]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
sched: Only queue remote wakeups when crossing cache boundaries
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
ec12cb7f
PT
419static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
c09595f6
PZ
779#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780static void
781add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782{
783 cfs_rq->task_weight += weight;
784}
785#else
786static inline void
787add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788{
789}
790#endif
791
30cfdcfc
DA
792static void
793account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 798 if (entity_is_task(se)) {
c09595f6 799 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
800 list_add(&se->group_node, &cfs_rq->tasks);
801 }
30cfdcfc 802 cfs_rq->nr_running++;
30cfdcfc
DA
803}
804
805static void
806account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 809 if (!parent_entity(se))
029632fb 810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 811 if (entity_is_task(se)) {
c09595f6 812 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
813 list_del_init(&se->group_node);
814 }
30cfdcfc 815 cfs_rq->nr_running--;
30cfdcfc
DA
816}
817
3ff6dcac 818#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
819/* we need this in update_cfs_load and load-balance functions below */
820static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 821# ifdef CONFIG_SMP
d6b55918
PT
822static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
824{
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
827
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
830
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
834 }
835}
836
837static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 838{
a7a4f8a7 839 u64 period = sysctl_sched_shares_window;
2069dd75 840 u64 now, delta;
e33078ba 841 unsigned long load = cfs_rq->load.weight;
2069dd75 842
64660c86 843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
844 return;
845
05ca62c6 846 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
847 delta = now - cfs_rq->load_stamp;
848
e33078ba
PT
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
f07333bf 854 delta = period - 1;
e33078ba
PT
855 }
856
2069dd75 857 cfs_rq->load_stamp = now;
3b3d190e 858 cfs_rq->load_unacc_exec_time = 0;
2069dd75 859 cfs_rq->load_period += delta;
e33078ba
PT
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
863 }
2069dd75 864
d6b55918
PT
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
869
2069dd75
PZ
870 while (cfs_rq->load_period > period) {
871 /*
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
875 */
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
879 }
3d4b47b4 880
e33078ba
PT
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
883}
884
cf5f0acf
PZ
885static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886{
887 long tg_weight;
888
889 /*
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
893 */
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
897
898 return tg_weight;
899}
900
6d5ab293 901static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 902{
cf5f0acf 903 long tg_weight, load, shares;
3ff6dcac 904
cf5f0acf 905 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 906 load = cfs_rq->load.weight;
3ff6dcac 907
3ff6dcac 908 shares = (tg->shares * load);
cf5f0acf
PZ
909 if (tg_weight)
910 shares /= tg_weight;
3ff6dcac
YZ
911
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
916
917 return shares;
918}
919
920static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921{
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
6d5ab293 924 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
925 }
926}
927# else /* CONFIG_SMP */
928static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929{
930}
931
6d5ab293 932static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
933{
934 return tg->shares;
935}
936
937static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938{
939}
940# endif /* CONFIG_SMP */
2069dd75
PZ
941static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
943{
19e5eebb
PT
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
2069dd75 948 account_entity_dequeue(cfs_rq, se);
19e5eebb 949 }
2069dd75
PZ
950
951 update_load_set(&se->load, weight);
952
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
955}
956
6d5ab293 957static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
958{
959 struct task_group *tg;
960 struct sched_entity *se;
3ff6dcac 961 long shares;
2069dd75 962
2069dd75
PZ
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 965 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 966 return;
3ff6dcac
YZ
967#ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970#endif
6d5ab293 971 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
972
973 reweight_entity(cfs_rq_of(se), se, shares);
974}
975#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 976static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
977{
978}
979
6d5ab293 980static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
981{
982}
43365bd7
PT
983
984static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985{
986}
2069dd75
PZ
987#endif /* CONFIG_FAIR_GROUP_SCHED */
988
2396af69 989static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 990{
bf0f6f24 991#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
992 struct task_struct *tsk = NULL;
993
994 if (entity_is_task(se))
995 tsk = task_of(se);
996
41acab88
LDM
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
999
1000 if ((s64)delta < 0)
1001 delta = 0;
1002
41acab88
LDM
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
bf0f6f24 1005
41acab88
LDM
1006 se->statistics.sleep_start = 0;
1007 se->statistics.sum_sleep_runtime += delta;
9745512c 1008
768d0c27 1009 if (tsk) {
e414314c 1010 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1011 trace_sched_stat_sleep(tsk, delta);
1012 }
bf0f6f24 1013 }
41acab88
LDM
1014 if (se->statistics.block_start) {
1015 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1016
1017 if ((s64)delta < 0)
1018 delta = 0;
1019
41acab88
LDM
1020 if (unlikely(delta > se->statistics.block_max))
1021 se->statistics.block_max = delta;
bf0f6f24 1022
41acab88
LDM
1023 se->statistics.block_start = 0;
1024 se->statistics.sum_sleep_runtime += delta;
30084fbd 1025
e414314c 1026 if (tsk) {
8f0dfc34 1027 if (tsk->in_iowait) {
41acab88
LDM
1028 se->statistics.iowait_sum += delta;
1029 se->statistics.iowait_count++;
768d0c27 1030 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1031 }
1032
b781a602
AV
1033 trace_sched_stat_blocked(tsk, delta);
1034
e414314c
PZ
1035 /*
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 profile_hits(SLEEP_PROFILING,
1042 (void *)get_wchan(tsk),
1043 delta >> 20);
1044 }
1045 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1046 }
bf0f6f24
IM
1047 }
1048#endif
1049}
1050
ddc97297
PZ
1051static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052{
1053#ifdef CONFIG_SCHED_DEBUG
1054 s64 d = se->vruntime - cfs_rq->min_vruntime;
1055
1056 if (d < 0)
1057 d = -d;
1058
1059 if (d > 3*sysctl_sched_latency)
1060 schedstat_inc(cfs_rq, nr_spread_over);
1061#endif
1062}
1063
aeb73b04
PZ
1064static void
1065place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1066{
1af5f730 1067 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1068
2cb8600e
PZ
1069 /*
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1074 */
94dfb5e7 1075 if (initial && sched_feat(START_DEBIT))
f9c0b095 1076 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1077
a2e7a7eb 1078 /* sleeps up to a single latency don't count. */
5ca9880c 1079 if (!initial) {
a2e7a7eb 1080 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1081
a2e7a7eb
MG
1082 /*
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1085 */
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1087 thresh >>= 1;
51e0304c 1088
a2e7a7eb 1089 vruntime -= thresh;
aeb73b04
PZ
1090 }
1091
b5d9d734
MG
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime = max_vruntime(se->vruntime, vruntime);
1094
67e9fb2a 1095 se->vruntime = vruntime;
aeb73b04
PZ
1096}
1097
d3d9dc33
PT
1098static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1099
bf0f6f24 1100static void
88ec22d3 1101enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1102{
88ec22d3
PZ
1103 /*
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1106 */
371fd7e7 1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1108 se->vruntime += cfs_rq->min_vruntime;
1109
bf0f6f24 1110 /*
a2a2d680 1111 * Update run-time statistics of the 'current'.
bf0f6f24 1112 */
b7cc0896 1113 update_curr(cfs_rq);
d6b55918 1114 update_cfs_load(cfs_rq, 0);
a992241d 1115 account_entity_enqueue(cfs_rq, se);
6d5ab293 1116 update_cfs_shares(cfs_rq);
bf0f6f24 1117
88ec22d3 1118 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1119 place_entity(cfs_rq, se, 0);
2396af69 1120 enqueue_sleeper(cfs_rq, se);
e9acbff6 1121 }
bf0f6f24 1122
d2417e5a 1123 update_stats_enqueue(cfs_rq, se);
ddc97297 1124 check_spread(cfs_rq, se);
83b699ed
SV
1125 if (se != cfs_rq->curr)
1126 __enqueue_entity(cfs_rq, se);
2069dd75 1127 se->on_rq = 1;
3d4b47b4 1128
d3d9dc33 1129 if (cfs_rq->nr_running == 1) {
3d4b47b4 1130 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1131 check_enqueue_throttle(cfs_rq);
1132 }
bf0f6f24
IM
1133}
1134
2c13c919 1135static void __clear_buddies_last(struct sched_entity *se)
2002c695 1136{
2c13c919
RR
1137 for_each_sched_entity(se) {
1138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1139 if (cfs_rq->last == se)
1140 cfs_rq->last = NULL;
1141 else
1142 break;
1143 }
1144}
2002c695 1145
2c13c919
RR
1146static void __clear_buddies_next(struct sched_entity *se)
1147{
1148 for_each_sched_entity(se) {
1149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1150 if (cfs_rq->next == se)
1151 cfs_rq->next = NULL;
1152 else
1153 break;
1154 }
2002c695
PZ
1155}
1156
ac53db59
RR
1157static void __clear_buddies_skip(struct sched_entity *se)
1158{
1159 for_each_sched_entity(se) {
1160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1161 if (cfs_rq->skip == se)
1162 cfs_rq->skip = NULL;
1163 else
1164 break;
1165 }
1166}
1167
a571bbea
PZ
1168static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1169{
2c13c919
RR
1170 if (cfs_rq->last == se)
1171 __clear_buddies_last(se);
1172
1173 if (cfs_rq->next == se)
1174 __clear_buddies_next(se);
ac53db59
RR
1175
1176 if (cfs_rq->skip == se)
1177 __clear_buddies_skip(se);
a571bbea
PZ
1178}
1179
d8b4986d
PT
1180static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1181
bf0f6f24 1182static void
371fd7e7 1183dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1184{
a2a2d680
DA
1185 /*
1186 * Update run-time statistics of the 'current'.
1187 */
1188 update_curr(cfs_rq);
1189
19b6a2e3 1190 update_stats_dequeue(cfs_rq, se);
371fd7e7 1191 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1192#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1193 if (entity_is_task(se)) {
1194 struct task_struct *tsk = task_of(se);
1195
1196 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1198 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1199 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1200 }
db36cc7d 1201#endif
67e9fb2a
PZ
1202 }
1203
2002c695 1204 clear_buddies(cfs_rq, se);
4793241b 1205
83b699ed 1206 if (se != cfs_rq->curr)
30cfdcfc 1207 __dequeue_entity(cfs_rq, se);
2069dd75 1208 se->on_rq = 0;
d6b55918 1209 update_cfs_load(cfs_rq, 0);
30cfdcfc 1210 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1211
1212 /*
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1216 */
371fd7e7 1217 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1218 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1219
d8b4986d
PT
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq);
1222
1e876231
PZ
1223 update_min_vruntime(cfs_rq);
1224 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1225}
1226
1227/*
1228 * Preempt the current task with a newly woken task if needed:
1229 */
7c92e54f 1230static void
2e09bf55 1231check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1232{
11697830 1233 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1234 struct sched_entity *se;
1235 s64 delta;
11697830 1236
6d0f0ebd 1237 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1239 if (delta_exec > ideal_runtime) {
bf0f6f24 1240 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1241 /*
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1244 */
1245 clear_buddies(cfs_rq, curr);
f685ceac
MG
1246 return;
1247 }
1248
1249 /*
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1253 */
f685ceac
MG
1254 if (delta_exec < sysctl_sched_min_granularity)
1255 return;
1256
f4cfb33e
WX
1257 se = __pick_first_entity(cfs_rq);
1258 delta = curr->vruntime - se->vruntime;
f685ceac 1259
f4cfb33e
WX
1260 if (delta < 0)
1261 return;
d7d82944 1262
f4cfb33e
WX
1263 if (delta > ideal_runtime)
1264 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1265}
1266
83b699ed 1267static void
8494f412 1268set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1269{
83b699ed
SV
1270 /* 'current' is not kept within the tree. */
1271 if (se->on_rq) {
1272 /*
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1275 * runqueue.
1276 */
1277 update_stats_wait_end(cfs_rq, se);
1278 __dequeue_entity(cfs_rq, se);
1279 }
1280
79303e9e 1281 update_stats_curr_start(cfs_rq, se);
429d43bc 1282 cfs_rq->curr = se;
eba1ed4b
IM
1283#ifdef CONFIG_SCHEDSTATS
1284 /*
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1288 */
495eca49 1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1290 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1291 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1292 }
1293#endif
4a55b450 1294 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1295}
1296
3f3a4904
PZ
1297static int
1298wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299
ac53db59
RR
1300/*
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1306 */
f4b6755f 1307static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1308{
ac53db59 1309 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1310 struct sched_entity *left = se;
f4b6755f 1311
ac53db59
RR
1312 /*
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1315 */
1316 if (cfs_rq->skip == se) {
1317 struct sched_entity *second = __pick_next_entity(se);
1318 if (second && wakeup_preempt_entity(second, left) < 1)
1319 se = second;
1320 }
aa2ac252 1321
f685ceac
MG
1322 /*
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1324 */
1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1326 se = cfs_rq->last;
1327
ac53db59
RR
1328 /*
1329 * Someone really wants this to run. If it's not unfair, run it.
1330 */
1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1332 se = cfs_rq->next;
1333
f685ceac 1334 clear_buddies(cfs_rq, se);
4793241b
PZ
1335
1336 return se;
aa2ac252
PZ
1337}
1338
d3d9dc33
PT
1339static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1340
ab6cde26 1341static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1342{
1343 /*
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1346 */
1347 if (prev->on_rq)
b7cc0896 1348 update_curr(cfs_rq);
bf0f6f24 1349
d3d9dc33
PT
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq);
1352
ddc97297 1353 check_spread(cfs_rq, prev);
30cfdcfc 1354 if (prev->on_rq) {
5870db5b 1355 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq, prev);
1358 }
429d43bc 1359 cfs_rq->curr = NULL;
bf0f6f24
IM
1360}
1361
8f4d37ec
PZ
1362static void
1363entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1364{
bf0f6f24 1365 /*
30cfdcfc 1366 * Update run-time statistics of the 'current'.
bf0f6f24 1367 */
30cfdcfc 1368 update_curr(cfs_rq);
bf0f6f24 1369
43365bd7
PT
1370 /*
1371 * Update share accounting for long-running entities.
1372 */
1373 update_entity_shares_tick(cfs_rq);
1374
8f4d37ec
PZ
1375#ifdef CONFIG_SCHED_HRTICK
1376 /*
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1379 */
983ed7a6
HH
1380 if (queued) {
1381 resched_task(rq_of(cfs_rq)->curr);
1382 return;
1383 }
8f4d37ec
PZ
1384 /*
1385 * don't let the period tick interfere with the hrtick preemption
1386 */
1387 if (!sched_feat(DOUBLE_TICK) &&
1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1389 return;
1390#endif
1391
2c2efaed 1392 if (cfs_rq->nr_running > 1)
2e09bf55 1393 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1394}
1395
ab84d31e
PT
1396
1397/**************************************************
1398 * CFS bandwidth control machinery
1399 */
1400
1401#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1402
1403#ifdef HAVE_JUMP_LABEL
1404static struct jump_label_key __cfs_bandwidth_used;
1405
1406static inline bool cfs_bandwidth_used(void)
1407{
1408 return static_branch(&__cfs_bandwidth_used);
1409}
1410
1411void account_cfs_bandwidth_used(int enabled, int was_enabled)
1412{
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled && !was_enabled)
1415 jump_label_inc(&__cfs_bandwidth_used);
1416 else if (!enabled && was_enabled)
1417 jump_label_dec(&__cfs_bandwidth_used);
1418}
1419#else /* HAVE_JUMP_LABEL */
1420static bool cfs_bandwidth_used(void)
1421{
1422 return true;
1423}
1424
1425void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1426#endif /* HAVE_JUMP_LABEL */
1427
ab84d31e
PT
1428/*
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1431 */
1432static inline u64 default_cfs_period(void)
1433{
1434 return 100000000ULL;
1435}
ec12cb7f
PT
1436
1437static inline u64 sched_cfs_bandwidth_slice(void)
1438{
1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1440}
1441
a9cf55b2
PT
1442/*
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1446 *
1447 * requires cfs_b->lock
1448 */
029632fb 1449void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1450{
1451 u64 now;
1452
1453 if (cfs_b->quota == RUNTIME_INF)
1454 return;
1455
1456 now = sched_clock_cpu(smp_processor_id());
1457 cfs_b->runtime = cfs_b->quota;
1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459}
1460
029632fb
PZ
1461static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1462{
1463 return &tg->cfs_bandwidth;
1464}
1465
85dac906
PT
1466/* returns 0 on failure to allocate runtime */
1467static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1468{
1469 struct task_group *tg = cfs_rq->tg;
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1471 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1472
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1475
1476 raw_spin_lock(&cfs_b->lock);
1477 if (cfs_b->quota == RUNTIME_INF)
1478 amount = min_amount;
58088ad0 1479 else {
a9cf55b2
PT
1480 /*
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1484 * active.
1485 */
1486 if (!cfs_b->timer_active) {
1487 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1488 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1489 }
58088ad0
PT
1490
1491 if (cfs_b->runtime > 0) {
1492 amount = min(cfs_b->runtime, min_amount);
1493 cfs_b->runtime -= amount;
1494 cfs_b->idle = 0;
1495 }
ec12cb7f 1496 }
a9cf55b2 1497 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1498 raw_spin_unlock(&cfs_b->lock);
1499
1500 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1501 /*
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1504 * issued.
1505 */
1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1507 cfs_rq->runtime_expires = expires;
85dac906
PT
1508
1509 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1510}
1511
a9cf55b2
PT
1512/*
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1515 */
1516static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1517{
a9cf55b2
PT
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct rq *rq = rq_of(cfs_rq);
1520
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1523 return;
1524
a9cf55b2
PT
1525 if (cfs_rq->runtime_remaining < 0)
1526 return;
1527
1528 /*
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1532 *
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1535 */
1536
1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq->runtime_expires += TICK_NSEC;
1540 } else {
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq->runtime_remaining = 0;
1543 }
1544}
1545
1546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1547 unsigned long delta_exec)
1548{
1549 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1550 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1551 expire_cfs_rq_runtime(cfs_rq);
1552
1553 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1554 return;
1555
85dac906
PT
1556 /*
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1559 */
1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1561 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1562}
1563
1564static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1565 unsigned long delta_exec)
1566{
56f570e5 1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1568 return;
1569
1570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571}
1572
85dac906
PT
1573static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1574{
56f570e5 1575 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1576}
1577
64660c86
PT
1578/* check whether cfs_rq, or any parent, is throttled */
1579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1580{
56f570e5 1581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1582}
1583
1584/*
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1588 */
1589static inline int throttled_lb_pair(struct task_group *tg,
1590 int src_cpu, int dest_cpu)
1591{
1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1593
1594 src_cfs_rq = tg->cfs_rq[src_cpu];
1595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1596
1597 return throttled_hierarchy(src_cfs_rq) ||
1598 throttled_hierarchy(dest_cfs_rq);
1599}
1600
1601/* updated child weight may affect parent so we have to do this bottom up */
1602static int tg_unthrottle_up(struct task_group *tg, void *data)
1603{
1604 struct rq *rq = data;
1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1606
1607 cfs_rq->throttle_count--;
1608#ifdef CONFIG_SMP
1609 if (!cfs_rq->throttle_count) {
1610 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1611
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq->load_stamp += delta;
1614 cfs_rq->load_last += delta;
1615
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq);
1618 }
1619#endif
1620
1621 return 0;
1622}
1623
1624static int tg_throttle_down(struct task_group *tg, void *data)
1625{
1626 struct rq *rq = data;
1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1628
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq->throttle_count)
1631 update_cfs_load(cfs_rq, 0);
1632 cfs_rq->throttle_count++;
1633
1634 return 0;
1635}
1636
d3d9dc33 1637static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1638{
1639 struct rq *rq = rq_of(cfs_rq);
1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1641 struct sched_entity *se;
1642 long task_delta, dequeue = 1;
1643
1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1645
1646 /* account load preceding throttle */
64660c86
PT
1647 rcu_read_lock();
1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1649 rcu_read_unlock();
85dac906
PT
1650
1651 task_delta = cfs_rq->h_nr_running;
1652 for_each_sched_entity(se) {
1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1654 /* throttled entity or throttle-on-deactivate */
1655 if (!se->on_rq)
1656 break;
1657
1658 if (dequeue)
1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1660 qcfs_rq->h_nr_running -= task_delta;
1661
1662 if (qcfs_rq->load.weight)
1663 dequeue = 0;
1664 }
1665
1666 if (!se)
1667 rq->nr_running -= task_delta;
1668
1669 cfs_rq->throttled = 1;
e8da1b18 1670 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1671 raw_spin_lock(&cfs_b->lock);
1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1673 raw_spin_unlock(&cfs_b->lock);
1674}
1675
029632fb 1676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1677{
1678 struct rq *rq = rq_of(cfs_rq);
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1680 struct sched_entity *se;
1681 int enqueue = 1;
1682 long task_delta;
1683
1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1685
1686 cfs_rq->throttled = 0;
1687 raw_spin_lock(&cfs_b->lock);
e8da1b18 1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1689 list_del_rcu(&cfs_rq->throttled_list);
1690 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1691 cfs_rq->throttled_timestamp = 0;
671fd9da 1692
64660c86
PT
1693 update_rq_clock(rq);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1696
671fd9da
PT
1697 if (!cfs_rq->load.weight)
1698 return;
1699
1700 task_delta = cfs_rq->h_nr_running;
1701 for_each_sched_entity(se) {
1702 if (se->on_rq)
1703 enqueue = 0;
1704
1705 cfs_rq = cfs_rq_of(se);
1706 if (enqueue)
1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1708 cfs_rq->h_nr_running += task_delta;
1709
1710 if (cfs_rq_throttled(cfs_rq))
1711 break;
1712 }
1713
1714 if (!se)
1715 rq->nr_running += task_delta;
1716
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq->curr == rq->idle && rq->cfs.nr_running)
1719 resched_task(rq->curr);
1720}
1721
1722static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1723 u64 remaining, u64 expires)
1724{
1725 struct cfs_rq *cfs_rq;
1726 u64 runtime = remaining;
1727
1728 rcu_read_lock();
1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1730 throttled_list) {
1731 struct rq *rq = rq_of(cfs_rq);
1732
1733 raw_spin_lock(&rq->lock);
1734 if (!cfs_rq_throttled(cfs_rq))
1735 goto next;
1736
1737 runtime = -cfs_rq->runtime_remaining + 1;
1738 if (runtime > remaining)
1739 runtime = remaining;
1740 remaining -= runtime;
1741
1742 cfs_rq->runtime_remaining += runtime;
1743 cfs_rq->runtime_expires = expires;
1744
1745 /* we check whether we're throttled above */
1746 if (cfs_rq->runtime_remaining > 0)
1747 unthrottle_cfs_rq(cfs_rq);
1748
1749next:
1750 raw_spin_unlock(&rq->lock);
1751
1752 if (!remaining)
1753 break;
1754 }
1755 rcu_read_unlock();
1756
1757 return remaining;
1758}
1759
58088ad0
PT
1760/*
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1765 */
1766static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1767{
671fd9da
PT
1768 u64 runtime, runtime_expires;
1769 int idle = 1, throttled;
58088ad0
PT
1770
1771 raw_spin_lock(&cfs_b->lock);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b->quota == RUNTIME_INF)
1774 goto out_unlock;
1775
671fd9da
PT
1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle = cfs_b->idle && !throttled;
e8da1b18 1779 cfs_b->nr_periods += overrun;
671fd9da 1780
a9cf55b2
PT
1781 /* if we're going inactive then everything else can be deferred */
1782 if (idle)
1783 goto out_unlock;
1784
1785 __refill_cfs_bandwidth_runtime(cfs_b);
1786
671fd9da
PT
1787 if (!throttled) {
1788 /* mark as potentially idle for the upcoming period */
1789 cfs_b->idle = 1;
1790 goto out_unlock;
1791 }
1792
e8da1b18
NR
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b->nr_throttled += overrun;
1795
671fd9da
PT
1796 /*
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1800 * allowed to run.
1801 */
1802 runtime = cfs_b->runtime;
1803 runtime_expires = cfs_b->runtime_expires;
1804 cfs_b->runtime = 0;
1805
1806 /*
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1810 */
1811 while (throttled && runtime > 0) {
1812 raw_spin_unlock(&cfs_b->lock);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime = distribute_cfs_runtime(cfs_b, runtime,
1815 runtime_expires);
1816 raw_spin_lock(&cfs_b->lock);
1817
1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 }
58088ad0 1820
671fd9da
PT
1821 /* return (any) remaining runtime */
1822 cfs_b->runtime = runtime;
1823 /*
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1828 */
1829 cfs_b->idle = 0;
58088ad0
PT
1830out_unlock:
1831 if (idle)
1832 cfs_b->timer_active = 0;
1833 raw_spin_unlock(&cfs_b->lock);
1834
1835 return idle;
1836}
d3d9dc33 1837
d8b4986d
PT
1838/* a cfs_rq won't donate quota below this amount */
1839static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1840/* minimum remaining period time to redistribute slack quota */
1841static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1842/* how long we wait to gather additional slack before distributing */
1843static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1844
1845/* are we near the end of the current quota period? */
1846static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1847{
1848 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1849 u64 remaining;
1850
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer))
1853 return 1;
1854
1855 /* is a quota refresh about to occur? */
1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1857 if (remaining < min_expire)
1858 return 1;
1859
1860 return 0;
1861}
1862
1863static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1864{
1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1866
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b, min_left))
1869 return;
1870
1871 start_bandwidth_timer(&cfs_b->slack_timer,
1872 ns_to_ktime(cfs_bandwidth_slack_period));
1873}
1874
1875/* we know any runtime found here is valid as update_curr() precedes return */
1876static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1877{
1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1880
1881 if (slack_runtime <= 0)
1882 return;
1883
1884 raw_spin_lock(&cfs_b->lock);
1885 if (cfs_b->quota != RUNTIME_INF &&
1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1887 cfs_b->runtime += slack_runtime;
1888
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b->throttled_cfs_rq))
1892 start_cfs_slack_bandwidth(cfs_b);
1893 }
1894 raw_spin_unlock(&cfs_b->lock);
1895
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq->runtime_remaining -= slack_runtime;
1898}
1899
1900static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1901{
56f570e5
PT
1902 if (!cfs_bandwidth_used())
1903 return;
1904
fccfdc6f 1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1906 return;
1907
1908 __return_cfs_rq_runtime(cfs_rq);
1909}
1910
1911/*
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1914 */
1915static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1916{
1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1918 u64 expires;
1919
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1922 return;
1923
1924 raw_spin_lock(&cfs_b->lock);
1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1926 runtime = cfs_b->runtime;
1927 cfs_b->runtime = 0;
1928 }
1929 expires = cfs_b->runtime_expires;
1930 raw_spin_unlock(&cfs_b->lock);
1931
1932 if (!runtime)
1933 return;
1934
1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 if (expires == cfs_b->runtime_expires)
1939 cfs_b->runtime = runtime;
1940 raw_spin_unlock(&cfs_b->lock);
1941}
1942
d3d9dc33
PT
1943/*
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1947 */
1948static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1949{
56f570e5
PT
1950 if (!cfs_bandwidth_used())
1951 return;
1952
d3d9dc33
PT
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1955 return;
1956
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq))
1959 return;
1960
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq, 0);
1963 if (cfs_rq->runtime_remaining <= 0)
1964 throttle_cfs_rq(cfs_rq);
1965}
1966
1967/* conditionally throttle active cfs_rq's from put_prev_entity() */
1968static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1969{
56f570e5
PT
1970 if (!cfs_bandwidth_used())
1971 return;
1972
d3d9dc33
PT
1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1974 return;
1975
1976 /*
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1979 */
1980 if (cfs_rq_throttled(cfs_rq))
1981 return;
1982
1983 throttle_cfs_rq(cfs_rq);
1984}
029632fb
PZ
1985
1986static inline u64 default_cfs_period(void);
1987static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1988static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1989
1990static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1991{
1992 struct cfs_bandwidth *cfs_b =
1993 container_of(timer, struct cfs_bandwidth, slack_timer);
1994 do_sched_cfs_slack_timer(cfs_b);
1995
1996 return HRTIMER_NORESTART;
1997}
1998
1999static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2000{
2001 struct cfs_bandwidth *cfs_b =
2002 container_of(timer, struct cfs_bandwidth, period_timer);
2003 ktime_t now;
2004 int overrun;
2005 int idle = 0;
2006
2007 for (;;) {
2008 now = hrtimer_cb_get_time(timer);
2009 overrun = hrtimer_forward(timer, now, cfs_b->period);
2010
2011 if (!overrun)
2012 break;
2013
2014 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 }
2016
2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018}
2019
2020void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2021{
2022 raw_spin_lock_init(&cfs_b->lock);
2023 cfs_b->runtime = 0;
2024 cfs_b->quota = RUNTIME_INF;
2025 cfs_b->period = ns_to_ktime(default_cfs_period());
2026
2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->period_timer.function = sched_cfs_period_timer;
2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032}
2033
2034static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2035{
2036 cfs_rq->runtime_enabled = 0;
2037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038}
2039
2040/* requires cfs_b->lock, may release to reprogram timer */
2041void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042{
2043 /*
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2048 */
2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2050 raw_spin_unlock(&cfs_b->lock);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b->period_timer);
2053
2054 raw_spin_lock(&cfs_b->lock);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b->timer_active)
2057 return;
2058 }
2059
2060 cfs_b->timer_active = 1;
2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062}
2063
2064static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2065{
2066 hrtimer_cancel(&cfs_b->period_timer);
2067 hrtimer_cancel(&cfs_b->slack_timer);
2068}
2069
2070void unthrottle_offline_cfs_rqs(struct rq *rq)
2071{
2072 struct cfs_rq *cfs_rq;
2073
2074 for_each_leaf_cfs_rq(rq, cfs_rq) {
2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2076
2077 if (!cfs_rq->runtime_enabled)
2078 continue;
2079
2080 /*
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2083 */
2084 cfs_rq->runtime_remaining = cfs_b->quota;
2085 if (cfs_rq_throttled(cfs_rq))
2086 unthrottle_cfs_rq(cfs_rq);
2087 }
2088}
2089
2090#else /* CONFIG_CFS_BANDWIDTH */
ec12cb7f
PT
2091static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2092 unsigned long delta_exec) {}
d3d9dc33
PT
2093static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 2095static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2096
2097static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2098{
2099 return 0;
2100}
64660c86
PT
2101
2102static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2103{
2104 return 0;
2105}
2106
2107static inline int throttled_lb_pair(struct task_group *tg,
2108 int src_cpu, int dest_cpu)
2109{
2110 return 0;
2111}
029632fb
PZ
2112
2113void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2114
2115#ifdef CONFIG_FAIR_GROUP_SCHED
2116static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2117#endif
2118
029632fb
PZ
2119static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2120{
2121 return NULL;
2122}
2123static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2124void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2125
2126#endif /* CONFIG_CFS_BANDWIDTH */
2127
bf0f6f24
IM
2128/**************************************************
2129 * CFS operations on tasks:
2130 */
2131
8f4d37ec
PZ
2132#ifdef CONFIG_SCHED_HRTICK
2133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2134{
8f4d37ec
PZ
2135 struct sched_entity *se = &p->se;
2136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137
2138 WARN_ON(task_rq(p) != rq);
2139
b39e66ea 2140 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2141 u64 slice = sched_slice(cfs_rq, se);
2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2143 s64 delta = slice - ran;
2144
2145 if (delta < 0) {
2146 if (rq->curr == p)
2147 resched_task(p);
2148 return;
2149 }
2150
2151 /*
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2154 */
31656519 2155 if (rq->curr != p)
157124c1 2156 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2157
31656519 2158 hrtick_start(rq, delta);
8f4d37ec
PZ
2159 }
2160}
a4c2f00f
PZ
2161
2162/*
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2165 * to matter.
2166 */
2167static void hrtick_update(struct rq *rq)
2168{
2169 struct task_struct *curr = rq->curr;
2170
b39e66ea 2171 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2172 return;
2173
2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2175 hrtick_start_fair(rq, curr);
2176}
55e12e5e 2177#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2178static inline void
2179hrtick_start_fair(struct rq *rq, struct task_struct *p)
2180{
2181}
a4c2f00f
PZ
2182
2183static inline void hrtick_update(struct rq *rq)
2184{
2185}
8f4d37ec
PZ
2186#endif
2187
bf0f6f24
IM
2188/*
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2192 */
ea87bb78 2193static void
371fd7e7 2194enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2195{
2196 struct cfs_rq *cfs_rq;
62fb1851 2197 struct sched_entity *se = &p->se;
bf0f6f24
IM
2198
2199 for_each_sched_entity(se) {
62fb1851 2200 if (se->on_rq)
bf0f6f24
IM
2201 break;
2202 cfs_rq = cfs_rq_of(se);
88ec22d3 2203 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2204
2205 /*
2206 * end evaluation on encountering a throttled cfs_rq
2207 *
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2210 */
2211 if (cfs_rq_throttled(cfs_rq))
2212 break;
953bfcd1 2213 cfs_rq->h_nr_running++;
85dac906 2214
88ec22d3 2215 flags = ENQUEUE_WAKEUP;
bf0f6f24 2216 }
8f4d37ec 2217
2069dd75 2218 for_each_sched_entity(se) {
0f317143 2219 cfs_rq = cfs_rq_of(se);
953bfcd1 2220 cfs_rq->h_nr_running++;
2069dd75 2221
85dac906
PT
2222 if (cfs_rq_throttled(cfs_rq))
2223 break;
2224
d6b55918 2225 update_cfs_load(cfs_rq, 0);
6d5ab293 2226 update_cfs_shares(cfs_rq);
2069dd75
PZ
2227 }
2228
85dac906
PT
2229 if (!se)
2230 inc_nr_running(rq);
a4c2f00f 2231 hrtick_update(rq);
bf0f6f24
IM
2232}
2233
2f36825b
VP
2234static void set_next_buddy(struct sched_entity *se);
2235
bf0f6f24
IM
2236/*
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2240 */
371fd7e7 2241static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2242{
2243 struct cfs_rq *cfs_rq;
62fb1851 2244 struct sched_entity *se = &p->se;
2f36825b 2245 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2246
2247 for_each_sched_entity(se) {
2248 cfs_rq = cfs_rq_of(se);
371fd7e7 2249 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2250
2251 /*
2252 * end evaluation on encountering a throttled cfs_rq
2253 *
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2256 */
2257 if (cfs_rq_throttled(cfs_rq))
2258 break;
953bfcd1 2259 cfs_rq->h_nr_running--;
2069dd75 2260
bf0f6f24 2261 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2262 if (cfs_rq->load.weight) {
2263 /*
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2266 */
2267 if (task_sleep && parent_entity(se))
2268 set_next_buddy(parent_entity(se));
9598c82d
PT
2269
2270 /* avoid re-evaluating load for this entity */
2271 se = parent_entity(se);
bf0f6f24 2272 break;
2f36825b 2273 }
371fd7e7 2274 flags |= DEQUEUE_SLEEP;
bf0f6f24 2275 }
8f4d37ec 2276
2069dd75 2277 for_each_sched_entity(se) {
0f317143 2278 cfs_rq = cfs_rq_of(se);
953bfcd1 2279 cfs_rq->h_nr_running--;
2069dd75 2280
85dac906
PT
2281 if (cfs_rq_throttled(cfs_rq))
2282 break;
2283
d6b55918 2284 update_cfs_load(cfs_rq, 0);
6d5ab293 2285 update_cfs_shares(cfs_rq);
2069dd75
PZ
2286 }
2287
85dac906
PT
2288 if (!se)
2289 dec_nr_running(rq);
a4c2f00f 2290 hrtick_update(rq);
bf0f6f24
IM
2291}
2292
e7693a36 2293#ifdef CONFIG_SMP
029632fb
PZ
2294/* Used instead of source_load when we know the type == 0 */
2295static unsigned long weighted_cpuload(const int cpu)
2296{
2297 return cpu_rq(cpu)->load.weight;
2298}
2299
2300/*
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2303 *
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2306 */
2307static unsigned long source_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return min(rq->cpu_load[type-1], total);
2316}
2317
2318/*
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2321 */
2322static unsigned long target_load(int cpu, int type)
2323{
2324 struct rq *rq = cpu_rq(cpu);
2325 unsigned long total = weighted_cpuload(cpu);
2326
2327 if (type == 0 || !sched_feat(LB_BIAS))
2328 return total;
2329
2330 return max(rq->cpu_load[type-1], total);
2331}
2332
2333static unsigned long power_of(int cpu)
2334{
2335 return cpu_rq(cpu)->cpu_power;
2336}
2337
2338static unsigned long cpu_avg_load_per_task(int cpu)
2339{
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2342
2343 if (nr_running)
2344 return rq->load.weight / nr_running;
2345
2346 return 0;
2347}
2348
098fb9db 2349
74f8e4b2 2350static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2351{
2352 struct sched_entity *se = &p->se;
2353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2354 u64 min_vruntime;
2355
2356#ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy;
88ec22d3 2358
3fe1698b
PZ
2359 do {
2360 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2361 smp_rmb();
2362 min_vruntime = cfs_rq->min_vruntime;
2363 } while (min_vruntime != min_vruntime_copy);
2364#else
2365 min_vruntime = cfs_rq->min_vruntime;
2366#endif
88ec22d3 2367
3fe1698b 2368 se->vruntime -= min_vruntime;
88ec22d3
PZ
2369}
2370
bb3469ac 2371#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2372/*
2373 * effective_load() calculates the load change as seen from the root_task_group
2374 *
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
cf5f0acf
PZ
2378 *
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2382 *
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2385 *
2386 * s_i = rw_i / \Sum rw_j (1)
2387 *
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2391 *
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2394 *
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2399 *
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2402 *
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2404 *
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2408 *
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2411 *
2412 * We can then compute the difference in effective weight by using:
2413 *
2414 * dw_i = S * (s'_i - s_i) (3)
2415 *
2416 * Where 'S' is the group weight as seen by its parent.
2417 *
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
f5bfb7d9 2421 */
2069dd75 2422static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2423{
4be9daaa 2424 struct sched_entity *se = tg->se[cpu];
f1d239f7 2425
cf5f0acf 2426 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2427 return wl;
2428
4be9daaa 2429 for_each_sched_entity(se) {
cf5f0acf 2430 long w, W;
4be9daaa 2431
977dda7c 2432 tg = se->my_q->tg;
bb3469ac 2433
cf5f0acf
PZ
2434 /*
2435 * W = @wg + \Sum rw_j
2436 */
2437 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2438
cf5f0acf
PZ
2439 /*
2440 * w = rw_i + @wl
2441 */
2442 w = se->my_q->load.weight + wl;
940959e9 2443
cf5f0acf
PZ
2444 /*
2445 * wl = S * s'_i; see (2)
2446 */
2447 if (W > 0 && w < W)
2448 wl = (w * tg->shares) / W;
977dda7c
PT
2449 else
2450 wl = tg->shares;
940959e9 2451
cf5f0acf
PZ
2452 /*
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2456 */
977dda7c
PT
2457 if (wl < MIN_SHARES)
2458 wl = MIN_SHARES;
cf5f0acf
PZ
2459
2460 /*
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2462 */
977dda7c 2463 wl -= se->load.weight;
cf5f0acf
PZ
2464
2465 /*
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2471 */
4be9daaa 2472 wg = 0;
4be9daaa 2473 }
bb3469ac 2474
4be9daaa 2475 return wl;
bb3469ac
PZ
2476}
2477#else
4be9daaa 2478
83378269
PZ
2479static inline unsigned long effective_load(struct task_group *tg, int cpu,
2480 unsigned long wl, unsigned long wg)
4be9daaa 2481{
83378269 2482 return wl;
bb3469ac 2483}
4be9daaa 2484
bb3469ac
PZ
2485#endif
2486
c88d5910 2487static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2488{
e37b6a7b 2489 s64 this_load, load;
c88d5910 2490 int idx, this_cpu, prev_cpu;
098fb9db 2491 unsigned long tl_per_task;
c88d5910 2492 struct task_group *tg;
83378269 2493 unsigned long weight;
b3137bc8 2494 int balanced;
098fb9db 2495
c88d5910
PZ
2496 idx = sd->wake_idx;
2497 this_cpu = smp_processor_id();
2498 prev_cpu = task_cpu(p);
2499 load = source_load(prev_cpu, idx);
2500 this_load = target_load(this_cpu, idx);
098fb9db 2501
b3137bc8
MG
2502 /*
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2506 */
83378269
PZ
2507 if (sync) {
2508 tg = task_group(current);
2509 weight = current->se.load.weight;
2510
c88d5910 2511 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2512 load += effective_load(tg, prev_cpu, 0, -weight);
2513 }
b3137bc8 2514
83378269
PZ
2515 tg = task_group(p);
2516 weight = p->se.load.weight;
b3137bc8 2517
71a29aa7
PZ
2518 /*
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
71a29aa7
PZ
2523 *
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2526 */
e37b6a7b
PT
2527 if (this_load > 0) {
2528 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2529
2530 this_eff_load = 100;
2531 this_eff_load *= power_of(prev_cpu);
2532 this_eff_load *= this_load +
2533 effective_load(tg, this_cpu, weight, weight);
2534
2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2536 prev_eff_load *= power_of(this_cpu);
2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2538
2539 balanced = this_eff_load <= prev_eff_load;
2540 } else
2541 balanced = true;
b3137bc8 2542
098fb9db 2543 /*
4ae7d5ce
IM
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2546 * woken task:
098fb9db 2547 */
2fb7635c
PZ
2548 if (sync && balanced)
2549 return 1;
098fb9db 2550
41acab88 2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2552 tl_per_task = cpu_avg_load_per_task(this_cpu);
2553
c88d5910
PZ
2554 if (balanced ||
2555 (this_load <= load &&
2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2557 /*
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2561 */
c88d5910 2562 schedstat_inc(sd, ttwu_move_affine);
41acab88 2563 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2564
2565 return 1;
2566 }
2567 return 0;
2568}
2569
aaee1203
PZ
2570/*
2571 * find_idlest_group finds and returns the least busy CPU group within the
2572 * domain.
2573 */
2574static struct sched_group *
78e7ed53 2575find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2576 int this_cpu, int load_idx)
e7693a36 2577{
b3bd3de6 2578 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2579 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2580 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2581
aaee1203
PZ
2582 do {
2583 unsigned long load, avg_load;
2584 int local_group;
2585 int i;
e7693a36 2586
aaee1203
PZ
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2589 tsk_cpus_allowed(p)))
aaee1203
PZ
2590 continue;
2591
2592 local_group = cpumask_test_cpu(this_cpu,
2593 sched_group_cpus(group));
2594
2595 /* Tally up the load of all CPUs in the group */
2596 avg_load = 0;
2597
2598 for_each_cpu(i, sched_group_cpus(group)) {
2599 /* Bias balancing toward cpus of our domain */
2600 if (local_group)
2601 load = source_load(i, load_idx);
2602 else
2603 load = target_load(i, load_idx);
2604
2605 avg_load += load;
2606 }
2607
2608 /* Adjust by relative CPU power of the group */
9c3f75cb 2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2610
2611 if (local_group) {
2612 this_load = avg_load;
aaee1203
PZ
2613 } else if (avg_load < min_load) {
2614 min_load = avg_load;
2615 idlest = group;
2616 }
2617 } while (group = group->next, group != sd->groups);
2618
2619 if (!idlest || 100*this_load < imbalance*min_load)
2620 return NULL;
2621 return idlest;
2622}
2623
2624/*
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2626 */
2627static int
2628find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2629{
2630 unsigned long load, min_load = ULONG_MAX;
2631 int idlest = -1;
2632 int i;
2633
2634 /* Traverse only the allowed CPUs */
fa17b507 2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2636 load = weighted_cpuload(i);
2637
2638 if (load < min_load || (load == min_load && i == this_cpu)) {
2639 min_load = load;
2640 idlest = i;
e7693a36
GH
2641 }
2642 }
2643
aaee1203
PZ
2644 return idlest;
2645}
e7693a36 2646
a50bde51
PZ
2647/*
2648 * Try and locate an idle CPU in the sched_domain.
2649 */
99bd5e2f 2650static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2651{
2652 int cpu = smp_processor_id();
2653 int prev_cpu = task_cpu(p);
99bd5e2f 2654 struct sched_domain *sd;
4dcfe102 2655 struct sched_group *sg;
77e81365 2656 int i;
a50bde51
PZ
2657
2658 /*
99bd5e2f
SS
2659 * If the task is going to be woken-up on this cpu and if it is
2660 * already idle, then it is the right target.
a50bde51 2661 */
99bd5e2f
SS
2662 if (target == cpu && idle_cpu(cpu))
2663 return cpu;
2664
2665 /*
2666 * If the task is going to be woken-up on the cpu where it previously
2667 * ran and if it is currently idle, then it the right target.
2668 */
2669 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2670 return prev_cpu;
a50bde51
PZ
2671
2672 /*
99bd5e2f 2673 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2674 */
dce840a0 2675 rcu_read_lock();
99bd5e2f 2676
518cd623 2677 sd = rcu_dereference(per_cpu(sd_llc, target));
77e81365 2678 for_each_lower_domain(sd) {
4dcfe102
PZ
2679 sg = sd->groups;
2680 do {
2681 if (!cpumask_intersects(sched_group_cpus(sg),
2682 tsk_cpus_allowed(p)))
2683 goto next;
2684
2685 for_each_cpu(i, sched_group_cpus(sg)) {
2686 if (!idle_cpu(i))
2687 goto next;
2688 }
2689
2690 target = cpumask_first_and(sched_group_cpus(sg),
2691 tsk_cpus_allowed(p));
2692 goto done;
2693next:
2694 sg = sg->next;
2695 } while (sg != sd->groups);
a50bde51 2696 }
4dcfe102 2697done:
dce840a0 2698 rcu_read_unlock();
a50bde51
PZ
2699
2700 return target;
2701}
2702
aaee1203
PZ
2703/*
2704 * sched_balance_self: balance the current task (running on cpu) in domains
2705 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2706 * SD_BALANCE_EXEC.
2707 *
2708 * Balance, ie. select the least loaded group.
2709 *
2710 * Returns the target CPU number, or the same CPU if no balancing is needed.
2711 *
2712 * preempt must be disabled.
2713 */
0017d735 2714static int
7608dec2 2715select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2716{
29cd8bae 2717 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2718 int cpu = smp_processor_id();
2719 int prev_cpu = task_cpu(p);
2720 int new_cpu = cpu;
99bd5e2f 2721 int want_affine = 0;
29cd8bae 2722 int want_sd = 1;
5158f4e4 2723 int sync = wake_flags & WF_SYNC;
c88d5910 2724
76854c7e
MG
2725 if (p->rt.nr_cpus_allowed == 1)
2726 return prev_cpu;
2727
0763a660 2728 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2729 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2730 want_affine = 1;
2731 new_cpu = prev_cpu;
2732 }
aaee1203 2733
dce840a0 2734 rcu_read_lock();
aaee1203 2735 for_each_domain(cpu, tmp) {
e4f42888
PZ
2736 if (!(tmp->flags & SD_LOAD_BALANCE))
2737 continue;
2738
aaee1203 2739 /*
ae154be1
PZ
2740 * If power savings logic is enabled for a domain, see if we
2741 * are not overloaded, if so, don't balance wider.
aaee1203 2742 */
59abf026 2743 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2744 unsigned long power = 0;
2745 unsigned long nr_running = 0;
2746 unsigned long capacity;
2747 int i;
2748
2749 for_each_cpu(i, sched_domain_span(tmp)) {
2750 power += power_of(i);
2751 nr_running += cpu_rq(i)->cfs.nr_running;
2752 }
2753
1399fa78 2754 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2755
59abf026
PZ
2756 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2757 nr_running /= 2;
2758
2759 if (nr_running < capacity)
29cd8bae 2760 want_sd = 0;
ae154be1 2761 }
aaee1203 2762
fe3bcfe1 2763 /*
99bd5e2f
SS
2764 * If both cpu and prev_cpu are part of this domain,
2765 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2766 */
99bd5e2f
SS
2767 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2768 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2769 affine_sd = tmp;
2770 want_affine = 0;
c88d5910
PZ
2771 }
2772
29cd8bae
PZ
2773 if (!want_sd && !want_affine)
2774 break;
2775
0763a660 2776 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2777 continue;
2778
29cd8bae
PZ
2779 if (want_sd)
2780 sd = tmp;
2781 }
2782
8b911acd 2783 if (affine_sd) {
99bd5e2f 2784 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2785 prev_cpu = cpu;
2786
2787 new_cpu = select_idle_sibling(p, prev_cpu);
2788 goto unlock;
8b911acd 2789 }
e7693a36 2790
aaee1203 2791 while (sd) {
5158f4e4 2792 int load_idx = sd->forkexec_idx;
aaee1203 2793 struct sched_group *group;
c88d5910 2794 int weight;
098fb9db 2795
0763a660 2796 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2797 sd = sd->child;
2798 continue;
2799 }
098fb9db 2800
5158f4e4
PZ
2801 if (sd_flag & SD_BALANCE_WAKE)
2802 load_idx = sd->wake_idx;
098fb9db 2803
5158f4e4 2804 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2805 if (!group) {
2806 sd = sd->child;
2807 continue;
2808 }
4ae7d5ce 2809
d7c33c49 2810 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2811 if (new_cpu == -1 || new_cpu == cpu) {
2812 /* Now try balancing at a lower domain level of cpu */
2813 sd = sd->child;
2814 continue;
e7693a36 2815 }
aaee1203
PZ
2816
2817 /* Now try balancing at a lower domain level of new_cpu */
2818 cpu = new_cpu;
669c55e9 2819 weight = sd->span_weight;
aaee1203
PZ
2820 sd = NULL;
2821 for_each_domain(cpu, tmp) {
669c55e9 2822 if (weight <= tmp->span_weight)
aaee1203 2823 break;
0763a660 2824 if (tmp->flags & sd_flag)
aaee1203
PZ
2825 sd = tmp;
2826 }
2827 /* while loop will break here if sd == NULL */
e7693a36 2828 }
dce840a0
PZ
2829unlock:
2830 rcu_read_unlock();
e7693a36 2831
c88d5910 2832 return new_cpu;
e7693a36
GH
2833}
2834#endif /* CONFIG_SMP */
2835
e52fb7c0
PZ
2836static unsigned long
2837wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2838{
2839 unsigned long gran = sysctl_sched_wakeup_granularity;
2840
2841 /*
e52fb7c0
PZ
2842 * Since its curr running now, convert the gran from real-time
2843 * to virtual-time in his units.
13814d42
MG
2844 *
2845 * By using 'se' instead of 'curr' we penalize light tasks, so
2846 * they get preempted easier. That is, if 'se' < 'curr' then
2847 * the resulting gran will be larger, therefore penalizing the
2848 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2849 * be smaller, again penalizing the lighter task.
2850 *
2851 * This is especially important for buddies when the leftmost
2852 * task is higher priority than the buddy.
0bbd3336 2853 */
f4ad9bd2 2854 return calc_delta_fair(gran, se);
0bbd3336
PZ
2855}
2856
464b7527
PZ
2857/*
2858 * Should 'se' preempt 'curr'.
2859 *
2860 * |s1
2861 * |s2
2862 * |s3
2863 * g
2864 * |<--->|c
2865 *
2866 * w(c, s1) = -1
2867 * w(c, s2) = 0
2868 * w(c, s3) = 1
2869 *
2870 */
2871static int
2872wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2873{
2874 s64 gran, vdiff = curr->vruntime - se->vruntime;
2875
2876 if (vdiff <= 0)
2877 return -1;
2878
e52fb7c0 2879 gran = wakeup_gran(curr, se);
464b7527
PZ
2880 if (vdiff > gran)
2881 return 1;
2882
2883 return 0;
2884}
2885
02479099
PZ
2886static void set_last_buddy(struct sched_entity *se)
2887{
69c80f3e
VP
2888 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2889 return;
2890
2891 for_each_sched_entity(se)
2892 cfs_rq_of(se)->last = se;
02479099
PZ
2893}
2894
2895static void set_next_buddy(struct sched_entity *se)
2896{
69c80f3e
VP
2897 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2898 return;
2899
2900 for_each_sched_entity(se)
2901 cfs_rq_of(se)->next = se;
02479099
PZ
2902}
2903
ac53db59
RR
2904static void set_skip_buddy(struct sched_entity *se)
2905{
69c80f3e
VP
2906 for_each_sched_entity(se)
2907 cfs_rq_of(se)->skip = se;
ac53db59
RR
2908}
2909
bf0f6f24
IM
2910/*
2911 * Preempt the current task with a newly woken task if needed:
2912 */
5a9b86f6 2913static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2914{
2915 struct task_struct *curr = rq->curr;
8651a86c 2916 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2917 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2918 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2919 int next_buddy_marked = 0;
bf0f6f24 2920
4ae7d5ce
IM
2921 if (unlikely(se == pse))
2922 return;
2923
5238cdd3
PT
2924 /*
2925 * This is possible from callers such as pull_task(), in which we
2926 * unconditionally check_prempt_curr() after an enqueue (which may have
2927 * lead to a throttle). This both saves work and prevents false
2928 * next-buddy nomination below.
2929 */
2930 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2931 return;
2932
2f36825b 2933 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2934 set_next_buddy(pse);
2f36825b
VP
2935 next_buddy_marked = 1;
2936 }
57fdc26d 2937
aec0a514
BR
2938 /*
2939 * We can come here with TIF_NEED_RESCHED already set from new task
2940 * wake up path.
5238cdd3
PT
2941 *
2942 * Note: this also catches the edge-case of curr being in a throttled
2943 * group (e.g. via set_curr_task), since update_curr() (in the
2944 * enqueue of curr) will have resulted in resched being set. This
2945 * prevents us from potentially nominating it as a false LAST_BUDDY
2946 * below.
aec0a514
BR
2947 */
2948 if (test_tsk_need_resched(curr))
2949 return;
2950
a2f5c9ab
DH
2951 /* Idle tasks are by definition preempted by non-idle tasks. */
2952 if (unlikely(curr->policy == SCHED_IDLE) &&
2953 likely(p->policy != SCHED_IDLE))
2954 goto preempt;
2955
91c234b4 2956 /*
a2f5c9ab
DH
2957 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2958 * is driven by the tick):
91c234b4 2959 */
6bc912b7 2960 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2961 return;
bf0f6f24 2962
464b7527 2963 find_matching_se(&se, &pse);
9bbd7374 2964 update_curr(cfs_rq_of(se));
002f128b 2965 BUG_ON(!pse);
2f36825b
VP
2966 if (wakeup_preempt_entity(se, pse) == 1) {
2967 /*
2968 * Bias pick_next to pick the sched entity that is
2969 * triggering this preemption.
2970 */
2971 if (!next_buddy_marked)
2972 set_next_buddy(pse);
3a7e73a2 2973 goto preempt;
2f36825b 2974 }
464b7527 2975
3a7e73a2 2976 return;
a65ac745 2977
3a7e73a2
PZ
2978preempt:
2979 resched_task(curr);
2980 /*
2981 * Only set the backward buddy when the current task is still
2982 * on the rq. This can happen when a wakeup gets interleaved
2983 * with schedule on the ->pre_schedule() or idle_balance()
2984 * point, either of which can * drop the rq lock.
2985 *
2986 * Also, during early boot the idle thread is in the fair class,
2987 * for obvious reasons its a bad idea to schedule back to it.
2988 */
2989 if (unlikely(!se->on_rq || curr == rq->idle))
2990 return;
2991
2992 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2993 set_last_buddy(se);
bf0f6f24
IM
2994}
2995
fb8d4724 2996static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2997{
8f4d37ec 2998 struct task_struct *p;
bf0f6f24
IM
2999 struct cfs_rq *cfs_rq = &rq->cfs;
3000 struct sched_entity *se;
3001
36ace27e 3002 if (!cfs_rq->nr_running)
bf0f6f24
IM
3003 return NULL;
3004
3005 do {
9948f4b2 3006 se = pick_next_entity(cfs_rq);
f4b6755f 3007 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3008 cfs_rq = group_cfs_rq(se);
3009 } while (cfs_rq);
3010
8f4d37ec 3011 p = task_of(se);
b39e66ea
MG
3012 if (hrtick_enabled(rq))
3013 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3014
3015 return p;
bf0f6f24
IM
3016}
3017
3018/*
3019 * Account for a descheduled task:
3020 */
31ee529c 3021static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3022{
3023 struct sched_entity *se = &prev->se;
3024 struct cfs_rq *cfs_rq;
3025
3026 for_each_sched_entity(se) {
3027 cfs_rq = cfs_rq_of(se);
ab6cde26 3028 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3029 }
3030}
3031
ac53db59
RR
3032/*
3033 * sched_yield() is very simple
3034 *
3035 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3036 */
3037static void yield_task_fair(struct rq *rq)
3038{
3039 struct task_struct *curr = rq->curr;
3040 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3041 struct sched_entity *se = &curr->se;
3042
3043 /*
3044 * Are we the only task in the tree?
3045 */
3046 if (unlikely(rq->nr_running == 1))
3047 return;
3048
3049 clear_buddies(cfs_rq, se);
3050
3051 if (curr->policy != SCHED_BATCH) {
3052 update_rq_clock(rq);
3053 /*
3054 * Update run-time statistics of the 'current'.
3055 */
3056 update_curr(cfs_rq);
916671c0
MG
3057 /*
3058 * Tell update_rq_clock() that we've just updated,
3059 * so we don't do microscopic update in schedule()
3060 * and double the fastpath cost.
3061 */
3062 rq->skip_clock_update = 1;
ac53db59
RR
3063 }
3064
3065 set_skip_buddy(se);
3066}
3067
d95f4122
MG
3068static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3069{
3070 struct sched_entity *se = &p->se;
3071
5238cdd3
PT
3072 /* throttled hierarchies are not runnable */
3073 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3074 return false;
3075
3076 /* Tell the scheduler that we'd really like pse to run next. */
3077 set_next_buddy(se);
3078
d95f4122
MG
3079 yield_task_fair(rq);
3080
3081 return true;
3082}
3083
681f3e68 3084#ifdef CONFIG_SMP
bf0f6f24
IM
3085/**************************************************
3086 * Fair scheduling class load-balancing methods:
3087 */
3088
1e3c88bd
PZ
3089/*
3090 * pull_task - move a task from a remote runqueue to the local runqueue.
3091 * Both runqueues must be locked.
3092 */
3093static void pull_task(struct rq *src_rq, struct task_struct *p,
3094 struct rq *this_rq, int this_cpu)
3095{
3096 deactivate_task(src_rq, p, 0);
3097 set_task_cpu(p, this_cpu);
3098 activate_task(this_rq, p, 0);
3099 check_preempt_curr(this_rq, p, 0);
3100}
3101
029632fb
PZ
3102/*
3103 * Is this task likely cache-hot:
3104 */
3105static int
3106task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3107{
3108 s64 delta;
3109
3110 if (p->sched_class != &fair_sched_class)
3111 return 0;
3112
3113 if (unlikely(p->policy == SCHED_IDLE))
3114 return 0;
3115
3116 /*
3117 * Buddy candidates are cache hot:
3118 */
3119 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3120 (&p->se == cfs_rq_of(&p->se)->next ||
3121 &p->se == cfs_rq_of(&p->se)->last))
3122 return 1;
3123
3124 if (sysctl_sched_migration_cost == -1)
3125 return 1;
3126 if (sysctl_sched_migration_cost == 0)
3127 return 0;
3128
3129 delta = now - p->se.exec_start;
3130
3131 return delta < (s64)sysctl_sched_migration_cost;
3132}
3133
1e3c88bd
PZ
3134/*
3135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3136 */
3137static
3138int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3139 struct sched_domain *sd, enum cpu_idle_type idle,
3140 int *all_pinned)
3141{
3142 int tsk_cache_hot = 0;
3143 /*
3144 * We do not migrate tasks that are:
3145 * 1) running (obviously), or
3146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3147 * 3) are cache-hot on their current CPU.
3148 */
fa17b507 3149 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
41acab88 3150 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3151 return 0;
3152 }
3153 *all_pinned = 0;
3154
3155 if (task_running(rq, p)) {
41acab88 3156 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3157 return 0;
3158 }
3159
3160 /*
3161 * Aggressive migration if:
3162 * 1) task is cache cold, or
3163 * 2) too many balance attempts have failed.
3164 */
3165
305e6835 3166 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
3167 if (!tsk_cache_hot ||
3168 sd->nr_balance_failed > sd->cache_nice_tries) {
3169#ifdef CONFIG_SCHEDSTATS
3170 if (tsk_cache_hot) {
3171 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 3172 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3173 }
3174#endif
3175 return 1;
3176 }
3177
3178 if (tsk_cache_hot) {
41acab88 3179 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3180 return 0;
3181 }
3182 return 1;
3183}
3184
897c395f
PZ
3185/*
3186 * move_one_task tries to move exactly one task from busiest to this_rq, as
3187 * part of active balancing operations within "domain".
3188 * Returns 1 if successful and 0 otherwise.
3189 *
3190 * Called with both runqueues locked.
3191 */
3192static int
3193move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3194 struct sched_domain *sd, enum cpu_idle_type idle)
3195{
3196 struct task_struct *p, *n;
3197 struct cfs_rq *cfs_rq;
3198 int pinned = 0;
3199
3200 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3201 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
3202 if (throttled_lb_pair(task_group(p),
3203 busiest->cpu, this_cpu))
3204 break;
897c395f
PZ
3205
3206 if (!can_migrate_task(p, busiest, this_cpu,
3207 sd, idle, &pinned))
3208 continue;
3209
3210 pull_task(busiest, p, this_rq, this_cpu);
3211 /*
3212 * Right now, this is only the second place pull_task()
3213 * is called, so we can safely collect pull_task()
3214 * stats here rather than inside pull_task().
3215 */
3216 schedstat_inc(sd, lb_gained[idle]);
3217 return 1;
3218 }
3219 }
3220
3221 return 0;
3222}
3223
1e3c88bd
PZ
3224static unsigned long
3225balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3226 unsigned long max_load_move, struct sched_domain *sd,
3227 enum cpu_idle_type idle, int *all_pinned,
931aeeda 3228 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 3229{
b30aef17 3230 int loops = 0, pulled = 0;
1e3c88bd 3231 long rem_load_move = max_load_move;
ee00e66f 3232 struct task_struct *p, *n;
1e3c88bd
PZ
3233
3234 if (max_load_move == 0)
3235 goto out;
3236
ee00e66f
PZ
3237 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3238 if (loops++ > sysctl_sched_nr_migrate)
3239 break;
1e3c88bd 3240
ee00e66f 3241 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
3242 !can_migrate_task(p, busiest, this_cpu, sd, idle,
3243 all_pinned))
ee00e66f 3244 continue;
1e3c88bd 3245
ee00e66f
PZ
3246 pull_task(busiest, p, this_rq, this_cpu);
3247 pulled++;
3248 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
3249
3250#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3251 /*
3252 * NEWIDLE balancing is a source of latency, so preemptible
3253 * kernels will stop after the first task is pulled to minimize
3254 * the critical section.
3255 */
3256 if (idle == CPU_NEWLY_IDLE)
3257 break;
1e3c88bd
PZ
3258#endif
3259
ee00e66f
PZ
3260 /*
3261 * We only want to steal up to the prescribed amount of
3262 * weighted load.
3263 */
3264 if (rem_load_move <= 0)
3265 break;
1e3c88bd
PZ
3266 }
3267out:
3268 /*
3269 * Right now, this is one of only two places pull_task() is called,
3270 * so we can safely collect pull_task() stats here rather than
3271 * inside pull_task().
3272 */
3273 schedstat_add(sd, lb_gained[idle], pulled);
3274
1e3c88bd
PZ
3275 return max_load_move - rem_load_move;
3276}
3277
230059de 3278#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3279/*
3280 * update tg->load_weight by folding this cpu's load_avg
3281 */
67e86250 3282static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3283{
3284 struct cfs_rq *cfs_rq;
3285 unsigned long flags;
3286 struct rq *rq;
9e3081ca
PZ
3287
3288 if (!tg->se[cpu])
3289 return 0;
3290
3291 rq = cpu_rq(cpu);
3292 cfs_rq = tg->cfs_rq[cpu];
3293
3294 raw_spin_lock_irqsave(&rq->lock, flags);
3295
3296 update_rq_clock(rq);
d6b55918 3297 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3298
3299 /*
3300 * We need to update shares after updating tg->load_weight in
3301 * order to adjust the weight of groups with long running tasks.
3302 */
6d5ab293 3303 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3304
3305 raw_spin_unlock_irqrestore(&rq->lock, flags);
3306
3307 return 0;
3308}
3309
3310static void update_shares(int cpu)
3311{
3312 struct cfs_rq *cfs_rq;
3313 struct rq *rq = cpu_rq(cpu);
3314
3315 rcu_read_lock();
9763b67f
PZ
3316 /*
3317 * Iterates the task_group tree in a bottom up fashion, see
3318 * list_add_leaf_cfs_rq() for details.
3319 */
64660c86
PT
3320 for_each_leaf_cfs_rq(rq, cfs_rq) {
3321 /* throttled entities do not contribute to load */
3322 if (throttled_hierarchy(cfs_rq))
3323 continue;
3324
67e86250 3325 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3326 }
9e3081ca
PZ
3327 rcu_read_unlock();
3328}
3329
9763b67f
PZ
3330/*
3331 * Compute the cpu's hierarchical load factor for each task group.
3332 * This needs to be done in a top-down fashion because the load of a child
3333 * group is a fraction of its parents load.
3334 */
3335static int tg_load_down(struct task_group *tg, void *data)
3336{
3337 unsigned long load;
3338 long cpu = (long)data;
3339
3340 if (!tg->parent) {
3341 load = cpu_rq(cpu)->load.weight;
3342 } else {
3343 load = tg->parent->cfs_rq[cpu]->h_load;
3344 load *= tg->se[cpu]->load.weight;
3345 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3346 }
3347
3348 tg->cfs_rq[cpu]->h_load = load;
3349
3350 return 0;
3351}
3352
3353static void update_h_load(long cpu)
3354{
3355 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3356}
3357
230059de
PZ
3358static unsigned long
3359load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3360 unsigned long max_load_move,
3361 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3362 int *all_pinned)
230059de
PZ
3363{
3364 long rem_load_move = max_load_move;
9763b67f 3365 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
3366
3367 rcu_read_lock();
9763b67f 3368 update_h_load(cpu_of(busiest));
230059de 3369
9763b67f 3370 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
3371 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3372 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3373 u64 rem_load, moved_load;
3374
3375 /*
64660c86 3376 * empty group or part of a throttled hierarchy
230059de 3377 */
64660c86
PT
3378 if (!busiest_cfs_rq->task_weight ||
3379 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
3380 continue;
3381
3382 rem_load = (u64)rem_load_move * busiest_weight;
3383 rem_load = div_u64(rem_load, busiest_h_load + 1);
3384
3385 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 3386 rem_load, sd, idle, all_pinned,
230059de
PZ
3387 busiest_cfs_rq);
3388
3389 if (!moved_load)
3390 continue;
3391
3392 moved_load *= busiest_h_load;
3393 moved_load = div_u64(moved_load, busiest_weight + 1);
3394
3395 rem_load_move -= moved_load;
3396 if (rem_load_move < 0)
3397 break;
3398 }
3399 rcu_read_unlock();
3400
3401 return max_load_move - rem_load_move;
3402}
3403#else
9e3081ca
PZ
3404static inline void update_shares(int cpu)
3405{
3406}
3407
230059de
PZ
3408static unsigned long
3409load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3410 unsigned long max_load_move,
3411 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3412 int *all_pinned)
230059de
PZ
3413{
3414 return balance_tasks(this_rq, this_cpu, busiest,
3415 max_load_move, sd, idle, all_pinned,
931aeeda 3416 &busiest->cfs);
230059de
PZ
3417}
3418#endif
3419
1e3c88bd
PZ
3420/*
3421 * move_tasks tries to move up to max_load_move weighted load from busiest to
3422 * this_rq, as part of a balancing operation within domain "sd".
3423 * Returns 1 if successful and 0 otherwise.
3424 *
3425 * Called with both runqueues locked.
3426 */
3427static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3428 unsigned long max_load_move,
3429 struct sched_domain *sd, enum cpu_idle_type idle,
3430 int *all_pinned)
3431{
3d45fd80 3432 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
3433
3434 do {
3d45fd80 3435 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 3436 max_load_move - total_load_moved,
931aeeda 3437 sd, idle, all_pinned);
3d45fd80
PZ
3438
3439 total_load_moved += load_moved;
1e3c88bd
PZ
3440
3441#ifdef CONFIG_PREEMPT
3442 /*
3443 * NEWIDLE balancing is a source of latency, so preemptible
3444 * kernels will stop after the first task is pulled to minimize
3445 * the critical section.
3446 */
3447 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3448 break;
baa8c110
PZ
3449
3450 if (raw_spin_is_contended(&this_rq->lock) ||
3451 raw_spin_is_contended(&busiest->lock))
3452 break;
1e3c88bd 3453#endif
3d45fd80 3454 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3455
3456 return total_load_moved > 0;
3457}
3458
1e3c88bd
PZ
3459/********** Helpers for find_busiest_group ************************/
3460/*
3461 * sd_lb_stats - Structure to store the statistics of a sched_domain
3462 * during load balancing.
3463 */
3464struct sd_lb_stats {
3465 struct sched_group *busiest; /* Busiest group in this sd */
3466 struct sched_group *this; /* Local group in this sd */
3467 unsigned long total_load; /* Total load of all groups in sd */
3468 unsigned long total_pwr; /* Total power of all groups in sd */
3469 unsigned long avg_load; /* Average load across all groups in sd */
3470
3471 /** Statistics of this group */
3472 unsigned long this_load;
3473 unsigned long this_load_per_task;
3474 unsigned long this_nr_running;
fab47622 3475 unsigned long this_has_capacity;
aae6d3dd 3476 unsigned int this_idle_cpus;
1e3c88bd
PZ
3477
3478 /* Statistics of the busiest group */
aae6d3dd 3479 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3480 unsigned long max_load;
3481 unsigned long busiest_load_per_task;
3482 unsigned long busiest_nr_running;
dd5feea1 3483 unsigned long busiest_group_capacity;
fab47622 3484 unsigned long busiest_has_capacity;
aae6d3dd 3485 unsigned int busiest_group_weight;
1e3c88bd
PZ
3486
3487 int group_imb; /* Is there imbalance in this sd */
3488#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3489 int power_savings_balance; /* Is powersave balance needed for this sd */
3490 struct sched_group *group_min; /* Least loaded group in sd */
3491 struct sched_group *group_leader; /* Group which relieves group_min */
3492 unsigned long min_load_per_task; /* load_per_task in group_min */
3493 unsigned long leader_nr_running; /* Nr running of group_leader */
3494 unsigned long min_nr_running; /* Nr running of group_min */
3495#endif
3496};
3497
3498/*
3499 * sg_lb_stats - stats of a sched_group required for load_balancing
3500 */
3501struct sg_lb_stats {
3502 unsigned long avg_load; /*Avg load across the CPUs of the group */
3503 unsigned long group_load; /* Total load over the CPUs of the group */
3504 unsigned long sum_nr_running; /* Nr tasks running in the group */
3505 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3506 unsigned long group_capacity;
aae6d3dd
SS
3507 unsigned long idle_cpus;
3508 unsigned long group_weight;
1e3c88bd 3509 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3510 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3511};
3512
1e3c88bd
PZ
3513/**
3514 * get_sd_load_idx - Obtain the load index for a given sched domain.
3515 * @sd: The sched_domain whose load_idx is to be obtained.
3516 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3517 */
3518static inline int get_sd_load_idx(struct sched_domain *sd,
3519 enum cpu_idle_type idle)
3520{
3521 int load_idx;
3522
3523 switch (idle) {
3524 case CPU_NOT_IDLE:
3525 load_idx = sd->busy_idx;
3526 break;
3527
3528 case CPU_NEWLY_IDLE:
3529 load_idx = sd->newidle_idx;
3530 break;
3531 default:
3532 load_idx = sd->idle_idx;
3533 break;
3534 }
3535
3536 return load_idx;
3537}
3538
3539
3540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3541/**
3542 * init_sd_power_savings_stats - Initialize power savings statistics for
3543 * the given sched_domain, during load balancing.
3544 *
3545 * @sd: Sched domain whose power-savings statistics are to be initialized.
3546 * @sds: Variable containing the statistics for sd.
3547 * @idle: Idle status of the CPU at which we're performing load-balancing.
3548 */
3549static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3550 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3551{
3552 /*
3553 * Busy processors will not participate in power savings
3554 * balance.
3555 */
3556 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3557 sds->power_savings_balance = 0;
3558 else {
3559 sds->power_savings_balance = 1;
3560 sds->min_nr_running = ULONG_MAX;
3561 sds->leader_nr_running = 0;
3562 }
3563}
3564
3565/**
3566 * update_sd_power_savings_stats - Update the power saving stats for a
3567 * sched_domain while performing load balancing.
3568 *
3569 * @group: sched_group belonging to the sched_domain under consideration.
3570 * @sds: Variable containing the statistics of the sched_domain
3571 * @local_group: Does group contain the CPU for which we're performing
3572 * load balancing ?
3573 * @sgs: Variable containing the statistics of the group.
3574 */
3575static inline void update_sd_power_savings_stats(struct sched_group *group,
3576 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3577{
3578
3579 if (!sds->power_savings_balance)
3580 return;
3581
3582 /*
3583 * If the local group is idle or completely loaded
3584 * no need to do power savings balance at this domain
3585 */
3586 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3587 !sds->this_nr_running))
3588 sds->power_savings_balance = 0;
3589
3590 /*
3591 * If a group is already running at full capacity or idle,
3592 * don't include that group in power savings calculations
3593 */
3594 if (!sds->power_savings_balance ||
3595 sgs->sum_nr_running >= sgs->group_capacity ||
3596 !sgs->sum_nr_running)
3597 return;
3598
3599 /*
3600 * Calculate the group which has the least non-idle load.
3601 * This is the group from where we need to pick up the load
3602 * for saving power
3603 */
3604 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3605 (sgs->sum_nr_running == sds->min_nr_running &&
3606 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3607 sds->group_min = group;
3608 sds->min_nr_running = sgs->sum_nr_running;
3609 sds->min_load_per_task = sgs->sum_weighted_load /
3610 sgs->sum_nr_running;
3611 }
3612
3613 /*
3614 * Calculate the group which is almost near its
3615 * capacity but still has some space to pick up some load
3616 * from other group and save more power
3617 */
3618 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3619 return;
3620
3621 if (sgs->sum_nr_running > sds->leader_nr_running ||
3622 (sgs->sum_nr_running == sds->leader_nr_running &&
3623 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3624 sds->group_leader = group;
3625 sds->leader_nr_running = sgs->sum_nr_running;
3626 }
3627}
3628
3629/**
3630 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3631 * @sds: Variable containing the statistics of the sched_domain
3632 * under consideration.
3633 * @this_cpu: Cpu at which we're currently performing load-balancing.
3634 * @imbalance: Variable to store the imbalance.
3635 *
3636 * Description:
3637 * Check if we have potential to perform some power-savings balance.
3638 * If yes, set the busiest group to be the least loaded group in the
3639 * sched_domain, so that it's CPUs can be put to idle.
3640 *
3641 * Returns 1 if there is potential to perform power-savings balance.
3642 * Else returns 0.
3643 */
3644static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3645 int this_cpu, unsigned long *imbalance)
3646{
3647 if (!sds->power_savings_balance)
3648 return 0;
3649
3650 if (sds->this != sds->group_leader ||
3651 sds->group_leader == sds->group_min)
3652 return 0;
3653
3654 *imbalance = sds->min_load_per_task;
3655 sds->busiest = sds->group_min;
3656
3657 return 1;
3658
3659}
3660#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3661static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3662 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3663{
3664 return;
3665}
3666
3667static inline void update_sd_power_savings_stats(struct sched_group *group,
3668 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3669{
3670 return;
3671}
3672
3673static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3674 int this_cpu, unsigned long *imbalance)
3675{
3676 return 0;
3677}
3678#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3679
3680
3681unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3682{
1399fa78 3683 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3684}
3685
3686unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3687{
3688 return default_scale_freq_power(sd, cpu);
3689}
3690
3691unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3692{
669c55e9 3693 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3694 unsigned long smt_gain = sd->smt_gain;
3695
3696 smt_gain /= weight;
3697
3698 return smt_gain;
3699}
3700
3701unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3702{
3703 return default_scale_smt_power(sd, cpu);
3704}
3705
3706unsigned long scale_rt_power(int cpu)
3707{
3708 struct rq *rq = cpu_rq(cpu);
3709 u64 total, available;
3710
1e3c88bd 3711 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3712
3713 if (unlikely(total < rq->rt_avg)) {
3714 /* Ensures that power won't end up being negative */
3715 available = 0;
3716 } else {
3717 available = total - rq->rt_avg;
3718 }
1e3c88bd 3719
1399fa78
NR
3720 if (unlikely((s64)total < SCHED_POWER_SCALE))
3721 total = SCHED_POWER_SCALE;
1e3c88bd 3722
1399fa78 3723 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3724
3725 return div_u64(available, total);
3726}
3727
3728static void update_cpu_power(struct sched_domain *sd, int cpu)
3729{
669c55e9 3730 unsigned long weight = sd->span_weight;
1399fa78 3731 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3732 struct sched_group *sdg = sd->groups;
3733
1e3c88bd
PZ
3734 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3735 if (sched_feat(ARCH_POWER))
3736 power *= arch_scale_smt_power(sd, cpu);
3737 else
3738 power *= default_scale_smt_power(sd, cpu);
3739
1399fa78 3740 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3741 }
3742
9c3f75cb 3743 sdg->sgp->power_orig = power;
9d5efe05
SV
3744
3745 if (sched_feat(ARCH_POWER))
3746 power *= arch_scale_freq_power(sd, cpu);
3747 else
3748 power *= default_scale_freq_power(sd, cpu);
3749
1399fa78 3750 power >>= SCHED_POWER_SHIFT;
9d5efe05 3751
1e3c88bd 3752 power *= scale_rt_power(cpu);
1399fa78 3753 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3754
3755 if (!power)
3756 power = 1;
3757
e51fd5e2 3758 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3759 sdg->sgp->power = power;
1e3c88bd
PZ
3760}
3761
029632fb 3762void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3763{
3764 struct sched_domain *child = sd->child;
3765 struct sched_group *group, *sdg = sd->groups;
3766 unsigned long power;
3767
3768 if (!child) {
3769 update_cpu_power(sd, cpu);
3770 return;
3771 }
3772
3773 power = 0;
3774
3775 group = child->groups;
3776 do {
9c3f75cb 3777 power += group->sgp->power;
1e3c88bd
PZ
3778 group = group->next;
3779 } while (group != child->groups);
3780
9c3f75cb 3781 sdg->sgp->power = power;
1e3c88bd
PZ
3782}
3783
9d5efe05
SV
3784/*
3785 * Try and fix up capacity for tiny siblings, this is needed when
3786 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3787 * which on its own isn't powerful enough.
3788 *
3789 * See update_sd_pick_busiest() and check_asym_packing().
3790 */
3791static inline int
3792fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3793{
3794 /*
1399fa78 3795 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3796 */
a6c75f2f 3797 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3798 return 0;
3799
3800 /*
3801 * If ~90% of the cpu_power is still there, we're good.
3802 */
9c3f75cb 3803 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3804 return 1;
3805
3806 return 0;
3807}
3808
1e3c88bd
PZ
3809/**
3810 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3811 * @sd: The sched_domain whose statistics are to be updated.
3812 * @group: sched_group whose statistics are to be updated.
3813 * @this_cpu: Cpu for which load balance is currently performed.
3814 * @idle: Idle status of this_cpu
3815 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3816 * @local_group: Does group contain this_cpu.
3817 * @cpus: Set of cpus considered for load balancing.
3818 * @balance: Should we balance.
3819 * @sgs: variable to hold the statistics for this group.
3820 */
3821static inline void update_sg_lb_stats(struct sched_domain *sd,
3822 struct sched_group *group, int this_cpu,
46e49b38 3823 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3824 int local_group, const struct cpumask *cpus,
3825 int *balance, struct sg_lb_stats *sgs)
3826{
2582f0eb 3827 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3828 int i;
3829 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3830 unsigned long avg_load_per_task = 0;
1e3c88bd 3831
871e35bc 3832 if (local_group)
1e3c88bd 3833 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3834
3835 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3836 max_cpu_load = 0;
3837 min_cpu_load = ~0UL;
2582f0eb 3838 max_nr_running = 0;
1e3c88bd
PZ
3839
3840 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3841 struct rq *rq = cpu_rq(i);
3842
1e3c88bd
PZ
3843 /* Bias balancing toward cpus of our domain */
3844 if (local_group) {
3845 if (idle_cpu(i) && !first_idle_cpu) {
3846 first_idle_cpu = 1;
3847 balance_cpu = i;
3848 }
3849
3850 load = target_load(i, load_idx);
3851 } else {
3852 load = source_load(i, load_idx);
2582f0eb 3853 if (load > max_cpu_load) {
1e3c88bd 3854 max_cpu_load = load;
2582f0eb
NR
3855 max_nr_running = rq->nr_running;
3856 }
1e3c88bd
PZ
3857 if (min_cpu_load > load)
3858 min_cpu_load = load;
3859 }
3860
3861 sgs->group_load += load;
3862 sgs->sum_nr_running += rq->nr_running;
3863 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3864 if (idle_cpu(i))
3865 sgs->idle_cpus++;
1e3c88bd
PZ
3866 }
3867
3868 /*
3869 * First idle cpu or the first cpu(busiest) in this sched group
3870 * is eligible for doing load balancing at this and above
3871 * domains. In the newly idle case, we will allow all the cpu's
3872 * to do the newly idle load balance.
3873 */
bbc8cb5b
PZ
3874 if (idle != CPU_NEWLY_IDLE && local_group) {
3875 if (balance_cpu != this_cpu) {
3876 *balance = 0;
3877 return;
3878 }
3879 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3880 }
3881
3882 /* Adjust by relative CPU power of the group */
9c3f75cb 3883 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3884
1e3c88bd
PZ
3885 /*
3886 * Consider the group unbalanced when the imbalance is larger
866ab43e 3887 * than the average weight of a task.
1e3c88bd
PZ
3888 *
3889 * APZ: with cgroup the avg task weight can vary wildly and
3890 * might not be a suitable number - should we keep a
3891 * normalized nr_running number somewhere that negates
3892 * the hierarchy?
3893 */
dd5feea1
SS
3894 if (sgs->sum_nr_running)
3895 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3896
866ab43e 3897 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3898 sgs->group_imb = 1;
3899
9c3f75cb 3900 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3901 SCHED_POWER_SCALE);
9d5efe05
SV
3902 if (!sgs->group_capacity)
3903 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3904 sgs->group_weight = group->group_weight;
fab47622
NR
3905
3906 if (sgs->group_capacity > sgs->sum_nr_running)
3907 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3908}
3909
532cb4c4
MN
3910/**
3911 * update_sd_pick_busiest - return 1 on busiest group
3912 * @sd: sched_domain whose statistics are to be checked
3913 * @sds: sched_domain statistics
3914 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3915 * @sgs: sched_group statistics
3916 * @this_cpu: the current cpu
532cb4c4
MN
3917 *
3918 * Determine if @sg is a busier group than the previously selected
3919 * busiest group.
3920 */
3921static bool update_sd_pick_busiest(struct sched_domain *sd,
3922 struct sd_lb_stats *sds,
3923 struct sched_group *sg,
3924 struct sg_lb_stats *sgs,
3925 int this_cpu)
3926{
3927 if (sgs->avg_load <= sds->max_load)
3928 return false;
3929
3930 if (sgs->sum_nr_running > sgs->group_capacity)
3931 return true;
3932
3933 if (sgs->group_imb)
3934 return true;
3935
3936 /*
3937 * ASYM_PACKING needs to move all the work to the lowest
3938 * numbered CPUs in the group, therefore mark all groups
3939 * higher than ourself as busy.
3940 */
3941 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3942 this_cpu < group_first_cpu(sg)) {
3943 if (!sds->busiest)
3944 return true;
3945
3946 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3947 return true;
3948 }
3949
3950 return false;
3951}
3952
1e3c88bd 3953/**
461819ac 3954 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3955 * @sd: sched_domain whose statistics are to be updated.
3956 * @this_cpu: Cpu for which load balance is currently performed.
3957 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3958 * @cpus: Set of cpus considered for load balancing.
3959 * @balance: Should we balance.
3960 * @sds: variable to hold the statistics for this sched_domain.
3961 */
3962static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3963 enum cpu_idle_type idle, const struct cpumask *cpus,
3964 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3965{
3966 struct sched_domain *child = sd->child;
532cb4c4 3967 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3968 struct sg_lb_stats sgs;
3969 int load_idx, prefer_sibling = 0;
3970
3971 if (child && child->flags & SD_PREFER_SIBLING)
3972 prefer_sibling = 1;
3973
3974 init_sd_power_savings_stats(sd, sds, idle);
3975 load_idx = get_sd_load_idx(sd, idle);
3976
3977 do {
3978 int local_group;
3979
532cb4c4 3980 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3981 memset(&sgs, 0, sizeof(sgs));
46e49b38 3982 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3983 local_group, cpus, balance, &sgs);
3984
8f190fb3 3985 if (local_group && !(*balance))
1e3c88bd
PZ
3986 return;
3987
3988 sds->total_load += sgs.group_load;
9c3f75cb 3989 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3990
3991 /*
3992 * In case the child domain prefers tasks go to siblings
532cb4c4 3993 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3994 * and move all the excess tasks away. We lower the capacity
3995 * of a group only if the local group has the capacity to fit
3996 * these excess tasks, i.e. nr_running < group_capacity. The
3997 * extra check prevents the case where you always pull from the
3998 * heaviest group when it is already under-utilized (possible
3999 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4000 */
75dd321d 4001 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4002 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4003
4004 if (local_group) {
4005 sds->this_load = sgs.avg_load;
532cb4c4 4006 sds->this = sg;
1e3c88bd
PZ
4007 sds->this_nr_running = sgs.sum_nr_running;
4008 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4009 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4010 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 4011 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 4012 sds->max_load = sgs.avg_load;
532cb4c4 4013 sds->busiest = sg;
1e3c88bd 4014 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4015 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4016 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4017 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4018 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4019 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4020 sds->group_imb = sgs.group_imb;
4021 }
4022
532cb4c4
MN
4023 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4024 sg = sg->next;
4025 } while (sg != sd->groups);
4026}
4027
532cb4c4
MN
4028/**
4029 * check_asym_packing - Check to see if the group is packed into the
4030 * sched doman.
4031 *
4032 * This is primarily intended to used at the sibling level. Some
4033 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4034 * case of POWER7, it can move to lower SMT modes only when higher
4035 * threads are idle. When in lower SMT modes, the threads will
4036 * perform better since they share less core resources. Hence when we
4037 * have idle threads, we want them to be the higher ones.
4038 *
4039 * This packing function is run on idle threads. It checks to see if
4040 * the busiest CPU in this domain (core in the P7 case) has a higher
4041 * CPU number than the packing function is being run on. Here we are
4042 * assuming lower CPU number will be equivalent to lower a SMT thread
4043 * number.
4044 *
b6b12294
MN
4045 * Returns 1 when packing is required and a task should be moved to
4046 * this CPU. The amount of the imbalance is returned in *imbalance.
4047 *
532cb4c4
MN
4048 * @sd: The sched_domain whose packing is to be checked.
4049 * @sds: Statistics of the sched_domain which is to be packed
4050 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4051 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
4052 */
4053static int check_asym_packing(struct sched_domain *sd,
4054 struct sd_lb_stats *sds,
4055 int this_cpu, unsigned long *imbalance)
4056{
4057 int busiest_cpu;
4058
4059 if (!(sd->flags & SD_ASYM_PACKING))
4060 return 0;
4061
4062 if (!sds->busiest)
4063 return 0;
4064
4065 busiest_cpu = group_first_cpu(sds->busiest);
4066 if (this_cpu > busiest_cpu)
4067 return 0;
4068
9c3f75cb 4069 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 4070 SCHED_POWER_SCALE);
532cb4c4 4071 return 1;
1e3c88bd
PZ
4072}
4073
4074/**
4075 * fix_small_imbalance - Calculate the minor imbalance that exists
4076 * amongst the groups of a sched_domain, during
4077 * load balancing.
4078 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4079 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4080 * @imbalance: Variable to store the imbalance.
4081 */
4082static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4083 int this_cpu, unsigned long *imbalance)
4084{
4085 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4086 unsigned int imbn = 2;
dd5feea1 4087 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4088
4089 if (sds->this_nr_running) {
4090 sds->this_load_per_task /= sds->this_nr_running;
4091 if (sds->busiest_load_per_task >
4092 sds->this_load_per_task)
4093 imbn = 1;
4094 } else
4095 sds->this_load_per_task =
4096 cpu_avg_load_per_task(this_cpu);
4097
dd5feea1 4098 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4099 * SCHED_POWER_SCALE;
9c3f75cb 4100 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4101
4102 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4103 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
4104 *imbalance = sds->busiest_load_per_task;
4105 return;
4106 }
4107
4108 /*
4109 * OK, we don't have enough imbalance to justify moving tasks,
4110 * however we may be able to increase total CPU power used by
4111 * moving them.
4112 */
4113
9c3f75cb 4114 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4115 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4116 pwr_now += sds->this->sgp->power *
1e3c88bd 4117 min(sds->this_load_per_task, sds->this_load);
1399fa78 4118 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4119
4120 /* Amount of load we'd subtract */
1399fa78 4121 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4122 sds->busiest->sgp->power;
1e3c88bd 4123 if (sds->max_load > tmp)
9c3f75cb 4124 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4125 min(sds->busiest_load_per_task, sds->max_load - tmp);
4126
4127 /* Amount of load we'd add */
9c3f75cb 4128 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4129 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4130 tmp = (sds->max_load * sds->busiest->sgp->power) /
4131 sds->this->sgp->power;
1e3c88bd 4132 else
1399fa78 4133 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4134 sds->this->sgp->power;
4135 pwr_move += sds->this->sgp->power *
1e3c88bd 4136 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4137 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4138
4139 /* Move if we gain throughput */
4140 if (pwr_move > pwr_now)
4141 *imbalance = sds->busiest_load_per_task;
4142}
4143
4144/**
4145 * calculate_imbalance - Calculate the amount of imbalance present within the
4146 * groups of a given sched_domain during load balance.
4147 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4148 * @this_cpu: Cpu for which currently load balance is being performed.
4149 * @imbalance: The variable to store the imbalance.
4150 */
4151static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4152 unsigned long *imbalance)
4153{
dd5feea1
SS
4154 unsigned long max_pull, load_above_capacity = ~0UL;
4155
4156 sds->busiest_load_per_task /= sds->busiest_nr_running;
4157 if (sds->group_imb) {
4158 sds->busiest_load_per_task =
4159 min(sds->busiest_load_per_task, sds->avg_load);
4160 }
4161
1e3c88bd
PZ
4162 /*
4163 * In the presence of smp nice balancing, certain scenarios can have
4164 * max load less than avg load(as we skip the groups at or below
4165 * its cpu_power, while calculating max_load..)
4166 */
4167 if (sds->max_load < sds->avg_load) {
4168 *imbalance = 0;
4169 return fix_small_imbalance(sds, this_cpu, imbalance);
4170 }
4171
dd5feea1
SS
4172 if (!sds->group_imb) {
4173 /*
4174 * Don't want to pull so many tasks that a group would go idle.
4175 */
4176 load_above_capacity = (sds->busiest_nr_running -
4177 sds->busiest_group_capacity);
4178
1399fa78 4179 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4180
9c3f75cb 4181 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4182 }
4183
4184 /*
4185 * We're trying to get all the cpus to the average_load, so we don't
4186 * want to push ourselves above the average load, nor do we wish to
4187 * reduce the max loaded cpu below the average load. At the same time,
4188 * we also don't want to reduce the group load below the group capacity
4189 * (so that we can implement power-savings policies etc). Thus we look
4190 * for the minimum possible imbalance.
4191 * Be careful of negative numbers as they'll appear as very large values
4192 * with unsigned longs.
4193 */
4194 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4195
4196 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
4197 *imbalance = min(max_pull * sds->busiest->sgp->power,
4198 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4199 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4200
4201 /*
4202 * if *imbalance is less than the average load per runnable task
25985edc 4203 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4204 * a think about bumping its value to force at least one task to be
4205 * moved
4206 */
4207 if (*imbalance < sds->busiest_load_per_task)
4208 return fix_small_imbalance(sds, this_cpu, imbalance);
4209
4210}
fab47622 4211
1e3c88bd
PZ
4212/******* find_busiest_group() helpers end here *********************/
4213
4214/**
4215 * find_busiest_group - Returns the busiest group within the sched_domain
4216 * if there is an imbalance. If there isn't an imbalance, and
4217 * the user has opted for power-savings, it returns a group whose
4218 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4219 * such a group exists.
4220 *
4221 * Also calculates the amount of weighted load which should be moved
4222 * to restore balance.
4223 *
4224 * @sd: The sched_domain whose busiest group is to be returned.
4225 * @this_cpu: The cpu for which load balancing is currently being performed.
4226 * @imbalance: Variable which stores amount of weighted load which should
4227 * be moved to restore balance/put a group to idle.
4228 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4229 * @cpus: The set of CPUs under consideration for load-balancing.
4230 * @balance: Pointer to a variable indicating if this_cpu
4231 * is the appropriate cpu to perform load balancing at this_level.
4232 *
4233 * Returns: - the busiest group if imbalance exists.
4234 * - If no imbalance and user has opted for power-savings balance,
4235 * return the least loaded group whose CPUs can be
4236 * put to idle by rebalancing its tasks onto our group.
4237 */
4238static struct sched_group *
4239find_busiest_group(struct sched_domain *sd, int this_cpu,
4240 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 4241 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4242{
4243 struct sd_lb_stats sds;
4244
4245 memset(&sds, 0, sizeof(sds));
4246
4247 /*
4248 * Compute the various statistics relavent for load balancing at
4249 * this level.
4250 */
46e49b38 4251 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 4252
cc57aa8f
PZ
4253 /*
4254 * this_cpu is not the appropriate cpu to perform load balancing at
4255 * this level.
1e3c88bd 4256 */
8f190fb3 4257 if (!(*balance))
1e3c88bd
PZ
4258 goto ret;
4259
532cb4c4
MN
4260 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4261 check_asym_packing(sd, &sds, this_cpu, imbalance))
4262 return sds.busiest;
4263
cc57aa8f 4264 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4265 if (!sds.busiest || sds.busiest_nr_running == 0)
4266 goto out_balanced;
4267
1399fa78 4268 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4269
866ab43e
PZ
4270 /*
4271 * If the busiest group is imbalanced the below checks don't
4272 * work because they assumes all things are equal, which typically
4273 * isn't true due to cpus_allowed constraints and the like.
4274 */
4275 if (sds.group_imb)
4276 goto force_balance;
4277
cc57aa8f 4278 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
4279 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4280 !sds.busiest_has_capacity)
4281 goto force_balance;
4282
cc57aa8f
PZ
4283 /*
4284 * If the local group is more busy than the selected busiest group
4285 * don't try and pull any tasks.
4286 */
1e3c88bd
PZ
4287 if (sds.this_load >= sds.max_load)
4288 goto out_balanced;
4289
cc57aa8f
PZ
4290 /*
4291 * Don't pull any tasks if this group is already above the domain
4292 * average load.
4293 */
1e3c88bd
PZ
4294 if (sds.this_load >= sds.avg_load)
4295 goto out_balanced;
4296
c186fafe 4297 if (idle == CPU_IDLE) {
aae6d3dd
SS
4298 /*
4299 * This cpu is idle. If the busiest group load doesn't
4300 * have more tasks than the number of available cpu's and
4301 * there is no imbalance between this and busiest group
4302 * wrt to idle cpu's, it is balanced.
4303 */
c186fafe 4304 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4305 sds.busiest_nr_running <= sds.busiest_group_weight)
4306 goto out_balanced;
c186fafe
PZ
4307 } else {
4308 /*
4309 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4310 * imbalance_pct to be conservative.
4311 */
4312 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4313 goto out_balanced;
aae6d3dd 4314 }
1e3c88bd 4315
fab47622 4316force_balance:
1e3c88bd
PZ
4317 /* Looks like there is an imbalance. Compute it */
4318 calculate_imbalance(&sds, this_cpu, imbalance);
4319 return sds.busiest;
4320
4321out_balanced:
4322 /*
4323 * There is no obvious imbalance. But check if we can do some balancing
4324 * to save power.
4325 */
4326 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4327 return sds.busiest;
4328ret:
4329 *imbalance = 0;
4330 return NULL;
4331}
4332
4333/*
4334 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4335 */
4336static struct rq *
9d5efe05
SV
4337find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4338 enum cpu_idle_type idle, unsigned long imbalance,
4339 const struct cpumask *cpus)
1e3c88bd
PZ
4340{
4341 struct rq *busiest = NULL, *rq;
4342 unsigned long max_load = 0;
4343 int i;
4344
4345 for_each_cpu(i, sched_group_cpus(group)) {
4346 unsigned long power = power_of(i);
1399fa78
NR
4347 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4348 SCHED_POWER_SCALE);
1e3c88bd
PZ
4349 unsigned long wl;
4350
9d5efe05
SV
4351 if (!capacity)
4352 capacity = fix_small_capacity(sd, group);
4353
1e3c88bd
PZ
4354 if (!cpumask_test_cpu(i, cpus))
4355 continue;
4356
4357 rq = cpu_rq(i);
6e40f5bb 4358 wl = weighted_cpuload(i);
1e3c88bd 4359
6e40f5bb
TG
4360 /*
4361 * When comparing with imbalance, use weighted_cpuload()
4362 * which is not scaled with the cpu power.
4363 */
1e3c88bd
PZ
4364 if (capacity && rq->nr_running == 1 && wl > imbalance)
4365 continue;
4366
6e40f5bb
TG
4367 /*
4368 * For the load comparisons with the other cpu's, consider
4369 * the weighted_cpuload() scaled with the cpu power, so that
4370 * the load can be moved away from the cpu that is potentially
4371 * running at a lower capacity.
4372 */
1399fa78 4373 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4374
1e3c88bd
PZ
4375 if (wl > max_load) {
4376 max_load = wl;
4377 busiest = rq;
4378 }
4379 }
4380
4381 return busiest;
4382}
4383
4384/*
4385 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4386 * so long as it is large enough.
4387 */
4388#define MAX_PINNED_INTERVAL 512
4389
4390/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4391DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4392
46e49b38 4393static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4394 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4395{
4396 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4397
4398 /*
4399 * ASYM_PACKING needs to force migrate tasks from busy but
4400 * higher numbered CPUs in order to pack all tasks in the
4401 * lowest numbered CPUs.
4402 */
4403 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4404 return 1;
4405
1af3ed3d
PZ
4406 /*
4407 * The only task running in a non-idle cpu can be moved to this
4408 * cpu in an attempt to completely freeup the other CPU
4409 * package.
4410 *
4411 * The package power saving logic comes from
4412 * find_busiest_group(). If there are no imbalance, then
4413 * f_b_g() will return NULL. However when sched_mc={1,2} then
4414 * f_b_g() will select a group from which a running task may be
4415 * pulled to this cpu in order to make the other package idle.
4416 * If there is no opportunity to make a package idle and if
4417 * there are no imbalance, then f_b_g() will return NULL and no
4418 * action will be taken in load_balance_newidle().
4419 *
4420 * Under normal task pull operation due to imbalance, there
4421 * will be more than one task in the source run queue and
4422 * move_tasks() will succeed. ld_moved will be true and this
4423 * active balance code will not be triggered.
4424 */
1af3ed3d
PZ
4425 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4426 return 0;
4427 }
4428
4429 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4430}
4431
969c7921
TH
4432static int active_load_balance_cpu_stop(void *data);
4433
1e3c88bd
PZ
4434/*
4435 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4436 * tasks if there is an imbalance.
4437 */
4438static int load_balance(int this_cpu, struct rq *this_rq,
4439 struct sched_domain *sd, enum cpu_idle_type idle,
4440 int *balance)
4441{
46e49b38 4442 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
4443 struct sched_group *group;
4444 unsigned long imbalance;
4445 struct rq *busiest;
4446 unsigned long flags;
4447 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4448
4449 cpumask_copy(cpus, cpu_active_mask);
4450
1e3c88bd
PZ
4451 schedstat_inc(sd, lb_count[idle]);
4452
4453redo:
46e49b38 4454 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4455 cpus, balance);
4456
4457 if (*balance == 0)
4458 goto out_balanced;
4459
4460 if (!group) {
4461 schedstat_inc(sd, lb_nobusyg[idle]);
4462 goto out_balanced;
4463 }
4464
9d5efe05 4465 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4466 if (!busiest) {
4467 schedstat_inc(sd, lb_nobusyq[idle]);
4468 goto out_balanced;
4469 }
4470
4471 BUG_ON(busiest == this_rq);
4472
4473 schedstat_add(sd, lb_imbalance[idle], imbalance);
4474
4475 ld_moved = 0;
4476 if (busiest->nr_running > 1) {
4477 /*
4478 * Attempt to move tasks. If find_busiest_group has found
4479 * an imbalance but busiest->nr_running <= 1, the group is
4480 * still unbalanced. ld_moved simply stays zero, so it is
4481 * correctly treated as an imbalance.
4482 */
b30aef17 4483 all_pinned = 1;
1e3c88bd
PZ
4484 local_irq_save(flags);
4485 double_rq_lock(this_rq, busiest);
4486 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4487 imbalance, sd, idle, &all_pinned);
4488 double_rq_unlock(this_rq, busiest);
4489 local_irq_restore(flags);
4490
4491 /*
4492 * some other cpu did the load balance for us.
4493 */
4494 if (ld_moved && this_cpu != smp_processor_id())
4495 resched_cpu(this_cpu);
4496
4497 /* All tasks on this runqueue were pinned by CPU affinity */
4498 if (unlikely(all_pinned)) {
4499 cpumask_clear_cpu(cpu_of(busiest), cpus);
4500 if (!cpumask_empty(cpus))
4501 goto redo;
4502 goto out_balanced;
4503 }
4504 }
4505
4506 if (!ld_moved) {
4507 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4508 /*
4509 * Increment the failure counter only on periodic balance.
4510 * We do not want newidle balance, which can be very
4511 * frequent, pollute the failure counter causing
4512 * excessive cache_hot migrations and active balances.
4513 */
4514 if (idle != CPU_NEWLY_IDLE)
4515 sd->nr_balance_failed++;
1e3c88bd 4516
46e49b38 4517 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4518 raw_spin_lock_irqsave(&busiest->lock, flags);
4519
969c7921
TH
4520 /* don't kick the active_load_balance_cpu_stop,
4521 * if the curr task on busiest cpu can't be
4522 * moved to this_cpu
1e3c88bd
PZ
4523 */
4524 if (!cpumask_test_cpu(this_cpu,
fa17b507 4525 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4526 raw_spin_unlock_irqrestore(&busiest->lock,
4527 flags);
4528 all_pinned = 1;
4529 goto out_one_pinned;
4530 }
4531
969c7921
TH
4532 /*
4533 * ->active_balance synchronizes accesses to
4534 * ->active_balance_work. Once set, it's cleared
4535 * only after active load balance is finished.
4536 */
1e3c88bd
PZ
4537 if (!busiest->active_balance) {
4538 busiest->active_balance = 1;
4539 busiest->push_cpu = this_cpu;
4540 active_balance = 1;
4541 }
4542 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4543
1e3c88bd 4544 if (active_balance)
969c7921
TH
4545 stop_one_cpu_nowait(cpu_of(busiest),
4546 active_load_balance_cpu_stop, busiest,
4547 &busiest->active_balance_work);
1e3c88bd
PZ
4548
4549 /*
4550 * We've kicked active balancing, reset the failure
4551 * counter.
4552 */
4553 sd->nr_balance_failed = sd->cache_nice_tries+1;
4554 }
4555 } else
4556 sd->nr_balance_failed = 0;
4557
4558 if (likely(!active_balance)) {
4559 /* We were unbalanced, so reset the balancing interval */
4560 sd->balance_interval = sd->min_interval;
4561 } else {
4562 /*
4563 * If we've begun active balancing, start to back off. This
4564 * case may not be covered by the all_pinned logic if there
4565 * is only 1 task on the busy runqueue (because we don't call
4566 * move_tasks).
4567 */
4568 if (sd->balance_interval < sd->max_interval)
4569 sd->balance_interval *= 2;
4570 }
4571
1e3c88bd
PZ
4572 goto out;
4573
4574out_balanced:
4575 schedstat_inc(sd, lb_balanced[idle]);
4576
4577 sd->nr_balance_failed = 0;
4578
4579out_one_pinned:
4580 /* tune up the balancing interval */
4581 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4582 (sd->balance_interval < sd->max_interval))
4583 sd->balance_interval *= 2;
4584
46e49b38 4585 ld_moved = 0;
1e3c88bd 4586out:
1e3c88bd
PZ
4587 return ld_moved;
4588}
4589
1e3c88bd
PZ
4590/*
4591 * idle_balance is called by schedule() if this_cpu is about to become
4592 * idle. Attempts to pull tasks from other CPUs.
4593 */
029632fb 4594void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4595{
4596 struct sched_domain *sd;
4597 int pulled_task = 0;
4598 unsigned long next_balance = jiffies + HZ;
4599
4600 this_rq->idle_stamp = this_rq->clock;
4601
4602 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4603 return;
4604
f492e12e
PZ
4605 /*
4606 * Drop the rq->lock, but keep IRQ/preempt disabled.
4607 */
4608 raw_spin_unlock(&this_rq->lock);
4609
c66eaf61 4610 update_shares(this_cpu);
dce840a0 4611 rcu_read_lock();
1e3c88bd
PZ
4612 for_each_domain(this_cpu, sd) {
4613 unsigned long interval;
f492e12e 4614 int balance = 1;
1e3c88bd
PZ
4615
4616 if (!(sd->flags & SD_LOAD_BALANCE))
4617 continue;
4618
f492e12e 4619 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4620 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4621 pulled_task = load_balance(this_cpu, this_rq,
4622 sd, CPU_NEWLY_IDLE, &balance);
4623 }
1e3c88bd
PZ
4624
4625 interval = msecs_to_jiffies(sd->balance_interval);
4626 if (time_after(next_balance, sd->last_balance + interval))
4627 next_balance = sd->last_balance + interval;
d5ad140b
NR
4628 if (pulled_task) {
4629 this_rq->idle_stamp = 0;
1e3c88bd 4630 break;
d5ad140b 4631 }
1e3c88bd 4632 }
dce840a0 4633 rcu_read_unlock();
f492e12e
PZ
4634
4635 raw_spin_lock(&this_rq->lock);
4636
1e3c88bd
PZ
4637 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4638 /*
4639 * We are going idle. next_balance may be set based on
4640 * a busy processor. So reset next_balance.
4641 */
4642 this_rq->next_balance = next_balance;
4643 }
4644}
4645
4646/*
969c7921
TH
4647 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4648 * running tasks off the busiest CPU onto idle CPUs. It requires at
4649 * least 1 task to be running on each physical CPU where possible, and
4650 * avoids physical / logical imbalances.
1e3c88bd 4651 */
969c7921 4652static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4653{
969c7921
TH
4654 struct rq *busiest_rq = data;
4655 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4656 int target_cpu = busiest_rq->push_cpu;
969c7921 4657 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4658 struct sched_domain *sd;
969c7921
TH
4659
4660 raw_spin_lock_irq(&busiest_rq->lock);
4661
4662 /* make sure the requested cpu hasn't gone down in the meantime */
4663 if (unlikely(busiest_cpu != smp_processor_id() ||
4664 !busiest_rq->active_balance))
4665 goto out_unlock;
1e3c88bd
PZ
4666
4667 /* Is there any task to move? */
4668 if (busiest_rq->nr_running <= 1)
969c7921 4669 goto out_unlock;
1e3c88bd
PZ
4670
4671 /*
4672 * This condition is "impossible", if it occurs
4673 * we need to fix it. Originally reported by
4674 * Bjorn Helgaas on a 128-cpu setup.
4675 */
4676 BUG_ON(busiest_rq == target_rq);
4677
4678 /* move a task from busiest_rq to target_rq */
4679 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4680
4681 /* Search for an sd spanning us and the target CPU. */
dce840a0 4682 rcu_read_lock();
1e3c88bd
PZ
4683 for_each_domain(target_cpu, sd) {
4684 if ((sd->flags & SD_LOAD_BALANCE) &&
4685 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4686 break;
4687 }
4688
4689 if (likely(sd)) {
4690 schedstat_inc(sd, alb_count);
4691
4692 if (move_one_task(target_rq, target_cpu, busiest_rq,
4693 sd, CPU_IDLE))
4694 schedstat_inc(sd, alb_pushed);
4695 else
4696 schedstat_inc(sd, alb_failed);
4697 }
dce840a0 4698 rcu_read_unlock();
1e3c88bd 4699 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4700out_unlock:
4701 busiest_rq->active_balance = 0;
4702 raw_spin_unlock_irq(&busiest_rq->lock);
4703 return 0;
1e3c88bd
PZ
4704}
4705
4706#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4707/*
4708 * idle load balancing details
83cd4fe2
VP
4709 * - When one of the busy CPUs notice that there may be an idle rebalancing
4710 * needed, they will kick the idle load balancer, which then does idle
4711 * load balancing for all the idle CPUs.
4712 */
1e3c88bd 4713static struct {
83cd4fe2 4714 cpumask_var_t idle_cpus_mask;
0b005cf5 4715 atomic_t nr_cpus;
83cd4fe2
VP
4716 unsigned long next_balance; /* in jiffy units */
4717} nohz ____cacheline_aligned;
1e3c88bd 4718
1e3c88bd
PZ
4719#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4720/**
4721 * lowest_flag_domain - Return lowest sched_domain containing flag.
4722 * @cpu: The cpu whose lowest level of sched domain is to
4723 * be returned.
4724 * @flag: The flag to check for the lowest sched_domain
4725 * for the given cpu.
4726 *
4727 * Returns the lowest sched_domain of a cpu which contains the given flag.
4728 */
4729static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4730{
4731 struct sched_domain *sd;
4732
4733 for_each_domain(cpu, sd)
08354716 4734 if (sd->flags & flag)
1e3c88bd
PZ
4735 break;
4736
4737 return sd;
4738}
4739
4740/**
4741 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4742 * @cpu: The cpu whose domains we're iterating over.
4743 * @sd: variable holding the value of the power_savings_sd
4744 * for cpu.
4745 * @flag: The flag to filter the sched_domains to be iterated.
4746 *
4747 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4748 * set, starting from the lowest sched_domain to the highest.
4749 */
4750#define for_each_flag_domain(cpu, sd, flag) \
4751 for (sd = lowest_flag_domain(cpu, flag); \
4752 (sd && (sd->flags & flag)); sd = sd->parent)
4753
1e3c88bd
PZ
4754/**
4755 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4756 * @cpu: The cpu which is nominating a new idle_load_balancer.
4757 *
4758 * Returns: Returns the id of the idle load balancer if it exists,
4759 * Else, returns >= nr_cpu_ids.
4760 *
4761 * This algorithm picks the idle load balancer such that it belongs to a
4762 * semi-idle powersavings sched_domain. The idea is to try and avoid
4763 * completely idle packages/cores just for the purpose of idle load balancing
4764 * when there are other idle cpu's which are better suited for that job.
4765 */
4766static int find_new_ilb(int cpu)
4767{
0b005cf5 4768 int ilb = cpumask_first(nohz.idle_cpus_mask);
786d6dc7 4769 struct sched_group *ilbg;
1e3c88bd 4770 struct sched_domain *sd;
1e3c88bd
PZ
4771
4772 /*
4773 * Have idle load balancer selection from semi-idle packages only
4774 * when power-aware load balancing is enabled
4775 */
4776 if (!(sched_smt_power_savings || sched_mc_power_savings))
4777 goto out_done;
4778
4779 /*
4780 * Optimize for the case when we have no idle CPUs or only one
4781 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4782 */
83cd4fe2 4783 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4784 goto out_done;
4785
dce840a0 4786 rcu_read_lock();
1e3c88bd 4787 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
786d6dc7 4788 ilbg = sd->groups;
1e3c88bd
PZ
4789
4790 do {
786d6dc7
SS
4791 if (ilbg->group_weight !=
4792 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4793 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4794 sched_group_cpus(ilbg));
dce840a0
PZ
4795 goto unlock;
4796 }
1e3c88bd 4797
786d6dc7 4798 ilbg = ilbg->next;
1e3c88bd 4799
786d6dc7 4800 } while (ilbg != sd->groups);
1e3c88bd 4801 }
dce840a0
PZ
4802unlock:
4803 rcu_read_unlock();
1e3c88bd
PZ
4804
4805out_done:
786d6dc7
SS
4806 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4807 return ilb;
4808
4809 return nr_cpu_ids;
1e3c88bd
PZ
4810}
4811#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4812static inline int find_new_ilb(int call_cpu)
4813{
83cd4fe2 4814 return nr_cpu_ids;
1e3c88bd
PZ
4815}
4816#endif
4817
83cd4fe2
VP
4818/*
4819 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4820 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4821 * CPU (if there is one).
4822 */
4823static void nohz_balancer_kick(int cpu)
4824{
4825 int ilb_cpu;
4826
4827 nohz.next_balance++;
4828
0b005cf5 4829 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4830
0b005cf5
SS
4831 if (ilb_cpu >= nr_cpu_ids)
4832 return;
83cd4fe2 4833
cd490c5b 4834 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4835 return;
4836 /*
4837 * Use smp_send_reschedule() instead of resched_cpu().
4838 * This way we generate a sched IPI on the target cpu which
4839 * is idle. And the softirq performing nohz idle load balance
4840 * will be run before returning from the IPI.
4841 */
4842 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4843 return;
4844}
4845
69e1e811
SS
4846static inline void set_cpu_sd_state_busy(void)
4847{
4848 struct sched_domain *sd;
4849 int cpu = smp_processor_id();
4850
4851 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4852 return;
4853 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4854
4855 rcu_read_lock();
4856 for_each_domain(cpu, sd)
4857 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4858 rcu_read_unlock();
4859}
4860
4861void set_cpu_sd_state_idle(void)
4862{
4863 struct sched_domain *sd;
4864 int cpu = smp_processor_id();
4865
4866 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4867 return;
4868 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4869
4870 rcu_read_lock();
4871 for_each_domain(cpu, sd)
4872 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4873 rcu_read_unlock();
4874}
4875
1e3c88bd 4876/*
0b005cf5
SS
4877 * This routine will record that this cpu is going idle with tick stopped.
4878 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4879 */
83cd4fe2 4880void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4881{
4882 int cpu = smp_processor_id();
4883
4884 if (stop_tick) {
0b005cf5 4885 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
83cd4fe2 4886 return;
1e3c88bd 4887
83cd4fe2 4888 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
0b005cf5 4889 atomic_inc(&nohz.nr_cpus);
1c792db7 4890 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4891 }
83cd4fe2 4892 return;
1e3c88bd
PZ
4893}
4894#endif
4895
4896static DEFINE_SPINLOCK(balancing);
4897
49c022e6
PZ
4898static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4899
4900/*
4901 * Scale the max load_balance interval with the number of CPUs in the system.
4902 * This trades load-balance latency on larger machines for less cross talk.
4903 */
029632fb 4904void update_max_interval(void)
49c022e6
PZ
4905{
4906 max_load_balance_interval = HZ*num_online_cpus()/10;
4907}
4908
1e3c88bd
PZ
4909/*
4910 * It checks each scheduling domain to see if it is due to be balanced,
4911 * and initiates a balancing operation if so.
4912 *
4913 * Balancing parameters are set up in arch_init_sched_domains.
4914 */
4915static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4916{
4917 int balance = 1;
4918 struct rq *rq = cpu_rq(cpu);
4919 unsigned long interval;
4920 struct sched_domain *sd;
4921 /* Earliest time when we have to do rebalance again */
4922 unsigned long next_balance = jiffies + 60*HZ;
4923 int update_next_balance = 0;
4924 int need_serialize;
4925
2069dd75
PZ
4926 update_shares(cpu);
4927
dce840a0 4928 rcu_read_lock();
1e3c88bd
PZ
4929 for_each_domain(cpu, sd) {
4930 if (!(sd->flags & SD_LOAD_BALANCE))
4931 continue;
4932
4933 interval = sd->balance_interval;
4934 if (idle != CPU_IDLE)
4935 interval *= sd->busy_factor;
4936
4937 /* scale ms to jiffies */
4938 interval = msecs_to_jiffies(interval);
49c022e6 4939 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4940
4941 need_serialize = sd->flags & SD_SERIALIZE;
4942
4943 if (need_serialize) {
4944 if (!spin_trylock(&balancing))
4945 goto out;
4946 }
4947
4948 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4949 if (load_balance(cpu, rq, sd, idle, &balance)) {
4950 /*
4951 * We've pulled tasks over so either we're no
c186fafe 4952 * longer idle.
1e3c88bd
PZ
4953 */
4954 idle = CPU_NOT_IDLE;
4955 }
4956 sd->last_balance = jiffies;
4957 }
4958 if (need_serialize)
4959 spin_unlock(&balancing);
4960out:
4961 if (time_after(next_balance, sd->last_balance + interval)) {
4962 next_balance = sd->last_balance + interval;
4963 update_next_balance = 1;
4964 }
4965
4966 /*
4967 * Stop the load balance at this level. There is another
4968 * CPU in our sched group which is doing load balancing more
4969 * actively.
4970 */
4971 if (!balance)
4972 break;
4973 }
dce840a0 4974 rcu_read_unlock();
1e3c88bd
PZ
4975
4976 /*
4977 * next_balance will be updated only when there is a need.
4978 * When the cpu is attached to null domain for ex, it will not be
4979 * updated.
4980 */
4981 if (likely(update_next_balance))
4982 rq->next_balance = next_balance;
4983}
4984
83cd4fe2 4985#ifdef CONFIG_NO_HZ
1e3c88bd 4986/*
83cd4fe2 4987 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4988 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4989 */
83cd4fe2
VP
4990static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4991{
4992 struct rq *this_rq = cpu_rq(this_cpu);
4993 struct rq *rq;
4994 int balance_cpu;
4995
1c792db7
SS
4996 if (idle != CPU_IDLE ||
4997 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4998 goto end;
83cd4fe2
VP
4999
5000 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5001 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5002 continue;
5003
5004 /*
5005 * If this cpu gets work to do, stop the load balancing
5006 * work being done for other cpus. Next load
5007 * balancing owner will pick it up.
5008 */
1c792db7 5009 if (need_resched())
83cd4fe2 5010 break;
83cd4fe2
VP
5011
5012 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5013 update_rq_clock(this_rq);
83cd4fe2
VP
5014 update_cpu_load(this_rq);
5015 raw_spin_unlock_irq(&this_rq->lock);
5016
5017 rebalance_domains(balance_cpu, CPU_IDLE);
5018
5019 rq = cpu_rq(balance_cpu);
5020 if (time_after(this_rq->next_balance, rq->next_balance))
5021 this_rq->next_balance = rq->next_balance;
5022 }
5023 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5024end:
5025 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5026}
5027
5028/*
0b005cf5
SS
5029 * Current heuristic for kicking the idle load balancer in the presence
5030 * of an idle cpu is the system.
5031 * - This rq has more than one task.
5032 * - At any scheduler domain level, this cpu's scheduler group has multiple
5033 * busy cpu's exceeding the group's power.
5034 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5035 * domain span are idle.
83cd4fe2
VP
5036 */
5037static inline int nohz_kick_needed(struct rq *rq, int cpu)
5038{
5039 unsigned long now = jiffies;
0b005cf5 5040 struct sched_domain *sd;
83cd4fe2 5041
1c792db7 5042 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5043 return 0;
5044
1c792db7
SS
5045 /*
5046 * We may be recently in ticked or tickless idle mode. At the first
5047 * busy tick after returning from idle, we will update the busy stats.
5048 */
69e1e811 5049 set_cpu_sd_state_busy();
0b005cf5 5050 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
1c792db7 5051 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
0b005cf5
SS
5052 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5053 atomic_dec(&nohz.nr_cpus);
5054 }
5055
5056 /*
5057 * None are in tickless mode and hence no need for NOHZ idle load
5058 * balancing.
5059 */
5060 if (likely(!atomic_read(&nohz.nr_cpus)))
5061 return 0;
1c792db7
SS
5062
5063 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5064 return 0;
5065
0b005cf5
SS
5066 if (rq->nr_running >= 2)
5067 goto need_kick;
83cd4fe2 5068
067491b7 5069 rcu_read_lock();
0b005cf5
SS
5070 for_each_domain(cpu, sd) {
5071 struct sched_group *sg = sd->groups;
5072 struct sched_group_power *sgp = sg->sgp;
5073 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5074
0b005cf5 5075 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5076 goto need_kick_unlock;
0b005cf5
SS
5077
5078 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5079 && (cpumask_first_and(nohz.idle_cpus_mask,
5080 sched_domain_span(sd)) < cpu))
067491b7 5081 goto need_kick_unlock;
0b005cf5
SS
5082
5083 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5084 break;
83cd4fe2 5085 }
067491b7 5086 rcu_read_unlock();
83cd4fe2 5087 return 0;
067491b7
PZ
5088
5089need_kick_unlock:
5090 rcu_read_unlock();
0b005cf5
SS
5091need_kick:
5092 return 1;
83cd4fe2
VP
5093}
5094#else
5095static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5096#endif
5097
5098/*
5099 * run_rebalance_domains is triggered when needed from the scheduler tick.
5100 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5101 */
1e3c88bd
PZ
5102static void run_rebalance_domains(struct softirq_action *h)
5103{
5104 int this_cpu = smp_processor_id();
5105 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5106 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5107 CPU_IDLE : CPU_NOT_IDLE;
5108
5109 rebalance_domains(this_cpu, idle);
5110
1e3c88bd 5111 /*
83cd4fe2 5112 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5113 * balancing on behalf of the other idle cpus whose ticks are
5114 * stopped.
5115 */
83cd4fe2 5116 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5117}
5118
5119static inline int on_null_domain(int cpu)
5120{
90a6501f 5121 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5122}
5123
5124/*
5125 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5126 */
029632fb 5127void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5128{
1e3c88bd
PZ
5129 /* Don't need to rebalance while attached to NULL domain */
5130 if (time_after_eq(jiffies, rq->next_balance) &&
5131 likely(!on_null_domain(cpu)))
5132 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5133#ifdef CONFIG_NO_HZ
1c792db7 5134 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5135 nohz_balancer_kick(cpu);
5136#endif
1e3c88bd
PZ
5137}
5138
0bcdcf28
CE
5139static void rq_online_fair(struct rq *rq)
5140{
5141 update_sysctl();
5142}
5143
5144static void rq_offline_fair(struct rq *rq)
5145{
5146 update_sysctl();
5147}
5148
55e12e5e 5149#endif /* CONFIG_SMP */
e1d1484f 5150
bf0f6f24
IM
5151/*
5152 * scheduler tick hitting a task of our scheduling class:
5153 */
8f4d37ec 5154static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5155{
5156 struct cfs_rq *cfs_rq;
5157 struct sched_entity *se = &curr->se;
5158
5159 for_each_sched_entity(se) {
5160 cfs_rq = cfs_rq_of(se);
8f4d37ec 5161 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5162 }
5163}
5164
5165/*
cd29fe6f
PZ
5166 * called on fork with the child task as argument from the parent's context
5167 * - child not yet on the tasklist
5168 * - preemption disabled
bf0f6f24 5169 */
cd29fe6f 5170static void task_fork_fair(struct task_struct *p)
bf0f6f24 5171{
cd29fe6f 5172 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 5173 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 5174 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5175 struct rq *rq = this_rq();
5176 unsigned long flags;
5177
05fa785c 5178 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5179
861d034e
PZ
5180 update_rq_clock(rq);
5181
b0a0f667
PM
5182 if (unlikely(task_cpu(p) != this_cpu)) {
5183 rcu_read_lock();
cd29fe6f 5184 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5185 rcu_read_unlock();
5186 }
bf0f6f24 5187
7109c442 5188 update_curr(cfs_rq);
cd29fe6f 5189
b5d9d734
MG
5190 if (curr)
5191 se->vruntime = curr->vruntime;
aeb73b04 5192 place_entity(cfs_rq, se, 1);
4d78e7b6 5193
cd29fe6f 5194 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5195 /*
edcb60a3
IM
5196 * Upon rescheduling, sched_class::put_prev_task() will place
5197 * 'current' within the tree based on its new key value.
5198 */
4d78e7b6 5199 swap(curr->vruntime, se->vruntime);
aec0a514 5200 resched_task(rq->curr);
4d78e7b6 5201 }
bf0f6f24 5202
88ec22d3
PZ
5203 se->vruntime -= cfs_rq->min_vruntime;
5204
05fa785c 5205 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5206}
5207
cb469845
SR
5208/*
5209 * Priority of the task has changed. Check to see if we preempt
5210 * the current task.
5211 */
da7a735e
PZ
5212static void
5213prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5214{
da7a735e
PZ
5215 if (!p->se.on_rq)
5216 return;
5217
cb469845
SR
5218 /*
5219 * Reschedule if we are currently running on this runqueue and
5220 * our priority decreased, or if we are not currently running on
5221 * this runqueue and our priority is higher than the current's
5222 */
da7a735e 5223 if (rq->curr == p) {
cb469845
SR
5224 if (p->prio > oldprio)
5225 resched_task(rq->curr);
5226 } else
15afe09b 5227 check_preempt_curr(rq, p, 0);
cb469845
SR
5228}
5229
da7a735e
PZ
5230static void switched_from_fair(struct rq *rq, struct task_struct *p)
5231{
5232 struct sched_entity *se = &p->se;
5233 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5234
5235 /*
5236 * Ensure the task's vruntime is normalized, so that when its
5237 * switched back to the fair class the enqueue_entity(.flags=0) will
5238 * do the right thing.
5239 *
5240 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5241 * have normalized the vruntime, if it was !on_rq, then only when
5242 * the task is sleeping will it still have non-normalized vruntime.
5243 */
5244 if (!se->on_rq && p->state != TASK_RUNNING) {
5245 /*
5246 * Fix up our vruntime so that the current sleep doesn't
5247 * cause 'unlimited' sleep bonus.
5248 */
5249 place_entity(cfs_rq, se, 0);
5250 se->vruntime -= cfs_rq->min_vruntime;
5251 }
5252}
5253
cb469845
SR
5254/*
5255 * We switched to the sched_fair class.
5256 */
da7a735e 5257static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5258{
da7a735e
PZ
5259 if (!p->se.on_rq)
5260 return;
5261
cb469845
SR
5262 /*
5263 * We were most likely switched from sched_rt, so
5264 * kick off the schedule if running, otherwise just see
5265 * if we can still preempt the current task.
5266 */
da7a735e 5267 if (rq->curr == p)
cb469845
SR
5268 resched_task(rq->curr);
5269 else
15afe09b 5270 check_preempt_curr(rq, p, 0);
cb469845
SR
5271}
5272
83b699ed
SV
5273/* Account for a task changing its policy or group.
5274 *
5275 * This routine is mostly called to set cfs_rq->curr field when a task
5276 * migrates between groups/classes.
5277 */
5278static void set_curr_task_fair(struct rq *rq)
5279{
5280 struct sched_entity *se = &rq->curr->se;
5281
ec12cb7f
PT
5282 for_each_sched_entity(se) {
5283 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5284
5285 set_next_entity(cfs_rq, se);
5286 /* ensure bandwidth has been allocated on our new cfs_rq */
5287 account_cfs_rq_runtime(cfs_rq, 0);
5288 }
83b699ed
SV
5289}
5290
029632fb
PZ
5291void init_cfs_rq(struct cfs_rq *cfs_rq)
5292{
5293 cfs_rq->tasks_timeline = RB_ROOT;
5294 INIT_LIST_HEAD(&cfs_rq->tasks);
5295 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5296#ifndef CONFIG_64BIT
5297 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5298#endif
5299}
5300
810b3817 5301#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5302static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5303{
b2b5ce02
PZ
5304 /*
5305 * If the task was not on the rq at the time of this cgroup movement
5306 * it must have been asleep, sleeping tasks keep their ->vruntime
5307 * absolute on their old rq until wakeup (needed for the fair sleeper
5308 * bonus in place_entity()).
5309 *
5310 * If it was on the rq, we've just 'preempted' it, which does convert
5311 * ->vruntime to a relative base.
5312 *
5313 * Make sure both cases convert their relative position when migrating
5314 * to another cgroup's rq. This does somewhat interfere with the
5315 * fair sleeper stuff for the first placement, but who cares.
5316 */
5317 if (!on_rq)
5318 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5319 set_task_rq(p, task_cpu(p));
88ec22d3 5320 if (!on_rq)
b2b5ce02 5321 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5322}
029632fb
PZ
5323
5324void free_fair_sched_group(struct task_group *tg)
5325{
5326 int i;
5327
5328 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5329
5330 for_each_possible_cpu(i) {
5331 if (tg->cfs_rq)
5332 kfree(tg->cfs_rq[i]);
5333 if (tg->se)
5334 kfree(tg->se[i]);
5335 }
5336
5337 kfree(tg->cfs_rq);
5338 kfree(tg->se);
5339}
5340
5341int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5342{
5343 struct cfs_rq *cfs_rq;
5344 struct sched_entity *se;
5345 int i;
5346
5347 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5348 if (!tg->cfs_rq)
5349 goto err;
5350 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5351 if (!tg->se)
5352 goto err;
5353
5354 tg->shares = NICE_0_LOAD;
5355
5356 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5357
5358 for_each_possible_cpu(i) {
5359 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5360 GFP_KERNEL, cpu_to_node(i));
5361 if (!cfs_rq)
5362 goto err;
5363
5364 se = kzalloc_node(sizeof(struct sched_entity),
5365 GFP_KERNEL, cpu_to_node(i));
5366 if (!se)
5367 goto err_free_rq;
5368
5369 init_cfs_rq(cfs_rq);
5370 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5371 }
5372
5373 return 1;
5374
5375err_free_rq:
5376 kfree(cfs_rq);
5377err:
5378 return 0;
5379}
5380
5381void unregister_fair_sched_group(struct task_group *tg, int cpu)
5382{
5383 struct rq *rq = cpu_rq(cpu);
5384 unsigned long flags;
5385
5386 /*
5387 * Only empty task groups can be destroyed; so we can speculatively
5388 * check on_list without danger of it being re-added.
5389 */
5390 if (!tg->cfs_rq[cpu]->on_list)
5391 return;
5392
5393 raw_spin_lock_irqsave(&rq->lock, flags);
5394 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5395 raw_spin_unlock_irqrestore(&rq->lock, flags);
5396}
5397
5398void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5399 struct sched_entity *se, int cpu,
5400 struct sched_entity *parent)
5401{
5402 struct rq *rq = cpu_rq(cpu);
5403
5404 cfs_rq->tg = tg;
5405 cfs_rq->rq = rq;
5406#ifdef CONFIG_SMP
5407 /* allow initial update_cfs_load() to truncate */
5408 cfs_rq->load_stamp = 1;
810b3817 5409#endif
029632fb
PZ
5410 init_cfs_rq_runtime(cfs_rq);
5411
5412 tg->cfs_rq[cpu] = cfs_rq;
5413 tg->se[cpu] = se;
5414
5415 /* se could be NULL for root_task_group */
5416 if (!se)
5417 return;
5418
5419 if (!parent)
5420 se->cfs_rq = &rq->cfs;
5421 else
5422 se->cfs_rq = parent->my_q;
5423
5424 se->my_q = cfs_rq;
5425 update_load_set(&se->load, 0);
5426 se->parent = parent;
5427}
5428
5429static DEFINE_MUTEX(shares_mutex);
5430
5431int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5432{
5433 int i;
5434 unsigned long flags;
5435
5436 /*
5437 * We can't change the weight of the root cgroup.
5438 */
5439 if (!tg->se[0])
5440 return -EINVAL;
5441
5442 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5443
5444 mutex_lock(&shares_mutex);
5445 if (tg->shares == shares)
5446 goto done;
5447
5448 tg->shares = shares;
5449 for_each_possible_cpu(i) {
5450 struct rq *rq = cpu_rq(i);
5451 struct sched_entity *se;
5452
5453 se = tg->se[i];
5454 /* Propagate contribution to hierarchy */
5455 raw_spin_lock_irqsave(&rq->lock, flags);
5456 for_each_sched_entity(se)
5457 update_cfs_shares(group_cfs_rq(se));
5458 raw_spin_unlock_irqrestore(&rq->lock, flags);
5459 }
5460
5461done:
5462 mutex_unlock(&shares_mutex);
5463 return 0;
5464}
5465#else /* CONFIG_FAIR_GROUP_SCHED */
5466
5467void free_fair_sched_group(struct task_group *tg) { }
5468
5469int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5470{
5471 return 1;
5472}
5473
5474void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5475
5476#endif /* CONFIG_FAIR_GROUP_SCHED */
5477
810b3817 5478
6d686f45 5479static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5480{
5481 struct sched_entity *se = &task->se;
0d721cea
PW
5482 unsigned int rr_interval = 0;
5483
5484 /*
5485 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5486 * idle runqueue:
5487 */
0d721cea
PW
5488 if (rq->cfs.load.weight)
5489 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5490
5491 return rr_interval;
5492}
5493
bf0f6f24
IM
5494/*
5495 * All the scheduling class methods:
5496 */
029632fb 5497const struct sched_class fair_sched_class = {
5522d5d5 5498 .next = &idle_sched_class,
bf0f6f24
IM
5499 .enqueue_task = enqueue_task_fair,
5500 .dequeue_task = dequeue_task_fair,
5501 .yield_task = yield_task_fair,
d95f4122 5502 .yield_to_task = yield_to_task_fair,
bf0f6f24 5503
2e09bf55 5504 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5505
5506 .pick_next_task = pick_next_task_fair,
5507 .put_prev_task = put_prev_task_fair,
5508
681f3e68 5509#ifdef CONFIG_SMP
4ce72a2c
LZ
5510 .select_task_rq = select_task_rq_fair,
5511
0bcdcf28
CE
5512 .rq_online = rq_online_fair,
5513 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5514
5515 .task_waking = task_waking_fair,
681f3e68 5516#endif
bf0f6f24 5517
83b699ed 5518 .set_curr_task = set_curr_task_fair,
bf0f6f24 5519 .task_tick = task_tick_fair,
cd29fe6f 5520 .task_fork = task_fork_fair,
cb469845
SR
5521
5522 .prio_changed = prio_changed_fair,
da7a735e 5523 .switched_from = switched_from_fair,
cb469845 5524 .switched_to = switched_to_fair,
810b3817 5525
0d721cea
PW
5526 .get_rr_interval = get_rr_interval_fair,
5527
810b3817 5528#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5529 .task_move_group = task_move_group_fair,
810b3817 5530#endif
bf0f6f24
IM
5531};
5532
5533#ifdef CONFIG_SCHED_DEBUG
029632fb 5534void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5535{
bf0f6f24
IM
5536 struct cfs_rq *cfs_rq;
5537
5973e5b9 5538 rcu_read_lock();
c3b64f1e 5539 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5540 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5541 rcu_read_unlock();
bf0f6f24
IM
5542}
5543#endif
029632fb
PZ
5544
5545__init void init_sched_fair_class(void)
5546{
5547#ifdef CONFIG_SMP
5548 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5549
5550#ifdef CONFIG_NO_HZ
5551 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
5552#endif
5553#endif /* SMP */
5554
5555}