452
bb97fc31
RR
2453 if (max_faults) {
2454 /* Set the new preferred node */
2455 if (max_nid != p->numa_preferred_nid)
2456 sched_setnuma(p, max_nid);
3a7053b3 2457 }
30619c89
SD
2458
2459 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2460}
2461
8c8a743c
PZ
2462static inline int get_numa_group(struct numa_group *grp)
2463{
c45a7795 2464 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2465}
2466
2467static inline void put_numa_group(struct numa_group *grp)
2468{
c45a7795 2469 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2470 kfree_rcu(grp, rcu);
2471}
2472
3e6a9418
MG
2473static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 int *priv)
8c8a743c
PZ
2475{
2476 struct numa_group *grp, *my_grp;
2477 struct task_struct *tsk;
2478 bool join = false;
2479 int cpu = cpupid_to_cpu(cpupid);
2480 int i;
2481
cb361d8c 2482 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2483 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2484 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2485
2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 if (!grp)
2488 return;
2489
c45a7795 2490 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2491 grp->active_nodes = 1;
2492 grp->max_faults_cpu = 0;
8c8a743c 2493 spin_lock_init(&grp->lock);
e29cf08b 2494 grp->gid = p->pid;
50ec8a40 2495 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 nr_node_ids;
8c8a743c 2498
be1e4e76 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2500 grp->faults[i] = p->numa_faults[i];
8c8a743c 2501
989348b5 2502 grp->total_faults = p->total_numa_faults;
83e1d2cd 2503
8c8a743c
PZ
2504 grp->nr_tasks++;
2505 rcu_assign_pointer(p->numa_group, grp);
2506 }
2507
2508 rcu_read_lock();
316c1608 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2510
2511 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2512 goto no_join;
8c8a743c
PZ
2513
2514 grp = rcu_dereference(tsk->numa_group);
2515 if (!grp)
3354781a 2516 goto no_join;
8c8a743c 2517
cb361d8c 2518 my_grp = deref_curr_numa_group(p);
8c8a743c 2519 if (grp == my_grp)
3354781a 2520 goto no_join;
8c8a743c
PZ
2521
2522 /*
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2525 */
2526 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2527 goto no_join;
8c8a743c
PZ
2528
2529 /*
2530 * Tie-break on the grp address.
2531 */
2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2533 goto no_join;
8c8a743c 2534
dabe1d99
RR
2535 /* Always join threads in the same process. */
2536 if (tsk->mm == current->mm)
2537 join = true;
2538
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags & TNF_SHARED)
2541 join = true;
8c8a743c 2542
3e6a9418
MG
2543 /* Update priv based on whether false sharing was detected */
2544 *priv = !join;
2545
dabe1d99 2546 if (join && !get_numa_group(grp))
3354781a 2547 goto no_join;
8c8a743c 2548
8c8a743c
PZ
2549 rcu_read_unlock();
2550
2551 if (!join)
2552 return;
2553
60e69eed
MG
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2556
be1e4e76 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2558 my_grp->faults[i] -= p->numa_faults[i];
2559 grp->faults[i] += p->numa_faults[i];
8c8a743c 2560 }
989348b5
MG
2561 my_grp->total_faults -= p->total_numa_faults;
2562 grp->total_faults += p->total_numa_faults;
8c8a743c 2563
8c8a743c
PZ
2564 my_grp->nr_tasks--;
2565 grp->nr_tasks++;
2566
2567 spin_unlock(&my_grp->lock);
60e69eed 2568 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2569
2570 rcu_assign_pointer(p->numa_group, grp);
2571
2572 put_numa_group(my_grp);
3354781a
PZ
2573 return;
2574
2575no_join:
2576 rcu_read_unlock();
2577 return;
8c8a743c
PZ
2578}
2579
16d51a59 2580/*
3b03706f 2581 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2586 */
2587void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2588{
cb361d8c
JH
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2591 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2592 unsigned long flags;
2593 int i;
8c8a743c 2594
16d51a59
JH
2595 if (!numa_faults)
2596 return;
2597
8c8a743c 2598 if (grp) {
e9dd685c 2599 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2601 grp->faults[i] -= p->numa_faults[i];
989348b5 2602 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2603
8c8a743c 2604 grp->nr_tasks--;
e9dd685c 2605 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2606 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2607 put_numa_group(grp);
2608 }
2609
16d51a59
JH
2610 if (final) {
2611 p->numa_faults = NULL;
2612 kfree(numa_faults);
2613 } else {
2614 p->total_numa_faults = 0;
2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 numa_faults[i] = 0;
2617 }
8c8a743c
PZ
2618}
2619
cbee9f88
PZ
2620/*
2621 * Got a PROT_NONE fault for a page on @node.
2622 */
58b46da3 2623void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2624{
2625 struct task_struct *p = current;
6688cc05 2626 bool migrated = flags & TNF_MIGRATED;
58b46da3 2627 int cpu_node = task_node(current);
792568ec 2628 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2629 struct numa_group *ng;
ac8e895b 2630 int priv;
cbee9f88 2631
2a595721 2632 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2633 return;
2634
9ff1d9ff
MG
2635 /* for example, ksmd faulting in a user's mm */
2636 if (!p->mm)
2637 return;
2638
f809ca9a 2639 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2640 if (unlikely(!p->numa_faults)) {
2641 int size = sizeof(*p->numa_faults) *
be1e4e76 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2643
44dba3d5
IM
2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 if (!p->numa_faults)
f809ca9a 2646 return;
745d6147 2647
83e1d2cd 2648 p->total_numa_faults = 0;
04bb2f94 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2650 }
cbee9f88 2651
8c8a743c
PZ
2652 /*
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2655 */
2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 priv = 1;
2658 } else {
2659 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2660 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2661 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2662 }
2663
792568ec
RR
2664 /*
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2669 */
cb361d8c 2670 ng = deref_curr_numa_group(p);
4142c3eb
RR
2671 if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 numa_is_active_node(cpu_node, ng) &&
2673 numa_is_active_node(mem_node, ng))
792568ec
RR
2674 local = 1;
2675
2739d3ee 2676 /*
e1ff516a
YW
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2739d3ee 2679 */
b6a60cf3
SD
2680 if (time_after(jiffies, p->numa_migrate_retry)) {
2681 task_numa_placement(p);
6b9a7460 2682 numa_migrate_preferred(p);
b6a60cf3 2683 }
6b9a7460 2684
b32e86b4
IM
2685 if (migrated)
2686 p->numa_pages_migrated += pages;
074c2381
MG
2687 if (flags & TNF_MIGRATE_FAIL)
2688 p->numa_faults_locality[2] += pages;
b32e86b4 2689
44dba3d5
IM
2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2692 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2693}
2694
6e5fb223
PZ
2695static void reset_ptenuma_scan(struct task_struct *p)
2696{
7e5a2c17
JL
2697 /*
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2704 */
316c1608 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2706 p->mm->numa_scan_offset = 0;
2707}
2708
cbee9f88
PZ
2709/*
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2712 */
9434f9f5 2713static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2714{
2715 unsigned long migrate, next_scan, now = jiffies;
2716 struct task_struct *p = current;
2717 struct mm_struct *mm = p->mm;
51170840 2718 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2719 struct vm_area_struct *vma;
9f40604c 2720 unsigned long start, end;
598f0ec0 2721 unsigned long nr_pte_updates = 0;
4620f8c1 2722 long pages, virtpages;
cbee9f88 2723
9148a3a1 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2725
b34920d4 2726 work->next = work;
cbee9f88
PZ
2727 /*
2728 * Who cares about NUMA placement when they're dying.
2729 *
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2733 * work.
2734 */
2735 if (p->flags & PF_EXITING)
2736 return;
2737
930aa174 2738 if (!mm->numa_next_scan) {
7e8d16b6
MG
2739 mm->numa_next_scan = now +
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2741 }
2742
cbee9f88
PZ
2743 /*
2744 * Enforce maximal scan/migration frequency..
2745 */
2746 migrate = mm->numa_next_scan;
2747 if (time_before(now, migrate))
2748 return;
2749
598f0ec0
MG
2750 if (p->numa_scan_period == 0) {
2751 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2752 p->numa_scan_period = task_scan_start(p);
598f0ec0 2753 }
cbee9f88 2754
fb003b80 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 return;
2758
19a78d11
PZ
2759 /*
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2762 */
2763 p->node_stamp += 2 * TICK_NSEC;
2764
9f40604c
MG
2765 start = mm->numa_scan_offset;
2766 pages = sysctl_numa_balancing_scan_size;
2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2768 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2769 if (!pages)
2770 return;
cbee9f88 2771
4620f8c1 2772
d8ed45c5 2773 if (!mmap_read_trylock(mm))
8655d549 2774 return;
9f40604c 2775 vma = find_vma(mm, start);
6e5fb223
PZ
2776 if (!vma) {
2777 reset_ptenuma_scan(p);
9f40604c 2778 start = 0;
6e5fb223
PZ
2779 vma = mm->mmap;
2780 }
9f40604c 2781 for (; vma; vma = vma->vm_next) {
6b79c57b 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2784 continue;
6b79c57b 2785 }
6e5fb223 2786
4591ce4f
MG
2787 /*
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2792 */
2793 if (!vma->vm_mm ||
2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 continue;
2796
3c67f474
MG
2797 /*
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2800 */
3122e80e 2801 if (!vma_is_accessible(vma))
3c67f474 2802 continue;
4591ce4f 2803
9f40604c
MG
2804 do {
2805 start = max(start, vma->vm_start);
2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 end = min(end, vma->vm_end);
4620f8c1 2808 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2809
2810 /*
4620f8c1
RR
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2816 * areas faster.
598f0ec0
MG
2817 */
2818 if (nr_pte_updates)
2819 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2820 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2821
9f40604c 2822 start = end;
4620f8c1 2823 if (pages <= 0 || virtpages <= 0)
9f40604c 2824 goto out;
3cf1962c
RR
2825
2826 cond_resched();
9f40604c 2827 } while (end != vma->vm_end);
cbee9f88 2828 }
6e5fb223 2829
9f40604c 2830out:
6e5fb223 2831 /*
c69307d5
PZ
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
6e5fb223
PZ
2836 */
2837 if (vma)
9f40604c 2838 mm->numa_scan_offset = start;
6e5fb223
PZ
2839 else
2840 reset_ptenuma_scan(p);
d8ed45c5 2841 mmap_read_unlock(mm);
51170840
RR
2842
2843 /*
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2848 */
2849 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 u64 diff = p->se.sum_exec_runtime - runtime;
2851 p->node_stamp += 32 * diff;
2852 }
cbee9f88
PZ
2853}
2854
d35927a1
VS
2855void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856{
2857 int mm_users = 0;
2858 struct mm_struct *mm = p->mm;
2859
2860 if (mm) {
2861 mm_users = atomic_read(&mm->mm_users);
2862 if (mm_users == 1) {
2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 mm->numa_scan_seq = 0;
2865 }
2866 }
2867 p->node_stamp = 0;
2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2870 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2871 p->numa_work.next = &p->numa_work;
2872 p->numa_faults = NULL;
2873 RCU_INIT_POINTER(p->numa_group, NULL);
2874 p->last_task_numa_placement = 0;
2875 p->last_sum_exec_runtime = 0;
2876
b34920d4
VS
2877 init_task_work(&p->numa_work, task_numa_work);
2878
d35927a1
VS
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags & CLONE_VM)) {
2881 p->numa_preferred_nid = NUMA_NO_NODE;
2882 return;
2883 }
2884
2885 /*
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2888 */
2889 if (mm) {
2890 unsigned int delay;
2891
2892 delay = min_t(unsigned int, task_scan_max(current),
2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 delay += 2 * TICK_NSEC;
2895 p->node_stamp = delay;
2896 }
2897}
2898
cbee9f88
PZ
2899/*
2900 * Drive the periodic memory faults..
2901 */
b1546edc 2902static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2903{
2904 struct callback_head *work = &curr->numa_work;
2905 u64 period, now;
2906
2907 /*
2908 * We don't care about NUMA placement if we don't have memory.
2909 */
18f855e5 2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2911 return;
2912
2913 /*
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2917 * NUMA placement.
2918 */
2919 now = curr->se.sum_exec_runtime;
2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921
25b3e5a3 2922 if (now > curr->node_stamp + period) {
4b96a29b 2923 if (!curr->node_stamp)
b5dd77c8 2924 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2925 curr->node_stamp += period;
cbee9f88 2926
b34920d4 2927 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2928 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2929 }
2930}
3fed382b 2931
3f9672ba
SD
2932static void update_scan_period(struct task_struct *p, int new_cpu)
2933{
2934 int src_nid = cpu_to_node(task_cpu(p));
2935 int dst_nid = cpu_to_node(new_cpu);
2936
05cbdf4f
MG
2937 if (!static_branch_likely(&sched_numa_balancing))
2938 return;
2939
3f9672ba
SD
2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 return;
2942
05cbdf4f
MG
2943 if (src_nid == dst_nid)
2944 return;
2945
2946 /*
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2950 */
2951 if (p->numa_scan_seq) {
2952 /*
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2956 */
2957 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2958 (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2960 return;
2961 }
2962
2963 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2964}
2965
cbee9f88
PZ
2966#else
2967static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968{
2969}
0ec8aa00
PZ
2970
2971static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972{
2973}
2974
2975static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976{
2977}
3fed382b 2978
3f9672ba
SD
2979static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980{
2981}
2982
cbee9f88
PZ
2983#endif /* CONFIG_NUMA_BALANCING */
2984
30cfdcfc
DA
2985static void
2986account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987{
2988 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2989#ifdef CONFIG_SMP
0ec8aa00
PZ
2990 if (entity_is_task(se)) {
2991 struct rq *rq = rq_of(cfs_rq);
2992
2993 account_numa_enqueue(rq, task_of(se));
2994 list_add(&se->group_node, &rq->cfs_tasks);
2995 }
367456c7 2996#endif
30cfdcfc 2997 cfs_rq->nr_running++;
30cfdcfc
DA
2998}
2999
3000static void
3001account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002{
3003 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3004#ifdef CONFIG_SMP
0ec8aa00
PZ
3005 if (entity_is_task(se)) {
3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3007 list_del_init(&se->group_node);
0ec8aa00 3008 }
bfdb198c 3009#endif
30cfdcfc 3010 cfs_rq->nr_running--;
30cfdcfc
DA
3011}
3012
8d5b9025
PZ
3013/*
3014 * Signed add and clamp on underflow.
3015 *
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3018 * values.
3019 */
3020#define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3024 \
3025 res = var + val; \
3026 \
3027 if (val < 0 && res > var) \
3028 res = 0; \
3029 \
3030 WRITE_ONCE(*ptr, res); \
3031} while (0)
3032
3033/*
3034 * Unsigned subtract and clamp on underflow.
3035 *
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3038 * values.
3039 */
3040#define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3044 res = var - val; \
3045 if (res > var) \
3046 res = 0; \
3047 WRITE_ONCE(*ptr, res); \
3048} while (0)
3049
b5c0ce7b
PB
3050/*
3051 * Remove and clamp on negative, from a local variable.
3052 *
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3055 */
3056#define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3059} while (0)
3060
8d5b9025 3061#ifdef CONFIG_SMP
8d5b9025
PZ
3062static inline void
3063enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064{
3065 cfs_rq->avg.load_avg += se->avg.load_avg;
3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067}
3068
3069static inline void
3070dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071{
ceb6ba45 3072 u32 divider = get_pelt_divider(&se->avg);
8d5b9025 3073 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
ceb6ba45 3074 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
8d5b9025
PZ
3075}
3076#else
3077static inline void
8d5b9025
PZ
3078enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3079static inline void
3080dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081#endif
3082
9059393e 3083static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3084 unsigned long weight)
9059393e
VG
3085{
3086 if (se->on_rq) {
3087 /* commit outstanding execution time */
3088 if (cfs_rq->curr == se)
3089 update_curr(cfs_rq);
1724b95b 3090 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3091 }
3092 dequeue_load_avg(cfs_rq, se);
3093
3094 update_load_set(&se->load, weight);
3095
3096#ifdef CONFIG_SMP
1ea6c46a 3097 do {
87e867b4 3098 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3099
3100 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3101 } while (0);
9059393e
VG
3102#endif
3103
3104 enqueue_load_avg(cfs_rq, se);
0dacee1b 3105 if (se->on_rq)
1724b95b 3106 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3107
9059393e
VG
3108}
3109
3110void reweight_task(struct task_struct *p, int prio)
3111{
3112 struct sched_entity *se = &p->se;
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3114 struct load_weight *load = &se->load;
3115 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3116
0dacee1b 3117 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3118 load->inv_weight = sched_prio_to_wmult[prio];
3119}
3120
3ff6dcac 3121#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3122#ifdef CONFIG_SMP
cef27403
PZ
3123/*
3124 * All this does is approximate the hierarchical proportion which includes that
3125 * global sum we all love to hate.
3126 *
3127 * That is, the weight of a group entity, is the proportional share of the
3128 * group weight based on the group runqueue weights. That is:
3129 *
3130 * tg->weight * grq->load.weight
3131 * ge->load.weight = ----------------------------- (1)
08f7c2f4 3132 * \Sum grq->load.weight
cef27403
PZ
3133 *
3134 * Now, because computing that sum is prohibitively expensive to compute (been
3135 * there, done that) we approximate it with this average stuff. The average
3136 * moves slower and therefore the approximation is cheaper and more stable.
3137 *
3138 * So instead of the above, we substitute:
3139 *
3140 * grq->load.weight -> grq->avg.load_avg (2)
3141 *
3142 * which yields the following:
3143 *
3144 * tg->weight * grq->avg.load_avg
3145 * ge->load.weight = ------------------------------ (3)
08f7c2f4 3146 * tg->load_avg
cef27403
PZ
3147 *
3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3149 *
3150 * That is shares_avg, and it is right (given the approximation (2)).
3151 *
3152 * The problem with it is that because the average is slow -- it was designed
3153 * to be exactly that of course -- this leads to transients in boundary
3154 * conditions. In specific, the case where the group was idle and we start the
3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156 * yielding bad latency etc..
3157 *
3158 * Now, in that special case (1) reduces to:
3159 *
3160 * tg->weight * grq->load.weight
17de4ee0 3161 * ge->load.weight = ----------------------------- = tg->weight (4)
08f7c2f4 3162 * grp->load.weight
cef27403
PZ
3163 *
3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3165 *
3166 * So what we do is modify our approximation (3) to approach (4) in the (near)
3167 * UP case, like:
3168 *
3169 * ge->load.weight =
3170 *
3171 * tg->weight * grq->load.weight
3172 * --------------------------------------------------- (5)
3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3174 *
17de4ee0
PZ
3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3177 *
3178 *
3179 * tg->weight * grq->load.weight
3180 * ge->load.weight = ----------------------------- (6)
08f7c2f4 3181 * tg_load_avg'
17de4ee0
PZ
3182 *
3183 * Where:
3184 *
3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3187 *
3188 * And that is shares_weight and is icky. In the (near) UP case it approaches
3189 * (4) while in the normal case it approaches (3). It consistently
3190 * overestimates the ge->load.weight and therefore:
3191 *
3192 * \Sum ge->load.weight >= tg->weight
3193 *
3194 * hence icky!
3195 */
2c8e4dce 3196static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3197{
7c80cfc9
PZ
3198 long tg_weight, tg_shares, load, shares;
3199 struct task_group *tg = cfs_rq->tg;
3200
3201 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3202
3d4b60d3 3203 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3204
ea1dc6fc 3205 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3206
ea1dc6fc
PZ
3207 /* Ensure tg_weight >= load */
3208 tg_weight -= cfs_rq->tg_load_avg_contrib;
3209 tg_weight += load;
3ff6dcac 3210
7c80cfc9 3211 shares = (tg_shares * load);
cf5f0acf
PZ
3212 if (tg_weight)
3213 shares /= tg_weight;
3ff6dcac 3214
b8fd8423
DE
3215 /*
3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217 * of a group with small tg->shares value. It is a floor value which is
3218 * assigned as a minimum load.weight to the sched_entity representing
3219 * the group on a CPU.
3220 *
3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3225 * instead of 0.
3226 */
7c80cfc9 3227 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3228}
387f77cc 3229#endif /* CONFIG_SMP */
ea1dc6fc 3230
82958366
PT
3231static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3232
1ea6c46a
PZ
3233/*
3234 * Recomputes the group entity based on the current state of its group
3235 * runqueue.
3236 */
3237static void update_cfs_group(struct sched_entity *se)
2069dd75 3238{
1ea6c46a 3239 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3240 long shares;
2069dd75 3241
1ea6c46a 3242 if (!gcfs_rq)
89ee048f
VG
3243 return;
3244
1ea6c46a 3245 if (throttled_hierarchy(gcfs_rq))
2069dd75 3246 return;
89ee048f 3247
3ff6dcac 3248#ifndef CONFIG_SMP
0dacee1b 3249 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3250
3251 if (likely(se->load.weight == shares))
3ff6dcac 3252 return;
7c80cfc9 3253#else
2c8e4dce 3254 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3255#endif
2069dd75 3256
0dacee1b 3257 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3258}
89ee048f 3259
2069dd75 3260#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3261static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3262{
3263}
3264#endif /* CONFIG_FAIR_GROUP_SCHED */
3265
ea14b57e 3266static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3267{
43964409
LT
3268 struct rq *rq = rq_of(cfs_rq);
3269
a4f9a0e5 3270 if (&rq->cfs == cfs_rq) {
a030d738
VK
3271 /*
3272 * There are a few boundary cases this might miss but it should
3273 * get called often enough that that should (hopefully) not be
9783be2c 3274 * a real problem.
a030d738
VK
3275 *
3276 * It will not get called when we go idle, because the idle
3277 * thread is a different class (!fair), nor will the utilization
3278 * number include things like RT tasks.
3279 *
3280 * As is, the util number is not freq-invariant (we'd have to
3281 * implement arch_scale_freq_capacity() for that).
3282 *
3283 * See cpu_util().
3284 */
ea14b57e 3285 cpufreq_update_util(rq, flags);
a030d738
VK
3286 }
3287}
3288
141965c7 3289#ifdef CONFIG_SMP
c566e8e9 3290#ifdef CONFIG_FAIR_GROUP_SCHED
fdaba61e
RR
3291/*
3292 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3293 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3294 * bottom-up, we only have to test whether the cfs_rq before us on the list
3295 * is our child.
3296 * If cfs_rq is not on the list, test whether a child needs its to be added to
3297 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3298 */
3299static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3300{
3301 struct cfs_rq *prev_cfs_rq;
3302 struct list_head *prev;
3303
3304 if (cfs_rq->on_list) {
3305 prev = cfs_rq->leaf_cfs_rq_list.prev;
3306 } else {
3307 struct rq *rq = rq_of(cfs_rq);
3308
3309 prev = rq->tmp_alone_branch;
3310 }
3311
3312 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3313
3314 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3315}
a7b359fc
OU
3316
3317static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3318{
3319 if (cfs_rq->load.weight)
3320 return false;
3321
3322 if (cfs_rq->avg.load_sum)
3323 return false;
3324
3325 if (cfs_rq->avg.util_sum)
3326 return false;
3327
3328 if (cfs_rq->avg.runnable_sum)
3329 return false;
3330
fdaba61e
RR
3331 if (child_cfs_rq_on_list(cfs_rq))
3332 return false;
3333
b2c0931a
IM
3334 /*
3335 * _avg must be null when _sum are null because _avg = _sum / divider
3336 * Make sure that rounding and/or propagation of PELT values never
3337 * break this.
3338 */
3339 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3340 cfs_rq->avg.util_avg ||
3341 cfs_rq->avg.runnable_avg);
3342
a7b359fc
OU
3343 return true;
3344}
3345
7c3edd2c
PZ
3346/**
3347 * update_tg_load_avg - update the tg's load avg
3348 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3349 *
3350 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3351 * However, because tg->load_avg is a global value there are performance
3352 * considerations.
3353 *
3354 * In order to avoid having to look at the other cfs_rq's, we use a
3355 * differential update where we store the last value we propagated. This in
3356 * turn allows skipping updates if the differential is 'small'.
3357 *
815abf5a 3358 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3359 */
fe749158 3360static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3361{
9d89c257 3362 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3363
aa0b7ae0
WL
3364 /*
3365 * No need to update load_avg for root_task_group as it is not used.
3366 */
3367 if (cfs_rq->tg == &root_task_group)
3368 return;
3369
fe749158 3370 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3371 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3372 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3373 }
8165e145 3374}
f5f9739d 3375
ad936d86 3376/*
97fb7a0a 3377 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3378 * caller only guarantees p->pi_lock is held; no other assumptions,
3379 * including the state of rq->lock, should be made.
3380 */
3381void set_task_rq_fair(struct sched_entity *se,
3382 struct cfs_rq *prev, struct cfs_rq *next)
3383{
0ccb977f
PZ
3384 u64 p_last_update_time;
3385 u64 n_last_update_time;
3386
ad936d86
BP
3387 if (!sched_feat(ATTACH_AGE_LOAD))
3388 return;
3389
3390 /*
3391 * We are supposed to update the task to "current" time, then its up to
3392 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3393 * getting what current time is, so simply throw away the out-of-date
3394 * time. This will result in the wakee task is less decayed, but giving
3395 * the wakee more load sounds not bad.
3396 */
0ccb977f
PZ
3397 if (!(se->avg.last_update_time && prev))
3398 return;
ad936d86
BP
3399
3400#ifndef CONFIG_64BIT
0ccb977f 3401 {
ad936d86
BP
3402 u64 p_last_update_time_copy;
3403 u64 n_last_update_time_copy;
3404
3405 do {
3406 p_last_update_time_copy = prev->load_last_update_time_copy;
3407 n_last_update_time_copy = next->load_last_update_time_copy;
3408
3409 smp_rmb();
3410
3411 p_last_update_time = prev->avg.last_update_time;
3412 n_last_update_time = next->avg.last_update_time;
3413
3414 } while (p_last_update_time != p_last_update_time_copy ||
3415 n_last_update_time != n_last_update_time_copy);
0ccb977f 3416 }
ad936d86 3417#else
0ccb977f
PZ
3418 p_last_update_time = prev->avg.last_update_time;
3419 n_last_update_time = next->avg.last_update_time;
ad936d86 3420#endif
23127296 3421 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3422 se->avg.last_update_time = n_last_update_time;
ad936d86 3423}
09a43ace 3424
0e2d2aaa
PZ
3425/*
3426 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3427 * propagate its contribution. The key to this propagation is the invariant
3428 * that for each group:
3429 *
3430 * ge->avg == grq->avg (1)
3431 *
3432 * _IFF_ we look at the pure running and runnable sums. Because they
3433 * represent the very same entity, just at different points in the hierarchy.
3434 *
9f683953
VG
3435 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3436 * and simply copies the running/runnable sum over (but still wrong, because
3437 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3438 *
0dacee1b 3439 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3440 *
3441 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3442 *
3443 * And since, like util, the runnable part should be directly transferable,
3444 * the following would _appear_ to be the straight forward approach:
3445 *
a4c3c049 3446 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3447 *
3448 * And per (1) we have:
3449 *
a4c3c049 3450 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3451 *
3452 * Which gives:
3453 *
3454 * ge->load.weight * grq->avg.load_avg
3455 * ge->avg.load_avg = ----------------------------------- (4)
3456 * grq->load.weight
3457 *
3458 * Except that is wrong!
3459 *
3460 * Because while for entities historical weight is not important and we
3461 * really only care about our future and therefore can consider a pure
3462 * runnable sum, runqueues can NOT do this.
3463 *
3464 * We specifically want runqueues to have a load_avg that includes
3465 * historical weights. Those represent the blocked load, the load we expect
3466 * to (shortly) return to us. This only works by keeping the weights as
3467 * integral part of the sum. We therefore cannot decompose as per (3).
3468 *
a4c3c049
VG
3469 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3470 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3471 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3472 * runnable section of these tasks overlap (or not). If they were to perfectly
3473 * align the rq as a whole would be runnable 2/3 of the time. If however we
3474 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3475 *
a4c3c049 3476 * So we'll have to approximate.. :/
0e2d2aaa 3477 *
a4c3c049 3478 * Given the constraint:
0e2d2aaa 3479 *
a4c3c049 3480 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3481 *
a4c3c049
VG
3482 * We can construct a rule that adds runnable to a rq by assuming minimal
3483 * overlap.
0e2d2aaa 3484 *
a4c3c049 3485 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3486 *
a4c3c049 3487 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3488 *
a4c3c049 3489 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3490 *
0e2d2aaa 3491 */
09a43ace 3492static inline void
0e2d2aaa 3493update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3494{
09a43ace 3495 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3496 u32 divider;
09a43ace
VG
3497
3498 /* Nothing to update */
3499 if (!delta)
3500 return;
3501
87e867b4
VG
3502 /*
3503 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3504 * See ___update_load_avg() for details.
3505 */
3506 divider = get_pelt_divider(&cfs_rq->avg);
3507
09a43ace
VG
3508 /* Set new sched_entity's utilization */
3509 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3510 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3511
3512 /* Update parent cfs_rq utilization */
3513 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3514 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3515}
3516
9f683953
VG
3517static inline void
3518update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3519{
3520 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3521 u32 divider;
9f683953
VG
3522
3523 /* Nothing to update */
3524 if (!delta)
3525 return;
3526
87e867b4
VG
3527 /*
3528 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3529 * See ___update_load_avg() for details.
3530 */
3531 divider = get_pelt_divider(&cfs_rq->avg);
3532
9f683953
VG
3533 /* Set new sched_entity's runnable */
3534 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3535 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3536
3537 /* Update parent cfs_rq runnable */
3538 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3539 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3540}
3541
09a43ace 3542static inline void
0dacee1b 3543update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3544{
7c7ad626 3545 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3546 unsigned long load_avg;
3547 u64 load_sum = 0;
95d68593 3548 u32 divider;
09a43ace 3549
0e2d2aaa
PZ
3550 if (!runnable_sum)
3551 return;
09a43ace 3552
0e2d2aaa 3553 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3554
95d68593
VG
3555 /*
3556 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3557 * See ___update_load_avg() for details.
3558 */
87e867b4 3559 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3560
a4c3c049
VG
3561 if (runnable_sum >= 0) {
3562 /*
3563 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3564 * the CPU is saturated running == runnable.
3565 */
3566 runnable_sum += se->avg.load_sum;
95d68593 3567 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3568 } else {
3569 /*
3570 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3571 * assuming all tasks are equally runnable.
3572 */
3573 if (scale_load_down(gcfs_rq->load.weight)) {
3574 load_sum = div_s64(gcfs_rq->avg.load_sum,
3575 scale_load_down(gcfs_rq->load.weight));
3576 }
3577
3578 /* But make sure to not inflate se's runnable */
3579 runnable_sum = min(se->avg.load_sum, load_sum);
3580 }
3581
3582 /*
3583 * runnable_sum can't be lower than running_sum
23127296
VG
3584 * Rescale running sum to be in the same range as runnable sum
3585 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3586 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3587 */
23127296 3588 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3589 runnable_sum = max(runnable_sum, running_sum);
3590
0e2d2aaa 3591 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3592 load_avg = div_s64(load_sum, divider);
09a43ace 3593
83c5e9d5
DE
3594 se->avg.load_sum = runnable_sum;
3595
7c7ad626 3596 delta = load_avg - se->avg.load_avg;
83c5e9d5
DE
3597 if (!delta)
3598 return;
09a43ace 3599
a4c3c049 3600 se->avg.load_avg = load_avg;
7c7ad626
VG
3601
3602 add_positive(&cfs_rq->avg.load_avg, delta);
3603 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
09a43ace
VG
3604}
3605
0e2d2aaa 3606static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3607{
0e2d2aaa
PZ
3608 cfs_rq->propagate = 1;
3609 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3610}
3611
3612/* Update task and its cfs_rq load average */
3613static inline int propagate_entity_load_avg(struct sched_entity *se)
3614{
0e2d2aaa 3615 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3616
3617 if (entity_is_task(se))
3618 return 0;
3619
0e2d2aaa
PZ
3620 gcfs_rq = group_cfs_rq(se);
3621 if (!gcfs_rq->propagate)
09a43ace
VG
3622 return 0;
3623
0e2d2aaa
PZ
3624 gcfs_rq->propagate = 0;
3625
09a43ace
VG
3626 cfs_rq = cfs_rq_of(se);
3627
0e2d2aaa 3628 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3629
0e2d2aaa 3630 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3631 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3632 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3633
ba19f51f 3634 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3635 trace_pelt_se_tp(se);
ba19f51f 3636
09a43ace
VG
3637 return 1;
3638}
3639
bc427898
VG
3640/*
3641 * Check if we need to update the load and the utilization of a blocked
3642 * group_entity:
3643 */
3644static inline bool skip_blocked_update(struct sched_entity *se)
3645{
3646 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3647
3648 /*
3649 * If sched_entity still have not zero load or utilization, we have to
3650 * decay it:
3651 */
3652 if (se->avg.load_avg || se->avg.util_avg)
3653 return false;
3654
3655 /*
3656 * If there is a pending propagation, we have to update the load and
3657 * the utilization of the sched_entity:
3658 */
0e2d2aaa 3659 if (gcfs_rq->propagate)
bc427898
VG
3660 return false;
3661
3662 /*
3663 * Otherwise, the load and the utilization of the sched_entity is
3664 * already zero and there is no pending propagation, so it will be a
3665 * waste of time to try to decay it:
3666 */
3667 return true;
3668}
3669
6e83125c 3670#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3671
fe749158 3672static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3673
3674static inline int propagate_entity_load_avg(struct sched_entity *se)
3675{
3676 return 0;
3677}
3678
0e2d2aaa 3679static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3680
6e83125c 3681#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3682
3d30544f
PZ
3683/**
3684 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3685 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3686 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3687 *
3688 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3689 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3690 * post_init_entity_util_avg().
3691 *
3692 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3693 *
7c3edd2c
PZ
3694 * Returns true if the load decayed or we removed load.
3695 *
3696 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3697 * call update_tg_load_avg() when this function returns true.
3d30544f 3698 */
a2c6c91f 3699static inline int
3a123bbb 3700update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3701{
9f683953 3702 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3703 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3704 int decayed = 0;
2dac754e 3705
2a2f5d4e
PZ
3706 if (cfs_rq->removed.nr) {
3707 unsigned long r;
87e867b4 3708 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3709
3710 raw_spin_lock(&cfs_rq->removed.lock);
3711 swap(cfs_rq->removed.util_avg, removed_util);
3712 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3713 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3714 cfs_rq->removed.nr = 0;
3715 raw_spin_unlock(&cfs_rq->removed.lock);
3716
2a2f5d4e 3717 r = removed_load;
89741892 3718 sub_positive(&sa->load_avg, r);
1c35b07e 3719 sa->load_sum = sa->load_avg * divider;
2dac754e 3720
2a2f5d4e 3721 r = removed_util;
89741892 3722 sub_positive(&sa->util_avg, r);
943858a1
VG
3723 sub_positive(&sa->util_sum, r * divider);
3724 /*
3725 * Because of rounding, se->util_sum might ends up being +1 more than
3726 * cfs->util_sum. Although this is not a problem by itself, detaching
3727 * a lot of tasks with the rounding problem between 2 updates of
3728 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3729 * cfs_util_avg is not.
3730 * Check that util_sum is still above its lower bound for the new
3731 * util_avg. Given that period_contrib might have moved since the last
3732 * sync, we are only sure that util_sum must be above or equal to
3733 * util_avg * minimum possible divider
3734 */
3735 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
2a2f5d4e 3736
9f683953
VG
3737 r = removed_runnable;
3738 sub_positive(&sa->runnable_avg, r);
1c35b07e 3739 sa->runnable_sum = sa->runnable_avg * divider;
9f683953
VG
3740
3741 /*
3742 * removed_runnable is the unweighted version of removed_load so we
3743 * can use it to estimate removed_load_sum.
3744 */
3745 add_tg_cfs_propagate(cfs_rq,
3746 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3747
3748 decayed = 1;
9d89c257 3749 }
36ee28e4 3750
23127296 3751 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3752
9d89c257
YD
3753#ifndef CONFIG_64BIT
3754 smp_wmb();
3755 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3756#endif
36ee28e4 3757
2a2f5d4e 3758 return decayed;
21e96f88
SM
3759}
3760
3d30544f
PZ
3761/**
3762 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3763 * @cfs_rq: cfs_rq to attach to
3764 * @se: sched_entity to attach
3765 *
3766 * Must call update_cfs_rq_load_avg() before this, since we rely on
3767 * cfs_rq->avg.last_update_time being current.
3768 */
a4f9a0e5 3769static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3770{
95d68593
VG
3771 /*
3772 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3773 * See ___update_load_avg() for details.
3774 */
87e867b4 3775 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3776
3777 /*
3778 * When we attach the @se to the @cfs_rq, we must align the decay
3779 * window because without that, really weird and wonderful things can
3780 * happen.
3781 *
3782 * XXX illustrate
3783 */
a05e8c51 3784 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3785 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3786
3787 /*
3788 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3789 * period_contrib. This isn't strictly correct, but since we're
3790 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3791 * _sum a little.
3792 */
3793 se->avg.util_sum = se->avg.util_avg * divider;
3794
9f683953
VG
3795 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3796
f207934f
PZ
3797 se->avg.load_sum = divider;
3798 if (se_weight(se)) {
3799 se->avg.load_sum =
3800 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3801 }
3802
8d5b9025 3803 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3804 cfs_rq->avg.util_avg += se->avg.util_avg;
3805 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3806 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3807 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3808
3809 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3810
a4f9a0e5 3811 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3812
3813 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3814}
3815
3d30544f
PZ
3816/**
3817 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3818 * @cfs_rq: cfs_rq to detach from
3819 * @se: sched_entity to detach
3820 *
3821 * Must call update_cfs_rq_load_avg() before this, since we rely on
3822 * cfs_rq->avg.last_update_time being current.
3823 */
a05e8c51
BP
3824static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3825{
fcf6631f
VG
3826 /*
3827 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3828 * See ___update_load_avg() for details.
3829 */
3830 u32 divider = get_pelt_divider(&cfs_rq->avg);
3831
8d5b9025 3832 dequeue_load_avg(cfs_rq, se);
89741892 3833 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
fcf6631f 3834 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
9f683953 3835 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
fcf6631f 3836 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
0e2d2aaa
PZ
3837
3838 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3839
ea14b57e 3840 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3841
3842 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3843}
3844
b382a531
PZ
3845/*
3846 * Optional action to be done while updating the load average
3847 */
3848#define UPDATE_TG 0x1
3849#define SKIP_AGE_LOAD 0x2
3850#define DO_ATTACH 0x4
3851
3852/* Update task and its cfs_rq load average */
3853static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3854{
23127296 3855 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3856 int decayed;
3857
3858 /*
3859 * Track task load average for carrying it to new CPU after migrated, and
3860 * track group sched_entity load average for task_h_load calc in migration
3861 */
3862 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3863 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3864
3865 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3866 decayed |= propagate_entity_load_avg(se);
3867
3868 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3869
ea14b57e
PZ
3870 /*
3871 * DO_ATTACH means we're here from enqueue_entity().
3872 * !last_update_time means we've passed through
3873 * migrate_task_rq_fair() indicating we migrated.
3874 *
3875 * IOW we're enqueueing a task on a new CPU.
3876 */
a4f9a0e5 3877 attach_entity_load_avg(cfs_rq, se);
fe749158 3878 update_tg_load_avg(cfs_rq);
b382a531 3879
bef69dd8
VG
3880 } else if (decayed) {
3881 cfs_rq_util_change(cfs_rq, 0);
3882
3883 if (flags & UPDATE_TG)
fe749158 3884 update_tg_load_avg(cfs_rq);
bef69dd8 3885 }
b382a531
PZ
3886}
3887
9d89c257 3888#ifndef CONFIG_64BIT
0905f04e
YD
3889static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3890{
9d89c257 3891 u64 last_update_time_copy;
0905f04e 3892 u64 last_update_time;
9ee474f5 3893
9d89c257
YD
3894 do {
3895 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3896 smp_rmb();
3897 last_update_time = cfs_rq->avg.last_update_time;
3898 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3899
3900 return last_update_time;
3901}
9d89c257 3902#else
0905f04e
YD
3903static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3904{
3905 return cfs_rq->avg.last_update_time;
3906}
9d89c257
YD
3907#endif
3908
104cb16d
MR
3909/*
3910 * Synchronize entity load avg of dequeued entity without locking
3911 * the previous rq.
3912 */
71b47eaf 3913static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3914{
3915 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3916 u64 last_update_time;
3917
3918 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3919 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3920}
3921
0905f04e
YD
3922/*
3923 * Task first catches up with cfs_rq, and then subtract
3924 * itself from the cfs_rq (task must be off the queue now).
3925 */
71b47eaf 3926static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3927{
3928 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3929 unsigned long flags;
0905f04e
YD
3930
3931 /*
7dc603c9
PZ
3932 * tasks cannot exit without having gone through wake_up_new_task() ->
3933 * post_init_entity_util_avg() which will have added things to the
3934 * cfs_rq, so we can remove unconditionally.
0905f04e 3935 */
0905f04e 3936
104cb16d 3937 sync_entity_load_avg(se);
2a2f5d4e
PZ
3938
3939 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3940 ++cfs_rq->removed.nr;
3941 cfs_rq->removed.util_avg += se->avg.util_avg;
3942 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3943 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3944 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3945}
642dbc39 3946
9f683953
VG
3947static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3948{
3949 return cfs_rq->avg.runnable_avg;
3950}
3951
7ea241af
YD
3952static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3953{
3954 return cfs_rq->avg.load_avg;
3955}
3956
d91cecc1
CY
3957static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3958
7f65ea42
PB
3959static inline unsigned long task_util(struct task_struct *p)
3960{
3961 return READ_ONCE(p->se.avg.util_avg);
3962}
3963
3964static inline unsigned long _task_util_est(struct task_struct *p)
3965{
3966 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3967
68d7a190 3968 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
7f65ea42
PB
3969}
3970
3971static inline unsigned long task_util_est(struct task_struct *p)
3972{
3973 return max(task_util(p), _task_util_est(p));
3974}
3975
a7008c07
VS
3976#ifdef CONFIG_UCLAMP_TASK
3977static inline unsigned long uclamp_task_util(struct task_struct *p)
3978{
3979 return clamp(task_util_est(p),
3980 uclamp_eff_value(p, UCLAMP_MIN),
3981 uclamp_eff_value(p, UCLAMP_MAX));
3982}
3983#else
3984static inline unsigned long uclamp_task_util(struct task_struct *p)
3985{
3986 return task_util_est(p);
3987}
3988#endif
3989
7f65ea42
PB
3990static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3991 struct task_struct *p)
3992{
3993 unsigned int enqueued;
3994
3995 if (!sched_feat(UTIL_EST))
3996 return;
3997
3998 /* Update root cfs_rq's estimated utilization */
3999 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 4000 enqueued += _task_util_est(p);
7f65ea42 4001 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
4002
4003 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
4004}
4005
8c1f560c
XY
4006static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4007 struct task_struct *p)
4008{
4009 unsigned int enqueued;
4010
4011 if (!sched_feat(UTIL_EST))
4012 return;
4013
4014 /* Update root cfs_rq's estimated utilization */
4015 enqueued = cfs_rq->avg.util_est.enqueued;
4016 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4017 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4018
4019 trace_sched_util_est_cfs_tp(cfs_rq);
4020}
4021
b89997aa
VD
4022#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4023
7f65ea42
PB
4024/*
4025 * Check if a (signed) value is within a specified (unsigned) margin,
4026 * based on the observation that:
4027 *
4028 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4029 *
3b03706f 4030 * NOTE: this only works when value + margin < INT_MAX.
7f65ea42
PB
4031 */
4032static inline bool within_margin(int value, int margin)
4033{
4034 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4035}
4036
8c1f560c
XY
4037static inline void util_est_update(struct cfs_rq *cfs_rq,
4038 struct task_struct *p,
4039 bool task_sleep)
7f65ea42 4040{
b89997aa 4041 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
4042 struct util_est ue;
4043
4044 if (!sched_feat(UTIL_EST))
4045 return;
4046
7f65ea42
PB
4047 /*
4048 * Skip update of task's estimated utilization when the task has not
4049 * yet completed an activation, e.g. being migrated.
4050 */
4051 if (!task_sleep)
4052 return;
4053
d519329f
PB
4054 /*
4055 * If the PELT values haven't changed since enqueue time,
4056 * skip the util_est update.
4057 */
4058 ue = p->se.avg.util_est;
4059 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4060 return;
4061
b89997aa
VD
4062 last_enqueued_diff = ue.enqueued;
4063
b8c96361
PB
4064 /*
4065 * Reset EWMA on utilization increases, the moving average is used only
4066 * to smooth utilization decreases.
4067 */
68d7a190 4068 ue.enqueued = task_util(p);
b8c96361
PB
4069 if (sched_feat(UTIL_EST_FASTUP)) {
4070 if (ue.ewma < ue.enqueued) {
4071 ue.ewma = ue.enqueued;
4072 goto done;
4073 }
4074 }
4075
7f65ea42 4076 /*
b89997aa 4077 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4078 * already ~1% close to its last activation value.
4079 */
7f65ea42 4080 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4081 last_enqueued_diff -= ue.enqueued;
4082 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4083 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4084 goto done;
4085
7f65ea42 4086 return;
b89997aa 4087 }
7f65ea42 4088
10a35e68
VG
4089 /*
4090 * To avoid overestimation of actual task utilization, skip updates if
4091 * we cannot grant there is idle time in this CPU.
4092 */
8c1f560c 4093 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4094 return;
4095
7f65ea42
PB
4096 /*
4097 * Update Task's estimated utilization
4098 *
4099 * When *p completes an activation we can consolidate another sample
4100 * of the task size. This is done by storing the current PELT value
4101 * as ue.enqueued and by using this value to update the Exponential
4102 * Weighted Moving Average (EWMA):
4103 *
4104 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4105 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4106 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4107 * = w * ( last_ewma_diff ) + ewma(t-1)
4108 * = w * (last_ewma_diff + ewma(t-1) / w)
4109 *
4110 * Where 'w' is the weight of new samples, which is configured to be
4111 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4112 */
4113 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4114 ue.ewma += last_ewma_diff;
4115 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4116done:
68d7a190 4117 ue.enqueued |= UTIL_AVG_UNCHANGED;
7f65ea42 4118 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4119
4120 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4121}
4122
3b1baa64
MR
4123static inline int task_fits_capacity(struct task_struct *p, long capacity)
4124{
a7008c07 4125 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4126}
4127
4128static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4129{
4130 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4131 return;
4132
0ae78eec 4133 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4134 rq->misfit_task_load = 0;
4135 return;
4136 }
4137
4138 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4139 rq->misfit_task_load = 0;
4140 return;
4141 }
4142
01cfcde9
VG
4143 /*
4144 * Make sure that misfit_task_load will not be null even if
4145 * task_h_load() returns 0.
4146 */
4147 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4148}
4149
38033c37
PZ
4150#else /* CONFIG_SMP */
4151
a7b359fc
OU
4152static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4153{
4154 return true;
4155}
4156
d31b1a66
VG
4157#define UPDATE_TG 0x0
4158#define SKIP_AGE_LOAD 0x0
b382a531 4159#define DO_ATTACH 0x0
d31b1a66 4160
88c0616e 4161static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4162{
ea14b57e 4163 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4164}
4165
9d89c257 4166static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4167
a05e8c51 4168static inline void
a4f9a0e5 4169attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4170static inline void
4171detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4172
d91cecc1 4173static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4174{
4175 return 0;
4176}
4177
7f65ea42
PB
4178static inline void
4179util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4180
4181static inline void
8c1f560c
XY
4182util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4183
4184static inline void
4185util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4186 bool task_sleep) {}
3b1baa64 4187static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4188
38033c37 4189#endif /* CONFIG_SMP */
9d85f21c 4190
ddc97297
PZ
4191static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4192{
4193#ifdef CONFIG_SCHED_DEBUG
4194 s64 d = se->vruntime - cfs_rq->min_vruntime;
4195
4196 if (d < 0)
4197 d = -d;
4198
4199 if (d > 3*sysctl_sched_latency)
ae92882e 4200 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4201#endif
4202}
4203
aeb73b04
PZ
4204static void
4205place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4206{
1af5f730 4207 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4208
2cb8600e
PZ
4209 /*
4210 * The 'current' period is already promised to the current tasks,
4211 * however the extra weight of the new task will slow them down a
4212 * little, place the new task so that it fits in the slot that
4213 * stays open at the end.
4214 */
94dfb5e7 4215 if (initial && sched_feat(START_DEBIT))
f9c0b095 4216 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4217
a2e7a7eb 4218 /* sleeps up to a single latency don't count. */
5ca9880c 4219 if (!initial) {
a2e7a7eb 4220 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4221
a2e7a7eb
MG
4222 /*
4223 * Halve their sleep time's effect, to allow
4224 * for a gentler effect of sleepers:
4225 */
4226 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4227 thresh >>= 1;
51e0304c 4228
a2e7a7eb 4229 vruntime -= thresh;
aeb73b04
PZ
4230 }
4231
b5d9d734 4232 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4233 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4234}
4235
d3d9dc33
PT
4236static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4237
cb251765
MG
4238static inline void check_schedstat_required(void)
4239{
4240#ifdef CONFIG_SCHEDSTATS
4241 if (schedstat_enabled())
4242 return;
4243
4244 /* Force schedstat enabled if a dependent tracepoint is active */
4245 if (trace_sched_stat_wait_enabled() ||
4246 trace_sched_stat_sleep_enabled() ||
4247 trace_sched_stat_iowait_enabled() ||
4248 trace_sched_stat_blocked_enabled() ||
4249 trace_sched_stat_runtime_enabled()) {
eda8dca5 4250 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4251 "stat_blocked and stat_runtime require the "
f67abed5 4252 "kernel parameter schedstats=enable or "
cb251765
MG
4253 "kernel.sched_schedstats=1\n");
4254 }
4255#endif
4256}
4257
fe61468b 4258static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4259
4260/*
4261 * MIGRATION
4262 *
4263 * dequeue
4264 * update_curr()
4265 * update_min_vruntime()
4266 * vruntime -= min_vruntime
4267 *
4268 * enqueue
4269 * update_curr()
4270 * update_min_vruntime()
4271 * vruntime += min_vruntime
4272 *
4273 * this way the vruntime transition between RQs is done when both
4274 * min_vruntime are up-to-date.
4275 *
4276 * WAKEUP (remote)
4277 *
59efa0ba 4278 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4279 * vruntime -= min_vruntime
4280 *
4281 * enqueue
4282 * update_curr()
4283 * update_min_vruntime()
4284 * vruntime += min_vruntime
4285 *
4286 * this way we don't have the most up-to-date min_vruntime on the originating
4287 * CPU and an up-to-date min_vruntime on the destination CPU.
4288 */
4289
bf0f6f24 4290static void
88ec22d3 4291enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4292{
2f950354
PZ
4293 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4294 bool curr = cfs_rq->curr == se;
4295
88ec22d3 4296 /*
2f950354
PZ
4297 * If we're the current task, we must renormalise before calling
4298 * update_curr().
88ec22d3 4299 */
2f950354 4300 if (renorm && curr)
88ec22d3
PZ
4301 se->vruntime += cfs_rq->min_vruntime;
4302
2f950354
PZ
4303 update_curr(cfs_rq);
4304
bf0f6f24 4305 /*
2f950354
PZ
4306 * Otherwise, renormalise after, such that we're placed at the current
4307 * moment in time, instead of some random moment in the past. Being
4308 * placed in the past could significantly boost this task to the
4309 * fairness detriment of existing tasks.
bf0f6f24 4310 */
2f950354
PZ
4311 if (renorm && !curr)
4312 se->vruntime += cfs_rq->min_vruntime;
4313
89ee048f
VG
4314 /*
4315 * When enqueuing a sched_entity, we must:
4316 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4317 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4318 * - For group_entity, update its weight to reflect the new share of
4319 * its group cfs_rq
4320 * - Add its new weight to cfs_rq->load.weight
4321 */
b382a531 4322 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4323 se_update_runnable(se);
1ea6c46a 4324 update_cfs_group(se);
17bc14b7 4325 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4326
1a3d027c 4327 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4328 place_entity(cfs_rq, se, 0);
bf0f6f24 4329
cb251765 4330 check_schedstat_required();
4fa8d299
JP
4331 update_stats_enqueue(cfs_rq, se, flags);
4332 check_spread(cfs_rq, se);
2f950354 4333 if (!curr)
83b699ed 4334 __enqueue_entity(cfs_rq, se);
2069dd75 4335 se->on_rq = 1;
3d4b47b4 4336
fe61468b
VG
4337 /*
4338 * When bandwidth control is enabled, cfs might have been removed
4339 * because of a parent been throttled but cfs->nr_running > 1. Try to
3b03706f 4340 * add it unconditionally.
fe61468b
VG
4341 */
4342 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4343 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4344
4345 if (cfs_rq->nr_running == 1)
d3d9dc33 4346 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4347}
4348
2c13c919 4349static void __clear_buddies_last(struct sched_entity *se)
2002c695 4350{
2c13c919
RR
4351 for_each_sched_entity(se) {
4352 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4353 if (cfs_rq->last != se)
2c13c919 4354 break;
f1044799
PZ
4355
4356 cfs_rq->last = NULL;
2c13c919
RR
4357 }
4358}
2002c695 4359
2c13c919
RR
4360static void __clear_buddies_next(struct sched_entity *se)
4361{
4362 for_each_sched_entity(se) {
4363 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4364 if (cfs_rq->next != se)
2c13c919 4365 break;
f1044799
PZ
4366
4367 cfs_rq->next = NULL;
2c13c919 4368 }
2002c695
PZ
4369}
4370
ac53db59
RR
4371static void __clear_buddies_skip(struct sched_entity *se)
4372{
4373 for_each_sched_entity(se) {
4374 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4375 if (cfs_rq->skip != se)
ac53db59 4376 break;
f1044799
PZ
4377
4378 cfs_rq->skip = NULL;
ac53db59
RR
4379 }
4380}
4381
a571bbea
PZ
4382static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4383{
2c13c919
RR
4384 if (cfs_rq->last == se)
4385 __clear_buddies_last(se);
4386
4387 if (cfs_rq->next == se)
4388 __clear_buddies_next(se);
ac53db59
RR
4389
4390 if (cfs_rq->skip == se)
4391 __clear_buddies_skip(se);
a571bbea
PZ
4392}
4393
6c16a6dc 4394static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4395
bf0f6f24 4396static void
371fd7e7 4397dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4398{
a2a2d680
DA
4399 /*
4400 * Update run-time statistics of the 'current'.
4401 */
4402 update_curr(cfs_rq);
89ee048f
VG
4403
4404 /*
4405 * When dequeuing a sched_entity, we must:
4406 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4407 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4408 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4409 * - For group entity, update its weight to reflect the new share
4410 * of its group cfs_rq.
4411 */
88c0616e 4412 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4413 se_update_runnable(se);
a2a2d680 4414
4fa8d299 4415 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4416
2002c695 4417 clear_buddies(cfs_rq, se);
4793241b 4418
83b699ed 4419 if (se != cfs_rq->curr)
30cfdcfc 4420 __dequeue_entity(cfs_rq, se);
17bc14b7 4421 se->on_rq = 0;
30cfdcfc 4422 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4423
4424 /*
b60205c7
PZ
4425 * Normalize after update_curr(); which will also have moved
4426 * min_vruntime if @se is the one holding it back. But before doing
4427 * update_min_vruntime() again, which will discount @se's position and
4428 * can move min_vruntime forward still more.
88ec22d3 4429 */
371fd7e7 4430 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4431 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4432
d8b4986d
PT
4433 /* return excess runtime on last dequeue */
4434 return_cfs_rq_runtime(cfs_rq);
4435
1ea6c46a 4436 update_cfs_group(se);
b60205c7
PZ
4437
4438 /*
4439 * Now advance min_vruntime if @se was the entity holding it back,
4440 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4441 * put back on, and if we advance min_vruntime, we'll be placed back
4442 * further than we started -- ie. we'll be penalized.
4443 */
9845c49c 4444 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4445 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4446}
4447
4448/*
4449 * Preempt the current task with a newly woken task if needed:
4450 */
7c92e54f 4451static void
2e09bf55 4452check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4453{
11697830 4454 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4455 struct sched_entity *se;
4456 s64 delta;
11697830 4457
6d0f0ebd 4458 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4459 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4460 if (delta_exec > ideal_runtime) {
8875125e 4461 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4462 /*
4463 * The current task ran long enough, ensure it doesn't get
4464 * re-elected due to buddy favours.
4465 */
4466 clear_buddies(cfs_rq, curr);
f685ceac
MG
4467 return;
4468 }
4469
4470 /*
4471 * Ensure that a task that missed wakeup preemption by a
4472 * narrow margin doesn't have to wait for a full slice.
4473 * This also mitigates buddy induced latencies under load.
4474 */
f685ceac
MG
4475 if (delta_exec < sysctl_sched_min_granularity)
4476 return;
4477
f4cfb33e
WX
4478 se = __pick_first_entity(cfs_rq);
4479 delta = curr->vruntime - se->vruntime;
f685ceac 4480
f4cfb33e
WX
4481 if (delta < 0)
4482 return;
d7d82944 4483
f4cfb33e 4484 if (delta > ideal_runtime)
8875125e 4485 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4486}
4487
83b699ed 4488static void
8494f412 4489set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4490{
21f56ffe
PZ
4491 clear_buddies(cfs_rq, se);
4492
83b699ed
SV
4493 /* 'current' is not kept within the tree. */
4494 if (se->on_rq) {
4495 /*
4496 * Any task has to be enqueued before it get to execute on
4497 * a CPU. So account for the time it spent waiting on the
4498 * runqueue.
4499 */
4fa8d299 4500 update_stats_wait_end(cfs_rq, se);
83b699ed 4501 __dequeue_entity(cfs_rq, se);
88c0616e 4502 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4503 }
4504
79303e9e 4505 update_stats_curr_start(cfs_rq, se);
429d43bc 4506 cfs_rq->curr = se;
4fa8d299 4507
eba1ed4b
IM
4508 /*
4509 * Track our maximum slice length, if the CPU's load is at
4510 * least twice that of our own weight (i.e. dont track it
4511 * when there are only lesser-weight tasks around):
4512 */
f2bedc47
DE
4513 if (schedstat_enabled() &&
4514 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4515 schedstat_set(se->statistics.slice_max,
4516 max((u64)schedstat_val(se->statistics.slice_max),
4517 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4518 }
4fa8d299 4519
4a55b450 4520 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4521}
4522
3f3a4904
PZ
4523static int
4524wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4525
ac53db59
RR
4526/*
4527 * Pick the next process, keeping these things in mind, in this order:
4528 * 1) keep things fair between processes/task groups
4529 * 2) pick the "next" process, since someone really wants that to run
4530 * 3) pick the "last" process, for cache locality
4531 * 4) do not run the "skip" process, if something else is available
4532 */
678d5718
PZ
4533static struct sched_entity *
4534pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4535{
678d5718
PZ
4536 struct sched_entity *left = __pick_first_entity(cfs_rq);
4537 struct sched_entity *se;
4538
4539 /*
4540 * If curr is set we have to see if its left of the leftmost entity
4541 * still in the tree, provided there was anything in the tree at all.
4542 */
4543 if (!left || (curr && entity_before(curr, left)))
4544 left = curr;
4545
4546 se = left; /* ideally we run the leftmost entity */
f4b6755f 4547
ac53db59
RR
4548 /*
4549 * Avoid running the skip buddy, if running something else can
4550 * be done without getting too unfair.
4551 */
21f56ffe 4552 if (cfs_rq->skip && cfs_rq->skip == se) {
678d5718
PZ
4553 struct sched_entity *second;
4554
4555 if (se == curr) {
4556 second = __pick_first_entity(cfs_rq);
4557 } else {
4558 second = __pick_next_entity(se);
4559 if (!second || (curr && entity_before(curr, second)))
4560 second = curr;
4561 }
4562
ac53db59
RR
4563 if (second && wakeup_preempt_entity(second, left) < 1)
4564 se = second;
4565 }
aa2ac252 4566
9abb8973
PO
4567 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4568 /*
4569 * Someone really wants this to run. If it's not unfair, run it.
4570 */
ac53db59 4571 se = cfs_rq->next;
9abb8973
PO
4572 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4573 /*
4574 * Prefer last buddy, try to return the CPU to a preempted task.
4575 */
4576 se = cfs_rq->last;
4577 }
ac53db59 4578
4793241b 4579 return se;
aa2ac252
PZ
4580}
4581
678d5718 4582static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4583
ab6cde26 4584static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4585{
4586 /*
4587 * If still on the runqueue then deactivate_task()
4588 * was not called and update_curr() has to be done:
4589 */
4590 if (prev->on_rq)
b7cc0896 4591 update_curr(cfs_rq);
bf0f6f24 4592
d3d9dc33
PT
4593 /* throttle cfs_rqs exceeding runtime */
4594 check_cfs_rq_runtime(cfs_rq);
4595
4fa8d299 4596 check_spread(cfs_rq, prev);
cb251765 4597
30cfdcfc 4598 if (prev->on_rq) {
4fa8d299 4599 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4600 /* Put 'current' back into the tree. */
4601 __enqueue_entity(cfs_rq, prev);
9d85f21c 4602 /* in !on_rq case, update occurred at dequeue */
88c0616e 4603 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4604 }
429d43bc 4605 cfs_rq->curr = NULL;
bf0f6f24
IM
4606}
4607
8f4d37ec
PZ
4608static void
4609entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4610{
bf0f6f24 4611 /*
30cfdcfc 4612 * Update run-time statistics of the 'current'.
bf0f6f24 4613 */
30cfdcfc 4614 update_curr(cfs_rq);
bf0f6f24 4615
9d85f21c
PT
4616 /*
4617 * Ensure that runnable average is periodically updated.
4618 */
88c0616e 4619 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4620 update_cfs_group(curr);
9d85f21c 4621
8f4d37ec
PZ
4622#ifdef CONFIG_SCHED_HRTICK
4623 /*
4624 * queued ticks are scheduled to match the slice, so don't bother
4625 * validating it and just reschedule.
4626 */
983ed7a6 4627 if (queued) {
8875125e 4628 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4629 return;
4630 }
8f4d37ec
PZ
4631 /*
4632 * don't let the period tick interfere with the hrtick preemption
4633 */
4634 if (!sched_feat(DOUBLE_TICK) &&
4635 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4636 return;
4637#endif
4638
2c2efaed 4639 if (cfs_rq->nr_running > 1)
2e09bf55 4640 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4641}
4642
ab84d31e
PT
4643
4644/**************************************************
4645 * CFS bandwidth control machinery
4646 */
4647
4648#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4649
e9666d10 4650#ifdef CONFIG_JUMP_LABEL
c5905afb 4651static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4652
4653static inline bool cfs_bandwidth_used(void)
4654{
c5905afb 4655 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4656}
4657
1ee14e6c 4658void cfs_bandwidth_usage_inc(void)
029632fb 4659{
ce48c146 4660 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4661}
4662
4663void cfs_bandwidth_usage_dec(void)
4664{
ce48c146 4665 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4666}
e9666d10 4667#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4668static bool cfs_bandwidth_used(void)
4669{
4670 return true;
4671}
4672
1ee14e6c
BS
4673void cfs_bandwidth_usage_inc(void) {}
4674void cfs_bandwidth_usage_dec(void) {}
e9666d10 4675#endif /* CONFIG_JUMP_LABEL */
029632fb 4676
ab84d31e
PT
4677/*
4678 * default period for cfs group bandwidth.
4679 * default: 0.1s, units: nanoseconds
4680 */
4681static inline u64 default_cfs_period(void)
4682{
4683 return 100000000ULL;
4684}
ec12cb7f
PT
4685
4686static inline u64 sched_cfs_bandwidth_slice(void)
4687{
4688 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4689}
4690
a9cf55b2 4691/*
763a9ec0
QC
4692 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4693 * directly instead of rq->clock to avoid adding additional synchronization
4694 * around rq->lock.
a9cf55b2
PT
4695 *
4696 * requires cfs_b->lock
4697 */
029632fb 4698void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4699{
f4183717
HC
4700 if (unlikely(cfs_b->quota == RUNTIME_INF))
4701 return;
4702
4703 cfs_b->runtime += cfs_b->quota;
4704 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
a9cf55b2
PT
4705}
4706
029632fb
PZ
4707static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4708{
4709 return &tg->cfs_bandwidth;
4710}
4711
85dac906 4712/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4713static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4714 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4715{
e98fa02c
PT
4716 u64 min_amount, amount = 0;
4717
4718 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4719
4720 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4721 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4722
ec12cb7f
PT
4723 if (cfs_b->quota == RUNTIME_INF)
4724 amount = min_amount;
58088ad0 4725 else {
77a4d1a1 4726 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4727
4728 if (cfs_b->runtime > 0) {
4729 amount = min(cfs_b->runtime, min_amount);
4730 cfs_b->runtime -= amount;
4731 cfs_b->idle = 0;
4732 }
ec12cb7f 4733 }
ec12cb7f
PT
4734
4735 cfs_rq->runtime_remaining += amount;
85dac906
PT
4736
4737 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4738}
4739
e98fa02c
PT
4740/* returns 0 on failure to allocate runtime */
4741static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4742{
4743 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4744 int ret;
4745
4746 raw_spin_lock(&cfs_b->lock);
4747 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4748 raw_spin_unlock(&cfs_b->lock);
4749
4750 return ret;
4751}
4752
9dbdb155 4753static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4754{
4755 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4756 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4757
4758 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4759 return;
4760
5e2d2cc2
L
4761 if (cfs_rq->throttled)
4762 return;
85dac906
PT
4763 /*
4764 * if we're unable to extend our runtime we resched so that the active
4765 * hierarchy can be throttled
4766 */
4767 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4768 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4769}
4770
6c16a6dc 4771static __always_inline
9dbdb155 4772void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4773{
56f570e5 4774 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4775 return;
4776
4777 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4778}
4779
85dac906
PT
4780static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4781{
56f570e5 4782 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4783}
4784
64660c86
PT
4785/* check whether cfs_rq, or any parent, is throttled */
4786static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4787{
56f570e5 4788 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4789}
4790
4791/*
4792 * Ensure that neither of the group entities corresponding to src_cpu or
4793 * dest_cpu are members of a throttled hierarchy when performing group
4794 * load-balance operations.
4795 */
4796static inline int throttled_lb_pair(struct task_group *tg,
4797 int src_cpu, int dest_cpu)
4798{
4799 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4800
4801 src_cfs_rq = tg->cfs_rq[src_cpu];
4802 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4803
4804 return throttled_hierarchy(src_cfs_rq) ||
4805 throttled_hierarchy(dest_cfs_rq);
4806}
4807
64660c86
PT
4808static int tg_unthrottle_up(struct task_group *tg, void *data)
4809{
4810 struct rq *rq = data;
4811 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4812
4813 cfs_rq->throttle_count--;
64660c86 4814 if (!cfs_rq->throttle_count) {
78becc27 4815 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4816 cfs_rq->throttled_clock_task;
31bc6aea 4817
a7b359fc
OU
4818 /* Add cfs_rq with load or one or more already running entities to the list */
4819 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
31bc6aea 4820 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4821 }
64660c86
PT
4822
4823 return 0;
4824}
4825
4826static int tg_throttle_down(struct task_group *tg, void *data)
4827{
4828 struct rq *rq = data;
4829 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4830
82958366 4831 /* group is entering throttled state, stop time */
31bc6aea 4832 if (!cfs_rq->throttle_count) {
78becc27 4833 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4834 list_del_leaf_cfs_rq(cfs_rq);
4835 }
64660c86
PT
4836 cfs_rq->throttle_count++;
4837
4838 return 0;
4839}
4840
e98fa02c 4841static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4842{
4843 struct rq *rq = rq_of(cfs_rq);
4844 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4845 struct sched_entity *se;
43e9f7f2 4846 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4847
4848 raw_spin_lock(&cfs_b->lock);
4849 /* This will start the period timer if necessary */
4850 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4851 /*
4852 * We have raced with bandwidth becoming available, and if we
4853 * actually throttled the timer might not unthrottle us for an
4854 * entire period. We additionally needed to make sure that any
4855 * subsequent check_cfs_rq_runtime calls agree not to throttle
4856 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4857 * for 1ns of runtime rather than just check cfs_b.
4858 */
4859 dequeue = 0;
4860 } else {
4861 list_add_tail_rcu(&cfs_rq->throttled_list,
4862 &cfs_b->throttled_cfs_rq);
4863 }
4864 raw_spin_unlock(&cfs_b->lock);
4865
4866 if (!dequeue)
4867 return false; /* Throttle no longer required. */
85dac906
PT
4868
4869 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4870
f1b17280 4871 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4872 rcu_read_lock();
4873 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4874 rcu_read_unlock();
85dac906
PT
4875
4876 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4877 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4878 for_each_sched_entity(se) {
4879 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4880 /* throttled entity or throttle-on-deactivate */
4881 if (!se->on_rq)
b6d37a76 4882 goto done;
85dac906 4883
b6d37a76 4884 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4885
30400039
JD
4886 if (cfs_rq_is_idle(group_cfs_rq(se)))
4887 idle_task_delta = cfs_rq->h_nr_running;
4888
85dac906 4889 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4890 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4891
b6d37a76
PW
4892 if (qcfs_rq->load.weight) {
4893 /* Avoid re-evaluating load for this entity: */
4894 se = parent_entity(se);
4895 break;
4896 }
4897 }
4898
4899 for_each_sched_entity(se) {
4900 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4901 /* throttled entity or throttle-on-deactivate */
4902 if (!se->on_rq)
4903 goto done;
4904
4905 update_load_avg(qcfs_rq, se, 0);
4906 se_update_runnable(se);
4907
30400039
JD
4908 if (cfs_rq_is_idle(group_cfs_rq(se)))
4909 idle_task_delta = cfs_rq->h_nr_running;
4910
b6d37a76
PW
4911 qcfs_rq->h_nr_running -= task_delta;
4912 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4913 }
4914
b6d37a76
PW
4915 /* At this point se is NULL and we are at root level*/
4916 sub_nr_running(rq, task_delta);
85dac906 4917
b6d37a76 4918done:
c06f04c7 4919 /*
e98fa02c
PT
4920 * Note: distribution will already see us throttled via the
4921 * throttled-list. rq->lock protects completion.
c06f04c7 4922 */
e98fa02c
PT
4923 cfs_rq->throttled = 1;
4924 cfs_rq->throttled_clock = rq_clock(rq);
4925 return true;
85dac906
PT
4926}
4927
029632fb 4928void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4929{
4930 struct rq *rq = rq_of(cfs_rq);
4931 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4932 struct sched_entity *se;
43e9f7f2 4933 long task_delta, idle_task_delta;
671fd9da 4934
22b958d8 4935 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4936
4937 cfs_rq->throttled = 0;
1a55af2e
FW
4938
4939 update_rq_clock(rq);
4940
671fd9da 4941 raw_spin_lock(&cfs_b->lock);
78becc27 4942 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4943 list_del_rcu(&cfs_rq->throttled_list);
4944 raw_spin_unlock(&cfs_b->lock);
4945
64660c86
PT
4946 /* update hierarchical throttle state */
4947 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4948
2630cde2
MK
4949 /* Nothing to run but something to decay (on_list)? Complete the branch */
4950 if (!cfs_rq->load.weight) {
4951 if (cfs_rq->on_list)
4952 goto unthrottle_throttle;
671fd9da 4953 return;
2630cde2 4954 }
671fd9da
PT
4955
4956 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4957 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da 4958 for_each_sched_entity(se) {
30400039
JD
4959 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4960
671fd9da 4961 if (se->on_rq)
39f23ce0 4962 break;
30400039
JD
4963 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4964
4965 if (cfs_rq_is_idle(group_cfs_rq(se)))
4966 idle_task_delta = cfs_rq->h_nr_running;
39f23ce0 4967
30400039
JD
4968 qcfs_rq->h_nr_running += task_delta;
4969 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
4970
4971 /* end evaluation on encountering a throttled cfs_rq */
30400039 4972 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
4973 goto unthrottle_throttle;
4974 }
671fd9da 4975
39f23ce0 4976 for_each_sched_entity(se) {
30400039 4977 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
39f23ce0 4978
30400039 4979 update_load_avg(qcfs_rq, se, UPDATE_TG);
39f23ce0 4980 se_update_runnable(se);
6212437f 4981
30400039
JD
4982 if (cfs_rq_is_idle(group_cfs_rq(se)))
4983 idle_task_delta = cfs_rq->h_nr_running;
671fd9da 4984
30400039
JD
4985 qcfs_rq->h_nr_running += task_delta;
4986 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
4987
4988 /* end evaluation on encountering a throttled cfs_rq */
30400039 4989 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
4990 goto unthrottle_throttle;
4991
4992 /*
4993 * One parent has been throttled and cfs_rq removed from the
4994 * list. Add it back to not break the leaf list.
4995 */
30400039
JD
4996 if (throttled_hierarchy(qcfs_rq))
4997 list_add_leaf_cfs_rq(qcfs_rq);
671fd9da
PT
4998 }
4999
39f23ce0
VG
5000 /* At this point se is NULL and we are at root level*/
5001 add_nr_running(rq, task_delta);
671fd9da 5002
39f23ce0 5003unthrottle_throttle:
fe61468b
VG
5004 /*
5005 * The cfs_rq_throttled() breaks in the above iteration can result in
5006 * incomplete leaf list maintenance, resulting in triggering the
5007 * assertion below.
5008 */
5009 for_each_sched_entity(se) {
30400039 5010 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
fe61468b 5011
30400039 5012 if (list_add_leaf_cfs_rq(qcfs_rq))
39f23ce0 5013 break;
fe61468b
VG
5014 }
5015
5016 assert_list_leaf_cfs_rq(rq);
5017
97fb7a0a 5018 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 5019 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 5020 resched_curr(rq);
671fd9da
PT
5021}
5022
26a8b127 5023static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
5024{
5025 struct cfs_rq *cfs_rq;
26a8b127 5026 u64 runtime, remaining = 1;
671fd9da
PT
5027
5028 rcu_read_lock();
5029 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5030 throttled_list) {
5031 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 5032 struct rq_flags rf;
671fd9da 5033
c0ad4aa4 5034 rq_lock_irqsave(rq, &rf);
671fd9da
PT
5035 if (!cfs_rq_throttled(cfs_rq))
5036 goto next;
5037
5e2d2cc2
L
5038 /* By the above check, this should never be true */
5039 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5040
26a8b127 5041 raw_spin_lock(&cfs_b->lock);
671fd9da 5042 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
5043 if (runtime > cfs_b->runtime)
5044 runtime = cfs_b->runtime;
5045 cfs_b->runtime -= runtime;
5046 remaining = cfs_b->runtime;
5047 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
5048
5049 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
5050
5051 /* we check whether we're throttled above */
5052 if (cfs_rq->runtime_remaining > 0)
5053 unthrottle_cfs_rq(cfs_rq);
5054
5055next:
c0ad4aa4 5056 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
5057
5058 if (!remaining)
5059 break;
5060 }
5061 rcu_read_unlock();
671fd9da
PT
5062}
5063
58088ad0
PT
5064/*
5065 * Responsible for refilling a task_group's bandwidth and unthrottling its
5066 * cfs_rqs as appropriate. If there has been no activity within the last
5067 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5068 * used to track this state.
5069 */
c0ad4aa4 5070static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 5071{
51f2176d 5072 int throttled;
58088ad0 5073
58088ad0
PT
5074 /* no need to continue the timer with no bandwidth constraint */
5075 if (cfs_b->quota == RUNTIME_INF)
51f2176d 5076 goto out_deactivate;
58088ad0 5077
671fd9da 5078 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 5079 cfs_b->nr_periods += overrun;
671fd9da 5080
f4183717
HC
5081 /* Refill extra burst quota even if cfs_b->idle */
5082 __refill_cfs_bandwidth_runtime(cfs_b);
5083
51f2176d
BS
5084 /*
5085 * idle depends on !throttled (for the case of a large deficit), and if
5086 * we're going inactive then everything else can be deferred
5087 */
5088 if (cfs_b->idle && !throttled)
5089 goto out_deactivate;
a9cf55b2 5090
671fd9da
PT
5091 if (!throttled) {
5092 /* mark as potentially idle for the upcoming period */
5093 cfs_b->idle = 1;
51f2176d 5094 return 0;
671fd9da
PT
5095 }
5096
e8da1b18
NR
5097 /* account preceding periods in which throttling occurred */
5098 cfs_b->nr_throttled += overrun;
5099
671fd9da 5100 /*
26a8b127 5101 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5102 */
ab93a4bc 5103 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5104 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5105 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5106 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5107 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5108
5109 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5110 }
58088ad0 5111
671fd9da
PT
5112 /*
5113 * While we are ensured activity in the period following an
5114 * unthrottle, this also covers the case in which the new bandwidth is
5115 * insufficient to cover the existing bandwidth deficit. (Forcing the
5116 * timer to remain active while there are any throttled entities.)
5117 */
5118 cfs_b->idle = 0;
58088ad0 5119
51f2176d
BS
5120 return 0;
5121
5122out_deactivate:
51f2176d 5123 return 1;
58088ad0 5124}
d3d9dc33 5125
d8b4986d
PT
5126/* a cfs_rq won't donate quota below this amount */
5127static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5128/* minimum remaining period time to redistribute slack quota */
5129static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5130/* how long we wait to gather additional slack before distributing */
5131static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5132
db06e78c
BS
5133/*
5134 * Are we near the end of the current quota period?
5135 *
5136 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5137 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5138 * migrate_hrtimers, base is never cleared, so we are fine.
5139 */
d8b4986d
PT
5140static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5141{
5142 struct hrtimer *refresh_timer = &cfs_b->period_timer;
72d0ad7c 5143 s64 remaining;
d8b4986d
PT
5144
5145 /* if the call-back is running a quota refresh is already occurring */
5146 if (hrtimer_callback_running(refresh_timer))
5147 return 1;
5148
5149 /* is a quota refresh about to occur? */
5150 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
72d0ad7c 5151 if (remaining < (s64)min_expire)
d8b4986d
PT
5152 return 1;
5153
5154 return 0;
5155}
5156
5157static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5158{
5159 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5160
5161 /* if there's a quota refresh soon don't bother with slack */
5162 if (runtime_refresh_within(cfs_b, min_left))
5163 return;
5164
66567fcb 5165 /* don't push forwards an existing deferred unthrottle */
5166 if (cfs_b->slack_started)
5167 return;
5168 cfs_b->slack_started = true;
5169
4cfafd30
PZ
5170 hrtimer_start(&cfs_b->slack_timer,
5171 ns_to_ktime(cfs_bandwidth_slack_period),
5172 HRTIMER_MODE_REL);
d8b4986d
PT
5173}
5174
5175/* we know any runtime found here is valid as update_curr() precedes return */
5176static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5177{
5178 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5179 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5180
5181 if (slack_runtime <= 0)
5182 return;
5183
5184 raw_spin_lock(&cfs_b->lock);
de53fd7a 5185 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5186 cfs_b->runtime += slack_runtime;
5187
5188 /* we are under rq->lock, defer unthrottling using a timer */
5189 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5190 !list_empty(&cfs_b->throttled_cfs_rq))
5191 start_cfs_slack_bandwidth(cfs_b);
5192 }
5193 raw_spin_unlock(&cfs_b->lock);
5194
5195 /* even if it's not valid for return we don't want to try again */
5196 cfs_rq->runtime_remaining -= slack_runtime;
5197}
5198
5199static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5200{
56f570e5
PT
5201 if (!cfs_bandwidth_used())
5202 return;
5203
fccfdc6f 5204 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5205 return;
5206
5207 __return_cfs_rq_runtime(cfs_rq);
5208}
5209
5210/*
5211 * This is done with a timer (instead of inline with bandwidth return) since
5212 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5213 */
5214static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5215{
5216 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5217 unsigned long flags;
d8b4986d
PT
5218
5219 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5220 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5221 cfs_b->slack_started = false;
baa9be4f 5222
db06e78c 5223 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5224 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5225 return;
db06e78c 5226 }
d8b4986d 5227
c06f04c7 5228 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5229 runtime = cfs_b->runtime;
c06f04c7 5230
c0ad4aa4 5231 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5232
5233 if (!runtime)
5234 return;
5235
26a8b127 5236 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5237}
5238
d3d9dc33
PT
5239/*
5240 * When a group wakes up we want to make sure that its quota is not already
5241 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5242 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5243 */
5244static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5245{
56f570e5
PT
5246 if (!cfs_bandwidth_used())
5247 return;
5248
d3d9dc33
PT
5249 /* an active group must be handled by the update_curr()->put() path */
5250 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5251 return;
5252
5253 /* ensure the group is not already throttled */
5254 if (cfs_rq_throttled(cfs_rq))
5255 return;
5256
5257 /* update runtime allocation */
5258 account_cfs_rq_runtime(cfs_rq, 0);
5259 if (cfs_rq->runtime_remaining <= 0)
5260 throttle_cfs_rq(cfs_rq);
5261}
5262
55e16d30
PZ
5263static void sync_throttle(struct task_group *tg, int cpu)
5264{
5265 struct cfs_rq *pcfs_rq, *cfs_rq;
5266
5267 if (!cfs_bandwidth_used())
5268 return;
5269
5270 if (!tg->parent)
5271 return;
5272
5273 cfs_rq = tg->cfs_rq[cpu];
5274 pcfs_rq = tg->parent->cfs_rq[cpu];
5275
5276 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5277 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5278}
5279
d3d9dc33 5280/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5281static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5282{
56f570e5 5283 if (!cfs_bandwidth_used())
678d5718 5284 return false;
56f570e5 5285
d3d9dc33 5286 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5287 return false;
d3d9dc33
PT
5288
5289 /*
5290 * it's possible for a throttled entity to be forced into a running
5291 * state (e.g. set_curr_task), in this case we're finished.
5292 */
5293 if (cfs_rq_throttled(cfs_rq))
678d5718 5294 return true;
d3d9dc33 5295
e98fa02c 5296 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5297}
029632fb 5298
029632fb
PZ
5299static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5300{
5301 struct cfs_bandwidth *cfs_b =
5302 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5303
029632fb
PZ
5304 do_sched_cfs_slack_timer(cfs_b);
5305
5306 return HRTIMER_NORESTART;
5307}
5308
2e8e1922
PA
5309extern const u64 max_cfs_quota_period;
5310
029632fb
PZ
5311static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5312{
5313 struct cfs_bandwidth *cfs_b =
5314 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5315 unsigned long flags;
029632fb
PZ
5316 int overrun;
5317 int idle = 0;
2e8e1922 5318 int count = 0;
029632fb 5319
c0ad4aa4 5320 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5321 for (;;) {
77a4d1a1 5322 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5323 if (!overrun)
5324 break;
5325
5a6d6a6c
HC
5326 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5327
2e8e1922
PA
5328 if (++count > 3) {
5329 u64 new, old = ktime_to_ns(cfs_b->period);
5330
4929a4e6
XZ
5331 /*
5332 * Grow period by a factor of 2 to avoid losing precision.
5333 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5334 * to fail.
5335 */
5336 new = old * 2;
5337 if (new < max_cfs_quota_period) {
5338 cfs_b->period = ns_to_ktime(new);
5339 cfs_b->quota *= 2;
f4183717 5340 cfs_b->burst *= 2;
4929a4e6
XZ
5341
5342 pr_warn_ratelimited(
5343 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5344 smp_processor_id(),
5345 div_u64(new, NSEC_PER_USEC),
5346 div_u64(cfs_b->quota, NSEC_PER_USEC));
5347 } else {
5348 pr_warn_ratelimited(
5349 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5350 smp_processor_id(),
5351 div_u64(old, NSEC_PER_USEC),
5352 div_u64(cfs_b->quota, NSEC_PER_USEC));
5353 }
2e8e1922
PA
5354
5355 /* reset count so we don't come right back in here */
5356 count = 0;
5357 }
029632fb 5358 }
4cfafd30
PZ
5359 if (idle)
5360 cfs_b->period_active = 0;
c0ad4aa4 5361 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5362
5363 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5364}
5365
5366void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5367{
5368 raw_spin_lock_init(&cfs_b->lock);
5369 cfs_b->runtime = 0;
5370 cfs_b->quota = RUNTIME_INF;
5371 cfs_b->period = ns_to_ktime(default_cfs_period());
f4183717 5372 cfs_b->burst = 0;
029632fb
PZ
5373
5374 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5375 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5376 cfs_b->period_timer.function = sched_cfs_period_timer;
5377 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5378 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5379 cfs_b->slack_started = false;
029632fb
PZ
5380}
5381
5382static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5383{
5384 cfs_rq->runtime_enabled = 0;
5385 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5386}
5387
77a4d1a1 5388void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5389{
4cfafd30 5390 lockdep_assert_held(&cfs_b->lock);
029632fb 5391
f1d1be8a
XP
5392 if (cfs_b->period_active)
5393 return;
5394
5395 cfs_b->period_active = 1;
763a9ec0 5396 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5397 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5398}
5399
5400static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5401{
7f1a169b
TH
5402 /* init_cfs_bandwidth() was not called */
5403 if (!cfs_b->throttled_cfs_rq.next)
5404 return;
5405
029632fb
PZ
5406 hrtimer_cancel(&cfs_b->period_timer);
5407 hrtimer_cancel(&cfs_b->slack_timer);
5408}
5409
502ce005 5410/*
97fb7a0a 5411 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5412 *
5413 * The race is harmless, since modifying bandwidth settings of unhooked group
5414 * bits doesn't do much.
5415 */
5416
3b03706f 5417/* cpu online callback */
0e59bdae
KT
5418static void __maybe_unused update_runtime_enabled(struct rq *rq)
5419{
502ce005 5420 struct task_group *tg;
0e59bdae 5421
5cb9eaa3 5422 lockdep_assert_rq_held(rq);
502ce005
PZ
5423
5424 rcu_read_lock();
5425 list_for_each_entry_rcu(tg, &task_groups, list) {
5426 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5427 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5428
5429 raw_spin_lock(&cfs_b->lock);
5430 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5431 raw_spin_unlock(&cfs_b->lock);
5432 }
502ce005 5433 rcu_read_unlock();
0e59bdae
KT
5434}
5435
502ce005 5436/* cpu offline callback */
38dc3348 5437static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5438{
502ce005
PZ
5439 struct task_group *tg;
5440
5cb9eaa3 5441 lockdep_assert_rq_held(rq);
502ce005
PZ
5442
5443 rcu_read_lock();
5444 list_for_each_entry_rcu(tg, &task_groups, list) {
5445 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5446
029632fb
PZ
5447 if (!cfs_rq->runtime_enabled)
5448 continue;
5449
5450 /*
5451 * clock_task is not advancing so we just need to make sure
5452 * there's some valid quota amount
5453 */
51f2176d 5454 cfs_rq->runtime_remaining = 1;
0e59bdae 5455 /*
97fb7a0a 5456 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5457 * in take_cpu_down(), so we prevent new cfs throttling here.
5458 */
5459 cfs_rq->runtime_enabled = 0;
5460
029632fb
PZ
5461 if (cfs_rq_throttled(cfs_rq))
5462 unthrottle_cfs_rq(cfs_rq);
5463 }
502ce005 5464 rcu_read_unlock();
029632fb
PZ
5465}
5466
5467#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5468
5469static inline bool cfs_bandwidth_used(void)
5470{
5471 return false;
5472}
5473
9dbdb155 5474static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5475static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5476static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5477static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5478static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5479
5480static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5481{
5482 return 0;
5483}
64660c86
PT
5484
5485static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5486{
5487 return 0;
5488}
5489
5490static inline int throttled_lb_pair(struct task_group *tg,
5491 int src_cpu, int dest_cpu)
5492{
5493 return 0;
5494}
029632fb
PZ
5495
5496void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5497
5498#ifdef CONFIG_FAIR_GROUP_SCHED
5499static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5500#endif
5501
029632fb
PZ
5502static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5503{
5504 return NULL;
5505}
5506static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5507static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5508static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5509
5510#endif /* CONFIG_CFS_BANDWIDTH */
5511
bf0f6f24
IM
5512/**************************************************
5513 * CFS operations on tasks:
5514 */
5515
8f4d37ec
PZ
5516#ifdef CONFIG_SCHED_HRTICK
5517static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5518{
8f4d37ec
PZ
5519 struct sched_entity *se = &p->se;
5520 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5521
9148a3a1 5522 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5523
8bf46a39 5524 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5525 u64 slice = sched_slice(cfs_rq, se);
5526 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5527 s64 delta = slice - ran;
5528
5529 if (delta < 0) {
65bcf072 5530 if (task_current(rq, p))
8875125e 5531 resched_curr(rq);
8f4d37ec
PZ
5532 return;
5533 }
31656519 5534 hrtick_start(rq, delta);
8f4d37ec
PZ
5535 }
5536}
a4c2f00f
PZ
5537
5538/*
5539 * called from enqueue/dequeue and updates the hrtick when the
5540 * current task is from our class and nr_running is low enough
5541 * to matter.
5542 */
5543static void hrtick_update(struct rq *rq)
5544{
5545 struct task_struct *curr = rq->curr;
5546
e0ee463c 5547 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5548 return;
5549
5550 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5551 hrtick_start_fair(rq, curr);
5552}
55e12e5e 5553#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5554static inline void
5555hrtick_start_fair(struct rq *rq, struct task_struct *p)
5556{
5557}
a4c2f00f
PZ
5558
5559static inline void hrtick_update(struct rq *rq)
5560{
5561}
8f4d37ec
PZ
5562#endif
5563
2802bf3c
MR
5564#ifdef CONFIG_SMP
5565static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5566
5567static inline bool cpu_overutilized(int cpu)
5568{
60e17f5c 5569 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5570}
5571
5572static inline void update_overutilized_status(struct rq *rq)
5573{
f9f240f9 5574 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5575 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5576 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5577 }
2802bf3c
MR
5578}
5579#else
5580static inline void update_overutilized_status(struct rq *rq) { }
5581#endif
5582
323af6de
VK
5583/* Runqueue only has SCHED_IDLE tasks enqueued */
5584static int sched_idle_rq(struct rq *rq)
5585{
5586 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5587 rq->nr_running);
5588}
5589
afa70d94 5590#ifdef CONFIG_SMP
323af6de
VK
5591static int sched_idle_cpu(int cpu)
5592{
5593 return sched_idle_rq(cpu_rq(cpu));
5594}
afa70d94 5595#endif
323af6de 5596
bf0f6f24
IM
5597/*
5598 * The enqueue_task method is called before nr_running is
5599 * increased. Here we update the fair scheduling stats and
5600 * then put the task into the rbtree:
5601 */
ea87bb78 5602static void
371fd7e7 5603enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5604{
5605 struct cfs_rq *cfs_rq;
62fb1851 5606 struct sched_entity *se = &p->se;
43e9f7f2 5607 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5608 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5609
2539fc82
PB
5610 /*
5611 * The code below (indirectly) updates schedutil which looks at
5612 * the cfs_rq utilization to select a frequency.
5613 * Let's add the task's estimated utilization to the cfs_rq's
5614 * estimated utilization, before we update schedutil.
5615 */
5616 util_est_enqueue(&rq->cfs, p);
5617
8c34ab19
RW
5618 /*
5619 * If in_iowait is set, the code below may not trigger any cpufreq
5620 * utilization updates, so do it here explicitly with the IOWAIT flag
5621 * passed.
5622 */
5623 if (p->in_iowait)
674e7541 5624 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5625
bf0f6f24 5626 for_each_sched_entity(se) {
62fb1851 5627 if (se->on_rq)
bf0f6f24
IM
5628 break;
5629 cfs_rq = cfs_rq_of(se);
88ec22d3 5630 enqueue_entity(cfs_rq, se, flags);
85dac906 5631
953bfcd1 5632 cfs_rq->h_nr_running++;
43e9f7f2 5633 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5634
30400039
JD
5635 if (cfs_rq_is_idle(cfs_rq))
5636 idle_h_nr_running = 1;
5637
6d4d2246
VG
5638 /* end evaluation on encountering a throttled cfs_rq */
5639 if (cfs_rq_throttled(cfs_rq))
5640 goto enqueue_throttle;
5641
88ec22d3 5642 flags = ENQUEUE_WAKEUP;
bf0f6f24 5643 }
8f4d37ec 5644
2069dd75 5645 for_each_sched_entity(se) {
0f317143 5646 cfs_rq = cfs_rq_of(se);
2069dd75 5647
88c0616e 5648 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5649 se_update_runnable(se);
1ea6c46a 5650 update_cfs_group(se);
6d4d2246
VG
5651
5652 cfs_rq->h_nr_running++;
5653 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba 5654
30400039
JD
5655 if (cfs_rq_is_idle(cfs_rq))
5656 idle_h_nr_running = 1;
5657
5ab297ba
VG
5658 /* end evaluation on encountering a throttled cfs_rq */
5659 if (cfs_rq_throttled(cfs_rq))
5660 goto enqueue_throttle;
b34cb07d
PA
5661
5662 /*
5663 * One parent has been throttled and cfs_rq removed from the
5664 * list. Add it back to not break the leaf list.
5665 */
5666 if (throttled_hierarchy(cfs_rq))
5667 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5668 }
5669
7d148be6
VG
5670 /* At this point se is NULL and we are at root level*/
5671 add_nr_running(rq, 1);
2802bf3c 5672
7d148be6
VG
5673 /*
5674 * Since new tasks are assigned an initial util_avg equal to
5675 * half of the spare capacity of their CPU, tiny tasks have the
5676 * ability to cross the overutilized threshold, which will
5677 * result in the load balancer ruining all the task placement
5678 * done by EAS. As a way to mitigate that effect, do not account
5679 * for the first enqueue operation of new tasks during the
5680 * overutilized flag detection.
5681 *
5682 * A better way of solving this problem would be to wait for
5683 * the PELT signals of tasks to converge before taking them
5684 * into account, but that is not straightforward to implement,
5685 * and the following generally works well enough in practice.
5686 */
8e1ac429 5687 if (!task_new)
7d148be6 5688 update_overutilized_status(rq);
cd126afe 5689
7d148be6 5690enqueue_throttle:
f6783319
VG
5691 if (cfs_bandwidth_used()) {
5692 /*
5693 * When bandwidth control is enabled; the cfs_rq_throttled()
5694 * breaks in the above iteration can result in incomplete
5695 * leaf list maintenance, resulting in triggering the assertion
5696 * below.
5697 */
5698 for_each_sched_entity(se) {
5699 cfs_rq = cfs_rq_of(se);
5700
5701 if (list_add_leaf_cfs_rq(cfs_rq))
5702 break;
5703 }
5704 }
5705
5d299eab
PZ
5706 assert_list_leaf_cfs_rq(rq);
5707
a4c2f00f 5708 hrtick_update(rq);
bf0f6f24
IM
5709}
5710
2f36825b
VP
5711static void set_next_buddy(struct sched_entity *se);
5712
bf0f6f24
IM
5713/*
5714 * The dequeue_task method is called before nr_running is
5715 * decreased. We remove the task from the rbtree and
5716 * update the fair scheduling stats:
5717 */
371fd7e7 5718static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5719{
5720 struct cfs_rq *cfs_rq;
62fb1851 5721 struct sched_entity *se = &p->se;
2f36825b 5722 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5723 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5724 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5725
8c1f560c
XY
5726 util_est_dequeue(&rq->cfs, p);
5727
bf0f6f24
IM
5728 for_each_sched_entity(se) {
5729 cfs_rq = cfs_rq_of(se);
371fd7e7 5730 dequeue_entity(cfs_rq, se, flags);
85dac906 5731
953bfcd1 5732 cfs_rq->h_nr_running--;
43e9f7f2 5733 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5734
30400039
JD
5735 if (cfs_rq_is_idle(cfs_rq))
5736 idle_h_nr_running = 1;
5737
6d4d2246
VG
5738 /* end evaluation on encountering a throttled cfs_rq */
5739 if (cfs_rq_throttled(cfs_rq))
5740 goto dequeue_throttle;
5741
bf0f6f24 5742 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5743 if (cfs_rq->load.weight) {
754bd598
KK
5744 /* Avoid re-evaluating load for this entity: */
5745 se = parent_entity(se);
2f36825b
VP
5746 /*
5747 * Bias pick_next to pick a task from this cfs_rq, as
5748 * p is sleeping when it is within its sched_slice.
5749 */
754bd598
KK
5750 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5751 set_next_buddy(se);
bf0f6f24 5752 break;
2f36825b 5753 }
371fd7e7 5754 flags |= DEQUEUE_SLEEP;
bf0f6f24 5755 }
8f4d37ec 5756
2069dd75 5757 for_each_sched_entity(se) {
0f317143 5758 cfs_rq = cfs_rq_of(se);
2069dd75 5759
88c0616e 5760 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5761 se_update_runnable(se);
1ea6c46a 5762 update_cfs_group(se);
6d4d2246
VG
5763
5764 cfs_rq->h_nr_running--;
5765 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba 5766
30400039
JD
5767 if (cfs_rq_is_idle(cfs_rq))
5768 idle_h_nr_running = 1;
5769
5ab297ba
VG
5770 /* end evaluation on encountering a throttled cfs_rq */
5771 if (cfs_rq_throttled(cfs_rq))
5772 goto dequeue_throttle;
5773
2069dd75
PZ
5774 }
5775
423d02e1
PW
5776 /* At this point se is NULL and we are at root level*/
5777 sub_nr_running(rq, 1);
cd126afe 5778
323af6de
VK
5779 /* balance early to pull high priority tasks */
5780 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5781 rq->next_balance = jiffies;
5782
423d02e1 5783dequeue_throttle:
8c1f560c 5784 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5785 hrtick_update(rq);
bf0f6f24
IM
5786}
5787
e7693a36 5788#ifdef CONFIG_SMP
10e2f1ac
PZ
5789
5790/* Working cpumask for: load_balance, load_balance_newidle. */
5791DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5792DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5793
9fd81dd5 5794#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5795
5796static struct {
5797 cpumask_var_t idle_cpus_mask;
5798 atomic_t nr_cpus;
f643ea22 5799 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5800 unsigned long next_balance; /* in jiffy units */
f643ea22 5801 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5802} nohz ____cacheline_aligned;
5803
9fd81dd5 5804#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5805
b0fb1eb4
VG
5806static unsigned long cpu_load(struct rq *rq)
5807{
5808 return cfs_rq_load_avg(&rq->cfs);
5809}
5810
3318544b
VG
5811/*
5812 * cpu_load_without - compute CPU load without any contributions from *p
5813 * @cpu: the CPU which load is requested
5814 * @p: the task which load should be discounted
5815 *
5816 * The load of a CPU is defined by the load of tasks currently enqueued on that
5817 * CPU as well as tasks which are currently sleeping after an execution on that
5818 * CPU.
5819 *
5820 * This method returns the load of the specified CPU by discounting the load of
5821 * the specified task, whenever the task is currently contributing to the CPU
5822 * load.
5823 */
5824static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5825{
5826 struct cfs_rq *cfs_rq;
5827 unsigned int load;
5828
5829 /* Task has no contribution or is new */
5830 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5831 return cpu_load(rq);
5832
5833 cfs_rq = &rq->cfs;
5834 load = READ_ONCE(cfs_rq->avg.load_avg);
5835
5836 /* Discount task's util from CPU's util */
5837 lsub_positive(&load, task_h_load(p));
5838
5839 return load;
5840}
5841
9f683953
VG
5842static unsigned long cpu_runnable(struct rq *rq)
5843{
5844 return cfs_rq_runnable_avg(&rq->cfs);
5845}
5846
070f5e86
VG
5847static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5848{
5849 struct cfs_rq *cfs_rq;
5850 unsigned int runnable;
5851
5852 /* Task has no contribution or is new */
5853 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5854 return cpu_runnable(rq);
5855
5856 cfs_rq = &rq->cfs;
5857 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5858
5859 /* Discount task's runnable from CPU's runnable */
5860 lsub_positive(&runnable, p->se.avg.runnable_avg);
5861
5862 return runnable;
5863}
5864
ced549fa 5865static unsigned long capacity_of(int cpu)
029632fb 5866{
ced549fa 5867 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5868}
5869
c58d25f3
PZ
5870static void record_wakee(struct task_struct *p)
5871{
5872 /*
5873 * Only decay a single time; tasks that have less then 1 wakeup per
5874 * jiffy will not have built up many flips.
5875 */
5876 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5877 current->wakee_flips >>= 1;
5878 current->wakee_flip_decay_ts = jiffies;
5879 }
5880
5881 if (current->last_wakee != p) {
5882 current->last_wakee = p;
5883 current->wakee_flips++;
5884 }
5885}
5886
63b0e9ed
MG
5887/*
5888 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5889 *
63b0e9ed 5890 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5891 * at a frequency roughly N times higher than one of its wakees.
5892 *
5893 * In order to determine whether we should let the load spread vs consolidating
5894 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5895 * partner, and a factor of lls_size higher frequency in the other.
5896 *
5897 * With both conditions met, we can be relatively sure that the relationship is
5898 * non-monogamous, with partner count exceeding socket size.
5899 *
5900 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5901 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5902 * socket size.
63b0e9ed 5903 */
62470419
MW
5904static int wake_wide(struct task_struct *p)
5905{
63b0e9ed
MG
5906 unsigned int master = current->wakee_flips;
5907 unsigned int slave = p->wakee_flips;
17c891ab 5908 int factor = __this_cpu_read(sd_llc_size);
62470419 5909
63b0e9ed
MG
5910 if (master < slave)
5911 swap(master, slave);
5912 if (slave < factor || master < slave * factor)
5913 return 0;
5914 return 1;
62470419
MW
5915}
5916
90001d67 5917/*
d153b153
PZ
5918 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5919 * soonest. For the purpose of speed we only consider the waking and previous
5920 * CPU.
90001d67 5921 *
7332dec0
MG
5922 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5923 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5924 *
5925 * wake_affine_weight() - considers the weight to reflect the average
5926 * scheduling latency of the CPUs. This seems to work
5927 * for the overloaded case.
90001d67 5928 */
3b76c4a3 5929static int
89a55f56 5930wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5931{
7332dec0
MG
5932 /*
5933 * If this_cpu is idle, it implies the wakeup is from interrupt
5934 * context. Only allow the move if cache is shared. Otherwise an
5935 * interrupt intensive workload could force all tasks onto one
5936 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5937 *
5938 * If the prev_cpu is idle and cache affine then avoid a migration.
5939 * There is no guarantee that the cache hot data from an interrupt
5940 * is more important than cache hot data on the prev_cpu and from
5941 * a cpufreq perspective, it's better to have higher utilisation
5942 * on one CPU.
7332dec0 5943 */
943d355d
RJ
5944 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5945 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5946
d153b153 5947 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5948 return this_cpu;
90001d67 5949
d8fcb81f
JL
5950 if (available_idle_cpu(prev_cpu))
5951 return prev_cpu;
5952
3b76c4a3 5953 return nr_cpumask_bits;
90001d67
PZ
5954}
5955
3b76c4a3 5956static int
f2cdd9cc
PZ
5957wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5958 int this_cpu, int prev_cpu, int sync)
90001d67 5959{
90001d67
PZ
5960 s64 this_eff_load, prev_eff_load;
5961 unsigned long task_load;
5962
11f10e54 5963 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5964
90001d67
PZ
5965 if (sync) {
5966 unsigned long current_load = task_h_load(current);
5967
f2cdd9cc 5968 if (current_load > this_eff_load)
3b76c4a3 5969 return this_cpu;
90001d67 5970
f2cdd9cc 5971 this_eff_load -= current_load;
90001d67
PZ
5972 }
5973
90001d67
PZ
5974 task_load = task_h_load(p);
5975
f2cdd9cc
PZ
5976 this_eff_load += task_load;
5977 if (sched_feat(WA_BIAS))
5978 this_eff_load *= 100;
5979 this_eff_load *= capacity_of(prev_cpu);
90001d67 5980
11f10e54 5981 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5982 prev_eff_load -= task_load;
5983 if (sched_feat(WA_BIAS))
5984 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5985 prev_eff_load *= capacity_of(this_cpu);
90001d67 5986
082f764a
MG
5987 /*
5988 * If sync, adjust the weight of prev_eff_load such that if
5989 * prev_eff == this_eff that select_idle_sibling() will consider
5990 * stacking the wakee on top of the waker if no other CPU is
5991 * idle.
5992 */
5993 if (sync)
5994 prev_eff_load += 1;
5995
5996 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5997}
5998
772bd008 5999static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 6000 int this_cpu, int prev_cpu, int sync)
098fb9db 6001{
3b76c4a3 6002 int target = nr_cpumask_bits;
098fb9db 6003
89a55f56 6004 if (sched_feat(WA_IDLE))
3b76c4a3 6005 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 6006
3b76c4a3
MG
6007 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6008 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 6009
ae92882e 6010 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
6011 if (target == nr_cpumask_bits)
6012 return prev_cpu;
098fb9db 6013
3b76c4a3
MG
6014 schedstat_inc(sd->ttwu_move_affine);
6015 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6016 return target;
098fb9db
IM
6017}
6018
aaee1203 6019static struct sched_group *
45da2773 6020find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
6021
6022/*
97fb7a0a 6023 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
6024 */
6025static int
18bd1b4b 6026find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
6027{
6028 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
6029 unsigned int min_exit_latency = UINT_MAX;
6030 u64 latest_idle_timestamp = 0;
6031 int least_loaded_cpu = this_cpu;
17346452 6032 int shallowest_idle_cpu = -1;
aaee1203
PZ
6033 int i;
6034
eaecf41f
MR
6035 /* Check if we have any choice: */
6036 if (group->group_weight == 1)
ae4df9d6 6037 return cpumask_first(sched_group_span(group));
eaecf41f 6038
aaee1203 6039 /* Traverse only the allowed CPUs */
3bd37062 6040 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
97886d9d
AL
6041 struct rq *rq = cpu_rq(i);
6042
6043 if (!sched_core_cookie_match(rq, p))
6044 continue;
6045
17346452
VK
6046 if (sched_idle_cpu(i))
6047 return i;
6048
943d355d 6049 if (available_idle_cpu(i)) {
83a0a96a
NP
6050 struct cpuidle_state *idle = idle_get_state(rq);
6051 if (idle && idle->exit_latency < min_exit_latency) {
6052 /*
6053 * We give priority to a CPU whose idle state
6054 * has the smallest exit latency irrespective
6055 * of any idle timestamp.
6056 */
6057 min_exit_latency = idle->exit_latency;
6058 latest_idle_timestamp = rq->idle_stamp;
6059 shallowest_idle_cpu = i;
6060 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6061 rq->idle_stamp > latest_idle_timestamp) {
6062 /*
6063 * If equal or no active idle state, then
6064 * the most recently idled CPU might have
6065 * a warmer cache.
6066 */
6067 latest_idle_timestamp = rq->idle_stamp;
6068 shallowest_idle_cpu = i;
6069 }
17346452 6070 } else if (shallowest_idle_cpu == -1) {
11f10e54 6071 load = cpu_load(cpu_rq(i));
18cec7e0 6072 if (load < min_load) {
83a0a96a
NP
6073 min_load = load;
6074 least_loaded_cpu = i;
6075 }
e7693a36
GH
6076 }
6077 }
6078
17346452 6079 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 6080}
e7693a36 6081
18bd1b4b
BJ
6082static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6083 int cpu, int prev_cpu, int sd_flag)
6084{
93f50f90 6085 int new_cpu = cpu;
18bd1b4b 6086
3bd37062 6087 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
6088 return prev_cpu;
6089
c976a862 6090 /*
57abff06 6091 * We need task's util for cpu_util_without, sync it up to
c469933e 6092 * prev_cpu's last_update_time.
c976a862
VK
6093 */
6094 if (!(sd_flag & SD_BALANCE_FORK))
6095 sync_entity_load_avg(&p->se);
6096
18bd1b4b
BJ
6097 while (sd) {
6098 struct sched_group *group;
6099 struct sched_domain *tmp;
6100 int weight;
6101
6102 if (!(sd->flags & sd_flag)) {
6103 sd = sd->child;
6104 continue;
6105 }
6106
45da2773 6107 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
6108 if (!group) {
6109 sd = sd->child;
6110 continue;
6111 }
6112
6113 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6114 if (new_cpu == cpu) {
97fb7a0a 6115 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6116 sd = sd->child;
6117 continue;
6118 }
6119
97fb7a0a 6120 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6121 cpu = new_cpu;
6122 weight = sd->span_weight;
6123 sd = NULL;
6124 for_each_domain(cpu, tmp) {
6125 if (weight <= tmp->span_weight)
6126 break;
6127 if (tmp->flags & sd_flag)
6128 sd = tmp;
6129 }
18bd1b4b
BJ
6130 }
6131
6132 return new_cpu;
6133}
6134
97886d9d 6135static inline int __select_idle_cpu(int cpu, struct task_struct *p)
9fe1f127 6136{
97886d9d
AL
6137 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6138 sched_cpu_cookie_match(cpu_rq(cpu), p))
9fe1f127
MG
6139 return cpu;
6140
6141 return -1;
6142}
6143
10e2f1ac 6144#ifdef CONFIG_SCHED_SMT
ba2591a5 6145DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6146EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6147
6148static inline void set_idle_cores(int cpu, int val)
6149{
6150 struct sched_domain_shared *sds;
6151
6152 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6153 if (sds)
6154 WRITE_ONCE(sds->has_idle_cores, val);
6155}
6156
6157static inline bool test_idle_cores(int cpu, bool def)
6158{
6159 struct sched_domain_shared *sds;
6160
c722f35b
RR
6161 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6162 if (sds)
6163 return READ_ONCE(sds->has_idle_cores);
10e2f1ac
PZ
6164
6165 return def;
6166}
6167
6168/*
6169 * Scans the local SMT mask to see if the entire core is idle, and records this
6170 * information in sd_llc_shared->has_idle_cores.
6171 *
6172 * Since SMT siblings share all cache levels, inspecting this limited remote
6173 * state should be fairly cheap.
6174 */
1b568f0a 6175void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6176{
6177 int core = cpu_of(rq);
6178 int cpu;
6179
6180 rcu_read_lock();
6181 if (test_idle_cores(core, true))
6182 goto unlock;
6183
6184 for_each_cpu(cpu, cpu_smt_mask(core)) {
6185 if (cpu == core)
6186 continue;
6187
943d355d 6188 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6189 goto unlock;
6190 }
6191
6192 set_idle_cores(core, 1);
6193unlock:
6194 rcu_read_unlock();
6195}
6196
6197/*
6198 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6199 * there are no idle cores left in the system; tracked through
6200 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6201 */
9fe1f127 6202static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6203{
9fe1f127
MG
6204 bool idle = true;
6205 int cpu;
10e2f1ac 6206
1b568f0a 6207 if (!static_branch_likely(&sched_smt_present))
97886d9d 6208 return __select_idle_cpu(core, p);
10e2f1ac 6209
9fe1f127
MG
6210 for_each_cpu(cpu, cpu_smt_mask(core)) {
6211 if (!available_idle_cpu(cpu)) {
6212 idle = false;
6213 if (*idle_cpu == -1) {
6214 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6215 *idle_cpu = cpu;
6216 break;
6217 }
6218 continue;
bec2860a 6219 }
9fe1f127 6220 break;
10e2f1ac 6221 }
9fe1f127
MG
6222 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6223 *idle_cpu = cpu;
10e2f1ac
PZ
6224 }
6225
9fe1f127
MG
6226 if (idle)
6227 return core;
10e2f1ac 6228
9fe1f127 6229 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6230 return -1;
6231}
6232
c722f35b
RR
6233/*
6234 * Scan the local SMT mask for idle CPUs.
6235 */
6236static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6237{
6238 int cpu;
6239
6240 for_each_cpu(cpu, cpu_smt_mask(target)) {
6241 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6242 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6243 continue;
6244 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6245 return cpu;
6246 }
6247
6248 return -1;
6249}
6250
10e2f1ac
PZ
6251#else /* CONFIG_SCHED_SMT */
6252
9fe1f127 6253static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6254{
9fe1f127
MG
6255}
6256
6257static inline bool test_idle_cores(int cpu, bool def)
6258{
6259 return def;
6260}
6261
6262static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6263{
97886d9d 6264 return __select_idle_cpu(core, p);
10e2f1ac
PZ
6265}
6266
c722f35b
RR
6267static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6268{
6269 return -1;
6270}
6271
10e2f1ac
PZ
6272#endif /* CONFIG_SCHED_SMT */
6273
6274/*
6275 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6276 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6277 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6278 */
c722f35b 6279static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 6280{
60588bfa 6281 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9fe1f127 6282 int i, cpu, idle_cpu = -1, nr = INT_MAX;
94aafc3e 6283 struct rq *this_rq = this_rq();
9fe1f127 6284 int this = smp_processor_id();
9cfb38a7 6285 struct sched_domain *this_sd;
94aafc3e 6286 u64 time = 0;
10e2f1ac 6287
9cfb38a7
WL
6288 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6289 if (!this_sd)
6290 return -1;
6291
bae4ec13
MG
6292 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6293
c722f35b 6294 if (sched_feat(SIS_PROP) && !has_idle_core) {
e6e0dc2d 6295 u64 avg_cost, avg_idle, span_avg;
94aafc3e 6296 unsigned long now = jiffies;
1ad3aaf3 6297
e6e0dc2d 6298 /*
94aafc3e
PZ
6299 * If we're busy, the assumption that the last idle period
6300 * predicts the future is flawed; age away the remaining
6301 * predicted idle time.
e6e0dc2d 6302 */
94aafc3e
PZ
6303 if (unlikely(this_rq->wake_stamp < now)) {
6304 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6305 this_rq->wake_stamp++;
6306 this_rq->wake_avg_idle >>= 1;
6307 }
6308 }
6309
6310 avg_idle = this_rq->wake_avg_idle;
e6e0dc2d 6311 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6312
e6e0dc2d 6313 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6314 if (span_avg > 4*avg_cost)
6315 nr = div_u64(span_avg, avg_cost);
6316 else
6317 nr = 4;
10e2f1ac 6318
bae4ec13
MG
6319 time = cpu_clock(this);
6320 }
60588bfa 6321
56498cfb 6322 for_each_cpu_wrap(cpu, cpus, target + 1) {
c722f35b 6323 if (has_idle_core) {
9fe1f127
MG
6324 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6325 if ((unsigned int)i < nr_cpumask_bits)
6326 return i;
6327
6328 } else {
6329 if (!--nr)
6330 return -1;
97886d9d 6331 idle_cpu = __select_idle_cpu(cpu, p);
9fe1f127
MG
6332 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6333 break;
6334 }
10e2f1ac
PZ
6335 }
6336
c722f35b 6337 if (has_idle_core)
02dbb724 6338 set_idle_cores(target, false);
9fe1f127 6339
c722f35b 6340 if (sched_feat(SIS_PROP) && !has_idle_core) {
bae4ec13 6341 time = cpu_clock(this) - time;
94aafc3e
PZ
6342
6343 /*
6344 * Account for the scan cost of wakeups against the average
6345 * idle time.
6346 */
6347 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6348
bae4ec13
MG
6349 update_avg(&this_sd->avg_scan_cost, time);
6350 }
10e2f1ac 6351
9fe1f127 6352 return idle_cpu;
10e2f1ac
PZ
6353}
6354
b7a33161
MR
6355/*
6356 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6357 * the task fits. If no CPU is big enough, but there are idle ones, try to
6358 * maximize capacity.
6359 */
6360static int
6361select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6362{
b4c9c9f1 6363 unsigned long task_util, best_cap = 0;
b7a33161
MR
6364 int cpu, best_cpu = -1;
6365 struct cpumask *cpus;
6366
b7a33161
MR
6367 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6368 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6369
b4c9c9f1
VG
6370 task_util = uclamp_task_util(p);
6371
b7a33161
MR
6372 for_each_cpu_wrap(cpu, cpus, target) {
6373 unsigned long cpu_cap = capacity_of(cpu);
6374
6375 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6376 continue;
b4c9c9f1 6377 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6378 return cpu;
6379
6380 if (cpu_cap > best_cap) {
6381 best_cap = cpu_cap;
6382 best_cpu = cpu;
6383 }
6384 }
6385
6386 return best_cpu;
6387}
6388
b4c9c9f1
VG
6389static inline bool asym_fits_capacity(int task_util, int cpu)
6390{
6391 if (static_branch_unlikely(&sched_asym_cpucapacity))
6392 return fits_capacity(task_util, capacity_of(cpu));
6393
6394 return true;
6395}
6396
10e2f1ac
PZ
6397/*
6398 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6399 */
772bd008 6400static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6401{
c722f35b 6402 bool has_idle_core = false;
99bd5e2f 6403 struct sched_domain *sd;
b4c9c9f1 6404 unsigned long task_util;
32e839dd 6405 int i, recent_used_cpu;
a50bde51 6406
b7a33161 6407 /*
b4c9c9f1
VG
6408 * On asymmetric system, update task utilization because we will check
6409 * that the task fits with cpu's capacity.
b7a33161
MR
6410 */
6411 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6412 sync_entity_load_avg(&p->se);
6413 task_util = uclamp_task_util(p);
b7a33161
MR
6414 }
6415
9099a147
PZ
6416 /*
6417 * per-cpu select_idle_mask usage
6418 */
6419 lockdep_assert_irqs_disabled();
6420
b4c9c9f1
VG
6421 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6422 asym_fits_capacity(task_util, target))
e0a79f52 6423 return target;
99bd5e2f
SS
6424
6425 /*
97fb7a0a 6426 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6427 */
3c29e651 6428 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6429 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6430 asym_fits_capacity(task_util, prev))
772bd008 6431 return prev;
a50bde51 6432
52262ee5
MG
6433 /*
6434 * Allow a per-cpu kthread to stack with the wakee if the
6435 * kworker thread and the tasks previous CPUs are the same.
6436 * The assumption is that the wakee queued work for the
6437 * per-cpu kthread that is now complete and the wakeup is
6438 * essentially a sync wakeup. An obvious example of this
6439 * pattern is IO completions.
6440 */
6441 if (is_per_cpu_kthread(current) &&
d492a48a 6442 in_task() &&
52262ee5 6443 prev == smp_processor_id() &&
5a069c4c
VD
6444 this_rq()->nr_running <= 1 &&
6445 asym_fits_capacity(task_util, prev)) {
52262ee5
MG
6446 return prev;
6447 }
6448
97fb7a0a 6449 /* Check a recently used CPU as a potential idle candidate: */
32e839dd 6450 recent_used_cpu = p->recent_used_cpu;
89aafd67 6451 p->recent_used_cpu = prev;
32e839dd
MG
6452 if (recent_used_cpu != prev &&
6453 recent_used_cpu != target &&
6454 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6455 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6456 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6457 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6458 /*
6459 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6460 * candidate for the next wake:
32e839dd
MG
6461 */
6462 p->recent_used_cpu = prev;
6463 return recent_used_cpu;
6464 }
6465
b4c9c9f1
VG
6466 /*
6467 * For asymmetric CPU capacity systems, our domain of interest is
6468 * sd_asym_cpucapacity rather than sd_llc.
6469 */
6470 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6471 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6472 /*
6473 * On an asymmetric CPU capacity system where an exclusive
6474 * cpuset defines a symmetric island (i.e. one unique
6475 * capacity_orig value through the cpuset), the key will be set
6476 * but the CPUs within that cpuset will not have a domain with
6477 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6478 * capacity path.
6479 */
6480 if (sd) {
6481 i = select_idle_capacity(p, sd, target);
6482 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6483 }
6484 }
6485
518cd623 6486 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6487 if (!sd)
6488 return target;
772bd008 6489
c722f35b
RR
6490 if (sched_smt_active()) {
6491 has_idle_core = test_idle_cores(target, false);
6492
6493 if (!has_idle_core && cpus_share_cache(prev, target)) {
6494 i = select_idle_smt(p, sd, prev);
6495 if ((unsigned int)i < nr_cpumask_bits)
6496 return i;
6497 }
6498 }
6499
6500 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
6501 if ((unsigned)i < nr_cpumask_bits)
6502 return i;
6503
a50bde51
PZ
6504 return target;
6505}
231678b7 6506
f9be3e59 6507/**
59a74b15 6508 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6509 * @cpu: the CPU to get the utilization of
6510 *
6511 * The unit of the return value must be the one of capacity so we can compare
6512 * the utilization with the capacity of the CPU that is available for CFS task
6513 * (ie cpu_capacity).
231678b7
DE
6514 *
6515 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6516 * recent utilization of currently non-runnable tasks on a CPU. It represents
6517 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6518 * capacity_orig is the cpu_capacity available at the highest frequency
6519 * (arch_scale_freq_capacity()).
6520 * The utilization of a CPU converges towards a sum equal to or less than the
6521 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6522 * the running time on this CPU scaled by capacity_curr.
6523 *
f9be3e59
PB
6524 * The estimated utilization of a CPU is defined to be the maximum between its
6525 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6526 * currently RUNNABLE on that CPU.
6527 * This allows to properly represent the expected utilization of a CPU which
6528 * has just got a big task running since a long sleep period. At the same time
6529 * however it preserves the benefits of the "blocked utilization" in
6530 * describing the potential for other tasks waking up on the same CPU.
6531 *
231678b7
DE
6532 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6533 * higher than capacity_orig because of unfortunate rounding in
6534 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6535 * the average stabilizes with the new running time. We need to check that the
6536 * utilization stays within the range of [0..capacity_orig] and cap it if
6537 * necessary. Without utilization capping, a group could be seen as overloaded
6538 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6539 * available capacity. We allow utilization to overshoot capacity_curr (but not
6540 * capacity_orig) as it useful for predicting the capacity required after task
6541 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6542 *
6543 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6544 */
f9be3e59 6545static inline unsigned long cpu_util(int cpu)
8bb5b00c 6546{
f9be3e59
PB
6547 struct cfs_rq *cfs_rq;
6548 unsigned int util;
6549
6550 cfs_rq = &cpu_rq(cpu)->cfs;
6551 util = READ_ONCE(cfs_rq->avg.util_avg);
6552
6553 if (sched_feat(UTIL_EST))
6554 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6555
f9be3e59 6556 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6557}
a50bde51 6558
104cb16d 6559/*
c469933e
PB
6560 * cpu_util_without: compute cpu utilization without any contributions from *p
6561 * @cpu: the CPU which utilization is requested
6562 * @p: the task which utilization should be discounted
6563 *
6564 * The utilization of a CPU is defined by the utilization of tasks currently
6565 * enqueued on that CPU as well as tasks which are currently sleeping after an
6566 * execution on that CPU.
6567 *
6568 * This method returns the utilization of the specified CPU by discounting the
6569 * utilization of the specified task, whenever the task is currently
6570 * contributing to the CPU utilization.
104cb16d 6571 */
c469933e 6572static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6573{
f9be3e59
PB
6574 struct cfs_rq *cfs_rq;
6575 unsigned int util;
104cb16d
MR
6576
6577 /* Task has no contribution or is new */
f9be3e59 6578 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6579 return cpu_util(cpu);
6580
f9be3e59
PB
6581 cfs_rq = &cpu_rq(cpu)->cfs;
6582 util = READ_ONCE(cfs_rq->avg.util_avg);
6583
c469933e 6584 /* Discount task's util from CPU's util */
b5c0ce7b 6585 lsub_positive(&util, task_util(p));
104cb16d 6586
f9be3e59
PB
6587 /*
6588 * Covered cases:
6589 *
6590 * a) if *p is the only task sleeping on this CPU, then:
6591 * cpu_util (== task_util) > util_est (== 0)
6592 * and thus we return:
c469933e 6593 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6594 *
6595 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6596 * IDLE, then:
6597 * cpu_util >= task_util
6598 * cpu_util > util_est (== 0)
6599 * and thus we discount *p's blocked utilization to return:
c469933e 6600 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6601 *
6602 * c) if other tasks are RUNNABLE on that CPU and
6603 * util_est > cpu_util
6604 * then we use util_est since it returns a more restrictive
6605 * estimation of the spare capacity on that CPU, by just
6606 * considering the expected utilization of tasks already
6607 * runnable on that CPU.
6608 *
6609 * Cases a) and b) are covered by the above code, while case c) is
6610 * covered by the following code when estimated utilization is
6611 * enabled.
6612 */
c469933e
PB
6613 if (sched_feat(UTIL_EST)) {
6614 unsigned int estimated =
6615 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6616
6617 /*
6618 * Despite the following checks we still have a small window
6619 * for a possible race, when an execl's select_task_rq_fair()
6620 * races with LB's detach_task():
6621 *
6622 * detach_task()
6623 * p->on_rq = TASK_ON_RQ_MIGRATING;
6624 * ---------------------------------- A
6625 * deactivate_task() \
6626 * dequeue_task() + RaceTime
6627 * util_est_dequeue() /
6628 * ---------------------------------- B
6629 *
6630 * The additional check on "current == p" it's required to
6631 * properly fix the execl regression and it helps in further
6632 * reducing the chances for the above race.
6633 */
b5c0ce7b
PB
6634 if (unlikely(task_on_rq_queued(p) || current == p))
6635 lsub_positive(&estimated, _task_util_est(p));
6636
c469933e
PB
6637 util = max(util, estimated);
6638 }
f9be3e59
PB
6639
6640 /*
6641 * Utilization (estimated) can exceed the CPU capacity, thus let's
6642 * clamp to the maximum CPU capacity to ensure consistency with
6643 * the cpu_util call.
6644 */
6645 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6646}
6647
390031e4
QP
6648/*
6649 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6650 * to @dst_cpu.
6651 */
6652static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6653{
6654 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6655 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6656
6657 /*
6658 * If @p migrates from @cpu to another, remove its contribution. Or,
6659 * if @p migrates from another CPU to @cpu, add its contribution. In
6660 * the other cases, @cpu is not impacted by the migration, so the
6661 * util_avg should already be correct.
6662 */
6663 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6664 lsub_positive(&util, task_util(p));
390031e4
QP
6665 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6666 util += task_util(p);
6667
6668 if (sched_feat(UTIL_EST)) {
6669 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6670
6671 /*
6672 * During wake-up, the task isn't enqueued yet and doesn't
6673 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6674 * so just add it (if needed) to "simulate" what will be
6675 * cpu_util() after the task has been enqueued.
6676 */
6677 if (dst_cpu == cpu)
6678 util_est += _task_util_est(p);
6679
6680 util = max(util, util_est);
6681 }
6682
6683 return min(util, capacity_orig_of(cpu));
6684}
6685
6686/*
eb92692b 6687 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6688 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6689 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6690 * to compute what would be the energy if we decided to actually migrate that
6691 * task.
6692 */
6693static long
6694compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6695{
eb92692b
QP
6696 struct cpumask *pd_mask = perf_domain_span(pd);
6697 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6698 unsigned long max_util = 0, sum_util = 0;
489f1645 6699 unsigned long _cpu_cap = cpu_cap;
390031e4
QP
6700 int cpu;
6701
489f1645
LL
6702 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6703
eb92692b
QP
6704 /*
6705 * The capacity state of CPUs of the current rd can be driven by CPUs
6706 * of another rd if they belong to the same pd. So, account for the
6707 * utilization of these CPUs too by masking pd with cpu_online_mask
6708 * instead of the rd span.
6709 *
6710 * If an entire pd is outside of the current rd, it will not appear in
6711 * its pd list and will not be accounted by compute_energy().
6712 */
6713 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
0372e1cf
VD
6714 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6715 unsigned long cpu_util, util_running = util_freq;
6716 struct task_struct *tsk = NULL;
6717
6718 /*
6719 * When @p is placed on @cpu:
6720 *
6721 * util_running = max(cpu_util, cpu_util_est) +
6722 * max(task_util, _task_util_est)
6723 *
6724 * while cpu_util_next is: max(cpu_util + task_util,
6725 * cpu_util_est + _task_util_est)
6726 */
6727 if (cpu == dst_cpu) {
6728 tsk = p;
6729 util_running =
6730 cpu_util_next(cpu, p, -1) + task_util_est(p);
6731 }
af24bde8
PB
6732
6733 /*
eb92692b
QP
6734 * Busy time computation: utilization clamping is not
6735 * required since the ratio (sum_util / cpu_capacity)
6736 * is already enough to scale the EM reported power
6737 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6738 */
489f1645
LL
6739 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6740 ENERGY_UTIL, NULL);
6741
6742 sum_util += min(cpu_util, _cpu_cap);
af24bde8 6743
390031e4 6744 /*
eb92692b
QP
6745 * Performance domain frequency: utilization clamping
6746 * must be considered since it affects the selection
6747 * of the performance domain frequency.
6748 * NOTE: in case RT tasks are running, by default the
6749 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6750 */
0372e1cf 6751 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
eb92692b 6752 FREQUENCY_UTIL, tsk);
489f1645 6753 max_util = max(max_util, min(cpu_util, _cpu_cap));
390031e4
QP
6754 }
6755
8f1b971b 6756 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
390031e4
QP
6757}
6758
732cd75b
QP
6759/*
6760 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6761 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6762 * spare capacity in each performance domain and uses it as a potential
6763 * candidate to execute the task. Then, it uses the Energy Model to figure
6764 * out which of the CPU candidates is the most energy-efficient.
6765 *
6766 * The rationale for this heuristic is as follows. In a performance domain,
6767 * all the most energy efficient CPU candidates (according to the Energy
6768 * Model) are those for which we'll request a low frequency. When there are
6769 * several CPUs for which the frequency request will be the same, we don't
6770 * have enough data to break the tie between them, because the Energy Model
6771 * only includes active power costs. With this model, if we assume that
6772 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6773 * the maximum spare capacity in a performance domain is guaranteed to be among
6774 * the best candidates of the performance domain.
6775 *
6776 * In practice, it could be preferable from an energy standpoint to pack
6777 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6778 * but that could also hurt our chances to go cluster idle, and we have no
6779 * ways to tell with the current Energy Model if this is actually a good
6780 * idea or not. So, find_energy_efficient_cpu() basically favors
6781 * cluster-packing, and spreading inside a cluster. That should at least be
6782 * a good thing for latency, and this is consistent with the idea that most
6783 * of the energy savings of EAS come from the asymmetry of the system, and
6784 * not so much from breaking the tie between identical CPUs. That's also the
6785 * reason why EAS is enabled in the topology code only for systems where
6786 * SD_ASYM_CPUCAPACITY is set.
6787 *
6788 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6789 * they don't have any useful utilization data yet and it's not possible to
6790 * forecast their impact on energy consumption. Consequently, they will be
6791 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6792 * to be energy-inefficient in some use-cases. The alternative would be to
6793 * bias new tasks towards specific types of CPUs first, or to try to infer
6794 * their util_avg from the parent task, but those heuristics could hurt
6795 * other use-cases too. So, until someone finds a better way to solve this,
6796 * let's keep things simple by re-using the existing slow path.
6797 */
732cd75b
QP
6798static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6799{
eb92692b 6800 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6801 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
619e090c 6802 int cpu, best_energy_cpu = prev_cpu, target = -1;
eb92692b 6803 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6804 struct sched_domain *sd;
eb92692b 6805 struct perf_domain *pd;
732cd75b
QP
6806
6807 rcu_read_lock();
6808 pd = rcu_dereference(rd->pd);
6809 if (!pd || READ_ONCE(rd->overutilized))
619e090c 6810 goto unlock;
732cd75b
QP
6811
6812 /*
6813 * Energy-aware wake-up happens on the lowest sched_domain starting
6814 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6815 */
6816 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6817 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6818 sd = sd->parent;
6819 if (!sd)
619e090c
PG
6820 goto unlock;
6821
6822 target = prev_cpu;
732cd75b
QP
6823
6824 sync_entity_load_avg(&p->se);
6825 if (!task_util_est(p))
6826 goto unlock;
6827
6828 for (; pd; pd = pd->next) {
eb92692b 6829 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
8d4c97c1 6830 bool compute_prev_delta = false;
eb92692b 6831 unsigned long base_energy_pd;
732cd75b
QP
6832 int max_spare_cap_cpu = -1;
6833
6834 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6835 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6836 continue;
6837
732cd75b
QP
6838 util = cpu_util_next(cpu, p, cpu);
6839 cpu_cap = capacity_of(cpu);
da0777d3
LL
6840 spare_cap = cpu_cap;
6841 lsub_positive(&spare_cap, util);
1d42509e
VS
6842
6843 /*
6844 * Skip CPUs that cannot satisfy the capacity request.
6845 * IOW, placing the task there would make the CPU
6846 * overutilized. Take uclamp into account to see how
6847 * much capacity we can get out of the CPU; this is
a5418be9 6848 * aligned with sched_cpu_util().
1d42509e
VS
6849 */
6850 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6851 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6852 continue;
6853
732cd75b 6854 if (cpu == prev_cpu) {
8d4c97c1
PG
6855 /* Always use prev_cpu as a candidate. */
6856 compute_prev_delta = true;
6857 } else if (spare_cap > max_spare_cap) {
6858 /*
6859 * Find the CPU with the maximum spare capacity
6860 * in the performance domain.
6861 */
732cd75b
QP
6862 max_spare_cap = spare_cap;
6863 max_spare_cap_cpu = cpu;
6864 }
6865 }
6866
8d4c97c1
PG
6867 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6868 continue;
6869
6870 /* Compute the 'base' energy of the pd, without @p */
6871 base_energy_pd = compute_energy(p, -1, pd);
6872 base_energy += base_energy_pd;
6873
6874 /* Evaluate the energy impact of using prev_cpu. */
6875 if (compute_prev_delta) {
6876 prev_delta = compute_energy(p, prev_cpu, pd);
619e090c
PG
6877 if (prev_delta < base_energy_pd)
6878 goto unlock;
8d4c97c1
PG
6879 prev_delta -= base_energy_pd;
6880 best_delta = min(best_delta, prev_delta);
6881 }
6882
6883 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6884 if (max_spare_cap_cpu >= 0) {
eb92692b 6885 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
619e090c
PG
6886 if (cur_delta < base_energy_pd)
6887 goto unlock;
eb92692b
QP
6888 cur_delta -= base_energy_pd;
6889 if (cur_delta < best_delta) {
6890 best_delta = cur_delta;
732cd75b
QP
6891 best_energy_cpu = max_spare_cap_cpu;
6892 }
6893 }
6894 }
732cd75b
QP
6895 rcu_read_unlock();
6896
6897 /*
6898 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6899 * least 6% of the energy used by prev_cpu.
6900 */
619e090c
PG
6901 if ((prev_delta == ULONG_MAX) ||
6902 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6903 target = best_energy_cpu;
732cd75b 6904
619e090c 6905 return target;
732cd75b 6906
619e090c 6907unlock:
732cd75b
QP
6908 rcu_read_unlock();
6909
619e090c 6910 return target;
732cd75b
QP
6911}
6912
aaee1203 6913/*
de91b9cb 6914 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6915 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6916 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6917 *
97fb7a0a
IM
6918 * Balances load by selecting the idlest CPU in the idlest group, or under
6919 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6920 *
97fb7a0a 6921 * Returns the target CPU number.
aaee1203 6922 */
0017d735 6923static int
3aef1551 6924select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6925{
3aef1551 6926 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6927 struct sched_domain *tmp, *sd = NULL;
c88d5910 6928 int cpu = smp_processor_id();
63b0e9ed 6929 int new_cpu = prev_cpu;
99bd5e2f 6930 int want_affine = 0;
3aef1551
VS
6931 /* SD_flags and WF_flags share the first nibble */
6932 int sd_flag = wake_flags & 0xF;
c88d5910 6933
9099a147
PZ
6934 /*
6935 * required for stable ->cpus_allowed
6936 */
6937 lockdep_assert_held(&p->pi_lock);
dc824eb8 6938 if (wake_flags & WF_TTWU) {
c58d25f3 6939 record_wakee(p);
732cd75b 6940
f8a696f2 6941 if (sched_energy_enabled()) {
732cd75b
QP
6942 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6943 if (new_cpu >= 0)
6944 return new_cpu;
6945 new_cpu = prev_cpu;
6946 }
6947
00061968 6948 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6949 }
aaee1203 6950
dce840a0 6951 rcu_read_lock();
aaee1203 6952 for_each_domain(cpu, tmp) {
fe3bcfe1 6953 /*
97fb7a0a 6954 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6955 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6956 */
99bd5e2f
SS
6957 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6958 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6959 if (cpu != prev_cpu)
6960 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6961
6962 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6963 break;
f03542a7 6964 }
29cd8bae 6965
f03542a7 6966 if (tmp->flags & sd_flag)
29cd8bae 6967 sd = tmp;
63b0e9ed
MG
6968 else if (!want_affine)
6969 break;
29cd8bae
PZ
6970 }
6971
f1d88b44
VK
6972 if (unlikely(sd)) {
6973 /* Slow path */
18bd1b4b 6974 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6975 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6976 /* Fast path */
f1d88b44 6977 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
e7693a36 6978 }
dce840a0 6979 rcu_read_unlock();
e7693a36 6980
c88d5910 6981 return new_cpu;
e7693a36 6982}
0a74bef8 6983
144d8487
PZ
6984static void detach_entity_cfs_rq(struct sched_entity *se);
6985
0a74bef8 6986/*
97fb7a0a 6987 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6988 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6989 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6990 */
3f9672ba 6991static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6992{
59efa0ba
PZ
6993 /*
6994 * As blocked tasks retain absolute vruntime the migration needs to
6995 * deal with this by subtracting the old and adding the new
6996 * min_vruntime -- the latter is done by enqueue_entity() when placing
6997 * the task on the new runqueue.
6998 */
2f064a59 6999 if (READ_ONCE(p->__state) == TASK_WAKING) {
59efa0ba
PZ
7000 struct sched_entity *se = &p->se;
7001 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7002 u64 min_vruntime;
7003
7004#ifndef CONFIG_64BIT
7005 u64 min_vruntime_copy;
7006
7007 do {
7008 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7009 smp_rmb();
7010 min_vruntime = cfs_rq->min_vruntime;
7011 } while (min_vruntime != min_vruntime_copy);
7012#else
7013 min_vruntime = cfs_rq->min_vruntime;
7014#endif
7015
7016 se->vruntime -= min_vruntime;
7017 }
7018
144d8487
PZ
7019 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7020 /*
7021 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7022 * rq->lock and can modify state directly.
7023 */
5cb9eaa3 7024 lockdep_assert_rq_held(task_rq(p));
144d8487
PZ
7025 detach_entity_cfs_rq(&p->se);
7026
7027 } else {
7028 /*
7029 * We are supposed to update the task to "current" time, then
7030 * its up to date and ready to go to new CPU/cfs_rq. But we
7031 * have difficulty in getting what current time is, so simply
7032 * throw away the out-of-date time. This will result in the
7033 * wakee task is less decayed, but giving the wakee more load
7034 * sounds not bad.
7035 */
7036 remove_entity_load_avg(&p->se);
7037 }
9d89c257
YD
7038
7039 /* Tell new CPU we are migrated */
7040 p->se.avg.last_update_time = 0;
3944a927
BS
7041
7042 /* We have migrated, no longer consider this task hot */
9d89c257 7043 p->se.exec_start = 0;
3f9672ba
SD
7044
7045 update_scan_period(p, new_cpu);
0a74bef8 7046}
12695578
YD
7047
7048static void task_dead_fair(struct task_struct *p)
7049{
7050 remove_entity_load_avg(&p->se);
7051}
6e2df058
PZ
7052
7053static int
7054balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7055{
7056 if (rq->nr_running)
7057 return 1;
7058
7059 return newidle_balance(rq, rf) != 0;
7060}
e7693a36
GH
7061#endif /* CONFIG_SMP */
7062
a555e9d8 7063static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
7064{
7065 unsigned long gran = sysctl_sched_wakeup_granularity;
7066
7067 /*
e52fb7c0
PZ
7068 * Since its curr running now, convert the gran from real-time
7069 * to virtual-time in his units.
13814d42
MG
7070 *
7071 * By using 'se' instead of 'curr' we penalize light tasks, so
7072 * they get preempted easier. That is, if 'se' < 'curr' then
7073 * the resulting gran will be larger, therefore penalizing the
7074 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7075 * be smaller, again penalizing the lighter task.
7076 *
7077 * This is especially important for buddies when the leftmost
7078 * task is higher priority than the buddy.
0bbd3336 7079 */
f4ad9bd2 7080 return calc_delta_fair(gran, se);
0bbd3336
PZ
7081}
7082
464b7527
PZ
7083/*
7084 * Should 'se' preempt 'curr'.
7085 *
7086 * |s1
7087 * |s2
7088 * |s3
7089 * g
7090 * |<--->|c
7091 *
7092 * w(c, s1) = -1
7093 * w(c, s2) = 0
7094 * w(c, s3) = 1
7095 *
7096 */
7097static int
7098wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7099{
7100 s64 gran, vdiff = curr->vruntime - se->vruntime;
7101
7102 if (vdiff <= 0)
7103 return -1;
7104
a555e9d8 7105 gran = wakeup_gran(se);
464b7527
PZ
7106 if (vdiff > gran)
7107 return 1;
7108
7109 return 0;
7110}
7111
02479099
PZ
7112static void set_last_buddy(struct sched_entity *se)
7113{
c5ae366e
DA
7114 for_each_sched_entity(se) {
7115 if (SCHED_WARN_ON(!se->on_rq))
7116 return;
30400039
JD
7117 if (se_is_idle(se))
7118 return;
69c80f3e 7119 cfs_rq_of(se)->last = se;
c5ae366e 7120 }
02479099
PZ
7121}
7122
7123static void set_next_buddy(struct sched_entity *se)
7124{
c5ae366e
DA
7125 for_each_sched_entity(se) {
7126 if (SCHED_WARN_ON(!se->on_rq))
7127 return;
30400039
JD
7128 if (se_is_idle(se))
7129 return;
69c80f3e 7130 cfs_rq_of(se)->next = se;
c5ae366e 7131 }
02479099
PZ
7132}
7133
ac53db59
RR
7134static void set_skip_buddy(struct sched_entity *se)
7135{
69c80f3e
VP
7136 for_each_sched_entity(se)
7137 cfs_rq_of(se)->skip = se;
ac53db59
RR
7138}
7139
bf0f6f24
IM
7140/*
7141 * Preempt the current task with a newly woken task if needed:
7142 */
5a9b86f6 7143static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
7144{
7145 struct task_struct *curr = rq->curr;
8651a86c 7146 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 7147 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 7148 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 7149 int next_buddy_marked = 0;
30400039 7150 int cse_is_idle, pse_is_idle;
bf0f6f24 7151
4ae7d5ce
IM
7152 if (unlikely(se == pse))
7153 return;
7154
5238cdd3 7155 /*
163122b7 7156 * This is possible from callers such as attach_tasks(), in which we
3b03706f 7157 * unconditionally check_preempt_curr() after an enqueue (which may have
5238cdd3
PT
7158 * lead to a throttle). This both saves work and prevents false
7159 * next-buddy nomination below.
7160 */
7161 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7162 return;
7163
2f36825b 7164 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 7165 set_next_buddy(pse);
2f36825b
VP
7166 next_buddy_marked = 1;
7167 }
57fdc26d 7168
aec0a514
BR
7169 /*
7170 * We can come here with TIF_NEED_RESCHED already set from new task
7171 * wake up path.
5238cdd3
PT
7172 *
7173 * Note: this also catches the edge-case of curr being in a throttled
7174 * group (e.g. via set_curr_task), since update_curr() (in the
7175 * enqueue of curr) will have resulted in resched being set. This
7176 * prevents us from potentially nominating it as a false LAST_BUDDY
7177 * below.
aec0a514
BR
7178 */
7179 if (test_tsk_need_resched(curr))
7180 return;
7181
a2f5c9ab 7182 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
7183 if (unlikely(task_has_idle_policy(curr)) &&
7184 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
7185 goto preempt;
7186
91c234b4 7187 /*
a2f5c9ab
DH
7188 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7189 * is driven by the tick):
91c234b4 7190 */
8ed92e51 7191 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7192 return;
bf0f6f24 7193
464b7527 7194 find_matching_se(&se, &pse);
002f128b 7195 BUG_ON(!pse);
30400039
JD
7196
7197 cse_is_idle = se_is_idle(se);
7198 pse_is_idle = se_is_idle(pse);
7199
7200 /*
7201 * Preempt an idle group in favor of a non-idle group (and don't preempt
7202 * in the inverse case).
7203 */
7204 if (cse_is_idle && !pse_is_idle)
7205 goto preempt;
7206 if (cse_is_idle != pse_is_idle)
7207 return;
7208
7209 update_curr(cfs_rq_of(se));
2f36825b
VP
7210 if (wakeup_preempt_entity(se, pse) == 1) {
7211 /*
7212 * Bias pick_next to pick the sched entity that is
7213 * triggering this preemption.
7214 */
7215 if (!next_buddy_marked)
7216 set_next_buddy(pse);
3a7e73a2 7217 goto preempt;
2f36825b 7218 }
464b7527 7219
3a7e73a2 7220 return;
a65ac745 7221
3a7e73a2 7222preempt:
8875125e 7223 resched_curr(rq);
3a7e73a2
PZ
7224 /*
7225 * Only set the backward buddy when the current task is still
7226 * on the rq. This can happen when a wakeup gets interleaved
7227 * with schedule on the ->pre_schedule() or idle_balance()
7228 * point, either of which can * drop the rq lock.
7229 *
7230 * Also, during early boot the idle thread is in the fair class,
7231 * for obvious reasons its a bad idea to schedule back to it.
7232 */
7233 if (unlikely(!se->on_rq || curr == rq->idle))
7234 return;
7235
7236 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7237 set_last_buddy(se);
bf0f6f24
IM
7238}
7239
21f56ffe
PZ
7240#ifdef CONFIG_SMP
7241static struct task_struct *pick_task_fair(struct rq *rq)
7242{
7243 struct sched_entity *se;
7244 struct cfs_rq *cfs_rq;
7245
7246again:
7247 cfs_rq = &rq->cfs;
7248 if (!cfs_rq->nr_running)
7249 return NULL;
7250
7251 do {
7252 struct sched_entity *curr = cfs_rq->curr;
7253
7254 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7255 if (curr) {
7256 if (curr->on_rq)
7257 update_curr(cfs_rq);
7258 else
7259 curr = NULL;
7260
7261 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7262 goto again;
7263 }
7264
7265 se = pick_next_entity(cfs_rq, curr);
7266 cfs_rq = group_cfs_rq(se);
7267 } while (cfs_rq);
7268
7269 return task_of(se);
7270}
7271#endif
7272
5d7d6056 7273struct task_struct *
d8ac8971 7274pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7275{
7276 struct cfs_rq *cfs_rq = &rq->cfs;
7277 struct sched_entity *se;
678d5718 7278 struct task_struct *p;
37e117c0 7279 int new_tasks;
678d5718 7280
6e83125c 7281again:
6e2df058 7282 if (!sched_fair_runnable(rq))
38033c37 7283 goto idle;
678d5718 7284
9674f5ca 7285#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7286 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7287 goto simple;
7288
7289 /*
7290 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7291 * likely that a next task is from the same cgroup as the current.
7292 *
7293 * Therefore attempt to avoid putting and setting the entire cgroup
7294 * hierarchy, only change the part that actually changes.
7295 */
7296
7297 do {
7298 struct sched_entity *curr = cfs_rq->curr;
7299
7300 /*
7301 * Since we got here without doing put_prev_entity() we also
7302 * have to consider cfs_rq->curr. If it is still a runnable
7303 * entity, update_curr() will update its vruntime, otherwise
7304 * forget we've ever seen it.
7305 */
54d27365
BS
7306 if (curr) {
7307 if (curr->on_rq)
7308 update_curr(cfs_rq);
7309 else
7310 curr = NULL;
678d5718 7311
54d27365
BS
7312 /*
7313 * This call to check_cfs_rq_runtime() will do the
7314 * throttle and dequeue its entity in the parent(s).
9674f5ca 7315 * Therefore the nr_running test will indeed
54d27365
BS
7316 * be correct.
7317 */
9674f5ca
VK
7318 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7319 cfs_rq = &rq->cfs;
7320
7321 if (!cfs_rq->nr_running)
7322 goto idle;
7323
54d27365 7324 goto simple;
9674f5ca 7325 }
54d27365 7326 }
678d5718
PZ
7327
7328 se = pick_next_entity(cfs_rq, curr);
7329 cfs_rq = group_cfs_rq(se);
7330 } while (cfs_rq);
7331
7332 p = task_of(se);
7333
7334 /*
7335 * Since we haven't yet done put_prev_entity and if the selected task
7336 * is a different task than we started out with, try and touch the
7337 * least amount of cfs_rqs.
7338 */
7339 if (prev != p) {
7340 struct sched_entity *pse = &prev->se;
7341
7342 while (!(cfs_rq = is_same_group(se, pse))) {
7343 int se_depth = se->depth;
7344 int pse_depth = pse->depth;
7345
7346 if (se_depth <= pse_depth) {
7347 put_prev_entity(cfs_rq_of(pse), pse);
7348 pse = parent_entity(pse);
7349 }
7350 if (se_depth >= pse_depth) {
7351 set_next_entity(cfs_rq_of(se), se);
7352 se = parent_entity(se);
7353 }
7354 }
7355
7356 put_prev_entity(cfs_rq, pse);
7357 set_next_entity(cfs_rq, se);
7358 }
7359
93824900 7360 goto done;
678d5718 7361simple:
678d5718 7362#endif
67692435
PZ
7363 if (prev)
7364 put_prev_task(rq, prev);
606dba2e 7365
bf0f6f24 7366 do {
678d5718 7367 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7368 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7369 cfs_rq = group_cfs_rq(se);
7370 } while (cfs_rq);
7371
8f4d37ec 7372 p = task_of(se);
678d5718 7373
13a453c2 7374done: __maybe_unused;
93824900
UR
7375#ifdef CONFIG_SMP
7376 /*
7377 * Move the next running task to the front of
7378 * the list, so our cfs_tasks list becomes MRU
7379 * one.
7380 */
7381 list_move(&p->se.group_node, &rq->cfs_tasks);
7382#endif
7383
e0ee463c 7384 if (hrtick_enabled_fair(rq))
b39e66ea 7385 hrtick_start_fair(rq, p);
8f4d37ec 7386
3b1baa64
MR
7387 update_misfit_status(p, rq);
7388
8f4d37ec 7389 return p;
38033c37
PZ
7390
7391idle:
67692435
PZ
7392 if (!rf)
7393 return NULL;
7394
5ba553ef 7395 new_tasks = newidle_balance(rq, rf);
46f69fa3 7396
37e117c0 7397 /*
5ba553ef 7398 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7399 * possible for any higher priority task to appear. In that case we
7400 * must re-start the pick_next_entity() loop.
7401 */
e4aa358b 7402 if (new_tasks < 0)
37e117c0
PZ
7403 return RETRY_TASK;
7404
e4aa358b 7405 if (new_tasks > 0)
38033c37 7406 goto again;
38033c37 7407
23127296
VG
7408 /*
7409 * rq is about to be idle, check if we need to update the
7410 * lost_idle_time of clock_pelt
7411 */
7412 update_idle_rq_clock_pelt(rq);
7413
38033c37 7414 return NULL;
bf0f6f24
IM
7415}
7416
98c2f700
PZ
7417static struct task_struct *__pick_next_task_fair(struct rq *rq)
7418{
7419 return pick_next_task_fair(rq, NULL, NULL);
7420}
7421
bf0f6f24
IM
7422/*
7423 * Account for a descheduled task:
7424 */
6e2df058 7425static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7426{
7427 struct sched_entity *se = &prev->se;
7428 struct cfs_rq *cfs_rq;
7429
7430 for_each_sched_entity(se) {
7431 cfs_rq = cfs_rq_of(se);
ab6cde26 7432 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7433 }
7434}
7435
ac53db59
RR
7436/*
7437 * sched_yield() is very simple
7438 *
7439 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7440 */
7441static void yield_task_fair(struct rq *rq)
7442{
7443 struct task_struct *curr = rq->curr;
7444 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7445 struct sched_entity *se = &curr->se;
7446
7447 /*
7448 * Are we the only task in the tree?
7449 */
7450 if (unlikely(rq->nr_running == 1))
7451 return;
7452
7453 clear_buddies(cfs_rq, se);
7454
7455 if (curr->policy != SCHED_BATCH) {
7456 update_rq_clock(rq);
7457 /*
7458 * Update run-time statistics of the 'current'.
7459 */
7460 update_curr(cfs_rq);
916671c0
MG
7461 /*
7462 * Tell update_rq_clock() that we've just updated,
7463 * so we don't do microscopic update in schedule()
7464 * and double the fastpath cost.
7465 */
adcc8da8 7466 rq_clock_skip_update(rq);
ac53db59
RR
7467 }
7468
7469 set_skip_buddy(se);
7470}
7471
0900acf2 7472static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7473{
7474 struct sched_entity *se = &p->se;
7475
5238cdd3
PT
7476 /* throttled hierarchies are not runnable */
7477 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7478 return false;
7479
7480 /* Tell the scheduler that we'd really like pse to run next. */
7481 set_next_buddy(se);
7482
d95f4122
MG
7483 yield_task_fair(rq);
7484
7485 return true;
7486}
7487
681f3e68 7488#ifdef CONFIG_SMP
bf0f6f24 7489/**************************************************
e9c84cb8
PZ
7490 * Fair scheduling class load-balancing methods.
7491 *
7492 * BASICS
7493 *
7494 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7495 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7496 * time to each task. This is expressed in the following equation:
7497 *
7498 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7499 *
97fb7a0a 7500 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7501 * W_i,0 is defined as:
7502 *
7503 * W_i,0 = \Sum_j w_i,j (2)
7504 *
97fb7a0a 7505 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7506 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7507 *
7508 * The weight average is an exponential decay average of the instantaneous
7509 * weight:
7510 *
7511 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7512 *
97fb7a0a 7513 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7514 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7515 * can also include other factors [XXX].
7516 *
7517 * To achieve this balance we define a measure of imbalance which follows
7518 * directly from (1):
7519 *
ced549fa 7520 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7521 *
7522 * We them move tasks around to minimize the imbalance. In the continuous
7523 * function space it is obvious this converges, in the discrete case we get
7524 * a few fun cases generally called infeasible weight scenarios.
7525 *
7526 * [XXX expand on:
7527 * - infeasible weights;
7528 * - local vs global optima in the discrete case. ]
7529 *
7530 *
7531 * SCHED DOMAINS
7532 *
7533 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7534 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7535 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7536 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7537 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7538 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7539 * the groups.
7540 *
7541 * This yields:
7542 *
7543 * log_2 n 1 n
7544 * \Sum { --- * --- * 2^i } = O(n) (5)
7545 * i = 0 2^i 2^i
7546 * `- size of each group
97fb7a0a 7547 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7548 * | `- freq
7549 * `- sum over all levels
7550 *
7551 * Coupled with a limit on how many tasks we can migrate every balance pass,
7552 * this makes (5) the runtime complexity of the balancer.
7553 *
7554 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7555 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7556 *
7557 * The adjacency matrix of the resulting graph is given by:
7558 *
97a7142f 7559 * log_2 n
e9c84cb8
PZ
7560 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7561 * k = 0
7562 *
7563 * And you'll find that:
7564 *
7565 * A^(log_2 n)_i,j != 0 for all i,j (7)
7566 *
97fb7a0a 7567 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7568 * The task movement gives a factor of O(m), giving a convergence complexity
7569 * of:
7570 *
7571 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7572 *
7573 *
7574 * WORK CONSERVING
7575 *
7576 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7577 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7578 * tree itself instead of relying on other CPUs to bring it work.
7579 *
7580 * This adds some complexity to both (5) and (8) but it reduces the total idle
7581 * time.
7582 *
7583 * [XXX more?]
7584 *
7585 *
7586 * CGROUPS
7587 *
7588 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7589 *
7590 * s_k,i
7591 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7592 * S_k
7593 *
7594 * Where
7595 *
7596 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7597 *
97fb7a0a 7598 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7599 *
7600 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7601 * property.
7602 *
7603 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7604 * rewrite all of this once again.]
97a7142f 7605 */
bf0f6f24 7606
ed387b78
HS
7607static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7608
0ec8aa00
PZ
7609enum fbq_type { regular, remote, all };
7610
0b0695f2 7611/*
a9723389
VG
7612 * 'group_type' describes the group of CPUs at the moment of load balancing.
7613 *
0b0695f2 7614 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7615 * first so the group_type can simply be compared when selecting the busiest
7616 * group. See update_sd_pick_busiest().
0b0695f2 7617 */
3b1baa64 7618enum group_type {
a9723389 7619 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7620 group_has_spare = 0,
a9723389
VG
7621 /*
7622 * The group is fully used and the tasks don't compete for more CPU
7623 * cycles. Nevertheless, some tasks might wait before running.
7624 */
0b0695f2 7625 group_fully_busy,
a9723389
VG
7626 /*
7627 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7628 * and must be migrated to a more powerful CPU.
7629 */
3b1baa64 7630 group_misfit_task,
a9723389
VG
7631 /*
7632 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7633 * and the task should be migrated to it instead of running on the
7634 * current CPU.
7635 */
0b0695f2 7636 group_asym_packing,
a9723389
VG
7637 /*
7638 * The tasks' affinity constraints previously prevented the scheduler
7639 * from balancing the load across the system.
7640 */
3b1baa64 7641 group_imbalanced,
a9723389
VG
7642 /*
7643 * The CPU is overloaded and can't provide expected CPU cycles to all
7644 * tasks.
7645 */
0b0695f2
VG
7646 group_overloaded
7647};
7648
7649enum migration_type {
7650 migrate_load = 0,
7651 migrate_util,
7652 migrate_task,
7653 migrate_misfit
3b1baa64
MR
7654};
7655
ddcdf6e7 7656#define LBF_ALL_PINNED 0x01
367456c7 7657#define LBF_NEED_BREAK 0x02
6263322c
PZ
7658#define LBF_DST_PINNED 0x04
7659#define LBF_SOME_PINNED 0x08
23fb06d9 7660#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
7661
7662struct lb_env {
7663 struct sched_domain *sd;
7664
ddcdf6e7 7665 struct rq *src_rq;
85c1e7da 7666 int src_cpu;
ddcdf6e7
PZ
7667
7668 int dst_cpu;
7669 struct rq *dst_rq;
7670
88b8dac0
SV
7671 struct cpumask *dst_grpmask;
7672 int new_dst_cpu;
ddcdf6e7 7673 enum cpu_idle_type idle;
bd939f45 7674 long imbalance;
b9403130
MW
7675 /* The set of CPUs under consideration for load-balancing */
7676 struct cpumask *cpus;
7677
ddcdf6e7 7678 unsigned int flags;
367456c7
PZ
7679
7680 unsigned int loop;
7681 unsigned int loop_break;
7682 unsigned int loop_max;
0ec8aa00
PZ
7683
7684 enum fbq_type fbq_type;
0b0695f2 7685 enum migration_type migration_type;
163122b7 7686 struct list_head tasks;
ddcdf6e7
PZ
7687};
7688
029632fb
PZ
7689/*
7690 * Is this task likely cache-hot:
7691 */
5d5e2b1b 7692static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7693{
7694 s64 delta;
7695
5cb9eaa3 7696 lockdep_assert_rq_held(env->src_rq);
e5673f28 7697
029632fb
PZ
7698 if (p->sched_class != &fair_sched_class)
7699 return 0;
7700
1da1843f 7701 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7702 return 0;
7703
ec73240b
JD
7704 /* SMT siblings share cache */
7705 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7706 return 0;
7707
029632fb
PZ
7708 /*
7709 * Buddy candidates are cache hot:
7710 */
5d5e2b1b 7711 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7712 (&p->se == cfs_rq_of(&p->se)->next ||
7713 &p->se == cfs_rq_of(&p->se)->last))
7714 return 1;
7715
7716 if (sysctl_sched_migration_cost == -1)
7717 return 1;
97886d9d
AL
7718
7719 /*
7720 * Don't migrate task if the task's cookie does not match
7721 * with the destination CPU's core cookie.
7722 */
7723 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7724 return 1;
7725
029632fb
PZ
7726 if (sysctl_sched_migration_cost == 0)
7727 return 0;
7728
5d5e2b1b 7729 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7730
7731 return delta < (s64)sysctl_sched_migration_cost;
7732}
7733
3a7053b3 7734#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7735/*
2a1ed24c
SD
7736 * Returns 1, if task migration degrades locality
7737 * Returns 0, if task migration improves locality i.e migration preferred.
7738 * Returns -1, if task migration is not affected by locality.
c1ceac62 7739 */
2a1ed24c 7740static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7741{
b1ad065e 7742 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7743 unsigned long src_weight, dst_weight;
7744 int src_nid, dst_nid, dist;
3a7053b3 7745
2a595721 7746 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7747 return -1;
7748
c3b9bc5b 7749 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7750 return -1;
7a0f3083
MG
7751
7752 src_nid = cpu_to_node(env->src_cpu);
7753 dst_nid = cpu_to_node(env->dst_cpu);
7754
83e1d2cd 7755 if (src_nid == dst_nid)
2a1ed24c 7756 return -1;
7a0f3083 7757
2a1ed24c
SD
7758 /* Migrating away from the preferred node is always bad. */
7759 if (src_nid == p->numa_preferred_nid) {
7760 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7761 return 1;
7762 else
7763 return -1;
7764 }
b1ad065e 7765
c1ceac62
RR
7766 /* Encourage migration to the preferred node. */
7767 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7768 return 0;
b1ad065e 7769
739294fb 7770 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7771 if (env->idle == CPU_IDLE)
739294fb
RR
7772 return -1;
7773
f35678b6 7774 dist = node_distance(src_nid, dst_nid);
c1ceac62 7775 if (numa_group) {
f35678b6
SD
7776 src_weight = group_weight(p, src_nid, dist);
7777 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7778 } else {
f35678b6
SD
7779 src_weight = task_weight(p, src_nid, dist);
7780 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7781 }
7782
f35678b6 7783 return dst_weight < src_weight;
7a0f3083
MG
7784}
7785
3a7053b3 7786#else
2a1ed24c 7787static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7788 struct lb_env *env)
7789{
2a1ed24c 7790 return -1;
7a0f3083 7791}
3a7053b3
MG
7792#endif
7793
1e3c88bd
PZ
7794/*
7795 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7796 */
7797static
8e45cb54 7798int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7799{
2a1ed24c 7800 int tsk_cache_hot;
e5673f28 7801
5cb9eaa3 7802 lockdep_assert_rq_held(env->src_rq);
e5673f28 7803
1e3c88bd
PZ
7804 /*
7805 * We do not migrate tasks that are:
d3198084 7806 * 1) throttled_lb_pair, or
3bd37062 7807 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7808 * 3) running (obviously), or
7809 * 4) are cache-hot on their current CPU.
1e3c88bd 7810 */
d3198084
JK
7811 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7812 return 0;
7813
9bcb959d 7814 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 7815 if (kthread_is_per_cpu(p))
9bcb959d
LC
7816 return 0;
7817
3bd37062 7818 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7819 int cpu;
88b8dac0 7820
ae92882e 7821 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7822
6263322c
PZ
7823 env->flags |= LBF_SOME_PINNED;
7824
88b8dac0 7825 /*
97fb7a0a 7826 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7827 * our sched_group. We may want to revisit it if we couldn't
7828 * meet load balance goals by pulling other tasks on src_cpu.
7829 *
23fb06d9
VS
7830 * Avoid computing new_dst_cpu
7831 * - for NEWLY_IDLE
7832 * - if we have already computed one in current iteration
7833 * - if it's an active balance
88b8dac0 7834 */
23fb06d9
VS
7835 if (env->idle == CPU_NEWLY_IDLE ||
7836 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
7837 return 0;
7838
97fb7a0a 7839 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7840 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7841 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7842 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7843 env->new_dst_cpu = cpu;
7844 break;
7845 }
88b8dac0 7846 }
e02e60c1 7847
1e3c88bd
PZ
7848 return 0;
7849 }
88b8dac0 7850
3b03706f 7851 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 7852 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7853
ddcdf6e7 7854 if (task_running(env->src_rq, p)) {
ae92882e 7855 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7856 return 0;
7857 }
7858
7859 /*
7860 * Aggressive migration if:
23fb06d9
VS
7861 * 1) active balance
7862 * 2) destination numa is preferred
7863 * 3) task is cache cold, or
7864 * 4) too many balance attempts have failed.
1e3c88bd 7865 */
23fb06d9
VS
7866 if (env->flags & LBF_ACTIVE_LB)
7867 return 1;
7868
2a1ed24c
SD
7869 tsk_cache_hot = migrate_degrades_locality(p, env);
7870 if (tsk_cache_hot == -1)
7871 tsk_cache_hot = task_hot(p, env);
3a7053b3 7872
2a1ed24c 7873 if (tsk_cache_hot <= 0 ||
7a96c231 7874 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7875 if (tsk_cache_hot == 1) {
ae92882e
JP
7876 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7877 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7878 }
1e3c88bd
PZ
7879 return 1;
7880 }
7881
ae92882e 7882 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7883 return 0;
1e3c88bd
PZ
7884}
7885
897c395f 7886/*
163122b7
KT
7887 * detach_task() -- detach the task for the migration specified in env
7888 */
7889static void detach_task(struct task_struct *p, struct lb_env *env)
7890{
5cb9eaa3 7891 lockdep_assert_rq_held(env->src_rq);
163122b7 7892
5704ac0a 7893 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7894 set_task_cpu(p, env->dst_cpu);
7895}
7896
897c395f 7897/*
e5673f28 7898 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7899 * part of active balancing operations within "domain".
897c395f 7900 *
e5673f28 7901 * Returns a task if successful and NULL otherwise.
897c395f 7902 */
e5673f28 7903static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7904{
93824900 7905 struct task_struct *p;
897c395f 7906
5cb9eaa3 7907 lockdep_assert_rq_held(env->src_rq);
e5673f28 7908
93824900
UR
7909 list_for_each_entry_reverse(p,
7910 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7911 if (!can_migrate_task(p, env))
7912 continue;
897c395f 7913
163122b7 7914 detach_task(p, env);
e5673f28 7915
367456c7 7916 /*
e5673f28 7917 * Right now, this is only the second place where
163122b7 7918 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7919 * so we can safely collect stats here rather than
163122b7 7920 * inside detach_tasks().
367456c7 7921 */
ae92882e 7922 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7923 return p;
897c395f 7924 }
e5673f28 7925 return NULL;
897c395f
PZ
7926}
7927
eb95308e
PZ
7928static const unsigned int sched_nr_migrate_break = 32;
7929
5d6523eb 7930/*
0b0695f2 7931 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7932 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7933 *
163122b7 7934 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7935 */
163122b7 7936static int detach_tasks(struct lb_env *env)
1e3c88bd 7937{
5d6523eb 7938 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7939 unsigned long util, load;
5d6523eb 7940 struct task_struct *p;
163122b7
KT
7941 int detached = 0;
7942
5cb9eaa3 7943 lockdep_assert_rq_held(env->src_rq);
1e3c88bd 7944
acb4decc
AL
7945 /*
7946 * Source run queue has been emptied by another CPU, clear
7947 * LBF_ALL_PINNED flag as we will not test any task.
7948 */
7949 if (env->src_rq->nr_running <= 1) {
7950 env->flags &= ~LBF_ALL_PINNED;
7951 return 0;
7952 }
7953
bd939f45 7954 if (env->imbalance <= 0)
5d6523eb 7955 return 0;
1e3c88bd 7956
5d6523eb 7957 while (!list_empty(tasks)) {
985d3a4c
YD
7958 /*
7959 * We don't want to steal all, otherwise we may be treated likewise,
7960 * which could at worst lead to a livelock crash.
7961 */
7962 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7963 break;
7964
93824900 7965 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7966
367456c7
PZ
7967 env->loop++;
7968 /* We've more or less seen every task there is, call it quits */
5d6523eb 7969 if (env->loop > env->loop_max)
367456c7 7970 break;
5d6523eb
PZ
7971
7972 /* take a breather every nr_migrate tasks */
367456c7 7973 if (env->loop > env->loop_break) {
eb95308e 7974 env->loop_break += sched_nr_migrate_break;
8e45cb54 7975 env->flags |= LBF_NEED_BREAK;
ee00e66f 7976 break;
a195f004 7977 }
1e3c88bd 7978
d3198084 7979 if (!can_migrate_task(p, env))
367456c7
PZ
7980 goto next;
7981
0b0695f2
VG
7982 switch (env->migration_type) {
7983 case migrate_load:
01cfcde9
VG
7984 /*
7985 * Depending of the number of CPUs and tasks and the
7986 * cgroup hierarchy, task_h_load() can return a null
7987 * value. Make sure that env->imbalance decreases
7988 * otherwise detach_tasks() will stop only after
7989 * detaching up to loop_max tasks.
7990 */
7991 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7992
0b0695f2
VG
7993 if (sched_feat(LB_MIN) &&
7994 load < 16 && !env->sd->nr_balance_failed)
7995 goto next;
367456c7 7996
6cf82d55
VG
7997 /*
7998 * Make sure that we don't migrate too much load.
7999 * Nevertheless, let relax the constraint if
8000 * scheduler fails to find a good waiting task to
8001 * migrate.
8002 */
39a2a6eb 8003 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
8004 goto next;
8005
8006 env->imbalance -= load;
8007 break;
8008
8009 case migrate_util:
8010 util = task_util_est(p);
8011
8012 if (util > env->imbalance)
8013 goto next;
8014
8015 env->imbalance -= util;
8016 break;
8017
8018 case migrate_task:
8019 env->imbalance--;
8020 break;
8021
8022 case migrate_misfit:
c63be7be
VG
8023 /* This is not a misfit task */
8024 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
8025 goto next;
8026
8027 env->imbalance = 0;
8028 break;
8029 }
1e3c88bd 8030
163122b7
KT
8031 detach_task(p, env);
8032 list_add(&p->se.group_node, &env->tasks);
8033
8034 detached++;
1e3c88bd 8035
c1a280b6 8036#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
8037 /*
8038 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 8039 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
8040 * the critical section.
8041 */
5d6523eb 8042 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 8043 break;
1e3c88bd
PZ
8044#endif
8045
ee00e66f
PZ
8046 /*
8047 * We only want to steal up to the prescribed amount of
0b0695f2 8048 * load/util/tasks.
ee00e66f 8049 */
bd939f45 8050 if (env->imbalance <= 0)
ee00e66f 8051 break;
367456c7
PZ
8052
8053 continue;
8054next:
93824900 8055 list_move(&p->se.group_node, tasks);
1e3c88bd 8056 }
5d6523eb 8057
1e3c88bd 8058 /*
163122b7
KT
8059 * Right now, this is one of only two places we collect this stat
8060 * so we can safely collect detach_one_task() stats here rather
8061 * than inside detach_one_task().
1e3c88bd 8062 */
ae92882e 8063 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 8064
163122b7
KT
8065 return detached;
8066}
8067
8068/*
8069 * attach_task() -- attach the task detached by detach_task() to its new rq.
8070 */
8071static void attach_task(struct rq *rq, struct task_struct *p)
8072{
5cb9eaa3 8073 lockdep_assert_rq_held(rq);
163122b7
KT
8074
8075 BUG_ON(task_rq(p) != rq);
5704ac0a 8076 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
8077 check_preempt_curr(rq, p, 0);
8078}
8079
8080/*
8081 * attach_one_task() -- attaches the task returned from detach_one_task() to
8082 * its new rq.
8083 */
8084static void attach_one_task(struct rq *rq, struct task_struct *p)
8085{
8a8c69c3
PZ
8086 struct rq_flags rf;
8087
8088 rq_lock(rq, &rf);
5704ac0a 8089 update_rq_clock(rq);
163122b7 8090 attach_task(rq, p);
8a8c69c3 8091 rq_unlock(rq, &rf);
163122b7
KT
8092}
8093
8094/*
8095 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8096 * new rq.
8097 */
8098static void attach_tasks(struct lb_env *env)
8099{
8100 struct list_head *tasks = &env->tasks;
8101 struct task_struct *p;
8a8c69c3 8102 struct rq_flags rf;
163122b7 8103
8a8c69c3 8104 rq_lock(env->dst_rq, &rf);
5704ac0a 8105 update_rq_clock(env->dst_rq);
163122b7
KT
8106
8107 while (!list_empty(tasks)) {
8108 p = list_first_entry(tasks, struct task_struct, se.group_node);
8109 list_del_init(&p->se.group_node);
1e3c88bd 8110
163122b7
KT
8111 attach_task(env->dst_rq, p);
8112 }
8113
8a8c69c3 8114 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
8115}
8116
b0c79224 8117#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
8118static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8119{
8120 if (cfs_rq->avg.load_avg)
8121 return true;
8122
8123 if (cfs_rq->avg.util_avg)
8124 return true;
8125
8126 return false;
8127}
8128
91c27493 8129static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
8130{
8131 if (READ_ONCE(rq->avg_rt.util_avg))
8132 return true;
8133
3727e0e1
VG
8134 if (READ_ONCE(rq->avg_dl.util_avg))
8135 return true;
8136
b4eccf5f
TG
8137 if (thermal_load_avg(rq))
8138 return true;
8139
11d4afd4 8140#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
8141 if (READ_ONCE(rq->avg_irq.util_avg))
8142 return true;
8143#endif
8144
371bf427
VG
8145 return false;
8146}
8147
39b6a429 8148static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 8149{
39b6a429
VG
8150 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8151}
b0c79224 8152
39b6a429
VG
8153static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8154{
b0c79224
VS
8155 if (!has_blocked)
8156 rq->has_blocked_load = 0;
8157}
8158#else
8159static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8160static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 8161static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
8162static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8163#endif
8164
bef69dd8
VG
8165static bool __update_blocked_others(struct rq *rq, bool *done)
8166{
8167 const struct sched_class *curr_class;
8168 u64 now = rq_clock_pelt(rq);
b4eccf5f 8169 unsigned long thermal_pressure;
bef69dd8
VG
8170 bool decayed;
8171
8172 /*
8173 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8174 * DL and IRQ signals have been updated before updating CFS.
8175 */
8176 curr_class = rq->curr->sched_class;
8177
b4eccf5f
TG
8178 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8179
bef69dd8
VG
8180 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8181 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 8182 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
8183 update_irq_load_avg(rq, 0);
8184
8185 if (others_have_blocked(rq))
8186 *done = false;
8187
8188 return decayed;
8189}
8190
1936c53c
VG
8191#ifdef CONFIG_FAIR_GROUP_SCHED
8192
bef69dd8 8193static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8194{
039ae8bc 8195 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
8196 bool decayed = false;
8197 int cpu = cpu_of(rq);
b90f7c9d 8198
9763b67f
PZ
8199 /*
8200 * Iterates the task_group tree in a bottom up fashion, see
8201 * list_add_leaf_cfs_rq() for details.
8202 */
039ae8bc 8203 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
8204 struct sched_entity *se;
8205
bef69dd8 8206 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 8207 update_tg_load_avg(cfs_rq);
4e516076 8208
bef69dd8
VG
8209 if (cfs_rq == &rq->cfs)
8210 decayed = true;
8211 }
8212
bc427898
VG
8213 /* Propagate pending load changes to the parent, if any: */
8214 se = cfs_rq->tg->se[cpu];
8215 if (se && !skip_blocked_update(se))
02da26ad 8216 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 8217
039ae8bc
VG
8218 /*
8219 * There can be a lot of idle CPU cgroups. Don't let fully
8220 * decayed cfs_rqs linger on the list.
8221 */
8222 if (cfs_rq_is_decayed(cfs_rq))
8223 list_del_leaf_cfs_rq(cfs_rq);
8224
1936c53c
VG
8225 /* Don't need periodic decay once load/util_avg are null */
8226 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 8227 *done = false;
9d89c257 8228 }
12b04875 8229
bef69dd8 8230 return decayed;
9e3081ca
PZ
8231}
8232
9763b67f 8233/*
68520796 8234 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
8235 * This needs to be done in a top-down fashion because the load of a child
8236 * group is a fraction of its parents load.
8237 */
68520796 8238static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 8239{
68520796
VD
8240 struct rq *rq = rq_of(cfs_rq);
8241 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 8242 unsigned long now = jiffies;
68520796 8243 unsigned long load;
a35b6466 8244
68520796 8245 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
8246 return;
8247
0e9f0245 8248 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8249 for_each_sched_entity(se) {
8250 cfs_rq = cfs_rq_of(se);
0e9f0245 8251 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8252 if (cfs_rq->last_h_load_update == now)
8253 break;
8254 }
a35b6466 8255
68520796 8256 if (!se) {
7ea241af 8257 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8258 cfs_rq->last_h_load_update = now;
8259 }
8260
0e9f0245 8261 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8262 load = cfs_rq->h_load;
7ea241af
YD
8263 load = div64_ul(load * se->avg.load_avg,
8264 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8265 cfs_rq = group_cfs_rq(se);
8266 cfs_rq->h_load = load;
8267 cfs_rq->last_h_load_update = now;
8268 }
9763b67f
PZ
8269}
8270
367456c7 8271static unsigned long task_h_load(struct task_struct *p)
230059de 8272{
367456c7 8273 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8274
68520796 8275 update_cfs_rq_h_load(cfs_rq);
9d89c257 8276 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8277 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8278}
8279#else
bef69dd8 8280static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8281{
6c1d47c0 8282 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8283 bool decayed;
b90f7c9d 8284
bef69dd8
VG
8285 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8286 if (cfs_rq_has_blocked(cfs_rq))
8287 *done = false;
b90f7c9d 8288
bef69dd8 8289 return decayed;
9e3081ca
PZ
8290}
8291
367456c7 8292static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8293{
9d89c257 8294 return p->se.avg.load_avg;
1e3c88bd 8295}
230059de 8296#endif
1e3c88bd 8297
bef69dd8
VG
8298static void update_blocked_averages(int cpu)
8299{
8300 bool decayed = false, done = true;
8301 struct rq *rq = cpu_rq(cpu);
8302 struct rq_flags rf;
8303
8304 rq_lock_irqsave(rq, &rf);
39b6a429 8305 update_blocked_load_tick(rq);
bef69dd8
VG
8306 update_rq_clock(rq);
8307
8308 decayed |= __update_blocked_others(rq, &done);
8309 decayed |= __update_blocked_fair(rq, &done);
8310
8311 update_blocked_load_status(rq, !done);
8312 if (decayed)
8313 cpufreq_update_util(rq, 0);
8314 rq_unlock_irqrestore(rq, &rf);
8315}
8316
1e3c88bd 8317/********** Helpers for find_busiest_group ************************/
caeb178c 8318
1e3c88bd
PZ
8319/*
8320 * sg_lb_stats - stats of a sched_group required for load_balancing
8321 */
8322struct sg_lb_stats {
8323 unsigned long avg_load; /*Avg load across the CPUs of the group */
8324 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8325 unsigned long group_capacity;
070f5e86
VG
8326 unsigned long group_util; /* Total utilization over the CPUs of the group */
8327 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8328 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8329 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8330 unsigned int idle_cpus;
8331 unsigned int group_weight;
caeb178c 8332 enum group_type group_type;
490ba971 8333 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8334 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8335#ifdef CONFIG_NUMA_BALANCING
8336 unsigned int nr_numa_running;
8337 unsigned int nr_preferred_running;
8338#endif
1e3c88bd
PZ
8339};
8340
56cf515b
JK
8341/*
8342 * sd_lb_stats - Structure to store the statistics of a sched_domain
8343 * during load balancing.
8344 */
8345struct sd_lb_stats {
8346 struct sched_group *busiest; /* Busiest group in this sd */
8347 struct sched_group *local; /* Local group in this sd */
8348 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8349 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8350 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8351 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8352
56cf515b 8353 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8354 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8355};
8356
147c5fc2
PZ
8357static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8358{
8359 /*
8360 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8361 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8362 * We must however set busiest_stat::group_type and
8363 * busiest_stat::idle_cpus to the worst busiest group because
8364 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8365 */
8366 *sds = (struct sd_lb_stats){
8367 .busiest = NULL,
8368 .local = NULL,
8369 .total_load = 0UL,
63b2ca30 8370 .total_capacity = 0UL,
147c5fc2 8371 .busiest_stat = {
0b0695f2
VG
8372 .idle_cpus = UINT_MAX,
8373 .group_type = group_has_spare,
147c5fc2
PZ
8374 },
8375 };
8376}
8377
1ca2034e 8378static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8379{
8380 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8381 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8382 unsigned long used, free;
523e979d 8383 unsigned long irq;
b654f7de 8384
2e62c474 8385 irq = cpu_util_irq(rq);
cadefd3d 8386
523e979d
VG
8387 if (unlikely(irq >= max))
8388 return 1;
aa483808 8389
467b7d01
TG
8390 /*
8391 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8392 * (running and not running) with weights 0 and 1024 respectively.
8393 * avg_thermal.load_avg tracks thermal pressure and the weighted
8394 * average uses the actual delta max capacity(load).
8395 */
523e979d
VG
8396 used = READ_ONCE(rq->avg_rt.util_avg);
8397 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8398 used += thermal_load_avg(rq);
1e3c88bd 8399
523e979d
VG
8400 if (unlikely(used >= max))
8401 return 1;
1e3c88bd 8402
523e979d 8403 free = max - used;
2e62c474
VG
8404
8405 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8406}
8407
ced549fa 8408static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8409{
1ca2034e 8410 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8411 struct sched_group *sdg = sd->groups;
8412
8ec59c0f 8413 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8414
ced549fa
NP
8415 if (!capacity)
8416 capacity = 1;
1e3c88bd 8417
ced549fa 8418 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8419 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8420
ced549fa 8421 sdg->sgc->capacity = capacity;
bf475ce0 8422 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8423 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8424}
8425
63b2ca30 8426void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8427{
8428 struct sched_domain *child = sd->child;
8429 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8430 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8431 unsigned long interval;
8432
8433 interval = msecs_to_jiffies(sd->balance_interval);
8434 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8435 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8436
8437 if (!child) {
ced549fa 8438 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8439 return;
8440 }
8441
dc7ff76e 8442 capacity = 0;
bf475ce0 8443 min_capacity = ULONG_MAX;
e3d6d0cb 8444 max_capacity = 0;
1e3c88bd 8445
74a5ce20
PZ
8446 if (child->flags & SD_OVERLAP) {
8447 /*
8448 * SD_OVERLAP domains cannot assume that child groups
8449 * span the current group.
8450 */
8451
ae4df9d6 8452 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8453 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8454
4c58f57f
PL
8455 capacity += cpu_cap;
8456 min_capacity = min(cpu_cap, min_capacity);
8457 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8458 }
74a5ce20
PZ
8459 } else {
8460 /*
8461 * !SD_OVERLAP domains can assume that child groups
8462 * span the current group.
97a7142f 8463 */
74a5ce20
PZ
8464
8465 group = child->groups;
8466 do {
bf475ce0
MR
8467 struct sched_group_capacity *sgc = group->sgc;
8468
8469 capacity += sgc->capacity;
8470 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8471 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8472 group = group->next;
8473 } while (group != child->groups);
8474 }
1e3c88bd 8475
63b2ca30 8476 sdg->sgc->capacity = capacity;
bf475ce0 8477 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8478 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8479}
8480
9d5efe05 8481/*
ea67821b
VG
8482 * Check whether the capacity of the rq has been noticeably reduced by side
8483 * activity. The imbalance_pct is used for the threshold.
8484 * Return true is the capacity is reduced
9d5efe05
SV
8485 */
8486static inline int
ea67821b 8487check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8488{
ea67821b
VG
8489 return ((rq->cpu_capacity * sd->imbalance_pct) <
8490 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8491}
8492
a0fe2cf0
VS
8493/*
8494 * Check whether a rq has a misfit task and if it looks like we can actually
8495 * help that task: we can migrate the task to a CPU of higher capacity, or
8496 * the task's current CPU is heavily pressured.
8497 */
8498static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8499{
8500 return rq->misfit_task_load &&
8501 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8502 check_cpu_capacity(rq, sd));
8503}
8504
30ce5dab
PZ
8505/*
8506 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8507 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8508 *
97fb7a0a
IM
8509 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8510 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8511 * Something like:
8512 *
2b4d5b25
IM
8513 * { 0 1 2 3 } { 4 5 6 7 }
8514 * * * * *
30ce5dab
PZ
8515 *
8516 * If we were to balance group-wise we'd place two tasks in the first group and
8517 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8518 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8519 *
8520 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8521 * by noticing the lower domain failed to reach balance and had difficulty
8522 * moving tasks due to affinity constraints.
30ce5dab
PZ
8523 *
8524 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8525 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8526 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8527 * to create an effective group imbalance.
8528 *
8529 * This is a somewhat tricky proposition since the next run might not find the
8530 * group imbalance and decide the groups need to be balanced again. A most
8531 * subtle and fragile situation.
8532 */
8533
6263322c 8534static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8535{
63b2ca30 8536 return group->sgc->imbalance;
30ce5dab
PZ
8537}
8538
b37d9316 8539/*
ea67821b
VG
8540 * group_has_capacity returns true if the group has spare capacity that could
8541 * be used by some tasks.
8542 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8543 * smaller than the number of CPUs or if the utilization is lower than the
8544 * available capacity for CFS tasks.
ea67821b
VG
8545 * For the latter, we use a threshold to stabilize the state, to take into
8546 * account the variance of the tasks' load and to return true if the available
8547 * capacity in meaningful for the load balancer.
8548 * As an example, an available capacity of 1% can appear but it doesn't make
8549 * any benefit for the load balance.
b37d9316 8550 */
ea67821b 8551static inline bool
57abff06 8552group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8553{
5e23e474 8554 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8555 return true;
c61037e9 8556
070f5e86
VG
8557 if ((sgs->group_capacity * imbalance_pct) <
8558 (sgs->group_runnable * 100))
8559 return false;
8560
ea67821b 8561 if ((sgs->group_capacity * 100) >
57abff06 8562 (sgs->group_util * imbalance_pct))
ea67821b 8563 return true;
b37d9316 8564
ea67821b
VG
8565 return false;
8566}
8567
8568/*
8569 * group_is_overloaded returns true if the group has more tasks than it can
8570 * handle.
8571 * group_is_overloaded is not equals to !group_has_capacity because a group
8572 * with the exact right number of tasks, has no more spare capacity but is not
8573 * overloaded so both group_has_capacity and group_is_overloaded return
8574 * false.
8575 */
8576static inline bool
57abff06 8577group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8578{
5e23e474 8579 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8580 return false;
b37d9316 8581
ea67821b 8582 if ((sgs->group_capacity * 100) <
57abff06 8583 (sgs->group_util * imbalance_pct))
ea67821b 8584 return true;
b37d9316 8585
070f5e86
VG
8586 if ((sgs->group_capacity * imbalance_pct) <
8587 (sgs->group_runnable * 100))
8588 return true;
8589
ea67821b 8590 return false;
b37d9316
PZ
8591}
8592
79a89f92 8593static inline enum
57abff06 8594group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8595 struct sched_group *group,
79a89f92 8596 struct sg_lb_stats *sgs)
caeb178c 8597{
57abff06 8598 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8599 return group_overloaded;
8600
8601 if (sg_imbalanced(group))
8602 return group_imbalanced;
8603
0b0695f2
VG
8604 if (sgs->group_asym_packing)
8605 return group_asym_packing;
8606
3b1baa64
MR
8607 if (sgs->group_misfit_task_load)
8608 return group_misfit_task;
8609
57abff06 8610 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8611 return group_fully_busy;
8612
8613 return group_has_spare;
caeb178c
RR
8614}
8615
512a6f55
RN
8616static inline bool
8617sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
8618 struct sched_group *group)
8619{
8620 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8621}
8622
1e3c88bd
PZ
8623/**
8624 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8625 * @env: The load balancing environment.
1e3c88bd 8626 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8627 * @sgs: variable to hold the statistics for this group.
630246a0 8628 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8629 */
bd939f45 8630static inline void update_sg_lb_stats(struct lb_env *env,
4304cb29 8631 struct sd_lb_stats *sds,
630246a0
QP
8632 struct sched_group *group,
8633 struct sg_lb_stats *sgs,
8634 int *sg_status)
1e3c88bd 8635{
0b0695f2 8636 int i, nr_running, local_group;
1e3c88bd 8637
b72ff13c
PZ
8638 memset(sgs, 0, sizeof(*sgs));
8639
4304cb29 8640 local_group = group == sds->local;
0b0695f2 8641
ae4df9d6 8642 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8643 struct rq *rq = cpu_rq(i);
8644
b0fb1eb4 8645 sgs->group_load += cpu_load(rq);
9e91d61d 8646 sgs->group_util += cpu_util(i);
070f5e86 8647 sgs->group_runnable += cpu_runnable(rq);
a3498347 8648 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8649
a426f99c 8650 nr_running = rq->nr_running;
5e23e474
VG
8651 sgs->sum_nr_running += nr_running;
8652
a426f99c 8653 if (nr_running > 1)
630246a0 8654 *sg_status |= SG_OVERLOAD;
4486edd1 8655
2802bf3c
MR
8656 if (cpu_overutilized(i))
8657 *sg_status |= SG_OVERUTILIZED;
4486edd1 8658
0ec8aa00
PZ
8659#ifdef CONFIG_NUMA_BALANCING
8660 sgs->nr_numa_running += rq->nr_numa_running;
8661 sgs->nr_preferred_running += rq->nr_preferred_running;
8662#endif
a426f99c
WL
8663 /*
8664 * No need to call idle_cpu() if nr_running is not 0
8665 */
0b0695f2 8666 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8667 sgs->idle_cpus++;
0b0695f2
VG
8668 /* Idle cpu can't have misfit task */
8669 continue;
8670 }
8671
8672 if (local_group)
8673 continue;
3b1baa64 8674
0b0695f2 8675 /* Check for a misfit task on the cpu */
3b1baa64 8676 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8677 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8678 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8679 *sg_status |= SG_OVERLOAD;
757ffdd7 8680 }
1e3c88bd
PZ
8681 }
8682
512a6f55
RN
8683 sgs->group_capacity = group->sgc->capacity;
8684
8685 sgs->group_weight = group->group_weight;
8686
0b0695f2 8687 /* Check if dst CPU is idle and preferred to this group */
ddcc40c2 8688 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
512a6f55
RN
8689 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8690 sched_asym(env, sds, sgs, group)) {
0b0695f2
VG
8691 sgs->group_asym_packing = 1;
8692 }
8693
57abff06 8694 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8695
8696 /* Computing avg_load makes sense only when group is overloaded */
8697 if (sgs->group_type == group_overloaded)
8698 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8699 sgs->group_capacity;
1e3c88bd
PZ
8700}
8701
532cb4c4
MN
8702/**
8703 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8704 * @env: The load balancing environment.
532cb4c4
MN
8705 * @sds: sched_domain statistics
8706 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8707 * @sgs: sched_group statistics
532cb4c4
MN
8708 *
8709 * Determine if @sg is a busier group than the previously selected
8710 * busiest group.
e69f6186
YB
8711 *
8712 * Return: %true if @sg is a busier group than the previously selected
8713 * busiest group. %false otherwise.
532cb4c4 8714 */
bd939f45 8715static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8716 struct sd_lb_stats *sds,
8717 struct sched_group *sg,
bd939f45 8718 struct sg_lb_stats *sgs)
532cb4c4 8719{
caeb178c 8720 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8721
0b0695f2
VG
8722 /* Make sure that there is at least one task to pull */
8723 if (!sgs->sum_h_nr_running)
8724 return false;
8725
cad68e55
MR
8726 /*
8727 * Don't try to pull misfit tasks we can't help.
8728 * We can use max_capacity here as reduction in capacity on some
8729 * CPUs in the group should either be possible to resolve
8730 * internally or be covered by avg_load imbalance (eventually).
8731 */
8732 if (sgs->group_type == group_misfit_task &&
4aed8aa4 8733 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 8734 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8735 return false;
8736
caeb178c 8737 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8738 return true;
8739
caeb178c
RR
8740 if (sgs->group_type < busiest->group_type)
8741 return false;
8742
9e0994c0 8743 /*
0b0695f2
VG
8744 * The candidate and the current busiest group are the same type of
8745 * group. Let check which one is the busiest according to the type.
9e0994c0 8746 */
9e0994c0 8747
0b0695f2
VG
8748 switch (sgs->group_type) {
8749 case group_overloaded:
8750 /* Select the overloaded group with highest avg_load. */
8751 if (sgs->avg_load <= busiest->avg_load)
8752 return false;
8753 break;
8754
8755 case group_imbalanced:
8756 /*
8757 * Select the 1st imbalanced group as we don't have any way to
8758 * choose one more than another.
8759 */
9e0994c0
MR
8760 return false;
8761
0b0695f2
VG
8762 case group_asym_packing:
8763 /* Prefer to move from lowest priority CPU's work */
8764 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8765 return false;
8766 break;
532cb4c4 8767
0b0695f2
VG
8768 case group_misfit_task:
8769 /*
8770 * If we have more than one misfit sg go with the biggest
8771 * misfit.
8772 */
8773 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8774 return false;
8775 break;
532cb4c4 8776
0b0695f2
VG
8777 case group_fully_busy:
8778 /*
8779 * Select the fully busy group with highest avg_load. In
8780 * theory, there is no need to pull task from such kind of
8781 * group because tasks have all compute capacity that they need
8782 * but we can still improve the overall throughput by reducing
8783 * contention when accessing shared HW resources.
8784 *
8785 * XXX for now avg_load is not computed and always 0 so we
8786 * select the 1st one.
8787 */
8788 if (sgs->avg_load <= busiest->avg_load)
8789 return false;
8790 break;
8791
8792 case group_has_spare:
8793 /*
5f68eb19
VG
8794 * Select not overloaded group with lowest number of idle cpus
8795 * and highest number of running tasks. We could also compare
8796 * the spare capacity which is more stable but it can end up
8797 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8798 * CPUs which means less opportunity to pull tasks.
8799 */
5f68eb19 8800 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8801 return false;
5f68eb19
VG
8802 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8803 (sgs->sum_nr_running <= busiest->sum_nr_running))
8804 return false;
8805
0b0695f2 8806 break;
532cb4c4
MN
8807 }
8808
0b0695f2
VG
8809 /*
8810 * Candidate sg has no more than one task per CPU and has higher
8811 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8812 * throughput. Maximize throughput, power/energy consequences are not
8813 * considered.
8814 */
8815 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8816 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 8817 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
8818 return false;
8819
8820 return true;
532cb4c4
MN
8821}
8822
0ec8aa00
PZ
8823#ifdef CONFIG_NUMA_BALANCING
8824static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8825{
a3498347 8826 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8827 return regular;
a3498347 8828 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8829 return remote;
8830 return all;
8831}
8832
8833static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8834{
8835 if (rq->nr_running > rq->nr_numa_running)
8836 return regular;
8837 if (rq->nr_running > rq->nr_preferred_running)
8838 return remote;
8839 return all;
8840}
8841#else
8842static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8843{
8844 return all;
8845}
8846
8847static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8848{
8849 return regular;
8850}
8851#endif /* CONFIG_NUMA_BALANCING */
8852
57abff06
VG
8853
8854struct sg_lb_stats;
8855
3318544b
VG
8856/*
8857 * task_running_on_cpu - return 1 if @p is running on @cpu.
8858 */
8859
8860static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8861{
8862 /* Task has no contribution or is new */
8863 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8864 return 0;
8865
8866 if (task_on_rq_queued(p))
8867 return 1;
8868
8869 return 0;
8870}
8871
8872/**
8873 * idle_cpu_without - would a given CPU be idle without p ?
8874 * @cpu: the processor on which idleness is tested.
8875 * @p: task which should be ignored.
8876 *
8877 * Return: 1 if the CPU would be idle. 0 otherwise.
8878 */
8879static int idle_cpu_without(int cpu, struct task_struct *p)
8880{
8881 struct rq *rq = cpu_rq(cpu);
8882
8883 if (rq->curr != rq->idle && rq->curr != p)
8884 return 0;
8885
8886 /*
8887 * rq->nr_running can't be used but an updated version without the
8888 * impact of p on cpu must be used instead. The updated nr_running
8889 * be computed and tested before calling idle_cpu_without().
8890 */
8891
8892#ifdef CONFIG_SMP
126c2092 8893 if (rq->ttwu_pending)
3318544b
VG
8894 return 0;
8895#endif
8896
8897 return 1;
8898}
8899
57abff06
VG
8900/*
8901 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8902 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8903 * @group: sched_group whose statistics are to be updated.
8904 * @sgs: variable to hold the statistics for this group.
3318544b 8905 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8906 */
8907static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8908 struct sched_group *group,
8909 struct sg_lb_stats *sgs,
8910 struct task_struct *p)
8911{
8912 int i, nr_running;
8913
8914 memset(sgs, 0, sizeof(*sgs));
8915
8916 for_each_cpu(i, sched_group_span(group)) {
8917 struct rq *rq = cpu_rq(i);
3318544b 8918 unsigned int local;
57abff06 8919
3318544b 8920 sgs->group_load += cpu_load_without(rq, p);
57abff06 8921 sgs->group_util += cpu_util_without(i, p);
070f5e86 8922 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8923 local = task_running_on_cpu(i, p);
8924 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8925
3318544b 8926 nr_running = rq->nr_running - local;
57abff06
VG
8927 sgs->sum_nr_running += nr_running;
8928
8929 /*
3318544b 8930 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8931 */
3318544b 8932 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8933 sgs->idle_cpus++;
8934
57abff06
VG
8935 }
8936
8937 /* Check if task fits in the group */
8938 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8939 !task_fits_capacity(p, group->sgc->max_capacity)) {
8940 sgs->group_misfit_task_load = 1;
8941 }
8942
8943 sgs->group_capacity = group->sgc->capacity;
8944
289de359
VG
8945 sgs->group_weight = group->group_weight;
8946
57abff06
VG
8947 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8948
8949 /*
8950 * Computing avg_load makes sense only when group is fully busy or
8951 * overloaded
8952 */
6c8116c9
TZ
8953 if (sgs->group_type == group_fully_busy ||
8954 sgs->group_type == group_overloaded)
57abff06
VG
8955 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8956 sgs->group_capacity;
8957}
8958
8959static bool update_pick_idlest(struct sched_group *idlest,
8960 struct sg_lb_stats *idlest_sgs,
8961 struct sched_group *group,
8962 struct sg_lb_stats *sgs)
8963{
8964 if (sgs->group_type < idlest_sgs->group_type)
8965 return true;
8966
8967 if (sgs->group_type > idlest_sgs->group_type)
8968 return false;
8969
8970 /*
8971 * The candidate and the current idlest group are the same type of
8972 * group. Let check which one is the idlest according to the type.
8973 */
8974
8975 switch (sgs->group_type) {
8976 case group_overloaded:
8977 case group_fully_busy:
8978 /* Select the group with lowest avg_load. */
8979 if (idlest_sgs->avg_load <= sgs->avg_load)
8980 return false;
8981 break;
8982
8983 case group_imbalanced:
8984 case group_asym_packing:
8985 /* Those types are not used in the slow wakeup path */
8986 return false;
8987
8988 case group_misfit_task:
8989 /* Select group with the highest max capacity */
8990 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8991 return false;
8992 break;
8993
8994 case group_has_spare:
8995 /* Select group with most idle CPUs */
3edecfef 8996 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8997 return false;
3edecfef
PP
8998
8999 /* Select group with lowest group_util */
9000 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9001 idlest_sgs->group_util <= sgs->group_util)
9002 return false;
9003
57abff06
VG
9004 break;
9005 }
9006
9007 return true;
9008}
9009
23e6082a
MG
9010/*
9011 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9012 * This is an approximation as the number of running tasks may not be
9013 * related to the number of busy CPUs due to sched_setaffinity.
9014 */
9015static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9016{
9017 return (dst_running < (dst_weight >> 2));
9018}
9019
57abff06
VG
9020/*
9021 * find_idlest_group() finds and returns the least busy CPU group within the
9022 * domain.
9023 *
9024 * Assumes p is allowed on at least one CPU in sd.
9025 */
9026static struct sched_group *
45da2773 9027find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
9028{
9029 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9030 struct sg_lb_stats local_sgs, tmp_sgs;
9031 struct sg_lb_stats *sgs;
9032 unsigned long imbalance;
9033 struct sg_lb_stats idlest_sgs = {
9034 .avg_load = UINT_MAX,
9035 .group_type = group_overloaded,
9036 };
9037
57abff06
VG
9038 do {
9039 int local_group;
9040
9041 /* Skip over this group if it has no CPUs allowed */
9042 if (!cpumask_intersects(sched_group_span(group),
9043 p->cpus_ptr))
9044 continue;
9045
97886d9d
AL
9046 /* Skip over this group if no cookie matched */
9047 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9048 continue;
9049
57abff06
VG
9050 local_group = cpumask_test_cpu(this_cpu,
9051 sched_group_span(group));
9052
9053 if (local_group) {
9054 sgs = &local_sgs;
9055 local = group;
9056 } else {
9057 sgs = &tmp_sgs;
9058 }
9059
9060 update_sg_wakeup_stats(sd, group, sgs, p);
9061
9062 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9063 idlest = group;
9064 idlest_sgs = *sgs;
9065 }
9066
9067 } while (group = group->next, group != sd->groups);
9068
9069
9070 /* There is no idlest group to push tasks to */
9071 if (!idlest)
9072 return NULL;
9073
7ed735c3
VG
9074 /* The local group has been skipped because of CPU affinity */
9075 if (!local)
9076 return idlest;
9077
57abff06
VG
9078 /*
9079 * If the local group is idler than the selected idlest group
9080 * don't try and push the task.
9081 */
9082 if (local_sgs.group_type < idlest_sgs.group_type)
9083 return NULL;
9084
9085 /*
9086 * If the local group is busier than the selected idlest group
9087 * try and push the task.
9088 */
9089 if (local_sgs.group_type > idlest_sgs.group_type)
9090 return idlest;
9091
9092 switch (local_sgs.group_type) {
9093 case group_overloaded:
9094 case group_fully_busy:
5c339005
MG
9095
9096 /* Calculate allowed imbalance based on load */
9097 imbalance = scale_load_down(NICE_0_LOAD) *
9098 (sd->imbalance_pct-100) / 100;
9099
57abff06
VG
9100 /*
9101 * When comparing groups across NUMA domains, it's possible for
9102 * the local domain to be very lightly loaded relative to the
9103 * remote domains but "imbalance" skews the comparison making
9104 * remote CPUs look much more favourable. When considering
9105 * cross-domain, add imbalance to the load on the remote node
9106 * and consider staying local.
9107 */
9108
9109 if ((sd->flags & SD_NUMA) &&
9110 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9111 return NULL;
9112
9113 /*
9114 * If the local group is less loaded than the selected
9115 * idlest group don't try and push any tasks.
9116 */
9117 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9118 return NULL;
9119
9120 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9121 return NULL;
9122 break;
9123
9124 case group_imbalanced:
9125 case group_asym_packing:
9126 /* Those type are not used in the slow wakeup path */
9127 return NULL;
9128
9129 case group_misfit_task:
9130 /* Select group with the highest max capacity */
9131 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9132 return NULL;
9133 break;
9134
9135 case group_has_spare:
9136 if (sd->flags & SD_NUMA) {
9137#ifdef CONFIG_NUMA_BALANCING
9138 int idlest_cpu;
9139 /*
9140 * If there is spare capacity at NUMA, try to select
9141 * the preferred node
9142 */
9143 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9144 return NULL;
9145
9146 idlest_cpu = cpumask_first(sched_group_span(idlest));
9147 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9148 return idlest;
9149#endif
9150 /*
9151 * Otherwise, keep the task on this node to stay close
9152 * its wakeup source and improve locality. If there is
9153 * a real need of migration, periodic load balance will
9154 * take care of it.
9155 */
23e6082a 9156 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
9157 return NULL;
9158 }
9159
9160 /*
9161 * Select group with highest number of idle CPUs. We could also
9162 * compare the utilization which is more stable but it can end
9163 * up that the group has less spare capacity but finally more
9164 * idle CPUs which means more opportunity to run task.
9165 */
9166 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9167 return NULL;
9168 break;
9169 }
9170
9171 return idlest;
9172}
9173
1e3c88bd 9174/**
461819ac 9175 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 9176 * @env: The load balancing environment.
1e3c88bd
PZ
9177 * @sds: variable to hold the statistics for this sched_domain.
9178 */
0b0695f2 9179
0ec8aa00 9180static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9181{
bd939f45
PZ
9182 struct sched_domain *child = env->sd->child;
9183 struct sched_group *sg = env->sd->groups;
05b40e05 9184 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 9185 struct sg_lb_stats tmp_sgs;
630246a0 9186 int sg_status = 0;
1e3c88bd 9187
1e3c88bd 9188 do {
56cf515b 9189 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
9190 int local_group;
9191
ae4df9d6 9192 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
9193 if (local_group) {
9194 sds->local = sg;
05b40e05 9195 sgs = local;
b72ff13c
PZ
9196
9197 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
9198 time_after_eq(jiffies, sg->sgc->next_update))
9199 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 9200 }
1e3c88bd 9201
4304cb29 9202 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
1e3c88bd 9203
b72ff13c
PZ
9204 if (local_group)
9205 goto next_group;
9206
1e3c88bd 9207
b72ff13c 9208 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 9209 sds->busiest = sg;
56cf515b 9210 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9211 }
9212
b72ff13c
PZ
9213next_group:
9214 /* Now, start updating sd_lb_stats */
9215 sds->total_load += sgs->group_load;
63b2ca30 9216 sds->total_capacity += sgs->group_capacity;
b72ff13c 9217
532cb4c4 9218 sg = sg->next;
bd939f45 9219 } while (sg != env->sd->groups);
0ec8aa00 9220
0b0695f2
VG
9221 /* Tag domain that child domain prefers tasks go to siblings first */
9222 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9223
f643ea22 9224
0ec8aa00
PZ
9225 if (env->sd->flags & SD_NUMA)
9226 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9227
9228 if (!env->sd->parent) {
2802bf3c
MR
9229 struct root_domain *rd = env->dst_rq->rd;
9230
4486edd1 9231 /* update overload indicator if we are at root domain */
2802bf3c
MR
9232 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9233
9234 /* Update over-utilization (tipping point, U >= 0) indicator */
9235 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9236 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9237 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9238 struct root_domain *rd = env->dst_rq->rd;
9239
9240 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9241 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9242 }
532cb4c4
MN
9243}
9244
abeae76a
MG
9245#define NUMA_IMBALANCE_MIN 2
9246
7d2b5dd0
MG
9247static inline long adjust_numa_imbalance(int imbalance,
9248 int dst_running, int dst_weight)
fb86f5b2 9249{
23e6082a
MG
9250 if (!allow_numa_imbalance(dst_running, dst_weight))
9251 return imbalance;
9252
fb86f5b2
MG
9253 /*
9254 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9255 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9256 */
23e6082a 9257 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9258 return 0;
9259
9260 return imbalance;
9261}
9262
1e3c88bd
PZ
9263/**
9264 * calculate_imbalance - Calculate the amount of imbalance present within the
9265 * groups of a given sched_domain during load balance.
bd939f45 9266 * @env: load balance environment
1e3c88bd 9267 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9268 */
bd939f45 9269static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9270{
56cf515b
JK
9271 struct sg_lb_stats *local, *busiest;
9272
9273 local = &sds->local_stat;
56cf515b 9274 busiest = &sds->busiest_stat;
dd5feea1 9275
0b0695f2
VG
9276 if (busiest->group_type == group_misfit_task) {
9277 /* Set imbalance to allow misfit tasks to be balanced. */
9278 env->migration_type = migrate_misfit;
c63be7be 9279 env->imbalance = 1;
0b0695f2
VG
9280 return;
9281 }
9282
9283 if (busiest->group_type == group_asym_packing) {
9284 /*
9285 * In case of asym capacity, we will try to migrate all load to
9286 * the preferred CPU.
9287 */
9288 env->migration_type = migrate_task;
9289 env->imbalance = busiest->sum_h_nr_running;
9290 return;
9291 }
9292
9293 if (busiest->group_type == group_imbalanced) {
9294 /*
9295 * In the group_imb case we cannot rely on group-wide averages
9296 * to ensure CPU-load equilibrium, try to move any task to fix
9297 * the imbalance. The next load balance will take care of
9298 * balancing back the system.
9299 */
9300 env->migration_type = migrate_task;
9301 env->imbalance = 1;
490ba971
VG
9302 return;
9303 }
9304
1e3c88bd 9305 /*
0b0695f2 9306 * Try to use spare capacity of local group without overloading it or
a9723389 9307 * emptying busiest.
1e3c88bd 9308 */
0b0695f2 9309 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9310 if ((busiest->group_type > group_fully_busy) &&
9311 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9312 /*
9313 * If busiest is overloaded, try to fill spare
9314 * capacity. This might end up creating spare capacity
9315 * in busiest or busiest still being overloaded but
9316 * there is no simple way to directly compute the
9317 * amount of load to migrate in order to balance the
9318 * system.
9319 */
9320 env->migration_type = migrate_util;
9321 env->imbalance = max(local->group_capacity, local->group_util) -
9322 local->group_util;
9323
9324 /*
9325 * In some cases, the group's utilization is max or even
9326 * higher than capacity because of migrations but the
9327 * local CPU is (newly) idle. There is at least one
9328 * waiting task in this overloaded busiest group. Let's
9329 * try to pull it.
9330 */
9331 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9332 env->migration_type = migrate_task;
9333 env->imbalance = 1;
9334 }
9335
9336 return;
9337 }
9338
9339 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9340 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9341 /*
9342 * When prefer sibling, evenly spread running tasks on
9343 * groups.
9344 */
9345 env->migration_type = migrate_task;
5e23e474 9346 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9347 env->imbalance = nr_diff >> 1;
b396f523 9348 } else {
0b0695f2 9349
b396f523
MG
9350 /*
9351 * If there is no overload, we just want to even the number of
9352 * idle cpus.
9353 */
9354 env->migration_type = migrate_task;
9355 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9356 busiest->idle_cpus) >> 1);
b396f523
MG
9357 }
9358
9359 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9360 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9361 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9362 busiest->sum_nr_running, busiest->group_weight);
9363 }
b396f523 9364
fcf0553d 9365 return;
1e3c88bd
PZ
9366 }
9367
9a5d9ba6 9368 /*
0b0695f2
VG
9369 * Local is fully busy but has to take more load to relieve the
9370 * busiest group
9a5d9ba6 9371 */
0b0695f2
VG
9372 if (local->group_type < group_overloaded) {
9373 /*
9374 * Local will become overloaded so the avg_load metrics are
9375 * finally needed.
9376 */
9377
9378 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9379 local->group_capacity;
9380
9381 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9382 sds->total_capacity;
111688ca
AL
9383 /*
9384 * If the local group is more loaded than the selected
9385 * busiest group don't try to pull any tasks.
9386 */
9387 if (local->avg_load >= busiest->avg_load) {
9388 env->imbalance = 0;
9389 return;
9390 }
dd5feea1
SS
9391 }
9392
9393 /*
0b0695f2
VG
9394 * Both group are or will become overloaded and we're trying to get all
9395 * the CPUs to the average_load, so we don't want to push ourselves
9396 * above the average load, nor do we wish to reduce the max loaded CPU
9397 * below the average load. At the same time, we also don't want to
9398 * reduce the group load below the group capacity. Thus we look for
9399 * the minimum possible imbalance.
dd5feea1 9400 */
0b0695f2 9401 env->migration_type = migrate_load;
56cf515b 9402 env->imbalance = min(
0b0695f2 9403 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9404 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9405 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9406}
fab47622 9407
1e3c88bd
PZ
9408/******* find_busiest_group() helpers end here *********************/
9409
0b0695f2
VG
9410/*
9411 * Decision matrix according to the local and busiest group type:
9412 *
9413 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9414 * has_spare nr_idle balanced N/A N/A balanced balanced
9415 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9416 * misfit_task force N/A N/A N/A force force
9417 * asym_packing force force N/A N/A force force
9418 * imbalanced force force N/A N/A force force
9419 * overloaded force force N/A N/A force avg_load
9420 *
9421 * N/A : Not Applicable because already filtered while updating
9422 * statistics.
9423 * balanced : The system is balanced for these 2 groups.
9424 * force : Calculate the imbalance as load migration is probably needed.
9425 * avg_load : Only if imbalance is significant enough.
9426 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9427 * different in groups.
9428 */
9429
1e3c88bd
PZ
9430/**
9431 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9432 * if there is an imbalance.
1e3c88bd 9433 *
a3df0679 9434 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9435 * to restore balance.
9436 *
cd96891d 9437 * @env: The load balancing environment.
1e3c88bd 9438 *
e69f6186 9439 * Return: - The busiest group if imbalance exists.
1e3c88bd 9440 */
56cf515b 9441static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9442{
56cf515b 9443 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9444 struct sd_lb_stats sds;
9445
147c5fc2 9446 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9447
9448 /*
b0fb1eb4 9449 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9450 * this level.
9451 */
23f0d209 9452 update_sd_lb_stats(env, &sds);
2802bf3c 9453
f8a696f2 9454 if (sched_energy_enabled()) {
2802bf3c
MR
9455 struct root_domain *rd = env->dst_rq->rd;
9456
9457 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9458 goto out_balanced;
9459 }
9460
56cf515b
JK
9461 local = &sds.local_stat;
9462 busiest = &sds.busiest_stat;
1e3c88bd 9463
cc57aa8f 9464 /* There is no busy sibling group to pull tasks from */
0b0695f2 9465 if (!sds.busiest)
1e3c88bd
PZ
9466 goto out_balanced;
9467
0b0695f2
VG
9468 /* Misfit tasks should be dealt with regardless of the avg load */
9469 if (busiest->group_type == group_misfit_task)
9470 goto force_balance;
9471
9472 /* ASYM feature bypasses nice load balance check */
9473 if (busiest->group_type == group_asym_packing)
9474 goto force_balance;
b0432d8f 9475
866ab43e
PZ
9476 /*
9477 * If the busiest group is imbalanced the below checks don't
30ce5dab 9478 * work because they assume all things are equal, which typically
3bd37062 9479 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9480 */
caeb178c 9481 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9482 goto force_balance;
9483
cc57aa8f 9484 /*
9c58c79a 9485 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9486 * don't try and pull any tasks.
9487 */
0b0695f2 9488 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9489 goto out_balanced;
9490
cc57aa8f 9491 /*
0b0695f2
VG
9492 * When groups are overloaded, use the avg_load to ensure fairness
9493 * between tasks.
cc57aa8f 9494 */
0b0695f2
VG
9495 if (local->group_type == group_overloaded) {
9496 /*
9497 * If the local group is more loaded than the selected
9498 * busiest group don't try to pull any tasks.
9499 */
9500 if (local->avg_load >= busiest->avg_load)
9501 goto out_balanced;
9502
9503 /* XXX broken for overlapping NUMA groups */
9504 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9505 sds.total_capacity;
1e3c88bd 9506
aae6d3dd 9507 /*
0b0695f2
VG
9508 * Don't pull any tasks if this group is already above the
9509 * domain average load.
aae6d3dd 9510 */
0b0695f2 9511 if (local->avg_load >= sds.avg_load)
aae6d3dd 9512 goto out_balanced;
0b0695f2 9513
c186fafe 9514 /*
0b0695f2
VG
9515 * If the busiest group is more loaded, use imbalance_pct to be
9516 * conservative.
c186fafe 9517 */
56cf515b
JK
9518 if (100 * busiest->avg_load <=
9519 env->sd->imbalance_pct * local->avg_load)
c186fafe 9520 goto out_balanced;
aae6d3dd 9521 }
1e3c88bd 9522
0b0695f2
VG
9523 /* Try to move all excess tasks to child's sibling domain */
9524 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9525 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9526 goto force_balance;
9527
2ab4092f
VG
9528 if (busiest->group_type != group_overloaded) {
9529 if (env->idle == CPU_NOT_IDLE)
9530 /*
9531 * If the busiest group is not overloaded (and as a
9532 * result the local one too) but this CPU is already
9533 * busy, let another idle CPU try to pull task.
9534 */
9535 goto out_balanced;
9536
9537 if (busiest->group_weight > 1 &&
9538 local->idle_cpus <= (busiest->idle_cpus + 1))
9539 /*
9540 * If the busiest group is not overloaded
9541 * and there is no imbalance between this and busiest
9542 * group wrt idle CPUs, it is balanced. The imbalance
9543 * becomes significant if the diff is greater than 1
9544 * otherwise we might end up to just move the imbalance
9545 * on another group. Of course this applies only if
9546 * there is more than 1 CPU per group.
9547 */
9548 goto out_balanced;
9549
9550 if (busiest->sum_h_nr_running == 1)
9551 /*
9552 * busiest doesn't have any tasks waiting to run
9553 */
9554 goto out_balanced;
9555 }
0b0695f2 9556
fab47622 9557force_balance:
1e3c88bd 9558 /* Looks like there is an imbalance. Compute it */
bd939f45 9559 calculate_imbalance(env, &sds);
bb3485c8 9560 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9561
9562out_balanced:
bd939f45 9563 env->imbalance = 0;
1e3c88bd
PZ
9564 return NULL;
9565}
9566
9567/*
97fb7a0a 9568 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9569 */
bd939f45 9570static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9571 struct sched_group *group)
1e3c88bd
PZ
9572{
9573 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9574 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9575 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9576 int i;
9577
ae4df9d6 9578 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9579 unsigned long capacity, load, util;
9580 unsigned int nr_running;
0ec8aa00
PZ
9581 enum fbq_type rt;
9582
9583 rq = cpu_rq(i);
9584 rt = fbq_classify_rq(rq);
1e3c88bd 9585
0ec8aa00
PZ
9586 /*
9587 * We classify groups/runqueues into three groups:
9588 * - regular: there are !numa tasks
9589 * - remote: there are numa tasks that run on the 'wrong' node
9590 * - all: there is no distinction
9591 *
9592 * In order to avoid migrating ideally placed numa tasks,
9593 * ignore those when there's better options.
9594 *
9595 * If we ignore the actual busiest queue to migrate another
9596 * task, the next balance pass can still reduce the busiest
9597 * queue by moving tasks around inside the node.
9598 *
9599 * If we cannot move enough load due to this classification
9600 * the next pass will adjust the group classification and
9601 * allow migration of more tasks.
9602 *
9603 * Both cases only affect the total convergence complexity.
9604 */
9605 if (rt > env->fbq_type)
9606 continue;
9607
0b0695f2 9608 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9609 if (!nr_running)
9610 continue;
9611
9612 capacity = capacity_of(i);
9d5efe05 9613
4ad3831a
CR
9614 /*
9615 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9616 * eventually lead to active_balancing high->low capacity.
9617 * Higher per-CPU capacity is considered better than balancing
9618 * average load.
9619 */
9620 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 9621 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 9622 nr_running == 1)
4ad3831a
CR
9623 continue;
9624
0b0695f2
VG
9625 switch (env->migration_type) {
9626 case migrate_load:
9627 /*
b0fb1eb4
VG
9628 * When comparing with load imbalance, use cpu_load()
9629 * which is not scaled with the CPU capacity.
0b0695f2 9630 */
b0fb1eb4 9631 load = cpu_load(rq);
1e3c88bd 9632
0b0695f2
VG
9633 if (nr_running == 1 && load > env->imbalance &&
9634 !check_cpu_capacity(rq, env->sd))
9635 break;
ea67821b 9636
0b0695f2
VG
9637 /*
9638 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9639 * consider the cpu_load() scaled with the CPU
9640 * capacity, so that the load can be moved away
9641 * from the CPU that is potentially running at a
9642 * lower capacity.
0b0695f2
VG
9643 *
9644 * Thus we're looking for max(load_i / capacity_i),
9645 * crosswise multiplication to rid ourselves of the
9646 * division works out to:
9647 * load_i * capacity_j > load_j * capacity_i;
9648 * where j is our previous maximum.
9649 */
9650 if (load * busiest_capacity > busiest_load * capacity) {
9651 busiest_load = load;
9652 busiest_capacity = capacity;
9653 busiest = rq;
9654 }
9655 break;
9656
9657 case migrate_util:
9658 util = cpu_util(cpu_of(rq));
9659
c32b4308
VG
9660 /*
9661 * Don't try to pull utilization from a CPU with one
9662 * running task. Whatever its utilization, we will fail
9663 * detach the task.
9664 */
9665 if (nr_running <= 1)
9666 continue;
9667
0b0695f2
VG
9668 if (busiest_util < util) {
9669 busiest_util = util;
9670 busiest = rq;
9671 }
9672 break;
9673
9674 case migrate_task:
9675 if (busiest_nr < nr_running) {
9676 busiest_nr = nr_running;
9677 busiest = rq;
9678 }
9679 break;
9680
9681 case migrate_misfit:
9682 /*
9683 * For ASYM_CPUCAPACITY domains with misfit tasks we
9684 * simply seek the "biggest" misfit task.
9685 */
9686 if (rq->misfit_task_load > busiest_load) {
9687 busiest_load = rq->misfit_task_load;
9688 busiest = rq;
9689 }
9690
9691 break;
1e3c88bd 9692
1e3c88bd
PZ
9693 }
9694 }
9695
9696 return busiest;
9697}
9698
9699/*
9700 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9701 * so long as it is large enough.
9702 */
9703#define MAX_PINNED_INTERVAL 512
9704
46a745d9
VG
9705static inline bool
9706asym_active_balance(struct lb_env *env)
1af3ed3d 9707{
46a745d9
VG
9708 /*
9709 * ASYM_PACKING needs to force migrate tasks from busy but
9710 * lower priority CPUs in order to pack all tasks in the
9711 * highest priority CPUs.
9712 */
9713 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9714 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9715}
bd939f45 9716
46a745d9 9717static inline bool
e9b9734b
VG
9718imbalanced_active_balance(struct lb_env *env)
9719{
9720 struct sched_domain *sd = env->sd;
9721
9722 /*
9723 * The imbalanced case includes the case of pinned tasks preventing a fair
9724 * distribution of the load on the system but also the even distribution of the
9725 * threads on a system with spare capacity
9726 */
9727 if ((env->migration_type == migrate_task) &&
9728 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9729 return 1;
9730
9731 return 0;
9732}
9733
9734static int need_active_balance(struct lb_env *env)
46a745d9
VG
9735{
9736 struct sched_domain *sd = env->sd;
532cb4c4 9737
46a745d9
VG
9738 if (asym_active_balance(env))
9739 return 1;
1af3ed3d 9740
e9b9734b
VG
9741 if (imbalanced_active_balance(env))
9742 return 1;
9743
1aaf90a4
VG
9744 /*
9745 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9746 * It's worth migrating the task if the src_cpu's capacity is reduced
9747 * because of other sched_class or IRQs if more capacity stays
9748 * available on dst_cpu.
9749 */
9750 if ((env->idle != CPU_NOT_IDLE) &&
9751 (env->src_rq->cfs.h_nr_running == 1)) {
9752 if ((check_cpu_capacity(env->src_rq, sd)) &&
9753 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9754 return 1;
9755 }
9756
0b0695f2 9757 if (env->migration_type == migrate_misfit)
cad68e55
MR
9758 return 1;
9759
46a745d9
VG
9760 return 0;
9761}
9762
969c7921
TH
9763static int active_load_balance_cpu_stop(void *data);
9764
23f0d209
JK
9765static int should_we_balance(struct lb_env *env)
9766{
9767 struct sched_group *sg = env->sd->groups;
64297f2b 9768 int cpu;
23f0d209 9769
024c9d2f
PZ
9770 /*
9771 * Ensure the balancing environment is consistent; can happen
9772 * when the softirq triggers 'during' hotplug.
9773 */
9774 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9775 return 0;
9776
23f0d209 9777 /*
97fb7a0a 9778 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9779 * to do the newly idle load balance.
9780 */
9781 if (env->idle == CPU_NEWLY_IDLE)
9782 return 1;
9783
97fb7a0a 9784 /* Try to find first idle CPU */
e5c14b1f 9785 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9786 if (!idle_cpu(cpu))
23f0d209
JK
9787 continue;
9788
64297f2b
PW
9789 /* Are we the first idle CPU? */
9790 return cpu == env->dst_cpu;
23f0d209
JK
9791 }
9792
64297f2b
PW
9793 /* Are we the first CPU of this group ? */
9794 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9795}
9796
1e3c88bd
PZ
9797/*
9798 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9799 * tasks if there is an imbalance.
9800 */
9801static int load_balance(int this_cpu, struct rq *this_rq,
9802 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9803 int *continue_balancing)
1e3c88bd 9804{
88b8dac0 9805 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9806 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9807 struct sched_group *group;
1e3c88bd 9808 struct rq *busiest;
8a8c69c3 9809 struct rq_flags rf;
4ba29684 9810 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9811
8e45cb54
PZ
9812 struct lb_env env = {
9813 .sd = sd,
ddcdf6e7
PZ
9814 .dst_cpu = this_cpu,
9815 .dst_rq = this_rq,
ae4df9d6 9816 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9817 .idle = idle,
eb95308e 9818 .loop_break = sched_nr_migrate_break,
b9403130 9819 .cpus = cpus,
0ec8aa00 9820 .fbq_type = all,
163122b7 9821 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9822 };
9823
65a4433a 9824 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9825
ae92882e 9826 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9827
9828redo:
23f0d209
JK
9829 if (!should_we_balance(&env)) {
9830 *continue_balancing = 0;
1e3c88bd 9831 goto out_balanced;
23f0d209 9832 }
1e3c88bd 9833
23f0d209 9834 group = find_busiest_group(&env);
1e3c88bd 9835 if (!group) {
ae92882e 9836 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9837 goto out_balanced;
9838 }
9839
b9403130 9840 busiest = find_busiest_queue(&env, group);
1e3c88bd 9841 if (!busiest) {
ae92882e 9842 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9843 goto out_balanced;
9844 }
9845
78feefc5 9846 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9847
ae92882e 9848 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9849
1aaf90a4
VG
9850 env.src_cpu = busiest->cpu;
9851 env.src_rq = busiest;
9852
1e3c88bd 9853 ld_moved = 0;
8a41dfcd
VG
9854 /* Clear this flag as soon as we find a pullable task */
9855 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9856 if (busiest->nr_running > 1) {
9857 /*
9858 * Attempt to move tasks. If find_busiest_group has found
9859 * an imbalance but busiest->nr_running <= 1, the group is
9860 * still unbalanced. ld_moved simply stays zero, so it is
9861 * correctly treated as an imbalance.
9862 */
c82513e5 9863 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9864
5d6523eb 9865more_balance:
8a8c69c3 9866 rq_lock_irqsave(busiest, &rf);
3bed5e21 9867 update_rq_clock(busiest);
88b8dac0
SV
9868
9869 /*
9870 * cur_ld_moved - load moved in current iteration
9871 * ld_moved - cumulative load moved across iterations
9872 */
163122b7 9873 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9874
9875 /*
163122b7
KT
9876 * We've detached some tasks from busiest_rq. Every
9877 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9878 * unlock busiest->lock, and we are able to be sure
9879 * that nobody can manipulate the tasks in parallel.
9880 * See task_rq_lock() family for the details.
1e3c88bd 9881 */
163122b7 9882
8a8c69c3 9883 rq_unlock(busiest, &rf);
163122b7
KT
9884
9885 if (cur_ld_moved) {
9886 attach_tasks(&env);
9887 ld_moved += cur_ld_moved;
9888 }
9889
8a8c69c3 9890 local_irq_restore(rf.flags);
88b8dac0 9891
f1cd0858
JK
9892 if (env.flags & LBF_NEED_BREAK) {
9893 env.flags &= ~LBF_NEED_BREAK;
9894 goto more_balance;
9895 }
9896
88b8dac0
SV
9897 /*
9898 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9899 * us and move them to an alternate dst_cpu in our sched_group
9900 * where they can run. The upper limit on how many times we
97fb7a0a 9901 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9902 * sched_group.
9903 *
9904 * This changes load balance semantics a bit on who can move
9905 * load to a given_cpu. In addition to the given_cpu itself
9906 * (or a ilb_cpu acting on its behalf where given_cpu is
9907 * nohz-idle), we now have balance_cpu in a position to move
9908 * load to given_cpu. In rare situations, this may cause
9909 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9910 * _independently_ and at _same_ time to move some load to
3b03706f 9911 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
9912 * This however should not happen so much in practice and
9913 * moreover subsequent load balance cycles should correct the
9914 * excess load moved.
9915 */
6263322c 9916 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9917
97fb7a0a 9918 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9919 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9920
78feefc5 9921 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9922 env.dst_cpu = env.new_dst_cpu;
6263322c 9923 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9924 env.loop = 0;
9925 env.loop_break = sched_nr_migrate_break;
e02e60c1 9926
88b8dac0
SV
9927 /*
9928 * Go back to "more_balance" rather than "redo" since we
9929 * need to continue with same src_cpu.
9930 */
9931 goto more_balance;
9932 }
1e3c88bd 9933
6263322c
PZ
9934 /*
9935 * We failed to reach balance because of affinity.
9936 */
9937 if (sd_parent) {
63b2ca30 9938 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9939
afdeee05 9940 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9941 *group_imbalance = 1;
6263322c
PZ
9942 }
9943
1e3c88bd 9944 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9945 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9946 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9947 /*
9948 * Attempting to continue load balancing at the current
9949 * sched_domain level only makes sense if there are
9950 * active CPUs remaining as possible busiest CPUs to
9951 * pull load from which are not contained within the
9952 * destination group that is receiving any migrated
9953 * load.
9954 */
9955 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9956 env.loop = 0;
9957 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9958 goto redo;
bbf18b19 9959 }
afdeee05 9960 goto out_all_pinned;
1e3c88bd
PZ
9961 }
9962 }
9963
9964 if (!ld_moved) {
ae92882e 9965 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9966 /*
9967 * Increment the failure counter only on periodic balance.
9968 * We do not want newidle balance, which can be very
9969 * frequent, pollute the failure counter causing
9970 * excessive cache_hot migrations and active balances.
9971 */
9972 if (idle != CPU_NEWLY_IDLE)
9973 sd->nr_balance_failed++;
1e3c88bd 9974
bd939f45 9975 if (need_active_balance(&env)) {
8a8c69c3
PZ
9976 unsigned long flags;
9977
5cb9eaa3 9978 raw_spin_rq_lock_irqsave(busiest, flags);
1e3c88bd 9979
97fb7a0a
IM
9980 /*
9981 * Don't kick the active_load_balance_cpu_stop,
9982 * if the curr task on busiest CPU can't be
9983 * moved to this_cpu:
1e3c88bd 9984 */
3bd37062 9985 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
5cb9eaa3 9986 raw_spin_rq_unlock_irqrestore(busiest, flags);
1e3c88bd
PZ
9987 goto out_one_pinned;
9988 }
9989
8a41dfcd
VG
9990 /* Record that we found at least one task that could run on this_cpu */
9991 env.flags &= ~LBF_ALL_PINNED;
9992
969c7921
TH
9993 /*
9994 * ->active_balance synchronizes accesses to
9995 * ->active_balance_work. Once set, it's cleared
9996 * only after active load balance is finished.
9997 */
1e3c88bd
PZ
9998 if (!busiest->active_balance) {
9999 busiest->active_balance = 1;
10000 busiest->push_cpu = this_cpu;
10001 active_balance = 1;
10002 }
5cb9eaa3 10003 raw_spin_rq_unlock_irqrestore(busiest, flags);
969c7921 10004
bd939f45 10005 if (active_balance) {
969c7921
TH
10006 stop_one_cpu_nowait(cpu_of(busiest),
10007 active_load_balance_cpu_stop, busiest,
10008 &busiest->active_balance_work);
bd939f45 10009 }
1e3c88bd 10010 }
e9b9734b 10011 } else {
1e3c88bd 10012 sd->nr_balance_failed = 0;
e9b9734b 10013 }
1e3c88bd 10014
e9b9734b 10015 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
10016 /* We were unbalanced, so reset the balancing interval */
10017 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
10018 }
10019
1e3c88bd
PZ
10020 goto out;
10021
10022out_balanced:
afdeee05
VG
10023 /*
10024 * We reach balance although we may have faced some affinity
f6cad8df
VG
10025 * constraints. Clear the imbalance flag only if other tasks got
10026 * a chance to move and fix the imbalance.
afdeee05 10027 */
f6cad8df 10028 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
10029 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10030
10031 if (*group_imbalance)
10032 *group_imbalance = 0;
10033 }
10034
10035out_all_pinned:
10036 /*
10037 * We reach balance because all tasks are pinned at this level so
10038 * we can't migrate them. Let the imbalance flag set so parent level
10039 * can try to migrate them.
10040 */
ae92882e 10041 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
10042
10043 sd->nr_balance_failed = 0;
10044
10045out_one_pinned:
3f130a37
VS
10046 ld_moved = 0;
10047
10048 /*
5ba553ef
PZ
10049 * newidle_balance() disregards balance intervals, so we could
10050 * repeatedly reach this code, which would lead to balance_interval
3b03706f 10051 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 10052 * increase logic to avoid that.
3f130a37
VS
10053 */
10054 if (env.idle == CPU_NEWLY_IDLE)
10055 goto out;
10056
1e3c88bd 10057 /* tune up the balancing interval */
47b7aee1
VS
10058 if ((env.flags & LBF_ALL_PINNED &&
10059 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10060 sd->balance_interval < sd->max_interval)
1e3c88bd 10061 sd->balance_interval *= 2;
1e3c88bd 10062out:
1e3c88bd
PZ
10063 return ld_moved;
10064}
10065
52a08ef1
JL
10066static inline unsigned long
10067get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10068{
10069 unsigned long interval = sd->balance_interval;
10070
10071 if (cpu_busy)
10072 interval *= sd->busy_factor;
10073
10074 /* scale ms to jiffies */
10075 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
10076
10077 /*
10078 * Reduce likelihood of busy balancing at higher domains racing with
10079 * balancing at lower domains by preventing their balancing periods
10080 * from being multiples of each other.
10081 */
10082 if (cpu_busy)
10083 interval -= 1;
10084
52a08ef1
JL
10085 interval = clamp(interval, 1UL, max_load_balance_interval);
10086
10087 return interval;
10088}
10089
10090static inline void
31851a98 10091update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
10092{
10093 unsigned long interval, next;
10094
31851a98
LY
10095 /* used by idle balance, so cpu_busy = 0 */
10096 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
10097 next = sd->last_balance + interval;
10098
10099 if (time_after(*next_balance, next))
10100 *next_balance = next;
10101}
10102
1e3c88bd 10103/*
97fb7a0a 10104 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
10105 * running tasks off the busiest CPU onto idle CPUs. It requires at
10106 * least 1 task to be running on each physical CPU where possible, and
10107 * avoids physical / logical imbalances.
1e3c88bd 10108 */
969c7921 10109static int active_load_balance_cpu_stop(void *data)
1e3c88bd 10110{
969c7921
TH
10111 struct rq *busiest_rq = data;
10112 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 10113 int target_cpu = busiest_rq->push_cpu;
969c7921 10114 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 10115 struct sched_domain *sd;
e5673f28 10116 struct task_struct *p = NULL;
8a8c69c3 10117 struct rq_flags rf;
969c7921 10118
8a8c69c3 10119 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
10120 /*
10121 * Between queueing the stop-work and running it is a hole in which
10122 * CPUs can become inactive. We should not move tasks from or to
10123 * inactive CPUs.
10124 */
10125 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10126 goto out_unlock;
969c7921 10127
97fb7a0a 10128 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
10129 if (unlikely(busiest_cpu != smp_processor_id() ||
10130 !busiest_rq->active_balance))
10131 goto out_unlock;
1e3c88bd
PZ
10132
10133 /* Is there any task to move? */
10134 if (busiest_rq->nr_running <= 1)
969c7921 10135 goto out_unlock;
1e3c88bd
PZ
10136
10137 /*
10138 * This condition is "impossible", if it occurs
10139 * we need to fix it. Originally reported by
97fb7a0a 10140 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
10141 */
10142 BUG_ON(busiest_rq == target_rq);
10143
1e3c88bd 10144 /* Search for an sd spanning us and the target CPU. */
dce840a0 10145 rcu_read_lock();
1e3c88bd 10146 for_each_domain(target_cpu, sd) {
e669ac8a
VS
10147 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10148 break;
1e3c88bd
PZ
10149 }
10150
10151 if (likely(sd)) {
8e45cb54
PZ
10152 struct lb_env env = {
10153 .sd = sd,
ddcdf6e7
PZ
10154 .dst_cpu = target_cpu,
10155 .dst_rq = target_rq,
10156 .src_cpu = busiest_rq->cpu,
10157 .src_rq = busiest_rq,
8e45cb54 10158 .idle = CPU_IDLE,
23fb06d9 10159 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
10160 };
10161
ae92882e 10162 schedstat_inc(sd->alb_count);
3bed5e21 10163 update_rq_clock(busiest_rq);
1e3c88bd 10164
e5673f28 10165 p = detach_one_task(&env);
d02c0711 10166 if (p) {
ae92882e 10167 schedstat_inc(sd->alb_pushed);
d02c0711
SD
10168 /* Active balancing done, reset the failure counter. */
10169 sd->nr_balance_failed = 0;
10170 } else {
ae92882e 10171 schedstat_inc(sd->alb_failed);
d02c0711 10172 }
1e3c88bd 10173 }
dce840a0 10174 rcu_read_unlock();
969c7921
TH
10175out_unlock:
10176 busiest_rq->active_balance = 0;
8a8c69c3 10177 rq_unlock(busiest_rq, &rf);
e5673f28
KT
10178
10179 if (p)
10180 attach_one_task(target_rq, p);
10181
10182 local_irq_enable();
10183
969c7921 10184 return 0;
1e3c88bd
PZ
10185}
10186
af3fe03c
PZ
10187static DEFINE_SPINLOCK(balancing);
10188
10189/*
10190 * Scale the max load_balance interval with the number of CPUs in the system.
10191 * This trades load-balance latency on larger machines for less cross talk.
10192 */
10193void update_max_interval(void)
10194{
10195 max_load_balance_interval = HZ*num_online_cpus()/10;
10196}
10197
10198/*
10199 * It checks each scheduling domain to see if it is due to be balanced,
10200 * and initiates a balancing operation if so.
10201 *
10202 * Balancing parameters are set up in init_sched_domains.
10203 */
10204static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10205{
10206 int continue_balancing = 1;
10207 int cpu = rq->cpu;
323af6de 10208 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10209 unsigned long interval;
10210 struct sched_domain *sd;
10211 /* Earliest time when we have to do rebalance again */
10212 unsigned long next_balance = jiffies + 60*HZ;
10213 int update_next_balance = 0;
10214 int need_serialize, need_decay = 0;
10215 u64 max_cost = 0;
10216
10217 rcu_read_lock();
10218 for_each_domain(cpu, sd) {
10219 /*
10220 * Decay the newidle max times here because this is a regular
10221 * visit to all the domains. Decay ~1% per second.
10222 */
10223 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10224 sd->max_newidle_lb_cost =
10225 (sd->max_newidle_lb_cost * 253) / 256;
10226 sd->next_decay_max_lb_cost = jiffies + HZ;
10227 need_decay = 1;
10228 }
10229 max_cost += sd->max_newidle_lb_cost;
10230
af3fe03c
PZ
10231 /*
10232 * Stop the load balance at this level. There is another
10233 * CPU in our sched group which is doing load balancing more
10234 * actively.
10235 */
10236 if (!continue_balancing) {
10237 if (need_decay)
10238 continue;
10239 break;
10240 }
10241
323af6de 10242 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10243
10244 need_serialize = sd->flags & SD_SERIALIZE;
10245 if (need_serialize) {
10246 if (!spin_trylock(&balancing))
10247 goto out;
10248 }
10249
10250 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10251 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10252 /*
10253 * The LBF_DST_PINNED logic could have changed
10254 * env->dst_cpu, so we can't know our idle
10255 * state even if we migrated tasks. Update it.
10256 */
10257 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10258 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10259 }
10260 sd->last_balance = jiffies;
323af6de 10261 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10262 }
10263 if (need_serialize)
10264 spin_unlock(&balancing);
10265out:
10266 if (time_after(next_balance, sd->last_balance + interval)) {
10267 next_balance = sd->last_balance + interval;
10268 update_next_balance = 1;
10269 }
10270 }
10271 if (need_decay) {
10272 /*
10273 * Ensure the rq-wide value also decays but keep it at a
10274 * reasonable floor to avoid funnies with rq->avg_idle.
10275 */
10276 rq->max_idle_balance_cost =
10277 max((u64)sysctl_sched_migration_cost, max_cost);
10278 }
10279 rcu_read_unlock();
10280
10281 /*
10282 * next_balance will be updated only when there is a need.
10283 * When the cpu is attached to null domain for ex, it will not be
10284 * updated.
10285 */
7a82e5f5 10286 if (likely(update_next_balance))
af3fe03c
PZ
10287 rq->next_balance = next_balance;
10288
af3fe03c
PZ
10289}
10290
d987fc7f
MG
10291static inline int on_null_domain(struct rq *rq)
10292{
10293 return unlikely(!rcu_dereference_sched(rq->sd));
10294}
10295
3451d024 10296#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10297/*
10298 * idle load balancing details
83cd4fe2
VP
10299 * - When one of the busy CPUs notice that there may be an idle rebalancing
10300 * needed, they will kick the idle load balancer, which then does idle
10301 * load balancing for all the idle CPUs.
9b019acb
NP
10302 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10303 * anywhere yet.
83cd4fe2 10304 */
1e3c88bd 10305
3dd0337d 10306static inline int find_new_ilb(void)
1e3c88bd 10307{
9b019acb 10308 int ilb;
031e3bd8 10309 const struct cpumask *hk_mask;
1e3c88bd 10310
031e3bd8 10311 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
1e3c88bd 10312
031e3bd8 10313 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
45da7a2b
PZ
10314
10315 if (ilb == smp_processor_id())
10316 continue;
10317
9b019acb
NP
10318 if (idle_cpu(ilb))
10319 return ilb;
10320 }
786d6dc7
SS
10321
10322 return nr_cpu_ids;
1e3c88bd 10323}
1e3c88bd 10324
83cd4fe2 10325/*
9b019acb
NP
10326 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10327 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10328 */
a4064fb6 10329static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10330{
10331 int ilb_cpu;
10332
3ea2f097
VG
10333 /*
10334 * Increase nohz.next_balance only when if full ilb is triggered but
10335 * not if we only update stats.
10336 */
10337 if (flags & NOHZ_BALANCE_KICK)
10338 nohz.next_balance = jiffies+1;
83cd4fe2 10339
3dd0337d 10340 ilb_cpu = find_new_ilb();
83cd4fe2 10341
0b005cf5
SS
10342 if (ilb_cpu >= nr_cpu_ids)
10343 return;
83cd4fe2 10344
19a1f5ec
PZ
10345 /*
10346 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10347 * the first flag owns it; cleared by nohz_csd_func().
10348 */
a4064fb6 10349 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10350 if (flags & NOHZ_KICK_MASK)
1c792db7 10351 return;
4550487a 10352
1c792db7 10353 /*
90b5363a 10354 * This way we generate an IPI on the target CPU which
1c792db7
SS
10355 * is idle. And the softirq performing nohz idle load balance
10356 * will be run before returning from the IPI.
10357 */
90b5363a 10358 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10359}
10360
10361/*
9f132742
VS
10362 * Current decision point for kicking the idle load balancer in the presence
10363 * of idle CPUs in the system.
4550487a
PZ
10364 */
10365static void nohz_balancer_kick(struct rq *rq)
10366{
10367 unsigned long now = jiffies;
10368 struct sched_domain_shared *sds;
10369 struct sched_domain *sd;
10370 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10371 unsigned int flags = 0;
4550487a
PZ
10372
10373 if (unlikely(rq->idle_balance))
10374 return;
10375
10376 /*
10377 * We may be recently in ticked or tickless idle mode. At the first
10378 * busy tick after returning from idle, we will update the busy stats.
10379 */
00357f5e 10380 nohz_balance_exit_idle(rq);
4550487a
PZ
10381
10382 /*
10383 * None are in tickless mode and hence no need for NOHZ idle load
10384 * balancing.
10385 */
10386 if (likely(!atomic_read(&nohz.nr_cpus)))
10387 return;
10388
f643ea22
VG
10389 if (READ_ONCE(nohz.has_blocked) &&
10390 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10391 flags = NOHZ_STATS_KICK;
10392
4550487a 10393 if (time_before(now, nohz.next_balance))
a4064fb6 10394 goto out;
4550487a 10395
a0fe2cf0 10396 if (rq->nr_running >= 2) {
a4064fb6 10397 flags = NOHZ_KICK_MASK;
4550487a
PZ
10398 goto out;
10399 }
10400
10401 rcu_read_lock();
4550487a
PZ
10402
10403 sd = rcu_dereference(rq->sd);
10404 if (sd) {
e25a7a94
VS
10405 /*
10406 * If there's a CFS task and the current CPU has reduced
10407 * capacity; kick the ILB to see if there's a better CPU to run
10408 * on.
10409 */
10410 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10411 flags = NOHZ_KICK_MASK;
4550487a
PZ
10412 goto unlock;
10413 }
10414 }
10415
011b27bb 10416 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10417 if (sd) {
b9a7b883
VS
10418 /*
10419 * When ASYM_PACKING; see if there's a more preferred CPU
10420 * currently idle; in which case, kick the ILB to move tasks
10421 * around.
10422 */
7edab78d 10423 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10424 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10425 flags = NOHZ_KICK_MASK;
4550487a
PZ
10426 goto unlock;
10427 }
10428 }
10429 }
b9a7b883 10430
a0fe2cf0
VS
10431 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10432 if (sd) {
10433 /*
10434 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10435 * to run the misfit task on.
10436 */
10437 if (check_misfit_status(rq, sd)) {
10438 flags = NOHZ_KICK_MASK;
10439 goto unlock;
10440 }
b9a7b883
VS
10441
10442 /*
10443 * For asymmetric systems, we do not want to nicely balance
10444 * cache use, instead we want to embrace asymmetry and only
10445 * ensure tasks have enough CPU capacity.
10446 *
10447 * Skip the LLC logic because it's not relevant in that case.
10448 */
10449 goto unlock;
a0fe2cf0
VS
10450 }
10451
b9a7b883
VS
10452 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10453 if (sds) {
e25a7a94 10454 /*
b9a7b883
VS
10455 * If there is an imbalance between LLC domains (IOW we could
10456 * increase the overall cache use), we need some less-loaded LLC
10457 * domain to pull some load. Likewise, we may need to spread
10458 * load within the current LLC domain (e.g. packed SMT cores but
10459 * other CPUs are idle). We can't really know from here how busy
10460 * the others are - so just get a nohz balance going if it looks
10461 * like this LLC domain has tasks we could move.
e25a7a94 10462 */
b9a7b883
VS
10463 nr_busy = atomic_read(&sds->nr_busy_cpus);
10464 if (nr_busy > 1) {
10465 flags = NOHZ_KICK_MASK;
10466 goto unlock;
4550487a
PZ
10467 }
10468 }
10469unlock:
10470 rcu_read_unlock();
10471out:
a4064fb6
PZ
10472 if (flags)
10473 kick_ilb(flags);
83cd4fe2
VP
10474}
10475
00357f5e 10476static void set_cpu_sd_state_busy(int cpu)
71325960 10477{
00357f5e 10478 struct sched_domain *sd;
a22e47a4 10479
00357f5e
PZ
10480 rcu_read_lock();
10481 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10482
00357f5e
PZ
10483 if (!sd || !sd->nohz_idle)
10484 goto unlock;
10485 sd->nohz_idle = 0;
10486
10487 atomic_inc(&sd->shared->nr_busy_cpus);
10488unlock:
10489 rcu_read_unlock();
71325960
SS
10490}
10491
00357f5e
PZ
10492void nohz_balance_exit_idle(struct rq *rq)
10493{
10494 SCHED_WARN_ON(rq != this_rq());
10495
10496 if (likely(!rq->nohz_tick_stopped))
10497 return;
10498
10499 rq->nohz_tick_stopped = 0;
10500 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10501 atomic_dec(&nohz.nr_cpus);
10502
10503 set_cpu_sd_state_busy(rq->cpu);
10504}
10505
10506static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10507{
10508 struct sched_domain *sd;
69e1e811 10509
69e1e811 10510 rcu_read_lock();
0e369d75 10511 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10512
10513 if (!sd || sd->nohz_idle)
10514 goto unlock;
10515 sd->nohz_idle = 1;
10516
0e369d75 10517 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10518unlock:
69e1e811
SS
10519 rcu_read_unlock();
10520}
10521
1e3c88bd 10522/*
97fb7a0a 10523 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10524 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10525 */
c1cc017c 10526void nohz_balance_enter_idle(int cpu)
1e3c88bd 10527{
00357f5e
PZ
10528 struct rq *rq = cpu_rq(cpu);
10529
10530 SCHED_WARN_ON(cpu != smp_processor_id());
10531
97fb7a0a 10532 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10533 if (!cpu_active(cpu))
10534 return;
10535
387bc8b5 10536 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10537 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10538 return;
10539
f643ea22
VG
10540 /*
10541 * Can be set safely without rq->lock held
10542 * If a clear happens, it will have evaluated last additions because
10543 * rq->lock is held during the check and the clear
10544 */
10545 rq->has_blocked_load = 1;
10546
10547 /*
10548 * The tick is still stopped but load could have been added in the
10549 * meantime. We set the nohz.has_blocked flag to trig a check of the
10550 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10551 * of nohz.has_blocked can only happen after checking the new load
10552 */
00357f5e 10553 if (rq->nohz_tick_stopped)
f643ea22 10554 goto out;
1e3c88bd 10555
97fb7a0a 10556 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10557 if (on_null_domain(rq))
d987fc7f
MG
10558 return;
10559
00357f5e
PZ
10560 rq->nohz_tick_stopped = 1;
10561
c1cc017c
AS
10562 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10563 atomic_inc(&nohz.nr_cpus);
00357f5e 10564
f643ea22
VG
10565 /*
10566 * Ensures that if nohz_idle_balance() fails to observe our
10567 * @idle_cpus_mask store, it must observe the @has_blocked
10568 * store.
10569 */
10570 smp_mb__after_atomic();
10571
00357f5e 10572 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10573
10574out:
10575 /*
10576 * Each time a cpu enter idle, we assume that it has blocked load and
10577 * enable the periodic update of the load of idle cpus
10578 */
10579 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10580}
1e3c88bd 10581
3f5ad914
Y
10582static bool update_nohz_stats(struct rq *rq)
10583{
10584 unsigned int cpu = rq->cpu;
10585
10586 if (!rq->has_blocked_load)
10587 return false;
10588
10589 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10590 return false;
10591
10592 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10593 return true;
10594
10595 update_blocked_averages(cpu);
10596
10597 return rq->has_blocked_load;
10598}
10599
1e3c88bd 10600/*
31e77c93
VG
10601 * Internal function that runs load balance for all idle cpus. The load balance
10602 * can be a simple update of blocked load or a complete load balance with
10603 * tasks movement depending of flags.
1e3c88bd 10604 */
ab2dde5e 10605static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
31e77c93 10606 enum cpu_idle_type idle)
83cd4fe2 10607{
c5afb6a8 10608 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10609 unsigned long now = jiffies;
10610 unsigned long next_balance = now + 60*HZ;
f643ea22 10611 bool has_blocked_load = false;
c5afb6a8 10612 int update_next_balance = 0;
b7031a02 10613 int this_cpu = this_rq->cpu;
b7031a02
PZ
10614 int balance_cpu;
10615 struct rq *rq;
83cd4fe2 10616
b7031a02 10617 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10618
f643ea22
VG
10619 /*
10620 * We assume there will be no idle load after this update and clear
10621 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10622 * set the has_blocked flag and trig another update of idle load.
10623 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10624 * setting the flag, we are sure to not clear the state and not
10625 * check the load of an idle cpu.
10626 */
10627 WRITE_ONCE(nohz.has_blocked, 0);
10628
10629 /*
10630 * Ensures that if we miss the CPU, we must see the has_blocked
10631 * store from nohz_balance_enter_idle().
10632 */
10633 smp_mb();
10634
7a82e5f5
VG
10635 /*
10636 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10637 * chance for other idle cpu to pull load.
10638 */
10639 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10640 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10641 continue;
10642
10643 /*
97fb7a0a
IM
10644 * If this CPU gets work to do, stop the load balancing
10645 * work being done for other CPUs. Next load
83cd4fe2
VP
10646 * balancing owner will pick it up.
10647 */
f643ea22
VG
10648 if (need_resched()) {
10649 has_blocked_load = true;
10650 goto abort;
10651 }
83cd4fe2 10652
5ed4f1d9
VG
10653 rq = cpu_rq(balance_cpu);
10654
64f84f27 10655 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10656
ed61bbc6
TC
10657 /*
10658 * If time for next balance is due,
10659 * do the balance.
10660 */
10661 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10662 struct rq_flags rf;
10663
31e77c93 10664 rq_lock_irqsave(rq, &rf);
ed61bbc6 10665 update_rq_clock(rq);
31e77c93 10666 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10667
b7031a02
PZ
10668 if (flags & NOHZ_BALANCE_KICK)
10669 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10670 }
83cd4fe2 10671
c5afb6a8
VG
10672 if (time_after(next_balance, rq->next_balance)) {
10673 next_balance = rq->next_balance;
10674 update_next_balance = 1;
10675 }
83cd4fe2 10676 }
c5afb6a8 10677
3ea2f097
VG
10678 /*
10679 * next_balance will be updated only when there is a need.
10680 * When the CPU is attached to null domain for ex, it will not be
10681 * updated.
10682 */
10683 if (likely(update_next_balance))
10684 nohz.next_balance = next_balance;
10685
f643ea22
VG
10686 WRITE_ONCE(nohz.next_blocked,
10687 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10688
10689abort:
10690 /* There is still blocked load, enable periodic update */
10691 if (has_blocked_load)
10692 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
10693}
10694
10695/*
10696 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10697 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10698 */
10699static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10700{
19a1f5ec 10701 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10702
19a1f5ec 10703 if (!flags)
31e77c93
VG
10704 return false;
10705
19a1f5ec 10706 this_rq->nohz_idle_balance = 0;
31e77c93 10707
19a1f5ec 10708 if (idle != CPU_IDLE)
31e77c93
VG
10709 return false;
10710
10711 _nohz_idle_balance(this_rq, flags, idle);
10712
b7031a02 10713 return true;
83cd4fe2 10714}
31e77c93 10715
c6f88654
VG
10716/*
10717 * Check if we need to run the ILB for updating blocked load before entering
10718 * idle state.
10719 */
10720void nohz_run_idle_balance(int cpu)
10721{
10722 unsigned int flags;
10723
10724 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10725
10726 /*
10727 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10728 * (ie NOHZ_STATS_KICK set) and will do the same.
10729 */
10730 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10731 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10732}
10733
31e77c93
VG
10734static void nohz_newidle_balance(struct rq *this_rq)
10735{
10736 int this_cpu = this_rq->cpu;
10737
10738 /*
10739 * This CPU doesn't want to be disturbed by scheduler
10740 * housekeeping
10741 */
10742 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10743 return;
10744
10745 /* Will wake up very soon. No time for doing anything else*/
10746 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10747 return;
10748
10749 /* Don't need to update blocked load of idle CPUs*/
10750 if (!READ_ONCE(nohz.has_blocked) ||
10751 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10752 return;
10753
31e77c93 10754 /*
c6f88654
VG
10755 * Set the need to trigger ILB in order to update blocked load
10756 * before entering idle state.
31e77c93 10757 */
c6f88654 10758 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
10759}
10760
dd707247
PZ
10761#else /* !CONFIG_NO_HZ_COMMON */
10762static inline void nohz_balancer_kick(struct rq *rq) { }
10763
31e77c93 10764static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10765{
10766 return false;
10767}
31e77c93
VG
10768
10769static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10770#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10771
47ea5412 10772/*
5b78f2dc 10773 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10774 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10775 *
10776 * Returns:
10777 * < 0 - we released the lock and there are !fair tasks present
10778 * 0 - failed, no new tasks
10779 * > 0 - success, new (fair) tasks present
47ea5412 10780 */
d91cecc1 10781static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10782{
10783 unsigned long next_balance = jiffies + HZ;
10784 int this_cpu = this_rq->cpu;
10785 struct sched_domain *sd;
10786 int pulled_task = 0;
10787 u64 curr_cost = 0;
10788
5ba553ef 10789 update_misfit_status(NULL, this_rq);
e5e678e4
RR
10790
10791 /*
10792 * There is a task waiting to run. No need to search for one.
10793 * Return 0; the task will be enqueued when switching to idle.
10794 */
10795 if (this_rq->ttwu_pending)
10796 return 0;
10797
47ea5412
PZ
10798 /*
10799 * We must set idle_stamp _before_ calling idle_balance(), such that we
10800 * measure the duration of idle_balance() as idle time.
10801 */
10802 this_rq->idle_stamp = rq_clock(this_rq);
10803
10804 /*
10805 * Do not pull tasks towards !active CPUs...
10806 */
10807 if (!cpu_active(this_cpu))
10808 return 0;
10809
10810 /*
10811 * This is OK, because current is on_cpu, which avoids it being picked
10812 * for load-balance and preemption/IRQs are still disabled avoiding
10813 * further scheduler activity on it and we're being very careful to
10814 * re-start the picking loop.
10815 */
10816 rq_unpin_lock(this_rq, rf);
10817
10818 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10819 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10820
47ea5412
PZ
10821 rcu_read_lock();
10822 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10823 if (sd)
10824 update_next_balance(sd, &next_balance);
10825 rcu_read_unlock();
10826
10827 goto out;
10828 }
10829
5cb9eaa3 10830 raw_spin_rq_unlock(this_rq);
47ea5412
PZ
10831
10832 update_blocked_averages(this_cpu);
10833 rcu_read_lock();
10834 for_each_domain(this_cpu, sd) {
10835 int continue_balancing = 1;
10836 u64 t0, domain_cost;
10837
47ea5412
PZ
10838 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10839 update_next_balance(sd, &next_balance);
10840 break;
10841 }
10842
10843 if (sd->flags & SD_BALANCE_NEWIDLE) {
10844 t0 = sched_clock_cpu(this_cpu);
10845
10846 pulled_task = load_balance(this_cpu, this_rq,
10847 sd, CPU_NEWLY_IDLE,
10848 &continue_balancing);
10849
10850 domain_cost = sched_clock_cpu(this_cpu) - t0;
10851 if (domain_cost > sd->max_newidle_lb_cost)
10852 sd->max_newidle_lb_cost = domain_cost;
10853
10854 curr_cost += domain_cost;
10855 }
10856
10857 update_next_balance(sd, &next_balance);
10858
10859 /*
10860 * Stop searching for tasks to pull if there are
10861 * now runnable tasks on this rq.
10862 */
e5e678e4
RR
10863 if (pulled_task || this_rq->nr_running > 0 ||
10864 this_rq->ttwu_pending)
47ea5412
PZ
10865 break;
10866 }
10867 rcu_read_unlock();
10868
5cb9eaa3 10869 raw_spin_rq_lock(this_rq);
47ea5412
PZ
10870
10871 if (curr_cost > this_rq->max_idle_balance_cost)
10872 this_rq->max_idle_balance_cost = curr_cost;
10873
10874 /*
10875 * While browsing the domains, we released the rq lock, a task could
10876 * have been enqueued in the meantime. Since we're not going idle,
10877 * pretend we pulled a task.
10878 */
10879 if (this_rq->cfs.h_nr_running && !pulled_task)
10880 pulled_task = 1;
10881
47ea5412
PZ
10882 /* Is there a task of a high priority class? */
10883 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10884 pulled_task = -1;
10885
6553fc18
VG
10886out:
10887 /* Move the next balance forward */
10888 if (time_after(this_rq->next_balance, next_balance))
10889 this_rq->next_balance = next_balance;
10890
47ea5412
PZ
10891 if (pulled_task)
10892 this_rq->idle_stamp = 0;
0826530d
VG
10893 else
10894 nohz_newidle_balance(this_rq);
47ea5412
PZ
10895
10896 rq_repin_lock(this_rq, rf);
10897
10898 return pulled_task;
10899}
10900
83cd4fe2
VP
10901/*
10902 * run_rebalance_domains is triggered when needed from the scheduler tick.
10903 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10904 */
0766f788 10905static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10906{
208cb16b 10907 struct rq *this_rq = this_rq();
6eb57e0d 10908 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10909 CPU_IDLE : CPU_NOT_IDLE;
10910
1e3c88bd 10911 /*
97fb7a0a
IM
10912 * If this CPU has a pending nohz_balance_kick, then do the
10913 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10914 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10915 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10916 * load balance only within the local sched_domain hierarchy
10917 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10918 */
b7031a02
PZ
10919 if (nohz_idle_balance(this_rq, idle))
10920 return;
10921
10922 /* normal load balance */
10923 update_blocked_averages(this_rq->cpu);
d4573c3e 10924 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10925}
10926
1e3c88bd
PZ
10927/*
10928 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10929 */
7caff66f 10930void trigger_load_balance(struct rq *rq)
1e3c88bd 10931{
e0b257c3
AMB
10932 /*
10933 * Don't need to rebalance while attached to NULL domain or
10934 * runqueue CPU is not active
10935 */
10936 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10937 return;
10938
10939 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10940 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10941
10942 nohz_balancer_kick(rq);
1e3c88bd
PZ
10943}
10944
0bcdcf28
CE
10945static void rq_online_fair(struct rq *rq)
10946{
10947 update_sysctl();
0e59bdae
KT
10948
10949 update_runtime_enabled(rq);
0bcdcf28
CE
10950}
10951
10952static void rq_offline_fair(struct rq *rq)
10953{
10954 update_sysctl();
a4c96ae3
PB
10955
10956 /* Ensure any throttled groups are reachable by pick_next_task */
10957 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10958}
10959
55e12e5e 10960#endif /* CONFIG_SMP */
e1d1484f 10961
8039e96f
VP
10962#ifdef CONFIG_SCHED_CORE
10963static inline bool
10964__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10965{
10966 u64 slice = sched_slice(cfs_rq_of(se), se);
10967 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10968
10969 return (rtime * min_nr_tasks > slice);
10970}
10971
10972#define MIN_NR_TASKS_DURING_FORCEIDLE 2
10973static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10974{
10975 if (!sched_core_enabled(rq))
10976 return;
10977
10978 /*
10979 * If runqueue has only one task which used up its slice and
10980 * if the sibling is forced idle, then trigger schedule to
10981 * give forced idle task a chance.
10982 *
10983 * sched_slice() considers only this active rq and it gets the
10984 * whole slice. But during force idle, we have siblings acting
10985 * like a single runqueue and hence we need to consider runnable
cc00c198 10986 * tasks on this CPU and the forced idle CPU. Ideally, we should
8039e96f 10987 * go through the forced idle rq, but that would be a perf hit.
cc00c198 10988 * We can assume that the forced idle CPU has at least
8039e96f 10989 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
cc00c198 10990 * if we need to give up the CPU.
8039e96f
VP
10991 */
10992 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10993 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10994 resched_curr(rq);
10995}
c6047c2e
JFG
10996
10997/*
10998 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10999 */
11000static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11001{
11002 for_each_sched_entity(se) {
11003 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11004
11005 if (forceidle) {
11006 if (cfs_rq->forceidle_seq == fi_seq)
11007 break;
11008 cfs_rq->forceidle_seq = fi_seq;
11009 }
11010
11011 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11012 }
11013}
11014
11015void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11016{
11017 struct sched_entity *se = &p->se;
11018
11019 if (p->sched_class != &fair_sched_class)
11020 return;
11021
11022 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11023}
11024
11025bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11026{
11027 struct rq *rq = task_rq(a);
11028 struct sched_entity *sea = &a->se;
11029 struct sched_entity *seb = &b->se;
11030 struct cfs_rq *cfs_rqa;
11031 struct cfs_rq *cfs_rqb;
11032 s64 delta;
11033
11034 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11035
11036#ifdef CONFIG_FAIR_GROUP_SCHED
11037 /*
11038 * Find an se in the hierarchy for tasks a and b, such that the se's
11039 * are immediate siblings.
11040 */
11041 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11042 int sea_depth = sea->depth;
11043 int seb_depth = seb->depth;
11044
11045 if (sea_depth >= seb_depth)
11046 sea = parent_entity(sea);
11047 if (sea_depth <= seb_depth)
11048 seb = parent_entity(seb);
11049 }
11050
11051 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11052 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11053
11054 cfs_rqa = sea->cfs_rq;
11055 cfs_rqb = seb->cfs_rq;
11056#else
11057 cfs_rqa = &task_rq(a)->cfs;
11058 cfs_rqb = &task_rq(b)->cfs;
11059#endif
11060
11061 /*
11062 * Find delta after normalizing se's vruntime with its cfs_rq's
11063 * min_vruntime_fi, which would have been updated in prior calls
11064 * to se_fi_update().
11065 */
11066 delta = (s64)(sea->vruntime - seb->vruntime) +
11067 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11068
11069 return delta > 0;
11070}
8039e96f
VP
11071#else
11072static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11073#endif
11074
bf0f6f24 11075/*
d84b3131
FW
11076 * scheduler tick hitting a task of our scheduling class.
11077 *
11078 * NOTE: This function can be called remotely by the tick offload that
11079 * goes along full dynticks. Therefore no local assumption can be made
11080 * and everything must be accessed through the @rq and @curr passed in
11081 * parameters.
bf0f6f24 11082 */
8f4d37ec 11083static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
11084{
11085 struct cfs_rq *cfs_rq;
11086 struct sched_entity *se = &curr->se;
11087
11088 for_each_sched_entity(se) {
11089 cfs_rq = cfs_rq_of(se);
8f4d37ec 11090 entity_tick(cfs_rq, se, queued);
bf0f6f24 11091 }
18bf2805 11092
b52da86e 11093 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 11094 task_tick_numa(rq, curr);
3b1baa64
MR
11095
11096 update_misfit_status(curr, rq);
2802bf3c 11097 update_overutilized_status(task_rq(curr));
8039e96f
VP
11098
11099 task_tick_core(rq, curr);
bf0f6f24
IM
11100}
11101
11102/*
cd29fe6f
PZ
11103 * called on fork with the child task as argument from the parent's context
11104 * - child not yet on the tasklist
11105 * - preemption disabled
bf0f6f24 11106 */
cd29fe6f 11107static void task_fork_fair(struct task_struct *p)
bf0f6f24 11108{
4fc420c9
DN
11109 struct cfs_rq *cfs_rq;
11110 struct sched_entity *se = &p->se, *curr;
cd29fe6f 11111 struct rq *rq = this_rq();
8a8c69c3 11112 struct rq_flags rf;
bf0f6f24 11113
8a8c69c3 11114 rq_lock(rq, &rf);
861d034e
PZ
11115 update_rq_clock(rq);
11116
4fc420c9
DN
11117 cfs_rq = task_cfs_rq(current);
11118 curr = cfs_rq->curr;
e210bffd
PZ
11119 if (curr) {
11120 update_curr(cfs_rq);
b5d9d734 11121 se->vruntime = curr->vruntime;
e210bffd 11122 }
aeb73b04 11123 place_entity(cfs_rq, se, 1);
4d78e7b6 11124
cd29fe6f 11125 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 11126 /*
edcb60a3
IM
11127 * Upon rescheduling, sched_class::put_prev_task() will place
11128 * 'current' within the tree based on its new key value.
11129 */
4d78e7b6 11130 swap(curr->vruntime, se->vruntime);
8875125e 11131 resched_curr(rq);
4d78e7b6 11132 }
bf0f6f24 11133
88ec22d3 11134 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 11135 rq_unlock(rq, &rf);
bf0f6f24
IM
11136}
11137
cb469845
SR
11138/*
11139 * Priority of the task has changed. Check to see if we preempt
11140 * the current task.
11141 */
da7a735e
PZ
11142static void
11143prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 11144{
da0c1e65 11145 if (!task_on_rq_queued(p))
da7a735e
PZ
11146 return;
11147
7c2e8bbd
FW
11148 if (rq->cfs.nr_running == 1)
11149 return;
11150
cb469845
SR
11151 /*
11152 * Reschedule if we are currently running on this runqueue and
11153 * our priority decreased, or if we are not currently running on
11154 * this runqueue and our priority is higher than the current's
11155 */
65bcf072 11156 if (task_current(rq, p)) {
cb469845 11157 if (p->prio > oldprio)
8875125e 11158 resched_curr(rq);
cb469845 11159 } else
15afe09b 11160 check_preempt_curr(rq, p, 0);
cb469845
SR
11161}
11162
daa59407 11163static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
11164{
11165 struct sched_entity *se = &p->se;
da7a735e
PZ
11166
11167 /*
daa59407
BP
11168 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11169 * the dequeue_entity(.flags=0) will already have normalized the
11170 * vruntime.
11171 */
11172 if (p->on_rq)
11173 return true;
11174
11175 /*
11176 * When !on_rq, vruntime of the task has usually NOT been normalized.
11177 * But there are some cases where it has already been normalized:
da7a735e 11178 *
daa59407
BP
11179 * - A forked child which is waiting for being woken up by
11180 * wake_up_new_task().
11181 * - A task which has been woken up by try_to_wake_up() and
11182 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 11183 */
d0cdb3ce 11184 if (!se->sum_exec_runtime ||
2f064a59 11185 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
11186 return true;
11187
11188 return false;
11189}
11190
09a43ace
VG
11191#ifdef CONFIG_FAIR_GROUP_SCHED
11192/*
11193 * Propagate the changes of the sched_entity across the tg tree to make it
11194 * visible to the root
11195 */
11196static void propagate_entity_cfs_rq(struct sched_entity *se)
11197{
11198 struct cfs_rq *cfs_rq;
11199
0258bdfa
OU
11200 list_add_leaf_cfs_rq(cfs_rq_of(se));
11201
09a43ace
VG
11202 /* Start to propagate at parent */
11203 se = se->parent;
11204
11205 for_each_sched_entity(se) {
11206 cfs_rq = cfs_rq_of(se);
11207
0258bdfa
OU
11208 if (!cfs_rq_throttled(cfs_rq)){
11209 update_load_avg(cfs_rq, se, UPDATE_TG);
11210 list_add_leaf_cfs_rq(cfs_rq);
11211 continue;
11212 }
09a43ace 11213
0258bdfa
OU
11214 if (list_add_leaf_cfs_rq(cfs_rq))
11215 break;
09a43ace
VG
11216 }
11217}
11218#else
11219static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11220#endif
11221
df217913 11222static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 11223{
daa59407
BP
11224 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11225
9d89c257 11226 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 11227 update_load_avg(cfs_rq, se, 0);
a05e8c51 11228 detach_entity_load_avg(cfs_rq, se);
fe749158 11229 update_tg_load_avg(cfs_rq);
09a43ace 11230 propagate_entity_cfs_rq(se);
da7a735e
PZ
11231}
11232
df217913 11233static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 11234{
daa59407 11235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
11236
11237#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
11238 /*
11239 * Since the real-depth could have been changed (only FAIR
11240 * class maintain depth value), reset depth properly.
11241 */
11242 se->depth = se->parent ? se->parent->depth + 1 : 0;
11243#endif
7855a35a 11244
df217913 11245 /* Synchronize entity with its cfs_rq */
88c0616e 11246 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 11247 attach_entity_load_avg(cfs_rq, se);
fe749158 11248 update_tg_load_avg(cfs_rq);
09a43ace 11249 propagate_entity_cfs_rq(se);
df217913
VG
11250}
11251
11252static void detach_task_cfs_rq(struct task_struct *p)
11253{
11254 struct sched_entity *se = &p->se;
11255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11256
11257 if (!vruntime_normalized(p)) {
11258 /*
11259 * Fix up our vruntime so that the current sleep doesn't
11260 * cause 'unlimited' sleep bonus.
11261 */
11262 place_entity(cfs_rq, se, 0);
11263 se->vruntime -= cfs_rq->min_vruntime;
11264 }
11265
11266 detach_entity_cfs_rq(se);
11267}
11268
11269static void attach_task_cfs_rq(struct task_struct *p)
11270{
11271 struct sched_entity *se = &p->se;
11272 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11273
11274 attach_entity_cfs_rq(se);
daa59407
BP
11275
11276 if (!vruntime_normalized(p))
11277 se->vruntime += cfs_rq->min_vruntime;
11278}
6efdb105 11279
daa59407
BP
11280static void switched_from_fair(struct rq *rq, struct task_struct *p)
11281{
11282 detach_task_cfs_rq(p);
11283}
11284
11285static void switched_to_fair(struct rq *rq, struct task_struct *p)
11286{
11287 attach_task_cfs_rq(p);
7855a35a 11288
daa59407 11289 if (task_on_rq_queued(p)) {
7855a35a 11290 /*
daa59407
BP
11291 * We were most likely switched from sched_rt, so
11292 * kick off the schedule if running, otherwise just see
11293 * if we can still preempt the current task.
7855a35a 11294 */
65bcf072 11295 if (task_current(rq, p))
daa59407
BP
11296 resched_curr(rq);
11297 else
11298 check_preempt_curr(rq, p, 0);
7855a35a 11299 }
cb469845
SR
11300}
11301
83b699ed
SV
11302/* Account for a task changing its policy or group.
11303 *
11304 * This routine is mostly called to set cfs_rq->curr field when a task
11305 * migrates between groups/classes.
11306 */
a0e813f2 11307static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 11308{
03b7fad1
PZ
11309 struct sched_entity *se = &p->se;
11310
11311#ifdef CONFIG_SMP
11312 if (task_on_rq_queued(p)) {
11313 /*
11314 * Move the next running task to the front of the list, so our
11315 * cfs_tasks list becomes MRU one.
11316 */
11317 list_move(&se->group_node, &rq->cfs_tasks);
11318 }
11319#endif
83b699ed 11320
ec12cb7f
PT
11321 for_each_sched_entity(se) {
11322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11323
11324 set_next_entity(cfs_rq, se);
11325 /* ensure bandwidth has been allocated on our new cfs_rq */
11326 account_cfs_rq_runtime(cfs_rq, 0);
11327 }
83b699ed
SV
11328}
11329
029632fb
PZ
11330void init_cfs_rq(struct cfs_rq *cfs_rq)
11331{
bfb06889 11332 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
11333 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11334#ifndef CONFIG_64BIT
11335 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11336#endif
141965c7 11337#ifdef CONFIG_SMP
2a2f5d4e 11338 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11339#endif
029632fb
PZ
11340}
11341
810b3817 11342#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
11343static void task_set_group_fair(struct task_struct *p)
11344{
11345 struct sched_entity *se = &p->se;
11346
11347 set_task_rq(p, task_cpu(p));
11348 se->depth = se->parent ? se->parent->depth + 1 : 0;
11349}
11350
bc54da21 11351static void task_move_group_fair(struct task_struct *p)
810b3817 11352{
daa59407 11353 detach_task_cfs_rq(p);
b2b5ce02 11354 set_task_rq(p, task_cpu(p));
6efdb105
BP
11355
11356#ifdef CONFIG_SMP
11357 /* Tell se's cfs_rq has been changed -- migrated */
11358 p->se.avg.last_update_time = 0;
11359#endif
daa59407 11360 attach_task_cfs_rq(p);
810b3817 11361}
029632fb 11362
ea86cb4b
VG
11363static void task_change_group_fair(struct task_struct *p, int type)
11364{
11365 switch (type) {
11366 case TASK_SET_GROUP:
11367 task_set_group_fair(p);
11368 break;
11369
11370 case TASK_MOVE_GROUP:
11371 task_move_group_fair(p);
11372 break;
11373 }
11374}
11375
029632fb
PZ
11376void free_fair_sched_group(struct task_group *tg)
11377{
11378 int i;
11379
029632fb
PZ
11380 for_each_possible_cpu(i) {
11381 if (tg->cfs_rq)
11382 kfree(tg->cfs_rq[i]);
6fe1f348 11383 if (tg->se)
029632fb
PZ
11384 kfree(tg->se[i]);
11385 }
11386
11387 kfree(tg->cfs_rq);
11388 kfree(tg->se);
11389}
11390
11391int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11392{
029632fb 11393 struct sched_entity *se;
b7fa30c9 11394 struct cfs_rq *cfs_rq;
029632fb
PZ
11395 int i;
11396
6396bb22 11397 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11398 if (!tg->cfs_rq)
11399 goto err;
6396bb22 11400 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11401 if (!tg->se)
11402 goto err;
11403
11404 tg->shares = NICE_0_LOAD;
11405
11406 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11407
11408 for_each_possible_cpu(i) {
11409 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11410 GFP_KERNEL, cpu_to_node(i));
11411 if (!cfs_rq)
11412 goto err;
11413
11414 se = kzalloc_node(sizeof(struct sched_entity),
11415 GFP_KERNEL, cpu_to_node(i));
11416 if (!se)
11417 goto err_free_rq;
11418
11419 init_cfs_rq(cfs_rq);
11420 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11421 init_entity_runnable_average(se);
029632fb
PZ
11422 }
11423
11424 return 1;
11425
11426err_free_rq:
11427 kfree(cfs_rq);
11428err:
11429 return 0;
11430}
11431
8663e24d
PZ
11432void online_fair_sched_group(struct task_group *tg)
11433{
11434 struct sched_entity *se;
a46d14ec 11435 struct rq_flags rf;
8663e24d
PZ
11436 struct rq *rq;
11437 int i;
11438
11439 for_each_possible_cpu(i) {
11440 rq = cpu_rq(i);
11441 se = tg->se[i];
a46d14ec 11442 rq_lock_irq(rq, &rf);
4126bad6 11443 update_rq_clock(rq);
d0326691 11444 attach_entity_cfs_rq(se);
55e16d30 11445 sync_throttle(tg, i);
a46d14ec 11446 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11447 }
11448}
11449
6fe1f348 11450void unregister_fair_sched_group(struct task_group *tg)
029632fb 11451{
029632fb 11452 unsigned long flags;
6fe1f348
PZ
11453 struct rq *rq;
11454 int cpu;
029632fb 11455
b4b2d765
MK
11456 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11457
6fe1f348
PZ
11458 for_each_possible_cpu(cpu) {
11459 if (tg->se[cpu])
11460 remove_entity_load_avg(tg->se[cpu]);
029632fb 11461
6fe1f348
PZ
11462 /*
11463 * Only empty task groups can be destroyed; so we can speculatively
11464 * check on_list without danger of it being re-added.
11465 */
11466 if (!tg->cfs_rq[cpu]->on_list)
11467 continue;
11468
11469 rq = cpu_rq(cpu);
11470
5cb9eaa3 11471 raw_spin_rq_lock_irqsave(rq, flags);
6fe1f348 11472 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5cb9eaa3 11473 raw_spin_rq_unlock_irqrestore(rq, flags);
6fe1f348 11474 }
029632fb
PZ
11475}
11476
11477void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11478 struct sched_entity *se, int cpu,
11479 struct sched_entity *parent)
11480{
11481 struct rq *rq = cpu_rq(cpu);
11482
11483 cfs_rq->tg = tg;
11484 cfs_rq->rq = rq;
029632fb
PZ
11485 init_cfs_rq_runtime(cfs_rq);
11486
11487 tg->cfs_rq[cpu] = cfs_rq;
11488 tg->se[cpu] = se;
11489
11490 /* se could be NULL for root_task_group */
11491 if (!se)
11492 return;
11493
fed14d45 11494 if (!parent) {
029632fb 11495 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11496 se->depth = 0;
11497 } else {
029632fb 11498 se->cfs_rq = parent->my_q;
fed14d45
PZ
11499 se->depth = parent->depth + 1;
11500 }
029632fb
PZ
11501
11502 se->my_q = cfs_rq;
0ac9b1c2
PT
11503 /* guarantee group entities always have weight */
11504 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11505 se->parent = parent;
11506}
11507
11508static DEFINE_MUTEX(shares_mutex);
11509
30400039 11510static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
029632fb
PZ
11511{
11512 int i;
029632fb 11513
30400039
JD
11514 lockdep_assert_held(&shares_mutex);
11515
029632fb
PZ
11516 /*
11517 * We can't change the weight of the root cgroup.
11518 */
11519 if (!tg->se[0])
11520 return -EINVAL;
11521
11522 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11523
029632fb 11524 if (tg->shares == shares)
30400039 11525 return 0;
029632fb
PZ
11526
11527 tg->shares = shares;
11528 for_each_possible_cpu(i) {
11529 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11530 struct sched_entity *se = tg->se[i];
11531 struct rq_flags rf;
029632fb 11532
029632fb 11533 /* Propagate contribution to hierarchy */
8a8c69c3 11534 rq_lock_irqsave(rq, &rf);
71b1da46 11535 update_rq_clock(rq);
89ee048f 11536 for_each_sched_entity(se) {
88c0616e 11537 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11538 update_cfs_group(se);
89ee048f 11539 }
8a8c69c3 11540 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11541 }
11542
30400039
JD
11543 return 0;
11544}
11545
11546int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11547{
11548 int ret;
11549
11550 mutex_lock(&shares_mutex);
11551 if (tg_is_idle(tg))
11552 ret = -EINVAL;
11553 else
11554 ret = __sched_group_set_shares(tg, shares);
11555 mutex_unlock(&shares_mutex);
11556
11557 return ret;
11558}
11559
11560int sched_group_set_idle(struct task_group *tg, long idle)
11561{
11562 int i;
11563
11564 if (tg == &root_task_group)
11565 return -EINVAL;
11566
11567 if (idle < 0 || idle > 1)
11568 return -EINVAL;
11569
11570 mutex_lock(&shares_mutex);
11571
11572 if (tg->idle == idle) {
11573 mutex_unlock(&shares_mutex);
11574 return 0;
11575 }
11576
11577 tg->idle = idle;
11578
11579 for_each_possible_cpu(i) {
11580 struct rq *rq = cpu_rq(i);
11581 struct sched_entity *se = tg->se[i];
11582 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
11583 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11584 long idle_task_delta;
11585 struct rq_flags rf;
11586
11587 rq_lock_irqsave(rq, &rf);
11588
11589 grp_cfs_rq->idle = idle;
11590 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11591 goto next_cpu;
11592
11593 idle_task_delta = grp_cfs_rq->h_nr_running -
11594 grp_cfs_rq->idle_h_nr_running;
11595 if (!cfs_rq_is_idle(grp_cfs_rq))
11596 idle_task_delta *= -1;
11597
11598 for_each_sched_entity(se) {
11599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11600
11601 if (!se->on_rq)
11602 break;
11603
11604 cfs_rq->idle_h_nr_running += idle_task_delta;
11605
11606 /* Already accounted at parent level and above. */
11607 if (cfs_rq_is_idle(cfs_rq))
11608 break;
11609 }
11610
11611next_cpu:
11612 rq_unlock_irqrestore(rq, &rf);
11613 }
11614
11615 /* Idle groups have minimum weight. */
11616 if (tg_is_idle(tg))
11617 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11618 else
11619 __sched_group_set_shares(tg, NICE_0_LOAD);
11620
029632fb
PZ
11621 mutex_unlock(&shares_mutex);
11622 return 0;
11623}
30400039 11624
029632fb
PZ
11625#else /* CONFIG_FAIR_GROUP_SCHED */
11626
11627void free_fair_sched_group(struct task_group *tg) { }
11628
11629int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11630{
11631 return 1;
11632}
11633
8663e24d
PZ
11634void online_fair_sched_group(struct task_group *tg) { }
11635
6fe1f348 11636void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11637
11638#endif /* CONFIG_FAIR_GROUP_SCHED */
11639
810b3817 11640
6d686f45 11641static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11642{
11643 struct sched_entity *se = &task->se;
0d721cea
PW
11644 unsigned int rr_interval = 0;
11645
11646 /*
11647 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11648 * idle runqueue:
11649 */
0d721cea 11650 if (rq->cfs.load.weight)
a59f4e07 11651 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11652
11653 return rr_interval;
11654}
11655
bf0f6f24
IM
11656/*
11657 * All the scheduling class methods:
11658 */
43c31ac0
PZ
11659DEFINE_SCHED_CLASS(fair) = {
11660
bf0f6f24
IM
11661 .enqueue_task = enqueue_task_fair,
11662 .dequeue_task = dequeue_task_fair,
11663 .yield_task = yield_task_fair,
d95f4122 11664 .yield_to_task = yield_to_task_fair,
bf0f6f24 11665
2e09bf55 11666 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11667
98c2f700 11668 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11669 .put_prev_task = put_prev_task_fair,
03b7fad1 11670 .set_next_task = set_next_task_fair,
bf0f6f24 11671
681f3e68 11672#ifdef CONFIG_SMP
6e2df058 11673 .balance = balance_fair,
21f56ffe 11674 .pick_task = pick_task_fair,
4ce72a2c 11675 .select_task_rq = select_task_rq_fair,
0a74bef8 11676 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11677
0bcdcf28
CE
11678 .rq_online = rq_online_fair,
11679 .rq_offline = rq_offline_fair,
88ec22d3 11680
12695578 11681 .task_dead = task_dead_fair,
c5b28038 11682 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11683#endif
bf0f6f24 11684
bf0f6f24 11685 .task_tick = task_tick_fair,
cd29fe6f 11686 .task_fork = task_fork_fair,
cb469845
SR
11687
11688 .prio_changed = prio_changed_fair,
da7a735e 11689 .switched_from = switched_from_fair,
cb469845 11690 .switched_to = switched_to_fair,
810b3817 11691
0d721cea
PW
11692 .get_rr_interval = get_rr_interval_fair,
11693
6e998916
SG
11694 .update_curr = update_curr_fair,
11695
810b3817 11696#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11697 .task_change_group = task_change_group_fair,
810b3817 11698#endif
982d9cdc
PB
11699
11700#ifdef CONFIG_UCLAMP_TASK
11701 .uclamp_enabled = 1,
11702#endif
bf0f6f24
IM
11703};
11704
11705#ifdef CONFIG_SCHED_DEBUG
029632fb 11706void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11707{
039ae8bc 11708 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11709
5973e5b9 11710 rcu_read_lock();
039ae8bc 11711 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11712 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11713 rcu_read_unlock();
bf0f6f24 11714}
397f2378
SD
11715
11716#ifdef CONFIG_NUMA_BALANCING
11717void show_numa_stats(struct task_struct *p, struct seq_file *m)
11718{
11719 int node;
11720 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11721 struct numa_group *ng;
397f2378 11722
cb361d8c
JH
11723 rcu_read_lock();
11724 ng = rcu_dereference(p->numa_group);
397f2378
SD
11725 for_each_online_node(node) {
11726 if (p->numa_faults) {
11727 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11728 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11729 }
cb361d8c
JH
11730 if (ng) {
11731 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11732 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11733 }
11734 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11735 }
cb361d8c 11736 rcu_read_unlock();
397f2378
SD
11737}
11738#endif /* CONFIG_NUMA_BALANCING */
11739#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11740
11741__init void init_sched_fair_class(void)
11742{
11743#ifdef CONFIG_SMP
11744 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11745
3451d024 11746#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11747 nohz.next_balance = jiffies;
f643ea22 11748 nohz.next_blocked = jiffies;
029632fb 11749 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11750#endif
11751#endif /* SMP */
11752
11753}
3c93a0c0
QY
11754
11755/*
11756 * Helper functions to facilitate extracting info from tracepoints.
11757 */
11758
11759const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11760{
11761#ifdef CONFIG_SMP
11762 return cfs_rq ? &cfs_rq->avg : NULL;
11763#else
11764 return NULL;
11765#endif
11766}
11767EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11768
11769char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11770{
11771 if (!cfs_rq) {
11772 if (str)
11773 strlcpy(str, "(null)", len);
11774 else
11775 return NULL;
11776 }
11777
11778 cfs_rq_tg_path(cfs_rq, str, len);
11779 return str;
11780}
11781EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11782
11783int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11784{
11785 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11786}
11787EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11788
11789const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11790{
11791#ifdef CONFIG_SMP
11792 return rq ? &rq->avg_rt : NULL;
11793#else
11794 return NULL;
11795#endif
11796}
11797EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11798
11799const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11800{
11801#ifdef CONFIG_SMP
11802 return rq ? &rq->avg_dl : NULL;
11803#else
11804 return NULL;
11805#endif
11806}
11807EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11808
11809const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11810{
11811#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11812 return rq ? &rq->avg_irq : NULL;
11813#else
11814 return NULL;
11815#endif
11816}
11817EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11818
11819int sched_trace_rq_cpu(struct rq *rq)
11820{
11821 return rq ? cpu_of(rq) : -1;
11822}
11823EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11824
51cf18c9
VD
11825int sched_trace_rq_cpu_capacity(struct rq *rq)
11826{
11827 return rq ?
11828#ifdef CONFIG_SMP
11829 rq->cpu_capacity
11830#else
11831 SCHED_CAPACITY_SCALE
11832#endif
11833 : -1;
11834}
11835EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11836
3c93a0c0
QY
11837const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11838{
11839#ifdef CONFIG_SMP
11840 return rd ? rd->span : NULL;
11841#else
11842 return NULL;
11843#endif
11844}
11845EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11846
11847int sched_trace_rq_nr_running(struct rq *rq)
11848{
11849 return rq ? rq->nr_running : -1;
11850}
11851EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);