]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/core: Move sched_entity::avg into separate cache line
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
758 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
759
760 if (entity_is_task(se)) {
761 p = task_of(se);
762 if (task_on_rq_migrating(p)) {
763 /*
764 * Preserve migrating task's wait time so wait_start
765 * time stamp can be adjusted to accumulate wait time
766 * prior to migration.
767 */
768 se->statistics.wait_start = delta;
769 return;
770 }
771 trace_sched_stat_wait(p, delta);
772 }
773
774 se->statistics.wait_max = max(se->statistics.wait_max, delta);
775 se->statistics.wait_count++;
776 se->statistics.wait_sum += delta;
777 se->statistics.wait_start = 0;
778}
779#else
780static inline void
781update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
782{
783}
784
785static inline void
786update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
787{
788}
789#endif
790
bf0f6f24
IM
791/*
792 * Task is being enqueued - update stats:
793 */
d2417e5a 794static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
bf0f6f24
IM
796 /*
797 * Are we enqueueing a waiting task? (for current tasks
798 * a dequeue/enqueue event is a NOP)
799 */
429d43bc 800 if (se != cfs_rq->curr)
5870db5b 801 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
802}
803
bf0f6f24 804static inline void
19b6a2e3 805update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 806{
bf0f6f24
IM
807 /*
808 * Mark the end of the wait period if dequeueing a
809 * waiting task:
810 */
429d43bc 811 if (se != cfs_rq->curr)
9ef0a961 812 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
813}
814
815/*
816 * We are picking a new current task - update its stats:
817 */
818static inline void
79303e9e 819update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
820{
821 /*
822 * We are starting a new run period:
823 */
78becc27 824 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
825}
826
bf0f6f24
IM
827/**************************************************
828 * Scheduling class queueing methods:
829 */
830
cbee9f88
PZ
831#ifdef CONFIG_NUMA_BALANCING
832/*
598f0ec0
MG
833 * Approximate time to scan a full NUMA task in ms. The task scan period is
834 * calculated based on the tasks virtual memory size and
835 * numa_balancing_scan_size.
cbee9f88 836 */
598f0ec0
MG
837unsigned int sysctl_numa_balancing_scan_period_min = 1000;
838unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
839
840/* Portion of address space to scan in MB */
841unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 842
4b96a29b
PZ
843/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
844unsigned int sysctl_numa_balancing_scan_delay = 1000;
845
598f0ec0
MG
846static unsigned int task_nr_scan_windows(struct task_struct *p)
847{
848 unsigned long rss = 0;
849 unsigned long nr_scan_pages;
850
851 /*
852 * Calculations based on RSS as non-present and empty pages are skipped
853 * by the PTE scanner and NUMA hinting faults should be trapped based
854 * on resident pages
855 */
856 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
857 rss = get_mm_rss(p->mm);
858 if (!rss)
859 rss = nr_scan_pages;
860
861 rss = round_up(rss, nr_scan_pages);
862 return rss / nr_scan_pages;
863}
864
865/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
866#define MAX_SCAN_WINDOW 2560
867
868static unsigned int task_scan_min(struct task_struct *p)
869{
316c1608 870 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
871 unsigned int scan, floor;
872 unsigned int windows = 1;
873
64192658
KT
874 if (scan_size < MAX_SCAN_WINDOW)
875 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
876 floor = 1000 / windows;
877
878 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
879 return max_t(unsigned int, floor, scan);
880}
881
882static unsigned int task_scan_max(struct task_struct *p)
883{
884 unsigned int smin = task_scan_min(p);
885 unsigned int smax;
886
887 /* Watch for min being lower than max due to floor calculations */
888 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
889 return max(smin, smax);
890}
891
0ec8aa00
PZ
892static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
893{
894 rq->nr_numa_running += (p->numa_preferred_nid != -1);
895 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
896}
897
898static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
902}
903
8c8a743c
PZ
904struct numa_group {
905 atomic_t refcount;
906
907 spinlock_t lock; /* nr_tasks, tasks */
908 int nr_tasks;
e29cf08b 909 pid_t gid;
8c8a743c
PZ
910
911 struct rcu_head rcu;
20e07dea 912 nodemask_t active_nodes;
989348b5 913 unsigned long total_faults;
7e2703e6
RR
914 /*
915 * Faults_cpu is used to decide whether memory should move
916 * towards the CPU. As a consequence, these stats are weighted
917 * more by CPU use than by memory faults.
918 */
50ec8a40 919 unsigned long *faults_cpu;
989348b5 920 unsigned long faults[0];
8c8a743c
PZ
921};
922
be1e4e76
RR
923/* Shared or private faults. */
924#define NR_NUMA_HINT_FAULT_TYPES 2
925
926/* Memory and CPU locality */
927#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
928
929/* Averaged statistics, and temporary buffers. */
930#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
931
e29cf08b
MG
932pid_t task_numa_group_id(struct task_struct *p)
933{
934 return p->numa_group ? p->numa_group->gid : 0;
935}
936
44dba3d5
IM
937/*
938 * The averaged statistics, shared & private, memory & cpu,
939 * occupy the first half of the array. The second half of the
940 * array is for current counters, which are averaged into the
941 * first set by task_numa_placement.
942 */
943static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 944{
44dba3d5 945 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
946}
947
948static inline unsigned long task_faults(struct task_struct *p, int nid)
949{
44dba3d5 950 if (!p->numa_faults)
ac8e895b
MG
951 return 0;
952
44dba3d5
IM
953 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
954 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
955}
956
83e1d2cd
MG
957static inline unsigned long group_faults(struct task_struct *p, int nid)
958{
959 if (!p->numa_group)
960 return 0;
961
44dba3d5
IM
962 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
963 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
964}
965
20e07dea
RR
966static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
967{
44dba3d5
IM
968 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
969 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
970}
971
6c6b1193
RR
972/* Handle placement on systems where not all nodes are directly connected. */
973static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
974 int maxdist, bool task)
975{
976 unsigned long score = 0;
977 int node;
978
979 /*
980 * All nodes are directly connected, and the same distance
981 * from each other. No need for fancy placement algorithms.
982 */
983 if (sched_numa_topology_type == NUMA_DIRECT)
984 return 0;
985
986 /*
987 * This code is called for each node, introducing N^2 complexity,
988 * which should be ok given the number of nodes rarely exceeds 8.
989 */
990 for_each_online_node(node) {
991 unsigned long faults;
992 int dist = node_distance(nid, node);
993
994 /*
995 * The furthest away nodes in the system are not interesting
996 * for placement; nid was already counted.
997 */
998 if (dist == sched_max_numa_distance || node == nid)
999 continue;
1000
1001 /*
1002 * On systems with a backplane NUMA topology, compare groups
1003 * of nodes, and move tasks towards the group with the most
1004 * memory accesses. When comparing two nodes at distance
1005 * "hoplimit", only nodes closer by than "hoplimit" are part
1006 * of each group. Skip other nodes.
1007 */
1008 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1009 dist > maxdist)
1010 continue;
1011
1012 /* Add up the faults from nearby nodes. */
1013 if (task)
1014 faults = task_faults(p, node);
1015 else
1016 faults = group_faults(p, node);
1017
1018 /*
1019 * On systems with a glueless mesh NUMA topology, there are
1020 * no fixed "groups of nodes". Instead, nodes that are not
1021 * directly connected bounce traffic through intermediate
1022 * nodes; a numa_group can occupy any set of nodes.
1023 * The further away a node is, the less the faults count.
1024 * This seems to result in good task placement.
1025 */
1026 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1027 faults *= (sched_max_numa_distance - dist);
1028 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1029 }
1030
1031 score += faults;
1032 }
1033
1034 return score;
1035}
1036
83e1d2cd
MG
1037/*
1038 * These return the fraction of accesses done by a particular task, or
1039 * task group, on a particular numa node. The group weight is given a
1040 * larger multiplier, in order to group tasks together that are almost
1041 * evenly spread out between numa nodes.
1042 */
7bd95320
RR
1043static inline unsigned long task_weight(struct task_struct *p, int nid,
1044 int dist)
83e1d2cd 1045{
7bd95320 1046 unsigned long faults, total_faults;
83e1d2cd 1047
44dba3d5 1048 if (!p->numa_faults)
83e1d2cd
MG
1049 return 0;
1050
1051 total_faults = p->total_numa_faults;
1052
1053 if (!total_faults)
1054 return 0;
1055
7bd95320 1056 faults = task_faults(p, nid);
6c6b1193
RR
1057 faults += score_nearby_nodes(p, nid, dist, true);
1058
7bd95320 1059 return 1000 * faults / total_faults;
83e1d2cd
MG
1060}
1061
7bd95320
RR
1062static inline unsigned long group_weight(struct task_struct *p, int nid,
1063 int dist)
83e1d2cd 1064{
7bd95320
RR
1065 unsigned long faults, total_faults;
1066
1067 if (!p->numa_group)
1068 return 0;
1069
1070 total_faults = p->numa_group->total_faults;
1071
1072 if (!total_faults)
83e1d2cd
MG
1073 return 0;
1074
7bd95320 1075 faults = group_faults(p, nid);
6c6b1193
RR
1076 faults += score_nearby_nodes(p, nid, dist, false);
1077
7bd95320 1078 return 1000 * faults / total_faults;
83e1d2cd
MG
1079}
1080
10f39042
RR
1081bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1082 int src_nid, int dst_cpu)
1083{
1084 struct numa_group *ng = p->numa_group;
1085 int dst_nid = cpu_to_node(dst_cpu);
1086 int last_cpupid, this_cpupid;
1087
1088 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1089
1090 /*
1091 * Multi-stage node selection is used in conjunction with a periodic
1092 * migration fault to build a temporal task<->page relation. By using
1093 * a two-stage filter we remove short/unlikely relations.
1094 *
1095 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1096 * a task's usage of a particular page (n_p) per total usage of this
1097 * page (n_t) (in a given time-span) to a probability.
1098 *
1099 * Our periodic faults will sample this probability and getting the
1100 * same result twice in a row, given these samples are fully
1101 * independent, is then given by P(n)^2, provided our sample period
1102 * is sufficiently short compared to the usage pattern.
1103 *
1104 * This quadric squishes small probabilities, making it less likely we
1105 * act on an unlikely task<->page relation.
1106 */
1107 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1108 if (!cpupid_pid_unset(last_cpupid) &&
1109 cpupid_to_nid(last_cpupid) != dst_nid)
1110 return false;
1111
1112 /* Always allow migrate on private faults */
1113 if (cpupid_match_pid(p, last_cpupid))
1114 return true;
1115
1116 /* A shared fault, but p->numa_group has not been set up yet. */
1117 if (!ng)
1118 return true;
1119
1120 /*
1121 * Do not migrate if the destination is not a node that
1122 * is actively used by this numa group.
1123 */
1124 if (!node_isset(dst_nid, ng->active_nodes))
1125 return false;
1126
1127 /*
1128 * Source is a node that is not actively used by this
1129 * numa group, while the destination is. Migrate.
1130 */
1131 if (!node_isset(src_nid, ng->active_nodes))
1132 return true;
1133
1134 /*
1135 * Both source and destination are nodes in active
1136 * use by this numa group. Maximize memory bandwidth
1137 * by migrating from more heavily used groups, to less
1138 * heavily used ones, spreading the load around.
1139 * Use a 1/4 hysteresis to avoid spurious page movement.
1140 */
1141 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1142}
1143
e6628d5b 1144static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1145static unsigned long source_load(int cpu, int type);
1146static unsigned long target_load(int cpu, int type);
ced549fa 1147static unsigned long capacity_of(int cpu);
58d081b5
MG
1148static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1149
fb13c7ee 1150/* Cached statistics for all CPUs within a node */
58d081b5 1151struct numa_stats {
fb13c7ee 1152 unsigned long nr_running;
58d081b5 1153 unsigned long load;
fb13c7ee
MG
1154
1155 /* Total compute capacity of CPUs on a node */
5ef20ca1 1156 unsigned long compute_capacity;
fb13c7ee
MG
1157
1158 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1159 unsigned long task_capacity;
1b6a7495 1160 int has_free_capacity;
58d081b5 1161};
e6628d5b 1162
fb13c7ee
MG
1163/*
1164 * XXX borrowed from update_sg_lb_stats
1165 */
1166static void update_numa_stats(struct numa_stats *ns, int nid)
1167{
83d7f242
RR
1168 int smt, cpu, cpus = 0;
1169 unsigned long capacity;
fb13c7ee
MG
1170
1171 memset(ns, 0, sizeof(*ns));
1172 for_each_cpu(cpu, cpumask_of_node(nid)) {
1173 struct rq *rq = cpu_rq(cpu);
1174
1175 ns->nr_running += rq->nr_running;
1176 ns->load += weighted_cpuload(cpu);
ced549fa 1177 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1178
1179 cpus++;
fb13c7ee
MG
1180 }
1181
5eca82a9
PZ
1182 /*
1183 * If we raced with hotplug and there are no CPUs left in our mask
1184 * the @ns structure is NULL'ed and task_numa_compare() will
1185 * not find this node attractive.
1186 *
1b6a7495
NP
1187 * We'll either bail at !has_free_capacity, or we'll detect a huge
1188 * imbalance and bail there.
5eca82a9
PZ
1189 */
1190 if (!cpus)
1191 return;
1192
83d7f242
RR
1193 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1194 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1195 capacity = cpus / smt; /* cores */
1196
1197 ns->task_capacity = min_t(unsigned, capacity,
1198 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1199 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1200}
1201
58d081b5
MG
1202struct task_numa_env {
1203 struct task_struct *p;
e6628d5b 1204
58d081b5
MG
1205 int src_cpu, src_nid;
1206 int dst_cpu, dst_nid;
e6628d5b 1207
58d081b5 1208 struct numa_stats src_stats, dst_stats;
e6628d5b 1209
40ea2b42 1210 int imbalance_pct;
7bd95320 1211 int dist;
fb13c7ee
MG
1212
1213 struct task_struct *best_task;
1214 long best_imp;
58d081b5
MG
1215 int best_cpu;
1216};
1217
fb13c7ee
MG
1218static void task_numa_assign(struct task_numa_env *env,
1219 struct task_struct *p, long imp)
1220{
1221 if (env->best_task)
1222 put_task_struct(env->best_task);
1223 if (p)
1224 get_task_struct(p);
1225
1226 env->best_task = p;
1227 env->best_imp = imp;
1228 env->best_cpu = env->dst_cpu;
1229}
1230
28a21745 1231static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1232 struct task_numa_env *env)
1233{
e4991b24
RR
1234 long imb, old_imb;
1235 long orig_src_load, orig_dst_load;
28a21745
RR
1236 long src_capacity, dst_capacity;
1237
1238 /*
1239 * The load is corrected for the CPU capacity available on each node.
1240 *
1241 * src_load dst_load
1242 * ------------ vs ---------
1243 * src_capacity dst_capacity
1244 */
1245 src_capacity = env->src_stats.compute_capacity;
1246 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1247
1248 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1249 if (dst_load < src_load)
1250 swap(dst_load, src_load);
e63da036
RR
1251
1252 /* Is the difference below the threshold? */
e4991b24
RR
1253 imb = dst_load * src_capacity * 100 -
1254 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1255 if (imb <= 0)
1256 return false;
1257
1258 /*
1259 * The imbalance is above the allowed threshold.
e4991b24 1260 * Compare it with the old imbalance.
e63da036 1261 */
28a21745 1262 orig_src_load = env->src_stats.load;
e4991b24 1263 orig_dst_load = env->dst_stats.load;
28a21745 1264
e4991b24
RR
1265 if (orig_dst_load < orig_src_load)
1266 swap(orig_dst_load, orig_src_load);
e63da036 1267
e4991b24
RR
1268 old_imb = orig_dst_load * src_capacity * 100 -
1269 orig_src_load * dst_capacity * env->imbalance_pct;
1270
1271 /* Would this change make things worse? */
1272 return (imb > old_imb);
e63da036
RR
1273}
1274
fb13c7ee
MG
1275/*
1276 * This checks if the overall compute and NUMA accesses of the system would
1277 * be improved if the source tasks was migrated to the target dst_cpu taking
1278 * into account that it might be best if task running on the dst_cpu should
1279 * be exchanged with the source task
1280 */
887c290e
RR
1281static void task_numa_compare(struct task_numa_env *env,
1282 long taskimp, long groupimp)
fb13c7ee
MG
1283{
1284 struct rq *src_rq = cpu_rq(env->src_cpu);
1285 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1286 struct task_struct *cur;
28a21745 1287 long src_load, dst_load;
fb13c7ee 1288 long load;
1c5d3eb3 1289 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1290 long moveimp = imp;
7bd95320 1291 int dist = env->dist;
fb13c7ee
MG
1292
1293 rcu_read_lock();
1effd9f1
KT
1294
1295 raw_spin_lock_irq(&dst_rq->lock);
1296 cur = dst_rq->curr;
1297 /*
1298 * No need to move the exiting task, and this ensures that ->curr
1299 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1300 * is safe under RCU read lock.
1301 * Note that rcu_read_lock() itself can't protect from the final
1302 * put_task_struct() after the last schedule().
1303 */
1304 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1305 cur = NULL;
1effd9f1 1306 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1307
7af68335
PZ
1308 /*
1309 * Because we have preemption enabled we can get migrated around and
1310 * end try selecting ourselves (current == env->p) as a swap candidate.
1311 */
1312 if (cur == env->p)
1313 goto unlock;
1314
fb13c7ee
MG
1315 /*
1316 * "imp" is the fault differential for the source task between the
1317 * source and destination node. Calculate the total differential for
1318 * the source task and potential destination task. The more negative
1319 * the value is, the more rmeote accesses that would be expected to
1320 * be incurred if the tasks were swapped.
1321 */
1322 if (cur) {
1323 /* Skip this swap candidate if cannot move to the source cpu */
1324 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1325 goto unlock;
1326
887c290e
RR
1327 /*
1328 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1329 * in any group then look only at task weights.
887c290e 1330 */
ca28aa53 1331 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1332 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1333 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1334 /*
1335 * Add some hysteresis to prevent swapping the
1336 * tasks within a group over tiny differences.
1337 */
1338 if (cur->numa_group)
1339 imp -= imp/16;
887c290e 1340 } else {
ca28aa53
RR
1341 /*
1342 * Compare the group weights. If a task is all by
1343 * itself (not part of a group), use the task weight
1344 * instead.
1345 */
ca28aa53 1346 if (cur->numa_group)
7bd95320
RR
1347 imp += group_weight(cur, env->src_nid, dist) -
1348 group_weight(cur, env->dst_nid, dist);
ca28aa53 1349 else
7bd95320
RR
1350 imp += task_weight(cur, env->src_nid, dist) -
1351 task_weight(cur, env->dst_nid, dist);
887c290e 1352 }
fb13c7ee
MG
1353 }
1354
0132c3e1 1355 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1356 goto unlock;
1357
1358 if (!cur) {
1359 /* Is there capacity at our destination? */
b932c03c 1360 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1361 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1362 goto unlock;
1363
1364 goto balance;
1365 }
1366
1367 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1368 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1369 dst_rq->nr_running == 1)
fb13c7ee
MG
1370 goto assign;
1371
1372 /*
1373 * In the overloaded case, try and keep the load balanced.
1374 */
1375balance:
e720fff6
PZ
1376 load = task_h_load(env->p);
1377 dst_load = env->dst_stats.load + load;
1378 src_load = env->src_stats.load - load;
fb13c7ee 1379
0132c3e1
RR
1380 if (moveimp > imp && moveimp > env->best_imp) {
1381 /*
1382 * If the improvement from just moving env->p direction is
1383 * better than swapping tasks around, check if a move is
1384 * possible. Store a slightly smaller score than moveimp,
1385 * so an actually idle CPU will win.
1386 */
1387 if (!load_too_imbalanced(src_load, dst_load, env)) {
1388 imp = moveimp - 1;
1389 cur = NULL;
1390 goto assign;
1391 }
1392 }
1393
1394 if (imp <= env->best_imp)
1395 goto unlock;
1396
fb13c7ee 1397 if (cur) {
e720fff6
PZ
1398 load = task_h_load(cur);
1399 dst_load -= load;
1400 src_load += load;
fb13c7ee
MG
1401 }
1402
28a21745 1403 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1404 goto unlock;
1405
ba7e5a27
RR
1406 /*
1407 * One idle CPU per node is evaluated for a task numa move.
1408 * Call select_idle_sibling to maybe find a better one.
1409 */
1410 if (!cur)
1411 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1412
fb13c7ee
MG
1413assign:
1414 task_numa_assign(env, cur, imp);
1415unlock:
1416 rcu_read_unlock();
1417}
1418
887c290e
RR
1419static void task_numa_find_cpu(struct task_numa_env *env,
1420 long taskimp, long groupimp)
2c8a50aa
MG
1421{
1422 int cpu;
1423
1424 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1425 /* Skip this CPU if the source task cannot migrate */
1426 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1427 continue;
1428
1429 env->dst_cpu = cpu;
887c290e 1430 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1431 }
1432}
1433
6f9aad0b
RR
1434/* Only move tasks to a NUMA node less busy than the current node. */
1435static bool numa_has_capacity(struct task_numa_env *env)
1436{
1437 struct numa_stats *src = &env->src_stats;
1438 struct numa_stats *dst = &env->dst_stats;
1439
1440 if (src->has_free_capacity && !dst->has_free_capacity)
1441 return false;
1442
1443 /*
1444 * Only consider a task move if the source has a higher load
1445 * than the destination, corrected for CPU capacity on each node.
1446 *
1447 * src->load dst->load
1448 * --------------------- vs ---------------------
1449 * src->compute_capacity dst->compute_capacity
1450 */
44dcb04f
SD
1451 if (src->load * dst->compute_capacity * env->imbalance_pct >
1452
1453 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1454 return true;
1455
1456 return false;
1457}
1458
58d081b5
MG
1459static int task_numa_migrate(struct task_struct *p)
1460{
58d081b5
MG
1461 struct task_numa_env env = {
1462 .p = p,
fb13c7ee 1463
58d081b5 1464 .src_cpu = task_cpu(p),
b32e86b4 1465 .src_nid = task_node(p),
fb13c7ee
MG
1466
1467 .imbalance_pct = 112,
1468
1469 .best_task = NULL,
1470 .best_imp = 0,
1471 .best_cpu = -1
58d081b5
MG
1472 };
1473 struct sched_domain *sd;
887c290e 1474 unsigned long taskweight, groupweight;
7bd95320 1475 int nid, ret, dist;
887c290e 1476 long taskimp, groupimp;
e6628d5b 1477
58d081b5 1478 /*
fb13c7ee
MG
1479 * Pick the lowest SD_NUMA domain, as that would have the smallest
1480 * imbalance and would be the first to start moving tasks about.
1481 *
1482 * And we want to avoid any moving of tasks about, as that would create
1483 * random movement of tasks -- counter the numa conditions we're trying
1484 * to satisfy here.
58d081b5
MG
1485 */
1486 rcu_read_lock();
fb13c7ee 1487 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1488 if (sd)
1489 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1490 rcu_read_unlock();
1491
46a73e8a
RR
1492 /*
1493 * Cpusets can break the scheduler domain tree into smaller
1494 * balance domains, some of which do not cross NUMA boundaries.
1495 * Tasks that are "trapped" in such domains cannot be migrated
1496 * elsewhere, so there is no point in (re)trying.
1497 */
1498 if (unlikely(!sd)) {
de1b301a 1499 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1500 return -EINVAL;
1501 }
1502
2c8a50aa 1503 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1504 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1507 update_numa_stats(&env.src_stats, env.src_nid);
1508 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1509 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1510 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1511
a43455a1 1512 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1513 if (numa_has_capacity(&env))
1514 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1515
9de05d48
RR
1516 /*
1517 * Look at other nodes in these cases:
1518 * - there is no space available on the preferred_nid
1519 * - the task is part of a numa_group that is interleaved across
1520 * multiple NUMA nodes; in order to better consolidate the group,
1521 * we need to check other locations.
1522 */
1523 if (env.best_cpu == -1 || (p->numa_group &&
1524 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1525 for_each_online_node(nid) {
1526 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1527 continue;
58d081b5 1528
7bd95320 1529 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1530 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1531 dist != env.dist) {
1532 taskweight = task_weight(p, env.src_nid, dist);
1533 groupweight = group_weight(p, env.src_nid, dist);
1534 }
7bd95320 1535
83e1d2cd 1536 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1537 taskimp = task_weight(p, nid, dist) - taskweight;
1538 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1539 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1540 continue;
1541
7bd95320 1542 env.dist = dist;
2c8a50aa
MG
1543 env.dst_nid = nid;
1544 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1545 if (numa_has_capacity(&env))
1546 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1547 }
1548 }
1549
68d1b02a
RR
1550 /*
1551 * If the task is part of a workload that spans multiple NUMA nodes,
1552 * and is migrating into one of the workload's active nodes, remember
1553 * this node as the task's preferred numa node, so the workload can
1554 * settle down.
1555 * A task that migrated to a second choice node will be better off
1556 * trying for a better one later. Do not set the preferred node here.
1557 */
db015dae
RR
1558 if (p->numa_group) {
1559 if (env.best_cpu == -1)
1560 nid = env.src_nid;
1561 else
1562 nid = env.dst_nid;
1563
1564 if (node_isset(nid, p->numa_group->active_nodes))
1565 sched_setnuma(p, env.dst_nid);
1566 }
1567
1568 /* No better CPU than the current one was found. */
1569 if (env.best_cpu == -1)
1570 return -EAGAIN;
0ec8aa00 1571
04bb2f94
RR
1572 /*
1573 * Reset the scan period if the task is being rescheduled on an
1574 * alternative node to recheck if the tasks is now properly placed.
1575 */
1576 p->numa_scan_period = task_scan_min(p);
1577
fb13c7ee 1578 if (env.best_task == NULL) {
286549dc
MG
1579 ret = migrate_task_to(p, env.best_cpu);
1580 if (ret != 0)
1581 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1582 return ret;
1583 }
1584
1585 ret = migrate_swap(p, env.best_task);
286549dc
MG
1586 if (ret != 0)
1587 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1588 put_task_struct(env.best_task);
1589 return ret;
e6628d5b
MG
1590}
1591
6b9a7460
MG
1592/* Attempt to migrate a task to a CPU on the preferred node. */
1593static void numa_migrate_preferred(struct task_struct *p)
1594{
5085e2a3
RR
1595 unsigned long interval = HZ;
1596
2739d3ee 1597 /* This task has no NUMA fault statistics yet */
44dba3d5 1598 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1599 return;
1600
2739d3ee 1601 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1602 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1603 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1604
1605 /* Success if task is already running on preferred CPU */
de1b301a 1606 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1607 return;
1608
1609 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1610 task_numa_migrate(p);
6b9a7460
MG
1611}
1612
20e07dea
RR
1613/*
1614 * Find the nodes on which the workload is actively running. We do this by
1615 * tracking the nodes from which NUMA hinting faults are triggered. This can
1616 * be different from the set of nodes where the workload's memory is currently
1617 * located.
1618 *
1619 * The bitmask is used to make smarter decisions on when to do NUMA page
1620 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1621 * are added when they cause over 6/16 of the maximum number of faults, but
1622 * only removed when they drop below 3/16.
1623 */
1624static void update_numa_active_node_mask(struct numa_group *numa_group)
1625{
1626 unsigned long faults, max_faults = 0;
1627 int nid;
1628
1629 for_each_online_node(nid) {
1630 faults = group_faults_cpu(numa_group, nid);
1631 if (faults > max_faults)
1632 max_faults = faults;
1633 }
1634
1635 for_each_online_node(nid) {
1636 faults = group_faults_cpu(numa_group, nid);
1637 if (!node_isset(nid, numa_group->active_nodes)) {
1638 if (faults > max_faults * 6 / 16)
1639 node_set(nid, numa_group->active_nodes);
1640 } else if (faults < max_faults * 3 / 16)
1641 node_clear(nid, numa_group->active_nodes);
1642 }
1643}
1644
04bb2f94
RR
1645/*
1646 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1647 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1648 * period will be for the next scan window. If local/(local+remote) ratio is
1649 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1650 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1651 */
1652#define NUMA_PERIOD_SLOTS 10
a22b4b01 1653#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1654
1655/*
1656 * Increase the scan period (slow down scanning) if the majority of
1657 * our memory is already on our local node, or if the majority of
1658 * the page accesses are shared with other processes.
1659 * Otherwise, decrease the scan period.
1660 */
1661static void update_task_scan_period(struct task_struct *p,
1662 unsigned long shared, unsigned long private)
1663{
1664 unsigned int period_slot;
1665 int ratio;
1666 int diff;
1667
1668 unsigned long remote = p->numa_faults_locality[0];
1669 unsigned long local = p->numa_faults_locality[1];
1670
1671 /*
1672 * If there were no record hinting faults then either the task is
1673 * completely idle or all activity is areas that are not of interest
074c2381
MG
1674 * to automatic numa balancing. Related to that, if there were failed
1675 * migration then it implies we are migrating too quickly or the local
1676 * node is overloaded. In either case, scan slower
04bb2f94 1677 */
074c2381 1678 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1679 p->numa_scan_period = min(p->numa_scan_period_max,
1680 p->numa_scan_period << 1);
1681
1682 p->mm->numa_next_scan = jiffies +
1683 msecs_to_jiffies(p->numa_scan_period);
1684
1685 return;
1686 }
1687
1688 /*
1689 * Prepare to scale scan period relative to the current period.
1690 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1691 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1692 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1693 */
1694 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1695 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1696 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1697 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1698 if (!slot)
1699 slot = 1;
1700 diff = slot * period_slot;
1701 } else {
1702 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1703
1704 /*
1705 * Scale scan rate increases based on sharing. There is an
1706 * inverse relationship between the degree of sharing and
1707 * the adjustment made to the scanning period. Broadly
1708 * speaking the intent is that there is little point
1709 * scanning faster if shared accesses dominate as it may
1710 * simply bounce migrations uselessly
1711 */
2847c90e 1712 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1713 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1714 }
1715
1716 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1717 task_scan_min(p), task_scan_max(p));
1718 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1719}
1720
7e2703e6
RR
1721/*
1722 * Get the fraction of time the task has been running since the last
1723 * NUMA placement cycle. The scheduler keeps similar statistics, but
1724 * decays those on a 32ms period, which is orders of magnitude off
1725 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1726 * stats only if the task is so new there are no NUMA statistics yet.
1727 */
1728static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1729{
1730 u64 runtime, delta, now;
1731 /* Use the start of this time slice to avoid calculations. */
1732 now = p->se.exec_start;
1733 runtime = p->se.sum_exec_runtime;
1734
1735 if (p->last_task_numa_placement) {
1736 delta = runtime - p->last_sum_exec_runtime;
1737 *period = now - p->last_task_numa_placement;
1738 } else {
9d89c257
YD
1739 delta = p->se.avg.load_sum / p->se.load.weight;
1740 *period = LOAD_AVG_MAX;
7e2703e6
RR
1741 }
1742
1743 p->last_sum_exec_runtime = runtime;
1744 p->last_task_numa_placement = now;
1745
1746 return delta;
1747}
1748
54009416
RR
1749/*
1750 * Determine the preferred nid for a task in a numa_group. This needs to
1751 * be done in a way that produces consistent results with group_weight,
1752 * otherwise workloads might not converge.
1753 */
1754static int preferred_group_nid(struct task_struct *p, int nid)
1755{
1756 nodemask_t nodes;
1757 int dist;
1758
1759 /* Direct connections between all NUMA nodes. */
1760 if (sched_numa_topology_type == NUMA_DIRECT)
1761 return nid;
1762
1763 /*
1764 * On a system with glueless mesh NUMA topology, group_weight
1765 * scores nodes according to the number of NUMA hinting faults on
1766 * both the node itself, and on nearby nodes.
1767 */
1768 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1769 unsigned long score, max_score = 0;
1770 int node, max_node = nid;
1771
1772 dist = sched_max_numa_distance;
1773
1774 for_each_online_node(node) {
1775 score = group_weight(p, node, dist);
1776 if (score > max_score) {
1777 max_score = score;
1778 max_node = node;
1779 }
1780 }
1781 return max_node;
1782 }
1783
1784 /*
1785 * Finding the preferred nid in a system with NUMA backplane
1786 * interconnect topology is more involved. The goal is to locate
1787 * tasks from numa_groups near each other in the system, and
1788 * untangle workloads from different sides of the system. This requires
1789 * searching down the hierarchy of node groups, recursively searching
1790 * inside the highest scoring group of nodes. The nodemask tricks
1791 * keep the complexity of the search down.
1792 */
1793 nodes = node_online_map;
1794 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1795 unsigned long max_faults = 0;
81907478 1796 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1797 int a, b;
1798
1799 /* Are there nodes at this distance from each other? */
1800 if (!find_numa_distance(dist))
1801 continue;
1802
1803 for_each_node_mask(a, nodes) {
1804 unsigned long faults = 0;
1805 nodemask_t this_group;
1806 nodes_clear(this_group);
1807
1808 /* Sum group's NUMA faults; includes a==b case. */
1809 for_each_node_mask(b, nodes) {
1810 if (node_distance(a, b) < dist) {
1811 faults += group_faults(p, b);
1812 node_set(b, this_group);
1813 node_clear(b, nodes);
1814 }
1815 }
1816
1817 /* Remember the top group. */
1818 if (faults > max_faults) {
1819 max_faults = faults;
1820 max_group = this_group;
1821 /*
1822 * subtle: at the smallest distance there is
1823 * just one node left in each "group", the
1824 * winner is the preferred nid.
1825 */
1826 nid = a;
1827 }
1828 }
1829 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1830 if (!max_faults)
1831 break;
54009416
RR
1832 nodes = max_group;
1833 }
1834 return nid;
1835}
1836
cbee9f88
PZ
1837static void task_numa_placement(struct task_struct *p)
1838{
83e1d2cd
MG
1839 int seq, nid, max_nid = -1, max_group_nid = -1;
1840 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1841 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1842 unsigned long total_faults;
1843 u64 runtime, period;
7dbd13ed 1844 spinlock_t *group_lock = NULL;
cbee9f88 1845
7e5a2c17
JL
1846 /*
1847 * The p->mm->numa_scan_seq field gets updated without
1848 * exclusive access. Use READ_ONCE() here to ensure
1849 * that the field is read in a single access:
1850 */
316c1608 1851 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1852 if (p->numa_scan_seq == seq)
1853 return;
1854 p->numa_scan_seq = seq;
598f0ec0 1855 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1856
7e2703e6
RR
1857 total_faults = p->numa_faults_locality[0] +
1858 p->numa_faults_locality[1];
1859 runtime = numa_get_avg_runtime(p, &period);
1860
7dbd13ed
MG
1861 /* If the task is part of a group prevent parallel updates to group stats */
1862 if (p->numa_group) {
1863 group_lock = &p->numa_group->lock;
60e69eed 1864 spin_lock_irq(group_lock);
7dbd13ed
MG
1865 }
1866
688b7585
MG
1867 /* Find the node with the highest number of faults */
1868 for_each_online_node(nid) {
44dba3d5
IM
1869 /* Keep track of the offsets in numa_faults array */
1870 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1871 unsigned long faults = 0, group_faults = 0;
44dba3d5 1872 int priv;
745d6147 1873
be1e4e76 1874 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1875 long diff, f_diff, f_weight;
8c8a743c 1876
44dba3d5
IM
1877 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1878 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1879 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1880 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1881
ac8e895b 1882 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1883 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1884 fault_types[priv] += p->numa_faults[membuf_idx];
1885 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1886
7e2703e6
RR
1887 /*
1888 * Normalize the faults_from, so all tasks in a group
1889 * count according to CPU use, instead of by the raw
1890 * number of faults. Tasks with little runtime have
1891 * little over-all impact on throughput, and thus their
1892 * faults are less important.
1893 */
1894 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1895 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1896 (total_faults + 1);
44dba3d5
IM
1897 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1898 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1899
44dba3d5
IM
1900 p->numa_faults[mem_idx] += diff;
1901 p->numa_faults[cpu_idx] += f_diff;
1902 faults += p->numa_faults[mem_idx];
83e1d2cd 1903 p->total_numa_faults += diff;
8c8a743c 1904 if (p->numa_group) {
44dba3d5
IM
1905 /*
1906 * safe because we can only change our own group
1907 *
1908 * mem_idx represents the offset for a given
1909 * nid and priv in a specific region because it
1910 * is at the beginning of the numa_faults array.
1911 */
1912 p->numa_group->faults[mem_idx] += diff;
1913 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1914 p->numa_group->total_faults += diff;
44dba3d5 1915 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1916 }
ac8e895b
MG
1917 }
1918
688b7585
MG
1919 if (faults > max_faults) {
1920 max_faults = faults;
1921 max_nid = nid;
1922 }
83e1d2cd
MG
1923
1924 if (group_faults > max_group_faults) {
1925 max_group_faults = group_faults;
1926 max_group_nid = nid;
1927 }
1928 }
1929
04bb2f94
RR
1930 update_task_scan_period(p, fault_types[0], fault_types[1]);
1931
7dbd13ed 1932 if (p->numa_group) {
20e07dea 1933 update_numa_active_node_mask(p->numa_group);
60e69eed 1934 spin_unlock_irq(group_lock);
54009416 1935 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1936 }
1937
bb97fc31
RR
1938 if (max_faults) {
1939 /* Set the new preferred node */
1940 if (max_nid != p->numa_preferred_nid)
1941 sched_setnuma(p, max_nid);
1942
1943 if (task_node(p) != p->numa_preferred_nid)
1944 numa_migrate_preferred(p);
3a7053b3 1945 }
cbee9f88
PZ
1946}
1947
8c8a743c
PZ
1948static inline int get_numa_group(struct numa_group *grp)
1949{
1950 return atomic_inc_not_zero(&grp->refcount);
1951}
1952
1953static inline void put_numa_group(struct numa_group *grp)
1954{
1955 if (atomic_dec_and_test(&grp->refcount))
1956 kfree_rcu(grp, rcu);
1957}
1958
3e6a9418
MG
1959static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1960 int *priv)
8c8a743c
PZ
1961{
1962 struct numa_group *grp, *my_grp;
1963 struct task_struct *tsk;
1964 bool join = false;
1965 int cpu = cpupid_to_cpu(cpupid);
1966 int i;
1967
1968 if (unlikely(!p->numa_group)) {
1969 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1970 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1971
1972 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1973 if (!grp)
1974 return;
1975
1976 atomic_set(&grp->refcount, 1);
1977 spin_lock_init(&grp->lock);
e29cf08b 1978 grp->gid = p->pid;
50ec8a40 1979 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1980 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1981 nr_node_ids;
8c8a743c 1982
20e07dea
RR
1983 node_set(task_node(current), grp->active_nodes);
1984
be1e4e76 1985 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1986 grp->faults[i] = p->numa_faults[i];
8c8a743c 1987
989348b5 1988 grp->total_faults = p->total_numa_faults;
83e1d2cd 1989
8c8a743c
PZ
1990 grp->nr_tasks++;
1991 rcu_assign_pointer(p->numa_group, grp);
1992 }
1993
1994 rcu_read_lock();
316c1608 1995 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1996
1997 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1998 goto no_join;
8c8a743c
PZ
1999
2000 grp = rcu_dereference(tsk->numa_group);
2001 if (!grp)
3354781a 2002 goto no_join;
8c8a743c
PZ
2003
2004 my_grp = p->numa_group;
2005 if (grp == my_grp)
3354781a 2006 goto no_join;
8c8a743c
PZ
2007
2008 /*
2009 * Only join the other group if its bigger; if we're the bigger group,
2010 * the other task will join us.
2011 */
2012 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2013 goto no_join;
8c8a743c
PZ
2014
2015 /*
2016 * Tie-break on the grp address.
2017 */
2018 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2019 goto no_join;
8c8a743c 2020
dabe1d99
RR
2021 /* Always join threads in the same process. */
2022 if (tsk->mm == current->mm)
2023 join = true;
2024
2025 /* Simple filter to avoid false positives due to PID collisions */
2026 if (flags & TNF_SHARED)
2027 join = true;
8c8a743c 2028
3e6a9418
MG
2029 /* Update priv based on whether false sharing was detected */
2030 *priv = !join;
2031
dabe1d99 2032 if (join && !get_numa_group(grp))
3354781a 2033 goto no_join;
8c8a743c 2034
8c8a743c
PZ
2035 rcu_read_unlock();
2036
2037 if (!join)
2038 return;
2039
60e69eed
MG
2040 BUG_ON(irqs_disabled());
2041 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2042
be1e4e76 2043 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2044 my_grp->faults[i] -= p->numa_faults[i];
2045 grp->faults[i] += p->numa_faults[i];
8c8a743c 2046 }
989348b5
MG
2047 my_grp->total_faults -= p->total_numa_faults;
2048 grp->total_faults += p->total_numa_faults;
8c8a743c 2049
8c8a743c
PZ
2050 my_grp->nr_tasks--;
2051 grp->nr_tasks++;
2052
2053 spin_unlock(&my_grp->lock);
60e69eed 2054 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2055
2056 rcu_assign_pointer(p->numa_group, grp);
2057
2058 put_numa_group(my_grp);
3354781a
PZ
2059 return;
2060
2061no_join:
2062 rcu_read_unlock();
2063 return;
8c8a743c
PZ
2064}
2065
2066void task_numa_free(struct task_struct *p)
2067{
2068 struct numa_group *grp = p->numa_group;
44dba3d5 2069 void *numa_faults = p->numa_faults;
e9dd685c
SR
2070 unsigned long flags;
2071 int i;
8c8a743c
PZ
2072
2073 if (grp) {
e9dd685c 2074 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2075 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2076 grp->faults[i] -= p->numa_faults[i];
989348b5 2077 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2078
8c8a743c 2079 grp->nr_tasks--;
e9dd685c 2080 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2081 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2082 put_numa_group(grp);
2083 }
2084
44dba3d5 2085 p->numa_faults = NULL;
82727018 2086 kfree(numa_faults);
8c8a743c
PZ
2087}
2088
cbee9f88
PZ
2089/*
2090 * Got a PROT_NONE fault for a page on @node.
2091 */
58b46da3 2092void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2093{
2094 struct task_struct *p = current;
6688cc05 2095 bool migrated = flags & TNF_MIGRATED;
58b46da3 2096 int cpu_node = task_node(current);
792568ec 2097 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2098 int priv;
cbee9f88 2099
2a595721 2100 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2101 return;
2102
9ff1d9ff
MG
2103 /* for example, ksmd faulting in a user's mm */
2104 if (!p->mm)
2105 return;
2106
f809ca9a 2107 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2108 if (unlikely(!p->numa_faults)) {
2109 int size = sizeof(*p->numa_faults) *
be1e4e76 2110 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2111
44dba3d5
IM
2112 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2113 if (!p->numa_faults)
f809ca9a 2114 return;
745d6147 2115
83e1d2cd 2116 p->total_numa_faults = 0;
04bb2f94 2117 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2118 }
cbee9f88 2119
8c8a743c
PZ
2120 /*
2121 * First accesses are treated as private, otherwise consider accesses
2122 * to be private if the accessing pid has not changed
2123 */
2124 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2125 priv = 1;
2126 } else {
2127 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2128 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2129 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2130 }
2131
792568ec
RR
2132 /*
2133 * If a workload spans multiple NUMA nodes, a shared fault that
2134 * occurs wholly within the set of nodes that the workload is
2135 * actively using should be counted as local. This allows the
2136 * scan rate to slow down when a workload has settled down.
2137 */
2138 if (!priv && !local && p->numa_group &&
2139 node_isset(cpu_node, p->numa_group->active_nodes) &&
2140 node_isset(mem_node, p->numa_group->active_nodes))
2141 local = 1;
2142
cbee9f88 2143 task_numa_placement(p);
f809ca9a 2144
2739d3ee
RR
2145 /*
2146 * Retry task to preferred node migration periodically, in case it
2147 * case it previously failed, or the scheduler moved us.
2148 */
2149 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2150 numa_migrate_preferred(p);
2151
b32e86b4
IM
2152 if (migrated)
2153 p->numa_pages_migrated += pages;
074c2381
MG
2154 if (flags & TNF_MIGRATE_FAIL)
2155 p->numa_faults_locality[2] += pages;
b32e86b4 2156
44dba3d5
IM
2157 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2158 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2159 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2160}
2161
6e5fb223
PZ
2162static void reset_ptenuma_scan(struct task_struct *p)
2163{
7e5a2c17
JL
2164 /*
2165 * We only did a read acquisition of the mmap sem, so
2166 * p->mm->numa_scan_seq is written to without exclusive access
2167 * and the update is not guaranteed to be atomic. That's not
2168 * much of an issue though, since this is just used for
2169 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2170 * expensive, to avoid any form of compiler optimizations:
2171 */
316c1608 2172 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2173 p->mm->numa_scan_offset = 0;
2174}
2175
cbee9f88
PZ
2176/*
2177 * The expensive part of numa migration is done from task_work context.
2178 * Triggered from task_tick_numa().
2179 */
2180void task_numa_work(struct callback_head *work)
2181{
2182 unsigned long migrate, next_scan, now = jiffies;
2183 struct task_struct *p = current;
2184 struct mm_struct *mm = p->mm;
51170840 2185 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2186 struct vm_area_struct *vma;
9f40604c 2187 unsigned long start, end;
598f0ec0 2188 unsigned long nr_pte_updates = 0;
4620f8c1 2189 long pages, virtpages;
cbee9f88
PZ
2190
2191 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2192
2193 work->next = work; /* protect against double add */
2194 /*
2195 * Who cares about NUMA placement when they're dying.
2196 *
2197 * NOTE: make sure not to dereference p->mm before this check,
2198 * exit_task_work() happens _after_ exit_mm() so we could be called
2199 * without p->mm even though we still had it when we enqueued this
2200 * work.
2201 */
2202 if (p->flags & PF_EXITING)
2203 return;
2204
930aa174 2205 if (!mm->numa_next_scan) {
7e8d16b6
MG
2206 mm->numa_next_scan = now +
2207 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2208 }
2209
cbee9f88
PZ
2210 /*
2211 * Enforce maximal scan/migration frequency..
2212 */
2213 migrate = mm->numa_next_scan;
2214 if (time_before(now, migrate))
2215 return;
2216
598f0ec0
MG
2217 if (p->numa_scan_period == 0) {
2218 p->numa_scan_period_max = task_scan_max(p);
2219 p->numa_scan_period = task_scan_min(p);
2220 }
cbee9f88 2221
fb003b80 2222 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2223 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2224 return;
2225
19a78d11
PZ
2226 /*
2227 * Delay this task enough that another task of this mm will likely win
2228 * the next time around.
2229 */
2230 p->node_stamp += 2 * TICK_NSEC;
2231
9f40604c
MG
2232 start = mm->numa_scan_offset;
2233 pages = sysctl_numa_balancing_scan_size;
2234 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2235 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2236 if (!pages)
2237 return;
cbee9f88 2238
4620f8c1 2239
6e5fb223 2240 down_read(&mm->mmap_sem);
9f40604c 2241 vma = find_vma(mm, start);
6e5fb223
PZ
2242 if (!vma) {
2243 reset_ptenuma_scan(p);
9f40604c 2244 start = 0;
6e5fb223
PZ
2245 vma = mm->mmap;
2246 }
9f40604c 2247 for (; vma; vma = vma->vm_next) {
6b79c57b 2248 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2249 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2250 continue;
6b79c57b 2251 }
6e5fb223 2252
4591ce4f
MG
2253 /*
2254 * Shared library pages mapped by multiple processes are not
2255 * migrated as it is expected they are cache replicated. Avoid
2256 * hinting faults in read-only file-backed mappings or the vdso
2257 * as migrating the pages will be of marginal benefit.
2258 */
2259 if (!vma->vm_mm ||
2260 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2261 continue;
2262
3c67f474
MG
2263 /*
2264 * Skip inaccessible VMAs to avoid any confusion between
2265 * PROT_NONE and NUMA hinting ptes
2266 */
2267 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2268 continue;
4591ce4f 2269
9f40604c
MG
2270 do {
2271 start = max(start, vma->vm_start);
2272 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2273 end = min(end, vma->vm_end);
4620f8c1 2274 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2275
2276 /*
4620f8c1
RR
2277 * Try to scan sysctl_numa_balancing_size worth of
2278 * hpages that have at least one present PTE that
2279 * is not already pte-numa. If the VMA contains
2280 * areas that are unused or already full of prot_numa
2281 * PTEs, scan up to virtpages, to skip through those
2282 * areas faster.
598f0ec0
MG
2283 */
2284 if (nr_pte_updates)
2285 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2286 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2287
9f40604c 2288 start = end;
4620f8c1 2289 if (pages <= 0 || virtpages <= 0)
9f40604c 2290 goto out;
3cf1962c
RR
2291
2292 cond_resched();
9f40604c 2293 } while (end != vma->vm_end);
cbee9f88 2294 }
6e5fb223 2295
9f40604c 2296out:
6e5fb223 2297 /*
c69307d5
PZ
2298 * It is possible to reach the end of the VMA list but the last few
2299 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2300 * would find the !migratable VMA on the next scan but not reset the
2301 * scanner to the start so check it now.
6e5fb223
PZ
2302 */
2303 if (vma)
9f40604c 2304 mm->numa_scan_offset = start;
6e5fb223
PZ
2305 else
2306 reset_ptenuma_scan(p);
2307 up_read(&mm->mmap_sem);
51170840
RR
2308
2309 /*
2310 * Make sure tasks use at least 32x as much time to run other code
2311 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2312 * Usually update_task_scan_period slows down scanning enough; on an
2313 * overloaded system we need to limit overhead on a per task basis.
2314 */
2315 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2316 u64 diff = p->se.sum_exec_runtime - runtime;
2317 p->node_stamp += 32 * diff;
2318 }
cbee9f88
PZ
2319}
2320
2321/*
2322 * Drive the periodic memory faults..
2323 */
2324void task_tick_numa(struct rq *rq, struct task_struct *curr)
2325{
2326 struct callback_head *work = &curr->numa_work;
2327 u64 period, now;
2328
2329 /*
2330 * We don't care about NUMA placement if we don't have memory.
2331 */
2332 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2333 return;
2334
2335 /*
2336 * Using runtime rather than walltime has the dual advantage that
2337 * we (mostly) drive the selection from busy threads and that the
2338 * task needs to have done some actual work before we bother with
2339 * NUMA placement.
2340 */
2341 now = curr->se.sum_exec_runtime;
2342 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2343
25b3e5a3 2344 if (now > curr->node_stamp + period) {
4b96a29b 2345 if (!curr->node_stamp)
598f0ec0 2346 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2347 curr->node_stamp += period;
cbee9f88
PZ
2348
2349 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2350 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2351 task_work_add(curr, work, true);
2352 }
2353 }
2354}
2355#else
2356static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2357{
2358}
0ec8aa00
PZ
2359
2360static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2361{
2362}
2363
2364static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2365{
2366}
cbee9f88
PZ
2367#endif /* CONFIG_NUMA_BALANCING */
2368
30cfdcfc
DA
2369static void
2370account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2371{
2372 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2373 if (!parent_entity(se))
029632fb 2374 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2375#ifdef CONFIG_SMP
0ec8aa00
PZ
2376 if (entity_is_task(se)) {
2377 struct rq *rq = rq_of(cfs_rq);
2378
2379 account_numa_enqueue(rq, task_of(se));
2380 list_add(&se->group_node, &rq->cfs_tasks);
2381 }
367456c7 2382#endif
30cfdcfc 2383 cfs_rq->nr_running++;
30cfdcfc
DA
2384}
2385
2386static void
2387account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2388{
2389 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2390 if (!parent_entity(se))
029632fb 2391 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2392 if (entity_is_task(se)) {
2393 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2394 list_del_init(&se->group_node);
0ec8aa00 2395 }
30cfdcfc 2396 cfs_rq->nr_running--;
30cfdcfc
DA
2397}
2398
3ff6dcac
YZ
2399#ifdef CONFIG_FAIR_GROUP_SCHED
2400# ifdef CONFIG_SMP
cf5f0acf
PZ
2401static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2402{
2403 long tg_weight;
2404
2405 /*
9d89c257
YD
2406 * Use this CPU's real-time load instead of the last load contribution
2407 * as the updating of the contribution is delayed, and we will use the
2408 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2409 */
bf5b986e 2410 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2411 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2412 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2413
2414 return tg_weight;
2415}
2416
6d5ab293 2417static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2418{
cf5f0acf 2419 long tg_weight, load, shares;
3ff6dcac 2420
cf5f0acf 2421 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2422 load = cfs_rq->load.weight;
3ff6dcac 2423
3ff6dcac 2424 shares = (tg->shares * load);
cf5f0acf
PZ
2425 if (tg_weight)
2426 shares /= tg_weight;
3ff6dcac
YZ
2427
2428 if (shares < MIN_SHARES)
2429 shares = MIN_SHARES;
2430 if (shares > tg->shares)
2431 shares = tg->shares;
2432
2433 return shares;
2434}
3ff6dcac 2435# else /* CONFIG_SMP */
6d5ab293 2436static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2437{
2438 return tg->shares;
2439}
3ff6dcac 2440# endif /* CONFIG_SMP */
2069dd75
PZ
2441static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2442 unsigned long weight)
2443{
19e5eebb
PT
2444 if (se->on_rq) {
2445 /* commit outstanding execution time */
2446 if (cfs_rq->curr == se)
2447 update_curr(cfs_rq);
2069dd75 2448 account_entity_dequeue(cfs_rq, se);
19e5eebb 2449 }
2069dd75
PZ
2450
2451 update_load_set(&se->load, weight);
2452
2453 if (se->on_rq)
2454 account_entity_enqueue(cfs_rq, se);
2455}
2456
82958366
PT
2457static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2458
6d5ab293 2459static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2460{
2461 struct task_group *tg;
2462 struct sched_entity *se;
3ff6dcac 2463 long shares;
2069dd75 2464
2069dd75
PZ
2465 tg = cfs_rq->tg;
2466 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2467 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2468 return;
3ff6dcac
YZ
2469#ifndef CONFIG_SMP
2470 if (likely(se->load.weight == tg->shares))
2471 return;
2472#endif
6d5ab293 2473 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2474
2475 reweight_entity(cfs_rq_of(se), se, shares);
2476}
2477#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2478static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2479{
2480}
2481#endif /* CONFIG_FAIR_GROUP_SCHED */
2482
141965c7 2483#ifdef CONFIG_SMP
5b51f2f8
PT
2484/* Precomputed fixed inverse multiplies for multiplication by y^n */
2485static const u32 runnable_avg_yN_inv[] = {
2486 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2487 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2488 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2489 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2490 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2491 0x85aac367, 0x82cd8698,
2492};
2493
2494/*
2495 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2496 * over-estimates when re-combining.
2497 */
2498static const u32 runnable_avg_yN_sum[] = {
2499 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2500 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2501 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2502};
2503
9d85f21c
PT
2504/*
2505 * Approximate:
2506 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2507 */
2508static __always_inline u64 decay_load(u64 val, u64 n)
2509{
5b51f2f8
PT
2510 unsigned int local_n;
2511
2512 if (!n)
2513 return val;
2514 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2515 return 0;
2516
2517 /* after bounds checking we can collapse to 32-bit */
2518 local_n = n;
2519
2520 /*
2521 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2522 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2523 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2524 *
2525 * To achieve constant time decay_load.
2526 */
2527 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2528 val >>= local_n / LOAD_AVG_PERIOD;
2529 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2530 }
2531
9d89c257
YD
2532 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2533 return val;
5b51f2f8
PT
2534}
2535
2536/*
2537 * For updates fully spanning n periods, the contribution to runnable
2538 * average will be: \Sum 1024*y^n
2539 *
2540 * We can compute this reasonably efficiently by combining:
2541 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2542 */
2543static u32 __compute_runnable_contrib(u64 n)
2544{
2545 u32 contrib = 0;
2546
2547 if (likely(n <= LOAD_AVG_PERIOD))
2548 return runnable_avg_yN_sum[n];
2549 else if (unlikely(n >= LOAD_AVG_MAX_N))
2550 return LOAD_AVG_MAX;
2551
2552 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2553 do {
2554 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2555 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2556
2557 n -= LOAD_AVG_PERIOD;
2558 } while (n > LOAD_AVG_PERIOD);
2559
2560 contrib = decay_load(contrib, n);
2561 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2562}
2563
006cdf02
PZ
2564#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2565#error "load tracking assumes 2^10 as unit"
2566#endif
2567
54a21385 2568#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2569
9d85f21c
PT
2570/*
2571 * We can represent the historical contribution to runnable average as the
2572 * coefficients of a geometric series. To do this we sub-divide our runnable
2573 * history into segments of approximately 1ms (1024us); label the segment that
2574 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2575 *
2576 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2577 * p0 p1 p2
2578 * (now) (~1ms ago) (~2ms ago)
2579 *
2580 * Let u_i denote the fraction of p_i that the entity was runnable.
2581 *
2582 * We then designate the fractions u_i as our co-efficients, yielding the
2583 * following representation of historical load:
2584 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2585 *
2586 * We choose y based on the with of a reasonably scheduling period, fixing:
2587 * y^32 = 0.5
2588 *
2589 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2590 * approximately half as much as the contribution to load within the last ms
2591 * (u_0).
2592 *
2593 * When a period "rolls over" and we have new u_0`, multiplying the previous
2594 * sum again by y is sufficient to update:
2595 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2596 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2597 */
9d89c257
YD
2598static __always_inline int
2599__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2600 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2601{
e0f5f3af 2602 u64 delta, scaled_delta, periods;
9d89c257 2603 u32 contrib;
6115c793 2604 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2605 unsigned long scale_freq, scale_cpu;
9d85f21c 2606
9d89c257 2607 delta = now - sa->last_update_time;
9d85f21c
PT
2608 /*
2609 * This should only happen when time goes backwards, which it
2610 * unfortunately does during sched clock init when we swap over to TSC.
2611 */
2612 if ((s64)delta < 0) {
9d89c257 2613 sa->last_update_time = now;
9d85f21c
PT
2614 return 0;
2615 }
2616
2617 /*
2618 * Use 1024ns as the unit of measurement since it's a reasonable
2619 * approximation of 1us and fast to compute.
2620 */
2621 delta >>= 10;
2622 if (!delta)
2623 return 0;
9d89c257 2624 sa->last_update_time = now;
9d85f21c 2625
6f2b0452
DE
2626 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2627 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2628
9d85f21c 2629 /* delta_w is the amount already accumulated against our next period */
9d89c257 2630 delta_w = sa->period_contrib;
9d85f21c 2631 if (delta + delta_w >= 1024) {
9d85f21c
PT
2632 decayed = 1;
2633
9d89c257
YD
2634 /* how much left for next period will start over, we don't know yet */
2635 sa->period_contrib = 0;
2636
9d85f21c
PT
2637 /*
2638 * Now that we know we're crossing a period boundary, figure
2639 * out how much from delta we need to complete the current
2640 * period and accrue it.
2641 */
2642 delta_w = 1024 - delta_w;
54a21385 2643 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2644 if (weight) {
e0f5f3af
DE
2645 sa->load_sum += weight * scaled_delta_w;
2646 if (cfs_rq) {
2647 cfs_rq->runnable_load_sum +=
2648 weight * scaled_delta_w;
2649 }
13962234 2650 }
36ee28e4 2651 if (running)
006cdf02 2652 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2653
2654 delta -= delta_w;
2655
2656 /* Figure out how many additional periods this update spans */
2657 periods = delta / 1024;
2658 delta %= 1024;
2659
9d89c257 2660 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2661 if (cfs_rq) {
2662 cfs_rq->runnable_load_sum =
2663 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2664 }
9d89c257 2665 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2666
2667 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2668 contrib = __compute_runnable_contrib(periods);
54a21385 2669 contrib = cap_scale(contrib, scale_freq);
13962234 2670 if (weight) {
9d89c257 2671 sa->load_sum += weight * contrib;
13962234
YD
2672 if (cfs_rq)
2673 cfs_rq->runnable_load_sum += weight * contrib;
2674 }
36ee28e4 2675 if (running)
006cdf02 2676 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2677 }
2678
2679 /* Remainder of delta accrued against u_0` */
54a21385 2680 scaled_delta = cap_scale(delta, scale_freq);
13962234 2681 if (weight) {
e0f5f3af 2682 sa->load_sum += weight * scaled_delta;
13962234 2683 if (cfs_rq)
e0f5f3af 2684 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2685 }
36ee28e4 2686 if (running)
006cdf02 2687 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2688
9d89c257 2689 sa->period_contrib += delta;
9ee474f5 2690
9d89c257
YD
2691 if (decayed) {
2692 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2693 if (cfs_rq) {
2694 cfs_rq->runnable_load_avg =
2695 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2696 }
006cdf02 2697 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2698 }
aff3e498 2699
9d89c257 2700 return decayed;
9ee474f5
PT
2701}
2702
c566e8e9 2703#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2704/*
9d89c257
YD
2705 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2706 * and effective_load (which is not done because it is too costly).
bb17f655 2707 */
9d89c257 2708static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2709{
9d89c257 2710 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2711
aa0b7ae0
WL
2712 /*
2713 * No need to update load_avg for root_task_group as it is not used.
2714 */
2715 if (cfs_rq->tg == &root_task_group)
2716 return;
2717
9d89c257
YD
2718 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2719 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2720 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2721 }
8165e145 2722}
f5f9739d 2723
ad936d86
BP
2724/*
2725 * Called within set_task_rq() right before setting a task's cpu. The
2726 * caller only guarantees p->pi_lock is held; no other assumptions,
2727 * including the state of rq->lock, should be made.
2728 */
2729void set_task_rq_fair(struct sched_entity *se,
2730 struct cfs_rq *prev, struct cfs_rq *next)
2731{
2732 if (!sched_feat(ATTACH_AGE_LOAD))
2733 return;
2734
2735 /*
2736 * We are supposed to update the task to "current" time, then its up to
2737 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2738 * getting what current time is, so simply throw away the out-of-date
2739 * time. This will result in the wakee task is less decayed, but giving
2740 * the wakee more load sounds not bad.
2741 */
2742 if (se->avg.last_update_time && prev) {
2743 u64 p_last_update_time;
2744 u64 n_last_update_time;
2745
2746#ifndef CONFIG_64BIT
2747 u64 p_last_update_time_copy;
2748 u64 n_last_update_time_copy;
2749
2750 do {
2751 p_last_update_time_copy = prev->load_last_update_time_copy;
2752 n_last_update_time_copy = next->load_last_update_time_copy;
2753
2754 smp_rmb();
2755
2756 p_last_update_time = prev->avg.last_update_time;
2757 n_last_update_time = next->avg.last_update_time;
2758
2759 } while (p_last_update_time != p_last_update_time_copy ||
2760 n_last_update_time != n_last_update_time_copy);
2761#else
2762 p_last_update_time = prev->avg.last_update_time;
2763 n_last_update_time = next->avg.last_update_time;
2764#endif
2765 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2766 &se->avg, 0, 0, NULL);
2767 se->avg.last_update_time = n_last_update_time;
2768 }
2769}
6e83125c 2770#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2771static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2772#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2773
9d89c257 2774static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2775
9d89c257
YD
2776/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2777static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2778{
9d89c257 2779 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2780 int decayed, removed = 0;
2dac754e 2781
9d89c257 2782 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2783 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2784 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2785 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2786 removed = 1;
8165e145 2787 }
2dac754e 2788
9d89c257
YD
2789 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2790 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2791 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2792 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2793 }
36ee28e4 2794
9d89c257 2795 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2796 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2797
9d89c257
YD
2798#ifndef CONFIG_64BIT
2799 smp_wmb();
2800 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2801#endif
36ee28e4 2802
3e386d56 2803 return decayed || removed;
9ee474f5
PT
2804}
2805
9d89c257
YD
2806/* Update task and its cfs_rq load average */
2807static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2808{
2dac754e 2809 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2810 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2811 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2812
f1b17280 2813 /*
9d89c257
YD
2814 * Track task load average for carrying it to new CPU after migrated, and
2815 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2816 */
9d89c257 2817 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2818 se->on_rq * scale_load_down(se->load.weight),
2819 cfs_rq->curr == se, NULL);
f1b17280 2820
9d89c257
YD
2821 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2822 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2823}
2824
a05e8c51
BP
2825static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2826{
a9280514
PZ
2827 if (!sched_feat(ATTACH_AGE_LOAD))
2828 goto skip_aging;
2829
6efdb105
BP
2830 /*
2831 * If we got migrated (either between CPUs or between cgroups) we'll
2832 * have aged the average right before clearing @last_update_time.
2833 */
2834 if (se->avg.last_update_time) {
2835 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2836 &se->avg, 0, 0, NULL);
2837
2838 /*
2839 * XXX: we could have just aged the entire load away if we've been
2840 * absent from the fair class for too long.
2841 */
2842 }
2843
a9280514 2844skip_aging:
a05e8c51
BP
2845 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2846 cfs_rq->avg.load_avg += se->avg.load_avg;
2847 cfs_rq->avg.load_sum += se->avg.load_sum;
2848 cfs_rq->avg.util_avg += se->avg.util_avg;
2849 cfs_rq->avg.util_sum += se->avg.util_sum;
2850}
2851
2852static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2853{
2854 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2855 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2856 cfs_rq->curr == se, NULL);
2857
2858 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2859 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2860 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2861 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2862}
2863
9d89c257
YD
2864/* Add the load generated by se into cfs_rq's load average */
2865static inline void
2866enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2867{
9d89c257
YD
2868 struct sched_avg *sa = &se->avg;
2869 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2870 int migrated, decayed;
9ee474f5 2871
a05e8c51
BP
2872 migrated = !sa->last_update_time;
2873 if (!migrated) {
9d89c257 2874 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2875 se->on_rq * scale_load_down(se->load.weight),
2876 cfs_rq->curr == se, NULL);
aff3e498 2877 }
c566e8e9 2878
9d89c257 2879 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2880
13962234
YD
2881 cfs_rq->runnable_load_avg += sa->load_avg;
2882 cfs_rq->runnable_load_sum += sa->load_sum;
2883
a05e8c51
BP
2884 if (migrated)
2885 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2886
9d89c257
YD
2887 if (decayed || migrated)
2888 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2889}
2890
13962234
YD
2891/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2892static inline void
2893dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894{
2895 update_load_avg(se, 1);
2896
2897 cfs_rq->runnable_load_avg =
2898 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2899 cfs_rq->runnable_load_sum =
a05e8c51 2900 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2901}
2902
9ee474f5 2903/*
9d89c257
YD
2904 * Task first catches up with cfs_rq, and then subtract
2905 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2906 */
9d89c257 2907void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2908{
9d89c257
YD
2909 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2910 u64 last_update_time;
2911
2912#ifndef CONFIG_64BIT
2913 u64 last_update_time_copy;
9ee474f5 2914
9d89c257
YD
2915 do {
2916 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2917 smp_rmb();
2918 last_update_time = cfs_rq->avg.last_update_time;
2919 } while (last_update_time != last_update_time_copy);
2920#else
2921 last_update_time = cfs_rq->avg.last_update_time;
2922#endif
2923
13962234 2924 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2925 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2926 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2927}
642dbc39 2928
7ea241af
YD
2929static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2930{
2931 return cfs_rq->runnable_load_avg;
2932}
2933
2934static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2935{
2936 return cfs_rq->avg.load_avg;
2937}
2938
6e83125c
PZ
2939static int idle_balance(struct rq *this_rq);
2940
38033c37
PZ
2941#else /* CONFIG_SMP */
2942
9d89c257
YD
2943static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2944static inline void
2945enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2946static inline void
2947dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2948static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2949
a05e8c51
BP
2950static inline void
2951attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2952static inline void
2953detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2954
6e83125c
PZ
2955static inline int idle_balance(struct rq *rq)
2956{
2957 return 0;
2958}
2959
38033c37 2960#endif /* CONFIG_SMP */
9d85f21c 2961
2396af69 2962static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2963{
bf0f6f24 2964#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2965 struct task_struct *tsk = NULL;
2966
2967 if (entity_is_task(se))
2968 tsk = task_of(se);
2969
41acab88 2970 if (se->statistics.sleep_start) {
78becc27 2971 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2972
2973 if ((s64)delta < 0)
2974 delta = 0;
2975
41acab88
LDM
2976 if (unlikely(delta > se->statistics.sleep_max))
2977 se->statistics.sleep_max = delta;
bf0f6f24 2978
8c79a045 2979 se->statistics.sleep_start = 0;
41acab88 2980 se->statistics.sum_sleep_runtime += delta;
9745512c 2981
768d0c27 2982 if (tsk) {
e414314c 2983 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2984 trace_sched_stat_sleep(tsk, delta);
2985 }
bf0f6f24 2986 }
41acab88 2987 if (se->statistics.block_start) {
78becc27 2988 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2989
2990 if ((s64)delta < 0)
2991 delta = 0;
2992
41acab88
LDM
2993 if (unlikely(delta > se->statistics.block_max))
2994 se->statistics.block_max = delta;
bf0f6f24 2995
8c79a045 2996 se->statistics.block_start = 0;
41acab88 2997 se->statistics.sum_sleep_runtime += delta;
30084fbd 2998
e414314c 2999 if (tsk) {
8f0dfc34 3000 if (tsk->in_iowait) {
41acab88
LDM
3001 se->statistics.iowait_sum += delta;
3002 se->statistics.iowait_count++;
768d0c27 3003 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3004 }
3005
b781a602
AV
3006 trace_sched_stat_blocked(tsk, delta);
3007
e414314c
PZ
3008 /*
3009 * Blocking time is in units of nanosecs, so shift by
3010 * 20 to get a milliseconds-range estimation of the
3011 * amount of time that the task spent sleeping:
3012 */
3013 if (unlikely(prof_on == SLEEP_PROFILING)) {
3014 profile_hits(SLEEP_PROFILING,
3015 (void *)get_wchan(tsk),
3016 delta >> 20);
3017 }
3018 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3019 }
bf0f6f24
IM
3020 }
3021#endif
3022}
3023
ddc97297
PZ
3024static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3025{
3026#ifdef CONFIG_SCHED_DEBUG
3027 s64 d = se->vruntime - cfs_rq->min_vruntime;
3028
3029 if (d < 0)
3030 d = -d;
3031
3032 if (d > 3*sysctl_sched_latency)
3033 schedstat_inc(cfs_rq, nr_spread_over);
3034#endif
3035}
3036
aeb73b04
PZ
3037static void
3038place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3039{
1af5f730 3040 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3041
2cb8600e
PZ
3042 /*
3043 * The 'current' period is already promised to the current tasks,
3044 * however the extra weight of the new task will slow them down a
3045 * little, place the new task so that it fits in the slot that
3046 * stays open at the end.
3047 */
94dfb5e7 3048 if (initial && sched_feat(START_DEBIT))
f9c0b095 3049 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3050
a2e7a7eb 3051 /* sleeps up to a single latency don't count. */
5ca9880c 3052 if (!initial) {
a2e7a7eb 3053 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3054
a2e7a7eb
MG
3055 /*
3056 * Halve their sleep time's effect, to allow
3057 * for a gentler effect of sleepers:
3058 */
3059 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3060 thresh >>= 1;
51e0304c 3061
a2e7a7eb 3062 vruntime -= thresh;
aeb73b04
PZ
3063 }
3064
b5d9d734 3065 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3066 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3067}
3068
d3d9dc33
PT
3069static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3070
bf0f6f24 3071static void
88ec22d3 3072enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3073{
88ec22d3
PZ
3074 /*
3075 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3076 * through calling update_curr().
88ec22d3 3077 */
371fd7e7 3078 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3079 se->vruntime += cfs_rq->min_vruntime;
3080
bf0f6f24 3081 /*
a2a2d680 3082 * Update run-time statistics of the 'current'.
bf0f6f24 3083 */
b7cc0896 3084 update_curr(cfs_rq);
9d89c257 3085 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3086 account_entity_enqueue(cfs_rq, se);
3087 update_cfs_shares(cfs_rq);
bf0f6f24 3088
88ec22d3 3089 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3090 place_entity(cfs_rq, se, 0);
2396af69 3091 enqueue_sleeper(cfs_rq, se);
e9acbff6 3092 }
bf0f6f24 3093
d2417e5a 3094 update_stats_enqueue(cfs_rq, se);
ddc97297 3095 check_spread(cfs_rq, se);
83b699ed
SV
3096 if (se != cfs_rq->curr)
3097 __enqueue_entity(cfs_rq, se);
2069dd75 3098 se->on_rq = 1;
3d4b47b4 3099
d3d9dc33 3100 if (cfs_rq->nr_running == 1) {
3d4b47b4 3101 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3102 check_enqueue_throttle(cfs_rq);
3103 }
bf0f6f24
IM
3104}
3105
2c13c919 3106static void __clear_buddies_last(struct sched_entity *se)
2002c695 3107{
2c13c919
RR
3108 for_each_sched_entity(se) {
3109 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3110 if (cfs_rq->last != se)
2c13c919 3111 break;
f1044799
PZ
3112
3113 cfs_rq->last = NULL;
2c13c919
RR
3114 }
3115}
2002c695 3116
2c13c919
RR
3117static void __clear_buddies_next(struct sched_entity *se)
3118{
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3121 if (cfs_rq->next != se)
2c13c919 3122 break;
f1044799
PZ
3123
3124 cfs_rq->next = NULL;
2c13c919 3125 }
2002c695
PZ
3126}
3127
ac53db59
RR
3128static void __clear_buddies_skip(struct sched_entity *se)
3129{
3130 for_each_sched_entity(se) {
3131 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3132 if (cfs_rq->skip != se)
ac53db59 3133 break;
f1044799
PZ
3134
3135 cfs_rq->skip = NULL;
ac53db59
RR
3136 }
3137}
3138
a571bbea
PZ
3139static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3140{
2c13c919
RR
3141 if (cfs_rq->last == se)
3142 __clear_buddies_last(se);
3143
3144 if (cfs_rq->next == se)
3145 __clear_buddies_next(se);
ac53db59
RR
3146
3147 if (cfs_rq->skip == se)
3148 __clear_buddies_skip(se);
a571bbea
PZ
3149}
3150
6c16a6dc 3151static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3152
bf0f6f24 3153static void
371fd7e7 3154dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3155{
a2a2d680
DA
3156 /*
3157 * Update run-time statistics of the 'current'.
3158 */
3159 update_curr(cfs_rq);
13962234 3160 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3161
19b6a2e3 3162 update_stats_dequeue(cfs_rq, se);
371fd7e7 3163 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3164#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3165 if (entity_is_task(se)) {
3166 struct task_struct *tsk = task_of(se);
3167
3168 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3169 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3170 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3171 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3172 }
db36cc7d 3173#endif
67e9fb2a
PZ
3174 }
3175
2002c695 3176 clear_buddies(cfs_rq, se);
4793241b 3177
83b699ed 3178 if (se != cfs_rq->curr)
30cfdcfc 3179 __dequeue_entity(cfs_rq, se);
17bc14b7 3180 se->on_rq = 0;
30cfdcfc 3181 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3182
3183 /*
3184 * Normalize the entity after updating the min_vruntime because the
3185 * update can refer to the ->curr item and we need to reflect this
3186 * movement in our normalized position.
3187 */
371fd7e7 3188 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3189 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3190
d8b4986d
PT
3191 /* return excess runtime on last dequeue */
3192 return_cfs_rq_runtime(cfs_rq);
3193
1e876231 3194 update_min_vruntime(cfs_rq);
17bc14b7 3195 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3196}
3197
3198/*
3199 * Preempt the current task with a newly woken task if needed:
3200 */
7c92e54f 3201static void
2e09bf55 3202check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3203{
11697830 3204 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3205 struct sched_entity *se;
3206 s64 delta;
11697830 3207
6d0f0ebd 3208 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3209 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3210 if (delta_exec > ideal_runtime) {
8875125e 3211 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3212 /*
3213 * The current task ran long enough, ensure it doesn't get
3214 * re-elected due to buddy favours.
3215 */
3216 clear_buddies(cfs_rq, curr);
f685ceac
MG
3217 return;
3218 }
3219
3220 /*
3221 * Ensure that a task that missed wakeup preemption by a
3222 * narrow margin doesn't have to wait for a full slice.
3223 * This also mitigates buddy induced latencies under load.
3224 */
f685ceac
MG
3225 if (delta_exec < sysctl_sched_min_granularity)
3226 return;
3227
f4cfb33e
WX
3228 se = __pick_first_entity(cfs_rq);
3229 delta = curr->vruntime - se->vruntime;
f685ceac 3230
f4cfb33e
WX
3231 if (delta < 0)
3232 return;
d7d82944 3233
f4cfb33e 3234 if (delta > ideal_runtime)
8875125e 3235 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3236}
3237
83b699ed 3238static void
8494f412 3239set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3240{
83b699ed
SV
3241 /* 'current' is not kept within the tree. */
3242 if (se->on_rq) {
3243 /*
3244 * Any task has to be enqueued before it get to execute on
3245 * a CPU. So account for the time it spent waiting on the
3246 * runqueue.
3247 */
3248 update_stats_wait_end(cfs_rq, se);
3249 __dequeue_entity(cfs_rq, se);
9d89c257 3250 update_load_avg(se, 1);
83b699ed
SV
3251 }
3252
79303e9e 3253 update_stats_curr_start(cfs_rq, se);
429d43bc 3254 cfs_rq->curr = se;
eba1ed4b
IM
3255#ifdef CONFIG_SCHEDSTATS
3256 /*
3257 * Track our maximum slice length, if the CPU's load is at
3258 * least twice that of our own weight (i.e. dont track it
3259 * when there are only lesser-weight tasks around):
3260 */
495eca49 3261 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3262 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3263 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3264 }
3265#endif
4a55b450 3266 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3267}
3268
3f3a4904
PZ
3269static int
3270wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3271
ac53db59
RR
3272/*
3273 * Pick the next process, keeping these things in mind, in this order:
3274 * 1) keep things fair between processes/task groups
3275 * 2) pick the "next" process, since someone really wants that to run
3276 * 3) pick the "last" process, for cache locality
3277 * 4) do not run the "skip" process, if something else is available
3278 */
678d5718
PZ
3279static struct sched_entity *
3280pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3281{
678d5718
PZ
3282 struct sched_entity *left = __pick_first_entity(cfs_rq);
3283 struct sched_entity *se;
3284
3285 /*
3286 * If curr is set we have to see if its left of the leftmost entity
3287 * still in the tree, provided there was anything in the tree at all.
3288 */
3289 if (!left || (curr && entity_before(curr, left)))
3290 left = curr;
3291
3292 se = left; /* ideally we run the leftmost entity */
f4b6755f 3293
ac53db59
RR
3294 /*
3295 * Avoid running the skip buddy, if running something else can
3296 * be done without getting too unfair.
3297 */
3298 if (cfs_rq->skip == se) {
678d5718
PZ
3299 struct sched_entity *second;
3300
3301 if (se == curr) {
3302 second = __pick_first_entity(cfs_rq);
3303 } else {
3304 second = __pick_next_entity(se);
3305 if (!second || (curr && entity_before(curr, second)))
3306 second = curr;
3307 }
3308
ac53db59
RR
3309 if (second && wakeup_preempt_entity(second, left) < 1)
3310 se = second;
3311 }
aa2ac252 3312
f685ceac
MG
3313 /*
3314 * Prefer last buddy, try to return the CPU to a preempted task.
3315 */
3316 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3317 se = cfs_rq->last;
3318
ac53db59
RR
3319 /*
3320 * Someone really wants this to run. If it's not unfair, run it.
3321 */
3322 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3323 se = cfs_rq->next;
3324
f685ceac 3325 clear_buddies(cfs_rq, se);
4793241b
PZ
3326
3327 return se;
aa2ac252
PZ
3328}
3329
678d5718 3330static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3331
ab6cde26 3332static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3333{
3334 /*
3335 * If still on the runqueue then deactivate_task()
3336 * was not called and update_curr() has to be done:
3337 */
3338 if (prev->on_rq)
b7cc0896 3339 update_curr(cfs_rq);
bf0f6f24 3340
d3d9dc33
PT
3341 /* throttle cfs_rqs exceeding runtime */
3342 check_cfs_rq_runtime(cfs_rq);
3343
ddc97297 3344 check_spread(cfs_rq, prev);
30cfdcfc 3345 if (prev->on_rq) {
5870db5b 3346 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3347 /* Put 'current' back into the tree. */
3348 __enqueue_entity(cfs_rq, prev);
9d85f21c 3349 /* in !on_rq case, update occurred at dequeue */
9d89c257 3350 update_load_avg(prev, 0);
30cfdcfc 3351 }
429d43bc 3352 cfs_rq->curr = NULL;
bf0f6f24
IM
3353}
3354
8f4d37ec
PZ
3355static void
3356entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3357{
bf0f6f24 3358 /*
30cfdcfc 3359 * Update run-time statistics of the 'current'.
bf0f6f24 3360 */
30cfdcfc 3361 update_curr(cfs_rq);
bf0f6f24 3362
9d85f21c
PT
3363 /*
3364 * Ensure that runnable average is periodically updated.
3365 */
9d89c257 3366 update_load_avg(curr, 1);
bf0bd948 3367 update_cfs_shares(cfs_rq);
9d85f21c 3368
8f4d37ec
PZ
3369#ifdef CONFIG_SCHED_HRTICK
3370 /*
3371 * queued ticks are scheduled to match the slice, so don't bother
3372 * validating it and just reschedule.
3373 */
983ed7a6 3374 if (queued) {
8875125e 3375 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3376 return;
3377 }
8f4d37ec
PZ
3378 /*
3379 * don't let the period tick interfere with the hrtick preemption
3380 */
3381 if (!sched_feat(DOUBLE_TICK) &&
3382 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3383 return;
3384#endif
3385
2c2efaed 3386 if (cfs_rq->nr_running > 1)
2e09bf55 3387 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3388}
3389
ab84d31e
PT
3390
3391/**************************************************
3392 * CFS bandwidth control machinery
3393 */
3394
3395#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3396
3397#ifdef HAVE_JUMP_LABEL
c5905afb 3398static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3399
3400static inline bool cfs_bandwidth_used(void)
3401{
c5905afb 3402 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3403}
3404
1ee14e6c 3405void cfs_bandwidth_usage_inc(void)
029632fb 3406{
1ee14e6c
BS
3407 static_key_slow_inc(&__cfs_bandwidth_used);
3408}
3409
3410void cfs_bandwidth_usage_dec(void)
3411{
3412 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3413}
3414#else /* HAVE_JUMP_LABEL */
3415static bool cfs_bandwidth_used(void)
3416{
3417 return true;
3418}
3419
1ee14e6c
BS
3420void cfs_bandwidth_usage_inc(void) {}
3421void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3422#endif /* HAVE_JUMP_LABEL */
3423
ab84d31e
PT
3424/*
3425 * default period for cfs group bandwidth.
3426 * default: 0.1s, units: nanoseconds
3427 */
3428static inline u64 default_cfs_period(void)
3429{
3430 return 100000000ULL;
3431}
ec12cb7f
PT
3432
3433static inline u64 sched_cfs_bandwidth_slice(void)
3434{
3435 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3436}
3437
a9cf55b2
PT
3438/*
3439 * Replenish runtime according to assigned quota and update expiration time.
3440 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3441 * additional synchronization around rq->lock.
3442 *
3443 * requires cfs_b->lock
3444 */
029632fb 3445void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3446{
3447 u64 now;
3448
3449 if (cfs_b->quota == RUNTIME_INF)
3450 return;
3451
3452 now = sched_clock_cpu(smp_processor_id());
3453 cfs_b->runtime = cfs_b->quota;
3454 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3455}
3456
029632fb
PZ
3457static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3458{
3459 return &tg->cfs_bandwidth;
3460}
3461
f1b17280
PT
3462/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3463static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3464{
3465 if (unlikely(cfs_rq->throttle_count))
3466 return cfs_rq->throttled_clock_task;
3467
78becc27 3468 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3469}
3470
85dac906
PT
3471/* returns 0 on failure to allocate runtime */
3472static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3473{
3474 struct task_group *tg = cfs_rq->tg;
3475 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3476 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3477
3478 /* note: this is a positive sum as runtime_remaining <= 0 */
3479 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3480
3481 raw_spin_lock(&cfs_b->lock);
3482 if (cfs_b->quota == RUNTIME_INF)
3483 amount = min_amount;
58088ad0 3484 else {
77a4d1a1 3485 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3486
3487 if (cfs_b->runtime > 0) {
3488 amount = min(cfs_b->runtime, min_amount);
3489 cfs_b->runtime -= amount;
3490 cfs_b->idle = 0;
3491 }
ec12cb7f 3492 }
a9cf55b2 3493 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3494 raw_spin_unlock(&cfs_b->lock);
3495
3496 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3497 /*
3498 * we may have advanced our local expiration to account for allowed
3499 * spread between our sched_clock and the one on which runtime was
3500 * issued.
3501 */
3502 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3503 cfs_rq->runtime_expires = expires;
85dac906
PT
3504
3505 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3506}
3507
a9cf55b2
PT
3508/*
3509 * Note: This depends on the synchronization provided by sched_clock and the
3510 * fact that rq->clock snapshots this value.
3511 */
3512static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3513{
a9cf55b2 3514 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3515
3516 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3517 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3518 return;
3519
a9cf55b2
PT
3520 if (cfs_rq->runtime_remaining < 0)
3521 return;
3522
3523 /*
3524 * If the local deadline has passed we have to consider the
3525 * possibility that our sched_clock is 'fast' and the global deadline
3526 * has not truly expired.
3527 *
3528 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3529 * whether the global deadline has advanced. It is valid to compare
3530 * cfs_b->runtime_expires without any locks since we only care about
3531 * exact equality, so a partial write will still work.
a9cf55b2
PT
3532 */
3533
51f2176d 3534 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3535 /* extend local deadline, drift is bounded above by 2 ticks */
3536 cfs_rq->runtime_expires += TICK_NSEC;
3537 } else {
3538 /* global deadline is ahead, expiration has passed */
3539 cfs_rq->runtime_remaining = 0;
3540 }
3541}
3542
9dbdb155 3543static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3544{
3545 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3546 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3547 expire_cfs_rq_runtime(cfs_rq);
3548
3549 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3550 return;
3551
85dac906
PT
3552 /*
3553 * if we're unable to extend our runtime we resched so that the active
3554 * hierarchy can be throttled
3555 */
3556 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3557 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3558}
3559
6c16a6dc 3560static __always_inline
9dbdb155 3561void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3562{
56f570e5 3563 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3564 return;
3565
3566 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3567}
3568
85dac906
PT
3569static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3570{
56f570e5 3571 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3572}
3573
64660c86
PT
3574/* check whether cfs_rq, or any parent, is throttled */
3575static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3576{
56f570e5 3577 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3578}
3579
3580/*
3581 * Ensure that neither of the group entities corresponding to src_cpu or
3582 * dest_cpu are members of a throttled hierarchy when performing group
3583 * load-balance operations.
3584 */
3585static inline int throttled_lb_pair(struct task_group *tg,
3586 int src_cpu, int dest_cpu)
3587{
3588 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3589
3590 src_cfs_rq = tg->cfs_rq[src_cpu];
3591 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3592
3593 return throttled_hierarchy(src_cfs_rq) ||
3594 throttled_hierarchy(dest_cfs_rq);
3595}
3596
3597/* updated child weight may affect parent so we have to do this bottom up */
3598static int tg_unthrottle_up(struct task_group *tg, void *data)
3599{
3600 struct rq *rq = data;
3601 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3602
3603 cfs_rq->throttle_count--;
3604#ifdef CONFIG_SMP
3605 if (!cfs_rq->throttle_count) {
f1b17280 3606 /* adjust cfs_rq_clock_task() */
78becc27 3607 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3608 cfs_rq->throttled_clock_task;
64660c86
PT
3609 }
3610#endif
3611
3612 return 0;
3613}
3614
3615static int tg_throttle_down(struct task_group *tg, void *data)
3616{
3617 struct rq *rq = data;
3618 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3619
82958366
PT
3620 /* group is entering throttled state, stop time */
3621 if (!cfs_rq->throttle_count)
78becc27 3622 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3623 cfs_rq->throttle_count++;
3624
3625 return 0;
3626}
3627
d3d9dc33 3628static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3629{
3630 struct rq *rq = rq_of(cfs_rq);
3631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3632 struct sched_entity *se;
3633 long task_delta, dequeue = 1;
77a4d1a1 3634 bool empty;
85dac906
PT
3635
3636 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3637
f1b17280 3638 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3639 rcu_read_lock();
3640 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3641 rcu_read_unlock();
85dac906
PT
3642
3643 task_delta = cfs_rq->h_nr_running;
3644 for_each_sched_entity(se) {
3645 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3646 /* throttled entity or throttle-on-deactivate */
3647 if (!se->on_rq)
3648 break;
3649
3650 if (dequeue)
3651 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3652 qcfs_rq->h_nr_running -= task_delta;
3653
3654 if (qcfs_rq->load.weight)
3655 dequeue = 0;
3656 }
3657
3658 if (!se)
72465447 3659 sub_nr_running(rq, task_delta);
85dac906
PT
3660
3661 cfs_rq->throttled = 1;
78becc27 3662 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3663 raw_spin_lock(&cfs_b->lock);
d49db342 3664 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3665
c06f04c7
BS
3666 /*
3667 * Add to the _head_ of the list, so that an already-started
3668 * distribute_cfs_runtime will not see us
3669 */
3670 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3671
3672 /*
3673 * If we're the first throttled task, make sure the bandwidth
3674 * timer is running.
3675 */
3676 if (empty)
3677 start_cfs_bandwidth(cfs_b);
3678
85dac906
PT
3679 raw_spin_unlock(&cfs_b->lock);
3680}
3681
029632fb 3682void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3683{
3684 struct rq *rq = rq_of(cfs_rq);
3685 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3686 struct sched_entity *se;
3687 int enqueue = 1;
3688 long task_delta;
3689
22b958d8 3690 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3691
3692 cfs_rq->throttled = 0;
1a55af2e
FW
3693
3694 update_rq_clock(rq);
3695
671fd9da 3696 raw_spin_lock(&cfs_b->lock);
78becc27 3697 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3698 list_del_rcu(&cfs_rq->throttled_list);
3699 raw_spin_unlock(&cfs_b->lock);
3700
64660c86
PT
3701 /* update hierarchical throttle state */
3702 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3703
671fd9da
PT
3704 if (!cfs_rq->load.weight)
3705 return;
3706
3707 task_delta = cfs_rq->h_nr_running;
3708 for_each_sched_entity(se) {
3709 if (se->on_rq)
3710 enqueue = 0;
3711
3712 cfs_rq = cfs_rq_of(se);
3713 if (enqueue)
3714 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3715 cfs_rq->h_nr_running += task_delta;
3716
3717 if (cfs_rq_throttled(cfs_rq))
3718 break;
3719 }
3720
3721 if (!se)
72465447 3722 add_nr_running(rq, task_delta);
671fd9da
PT
3723
3724 /* determine whether we need to wake up potentially idle cpu */
3725 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3726 resched_curr(rq);
671fd9da
PT
3727}
3728
3729static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3730 u64 remaining, u64 expires)
3731{
3732 struct cfs_rq *cfs_rq;
c06f04c7
BS
3733 u64 runtime;
3734 u64 starting_runtime = remaining;
671fd9da
PT
3735
3736 rcu_read_lock();
3737 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3738 throttled_list) {
3739 struct rq *rq = rq_of(cfs_rq);
3740
3741 raw_spin_lock(&rq->lock);
3742 if (!cfs_rq_throttled(cfs_rq))
3743 goto next;
3744
3745 runtime = -cfs_rq->runtime_remaining + 1;
3746 if (runtime > remaining)
3747 runtime = remaining;
3748 remaining -= runtime;
3749
3750 cfs_rq->runtime_remaining += runtime;
3751 cfs_rq->runtime_expires = expires;
3752
3753 /* we check whether we're throttled above */
3754 if (cfs_rq->runtime_remaining > 0)
3755 unthrottle_cfs_rq(cfs_rq);
3756
3757next:
3758 raw_spin_unlock(&rq->lock);
3759
3760 if (!remaining)
3761 break;
3762 }
3763 rcu_read_unlock();
3764
c06f04c7 3765 return starting_runtime - remaining;
671fd9da
PT
3766}
3767
58088ad0
PT
3768/*
3769 * Responsible for refilling a task_group's bandwidth and unthrottling its
3770 * cfs_rqs as appropriate. If there has been no activity within the last
3771 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3772 * used to track this state.
3773 */
3774static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3775{
671fd9da 3776 u64 runtime, runtime_expires;
51f2176d 3777 int throttled;
58088ad0 3778
58088ad0
PT
3779 /* no need to continue the timer with no bandwidth constraint */
3780 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3781 goto out_deactivate;
58088ad0 3782
671fd9da 3783 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3784 cfs_b->nr_periods += overrun;
671fd9da 3785
51f2176d
BS
3786 /*
3787 * idle depends on !throttled (for the case of a large deficit), and if
3788 * we're going inactive then everything else can be deferred
3789 */
3790 if (cfs_b->idle && !throttled)
3791 goto out_deactivate;
a9cf55b2
PT
3792
3793 __refill_cfs_bandwidth_runtime(cfs_b);
3794
671fd9da
PT
3795 if (!throttled) {
3796 /* mark as potentially idle for the upcoming period */
3797 cfs_b->idle = 1;
51f2176d 3798 return 0;
671fd9da
PT
3799 }
3800
e8da1b18
NR
3801 /* account preceding periods in which throttling occurred */
3802 cfs_b->nr_throttled += overrun;
3803
671fd9da 3804 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3805
3806 /*
c06f04c7
BS
3807 * This check is repeated as we are holding onto the new bandwidth while
3808 * we unthrottle. This can potentially race with an unthrottled group
3809 * trying to acquire new bandwidth from the global pool. This can result
3810 * in us over-using our runtime if it is all used during this loop, but
3811 * only by limited amounts in that extreme case.
671fd9da 3812 */
c06f04c7
BS
3813 while (throttled && cfs_b->runtime > 0) {
3814 runtime = cfs_b->runtime;
671fd9da
PT
3815 raw_spin_unlock(&cfs_b->lock);
3816 /* we can't nest cfs_b->lock while distributing bandwidth */
3817 runtime = distribute_cfs_runtime(cfs_b, runtime,
3818 runtime_expires);
3819 raw_spin_lock(&cfs_b->lock);
3820
3821 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3822
3823 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3824 }
58088ad0 3825
671fd9da
PT
3826 /*
3827 * While we are ensured activity in the period following an
3828 * unthrottle, this also covers the case in which the new bandwidth is
3829 * insufficient to cover the existing bandwidth deficit. (Forcing the
3830 * timer to remain active while there are any throttled entities.)
3831 */
3832 cfs_b->idle = 0;
58088ad0 3833
51f2176d
BS
3834 return 0;
3835
3836out_deactivate:
51f2176d 3837 return 1;
58088ad0 3838}
d3d9dc33 3839
d8b4986d
PT
3840/* a cfs_rq won't donate quota below this amount */
3841static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3842/* minimum remaining period time to redistribute slack quota */
3843static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3844/* how long we wait to gather additional slack before distributing */
3845static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3846
db06e78c
BS
3847/*
3848 * Are we near the end of the current quota period?
3849 *
3850 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3851 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3852 * migrate_hrtimers, base is never cleared, so we are fine.
3853 */
d8b4986d
PT
3854static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3855{
3856 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3857 u64 remaining;
3858
3859 /* if the call-back is running a quota refresh is already occurring */
3860 if (hrtimer_callback_running(refresh_timer))
3861 return 1;
3862
3863 /* is a quota refresh about to occur? */
3864 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3865 if (remaining < min_expire)
3866 return 1;
3867
3868 return 0;
3869}
3870
3871static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3872{
3873 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3874
3875 /* if there's a quota refresh soon don't bother with slack */
3876 if (runtime_refresh_within(cfs_b, min_left))
3877 return;
3878
4cfafd30
PZ
3879 hrtimer_start(&cfs_b->slack_timer,
3880 ns_to_ktime(cfs_bandwidth_slack_period),
3881 HRTIMER_MODE_REL);
d8b4986d
PT
3882}
3883
3884/* we know any runtime found here is valid as update_curr() precedes return */
3885static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3886{
3887 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3888 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3889
3890 if (slack_runtime <= 0)
3891 return;
3892
3893 raw_spin_lock(&cfs_b->lock);
3894 if (cfs_b->quota != RUNTIME_INF &&
3895 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3896 cfs_b->runtime += slack_runtime;
3897
3898 /* we are under rq->lock, defer unthrottling using a timer */
3899 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3900 !list_empty(&cfs_b->throttled_cfs_rq))
3901 start_cfs_slack_bandwidth(cfs_b);
3902 }
3903 raw_spin_unlock(&cfs_b->lock);
3904
3905 /* even if it's not valid for return we don't want to try again */
3906 cfs_rq->runtime_remaining -= slack_runtime;
3907}
3908
3909static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3910{
56f570e5
PT
3911 if (!cfs_bandwidth_used())
3912 return;
3913
fccfdc6f 3914 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3915 return;
3916
3917 __return_cfs_rq_runtime(cfs_rq);
3918}
3919
3920/*
3921 * This is done with a timer (instead of inline with bandwidth return) since
3922 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3923 */
3924static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3925{
3926 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3927 u64 expires;
3928
3929 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3930 raw_spin_lock(&cfs_b->lock);
3931 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3932 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3933 return;
db06e78c 3934 }
d8b4986d 3935
c06f04c7 3936 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3937 runtime = cfs_b->runtime;
c06f04c7 3938
d8b4986d
PT
3939 expires = cfs_b->runtime_expires;
3940 raw_spin_unlock(&cfs_b->lock);
3941
3942 if (!runtime)
3943 return;
3944
3945 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3946
3947 raw_spin_lock(&cfs_b->lock);
3948 if (expires == cfs_b->runtime_expires)
c06f04c7 3949 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3950 raw_spin_unlock(&cfs_b->lock);
3951}
3952
d3d9dc33
PT
3953/*
3954 * When a group wakes up we want to make sure that its quota is not already
3955 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3956 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3957 */
3958static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3959{
56f570e5
PT
3960 if (!cfs_bandwidth_used())
3961 return;
3962
d3d9dc33
PT
3963 /* an active group must be handled by the update_curr()->put() path */
3964 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3965 return;
3966
3967 /* ensure the group is not already throttled */
3968 if (cfs_rq_throttled(cfs_rq))
3969 return;
3970
3971 /* update runtime allocation */
3972 account_cfs_rq_runtime(cfs_rq, 0);
3973 if (cfs_rq->runtime_remaining <= 0)
3974 throttle_cfs_rq(cfs_rq);
3975}
3976
3977/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3978static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3979{
56f570e5 3980 if (!cfs_bandwidth_used())
678d5718 3981 return false;
56f570e5 3982
d3d9dc33 3983 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3984 return false;
d3d9dc33
PT
3985
3986 /*
3987 * it's possible for a throttled entity to be forced into a running
3988 * state (e.g. set_curr_task), in this case we're finished.
3989 */
3990 if (cfs_rq_throttled(cfs_rq))
678d5718 3991 return true;
d3d9dc33
PT
3992
3993 throttle_cfs_rq(cfs_rq);
678d5718 3994 return true;
d3d9dc33 3995}
029632fb 3996
029632fb
PZ
3997static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3998{
3999 struct cfs_bandwidth *cfs_b =
4000 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4001
029632fb
PZ
4002 do_sched_cfs_slack_timer(cfs_b);
4003
4004 return HRTIMER_NORESTART;
4005}
4006
4007static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4008{
4009 struct cfs_bandwidth *cfs_b =
4010 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4011 int overrun;
4012 int idle = 0;
4013
51f2176d 4014 raw_spin_lock(&cfs_b->lock);
029632fb 4015 for (;;) {
77a4d1a1 4016 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4017 if (!overrun)
4018 break;
4019
4020 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4021 }
4cfafd30
PZ
4022 if (idle)
4023 cfs_b->period_active = 0;
51f2176d 4024 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4025
4026 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4027}
4028
4029void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4030{
4031 raw_spin_lock_init(&cfs_b->lock);
4032 cfs_b->runtime = 0;
4033 cfs_b->quota = RUNTIME_INF;
4034 cfs_b->period = ns_to_ktime(default_cfs_period());
4035
4036 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4037 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4038 cfs_b->period_timer.function = sched_cfs_period_timer;
4039 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4040 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4041}
4042
4043static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4044{
4045 cfs_rq->runtime_enabled = 0;
4046 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4047}
4048
77a4d1a1 4049void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4050{
4cfafd30 4051 lockdep_assert_held(&cfs_b->lock);
029632fb 4052
4cfafd30
PZ
4053 if (!cfs_b->period_active) {
4054 cfs_b->period_active = 1;
4055 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4056 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4057 }
029632fb
PZ
4058}
4059
4060static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4061{
7f1a169b
TH
4062 /* init_cfs_bandwidth() was not called */
4063 if (!cfs_b->throttled_cfs_rq.next)
4064 return;
4065
029632fb
PZ
4066 hrtimer_cancel(&cfs_b->period_timer);
4067 hrtimer_cancel(&cfs_b->slack_timer);
4068}
4069
0e59bdae
KT
4070static void __maybe_unused update_runtime_enabled(struct rq *rq)
4071{
4072 struct cfs_rq *cfs_rq;
4073
4074 for_each_leaf_cfs_rq(rq, cfs_rq) {
4075 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4076
4077 raw_spin_lock(&cfs_b->lock);
4078 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4079 raw_spin_unlock(&cfs_b->lock);
4080 }
4081}
4082
38dc3348 4083static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4084{
4085 struct cfs_rq *cfs_rq;
4086
4087 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4088 if (!cfs_rq->runtime_enabled)
4089 continue;
4090
4091 /*
4092 * clock_task is not advancing so we just need to make sure
4093 * there's some valid quota amount
4094 */
51f2176d 4095 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4096 /*
4097 * Offline rq is schedulable till cpu is completely disabled
4098 * in take_cpu_down(), so we prevent new cfs throttling here.
4099 */
4100 cfs_rq->runtime_enabled = 0;
4101
029632fb
PZ
4102 if (cfs_rq_throttled(cfs_rq))
4103 unthrottle_cfs_rq(cfs_rq);
4104 }
4105}
4106
4107#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4108static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4109{
78becc27 4110 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4111}
4112
9dbdb155 4113static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4114static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4115static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4116static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4117
4118static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4119{
4120 return 0;
4121}
64660c86
PT
4122
4123static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4124{
4125 return 0;
4126}
4127
4128static inline int throttled_lb_pair(struct task_group *tg,
4129 int src_cpu, int dest_cpu)
4130{
4131 return 0;
4132}
029632fb
PZ
4133
4134void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4135
4136#ifdef CONFIG_FAIR_GROUP_SCHED
4137static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4138#endif
4139
029632fb
PZ
4140static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4141{
4142 return NULL;
4143}
4144static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4145static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4146static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4147
4148#endif /* CONFIG_CFS_BANDWIDTH */
4149
bf0f6f24
IM
4150/**************************************************
4151 * CFS operations on tasks:
4152 */
4153
8f4d37ec
PZ
4154#ifdef CONFIG_SCHED_HRTICK
4155static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4156{
8f4d37ec
PZ
4157 struct sched_entity *se = &p->se;
4158 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4159
4160 WARN_ON(task_rq(p) != rq);
4161
b39e66ea 4162 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4163 u64 slice = sched_slice(cfs_rq, se);
4164 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4165 s64 delta = slice - ran;
4166
4167 if (delta < 0) {
4168 if (rq->curr == p)
8875125e 4169 resched_curr(rq);
8f4d37ec
PZ
4170 return;
4171 }
31656519 4172 hrtick_start(rq, delta);
8f4d37ec
PZ
4173 }
4174}
a4c2f00f
PZ
4175
4176/*
4177 * called from enqueue/dequeue and updates the hrtick when the
4178 * current task is from our class and nr_running is low enough
4179 * to matter.
4180 */
4181static void hrtick_update(struct rq *rq)
4182{
4183 struct task_struct *curr = rq->curr;
4184
b39e66ea 4185 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4186 return;
4187
4188 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4189 hrtick_start_fair(rq, curr);
4190}
55e12e5e 4191#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4192static inline void
4193hrtick_start_fair(struct rq *rq, struct task_struct *p)
4194{
4195}
a4c2f00f
PZ
4196
4197static inline void hrtick_update(struct rq *rq)
4198{
4199}
8f4d37ec
PZ
4200#endif
4201
bf0f6f24
IM
4202/*
4203 * The enqueue_task method is called before nr_running is
4204 * increased. Here we update the fair scheduling stats and
4205 * then put the task into the rbtree:
4206 */
ea87bb78 4207static void
371fd7e7 4208enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4209{
4210 struct cfs_rq *cfs_rq;
62fb1851 4211 struct sched_entity *se = &p->se;
bf0f6f24
IM
4212
4213 for_each_sched_entity(se) {
62fb1851 4214 if (se->on_rq)
bf0f6f24
IM
4215 break;
4216 cfs_rq = cfs_rq_of(se);
88ec22d3 4217 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4218
4219 /*
4220 * end evaluation on encountering a throttled cfs_rq
4221 *
4222 * note: in the case of encountering a throttled cfs_rq we will
4223 * post the final h_nr_running increment below.
4224 */
4225 if (cfs_rq_throttled(cfs_rq))
4226 break;
953bfcd1 4227 cfs_rq->h_nr_running++;
85dac906 4228
88ec22d3 4229 flags = ENQUEUE_WAKEUP;
bf0f6f24 4230 }
8f4d37ec 4231
2069dd75 4232 for_each_sched_entity(se) {
0f317143 4233 cfs_rq = cfs_rq_of(se);
953bfcd1 4234 cfs_rq->h_nr_running++;
2069dd75 4235
85dac906
PT
4236 if (cfs_rq_throttled(cfs_rq))
4237 break;
4238
9d89c257 4239 update_load_avg(se, 1);
17bc14b7 4240 update_cfs_shares(cfs_rq);
2069dd75
PZ
4241 }
4242
cd126afe 4243 if (!se)
72465447 4244 add_nr_running(rq, 1);
cd126afe 4245
a4c2f00f 4246 hrtick_update(rq);
bf0f6f24
IM
4247}
4248
2f36825b
VP
4249static void set_next_buddy(struct sched_entity *se);
4250
bf0f6f24
IM
4251/*
4252 * The dequeue_task method is called before nr_running is
4253 * decreased. We remove the task from the rbtree and
4254 * update the fair scheduling stats:
4255 */
371fd7e7 4256static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4257{
4258 struct cfs_rq *cfs_rq;
62fb1851 4259 struct sched_entity *se = &p->se;
2f36825b 4260 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4261
4262 for_each_sched_entity(se) {
4263 cfs_rq = cfs_rq_of(se);
371fd7e7 4264 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4265
4266 /*
4267 * end evaluation on encountering a throttled cfs_rq
4268 *
4269 * note: in the case of encountering a throttled cfs_rq we will
4270 * post the final h_nr_running decrement below.
4271 */
4272 if (cfs_rq_throttled(cfs_rq))
4273 break;
953bfcd1 4274 cfs_rq->h_nr_running--;
2069dd75 4275
bf0f6f24 4276 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4277 if (cfs_rq->load.weight) {
4278 /*
4279 * Bias pick_next to pick a task from this cfs_rq, as
4280 * p is sleeping when it is within its sched_slice.
4281 */
4282 if (task_sleep && parent_entity(se))
4283 set_next_buddy(parent_entity(se));
9598c82d
PT
4284
4285 /* avoid re-evaluating load for this entity */
4286 se = parent_entity(se);
bf0f6f24 4287 break;
2f36825b 4288 }
371fd7e7 4289 flags |= DEQUEUE_SLEEP;
bf0f6f24 4290 }
8f4d37ec 4291
2069dd75 4292 for_each_sched_entity(se) {
0f317143 4293 cfs_rq = cfs_rq_of(se);
953bfcd1 4294 cfs_rq->h_nr_running--;
2069dd75 4295
85dac906
PT
4296 if (cfs_rq_throttled(cfs_rq))
4297 break;
4298
9d89c257 4299 update_load_avg(se, 1);
17bc14b7 4300 update_cfs_shares(cfs_rq);
2069dd75
PZ
4301 }
4302
cd126afe 4303 if (!se)
72465447 4304 sub_nr_running(rq, 1);
cd126afe 4305
a4c2f00f 4306 hrtick_update(rq);
bf0f6f24
IM
4307}
4308
e7693a36 4309#ifdef CONFIG_SMP
3289bdb4
PZ
4310
4311/*
4312 * per rq 'load' arrray crap; XXX kill this.
4313 */
4314
4315/*
d937cdc5 4316 * The exact cpuload calculated at every tick would be:
3289bdb4 4317 *
d937cdc5
PZ
4318 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4319 *
4320 * If a cpu misses updates for n ticks (as it was idle) and update gets
4321 * called on the n+1-th tick when cpu may be busy, then we have:
4322 *
4323 * load_n = (1 - 1/2^i)^n * load_0
4324 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4325 *
4326 * decay_load_missed() below does efficient calculation of
3289bdb4 4327 *
d937cdc5
PZ
4328 * load' = (1 - 1/2^i)^n * load
4329 *
4330 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4331 * This allows us to precompute the above in said factors, thereby allowing the
4332 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4333 * fixed_power_int())
3289bdb4 4334 *
d937cdc5 4335 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4336 */
4337#define DEGRADE_SHIFT 7
d937cdc5
PZ
4338
4339static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4340static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4341 { 0, 0, 0, 0, 0, 0, 0, 0 },
4342 { 64, 32, 8, 0, 0, 0, 0, 0 },
4343 { 96, 72, 40, 12, 1, 0, 0, 0 },
4344 { 112, 98, 75, 43, 15, 1, 0, 0 },
4345 { 120, 112, 98, 76, 45, 16, 2, 0 }
4346};
3289bdb4
PZ
4347
4348/*
4349 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4350 * would be when CPU is idle and so we just decay the old load without
4351 * adding any new load.
4352 */
4353static unsigned long
4354decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4355{
4356 int j = 0;
4357
4358 if (!missed_updates)
4359 return load;
4360
4361 if (missed_updates >= degrade_zero_ticks[idx])
4362 return 0;
4363
4364 if (idx == 1)
4365 return load >> missed_updates;
4366
4367 while (missed_updates) {
4368 if (missed_updates % 2)
4369 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4370
4371 missed_updates >>= 1;
4372 j++;
4373 }
4374 return load;
4375}
4376
59543275
BP
4377/**
4378 * __update_cpu_load - update the rq->cpu_load[] statistics
4379 * @this_rq: The rq to update statistics for
4380 * @this_load: The current load
4381 * @pending_updates: The number of missed updates
4382 * @active: !0 for NOHZ_FULL
4383 *
3289bdb4 4384 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4385 * scheduler tick (TICK_NSEC).
4386 *
4387 * This function computes a decaying average:
4388 *
4389 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4390 *
4391 * Because of NOHZ it might not get called on every tick which gives need for
4392 * the @pending_updates argument.
4393 *
4394 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4395 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4396 * = A * (A * load[i]_n-2 + B) + B
4397 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4398 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4399 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4400 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4401 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4402 *
4403 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4404 * any change in load would have resulted in the tick being turned back on.
4405 *
4406 * For regular NOHZ, this reduces to:
4407 *
4408 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4409 *
4410 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4411 * term. See the @active paramter.
3289bdb4
PZ
4412 */
4413static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4414 unsigned long pending_updates, int active)
3289bdb4 4415{
59543275 4416 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4417 int i, scale;
4418
4419 this_rq->nr_load_updates++;
4420
4421 /* Update our load: */
4422 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4423 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4424 unsigned long old_load, new_load;
4425
4426 /* scale is effectively 1 << i now, and >> i divides by scale */
4427
59543275 4428 old_load = this_rq->cpu_load[i] - tickless_load;
3289bdb4 4429 old_load = decay_load_missed(old_load, pending_updates - 1, i);
59543275 4430 old_load += tickless_load;
3289bdb4
PZ
4431 new_load = this_load;
4432 /*
4433 * Round up the averaging division if load is increasing. This
4434 * prevents us from getting stuck on 9 if the load is 10, for
4435 * example.
4436 */
4437 if (new_load > old_load)
4438 new_load += scale - 1;
4439
4440 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4441 }
4442
4443 sched_avg_update(this_rq);
4444}
4445
7ea241af
YD
4446/* Used instead of source_load when we know the type == 0 */
4447static unsigned long weighted_cpuload(const int cpu)
4448{
4449 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4450}
4451
3289bdb4
PZ
4452#ifdef CONFIG_NO_HZ_COMMON
4453/*
4454 * There is no sane way to deal with nohz on smp when using jiffies because the
4455 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4456 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4457 *
4458 * Therefore we cannot use the delta approach from the regular tick since that
4459 * would seriously skew the load calculation. However we'll make do for those
4460 * updates happening while idle (nohz_idle_balance) or coming out of idle
4461 * (tick_nohz_idle_exit).
4462 *
4463 * This means we might still be one tick off for nohz periods.
4464 */
4465
4466/*
4467 * Called from nohz_idle_balance() to update the load ratings before doing the
4468 * idle balance.
4469 */
4470static void update_idle_cpu_load(struct rq *this_rq)
4471{
316c1608 4472 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4473 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4474 unsigned long pending_updates;
4475
4476 /*
4477 * bail if there's load or we're actually up-to-date.
4478 */
4479 if (load || curr_jiffies == this_rq->last_load_update_tick)
4480 return;
4481
4482 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4483 this_rq->last_load_update_tick = curr_jiffies;
4484
59543275 4485 __update_cpu_load(this_rq, load, pending_updates, 0);
3289bdb4
PZ
4486}
4487
4488/*
4489 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4490 */
525705d1 4491void update_cpu_load_nohz(int active)
3289bdb4
PZ
4492{
4493 struct rq *this_rq = this_rq();
316c1608 4494 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4495 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4496 unsigned long pending_updates;
4497
4498 if (curr_jiffies == this_rq->last_load_update_tick)
4499 return;
4500
4501 raw_spin_lock(&this_rq->lock);
4502 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4503 if (pending_updates) {
4504 this_rq->last_load_update_tick = curr_jiffies;
4505 /*
525705d1
BP
4506 * In the regular NOHZ case, we were idle, this means load 0.
4507 * In the NOHZ_FULL case, we were non-idle, we should consider
4508 * its weighted load.
3289bdb4 4509 */
525705d1 4510 __update_cpu_load(this_rq, load, pending_updates, active);
3289bdb4
PZ
4511 }
4512 raw_spin_unlock(&this_rq->lock);
4513}
4514#endif /* CONFIG_NO_HZ */
4515
4516/*
4517 * Called from scheduler_tick()
4518 */
4519void update_cpu_load_active(struct rq *this_rq)
4520{
7ea241af 4521 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4522 /*
4523 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4524 */
4525 this_rq->last_load_update_tick = jiffies;
59543275 4526 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4527}
4528
029632fb
PZ
4529/*
4530 * Return a low guess at the load of a migration-source cpu weighted
4531 * according to the scheduling class and "nice" value.
4532 *
4533 * We want to under-estimate the load of migration sources, to
4534 * balance conservatively.
4535 */
4536static unsigned long source_load(int cpu, int type)
4537{
4538 struct rq *rq = cpu_rq(cpu);
4539 unsigned long total = weighted_cpuload(cpu);
4540
4541 if (type == 0 || !sched_feat(LB_BIAS))
4542 return total;
4543
4544 return min(rq->cpu_load[type-1], total);
4545}
4546
4547/*
4548 * Return a high guess at the load of a migration-target cpu weighted
4549 * according to the scheduling class and "nice" value.
4550 */
4551static unsigned long target_load(int cpu, int type)
4552{
4553 struct rq *rq = cpu_rq(cpu);
4554 unsigned long total = weighted_cpuload(cpu);
4555
4556 if (type == 0 || !sched_feat(LB_BIAS))
4557 return total;
4558
4559 return max(rq->cpu_load[type-1], total);
4560}
4561
ced549fa 4562static unsigned long capacity_of(int cpu)
029632fb 4563{
ced549fa 4564 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4565}
4566
ca6d75e6
VG
4567static unsigned long capacity_orig_of(int cpu)
4568{
4569 return cpu_rq(cpu)->cpu_capacity_orig;
4570}
4571
029632fb
PZ
4572static unsigned long cpu_avg_load_per_task(int cpu)
4573{
4574 struct rq *rq = cpu_rq(cpu);
316c1608 4575 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4576 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4577
4578 if (nr_running)
b92486cb 4579 return load_avg / nr_running;
029632fb
PZ
4580
4581 return 0;
4582}
4583
62470419
MW
4584static void record_wakee(struct task_struct *p)
4585{
4586 /*
4587 * Rough decay (wiping) for cost saving, don't worry
4588 * about the boundary, really active task won't care
4589 * about the loss.
4590 */
2538d960 4591 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4592 current->wakee_flips >>= 1;
62470419
MW
4593 current->wakee_flip_decay_ts = jiffies;
4594 }
4595
4596 if (current->last_wakee != p) {
4597 current->last_wakee = p;
4598 current->wakee_flips++;
4599 }
4600}
098fb9db 4601
74f8e4b2 4602static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4603{
4604 struct sched_entity *se = &p->se;
4605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4606 u64 min_vruntime;
4607
4608#ifndef CONFIG_64BIT
4609 u64 min_vruntime_copy;
88ec22d3 4610
3fe1698b
PZ
4611 do {
4612 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4613 smp_rmb();
4614 min_vruntime = cfs_rq->min_vruntime;
4615 } while (min_vruntime != min_vruntime_copy);
4616#else
4617 min_vruntime = cfs_rq->min_vruntime;
4618#endif
88ec22d3 4619
3fe1698b 4620 se->vruntime -= min_vruntime;
62470419 4621 record_wakee(p);
88ec22d3
PZ
4622}
4623
bb3469ac 4624#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4625/*
4626 * effective_load() calculates the load change as seen from the root_task_group
4627 *
4628 * Adding load to a group doesn't make a group heavier, but can cause movement
4629 * of group shares between cpus. Assuming the shares were perfectly aligned one
4630 * can calculate the shift in shares.
cf5f0acf
PZ
4631 *
4632 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4633 * on this @cpu and results in a total addition (subtraction) of @wg to the
4634 * total group weight.
4635 *
4636 * Given a runqueue weight distribution (rw_i) we can compute a shares
4637 * distribution (s_i) using:
4638 *
4639 * s_i = rw_i / \Sum rw_j (1)
4640 *
4641 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4642 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4643 * shares distribution (s_i):
4644 *
4645 * rw_i = { 2, 4, 1, 0 }
4646 * s_i = { 2/7, 4/7, 1/7, 0 }
4647 *
4648 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4649 * task used to run on and the CPU the waker is running on), we need to
4650 * compute the effect of waking a task on either CPU and, in case of a sync
4651 * wakeup, compute the effect of the current task going to sleep.
4652 *
4653 * So for a change of @wl to the local @cpu with an overall group weight change
4654 * of @wl we can compute the new shares distribution (s'_i) using:
4655 *
4656 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4657 *
4658 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4659 * differences in waking a task to CPU 0. The additional task changes the
4660 * weight and shares distributions like:
4661 *
4662 * rw'_i = { 3, 4, 1, 0 }
4663 * s'_i = { 3/8, 4/8, 1/8, 0 }
4664 *
4665 * We can then compute the difference in effective weight by using:
4666 *
4667 * dw_i = S * (s'_i - s_i) (3)
4668 *
4669 * Where 'S' is the group weight as seen by its parent.
4670 *
4671 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4672 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4673 * 4/7) times the weight of the group.
f5bfb7d9 4674 */
2069dd75 4675static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4676{
4be9daaa 4677 struct sched_entity *se = tg->se[cpu];
f1d239f7 4678
9722c2da 4679 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4680 return wl;
4681
4be9daaa 4682 for_each_sched_entity(se) {
cf5f0acf 4683 long w, W;
4be9daaa 4684
977dda7c 4685 tg = se->my_q->tg;
bb3469ac 4686
cf5f0acf
PZ
4687 /*
4688 * W = @wg + \Sum rw_j
4689 */
4690 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4691
cf5f0acf
PZ
4692 /*
4693 * w = rw_i + @wl
4694 */
7ea241af 4695 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4696
cf5f0acf
PZ
4697 /*
4698 * wl = S * s'_i; see (2)
4699 */
4700 if (W > 0 && w < W)
32a8df4e 4701 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4702 else
4703 wl = tg->shares;
940959e9 4704
cf5f0acf
PZ
4705 /*
4706 * Per the above, wl is the new se->load.weight value; since
4707 * those are clipped to [MIN_SHARES, ...) do so now. See
4708 * calc_cfs_shares().
4709 */
977dda7c
PT
4710 if (wl < MIN_SHARES)
4711 wl = MIN_SHARES;
cf5f0acf
PZ
4712
4713 /*
4714 * wl = dw_i = S * (s'_i - s_i); see (3)
4715 */
9d89c257 4716 wl -= se->avg.load_avg;
cf5f0acf
PZ
4717
4718 /*
4719 * Recursively apply this logic to all parent groups to compute
4720 * the final effective load change on the root group. Since
4721 * only the @tg group gets extra weight, all parent groups can
4722 * only redistribute existing shares. @wl is the shift in shares
4723 * resulting from this level per the above.
4724 */
4be9daaa 4725 wg = 0;
4be9daaa 4726 }
bb3469ac 4727
4be9daaa 4728 return wl;
bb3469ac
PZ
4729}
4730#else
4be9daaa 4731
58d081b5 4732static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4733{
83378269 4734 return wl;
bb3469ac 4735}
4be9daaa 4736
bb3469ac
PZ
4737#endif
4738
63b0e9ed
MG
4739/*
4740 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4741 * A waker of many should wake a different task than the one last awakened
4742 * at a frequency roughly N times higher than one of its wakees. In order
4743 * to determine whether we should let the load spread vs consolodating to
4744 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4745 * partner, and a factor of lls_size higher frequency in the other. With
4746 * both conditions met, we can be relatively sure that the relationship is
4747 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4748 * being client/server, worker/dispatcher, interrupt source or whatever is
4749 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4750 */
62470419
MW
4751static int wake_wide(struct task_struct *p)
4752{
63b0e9ed
MG
4753 unsigned int master = current->wakee_flips;
4754 unsigned int slave = p->wakee_flips;
7d9ffa89 4755 int factor = this_cpu_read(sd_llc_size);
62470419 4756
63b0e9ed
MG
4757 if (master < slave)
4758 swap(master, slave);
4759 if (slave < factor || master < slave * factor)
4760 return 0;
4761 return 1;
62470419
MW
4762}
4763
c88d5910 4764static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4765{
e37b6a7b 4766 s64 this_load, load;
bd61c98f 4767 s64 this_eff_load, prev_eff_load;
c88d5910 4768 int idx, this_cpu, prev_cpu;
c88d5910 4769 struct task_group *tg;
83378269 4770 unsigned long weight;
b3137bc8 4771 int balanced;
098fb9db 4772
c88d5910
PZ
4773 idx = sd->wake_idx;
4774 this_cpu = smp_processor_id();
4775 prev_cpu = task_cpu(p);
4776 load = source_load(prev_cpu, idx);
4777 this_load = target_load(this_cpu, idx);
098fb9db 4778
b3137bc8
MG
4779 /*
4780 * If sync wakeup then subtract the (maximum possible)
4781 * effect of the currently running task from the load
4782 * of the current CPU:
4783 */
83378269
PZ
4784 if (sync) {
4785 tg = task_group(current);
9d89c257 4786 weight = current->se.avg.load_avg;
83378269 4787
c88d5910 4788 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4789 load += effective_load(tg, prev_cpu, 0, -weight);
4790 }
b3137bc8 4791
83378269 4792 tg = task_group(p);
9d89c257 4793 weight = p->se.avg.load_avg;
b3137bc8 4794
71a29aa7
PZ
4795 /*
4796 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4797 * due to the sync cause above having dropped this_load to 0, we'll
4798 * always have an imbalance, but there's really nothing you can do
4799 * about that, so that's good too.
71a29aa7
PZ
4800 *
4801 * Otherwise check if either cpus are near enough in load to allow this
4802 * task to be woken on this_cpu.
4803 */
bd61c98f
VG
4804 this_eff_load = 100;
4805 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4806
bd61c98f
VG
4807 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4808 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4809
bd61c98f 4810 if (this_load > 0) {
e51fd5e2
PZ
4811 this_eff_load *= this_load +
4812 effective_load(tg, this_cpu, weight, weight);
4813
e51fd5e2 4814 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4815 }
e51fd5e2 4816
bd61c98f 4817 balanced = this_eff_load <= prev_eff_load;
098fb9db 4818
41acab88 4819 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4820
05bfb65f
VG
4821 if (!balanced)
4822 return 0;
098fb9db 4823
05bfb65f
VG
4824 schedstat_inc(sd, ttwu_move_affine);
4825 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4826
4827 return 1;
098fb9db
IM
4828}
4829
aaee1203
PZ
4830/*
4831 * find_idlest_group finds and returns the least busy CPU group within the
4832 * domain.
4833 */
4834static struct sched_group *
78e7ed53 4835find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4836 int this_cpu, int sd_flag)
e7693a36 4837{
b3bd3de6 4838 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4839 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4840 int load_idx = sd->forkexec_idx;
aaee1203 4841 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4842
c44f2a02
VG
4843 if (sd_flag & SD_BALANCE_WAKE)
4844 load_idx = sd->wake_idx;
4845
aaee1203
PZ
4846 do {
4847 unsigned long load, avg_load;
4848 int local_group;
4849 int i;
e7693a36 4850
aaee1203
PZ
4851 /* Skip over this group if it has no CPUs allowed */
4852 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4853 tsk_cpus_allowed(p)))
aaee1203
PZ
4854 continue;
4855
4856 local_group = cpumask_test_cpu(this_cpu,
4857 sched_group_cpus(group));
4858
4859 /* Tally up the load of all CPUs in the group */
4860 avg_load = 0;
4861
4862 for_each_cpu(i, sched_group_cpus(group)) {
4863 /* Bias balancing toward cpus of our domain */
4864 if (local_group)
4865 load = source_load(i, load_idx);
4866 else
4867 load = target_load(i, load_idx);
4868
4869 avg_load += load;
4870 }
4871
63b2ca30 4872 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4873 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4874
4875 if (local_group) {
4876 this_load = avg_load;
aaee1203
PZ
4877 } else if (avg_load < min_load) {
4878 min_load = avg_load;
4879 idlest = group;
4880 }
4881 } while (group = group->next, group != sd->groups);
4882
4883 if (!idlest || 100*this_load < imbalance*min_load)
4884 return NULL;
4885 return idlest;
4886}
4887
4888/*
4889 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4890 */
4891static int
4892find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4893{
4894 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4895 unsigned int min_exit_latency = UINT_MAX;
4896 u64 latest_idle_timestamp = 0;
4897 int least_loaded_cpu = this_cpu;
4898 int shallowest_idle_cpu = -1;
aaee1203
PZ
4899 int i;
4900
4901 /* Traverse only the allowed CPUs */
fa17b507 4902 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4903 if (idle_cpu(i)) {
4904 struct rq *rq = cpu_rq(i);
4905 struct cpuidle_state *idle = idle_get_state(rq);
4906 if (idle && idle->exit_latency < min_exit_latency) {
4907 /*
4908 * We give priority to a CPU whose idle state
4909 * has the smallest exit latency irrespective
4910 * of any idle timestamp.
4911 */
4912 min_exit_latency = idle->exit_latency;
4913 latest_idle_timestamp = rq->idle_stamp;
4914 shallowest_idle_cpu = i;
4915 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4916 rq->idle_stamp > latest_idle_timestamp) {
4917 /*
4918 * If equal or no active idle state, then
4919 * the most recently idled CPU might have
4920 * a warmer cache.
4921 */
4922 latest_idle_timestamp = rq->idle_stamp;
4923 shallowest_idle_cpu = i;
4924 }
9f96742a 4925 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4926 load = weighted_cpuload(i);
4927 if (load < min_load || (load == min_load && i == this_cpu)) {
4928 min_load = load;
4929 least_loaded_cpu = i;
4930 }
e7693a36
GH
4931 }
4932 }
4933
83a0a96a 4934 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4935}
e7693a36 4936
a50bde51
PZ
4937/*
4938 * Try and locate an idle CPU in the sched_domain.
4939 */
99bd5e2f 4940static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4941{
99bd5e2f 4942 struct sched_domain *sd;
37407ea7 4943 struct sched_group *sg;
e0a79f52 4944 int i = task_cpu(p);
a50bde51 4945
e0a79f52
MG
4946 if (idle_cpu(target))
4947 return target;
99bd5e2f
SS
4948
4949 /*
e0a79f52 4950 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4951 */
e0a79f52
MG
4952 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4953 return i;
a50bde51
PZ
4954
4955 /*
37407ea7 4956 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4957 */
518cd623 4958 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4959 for_each_lower_domain(sd) {
37407ea7
LT
4960 sg = sd->groups;
4961 do {
4962 if (!cpumask_intersects(sched_group_cpus(sg),
4963 tsk_cpus_allowed(p)))
4964 goto next;
4965
4966 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4967 if (i == target || !idle_cpu(i))
37407ea7
LT
4968 goto next;
4969 }
970e1789 4970
37407ea7
LT
4971 target = cpumask_first_and(sched_group_cpus(sg),
4972 tsk_cpus_allowed(p));
4973 goto done;
4974next:
4975 sg = sg->next;
4976 } while (sg != sd->groups);
4977 }
4978done:
a50bde51
PZ
4979 return target;
4980}
231678b7 4981
8bb5b00c 4982/*
9e91d61d 4983 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 4984 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
4985 * compare the utilization with the capacity of the CPU that is available for
4986 * CFS task (ie cpu_capacity).
231678b7
DE
4987 *
4988 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4989 * recent utilization of currently non-runnable tasks on a CPU. It represents
4990 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4991 * capacity_orig is the cpu_capacity available at the highest frequency
4992 * (arch_scale_freq_capacity()).
4993 * The utilization of a CPU converges towards a sum equal to or less than the
4994 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4995 * the running time on this CPU scaled by capacity_curr.
4996 *
4997 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4998 * higher than capacity_orig because of unfortunate rounding in
4999 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5000 * the average stabilizes with the new running time. We need to check that the
5001 * utilization stays within the range of [0..capacity_orig] and cap it if
5002 * necessary. Without utilization capping, a group could be seen as overloaded
5003 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5004 * available capacity. We allow utilization to overshoot capacity_curr (but not
5005 * capacity_orig) as it useful for predicting the capacity required after task
5006 * migrations (scheduler-driven DVFS).
8bb5b00c 5007 */
9e91d61d 5008static int cpu_util(int cpu)
8bb5b00c 5009{
9e91d61d 5010 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5011 unsigned long capacity = capacity_orig_of(cpu);
5012
231678b7 5013 return (util >= capacity) ? capacity : util;
8bb5b00c 5014}
a50bde51 5015
aaee1203 5016/*
de91b9cb
MR
5017 * select_task_rq_fair: Select target runqueue for the waking task in domains
5018 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5019 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5020 *
de91b9cb
MR
5021 * Balances load by selecting the idlest cpu in the idlest group, or under
5022 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5023 *
de91b9cb 5024 * Returns the target cpu number.
aaee1203
PZ
5025 *
5026 * preempt must be disabled.
5027 */
0017d735 5028static int
ac66f547 5029select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5030{
29cd8bae 5031 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5032 int cpu = smp_processor_id();
63b0e9ed 5033 int new_cpu = prev_cpu;
99bd5e2f 5034 int want_affine = 0;
5158f4e4 5035 int sync = wake_flags & WF_SYNC;
c88d5910 5036
a8edd075 5037 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5038 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5039
dce840a0 5040 rcu_read_lock();
aaee1203 5041 for_each_domain(cpu, tmp) {
e4f42888 5042 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5043 break;
e4f42888 5044
fe3bcfe1 5045 /*
99bd5e2f
SS
5046 * If both cpu and prev_cpu are part of this domain,
5047 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5048 */
99bd5e2f
SS
5049 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5050 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5051 affine_sd = tmp;
29cd8bae 5052 break;
f03542a7 5053 }
29cd8bae 5054
f03542a7 5055 if (tmp->flags & sd_flag)
29cd8bae 5056 sd = tmp;
63b0e9ed
MG
5057 else if (!want_affine)
5058 break;
29cd8bae
PZ
5059 }
5060
63b0e9ed
MG
5061 if (affine_sd) {
5062 sd = NULL; /* Prefer wake_affine over balance flags */
5063 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5064 new_cpu = cpu;
8b911acd 5065 }
e7693a36 5066
63b0e9ed
MG
5067 if (!sd) {
5068 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5069 new_cpu = select_idle_sibling(p, new_cpu);
5070
5071 } else while (sd) {
aaee1203 5072 struct sched_group *group;
c88d5910 5073 int weight;
098fb9db 5074
0763a660 5075 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5076 sd = sd->child;
5077 continue;
5078 }
098fb9db 5079
c44f2a02 5080 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5081 if (!group) {
5082 sd = sd->child;
5083 continue;
5084 }
4ae7d5ce 5085
d7c33c49 5086 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5087 if (new_cpu == -1 || new_cpu == cpu) {
5088 /* Now try balancing at a lower domain level of cpu */
5089 sd = sd->child;
5090 continue;
e7693a36 5091 }
aaee1203
PZ
5092
5093 /* Now try balancing at a lower domain level of new_cpu */
5094 cpu = new_cpu;
669c55e9 5095 weight = sd->span_weight;
aaee1203
PZ
5096 sd = NULL;
5097 for_each_domain(cpu, tmp) {
669c55e9 5098 if (weight <= tmp->span_weight)
aaee1203 5099 break;
0763a660 5100 if (tmp->flags & sd_flag)
aaee1203
PZ
5101 sd = tmp;
5102 }
5103 /* while loop will break here if sd == NULL */
e7693a36 5104 }
dce840a0 5105 rcu_read_unlock();
e7693a36 5106
c88d5910 5107 return new_cpu;
e7693a36 5108}
0a74bef8
PT
5109
5110/*
5111 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5112 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5113 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5114 */
5a4fd036 5115static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5116{
aff3e498 5117 /*
9d89c257
YD
5118 * We are supposed to update the task to "current" time, then its up to date
5119 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5120 * what current time is, so simply throw away the out-of-date time. This
5121 * will result in the wakee task is less decayed, but giving the wakee more
5122 * load sounds not bad.
aff3e498 5123 */
9d89c257
YD
5124 remove_entity_load_avg(&p->se);
5125
5126 /* Tell new CPU we are migrated */
5127 p->se.avg.last_update_time = 0;
3944a927
BS
5128
5129 /* We have migrated, no longer consider this task hot */
9d89c257 5130 p->se.exec_start = 0;
0a74bef8 5131}
12695578
YD
5132
5133static void task_dead_fair(struct task_struct *p)
5134{
5135 remove_entity_load_avg(&p->se);
5136}
e7693a36
GH
5137#endif /* CONFIG_SMP */
5138
e52fb7c0
PZ
5139static unsigned long
5140wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5141{
5142 unsigned long gran = sysctl_sched_wakeup_granularity;
5143
5144 /*
e52fb7c0
PZ
5145 * Since its curr running now, convert the gran from real-time
5146 * to virtual-time in his units.
13814d42
MG
5147 *
5148 * By using 'se' instead of 'curr' we penalize light tasks, so
5149 * they get preempted easier. That is, if 'se' < 'curr' then
5150 * the resulting gran will be larger, therefore penalizing the
5151 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5152 * be smaller, again penalizing the lighter task.
5153 *
5154 * This is especially important for buddies when the leftmost
5155 * task is higher priority than the buddy.
0bbd3336 5156 */
f4ad9bd2 5157 return calc_delta_fair(gran, se);
0bbd3336
PZ
5158}
5159
464b7527
PZ
5160/*
5161 * Should 'se' preempt 'curr'.
5162 *
5163 * |s1
5164 * |s2
5165 * |s3
5166 * g
5167 * |<--->|c
5168 *
5169 * w(c, s1) = -1
5170 * w(c, s2) = 0
5171 * w(c, s3) = 1
5172 *
5173 */
5174static int
5175wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5176{
5177 s64 gran, vdiff = curr->vruntime - se->vruntime;
5178
5179 if (vdiff <= 0)
5180 return -1;
5181
e52fb7c0 5182 gran = wakeup_gran(curr, se);
464b7527
PZ
5183 if (vdiff > gran)
5184 return 1;
5185
5186 return 0;
5187}
5188
02479099
PZ
5189static void set_last_buddy(struct sched_entity *se)
5190{
69c80f3e
VP
5191 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5192 return;
5193
5194 for_each_sched_entity(se)
5195 cfs_rq_of(se)->last = se;
02479099
PZ
5196}
5197
5198static void set_next_buddy(struct sched_entity *se)
5199{
69c80f3e
VP
5200 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5201 return;
5202
5203 for_each_sched_entity(se)
5204 cfs_rq_of(se)->next = se;
02479099
PZ
5205}
5206
ac53db59
RR
5207static void set_skip_buddy(struct sched_entity *se)
5208{
69c80f3e
VP
5209 for_each_sched_entity(se)
5210 cfs_rq_of(se)->skip = se;
ac53db59
RR
5211}
5212
bf0f6f24
IM
5213/*
5214 * Preempt the current task with a newly woken task if needed:
5215 */
5a9b86f6 5216static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5217{
5218 struct task_struct *curr = rq->curr;
8651a86c 5219 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5220 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5221 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5222 int next_buddy_marked = 0;
bf0f6f24 5223
4ae7d5ce
IM
5224 if (unlikely(se == pse))
5225 return;
5226
5238cdd3 5227 /*
163122b7 5228 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5229 * unconditionally check_prempt_curr() after an enqueue (which may have
5230 * lead to a throttle). This both saves work and prevents false
5231 * next-buddy nomination below.
5232 */
5233 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5234 return;
5235
2f36825b 5236 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5237 set_next_buddy(pse);
2f36825b
VP
5238 next_buddy_marked = 1;
5239 }
57fdc26d 5240
aec0a514
BR
5241 /*
5242 * We can come here with TIF_NEED_RESCHED already set from new task
5243 * wake up path.
5238cdd3
PT
5244 *
5245 * Note: this also catches the edge-case of curr being in a throttled
5246 * group (e.g. via set_curr_task), since update_curr() (in the
5247 * enqueue of curr) will have resulted in resched being set. This
5248 * prevents us from potentially nominating it as a false LAST_BUDDY
5249 * below.
aec0a514
BR
5250 */
5251 if (test_tsk_need_resched(curr))
5252 return;
5253
a2f5c9ab
DH
5254 /* Idle tasks are by definition preempted by non-idle tasks. */
5255 if (unlikely(curr->policy == SCHED_IDLE) &&
5256 likely(p->policy != SCHED_IDLE))
5257 goto preempt;
5258
91c234b4 5259 /*
a2f5c9ab
DH
5260 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5261 * is driven by the tick):
91c234b4 5262 */
8ed92e51 5263 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5264 return;
bf0f6f24 5265
464b7527 5266 find_matching_se(&se, &pse);
9bbd7374 5267 update_curr(cfs_rq_of(se));
002f128b 5268 BUG_ON(!pse);
2f36825b
VP
5269 if (wakeup_preempt_entity(se, pse) == 1) {
5270 /*
5271 * Bias pick_next to pick the sched entity that is
5272 * triggering this preemption.
5273 */
5274 if (!next_buddy_marked)
5275 set_next_buddy(pse);
3a7e73a2 5276 goto preempt;
2f36825b 5277 }
464b7527 5278
3a7e73a2 5279 return;
a65ac745 5280
3a7e73a2 5281preempt:
8875125e 5282 resched_curr(rq);
3a7e73a2
PZ
5283 /*
5284 * Only set the backward buddy when the current task is still
5285 * on the rq. This can happen when a wakeup gets interleaved
5286 * with schedule on the ->pre_schedule() or idle_balance()
5287 * point, either of which can * drop the rq lock.
5288 *
5289 * Also, during early boot the idle thread is in the fair class,
5290 * for obvious reasons its a bad idea to schedule back to it.
5291 */
5292 if (unlikely(!se->on_rq || curr == rq->idle))
5293 return;
5294
5295 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5296 set_last_buddy(se);
bf0f6f24
IM
5297}
5298
606dba2e
PZ
5299static struct task_struct *
5300pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5301{
5302 struct cfs_rq *cfs_rq = &rq->cfs;
5303 struct sched_entity *se;
678d5718 5304 struct task_struct *p;
37e117c0 5305 int new_tasks;
678d5718 5306
6e83125c 5307again:
678d5718
PZ
5308#ifdef CONFIG_FAIR_GROUP_SCHED
5309 if (!cfs_rq->nr_running)
38033c37 5310 goto idle;
678d5718 5311
3f1d2a31 5312 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5313 goto simple;
5314
5315 /*
5316 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5317 * likely that a next task is from the same cgroup as the current.
5318 *
5319 * Therefore attempt to avoid putting and setting the entire cgroup
5320 * hierarchy, only change the part that actually changes.
5321 */
5322
5323 do {
5324 struct sched_entity *curr = cfs_rq->curr;
5325
5326 /*
5327 * Since we got here without doing put_prev_entity() we also
5328 * have to consider cfs_rq->curr. If it is still a runnable
5329 * entity, update_curr() will update its vruntime, otherwise
5330 * forget we've ever seen it.
5331 */
54d27365
BS
5332 if (curr) {
5333 if (curr->on_rq)
5334 update_curr(cfs_rq);
5335 else
5336 curr = NULL;
678d5718 5337
54d27365
BS
5338 /*
5339 * This call to check_cfs_rq_runtime() will do the
5340 * throttle and dequeue its entity in the parent(s).
5341 * Therefore the 'simple' nr_running test will indeed
5342 * be correct.
5343 */
5344 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5345 goto simple;
5346 }
678d5718
PZ
5347
5348 se = pick_next_entity(cfs_rq, curr);
5349 cfs_rq = group_cfs_rq(se);
5350 } while (cfs_rq);
5351
5352 p = task_of(se);
5353
5354 /*
5355 * Since we haven't yet done put_prev_entity and if the selected task
5356 * is a different task than we started out with, try and touch the
5357 * least amount of cfs_rqs.
5358 */
5359 if (prev != p) {
5360 struct sched_entity *pse = &prev->se;
5361
5362 while (!(cfs_rq = is_same_group(se, pse))) {
5363 int se_depth = se->depth;
5364 int pse_depth = pse->depth;
5365
5366 if (se_depth <= pse_depth) {
5367 put_prev_entity(cfs_rq_of(pse), pse);
5368 pse = parent_entity(pse);
5369 }
5370 if (se_depth >= pse_depth) {
5371 set_next_entity(cfs_rq_of(se), se);
5372 se = parent_entity(se);
5373 }
5374 }
5375
5376 put_prev_entity(cfs_rq, pse);
5377 set_next_entity(cfs_rq, se);
5378 }
5379
5380 if (hrtick_enabled(rq))
5381 hrtick_start_fair(rq, p);
5382
5383 return p;
5384simple:
5385 cfs_rq = &rq->cfs;
5386#endif
bf0f6f24 5387
36ace27e 5388 if (!cfs_rq->nr_running)
38033c37 5389 goto idle;
bf0f6f24 5390
3f1d2a31 5391 put_prev_task(rq, prev);
606dba2e 5392
bf0f6f24 5393 do {
678d5718 5394 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5395 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5396 cfs_rq = group_cfs_rq(se);
5397 } while (cfs_rq);
5398
8f4d37ec 5399 p = task_of(se);
678d5718 5400
b39e66ea
MG
5401 if (hrtick_enabled(rq))
5402 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5403
5404 return p;
38033c37
PZ
5405
5406idle:
cbce1a68
PZ
5407 /*
5408 * This is OK, because current is on_cpu, which avoids it being picked
5409 * for load-balance and preemption/IRQs are still disabled avoiding
5410 * further scheduler activity on it and we're being very careful to
5411 * re-start the picking loop.
5412 */
5413 lockdep_unpin_lock(&rq->lock);
e4aa358b 5414 new_tasks = idle_balance(rq);
cbce1a68 5415 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5416 /*
5417 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5418 * possible for any higher priority task to appear. In that case we
5419 * must re-start the pick_next_entity() loop.
5420 */
e4aa358b 5421 if (new_tasks < 0)
37e117c0
PZ
5422 return RETRY_TASK;
5423
e4aa358b 5424 if (new_tasks > 0)
38033c37 5425 goto again;
38033c37
PZ
5426
5427 return NULL;
bf0f6f24
IM
5428}
5429
5430/*
5431 * Account for a descheduled task:
5432 */
31ee529c 5433static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5434{
5435 struct sched_entity *se = &prev->se;
5436 struct cfs_rq *cfs_rq;
5437
5438 for_each_sched_entity(se) {
5439 cfs_rq = cfs_rq_of(se);
ab6cde26 5440 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5441 }
5442}
5443
ac53db59
RR
5444/*
5445 * sched_yield() is very simple
5446 *
5447 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5448 */
5449static void yield_task_fair(struct rq *rq)
5450{
5451 struct task_struct *curr = rq->curr;
5452 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5453 struct sched_entity *se = &curr->se;
5454
5455 /*
5456 * Are we the only task in the tree?
5457 */
5458 if (unlikely(rq->nr_running == 1))
5459 return;
5460
5461 clear_buddies(cfs_rq, se);
5462
5463 if (curr->policy != SCHED_BATCH) {
5464 update_rq_clock(rq);
5465 /*
5466 * Update run-time statistics of the 'current'.
5467 */
5468 update_curr(cfs_rq);
916671c0
MG
5469 /*
5470 * Tell update_rq_clock() that we've just updated,
5471 * so we don't do microscopic update in schedule()
5472 * and double the fastpath cost.
5473 */
9edfbfed 5474 rq_clock_skip_update(rq, true);
ac53db59
RR
5475 }
5476
5477 set_skip_buddy(se);
5478}
5479
d95f4122
MG
5480static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5481{
5482 struct sched_entity *se = &p->se;
5483
5238cdd3
PT
5484 /* throttled hierarchies are not runnable */
5485 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5486 return false;
5487
5488 /* Tell the scheduler that we'd really like pse to run next. */
5489 set_next_buddy(se);
5490
d95f4122
MG
5491 yield_task_fair(rq);
5492
5493 return true;
5494}
5495
681f3e68 5496#ifdef CONFIG_SMP
bf0f6f24 5497/**************************************************
e9c84cb8
PZ
5498 * Fair scheduling class load-balancing methods.
5499 *
5500 * BASICS
5501 *
5502 * The purpose of load-balancing is to achieve the same basic fairness the
5503 * per-cpu scheduler provides, namely provide a proportional amount of compute
5504 * time to each task. This is expressed in the following equation:
5505 *
5506 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5507 *
5508 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5509 * W_i,0 is defined as:
5510 *
5511 * W_i,0 = \Sum_j w_i,j (2)
5512 *
5513 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5514 * is derived from the nice value as per prio_to_weight[].
5515 *
5516 * The weight average is an exponential decay average of the instantaneous
5517 * weight:
5518 *
5519 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5520 *
ced549fa 5521 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5522 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5523 * can also include other factors [XXX].
5524 *
5525 * To achieve this balance we define a measure of imbalance which follows
5526 * directly from (1):
5527 *
ced549fa 5528 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5529 *
5530 * We them move tasks around to minimize the imbalance. In the continuous
5531 * function space it is obvious this converges, in the discrete case we get
5532 * a few fun cases generally called infeasible weight scenarios.
5533 *
5534 * [XXX expand on:
5535 * - infeasible weights;
5536 * - local vs global optima in the discrete case. ]
5537 *
5538 *
5539 * SCHED DOMAINS
5540 *
5541 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5542 * for all i,j solution, we create a tree of cpus that follows the hardware
5543 * topology where each level pairs two lower groups (or better). This results
5544 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5545 * tree to only the first of the previous level and we decrease the frequency
5546 * of load-balance at each level inv. proportional to the number of cpus in
5547 * the groups.
5548 *
5549 * This yields:
5550 *
5551 * log_2 n 1 n
5552 * \Sum { --- * --- * 2^i } = O(n) (5)
5553 * i = 0 2^i 2^i
5554 * `- size of each group
5555 * | | `- number of cpus doing load-balance
5556 * | `- freq
5557 * `- sum over all levels
5558 *
5559 * Coupled with a limit on how many tasks we can migrate every balance pass,
5560 * this makes (5) the runtime complexity of the balancer.
5561 *
5562 * An important property here is that each CPU is still (indirectly) connected
5563 * to every other cpu in at most O(log n) steps:
5564 *
5565 * The adjacency matrix of the resulting graph is given by:
5566 *
5567 * log_2 n
5568 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5569 * k = 0
5570 *
5571 * And you'll find that:
5572 *
5573 * A^(log_2 n)_i,j != 0 for all i,j (7)
5574 *
5575 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5576 * The task movement gives a factor of O(m), giving a convergence complexity
5577 * of:
5578 *
5579 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5580 *
5581 *
5582 * WORK CONSERVING
5583 *
5584 * In order to avoid CPUs going idle while there's still work to do, new idle
5585 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5586 * tree itself instead of relying on other CPUs to bring it work.
5587 *
5588 * This adds some complexity to both (5) and (8) but it reduces the total idle
5589 * time.
5590 *
5591 * [XXX more?]
5592 *
5593 *
5594 * CGROUPS
5595 *
5596 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5597 *
5598 * s_k,i
5599 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5600 * S_k
5601 *
5602 * Where
5603 *
5604 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5605 *
5606 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5607 *
5608 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5609 * property.
5610 *
5611 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5612 * rewrite all of this once again.]
5613 */
bf0f6f24 5614
ed387b78
HS
5615static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5616
0ec8aa00
PZ
5617enum fbq_type { regular, remote, all };
5618
ddcdf6e7 5619#define LBF_ALL_PINNED 0x01
367456c7 5620#define LBF_NEED_BREAK 0x02
6263322c
PZ
5621#define LBF_DST_PINNED 0x04
5622#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5623
5624struct lb_env {
5625 struct sched_domain *sd;
5626
ddcdf6e7 5627 struct rq *src_rq;
85c1e7da 5628 int src_cpu;
ddcdf6e7
PZ
5629
5630 int dst_cpu;
5631 struct rq *dst_rq;
5632
88b8dac0
SV
5633 struct cpumask *dst_grpmask;
5634 int new_dst_cpu;
ddcdf6e7 5635 enum cpu_idle_type idle;
bd939f45 5636 long imbalance;
b9403130
MW
5637 /* The set of CPUs under consideration for load-balancing */
5638 struct cpumask *cpus;
5639
ddcdf6e7 5640 unsigned int flags;
367456c7
PZ
5641
5642 unsigned int loop;
5643 unsigned int loop_break;
5644 unsigned int loop_max;
0ec8aa00
PZ
5645
5646 enum fbq_type fbq_type;
163122b7 5647 struct list_head tasks;
ddcdf6e7
PZ
5648};
5649
029632fb
PZ
5650/*
5651 * Is this task likely cache-hot:
5652 */
5d5e2b1b 5653static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5654{
5655 s64 delta;
5656
e5673f28
KT
5657 lockdep_assert_held(&env->src_rq->lock);
5658
029632fb
PZ
5659 if (p->sched_class != &fair_sched_class)
5660 return 0;
5661
5662 if (unlikely(p->policy == SCHED_IDLE))
5663 return 0;
5664
5665 /*
5666 * Buddy candidates are cache hot:
5667 */
5d5e2b1b 5668 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5669 (&p->se == cfs_rq_of(&p->se)->next ||
5670 &p->se == cfs_rq_of(&p->se)->last))
5671 return 1;
5672
5673 if (sysctl_sched_migration_cost == -1)
5674 return 1;
5675 if (sysctl_sched_migration_cost == 0)
5676 return 0;
5677
5d5e2b1b 5678 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5679
5680 return delta < (s64)sysctl_sched_migration_cost;
5681}
5682
3a7053b3 5683#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5684/*
2a1ed24c
SD
5685 * Returns 1, if task migration degrades locality
5686 * Returns 0, if task migration improves locality i.e migration preferred.
5687 * Returns -1, if task migration is not affected by locality.
c1ceac62 5688 */
2a1ed24c 5689static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5690{
b1ad065e 5691 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5692 unsigned long src_faults, dst_faults;
3a7053b3
MG
5693 int src_nid, dst_nid;
5694
2a595721 5695 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5696 return -1;
5697
c3b9bc5b 5698 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5699 return -1;
7a0f3083
MG
5700
5701 src_nid = cpu_to_node(env->src_cpu);
5702 dst_nid = cpu_to_node(env->dst_cpu);
5703
83e1d2cd 5704 if (src_nid == dst_nid)
2a1ed24c 5705 return -1;
7a0f3083 5706
2a1ed24c
SD
5707 /* Migrating away from the preferred node is always bad. */
5708 if (src_nid == p->numa_preferred_nid) {
5709 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5710 return 1;
5711 else
5712 return -1;
5713 }
b1ad065e 5714
c1ceac62
RR
5715 /* Encourage migration to the preferred node. */
5716 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5717 return 0;
b1ad065e 5718
c1ceac62
RR
5719 if (numa_group) {
5720 src_faults = group_faults(p, src_nid);
5721 dst_faults = group_faults(p, dst_nid);
5722 } else {
5723 src_faults = task_faults(p, src_nid);
5724 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5725 }
5726
c1ceac62 5727 return dst_faults < src_faults;
7a0f3083
MG
5728}
5729
3a7053b3 5730#else
2a1ed24c 5731static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5732 struct lb_env *env)
5733{
2a1ed24c 5734 return -1;
7a0f3083 5735}
3a7053b3
MG
5736#endif
5737
1e3c88bd
PZ
5738/*
5739 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5740 */
5741static
8e45cb54 5742int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5743{
2a1ed24c 5744 int tsk_cache_hot;
e5673f28
KT
5745
5746 lockdep_assert_held(&env->src_rq->lock);
5747
1e3c88bd
PZ
5748 /*
5749 * We do not migrate tasks that are:
d3198084 5750 * 1) throttled_lb_pair, or
1e3c88bd 5751 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5752 * 3) running (obviously), or
5753 * 4) are cache-hot on their current CPU.
1e3c88bd 5754 */
d3198084
JK
5755 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5756 return 0;
5757
ddcdf6e7 5758 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5759 int cpu;
88b8dac0 5760
41acab88 5761 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5762
6263322c
PZ
5763 env->flags |= LBF_SOME_PINNED;
5764
88b8dac0
SV
5765 /*
5766 * Remember if this task can be migrated to any other cpu in
5767 * our sched_group. We may want to revisit it if we couldn't
5768 * meet load balance goals by pulling other tasks on src_cpu.
5769 *
5770 * Also avoid computing new_dst_cpu if we have already computed
5771 * one in current iteration.
5772 */
6263322c 5773 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5774 return 0;
5775
e02e60c1
JK
5776 /* Prevent to re-select dst_cpu via env's cpus */
5777 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5778 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5779 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5780 env->new_dst_cpu = cpu;
5781 break;
5782 }
88b8dac0 5783 }
e02e60c1 5784
1e3c88bd
PZ
5785 return 0;
5786 }
88b8dac0
SV
5787
5788 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5789 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5790
ddcdf6e7 5791 if (task_running(env->src_rq, p)) {
41acab88 5792 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5793 return 0;
5794 }
5795
5796 /*
5797 * Aggressive migration if:
3a7053b3
MG
5798 * 1) destination numa is preferred
5799 * 2) task is cache cold, or
5800 * 3) too many balance attempts have failed.
1e3c88bd 5801 */
2a1ed24c
SD
5802 tsk_cache_hot = migrate_degrades_locality(p, env);
5803 if (tsk_cache_hot == -1)
5804 tsk_cache_hot = task_hot(p, env);
3a7053b3 5805
2a1ed24c 5806 if (tsk_cache_hot <= 0 ||
7a96c231 5807 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5808 if (tsk_cache_hot == 1) {
3a7053b3
MG
5809 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5810 schedstat_inc(p, se.statistics.nr_forced_migrations);
5811 }
1e3c88bd
PZ
5812 return 1;
5813 }
5814
4e2dcb73
ZH
5815 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5816 return 0;
1e3c88bd
PZ
5817}
5818
897c395f 5819/*
163122b7
KT
5820 * detach_task() -- detach the task for the migration specified in env
5821 */
5822static void detach_task(struct task_struct *p, struct lb_env *env)
5823{
5824 lockdep_assert_held(&env->src_rq->lock);
5825
163122b7 5826 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5827 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5828 set_task_cpu(p, env->dst_cpu);
5829}
5830
897c395f 5831/*
e5673f28 5832 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5833 * part of active balancing operations within "domain".
897c395f 5834 *
e5673f28 5835 * Returns a task if successful and NULL otherwise.
897c395f 5836 */
e5673f28 5837static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5838{
5839 struct task_struct *p, *n;
897c395f 5840
e5673f28
KT
5841 lockdep_assert_held(&env->src_rq->lock);
5842
367456c7 5843 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5844 if (!can_migrate_task(p, env))
5845 continue;
897c395f 5846
163122b7 5847 detach_task(p, env);
e5673f28 5848
367456c7 5849 /*
e5673f28 5850 * Right now, this is only the second place where
163122b7 5851 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5852 * so we can safely collect stats here rather than
163122b7 5853 * inside detach_tasks().
367456c7
PZ
5854 */
5855 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5856 return p;
897c395f 5857 }
e5673f28 5858 return NULL;
897c395f
PZ
5859}
5860
eb95308e
PZ
5861static const unsigned int sched_nr_migrate_break = 32;
5862
5d6523eb 5863/*
163122b7
KT
5864 * detach_tasks() -- tries to detach up to imbalance weighted load from
5865 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5866 *
163122b7 5867 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5868 */
163122b7 5869static int detach_tasks(struct lb_env *env)
1e3c88bd 5870{
5d6523eb
PZ
5871 struct list_head *tasks = &env->src_rq->cfs_tasks;
5872 struct task_struct *p;
367456c7 5873 unsigned long load;
163122b7
KT
5874 int detached = 0;
5875
5876 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5877
bd939f45 5878 if (env->imbalance <= 0)
5d6523eb 5879 return 0;
1e3c88bd 5880
5d6523eb 5881 while (!list_empty(tasks)) {
985d3a4c
YD
5882 /*
5883 * We don't want to steal all, otherwise we may be treated likewise,
5884 * which could at worst lead to a livelock crash.
5885 */
5886 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5887 break;
5888
5d6523eb 5889 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5890
367456c7
PZ
5891 env->loop++;
5892 /* We've more or less seen every task there is, call it quits */
5d6523eb 5893 if (env->loop > env->loop_max)
367456c7 5894 break;
5d6523eb
PZ
5895
5896 /* take a breather every nr_migrate tasks */
367456c7 5897 if (env->loop > env->loop_break) {
eb95308e 5898 env->loop_break += sched_nr_migrate_break;
8e45cb54 5899 env->flags |= LBF_NEED_BREAK;
ee00e66f 5900 break;
a195f004 5901 }
1e3c88bd 5902
d3198084 5903 if (!can_migrate_task(p, env))
367456c7
PZ
5904 goto next;
5905
5906 load = task_h_load(p);
5d6523eb 5907
eb95308e 5908 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5909 goto next;
5910
bd939f45 5911 if ((load / 2) > env->imbalance)
367456c7 5912 goto next;
1e3c88bd 5913
163122b7
KT
5914 detach_task(p, env);
5915 list_add(&p->se.group_node, &env->tasks);
5916
5917 detached++;
bd939f45 5918 env->imbalance -= load;
1e3c88bd
PZ
5919
5920#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5921 /*
5922 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5923 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5924 * the critical section.
5925 */
5d6523eb 5926 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5927 break;
1e3c88bd
PZ
5928#endif
5929
ee00e66f
PZ
5930 /*
5931 * We only want to steal up to the prescribed amount of
5932 * weighted load.
5933 */
bd939f45 5934 if (env->imbalance <= 0)
ee00e66f 5935 break;
367456c7
PZ
5936
5937 continue;
5938next:
5d6523eb 5939 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5940 }
5d6523eb 5941
1e3c88bd 5942 /*
163122b7
KT
5943 * Right now, this is one of only two places we collect this stat
5944 * so we can safely collect detach_one_task() stats here rather
5945 * than inside detach_one_task().
1e3c88bd 5946 */
163122b7 5947 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5948
163122b7
KT
5949 return detached;
5950}
5951
5952/*
5953 * attach_task() -- attach the task detached by detach_task() to its new rq.
5954 */
5955static void attach_task(struct rq *rq, struct task_struct *p)
5956{
5957 lockdep_assert_held(&rq->lock);
5958
5959 BUG_ON(task_rq(p) != rq);
163122b7 5960 activate_task(rq, p, 0);
3ea94de1 5961 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
5962 check_preempt_curr(rq, p, 0);
5963}
5964
5965/*
5966 * attach_one_task() -- attaches the task returned from detach_one_task() to
5967 * its new rq.
5968 */
5969static void attach_one_task(struct rq *rq, struct task_struct *p)
5970{
5971 raw_spin_lock(&rq->lock);
5972 attach_task(rq, p);
5973 raw_spin_unlock(&rq->lock);
5974}
5975
5976/*
5977 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5978 * new rq.
5979 */
5980static void attach_tasks(struct lb_env *env)
5981{
5982 struct list_head *tasks = &env->tasks;
5983 struct task_struct *p;
5984
5985 raw_spin_lock(&env->dst_rq->lock);
5986
5987 while (!list_empty(tasks)) {
5988 p = list_first_entry(tasks, struct task_struct, se.group_node);
5989 list_del_init(&p->se.group_node);
1e3c88bd 5990
163122b7
KT
5991 attach_task(env->dst_rq, p);
5992 }
5993
5994 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5995}
5996
230059de 5997#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5998static void update_blocked_averages(int cpu)
9e3081ca 5999{
9e3081ca 6000 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6001 struct cfs_rq *cfs_rq;
6002 unsigned long flags;
9e3081ca 6003
48a16753
PT
6004 raw_spin_lock_irqsave(&rq->lock, flags);
6005 update_rq_clock(rq);
9d89c257 6006
9763b67f
PZ
6007 /*
6008 * Iterates the task_group tree in a bottom up fashion, see
6009 * list_add_leaf_cfs_rq() for details.
6010 */
64660c86 6011 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6012 /* throttled entities do not contribute to load */
6013 if (throttled_hierarchy(cfs_rq))
6014 continue;
48a16753 6015
9d89c257
YD
6016 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6017 update_tg_load_avg(cfs_rq, 0);
6018 }
48a16753 6019 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6020}
6021
9763b67f 6022/*
68520796 6023 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6024 * This needs to be done in a top-down fashion because the load of a child
6025 * group is a fraction of its parents load.
6026 */
68520796 6027static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6028{
68520796
VD
6029 struct rq *rq = rq_of(cfs_rq);
6030 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6031 unsigned long now = jiffies;
68520796 6032 unsigned long load;
a35b6466 6033
68520796 6034 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6035 return;
6036
68520796
VD
6037 cfs_rq->h_load_next = NULL;
6038 for_each_sched_entity(se) {
6039 cfs_rq = cfs_rq_of(se);
6040 cfs_rq->h_load_next = se;
6041 if (cfs_rq->last_h_load_update == now)
6042 break;
6043 }
a35b6466 6044
68520796 6045 if (!se) {
7ea241af 6046 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6047 cfs_rq->last_h_load_update = now;
6048 }
6049
6050 while ((se = cfs_rq->h_load_next) != NULL) {
6051 load = cfs_rq->h_load;
7ea241af
YD
6052 load = div64_ul(load * se->avg.load_avg,
6053 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6054 cfs_rq = group_cfs_rq(se);
6055 cfs_rq->h_load = load;
6056 cfs_rq->last_h_load_update = now;
6057 }
9763b67f
PZ
6058}
6059
367456c7 6060static unsigned long task_h_load(struct task_struct *p)
230059de 6061{
367456c7 6062 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6063
68520796 6064 update_cfs_rq_h_load(cfs_rq);
9d89c257 6065 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6066 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6067}
6068#else
48a16753 6069static inline void update_blocked_averages(int cpu)
9e3081ca 6070{
6c1d47c0
VG
6071 struct rq *rq = cpu_rq(cpu);
6072 struct cfs_rq *cfs_rq = &rq->cfs;
6073 unsigned long flags;
6074
6075 raw_spin_lock_irqsave(&rq->lock, flags);
6076 update_rq_clock(rq);
6077 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6078 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6079}
6080
367456c7 6081static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6082{
9d89c257 6083 return p->se.avg.load_avg;
1e3c88bd 6084}
230059de 6085#endif
1e3c88bd 6086
1e3c88bd 6087/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6088
6089enum group_type {
6090 group_other = 0,
6091 group_imbalanced,
6092 group_overloaded,
6093};
6094
1e3c88bd
PZ
6095/*
6096 * sg_lb_stats - stats of a sched_group required for load_balancing
6097 */
6098struct sg_lb_stats {
6099 unsigned long avg_load; /*Avg load across the CPUs of the group */
6100 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6101 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6102 unsigned long load_per_task;
63b2ca30 6103 unsigned long group_capacity;
9e91d61d 6104 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6105 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6106 unsigned int idle_cpus;
6107 unsigned int group_weight;
caeb178c 6108 enum group_type group_type;
ea67821b 6109 int group_no_capacity;
0ec8aa00
PZ
6110#ifdef CONFIG_NUMA_BALANCING
6111 unsigned int nr_numa_running;
6112 unsigned int nr_preferred_running;
6113#endif
1e3c88bd
PZ
6114};
6115
56cf515b
JK
6116/*
6117 * sd_lb_stats - Structure to store the statistics of a sched_domain
6118 * during load balancing.
6119 */
6120struct sd_lb_stats {
6121 struct sched_group *busiest; /* Busiest group in this sd */
6122 struct sched_group *local; /* Local group in this sd */
6123 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6124 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6125 unsigned long avg_load; /* Average load across all groups in sd */
6126
56cf515b 6127 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6128 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6129};
6130
147c5fc2
PZ
6131static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6132{
6133 /*
6134 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6135 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6136 * We must however clear busiest_stat::avg_load because
6137 * update_sd_pick_busiest() reads this before assignment.
6138 */
6139 *sds = (struct sd_lb_stats){
6140 .busiest = NULL,
6141 .local = NULL,
6142 .total_load = 0UL,
63b2ca30 6143 .total_capacity = 0UL,
147c5fc2
PZ
6144 .busiest_stat = {
6145 .avg_load = 0UL,
caeb178c
RR
6146 .sum_nr_running = 0,
6147 .group_type = group_other,
147c5fc2
PZ
6148 },
6149 };
6150}
6151
1e3c88bd
PZ
6152/**
6153 * get_sd_load_idx - Obtain the load index for a given sched domain.
6154 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6155 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6156 *
6157 * Return: The load index.
1e3c88bd
PZ
6158 */
6159static inline int get_sd_load_idx(struct sched_domain *sd,
6160 enum cpu_idle_type idle)
6161{
6162 int load_idx;
6163
6164 switch (idle) {
6165 case CPU_NOT_IDLE:
6166 load_idx = sd->busy_idx;
6167 break;
6168
6169 case CPU_NEWLY_IDLE:
6170 load_idx = sd->newidle_idx;
6171 break;
6172 default:
6173 load_idx = sd->idle_idx;
6174 break;
6175 }
6176
6177 return load_idx;
6178}
6179
ced549fa 6180static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6181{
6182 struct rq *rq = cpu_rq(cpu);
b5b4860d 6183 u64 total, used, age_stamp, avg;
cadefd3d 6184 s64 delta;
1e3c88bd 6185
b654f7de
PZ
6186 /*
6187 * Since we're reading these variables without serialization make sure
6188 * we read them once before doing sanity checks on them.
6189 */
316c1608
JL
6190 age_stamp = READ_ONCE(rq->age_stamp);
6191 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6192 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6193
cadefd3d
PZ
6194 if (unlikely(delta < 0))
6195 delta = 0;
6196
6197 total = sched_avg_period() + delta;
aa483808 6198
b5b4860d 6199 used = div_u64(avg, total);
1e3c88bd 6200
b5b4860d
VG
6201 if (likely(used < SCHED_CAPACITY_SCALE))
6202 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6203
b5b4860d 6204 return 1;
1e3c88bd
PZ
6205}
6206
ced549fa 6207static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6208{
8cd5601c 6209 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6210 struct sched_group *sdg = sd->groups;
6211
ca6d75e6 6212 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6213
ced549fa 6214 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6215 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6216
ced549fa
NP
6217 if (!capacity)
6218 capacity = 1;
1e3c88bd 6219
ced549fa
NP
6220 cpu_rq(cpu)->cpu_capacity = capacity;
6221 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6222}
6223
63b2ca30 6224void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6225{
6226 struct sched_domain *child = sd->child;
6227 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6228 unsigned long capacity;
4ec4412e
VG
6229 unsigned long interval;
6230
6231 interval = msecs_to_jiffies(sd->balance_interval);
6232 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6233 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6234
6235 if (!child) {
ced549fa 6236 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6237 return;
6238 }
6239
dc7ff76e 6240 capacity = 0;
1e3c88bd 6241
74a5ce20
PZ
6242 if (child->flags & SD_OVERLAP) {
6243 /*
6244 * SD_OVERLAP domains cannot assume that child groups
6245 * span the current group.
6246 */
6247
863bffc8 6248 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6249 struct sched_group_capacity *sgc;
9abf24d4 6250 struct rq *rq = cpu_rq(cpu);
863bffc8 6251
9abf24d4 6252 /*
63b2ca30 6253 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6254 * gets here before we've attached the domains to the
6255 * runqueues.
6256 *
ced549fa
NP
6257 * Use capacity_of(), which is set irrespective of domains
6258 * in update_cpu_capacity().
9abf24d4 6259 *
dc7ff76e 6260 * This avoids capacity from being 0 and
9abf24d4 6261 * causing divide-by-zero issues on boot.
9abf24d4
SD
6262 */
6263 if (unlikely(!rq->sd)) {
ced549fa 6264 capacity += capacity_of(cpu);
9abf24d4
SD
6265 continue;
6266 }
863bffc8 6267
63b2ca30 6268 sgc = rq->sd->groups->sgc;
63b2ca30 6269 capacity += sgc->capacity;
863bffc8 6270 }
74a5ce20
PZ
6271 } else {
6272 /*
6273 * !SD_OVERLAP domains can assume that child groups
6274 * span the current group.
6275 */
6276
6277 group = child->groups;
6278 do {
63b2ca30 6279 capacity += group->sgc->capacity;
74a5ce20
PZ
6280 group = group->next;
6281 } while (group != child->groups);
6282 }
1e3c88bd 6283
63b2ca30 6284 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6285}
6286
9d5efe05 6287/*
ea67821b
VG
6288 * Check whether the capacity of the rq has been noticeably reduced by side
6289 * activity. The imbalance_pct is used for the threshold.
6290 * Return true is the capacity is reduced
9d5efe05
SV
6291 */
6292static inline int
ea67821b 6293check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6294{
ea67821b
VG
6295 return ((rq->cpu_capacity * sd->imbalance_pct) <
6296 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6297}
6298
30ce5dab
PZ
6299/*
6300 * Group imbalance indicates (and tries to solve) the problem where balancing
6301 * groups is inadequate due to tsk_cpus_allowed() constraints.
6302 *
6303 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6304 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6305 * Something like:
6306 *
6307 * { 0 1 2 3 } { 4 5 6 7 }
6308 * * * * *
6309 *
6310 * If we were to balance group-wise we'd place two tasks in the first group and
6311 * two tasks in the second group. Clearly this is undesired as it will overload
6312 * cpu 3 and leave one of the cpus in the second group unused.
6313 *
6314 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6315 * by noticing the lower domain failed to reach balance and had difficulty
6316 * moving tasks due to affinity constraints.
30ce5dab
PZ
6317 *
6318 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6319 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6320 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6321 * to create an effective group imbalance.
6322 *
6323 * This is a somewhat tricky proposition since the next run might not find the
6324 * group imbalance and decide the groups need to be balanced again. A most
6325 * subtle and fragile situation.
6326 */
6327
6263322c 6328static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6329{
63b2ca30 6330 return group->sgc->imbalance;
30ce5dab
PZ
6331}
6332
b37d9316 6333/*
ea67821b
VG
6334 * group_has_capacity returns true if the group has spare capacity that could
6335 * be used by some tasks.
6336 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6337 * smaller than the number of CPUs or if the utilization is lower than the
6338 * available capacity for CFS tasks.
ea67821b
VG
6339 * For the latter, we use a threshold to stabilize the state, to take into
6340 * account the variance of the tasks' load and to return true if the available
6341 * capacity in meaningful for the load balancer.
6342 * As an example, an available capacity of 1% can appear but it doesn't make
6343 * any benefit for the load balance.
b37d9316 6344 */
ea67821b
VG
6345static inline bool
6346group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6347{
ea67821b
VG
6348 if (sgs->sum_nr_running < sgs->group_weight)
6349 return true;
c61037e9 6350
ea67821b 6351 if ((sgs->group_capacity * 100) >
9e91d61d 6352 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6353 return true;
b37d9316 6354
ea67821b
VG
6355 return false;
6356}
6357
6358/*
6359 * group_is_overloaded returns true if the group has more tasks than it can
6360 * handle.
6361 * group_is_overloaded is not equals to !group_has_capacity because a group
6362 * with the exact right number of tasks, has no more spare capacity but is not
6363 * overloaded so both group_has_capacity and group_is_overloaded return
6364 * false.
6365 */
6366static inline bool
6367group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6368{
6369 if (sgs->sum_nr_running <= sgs->group_weight)
6370 return false;
b37d9316 6371
ea67821b 6372 if ((sgs->group_capacity * 100) <
9e91d61d 6373 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6374 return true;
b37d9316 6375
ea67821b 6376 return false;
b37d9316
PZ
6377}
6378
79a89f92
LY
6379static inline enum
6380group_type group_classify(struct sched_group *group,
6381 struct sg_lb_stats *sgs)
caeb178c 6382{
ea67821b 6383 if (sgs->group_no_capacity)
caeb178c
RR
6384 return group_overloaded;
6385
6386 if (sg_imbalanced(group))
6387 return group_imbalanced;
6388
6389 return group_other;
6390}
6391
1e3c88bd
PZ
6392/**
6393 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6394 * @env: The load balancing environment.
1e3c88bd 6395 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6396 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6397 * @local_group: Does group contain this_cpu.
1e3c88bd 6398 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6399 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6400 */
bd939f45
PZ
6401static inline void update_sg_lb_stats(struct lb_env *env,
6402 struct sched_group *group, int load_idx,
4486edd1
TC
6403 int local_group, struct sg_lb_stats *sgs,
6404 bool *overload)
1e3c88bd 6405{
30ce5dab 6406 unsigned long load;
a426f99c 6407 int i, nr_running;
1e3c88bd 6408
b72ff13c
PZ
6409 memset(sgs, 0, sizeof(*sgs));
6410
b9403130 6411 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6412 struct rq *rq = cpu_rq(i);
6413
1e3c88bd 6414 /* Bias balancing toward cpus of our domain */
6263322c 6415 if (local_group)
04f733b4 6416 load = target_load(i, load_idx);
6263322c 6417 else
1e3c88bd 6418 load = source_load(i, load_idx);
1e3c88bd
PZ
6419
6420 sgs->group_load += load;
9e91d61d 6421 sgs->group_util += cpu_util(i);
65fdac08 6422 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6423
a426f99c
WL
6424 nr_running = rq->nr_running;
6425 if (nr_running > 1)
4486edd1
TC
6426 *overload = true;
6427
0ec8aa00
PZ
6428#ifdef CONFIG_NUMA_BALANCING
6429 sgs->nr_numa_running += rq->nr_numa_running;
6430 sgs->nr_preferred_running += rq->nr_preferred_running;
6431#endif
1e3c88bd 6432 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6433 /*
6434 * No need to call idle_cpu() if nr_running is not 0
6435 */
6436 if (!nr_running && idle_cpu(i))
aae6d3dd 6437 sgs->idle_cpus++;
1e3c88bd
PZ
6438 }
6439
63b2ca30
NP
6440 /* Adjust by relative CPU capacity of the group */
6441 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6442 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6443
dd5feea1 6444 if (sgs->sum_nr_running)
38d0f770 6445 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6446
aae6d3dd 6447 sgs->group_weight = group->group_weight;
b37d9316 6448
ea67821b 6449 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6450 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6451}
6452
532cb4c4
MN
6453/**
6454 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6455 * @env: The load balancing environment.
532cb4c4
MN
6456 * @sds: sched_domain statistics
6457 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6458 * @sgs: sched_group statistics
532cb4c4
MN
6459 *
6460 * Determine if @sg is a busier group than the previously selected
6461 * busiest group.
e69f6186
YB
6462 *
6463 * Return: %true if @sg is a busier group than the previously selected
6464 * busiest group. %false otherwise.
532cb4c4 6465 */
bd939f45 6466static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6467 struct sd_lb_stats *sds,
6468 struct sched_group *sg,
bd939f45 6469 struct sg_lb_stats *sgs)
532cb4c4 6470{
caeb178c 6471 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6472
caeb178c 6473 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6474 return true;
6475
caeb178c
RR
6476 if (sgs->group_type < busiest->group_type)
6477 return false;
6478
6479 if (sgs->avg_load <= busiest->avg_load)
6480 return false;
6481
6482 /* This is the busiest node in its class. */
6483 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6484 return true;
6485
6486 /*
6487 * ASYM_PACKING needs to move all the work to the lowest
6488 * numbered CPUs in the group, therefore mark all groups
6489 * higher than ourself as busy.
6490 */
caeb178c 6491 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6492 if (!sds->busiest)
6493 return true;
6494
6495 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6496 return true;
6497 }
6498
6499 return false;
6500}
6501
0ec8aa00
PZ
6502#ifdef CONFIG_NUMA_BALANCING
6503static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6504{
6505 if (sgs->sum_nr_running > sgs->nr_numa_running)
6506 return regular;
6507 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6508 return remote;
6509 return all;
6510}
6511
6512static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6513{
6514 if (rq->nr_running > rq->nr_numa_running)
6515 return regular;
6516 if (rq->nr_running > rq->nr_preferred_running)
6517 return remote;
6518 return all;
6519}
6520#else
6521static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6522{
6523 return all;
6524}
6525
6526static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6527{
6528 return regular;
6529}
6530#endif /* CONFIG_NUMA_BALANCING */
6531
1e3c88bd 6532/**
461819ac 6533 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6534 * @env: The load balancing environment.
1e3c88bd
PZ
6535 * @sds: variable to hold the statistics for this sched_domain.
6536 */
0ec8aa00 6537static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6538{
bd939f45
PZ
6539 struct sched_domain *child = env->sd->child;
6540 struct sched_group *sg = env->sd->groups;
56cf515b 6541 struct sg_lb_stats tmp_sgs;
1e3c88bd 6542 int load_idx, prefer_sibling = 0;
4486edd1 6543 bool overload = false;
1e3c88bd
PZ
6544
6545 if (child && child->flags & SD_PREFER_SIBLING)
6546 prefer_sibling = 1;
6547
bd939f45 6548 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6549
6550 do {
56cf515b 6551 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6552 int local_group;
6553
bd939f45 6554 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6555 if (local_group) {
6556 sds->local = sg;
6557 sgs = &sds->local_stat;
b72ff13c
PZ
6558
6559 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6560 time_after_eq(jiffies, sg->sgc->next_update))
6561 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6562 }
1e3c88bd 6563
4486edd1
TC
6564 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6565 &overload);
1e3c88bd 6566
b72ff13c
PZ
6567 if (local_group)
6568 goto next_group;
6569
1e3c88bd
PZ
6570 /*
6571 * In case the child domain prefers tasks go to siblings
ea67821b 6572 * first, lower the sg capacity so that we'll try
75dd321d
NR
6573 * and move all the excess tasks away. We lower the capacity
6574 * of a group only if the local group has the capacity to fit
ea67821b
VG
6575 * these excess tasks. The extra check prevents the case where
6576 * you always pull from the heaviest group when it is already
6577 * under-utilized (possible with a large weight task outweighs
6578 * the tasks on the system).
1e3c88bd 6579 */
b72ff13c 6580 if (prefer_sibling && sds->local &&
ea67821b
VG
6581 group_has_capacity(env, &sds->local_stat) &&
6582 (sgs->sum_nr_running > 1)) {
6583 sgs->group_no_capacity = 1;
79a89f92 6584 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6585 }
1e3c88bd 6586
b72ff13c 6587 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6588 sds->busiest = sg;
56cf515b 6589 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6590 }
6591
b72ff13c
PZ
6592next_group:
6593 /* Now, start updating sd_lb_stats */
6594 sds->total_load += sgs->group_load;
63b2ca30 6595 sds->total_capacity += sgs->group_capacity;
b72ff13c 6596
532cb4c4 6597 sg = sg->next;
bd939f45 6598 } while (sg != env->sd->groups);
0ec8aa00
PZ
6599
6600 if (env->sd->flags & SD_NUMA)
6601 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6602
6603 if (!env->sd->parent) {
6604 /* update overload indicator if we are at root domain */
6605 if (env->dst_rq->rd->overload != overload)
6606 env->dst_rq->rd->overload = overload;
6607 }
6608
532cb4c4
MN
6609}
6610
532cb4c4
MN
6611/**
6612 * check_asym_packing - Check to see if the group is packed into the
6613 * sched doman.
6614 *
6615 * This is primarily intended to used at the sibling level. Some
6616 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6617 * case of POWER7, it can move to lower SMT modes only when higher
6618 * threads are idle. When in lower SMT modes, the threads will
6619 * perform better since they share less core resources. Hence when we
6620 * have idle threads, we want them to be the higher ones.
6621 *
6622 * This packing function is run on idle threads. It checks to see if
6623 * the busiest CPU in this domain (core in the P7 case) has a higher
6624 * CPU number than the packing function is being run on. Here we are
6625 * assuming lower CPU number will be equivalent to lower a SMT thread
6626 * number.
6627 *
e69f6186 6628 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6629 * this CPU. The amount of the imbalance is returned in *imbalance.
6630 *
cd96891d 6631 * @env: The load balancing environment.
532cb4c4 6632 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6633 */
bd939f45 6634static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6635{
6636 int busiest_cpu;
6637
bd939f45 6638 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6639 return 0;
6640
6641 if (!sds->busiest)
6642 return 0;
6643
6644 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6645 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6646 return 0;
6647
bd939f45 6648 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6649 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6650 SCHED_CAPACITY_SCALE);
bd939f45 6651
532cb4c4 6652 return 1;
1e3c88bd
PZ
6653}
6654
6655/**
6656 * fix_small_imbalance - Calculate the minor imbalance that exists
6657 * amongst the groups of a sched_domain, during
6658 * load balancing.
cd96891d 6659 * @env: The load balancing environment.
1e3c88bd 6660 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6661 */
bd939f45
PZ
6662static inline
6663void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6664{
63b2ca30 6665 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6666 unsigned int imbn = 2;
dd5feea1 6667 unsigned long scaled_busy_load_per_task;
56cf515b 6668 struct sg_lb_stats *local, *busiest;
1e3c88bd 6669
56cf515b
JK
6670 local = &sds->local_stat;
6671 busiest = &sds->busiest_stat;
1e3c88bd 6672
56cf515b
JK
6673 if (!local->sum_nr_running)
6674 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6675 else if (busiest->load_per_task > local->load_per_task)
6676 imbn = 1;
dd5feea1 6677
56cf515b 6678 scaled_busy_load_per_task =
ca8ce3d0 6679 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6680 busiest->group_capacity;
56cf515b 6681
3029ede3
VD
6682 if (busiest->avg_load + scaled_busy_load_per_task >=
6683 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6684 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6685 return;
6686 }
6687
6688 /*
6689 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6690 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6691 * moving them.
6692 */
6693
63b2ca30 6694 capa_now += busiest->group_capacity *
56cf515b 6695 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6696 capa_now += local->group_capacity *
56cf515b 6697 min(local->load_per_task, local->avg_load);
ca8ce3d0 6698 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6699
6700 /* Amount of load we'd subtract */
a2cd4260 6701 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6702 capa_move += busiest->group_capacity *
56cf515b 6703 min(busiest->load_per_task,
a2cd4260 6704 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6705 }
1e3c88bd
PZ
6706
6707 /* Amount of load we'd add */
63b2ca30 6708 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6709 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6710 tmp = (busiest->avg_load * busiest->group_capacity) /
6711 local->group_capacity;
56cf515b 6712 } else {
ca8ce3d0 6713 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6714 local->group_capacity;
56cf515b 6715 }
63b2ca30 6716 capa_move += local->group_capacity *
3ae11c90 6717 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6718 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6719
6720 /* Move if we gain throughput */
63b2ca30 6721 if (capa_move > capa_now)
56cf515b 6722 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6723}
6724
6725/**
6726 * calculate_imbalance - Calculate the amount of imbalance present within the
6727 * groups of a given sched_domain during load balance.
bd939f45 6728 * @env: load balance environment
1e3c88bd 6729 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6730 */
bd939f45 6731static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6732{
dd5feea1 6733 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6734 struct sg_lb_stats *local, *busiest;
6735
6736 local = &sds->local_stat;
56cf515b 6737 busiest = &sds->busiest_stat;
dd5feea1 6738
caeb178c 6739 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6740 /*
6741 * In the group_imb case we cannot rely on group-wide averages
6742 * to ensure cpu-load equilibrium, look at wider averages. XXX
6743 */
56cf515b
JK
6744 busiest->load_per_task =
6745 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6746 }
6747
1e3c88bd
PZ
6748 /*
6749 * In the presence of smp nice balancing, certain scenarios can have
6750 * max load less than avg load(as we skip the groups at or below
ced549fa 6751 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6752 */
b1885550
VD
6753 if (busiest->avg_load <= sds->avg_load ||
6754 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6755 env->imbalance = 0;
6756 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6757 }
6758
9a5d9ba6
PZ
6759 /*
6760 * If there aren't any idle cpus, avoid creating some.
6761 */
6762 if (busiest->group_type == group_overloaded &&
6763 local->group_type == group_overloaded) {
ea67821b
VG
6764 load_above_capacity = busiest->sum_nr_running *
6765 SCHED_LOAD_SCALE;
6766 if (load_above_capacity > busiest->group_capacity)
6767 load_above_capacity -= busiest->group_capacity;
6768 else
6769 load_above_capacity = ~0UL;
dd5feea1
SS
6770 }
6771
6772 /*
6773 * We're trying to get all the cpus to the average_load, so we don't
6774 * want to push ourselves above the average load, nor do we wish to
6775 * reduce the max loaded cpu below the average load. At the same time,
6776 * we also don't want to reduce the group load below the group capacity
6777 * (so that we can implement power-savings policies etc). Thus we look
6778 * for the minimum possible imbalance.
dd5feea1 6779 */
30ce5dab 6780 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6781
6782 /* How much load to actually move to equalise the imbalance */
56cf515b 6783 env->imbalance = min(
63b2ca30
NP
6784 max_pull * busiest->group_capacity,
6785 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6786 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6787
6788 /*
6789 * if *imbalance is less than the average load per runnable task
25985edc 6790 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6791 * a think about bumping its value to force at least one task to be
6792 * moved
6793 */
56cf515b 6794 if (env->imbalance < busiest->load_per_task)
bd939f45 6795 return fix_small_imbalance(env, sds);
1e3c88bd 6796}
fab47622 6797
1e3c88bd
PZ
6798/******* find_busiest_group() helpers end here *********************/
6799
6800/**
6801 * find_busiest_group - Returns the busiest group within the sched_domain
6802 * if there is an imbalance. If there isn't an imbalance, and
6803 * the user has opted for power-savings, it returns a group whose
6804 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6805 * such a group exists.
6806 *
6807 * Also calculates the amount of weighted load which should be moved
6808 * to restore balance.
6809 *
cd96891d 6810 * @env: The load balancing environment.
1e3c88bd 6811 *
e69f6186 6812 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6813 * - If no imbalance and user has opted for power-savings balance,
6814 * return the least loaded group whose CPUs can be
6815 * put to idle by rebalancing its tasks onto our group.
6816 */
56cf515b 6817static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6818{
56cf515b 6819 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6820 struct sd_lb_stats sds;
6821
147c5fc2 6822 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6823
6824 /*
6825 * Compute the various statistics relavent for load balancing at
6826 * this level.
6827 */
23f0d209 6828 update_sd_lb_stats(env, &sds);
56cf515b
JK
6829 local = &sds.local_stat;
6830 busiest = &sds.busiest_stat;
1e3c88bd 6831
ea67821b 6832 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6833 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6834 check_asym_packing(env, &sds))
532cb4c4
MN
6835 return sds.busiest;
6836
cc57aa8f 6837 /* There is no busy sibling group to pull tasks from */
56cf515b 6838 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6839 goto out_balanced;
6840
ca8ce3d0
NP
6841 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6842 / sds.total_capacity;
b0432d8f 6843
866ab43e
PZ
6844 /*
6845 * If the busiest group is imbalanced the below checks don't
30ce5dab 6846 * work because they assume all things are equal, which typically
866ab43e
PZ
6847 * isn't true due to cpus_allowed constraints and the like.
6848 */
caeb178c 6849 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6850 goto force_balance;
6851
cc57aa8f 6852 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6853 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6854 busiest->group_no_capacity)
fab47622
NR
6855 goto force_balance;
6856
cc57aa8f 6857 /*
9c58c79a 6858 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6859 * don't try and pull any tasks.
6860 */
56cf515b 6861 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6862 goto out_balanced;
6863
cc57aa8f
PZ
6864 /*
6865 * Don't pull any tasks if this group is already above the domain
6866 * average load.
6867 */
56cf515b 6868 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6869 goto out_balanced;
6870
bd939f45 6871 if (env->idle == CPU_IDLE) {
aae6d3dd 6872 /*
43f4d666
VG
6873 * This cpu is idle. If the busiest group is not overloaded
6874 * and there is no imbalance between this and busiest group
6875 * wrt idle cpus, it is balanced. The imbalance becomes
6876 * significant if the diff is greater than 1 otherwise we
6877 * might end up to just move the imbalance on another group
aae6d3dd 6878 */
43f4d666
VG
6879 if ((busiest->group_type != group_overloaded) &&
6880 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6881 goto out_balanced;
c186fafe
PZ
6882 } else {
6883 /*
6884 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6885 * imbalance_pct to be conservative.
6886 */
56cf515b
JK
6887 if (100 * busiest->avg_load <=
6888 env->sd->imbalance_pct * local->avg_load)
c186fafe 6889 goto out_balanced;
aae6d3dd 6890 }
1e3c88bd 6891
fab47622 6892force_balance:
1e3c88bd 6893 /* Looks like there is an imbalance. Compute it */
bd939f45 6894 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6895 return sds.busiest;
6896
6897out_balanced:
bd939f45 6898 env->imbalance = 0;
1e3c88bd
PZ
6899 return NULL;
6900}
6901
6902/*
6903 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6904 */
bd939f45 6905static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6906 struct sched_group *group)
1e3c88bd
PZ
6907{
6908 struct rq *busiest = NULL, *rq;
ced549fa 6909 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6910 int i;
6911
6906a408 6912 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6913 unsigned long capacity, wl;
0ec8aa00
PZ
6914 enum fbq_type rt;
6915
6916 rq = cpu_rq(i);
6917 rt = fbq_classify_rq(rq);
1e3c88bd 6918
0ec8aa00
PZ
6919 /*
6920 * We classify groups/runqueues into three groups:
6921 * - regular: there are !numa tasks
6922 * - remote: there are numa tasks that run on the 'wrong' node
6923 * - all: there is no distinction
6924 *
6925 * In order to avoid migrating ideally placed numa tasks,
6926 * ignore those when there's better options.
6927 *
6928 * If we ignore the actual busiest queue to migrate another
6929 * task, the next balance pass can still reduce the busiest
6930 * queue by moving tasks around inside the node.
6931 *
6932 * If we cannot move enough load due to this classification
6933 * the next pass will adjust the group classification and
6934 * allow migration of more tasks.
6935 *
6936 * Both cases only affect the total convergence complexity.
6937 */
6938 if (rt > env->fbq_type)
6939 continue;
6940
ced549fa 6941 capacity = capacity_of(i);
9d5efe05 6942
6e40f5bb 6943 wl = weighted_cpuload(i);
1e3c88bd 6944
6e40f5bb
TG
6945 /*
6946 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6947 * which is not scaled with the cpu capacity.
6e40f5bb 6948 */
ea67821b
VG
6949
6950 if (rq->nr_running == 1 && wl > env->imbalance &&
6951 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6952 continue;
6953
6e40f5bb
TG
6954 /*
6955 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6956 * the weighted_cpuload() scaled with the cpu capacity, so
6957 * that the load can be moved away from the cpu that is
6958 * potentially running at a lower capacity.
95a79b80 6959 *
ced549fa 6960 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6961 * multiplication to rid ourselves of the division works out
ced549fa
NP
6962 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6963 * our previous maximum.
6e40f5bb 6964 */
ced549fa 6965 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6966 busiest_load = wl;
ced549fa 6967 busiest_capacity = capacity;
1e3c88bd
PZ
6968 busiest = rq;
6969 }
6970 }
6971
6972 return busiest;
6973}
6974
6975/*
6976 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6977 * so long as it is large enough.
6978 */
6979#define MAX_PINNED_INTERVAL 512
6980
6981/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6982DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6983
bd939f45 6984static int need_active_balance(struct lb_env *env)
1af3ed3d 6985{
bd939f45
PZ
6986 struct sched_domain *sd = env->sd;
6987
6988 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6989
6990 /*
6991 * ASYM_PACKING needs to force migrate tasks from busy but
6992 * higher numbered CPUs in order to pack all tasks in the
6993 * lowest numbered CPUs.
6994 */
bd939f45 6995 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6996 return 1;
1af3ed3d
PZ
6997 }
6998
1aaf90a4
VG
6999 /*
7000 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7001 * It's worth migrating the task if the src_cpu's capacity is reduced
7002 * because of other sched_class or IRQs if more capacity stays
7003 * available on dst_cpu.
7004 */
7005 if ((env->idle != CPU_NOT_IDLE) &&
7006 (env->src_rq->cfs.h_nr_running == 1)) {
7007 if ((check_cpu_capacity(env->src_rq, sd)) &&
7008 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7009 return 1;
7010 }
7011
1af3ed3d
PZ
7012 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7013}
7014
969c7921
TH
7015static int active_load_balance_cpu_stop(void *data);
7016
23f0d209
JK
7017static int should_we_balance(struct lb_env *env)
7018{
7019 struct sched_group *sg = env->sd->groups;
7020 struct cpumask *sg_cpus, *sg_mask;
7021 int cpu, balance_cpu = -1;
7022
7023 /*
7024 * In the newly idle case, we will allow all the cpu's
7025 * to do the newly idle load balance.
7026 */
7027 if (env->idle == CPU_NEWLY_IDLE)
7028 return 1;
7029
7030 sg_cpus = sched_group_cpus(sg);
7031 sg_mask = sched_group_mask(sg);
7032 /* Try to find first idle cpu */
7033 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7034 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7035 continue;
7036
7037 balance_cpu = cpu;
7038 break;
7039 }
7040
7041 if (balance_cpu == -1)
7042 balance_cpu = group_balance_cpu(sg);
7043
7044 /*
7045 * First idle cpu or the first cpu(busiest) in this sched group
7046 * is eligible for doing load balancing at this and above domains.
7047 */
b0cff9d8 7048 return balance_cpu == env->dst_cpu;
23f0d209
JK
7049}
7050
1e3c88bd
PZ
7051/*
7052 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7053 * tasks if there is an imbalance.
7054 */
7055static int load_balance(int this_cpu, struct rq *this_rq,
7056 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7057 int *continue_balancing)
1e3c88bd 7058{
88b8dac0 7059 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7060 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7061 struct sched_group *group;
1e3c88bd
PZ
7062 struct rq *busiest;
7063 unsigned long flags;
4ba29684 7064 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7065
8e45cb54
PZ
7066 struct lb_env env = {
7067 .sd = sd,
ddcdf6e7
PZ
7068 .dst_cpu = this_cpu,
7069 .dst_rq = this_rq,
88b8dac0 7070 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7071 .idle = idle,
eb95308e 7072 .loop_break = sched_nr_migrate_break,
b9403130 7073 .cpus = cpus,
0ec8aa00 7074 .fbq_type = all,
163122b7 7075 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7076 };
7077
cfc03118
JK
7078 /*
7079 * For NEWLY_IDLE load_balancing, we don't need to consider
7080 * other cpus in our group
7081 */
e02e60c1 7082 if (idle == CPU_NEWLY_IDLE)
cfc03118 7083 env.dst_grpmask = NULL;
cfc03118 7084
1e3c88bd
PZ
7085 cpumask_copy(cpus, cpu_active_mask);
7086
1e3c88bd
PZ
7087 schedstat_inc(sd, lb_count[idle]);
7088
7089redo:
23f0d209
JK
7090 if (!should_we_balance(&env)) {
7091 *continue_balancing = 0;
1e3c88bd 7092 goto out_balanced;
23f0d209 7093 }
1e3c88bd 7094
23f0d209 7095 group = find_busiest_group(&env);
1e3c88bd
PZ
7096 if (!group) {
7097 schedstat_inc(sd, lb_nobusyg[idle]);
7098 goto out_balanced;
7099 }
7100
b9403130 7101 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7102 if (!busiest) {
7103 schedstat_inc(sd, lb_nobusyq[idle]);
7104 goto out_balanced;
7105 }
7106
78feefc5 7107 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7108
bd939f45 7109 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7110
1aaf90a4
VG
7111 env.src_cpu = busiest->cpu;
7112 env.src_rq = busiest;
7113
1e3c88bd
PZ
7114 ld_moved = 0;
7115 if (busiest->nr_running > 1) {
7116 /*
7117 * Attempt to move tasks. If find_busiest_group has found
7118 * an imbalance but busiest->nr_running <= 1, the group is
7119 * still unbalanced. ld_moved simply stays zero, so it is
7120 * correctly treated as an imbalance.
7121 */
8e45cb54 7122 env.flags |= LBF_ALL_PINNED;
c82513e5 7123 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7124
5d6523eb 7125more_balance:
163122b7 7126 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7127
7128 /*
7129 * cur_ld_moved - load moved in current iteration
7130 * ld_moved - cumulative load moved across iterations
7131 */
163122b7 7132 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7133
7134 /*
163122b7
KT
7135 * We've detached some tasks from busiest_rq. Every
7136 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7137 * unlock busiest->lock, and we are able to be sure
7138 * that nobody can manipulate the tasks in parallel.
7139 * See task_rq_lock() family for the details.
1e3c88bd 7140 */
163122b7
KT
7141
7142 raw_spin_unlock(&busiest->lock);
7143
7144 if (cur_ld_moved) {
7145 attach_tasks(&env);
7146 ld_moved += cur_ld_moved;
7147 }
7148
1e3c88bd 7149 local_irq_restore(flags);
88b8dac0 7150
f1cd0858
JK
7151 if (env.flags & LBF_NEED_BREAK) {
7152 env.flags &= ~LBF_NEED_BREAK;
7153 goto more_balance;
7154 }
7155
88b8dac0
SV
7156 /*
7157 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7158 * us and move them to an alternate dst_cpu in our sched_group
7159 * where they can run. The upper limit on how many times we
7160 * iterate on same src_cpu is dependent on number of cpus in our
7161 * sched_group.
7162 *
7163 * This changes load balance semantics a bit on who can move
7164 * load to a given_cpu. In addition to the given_cpu itself
7165 * (or a ilb_cpu acting on its behalf where given_cpu is
7166 * nohz-idle), we now have balance_cpu in a position to move
7167 * load to given_cpu. In rare situations, this may cause
7168 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7169 * _independently_ and at _same_ time to move some load to
7170 * given_cpu) causing exceess load to be moved to given_cpu.
7171 * This however should not happen so much in practice and
7172 * moreover subsequent load balance cycles should correct the
7173 * excess load moved.
7174 */
6263322c 7175 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7176
7aff2e3a
VD
7177 /* Prevent to re-select dst_cpu via env's cpus */
7178 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7179
78feefc5 7180 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7181 env.dst_cpu = env.new_dst_cpu;
6263322c 7182 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7183 env.loop = 0;
7184 env.loop_break = sched_nr_migrate_break;
e02e60c1 7185
88b8dac0
SV
7186 /*
7187 * Go back to "more_balance" rather than "redo" since we
7188 * need to continue with same src_cpu.
7189 */
7190 goto more_balance;
7191 }
1e3c88bd 7192
6263322c
PZ
7193 /*
7194 * We failed to reach balance because of affinity.
7195 */
7196 if (sd_parent) {
63b2ca30 7197 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7198
afdeee05 7199 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7200 *group_imbalance = 1;
6263322c
PZ
7201 }
7202
1e3c88bd 7203 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7204 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7205 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7206 if (!cpumask_empty(cpus)) {
7207 env.loop = 0;
7208 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7209 goto redo;
bbf18b19 7210 }
afdeee05 7211 goto out_all_pinned;
1e3c88bd
PZ
7212 }
7213 }
7214
7215 if (!ld_moved) {
7216 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7217 /*
7218 * Increment the failure counter only on periodic balance.
7219 * We do not want newidle balance, which can be very
7220 * frequent, pollute the failure counter causing
7221 * excessive cache_hot migrations and active balances.
7222 */
7223 if (idle != CPU_NEWLY_IDLE)
7224 sd->nr_balance_failed++;
1e3c88bd 7225
bd939f45 7226 if (need_active_balance(&env)) {
1e3c88bd
PZ
7227 raw_spin_lock_irqsave(&busiest->lock, flags);
7228
969c7921
TH
7229 /* don't kick the active_load_balance_cpu_stop,
7230 * if the curr task on busiest cpu can't be
7231 * moved to this_cpu
1e3c88bd
PZ
7232 */
7233 if (!cpumask_test_cpu(this_cpu,
fa17b507 7234 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7235 raw_spin_unlock_irqrestore(&busiest->lock,
7236 flags);
8e45cb54 7237 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7238 goto out_one_pinned;
7239 }
7240
969c7921
TH
7241 /*
7242 * ->active_balance synchronizes accesses to
7243 * ->active_balance_work. Once set, it's cleared
7244 * only after active load balance is finished.
7245 */
1e3c88bd
PZ
7246 if (!busiest->active_balance) {
7247 busiest->active_balance = 1;
7248 busiest->push_cpu = this_cpu;
7249 active_balance = 1;
7250 }
7251 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7252
bd939f45 7253 if (active_balance) {
969c7921
TH
7254 stop_one_cpu_nowait(cpu_of(busiest),
7255 active_load_balance_cpu_stop, busiest,
7256 &busiest->active_balance_work);
bd939f45 7257 }
1e3c88bd
PZ
7258
7259 /*
7260 * We've kicked active balancing, reset the failure
7261 * counter.
7262 */
7263 sd->nr_balance_failed = sd->cache_nice_tries+1;
7264 }
7265 } else
7266 sd->nr_balance_failed = 0;
7267
7268 if (likely(!active_balance)) {
7269 /* We were unbalanced, so reset the balancing interval */
7270 sd->balance_interval = sd->min_interval;
7271 } else {
7272 /*
7273 * If we've begun active balancing, start to back off. This
7274 * case may not be covered by the all_pinned logic if there
7275 * is only 1 task on the busy runqueue (because we don't call
163122b7 7276 * detach_tasks).
1e3c88bd
PZ
7277 */
7278 if (sd->balance_interval < sd->max_interval)
7279 sd->balance_interval *= 2;
7280 }
7281
1e3c88bd
PZ
7282 goto out;
7283
7284out_balanced:
afdeee05
VG
7285 /*
7286 * We reach balance although we may have faced some affinity
7287 * constraints. Clear the imbalance flag if it was set.
7288 */
7289 if (sd_parent) {
7290 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7291
7292 if (*group_imbalance)
7293 *group_imbalance = 0;
7294 }
7295
7296out_all_pinned:
7297 /*
7298 * We reach balance because all tasks are pinned at this level so
7299 * we can't migrate them. Let the imbalance flag set so parent level
7300 * can try to migrate them.
7301 */
1e3c88bd
PZ
7302 schedstat_inc(sd, lb_balanced[idle]);
7303
7304 sd->nr_balance_failed = 0;
7305
7306out_one_pinned:
7307 /* tune up the balancing interval */
8e45cb54 7308 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7309 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7310 (sd->balance_interval < sd->max_interval))
7311 sd->balance_interval *= 2;
7312
46e49b38 7313 ld_moved = 0;
1e3c88bd 7314out:
1e3c88bd
PZ
7315 return ld_moved;
7316}
7317
52a08ef1
JL
7318static inline unsigned long
7319get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7320{
7321 unsigned long interval = sd->balance_interval;
7322
7323 if (cpu_busy)
7324 interval *= sd->busy_factor;
7325
7326 /* scale ms to jiffies */
7327 interval = msecs_to_jiffies(interval);
7328 interval = clamp(interval, 1UL, max_load_balance_interval);
7329
7330 return interval;
7331}
7332
7333static inline void
7334update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7335{
7336 unsigned long interval, next;
7337
7338 interval = get_sd_balance_interval(sd, cpu_busy);
7339 next = sd->last_balance + interval;
7340
7341 if (time_after(*next_balance, next))
7342 *next_balance = next;
7343}
7344
1e3c88bd
PZ
7345/*
7346 * idle_balance is called by schedule() if this_cpu is about to become
7347 * idle. Attempts to pull tasks from other CPUs.
7348 */
6e83125c 7349static int idle_balance(struct rq *this_rq)
1e3c88bd 7350{
52a08ef1
JL
7351 unsigned long next_balance = jiffies + HZ;
7352 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7353 struct sched_domain *sd;
7354 int pulled_task = 0;
9bd721c5 7355 u64 curr_cost = 0;
1e3c88bd 7356
6e83125c
PZ
7357 /*
7358 * We must set idle_stamp _before_ calling idle_balance(), such that we
7359 * measure the duration of idle_balance() as idle time.
7360 */
7361 this_rq->idle_stamp = rq_clock(this_rq);
7362
4486edd1
TC
7363 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7364 !this_rq->rd->overload) {
52a08ef1
JL
7365 rcu_read_lock();
7366 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7367 if (sd)
7368 update_next_balance(sd, 0, &next_balance);
7369 rcu_read_unlock();
7370
6e83125c 7371 goto out;
52a08ef1 7372 }
1e3c88bd 7373
f492e12e
PZ
7374 raw_spin_unlock(&this_rq->lock);
7375
48a16753 7376 update_blocked_averages(this_cpu);
dce840a0 7377 rcu_read_lock();
1e3c88bd 7378 for_each_domain(this_cpu, sd) {
23f0d209 7379 int continue_balancing = 1;
9bd721c5 7380 u64 t0, domain_cost;
1e3c88bd
PZ
7381
7382 if (!(sd->flags & SD_LOAD_BALANCE))
7383 continue;
7384
52a08ef1
JL
7385 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7386 update_next_balance(sd, 0, &next_balance);
9bd721c5 7387 break;
52a08ef1 7388 }
9bd721c5 7389
f492e12e 7390 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7391 t0 = sched_clock_cpu(this_cpu);
7392
f492e12e 7393 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7394 sd, CPU_NEWLY_IDLE,
7395 &continue_balancing);
9bd721c5
JL
7396
7397 domain_cost = sched_clock_cpu(this_cpu) - t0;
7398 if (domain_cost > sd->max_newidle_lb_cost)
7399 sd->max_newidle_lb_cost = domain_cost;
7400
7401 curr_cost += domain_cost;
f492e12e 7402 }
1e3c88bd 7403
52a08ef1 7404 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7405
7406 /*
7407 * Stop searching for tasks to pull if there are
7408 * now runnable tasks on this rq.
7409 */
7410 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7411 break;
1e3c88bd 7412 }
dce840a0 7413 rcu_read_unlock();
f492e12e
PZ
7414
7415 raw_spin_lock(&this_rq->lock);
7416
0e5b5337
JL
7417 if (curr_cost > this_rq->max_idle_balance_cost)
7418 this_rq->max_idle_balance_cost = curr_cost;
7419
e5fc6611 7420 /*
0e5b5337
JL
7421 * While browsing the domains, we released the rq lock, a task could
7422 * have been enqueued in the meantime. Since we're not going idle,
7423 * pretend we pulled a task.
e5fc6611 7424 */
0e5b5337 7425 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7426 pulled_task = 1;
e5fc6611 7427
52a08ef1
JL
7428out:
7429 /* Move the next balance forward */
7430 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7431 this_rq->next_balance = next_balance;
9bd721c5 7432
e4aa358b 7433 /* Is there a task of a high priority class? */
46383648 7434 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7435 pulled_task = -1;
7436
38c6ade2 7437 if (pulled_task)
6e83125c
PZ
7438 this_rq->idle_stamp = 0;
7439
3c4017c1 7440 return pulled_task;
1e3c88bd
PZ
7441}
7442
7443/*
969c7921
TH
7444 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7445 * running tasks off the busiest CPU onto idle CPUs. It requires at
7446 * least 1 task to be running on each physical CPU where possible, and
7447 * avoids physical / logical imbalances.
1e3c88bd 7448 */
969c7921 7449static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7450{
969c7921
TH
7451 struct rq *busiest_rq = data;
7452 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7453 int target_cpu = busiest_rq->push_cpu;
969c7921 7454 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7455 struct sched_domain *sd;
e5673f28 7456 struct task_struct *p = NULL;
969c7921
TH
7457
7458 raw_spin_lock_irq(&busiest_rq->lock);
7459
7460 /* make sure the requested cpu hasn't gone down in the meantime */
7461 if (unlikely(busiest_cpu != smp_processor_id() ||
7462 !busiest_rq->active_balance))
7463 goto out_unlock;
1e3c88bd
PZ
7464
7465 /* Is there any task to move? */
7466 if (busiest_rq->nr_running <= 1)
969c7921 7467 goto out_unlock;
1e3c88bd
PZ
7468
7469 /*
7470 * This condition is "impossible", if it occurs
7471 * we need to fix it. Originally reported by
7472 * Bjorn Helgaas on a 128-cpu setup.
7473 */
7474 BUG_ON(busiest_rq == target_rq);
7475
1e3c88bd 7476 /* Search for an sd spanning us and the target CPU. */
dce840a0 7477 rcu_read_lock();
1e3c88bd
PZ
7478 for_each_domain(target_cpu, sd) {
7479 if ((sd->flags & SD_LOAD_BALANCE) &&
7480 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7481 break;
7482 }
7483
7484 if (likely(sd)) {
8e45cb54
PZ
7485 struct lb_env env = {
7486 .sd = sd,
ddcdf6e7
PZ
7487 .dst_cpu = target_cpu,
7488 .dst_rq = target_rq,
7489 .src_cpu = busiest_rq->cpu,
7490 .src_rq = busiest_rq,
8e45cb54
PZ
7491 .idle = CPU_IDLE,
7492 };
7493
1e3c88bd
PZ
7494 schedstat_inc(sd, alb_count);
7495
e5673f28
KT
7496 p = detach_one_task(&env);
7497 if (p)
1e3c88bd
PZ
7498 schedstat_inc(sd, alb_pushed);
7499 else
7500 schedstat_inc(sd, alb_failed);
7501 }
dce840a0 7502 rcu_read_unlock();
969c7921
TH
7503out_unlock:
7504 busiest_rq->active_balance = 0;
e5673f28
KT
7505 raw_spin_unlock(&busiest_rq->lock);
7506
7507 if (p)
7508 attach_one_task(target_rq, p);
7509
7510 local_irq_enable();
7511
969c7921 7512 return 0;
1e3c88bd
PZ
7513}
7514
d987fc7f
MG
7515static inline int on_null_domain(struct rq *rq)
7516{
7517 return unlikely(!rcu_dereference_sched(rq->sd));
7518}
7519
3451d024 7520#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7521/*
7522 * idle load balancing details
83cd4fe2
VP
7523 * - When one of the busy CPUs notice that there may be an idle rebalancing
7524 * needed, they will kick the idle load balancer, which then does idle
7525 * load balancing for all the idle CPUs.
7526 */
1e3c88bd 7527static struct {
83cd4fe2 7528 cpumask_var_t idle_cpus_mask;
0b005cf5 7529 atomic_t nr_cpus;
83cd4fe2
VP
7530 unsigned long next_balance; /* in jiffy units */
7531} nohz ____cacheline_aligned;
1e3c88bd 7532
3dd0337d 7533static inline int find_new_ilb(void)
1e3c88bd 7534{
0b005cf5 7535 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7536
786d6dc7
SS
7537 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7538 return ilb;
7539
7540 return nr_cpu_ids;
1e3c88bd 7541}
1e3c88bd 7542
83cd4fe2
VP
7543/*
7544 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7545 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7546 * CPU (if there is one).
7547 */
0aeeeeba 7548static void nohz_balancer_kick(void)
83cd4fe2
VP
7549{
7550 int ilb_cpu;
7551
7552 nohz.next_balance++;
7553
3dd0337d 7554 ilb_cpu = find_new_ilb();
83cd4fe2 7555
0b005cf5
SS
7556 if (ilb_cpu >= nr_cpu_ids)
7557 return;
83cd4fe2 7558
cd490c5b 7559 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7560 return;
7561 /*
7562 * Use smp_send_reschedule() instead of resched_cpu().
7563 * This way we generate a sched IPI on the target cpu which
7564 * is idle. And the softirq performing nohz idle load balance
7565 * will be run before returning from the IPI.
7566 */
7567 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7568 return;
7569}
7570
c1cc017c 7571static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7572{
7573 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7574 /*
7575 * Completely isolated CPUs don't ever set, so we must test.
7576 */
7577 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7578 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7579 atomic_dec(&nohz.nr_cpus);
7580 }
71325960
SS
7581 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7582 }
7583}
7584
69e1e811
SS
7585static inline void set_cpu_sd_state_busy(void)
7586{
7587 struct sched_domain *sd;
37dc6b50 7588 int cpu = smp_processor_id();
69e1e811 7589
69e1e811 7590 rcu_read_lock();
37dc6b50 7591 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7592
7593 if (!sd || !sd->nohz_idle)
7594 goto unlock;
7595 sd->nohz_idle = 0;
7596
63b2ca30 7597 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7598unlock:
69e1e811
SS
7599 rcu_read_unlock();
7600}
7601
7602void set_cpu_sd_state_idle(void)
7603{
7604 struct sched_domain *sd;
37dc6b50 7605 int cpu = smp_processor_id();
69e1e811 7606
69e1e811 7607 rcu_read_lock();
37dc6b50 7608 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7609
7610 if (!sd || sd->nohz_idle)
7611 goto unlock;
7612 sd->nohz_idle = 1;
7613
63b2ca30 7614 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7615unlock:
69e1e811
SS
7616 rcu_read_unlock();
7617}
7618
1e3c88bd 7619/*
c1cc017c 7620 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7621 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7622 */
c1cc017c 7623void nohz_balance_enter_idle(int cpu)
1e3c88bd 7624{
71325960
SS
7625 /*
7626 * If this cpu is going down, then nothing needs to be done.
7627 */
7628 if (!cpu_active(cpu))
7629 return;
7630
c1cc017c
AS
7631 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7632 return;
1e3c88bd 7633
d987fc7f
MG
7634 /*
7635 * If we're a completely isolated CPU, we don't play.
7636 */
7637 if (on_null_domain(cpu_rq(cpu)))
7638 return;
7639
c1cc017c
AS
7640 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7641 atomic_inc(&nohz.nr_cpus);
7642 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7643}
71325960 7644
0db0628d 7645static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7646 unsigned long action, void *hcpu)
7647{
7648 switch (action & ~CPU_TASKS_FROZEN) {
7649 case CPU_DYING:
c1cc017c 7650 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7651 return NOTIFY_OK;
7652 default:
7653 return NOTIFY_DONE;
7654 }
7655}
1e3c88bd
PZ
7656#endif
7657
7658static DEFINE_SPINLOCK(balancing);
7659
49c022e6
PZ
7660/*
7661 * Scale the max load_balance interval with the number of CPUs in the system.
7662 * This trades load-balance latency on larger machines for less cross talk.
7663 */
029632fb 7664void update_max_interval(void)
49c022e6
PZ
7665{
7666 max_load_balance_interval = HZ*num_online_cpus()/10;
7667}
7668
1e3c88bd
PZ
7669/*
7670 * It checks each scheduling domain to see if it is due to be balanced,
7671 * and initiates a balancing operation if so.
7672 *
b9b0853a 7673 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7674 */
f7ed0a89 7675static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7676{
23f0d209 7677 int continue_balancing = 1;
f7ed0a89 7678 int cpu = rq->cpu;
1e3c88bd 7679 unsigned long interval;
04f733b4 7680 struct sched_domain *sd;
1e3c88bd
PZ
7681 /* Earliest time when we have to do rebalance again */
7682 unsigned long next_balance = jiffies + 60*HZ;
7683 int update_next_balance = 0;
f48627e6
JL
7684 int need_serialize, need_decay = 0;
7685 u64 max_cost = 0;
1e3c88bd 7686
48a16753 7687 update_blocked_averages(cpu);
2069dd75 7688
dce840a0 7689 rcu_read_lock();
1e3c88bd 7690 for_each_domain(cpu, sd) {
f48627e6
JL
7691 /*
7692 * Decay the newidle max times here because this is a regular
7693 * visit to all the domains. Decay ~1% per second.
7694 */
7695 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7696 sd->max_newidle_lb_cost =
7697 (sd->max_newidle_lb_cost * 253) / 256;
7698 sd->next_decay_max_lb_cost = jiffies + HZ;
7699 need_decay = 1;
7700 }
7701 max_cost += sd->max_newidle_lb_cost;
7702
1e3c88bd
PZ
7703 if (!(sd->flags & SD_LOAD_BALANCE))
7704 continue;
7705
f48627e6
JL
7706 /*
7707 * Stop the load balance at this level. There is another
7708 * CPU in our sched group which is doing load balancing more
7709 * actively.
7710 */
7711 if (!continue_balancing) {
7712 if (need_decay)
7713 continue;
7714 break;
7715 }
7716
52a08ef1 7717 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7718
7719 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7720 if (need_serialize) {
7721 if (!spin_trylock(&balancing))
7722 goto out;
7723 }
7724
7725 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7726 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7727 /*
6263322c 7728 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7729 * env->dst_cpu, so we can't know our idle
7730 * state even if we migrated tasks. Update it.
1e3c88bd 7731 */
de5eb2dd 7732 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7733 }
7734 sd->last_balance = jiffies;
52a08ef1 7735 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7736 }
7737 if (need_serialize)
7738 spin_unlock(&balancing);
7739out:
7740 if (time_after(next_balance, sd->last_balance + interval)) {
7741 next_balance = sd->last_balance + interval;
7742 update_next_balance = 1;
7743 }
f48627e6
JL
7744 }
7745 if (need_decay) {
1e3c88bd 7746 /*
f48627e6
JL
7747 * Ensure the rq-wide value also decays but keep it at a
7748 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7749 */
f48627e6
JL
7750 rq->max_idle_balance_cost =
7751 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7752 }
dce840a0 7753 rcu_read_unlock();
1e3c88bd
PZ
7754
7755 /*
7756 * next_balance will be updated only when there is a need.
7757 * When the cpu is attached to null domain for ex, it will not be
7758 * updated.
7759 */
c5afb6a8 7760 if (likely(update_next_balance)) {
1e3c88bd 7761 rq->next_balance = next_balance;
c5afb6a8
VG
7762
7763#ifdef CONFIG_NO_HZ_COMMON
7764 /*
7765 * If this CPU has been elected to perform the nohz idle
7766 * balance. Other idle CPUs have already rebalanced with
7767 * nohz_idle_balance() and nohz.next_balance has been
7768 * updated accordingly. This CPU is now running the idle load
7769 * balance for itself and we need to update the
7770 * nohz.next_balance accordingly.
7771 */
7772 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7773 nohz.next_balance = rq->next_balance;
7774#endif
7775 }
1e3c88bd
PZ
7776}
7777
3451d024 7778#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7779/*
3451d024 7780 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7781 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7782 */
208cb16b 7783static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7784{
208cb16b 7785 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7786 struct rq *rq;
7787 int balance_cpu;
c5afb6a8
VG
7788 /* Earliest time when we have to do rebalance again */
7789 unsigned long next_balance = jiffies + 60*HZ;
7790 int update_next_balance = 0;
83cd4fe2 7791
1c792db7
SS
7792 if (idle != CPU_IDLE ||
7793 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7794 goto end;
83cd4fe2
VP
7795
7796 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7797 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7798 continue;
7799
7800 /*
7801 * If this cpu gets work to do, stop the load balancing
7802 * work being done for other cpus. Next load
7803 * balancing owner will pick it up.
7804 */
1c792db7 7805 if (need_resched())
83cd4fe2 7806 break;
83cd4fe2 7807
5ed4f1d9
VG
7808 rq = cpu_rq(balance_cpu);
7809
ed61bbc6
TC
7810 /*
7811 * If time for next balance is due,
7812 * do the balance.
7813 */
7814 if (time_after_eq(jiffies, rq->next_balance)) {
7815 raw_spin_lock_irq(&rq->lock);
7816 update_rq_clock(rq);
7817 update_idle_cpu_load(rq);
7818 raw_spin_unlock_irq(&rq->lock);
7819 rebalance_domains(rq, CPU_IDLE);
7820 }
83cd4fe2 7821
c5afb6a8
VG
7822 if (time_after(next_balance, rq->next_balance)) {
7823 next_balance = rq->next_balance;
7824 update_next_balance = 1;
7825 }
83cd4fe2 7826 }
c5afb6a8
VG
7827
7828 /*
7829 * next_balance will be updated only when there is a need.
7830 * When the CPU is attached to null domain for ex, it will not be
7831 * updated.
7832 */
7833 if (likely(update_next_balance))
7834 nohz.next_balance = next_balance;
1c792db7
SS
7835end:
7836 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7837}
7838
7839/*
0b005cf5 7840 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7841 * of an idle cpu in the system.
0b005cf5 7842 * - This rq has more than one task.
1aaf90a4
VG
7843 * - This rq has at least one CFS task and the capacity of the CPU is
7844 * significantly reduced because of RT tasks or IRQs.
7845 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7846 * multiple busy cpu.
0b005cf5
SS
7847 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7848 * domain span are idle.
83cd4fe2 7849 */
1aaf90a4 7850static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7851{
7852 unsigned long now = jiffies;
0b005cf5 7853 struct sched_domain *sd;
63b2ca30 7854 struct sched_group_capacity *sgc;
4a725627 7855 int nr_busy, cpu = rq->cpu;
1aaf90a4 7856 bool kick = false;
83cd4fe2 7857
4a725627 7858 if (unlikely(rq->idle_balance))
1aaf90a4 7859 return false;
83cd4fe2 7860
1c792db7
SS
7861 /*
7862 * We may be recently in ticked or tickless idle mode. At the first
7863 * busy tick after returning from idle, we will update the busy stats.
7864 */
69e1e811 7865 set_cpu_sd_state_busy();
c1cc017c 7866 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7867
7868 /*
7869 * None are in tickless mode and hence no need for NOHZ idle load
7870 * balancing.
7871 */
7872 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7873 return false;
1c792db7
SS
7874
7875 if (time_before(now, nohz.next_balance))
1aaf90a4 7876 return false;
83cd4fe2 7877
0b005cf5 7878 if (rq->nr_running >= 2)
1aaf90a4 7879 return true;
83cd4fe2 7880
067491b7 7881 rcu_read_lock();
37dc6b50 7882 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7883 if (sd) {
63b2ca30
NP
7884 sgc = sd->groups->sgc;
7885 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7886
1aaf90a4
VG
7887 if (nr_busy > 1) {
7888 kick = true;
7889 goto unlock;
7890 }
7891
83cd4fe2 7892 }
37dc6b50 7893
1aaf90a4
VG
7894 sd = rcu_dereference(rq->sd);
7895 if (sd) {
7896 if ((rq->cfs.h_nr_running >= 1) &&
7897 check_cpu_capacity(rq, sd)) {
7898 kick = true;
7899 goto unlock;
7900 }
7901 }
37dc6b50 7902
1aaf90a4 7903 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7904 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7905 sched_domain_span(sd)) < cpu)) {
7906 kick = true;
7907 goto unlock;
7908 }
067491b7 7909
1aaf90a4 7910unlock:
067491b7 7911 rcu_read_unlock();
1aaf90a4 7912 return kick;
83cd4fe2
VP
7913}
7914#else
208cb16b 7915static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7916#endif
7917
7918/*
7919 * run_rebalance_domains is triggered when needed from the scheduler tick.
7920 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7921 */
1e3c88bd
PZ
7922static void run_rebalance_domains(struct softirq_action *h)
7923{
208cb16b 7924 struct rq *this_rq = this_rq();
6eb57e0d 7925 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7926 CPU_IDLE : CPU_NOT_IDLE;
7927
1e3c88bd 7928 /*
83cd4fe2 7929 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7930 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7931 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7932 * give the idle cpus a chance to load balance. Else we may
7933 * load balance only within the local sched_domain hierarchy
7934 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7935 */
208cb16b 7936 nohz_idle_balance(this_rq, idle);
d4573c3e 7937 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7938}
7939
1e3c88bd
PZ
7940/*
7941 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7942 */
7caff66f 7943void trigger_load_balance(struct rq *rq)
1e3c88bd 7944{
1e3c88bd 7945 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7946 if (unlikely(on_null_domain(rq)))
7947 return;
7948
7949 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7950 raise_softirq(SCHED_SOFTIRQ);
3451d024 7951#ifdef CONFIG_NO_HZ_COMMON
c726099e 7952 if (nohz_kick_needed(rq))
0aeeeeba 7953 nohz_balancer_kick();
83cd4fe2 7954#endif
1e3c88bd
PZ
7955}
7956
0bcdcf28
CE
7957static void rq_online_fair(struct rq *rq)
7958{
7959 update_sysctl();
0e59bdae
KT
7960
7961 update_runtime_enabled(rq);
0bcdcf28
CE
7962}
7963
7964static void rq_offline_fair(struct rq *rq)
7965{
7966 update_sysctl();
a4c96ae3
PB
7967
7968 /* Ensure any throttled groups are reachable by pick_next_task */
7969 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7970}
7971
55e12e5e 7972#endif /* CONFIG_SMP */
e1d1484f 7973
bf0f6f24
IM
7974/*
7975 * scheduler tick hitting a task of our scheduling class:
7976 */
8f4d37ec 7977static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7978{
7979 struct cfs_rq *cfs_rq;
7980 struct sched_entity *se = &curr->se;
7981
7982 for_each_sched_entity(se) {
7983 cfs_rq = cfs_rq_of(se);
8f4d37ec 7984 entity_tick(cfs_rq, se, queued);
bf0f6f24 7985 }
18bf2805 7986
b52da86e 7987 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7988 task_tick_numa(rq, curr);
bf0f6f24
IM
7989}
7990
7991/*
cd29fe6f
PZ
7992 * called on fork with the child task as argument from the parent's context
7993 * - child not yet on the tasklist
7994 * - preemption disabled
bf0f6f24 7995 */
cd29fe6f 7996static void task_fork_fair(struct task_struct *p)
bf0f6f24 7997{
4fc420c9
DN
7998 struct cfs_rq *cfs_rq;
7999 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8000 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8001 struct rq *rq = this_rq();
8002 unsigned long flags;
8003
05fa785c 8004 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8005
861d034e
PZ
8006 update_rq_clock(rq);
8007
4fc420c9
DN
8008 cfs_rq = task_cfs_rq(current);
8009 curr = cfs_rq->curr;
8010
6c9a27f5
DN
8011 /*
8012 * Not only the cpu but also the task_group of the parent might have
8013 * been changed after parent->se.parent,cfs_rq were copied to
8014 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8015 * of child point to valid ones.
8016 */
8017 rcu_read_lock();
8018 __set_task_cpu(p, this_cpu);
8019 rcu_read_unlock();
bf0f6f24 8020
7109c442 8021 update_curr(cfs_rq);
cd29fe6f 8022
b5d9d734
MG
8023 if (curr)
8024 se->vruntime = curr->vruntime;
aeb73b04 8025 place_entity(cfs_rq, se, 1);
4d78e7b6 8026
cd29fe6f 8027 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8028 /*
edcb60a3
IM
8029 * Upon rescheduling, sched_class::put_prev_task() will place
8030 * 'current' within the tree based on its new key value.
8031 */
4d78e7b6 8032 swap(curr->vruntime, se->vruntime);
8875125e 8033 resched_curr(rq);
4d78e7b6 8034 }
bf0f6f24 8035
88ec22d3
PZ
8036 se->vruntime -= cfs_rq->min_vruntime;
8037
05fa785c 8038 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8039}
8040
cb469845
SR
8041/*
8042 * Priority of the task has changed. Check to see if we preempt
8043 * the current task.
8044 */
da7a735e
PZ
8045static void
8046prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8047{
da0c1e65 8048 if (!task_on_rq_queued(p))
da7a735e
PZ
8049 return;
8050
cb469845
SR
8051 /*
8052 * Reschedule if we are currently running on this runqueue and
8053 * our priority decreased, or if we are not currently running on
8054 * this runqueue and our priority is higher than the current's
8055 */
da7a735e 8056 if (rq->curr == p) {
cb469845 8057 if (p->prio > oldprio)
8875125e 8058 resched_curr(rq);
cb469845 8059 } else
15afe09b 8060 check_preempt_curr(rq, p, 0);
cb469845
SR
8061}
8062
daa59407 8063static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8064{
8065 struct sched_entity *se = &p->se;
da7a735e
PZ
8066
8067 /*
daa59407
BP
8068 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8069 * the dequeue_entity(.flags=0) will already have normalized the
8070 * vruntime.
8071 */
8072 if (p->on_rq)
8073 return true;
8074
8075 /*
8076 * When !on_rq, vruntime of the task has usually NOT been normalized.
8077 * But there are some cases where it has already been normalized:
da7a735e 8078 *
daa59407
BP
8079 * - A forked child which is waiting for being woken up by
8080 * wake_up_new_task().
8081 * - A task which has been woken up by try_to_wake_up() and
8082 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8083 */
daa59407
BP
8084 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8085 return true;
8086
8087 return false;
8088}
8089
8090static void detach_task_cfs_rq(struct task_struct *p)
8091{
8092 struct sched_entity *se = &p->se;
8093 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8094
8095 if (!vruntime_normalized(p)) {
da7a735e
PZ
8096 /*
8097 * Fix up our vruntime so that the current sleep doesn't
8098 * cause 'unlimited' sleep bonus.
8099 */
8100 place_entity(cfs_rq, se, 0);
8101 se->vruntime -= cfs_rq->min_vruntime;
8102 }
9ee474f5 8103
9d89c257 8104 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8105 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8106}
8107
daa59407 8108static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8109{
f36c019c 8110 struct sched_entity *se = &p->se;
daa59407 8111 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8112
8113#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8114 /*
8115 * Since the real-depth could have been changed (only FAIR
8116 * class maintain depth value), reset depth properly.
8117 */
8118 se->depth = se->parent ? se->parent->depth + 1 : 0;
8119#endif
7855a35a 8120
6efdb105 8121 /* Synchronize task with its cfs_rq */
daa59407
BP
8122 attach_entity_load_avg(cfs_rq, se);
8123
8124 if (!vruntime_normalized(p))
8125 se->vruntime += cfs_rq->min_vruntime;
8126}
6efdb105 8127
daa59407
BP
8128static void switched_from_fair(struct rq *rq, struct task_struct *p)
8129{
8130 detach_task_cfs_rq(p);
8131}
8132
8133static void switched_to_fair(struct rq *rq, struct task_struct *p)
8134{
8135 attach_task_cfs_rq(p);
7855a35a 8136
daa59407 8137 if (task_on_rq_queued(p)) {
7855a35a 8138 /*
daa59407
BP
8139 * We were most likely switched from sched_rt, so
8140 * kick off the schedule if running, otherwise just see
8141 * if we can still preempt the current task.
7855a35a 8142 */
daa59407
BP
8143 if (rq->curr == p)
8144 resched_curr(rq);
8145 else
8146 check_preempt_curr(rq, p, 0);
7855a35a 8147 }
cb469845
SR
8148}
8149
83b699ed
SV
8150/* Account for a task changing its policy or group.
8151 *
8152 * This routine is mostly called to set cfs_rq->curr field when a task
8153 * migrates between groups/classes.
8154 */
8155static void set_curr_task_fair(struct rq *rq)
8156{
8157 struct sched_entity *se = &rq->curr->se;
8158
ec12cb7f
PT
8159 for_each_sched_entity(se) {
8160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8161
8162 set_next_entity(cfs_rq, se);
8163 /* ensure bandwidth has been allocated on our new cfs_rq */
8164 account_cfs_rq_runtime(cfs_rq, 0);
8165 }
83b699ed
SV
8166}
8167
029632fb
PZ
8168void init_cfs_rq(struct cfs_rq *cfs_rq)
8169{
8170 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8171 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8172#ifndef CONFIG_64BIT
8173 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8174#endif
141965c7 8175#ifdef CONFIG_SMP
9d89c257
YD
8176 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8177 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8178#endif
029632fb
PZ
8179}
8180
810b3817 8181#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8182static void task_move_group_fair(struct task_struct *p)
810b3817 8183{
daa59407 8184 detach_task_cfs_rq(p);
b2b5ce02 8185 set_task_rq(p, task_cpu(p));
6efdb105
BP
8186
8187#ifdef CONFIG_SMP
8188 /* Tell se's cfs_rq has been changed -- migrated */
8189 p->se.avg.last_update_time = 0;
8190#endif
daa59407 8191 attach_task_cfs_rq(p);
810b3817 8192}
029632fb
PZ
8193
8194void free_fair_sched_group(struct task_group *tg)
8195{
8196 int i;
8197
8198 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8199
8200 for_each_possible_cpu(i) {
8201 if (tg->cfs_rq)
8202 kfree(tg->cfs_rq[i]);
12695578
YD
8203 if (tg->se) {
8204 if (tg->se[i])
8205 remove_entity_load_avg(tg->se[i]);
029632fb 8206 kfree(tg->se[i]);
12695578 8207 }
029632fb
PZ
8208 }
8209
8210 kfree(tg->cfs_rq);
8211 kfree(tg->se);
8212}
8213
8214int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8215{
8216 struct cfs_rq *cfs_rq;
8217 struct sched_entity *se;
8218 int i;
8219
8220 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8221 if (!tg->cfs_rq)
8222 goto err;
8223 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8224 if (!tg->se)
8225 goto err;
8226
8227 tg->shares = NICE_0_LOAD;
8228
8229 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8230
8231 for_each_possible_cpu(i) {
8232 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8233 GFP_KERNEL, cpu_to_node(i));
8234 if (!cfs_rq)
8235 goto err;
8236
8237 se = kzalloc_node(sizeof(struct sched_entity),
8238 GFP_KERNEL, cpu_to_node(i));
8239 if (!se)
8240 goto err_free_rq;
8241
8242 init_cfs_rq(cfs_rq);
8243 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8244 init_entity_runnable_average(se);
029632fb
PZ
8245 }
8246
8247 return 1;
8248
8249err_free_rq:
8250 kfree(cfs_rq);
8251err:
8252 return 0;
8253}
8254
8255void unregister_fair_sched_group(struct task_group *tg, int cpu)
8256{
8257 struct rq *rq = cpu_rq(cpu);
8258 unsigned long flags;
8259
8260 /*
8261 * Only empty task groups can be destroyed; so we can speculatively
8262 * check on_list without danger of it being re-added.
8263 */
8264 if (!tg->cfs_rq[cpu]->on_list)
8265 return;
8266
8267 raw_spin_lock_irqsave(&rq->lock, flags);
8268 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8269 raw_spin_unlock_irqrestore(&rq->lock, flags);
8270}
8271
8272void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8273 struct sched_entity *se, int cpu,
8274 struct sched_entity *parent)
8275{
8276 struct rq *rq = cpu_rq(cpu);
8277
8278 cfs_rq->tg = tg;
8279 cfs_rq->rq = rq;
029632fb
PZ
8280 init_cfs_rq_runtime(cfs_rq);
8281
8282 tg->cfs_rq[cpu] = cfs_rq;
8283 tg->se[cpu] = se;
8284
8285 /* se could be NULL for root_task_group */
8286 if (!se)
8287 return;
8288
fed14d45 8289 if (!parent) {
029632fb 8290 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8291 se->depth = 0;
8292 } else {
029632fb 8293 se->cfs_rq = parent->my_q;
fed14d45
PZ
8294 se->depth = parent->depth + 1;
8295 }
029632fb
PZ
8296
8297 se->my_q = cfs_rq;
0ac9b1c2
PT
8298 /* guarantee group entities always have weight */
8299 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8300 se->parent = parent;
8301}
8302
8303static DEFINE_MUTEX(shares_mutex);
8304
8305int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8306{
8307 int i;
8308 unsigned long flags;
8309
8310 /*
8311 * We can't change the weight of the root cgroup.
8312 */
8313 if (!tg->se[0])
8314 return -EINVAL;
8315
8316 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8317
8318 mutex_lock(&shares_mutex);
8319 if (tg->shares == shares)
8320 goto done;
8321
8322 tg->shares = shares;
8323 for_each_possible_cpu(i) {
8324 struct rq *rq = cpu_rq(i);
8325 struct sched_entity *se;
8326
8327 se = tg->se[i];
8328 /* Propagate contribution to hierarchy */
8329 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8330
8331 /* Possible calls to update_curr() need rq clock */
8332 update_rq_clock(rq);
17bc14b7 8333 for_each_sched_entity(se)
029632fb
PZ
8334 update_cfs_shares(group_cfs_rq(se));
8335 raw_spin_unlock_irqrestore(&rq->lock, flags);
8336 }
8337
8338done:
8339 mutex_unlock(&shares_mutex);
8340 return 0;
8341}
8342#else /* CONFIG_FAIR_GROUP_SCHED */
8343
8344void free_fair_sched_group(struct task_group *tg) { }
8345
8346int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8347{
8348 return 1;
8349}
8350
8351void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8352
8353#endif /* CONFIG_FAIR_GROUP_SCHED */
8354
810b3817 8355
6d686f45 8356static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8357{
8358 struct sched_entity *se = &task->se;
0d721cea
PW
8359 unsigned int rr_interval = 0;
8360
8361 /*
8362 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8363 * idle runqueue:
8364 */
0d721cea 8365 if (rq->cfs.load.weight)
a59f4e07 8366 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8367
8368 return rr_interval;
8369}
8370
bf0f6f24
IM
8371/*
8372 * All the scheduling class methods:
8373 */
029632fb 8374const struct sched_class fair_sched_class = {
5522d5d5 8375 .next = &idle_sched_class,
bf0f6f24
IM
8376 .enqueue_task = enqueue_task_fair,
8377 .dequeue_task = dequeue_task_fair,
8378 .yield_task = yield_task_fair,
d95f4122 8379 .yield_to_task = yield_to_task_fair,
bf0f6f24 8380
2e09bf55 8381 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8382
8383 .pick_next_task = pick_next_task_fair,
8384 .put_prev_task = put_prev_task_fair,
8385
681f3e68 8386#ifdef CONFIG_SMP
4ce72a2c 8387 .select_task_rq = select_task_rq_fair,
0a74bef8 8388 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8389
0bcdcf28
CE
8390 .rq_online = rq_online_fair,
8391 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8392
8393 .task_waking = task_waking_fair,
12695578 8394 .task_dead = task_dead_fair,
c5b28038 8395 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8396#endif
bf0f6f24 8397
83b699ed 8398 .set_curr_task = set_curr_task_fair,
bf0f6f24 8399 .task_tick = task_tick_fair,
cd29fe6f 8400 .task_fork = task_fork_fair,
cb469845
SR
8401
8402 .prio_changed = prio_changed_fair,
da7a735e 8403 .switched_from = switched_from_fair,
cb469845 8404 .switched_to = switched_to_fair,
810b3817 8405
0d721cea
PW
8406 .get_rr_interval = get_rr_interval_fair,
8407
6e998916
SG
8408 .update_curr = update_curr_fair,
8409
810b3817 8410#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8411 .task_move_group = task_move_group_fair,
810b3817 8412#endif
bf0f6f24
IM
8413};
8414
8415#ifdef CONFIG_SCHED_DEBUG
029632fb 8416void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8417{
bf0f6f24
IM
8418 struct cfs_rq *cfs_rq;
8419
5973e5b9 8420 rcu_read_lock();
c3b64f1e 8421 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8422 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8423 rcu_read_unlock();
bf0f6f24 8424}
397f2378
SD
8425
8426#ifdef CONFIG_NUMA_BALANCING
8427void show_numa_stats(struct task_struct *p, struct seq_file *m)
8428{
8429 int node;
8430 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8431
8432 for_each_online_node(node) {
8433 if (p->numa_faults) {
8434 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8435 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8436 }
8437 if (p->numa_group) {
8438 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8439 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8440 }
8441 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8442 }
8443}
8444#endif /* CONFIG_NUMA_BALANCING */
8445#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8446
8447__init void init_sched_fair_class(void)
8448{
8449#ifdef CONFIG_SMP
8450 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8451
3451d024 8452#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8453 nohz.next_balance = jiffies;
029632fb 8454 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8455 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8456#endif
8457#endif /* SMP */
8458
8459}