]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched,livepatch: Use wake_up_if_idle()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
8a99b683 52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085 61
51ce83ed
JD
62/*
63 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64 * Applies only when SCHED_IDLE tasks compete with normal tasks.
65 *
66 * (default: 0.75 msec)
67 */
68unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
69
21805085 70/*
2b4d5b25 71 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 72 */
0bf377bb 73static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
74
75/*
2bba22c5 76 * After fork, child runs first. If set to 0 (default) then
b2be5e96 77 * parent will (try to) run first.
21805085 78 */
2bba22c5 79unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 80
bf0f6f24
IM
81/*
82 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
83 *
84 * This option delays the preemption effects of decoupled workloads
85 * and reduces their over-scheduling. Synchronous workloads will still
86 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
87 *
88 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 89 */
ed8885a1
MS
90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
2b4d5b25 93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 94
05289b90
TG
95int sched_thermal_decay_shift;
96static int __init setup_sched_thermal_decay_shift(char *str)
97{
98 int _shift = 0;
99
100 if (kstrtoint(str, 0, &_shift))
101 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
102
103 sched_thermal_decay_shift = clamp(_shift, 0, 10);
104 return 1;
105}
106__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
107
afe06efd
TC
108#ifdef CONFIG_SMP
109/*
97fb7a0a 110 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
111 */
112int __weak arch_asym_cpu_priority(int cpu)
113{
114 return -cpu;
115}
6d101ba6
OJ
116
117/*
60e17f5c 118 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
119 *
120 * (default: ~20%)
121 */
60e17f5c
VK
122#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
123
4aed8aa4
VS
124/*
125 * The margin used when comparing CPU capacities.
126 * is 'cap1' noticeably greater than 'cap2'
127 *
128 * (default: ~5%)
129 */
130#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
131#endif
132
ec12cb7f
PT
133#ifdef CONFIG_CFS_BANDWIDTH
134/*
135 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136 * each time a cfs_rq requests quota.
137 *
138 * Note: in the case that the slice exceeds the runtime remaining (either due
139 * to consumption or the quota being specified to be smaller than the slice)
140 * we will always only issue the remaining available time.
141 *
2b4d5b25
IM
142 * (default: 5 msec, units: microseconds)
143 */
144unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
145#endif
146
8527632d
PG
147static inline void update_load_add(struct load_weight *lw, unsigned long inc)
148{
149 lw->weight += inc;
150 lw->inv_weight = 0;
151}
152
153static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
154{
155 lw->weight -= dec;
156 lw->inv_weight = 0;
157}
158
159static inline void update_load_set(struct load_weight *lw, unsigned long w)
160{
161 lw->weight = w;
162 lw->inv_weight = 0;
163}
164
029632fb
PZ
165/*
166 * Increase the granularity value when there are more CPUs,
167 * because with more CPUs the 'effective latency' as visible
168 * to users decreases. But the relationship is not linear,
169 * so pick a second-best guess by going with the log2 of the
170 * number of CPUs.
171 *
172 * This idea comes from the SD scheduler of Con Kolivas:
173 */
58ac93e4 174static unsigned int get_update_sysctl_factor(void)
029632fb 175{
58ac93e4 176 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
177 unsigned int factor;
178
179 switch (sysctl_sched_tunable_scaling) {
180 case SCHED_TUNABLESCALING_NONE:
181 factor = 1;
182 break;
183 case SCHED_TUNABLESCALING_LINEAR:
184 factor = cpus;
185 break;
186 case SCHED_TUNABLESCALING_LOG:
187 default:
188 factor = 1 + ilog2(cpus);
189 break;
190 }
191
192 return factor;
193}
194
195static void update_sysctl(void)
196{
197 unsigned int factor = get_update_sysctl_factor();
198
199#define SET_SYSCTL(name) \
200 (sysctl_##name = (factor) * normalized_sysctl_##name)
201 SET_SYSCTL(sched_min_granularity);
202 SET_SYSCTL(sched_latency);
203 SET_SYSCTL(sched_wakeup_granularity);
204#undef SET_SYSCTL
205}
206
f38f12d1 207void __init sched_init_granularity(void)
029632fb
PZ
208{
209 update_sysctl();
210}
211
9dbdb155 212#define WMULT_CONST (~0U)
029632fb
PZ
213#define WMULT_SHIFT 32
214
9dbdb155
PZ
215static void __update_inv_weight(struct load_weight *lw)
216{
217 unsigned long w;
218
219 if (likely(lw->inv_weight))
220 return;
221
222 w = scale_load_down(lw->weight);
223
224 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
225 lw->inv_weight = 1;
226 else if (unlikely(!w))
227 lw->inv_weight = WMULT_CONST;
228 else
229 lw->inv_weight = WMULT_CONST / w;
230}
029632fb
PZ
231
232/*
9dbdb155
PZ
233 * delta_exec * weight / lw.weight
234 * OR
235 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
236 *
1c3de5e1 237 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
238 * we're guaranteed shift stays positive because inv_weight is guaranteed to
239 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
240 *
241 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 243 */
9dbdb155 244static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 245{
9dbdb155 246 u64 fact = scale_load_down(weight);
1e17fb8e 247 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 248 int shift = WMULT_SHIFT;
1e17fb8e 249 int fs;
029632fb 250
9dbdb155 251 __update_inv_weight(lw);
029632fb 252
1e17fb8e
CC
253 if (unlikely(fact_hi)) {
254 fs = fls(fact_hi);
255 shift -= fs;
256 fact >>= fs;
029632fb
PZ
257 }
258
2eeb01a2 259 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 260
1e17fb8e
CC
261 fact_hi = (u32)(fact >> 32);
262 if (fact_hi) {
263 fs = fls(fact_hi);
264 shift -= fs;
265 fact >>= fs;
9dbdb155 266 }
029632fb 267
9dbdb155 268 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
269}
270
271
272const struct sched_class fair_sched_class;
a4c2f00f 273
bf0f6f24
IM
274/**************************************************************
275 * CFS operations on generic schedulable entities:
276 */
277
62160e3f 278#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f 279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
3c93a0c0
QY
284static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
285{
286 if (!path)
287 return;
288
289 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 autogroup_path(cfs_rq->tg, path, len);
291 else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
293 else
294 strlcpy(path, "(null)", len);
295}
296
f6783319 297static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 298{
5d299eab
PZ
299 struct rq *rq = rq_of(cfs_rq);
300 int cpu = cpu_of(rq);
301
302 if (cfs_rq->on_list)
f6783319 303 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
304
305 cfs_rq->on_list = 1;
306
307 /*
308 * Ensure we either appear before our parent (if already
309 * enqueued) or force our parent to appear after us when it is
310 * enqueued. The fact that we always enqueue bottom-up
311 * reduces this to two cases and a special case for the root
312 * cfs_rq. Furthermore, it also means that we will always reset
313 * tmp_alone_branch either when the branch is connected
314 * to a tree or when we reach the top of the tree
315 */
316 if (cfs_rq->tg->parent &&
317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 318 /*
5d299eab
PZ
319 * If parent is already on the list, we add the child
320 * just before. Thanks to circular linked property of
321 * the list, this means to put the child at the tail
322 * of the list that starts by parent.
67e86250 323 */
5d299eab
PZ
324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 /*
327 * The branch is now connected to its tree so we can
328 * reset tmp_alone_branch to the beginning of the
329 * list.
330 */
331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 332 return true;
5d299eab 333 }
3d4b47b4 334
5d299eab
PZ
335 if (!cfs_rq->tg->parent) {
336 /*
337 * cfs rq without parent should be put
338 * at the tail of the list.
339 */
340 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 &rq->leaf_cfs_rq_list);
342 /*
343 * We have reach the top of a tree so we can reset
344 * tmp_alone_branch to the beginning of the list.
345 */
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 347 return true;
3d4b47b4 348 }
5d299eab
PZ
349
350 /*
351 * The parent has not already been added so we want to
352 * make sure that it will be put after us.
353 * tmp_alone_branch points to the begin of the branch
354 * where we will add parent.
355 */
356 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
357 /*
358 * update tmp_alone_branch to points to the new begin
359 * of the branch
360 */
361 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 362 return false;
3d4b47b4
PZ
363}
364
365static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366{
367 if (cfs_rq->on_list) {
31bc6aea
VG
368 struct rq *rq = rq_of(cfs_rq);
369
370 /*
371 * With cfs_rq being unthrottled/throttled during an enqueue,
372 * it can happen the tmp_alone_branch points the a leaf that
373 * we finally want to del. In this case, tmp_alone_branch moves
374 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 * at the end of the enqueue.
376 */
377 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
379
3d4b47b4
PZ
380 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
381 cfs_rq->on_list = 0;
382 }
383}
384
5d299eab
PZ
385static inline void assert_list_leaf_cfs_rq(struct rq *rq)
386{
387 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
388}
389
039ae8bc
VG
390/* Iterate thr' all leaf cfs_rq's on a runqueue */
391#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
392 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
393 leaf_cfs_rq_list)
b758149c
PZ
394
395/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 396static inline struct cfs_rq *
b758149c
PZ
397is_same_group(struct sched_entity *se, struct sched_entity *pse)
398{
399 if (se->cfs_rq == pse->cfs_rq)
fed14d45 400 return se->cfs_rq;
b758149c 401
fed14d45 402 return NULL;
b758149c
PZ
403}
404
405static inline struct sched_entity *parent_entity(struct sched_entity *se)
406{
407 return se->parent;
408}
409
464b7527
PZ
410static void
411find_matching_se(struct sched_entity **se, struct sched_entity **pse)
412{
413 int se_depth, pse_depth;
414
415 /*
416 * preemption test can be made between sibling entities who are in the
417 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 * both tasks until we find their ancestors who are siblings of common
419 * parent.
420 */
421
422 /* First walk up until both entities are at same depth */
fed14d45
PZ
423 se_depth = (*se)->depth;
424 pse_depth = (*pse)->depth;
464b7527
PZ
425
426 while (se_depth > pse_depth) {
427 se_depth--;
428 *se = parent_entity(*se);
429 }
430
431 while (pse_depth > se_depth) {
432 pse_depth--;
433 *pse = parent_entity(*pse);
434 }
435
436 while (!is_same_group(*se, *pse)) {
437 *se = parent_entity(*se);
438 *pse = parent_entity(*pse);
439 }
440}
441
30400039
JD
442static int tg_is_idle(struct task_group *tg)
443{
444 return tg->idle > 0;
445}
446
447static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
448{
449 return cfs_rq->idle > 0;
450}
451
452static int se_is_idle(struct sched_entity *se)
453{
454 if (entity_is_task(se))
455 return task_has_idle_policy(task_of(se));
456 return cfs_rq_is_idle(group_cfs_rq(se));
457}
458
8f48894f
PZ
459#else /* !CONFIG_FAIR_GROUP_SCHED */
460
b758149c
PZ
461#define for_each_sched_entity(se) \
462 for (; se; se = NULL)
bf0f6f24 463
3c93a0c0
QY
464static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465{
466 if (path)
467 strlcpy(path, "(null)", len);
468}
469
f6783319 470static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 471{
f6783319 472 return true;
3d4b47b4
PZ
473}
474
475static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476{
477}
478
5d299eab
PZ
479static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480{
481}
482
039ae8bc
VG
483#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 485
b758149c
PZ
486static inline struct sched_entity *parent_entity(struct sched_entity *se)
487{
488 return NULL;
489}
490
464b7527
PZ
491static inline void
492find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493{
494}
495
366e7ad6 496static inline int tg_is_idle(struct task_group *tg)
30400039
JD
497{
498 return 0;
499}
500
501static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
502{
503 return 0;
504}
505
506static int se_is_idle(struct sched_entity *se)
507{
508 return 0;
509}
510
b758149c
PZ
511#endif /* CONFIG_FAIR_GROUP_SCHED */
512
6c16a6dc 513static __always_inline
9dbdb155 514void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
515
516/**************************************************************
517 * Scheduling class tree data structure manipulation methods:
518 */
519
1bf08230 520static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 521{
1bf08230 522 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 523 if (delta > 0)
1bf08230 524 max_vruntime = vruntime;
02e0431a 525
1bf08230 526 return max_vruntime;
02e0431a
PZ
527}
528
0702e3eb 529static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
530{
531 s64 delta = (s64)(vruntime - min_vruntime);
532 if (delta < 0)
533 min_vruntime = vruntime;
534
535 return min_vruntime;
536}
537
bf9be9a1 538static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
539 struct sched_entity *b)
540{
541 return (s64)(a->vruntime - b->vruntime) < 0;
542}
543
bf9be9a1
PZ
544#define __node_2_se(node) \
545 rb_entry((node), struct sched_entity, run_node)
546
1af5f730
PZ
547static void update_min_vruntime(struct cfs_rq *cfs_rq)
548{
b60205c7 549 struct sched_entity *curr = cfs_rq->curr;
bfb06889 550 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 551
1af5f730
PZ
552 u64 vruntime = cfs_rq->min_vruntime;
553
b60205c7
PZ
554 if (curr) {
555 if (curr->on_rq)
556 vruntime = curr->vruntime;
557 else
558 curr = NULL;
559 }
1af5f730 560
bfb06889 561 if (leftmost) { /* non-empty tree */
bf9be9a1 562 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 563
b60205c7 564 if (!curr)
1af5f730
PZ
565 vruntime = se->vruntime;
566 else
567 vruntime = min_vruntime(vruntime, se->vruntime);
568 }
569
1bf08230 570 /* ensure we never gain time by being placed backwards. */
1af5f730 571 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
572#ifndef CONFIG_64BIT
573 smp_wmb();
574 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
575#endif
1af5f730
PZ
576}
577
bf9be9a1
PZ
578static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
579{
580 return entity_before(__node_2_se(a), __node_2_se(b));
581}
582
bf0f6f24
IM
583/*
584 * Enqueue an entity into the rb-tree:
585 */
0702e3eb 586static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 587{
bf9be9a1 588 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
589}
590
0702e3eb 591static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 592{
bfb06889 593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
bfb06889 598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
599
600 if (!left)
601 return NULL;
602
bf9be9a1 603 return __node_2_se(left);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
bf9be9a1 613 return __node_2_se(next);
ac53db59
RR
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
bfb06889 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67 623
bf9be9a1 624 return __node_2_se(last);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
8a99b683 631int sched_update_scaling(void)
b2be5e96 632{
58ac93e4 633 unsigned int factor = get_update_sysctl_factor();
b2be5e96 634
b2be5e96
PZ
635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 sysctl_sched_min_granularity);
637
acb4a848
CE
638#define WRT_SYSCTL(name) \
639 (normalized_sysctl_##name = sysctl_##name / (factor))
640 WRT_SYSCTL(sched_min_granularity);
641 WRT_SYSCTL(sched_latency);
642 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
643#undef WRT_SYSCTL
644
b2be5e96
PZ
645 return 0;
646}
647#endif
647e7cac 648
a7be37ac 649/*
f9c0b095 650 * delta /= w
a7be37ac 651 */
9dbdb155 652static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 653{
f9c0b095 654 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
656
657 return delta;
658}
659
647e7cac
IM
660/*
661 * The idea is to set a period in which each task runs once.
662 *
532b1858 663 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
664 * this period because otherwise the slices get too small.
665 *
666 * p = (nr <= nl) ? l : l*nr/nl
667 */
4d78e7b6
PZ
668static u64 __sched_period(unsigned long nr_running)
669{
8e2b0bf3
BF
670 if (unlikely(nr_running > sched_nr_latency))
671 return nr_running * sysctl_sched_min_granularity;
672 else
673 return sysctl_sched_latency;
4d78e7b6
PZ
674}
675
51ce83ed
JD
676static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
677
647e7cac
IM
678/*
679 * We calculate the wall-time slice from the period by taking a part
680 * proportional to the weight.
681 *
f9c0b095 682 * s = p*P[w/rw]
647e7cac 683 */
6d0f0ebd 684static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 685{
0c2de3f0 686 unsigned int nr_running = cfs_rq->nr_running;
51ce83ed
JD
687 struct sched_entity *init_se = se;
688 unsigned int min_gran;
0c2de3f0
PZ
689 u64 slice;
690
691 if (sched_feat(ALT_PERIOD))
692 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
693
694 slice = __sched_period(nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
51ce83ed 699 struct cfs_rq *qcfs_rq;
6272d68c 700
51ce83ed
JD
701 qcfs_rq = cfs_rq_of(se);
702 load = &qcfs_rq->load;
f9c0b095 703
0a582440 704 if (unlikely(!se->on_rq)) {
51ce83ed 705 lw = qcfs_rq->load;
0a582440
MG
706
707 update_load_add(&lw, se->load.weight);
708 load = &lw;
709 }
9dbdb155 710 slice = __calc_delta(slice, se->load.weight, load);
0a582440 711 }
0c2de3f0 712
51ce83ed
JD
713 if (sched_feat(BASE_SLICE)) {
714 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 min_gran = sysctl_sched_idle_min_granularity;
716 else
717 min_gran = sysctl_sched_min_granularity;
718
719 slice = max_t(u64, slice, min_gran);
720 }
0c2de3f0 721
0a582440 722 return slice;
bf0f6f24
IM
723}
724
647e7cac 725/*
660cc00f 726 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 727 *
f9c0b095 728 * vs = s/w
647e7cac 729 */
f9c0b095 730static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 731{
f9c0b095 732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
733}
734
c0796298 735#include "pelt.h"
23127296 736#ifdef CONFIG_SMP
283e2ed3 737
772bd008 738static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 739static unsigned long task_h_load(struct task_struct *p);
3b1baa64 740static unsigned long capacity_of(int cpu);
fb13c7ee 741
540247fb
YD
742/* Give new sched_entity start runnable values to heavy its load in infant time */
743void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 744{
540247fb 745 struct sched_avg *sa = &se->avg;
a75cdaa9 746
f207934f
PZ
747 memset(sa, 0, sizeof(*sa));
748
b5a9b340 749 /*
dfcb245e 750 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 751 * they get a chance to stabilize to their real load level.
dfcb245e 752 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
753 * nothing has been attached to the task group yet.
754 */
755 if (entity_is_task(se))
0dacee1b 756 sa->load_avg = scale_load_down(se->load.weight);
f207934f 757
9d89c257 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 759}
7ea241af 760
df217913 761static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 762
2b8c41da
YD
763/*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
8fe5c5a9 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 777 *
8fe5c5a9 778 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 779 *
8fe5c5a9
QP
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
2b8c41da
YD
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
d0fe0b9c 789void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 790{
d0fe0b9c 791 struct sched_entity *se = &p->se;
2b8c41da
YD
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
8ec59c0f 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
796
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
806 }
2b8c41da 807 }
7dc603c9 808
e21cf434 809 sa->runnable_avg = sa->util_avg;
9f683953 810
d0fe0b9c
DE
811 if (p->sched_class != &fair_sched_class) {
812 /*
813 * For !fair tasks do:
814 *
815 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 816 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
817 switched_from_fair(rq, p);
818 *
819 * such that the next switched_to_fair() has the
820 * expected state.
821 */
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 return;
7dc603c9
PZ
824 }
825
df217913 826 attach_entity_cfs_rq(se);
2b8c41da
YD
827}
828
7dc603c9 829#else /* !CONFIG_SMP */
540247fb 830void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
831{
832}
d0fe0b9c 833void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
834{
835}
fe749158 836static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
837{
838}
7dc603c9 839#endif /* CONFIG_SMP */
a75cdaa9 840
bf0f6f24 841/*
9dbdb155 842 * Update the current task's runtime statistics.
bf0f6f24 843 */
b7cc0896 844static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 845{
429d43bc 846 struct sched_entity *curr = cfs_rq->curr;
78becc27 847 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 848 u64 delta_exec;
bf0f6f24
IM
849
850 if (unlikely(!curr))
851 return;
852
9dbdb155
PZ
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
34f28ecd 855 return;
bf0f6f24 856
8ebc91d9 857 curr->exec_start = now;
d842de87 858
ceeadb83
YS
859 if (schedstat_enabled()) {
860 struct sched_statistics *stats;
861
862 stats = __schedstats_from_se(curr);
863 __schedstat_set(stats->exec_max,
864 max(delta_exec, stats->exec_max));
865 }
9dbdb155
PZ
866
867 curr->sum_exec_runtime += delta_exec;
ae92882e 868 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
869
870 curr->vruntime += calc_delta_fair(delta_exec, curr);
871 update_min_vruntime(cfs_rq);
872
d842de87
SV
873 if (entity_is_task(curr)) {
874 struct task_struct *curtask = task_of(curr);
875
f977bb49 876 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 877 cgroup_account_cputime(curtask, delta_exec);
f06febc9 878 account_group_exec_runtime(curtask, delta_exec);
d842de87 879 }
ec12cb7f
PT
880
881 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
882}
883
6e998916
SG
884static void update_curr_fair(struct rq *rq)
885{
886 update_curr(cfs_rq_of(&rq->curr->se));
887}
888
bf0f6f24 889static inline void
60f2415e 890update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 891{
ceeadb83 892 struct sched_statistics *stats;
60f2415e 893 struct task_struct *p = NULL;
4fa8d299
JP
894
895 if (!schedstat_enabled())
896 return;
897
ceeadb83
YS
898 stats = __schedstats_from_se(se);
899
60f2415e
YS
900 if (entity_is_task(se))
901 p = task_of(se);
3ea94de1 902
60f2415e 903 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
bf0f6f24
IM
904}
905
4fa8d299 906static inline void
60f2415e 907update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
3ea94de1 908{
ceeadb83
YS
909 struct sched_statistics *stats;
910 struct task_struct *p = NULL;
cb251765 911
4fa8d299
JP
912 if (!schedstat_enabled())
913 return;
914
ceeadb83
YS
915 stats = __schedstats_from_se(se);
916
b9c88f75 917 /*
918 * When the sched_schedstat changes from 0 to 1, some sched se
919 * maybe already in the runqueue, the se->statistics.wait_start
920 * will be 0.So it will let the delta wrong. We need to avoid this
921 * scenario.
922 */
ceeadb83 923 if (unlikely(!schedstat_val(stats->wait_start)))
b9c88f75 924 return;
925
60f2415e 926 if (entity_is_task(se))
3ea94de1 927 p = task_of(se);
3ea94de1 928
60f2415e 929 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
3ea94de1 930}
3ea94de1 931
4fa8d299 932static inline void
60f2415e 933update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1a3d027c 934{
ceeadb83 935 struct sched_statistics *stats;
1a3d027c 936 struct task_struct *tsk = NULL;
4fa8d299
JP
937
938 if (!schedstat_enabled())
939 return;
940
ceeadb83
YS
941 stats = __schedstats_from_se(se);
942
1a3d027c
JP
943 if (entity_is_task(se))
944 tsk = task_of(se);
945
60f2415e 946 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
3ea94de1 947}
3ea94de1 948
bf0f6f24
IM
949/*
950 * Task is being enqueued - update stats:
951 */
cb251765 952static inline void
60f2415e 953update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 954{
4fa8d299
JP
955 if (!schedstat_enabled())
956 return;
957
bf0f6f24
IM
958 /*
959 * Are we enqueueing a waiting task? (for current tasks
960 * a dequeue/enqueue event is a NOP)
961 */
429d43bc 962 if (se != cfs_rq->curr)
60f2415e 963 update_stats_wait_start_fair(cfs_rq, se);
1a3d027c
JP
964
965 if (flags & ENQUEUE_WAKEUP)
60f2415e 966 update_stats_enqueue_sleeper_fair(cfs_rq, se);
bf0f6f24
IM
967}
968
bf0f6f24 969static inline void
60f2415e 970update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 971{
4fa8d299
JP
972
973 if (!schedstat_enabled())
974 return;
975
bf0f6f24
IM
976 /*
977 * Mark the end of the wait period if dequeueing a
978 * waiting task:
979 */
429d43bc 980 if (se != cfs_rq->curr)
60f2415e 981 update_stats_wait_end_fair(cfs_rq, se);
cb251765 982
4fa8d299
JP
983 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 struct task_struct *tsk = task_of(se);
2f064a59 985 unsigned int state;
cb251765 986
2f064a59
PZ
987 /* XXX racy against TTWU */
988 state = READ_ONCE(tsk->__state);
989 if (state & TASK_INTERRUPTIBLE)
ceeadb83 990 __schedstat_set(tsk->stats.sleep_start,
4fa8d299 991 rq_clock(rq_of(cfs_rq)));
2f064a59 992 if (state & TASK_UNINTERRUPTIBLE)
ceeadb83 993 __schedstat_set(tsk->stats.block_start,
4fa8d299 994 rq_clock(rq_of(cfs_rq)));
cb251765 995 }
cb251765
MG
996}
997
bf0f6f24
IM
998/*
999 * We are picking a new current task - update its stats:
1000 */
1001static inline void
79303e9e 1002update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1003{
1004 /*
1005 * We are starting a new run period:
1006 */
78becc27 1007 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1008}
1009
bf0f6f24
IM
1010/**************************************************
1011 * Scheduling class queueing methods:
1012 */
1013
cbee9f88
PZ
1014#ifdef CONFIG_NUMA_BALANCING
1015/*
598f0ec0
MG
1016 * Approximate time to scan a full NUMA task in ms. The task scan period is
1017 * calculated based on the tasks virtual memory size and
1018 * numa_balancing_scan_size.
cbee9f88 1019 */
598f0ec0
MG
1020unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1021unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1022
1023/* Portion of address space to scan in MB */
1024unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1025
4b96a29b
PZ
1026/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1027unsigned int sysctl_numa_balancing_scan_delay = 1000;
1028
b5dd77c8 1029struct numa_group {
c45a7795 1030 refcount_t refcount;
b5dd77c8
RR
1031
1032 spinlock_t lock; /* nr_tasks, tasks */
1033 int nr_tasks;
1034 pid_t gid;
1035 int active_nodes;
1036
1037 struct rcu_head rcu;
1038 unsigned long total_faults;
1039 unsigned long max_faults_cpu;
1040 /*
1041 * Faults_cpu is used to decide whether memory should move
1042 * towards the CPU. As a consequence, these stats are weighted
1043 * more by CPU use than by memory faults.
1044 */
1045 unsigned long *faults_cpu;
04f5c362 1046 unsigned long faults[];
b5dd77c8
RR
1047};
1048
cb361d8c
JH
1049/*
1050 * For functions that can be called in multiple contexts that permit reading
1051 * ->numa_group (see struct task_struct for locking rules).
1052 */
1053static struct numa_group *deref_task_numa_group(struct task_struct *p)
1054{
1055 return rcu_dereference_check(p->numa_group, p == current ||
9ef7e7e3 1056 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
cb361d8c
JH
1057}
1058
1059static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1060{
1061 return rcu_dereference_protected(p->numa_group, p == current);
1062}
1063
b5dd77c8
RR
1064static inline unsigned long group_faults_priv(struct numa_group *ng);
1065static inline unsigned long group_faults_shared(struct numa_group *ng);
1066
598f0ec0
MG
1067static unsigned int task_nr_scan_windows(struct task_struct *p)
1068{
1069 unsigned long rss = 0;
1070 unsigned long nr_scan_pages;
1071
1072 /*
1073 * Calculations based on RSS as non-present and empty pages are skipped
1074 * by the PTE scanner and NUMA hinting faults should be trapped based
1075 * on resident pages
1076 */
1077 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1078 rss = get_mm_rss(p->mm);
1079 if (!rss)
1080 rss = nr_scan_pages;
1081
1082 rss = round_up(rss, nr_scan_pages);
1083 return rss / nr_scan_pages;
1084}
1085
3b03706f 1086/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1087#define MAX_SCAN_WINDOW 2560
1088
1089static unsigned int task_scan_min(struct task_struct *p)
1090{
316c1608 1091 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1092 unsigned int scan, floor;
1093 unsigned int windows = 1;
1094
64192658
KT
1095 if (scan_size < MAX_SCAN_WINDOW)
1096 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1097 floor = 1000 / windows;
1098
1099 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1100 return max_t(unsigned int, floor, scan);
1101}
1102
b5dd77c8
RR
1103static unsigned int task_scan_start(struct task_struct *p)
1104{
1105 unsigned long smin = task_scan_min(p);
1106 unsigned long period = smin;
cb361d8c 1107 struct numa_group *ng;
b5dd77c8
RR
1108
1109 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1110 rcu_read_lock();
1111 ng = rcu_dereference(p->numa_group);
1112 if (ng) {
b5dd77c8
RR
1113 unsigned long shared = group_faults_shared(ng);
1114 unsigned long private = group_faults_priv(ng);
1115
c45a7795 1116 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1117 period *= shared + 1;
1118 period /= private + shared + 1;
1119 }
cb361d8c 1120 rcu_read_unlock();
b5dd77c8
RR
1121
1122 return max(smin, period);
1123}
1124
598f0ec0
MG
1125static unsigned int task_scan_max(struct task_struct *p)
1126{
b5dd77c8
RR
1127 unsigned long smin = task_scan_min(p);
1128 unsigned long smax;
cb361d8c 1129 struct numa_group *ng;
598f0ec0
MG
1130
1131 /* Watch for min being lower than max due to floor calculations */
1132 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1133
1134 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1135 ng = deref_curr_numa_group(p);
1136 if (ng) {
b5dd77c8
RR
1137 unsigned long shared = group_faults_shared(ng);
1138 unsigned long private = group_faults_priv(ng);
1139 unsigned long period = smax;
1140
c45a7795 1141 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1142 period *= shared + 1;
1143 period /= private + shared + 1;
1144
1145 smax = max(smax, period);
1146 }
1147
598f0ec0
MG
1148 return max(smin, smax);
1149}
1150
0ec8aa00
PZ
1151static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1152{
98fa15f3 1153 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1154 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1155}
1156
1157static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1158{
98fa15f3 1159 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1160 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1161}
1162
be1e4e76
RR
1163/* Shared or private faults. */
1164#define NR_NUMA_HINT_FAULT_TYPES 2
1165
1166/* Memory and CPU locality */
1167#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1168
1169/* Averaged statistics, and temporary buffers. */
1170#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1171
e29cf08b
MG
1172pid_t task_numa_group_id(struct task_struct *p)
1173{
cb361d8c
JH
1174 struct numa_group *ng;
1175 pid_t gid = 0;
1176
1177 rcu_read_lock();
1178 ng = rcu_dereference(p->numa_group);
1179 if (ng)
1180 gid = ng->gid;
1181 rcu_read_unlock();
1182
1183 return gid;
e29cf08b
MG
1184}
1185
44dba3d5 1186/*
97fb7a0a 1187 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1188 * occupy the first half of the array. The second half of the
1189 * array is for current counters, which are averaged into the
1190 * first set by task_numa_placement.
1191 */
1192static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1193{
44dba3d5 1194 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1195}
1196
1197static inline unsigned long task_faults(struct task_struct *p, int nid)
1198{
44dba3d5 1199 if (!p->numa_faults)
ac8e895b
MG
1200 return 0;
1201
44dba3d5
IM
1202 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1203 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1204}
1205
83e1d2cd
MG
1206static inline unsigned long group_faults(struct task_struct *p, int nid)
1207{
cb361d8c
JH
1208 struct numa_group *ng = deref_task_numa_group(p);
1209
1210 if (!ng)
83e1d2cd
MG
1211 return 0;
1212
cb361d8c
JH
1213 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1214 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1215}
1216
20e07dea
RR
1217static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1218{
44dba3d5
IM
1219 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1220 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1221}
1222
b5dd77c8
RR
1223static inline unsigned long group_faults_priv(struct numa_group *ng)
1224{
1225 unsigned long faults = 0;
1226 int node;
1227
1228 for_each_online_node(node) {
1229 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1230 }
1231
1232 return faults;
1233}
1234
1235static inline unsigned long group_faults_shared(struct numa_group *ng)
1236{
1237 unsigned long faults = 0;
1238 int node;
1239
1240 for_each_online_node(node) {
1241 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1242 }
1243
1244 return faults;
1245}
1246
4142c3eb
RR
1247/*
1248 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1249 * considered part of a numa group's pseudo-interleaving set. Migrations
1250 * between these nodes are slowed down, to allow things to settle down.
1251 */
1252#define ACTIVE_NODE_FRACTION 3
1253
1254static bool numa_is_active_node(int nid, struct numa_group *ng)
1255{
1256 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1257}
1258
6c6b1193
RR
1259/* Handle placement on systems where not all nodes are directly connected. */
1260static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1261 int maxdist, bool task)
1262{
1263 unsigned long score = 0;
1264 int node;
1265
1266 /*
1267 * All nodes are directly connected, and the same distance
1268 * from each other. No need for fancy placement algorithms.
1269 */
1270 if (sched_numa_topology_type == NUMA_DIRECT)
1271 return 0;
1272
1273 /*
1274 * This code is called for each node, introducing N^2 complexity,
1275 * which should be ok given the number of nodes rarely exceeds 8.
1276 */
1277 for_each_online_node(node) {
1278 unsigned long faults;
1279 int dist = node_distance(nid, node);
1280
1281 /*
1282 * The furthest away nodes in the system are not interesting
1283 * for placement; nid was already counted.
1284 */
1285 if (dist == sched_max_numa_distance || node == nid)
1286 continue;
1287
1288 /*
1289 * On systems with a backplane NUMA topology, compare groups
1290 * of nodes, and move tasks towards the group with the most
1291 * memory accesses. When comparing two nodes at distance
1292 * "hoplimit", only nodes closer by than "hoplimit" are part
1293 * of each group. Skip other nodes.
1294 */
1295 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1296 dist >= maxdist)
6c6b1193
RR
1297 continue;
1298
1299 /* Add up the faults from nearby nodes. */
1300 if (task)
1301 faults = task_faults(p, node);
1302 else
1303 faults = group_faults(p, node);
1304
1305 /*
1306 * On systems with a glueless mesh NUMA topology, there are
1307 * no fixed "groups of nodes". Instead, nodes that are not
1308 * directly connected bounce traffic through intermediate
1309 * nodes; a numa_group can occupy any set of nodes.
1310 * The further away a node is, the less the faults count.
1311 * This seems to result in good task placement.
1312 */
1313 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1314 faults *= (sched_max_numa_distance - dist);
1315 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1316 }
1317
1318 score += faults;
1319 }
1320
1321 return score;
1322}
1323
83e1d2cd
MG
1324/*
1325 * These return the fraction of accesses done by a particular task, or
1326 * task group, on a particular numa node. The group weight is given a
1327 * larger multiplier, in order to group tasks together that are almost
1328 * evenly spread out between numa nodes.
1329 */
7bd95320
RR
1330static inline unsigned long task_weight(struct task_struct *p, int nid,
1331 int dist)
83e1d2cd 1332{
7bd95320 1333 unsigned long faults, total_faults;
83e1d2cd 1334
44dba3d5 1335 if (!p->numa_faults)
83e1d2cd
MG
1336 return 0;
1337
1338 total_faults = p->total_numa_faults;
1339
1340 if (!total_faults)
1341 return 0;
1342
7bd95320 1343 faults = task_faults(p, nid);
6c6b1193
RR
1344 faults += score_nearby_nodes(p, nid, dist, true);
1345
7bd95320 1346 return 1000 * faults / total_faults;
83e1d2cd
MG
1347}
1348
7bd95320
RR
1349static inline unsigned long group_weight(struct task_struct *p, int nid,
1350 int dist)
83e1d2cd 1351{
cb361d8c 1352 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1353 unsigned long faults, total_faults;
1354
cb361d8c 1355 if (!ng)
7bd95320
RR
1356 return 0;
1357
cb361d8c 1358 total_faults = ng->total_faults;
7bd95320
RR
1359
1360 if (!total_faults)
83e1d2cd
MG
1361 return 0;
1362
7bd95320 1363 faults = group_faults(p, nid);
6c6b1193
RR
1364 faults += score_nearby_nodes(p, nid, dist, false);
1365
7bd95320 1366 return 1000 * faults / total_faults;
83e1d2cd
MG
1367}
1368
10f39042
RR
1369bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1370 int src_nid, int dst_cpu)
1371{
cb361d8c 1372 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1373 int dst_nid = cpu_to_node(dst_cpu);
1374 int last_cpupid, this_cpupid;
1375
1376 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1377 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1378
1379 /*
1380 * Allow first faults or private faults to migrate immediately early in
1381 * the lifetime of a task. The magic number 4 is based on waiting for
1382 * two full passes of the "multi-stage node selection" test that is
1383 * executed below.
1384 */
98fa15f3 1385 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1386 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1387 return true;
10f39042
RR
1388
1389 /*
1390 * Multi-stage node selection is used in conjunction with a periodic
1391 * migration fault to build a temporal task<->page relation. By using
1392 * a two-stage filter we remove short/unlikely relations.
1393 *
1394 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1395 * a task's usage of a particular page (n_p) per total usage of this
1396 * page (n_t) (in a given time-span) to a probability.
1397 *
1398 * Our periodic faults will sample this probability and getting the
1399 * same result twice in a row, given these samples are fully
1400 * independent, is then given by P(n)^2, provided our sample period
1401 * is sufficiently short compared to the usage pattern.
1402 *
1403 * This quadric squishes small probabilities, making it less likely we
1404 * act on an unlikely task<->page relation.
1405 */
10f39042
RR
1406 if (!cpupid_pid_unset(last_cpupid) &&
1407 cpupid_to_nid(last_cpupid) != dst_nid)
1408 return false;
1409
1410 /* Always allow migrate on private faults */
1411 if (cpupid_match_pid(p, last_cpupid))
1412 return true;
1413
1414 /* A shared fault, but p->numa_group has not been set up yet. */
1415 if (!ng)
1416 return true;
1417
1418 /*
4142c3eb
RR
1419 * Destination node is much more heavily used than the source
1420 * node? Allow migration.
10f39042 1421 */
4142c3eb
RR
1422 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1423 ACTIVE_NODE_FRACTION)
10f39042
RR
1424 return true;
1425
1426 /*
4142c3eb
RR
1427 * Distribute memory according to CPU & memory use on each node,
1428 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1429 *
1430 * faults_cpu(dst) 3 faults_cpu(src)
1431 * --------------- * - > ---------------
1432 * faults_mem(dst) 4 faults_mem(src)
10f39042 1433 */
4142c3eb
RR
1434 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1435 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1436}
1437
6499b1b2
VG
1438/*
1439 * 'numa_type' describes the node at the moment of load balancing.
1440 */
1441enum numa_type {
1442 /* The node has spare capacity that can be used to run more tasks. */
1443 node_has_spare = 0,
1444 /*
1445 * The node is fully used and the tasks don't compete for more CPU
1446 * cycles. Nevertheless, some tasks might wait before running.
1447 */
1448 node_fully_busy,
1449 /*
1450 * The node is overloaded and can't provide expected CPU cycles to all
1451 * tasks.
1452 */
1453 node_overloaded
1454};
58d081b5 1455
fb13c7ee 1456/* Cached statistics for all CPUs within a node */
58d081b5
MG
1457struct numa_stats {
1458 unsigned long load;
8e0e0eda 1459 unsigned long runnable;
6499b1b2 1460 unsigned long util;
fb13c7ee 1461 /* Total compute capacity of CPUs on a node */
5ef20ca1 1462 unsigned long compute_capacity;
6499b1b2
VG
1463 unsigned int nr_running;
1464 unsigned int weight;
1465 enum numa_type node_type;
ff7db0bf 1466 int idle_cpu;
58d081b5 1467};
e6628d5b 1468
ff7db0bf
MG
1469static inline bool is_core_idle(int cpu)
1470{
1471#ifdef CONFIG_SCHED_SMT
1472 int sibling;
1473
1474 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1475 if (cpu == sibling)
1476 continue;
1477
1c6829cf 1478 if (!idle_cpu(sibling))
ff7db0bf
MG
1479 return false;
1480 }
1481#endif
1482
1483 return true;
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
6499b1b2 1502static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1503static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1504static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1505static inline long adjust_numa_imbalance(int imbalance,
1506 int dst_running, int dst_weight);
6499b1b2
VG
1507
1508static inline enum
1509numa_type numa_classify(unsigned int imbalance_pct,
1510 struct numa_stats *ns)
1511{
1512 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1513 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1514 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1515 return node_overloaded;
1516
1517 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1518 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1519 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1520 return node_has_spare;
1521
1522 return node_fully_busy;
1523}
1524
76c389ab
VS
1525#ifdef CONFIG_SCHED_SMT
1526/* Forward declarations of select_idle_sibling helpers */
1527static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1528static inline int numa_idle_core(int idle_core, int cpu)
1529{
ff7db0bf
MG
1530 if (!static_branch_likely(&sched_smt_present) ||
1531 idle_core >= 0 || !test_idle_cores(cpu, false))
1532 return idle_core;
1533
1534 /*
1535 * Prefer cores instead of packing HT siblings
1536 * and triggering future load balancing.
1537 */
1538 if (is_core_idle(cpu))
1539 idle_core = cpu;
ff7db0bf
MG
1540
1541 return idle_core;
1542}
76c389ab
VS
1543#else
1544static inline int numa_idle_core(int idle_core, int cpu)
1545{
1546 return idle_core;
1547}
1548#endif
ff7db0bf 1549
6499b1b2 1550/*
ff7db0bf
MG
1551 * Gather all necessary information to make NUMA balancing placement
1552 * decisions that are compatible with standard load balancer. This
1553 * borrows code and logic from update_sg_lb_stats but sharing a
1554 * common implementation is impractical.
6499b1b2
VG
1555 */
1556static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1557 struct numa_stats *ns, int nid,
1558 bool find_idle)
6499b1b2 1559{
ff7db0bf 1560 int cpu, idle_core = -1;
6499b1b2
VG
1561
1562 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1563 ns->idle_cpu = -1;
1564
0621df31 1565 rcu_read_lock();
6499b1b2
VG
1566 for_each_cpu(cpu, cpumask_of_node(nid)) {
1567 struct rq *rq = cpu_rq(cpu);
1568
1569 ns->load += cpu_load(rq);
8e0e0eda 1570 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1571 ns->util += cpu_util(cpu);
1572 ns->nr_running += rq->cfs.h_nr_running;
1573 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1574
1575 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1576 if (READ_ONCE(rq->numa_migrate_on) ||
1577 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1578 continue;
1579
1580 if (ns->idle_cpu == -1)
1581 ns->idle_cpu = cpu;
1582
1583 idle_core = numa_idle_core(idle_core, cpu);
1584 }
6499b1b2 1585 }
0621df31 1586 rcu_read_unlock();
6499b1b2
VG
1587
1588 ns->weight = cpumask_weight(cpumask_of_node(nid));
1589
1590 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1591
1592 if (idle_core >= 0)
1593 ns->idle_cpu = idle_core;
6499b1b2
VG
1594}
1595
fb13c7ee
MG
1596static void task_numa_assign(struct task_numa_env *env,
1597 struct task_struct *p, long imp)
1598{
a4739eca
SD
1599 struct rq *rq = cpu_rq(env->dst_cpu);
1600
5fb52dd9
MG
1601 /* Check if run-queue part of active NUMA balance. */
1602 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1603 int cpu;
1604 int start = env->dst_cpu;
1605
1606 /* Find alternative idle CPU. */
1607 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1608 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1609 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1610 continue;
1611 }
1612
1613 env->dst_cpu = cpu;
1614 rq = cpu_rq(env->dst_cpu);
1615 if (!xchg(&rq->numa_migrate_on, 1))
1616 goto assign;
1617 }
1618
1619 /* Failed to find an alternative idle CPU */
a4739eca 1620 return;
5fb52dd9 1621 }
a4739eca 1622
5fb52dd9 1623assign:
a4739eca
SD
1624 /*
1625 * Clear previous best_cpu/rq numa-migrate flag, since task now
1626 * found a better CPU to move/swap.
1627 */
5fb52dd9 1628 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1629 rq = cpu_rq(env->best_cpu);
1630 WRITE_ONCE(rq->numa_migrate_on, 0);
1631 }
1632
fb13c7ee
MG
1633 if (env->best_task)
1634 put_task_struct(env->best_task);
bac78573
ON
1635 if (p)
1636 get_task_struct(p);
fb13c7ee
MG
1637
1638 env->best_task = p;
1639 env->best_imp = imp;
1640 env->best_cpu = env->dst_cpu;
1641}
1642
28a21745 1643static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1644 struct task_numa_env *env)
1645{
e4991b24
RR
1646 long imb, old_imb;
1647 long orig_src_load, orig_dst_load;
28a21745
RR
1648 long src_capacity, dst_capacity;
1649
1650 /*
1651 * The load is corrected for the CPU capacity available on each node.
1652 *
1653 * src_load dst_load
1654 * ------------ vs ---------
1655 * src_capacity dst_capacity
1656 */
1657 src_capacity = env->src_stats.compute_capacity;
1658 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1659
5f95ba7a 1660 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1661
28a21745 1662 orig_src_load = env->src_stats.load;
e4991b24 1663 orig_dst_load = env->dst_stats.load;
28a21745 1664
5f95ba7a 1665 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1666
1667 /* Would this change make things worse? */
1668 return (imb > old_imb);
e63da036
RR
1669}
1670
6fd98e77
SD
1671/*
1672 * Maximum NUMA importance can be 1998 (2*999);
1673 * SMALLIMP @ 30 would be close to 1998/64.
1674 * Used to deter task migration.
1675 */
1676#define SMALLIMP 30
1677
fb13c7ee
MG
1678/*
1679 * This checks if the overall compute and NUMA accesses of the system would
1680 * be improved if the source tasks was migrated to the target dst_cpu taking
1681 * into account that it might be best if task running on the dst_cpu should
1682 * be exchanged with the source task
1683 */
a0f03b61 1684static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1685 long taskimp, long groupimp, bool maymove)
fb13c7ee 1686{
cb361d8c 1687 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1688 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1689 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1690 struct task_struct *cur;
28a21745 1691 long src_load, dst_load;
7bd95320 1692 int dist = env->dist;
cb361d8c
JH
1693 long moveimp = imp;
1694 long load;
a0f03b61 1695 bool stopsearch = false;
fb13c7ee 1696
a4739eca 1697 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1698 return false;
a4739eca 1699
fb13c7ee 1700 rcu_read_lock();
154abafc 1701 cur = rcu_dereference(dst_rq->curr);
bac78573 1702 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1703 cur = NULL;
1704
7af68335
PZ
1705 /*
1706 * Because we have preemption enabled we can get migrated around and
1707 * end try selecting ourselves (current == env->p) as a swap candidate.
1708 */
a0f03b61
MG
1709 if (cur == env->p) {
1710 stopsearch = true;
7af68335 1711 goto unlock;
a0f03b61 1712 }
7af68335 1713
305c1fac 1714 if (!cur) {
6fd98e77 1715 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1716 goto assign;
1717 else
1718 goto unlock;
1719 }
1720
88cca72c
MG
1721 /* Skip this swap candidate if cannot move to the source cpu. */
1722 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1723 goto unlock;
1724
1725 /*
1726 * Skip this swap candidate if it is not moving to its preferred
1727 * node and the best task is.
1728 */
1729 if (env->best_task &&
1730 env->best_task->numa_preferred_nid == env->src_nid &&
1731 cur->numa_preferred_nid != env->src_nid) {
1732 goto unlock;
1733 }
1734
fb13c7ee
MG
1735 /*
1736 * "imp" is the fault differential for the source task between the
1737 * source and destination node. Calculate the total differential for
1738 * the source task and potential destination task. The more negative
305c1fac 1739 * the value is, the more remote accesses that would be expected to
fb13c7ee 1740 * be incurred if the tasks were swapped.
88cca72c 1741 *
305c1fac
SD
1742 * If dst and source tasks are in the same NUMA group, or not
1743 * in any group then look only at task weights.
1744 */
cb361d8c
JH
1745 cur_ng = rcu_dereference(cur->numa_group);
1746 if (cur_ng == p_ng) {
305c1fac
SD
1747 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1748 task_weight(cur, env->dst_nid, dist);
887c290e 1749 /*
305c1fac
SD
1750 * Add some hysteresis to prevent swapping the
1751 * tasks within a group over tiny differences.
887c290e 1752 */
cb361d8c 1753 if (cur_ng)
305c1fac
SD
1754 imp -= imp / 16;
1755 } else {
1756 /*
1757 * Compare the group weights. If a task is all by itself
1758 * (not part of a group), use the task weight instead.
1759 */
cb361d8c 1760 if (cur_ng && p_ng)
305c1fac
SD
1761 imp += group_weight(cur, env->src_nid, dist) -
1762 group_weight(cur, env->dst_nid, dist);
1763 else
1764 imp += task_weight(cur, env->src_nid, dist) -
1765 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1766 }
1767
88cca72c
MG
1768 /* Discourage picking a task already on its preferred node */
1769 if (cur->numa_preferred_nid == env->dst_nid)
1770 imp -= imp / 16;
1771
1772 /*
1773 * Encourage picking a task that moves to its preferred node.
1774 * This potentially makes imp larger than it's maximum of
1775 * 1998 (see SMALLIMP and task_weight for why) but in this
1776 * case, it does not matter.
1777 */
1778 if (cur->numa_preferred_nid == env->src_nid)
1779 imp += imp / 8;
1780
305c1fac 1781 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1782 imp = moveimp;
305c1fac 1783 cur = NULL;
fb13c7ee 1784 goto assign;
305c1fac 1785 }
fb13c7ee 1786
88cca72c
MG
1787 /*
1788 * Prefer swapping with a task moving to its preferred node over a
1789 * task that is not.
1790 */
1791 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1792 env->best_task->numa_preferred_nid != env->src_nid) {
1793 goto assign;
1794 }
1795
6fd98e77
SD
1796 /*
1797 * If the NUMA importance is less than SMALLIMP,
1798 * task migration might only result in ping pong
1799 * of tasks and also hurt performance due to cache
1800 * misses.
1801 */
1802 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1803 goto unlock;
1804
fb13c7ee
MG
1805 /*
1806 * In the overloaded case, try and keep the load balanced.
1807 */
305c1fac
SD
1808 load = task_h_load(env->p) - task_h_load(cur);
1809 if (!load)
1810 goto assign;
1811
e720fff6
PZ
1812 dst_load = env->dst_stats.load + load;
1813 src_load = env->src_stats.load - load;
fb13c7ee 1814
28a21745 1815 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1816 goto unlock;
1817
305c1fac 1818assign:
ff7db0bf 1819 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1820 if (!cur) {
ff7db0bf
MG
1821 int cpu = env->dst_stats.idle_cpu;
1822
1823 /* Nothing cached so current CPU went idle since the search. */
1824 if (cpu < 0)
1825 cpu = env->dst_cpu;
1826
10e2f1ac 1827 /*
ff7db0bf
MG
1828 * If the CPU is no longer truly idle and the previous best CPU
1829 * is, keep using it.
10e2f1ac 1830 */
ff7db0bf
MG
1831 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1832 idle_cpu(env->best_cpu)) {
1833 cpu = env->best_cpu;
1834 }
1835
ff7db0bf 1836 env->dst_cpu = cpu;
10e2f1ac 1837 }
ba7e5a27 1838
fb13c7ee 1839 task_numa_assign(env, cur, imp);
a0f03b61
MG
1840
1841 /*
1842 * If a move to idle is allowed because there is capacity or load
1843 * balance improves then stop the search. While a better swap
1844 * candidate may exist, a search is not free.
1845 */
1846 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1847 stopsearch = true;
1848
1849 /*
1850 * If a swap candidate must be identified and the current best task
1851 * moves its preferred node then stop the search.
1852 */
1853 if (!maymove && env->best_task &&
1854 env->best_task->numa_preferred_nid == env->src_nid) {
1855 stopsearch = true;
1856 }
fb13c7ee
MG
1857unlock:
1858 rcu_read_unlock();
a0f03b61
MG
1859
1860 return stopsearch;
fb13c7ee
MG
1861}
1862
887c290e
RR
1863static void task_numa_find_cpu(struct task_numa_env *env,
1864 long taskimp, long groupimp)
2c8a50aa 1865{
305c1fac 1866 bool maymove = false;
2c8a50aa
MG
1867 int cpu;
1868
305c1fac 1869 /*
fb86f5b2
MG
1870 * If dst node has spare capacity, then check if there is an
1871 * imbalance that would be overruled by the load balancer.
305c1fac 1872 */
fb86f5b2
MG
1873 if (env->dst_stats.node_type == node_has_spare) {
1874 unsigned int imbalance;
1875 int src_running, dst_running;
1876
1877 /*
1878 * Would movement cause an imbalance? Note that if src has
1879 * more running tasks that the imbalance is ignored as the
1880 * move improves the imbalance from the perspective of the
1881 * CPU load balancer.
1882 * */
1883 src_running = env->src_stats.nr_running - 1;
1884 dst_running = env->dst_stats.nr_running + 1;
1885 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1886 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1887 env->dst_stats.weight);
fb86f5b2
MG
1888
1889 /* Use idle CPU if there is no imbalance */
ff7db0bf 1890 if (!imbalance) {
fb86f5b2 1891 maymove = true;
ff7db0bf
MG
1892 if (env->dst_stats.idle_cpu >= 0) {
1893 env->dst_cpu = env->dst_stats.idle_cpu;
1894 task_numa_assign(env, NULL, 0);
1895 return;
1896 }
1897 }
fb86f5b2
MG
1898 } else {
1899 long src_load, dst_load, load;
1900 /*
1901 * If the improvement from just moving env->p direction is better
1902 * than swapping tasks around, check if a move is possible.
1903 */
1904 load = task_h_load(env->p);
1905 dst_load = env->dst_stats.load + load;
1906 src_load = env->src_stats.load - load;
1907 maymove = !load_too_imbalanced(src_load, dst_load, env);
1908 }
305c1fac 1909
2c8a50aa
MG
1910 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1911 /* Skip this CPU if the source task cannot migrate */
3bd37062 1912 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1913 continue;
1914
1915 env->dst_cpu = cpu;
a0f03b61
MG
1916 if (task_numa_compare(env, taskimp, groupimp, maymove))
1917 break;
2c8a50aa
MG
1918 }
1919}
1920
58d081b5
MG
1921static int task_numa_migrate(struct task_struct *p)
1922{
58d081b5
MG
1923 struct task_numa_env env = {
1924 .p = p,
fb13c7ee 1925
58d081b5 1926 .src_cpu = task_cpu(p),
b32e86b4 1927 .src_nid = task_node(p),
fb13c7ee
MG
1928
1929 .imbalance_pct = 112,
1930
1931 .best_task = NULL,
1932 .best_imp = 0,
4142c3eb 1933 .best_cpu = -1,
58d081b5 1934 };
cb361d8c 1935 unsigned long taskweight, groupweight;
58d081b5 1936 struct sched_domain *sd;
cb361d8c
JH
1937 long taskimp, groupimp;
1938 struct numa_group *ng;
a4739eca 1939 struct rq *best_rq;
7bd95320 1940 int nid, ret, dist;
e6628d5b 1941
58d081b5 1942 /*
fb13c7ee
MG
1943 * Pick the lowest SD_NUMA domain, as that would have the smallest
1944 * imbalance and would be the first to start moving tasks about.
1945 *
1946 * And we want to avoid any moving of tasks about, as that would create
1947 * random movement of tasks -- counter the numa conditions we're trying
1948 * to satisfy here.
58d081b5
MG
1949 */
1950 rcu_read_lock();
fb13c7ee 1951 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1952 if (sd)
1953 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1954 rcu_read_unlock();
1955
46a73e8a
RR
1956 /*
1957 * Cpusets can break the scheduler domain tree into smaller
1958 * balance domains, some of which do not cross NUMA boundaries.
1959 * Tasks that are "trapped" in such domains cannot be migrated
1960 * elsewhere, so there is no point in (re)trying.
1961 */
1962 if (unlikely(!sd)) {
8cd45eee 1963 sched_setnuma(p, task_node(p));
46a73e8a
RR
1964 return -EINVAL;
1965 }
1966
2c8a50aa 1967 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1968 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1969 taskweight = task_weight(p, env.src_nid, dist);
1970 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 1971 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
1972 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1973 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 1974 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 1975
a43455a1 1976 /* Try to find a spot on the preferred nid. */
2d4056fa 1977 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1978
9de05d48
RR
1979 /*
1980 * Look at other nodes in these cases:
1981 * - there is no space available on the preferred_nid
1982 * - the task is part of a numa_group that is interleaved across
1983 * multiple NUMA nodes; in order to better consolidate the group,
1984 * we need to check other locations.
1985 */
cb361d8c
JH
1986 ng = deref_curr_numa_group(p);
1987 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1988 for_each_online_node(nid) {
1989 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1990 continue;
58d081b5 1991
7bd95320 1992 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1993 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1994 dist != env.dist) {
1995 taskweight = task_weight(p, env.src_nid, dist);
1996 groupweight = group_weight(p, env.src_nid, dist);
1997 }
7bd95320 1998
83e1d2cd 1999 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2000 taskimp = task_weight(p, nid, dist) - taskweight;
2001 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2002 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2003 continue;
2004
7bd95320 2005 env.dist = dist;
2c8a50aa 2006 env.dst_nid = nid;
ff7db0bf 2007 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2008 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2009 }
2010 }
2011
68d1b02a
RR
2012 /*
2013 * If the task is part of a workload that spans multiple NUMA nodes,
2014 * and is migrating into one of the workload's active nodes, remember
2015 * this node as the task's preferred numa node, so the workload can
2016 * settle down.
2017 * A task that migrated to a second choice node will be better off
2018 * trying for a better one later. Do not set the preferred node here.
2019 */
cb361d8c 2020 if (ng) {
db015dae
RR
2021 if (env.best_cpu == -1)
2022 nid = env.src_nid;
2023 else
8cd45eee 2024 nid = cpu_to_node(env.best_cpu);
db015dae 2025
8cd45eee
SD
2026 if (nid != p->numa_preferred_nid)
2027 sched_setnuma(p, nid);
db015dae
RR
2028 }
2029
2030 /* No better CPU than the current one was found. */
f22aef4a 2031 if (env.best_cpu == -1) {
b2b2042b 2032 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2033 return -EAGAIN;
f22aef4a 2034 }
0ec8aa00 2035
a4739eca 2036 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2037 if (env.best_task == NULL) {
286549dc 2038 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2039 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2040 if (ret != 0)
b2b2042b 2041 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2042 return ret;
2043 }
2044
0ad4e3df 2045 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2046 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2047
286549dc 2048 if (ret != 0)
b2b2042b 2049 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2050 put_task_struct(env.best_task);
2051 return ret;
e6628d5b
MG
2052}
2053
6b9a7460
MG
2054/* Attempt to migrate a task to a CPU on the preferred node. */
2055static void numa_migrate_preferred(struct task_struct *p)
2056{
5085e2a3
RR
2057 unsigned long interval = HZ;
2058
2739d3ee 2059 /* This task has no NUMA fault statistics yet */
98fa15f3 2060 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2061 return;
2062
2739d3ee 2063 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2064 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2065 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2066
2067 /* Success if task is already running on preferred CPU */
de1b301a 2068 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2069 return;
2070
2071 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2072 task_numa_migrate(p);
6b9a7460
MG
2073}
2074
20e07dea 2075/*
4142c3eb 2076 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2077 * tracking the nodes from which NUMA hinting faults are triggered. This can
2078 * be different from the set of nodes where the workload's memory is currently
2079 * located.
20e07dea 2080 */
4142c3eb 2081static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2082{
2083 unsigned long faults, max_faults = 0;
4142c3eb 2084 int nid, active_nodes = 0;
20e07dea
RR
2085
2086 for_each_online_node(nid) {
2087 faults = group_faults_cpu(numa_group, nid);
2088 if (faults > max_faults)
2089 max_faults = faults;
2090 }
2091
2092 for_each_online_node(nid) {
2093 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2094 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2095 active_nodes++;
20e07dea 2096 }
4142c3eb
RR
2097
2098 numa_group->max_faults_cpu = max_faults;
2099 numa_group->active_nodes = active_nodes;
20e07dea
RR
2100}
2101
04bb2f94
RR
2102/*
2103 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2104 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2105 * period will be for the next scan window. If local/(local+remote) ratio is
2106 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2107 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2108 */
2109#define NUMA_PERIOD_SLOTS 10
a22b4b01 2110#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2111
2112/*
2113 * Increase the scan period (slow down scanning) if the majority of
2114 * our memory is already on our local node, or if the majority of
2115 * the page accesses are shared with other processes.
2116 * Otherwise, decrease the scan period.
2117 */
2118static void update_task_scan_period(struct task_struct *p,
2119 unsigned long shared, unsigned long private)
2120{
2121 unsigned int period_slot;
37ec97de 2122 int lr_ratio, ps_ratio;
04bb2f94
RR
2123 int diff;
2124
2125 unsigned long remote = p->numa_faults_locality[0];
2126 unsigned long local = p->numa_faults_locality[1];
2127
2128 /*
2129 * If there were no record hinting faults then either the task is
2130 * completely idle or all activity is areas that are not of interest
074c2381
MG
2131 * to automatic numa balancing. Related to that, if there were failed
2132 * migration then it implies we are migrating too quickly or the local
2133 * node is overloaded. In either case, scan slower
04bb2f94 2134 */
074c2381 2135 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2136 p->numa_scan_period = min(p->numa_scan_period_max,
2137 p->numa_scan_period << 1);
2138
2139 p->mm->numa_next_scan = jiffies +
2140 msecs_to_jiffies(p->numa_scan_period);
2141
2142 return;
2143 }
2144
2145 /*
2146 * Prepare to scale scan period relative to the current period.
2147 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2148 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2149 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2150 */
2151 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2152 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2153 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2154
2155 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2156 /*
2157 * Most memory accesses are local. There is no need to
2158 * do fast NUMA scanning, since memory is already local.
2159 */
2160 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2161 if (!slot)
2162 slot = 1;
2163 diff = slot * period_slot;
2164 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2165 /*
2166 * Most memory accesses are shared with other tasks.
2167 * There is no point in continuing fast NUMA scanning,
2168 * since other tasks may just move the memory elsewhere.
2169 */
2170 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2171 if (!slot)
2172 slot = 1;
2173 diff = slot * period_slot;
2174 } else {
04bb2f94 2175 /*
37ec97de
RR
2176 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2177 * yet they are not on the local NUMA node. Speed up
2178 * NUMA scanning to get the memory moved over.
04bb2f94 2179 */
37ec97de
RR
2180 int ratio = max(lr_ratio, ps_ratio);
2181 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2182 }
2183
2184 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2185 task_scan_min(p), task_scan_max(p));
2186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2187}
2188
7e2703e6
RR
2189/*
2190 * Get the fraction of time the task has been running since the last
2191 * NUMA placement cycle. The scheduler keeps similar statistics, but
2192 * decays those on a 32ms period, which is orders of magnitude off
2193 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2194 * stats only if the task is so new there are no NUMA statistics yet.
2195 */
2196static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2197{
2198 u64 runtime, delta, now;
2199 /* Use the start of this time slice to avoid calculations. */
2200 now = p->se.exec_start;
2201 runtime = p->se.sum_exec_runtime;
2202
2203 if (p->last_task_numa_placement) {
2204 delta = runtime - p->last_sum_exec_runtime;
2205 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2206
2207 /* Avoid time going backwards, prevent potential divide error: */
2208 if (unlikely((s64)*period < 0))
2209 *period = 0;
7e2703e6 2210 } else {
c7b50216 2211 delta = p->se.avg.load_sum;
9d89c257 2212 *period = LOAD_AVG_MAX;
7e2703e6
RR
2213 }
2214
2215 p->last_sum_exec_runtime = runtime;
2216 p->last_task_numa_placement = now;
2217
2218 return delta;
2219}
2220
54009416
RR
2221/*
2222 * Determine the preferred nid for a task in a numa_group. This needs to
2223 * be done in a way that produces consistent results with group_weight,
2224 * otherwise workloads might not converge.
2225 */
2226static int preferred_group_nid(struct task_struct *p, int nid)
2227{
2228 nodemask_t nodes;
2229 int dist;
2230
2231 /* Direct connections between all NUMA nodes. */
2232 if (sched_numa_topology_type == NUMA_DIRECT)
2233 return nid;
2234
2235 /*
2236 * On a system with glueless mesh NUMA topology, group_weight
2237 * scores nodes according to the number of NUMA hinting faults on
2238 * both the node itself, and on nearby nodes.
2239 */
2240 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2241 unsigned long score, max_score = 0;
2242 int node, max_node = nid;
2243
2244 dist = sched_max_numa_distance;
2245
2246 for_each_online_node(node) {
2247 score = group_weight(p, node, dist);
2248 if (score > max_score) {
2249 max_score = score;
2250 max_node = node;
2251 }
2252 }
2253 return max_node;
2254 }
2255
2256 /*
2257 * Finding the preferred nid in a system with NUMA backplane
2258 * interconnect topology is more involved. The goal is to locate
2259 * tasks from numa_groups near each other in the system, and
2260 * untangle workloads from different sides of the system. This requires
2261 * searching down the hierarchy of node groups, recursively searching
2262 * inside the highest scoring group of nodes. The nodemask tricks
2263 * keep the complexity of the search down.
2264 */
2265 nodes = node_online_map;
2266 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2267 unsigned long max_faults = 0;
81907478 2268 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2269 int a, b;
2270
2271 /* Are there nodes at this distance from each other? */
2272 if (!find_numa_distance(dist))
2273 continue;
2274
2275 for_each_node_mask(a, nodes) {
2276 unsigned long faults = 0;
2277 nodemask_t this_group;
2278 nodes_clear(this_group);
2279
2280 /* Sum group's NUMA faults; includes a==b case. */
2281 for_each_node_mask(b, nodes) {
2282 if (node_distance(a, b) < dist) {
2283 faults += group_faults(p, b);
2284 node_set(b, this_group);
2285 node_clear(b, nodes);
2286 }
2287 }
2288
2289 /* Remember the top group. */
2290 if (faults > max_faults) {
2291 max_faults = faults;
2292 max_group = this_group;
2293 /*
2294 * subtle: at the smallest distance there is
2295 * just one node left in each "group", the
2296 * winner is the preferred nid.
2297 */
2298 nid = a;
2299 }
2300 }
2301 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2302 if (!max_faults)
2303 break;
54009416
RR
2304 nodes = max_group;
2305 }
2306 return nid;
2307}
2308
cbee9f88
PZ
2309static void task_numa_placement(struct task_struct *p)
2310{
98fa15f3 2311 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2312 unsigned long max_faults = 0;
04bb2f94 2313 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2314 unsigned long total_faults;
2315 u64 runtime, period;
7dbd13ed 2316 spinlock_t *group_lock = NULL;
cb361d8c 2317 struct numa_group *ng;
cbee9f88 2318
7e5a2c17
JL
2319 /*
2320 * The p->mm->numa_scan_seq field gets updated without
2321 * exclusive access. Use READ_ONCE() here to ensure
2322 * that the field is read in a single access:
2323 */
316c1608 2324 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2325 if (p->numa_scan_seq == seq)
2326 return;
2327 p->numa_scan_seq = seq;
598f0ec0 2328 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2329
7e2703e6
RR
2330 total_faults = p->numa_faults_locality[0] +
2331 p->numa_faults_locality[1];
2332 runtime = numa_get_avg_runtime(p, &period);
2333
7dbd13ed 2334 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2335 ng = deref_curr_numa_group(p);
2336 if (ng) {
2337 group_lock = &ng->lock;
60e69eed 2338 spin_lock_irq(group_lock);
7dbd13ed
MG
2339 }
2340
688b7585
MG
2341 /* Find the node with the highest number of faults */
2342 for_each_online_node(nid) {
44dba3d5
IM
2343 /* Keep track of the offsets in numa_faults array */
2344 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2345 unsigned long faults = 0, group_faults = 0;
44dba3d5 2346 int priv;
745d6147 2347
be1e4e76 2348 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2349 long diff, f_diff, f_weight;
8c8a743c 2350
44dba3d5
IM
2351 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2352 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2353 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2354 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2355
ac8e895b 2356 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2357 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2358 fault_types[priv] += p->numa_faults[membuf_idx];
2359 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2360
7e2703e6
RR
2361 /*
2362 * Normalize the faults_from, so all tasks in a group
2363 * count according to CPU use, instead of by the raw
2364 * number of faults. Tasks with little runtime have
2365 * little over-all impact on throughput, and thus their
2366 * faults are less important.
2367 */
2368 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2369 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2370 (total_faults + 1);
44dba3d5
IM
2371 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2372 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2373
44dba3d5
IM
2374 p->numa_faults[mem_idx] += diff;
2375 p->numa_faults[cpu_idx] += f_diff;
2376 faults += p->numa_faults[mem_idx];
83e1d2cd 2377 p->total_numa_faults += diff;
cb361d8c 2378 if (ng) {
44dba3d5
IM
2379 /*
2380 * safe because we can only change our own group
2381 *
2382 * mem_idx represents the offset for a given
2383 * nid and priv in a specific region because it
2384 * is at the beginning of the numa_faults array.
2385 */
cb361d8c
JH
2386 ng->faults[mem_idx] += diff;
2387 ng->faults_cpu[mem_idx] += f_diff;
2388 ng->total_faults += diff;
2389 group_faults += ng->faults[mem_idx];
8c8a743c 2390 }
ac8e895b
MG
2391 }
2392
cb361d8c 2393 if (!ng) {
f03bb676
SD
2394 if (faults > max_faults) {
2395 max_faults = faults;
2396 max_nid = nid;
2397 }
2398 } else if (group_faults > max_faults) {
2399 max_faults = group_faults;
688b7585
MG
2400 max_nid = nid;
2401 }
83e1d2cd
MG
2402 }
2403
cb361d8c
JH
2404 if (ng) {
2405 numa_group_count_active_nodes(ng);
60e69eed 2406 spin_unlock_irq(group_lock);
f03bb676 2407 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2408 }
2409
bb97fc31
RR
2410 if (max_faults) {
2411 /* Set the new preferred node */
2412 if (max_nid != p->numa_preferred_nid)
2413 sched_setnuma(p, max_nid);
3a7053b3 2414 }
30619c89
SD
2415
2416 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2417}
2418
8c8a743c
PZ
2419static inline int get_numa_group(struct numa_group *grp)
2420{
c45a7795 2421 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2422}
2423
2424static inline void put_numa_group(struct numa_group *grp)
2425{
c45a7795 2426 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2427 kfree_rcu(grp, rcu);
2428}
2429
3e6a9418
MG
2430static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2431 int *priv)
8c8a743c
PZ
2432{
2433 struct numa_group *grp, *my_grp;
2434 struct task_struct *tsk;
2435 bool join = false;
2436 int cpu = cpupid_to_cpu(cpupid);
2437 int i;
2438
cb361d8c 2439 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2440 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2441 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2442
2443 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2444 if (!grp)
2445 return;
2446
c45a7795 2447 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2448 grp->active_nodes = 1;
2449 grp->max_faults_cpu = 0;
8c8a743c 2450 spin_lock_init(&grp->lock);
e29cf08b 2451 grp->gid = p->pid;
50ec8a40 2452 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2453 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2454 nr_node_ids;
8c8a743c 2455
be1e4e76 2456 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2457 grp->faults[i] = p->numa_faults[i];
8c8a743c 2458
989348b5 2459 grp->total_faults = p->total_numa_faults;
83e1d2cd 2460
8c8a743c
PZ
2461 grp->nr_tasks++;
2462 rcu_assign_pointer(p->numa_group, grp);
2463 }
2464
2465 rcu_read_lock();
316c1608 2466 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2467
2468 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2469 goto no_join;
8c8a743c
PZ
2470
2471 grp = rcu_dereference(tsk->numa_group);
2472 if (!grp)
3354781a 2473 goto no_join;
8c8a743c 2474
cb361d8c 2475 my_grp = deref_curr_numa_group(p);
8c8a743c 2476 if (grp == my_grp)
3354781a 2477 goto no_join;
8c8a743c
PZ
2478
2479 /*
2480 * Only join the other group if its bigger; if we're the bigger group,
2481 * the other task will join us.
2482 */
2483 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2484 goto no_join;
8c8a743c
PZ
2485
2486 /*
2487 * Tie-break on the grp address.
2488 */
2489 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2490 goto no_join;
8c8a743c 2491
dabe1d99
RR
2492 /* Always join threads in the same process. */
2493 if (tsk->mm == current->mm)
2494 join = true;
2495
2496 /* Simple filter to avoid false positives due to PID collisions */
2497 if (flags & TNF_SHARED)
2498 join = true;
8c8a743c 2499
3e6a9418
MG
2500 /* Update priv based on whether false sharing was detected */
2501 *priv = !join;
2502
dabe1d99 2503 if (join && !get_numa_group(grp))
3354781a 2504 goto no_join;
8c8a743c 2505
8c8a743c
PZ
2506 rcu_read_unlock();
2507
2508 if (!join)
2509 return;
2510
60e69eed
MG
2511 BUG_ON(irqs_disabled());
2512 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2513
be1e4e76 2514 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2515 my_grp->faults[i] -= p->numa_faults[i];
2516 grp->faults[i] += p->numa_faults[i];
8c8a743c 2517 }
989348b5
MG
2518 my_grp->total_faults -= p->total_numa_faults;
2519 grp->total_faults += p->total_numa_faults;
8c8a743c 2520
8c8a743c
PZ
2521 my_grp->nr_tasks--;
2522 grp->nr_tasks++;
2523
2524 spin_unlock(&my_grp->lock);
60e69eed 2525 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2526
2527 rcu_assign_pointer(p->numa_group, grp);
2528
2529 put_numa_group(my_grp);
3354781a
PZ
2530 return;
2531
2532no_join:
2533 rcu_read_unlock();
2534 return;
8c8a743c
PZ
2535}
2536
16d51a59 2537/*
3b03706f 2538 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
2539 * If @final is set, the task is dead and has reached refcount zero, so we can
2540 * safely free all relevant data structures. Otherwise, there might be
2541 * concurrent reads from places like load balancing and procfs, and we should
2542 * reset the data back to default state without freeing ->numa_faults.
2543 */
2544void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2545{
cb361d8c
JH
2546 /* safe: p either is current or is being freed by current */
2547 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2548 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2549 unsigned long flags;
2550 int i;
8c8a743c 2551
16d51a59
JH
2552 if (!numa_faults)
2553 return;
2554
8c8a743c 2555 if (grp) {
e9dd685c 2556 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2558 grp->faults[i] -= p->numa_faults[i];
989348b5 2559 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2560
8c8a743c 2561 grp->nr_tasks--;
e9dd685c 2562 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2563 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2564 put_numa_group(grp);
2565 }
2566
16d51a59
JH
2567 if (final) {
2568 p->numa_faults = NULL;
2569 kfree(numa_faults);
2570 } else {
2571 p->total_numa_faults = 0;
2572 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2573 numa_faults[i] = 0;
2574 }
8c8a743c
PZ
2575}
2576
cbee9f88
PZ
2577/*
2578 * Got a PROT_NONE fault for a page on @node.
2579 */
58b46da3 2580void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2581{
2582 struct task_struct *p = current;
6688cc05 2583 bool migrated = flags & TNF_MIGRATED;
58b46da3 2584 int cpu_node = task_node(current);
792568ec 2585 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2586 struct numa_group *ng;
ac8e895b 2587 int priv;
cbee9f88 2588
2a595721 2589 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2590 return;
2591
9ff1d9ff
MG
2592 /* for example, ksmd faulting in a user's mm */
2593 if (!p->mm)
2594 return;
2595
f809ca9a 2596 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2597 if (unlikely(!p->numa_faults)) {
2598 int size = sizeof(*p->numa_faults) *
be1e4e76 2599 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2600
44dba3d5
IM
2601 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2602 if (!p->numa_faults)
f809ca9a 2603 return;
745d6147 2604
83e1d2cd 2605 p->total_numa_faults = 0;
04bb2f94 2606 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2607 }
cbee9f88 2608
8c8a743c
PZ
2609 /*
2610 * First accesses are treated as private, otherwise consider accesses
2611 * to be private if the accessing pid has not changed
2612 */
2613 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2614 priv = 1;
2615 } else {
2616 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2617 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2618 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2619 }
2620
792568ec
RR
2621 /*
2622 * If a workload spans multiple NUMA nodes, a shared fault that
2623 * occurs wholly within the set of nodes that the workload is
2624 * actively using should be counted as local. This allows the
2625 * scan rate to slow down when a workload has settled down.
2626 */
cb361d8c 2627 ng = deref_curr_numa_group(p);
4142c3eb
RR
2628 if (!priv && !local && ng && ng->active_nodes > 1 &&
2629 numa_is_active_node(cpu_node, ng) &&
2630 numa_is_active_node(mem_node, ng))
792568ec
RR
2631 local = 1;
2632
2739d3ee 2633 /*
e1ff516a
YW
2634 * Retry to migrate task to preferred node periodically, in case it
2635 * previously failed, or the scheduler moved us.
2739d3ee 2636 */
b6a60cf3
SD
2637 if (time_after(jiffies, p->numa_migrate_retry)) {
2638 task_numa_placement(p);
6b9a7460 2639 numa_migrate_preferred(p);
b6a60cf3 2640 }
6b9a7460 2641
b32e86b4
IM
2642 if (migrated)
2643 p->numa_pages_migrated += pages;
074c2381
MG
2644 if (flags & TNF_MIGRATE_FAIL)
2645 p->numa_faults_locality[2] += pages;
b32e86b4 2646
44dba3d5
IM
2647 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2648 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2649 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2650}
2651
6e5fb223
PZ
2652static void reset_ptenuma_scan(struct task_struct *p)
2653{
7e5a2c17
JL
2654 /*
2655 * We only did a read acquisition of the mmap sem, so
2656 * p->mm->numa_scan_seq is written to without exclusive access
2657 * and the update is not guaranteed to be atomic. That's not
2658 * much of an issue though, since this is just used for
2659 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2660 * expensive, to avoid any form of compiler optimizations:
2661 */
316c1608 2662 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2663 p->mm->numa_scan_offset = 0;
2664}
2665
cbee9f88
PZ
2666/*
2667 * The expensive part of numa migration is done from task_work context.
2668 * Triggered from task_tick_numa().
2669 */
9434f9f5 2670static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2671{
2672 unsigned long migrate, next_scan, now = jiffies;
2673 struct task_struct *p = current;
2674 struct mm_struct *mm = p->mm;
51170840 2675 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2676 struct vm_area_struct *vma;
9f40604c 2677 unsigned long start, end;
598f0ec0 2678 unsigned long nr_pte_updates = 0;
4620f8c1 2679 long pages, virtpages;
cbee9f88 2680
9148a3a1 2681 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2682
b34920d4 2683 work->next = work;
cbee9f88
PZ
2684 /*
2685 * Who cares about NUMA placement when they're dying.
2686 *
2687 * NOTE: make sure not to dereference p->mm before this check,
2688 * exit_task_work() happens _after_ exit_mm() so we could be called
2689 * without p->mm even though we still had it when we enqueued this
2690 * work.
2691 */
2692 if (p->flags & PF_EXITING)
2693 return;
2694
930aa174 2695 if (!mm->numa_next_scan) {
7e8d16b6
MG
2696 mm->numa_next_scan = now +
2697 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2698 }
2699
cbee9f88
PZ
2700 /*
2701 * Enforce maximal scan/migration frequency..
2702 */
2703 migrate = mm->numa_next_scan;
2704 if (time_before(now, migrate))
2705 return;
2706
598f0ec0
MG
2707 if (p->numa_scan_period == 0) {
2708 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2709 p->numa_scan_period = task_scan_start(p);
598f0ec0 2710 }
cbee9f88 2711
fb003b80 2712 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2713 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2714 return;
2715
19a78d11
PZ
2716 /*
2717 * Delay this task enough that another task of this mm will likely win
2718 * the next time around.
2719 */
2720 p->node_stamp += 2 * TICK_NSEC;
2721
9f40604c
MG
2722 start = mm->numa_scan_offset;
2723 pages = sysctl_numa_balancing_scan_size;
2724 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2725 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2726 if (!pages)
2727 return;
cbee9f88 2728
4620f8c1 2729
d8ed45c5 2730 if (!mmap_read_trylock(mm))
8655d549 2731 return;
9f40604c 2732 vma = find_vma(mm, start);
6e5fb223
PZ
2733 if (!vma) {
2734 reset_ptenuma_scan(p);
9f40604c 2735 start = 0;
6e5fb223
PZ
2736 vma = mm->mmap;
2737 }
9f40604c 2738 for (; vma; vma = vma->vm_next) {
6b79c57b 2739 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2740 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2741 continue;
6b79c57b 2742 }
6e5fb223 2743
4591ce4f
MG
2744 /*
2745 * Shared library pages mapped by multiple processes are not
2746 * migrated as it is expected they are cache replicated. Avoid
2747 * hinting faults in read-only file-backed mappings or the vdso
2748 * as migrating the pages will be of marginal benefit.
2749 */
2750 if (!vma->vm_mm ||
2751 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2752 continue;
2753
3c67f474
MG
2754 /*
2755 * Skip inaccessible VMAs to avoid any confusion between
2756 * PROT_NONE and NUMA hinting ptes
2757 */
3122e80e 2758 if (!vma_is_accessible(vma))
3c67f474 2759 continue;
4591ce4f 2760
9f40604c
MG
2761 do {
2762 start = max(start, vma->vm_start);
2763 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2764 end = min(end, vma->vm_end);
4620f8c1 2765 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2766
2767 /*
4620f8c1
RR
2768 * Try to scan sysctl_numa_balancing_size worth of
2769 * hpages that have at least one present PTE that
2770 * is not already pte-numa. If the VMA contains
2771 * areas that are unused or already full of prot_numa
2772 * PTEs, scan up to virtpages, to skip through those
2773 * areas faster.
598f0ec0
MG
2774 */
2775 if (nr_pte_updates)
2776 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2777 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2778
9f40604c 2779 start = end;
4620f8c1 2780 if (pages <= 0 || virtpages <= 0)
9f40604c 2781 goto out;
3cf1962c
RR
2782
2783 cond_resched();
9f40604c 2784 } while (end != vma->vm_end);
cbee9f88 2785 }
6e5fb223 2786
9f40604c 2787out:
6e5fb223 2788 /*
c69307d5
PZ
2789 * It is possible to reach the end of the VMA list but the last few
2790 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2791 * would find the !migratable VMA on the next scan but not reset the
2792 * scanner to the start so check it now.
6e5fb223
PZ
2793 */
2794 if (vma)
9f40604c 2795 mm->numa_scan_offset = start;
6e5fb223
PZ
2796 else
2797 reset_ptenuma_scan(p);
d8ed45c5 2798 mmap_read_unlock(mm);
51170840
RR
2799
2800 /*
2801 * Make sure tasks use at least 32x as much time to run other code
2802 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2803 * Usually update_task_scan_period slows down scanning enough; on an
2804 * overloaded system we need to limit overhead on a per task basis.
2805 */
2806 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2807 u64 diff = p->se.sum_exec_runtime - runtime;
2808 p->node_stamp += 32 * diff;
2809 }
cbee9f88
PZ
2810}
2811
d35927a1
VS
2812void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2813{
2814 int mm_users = 0;
2815 struct mm_struct *mm = p->mm;
2816
2817 if (mm) {
2818 mm_users = atomic_read(&mm->mm_users);
2819 if (mm_users == 1) {
2820 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2821 mm->numa_scan_seq = 0;
2822 }
2823 }
2824 p->node_stamp = 0;
2825 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2827 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2828 p->numa_work.next = &p->numa_work;
2829 p->numa_faults = NULL;
2830 RCU_INIT_POINTER(p->numa_group, NULL);
2831 p->last_task_numa_placement = 0;
2832 p->last_sum_exec_runtime = 0;
2833
b34920d4
VS
2834 init_task_work(&p->numa_work, task_numa_work);
2835
d35927a1
VS
2836 /* New address space, reset the preferred nid */
2837 if (!(clone_flags & CLONE_VM)) {
2838 p->numa_preferred_nid = NUMA_NO_NODE;
2839 return;
2840 }
2841
2842 /*
2843 * New thread, keep existing numa_preferred_nid which should be copied
2844 * already by arch_dup_task_struct but stagger when scans start.
2845 */
2846 if (mm) {
2847 unsigned int delay;
2848
2849 delay = min_t(unsigned int, task_scan_max(current),
2850 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2851 delay += 2 * TICK_NSEC;
2852 p->node_stamp = delay;
2853 }
2854}
2855
cbee9f88
PZ
2856/*
2857 * Drive the periodic memory faults..
2858 */
b1546edc 2859static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2860{
2861 struct callback_head *work = &curr->numa_work;
2862 u64 period, now;
2863
2864 /*
2865 * We don't care about NUMA placement if we don't have memory.
2866 */
18f855e5 2867 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2868 return;
2869
2870 /*
2871 * Using runtime rather than walltime has the dual advantage that
2872 * we (mostly) drive the selection from busy threads and that the
2873 * task needs to have done some actual work before we bother with
2874 * NUMA placement.
2875 */
2876 now = curr->se.sum_exec_runtime;
2877 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2878
25b3e5a3 2879 if (now > curr->node_stamp + period) {
4b96a29b 2880 if (!curr->node_stamp)
b5dd77c8 2881 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2882 curr->node_stamp += period;
cbee9f88 2883
b34920d4 2884 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2885 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2886 }
2887}
3fed382b 2888
3f9672ba
SD
2889static void update_scan_period(struct task_struct *p, int new_cpu)
2890{
2891 int src_nid = cpu_to_node(task_cpu(p));
2892 int dst_nid = cpu_to_node(new_cpu);
2893
05cbdf4f
MG
2894 if (!static_branch_likely(&sched_numa_balancing))
2895 return;
2896
3f9672ba
SD
2897 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2898 return;
2899
05cbdf4f
MG
2900 if (src_nid == dst_nid)
2901 return;
2902
2903 /*
2904 * Allow resets if faults have been trapped before one scan
2905 * has completed. This is most likely due to a new task that
2906 * is pulled cross-node due to wakeups or load balancing.
2907 */
2908 if (p->numa_scan_seq) {
2909 /*
2910 * Avoid scan adjustments if moving to the preferred
2911 * node or if the task was not previously running on
2912 * the preferred node.
2913 */
2914 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2915 (p->numa_preferred_nid != NUMA_NO_NODE &&
2916 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2917 return;
2918 }
2919
2920 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2921}
2922
cbee9f88
PZ
2923#else
2924static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2925{
2926}
0ec8aa00
PZ
2927
2928static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2929{
2930}
2931
2932static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2933{
2934}
3fed382b 2935
3f9672ba
SD
2936static inline void update_scan_period(struct task_struct *p, int new_cpu)
2937{
2938}
2939
cbee9f88
PZ
2940#endif /* CONFIG_NUMA_BALANCING */
2941
30cfdcfc
DA
2942static void
2943account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2944{
2945 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2946#ifdef CONFIG_SMP
0ec8aa00
PZ
2947 if (entity_is_task(se)) {
2948 struct rq *rq = rq_of(cfs_rq);
2949
2950 account_numa_enqueue(rq, task_of(se));
2951 list_add(&se->group_node, &rq->cfs_tasks);
2952 }
367456c7 2953#endif
30cfdcfc 2954 cfs_rq->nr_running++;
a480adde
JD
2955 if (se_is_idle(se))
2956 cfs_rq->idle_nr_running++;
30cfdcfc
DA
2957}
2958
2959static void
2960account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2961{
2962 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2963#ifdef CONFIG_SMP
0ec8aa00
PZ
2964 if (entity_is_task(se)) {
2965 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2966 list_del_init(&se->group_node);
0ec8aa00 2967 }
bfdb198c 2968#endif
30cfdcfc 2969 cfs_rq->nr_running--;
a480adde
JD
2970 if (se_is_idle(se))
2971 cfs_rq->idle_nr_running--;
30cfdcfc
DA
2972}
2973
8d5b9025
PZ
2974/*
2975 * Signed add and clamp on underflow.
2976 *
2977 * Explicitly do a load-store to ensure the intermediate value never hits
2978 * memory. This allows lockless observations without ever seeing the negative
2979 * values.
2980 */
2981#define add_positive(_ptr, _val) do { \
2982 typeof(_ptr) ptr = (_ptr); \
2983 typeof(_val) val = (_val); \
2984 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2985 \
2986 res = var + val; \
2987 \
2988 if (val < 0 && res > var) \
2989 res = 0; \
2990 \
2991 WRITE_ONCE(*ptr, res); \
2992} while (0)
2993
2994/*
2995 * Unsigned subtract and clamp on underflow.
2996 *
2997 * Explicitly do a load-store to ensure the intermediate value never hits
2998 * memory. This allows lockless observations without ever seeing the negative
2999 * values.
3000 */
3001#define sub_positive(_ptr, _val) do { \
3002 typeof(_ptr) ptr = (_ptr); \
3003 typeof(*ptr) val = (_val); \
3004 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3005 res = var - val; \
3006 if (res > var) \
3007 res = 0; \
3008 WRITE_ONCE(*ptr, res); \
3009} while (0)
3010
b5c0ce7b
PB
3011/*
3012 * Remove and clamp on negative, from a local variable.
3013 *
3014 * A variant of sub_positive(), which does not use explicit load-store
3015 * and is thus optimized for local variable updates.
3016 */
3017#define lsub_positive(_ptr, _val) do { \
3018 typeof(_ptr) ptr = (_ptr); \
3019 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3020} while (0)
3021
8d5b9025 3022#ifdef CONFIG_SMP
8d5b9025
PZ
3023static inline void
3024enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3025{
3026 cfs_rq->avg.load_avg += se->avg.load_avg;
3027 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3028}
3029
3030static inline void
3031dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3032{
ceb6ba45 3033 u32 divider = get_pelt_divider(&se->avg);
8d5b9025 3034 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
ceb6ba45 3035 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
8d5b9025
PZ
3036}
3037#else
3038static inline void
8d5b9025
PZ
3039enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3040static inline void
3041dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3042#endif
3043
9059393e 3044static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3045 unsigned long weight)
9059393e
VG
3046{
3047 if (se->on_rq) {
3048 /* commit outstanding execution time */
3049 if (cfs_rq->curr == se)
3050 update_curr(cfs_rq);
1724b95b 3051 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3052 }
3053 dequeue_load_avg(cfs_rq, se);
3054
3055 update_load_set(&se->load, weight);
3056
3057#ifdef CONFIG_SMP
1ea6c46a 3058 do {
87e867b4 3059 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3060
3061 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3062 } while (0);
9059393e
VG
3063#endif
3064
3065 enqueue_load_avg(cfs_rq, se);
0dacee1b 3066 if (se->on_rq)
1724b95b 3067 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3068
9059393e
VG
3069}
3070
3071void reweight_task(struct task_struct *p, int prio)
3072{
3073 struct sched_entity *se = &p->se;
3074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3075 struct load_weight *load = &se->load;
3076 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3077
0dacee1b 3078 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3079 load->inv_weight = sched_prio_to_wmult[prio];
3080}
3081
3ff6dcac 3082#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3083#ifdef CONFIG_SMP
cef27403
PZ
3084/*
3085 * All this does is approximate the hierarchical proportion which includes that
3086 * global sum we all love to hate.
3087 *
3088 * That is, the weight of a group entity, is the proportional share of the
3089 * group weight based on the group runqueue weights. That is:
3090 *
3091 * tg->weight * grq->load.weight
3092 * ge->load.weight = ----------------------------- (1)
08f7c2f4 3093 * \Sum grq->load.weight
cef27403
PZ
3094 *
3095 * Now, because computing that sum is prohibitively expensive to compute (been
3096 * there, done that) we approximate it with this average stuff. The average
3097 * moves slower and therefore the approximation is cheaper and more stable.
3098 *
3099 * So instead of the above, we substitute:
3100 *
3101 * grq->load.weight -> grq->avg.load_avg (2)
3102 *
3103 * which yields the following:
3104 *
3105 * tg->weight * grq->avg.load_avg
3106 * ge->load.weight = ------------------------------ (3)
08f7c2f4 3107 * tg->load_avg
cef27403
PZ
3108 *
3109 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3110 *
3111 * That is shares_avg, and it is right (given the approximation (2)).
3112 *
3113 * The problem with it is that because the average is slow -- it was designed
3114 * to be exactly that of course -- this leads to transients in boundary
3115 * conditions. In specific, the case where the group was idle and we start the
3116 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3117 * yielding bad latency etc..
3118 *
3119 * Now, in that special case (1) reduces to:
3120 *
3121 * tg->weight * grq->load.weight
17de4ee0 3122 * ge->load.weight = ----------------------------- = tg->weight (4)
08f7c2f4 3123 * grp->load.weight
cef27403
PZ
3124 *
3125 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3126 *
3127 * So what we do is modify our approximation (3) to approach (4) in the (near)
3128 * UP case, like:
3129 *
3130 * ge->load.weight =
3131 *
3132 * tg->weight * grq->load.weight
3133 * --------------------------------------------------- (5)
3134 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3135 *
17de4ee0
PZ
3136 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3137 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3138 *
3139 *
3140 * tg->weight * grq->load.weight
3141 * ge->load.weight = ----------------------------- (6)
08f7c2f4 3142 * tg_load_avg'
17de4ee0
PZ
3143 *
3144 * Where:
3145 *
3146 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3147 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3148 *
3149 * And that is shares_weight and is icky. In the (near) UP case it approaches
3150 * (4) while in the normal case it approaches (3). It consistently
3151 * overestimates the ge->load.weight and therefore:
3152 *
3153 * \Sum ge->load.weight >= tg->weight
3154 *
3155 * hence icky!
3156 */
2c8e4dce 3157static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3158{
7c80cfc9
PZ
3159 long tg_weight, tg_shares, load, shares;
3160 struct task_group *tg = cfs_rq->tg;
3161
3162 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3163
3d4b60d3 3164 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3165
ea1dc6fc 3166 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3167
ea1dc6fc
PZ
3168 /* Ensure tg_weight >= load */
3169 tg_weight -= cfs_rq->tg_load_avg_contrib;
3170 tg_weight += load;
3ff6dcac 3171
7c80cfc9 3172 shares = (tg_shares * load);
cf5f0acf
PZ
3173 if (tg_weight)
3174 shares /= tg_weight;
3ff6dcac 3175
b8fd8423
DE
3176 /*
3177 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3178 * of a group with small tg->shares value. It is a floor value which is
3179 * assigned as a minimum load.weight to the sched_entity representing
3180 * the group on a CPU.
3181 *
3182 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3183 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3184 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3185 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3186 * instead of 0.
3187 */
7c80cfc9 3188 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3189}
387f77cc 3190#endif /* CONFIG_SMP */
ea1dc6fc 3191
82958366
PT
3192static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3193
1ea6c46a
PZ
3194/*
3195 * Recomputes the group entity based on the current state of its group
3196 * runqueue.
3197 */
3198static void update_cfs_group(struct sched_entity *se)
2069dd75 3199{
1ea6c46a 3200 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3201 long shares;
2069dd75 3202
1ea6c46a 3203 if (!gcfs_rq)
89ee048f
VG
3204 return;
3205
1ea6c46a 3206 if (throttled_hierarchy(gcfs_rq))
2069dd75 3207 return;
89ee048f 3208
3ff6dcac 3209#ifndef CONFIG_SMP
0dacee1b 3210 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3211
3212 if (likely(se->load.weight == shares))
3ff6dcac 3213 return;
7c80cfc9 3214#else
2c8e4dce 3215 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3216#endif
2069dd75 3217
0dacee1b 3218 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3219}
89ee048f 3220
2069dd75 3221#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3222static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3223{
3224}
3225#endif /* CONFIG_FAIR_GROUP_SCHED */
3226
ea14b57e 3227static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3228{
43964409
LT
3229 struct rq *rq = rq_of(cfs_rq);
3230
a4f9a0e5 3231 if (&rq->cfs == cfs_rq) {
a030d738
VK
3232 /*
3233 * There are a few boundary cases this might miss but it should
3234 * get called often enough that that should (hopefully) not be
9783be2c 3235 * a real problem.
a030d738
VK
3236 *
3237 * It will not get called when we go idle, because the idle
3238 * thread is a different class (!fair), nor will the utilization
3239 * number include things like RT tasks.
3240 *
3241 * As is, the util number is not freq-invariant (we'd have to
3242 * implement arch_scale_freq_capacity() for that).
3243 *
3244 * See cpu_util().
3245 */
ea14b57e 3246 cpufreq_update_util(rq, flags);
a030d738
VK
3247 }
3248}
3249
141965c7 3250#ifdef CONFIG_SMP
c566e8e9 3251#ifdef CONFIG_FAIR_GROUP_SCHED
fdaba61e
RR
3252/*
3253 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3254 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3255 * bottom-up, we only have to test whether the cfs_rq before us on the list
3256 * is our child.
3257 * If cfs_rq is not on the list, test whether a child needs its to be added to
3258 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3259 */
3260static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3261{
3262 struct cfs_rq *prev_cfs_rq;
3263 struct list_head *prev;
3264
3265 if (cfs_rq->on_list) {
3266 prev = cfs_rq->leaf_cfs_rq_list.prev;
3267 } else {
3268 struct rq *rq = rq_of(cfs_rq);
3269
3270 prev = rq->tmp_alone_branch;
3271 }
3272
3273 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3274
3275 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3276}
a7b359fc
OU
3277
3278static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3279{
3280 if (cfs_rq->load.weight)
3281 return false;
3282
3283 if (cfs_rq->avg.load_sum)
3284 return false;
3285
3286 if (cfs_rq->avg.util_sum)
3287 return false;
3288
3289 if (cfs_rq->avg.runnable_sum)
3290 return false;
3291
fdaba61e
RR
3292 if (child_cfs_rq_on_list(cfs_rq))
3293 return false;
3294
b2c0931a
IM
3295 /*
3296 * _avg must be null when _sum are null because _avg = _sum / divider
3297 * Make sure that rounding and/or propagation of PELT values never
3298 * break this.
3299 */
3300 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3301 cfs_rq->avg.util_avg ||
3302 cfs_rq->avg.runnable_avg);
3303
a7b359fc
OU
3304 return true;
3305}
3306
7c3edd2c
PZ
3307/**
3308 * update_tg_load_avg - update the tg's load avg
3309 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3310 *
3311 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3312 * However, because tg->load_avg is a global value there are performance
3313 * considerations.
3314 *
3315 * In order to avoid having to look at the other cfs_rq's, we use a
3316 * differential update where we store the last value we propagated. This in
3317 * turn allows skipping updates if the differential is 'small'.
3318 *
815abf5a 3319 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3320 */
fe749158 3321static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3322{
9d89c257 3323 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3324
aa0b7ae0
WL
3325 /*
3326 * No need to update load_avg for root_task_group as it is not used.
3327 */
3328 if (cfs_rq->tg == &root_task_group)
3329 return;
3330
fe749158 3331 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3332 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3333 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3334 }
8165e145 3335}
f5f9739d 3336
ad936d86 3337/*
97fb7a0a 3338 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3339 * caller only guarantees p->pi_lock is held; no other assumptions,
3340 * including the state of rq->lock, should be made.
3341 */
3342void set_task_rq_fair(struct sched_entity *se,
3343 struct cfs_rq *prev, struct cfs_rq *next)
3344{
0ccb977f
PZ
3345 u64 p_last_update_time;
3346 u64 n_last_update_time;
3347
ad936d86
BP
3348 if (!sched_feat(ATTACH_AGE_LOAD))
3349 return;
3350
3351 /*
3352 * We are supposed to update the task to "current" time, then its up to
3353 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3354 * getting what current time is, so simply throw away the out-of-date
3355 * time. This will result in the wakee task is less decayed, but giving
3356 * the wakee more load sounds not bad.
3357 */
0ccb977f
PZ
3358 if (!(se->avg.last_update_time && prev))
3359 return;
ad936d86
BP
3360
3361#ifndef CONFIG_64BIT
0ccb977f 3362 {
ad936d86
BP
3363 u64 p_last_update_time_copy;
3364 u64 n_last_update_time_copy;
3365
3366 do {
3367 p_last_update_time_copy = prev->load_last_update_time_copy;
3368 n_last_update_time_copy = next->load_last_update_time_copy;
3369
3370 smp_rmb();
3371
3372 p_last_update_time = prev->avg.last_update_time;
3373 n_last_update_time = next->avg.last_update_time;
3374
3375 } while (p_last_update_time != p_last_update_time_copy ||
3376 n_last_update_time != n_last_update_time_copy);
0ccb977f 3377 }
ad936d86 3378#else
0ccb977f
PZ
3379 p_last_update_time = prev->avg.last_update_time;
3380 n_last_update_time = next->avg.last_update_time;
ad936d86 3381#endif
23127296 3382 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3383 se->avg.last_update_time = n_last_update_time;
ad936d86 3384}
09a43ace 3385
0e2d2aaa
PZ
3386
3387/*
3388 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3389 * propagate its contribution. The key to this propagation is the invariant
3390 * that for each group:
3391 *
3392 * ge->avg == grq->avg (1)
3393 *
3394 * _IFF_ we look at the pure running and runnable sums. Because they
3395 * represent the very same entity, just at different points in the hierarchy.
3396 *
9f683953
VG
3397 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3398 * and simply copies the running/runnable sum over (but still wrong, because
3399 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3400 *
0dacee1b 3401 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3402 *
3403 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3404 *
3405 * And since, like util, the runnable part should be directly transferable,
3406 * the following would _appear_ to be the straight forward approach:
3407 *
a4c3c049 3408 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3409 *
3410 * And per (1) we have:
3411 *
a4c3c049 3412 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3413 *
3414 * Which gives:
3415 *
3416 * ge->load.weight * grq->avg.load_avg
3417 * ge->avg.load_avg = ----------------------------------- (4)
3418 * grq->load.weight
3419 *
3420 * Except that is wrong!
3421 *
3422 * Because while for entities historical weight is not important and we
3423 * really only care about our future and therefore can consider a pure
3424 * runnable sum, runqueues can NOT do this.
3425 *
3426 * We specifically want runqueues to have a load_avg that includes
3427 * historical weights. Those represent the blocked load, the load we expect
3428 * to (shortly) return to us. This only works by keeping the weights as
3429 * integral part of the sum. We therefore cannot decompose as per (3).
3430 *
a4c3c049
VG
3431 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3432 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3433 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3434 * runnable section of these tasks overlap (or not). If they were to perfectly
3435 * align the rq as a whole would be runnable 2/3 of the time. If however we
3436 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3437 *
a4c3c049 3438 * So we'll have to approximate.. :/
0e2d2aaa 3439 *
a4c3c049 3440 * Given the constraint:
0e2d2aaa 3441 *
a4c3c049 3442 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3443 *
a4c3c049
VG
3444 * We can construct a rule that adds runnable to a rq by assuming minimal
3445 * overlap.
0e2d2aaa 3446 *
a4c3c049 3447 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3448 *
a4c3c049 3449 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3450 *
a4c3c049 3451 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3452 *
0e2d2aaa
PZ
3453 */
3454
09a43ace 3455static inline void
0e2d2aaa 3456update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3457{
09a43ace 3458 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3459 u32 divider;
09a43ace
VG
3460
3461 /* Nothing to update */
3462 if (!delta)
3463 return;
3464
87e867b4
VG
3465 /*
3466 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3467 * See ___update_load_avg() for details.
3468 */
3469 divider = get_pelt_divider(&cfs_rq->avg);
3470
09a43ace
VG
3471 /* Set new sched_entity's utilization */
3472 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3473 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3474
3475 /* Update parent cfs_rq utilization */
3476 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3477 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3478}
3479
9f683953
VG
3480static inline void
3481update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3482{
3483 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3484 u32 divider;
9f683953
VG
3485
3486 /* Nothing to update */
3487 if (!delta)
3488 return;
3489
87e867b4
VG
3490 /*
3491 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3492 * See ___update_load_avg() for details.
3493 */
3494 divider = get_pelt_divider(&cfs_rq->avg);
3495
9f683953
VG
3496 /* Set new sched_entity's runnable */
3497 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3498 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3499
3500 /* Update parent cfs_rq runnable */
3501 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3502 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3503}
3504
09a43ace 3505static inline void
0dacee1b 3506update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3507{
7c7ad626 3508 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3509 unsigned long load_avg;
3510 u64 load_sum = 0;
95d68593 3511 u32 divider;
09a43ace 3512
0e2d2aaa
PZ
3513 if (!runnable_sum)
3514 return;
09a43ace 3515
0e2d2aaa 3516 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3517
95d68593
VG
3518 /*
3519 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3520 * See ___update_load_avg() for details.
3521 */
87e867b4 3522 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3523
a4c3c049
VG
3524 if (runnable_sum >= 0) {
3525 /*
3526 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3527 * the CPU is saturated running == runnable.
3528 */
3529 runnable_sum += se->avg.load_sum;
95d68593 3530 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3531 } else {
3532 /*
3533 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3534 * assuming all tasks are equally runnable.
3535 */
3536 if (scale_load_down(gcfs_rq->load.weight)) {
3537 load_sum = div_s64(gcfs_rq->avg.load_sum,
3538 scale_load_down(gcfs_rq->load.weight));
3539 }
3540
3541 /* But make sure to not inflate se's runnable */
3542 runnable_sum = min(se->avg.load_sum, load_sum);
3543 }
3544
3545 /*
3546 * runnable_sum can't be lower than running_sum
23127296
VG
3547 * Rescale running sum to be in the same range as runnable sum
3548 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3549 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3550 */
23127296 3551 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3552 runnable_sum = max(runnable_sum, running_sum);
3553
0e2d2aaa 3554 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3555 load_avg = div_s64(load_sum, divider);
09a43ace 3556
83c5e9d5
DE
3557 se->avg.load_sum = runnable_sum;
3558
7c7ad626 3559 delta = load_avg - se->avg.load_avg;
83c5e9d5
DE
3560 if (!delta)
3561 return;
09a43ace 3562
a4c3c049 3563 se->avg.load_avg = load_avg;
7c7ad626
VG
3564
3565 add_positive(&cfs_rq->avg.load_avg, delta);
3566 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
09a43ace
VG
3567}
3568
0e2d2aaa 3569static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3570{
0e2d2aaa
PZ
3571 cfs_rq->propagate = 1;
3572 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3573}
3574
3575/* Update task and its cfs_rq load average */
3576static inline int propagate_entity_load_avg(struct sched_entity *se)
3577{
0e2d2aaa 3578 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3579
3580 if (entity_is_task(se))
3581 return 0;
3582
0e2d2aaa
PZ
3583 gcfs_rq = group_cfs_rq(se);
3584 if (!gcfs_rq->propagate)
09a43ace
VG
3585 return 0;
3586
0e2d2aaa
PZ
3587 gcfs_rq->propagate = 0;
3588
09a43ace
VG
3589 cfs_rq = cfs_rq_of(se);
3590
0e2d2aaa 3591 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3592
0e2d2aaa 3593 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3594 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3595 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3596
ba19f51f 3597 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3598 trace_pelt_se_tp(se);
ba19f51f 3599
09a43ace
VG
3600 return 1;
3601}
3602
bc427898
VG
3603/*
3604 * Check if we need to update the load and the utilization of a blocked
3605 * group_entity:
3606 */
3607static inline bool skip_blocked_update(struct sched_entity *se)
3608{
3609 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3610
3611 /*
3612 * If sched_entity still have not zero load or utilization, we have to
3613 * decay it:
3614 */
3615 if (se->avg.load_avg || se->avg.util_avg)
3616 return false;
3617
3618 /*
3619 * If there is a pending propagation, we have to update the load and
3620 * the utilization of the sched_entity:
3621 */
0e2d2aaa 3622 if (gcfs_rq->propagate)
bc427898
VG
3623 return false;
3624
3625 /*
3626 * Otherwise, the load and the utilization of the sched_entity is
3627 * already zero and there is no pending propagation, so it will be a
3628 * waste of time to try to decay it:
3629 */
3630 return true;
3631}
3632
6e83125c 3633#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3634
fe749158 3635static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3636
3637static inline int propagate_entity_load_avg(struct sched_entity *se)
3638{
3639 return 0;
3640}
3641
0e2d2aaa 3642static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3643
6e83125c 3644#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3645
3d30544f
PZ
3646/**
3647 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3648 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3649 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3650 *
3651 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3652 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3653 * post_init_entity_util_avg().
3654 *
3655 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3656 *
7c3edd2c
PZ
3657 * Returns true if the load decayed or we removed load.
3658 *
3659 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3660 * call update_tg_load_avg() when this function returns true.
3d30544f 3661 */
a2c6c91f 3662static inline int
3a123bbb 3663update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3664{
9f683953 3665 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3666 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3667 int decayed = 0;
2dac754e 3668
2a2f5d4e
PZ
3669 if (cfs_rq->removed.nr) {
3670 unsigned long r;
87e867b4 3671 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3672
3673 raw_spin_lock(&cfs_rq->removed.lock);
3674 swap(cfs_rq->removed.util_avg, removed_util);
3675 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3676 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3677 cfs_rq->removed.nr = 0;
3678 raw_spin_unlock(&cfs_rq->removed.lock);
3679
2a2f5d4e 3680 r = removed_load;
89741892 3681 sub_positive(&sa->load_avg, r);
1c35b07e 3682 sa->load_sum = sa->load_avg * divider;
2dac754e 3683
2a2f5d4e 3684 r = removed_util;
89741892 3685 sub_positive(&sa->util_avg, r);
1c35b07e 3686 sa->util_sum = sa->util_avg * divider;
2a2f5d4e 3687
9f683953
VG
3688 r = removed_runnable;
3689 sub_positive(&sa->runnable_avg, r);
1c35b07e 3690 sa->runnable_sum = sa->runnable_avg * divider;
9f683953
VG
3691
3692 /*
3693 * removed_runnable is the unweighted version of removed_load so we
3694 * can use it to estimate removed_load_sum.
3695 */
3696 add_tg_cfs_propagate(cfs_rq,
3697 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3698
3699 decayed = 1;
9d89c257 3700 }
36ee28e4 3701
23127296 3702 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3703
9d89c257
YD
3704#ifndef CONFIG_64BIT
3705 smp_wmb();
3706 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3707#endif
36ee28e4 3708
2a2f5d4e 3709 return decayed;
21e96f88
SM
3710}
3711
3d30544f
PZ
3712/**
3713 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3714 * @cfs_rq: cfs_rq to attach to
3715 * @se: sched_entity to attach
3716 *
3717 * Must call update_cfs_rq_load_avg() before this, since we rely on
3718 * cfs_rq->avg.last_update_time being current.
3719 */
a4f9a0e5 3720static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3721{
95d68593
VG
3722 /*
3723 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3724 * See ___update_load_avg() for details.
3725 */
87e867b4 3726 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3727
3728 /*
3729 * When we attach the @se to the @cfs_rq, we must align the decay
3730 * window because without that, really weird and wonderful things can
3731 * happen.
3732 *
3733 * XXX illustrate
3734 */
a05e8c51 3735 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3736 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3737
3738 /*
3739 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3740 * period_contrib. This isn't strictly correct, but since we're
3741 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3742 * _sum a little.
3743 */
3744 se->avg.util_sum = se->avg.util_avg * divider;
3745
9f683953
VG
3746 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3747
f207934f
PZ
3748 se->avg.load_sum = divider;
3749 if (se_weight(se)) {
3750 se->avg.load_sum =
3751 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3752 }
3753
8d5b9025 3754 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3755 cfs_rq->avg.util_avg += se->avg.util_avg;
3756 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3757 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3758 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3759
3760 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3761
a4f9a0e5 3762 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3763
3764 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3765}
3766
3d30544f
PZ
3767/**
3768 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3769 * @cfs_rq: cfs_rq to detach from
3770 * @se: sched_entity to detach
3771 *
3772 * Must call update_cfs_rq_load_avg() before this, since we rely on
3773 * cfs_rq->avg.last_update_time being current.
3774 */
a05e8c51
BP
3775static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3776{
fcf6631f
VG
3777 /*
3778 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3779 * See ___update_load_avg() for details.
3780 */
3781 u32 divider = get_pelt_divider(&cfs_rq->avg);
3782
8d5b9025 3783 dequeue_load_avg(cfs_rq, se);
89741892 3784 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
fcf6631f 3785 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
9f683953 3786 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
fcf6631f 3787 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
0e2d2aaa
PZ
3788
3789 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3790
ea14b57e 3791 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3792
3793 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3794}
3795
b382a531
PZ
3796/*
3797 * Optional action to be done while updating the load average
3798 */
3799#define UPDATE_TG 0x1
3800#define SKIP_AGE_LOAD 0x2
3801#define DO_ATTACH 0x4
3802
3803/* Update task and its cfs_rq load average */
3804static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3805{
23127296 3806 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3807 int decayed;
3808
3809 /*
3810 * Track task load average for carrying it to new CPU after migrated, and
3811 * track group sched_entity load average for task_h_load calc in migration
3812 */
3813 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3814 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3815
3816 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3817 decayed |= propagate_entity_load_avg(se);
3818
3819 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3820
ea14b57e
PZ
3821 /*
3822 * DO_ATTACH means we're here from enqueue_entity().
3823 * !last_update_time means we've passed through
3824 * migrate_task_rq_fair() indicating we migrated.
3825 *
3826 * IOW we're enqueueing a task on a new CPU.
3827 */
a4f9a0e5 3828 attach_entity_load_avg(cfs_rq, se);
fe749158 3829 update_tg_load_avg(cfs_rq);
b382a531 3830
bef69dd8
VG
3831 } else if (decayed) {
3832 cfs_rq_util_change(cfs_rq, 0);
3833
3834 if (flags & UPDATE_TG)
fe749158 3835 update_tg_load_avg(cfs_rq);
bef69dd8 3836 }
b382a531
PZ
3837}
3838
9d89c257 3839#ifndef CONFIG_64BIT
0905f04e
YD
3840static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3841{
9d89c257 3842 u64 last_update_time_copy;
0905f04e 3843 u64 last_update_time;
9ee474f5 3844
9d89c257
YD
3845 do {
3846 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3847 smp_rmb();
3848 last_update_time = cfs_rq->avg.last_update_time;
3849 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3850
3851 return last_update_time;
3852}
9d89c257 3853#else
0905f04e
YD
3854static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3855{
3856 return cfs_rq->avg.last_update_time;
3857}
9d89c257
YD
3858#endif
3859
104cb16d
MR
3860/*
3861 * Synchronize entity load avg of dequeued entity without locking
3862 * the previous rq.
3863 */
71b47eaf 3864static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3865{
3866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3867 u64 last_update_time;
3868
3869 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3870 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3871}
3872
0905f04e
YD
3873/*
3874 * Task first catches up with cfs_rq, and then subtract
3875 * itself from the cfs_rq (task must be off the queue now).
3876 */
71b47eaf 3877static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3878{
3879 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3880 unsigned long flags;
0905f04e
YD
3881
3882 /*
7dc603c9
PZ
3883 * tasks cannot exit without having gone through wake_up_new_task() ->
3884 * post_init_entity_util_avg() which will have added things to the
3885 * cfs_rq, so we can remove unconditionally.
0905f04e 3886 */
0905f04e 3887
104cb16d 3888 sync_entity_load_avg(se);
2a2f5d4e
PZ
3889
3890 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3891 ++cfs_rq->removed.nr;
3892 cfs_rq->removed.util_avg += se->avg.util_avg;
3893 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3894 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3895 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3896}
642dbc39 3897
9f683953
VG
3898static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3899{
3900 return cfs_rq->avg.runnable_avg;
3901}
3902
7ea241af
YD
3903static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3904{
3905 return cfs_rq->avg.load_avg;
3906}
3907
d91cecc1
CY
3908static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3909
7f65ea42
PB
3910static inline unsigned long task_util(struct task_struct *p)
3911{
3912 return READ_ONCE(p->se.avg.util_avg);
3913}
3914
3915static inline unsigned long _task_util_est(struct task_struct *p)
3916{
3917 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3918
68d7a190 3919 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
7f65ea42
PB
3920}
3921
3922static inline unsigned long task_util_est(struct task_struct *p)
3923{
3924 return max(task_util(p), _task_util_est(p));
3925}
3926
a7008c07
VS
3927#ifdef CONFIG_UCLAMP_TASK
3928static inline unsigned long uclamp_task_util(struct task_struct *p)
3929{
3930 return clamp(task_util_est(p),
3931 uclamp_eff_value(p, UCLAMP_MIN),
3932 uclamp_eff_value(p, UCLAMP_MAX));
3933}
3934#else
3935static inline unsigned long uclamp_task_util(struct task_struct *p)
3936{
3937 return task_util_est(p);
3938}
3939#endif
3940
7f65ea42
PB
3941static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3942 struct task_struct *p)
3943{
3944 unsigned int enqueued;
3945
3946 if (!sched_feat(UTIL_EST))
3947 return;
3948
3949 /* Update root cfs_rq's estimated utilization */
3950 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3951 enqueued += _task_util_est(p);
7f65ea42 3952 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3953
3954 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3955}
3956
8c1f560c
XY
3957static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3958 struct task_struct *p)
3959{
3960 unsigned int enqueued;
3961
3962 if (!sched_feat(UTIL_EST))
3963 return;
3964
3965 /* Update root cfs_rq's estimated utilization */
3966 enqueued = cfs_rq->avg.util_est.enqueued;
3967 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3968 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3969
3970 trace_sched_util_est_cfs_tp(cfs_rq);
3971}
3972
b89997aa
VD
3973#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3974
7f65ea42
PB
3975/*
3976 * Check if a (signed) value is within a specified (unsigned) margin,
3977 * based on the observation that:
3978 *
3979 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3980 *
3b03706f 3981 * NOTE: this only works when value + margin < INT_MAX.
7f65ea42
PB
3982 */
3983static inline bool within_margin(int value, int margin)
3984{
3985 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3986}
3987
8c1f560c
XY
3988static inline void util_est_update(struct cfs_rq *cfs_rq,
3989 struct task_struct *p,
3990 bool task_sleep)
7f65ea42 3991{
b89997aa 3992 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
3993 struct util_est ue;
3994
3995 if (!sched_feat(UTIL_EST))
3996 return;
3997
7f65ea42
PB
3998 /*
3999 * Skip update of task's estimated utilization when the task has not
4000 * yet completed an activation, e.g. being migrated.
4001 */
4002 if (!task_sleep)
4003 return;
4004
d519329f
PB
4005 /*
4006 * If the PELT values haven't changed since enqueue time,
4007 * skip the util_est update.
4008 */
4009 ue = p->se.avg.util_est;
4010 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4011 return;
4012
b89997aa
VD
4013 last_enqueued_diff = ue.enqueued;
4014
b8c96361
PB
4015 /*
4016 * Reset EWMA on utilization increases, the moving average is used only
4017 * to smooth utilization decreases.
4018 */
68d7a190 4019 ue.enqueued = task_util(p);
b8c96361
PB
4020 if (sched_feat(UTIL_EST_FASTUP)) {
4021 if (ue.ewma < ue.enqueued) {
4022 ue.ewma = ue.enqueued;
4023 goto done;
4024 }
4025 }
4026
7f65ea42 4027 /*
b89997aa 4028 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4029 * already ~1% close to its last activation value.
4030 */
7f65ea42 4031 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4032 last_enqueued_diff -= ue.enqueued;
4033 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4034 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4035 goto done;
4036
7f65ea42 4037 return;
b89997aa 4038 }
7f65ea42 4039
10a35e68
VG
4040 /*
4041 * To avoid overestimation of actual task utilization, skip updates if
4042 * we cannot grant there is idle time in this CPU.
4043 */
8c1f560c 4044 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4045 return;
4046
7f65ea42
PB
4047 /*
4048 * Update Task's estimated utilization
4049 *
4050 * When *p completes an activation we can consolidate another sample
4051 * of the task size. This is done by storing the current PELT value
4052 * as ue.enqueued and by using this value to update the Exponential
4053 * Weighted Moving Average (EWMA):
4054 *
4055 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4056 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4057 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4058 * = w * ( last_ewma_diff ) + ewma(t-1)
4059 * = w * (last_ewma_diff + ewma(t-1) / w)
4060 *
4061 * Where 'w' is the weight of new samples, which is configured to be
4062 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4063 */
4064 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4065 ue.ewma += last_ewma_diff;
4066 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4067done:
68d7a190 4068 ue.enqueued |= UTIL_AVG_UNCHANGED;
7f65ea42 4069 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4070
4071 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4072}
4073
3b1baa64
MR
4074static inline int task_fits_capacity(struct task_struct *p, long capacity)
4075{
a7008c07 4076 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4077}
4078
4079static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4080{
4081 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4082 return;
4083
0ae78eec 4084 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4085 rq->misfit_task_load = 0;
4086 return;
4087 }
4088
4089 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4090 rq->misfit_task_load = 0;
4091 return;
4092 }
4093
01cfcde9
VG
4094 /*
4095 * Make sure that misfit_task_load will not be null even if
4096 * task_h_load() returns 0.
4097 */
4098 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4099}
4100
38033c37
PZ
4101#else /* CONFIG_SMP */
4102
a7b359fc
OU
4103static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4104{
4105 return true;
4106}
4107
d31b1a66
VG
4108#define UPDATE_TG 0x0
4109#define SKIP_AGE_LOAD 0x0
b382a531 4110#define DO_ATTACH 0x0
d31b1a66 4111
88c0616e 4112static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4113{
ea14b57e 4114 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4115}
4116
9d89c257 4117static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4118
a05e8c51 4119static inline void
a4f9a0e5 4120attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4121static inline void
4122detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4123
d91cecc1 4124static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4125{
4126 return 0;
4127}
4128
7f65ea42
PB
4129static inline void
4130util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4131
4132static inline void
8c1f560c
XY
4133util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4134
4135static inline void
4136util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4137 bool task_sleep) {}
3b1baa64 4138static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4139
38033c37 4140#endif /* CONFIG_SMP */
9d85f21c 4141
ddc97297
PZ
4142static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4143{
4144#ifdef CONFIG_SCHED_DEBUG
4145 s64 d = se->vruntime - cfs_rq->min_vruntime;
4146
4147 if (d < 0)
4148 d = -d;
4149
4150 if (d > 3*sysctl_sched_latency)
ae92882e 4151 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4152#endif
4153}
4154
aeb73b04
PZ
4155static void
4156place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4157{
1af5f730 4158 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4159
2cb8600e
PZ
4160 /*
4161 * The 'current' period is already promised to the current tasks,
4162 * however the extra weight of the new task will slow them down a
4163 * little, place the new task so that it fits in the slot that
4164 * stays open at the end.
4165 */
94dfb5e7 4166 if (initial && sched_feat(START_DEBIT))
f9c0b095 4167 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4168
a2e7a7eb 4169 /* sleeps up to a single latency don't count. */
5ca9880c 4170 if (!initial) {
2cae3948
JD
4171 unsigned long thresh;
4172
4173 if (se_is_idle(se))
4174 thresh = sysctl_sched_min_granularity;
4175 else
4176 thresh = sysctl_sched_latency;
a7be37ac 4177
a2e7a7eb
MG
4178 /*
4179 * Halve their sleep time's effect, to allow
4180 * for a gentler effect of sleepers:
4181 */
4182 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4183 thresh >>= 1;
51e0304c 4184
a2e7a7eb 4185 vruntime -= thresh;
aeb73b04
PZ
4186 }
4187
b5d9d734 4188 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4189 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4190}
4191
d3d9dc33
PT
4192static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4193
fe61468b 4194static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4195
4196/*
4197 * MIGRATION
4198 *
4199 * dequeue
4200 * update_curr()
4201 * update_min_vruntime()
4202 * vruntime -= min_vruntime
4203 *
4204 * enqueue
4205 * update_curr()
4206 * update_min_vruntime()
4207 * vruntime += min_vruntime
4208 *
4209 * this way the vruntime transition between RQs is done when both
4210 * min_vruntime are up-to-date.
4211 *
4212 * WAKEUP (remote)
4213 *
59efa0ba 4214 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4215 * vruntime -= min_vruntime
4216 *
4217 * enqueue
4218 * update_curr()
4219 * update_min_vruntime()
4220 * vruntime += min_vruntime
4221 *
4222 * this way we don't have the most up-to-date min_vruntime on the originating
4223 * CPU and an up-to-date min_vruntime on the destination CPU.
4224 */
4225
bf0f6f24 4226static void
88ec22d3 4227enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4228{
2f950354
PZ
4229 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4230 bool curr = cfs_rq->curr == se;
4231
88ec22d3 4232 /*
2f950354
PZ
4233 * If we're the current task, we must renormalise before calling
4234 * update_curr().
88ec22d3 4235 */
2f950354 4236 if (renorm && curr)
88ec22d3
PZ
4237 se->vruntime += cfs_rq->min_vruntime;
4238
2f950354
PZ
4239 update_curr(cfs_rq);
4240
bf0f6f24 4241 /*
2f950354
PZ
4242 * Otherwise, renormalise after, such that we're placed at the current
4243 * moment in time, instead of some random moment in the past. Being
4244 * placed in the past could significantly boost this task to the
4245 * fairness detriment of existing tasks.
bf0f6f24 4246 */
2f950354
PZ
4247 if (renorm && !curr)
4248 se->vruntime += cfs_rq->min_vruntime;
4249
89ee048f
VG
4250 /*
4251 * When enqueuing a sched_entity, we must:
4252 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4253 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4254 * - For group_entity, update its weight to reflect the new share of
4255 * its group cfs_rq
4256 * - Add its new weight to cfs_rq->load.weight
4257 */
b382a531 4258 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4259 se_update_runnable(se);
1ea6c46a 4260 update_cfs_group(se);
17bc14b7 4261 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4262
1a3d027c 4263 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4264 place_entity(cfs_rq, se, 0);
bf0f6f24 4265
cb251765 4266 check_schedstat_required();
60f2415e 4267 update_stats_enqueue_fair(cfs_rq, se, flags);
4fa8d299 4268 check_spread(cfs_rq, se);
2f950354 4269 if (!curr)
83b699ed 4270 __enqueue_entity(cfs_rq, se);
2069dd75 4271 se->on_rq = 1;
3d4b47b4 4272
fe61468b
VG
4273 /*
4274 * When bandwidth control is enabled, cfs might have been removed
4275 * because of a parent been throttled but cfs->nr_running > 1. Try to
3b03706f 4276 * add it unconditionally.
fe61468b
VG
4277 */
4278 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4279 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4280
4281 if (cfs_rq->nr_running == 1)
d3d9dc33 4282 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4283}
4284
2c13c919 4285static void __clear_buddies_last(struct sched_entity *se)
2002c695 4286{
2c13c919
RR
4287 for_each_sched_entity(se) {
4288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4289 if (cfs_rq->last != se)
2c13c919 4290 break;
f1044799
PZ
4291
4292 cfs_rq->last = NULL;
2c13c919
RR
4293 }
4294}
2002c695 4295
2c13c919
RR
4296static void __clear_buddies_next(struct sched_entity *se)
4297{
4298 for_each_sched_entity(se) {
4299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4300 if (cfs_rq->next != se)
2c13c919 4301 break;
f1044799
PZ
4302
4303 cfs_rq->next = NULL;
2c13c919 4304 }
2002c695
PZ
4305}
4306
ac53db59
RR
4307static void __clear_buddies_skip(struct sched_entity *se)
4308{
4309 for_each_sched_entity(se) {
4310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4311 if (cfs_rq->skip != se)
ac53db59 4312 break;
f1044799
PZ
4313
4314 cfs_rq->skip = NULL;
ac53db59
RR
4315 }
4316}
4317
a571bbea
PZ
4318static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4319{
2c13c919
RR
4320 if (cfs_rq->last == se)
4321 __clear_buddies_last(se);
4322
4323 if (cfs_rq->next == se)
4324 __clear_buddies_next(se);
ac53db59
RR
4325
4326 if (cfs_rq->skip == se)
4327 __clear_buddies_skip(se);
a571bbea
PZ
4328}
4329
6c16a6dc 4330static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4331
bf0f6f24 4332static void
371fd7e7 4333dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4334{
a2a2d680
DA
4335 /*
4336 * Update run-time statistics of the 'current'.
4337 */
4338 update_curr(cfs_rq);
89ee048f
VG
4339
4340 /*
4341 * When dequeuing a sched_entity, we must:
4342 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4343 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4344 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4345 * - For group entity, update its weight to reflect the new share
4346 * of its group cfs_rq.
4347 */
88c0616e 4348 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4349 se_update_runnable(se);
a2a2d680 4350
60f2415e 4351 update_stats_dequeue_fair(cfs_rq, se, flags);
67e9fb2a 4352
2002c695 4353 clear_buddies(cfs_rq, se);
4793241b 4354
83b699ed 4355 if (se != cfs_rq->curr)
30cfdcfc 4356 __dequeue_entity(cfs_rq, se);
17bc14b7 4357 se->on_rq = 0;
30cfdcfc 4358 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4359
4360 /*
b60205c7
PZ
4361 * Normalize after update_curr(); which will also have moved
4362 * min_vruntime if @se is the one holding it back. But before doing
4363 * update_min_vruntime() again, which will discount @se's position and
4364 * can move min_vruntime forward still more.
88ec22d3 4365 */
371fd7e7 4366 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4367 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4368
d8b4986d
PT
4369 /* return excess runtime on last dequeue */
4370 return_cfs_rq_runtime(cfs_rq);
4371
1ea6c46a 4372 update_cfs_group(se);
b60205c7
PZ
4373
4374 /*
4375 * Now advance min_vruntime if @se was the entity holding it back,
4376 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4377 * put back on, and if we advance min_vruntime, we'll be placed back
4378 * further than we started -- ie. we'll be penalized.
4379 */
9845c49c 4380 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4381 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4382}
4383
4384/*
4385 * Preempt the current task with a newly woken task if needed:
4386 */
7c92e54f 4387static void
2e09bf55 4388check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4389{
11697830 4390 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4391 struct sched_entity *se;
4392 s64 delta;
11697830 4393
6d0f0ebd 4394 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4395 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4396 if (delta_exec > ideal_runtime) {
8875125e 4397 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4398 /*
4399 * The current task ran long enough, ensure it doesn't get
4400 * re-elected due to buddy favours.
4401 */
4402 clear_buddies(cfs_rq, curr);
f685ceac
MG
4403 return;
4404 }
4405
4406 /*
4407 * Ensure that a task that missed wakeup preemption by a
4408 * narrow margin doesn't have to wait for a full slice.
4409 * This also mitigates buddy induced latencies under load.
4410 */
f685ceac
MG
4411 if (delta_exec < sysctl_sched_min_granularity)
4412 return;
4413
f4cfb33e
WX
4414 se = __pick_first_entity(cfs_rq);
4415 delta = curr->vruntime - se->vruntime;
f685ceac 4416
f4cfb33e
WX
4417 if (delta < 0)
4418 return;
d7d82944 4419
f4cfb33e 4420 if (delta > ideal_runtime)
8875125e 4421 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4422}
4423
83b699ed 4424static void
8494f412 4425set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4426{
21f56ffe
PZ
4427 clear_buddies(cfs_rq, se);
4428
83b699ed
SV
4429 /* 'current' is not kept within the tree. */
4430 if (se->on_rq) {
4431 /*
4432 * Any task has to be enqueued before it get to execute on
4433 * a CPU. So account for the time it spent waiting on the
4434 * runqueue.
4435 */
60f2415e 4436 update_stats_wait_end_fair(cfs_rq, se);
83b699ed 4437 __dequeue_entity(cfs_rq, se);
88c0616e 4438 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4439 }
4440
79303e9e 4441 update_stats_curr_start(cfs_rq, se);
429d43bc 4442 cfs_rq->curr = se;
4fa8d299 4443
eba1ed4b
IM
4444 /*
4445 * Track our maximum slice length, if the CPU's load is at
4446 * least twice that of our own weight (i.e. dont track it
4447 * when there are only lesser-weight tasks around):
4448 */
f2bedc47
DE
4449 if (schedstat_enabled() &&
4450 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
ceeadb83
YS
4451 struct sched_statistics *stats;
4452
4453 stats = __schedstats_from_se(se);
4454 __schedstat_set(stats->slice_max,
4455 max((u64)stats->slice_max,
a2dcb276 4456 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4457 }
4fa8d299 4458
4a55b450 4459 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4460}
4461
3f3a4904
PZ
4462static int
4463wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4464
ac53db59
RR
4465/*
4466 * Pick the next process, keeping these things in mind, in this order:
4467 * 1) keep things fair between processes/task groups
4468 * 2) pick the "next" process, since someone really wants that to run
4469 * 3) pick the "last" process, for cache locality
4470 * 4) do not run the "skip" process, if something else is available
4471 */
678d5718
PZ
4472static struct sched_entity *
4473pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4474{
678d5718
PZ
4475 struct sched_entity *left = __pick_first_entity(cfs_rq);
4476 struct sched_entity *se;
4477
4478 /*
4479 * If curr is set we have to see if its left of the leftmost entity
4480 * still in the tree, provided there was anything in the tree at all.
4481 */
4482 if (!left || (curr && entity_before(curr, left)))
4483 left = curr;
4484
4485 se = left; /* ideally we run the leftmost entity */
f4b6755f 4486
ac53db59
RR
4487 /*
4488 * Avoid running the skip buddy, if running something else can
4489 * be done without getting too unfair.
4490 */
21f56ffe 4491 if (cfs_rq->skip && cfs_rq->skip == se) {
678d5718
PZ
4492 struct sched_entity *second;
4493
4494 if (se == curr) {
4495 second = __pick_first_entity(cfs_rq);
4496 } else {
4497 second = __pick_next_entity(se);
4498 if (!second || (curr && entity_before(curr, second)))
4499 second = curr;
4500 }
4501
ac53db59
RR
4502 if (second && wakeup_preempt_entity(second, left) < 1)
4503 se = second;
4504 }
aa2ac252 4505
9abb8973
PO
4506 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4507 /*
4508 * Someone really wants this to run. If it's not unfair, run it.
4509 */
ac53db59 4510 se = cfs_rq->next;
9abb8973
PO
4511 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4512 /*
4513 * Prefer last buddy, try to return the CPU to a preempted task.
4514 */
4515 se = cfs_rq->last;
4516 }
ac53db59 4517
4793241b 4518 return se;
aa2ac252
PZ
4519}
4520
678d5718 4521static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4522
ab6cde26 4523static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4524{
4525 /*
4526 * If still on the runqueue then deactivate_task()
4527 * was not called and update_curr() has to be done:
4528 */
4529 if (prev->on_rq)
b7cc0896 4530 update_curr(cfs_rq);
bf0f6f24 4531
d3d9dc33
PT
4532 /* throttle cfs_rqs exceeding runtime */
4533 check_cfs_rq_runtime(cfs_rq);
4534
4fa8d299 4535 check_spread(cfs_rq, prev);
cb251765 4536
30cfdcfc 4537 if (prev->on_rq) {
60f2415e 4538 update_stats_wait_start_fair(cfs_rq, prev);
30cfdcfc
DA
4539 /* Put 'current' back into the tree. */
4540 __enqueue_entity(cfs_rq, prev);
9d85f21c 4541 /* in !on_rq case, update occurred at dequeue */
88c0616e 4542 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4543 }
429d43bc 4544 cfs_rq->curr = NULL;
bf0f6f24
IM
4545}
4546
8f4d37ec
PZ
4547static void
4548entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4549{
bf0f6f24 4550 /*
30cfdcfc 4551 * Update run-time statistics of the 'current'.
bf0f6f24 4552 */
30cfdcfc 4553 update_curr(cfs_rq);
bf0f6f24 4554
9d85f21c
PT
4555 /*
4556 * Ensure that runnable average is periodically updated.
4557 */
88c0616e 4558 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4559 update_cfs_group(curr);
9d85f21c 4560
8f4d37ec
PZ
4561#ifdef CONFIG_SCHED_HRTICK
4562 /*
4563 * queued ticks are scheduled to match the slice, so don't bother
4564 * validating it and just reschedule.
4565 */
983ed7a6 4566 if (queued) {
8875125e 4567 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4568 return;
4569 }
8f4d37ec
PZ
4570 /*
4571 * don't let the period tick interfere with the hrtick preemption
4572 */
4573 if (!sched_feat(DOUBLE_TICK) &&
4574 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4575 return;
4576#endif
4577
2c2efaed 4578 if (cfs_rq->nr_running > 1)
2e09bf55 4579 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4580}
4581
ab84d31e
PT
4582
4583/**************************************************
4584 * CFS bandwidth control machinery
4585 */
4586
4587#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4588
e9666d10 4589#ifdef CONFIG_JUMP_LABEL
c5905afb 4590static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4591
4592static inline bool cfs_bandwidth_used(void)
4593{
c5905afb 4594 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4595}
4596
1ee14e6c 4597void cfs_bandwidth_usage_inc(void)
029632fb 4598{
ce48c146 4599 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4600}
4601
4602void cfs_bandwidth_usage_dec(void)
4603{
ce48c146 4604 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4605}
e9666d10 4606#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4607static bool cfs_bandwidth_used(void)
4608{
4609 return true;
4610}
4611
1ee14e6c
BS
4612void cfs_bandwidth_usage_inc(void) {}
4613void cfs_bandwidth_usage_dec(void) {}
e9666d10 4614#endif /* CONFIG_JUMP_LABEL */
029632fb 4615
ab84d31e
PT
4616/*
4617 * default period for cfs group bandwidth.
4618 * default: 0.1s, units: nanoseconds
4619 */
4620static inline u64 default_cfs_period(void)
4621{
4622 return 100000000ULL;
4623}
ec12cb7f
PT
4624
4625static inline u64 sched_cfs_bandwidth_slice(void)
4626{
4627 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4628}
4629
a9cf55b2 4630/*
763a9ec0
QC
4631 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4632 * directly instead of rq->clock to avoid adding additional synchronization
4633 * around rq->lock.
a9cf55b2
PT
4634 *
4635 * requires cfs_b->lock
4636 */
029632fb 4637void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4638{
bcb1704a
HC
4639 s64 runtime;
4640
f4183717
HC
4641 if (unlikely(cfs_b->quota == RUNTIME_INF))
4642 return;
4643
4644 cfs_b->runtime += cfs_b->quota;
bcb1704a
HC
4645 runtime = cfs_b->runtime_snap - cfs_b->runtime;
4646 if (runtime > 0) {
4647 cfs_b->burst_time += runtime;
4648 cfs_b->nr_burst++;
4649 }
4650
f4183717 4651 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
bcb1704a 4652 cfs_b->runtime_snap = cfs_b->runtime;
a9cf55b2
PT
4653}
4654
029632fb
PZ
4655static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4656{
4657 return &tg->cfs_bandwidth;
4658}
4659
85dac906 4660/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4661static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4662 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4663{
e98fa02c
PT
4664 u64 min_amount, amount = 0;
4665
4666 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4667
4668 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4669 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4670
ec12cb7f
PT
4671 if (cfs_b->quota == RUNTIME_INF)
4672 amount = min_amount;
58088ad0 4673 else {
77a4d1a1 4674 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4675
4676 if (cfs_b->runtime > 0) {
4677 amount = min(cfs_b->runtime, min_amount);
4678 cfs_b->runtime -= amount;
4679 cfs_b->idle = 0;
4680 }
ec12cb7f 4681 }
ec12cb7f
PT
4682
4683 cfs_rq->runtime_remaining += amount;
85dac906
PT
4684
4685 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4686}
4687
e98fa02c
PT
4688/* returns 0 on failure to allocate runtime */
4689static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4690{
4691 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4692 int ret;
4693
4694 raw_spin_lock(&cfs_b->lock);
4695 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4696 raw_spin_unlock(&cfs_b->lock);
4697
4698 return ret;
4699}
4700
9dbdb155 4701static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4702{
4703 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4704 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4705
4706 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4707 return;
4708
5e2d2cc2
L
4709 if (cfs_rq->throttled)
4710 return;
85dac906
PT
4711 /*
4712 * if we're unable to extend our runtime we resched so that the active
4713 * hierarchy can be throttled
4714 */
4715 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4716 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4717}
4718
6c16a6dc 4719static __always_inline
9dbdb155 4720void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4721{
56f570e5 4722 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4723 return;
4724
4725 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4726}
4727
85dac906
PT
4728static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4729{
56f570e5 4730 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4731}
4732
64660c86
PT
4733/* check whether cfs_rq, or any parent, is throttled */
4734static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4735{
56f570e5 4736 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4737}
4738
4739/*
4740 * Ensure that neither of the group entities corresponding to src_cpu or
4741 * dest_cpu are members of a throttled hierarchy when performing group
4742 * load-balance operations.
4743 */
4744static inline int throttled_lb_pair(struct task_group *tg,
4745 int src_cpu, int dest_cpu)
4746{
4747 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4748
4749 src_cfs_rq = tg->cfs_rq[src_cpu];
4750 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4751
4752 return throttled_hierarchy(src_cfs_rq) ||
4753 throttled_hierarchy(dest_cfs_rq);
4754}
4755
64660c86
PT
4756static int tg_unthrottle_up(struct task_group *tg, void *data)
4757{
4758 struct rq *rq = data;
4759 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4760
4761 cfs_rq->throttle_count--;
64660c86 4762 if (!cfs_rq->throttle_count) {
78becc27 4763 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4764 cfs_rq->throttled_clock_task;
31bc6aea 4765
a7b359fc
OU
4766 /* Add cfs_rq with load or one or more already running entities to the list */
4767 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
31bc6aea 4768 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4769 }
64660c86
PT
4770
4771 return 0;
4772}
4773
4774static int tg_throttle_down(struct task_group *tg, void *data)
4775{
4776 struct rq *rq = data;
4777 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4778
82958366 4779 /* group is entering throttled state, stop time */
31bc6aea 4780 if (!cfs_rq->throttle_count) {
78becc27 4781 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4782 list_del_leaf_cfs_rq(cfs_rq);
4783 }
64660c86
PT
4784 cfs_rq->throttle_count++;
4785
4786 return 0;
4787}
4788
e98fa02c 4789static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4790{
4791 struct rq *rq = rq_of(cfs_rq);
4792 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4793 struct sched_entity *se;
43e9f7f2 4794 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4795
4796 raw_spin_lock(&cfs_b->lock);
4797 /* This will start the period timer if necessary */
4798 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4799 /*
4800 * We have raced with bandwidth becoming available, and if we
4801 * actually throttled the timer might not unthrottle us for an
4802 * entire period. We additionally needed to make sure that any
4803 * subsequent check_cfs_rq_runtime calls agree not to throttle
4804 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4805 * for 1ns of runtime rather than just check cfs_b.
4806 */
4807 dequeue = 0;
4808 } else {
4809 list_add_tail_rcu(&cfs_rq->throttled_list,
4810 &cfs_b->throttled_cfs_rq);
4811 }
4812 raw_spin_unlock(&cfs_b->lock);
4813
4814 if (!dequeue)
4815 return false; /* Throttle no longer required. */
85dac906
PT
4816
4817 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4818
f1b17280 4819 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4820 rcu_read_lock();
4821 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4822 rcu_read_unlock();
85dac906
PT
4823
4824 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4825 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4826 for_each_sched_entity(se) {
4827 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4828 /* throttled entity or throttle-on-deactivate */
4829 if (!se->on_rq)
b6d37a76 4830 goto done;
85dac906 4831
b6d37a76 4832 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4833
30400039
JD
4834 if (cfs_rq_is_idle(group_cfs_rq(se)))
4835 idle_task_delta = cfs_rq->h_nr_running;
4836
85dac906 4837 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4838 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4839
b6d37a76
PW
4840 if (qcfs_rq->load.weight) {
4841 /* Avoid re-evaluating load for this entity: */
4842 se = parent_entity(se);
4843 break;
4844 }
4845 }
4846
4847 for_each_sched_entity(se) {
4848 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4849 /* throttled entity or throttle-on-deactivate */
4850 if (!se->on_rq)
4851 goto done;
4852
4853 update_load_avg(qcfs_rq, se, 0);
4854 se_update_runnable(se);
4855
30400039
JD
4856 if (cfs_rq_is_idle(group_cfs_rq(se)))
4857 idle_task_delta = cfs_rq->h_nr_running;
4858
b6d37a76
PW
4859 qcfs_rq->h_nr_running -= task_delta;
4860 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4861 }
4862
b6d37a76
PW
4863 /* At this point se is NULL and we are at root level*/
4864 sub_nr_running(rq, task_delta);
85dac906 4865
b6d37a76 4866done:
c06f04c7 4867 /*
e98fa02c
PT
4868 * Note: distribution will already see us throttled via the
4869 * throttled-list. rq->lock protects completion.
c06f04c7 4870 */
e98fa02c
PT
4871 cfs_rq->throttled = 1;
4872 cfs_rq->throttled_clock = rq_clock(rq);
4873 return true;
85dac906
PT
4874}
4875
029632fb 4876void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4877{
4878 struct rq *rq = rq_of(cfs_rq);
4879 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4880 struct sched_entity *se;
43e9f7f2 4881 long task_delta, idle_task_delta;
671fd9da 4882
22b958d8 4883 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4884
4885 cfs_rq->throttled = 0;
1a55af2e
FW
4886
4887 update_rq_clock(rq);
4888
671fd9da 4889 raw_spin_lock(&cfs_b->lock);
78becc27 4890 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4891 list_del_rcu(&cfs_rq->throttled_list);
4892 raw_spin_unlock(&cfs_b->lock);
4893
64660c86
PT
4894 /* update hierarchical throttle state */
4895 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4896
2630cde2
MK
4897 /* Nothing to run but something to decay (on_list)? Complete the branch */
4898 if (!cfs_rq->load.weight) {
4899 if (cfs_rq->on_list)
4900 goto unthrottle_throttle;
671fd9da 4901 return;
2630cde2 4902 }
671fd9da
PT
4903
4904 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4905 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da 4906 for_each_sched_entity(se) {
30400039
JD
4907 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4908
671fd9da 4909 if (se->on_rq)
39f23ce0 4910 break;
30400039
JD
4911 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4912
4913 if (cfs_rq_is_idle(group_cfs_rq(se)))
4914 idle_task_delta = cfs_rq->h_nr_running;
39f23ce0 4915
30400039
JD
4916 qcfs_rq->h_nr_running += task_delta;
4917 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
4918
4919 /* end evaluation on encountering a throttled cfs_rq */
30400039 4920 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
4921 goto unthrottle_throttle;
4922 }
671fd9da 4923
39f23ce0 4924 for_each_sched_entity(se) {
30400039 4925 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
39f23ce0 4926
30400039 4927 update_load_avg(qcfs_rq, se, UPDATE_TG);
39f23ce0 4928 se_update_runnable(se);
6212437f 4929
30400039
JD
4930 if (cfs_rq_is_idle(group_cfs_rq(se)))
4931 idle_task_delta = cfs_rq->h_nr_running;
671fd9da 4932
30400039
JD
4933 qcfs_rq->h_nr_running += task_delta;
4934 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
4935
4936 /* end evaluation on encountering a throttled cfs_rq */
30400039 4937 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
4938 goto unthrottle_throttle;
4939
4940 /*
4941 * One parent has been throttled and cfs_rq removed from the
4942 * list. Add it back to not break the leaf list.
4943 */
30400039
JD
4944 if (throttled_hierarchy(qcfs_rq))
4945 list_add_leaf_cfs_rq(qcfs_rq);
671fd9da
PT
4946 }
4947
39f23ce0
VG
4948 /* At this point se is NULL and we are at root level*/
4949 add_nr_running(rq, task_delta);
671fd9da 4950
39f23ce0 4951unthrottle_throttle:
fe61468b
VG
4952 /*
4953 * The cfs_rq_throttled() breaks in the above iteration can result in
4954 * incomplete leaf list maintenance, resulting in triggering the
4955 * assertion below.
4956 */
4957 for_each_sched_entity(se) {
30400039 4958 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
fe61468b 4959
30400039 4960 if (list_add_leaf_cfs_rq(qcfs_rq))
39f23ce0 4961 break;
fe61468b
VG
4962 }
4963
4964 assert_list_leaf_cfs_rq(rq);
4965
97fb7a0a 4966 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4967 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4968 resched_curr(rq);
671fd9da
PT
4969}
4970
26a8b127 4971static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4972{
4973 struct cfs_rq *cfs_rq;
26a8b127 4974 u64 runtime, remaining = 1;
671fd9da
PT
4975
4976 rcu_read_lock();
4977 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4978 throttled_list) {
4979 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4980 struct rq_flags rf;
671fd9da 4981
c0ad4aa4 4982 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4983 if (!cfs_rq_throttled(cfs_rq))
4984 goto next;
4985
5e2d2cc2
L
4986 /* By the above check, this should never be true */
4987 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4988
26a8b127 4989 raw_spin_lock(&cfs_b->lock);
671fd9da 4990 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4991 if (runtime > cfs_b->runtime)
4992 runtime = cfs_b->runtime;
4993 cfs_b->runtime -= runtime;
4994 remaining = cfs_b->runtime;
4995 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4996
4997 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4998
4999 /* we check whether we're throttled above */
5000 if (cfs_rq->runtime_remaining > 0)
5001 unthrottle_cfs_rq(cfs_rq);
5002
5003next:
c0ad4aa4 5004 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
5005
5006 if (!remaining)
5007 break;
5008 }
5009 rcu_read_unlock();
671fd9da
PT
5010}
5011
58088ad0
PT
5012/*
5013 * Responsible for refilling a task_group's bandwidth and unthrottling its
5014 * cfs_rqs as appropriate. If there has been no activity within the last
5015 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5016 * used to track this state.
5017 */
c0ad4aa4 5018static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 5019{
51f2176d 5020 int throttled;
58088ad0 5021
58088ad0
PT
5022 /* no need to continue the timer with no bandwidth constraint */
5023 if (cfs_b->quota == RUNTIME_INF)
51f2176d 5024 goto out_deactivate;
58088ad0 5025
671fd9da 5026 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 5027 cfs_b->nr_periods += overrun;
671fd9da 5028
f4183717
HC
5029 /* Refill extra burst quota even if cfs_b->idle */
5030 __refill_cfs_bandwidth_runtime(cfs_b);
5031
51f2176d
BS
5032 /*
5033 * idle depends on !throttled (for the case of a large deficit), and if
5034 * we're going inactive then everything else can be deferred
5035 */
5036 if (cfs_b->idle && !throttled)
5037 goto out_deactivate;
a9cf55b2 5038
671fd9da
PT
5039 if (!throttled) {
5040 /* mark as potentially idle for the upcoming period */
5041 cfs_b->idle = 1;
51f2176d 5042 return 0;
671fd9da
PT
5043 }
5044
e8da1b18
NR
5045 /* account preceding periods in which throttling occurred */
5046 cfs_b->nr_throttled += overrun;
5047
671fd9da 5048 /*
26a8b127 5049 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5050 */
ab93a4bc 5051 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5052 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5053 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5054 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5055 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5056
5057 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5058 }
58088ad0 5059
671fd9da
PT
5060 /*
5061 * While we are ensured activity in the period following an
5062 * unthrottle, this also covers the case in which the new bandwidth is
5063 * insufficient to cover the existing bandwidth deficit. (Forcing the
5064 * timer to remain active while there are any throttled entities.)
5065 */
5066 cfs_b->idle = 0;
58088ad0 5067
51f2176d
BS
5068 return 0;
5069
5070out_deactivate:
51f2176d 5071 return 1;
58088ad0 5072}
d3d9dc33 5073
d8b4986d
PT
5074/* a cfs_rq won't donate quota below this amount */
5075static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5076/* minimum remaining period time to redistribute slack quota */
5077static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5078/* how long we wait to gather additional slack before distributing */
5079static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5080
db06e78c
BS
5081/*
5082 * Are we near the end of the current quota period?
5083 *
5084 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5085 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5086 * migrate_hrtimers, base is never cleared, so we are fine.
5087 */
d8b4986d
PT
5088static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5089{
5090 struct hrtimer *refresh_timer = &cfs_b->period_timer;
72d0ad7c 5091 s64 remaining;
d8b4986d
PT
5092
5093 /* if the call-back is running a quota refresh is already occurring */
5094 if (hrtimer_callback_running(refresh_timer))
5095 return 1;
5096
5097 /* is a quota refresh about to occur? */
5098 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
72d0ad7c 5099 if (remaining < (s64)min_expire)
d8b4986d
PT
5100 return 1;
5101
5102 return 0;
5103}
5104
5105static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5106{
5107 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5108
5109 /* if there's a quota refresh soon don't bother with slack */
5110 if (runtime_refresh_within(cfs_b, min_left))
5111 return;
5112
66567fcb 5113 /* don't push forwards an existing deferred unthrottle */
5114 if (cfs_b->slack_started)
5115 return;
5116 cfs_b->slack_started = true;
5117
4cfafd30
PZ
5118 hrtimer_start(&cfs_b->slack_timer,
5119 ns_to_ktime(cfs_bandwidth_slack_period),
5120 HRTIMER_MODE_REL);
d8b4986d
PT
5121}
5122
5123/* we know any runtime found here is valid as update_curr() precedes return */
5124static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5125{
5126 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5127 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5128
5129 if (slack_runtime <= 0)
5130 return;
5131
5132 raw_spin_lock(&cfs_b->lock);
de53fd7a 5133 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5134 cfs_b->runtime += slack_runtime;
5135
5136 /* we are under rq->lock, defer unthrottling using a timer */
5137 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5138 !list_empty(&cfs_b->throttled_cfs_rq))
5139 start_cfs_slack_bandwidth(cfs_b);
5140 }
5141 raw_spin_unlock(&cfs_b->lock);
5142
5143 /* even if it's not valid for return we don't want to try again */
5144 cfs_rq->runtime_remaining -= slack_runtime;
5145}
5146
5147static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5148{
56f570e5
PT
5149 if (!cfs_bandwidth_used())
5150 return;
5151
fccfdc6f 5152 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5153 return;
5154
5155 __return_cfs_rq_runtime(cfs_rq);
5156}
5157
5158/*
5159 * This is done with a timer (instead of inline with bandwidth return) since
5160 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5161 */
5162static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5163{
5164 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5165 unsigned long flags;
d8b4986d
PT
5166
5167 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5168 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5169 cfs_b->slack_started = false;
baa9be4f 5170
db06e78c 5171 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5172 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5173 return;
db06e78c 5174 }
d8b4986d 5175
c06f04c7 5176 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5177 runtime = cfs_b->runtime;
c06f04c7 5178
c0ad4aa4 5179 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5180
5181 if (!runtime)
5182 return;
5183
26a8b127 5184 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5185}
5186
d3d9dc33
PT
5187/*
5188 * When a group wakes up we want to make sure that its quota is not already
5189 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5190 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5191 */
5192static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5193{
56f570e5
PT
5194 if (!cfs_bandwidth_used())
5195 return;
5196
d3d9dc33
PT
5197 /* an active group must be handled by the update_curr()->put() path */
5198 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5199 return;
5200
5201 /* ensure the group is not already throttled */
5202 if (cfs_rq_throttled(cfs_rq))
5203 return;
5204
5205 /* update runtime allocation */
5206 account_cfs_rq_runtime(cfs_rq, 0);
5207 if (cfs_rq->runtime_remaining <= 0)
5208 throttle_cfs_rq(cfs_rq);
5209}
5210
55e16d30
PZ
5211static void sync_throttle(struct task_group *tg, int cpu)
5212{
5213 struct cfs_rq *pcfs_rq, *cfs_rq;
5214
5215 if (!cfs_bandwidth_used())
5216 return;
5217
5218 if (!tg->parent)
5219 return;
5220
5221 cfs_rq = tg->cfs_rq[cpu];
5222 pcfs_rq = tg->parent->cfs_rq[cpu];
5223
5224 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5225 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5226}
5227
d3d9dc33 5228/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5229static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5230{
56f570e5 5231 if (!cfs_bandwidth_used())
678d5718 5232 return false;
56f570e5 5233
d3d9dc33 5234 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5235 return false;
d3d9dc33
PT
5236
5237 /*
5238 * it's possible for a throttled entity to be forced into a running
5239 * state (e.g. set_curr_task), in this case we're finished.
5240 */
5241 if (cfs_rq_throttled(cfs_rq))
678d5718 5242 return true;
d3d9dc33 5243
e98fa02c 5244 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5245}
029632fb 5246
029632fb
PZ
5247static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5248{
5249 struct cfs_bandwidth *cfs_b =
5250 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5251
029632fb
PZ
5252 do_sched_cfs_slack_timer(cfs_b);
5253
5254 return HRTIMER_NORESTART;
5255}
5256
2e8e1922
PA
5257extern const u64 max_cfs_quota_period;
5258
029632fb
PZ
5259static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5260{
5261 struct cfs_bandwidth *cfs_b =
5262 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5263 unsigned long flags;
029632fb
PZ
5264 int overrun;
5265 int idle = 0;
2e8e1922 5266 int count = 0;
029632fb 5267
c0ad4aa4 5268 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5269 for (;;) {
77a4d1a1 5270 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5271 if (!overrun)
5272 break;
5273
5a6d6a6c
HC
5274 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5275
2e8e1922
PA
5276 if (++count > 3) {
5277 u64 new, old = ktime_to_ns(cfs_b->period);
5278
4929a4e6
XZ
5279 /*
5280 * Grow period by a factor of 2 to avoid losing precision.
5281 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5282 * to fail.
5283 */
5284 new = old * 2;
5285 if (new < max_cfs_quota_period) {
5286 cfs_b->period = ns_to_ktime(new);
5287 cfs_b->quota *= 2;
f4183717 5288 cfs_b->burst *= 2;
4929a4e6
XZ
5289
5290 pr_warn_ratelimited(
5291 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5292 smp_processor_id(),
5293 div_u64(new, NSEC_PER_USEC),
5294 div_u64(cfs_b->quota, NSEC_PER_USEC));
5295 } else {
5296 pr_warn_ratelimited(
5297 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5298 smp_processor_id(),
5299 div_u64(old, NSEC_PER_USEC),
5300 div_u64(cfs_b->quota, NSEC_PER_USEC));
5301 }
2e8e1922
PA
5302
5303 /* reset count so we don't come right back in here */
5304 count = 0;
5305 }
029632fb 5306 }
4cfafd30
PZ
5307 if (idle)
5308 cfs_b->period_active = 0;
c0ad4aa4 5309 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5310
5311 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5312}
5313
5314void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5315{
5316 raw_spin_lock_init(&cfs_b->lock);
5317 cfs_b->runtime = 0;
5318 cfs_b->quota = RUNTIME_INF;
5319 cfs_b->period = ns_to_ktime(default_cfs_period());
f4183717 5320 cfs_b->burst = 0;
029632fb
PZ
5321
5322 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5323 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5324 cfs_b->period_timer.function = sched_cfs_period_timer;
5325 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5326 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5327 cfs_b->slack_started = false;
029632fb
PZ
5328}
5329
5330static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5331{
5332 cfs_rq->runtime_enabled = 0;
5333 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5334}
5335
77a4d1a1 5336void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5337{
4cfafd30 5338 lockdep_assert_held(&cfs_b->lock);
029632fb 5339
f1d1be8a
XP
5340 if (cfs_b->period_active)
5341 return;
5342
5343 cfs_b->period_active = 1;
763a9ec0 5344 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5345 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5346}
5347
5348static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5349{
7f1a169b
TH
5350 /* init_cfs_bandwidth() was not called */
5351 if (!cfs_b->throttled_cfs_rq.next)
5352 return;
5353
029632fb
PZ
5354 hrtimer_cancel(&cfs_b->period_timer);
5355 hrtimer_cancel(&cfs_b->slack_timer);
5356}
5357
502ce005 5358/*
97fb7a0a 5359 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5360 *
5361 * The race is harmless, since modifying bandwidth settings of unhooked group
5362 * bits doesn't do much.
5363 */
5364
3b03706f 5365/* cpu online callback */
0e59bdae
KT
5366static void __maybe_unused update_runtime_enabled(struct rq *rq)
5367{
502ce005 5368 struct task_group *tg;
0e59bdae 5369
5cb9eaa3 5370 lockdep_assert_rq_held(rq);
502ce005
PZ
5371
5372 rcu_read_lock();
5373 list_for_each_entry_rcu(tg, &task_groups, list) {
5374 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5375 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5376
5377 raw_spin_lock(&cfs_b->lock);
5378 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5379 raw_spin_unlock(&cfs_b->lock);
5380 }
502ce005 5381 rcu_read_unlock();
0e59bdae
KT
5382}
5383
502ce005 5384/* cpu offline callback */
38dc3348 5385static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5386{
502ce005
PZ
5387 struct task_group *tg;
5388
5cb9eaa3 5389 lockdep_assert_rq_held(rq);
502ce005
PZ
5390
5391 rcu_read_lock();
5392 list_for_each_entry_rcu(tg, &task_groups, list) {
5393 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5394
029632fb
PZ
5395 if (!cfs_rq->runtime_enabled)
5396 continue;
5397
5398 /*
5399 * clock_task is not advancing so we just need to make sure
5400 * there's some valid quota amount
5401 */
51f2176d 5402 cfs_rq->runtime_remaining = 1;
0e59bdae 5403 /*
97fb7a0a 5404 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5405 * in take_cpu_down(), so we prevent new cfs throttling here.
5406 */
5407 cfs_rq->runtime_enabled = 0;
5408
029632fb
PZ
5409 if (cfs_rq_throttled(cfs_rq))
5410 unthrottle_cfs_rq(cfs_rq);
5411 }
502ce005 5412 rcu_read_unlock();
029632fb
PZ
5413}
5414
5415#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5416
5417static inline bool cfs_bandwidth_used(void)
5418{
5419 return false;
5420}
5421
9dbdb155 5422static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5423static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5424static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5425static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5426static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5427
5428static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5429{
5430 return 0;
5431}
64660c86
PT
5432
5433static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5434{
5435 return 0;
5436}
5437
5438static inline int throttled_lb_pair(struct task_group *tg,
5439 int src_cpu, int dest_cpu)
5440{
5441 return 0;
5442}
029632fb
PZ
5443
5444void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5445
5446#ifdef CONFIG_FAIR_GROUP_SCHED
5447static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5448#endif
5449
029632fb
PZ
5450static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5451{
5452 return NULL;
5453}
5454static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5455static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5456static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5457
5458#endif /* CONFIG_CFS_BANDWIDTH */
5459
bf0f6f24
IM
5460/**************************************************
5461 * CFS operations on tasks:
5462 */
5463
8f4d37ec
PZ
5464#ifdef CONFIG_SCHED_HRTICK
5465static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5466{
8f4d37ec
PZ
5467 struct sched_entity *se = &p->se;
5468 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5469
9148a3a1 5470 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5471
8bf46a39 5472 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5473 u64 slice = sched_slice(cfs_rq, se);
5474 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5475 s64 delta = slice - ran;
5476
5477 if (delta < 0) {
65bcf072 5478 if (task_current(rq, p))
8875125e 5479 resched_curr(rq);
8f4d37ec
PZ
5480 return;
5481 }
31656519 5482 hrtick_start(rq, delta);
8f4d37ec
PZ
5483 }
5484}
a4c2f00f
PZ
5485
5486/*
5487 * called from enqueue/dequeue and updates the hrtick when the
5488 * current task is from our class and nr_running is low enough
5489 * to matter.
5490 */
5491static void hrtick_update(struct rq *rq)
5492{
5493 struct task_struct *curr = rq->curr;
5494
e0ee463c 5495 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5496 return;
5497
5498 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5499 hrtick_start_fair(rq, curr);
5500}
55e12e5e 5501#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5502static inline void
5503hrtick_start_fair(struct rq *rq, struct task_struct *p)
5504{
5505}
a4c2f00f
PZ
5506
5507static inline void hrtick_update(struct rq *rq)
5508{
5509}
8f4d37ec
PZ
5510#endif
5511
2802bf3c
MR
5512#ifdef CONFIG_SMP
5513static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5514
5515static inline bool cpu_overutilized(int cpu)
5516{
60e17f5c 5517 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5518}
5519
5520static inline void update_overutilized_status(struct rq *rq)
5521{
f9f240f9 5522 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5523 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5524 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5525 }
2802bf3c
MR
5526}
5527#else
5528static inline void update_overutilized_status(struct rq *rq) { }
5529#endif
5530
323af6de
VK
5531/* Runqueue only has SCHED_IDLE tasks enqueued */
5532static int sched_idle_rq(struct rq *rq)
5533{
5534 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5535 rq->nr_running);
5536}
5537
a480adde
JD
5538/*
5539 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5540 * of idle_nr_running, which does not consider idle descendants of normal
5541 * entities.
5542 */
5543static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5544{
5545 return cfs_rq->nr_running &&
5546 cfs_rq->nr_running == cfs_rq->idle_nr_running;
5547}
5548
afa70d94 5549#ifdef CONFIG_SMP
323af6de
VK
5550static int sched_idle_cpu(int cpu)
5551{
5552 return sched_idle_rq(cpu_rq(cpu));
5553}
afa70d94 5554#endif
323af6de 5555
bf0f6f24
IM
5556/*
5557 * The enqueue_task method is called before nr_running is
5558 * increased. Here we update the fair scheduling stats and
5559 * then put the task into the rbtree:
5560 */
ea87bb78 5561static void
371fd7e7 5562enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5563{
5564 struct cfs_rq *cfs_rq;
62fb1851 5565 struct sched_entity *se = &p->se;
43e9f7f2 5566 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5567 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5568
2539fc82
PB
5569 /*
5570 * The code below (indirectly) updates schedutil which looks at
5571 * the cfs_rq utilization to select a frequency.
5572 * Let's add the task's estimated utilization to the cfs_rq's
5573 * estimated utilization, before we update schedutil.
5574 */
5575 util_est_enqueue(&rq->cfs, p);
5576
8c34ab19
RW
5577 /*
5578 * If in_iowait is set, the code below may not trigger any cpufreq
5579 * utilization updates, so do it here explicitly with the IOWAIT flag
5580 * passed.
5581 */
5582 if (p->in_iowait)
674e7541 5583 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5584
bf0f6f24 5585 for_each_sched_entity(se) {
62fb1851 5586 if (se->on_rq)
bf0f6f24
IM
5587 break;
5588 cfs_rq = cfs_rq_of(se);
88ec22d3 5589 enqueue_entity(cfs_rq, se, flags);
85dac906 5590
953bfcd1 5591 cfs_rq->h_nr_running++;
43e9f7f2 5592 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5593
30400039
JD
5594 if (cfs_rq_is_idle(cfs_rq))
5595 idle_h_nr_running = 1;
5596
6d4d2246
VG
5597 /* end evaluation on encountering a throttled cfs_rq */
5598 if (cfs_rq_throttled(cfs_rq))
5599 goto enqueue_throttle;
5600
88ec22d3 5601 flags = ENQUEUE_WAKEUP;
bf0f6f24 5602 }
8f4d37ec 5603
2069dd75 5604 for_each_sched_entity(se) {
0f317143 5605 cfs_rq = cfs_rq_of(se);
2069dd75 5606
88c0616e 5607 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5608 se_update_runnable(se);
1ea6c46a 5609 update_cfs_group(se);
6d4d2246
VG
5610
5611 cfs_rq->h_nr_running++;
5612 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba 5613
30400039
JD
5614 if (cfs_rq_is_idle(cfs_rq))
5615 idle_h_nr_running = 1;
5616
5ab297ba
VG
5617 /* end evaluation on encountering a throttled cfs_rq */
5618 if (cfs_rq_throttled(cfs_rq))
5619 goto enqueue_throttle;
b34cb07d
PA
5620
5621 /*
5622 * One parent has been throttled and cfs_rq removed from the
5623 * list. Add it back to not break the leaf list.
5624 */
5625 if (throttled_hierarchy(cfs_rq))
5626 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5627 }
5628
7d148be6
VG
5629 /* At this point se is NULL and we are at root level*/
5630 add_nr_running(rq, 1);
2802bf3c 5631
7d148be6
VG
5632 /*
5633 * Since new tasks are assigned an initial util_avg equal to
5634 * half of the spare capacity of their CPU, tiny tasks have the
5635 * ability to cross the overutilized threshold, which will
5636 * result in the load balancer ruining all the task placement
5637 * done by EAS. As a way to mitigate that effect, do not account
5638 * for the first enqueue operation of new tasks during the
5639 * overutilized flag detection.
5640 *
5641 * A better way of solving this problem would be to wait for
5642 * the PELT signals of tasks to converge before taking them
5643 * into account, but that is not straightforward to implement,
5644 * and the following generally works well enough in practice.
5645 */
8e1ac429 5646 if (!task_new)
7d148be6 5647 update_overutilized_status(rq);
cd126afe 5648
7d148be6 5649enqueue_throttle:
f6783319
VG
5650 if (cfs_bandwidth_used()) {
5651 /*
5652 * When bandwidth control is enabled; the cfs_rq_throttled()
5653 * breaks in the above iteration can result in incomplete
5654 * leaf list maintenance, resulting in triggering the assertion
5655 * below.
5656 */
5657 for_each_sched_entity(se) {
5658 cfs_rq = cfs_rq_of(se);
5659
5660 if (list_add_leaf_cfs_rq(cfs_rq))
5661 break;
5662 }
5663 }
5664
5d299eab
PZ
5665 assert_list_leaf_cfs_rq(rq);
5666
a4c2f00f 5667 hrtick_update(rq);
bf0f6f24
IM
5668}
5669
2f36825b
VP
5670static void set_next_buddy(struct sched_entity *se);
5671
bf0f6f24
IM
5672/*
5673 * The dequeue_task method is called before nr_running is
5674 * decreased. We remove the task from the rbtree and
5675 * update the fair scheduling stats:
5676 */
371fd7e7 5677static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5678{
5679 struct cfs_rq *cfs_rq;
62fb1851 5680 struct sched_entity *se = &p->se;
2f36825b 5681 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5682 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5683 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5684
8c1f560c
XY
5685 util_est_dequeue(&rq->cfs, p);
5686
bf0f6f24
IM
5687 for_each_sched_entity(se) {
5688 cfs_rq = cfs_rq_of(se);
371fd7e7 5689 dequeue_entity(cfs_rq, se, flags);
85dac906 5690
953bfcd1 5691 cfs_rq->h_nr_running--;
43e9f7f2 5692 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5693
30400039
JD
5694 if (cfs_rq_is_idle(cfs_rq))
5695 idle_h_nr_running = 1;
5696
6d4d2246
VG
5697 /* end evaluation on encountering a throttled cfs_rq */
5698 if (cfs_rq_throttled(cfs_rq))
5699 goto dequeue_throttle;
5700
bf0f6f24 5701 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5702 if (cfs_rq->load.weight) {
754bd598
KK
5703 /* Avoid re-evaluating load for this entity: */
5704 se = parent_entity(se);
2f36825b
VP
5705 /*
5706 * Bias pick_next to pick a task from this cfs_rq, as
5707 * p is sleeping when it is within its sched_slice.
5708 */
754bd598
KK
5709 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5710 set_next_buddy(se);
bf0f6f24 5711 break;
2f36825b 5712 }
371fd7e7 5713 flags |= DEQUEUE_SLEEP;
bf0f6f24 5714 }
8f4d37ec 5715
2069dd75 5716 for_each_sched_entity(se) {
0f317143 5717 cfs_rq = cfs_rq_of(se);
2069dd75 5718
88c0616e 5719 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5720 se_update_runnable(se);
1ea6c46a 5721 update_cfs_group(se);
6d4d2246
VG
5722
5723 cfs_rq->h_nr_running--;
5724 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba 5725
30400039
JD
5726 if (cfs_rq_is_idle(cfs_rq))
5727 idle_h_nr_running = 1;
5728
5ab297ba
VG
5729 /* end evaluation on encountering a throttled cfs_rq */
5730 if (cfs_rq_throttled(cfs_rq))
5731 goto dequeue_throttle;
5732
2069dd75
PZ
5733 }
5734
423d02e1
PW
5735 /* At this point se is NULL and we are at root level*/
5736 sub_nr_running(rq, 1);
cd126afe 5737
323af6de
VK
5738 /* balance early to pull high priority tasks */
5739 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5740 rq->next_balance = jiffies;
5741
423d02e1 5742dequeue_throttle:
8c1f560c 5743 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5744 hrtick_update(rq);
bf0f6f24
IM
5745}
5746
e7693a36 5747#ifdef CONFIG_SMP
10e2f1ac
PZ
5748
5749/* Working cpumask for: load_balance, load_balance_newidle. */
5750DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5751DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5752
9fd81dd5 5753#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5754
5755static struct {
5756 cpumask_var_t idle_cpus_mask;
5757 atomic_t nr_cpus;
f643ea22 5758 int has_blocked; /* Idle CPUS has blocked load */
7fd7a9e0 5759 int needs_update; /* Newly idle CPUs need their next_balance collated */
e022e0d3 5760 unsigned long next_balance; /* in jiffy units */
f643ea22 5761 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5762} nohz ____cacheline_aligned;
5763
9fd81dd5 5764#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5765
b0fb1eb4
VG
5766static unsigned long cpu_load(struct rq *rq)
5767{
5768 return cfs_rq_load_avg(&rq->cfs);
5769}
5770
3318544b
VG
5771/*
5772 * cpu_load_without - compute CPU load without any contributions from *p
5773 * @cpu: the CPU which load is requested
5774 * @p: the task which load should be discounted
5775 *
5776 * The load of a CPU is defined by the load of tasks currently enqueued on that
5777 * CPU as well as tasks which are currently sleeping after an execution on that
5778 * CPU.
5779 *
5780 * This method returns the load of the specified CPU by discounting the load of
5781 * the specified task, whenever the task is currently contributing to the CPU
5782 * load.
5783 */
5784static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5785{
5786 struct cfs_rq *cfs_rq;
5787 unsigned int load;
5788
5789 /* Task has no contribution or is new */
5790 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5791 return cpu_load(rq);
5792
5793 cfs_rq = &rq->cfs;
5794 load = READ_ONCE(cfs_rq->avg.load_avg);
5795
5796 /* Discount task's util from CPU's util */
5797 lsub_positive(&load, task_h_load(p));
5798
5799 return load;
5800}
5801
9f683953
VG
5802static unsigned long cpu_runnable(struct rq *rq)
5803{
5804 return cfs_rq_runnable_avg(&rq->cfs);
5805}
5806
070f5e86
VG
5807static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5808{
5809 struct cfs_rq *cfs_rq;
5810 unsigned int runnable;
5811
5812 /* Task has no contribution or is new */
5813 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5814 return cpu_runnable(rq);
5815
5816 cfs_rq = &rq->cfs;
5817 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5818
5819 /* Discount task's runnable from CPU's runnable */
5820 lsub_positive(&runnable, p->se.avg.runnable_avg);
5821
5822 return runnable;
5823}
5824
ced549fa 5825static unsigned long capacity_of(int cpu)
029632fb 5826{
ced549fa 5827 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5828}
5829
c58d25f3
PZ
5830static void record_wakee(struct task_struct *p)
5831{
5832 /*
5833 * Only decay a single time; tasks that have less then 1 wakeup per
5834 * jiffy will not have built up many flips.
5835 */
5836 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5837 current->wakee_flips >>= 1;
5838 current->wakee_flip_decay_ts = jiffies;
5839 }
5840
5841 if (current->last_wakee != p) {
5842 current->last_wakee = p;
5843 current->wakee_flips++;
5844 }
5845}
5846
63b0e9ed
MG
5847/*
5848 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5849 *
63b0e9ed 5850 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5851 * at a frequency roughly N times higher than one of its wakees.
5852 *
5853 * In order to determine whether we should let the load spread vs consolidating
5854 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5855 * partner, and a factor of lls_size higher frequency in the other.
5856 *
5857 * With both conditions met, we can be relatively sure that the relationship is
5858 * non-monogamous, with partner count exceeding socket size.
5859 *
5860 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5861 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5862 * socket size.
63b0e9ed 5863 */
62470419
MW
5864static int wake_wide(struct task_struct *p)
5865{
63b0e9ed
MG
5866 unsigned int master = current->wakee_flips;
5867 unsigned int slave = p->wakee_flips;
17c891ab 5868 int factor = __this_cpu_read(sd_llc_size);
62470419 5869
63b0e9ed
MG
5870 if (master < slave)
5871 swap(master, slave);
5872 if (slave < factor || master < slave * factor)
5873 return 0;
5874 return 1;
62470419
MW
5875}
5876
90001d67 5877/*
d153b153
PZ
5878 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5879 * soonest. For the purpose of speed we only consider the waking and previous
5880 * CPU.
90001d67 5881 *
7332dec0
MG
5882 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5883 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5884 *
5885 * wake_affine_weight() - considers the weight to reflect the average
5886 * scheduling latency of the CPUs. This seems to work
5887 * for the overloaded case.
90001d67 5888 */
3b76c4a3 5889static int
89a55f56 5890wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5891{
7332dec0
MG
5892 /*
5893 * If this_cpu is idle, it implies the wakeup is from interrupt
5894 * context. Only allow the move if cache is shared. Otherwise an
5895 * interrupt intensive workload could force all tasks onto one
5896 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5897 *
5898 * If the prev_cpu is idle and cache affine then avoid a migration.
5899 * There is no guarantee that the cache hot data from an interrupt
5900 * is more important than cache hot data on the prev_cpu and from
5901 * a cpufreq perspective, it's better to have higher utilisation
5902 * on one CPU.
7332dec0 5903 */
943d355d
RJ
5904 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5905 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5906
d153b153 5907 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5908 return this_cpu;
90001d67 5909
d8fcb81f
JL
5910 if (available_idle_cpu(prev_cpu))
5911 return prev_cpu;
5912
3b76c4a3 5913 return nr_cpumask_bits;
90001d67
PZ
5914}
5915
3b76c4a3 5916static int
f2cdd9cc
PZ
5917wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5918 int this_cpu, int prev_cpu, int sync)
90001d67 5919{
90001d67
PZ
5920 s64 this_eff_load, prev_eff_load;
5921 unsigned long task_load;
5922
11f10e54 5923 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5924
90001d67
PZ
5925 if (sync) {
5926 unsigned long current_load = task_h_load(current);
5927
f2cdd9cc 5928 if (current_load > this_eff_load)
3b76c4a3 5929 return this_cpu;
90001d67 5930
f2cdd9cc 5931 this_eff_load -= current_load;
90001d67
PZ
5932 }
5933
90001d67
PZ
5934 task_load = task_h_load(p);
5935
f2cdd9cc
PZ
5936 this_eff_load += task_load;
5937 if (sched_feat(WA_BIAS))
5938 this_eff_load *= 100;
5939 this_eff_load *= capacity_of(prev_cpu);
90001d67 5940
11f10e54 5941 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5942 prev_eff_load -= task_load;
5943 if (sched_feat(WA_BIAS))
5944 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5945 prev_eff_load *= capacity_of(this_cpu);
90001d67 5946
082f764a
MG
5947 /*
5948 * If sync, adjust the weight of prev_eff_load such that if
5949 * prev_eff == this_eff that select_idle_sibling() will consider
5950 * stacking the wakee on top of the waker if no other CPU is
5951 * idle.
5952 */
5953 if (sync)
5954 prev_eff_load += 1;
5955
5956 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5957}
5958
772bd008 5959static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5960 int this_cpu, int prev_cpu, int sync)
098fb9db 5961{
3b76c4a3 5962 int target = nr_cpumask_bits;
098fb9db 5963
89a55f56 5964 if (sched_feat(WA_IDLE))
3b76c4a3 5965 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5966
3b76c4a3
MG
5967 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5968 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5969
ceeadb83 5970 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
3b76c4a3
MG
5971 if (target == nr_cpumask_bits)
5972 return prev_cpu;
098fb9db 5973
3b76c4a3 5974 schedstat_inc(sd->ttwu_move_affine);
ceeadb83 5975 schedstat_inc(p->stats.nr_wakeups_affine);
3b76c4a3 5976 return target;
098fb9db
IM
5977}
5978
aaee1203 5979static struct sched_group *
45da2773 5980find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5981
5982/*
97fb7a0a 5983 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5984 */
5985static int
18bd1b4b 5986find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5987{
5988 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5989 unsigned int min_exit_latency = UINT_MAX;
5990 u64 latest_idle_timestamp = 0;
5991 int least_loaded_cpu = this_cpu;
17346452 5992 int shallowest_idle_cpu = -1;
aaee1203
PZ
5993 int i;
5994
eaecf41f
MR
5995 /* Check if we have any choice: */
5996 if (group->group_weight == 1)
ae4df9d6 5997 return cpumask_first(sched_group_span(group));
eaecf41f 5998
aaee1203 5999 /* Traverse only the allowed CPUs */
3bd37062 6000 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
97886d9d
AL
6001 struct rq *rq = cpu_rq(i);
6002
6003 if (!sched_core_cookie_match(rq, p))
6004 continue;
6005
17346452
VK
6006 if (sched_idle_cpu(i))
6007 return i;
6008
943d355d 6009 if (available_idle_cpu(i)) {
83a0a96a
NP
6010 struct cpuidle_state *idle = idle_get_state(rq);
6011 if (idle && idle->exit_latency < min_exit_latency) {
6012 /*
6013 * We give priority to a CPU whose idle state
6014 * has the smallest exit latency irrespective
6015 * of any idle timestamp.
6016 */
6017 min_exit_latency = idle->exit_latency;
6018 latest_idle_timestamp = rq->idle_stamp;
6019 shallowest_idle_cpu = i;
6020 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6021 rq->idle_stamp > latest_idle_timestamp) {
6022 /*
6023 * If equal or no active idle state, then
6024 * the most recently idled CPU might have
6025 * a warmer cache.
6026 */
6027 latest_idle_timestamp = rq->idle_stamp;
6028 shallowest_idle_cpu = i;
6029 }
17346452 6030 } else if (shallowest_idle_cpu == -1) {
11f10e54 6031 load = cpu_load(cpu_rq(i));
18cec7e0 6032 if (load < min_load) {
83a0a96a
NP
6033 min_load = load;
6034 least_loaded_cpu = i;
6035 }
e7693a36
GH
6036 }
6037 }
6038
17346452 6039 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 6040}
e7693a36 6041
18bd1b4b
BJ
6042static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6043 int cpu, int prev_cpu, int sd_flag)
6044{
93f50f90 6045 int new_cpu = cpu;
18bd1b4b 6046
3bd37062 6047 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
6048 return prev_cpu;
6049
c976a862 6050 /*
57abff06 6051 * We need task's util for cpu_util_without, sync it up to
c469933e 6052 * prev_cpu's last_update_time.
c976a862
VK
6053 */
6054 if (!(sd_flag & SD_BALANCE_FORK))
6055 sync_entity_load_avg(&p->se);
6056
18bd1b4b
BJ
6057 while (sd) {
6058 struct sched_group *group;
6059 struct sched_domain *tmp;
6060 int weight;
6061
6062 if (!(sd->flags & sd_flag)) {
6063 sd = sd->child;
6064 continue;
6065 }
6066
45da2773 6067 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
6068 if (!group) {
6069 sd = sd->child;
6070 continue;
6071 }
6072
6073 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6074 if (new_cpu == cpu) {
97fb7a0a 6075 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6076 sd = sd->child;
6077 continue;
6078 }
6079
97fb7a0a 6080 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6081 cpu = new_cpu;
6082 weight = sd->span_weight;
6083 sd = NULL;
6084 for_each_domain(cpu, tmp) {
6085 if (weight <= tmp->span_weight)
6086 break;
6087 if (tmp->flags & sd_flag)
6088 sd = tmp;
6089 }
18bd1b4b
BJ
6090 }
6091
6092 return new_cpu;
6093}
6094
97886d9d 6095static inline int __select_idle_cpu(int cpu, struct task_struct *p)
9fe1f127 6096{
97886d9d
AL
6097 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6098 sched_cpu_cookie_match(cpu_rq(cpu), p))
9fe1f127
MG
6099 return cpu;
6100
6101 return -1;
6102}
6103
10e2f1ac 6104#ifdef CONFIG_SCHED_SMT
ba2591a5 6105DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6106EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6107
6108static inline void set_idle_cores(int cpu, int val)
6109{
6110 struct sched_domain_shared *sds;
6111
6112 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6113 if (sds)
6114 WRITE_ONCE(sds->has_idle_cores, val);
6115}
6116
6117static inline bool test_idle_cores(int cpu, bool def)
6118{
6119 struct sched_domain_shared *sds;
6120
c722f35b
RR
6121 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6122 if (sds)
6123 return READ_ONCE(sds->has_idle_cores);
10e2f1ac
PZ
6124
6125 return def;
6126}
6127
6128/*
6129 * Scans the local SMT mask to see if the entire core is idle, and records this
6130 * information in sd_llc_shared->has_idle_cores.
6131 *
6132 * Since SMT siblings share all cache levels, inspecting this limited remote
6133 * state should be fairly cheap.
6134 */
1b568f0a 6135void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6136{
6137 int core = cpu_of(rq);
6138 int cpu;
6139
6140 rcu_read_lock();
6141 if (test_idle_cores(core, true))
6142 goto unlock;
6143
6144 for_each_cpu(cpu, cpu_smt_mask(core)) {
6145 if (cpu == core)
6146 continue;
6147
943d355d 6148 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6149 goto unlock;
6150 }
6151
6152 set_idle_cores(core, 1);
6153unlock:
6154 rcu_read_unlock();
6155}
6156
6157/*
6158 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6159 * there are no idle cores left in the system; tracked through
6160 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6161 */
9fe1f127 6162static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6163{
9fe1f127
MG
6164 bool idle = true;
6165 int cpu;
10e2f1ac 6166
1b568f0a 6167 if (!static_branch_likely(&sched_smt_present))
97886d9d 6168 return __select_idle_cpu(core, p);
10e2f1ac 6169
9fe1f127
MG
6170 for_each_cpu(cpu, cpu_smt_mask(core)) {
6171 if (!available_idle_cpu(cpu)) {
6172 idle = false;
6173 if (*idle_cpu == -1) {
6174 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6175 *idle_cpu = cpu;
6176 break;
6177 }
6178 continue;
bec2860a 6179 }
9fe1f127 6180 break;
10e2f1ac 6181 }
9fe1f127
MG
6182 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6183 *idle_cpu = cpu;
10e2f1ac
PZ
6184 }
6185
9fe1f127
MG
6186 if (idle)
6187 return core;
10e2f1ac 6188
9fe1f127 6189 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6190 return -1;
6191}
6192
c722f35b
RR
6193/*
6194 * Scan the local SMT mask for idle CPUs.
6195 */
6196static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6197{
6198 int cpu;
6199
6200 for_each_cpu(cpu, cpu_smt_mask(target)) {
6201 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6202 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6203 continue;
6204 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6205 return cpu;
6206 }
6207
6208 return -1;
6209}
6210
10e2f1ac
PZ
6211#else /* CONFIG_SCHED_SMT */
6212
9fe1f127 6213static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6214{
9fe1f127
MG
6215}
6216
6217static inline bool test_idle_cores(int cpu, bool def)
6218{
6219 return def;
6220}
6221
6222static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6223{
97886d9d 6224 return __select_idle_cpu(core, p);
10e2f1ac
PZ
6225}
6226
c722f35b
RR
6227static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6228{
6229 return -1;
6230}
6231
10e2f1ac
PZ
6232#endif /* CONFIG_SCHED_SMT */
6233
6234/*
6235 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6236 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6237 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6238 */
c722f35b 6239static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 6240{
60588bfa 6241 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9fe1f127 6242 int i, cpu, idle_cpu = -1, nr = INT_MAX;
94aafc3e 6243 struct rq *this_rq = this_rq();
9fe1f127 6244 int this = smp_processor_id();
9cfb38a7 6245 struct sched_domain *this_sd;
94aafc3e 6246 u64 time = 0;
10e2f1ac 6247
9cfb38a7
WL
6248 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6249 if (!this_sd)
6250 return -1;
6251
bae4ec13
MG
6252 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6253
c722f35b 6254 if (sched_feat(SIS_PROP) && !has_idle_core) {
e6e0dc2d 6255 u64 avg_cost, avg_idle, span_avg;
94aafc3e 6256 unsigned long now = jiffies;
1ad3aaf3 6257
e6e0dc2d 6258 /*
94aafc3e
PZ
6259 * If we're busy, the assumption that the last idle period
6260 * predicts the future is flawed; age away the remaining
6261 * predicted idle time.
e6e0dc2d 6262 */
94aafc3e
PZ
6263 if (unlikely(this_rq->wake_stamp < now)) {
6264 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6265 this_rq->wake_stamp++;
6266 this_rq->wake_avg_idle >>= 1;
6267 }
6268 }
6269
6270 avg_idle = this_rq->wake_avg_idle;
e6e0dc2d 6271 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6272
e6e0dc2d 6273 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6274 if (span_avg > 4*avg_cost)
6275 nr = div_u64(span_avg, avg_cost);
6276 else
6277 nr = 4;
10e2f1ac 6278
bae4ec13
MG
6279 time = cpu_clock(this);
6280 }
60588bfa 6281
56498cfb 6282 for_each_cpu_wrap(cpu, cpus, target + 1) {
c722f35b 6283 if (has_idle_core) {
9fe1f127
MG
6284 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6285 if ((unsigned int)i < nr_cpumask_bits)
6286 return i;
6287
6288 } else {
6289 if (!--nr)
6290 return -1;
97886d9d 6291 idle_cpu = __select_idle_cpu(cpu, p);
9fe1f127
MG
6292 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6293 break;
6294 }
10e2f1ac
PZ
6295 }
6296
c722f35b 6297 if (has_idle_core)
02dbb724 6298 set_idle_cores(target, false);
9fe1f127 6299
c722f35b 6300 if (sched_feat(SIS_PROP) && !has_idle_core) {
bae4ec13 6301 time = cpu_clock(this) - time;
94aafc3e
PZ
6302
6303 /*
6304 * Account for the scan cost of wakeups against the average
6305 * idle time.
6306 */
6307 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6308
bae4ec13
MG
6309 update_avg(&this_sd->avg_scan_cost, time);
6310 }
10e2f1ac 6311
9fe1f127 6312 return idle_cpu;
10e2f1ac
PZ
6313}
6314
b7a33161
MR
6315/*
6316 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6317 * the task fits. If no CPU is big enough, but there are idle ones, try to
6318 * maximize capacity.
6319 */
6320static int
6321select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6322{
b4c9c9f1 6323 unsigned long task_util, best_cap = 0;
b7a33161
MR
6324 int cpu, best_cpu = -1;
6325 struct cpumask *cpus;
6326
b7a33161
MR
6327 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6328 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6329
b4c9c9f1
VG
6330 task_util = uclamp_task_util(p);
6331
b7a33161
MR
6332 for_each_cpu_wrap(cpu, cpus, target) {
6333 unsigned long cpu_cap = capacity_of(cpu);
6334
6335 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6336 continue;
b4c9c9f1 6337 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6338 return cpu;
6339
6340 if (cpu_cap > best_cap) {
6341 best_cap = cpu_cap;
6342 best_cpu = cpu;
6343 }
6344 }
6345
6346 return best_cpu;
6347}
6348
b4c9c9f1
VG
6349static inline bool asym_fits_capacity(int task_util, int cpu)
6350{
6351 if (static_branch_unlikely(&sched_asym_cpucapacity))
6352 return fits_capacity(task_util, capacity_of(cpu));
6353
6354 return true;
6355}
6356
10e2f1ac
PZ
6357/*
6358 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6359 */
772bd008 6360static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6361{
c722f35b 6362 bool has_idle_core = false;
99bd5e2f 6363 struct sched_domain *sd;
b4c9c9f1 6364 unsigned long task_util;
32e839dd 6365 int i, recent_used_cpu;
a50bde51 6366
b7a33161 6367 /*
b4c9c9f1
VG
6368 * On asymmetric system, update task utilization because we will check
6369 * that the task fits with cpu's capacity.
b7a33161
MR
6370 */
6371 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6372 sync_entity_load_avg(&p->se);
6373 task_util = uclamp_task_util(p);
b7a33161
MR
6374 }
6375
9099a147
PZ
6376 /*
6377 * per-cpu select_idle_mask usage
6378 */
6379 lockdep_assert_irqs_disabled();
6380
b4c9c9f1
VG
6381 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6382 asym_fits_capacity(task_util, target))
e0a79f52 6383 return target;
99bd5e2f
SS
6384
6385 /*
97fb7a0a 6386 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6387 */
3c29e651 6388 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6389 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6390 asym_fits_capacity(task_util, prev))
772bd008 6391 return prev;
a50bde51 6392
52262ee5
MG
6393 /*
6394 * Allow a per-cpu kthread to stack with the wakee if the
6395 * kworker thread and the tasks previous CPUs are the same.
6396 * The assumption is that the wakee queued work for the
6397 * per-cpu kthread that is now complete and the wakeup is
6398 * essentially a sync wakeup. An obvious example of this
6399 * pattern is IO completions.
6400 */
6401 if (is_per_cpu_kthread(current) &&
6402 prev == smp_processor_id() &&
6403 this_rq()->nr_running <= 1) {
6404 return prev;
6405 }
6406
97fb7a0a 6407 /* Check a recently used CPU as a potential idle candidate: */
32e839dd 6408 recent_used_cpu = p->recent_used_cpu;
89aafd67 6409 p->recent_used_cpu = prev;
32e839dd
MG
6410 if (recent_used_cpu != prev &&
6411 recent_used_cpu != target &&
6412 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6413 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6414 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6415 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6416 return recent_used_cpu;
6417 }
6418
b4c9c9f1
VG
6419 /*
6420 * For asymmetric CPU capacity systems, our domain of interest is
6421 * sd_asym_cpucapacity rather than sd_llc.
6422 */
6423 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6424 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6425 /*
6426 * On an asymmetric CPU capacity system where an exclusive
6427 * cpuset defines a symmetric island (i.e. one unique
6428 * capacity_orig value through the cpuset), the key will be set
6429 * but the CPUs within that cpuset will not have a domain with
6430 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6431 * capacity path.
6432 */
6433 if (sd) {
6434 i = select_idle_capacity(p, sd, target);
6435 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6436 }
6437 }
6438
518cd623 6439 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6440 if (!sd)
6441 return target;
772bd008 6442
c722f35b
RR
6443 if (sched_smt_active()) {
6444 has_idle_core = test_idle_cores(target, false);
6445
6446 if (!has_idle_core && cpus_share_cache(prev, target)) {
6447 i = select_idle_smt(p, sd, prev);
6448 if ((unsigned int)i < nr_cpumask_bits)
6449 return i;
6450 }
6451 }
6452
6453 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
6454 if ((unsigned)i < nr_cpumask_bits)
6455 return i;
6456
a50bde51
PZ
6457 return target;
6458}
231678b7 6459
f9be3e59 6460/**
59a74b15 6461 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6462 * @cpu: the CPU to get the utilization of
6463 *
6464 * The unit of the return value must be the one of capacity so we can compare
6465 * the utilization with the capacity of the CPU that is available for CFS task
6466 * (ie cpu_capacity).
231678b7
DE
6467 *
6468 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6469 * recent utilization of currently non-runnable tasks on a CPU. It represents
6470 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6471 * capacity_orig is the cpu_capacity available at the highest frequency
6472 * (arch_scale_freq_capacity()).
6473 * The utilization of a CPU converges towards a sum equal to or less than the
6474 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6475 * the running time on this CPU scaled by capacity_curr.
6476 *
f9be3e59
PB
6477 * The estimated utilization of a CPU is defined to be the maximum between its
6478 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6479 * currently RUNNABLE on that CPU.
6480 * This allows to properly represent the expected utilization of a CPU which
6481 * has just got a big task running since a long sleep period. At the same time
6482 * however it preserves the benefits of the "blocked utilization" in
6483 * describing the potential for other tasks waking up on the same CPU.
6484 *
231678b7
DE
6485 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6486 * higher than capacity_orig because of unfortunate rounding in
6487 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6488 * the average stabilizes with the new running time. We need to check that the
6489 * utilization stays within the range of [0..capacity_orig] and cap it if
6490 * necessary. Without utilization capping, a group could be seen as overloaded
6491 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6492 * available capacity. We allow utilization to overshoot capacity_curr (but not
6493 * capacity_orig) as it useful for predicting the capacity required after task
6494 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6495 *
6496 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6497 */
f9be3e59 6498static inline unsigned long cpu_util(int cpu)
8bb5b00c 6499{
f9be3e59
PB
6500 struct cfs_rq *cfs_rq;
6501 unsigned int util;
6502
6503 cfs_rq = &cpu_rq(cpu)->cfs;
6504 util = READ_ONCE(cfs_rq->avg.util_avg);
6505
6506 if (sched_feat(UTIL_EST))
6507 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6508
f9be3e59 6509 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6510}
a50bde51 6511
104cb16d 6512/*
c469933e
PB
6513 * cpu_util_without: compute cpu utilization without any contributions from *p
6514 * @cpu: the CPU which utilization is requested
6515 * @p: the task which utilization should be discounted
6516 *
6517 * The utilization of a CPU is defined by the utilization of tasks currently
6518 * enqueued on that CPU as well as tasks which are currently sleeping after an
6519 * execution on that CPU.
6520 *
6521 * This method returns the utilization of the specified CPU by discounting the
6522 * utilization of the specified task, whenever the task is currently
6523 * contributing to the CPU utilization.
104cb16d 6524 */
c469933e 6525static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6526{
f9be3e59
PB
6527 struct cfs_rq *cfs_rq;
6528 unsigned int util;
104cb16d
MR
6529
6530 /* Task has no contribution or is new */
f9be3e59 6531 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6532 return cpu_util(cpu);
6533
f9be3e59
PB
6534 cfs_rq = &cpu_rq(cpu)->cfs;
6535 util = READ_ONCE(cfs_rq->avg.util_avg);
6536
c469933e 6537 /* Discount task's util from CPU's util */
b5c0ce7b 6538 lsub_positive(&util, task_util(p));
104cb16d 6539
f9be3e59
PB
6540 /*
6541 * Covered cases:
6542 *
6543 * a) if *p is the only task sleeping on this CPU, then:
6544 * cpu_util (== task_util) > util_est (== 0)
6545 * and thus we return:
c469933e 6546 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6547 *
6548 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6549 * IDLE, then:
6550 * cpu_util >= task_util
6551 * cpu_util > util_est (== 0)
6552 * and thus we discount *p's blocked utilization to return:
c469933e 6553 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6554 *
6555 * c) if other tasks are RUNNABLE on that CPU and
6556 * util_est > cpu_util
6557 * then we use util_est since it returns a more restrictive
6558 * estimation of the spare capacity on that CPU, by just
6559 * considering the expected utilization of tasks already
6560 * runnable on that CPU.
6561 *
6562 * Cases a) and b) are covered by the above code, while case c) is
6563 * covered by the following code when estimated utilization is
6564 * enabled.
6565 */
c469933e
PB
6566 if (sched_feat(UTIL_EST)) {
6567 unsigned int estimated =
6568 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6569
6570 /*
6571 * Despite the following checks we still have a small window
6572 * for a possible race, when an execl's select_task_rq_fair()
6573 * races with LB's detach_task():
6574 *
6575 * detach_task()
6576 * p->on_rq = TASK_ON_RQ_MIGRATING;
6577 * ---------------------------------- A
6578 * deactivate_task() \
6579 * dequeue_task() + RaceTime
6580 * util_est_dequeue() /
6581 * ---------------------------------- B
6582 *
6583 * The additional check on "current == p" it's required to
6584 * properly fix the execl regression and it helps in further
6585 * reducing the chances for the above race.
6586 */
b5c0ce7b
PB
6587 if (unlikely(task_on_rq_queued(p) || current == p))
6588 lsub_positive(&estimated, _task_util_est(p));
6589
c469933e
PB
6590 util = max(util, estimated);
6591 }
f9be3e59
PB
6592
6593 /*
6594 * Utilization (estimated) can exceed the CPU capacity, thus let's
6595 * clamp to the maximum CPU capacity to ensure consistency with
6596 * the cpu_util call.
6597 */
6598 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6599}
6600
390031e4
QP
6601/*
6602 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6603 * to @dst_cpu.
6604 */
6605static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6606{
6607 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6608 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6609
6610 /*
6611 * If @p migrates from @cpu to another, remove its contribution. Or,
6612 * if @p migrates from another CPU to @cpu, add its contribution. In
6613 * the other cases, @cpu is not impacted by the migration, so the
6614 * util_avg should already be correct.
6615 */
6616 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6617 lsub_positive(&util, task_util(p));
390031e4
QP
6618 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6619 util += task_util(p);
6620
6621 if (sched_feat(UTIL_EST)) {
6622 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6623
6624 /*
6625 * During wake-up, the task isn't enqueued yet and doesn't
6626 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6627 * so just add it (if needed) to "simulate" what will be
6628 * cpu_util() after the task has been enqueued.
6629 */
6630 if (dst_cpu == cpu)
6631 util_est += _task_util_est(p);
6632
6633 util = max(util, util_est);
6634 }
6635
6636 return min(util, capacity_orig_of(cpu));
6637}
6638
6639/*
eb92692b 6640 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6641 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6642 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6643 * to compute what would be the energy if we decided to actually migrate that
6644 * task.
6645 */
6646static long
6647compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6648{
eb92692b
QP
6649 struct cpumask *pd_mask = perf_domain_span(pd);
6650 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6651 unsigned long max_util = 0, sum_util = 0;
489f1645 6652 unsigned long _cpu_cap = cpu_cap;
390031e4
QP
6653 int cpu;
6654
489f1645
LL
6655 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6656
eb92692b
QP
6657 /*
6658 * The capacity state of CPUs of the current rd can be driven by CPUs
6659 * of another rd if they belong to the same pd. So, account for the
6660 * utilization of these CPUs too by masking pd with cpu_online_mask
6661 * instead of the rd span.
6662 *
6663 * If an entire pd is outside of the current rd, it will not appear in
6664 * its pd list and will not be accounted by compute_energy().
6665 */
6666 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
0372e1cf
VD
6667 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6668 unsigned long cpu_util, util_running = util_freq;
6669 struct task_struct *tsk = NULL;
6670
6671 /*
6672 * When @p is placed on @cpu:
6673 *
6674 * util_running = max(cpu_util, cpu_util_est) +
6675 * max(task_util, _task_util_est)
6676 *
6677 * while cpu_util_next is: max(cpu_util + task_util,
6678 * cpu_util_est + _task_util_est)
6679 */
6680 if (cpu == dst_cpu) {
6681 tsk = p;
6682 util_running =
6683 cpu_util_next(cpu, p, -1) + task_util_est(p);
6684 }
af24bde8
PB
6685
6686 /*
eb92692b
QP
6687 * Busy time computation: utilization clamping is not
6688 * required since the ratio (sum_util / cpu_capacity)
6689 * is already enough to scale the EM reported power
6690 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6691 */
489f1645
LL
6692 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6693 ENERGY_UTIL, NULL);
6694
6695 sum_util += min(cpu_util, _cpu_cap);
af24bde8 6696
390031e4 6697 /*
eb92692b
QP
6698 * Performance domain frequency: utilization clamping
6699 * must be considered since it affects the selection
6700 * of the performance domain frequency.
6701 * NOTE: in case RT tasks are running, by default the
6702 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6703 */
0372e1cf 6704 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
eb92692b 6705 FREQUENCY_UTIL, tsk);
489f1645 6706 max_util = max(max_util, min(cpu_util, _cpu_cap));
390031e4
QP
6707 }
6708
8f1b971b 6709 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
390031e4
QP
6710}
6711
732cd75b
QP
6712/*
6713 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6714 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6715 * spare capacity in each performance domain and uses it as a potential
6716 * candidate to execute the task. Then, it uses the Energy Model to figure
6717 * out which of the CPU candidates is the most energy-efficient.
6718 *
6719 * The rationale for this heuristic is as follows. In a performance domain,
6720 * all the most energy efficient CPU candidates (according to the Energy
6721 * Model) are those for which we'll request a low frequency. When there are
6722 * several CPUs for which the frequency request will be the same, we don't
6723 * have enough data to break the tie between them, because the Energy Model
6724 * only includes active power costs. With this model, if we assume that
6725 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6726 * the maximum spare capacity in a performance domain is guaranteed to be among
6727 * the best candidates of the performance domain.
6728 *
6729 * In practice, it could be preferable from an energy standpoint to pack
6730 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6731 * but that could also hurt our chances to go cluster idle, and we have no
6732 * ways to tell with the current Energy Model if this is actually a good
6733 * idea or not. So, find_energy_efficient_cpu() basically favors
6734 * cluster-packing, and spreading inside a cluster. That should at least be
6735 * a good thing for latency, and this is consistent with the idea that most
6736 * of the energy savings of EAS come from the asymmetry of the system, and
6737 * not so much from breaking the tie between identical CPUs. That's also the
6738 * reason why EAS is enabled in the topology code only for systems where
6739 * SD_ASYM_CPUCAPACITY is set.
6740 *
6741 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6742 * they don't have any useful utilization data yet and it's not possible to
6743 * forecast their impact on energy consumption. Consequently, they will be
6744 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6745 * to be energy-inefficient in some use-cases. The alternative would be to
6746 * bias new tasks towards specific types of CPUs first, or to try to infer
6747 * their util_avg from the parent task, but those heuristics could hurt
6748 * other use-cases too. So, until someone finds a better way to solve this,
6749 * let's keep things simple by re-using the existing slow path.
6750 */
732cd75b
QP
6751static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6752{
eb92692b 6753 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6754 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
619e090c 6755 int cpu, best_energy_cpu = prev_cpu, target = -1;
eb92692b 6756 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6757 struct sched_domain *sd;
eb92692b 6758 struct perf_domain *pd;
732cd75b
QP
6759
6760 rcu_read_lock();
6761 pd = rcu_dereference(rd->pd);
6762 if (!pd || READ_ONCE(rd->overutilized))
619e090c 6763 goto unlock;
732cd75b
QP
6764
6765 /*
6766 * Energy-aware wake-up happens on the lowest sched_domain starting
6767 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6768 */
6769 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6770 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6771 sd = sd->parent;
6772 if (!sd)
619e090c
PG
6773 goto unlock;
6774
6775 target = prev_cpu;
732cd75b
QP
6776
6777 sync_entity_load_avg(&p->se);
6778 if (!task_util_est(p))
6779 goto unlock;
6780
6781 for (; pd; pd = pd->next) {
eb92692b 6782 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
8d4c97c1 6783 bool compute_prev_delta = false;
eb92692b 6784 unsigned long base_energy_pd;
732cd75b
QP
6785 int max_spare_cap_cpu = -1;
6786
6787 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6788 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6789 continue;
6790
732cd75b
QP
6791 util = cpu_util_next(cpu, p, cpu);
6792 cpu_cap = capacity_of(cpu);
da0777d3
LL
6793 spare_cap = cpu_cap;
6794 lsub_positive(&spare_cap, util);
1d42509e
VS
6795
6796 /*
6797 * Skip CPUs that cannot satisfy the capacity request.
6798 * IOW, placing the task there would make the CPU
6799 * overutilized. Take uclamp into account to see how
6800 * much capacity we can get out of the CPU; this is
a5418be9 6801 * aligned with sched_cpu_util().
1d42509e
VS
6802 */
6803 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6804 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6805 continue;
6806
732cd75b 6807 if (cpu == prev_cpu) {
8d4c97c1
PG
6808 /* Always use prev_cpu as a candidate. */
6809 compute_prev_delta = true;
6810 } else if (spare_cap > max_spare_cap) {
6811 /*
6812 * Find the CPU with the maximum spare capacity
6813 * in the performance domain.
6814 */
732cd75b
QP
6815 max_spare_cap = spare_cap;
6816 max_spare_cap_cpu = cpu;
6817 }
6818 }
6819
8d4c97c1
PG
6820 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6821 continue;
6822
6823 /* Compute the 'base' energy of the pd, without @p */
6824 base_energy_pd = compute_energy(p, -1, pd);
6825 base_energy += base_energy_pd;
6826
6827 /* Evaluate the energy impact of using prev_cpu. */
6828 if (compute_prev_delta) {
6829 prev_delta = compute_energy(p, prev_cpu, pd);
619e090c
PG
6830 if (prev_delta < base_energy_pd)
6831 goto unlock;
8d4c97c1
PG
6832 prev_delta -= base_energy_pd;
6833 best_delta = min(best_delta, prev_delta);
6834 }
6835
6836 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6837 if (max_spare_cap_cpu >= 0) {
eb92692b 6838 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
619e090c
PG
6839 if (cur_delta < base_energy_pd)
6840 goto unlock;
eb92692b
QP
6841 cur_delta -= base_energy_pd;
6842 if (cur_delta < best_delta) {
6843 best_delta = cur_delta;
732cd75b
QP
6844 best_energy_cpu = max_spare_cap_cpu;
6845 }
6846 }
6847 }
732cd75b
QP
6848 rcu_read_unlock();
6849
6850 /*
6851 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6852 * least 6% of the energy used by prev_cpu.
6853 */
619e090c
PG
6854 if ((prev_delta == ULONG_MAX) ||
6855 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6856 target = best_energy_cpu;
732cd75b 6857
619e090c 6858 return target;
732cd75b 6859
619e090c 6860unlock:
732cd75b
QP
6861 rcu_read_unlock();
6862
619e090c 6863 return target;
732cd75b
QP
6864}
6865
aaee1203 6866/*
de91b9cb 6867 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6868 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6869 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6870 *
97fb7a0a
IM
6871 * Balances load by selecting the idlest CPU in the idlest group, or under
6872 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6873 *
97fb7a0a 6874 * Returns the target CPU number.
aaee1203 6875 */
0017d735 6876static int
3aef1551 6877select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6878{
3aef1551 6879 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6880 struct sched_domain *tmp, *sd = NULL;
c88d5910 6881 int cpu = smp_processor_id();
63b0e9ed 6882 int new_cpu = prev_cpu;
99bd5e2f 6883 int want_affine = 0;
3aef1551
VS
6884 /* SD_flags and WF_flags share the first nibble */
6885 int sd_flag = wake_flags & 0xF;
c88d5910 6886
9099a147
PZ
6887 /*
6888 * required for stable ->cpus_allowed
6889 */
6890 lockdep_assert_held(&p->pi_lock);
dc824eb8 6891 if (wake_flags & WF_TTWU) {
c58d25f3 6892 record_wakee(p);
732cd75b 6893
f8a696f2 6894 if (sched_energy_enabled()) {
732cd75b
QP
6895 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6896 if (new_cpu >= 0)
6897 return new_cpu;
6898 new_cpu = prev_cpu;
6899 }
6900
00061968 6901 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6902 }
aaee1203 6903
dce840a0 6904 rcu_read_lock();
aaee1203 6905 for_each_domain(cpu, tmp) {
fe3bcfe1 6906 /*
97fb7a0a 6907 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6908 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6909 */
99bd5e2f
SS
6910 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6911 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6912 if (cpu != prev_cpu)
6913 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6914
6915 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6916 break;
f03542a7 6917 }
29cd8bae 6918
f03542a7 6919 if (tmp->flags & sd_flag)
29cd8bae 6920 sd = tmp;
63b0e9ed
MG
6921 else if (!want_affine)
6922 break;
29cd8bae
PZ
6923 }
6924
f1d88b44
VK
6925 if (unlikely(sd)) {
6926 /* Slow path */
18bd1b4b 6927 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6928 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6929 /* Fast path */
f1d88b44 6930 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
e7693a36 6931 }
dce840a0 6932 rcu_read_unlock();
e7693a36 6933
c88d5910 6934 return new_cpu;
e7693a36 6935}
0a74bef8 6936
144d8487
PZ
6937static void detach_entity_cfs_rq(struct sched_entity *se);
6938
0a74bef8 6939/*
97fb7a0a 6940 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6941 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6942 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6943 */
3f9672ba 6944static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6945{
59efa0ba
PZ
6946 /*
6947 * As blocked tasks retain absolute vruntime the migration needs to
6948 * deal with this by subtracting the old and adding the new
6949 * min_vruntime -- the latter is done by enqueue_entity() when placing
6950 * the task on the new runqueue.
6951 */
2f064a59 6952 if (READ_ONCE(p->__state) == TASK_WAKING) {
59efa0ba
PZ
6953 struct sched_entity *se = &p->se;
6954 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6955 u64 min_vruntime;
6956
6957#ifndef CONFIG_64BIT
6958 u64 min_vruntime_copy;
6959
6960 do {
6961 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6962 smp_rmb();
6963 min_vruntime = cfs_rq->min_vruntime;
6964 } while (min_vruntime != min_vruntime_copy);
6965#else
6966 min_vruntime = cfs_rq->min_vruntime;
6967#endif
6968
6969 se->vruntime -= min_vruntime;
6970 }
6971
144d8487
PZ
6972 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6973 /*
6974 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6975 * rq->lock and can modify state directly.
6976 */
5cb9eaa3 6977 lockdep_assert_rq_held(task_rq(p));
144d8487
PZ
6978 detach_entity_cfs_rq(&p->se);
6979
6980 } else {
6981 /*
6982 * We are supposed to update the task to "current" time, then
6983 * its up to date and ready to go to new CPU/cfs_rq. But we
6984 * have difficulty in getting what current time is, so simply
6985 * throw away the out-of-date time. This will result in the
6986 * wakee task is less decayed, but giving the wakee more load
6987 * sounds not bad.
6988 */
6989 remove_entity_load_avg(&p->se);
6990 }
9d89c257
YD
6991
6992 /* Tell new CPU we are migrated */
6993 p->se.avg.last_update_time = 0;
3944a927
BS
6994
6995 /* We have migrated, no longer consider this task hot */
9d89c257 6996 p->se.exec_start = 0;
3f9672ba
SD
6997
6998 update_scan_period(p, new_cpu);
0a74bef8 6999}
12695578
YD
7000
7001static void task_dead_fair(struct task_struct *p)
7002{
7003 remove_entity_load_avg(&p->se);
7004}
6e2df058
PZ
7005
7006static int
7007balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7008{
7009 if (rq->nr_running)
7010 return 1;
7011
7012 return newidle_balance(rq, rf) != 0;
7013}
e7693a36
GH
7014#endif /* CONFIG_SMP */
7015
a555e9d8 7016static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
7017{
7018 unsigned long gran = sysctl_sched_wakeup_granularity;
7019
7020 /*
e52fb7c0
PZ
7021 * Since its curr running now, convert the gran from real-time
7022 * to virtual-time in his units.
13814d42
MG
7023 *
7024 * By using 'se' instead of 'curr' we penalize light tasks, so
7025 * they get preempted easier. That is, if 'se' < 'curr' then
7026 * the resulting gran will be larger, therefore penalizing the
7027 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7028 * be smaller, again penalizing the lighter task.
7029 *
7030 * This is especially important for buddies when the leftmost
7031 * task is higher priority than the buddy.
0bbd3336 7032 */
f4ad9bd2 7033 return calc_delta_fair(gran, se);
0bbd3336
PZ
7034}
7035
464b7527
PZ
7036/*
7037 * Should 'se' preempt 'curr'.
7038 *
7039 * |s1
7040 * |s2
7041 * |s3
7042 * g
7043 * |<--->|c
7044 *
7045 * w(c, s1) = -1
7046 * w(c, s2) = 0
7047 * w(c, s3) = 1
7048 *
7049 */
7050static int
7051wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7052{
7053 s64 gran, vdiff = curr->vruntime - se->vruntime;
7054
7055 if (vdiff <= 0)
7056 return -1;
7057
a555e9d8 7058 gran = wakeup_gran(se);
464b7527
PZ
7059 if (vdiff > gran)
7060 return 1;
7061
7062 return 0;
7063}
7064
02479099
PZ
7065static void set_last_buddy(struct sched_entity *se)
7066{
c5ae366e
DA
7067 for_each_sched_entity(se) {
7068 if (SCHED_WARN_ON(!se->on_rq))
7069 return;
30400039
JD
7070 if (se_is_idle(se))
7071 return;
69c80f3e 7072 cfs_rq_of(se)->last = se;
c5ae366e 7073 }
02479099
PZ
7074}
7075
7076static void set_next_buddy(struct sched_entity *se)
7077{
c5ae366e
DA
7078 for_each_sched_entity(se) {
7079 if (SCHED_WARN_ON(!se->on_rq))
7080 return;
30400039
JD
7081 if (se_is_idle(se))
7082 return;
69c80f3e 7083 cfs_rq_of(se)->next = se;
c5ae366e 7084 }
02479099
PZ
7085}
7086
ac53db59
RR
7087static void set_skip_buddy(struct sched_entity *se)
7088{
69c80f3e
VP
7089 for_each_sched_entity(se)
7090 cfs_rq_of(se)->skip = se;
ac53db59
RR
7091}
7092
bf0f6f24
IM
7093/*
7094 * Preempt the current task with a newly woken task if needed:
7095 */
5a9b86f6 7096static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
7097{
7098 struct task_struct *curr = rq->curr;
8651a86c 7099 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 7100 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 7101 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 7102 int next_buddy_marked = 0;
30400039 7103 int cse_is_idle, pse_is_idle;
bf0f6f24 7104
4ae7d5ce
IM
7105 if (unlikely(se == pse))
7106 return;
7107
5238cdd3 7108 /*
163122b7 7109 * This is possible from callers such as attach_tasks(), in which we
3b03706f 7110 * unconditionally check_preempt_curr() after an enqueue (which may have
5238cdd3
PT
7111 * lead to a throttle). This both saves work and prevents false
7112 * next-buddy nomination below.
7113 */
7114 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7115 return;
7116
2f36825b 7117 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 7118 set_next_buddy(pse);
2f36825b
VP
7119 next_buddy_marked = 1;
7120 }
57fdc26d 7121
aec0a514
BR
7122 /*
7123 * We can come here with TIF_NEED_RESCHED already set from new task
7124 * wake up path.
5238cdd3
PT
7125 *
7126 * Note: this also catches the edge-case of curr being in a throttled
7127 * group (e.g. via set_curr_task), since update_curr() (in the
7128 * enqueue of curr) will have resulted in resched being set. This
7129 * prevents us from potentially nominating it as a false LAST_BUDDY
7130 * below.
aec0a514
BR
7131 */
7132 if (test_tsk_need_resched(curr))
7133 return;
7134
a2f5c9ab 7135 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
7136 if (unlikely(task_has_idle_policy(curr)) &&
7137 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
7138 goto preempt;
7139
91c234b4 7140 /*
a2f5c9ab
DH
7141 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7142 * is driven by the tick):
91c234b4 7143 */
8ed92e51 7144 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7145 return;
bf0f6f24 7146
464b7527 7147 find_matching_se(&se, &pse);
002f128b 7148 BUG_ON(!pse);
30400039
JD
7149
7150 cse_is_idle = se_is_idle(se);
7151 pse_is_idle = se_is_idle(pse);
7152
7153 /*
7154 * Preempt an idle group in favor of a non-idle group (and don't preempt
7155 * in the inverse case).
7156 */
7157 if (cse_is_idle && !pse_is_idle)
7158 goto preempt;
7159 if (cse_is_idle != pse_is_idle)
7160 return;
7161
7162 update_curr(cfs_rq_of(se));
2f36825b
VP
7163 if (wakeup_preempt_entity(se, pse) == 1) {
7164 /*
7165 * Bias pick_next to pick the sched entity that is
7166 * triggering this preemption.
7167 */
7168 if (!next_buddy_marked)
7169 set_next_buddy(pse);
3a7e73a2 7170 goto preempt;
2f36825b 7171 }
464b7527 7172
3a7e73a2 7173 return;
a65ac745 7174
3a7e73a2 7175preempt:
8875125e 7176 resched_curr(rq);
3a7e73a2
PZ
7177 /*
7178 * Only set the backward buddy when the current task is still
7179 * on the rq. This can happen when a wakeup gets interleaved
7180 * with schedule on the ->pre_schedule() or idle_balance()
7181 * point, either of which can * drop the rq lock.
7182 *
7183 * Also, during early boot the idle thread is in the fair class,
7184 * for obvious reasons its a bad idea to schedule back to it.
7185 */
7186 if (unlikely(!se->on_rq || curr == rq->idle))
7187 return;
7188
7189 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7190 set_last_buddy(se);
bf0f6f24
IM
7191}
7192
21f56ffe
PZ
7193#ifdef CONFIG_SMP
7194static struct task_struct *pick_task_fair(struct rq *rq)
7195{
7196 struct sched_entity *se;
7197 struct cfs_rq *cfs_rq;
7198
7199again:
7200 cfs_rq = &rq->cfs;
7201 if (!cfs_rq->nr_running)
7202 return NULL;
7203
7204 do {
7205 struct sched_entity *curr = cfs_rq->curr;
7206
7207 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7208 if (curr) {
7209 if (curr->on_rq)
7210 update_curr(cfs_rq);
7211 else
7212 curr = NULL;
7213
7214 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7215 goto again;
7216 }
7217
7218 se = pick_next_entity(cfs_rq, curr);
7219 cfs_rq = group_cfs_rq(se);
7220 } while (cfs_rq);
7221
7222 return task_of(se);
7223}
7224#endif
7225
5d7d6056 7226struct task_struct *
d8ac8971 7227pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7228{
7229 struct cfs_rq *cfs_rq = &rq->cfs;
7230 struct sched_entity *se;
678d5718 7231 struct task_struct *p;
37e117c0 7232 int new_tasks;
678d5718 7233
6e83125c 7234again:
6e2df058 7235 if (!sched_fair_runnable(rq))
38033c37 7236 goto idle;
678d5718 7237
9674f5ca 7238#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7239 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7240 goto simple;
7241
7242 /*
7243 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7244 * likely that a next task is from the same cgroup as the current.
7245 *
7246 * Therefore attempt to avoid putting and setting the entire cgroup
7247 * hierarchy, only change the part that actually changes.
7248 */
7249
7250 do {
7251 struct sched_entity *curr = cfs_rq->curr;
7252
7253 /*
7254 * Since we got here without doing put_prev_entity() we also
7255 * have to consider cfs_rq->curr. If it is still a runnable
7256 * entity, update_curr() will update its vruntime, otherwise
7257 * forget we've ever seen it.
7258 */
54d27365
BS
7259 if (curr) {
7260 if (curr->on_rq)
7261 update_curr(cfs_rq);
7262 else
7263 curr = NULL;
678d5718 7264
54d27365
BS
7265 /*
7266 * This call to check_cfs_rq_runtime() will do the
7267 * throttle and dequeue its entity in the parent(s).
9674f5ca 7268 * Therefore the nr_running test will indeed
54d27365
BS
7269 * be correct.
7270 */
9674f5ca
VK
7271 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7272 cfs_rq = &rq->cfs;
7273
7274 if (!cfs_rq->nr_running)
7275 goto idle;
7276
54d27365 7277 goto simple;
9674f5ca 7278 }
54d27365 7279 }
678d5718
PZ
7280
7281 se = pick_next_entity(cfs_rq, curr);
7282 cfs_rq = group_cfs_rq(se);
7283 } while (cfs_rq);
7284
7285 p = task_of(se);
7286
7287 /*
7288 * Since we haven't yet done put_prev_entity and if the selected task
7289 * is a different task than we started out with, try and touch the
7290 * least amount of cfs_rqs.
7291 */
7292 if (prev != p) {
7293 struct sched_entity *pse = &prev->se;
7294
7295 while (!(cfs_rq = is_same_group(se, pse))) {
7296 int se_depth = se->depth;
7297 int pse_depth = pse->depth;
7298
7299 if (se_depth <= pse_depth) {
7300 put_prev_entity(cfs_rq_of(pse), pse);
7301 pse = parent_entity(pse);
7302 }
7303 if (se_depth >= pse_depth) {
7304 set_next_entity(cfs_rq_of(se), se);
7305 se = parent_entity(se);
7306 }
7307 }
7308
7309 put_prev_entity(cfs_rq, pse);
7310 set_next_entity(cfs_rq, se);
7311 }
7312
93824900 7313 goto done;
678d5718 7314simple:
678d5718 7315#endif
67692435
PZ
7316 if (prev)
7317 put_prev_task(rq, prev);
606dba2e 7318
bf0f6f24 7319 do {
678d5718 7320 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7321 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7322 cfs_rq = group_cfs_rq(se);
7323 } while (cfs_rq);
7324
8f4d37ec 7325 p = task_of(se);
678d5718 7326
13a453c2 7327done: __maybe_unused;
93824900
UR
7328#ifdef CONFIG_SMP
7329 /*
7330 * Move the next running task to the front of
7331 * the list, so our cfs_tasks list becomes MRU
7332 * one.
7333 */
7334 list_move(&p->se.group_node, &rq->cfs_tasks);
7335#endif
7336
e0ee463c 7337 if (hrtick_enabled_fair(rq))
b39e66ea 7338 hrtick_start_fair(rq, p);
8f4d37ec 7339
3b1baa64
MR
7340 update_misfit_status(p, rq);
7341
8f4d37ec 7342 return p;
38033c37
PZ
7343
7344idle:
67692435
PZ
7345 if (!rf)
7346 return NULL;
7347
5ba553ef 7348 new_tasks = newidle_balance(rq, rf);
46f69fa3 7349
37e117c0 7350 /*
5ba553ef 7351 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7352 * possible for any higher priority task to appear. In that case we
7353 * must re-start the pick_next_entity() loop.
7354 */
e4aa358b 7355 if (new_tasks < 0)
37e117c0
PZ
7356 return RETRY_TASK;
7357
e4aa358b 7358 if (new_tasks > 0)
38033c37 7359 goto again;
38033c37 7360
23127296
VG
7361 /*
7362 * rq is about to be idle, check if we need to update the
7363 * lost_idle_time of clock_pelt
7364 */
7365 update_idle_rq_clock_pelt(rq);
7366
38033c37 7367 return NULL;
bf0f6f24
IM
7368}
7369
98c2f700
PZ
7370static struct task_struct *__pick_next_task_fair(struct rq *rq)
7371{
7372 return pick_next_task_fair(rq, NULL, NULL);
7373}
7374
bf0f6f24
IM
7375/*
7376 * Account for a descheduled task:
7377 */
6e2df058 7378static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7379{
7380 struct sched_entity *se = &prev->se;
7381 struct cfs_rq *cfs_rq;
7382
7383 for_each_sched_entity(se) {
7384 cfs_rq = cfs_rq_of(se);
ab6cde26 7385 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7386 }
7387}
7388
ac53db59
RR
7389/*
7390 * sched_yield() is very simple
7391 *
7392 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7393 */
7394static void yield_task_fair(struct rq *rq)
7395{
7396 struct task_struct *curr = rq->curr;
7397 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7398 struct sched_entity *se = &curr->se;
7399
7400 /*
7401 * Are we the only task in the tree?
7402 */
7403 if (unlikely(rq->nr_running == 1))
7404 return;
7405
7406 clear_buddies(cfs_rq, se);
7407
7408 if (curr->policy != SCHED_BATCH) {
7409 update_rq_clock(rq);
7410 /*
7411 * Update run-time statistics of the 'current'.
7412 */
7413 update_curr(cfs_rq);
916671c0
MG
7414 /*
7415 * Tell update_rq_clock() that we've just updated,
7416 * so we don't do microscopic update in schedule()
7417 * and double the fastpath cost.
7418 */
adcc8da8 7419 rq_clock_skip_update(rq);
ac53db59
RR
7420 }
7421
7422 set_skip_buddy(se);
7423}
7424
0900acf2 7425static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7426{
7427 struct sched_entity *se = &p->se;
7428
5238cdd3
PT
7429 /* throttled hierarchies are not runnable */
7430 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7431 return false;
7432
7433 /* Tell the scheduler that we'd really like pse to run next. */
7434 set_next_buddy(se);
7435
d95f4122
MG
7436 yield_task_fair(rq);
7437
7438 return true;
7439}
7440
681f3e68 7441#ifdef CONFIG_SMP
bf0f6f24 7442/**************************************************
e9c84cb8
PZ
7443 * Fair scheduling class load-balancing methods.
7444 *
7445 * BASICS
7446 *
7447 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7448 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7449 * time to each task. This is expressed in the following equation:
7450 *
7451 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7452 *
97fb7a0a 7453 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7454 * W_i,0 is defined as:
7455 *
7456 * W_i,0 = \Sum_j w_i,j (2)
7457 *
97fb7a0a 7458 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7459 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7460 *
7461 * The weight average is an exponential decay average of the instantaneous
7462 * weight:
7463 *
7464 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7465 *
97fb7a0a 7466 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7467 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7468 * can also include other factors [XXX].
7469 *
7470 * To achieve this balance we define a measure of imbalance which follows
7471 * directly from (1):
7472 *
ced549fa 7473 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7474 *
7475 * We them move tasks around to minimize the imbalance. In the continuous
7476 * function space it is obvious this converges, in the discrete case we get
7477 * a few fun cases generally called infeasible weight scenarios.
7478 *
7479 * [XXX expand on:
7480 * - infeasible weights;
7481 * - local vs global optima in the discrete case. ]
7482 *
7483 *
7484 * SCHED DOMAINS
7485 *
7486 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7487 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7488 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7489 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7490 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7491 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7492 * the groups.
7493 *
7494 * This yields:
7495 *
7496 * log_2 n 1 n
7497 * \Sum { --- * --- * 2^i } = O(n) (5)
7498 * i = 0 2^i 2^i
7499 * `- size of each group
97fb7a0a 7500 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7501 * | `- freq
7502 * `- sum over all levels
7503 *
7504 * Coupled with a limit on how many tasks we can migrate every balance pass,
7505 * this makes (5) the runtime complexity of the balancer.
7506 *
7507 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7508 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7509 *
7510 * The adjacency matrix of the resulting graph is given by:
7511 *
97a7142f 7512 * log_2 n
e9c84cb8
PZ
7513 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7514 * k = 0
7515 *
7516 * And you'll find that:
7517 *
7518 * A^(log_2 n)_i,j != 0 for all i,j (7)
7519 *
97fb7a0a 7520 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7521 * The task movement gives a factor of O(m), giving a convergence complexity
7522 * of:
7523 *
7524 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7525 *
7526 *
7527 * WORK CONSERVING
7528 *
7529 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7530 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7531 * tree itself instead of relying on other CPUs to bring it work.
7532 *
7533 * This adds some complexity to both (5) and (8) but it reduces the total idle
7534 * time.
7535 *
7536 * [XXX more?]
7537 *
7538 *
7539 * CGROUPS
7540 *
7541 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7542 *
7543 * s_k,i
7544 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7545 * S_k
7546 *
7547 * Where
7548 *
7549 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7550 *
97fb7a0a 7551 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7552 *
7553 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7554 * property.
7555 *
7556 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7557 * rewrite all of this once again.]
97a7142f 7558 */
bf0f6f24 7559
ed387b78
HS
7560static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7561
0ec8aa00
PZ
7562enum fbq_type { regular, remote, all };
7563
0b0695f2 7564/*
a9723389
VG
7565 * 'group_type' describes the group of CPUs at the moment of load balancing.
7566 *
0b0695f2 7567 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7568 * first so the group_type can simply be compared when selecting the busiest
7569 * group. See update_sd_pick_busiest().
0b0695f2 7570 */
3b1baa64 7571enum group_type {
a9723389 7572 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7573 group_has_spare = 0,
a9723389
VG
7574 /*
7575 * The group is fully used and the tasks don't compete for more CPU
7576 * cycles. Nevertheless, some tasks might wait before running.
7577 */
0b0695f2 7578 group_fully_busy,
a9723389
VG
7579 /*
7580 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7581 * and must be migrated to a more powerful CPU.
7582 */
3b1baa64 7583 group_misfit_task,
a9723389
VG
7584 /*
7585 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7586 * and the task should be migrated to it instead of running on the
7587 * current CPU.
7588 */
0b0695f2 7589 group_asym_packing,
a9723389
VG
7590 /*
7591 * The tasks' affinity constraints previously prevented the scheduler
7592 * from balancing the load across the system.
7593 */
3b1baa64 7594 group_imbalanced,
a9723389
VG
7595 /*
7596 * The CPU is overloaded and can't provide expected CPU cycles to all
7597 * tasks.
7598 */
0b0695f2
VG
7599 group_overloaded
7600};
7601
7602enum migration_type {
7603 migrate_load = 0,
7604 migrate_util,
7605 migrate_task,
7606 migrate_misfit
3b1baa64
MR
7607};
7608
ddcdf6e7 7609#define LBF_ALL_PINNED 0x01
367456c7 7610#define LBF_NEED_BREAK 0x02
6263322c
PZ
7611#define LBF_DST_PINNED 0x04
7612#define LBF_SOME_PINNED 0x08
23fb06d9 7613#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
7614
7615struct lb_env {
7616 struct sched_domain *sd;
7617
ddcdf6e7 7618 struct rq *src_rq;
85c1e7da 7619 int src_cpu;
ddcdf6e7
PZ
7620
7621 int dst_cpu;
7622 struct rq *dst_rq;
7623
88b8dac0
SV
7624 struct cpumask *dst_grpmask;
7625 int new_dst_cpu;
ddcdf6e7 7626 enum cpu_idle_type idle;
bd939f45 7627 long imbalance;
b9403130
MW
7628 /* The set of CPUs under consideration for load-balancing */
7629 struct cpumask *cpus;
7630
ddcdf6e7 7631 unsigned int flags;
367456c7
PZ
7632
7633 unsigned int loop;
7634 unsigned int loop_break;
7635 unsigned int loop_max;
0ec8aa00
PZ
7636
7637 enum fbq_type fbq_type;
0b0695f2 7638 enum migration_type migration_type;
163122b7 7639 struct list_head tasks;
ddcdf6e7
PZ
7640};
7641
029632fb
PZ
7642/*
7643 * Is this task likely cache-hot:
7644 */
5d5e2b1b 7645static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7646{
7647 s64 delta;
7648
5cb9eaa3 7649 lockdep_assert_rq_held(env->src_rq);
e5673f28 7650
029632fb
PZ
7651 if (p->sched_class != &fair_sched_class)
7652 return 0;
7653
1da1843f 7654 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7655 return 0;
7656
ec73240b
JD
7657 /* SMT siblings share cache */
7658 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7659 return 0;
7660
029632fb
PZ
7661 /*
7662 * Buddy candidates are cache hot:
7663 */
5d5e2b1b 7664 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7665 (&p->se == cfs_rq_of(&p->se)->next ||
7666 &p->se == cfs_rq_of(&p->se)->last))
7667 return 1;
7668
7669 if (sysctl_sched_migration_cost == -1)
7670 return 1;
97886d9d
AL
7671
7672 /*
7673 * Don't migrate task if the task's cookie does not match
7674 * with the destination CPU's core cookie.
7675 */
7676 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7677 return 1;
7678
029632fb
PZ
7679 if (sysctl_sched_migration_cost == 0)
7680 return 0;
7681
5d5e2b1b 7682 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7683
7684 return delta < (s64)sysctl_sched_migration_cost;
7685}
7686
3a7053b3 7687#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7688/*
2a1ed24c
SD
7689 * Returns 1, if task migration degrades locality
7690 * Returns 0, if task migration improves locality i.e migration preferred.
7691 * Returns -1, if task migration is not affected by locality.
c1ceac62 7692 */
2a1ed24c 7693static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7694{
b1ad065e 7695 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7696 unsigned long src_weight, dst_weight;
7697 int src_nid, dst_nid, dist;
3a7053b3 7698
2a595721 7699 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7700 return -1;
7701
c3b9bc5b 7702 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7703 return -1;
7a0f3083
MG
7704
7705 src_nid = cpu_to_node(env->src_cpu);
7706 dst_nid = cpu_to_node(env->dst_cpu);
7707
83e1d2cd 7708 if (src_nid == dst_nid)
2a1ed24c 7709 return -1;
7a0f3083 7710
2a1ed24c
SD
7711 /* Migrating away from the preferred node is always bad. */
7712 if (src_nid == p->numa_preferred_nid) {
7713 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7714 return 1;
7715 else
7716 return -1;
7717 }
b1ad065e 7718
c1ceac62
RR
7719 /* Encourage migration to the preferred node. */
7720 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7721 return 0;
b1ad065e 7722
739294fb 7723 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7724 if (env->idle == CPU_IDLE)
739294fb
RR
7725 return -1;
7726
f35678b6 7727 dist = node_distance(src_nid, dst_nid);
c1ceac62 7728 if (numa_group) {
f35678b6
SD
7729 src_weight = group_weight(p, src_nid, dist);
7730 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7731 } else {
f35678b6
SD
7732 src_weight = task_weight(p, src_nid, dist);
7733 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7734 }
7735
f35678b6 7736 return dst_weight < src_weight;
7a0f3083
MG
7737}
7738
3a7053b3 7739#else
2a1ed24c 7740static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7741 struct lb_env *env)
7742{
2a1ed24c 7743 return -1;
7a0f3083 7744}
3a7053b3
MG
7745#endif
7746
1e3c88bd
PZ
7747/*
7748 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7749 */
7750static
8e45cb54 7751int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7752{
2a1ed24c 7753 int tsk_cache_hot;
e5673f28 7754
5cb9eaa3 7755 lockdep_assert_rq_held(env->src_rq);
e5673f28 7756
1e3c88bd
PZ
7757 /*
7758 * We do not migrate tasks that are:
d3198084 7759 * 1) throttled_lb_pair, or
3bd37062 7760 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7761 * 3) running (obviously), or
7762 * 4) are cache-hot on their current CPU.
1e3c88bd 7763 */
d3198084
JK
7764 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7765 return 0;
7766
9bcb959d 7767 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 7768 if (kthread_is_per_cpu(p))
9bcb959d
LC
7769 return 0;
7770
3bd37062 7771 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7772 int cpu;
88b8dac0 7773
ceeadb83 7774 schedstat_inc(p->stats.nr_failed_migrations_affine);
88b8dac0 7775
6263322c
PZ
7776 env->flags |= LBF_SOME_PINNED;
7777
88b8dac0 7778 /*
97fb7a0a 7779 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7780 * our sched_group. We may want to revisit it if we couldn't
7781 * meet load balance goals by pulling other tasks on src_cpu.
7782 *
23fb06d9
VS
7783 * Avoid computing new_dst_cpu
7784 * - for NEWLY_IDLE
7785 * - if we have already computed one in current iteration
7786 * - if it's an active balance
88b8dac0 7787 */
23fb06d9
VS
7788 if (env->idle == CPU_NEWLY_IDLE ||
7789 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
7790 return 0;
7791
97fb7a0a 7792 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7793 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7794 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7795 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7796 env->new_dst_cpu = cpu;
7797 break;
7798 }
88b8dac0 7799 }
e02e60c1 7800
1e3c88bd
PZ
7801 return 0;
7802 }
88b8dac0 7803
3b03706f 7804 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 7805 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7806
ddcdf6e7 7807 if (task_running(env->src_rq, p)) {
ceeadb83 7808 schedstat_inc(p->stats.nr_failed_migrations_running);
1e3c88bd
PZ
7809 return 0;
7810 }
7811
7812 /*
7813 * Aggressive migration if:
23fb06d9
VS
7814 * 1) active balance
7815 * 2) destination numa is preferred
7816 * 3) task is cache cold, or
7817 * 4) too many balance attempts have failed.
1e3c88bd 7818 */
23fb06d9
VS
7819 if (env->flags & LBF_ACTIVE_LB)
7820 return 1;
7821
2a1ed24c
SD
7822 tsk_cache_hot = migrate_degrades_locality(p, env);
7823 if (tsk_cache_hot == -1)
7824 tsk_cache_hot = task_hot(p, env);
3a7053b3 7825
2a1ed24c 7826 if (tsk_cache_hot <= 0 ||
7a96c231 7827 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7828 if (tsk_cache_hot == 1) {
ae92882e 7829 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
ceeadb83 7830 schedstat_inc(p->stats.nr_forced_migrations);
3a7053b3 7831 }
1e3c88bd
PZ
7832 return 1;
7833 }
7834
ceeadb83 7835 schedstat_inc(p->stats.nr_failed_migrations_hot);
4e2dcb73 7836 return 0;
1e3c88bd
PZ
7837}
7838
897c395f 7839/*
163122b7
KT
7840 * detach_task() -- detach the task for the migration specified in env
7841 */
7842static void detach_task(struct task_struct *p, struct lb_env *env)
7843{
5cb9eaa3 7844 lockdep_assert_rq_held(env->src_rq);
163122b7 7845
5704ac0a 7846 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7847 set_task_cpu(p, env->dst_cpu);
7848}
7849
897c395f 7850/*
e5673f28 7851 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7852 * part of active balancing operations within "domain".
897c395f 7853 *
e5673f28 7854 * Returns a task if successful and NULL otherwise.
897c395f 7855 */
e5673f28 7856static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7857{
93824900 7858 struct task_struct *p;
897c395f 7859
5cb9eaa3 7860 lockdep_assert_rq_held(env->src_rq);
e5673f28 7861
93824900
UR
7862 list_for_each_entry_reverse(p,
7863 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7864 if (!can_migrate_task(p, env))
7865 continue;
897c395f 7866
163122b7 7867 detach_task(p, env);
e5673f28 7868
367456c7 7869 /*
e5673f28 7870 * Right now, this is only the second place where
163122b7 7871 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7872 * so we can safely collect stats here rather than
163122b7 7873 * inside detach_tasks().
367456c7 7874 */
ae92882e 7875 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7876 return p;
897c395f 7877 }
e5673f28 7878 return NULL;
897c395f
PZ
7879}
7880
eb95308e
PZ
7881static const unsigned int sched_nr_migrate_break = 32;
7882
5d6523eb 7883/*
0b0695f2 7884 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7885 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7886 *
163122b7 7887 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7888 */
163122b7 7889static int detach_tasks(struct lb_env *env)
1e3c88bd 7890{
5d6523eb 7891 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7892 unsigned long util, load;
5d6523eb 7893 struct task_struct *p;
163122b7
KT
7894 int detached = 0;
7895
5cb9eaa3 7896 lockdep_assert_rq_held(env->src_rq);
1e3c88bd 7897
acb4decc
AL
7898 /*
7899 * Source run queue has been emptied by another CPU, clear
7900 * LBF_ALL_PINNED flag as we will not test any task.
7901 */
7902 if (env->src_rq->nr_running <= 1) {
7903 env->flags &= ~LBF_ALL_PINNED;
7904 return 0;
7905 }
7906
bd939f45 7907 if (env->imbalance <= 0)
5d6523eb 7908 return 0;
1e3c88bd 7909
5d6523eb 7910 while (!list_empty(tasks)) {
985d3a4c
YD
7911 /*
7912 * We don't want to steal all, otherwise we may be treated likewise,
7913 * which could at worst lead to a livelock crash.
7914 */
7915 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7916 break;
7917
93824900 7918 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7919
367456c7
PZ
7920 env->loop++;
7921 /* We've more or less seen every task there is, call it quits */
5d6523eb 7922 if (env->loop > env->loop_max)
367456c7 7923 break;
5d6523eb
PZ
7924
7925 /* take a breather every nr_migrate tasks */
367456c7 7926 if (env->loop > env->loop_break) {
eb95308e 7927 env->loop_break += sched_nr_migrate_break;
8e45cb54 7928 env->flags |= LBF_NEED_BREAK;
ee00e66f 7929 break;
a195f004 7930 }
1e3c88bd 7931
d3198084 7932 if (!can_migrate_task(p, env))
367456c7
PZ
7933 goto next;
7934
0b0695f2
VG
7935 switch (env->migration_type) {
7936 case migrate_load:
01cfcde9
VG
7937 /*
7938 * Depending of the number of CPUs and tasks and the
7939 * cgroup hierarchy, task_h_load() can return a null
7940 * value. Make sure that env->imbalance decreases
7941 * otherwise detach_tasks() will stop only after
7942 * detaching up to loop_max tasks.
7943 */
7944 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7945
0b0695f2
VG
7946 if (sched_feat(LB_MIN) &&
7947 load < 16 && !env->sd->nr_balance_failed)
7948 goto next;
367456c7 7949
6cf82d55
VG
7950 /*
7951 * Make sure that we don't migrate too much load.
7952 * Nevertheless, let relax the constraint if
7953 * scheduler fails to find a good waiting task to
7954 * migrate.
7955 */
39a2a6eb 7956 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7957 goto next;
7958
7959 env->imbalance -= load;
7960 break;
7961
7962 case migrate_util:
7963 util = task_util_est(p);
7964
7965 if (util > env->imbalance)
7966 goto next;
7967
7968 env->imbalance -= util;
7969 break;
7970
7971 case migrate_task:
7972 env->imbalance--;
7973 break;
7974
7975 case migrate_misfit:
c63be7be
VG
7976 /* This is not a misfit task */
7977 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7978 goto next;
7979
7980 env->imbalance = 0;
7981 break;
7982 }
1e3c88bd 7983
163122b7
KT
7984 detach_task(p, env);
7985 list_add(&p->se.group_node, &env->tasks);
7986
7987 detached++;
1e3c88bd 7988
c1a280b6 7989#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7990 /*
7991 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7992 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7993 * the critical section.
7994 */
5d6523eb 7995 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7996 break;
1e3c88bd
PZ
7997#endif
7998
ee00e66f
PZ
7999 /*
8000 * We only want to steal up to the prescribed amount of
0b0695f2 8001 * load/util/tasks.
ee00e66f 8002 */
bd939f45 8003 if (env->imbalance <= 0)
ee00e66f 8004 break;
367456c7
PZ
8005
8006 continue;
8007next:
93824900 8008 list_move(&p->se.group_node, tasks);
1e3c88bd 8009 }
5d6523eb 8010
1e3c88bd 8011 /*
163122b7
KT
8012 * Right now, this is one of only two places we collect this stat
8013 * so we can safely collect detach_one_task() stats here rather
8014 * than inside detach_one_task().
1e3c88bd 8015 */
ae92882e 8016 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 8017
163122b7
KT
8018 return detached;
8019}
8020
8021/*
8022 * attach_task() -- attach the task detached by detach_task() to its new rq.
8023 */
8024static void attach_task(struct rq *rq, struct task_struct *p)
8025{
5cb9eaa3 8026 lockdep_assert_rq_held(rq);
163122b7
KT
8027
8028 BUG_ON(task_rq(p) != rq);
5704ac0a 8029 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
8030 check_preempt_curr(rq, p, 0);
8031}
8032
8033/*
8034 * attach_one_task() -- attaches the task returned from detach_one_task() to
8035 * its new rq.
8036 */
8037static void attach_one_task(struct rq *rq, struct task_struct *p)
8038{
8a8c69c3
PZ
8039 struct rq_flags rf;
8040
8041 rq_lock(rq, &rf);
5704ac0a 8042 update_rq_clock(rq);
163122b7 8043 attach_task(rq, p);
8a8c69c3 8044 rq_unlock(rq, &rf);
163122b7
KT
8045}
8046
8047/*
8048 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8049 * new rq.
8050 */
8051static void attach_tasks(struct lb_env *env)
8052{
8053 struct list_head *tasks = &env->tasks;
8054 struct task_struct *p;
8a8c69c3 8055 struct rq_flags rf;
163122b7 8056
8a8c69c3 8057 rq_lock(env->dst_rq, &rf);
5704ac0a 8058 update_rq_clock(env->dst_rq);
163122b7
KT
8059
8060 while (!list_empty(tasks)) {
8061 p = list_first_entry(tasks, struct task_struct, se.group_node);
8062 list_del_init(&p->se.group_node);
1e3c88bd 8063
163122b7
KT
8064 attach_task(env->dst_rq, p);
8065 }
8066
8a8c69c3 8067 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
8068}
8069
b0c79224 8070#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
8071static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8072{
8073 if (cfs_rq->avg.load_avg)
8074 return true;
8075
8076 if (cfs_rq->avg.util_avg)
8077 return true;
8078
8079 return false;
8080}
8081
91c27493 8082static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
8083{
8084 if (READ_ONCE(rq->avg_rt.util_avg))
8085 return true;
8086
3727e0e1
VG
8087 if (READ_ONCE(rq->avg_dl.util_avg))
8088 return true;
8089
b4eccf5f
TG
8090 if (thermal_load_avg(rq))
8091 return true;
8092
11d4afd4 8093#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
8094 if (READ_ONCE(rq->avg_irq.util_avg))
8095 return true;
8096#endif
8097
371bf427
VG
8098 return false;
8099}
8100
39b6a429 8101static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 8102{
39b6a429
VG
8103 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8104}
b0c79224 8105
39b6a429
VG
8106static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8107{
b0c79224
VS
8108 if (!has_blocked)
8109 rq->has_blocked_load = 0;
8110}
8111#else
8112static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8113static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 8114static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
8115static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8116#endif
8117
bef69dd8
VG
8118static bool __update_blocked_others(struct rq *rq, bool *done)
8119{
8120 const struct sched_class *curr_class;
8121 u64 now = rq_clock_pelt(rq);
b4eccf5f 8122 unsigned long thermal_pressure;
bef69dd8
VG
8123 bool decayed;
8124
8125 /*
8126 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8127 * DL and IRQ signals have been updated before updating CFS.
8128 */
8129 curr_class = rq->curr->sched_class;
8130
b4eccf5f
TG
8131 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8132
bef69dd8
VG
8133 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8134 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 8135 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
8136 update_irq_load_avg(rq, 0);
8137
8138 if (others_have_blocked(rq))
8139 *done = false;
8140
8141 return decayed;
8142}
8143
1936c53c
VG
8144#ifdef CONFIG_FAIR_GROUP_SCHED
8145
bef69dd8 8146static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8147{
039ae8bc 8148 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
8149 bool decayed = false;
8150 int cpu = cpu_of(rq);
b90f7c9d 8151
9763b67f
PZ
8152 /*
8153 * Iterates the task_group tree in a bottom up fashion, see
8154 * list_add_leaf_cfs_rq() for details.
8155 */
039ae8bc 8156 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
8157 struct sched_entity *se;
8158
bef69dd8 8159 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 8160 update_tg_load_avg(cfs_rq);
4e516076 8161
bef69dd8
VG
8162 if (cfs_rq == &rq->cfs)
8163 decayed = true;
8164 }
8165
bc427898
VG
8166 /* Propagate pending load changes to the parent, if any: */
8167 se = cfs_rq->tg->se[cpu];
8168 if (se && !skip_blocked_update(se))
02da26ad 8169 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 8170
039ae8bc
VG
8171 /*
8172 * There can be a lot of idle CPU cgroups. Don't let fully
8173 * decayed cfs_rqs linger on the list.
8174 */
8175 if (cfs_rq_is_decayed(cfs_rq))
8176 list_del_leaf_cfs_rq(cfs_rq);
8177
1936c53c
VG
8178 /* Don't need periodic decay once load/util_avg are null */
8179 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 8180 *done = false;
9d89c257 8181 }
12b04875 8182
bef69dd8 8183 return decayed;
9e3081ca
PZ
8184}
8185
9763b67f 8186/*
68520796 8187 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
8188 * This needs to be done in a top-down fashion because the load of a child
8189 * group is a fraction of its parents load.
8190 */
68520796 8191static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 8192{
68520796
VD
8193 struct rq *rq = rq_of(cfs_rq);
8194 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 8195 unsigned long now = jiffies;
68520796 8196 unsigned long load;
a35b6466 8197
68520796 8198 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
8199 return;
8200
0e9f0245 8201 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8202 for_each_sched_entity(se) {
8203 cfs_rq = cfs_rq_of(se);
0e9f0245 8204 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8205 if (cfs_rq->last_h_load_update == now)
8206 break;
8207 }
a35b6466 8208
68520796 8209 if (!se) {
7ea241af 8210 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8211 cfs_rq->last_h_load_update = now;
8212 }
8213
0e9f0245 8214 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8215 load = cfs_rq->h_load;
7ea241af
YD
8216 load = div64_ul(load * se->avg.load_avg,
8217 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8218 cfs_rq = group_cfs_rq(se);
8219 cfs_rq->h_load = load;
8220 cfs_rq->last_h_load_update = now;
8221 }
9763b67f
PZ
8222}
8223
367456c7 8224static unsigned long task_h_load(struct task_struct *p)
230059de 8225{
367456c7 8226 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8227
68520796 8228 update_cfs_rq_h_load(cfs_rq);
9d89c257 8229 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8230 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8231}
8232#else
bef69dd8 8233static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8234{
6c1d47c0 8235 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8236 bool decayed;
b90f7c9d 8237
bef69dd8
VG
8238 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8239 if (cfs_rq_has_blocked(cfs_rq))
8240 *done = false;
b90f7c9d 8241
bef69dd8 8242 return decayed;
9e3081ca
PZ
8243}
8244
367456c7 8245static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8246{
9d89c257 8247 return p->se.avg.load_avg;
1e3c88bd 8248}
230059de 8249#endif
1e3c88bd 8250
bef69dd8
VG
8251static void update_blocked_averages(int cpu)
8252{
8253 bool decayed = false, done = true;
8254 struct rq *rq = cpu_rq(cpu);
8255 struct rq_flags rf;
8256
8257 rq_lock_irqsave(rq, &rf);
39b6a429 8258 update_blocked_load_tick(rq);
bef69dd8
VG
8259 update_rq_clock(rq);
8260
8261 decayed |= __update_blocked_others(rq, &done);
8262 decayed |= __update_blocked_fair(rq, &done);
8263
8264 update_blocked_load_status(rq, !done);
8265 if (decayed)
8266 cpufreq_update_util(rq, 0);
8267 rq_unlock_irqrestore(rq, &rf);
8268}
8269
1e3c88bd 8270/********** Helpers for find_busiest_group ************************/
caeb178c 8271
1e3c88bd
PZ
8272/*
8273 * sg_lb_stats - stats of a sched_group required for load_balancing
8274 */
8275struct sg_lb_stats {
8276 unsigned long avg_load; /*Avg load across the CPUs of the group */
8277 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8278 unsigned long group_capacity;
070f5e86
VG
8279 unsigned long group_util; /* Total utilization over the CPUs of the group */
8280 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8281 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8282 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8283 unsigned int idle_cpus;
8284 unsigned int group_weight;
caeb178c 8285 enum group_type group_type;
490ba971 8286 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8287 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8288#ifdef CONFIG_NUMA_BALANCING
8289 unsigned int nr_numa_running;
8290 unsigned int nr_preferred_running;
8291#endif
1e3c88bd
PZ
8292};
8293
56cf515b
JK
8294/*
8295 * sd_lb_stats - Structure to store the statistics of a sched_domain
8296 * during load balancing.
8297 */
8298struct sd_lb_stats {
8299 struct sched_group *busiest; /* Busiest group in this sd */
8300 struct sched_group *local; /* Local group in this sd */
8301 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8302 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8303 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8304 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8305
56cf515b 8306 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8307 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8308};
8309
147c5fc2
PZ
8310static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8311{
8312 /*
8313 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8314 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8315 * We must however set busiest_stat::group_type and
8316 * busiest_stat::idle_cpus to the worst busiest group because
8317 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8318 */
8319 *sds = (struct sd_lb_stats){
8320 .busiest = NULL,
8321 .local = NULL,
8322 .total_load = 0UL,
63b2ca30 8323 .total_capacity = 0UL,
147c5fc2 8324 .busiest_stat = {
0b0695f2
VG
8325 .idle_cpus = UINT_MAX,
8326 .group_type = group_has_spare,
147c5fc2
PZ
8327 },
8328 };
8329}
8330
1ca2034e 8331static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8332{
8333 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8334 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8335 unsigned long used, free;
523e979d 8336 unsigned long irq;
b654f7de 8337
2e62c474 8338 irq = cpu_util_irq(rq);
cadefd3d 8339
523e979d
VG
8340 if (unlikely(irq >= max))
8341 return 1;
aa483808 8342
467b7d01
TG
8343 /*
8344 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8345 * (running and not running) with weights 0 and 1024 respectively.
8346 * avg_thermal.load_avg tracks thermal pressure and the weighted
8347 * average uses the actual delta max capacity(load).
8348 */
523e979d
VG
8349 used = READ_ONCE(rq->avg_rt.util_avg);
8350 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8351 used += thermal_load_avg(rq);
1e3c88bd 8352
523e979d
VG
8353 if (unlikely(used >= max))
8354 return 1;
1e3c88bd 8355
523e979d 8356 free = max - used;
2e62c474
VG
8357
8358 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8359}
8360
ced549fa 8361static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8362{
1ca2034e 8363 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8364 struct sched_group *sdg = sd->groups;
8365
8ec59c0f 8366 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8367
ced549fa
NP
8368 if (!capacity)
8369 capacity = 1;
1e3c88bd 8370
ced549fa 8371 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8372 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8373
ced549fa 8374 sdg->sgc->capacity = capacity;
bf475ce0 8375 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8376 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8377}
8378
63b2ca30 8379void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8380{
8381 struct sched_domain *child = sd->child;
8382 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8383 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8384 unsigned long interval;
8385
8386 interval = msecs_to_jiffies(sd->balance_interval);
8387 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8388 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8389
8390 if (!child) {
ced549fa 8391 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8392 return;
8393 }
8394
dc7ff76e 8395 capacity = 0;
bf475ce0 8396 min_capacity = ULONG_MAX;
e3d6d0cb 8397 max_capacity = 0;
1e3c88bd 8398
74a5ce20
PZ
8399 if (child->flags & SD_OVERLAP) {
8400 /*
8401 * SD_OVERLAP domains cannot assume that child groups
8402 * span the current group.
8403 */
8404
ae4df9d6 8405 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8406 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8407
4c58f57f
PL
8408 capacity += cpu_cap;
8409 min_capacity = min(cpu_cap, min_capacity);
8410 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8411 }
74a5ce20
PZ
8412 } else {
8413 /*
8414 * !SD_OVERLAP domains can assume that child groups
8415 * span the current group.
97a7142f 8416 */
74a5ce20
PZ
8417
8418 group = child->groups;
8419 do {
bf475ce0
MR
8420 struct sched_group_capacity *sgc = group->sgc;
8421
8422 capacity += sgc->capacity;
8423 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8424 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8425 group = group->next;
8426 } while (group != child->groups);
8427 }
1e3c88bd 8428
63b2ca30 8429 sdg->sgc->capacity = capacity;
bf475ce0 8430 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8431 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8432}
8433
9d5efe05 8434/*
ea67821b
VG
8435 * Check whether the capacity of the rq has been noticeably reduced by side
8436 * activity. The imbalance_pct is used for the threshold.
8437 * Return true is the capacity is reduced
9d5efe05
SV
8438 */
8439static inline int
ea67821b 8440check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8441{
ea67821b
VG
8442 return ((rq->cpu_capacity * sd->imbalance_pct) <
8443 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8444}
8445
a0fe2cf0
VS
8446/*
8447 * Check whether a rq has a misfit task and if it looks like we can actually
8448 * help that task: we can migrate the task to a CPU of higher capacity, or
8449 * the task's current CPU is heavily pressured.
8450 */
8451static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8452{
8453 return rq->misfit_task_load &&
8454 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8455 check_cpu_capacity(rq, sd));
8456}
8457
30ce5dab
PZ
8458/*
8459 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8460 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8461 *
97fb7a0a
IM
8462 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8463 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8464 * Something like:
8465 *
2b4d5b25
IM
8466 * { 0 1 2 3 } { 4 5 6 7 }
8467 * * * * *
30ce5dab
PZ
8468 *
8469 * If we were to balance group-wise we'd place two tasks in the first group and
8470 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8471 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8472 *
8473 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8474 * by noticing the lower domain failed to reach balance and had difficulty
8475 * moving tasks due to affinity constraints.
30ce5dab
PZ
8476 *
8477 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8478 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8479 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8480 * to create an effective group imbalance.
8481 *
8482 * This is a somewhat tricky proposition since the next run might not find the
8483 * group imbalance and decide the groups need to be balanced again. A most
8484 * subtle and fragile situation.
8485 */
8486
6263322c 8487static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8488{
63b2ca30 8489 return group->sgc->imbalance;
30ce5dab
PZ
8490}
8491
b37d9316 8492/*
ea67821b
VG
8493 * group_has_capacity returns true if the group has spare capacity that could
8494 * be used by some tasks.
8495 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8496 * smaller than the number of CPUs or if the utilization is lower than the
8497 * available capacity for CFS tasks.
ea67821b
VG
8498 * For the latter, we use a threshold to stabilize the state, to take into
8499 * account the variance of the tasks' load and to return true if the available
8500 * capacity in meaningful for the load balancer.
8501 * As an example, an available capacity of 1% can appear but it doesn't make
8502 * any benefit for the load balance.
b37d9316 8503 */
ea67821b 8504static inline bool
57abff06 8505group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8506{
5e23e474 8507 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8508 return true;
c61037e9 8509
070f5e86
VG
8510 if ((sgs->group_capacity * imbalance_pct) <
8511 (sgs->group_runnable * 100))
8512 return false;
8513
ea67821b 8514 if ((sgs->group_capacity * 100) >
57abff06 8515 (sgs->group_util * imbalance_pct))
ea67821b 8516 return true;
b37d9316 8517
ea67821b
VG
8518 return false;
8519}
8520
8521/*
8522 * group_is_overloaded returns true if the group has more tasks than it can
8523 * handle.
8524 * group_is_overloaded is not equals to !group_has_capacity because a group
8525 * with the exact right number of tasks, has no more spare capacity but is not
8526 * overloaded so both group_has_capacity and group_is_overloaded return
8527 * false.
8528 */
8529static inline bool
57abff06 8530group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8531{
5e23e474 8532 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8533 return false;
b37d9316 8534
ea67821b 8535 if ((sgs->group_capacity * 100) <
57abff06 8536 (sgs->group_util * imbalance_pct))
ea67821b 8537 return true;
b37d9316 8538
070f5e86
VG
8539 if ((sgs->group_capacity * imbalance_pct) <
8540 (sgs->group_runnable * 100))
8541 return true;
8542
ea67821b 8543 return false;
b37d9316
PZ
8544}
8545
79a89f92 8546static inline enum
57abff06 8547group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8548 struct sched_group *group,
79a89f92 8549 struct sg_lb_stats *sgs)
caeb178c 8550{
57abff06 8551 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8552 return group_overloaded;
8553
8554 if (sg_imbalanced(group))
8555 return group_imbalanced;
8556
0b0695f2
VG
8557 if (sgs->group_asym_packing)
8558 return group_asym_packing;
8559
3b1baa64
MR
8560 if (sgs->group_misfit_task_load)
8561 return group_misfit_task;
8562
57abff06 8563 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8564 return group_fully_busy;
8565
8566 return group_has_spare;
caeb178c
RR
8567}
8568
4006a72b
RN
8569/**
8570 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8571 * @dst_cpu: Destination CPU of the load balancing
8572 * @sds: Load-balancing data with statistics of the local group
8573 * @sgs: Load-balancing statistics of the candidate busiest group
8574 * @sg: The candidate busiest group
8575 *
8576 * Check the state of the SMT siblings of both @sds::local and @sg and decide
8577 * if @dst_cpu can pull tasks.
8578 *
8579 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8580 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8581 * only if @dst_cpu has higher priority.
8582 *
8583 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8584 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8585 * Bigger imbalances in the number of busy CPUs will be dealt with in
8586 * update_sd_pick_busiest().
8587 *
8588 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8589 * of @dst_cpu are idle and @sg has lower priority.
8590 */
8591static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8592 struct sg_lb_stats *sgs,
8593 struct sched_group *sg)
8594{
8595#ifdef CONFIG_SCHED_SMT
8596 bool local_is_smt, sg_is_smt;
8597 int sg_busy_cpus;
8598
8599 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8600 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8601
8602 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8603
8604 if (!local_is_smt) {
8605 /*
8606 * If we are here, @dst_cpu is idle and does not have SMT
8607 * siblings. Pull tasks if candidate group has two or more
8608 * busy CPUs.
8609 */
8610 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8611 return true;
8612
8613 /*
8614 * @dst_cpu does not have SMT siblings. @sg may have SMT
8615 * siblings and only one is busy. In such case, @dst_cpu
8616 * can help if it has higher priority and is idle (i.e.,
8617 * it has no running tasks).
8618 */
8619 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8620 }
8621
8622 /* @dst_cpu has SMT siblings. */
8623
8624 if (sg_is_smt) {
8625 int local_busy_cpus = sds->local->group_weight -
8626 sds->local_stat.idle_cpus;
8627 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8628
8629 if (busy_cpus_delta == 1)
8630 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8631
8632 return false;
8633 }
8634
8635 /*
8636 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8637 * up with more than one busy SMT sibling and only pull tasks if there
8638 * are not busy CPUs (i.e., no CPU has running tasks).
8639 */
8640 if (!sds->local_stat.sum_nr_running)
8641 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8642
8643 return false;
8644#else
8645 /* Always return false so that callers deal with non-SMT cases. */
8646 return false;
8647#endif
8648}
8649
aafc917a
RN
8650static inline bool
8651sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
8652 struct sched_group *group)
8653{
4006a72b
RN
8654 /* Only do SMT checks if either local or candidate have SMT siblings */
8655 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8656 (group->flags & SD_SHARE_CPUCAPACITY))
8657 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8658
aafc917a
RN
8659 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8660}
8661
1e3c88bd
PZ
8662/**
8663 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8664 * @env: The load balancing environment.
1e3c88bd 8665 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8666 * @sgs: variable to hold the statistics for this group.
630246a0 8667 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8668 */
bd939f45 8669static inline void update_sg_lb_stats(struct lb_env *env,
c0d14b57 8670 struct sd_lb_stats *sds,
630246a0
QP
8671 struct sched_group *group,
8672 struct sg_lb_stats *sgs,
8673 int *sg_status)
1e3c88bd 8674{
0b0695f2 8675 int i, nr_running, local_group;
1e3c88bd 8676
b72ff13c
PZ
8677 memset(sgs, 0, sizeof(*sgs));
8678
c0d14b57 8679 local_group = group == sds->local;
0b0695f2 8680
ae4df9d6 8681 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8682 struct rq *rq = cpu_rq(i);
8683
b0fb1eb4 8684 sgs->group_load += cpu_load(rq);
9e91d61d 8685 sgs->group_util += cpu_util(i);
070f5e86 8686 sgs->group_runnable += cpu_runnable(rq);
a3498347 8687 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8688
a426f99c 8689 nr_running = rq->nr_running;
5e23e474
VG
8690 sgs->sum_nr_running += nr_running;
8691
a426f99c 8692 if (nr_running > 1)
630246a0 8693 *sg_status |= SG_OVERLOAD;
4486edd1 8694
2802bf3c
MR
8695 if (cpu_overutilized(i))
8696 *sg_status |= SG_OVERUTILIZED;
4486edd1 8697
0ec8aa00
PZ
8698#ifdef CONFIG_NUMA_BALANCING
8699 sgs->nr_numa_running += rq->nr_numa_running;
8700 sgs->nr_preferred_running += rq->nr_preferred_running;
8701#endif
a426f99c
WL
8702 /*
8703 * No need to call idle_cpu() if nr_running is not 0
8704 */
0b0695f2 8705 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8706 sgs->idle_cpus++;
0b0695f2
VG
8707 /* Idle cpu can't have misfit task */
8708 continue;
8709 }
8710
8711 if (local_group)
8712 continue;
3b1baa64 8713
0b0695f2 8714 /* Check for a misfit task on the cpu */
3b1baa64 8715 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8716 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8717 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8718 *sg_status |= SG_OVERLOAD;
757ffdd7 8719 }
1e3c88bd
PZ
8720 }
8721
aafc917a
RN
8722 sgs->group_capacity = group->sgc->capacity;
8723
8724 sgs->group_weight = group->group_weight;
8725
0b0695f2 8726 /* Check if dst CPU is idle and preferred to this group */
60256435 8727 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
aafc917a
RN
8728 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8729 sched_asym(env, sds, sgs, group)) {
0b0695f2
VG
8730 sgs->group_asym_packing = 1;
8731 }
8732
57abff06 8733 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8734
8735 /* Computing avg_load makes sense only when group is overloaded */
8736 if (sgs->group_type == group_overloaded)
8737 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8738 sgs->group_capacity;
1e3c88bd
PZ
8739}
8740
532cb4c4
MN
8741/**
8742 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8743 * @env: The load balancing environment.
532cb4c4
MN
8744 * @sds: sched_domain statistics
8745 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8746 * @sgs: sched_group statistics
532cb4c4
MN
8747 *
8748 * Determine if @sg is a busier group than the previously selected
8749 * busiest group.
e69f6186
YB
8750 *
8751 * Return: %true if @sg is a busier group than the previously selected
8752 * busiest group. %false otherwise.
532cb4c4 8753 */
bd939f45 8754static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8755 struct sd_lb_stats *sds,
8756 struct sched_group *sg,
bd939f45 8757 struct sg_lb_stats *sgs)
532cb4c4 8758{
caeb178c 8759 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8760
0b0695f2
VG
8761 /* Make sure that there is at least one task to pull */
8762 if (!sgs->sum_h_nr_running)
8763 return false;
8764
cad68e55
MR
8765 /*
8766 * Don't try to pull misfit tasks we can't help.
8767 * We can use max_capacity here as reduction in capacity on some
8768 * CPUs in the group should either be possible to resolve
8769 * internally or be covered by avg_load imbalance (eventually).
8770 */
8771 if (sgs->group_type == group_misfit_task &&
4aed8aa4 8772 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 8773 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8774 return false;
8775
caeb178c 8776 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8777 return true;
8778
caeb178c
RR
8779 if (sgs->group_type < busiest->group_type)
8780 return false;
8781
9e0994c0 8782 /*
0b0695f2
VG
8783 * The candidate and the current busiest group are the same type of
8784 * group. Let check which one is the busiest according to the type.
9e0994c0 8785 */
9e0994c0 8786
0b0695f2
VG
8787 switch (sgs->group_type) {
8788 case group_overloaded:
8789 /* Select the overloaded group with highest avg_load. */
8790 if (sgs->avg_load <= busiest->avg_load)
8791 return false;
8792 break;
8793
8794 case group_imbalanced:
8795 /*
8796 * Select the 1st imbalanced group as we don't have any way to
8797 * choose one more than another.
8798 */
9e0994c0
MR
8799 return false;
8800
0b0695f2
VG
8801 case group_asym_packing:
8802 /* Prefer to move from lowest priority CPU's work */
8803 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8804 return false;
8805 break;
532cb4c4 8806
0b0695f2
VG
8807 case group_misfit_task:
8808 /*
8809 * If we have more than one misfit sg go with the biggest
8810 * misfit.
8811 */
8812 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8813 return false;
8814 break;
532cb4c4 8815
0b0695f2
VG
8816 case group_fully_busy:
8817 /*
8818 * Select the fully busy group with highest avg_load. In
8819 * theory, there is no need to pull task from such kind of
8820 * group because tasks have all compute capacity that they need
8821 * but we can still improve the overall throughput by reducing
8822 * contention when accessing shared HW resources.
8823 *
8824 * XXX for now avg_load is not computed and always 0 so we
8825 * select the 1st one.
8826 */
8827 if (sgs->avg_load <= busiest->avg_load)
8828 return false;
8829 break;
8830
8831 case group_has_spare:
8832 /*
5f68eb19
VG
8833 * Select not overloaded group with lowest number of idle cpus
8834 * and highest number of running tasks. We could also compare
8835 * the spare capacity which is more stable but it can end up
8836 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8837 * CPUs which means less opportunity to pull tasks.
8838 */
5f68eb19 8839 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8840 return false;
5f68eb19
VG
8841 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8842 (sgs->sum_nr_running <= busiest->sum_nr_running))
8843 return false;
8844
0b0695f2 8845 break;
532cb4c4
MN
8846 }
8847
0b0695f2
VG
8848 /*
8849 * Candidate sg has no more than one task per CPU and has higher
8850 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8851 * throughput. Maximize throughput, power/energy consequences are not
8852 * considered.
8853 */
8854 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8855 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 8856 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
8857 return false;
8858
8859 return true;
532cb4c4
MN
8860}
8861
0ec8aa00
PZ
8862#ifdef CONFIG_NUMA_BALANCING
8863static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8864{
a3498347 8865 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8866 return regular;
a3498347 8867 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8868 return remote;
8869 return all;
8870}
8871
8872static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8873{
8874 if (rq->nr_running > rq->nr_numa_running)
8875 return regular;
8876 if (rq->nr_running > rq->nr_preferred_running)
8877 return remote;
8878 return all;
8879}
8880#else
8881static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8882{
8883 return all;
8884}
8885
8886static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8887{
8888 return regular;
8889}
8890#endif /* CONFIG_NUMA_BALANCING */
8891
57abff06
VG
8892
8893struct sg_lb_stats;
8894
3318544b
VG
8895/*
8896 * task_running_on_cpu - return 1 if @p is running on @cpu.
8897 */
8898
8899static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8900{
8901 /* Task has no contribution or is new */
8902 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8903 return 0;
8904
8905 if (task_on_rq_queued(p))
8906 return 1;
8907
8908 return 0;
8909}
8910
8911/**
8912 * idle_cpu_without - would a given CPU be idle without p ?
8913 * @cpu: the processor on which idleness is tested.
8914 * @p: task which should be ignored.
8915 *
8916 * Return: 1 if the CPU would be idle. 0 otherwise.
8917 */
8918static int idle_cpu_without(int cpu, struct task_struct *p)
8919{
8920 struct rq *rq = cpu_rq(cpu);
8921
8922 if (rq->curr != rq->idle && rq->curr != p)
8923 return 0;
8924
8925 /*
8926 * rq->nr_running can't be used but an updated version without the
8927 * impact of p on cpu must be used instead. The updated nr_running
8928 * be computed and tested before calling idle_cpu_without().
8929 */
8930
8931#ifdef CONFIG_SMP
126c2092 8932 if (rq->ttwu_pending)
3318544b
VG
8933 return 0;
8934#endif
8935
8936 return 1;
8937}
8938
57abff06
VG
8939/*
8940 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8941 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8942 * @group: sched_group whose statistics are to be updated.
8943 * @sgs: variable to hold the statistics for this group.
3318544b 8944 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8945 */
8946static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8947 struct sched_group *group,
8948 struct sg_lb_stats *sgs,
8949 struct task_struct *p)
8950{
8951 int i, nr_running;
8952
8953 memset(sgs, 0, sizeof(*sgs));
8954
8955 for_each_cpu(i, sched_group_span(group)) {
8956 struct rq *rq = cpu_rq(i);
3318544b 8957 unsigned int local;
57abff06 8958
3318544b 8959 sgs->group_load += cpu_load_without(rq, p);
57abff06 8960 sgs->group_util += cpu_util_without(i, p);
070f5e86 8961 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8962 local = task_running_on_cpu(i, p);
8963 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8964
3318544b 8965 nr_running = rq->nr_running - local;
57abff06
VG
8966 sgs->sum_nr_running += nr_running;
8967
8968 /*
3318544b 8969 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8970 */
3318544b 8971 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8972 sgs->idle_cpus++;
8973
57abff06
VG
8974 }
8975
8976 /* Check if task fits in the group */
8977 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8978 !task_fits_capacity(p, group->sgc->max_capacity)) {
8979 sgs->group_misfit_task_load = 1;
8980 }
8981
8982 sgs->group_capacity = group->sgc->capacity;
8983
289de359
VG
8984 sgs->group_weight = group->group_weight;
8985
57abff06
VG
8986 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8987
8988 /*
8989 * Computing avg_load makes sense only when group is fully busy or
8990 * overloaded
8991 */
6c8116c9
TZ
8992 if (sgs->group_type == group_fully_busy ||
8993 sgs->group_type == group_overloaded)
57abff06
VG
8994 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8995 sgs->group_capacity;
8996}
8997
8998static bool update_pick_idlest(struct sched_group *idlest,
8999 struct sg_lb_stats *idlest_sgs,
9000 struct sched_group *group,
9001 struct sg_lb_stats *sgs)
9002{
9003 if (sgs->group_type < idlest_sgs->group_type)
9004 return true;
9005
9006 if (sgs->group_type > idlest_sgs->group_type)
9007 return false;
9008
9009 /*
9010 * The candidate and the current idlest group are the same type of
9011 * group. Let check which one is the idlest according to the type.
9012 */
9013
9014 switch (sgs->group_type) {
9015 case group_overloaded:
9016 case group_fully_busy:
9017 /* Select the group with lowest avg_load. */
9018 if (idlest_sgs->avg_load <= sgs->avg_load)
9019 return false;
9020 break;
9021
9022 case group_imbalanced:
9023 case group_asym_packing:
9024 /* Those types are not used in the slow wakeup path */
9025 return false;
9026
9027 case group_misfit_task:
9028 /* Select group with the highest max capacity */
9029 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9030 return false;
9031 break;
9032
9033 case group_has_spare:
9034 /* Select group with most idle CPUs */
3edecfef 9035 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 9036 return false;
3edecfef
PP
9037
9038 /* Select group with lowest group_util */
9039 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9040 idlest_sgs->group_util <= sgs->group_util)
9041 return false;
9042
57abff06
VG
9043 break;
9044 }
9045
9046 return true;
9047}
9048
23e6082a
MG
9049/*
9050 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9051 * This is an approximation as the number of running tasks may not be
9052 * related to the number of busy CPUs due to sched_setaffinity.
9053 */
9054static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9055{
9056 return (dst_running < (dst_weight >> 2));
9057}
9058
57abff06
VG
9059/*
9060 * find_idlest_group() finds and returns the least busy CPU group within the
9061 * domain.
9062 *
9063 * Assumes p is allowed on at least one CPU in sd.
9064 */
9065static struct sched_group *
45da2773 9066find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
9067{
9068 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9069 struct sg_lb_stats local_sgs, tmp_sgs;
9070 struct sg_lb_stats *sgs;
9071 unsigned long imbalance;
9072 struct sg_lb_stats idlest_sgs = {
9073 .avg_load = UINT_MAX,
9074 .group_type = group_overloaded,
9075 };
9076
57abff06
VG
9077 do {
9078 int local_group;
9079
9080 /* Skip over this group if it has no CPUs allowed */
9081 if (!cpumask_intersects(sched_group_span(group),
9082 p->cpus_ptr))
9083 continue;
9084
97886d9d
AL
9085 /* Skip over this group if no cookie matched */
9086 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9087 continue;
9088
57abff06
VG
9089 local_group = cpumask_test_cpu(this_cpu,
9090 sched_group_span(group));
9091
9092 if (local_group) {
9093 sgs = &local_sgs;
9094 local = group;
9095 } else {
9096 sgs = &tmp_sgs;
9097 }
9098
9099 update_sg_wakeup_stats(sd, group, sgs, p);
9100
9101 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9102 idlest = group;
9103 idlest_sgs = *sgs;
9104 }
9105
9106 } while (group = group->next, group != sd->groups);
9107
9108
9109 /* There is no idlest group to push tasks to */
9110 if (!idlest)
9111 return NULL;
9112
7ed735c3
VG
9113 /* The local group has been skipped because of CPU affinity */
9114 if (!local)
9115 return idlest;
9116
57abff06
VG
9117 /*
9118 * If the local group is idler than the selected idlest group
9119 * don't try and push the task.
9120 */
9121 if (local_sgs.group_type < idlest_sgs.group_type)
9122 return NULL;
9123
9124 /*
9125 * If the local group is busier than the selected idlest group
9126 * try and push the task.
9127 */
9128 if (local_sgs.group_type > idlest_sgs.group_type)
9129 return idlest;
9130
9131 switch (local_sgs.group_type) {
9132 case group_overloaded:
9133 case group_fully_busy:
5c339005
MG
9134
9135 /* Calculate allowed imbalance based on load */
9136 imbalance = scale_load_down(NICE_0_LOAD) *
9137 (sd->imbalance_pct-100) / 100;
9138
57abff06
VG
9139 /*
9140 * When comparing groups across NUMA domains, it's possible for
9141 * the local domain to be very lightly loaded relative to the
9142 * remote domains but "imbalance" skews the comparison making
9143 * remote CPUs look much more favourable. When considering
9144 * cross-domain, add imbalance to the load on the remote node
9145 * and consider staying local.
9146 */
9147
9148 if ((sd->flags & SD_NUMA) &&
9149 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9150 return NULL;
9151
9152 /*
9153 * If the local group is less loaded than the selected
9154 * idlest group don't try and push any tasks.
9155 */
9156 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9157 return NULL;
9158
9159 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9160 return NULL;
9161 break;
9162
9163 case group_imbalanced:
9164 case group_asym_packing:
9165 /* Those type are not used in the slow wakeup path */
9166 return NULL;
9167
9168 case group_misfit_task:
9169 /* Select group with the highest max capacity */
9170 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9171 return NULL;
9172 break;
9173
9174 case group_has_spare:
9175 if (sd->flags & SD_NUMA) {
9176#ifdef CONFIG_NUMA_BALANCING
9177 int idlest_cpu;
9178 /*
9179 * If there is spare capacity at NUMA, try to select
9180 * the preferred node
9181 */
9182 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9183 return NULL;
9184
9185 idlest_cpu = cpumask_first(sched_group_span(idlest));
9186 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9187 return idlest;
9188#endif
9189 /*
9190 * Otherwise, keep the task on this node to stay close
9191 * its wakeup source and improve locality. If there is
9192 * a real need of migration, periodic load balance will
9193 * take care of it.
9194 */
23e6082a 9195 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
9196 return NULL;
9197 }
9198
9199 /*
9200 * Select group with highest number of idle CPUs. We could also
9201 * compare the utilization which is more stable but it can end
9202 * up that the group has less spare capacity but finally more
9203 * idle CPUs which means more opportunity to run task.
9204 */
9205 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9206 return NULL;
9207 break;
9208 }
9209
9210 return idlest;
9211}
9212
1e3c88bd 9213/**
461819ac 9214 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 9215 * @env: The load balancing environment.
1e3c88bd
PZ
9216 * @sds: variable to hold the statistics for this sched_domain.
9217 */
0b0695f2 9218
0ec8aa00 9219static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9220{
bd939f45
PZ
9221 struct sched_domain *child = env->sd->child;
9222 struct sched_group *sg = env->sd->groups;
05b40e05 9223 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 9224 struct sg_lb_stats tmp_sgs;
630246a0 9225 int sg_status = 0;
1e3c88bd 9226
1e3c88bd 9227 do {
56cf515b 9228 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
9229 int local_group;
9230
ae4df9d6 9231 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
9232 if (local_group) {
9233 sds->local = sg;
05b40e05 9234 sgs = local;
b72ff13c
PZ
9235
9236 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
9237 time_after_eq(jiffies, sg->sgc->next_update))
9238 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 9239 }
1e3c88bd 9240
c0d14b57 9241 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
1e3c88bd 9242
b72ff13c
PZ
9243 if (local_group)
9244 goto next_group;
9245
1e3c88bd 9246
b72ff13c 9247 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 9248 sds->busiest = sg;
56cf515b 9249 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9250 }
9251
b72ff13c
PZ
9252next_group:
9253 /* Now, start updating sd_lb_stats */
9254 sds->total_load += sgs->group_load;
63b2ca30 9255 sds->total_capacity += sgs->group_capacity;
b72ff13c 9256
532cb4c4 9257 sg = sg->next;
bd939f45 9258 } while (sg != env->sd->groups);
0ec8aa00 9259
0b0695f2
VG
9260 /* Tag domain that child domain prefers tasks go to siblings first */
9261 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9262
f643ea22 9263
0ec8aa00
PZ
9264 if (env->sd->flags & SD_NUMA)
9265 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9266
9267 if (!env->sd->parent) {
2802bf3c
MR
9268 struct root_domain *rd = env->dst_rq->rd;
9269
4486edd1 9270 /* update overload indicator if we are at root domain */
2802bf3c
MR
9271 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9272
9273 /* Update over-utilization (tipping point, U >= 0) indicator */
9274 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9275 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9276 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9277 struct root_domain *rd = env->dst_rq->rd;
9278
9279 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9280 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9281 }
532cb4c4
MN
9282}
9283
abeae76a
MG
9284#define NUMA_IMBALANCE_MIN 2
9285
7d2b5dd0
MG
9286static inline long adjust_numa_imbalance(int imbalance,
9287 int dst_running, int dst_weight)
fb86f5b2 9288{
23e6082a
MG
9289 if (!allow_numa_imbalance(dst_running, dst_weight))
9290 return imbalance;
9291
fb86f5b2
MG
9292 /*
9293 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9294 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9295 */
23e6082a 9296 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9297 return 0;
9298
9299 return imbalance;
9300}
9301
1e3c88bd
PZ
9302/**
9303 * calculate_imbalance - Calculate the amount of imbalance present within the
9304 * groups of a given sched_domain during load balance.
bd939f45 9305 * @env: load balance environment
1e3c88bd 9306 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9307 */
bd939f45 9308static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9309{
56cf515b
JK
9310 struct sg_lb_stats *local, *busiest;
9311
9312 local = &sds->local_stat;
56cf515b 9313 busiest = &sds->busiest_stat;
dd5feea1 9314
0b0695f2
VG
9315 if (busiest->group_type == group_misfit_task) {
9316 /* Set imbalance to allow misfit tasks to be balanced. */
9317 env->migration_type = migrate_misfit;
c63be7be 9318 env->imbalance = 1;
0b0695f2
VG
9319 return;
9320 }
9321
9322 if (busiest->group_type == group_asym_packing) {
9323 /*
9324 * In case of asym capacity, we will try to migrate all load to
9325 * the preferred CPU.
9326 */
9327 env->migration_type = migrate_task;
9328 env->imbalance = busiest->sum_h_nr_running;
9329 return;
9330 }
9331
9332 if (busiest->group_type == group_imbalanced) {
9333 /*
9334 * In the group_imb case we cannot rely on group-wide averages
9335 * to ensure CPU-load equilibrium, try to move any task to fix
9336 * the imbalance. The next load balance will take care of
9337 * balancing back the system.
9338 */
9339 env->migration_type = migrate_task;
9340 env->imbalance = 1;
490ba971
VG
9341 return;
9342 }
9343
1e3c88bd 9344 /*
0b0695f2 9345 * Try to use spare capacity of local group without overloading it or
a9723389 9346 * emptying busiest.
1e3c88bd 9347 */
0b0695f2 9348 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9349 if ((busiest->group_type > group_fully_busy) &&
9350 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9351 /*
9352 * If busiest is overloaded, try to fill spare
9353 * capacity. This might end up creating spare capacity
9354 * in busiest or busiest still being overloaded but
9355 * there is no simple way to directly compute the
9356 * amount of load to migrate in order to balance the
9357 * system.
9358 */
9359 env->migration_type = migrate_util;
9360 env->imbalance = max(local->group_capacity, local->group_util) -
9361 local->group_util;
9362
9363 /*
9364 * In some cases, the group's utilization is max or even
9365 * higher than capacity because of migrations but the
9366 * local CPU is (newly) idle. There is at least one
9367 * waiting task in this overloaded busiest group. Let's
9368 * try to pull it.
9369 */
9370 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9371 env->migration_type = migrate_task;
9372 env->imbalance = 1;
9373 }
9374
9375 return;
9376 }
9377
9378 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9379 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9380 /*
9381 * When prefer sibling, evenly spread running tasks on
9382 * groups.
9383 */
9384 env->migration_type = migrate_task;
5e23e474 9385 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9386 env->imbalance = nr_diff >> 1;
b396f523 9387 } else {
0b0695f2 9388
b396f523
MG
9389 /*
9390 * If there is no overload, we just want to even the number of
9391 * idle cpus.
9392 */
9393 env->migration_type = migrate_task;
9394 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9395 busiest->idle_cpus) >> 1);
b396f523
MG
9396 }
9397
9398 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9399 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9400 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9401 busiest->sum_nr_running, busiest->group_weight);
9402 }
b396f523 9403
fcf0553d 9404 return;
1e3c88bd
PZ
9405 }
9406
9a5d9ba6 9407 /*
0b0695f2
VG
9408 * Local is fully busy but has to take more load to relieve the
9409 * busiest group
9a5d9ba6 9410 */
0b0695f2
VG
9411 if (local->group_type < group_overloaded) {
9412 /*
9413 * Local will become overloaded so the avg_load metrics are
9414 * finally needed.
9415 */
9416
9417 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9418 local->group_capacity;
9419
9420 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9421 sds->total_capacity;
111688ca
AL
9422 /*
9423 * If the local group is more loaded than the selected
9424 * busiest group don't try to pull any tasks.
9425 */
9426 if (local->avg_load >= busiest->avg_load) {
9427 env->imbalance = 0;
9428 return;
9429 }
dd5feea1
SS
9430 }
9431
9432 /*
0b0695f2
VG
9433 * Both group are or will become overloaded and we're trying to get all
9434 * the CPUs to the average_load, so we don't want to push ourselves
9435 * above the average load, nor do we wish to reduce the max loaded CPU
9436 * below the average load. At the same time, we also don't want to
9437 * reduce the group load below the group capacity. Thus we look for
9438 * the minimum possible imbalance.
dd5feea1 9439 */
0b0695f2 9440 env->migration_type = migrate_load;
56cf515b 9441 env->imbalance = min(
0b0695f2 9442 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9443 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9444 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9445}
fab47622 9446
1e3c88bd
PZ
9447/******* find_busiest_group() helpers end here *********************/
9448
0b0695f2
VG
9449/*
9450 * Decision matrix according to the local and busiest group type:
9451 *
9452 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9453 * has_spare nr_idle balanced N/A N/A balanced balanced
9454 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9455 * misfit_task force N/A N/A N/A force force
9456 * asym_packing force force N/A N/A force force
9457 * imbalanced force force N/A N/A force force
9458 * overloaded force force N/A N/A force avg_load
9459 *
9460 * N/A : Not Applicable because already filtered while updating
9461 * statistics.
9462 * balanced : The system is balanced for these 2 groups.
9463 * force : Calculate the imbalance as load migration is probably needed.
9464 * avg_load : Only if imbalance is significant enough.
9465 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9466 * different in groups.
9467 */
9468
1e3c88bd
PZ
9469/**
9470 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9471 * if there is an imbalance.
1e3c88bd 9472 *
a3df0679 9473 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9474 * to restore balance.
9475 *
cd96891d 9476 * @env: The load balancing environment.
1e3c88bd 9477 *
e69f6186 9478 * Return: - The busiest group if imbalance exists.
1e3c88bd 9479 */
56cf515b 9480static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9481{
56cf515b 9482 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9483 struct sd_lb_stats sds;
9484
147c5fc2 9485 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9486
9487 /*
b0fb1eb4 9488 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9489 * this level.
9490 */
23f0d209 9491 update_sd_lb_stats(env, &sds);
2802bf3c 9492
f8a696f2 9493 if (sched_energy_enabled()) {
2802bf3c
MR
9494 struct root_domain *rd = env->dst_rq->rd;
9495
9496 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9497 goto out_balanced;
9498 }
9499
56cf515b
JK
9500 local = &sds.local_stat;
9501 busiest = &sds.busiest_stat;
1e3c88bd 9502
cc57aa8f 9503 /* There is no busy sibling group to pull tasks from */
0b0695f2 9504 if (!sds.busiest)
1e3c88bd
PZ
9505 goto out_balanced;
9506
0b0695f2
VG
9507 /* Misfit tasks should be dealt with regardless of the avg load */
9508 if (busiest->group_type == group_misfit_task)
9509 goto force_balance;
9510
9511 /* ASYM feature bypasses nice load balance check */
9512 if (busiest->group_type == group_asym_packing)
9513 goto force_balance;
b0432d8f 9514
866ab43e
PZ
9515 /*
9516 * If the busiest group is imbalanced the below checks don't
30ce5dab 9517 * work because they assume all things are equal, which typically
3bd37062 9518 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9519 */
caeb178c 9520 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9521 goto force_balance;
9522
cc57aa8f 9523 /*
9c58c79a 9524 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9525 * don't try and pull any tasks.
9526 */
0b0695f2 9527 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9528 goto out_balanced;
9529
cc57aa8f 9530 /*
0b0695f2
VG
9531 * When groups are overloaded, use the avg_load to ensure fairness
9532 * between tasks.
cc57aa8f 9533 */
0b0695f2
VG
9534 if (local->group_type == group_overloaded) {
9535 /*
9536 * If the local group is more loaded than the selected
9537 * busiest group don't try to pull any tasks.
9538 */
9539 if (local->avg_load >= busiest->avg_load)
9540 goto out_balanced;
9541
9542 /* XXX broken for overlapping NUMA groups */
9543 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9544 sds.total_capacity;
1e3c88bd 9545
aae6d3dd 9546 /*
0b0695f2
VG
9547 * Don't pull any tasks if this group is already above the
9548 * domain average load.
aae6d3dd 9549 */
0b0695f2 9550 if (local->avg_load >= sds.avg_load)
aae6d3dd 9551 goto out_balanced;
0b0695f2 9552
c186fafe 9553 /*
0b0695f2
VG
9554 * If the busiest group is more loaded, use imbalance_pct to be
9555 * conservative.
c186fafe 9556 */
56cf515b
JK
9557 if (100 * busiest->avg_load <=
9558 env->sd->imbalance_pct * local->avg_load)
c186fafe 9559 goto out_balanced;
aae6d3dd 9560 }
1e3c88bd 9561
0b0695f2
VG
9562 /* Try to move all excess tasks to child's sibling domain */
9563 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9564 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9565 goto force_balance;
9566
2ab4092f
VG
9567 if (busiest->group_type != group_overloaded) {
9568 if (env->idle == CPU_NOT_IDLE)
9569 /*
9570 * If the busiest group is not overloaded (and as a
9571 * result the local one too) but this CPU is already
9572 * busy, let another idle CPU try to pull task.
9573 */
9574 goto out_balanced;
9575
9576 if (busiest->group_weight > 1 &&
9577 local->idle_cpus <= (busiest->idle_cpus + 1))
9578 /*
9579 * If the busiest group is not overloaded
9580 * and there is no imbalance between this and busiest
9581 * group wrt idle CPUs, it is balanced. The imbalance
9582 * becomes significant if the diff is greater than 1
9583 * otherwise we might end up to just move the imbalance
9584 * on another group. Of course this applies only if
9585 * there is more than 1 CPU per group.
9586 */
9587 goto out_balanced;
9588
9589 if (busiest->sum_h_nr_running == 1)
9590 /*
9591 * busiest doesn't have any tasks waiting to run
9592 */
9593 goto out_balanced;
9594 }
0b0695f2 9595
fab47622 9596force_balance:
1e3c88bd 9597 /* Looks like there is an imbalance. Compute it */
bd939f45 9598 calculate_imbalance(env, &sds);
bb3485c8 9599 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9600
9601out_balanced:
bd939f45 9602 env->imbalance = 0;
1e3c88bd
PZ
9603 return NULL;
9604}
9605
9606/*
97fb7a0a 9607 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9608 */
bd939f45 9609static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9610 struct sched_group *group)
1e3c88bd
PZ
9611{
9612 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9613 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9614 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9615 int i;
9616
ae4df9d6 9617 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9618 unsigned long capacity, load, util;
9619 unsigned int nr_running;
0ec8aa00
PZ
9620 enum fbq_type rt;
9621
9622 rq = cpu_rq(i);
9623 rt = fbq_classify_rq(rq);
1e3c88bd 9624
0ec8aa00
PZ
9625 /*
9626 * We classify groups/runqueues into three groups:
9627 * - regular: there are !numa tasks
9628 * - remote: there are numa tasks that run on the 'wrong' node
9629 * - all: there is no distinction
9630 *
9631 * In order to avoid migrating ideally placed numa tasks,
9632 * ignore those when there's better options.
9633 *
9634 * If we ignore the actual busiest queue to migrate another
9635 * task, the next balance pass can still reduce the busiest
9636 * queue by moving tasks around inside the node.
9637 *
9638 * If we cannot move enough load due to this classification
9639 * the next pass will adjust the group classification and
9640 * allow migration of more tasks.
9641 *
9642 * Both cases only affect the total convergence complexity.
9643 */
9644 if (rt > env->fbq_type)
9645 continue;
9646
0b0695f2 9647 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9648 if (!nr_running)
9649 continue;
9650
9651 capacity = capacity_of(i);
9d5efe05 9652
4ad3831a
CR
9653 /*
9654 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9655 * eventually lead to active_balancing high->low capacity.
9656 * Higher per-CPU capacity is considered better than balancing
9657 * average load.
9658 */
9659 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 9660 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 9661 nr_running == 1)
4ad3831a
CR
9662 continue;
9663
4006a72b
RN
9664 /* Make sure we only pull tasks from a CPU of lower priority */
9665 if ((env->sd->flags & SD_ASYM_PACKING) &&
9666 sched_asym_prefer(i, env->dst_cpu) &&
9667 nr_running == 1)
9668 continue;
9669
0b0695f2
VG
9670 switch (env->migration_type) {
9671 case migrate_load:
9672 /*
b0fb1eb4
VG
9673 * When comparing with load imbalance, use cpu_load()
9674 * which is not scaled with the CPU capacity.
0b0695f2 9675 */
b0fb1eb4 9676 load = cpu_load(rq);
1e3c88bd 9677
0b0695f2
VG
9678 if (nr_running == 1 && load > env->imbalance &&
9679 !check_cpu_capacity(rq, env->sd))
9680 break;
ea67821b 9681
0b0695f2
VG
9682 /*
9683 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9684 * consider the cpu_load() scaled with the CPU
9685 * capacity, so that the load can be moved away
9686 * from the CPU that is potentially running at a
9687 * lower capacity.
0b0695f2
VG
9688 *
9689 * Thus we're looking for max(load_i / capacity_i),
9690 * crosswise multiplication to rid ourselves of the
9691 * division works out to:
9692 * load_i * capacity_j > load_j * capacity_i;
9693 * where j is our previous maximum.
9694 */
9695 if (load * busiest_capacity > busiest_load * capacity) {
9696 busiest_load = load;
9697 busiest_capacity = capacity;
9698 busiest = rq;
9699 }
9700 break;
9701
9702 case migrate_util:
9703 util = cpu_util(cpu_of(rq));
9704
c32b4308
VG
9705 /*
9706 * Don't try to pull utilization from a CPU with one
9707 * running task. Whatever its utilization, we will fail
9708 * detach the task.
9709 */
9710 if (nr_running <= 1)
9711 continue;
9712
0b0695f2
VG
9713 if (busiest_util < util) {
9714 busiest_util = util;
9715 busiest = rq;
9716 }
9717 break;
9718
9719 case migrate_task:
9720 if (busiest_nr < nr_running) {
9721 busiest_nr = nr_running;
9722 busiest = rq;
9723 }
9724 break;
9725
9726 case migrate_misfit:
9727 /*
9728 * For ASYM_CPUCAPACITY domains with misfit tasks we
9729 * simply seek the "biggest" misfit task.
9730 */
9731 if (rq->misfit_task_load > busiest_load) {
9732 busiest_load = rq->misfit_task_load;
9733 busiest = rq;
9734 }
9735
9736 break;
1e3c88bd 9737
1e3c88bd
PZ
9738 }
9739 }
9740
9741 return busiest;
9742}
9743
9744/*
9745 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9746 * so long as it is large enough.
9747 */
9748#define MAX_PINNED_INTERVAL 512
9749
46a745d9
VG
9750static inline bool
9751asym_active_balance(struct lb_env *env)
1af3ed3d 9752{
46a745d9
VG
9753 /*
9754 * ASYM_PACKING needs to force migrate tasks from busy but
9755 * lower priority CPUs in order to pack all tasks in the
9756 * highest priority CPUs.
9757 */
9758 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9759 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9760}
bd939f45 9761
46a745d9 9762static inline bool
e9b9734b
VG
9763imbalanced_active_balance(struct lb_env *env)
9764{
9765 struct sched_domain *sd = env->sd;
9766
9767 /*
9768 * The imbalanced case includes the case of pinned tasks preventing a fair
9769 * distribution of the load on the system but also the even distribution of the
9770 * threads on a system with spare capacity
9771 */
9772 if ((env->migration_type == migrate_task) &&
9773 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9774 return 1;
9775
9776 return 0;
9777}
9778
9779static int need_active_balance(struct lb_env *env)
46a745d9
VG
9780{
9781 struct sched_domain *sd = env->sd;
532cb4c4 9782
46a745d9
VG
9783 if (asym_active_balance(env))
9784 return 1;
1af3ed3d 9785
e9b9734b
VG
9786 if (imbalanced_active_balance(env))
9787 return 1;
9788
1aaf90a4
VG
9789 /*
9790 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9791 * It's worth migrating the task if the src_cpu's capacity is reduced
9792 * because of other sched_class or IRQs if more capacity stays
9793 * available on dst_cpu.
9794 */
9795 if ((env->idle != CPU_NOT_IDLE) &&
9796 (env->src_rq->cfs.h_nr_running == 1)) {
9797 if ((check_cpu_capacity(env->src_rq, sd)) &&
9798 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9799 return 1;
9800 }
9801
0b0695f2 9802 if (env->migration_type == migrate_misfit)
cad68e55
MR
9803 return 1;
9804
46a745d9
VG
9805 return 0;
9806}
9807
969c7921
TH
9808static int active_load_balance_cpu_stop(void *data);
9809
23f0d209
JK
9810static int should_we_balance(struct lb_env *env)
9811{
9812 struct sched_group *sg = env->sd->groups;
64297f2b 9813 int cpu;
23f0d209 9814
024c9d2f
PZ
9815 /*
9816 * Ensure the balancing environment is consistent; can happen
9817 * when the softirq triggers 'during' hotplug.
9818 */
9819 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9820 return 0;
9821
23f0d209 9822 /*
97fb7a0a 9823 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9824 * to do the newly idle load balance.
9825 */
9826 if (env->idle == CPU_NEWLY_IDLE)
9827 return 1;
9828
97fb7a0a 9829 /* Try to find first idle CPU */
e5c14b1f 9830 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9831 if (!idle_cpu(cpu))
23f0d209
JK
9832 continue;
9833
64297f2b
PW
9834 /* Are we the first idle CPU? */
9835 return cpu == env->dst_cpu;
23f0d209
JK
9836 }
9837
64297f2b
PW
9838 /* Are we the first CPU of this group ? */
9839 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9840}
9841
1e3c88bd
PZ
9842/*
9843 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9844 * tasks if there is an imbalance.
9845 */
9846static int load_balance(int this_cpu, struct rq *this_rq,
9847 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9848 int *continue_balancing)
1e3c88bd 9849{
88b8dac0 9850 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9851 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9852 struct sched_group *group;
1e3c88bd 9853 struct rq *busiest;
8a8c69c3 9854 struct rq_flags rf;
4ba29684 9855 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9856
8e45cb54
PZ
9857 struct lb_env env = {
9858 .sd = sd,
ddcdf6e7
PZ
9859 .dst_cpu = this_cpu,
9860 .dst_rq = this_rq,
ae4df9d6 9861 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9862 .idle = idle,
eb95308e 9863 .loop_break = sched_nr_migrate_break,
b9403130 9864 .cpus = cpus,
0ec8aa00 9865 .fbq_type = all,
163122b7 9866 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9867 };
9868
65a4433a 9869 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9870
ae92882e 9871 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9872
9873redo:
23f0d209
JK
9874 if (!should_we_balance(&env)) {
9875 *continue_balancing = 0;
1e3c88bd 9876 goto out_balanced;
23f0d209 9877 }
1e3c88bd 9878
23f0d209 9879 group = find_busiest_group(&env);
1e3c88bd 9880 if (!group) {
ae92882e 9881 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9882 goto out_balanced;
9883 }
9884
b9403130 9885 busiest = find_busiest_queue(&env, group);
1e3c88bd 9886 if (!busiest) {
ae92882e 9887 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9888 goto out_balanced;
9889 }
9890
78feefc5 9891 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9892
ae92882e 9893 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9894
1aaf90a4
VG
9895 env.src_cpu = busiest->cpu;
9896 env.src_rq = busiest;
9897
1e3c88bd 9898 ld_moved = 0;
8a41dfcd
VG
9899 /* Clear this flag as soon as we find a pullable task */
9900 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9901 if (busiest->nr_running > 1) {
9902 /*
9903 * Attempt to move tasks. If find_busiest_group has found
9904 * an imbalance but busiest->nr_running <= 1, the group is
9905 * still unbalanced. ld_moved simply stays zero, so it is
9906 * correctly treated as an imbalance.
9907 */
c82513e5 9908 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9909
5d6523eb 9910more_balance:
8a8c69c3 9911 rq_lock_irqsave(busiest, &rf);
3bed5e21 9912 update_rq_clock(busiest);
88b8dac0
SV
9913
9914 /*
9915 * cur_ld_moved - load moved in current iteration
9916 * ld_moved - cumulative load moved across iterations
9917 */
163122b7 9918 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9919
9920 /*
163122b7
KT
9921 * We've detached some tasks from busiest_rq. Every
9922 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9923 * unlock busiest->lock, and we are able to be sure
9924 * that nobody can manipulate the tasks in parallel.
9925 * See task_rq_lock() family for the details.
1e3c88bd 9926 */
163122b7 9927
8a8c69c3 9928 rq_unlock(busiest, &rf);
163122b7
KT
9929
9930 if (cur_ld_moved) {
9931 attach_tasks(&env);
9932 ld_moved += cur_ld_moved;
9933 }
9934
8a8c69c3 9935 local_irq_restore(rf.flags);
88b8dac0 9936
f1cd0858
JK
9937 if (env.flags & LBF_NEED_BREAK) {
9938 env.flags &= ~LBF_NEED_BREAK;
9939 goto more_balance;
9940 }
9941
88b8dac0
SV
9942 /*
9943 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9944 * us and move them to an alternate dst_cpu in our sched_group
9945 * where they can run. The upper limit on how many times we
97fb7a0a 9946 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9947 * sched_group.
9948 *
9949 * This changes load balance semantics a bit on who can move
9950 * load to a given_cpu. In addition to the given_cpu itself
9951 * (or a ilb_cpu acting on its behalf where given_cpu is
9952 * nohz-idle), we now have balance_cpu in a position to move
9953 * load to given_cpu. In rare situations, this may cause
9954 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9955 * _independently_ and at _same_ time to move some load to
3b03706f 9956 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
9957 * This however should not happen so much in practice and
9958 * moreover subsequent load balance cycles should correct the
9959 * excess load moved.
9960 */
6263322c 9961 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9962
97fb7a0a 9963 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9964 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9965
78feefc5 9966 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9967 env.dst_cpu = env.new_dst_cpu;
6263322c 9968 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9969 env.loop = 0;
9970 env.loop_break = sched_nr_migrate_break;
e02e60c1 9971
88b8dac0
SV
9972 /*
9973 * Go back to "more_balance" rather than "redo" since we
9974 * need to continue with same src_cpu.
9975 */
9976 goto more_balance;
9977 }
1e3c88bd 9978
6263322c
PZ
9979 /*
9980 * We failed to reach balance because of affinity.
9981 */
9982 if (sd_parent) {
63b2ca30 9983 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9984
afdeee05 9985 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9986 *group_imbalance = 1;
6263322c
PZ
9987 }
9988
1e3c88bd 9989 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9990 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9991 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9992 /*
9993 * Attempting to continue load balancing at the current
9994 * sched_domain level only makes sense if there are
9995 * active CPUs remaining as possible busiest CPUs to
9996 * pull load from which are not contained within the
9997 * destination group that is receiving any migrated
9998 * load.
9999 */
10000 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
10001 env.loop = 0;
10002 env.loop_break = sched_nr_migrate_break;
1e3c88bd 10003 goto redo;
bbf18b19 10004 }
afdeee05 10005 goto out_all_pinned;
1e3c88bd
PZ
10006 }
10007 }
10008
10009 if (!ld_moved) {
ae92882e 10010 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
10011 /*
10012 * Increment the failure counter only on periodic balance.
10013 * We do not want newidle balance, which can be very
10014 * frequent, pollute the failure counter causing
10015 * excessive cache_hot migrations and active balances.
10016 */
10017 if (idle != CPU_NEWLY_IDLE)
10018 sd->nr_balance_failed++;
1e3c88bd 10019
bd939f45 10020 if (need_active_balance(&env)) {
8a8c69c3
PZ
10021 unsigned long flags;
10022
5cb9eaa3 10023 raw_spin_rq_lock_irqsave(busiest, flags);
1e3c88bd 10024
97fb7a0a
IM
10025 /*
10026 * Don't kick the active_load_balance_cpu_stop,
10027 * if the curr task on busiest CPU can't be
10028 * moved to this_cpu:
1e3c88bd 10029 */
3bd37062 10030 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
5cb9eaa3 10031 raw_spin_rq_unlock_irqrestore(busiest, flags);
1e3c88bd
PZ
10032 goto out_one_pinned;
10033 }
10034
8a41dfcd
VG
10035 /* Record that we found at least one task that could run on this_cpu */
10036 env.flags &= ~LBF_ALL_PINNED;
10037
969c7921
TH
10038 /*
10039 * ->active_balance synchronizes accesses to
10040 * ->active_balance_work. Once set, it's cleared
10041 * only after active load balance is finished.
10042 */
1e3c88bd
PZ
10043 if (!busiest->active_balance) {
10044 busiest->active_balance = 1;
10045 busiest->push_cpu = this_cpu;
10046 active_balance = 1;
10047 }
5cb9eaa3 10048 raw_spin_rq_unlock_irqrestore(busiest, flags);
969c7921 10049
bd939f45 10050 if (active_balance) {
969c7921
TH
10051 stop_one_cpu_nowait(cpu_of(busiest),
10052 active_load_balance_cpu_stop, busiest,
10053 &busiest->active_balance_work);
bd939f45 10054 }
1e3c88bd 10055 }
e9b9734b 10056 } else {
1e3c88bd 10057 sd->nr_balance_failed = 0;
e9b9734b 10058 }
1e3c88bd 10059
e9b9734b 10060 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
10061 /* We were unbalanced, so reset the balancing interval */
10062 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
10063 }
10064
1e3c88bd
PZ
10065 goto out;
10066
10067out_balanced:
afdeee05
VG
10068 /*
10069 * We reach balance although we may have faced some affinity
f6cad8df
VG
10070 * constraints. Clear the imbalance flag only if other tasks got
10071 * a chance to move and fix the imbalance.
afdeee05 10072 */
f6cad8df 10073 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
10074 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10075
10076 if (*group_imbalance)
10077 *group_imbalance = 0;
10078 }
10079
10080out_all_pinned:
10081 /*
10082 * We reach balance because all tasks are pinned at this level so
10083 * we can't migrate them. Let the imbalance flag set so parent level
10084 * can try to migrate them.
10085 */
ae92882e 10086 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
10087
10088 sd->nr_balance_failed = 0;
10089
10090out_one_pinned:
3f130a37
VS
10091 ld_moved = 0;
10092
10093 /*
5ba553ef
PZ
10094 * newidle_balance() disregards balance intervals, so we could
10095 * repeatedly reach this code, which would lead to balance_interval
3b03706f 10096 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 10097 * increase logic to avoid that.
3f130a37
VS
10098 */
10099 if (env.idle == CPU_NEWLY_IDLE)
10100 goto out;
10101
1e3c88bd 10102 /* tune up the balancing interval */
47b7aee1
VS
10103 if ((env.flags & LBF_ALL_PINNED &&
10104 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10105 sd->balance_interval < sd->max_interval)
1e3c88bd 10106 sd->balance_interval *= 2;
1e3c88bd 10107out:
1e3c88bd
PZ
10108 return ld_moved;
10109}
10110
52a08ef1
JL
10111static inline unsigned long
10112get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10113{
10114 unsigned long interval = sd->balance_interval;
10115
10116 if (cpu_busy)
10117 interval *= sd->busy_factor;
10118
10119 /* scale ms to jiffies */
10120 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
10121
10122 /*
10123 * Reduce likelihood of busy balancing at higher domains racing with
10124 * balancing at lower domains by preventing their balancing periods
10125 * from being multiples of each other.
10126 */
10127 if (cpu_busy)
10128 interval -= 1;
10129
52a08ef1
JL
10130 interval = clamp(interval, 1UL, max_load_balance_interval);
10131
10132 return interval;
10133}
10134
10135static inline void
31851a98 10136update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
10137{
10138 unsigned long interval, next;
10139
31851a98
LY
10140 /* used by idle balance, so cpu_busy = 0 */
10141 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
10142 next = sd->last_balance + interval;
10143
10144 if (time_after(*next_balance, next))
10145 *next_balance = next;
10146}
10147
1e3c88bd 10148/*
97fb7a0a 10149 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
10150 * running tasks off the busiest CPU onto idle CPUs. It requires at
10151 * least 1 task to be running on each physical CPU where possible, and
10152 * avoids physical / logical imbalances.
1e3c88bd 10153 */
969c7921 10154static int active_load_balance_cpu_stop(void *data)
1e3c88bd 10155{
969c7921
TH
10156 struct rq *busiest_rq = data;
10157 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 10158 int target_cpu = busiest_rq->push_cpu;
969c7921 10159 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 10160 struct sched_domain *sd;
e5673f28 10161 struct task_struct *p = NULL;
8a8c69c3 10162 struct rq_flags rf;
969c7921 10163
8a8c69c3 10164 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
10165 /*
10166 * Between queueing the stop-work and running it is a hole in which
10167 * CPUs can become inactive. We should not move tasks from or to
10168 * inactive CPUs.
10169 */
10170 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10171 goto out_unlock;
969c7921 10172
97fb7a0a 10173 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
10174 if (unlikely(busiest_cpu != smp_processor_id() ||
10175 !busiest_rq->active_balance))
10176 goto out_unlock;
1e3c88bd
PZ
10177
10178 /* Is there any task to move? */
10179 if (busiest_rq->nr_running <= 1)
969c7921 10180 goto out_unlock;
1e3c88bd
PZ
10181
10182 /*
10183 * This condition is "impossible", if it occurs
10184 * we need to fix it. Originally reported by
97fb7a0a 10185 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
10186 */
10187 BUG_ON(busiest_rq == target_rq);
10188
1e3c88bd 10189 /* Search for an sd spanning us and the target CPU. */
dce840a0 10190 rcu_read_lock();
1e3c88bd 10191 for_each_domain(target_cpu, sd) {
e669ac8a
VS
10192 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10193 break;
1e3c88bd
PZ
10194 }
10195
10196 if (likely(sd)) {
8e45cb54
PZ
10197 struct lb_env env = {
10198 .sd = sd,
ddcdf6e7
PZ
10199 .dst_cpu = target_cpu,
10200 .dst_rq = target_rq,
10201 .src_cpu = busiest_rq->cpu,
10202 .src_rq = busiest_rq,
8e45cb54 10203 .idle = CPU_IDLE,
23fb06d9 10204 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
10205 };
10206
ae92882e 10207 schedstat_inc(sd->alb_count);
3bed5e21 10208 update_rq_clock(busiest_rq);
1e3c88bd 10209
e5673f28 10210 p = detach_one_task(&env);
d02c0711 10211 if (p) {
ae92882e 10212 schedstat_inc(sd->alb_pushed);
d02c0711
SD
10213 /* Active balancing done, reset the failure counter. */
10214 sd->nr_balance_failed = 0;
10215 } else {
ae92882e 10216 schedstat_inc(sd->alb_failed);
d02c0711 10217 }
1e3c88bd 10218 }
dce840a0 10219 rcu_read_unlock();
969c7921
TH
10220out_unlock:
10221 busiest_rq->active_balance = 0;
8a8c69c3 10222 rq_unlock(busiest_rq, &rf);
e5673f28
KT
10223
10224 if (p)
10225 attach_one_task(target_rq, p);
10226
10227 local_irq_enable();
10228
969c7921 10229 return 0;
1e3c88bd
PZ
10230}
10231
af3fe03c
PZ
10232static DEFINE_SPINLOCK(balancing);
10233
10234/*
10235 * Scale the max load_balance interval with the number of CPUs in the system.
10236 * This trades load-balance latency on larger machines for less cross talk.
10237 */
10238void update_max_interval(void)
10239{
10240 max_load_balance_interval = HZ*num_online_cpus()/10;
10241}
10242
10243/*
10244 * It checks each scheduling domain to see if it is due to be balanced,
10245 * and initiates a balancing operation if so.
10246 *
10247 * Balancing parameters are set up in init_sched_domains.
10248 */
10249static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10250{
10251 int continue_balancing = 1;
10252 int cpu = rq->cpu;
323af6de 10253 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10254 unsigned long interval;
10255 struct sched_domain *sd;
10256 /* Earliest time when we have to do rebalance again */
10257 unsigned long next_balance = jiffies + 60*HZ;
10258 int update_next_balance = 0;
10259 int need_serialize, need_decay = 0;
10260 u64 max_cost = 0;
10261
10262 rcu_read_lock();
10263 for_each_domain(cpu, sd) {
10264 /*
10265 * Decay the newidle max times here because this is a regular
10266 * visit to all the domains. Decay ~1% per second.
10267 */
10268 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10269 sd->max_newidle_lb_cost =
10270 (sd->max_newidle_lb_cost * 253) / 256;
10271 sd->next_decay_max_lb_cost = jiffies + HZ;
10272 need_decay = 1;
10273 }
10274 max_cost += sd->max_newidle_lb_cost;
10275
af3fe03c
PZ
10276 /*
10277 * Stop the load balance at this level. There is another
10278 * CPU in our sched group which is doing load balancing more
10279 * actively.
10280 */
10281 if (!continue_balancing) {
10282 if (need_decay)
10283 continue;
10284 break;
10285 }
10286
323af6de 10287 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10288
10289 need_serialize = sd->flags & SD_SERIALIZE;
10290 if (need_serialize) {
10291 if (!spin_trylock(&balancing))
10292 goto out;
10293 }
10294
10295 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10296 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10297 /*
10298 * The LBF_DST_PINNED logic could have changed
10299 * env->dst_cpu, so we can't know our idle
10300 * state even if we migrated tasks. Update it.
10301 */
10302 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10303 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10304 }
10305 sd->last_balance = jiffies;
323af6de 10306 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10307 }
10308 if (need_serialize)
10309 spin_unlock(&balancing);
10310out:
10311 if (time_after(next_balance, sd->last_balance + interval)) {
10312 next_balance = sd->last_balance + interval;
10313 update_next_balance = 1;
10314 }
10315 }
10316 if (need_decay) {
10317 /*
10318 * Ensure the rq-wide value also decays but keep it at a
10319 * reasonable floor to avoid funnies with rq->avg_idle.
10320 */
10321 rq->max_idle_balance_cost =
10322 max((u64)sysctl_sched_migration_cost, max_cost);
10323 }
10324 rcu_read_unlock();
10325
10326 /*
10327 * next_balance will be updated only when there is a need.
10328 * When the cpu is attached to null domain for ex, it will not be
10329 * updated.
10330 */
7a82e5f5 10331 if (likely(update_next_balance))
af3fe03c
PZ
10332 rq->next_balance = next_balance;
10333
af3fe03c
PZ
10334}
10335
d987fc7f
MG
10336static inline int on_null_domain(struct rq *rq)
10337{
10338 return unlikely(!rcu_dereference_sched(rq->sd));
10339}
10340
3451d024 10341#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10342/*
10343 * idle load balancing details
83cd4fe2
VP
10344 * - When one of the busy CPUs notice that there may be an idle rebalancing
10345 * needed, they will kick the idle load balancer, which then does idle
10346 * load balancing for all the idle CPUs.
9b019acb
NP
10347 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10348 * anywhere yet.
83cd4fe2 10349 */
1e3c88bd 10350
3dd0337d 10351static inline int find_new_ilb(void)
1e3c88bd 10352{
9b019acb 10353 int ilb;
031e3bd8 10354 const struct cpumask *hk_mask;
1e3c88bd 10355
031e3bd8 10356 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
1e3c88bd 10357
031e3bd8 10358 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
45da7a2b
PZ
10359
10360 if (ilb == smp_processor_id())
10361 continue;
10362
9b019acb
NP
10363 if (idle_cpu(ilb))
10364 return ilb;
10365 }
786d6dc7
SS
10366
10367 return nr_cpu_ids;
1e3c88bd 10368}
1e3c88bd 10369
83cd4fe2 10370/*
9b019acb
NP
10371 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10372 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10373 */
a4064fb6 10374static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10375{
10376 int ilb_cpu;
10377
3ea2f097
VG
10378 /*
10379 * Increase nohz.next_balance only when if full ilb is triggered but
10380 * not if we only update stats.
10381 */
10382 if (flags & NOHZ_BALANCE_KICK)
10383 nohz.next_balance = jiffies+1;
83cd4fe2 10384
3dd0337d 10385 ilb_cpu = find_new_ilb();
83cd4fe2 10386
0b005cf5
SS
10387 if (ilb_cpu >= nr_cpu_ids)
10388 return;
83cd4fe2 10389
19a1f5ec
PZ
10390 /*
10391 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10392 * the first flag owns it; cleared by nohz_csd_func().
10393 */
a4064fb6 10394 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10395 if (flags & NOHZ_KICK_MASK)
1c792db7 10396 return;
4550487a 10397
1c792db7 10398 /*
90b5363a 10399 * This way we generate an IPI on the target CPU which
1c792db7
SS
10400 * is idle. And the softirq performing nohz idle load balance
10401 * will be run before returning from the IPI.
10402 */
90b5363a 10403 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10404}
10405
10406/*
9f132742
VS
10407 * Current decision point for kicking the idle load balancer in the presence
10408 * of idle CPUs in the system.
4550487a
PZ
10409 */
10410static void nohz_balancer_kick(struct rq *rq)
10411{
10412 unsigned long now = jiffies;
10413 struct sched_domain_shared *sds;
10414 struct sched_domain *sd;
10415 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10416 unsigned int flags = 0;
4550487a
PZ
10417
10418 if (unlikely(rq->idle_balance))
10419 return;
10420
10421 /*
10422 * We may be recently in ticked or tickless idle mode. At the first
10423 * busy tick after returning from idle, we will update the busy stats.
10424 */
00357f5e 10425 nohz_balance_exit_idle(rq);
4550487a
PZ
10426
10427 /*
10428 * None are in tickless mode and hence no need for NOHZ idle load
10429 * balancing.
10430 */
10431 if (likely(!atomic_read(&nohz.nr_cpus)))
10432 return;
10433
f643ea22
VG
10434 if (READ_ONCE(nohz.has_blocked) &&
10435 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10436 flags = NOHZ_STATS_KICK;
10437
4550487a 10438 if (time_before(now, nohz.next_balance))
a4064fb6 10439 goto out;
4550487a 10440
a0fe2cf0 10441 if (rq->nr_running >= 2) {
efd984c4 10442 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10443 goto out;
10444 }
10445
10446 rcu_read_lock();
4550487a
PZ
10447
10448 sd = rcu_dereference(rq->sd);
10449 if (sd) {
e25a7a94
VS
10450 /*
10451 * If there's a CFS task and the current CPU has reduced
10452 * capacity; kick the ILB to see if there's a better CPU to run
10453 * on.
10454 */
10455 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
efd984c4 10456 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10457 goto unlock;
10458 }
10459 }
10460
011b27bb 10461 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10462 if (sd) {
b9a7b883
VS
10463 /*
10464 * When ASYM_PACKING; see if there's a more preferred CPU
10465 * currently idle; in which case, kick the ILB to move tasks
10466 * around.
10467 */
7edab78d 10468 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10469 if (sched_asym_prefer(i, cpu)) {
efd984c4 10470 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10471 goto unlock;
10472 }
10473 }
10474 }
b9a7b883 10475
a0fe2cf0
VS
10476 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10477 if (sd) {
10478 /*
10479 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10480 * to run the misfit task on.
10481 */
10482 if (check_misfit_status(rq, sd)) {
efd984c4 10483 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
a0fe2cf0
VS
10484 goto unlock;
10485 }
b9a7b883
VS
10486
10487 /*
10488 * For asymmetric systems, we do not want to nicely balance
10489 * cache use, instead we want to embrace asymmetry and only
10490 * ensure tasks have enough CPU capacity.
10491 *
10492 * Skip the LLC logic because it's not relevant in that case.
10493 */
10494 goto unlock;
a0fe2cf0
VS
10495 }
10496
b9a7b883
VS
10497 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10498 if (sds) {
e25a7a94 10499 /*
b9a7b883
VS
10500 * If there is an imbalance between LLC domains (IOW we could
10501 * increase the overall cache use), we need some less-loaded LLC
10502 * domain to pull some load. Likewise, we may need to spread
10503 * load within the current LLC domain (e.g. packed SMT cores but
10504 * other CPUs are idle). We can't really know from here how busy
10505 * the others are - so just get a nohz balance going if it looks
10506 * like this LLC domain has tasks we could move.
e25a7a94 10507 */
b9a7b883
VS
10508 nr_busy = atomic_read(&sds->nr_busy_cpus);
10509 if (nr_busy > 1) {
efd984c4 10510 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
b9a7b883 10511 goto unlock;
4550487a
PZ
10512 }
10513 }
10514unlock:
10515 rcu_read_unlock();
10516out:
7fd7a9e0
VS
10517 if (READ_ONCE(nohz.needs_update))
10518 flags |= NOHZ_NEXT_KICK;
10519
a4064fb6
PZ
10520 if (flags)
10521 kick_ilb(flags);
83cd4fe2
VP
10522}
10523
00357f5e 10524static void set_cpu_sd_state_busy(int cpu)
71325960 10525{
00357f5e 10526 struct sched_domain *sd;
a22e47a4 10527
00357f5e
PZ
10528 rcu_read_lock();
10529 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10530
00357f5e
PZ
10531 if (!sd || !sd->nohz_idle)
10532 goto unlock;
10533 sd->nohz_idle = 0;
10534
10535 atomic_inc(&sd->shared->nr_busy_cpus);
10536unlock:
10537 rcu_read_unlock();
71325960
SS
10538}
10539
00357f5e
PZ
10540void nohz_balance_exit_idle(struct rq *rq)
10541{
10542 SCHED_WARN_ON(rq != this_rq());
10543
10544 if (likely(!rq->nohz_tick_stopped))
10545 return;
10546
10547 rq->nohz_tick_stopped = 0;
10548 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10549 atomic_dec(&nohz.nr_cpus);
10550
10551 set_cpu_sd_state_busy(rq->cpu);
10552}
10553
10554static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10555{
10556 struct sched_domain *sd;
69e1e811 10557
69e1e811 10558 rcu_read_lock();
0e369d75 10559 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10560
10561 if (!sd || sd->nohz_idle)
10562 goto unlock;
10563 sd->nohz_idle = 1;
10564
0e369d75 10565 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10566unlock:
69e1e811
SS
10567 rcu_read_unlock();
10568}
10569
1e3c88bd 10570/*
97fb7a0a 10571 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10572 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10573 */
c1cc017c 10574void nohz_balance_enter_idle(int cpu)
1e3c88bd 10575{
00357f5e
PZ
10576 struct rq *rq = cpu_rq(cpu);
10577
10578 SCHED_WARN_ON(cpu != smp_processor_id());
10579
97fb7a0a 10580 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10581 if (!cpu_active(cpu))
10582 return;
10583
387bc8b5 10584 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10585 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10586 return;
10587
f643ea22
VG
10588 /*
10589 * Can be set safely without rq->lock held
10590 * If a clear happens, it will have evaluated last additions because
10591 * rq->lock is held during the check and the clear
10592 */
10593 rq->has_blocked_load = 1;
10594
10595 /*
10596 * The tick is still stopped but load could have been added in the
10597 * meantime. We set the nohz.has_blocked flag to trig a check of the
10598 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10599 * of nohz.has_blocked can only happen after checking the new load
10600 */
00357f5e 10601 if (rq->nohz_tick_stopped)
f643ea22 10602 goto out;
1e3c88bd 10603
97fb7a0a 10604 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10605 if (on_null_domain(rq))
d987fc7f
MG
10606 return;
10607
00357f5e
PZ
10608 rq->nohz_tick_stopped = 1;
10609
c1cc017c
AS
10610 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10611 atomic_inc(&nohz.nr_cpus);
00357f5e 10612
f643ea22
VG
10613 /*
10614 * Ensures that if nohz_idle_balance() fails to observe our
10615 * @idle_cpus_mask store, it must observe the @has_blocked
7fd7a9e0 10616 * and @needs_update stores.
f643ea22
VG
10617 */
10618 smp_mb__after_atomic();
10619
00357f5e 10620 set_cpu_sd_state_idle(cpu);
f643ea22 10621
7fd7a9e0 10622 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
10623out:
10624 /*
10625 * Each time a cpu enter idle, we assume that it has blocked load and
10626 * enable the periodic update of the load of idle cpus
10627 */
10628 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10629}
1e3c88bd 10630
3f5ad914
Y
10631static bool update_nohz_stats(struct rq *rq)
10632{
10633 unsigned int cpu = rq->cpu;
10634
10635 if (!rq->has_blocked_load)
10636 return false;
10637
10638 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10639 return false;
10640
10641 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10642 return true;
10643
10644 update_blocked_averages(cpu);
10645
10646 return rq->has_blocked_load;
10647}
10648
1e3c88bd 10649/*
31e77c93
VG
10650 * Internal function that runs load balance for all idle cpus. The load balance
10651 * can be a simple update of blocked load or a complete load balance with
10652 * tasks movement depending of flags.
1e3c88bd 10653 */
ab2dde5e 10654static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
31e77c93 10655 enum cpu_idle_type idle)
83cd4fe2 10656{
c5afb6a8 10657 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10658 unsigned long now = jiffies;
10659 unsigned long next_balance = now + 60*HZ;
f643ea22 10660 bool has_blocked_load = false;
c5afb6a8 10661 int update_next_balance = 0;
b7031a02 10662 int this_cpu = this_rq->cpu;
b7031a02
PZ
10663 int balance_cpu;
10664 struct rq *rq;
83cd4fe2 10665
b7031a02 10666 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10667
f643ea22
VG
10668 /*
10669 * We assume there will be no idle load after this update and clear
10670 * the has_blocked flag. If a cpu enters idle in the mean time, it will
7fd7a9e0 10671 * set the has_blocked flag and trigger another update of idle load.
f643ea22
VG
10672 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10673 * setting the flag, we are sure to not clear the state and not
10674 * check the load of an idle cpu.
7fd7a9e0
VS
10675 *
10676 * Same applies to idle_cpus_mask vs needs_update.
f643ea22 10677 */
efd984c4
VS
10678 if (flags & NOHZ_STATS_KICK)
10679 WRITE_ONCE(nohz.has_blocked, 0);
7fd7a9e0
VS
10680 if (flags & NOHZ_NEXT_KICK)
10681 WRITE_ONCE(nohz.needs_update, 0);
f643ea22
VG
10682
10683 /*
10684 * Ensures that if we miss the CPU, we must see the has_blocked
10685 * store from nohz_balance_enter_idle().
10686 */
10687 smp_mb();
10688
7a82e5f5
VG
10689 /*
10690 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10691 * chance for other idle cpu to pull load.
10692 */
10693 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10694 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10695 continue;
10696
10697 /*
97fb7a0a
IM
10698 * If this CPU gets work to do, stop the load balancing
10699 * work being done for other CPUs. Next load
83cd4fe2
VP
10700 * balancing owner will pick it up.
10701 */
f643ea22 10702 if (need_resched()) {
efd984c4
VS
10703 if (flags & NOHZ_STATS_KICK)
10704 has_blocked_load = true;
7fd7a9e0
VS
10705 if (flags & NOHZ_NEXT_KICK)
10706 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
10707 goto abort;
10708 }
83cd4fe2 10709
5ed4f1d9
VG
10710 rq = cpu_rq(balance_cpu);
10711
efd984c4
VS
10712 if (flags & NOHZ_STATS_KICK)
10713 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10714
ed61bbc6
TC
10715 /*
10716 * If time for next balance is due,
10717 * do the balance.
10718 */
10719 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10720 struct rq_flags rf;
10721
31e77c93 10722 rq_lock_irqsave(rq, &rf);
ed61bbc6 10723 update_rq_clock(rq);
31e77c93 10724 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10725
b7031a02
PZ
10726 if (flags & NOHZ_BALANCE_KICK)
10727 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10728 }
83cd4fe2 10729
c5afb6a8
VG
10730 if (time_after(next_balance, rq->next_balance)) {
10731 next_balance = rq->next_balance;
10732 update_next_balance = 1;
10733 }
83cd4fe2 10734 }
c5afb6a8 10735
3ea2f097
VG
10736 /*
10737 * next_balance will be updated only when there is a need.
10738 * When the CPU is attached to null domain for ex, it will not be
10739 * updated.
10740 */
10741 if (likely(update_next_balance))
10742 nohz.next_balance = next_balance;
10743
efd984c4
VS
10744 if (flags & NOHZ_STATS_KICK)
10745 WRITE_ONCE(nohz.next_blocked,
10746 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
f643ea22
VG
10747
10748abort:
10749 /* There is still blocked load, enable periodic update */
10750 if (has_blocked_load)
10751 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
10752}
10753
10754/*
10755 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10756 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10757 */
10758static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10759{
19a1f5ec 10760 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10761
19a1f5ec 10762 if (!flags)
31e77c93
VG
10763 return false;
10764
19a1f5ec 10765 this_rq->nohz_idle_balance = 0;
31e77c93 10766
19a1f5ec 10767 if (idle != CPU_IDLE)
31e77c93
VG
10768 return false;
10769
10770 _nohz_idle_balance(this_rq, flags, idle);
10771
b7031a02 10772 return true;
83cd4fe2 10773}
31e77c93 10774
c6f88654
VG
10775/*
10776 * Check if we need to run the ILB for updating blocked load before entering
10777 * idle state.
10778 */
10779void nohz_run_idle_balance(int cpu)
10780{
10781 unsigned int flags;
10782
10783 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10784
10785 /*
10786 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10787 * (ie NOHZ_STATS_KICK set) and will do the same.
10788 */
10789 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10790 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10791}
10792
31e77c93
VG
10793static void nohz_newidle_balance(struct rq *this_rq)
10794{
10795 int this_cpu = this_rq->cpu;
10796
10797 /*
10798 * This CPU doesn't want to be disturbed by scheduler
10799 * housekeeping
10800 */
10801 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10802 return;
10803
10804 /* Will wake up very soon. No time for doing anything else*/
10805 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10806 return;
10807
10808 /* Don't need to update blocked load of idle CPUs*/
10809 if (!READ_ONCE(nohz.has_blocked) ||
10810 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10811 return;
10812
31e77c93 10813 /*
c6f88654
VG
10814 * Set the need to trigger ILB in order to update blocked load
10815 * before entering idle state.
31e77c93 10816 */
c6f88654 10817 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
10818}
10819
dd707247
PZ
10820#else /* !CONFIG_NO_HZ_COMMON */
10821static inline void nohz_balancer_kick(struct rq *rq) { }
10822
31e77c93 10823static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10824{
10825 return false;
10826}
31e77c93
VG
10827
10828static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10829#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10830
47ea5412 10831/*
5b78f2dc 10832 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10833 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10834 *
10835 * Returns:
10836 * < 0 - we released the lock and there are !fair tasks present
10837 * 0 - failed, no new tasks
10838 * > 0 - success, new (fair) tasks present
47ea5412 10839 */
d91cecc1 10840static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10841{
10842 unsigned long next_balance = jiffies + HZ;
10843 int this_cpu = this_rq->cpu;
10844 struct sched_domain *sd;
10845 int pulled_task = 0;
10846 u64 curr_cost = 0;
10847
5ba553ef 10848 update_misfit_status(NULL, this_rq);
e5e678e4
RR
10849
10850 /*
10851 * There is a task waiting to run. No need to search for one.
10852 * Return 0; the task will be enqueued when switching to idle.
10853 */
10854 if (this_rq->ttwu_pending)
10855 return 0;
10856
47ea5412
PZ
10857 /*
10858 * We must set idle_stamp _before_ calling idle_balance(), such that we
10859 * measure the duration of idle_balance() as idle time.
10860 */
10861 this_rq->idle_stamp = rq_clock(this_rq);
10862
10863 /*
10864 * Do not pull tasks towards !active CPUs...
10865 */
10866 if (!cpu_active(this_cpu))
10867 return 0;
10868
10869 /*
10870 * This is OK, because current is on_cpu, which avoids it being picked
10871 * for load-balance and preemption/IRQs are still disabled avoiding
10872 * further scheduler activity on it and we're being very careful to
10873 * re-start the picking loop.
10874 */
10875 rq_unpin_lock(this_rq, rf);
10876
10877 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10878 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10879
47ea5412
PZ
10880 rcu_read_lock();
10881 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10882 if (sd)
10883 update_next_balance(sd, &next_balance);
10884 rcu_read_unlock();
10885
10886 goto out;
10887 }
10888
5cb9eaa3 10889 raw_spin_rq_unlock(this_rq);
47ea5412
PZ
10890
10891 update_blocked_averages(this_cpu);
10892 rcu_read_lock();
10893 for_each_domain(this_cpu, sd) {
10894 int continue_balancing = 1;
10895 u64 t0, domain_cost;
10896
47ea5412
PZ
10897 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10898 update_next_balance(sd, &next_balance);
10899 break;
10900 }
10901
10902 if (sd->flags & SD_BALANCE_NEWIDLE) {
10903 t0 = sched_clock_cpu(this_cpu);
10904
10905 pulled_task = load_balance(this_cpu, this_rq,
10906 sd, CPU_NEWLY_IDLE,
10907 &continue_balancing);
10908
10909 domain_cost = sched_clock_cpu(this_cpu) - t0;
10910 if (domain_cost > sd->max_newidle_lb_cost)
10911 sd->max_newidle_lb_cost = domain_cost;
10912
10913 curr_cost += domain_cost;
10914 }
10915
10916 update_next_balance(sd, &next_balance);
10917
10918 /*
10919 * Stop searching for tasks to pull if there are
10920 * now runnable tasks on this rq.
10921 */
e5e678e4
RR
10922 if (pulled_task || this_rq->nr_running > 0 ||
10923 this_rq->ttwu_pending)
47ea5412
PZ
10924 break;
10925 }
10926 rcu_read_unlock();
10927
5cb9eaa3 10928 raw_spin_rq_lock(this_rq);
47ea5412
PZ
10929
10930 if (curr_cost > this_rq->max_idle_balance_cost)
10931 this_rq->max_idle_balance_cost = curr_cost;
10932
10933 /*
10934 * While browsing the domains, we released the rq lock, a task could
10935 * have been enqueued in the meantime. Since we're not going idle,
10936 * pretend we pulled a task.
10937 */
10938 if (this_rq->cfs.h_nr_running && !pulled_task)
10939 pulled_task = 1;
10940
47ea5412
PZ
10941 /* Is there a task of a high priority class? */
10942 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10943 pulled_task = -1;
10944
6553fc18
VG
10945out:
10946 /* Move the next balance forward */
10947 if (time_after(this_rq->next_balance, next_balance))
10948 this_rq->next_balance = next_balance;
10949
47ea5412
PZ
10950 if (pulled_task)
10951 this_rq->idle_stamp = 0;
0826530d
VG
10952 else
10953 nohz_newidle_balance(this_rq);
47ea5412
PZ
10954
10955 rq_repin_lock(this_rq, rf);
10956
10957 return pulled_task;
10958}
10959
83cd4fe2
VP
10960/*
10961 * run_rebalance_domains is triggered when needed from the scheduler tick.
10962 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10963 */
0766f788 10964static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10965{
208cb16b 10966 struct rq *this_rq = this_rq();
6eb57e0d 10967 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10968 CPU_IDLE : CPU_NOT_IDLE;
10969
1e3c88bd 10970 /*
97fb7a0a
IM
10971 * If this CPU has a pending nohz_balance_kick, then do the
10972 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10973 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10974 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10975 * load balance only within the local sched_domain hierarchy
10976 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10977 */
b7031a02
PZ
10978 if (nohz_idle_balance(this_rq, idle))
10979 return;
10980
10981 /* normal load balance */
10982 update_blocked_averages(this_rq->cpu);
d4573c3e 10983 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10984}
10985
1e3c88bd
PZ
10986/*
10987 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10988 */
7caff66f 10989void trigger_load_balance(struct rq *rq)
1e3c88bd 10990{
e0b257c3
AMB
10991 /*
10992 * Don't need to rebalance while attached to NULL domain or
10993 * runqueue CPU is not active
10994 */
10995 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10996 return;
10997
10998 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10999 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
11000
11001 nohz_balancer_kick(rq);
1e3c88bd
PZ
11002}
11003
0bcdcf28
CE
11004static void rq_online_fair(struct rq *rq)
11005{
11006 update_sysctl();
0e59bdae
KT
11007
11008 update_runtime_enabled(rq);
0bcdcf28
CE
11009}
11010
11011static void rq_offline_fair(struct rq *rq)
11012{
11013 update_sysctl();
a4c96ae3
PB
11014
11015 /* Ensure any throttled groups are reachable by pick_next_task */
11016 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
11017}
11018
55e12e5e 11019#endif /* CONFIG_SMP */
e1d1484f 11020
8039e96f
VP
11021#ifdef CONFIG_SCHED_CORE
11022static inline bool
11023__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11024{
11025 u64 slice = sched_slice(cfs_rq_of(se), se);
11026 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11027
11028 return (rtime * min_nr_tasks > slice);
11029}
11030
11031#define MIN_NR_TASKS_DURING_FORCEIDLE 2
11032static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11033{
11034 if (!sched_core_enabled(rq))
11035 return;
11036
11037 /*
11038 * If runqueue has only one task which used up its slice and
11039 * if the sibling is forced idle, then trigger schedule to
11040 * give forced idle task a chance.
11041 *
11042 * sched_slice() considers only this active rq and it gets the
11043 * whole slice. But during force idle, we have siblings acting
11044 * like a single runqueue and hence we need to consider runnable
cc00c198 11045 * tasks on this CPU and the forced idle CPU. Ideally, we should
8039e96f 11046 * go through the forced idle rq, but that would be a perf hit.
cc00c198 11047 * We can assume that the forced idle CPU has at least
8039e96f 11048 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
cc00c198 11049 * if we need to give up the CPU.
8039e96f
VP
11050 */
11051 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
11052 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11053 resched_curr(rq);
11054}
c6047c2e
JFG
11055
11056/*
11057 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11058 */
11059static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11060{
11061 for_each_sched_entity(se) {
11062 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11063
11064 if (forceidle) {
11065 if (cfs_rq->forceidle_seq == fi_seq)
11066 break;
11067 cfs_rq->forceidle_seq = fi_seq;
11068 }
11069
11070 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11071 }
11072}
11073
11074void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11075{
11076 struct sched_entity *se = &p->se;
11077
11078 if (p->sched_class != &fair_sched_class)
11079 return;
11080
11081 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11082}
11083
11084bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11085{
11086 struct rq *rq = task_rq(a);
11087 struct sched_entity *sea = &a->se;
11088 struct sched_entity *seb = &b->se;
11089 struct cfs_rq *cfs_rqa;
11090 struct cfs_rq *cfs_rqb;
11091 s64 delta;
11092
11093 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11094
11095#ifdef CONFIG_FAIR_GROUP_SCHED
11096 /*
11097 * Find an se in the hierarchy for tasks a and b, such that the se's
11098 * are immediate siblings.
11099 */
11100 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11101 int sea_depth = sea->depth;
11102 int seb_depth = seb->depth;
11103
11104 if (sea_depth >= seb_depth)
11105 sea = parent_entity(sea);
11106 if (sea_depth <= seb_depth)
11107 seb = parent_entity(seb);
11108 }
11109
11110 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11111 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11112
11113 cfs_rqa = sea->cfs_rq;
11114 cfs_rqb = seb->cfs_rq;
11115#else
11116 cfs_rqa = &task_rq(a)->cfs;
11117 cfs_rqb = &task_rq(b)->cfs;
11118#endif
11119
11120 /*
11121 * Find delta after normalizing se's vruntime with its cfs_rq's
11122 * min_vruntime_fi, which would have been updated in prior calls
11123 * to se_fi_update().
11124 */
11125 delta = (s64)(sea->vruntime - seb->vruntime) +
11126 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11127
11128 return delta > 0;
11129}
8039e96f
VP
11130#else
11131static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11132#endif
11133
bf0f6f24 11134/*
d84b3131
FW
11135 * scheduler tick hitting a task of our scheduling class.
11136 *
11137 * NOTE: This function can be called remotely by the tick offload that
11138 * goes along full dynticks. Therefore no local assumption can be made
11139 * and everything must be accessed through the @rq and @curr passed in
11140 * parameters.
bf0f6f24 11141 */
8f4d37ec 11142static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
11143{
11144 struct cfs_rq *cfs_rq;
11145 struct sched_entity *se = &curr->se;
11146
11147 for_each_sched_entity(se) {
11148 cfs_rq = cfs_rq_of(se);
8f4d37ec 11149 entity_tick(cfs_rq, se, queued);
bf0f6f24 11150 }
18bf2805 11151
b52da86e 11152 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 11153 task_tick_numa(rq, curr);
3b1baa64
MR
11154
11155 update_misfit_status(curr, rq);
2802bf3c 11156 update_overutilized_status(task_rq(curr));
8039e96f
VP
11157
11158 task_tick_core(rq, curr);
bf0f6f24
IM
11159}
11160
11161/*
cd29fe6f
PZ
11162 * called on fork with the child task as argument from the parent's context
11163 * - child not yet on the tasklist
11164 * - preemption disabled
bf0f6f24 11165 */
cd29fe6f 11166static void task_fork_fair(struct task_struct *p)
bf0f6f24 11167{
4fc420c9
DN
11168 struct cfs_rq *cfs_rq;
11169 struct sched_entity *se = &p->se, *curr;
cd29fe6f 11170 struct rq *rq = this_rq();
8a8c69c3 11171 struct rq_flags rf;
bf0f6f24 11172
8a8c69c3 11173 rq_lock(rq, &rf);
861d034e
PZ
11174 update_rq_clock(rq);
11175
4fc420c9
DN
11176 cfs_rq = task_cfs_rq(current);
11177 curr = cfs_rq->curr;
e210bffd
PZ
11178 if (curr) {
11179 update_curr(cfs_rq);
b5d9d734 11180 se->vruntime = curr->vruntime;
e210bffd 11181 }
aeb73b04 11182 place_entity(cfs_rq, se, 1);
4d78e7b6 11183
cd29fe6f 11184 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 11185 /*
edcb60a3
IM
11186 * Upon rescheduling, sched_class::put_prev_task() will place
11187 * 'current' within the tree based on its new key value.
11188 */
4d78e7b6 11189 swap(curr->vruntime, se->vruntime);
8875125e 11190 resched_curr(rq);
4d78e7b6 11191 }
bf0f6f24 11192
88ec22d3 11193 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 11194 rq_unlock(rq, &rf);
bf0f6f24
IM
11195}
11196
cb469845
SR
11197/*
11198 * Priority of the task has changed. Check to see if we preempt
11199 * the current task.
11200 */
da7a735e
PZ
11201static void
11202prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 11203{
da0c1e65 11204 if (!task_on_rq_queued(p))
da7a735e
PZ
11205 return;
11206
7c2e8bbd
FW
11207 if (rq->cfs.nr_running == 1)
11208 return;
11209
cb469845
SR
11210 /*
11211 * Reschedule if we are currently running on this runqueue and
11212 * our priority decreased, or if we are not currently running on
11213 * this runqueue and our priority is higher than the current's
11214 */
65bcf072 11215 if (task_current(rq, p)) {
cb469845 11216 if (p->prio > oldprio)
8875125e 11217 resched_curr(rq);
cb469845 11218 } else
15afe09b 11219 check_preempt_curr(rq, p, 0);
cb469845
SR
11220}
11221
daa59407 11222static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
11223{
11224 struct sched_entity *se = &p->se;
da7a735e
PZ
11225
11226 /*
daa59407
BP
11227 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11228 * the dequeue_entity(.flags=0) will already have normalized the
11229 * vruntime.
11230 */
11231 if (p->on_rq)
11232 return true;
11233
11234 /*
11235 * When !on_rq, vruntime of the task has usually NOT been normalized.
11236 * But there are some cases where it has already been normalized:
da7a735e 11237 *
daa59407
BP
11238 * - A forked child which is waiting for being woken up by
11239 * wake_up_new_task().
11240 * - A task which has been woken up by try_to_wake_up() and
11241 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 11242 */
d0cdb3ce 11243 if (!se->sum_exec_runtime ||
2f064a59 11244 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
11245 return true;
11246
11247 return false;
11248}
11249
09a43ace
VG
11250#ifdef CONFIG_FAIR_GROUP_SCHED
11251/*
11252 * Propagate the changes of the sched_entity across the tg tree to make it
11253 * visible to the root
11254 */
11255static void propagate_entity_cfs_rq(struct sched_entity *se)
11256{
11257 struct cfs_rq *cfs_rq;
11258
0258bdfa
OU
11259 list_add_leaf_cfs_rq(cfs_rq_of(se));
11260
09a43ace
VG
11261 /* Start to propagate at parent */
11262 se = se->parent;
11263
11264 for_each_sched_entity(se) {
11265 cfs_rq = cfs_rq_of(se);
11266
0258bdfa
OU
11267 if (!cfs_rq_throttled(cfs_rq)){
11268 update_load_avg(cfs_rq, se, UPDATE_TG);
11269 list_add_leaf_cfs_rq(cfs_rq);
11270 continue;
11271 }
09a43ace 11272
0258bdfa
OU
11273 if (list_add_leaf_cfs_rq(cfs_rq))
11274 break;
09a43ace
VG
11275 }
11276}
11277#else
11278static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11279#endif
11280
df217913 11281static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 11282{
daa59407
BP
11283 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11284
9d89c257 11285 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 11286 update_load_avg(cfs_rq, se, 0);
a05e8c51 11287 detach_entity_load_avg(cfs_rq, se);
fe749158 11288 update_tg_load_avg(cfs_rq);
09a43ace 11289 propagate_entity_cfs_rq(se);
da7a735e
PZ
11290}
11291
df217913 11292static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 11293{
daa59407 11294 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
11295
11296#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
11297 /*
11298 * Since the real-depth could have been changed (only FAIR
11299 * class maintain depth value), reset depth properly.
11300 */
11301 se->depth = se->parent ? se->parent->depth + 1 : 0;
11302#endif
7855a35a 11303
df217913 11304 /* Synchronize entity with its cfs_rq */
88c0616e 11305 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 11306 attach_entity_load_avg(cfs_rq, se);
fe749158 11307 update_tg_load_avg(cfs_rq);
09a43ace 11308 propagate_entity_cfs_rq(se);
df217913
VG
11309}
11310
11311static void detach_task_cfs_rq(struct task_struct *p)
11312{
11313 struct sched_entity *se = &p->se;
11314 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11315
11316 if (!vruntime_normalized(p)) {
11317 /*
11318 * Fix up our vruntime so that the current sleep doesn't
11319 * cause 'unlimited' sleep bonus.
11320 */
11321 place_entity(cfs_rq, se, 0);
11322 se->vruntime -= cfs_rq->min_vruntime;
11323 }
11324
11325 detach_entity_cfs_rq(se);
11326}
11327
11328static void attach_task_cfs_rq(struct task_struct *p)
11329{
11330 struct sched_entity *se = &p->se;
11331 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11332
11333 attach_entity_cfs_rq(se);
daa59407
BP
11334
11335 if (!vruntime_normalized(p))
11336 se->vruntime += cfs_rq->min_vruntime;
11337}
6efdb105 11338
daa59407
BP
11339static void switched_from_fair(struct rq *rq, struct task_struct *p)
11340{
11341 detach_task_cfs_rq(p);
11342}
11343
11344static void switched_to_fair(struct rq *rq, struct task_struct *p)
11345{
11346 attach_task_cfs_rq(p);
7855a35a 11347
daa59407 11348 if (task_on_rq_queued(p)) {
7855a35a 11349 /*
daa59407
BP
11350 * We were most likely switched from sched_rt, so
11351 * kick off the schedule if running, otherwise just see
11352 * if we can still preempt the current task.
7855a35a 11353 */
65bcf072 11354 if (task_current(rq, p))
daa59407
BP
11355 resched_curr(rq);
11356 else
11357 check_preempt_curr(rq, p, 0);
7855a35a 11358 }
cb469845
SR
11359}
11360
83b699ed
SV
11361/* Account for a task changing its policy or group.
11362 *
11363 * This routine is mostly called to set cfs_rq->curr field when a task
11364 * migrates between groups/classes.
11365 */
a0e813f2 11366static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 11367{
03b7fad1
PZ
11368 struct sched_entity *se = &p->se;
11369
11370#ifdef CONFIG_SMP
11371 if (task_on_rq_queued(p)) {
11372 /*
11373 * Move the next running task to the front of the list, so our
11374 * cfs_tasks list becomes MRU one.
11375 */
11376 list_move(&se->group_node, &rq->cfs_tasks);
11377 }
11378#endif
83b699ed 11379
ec12cb7f
PT
11380 for_each_sched_entity(se) {
11381 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11382
11383 set_next_entity(cfs_rq, se);
11384 /* ensure bandwidth has been allocated on our new cfs_rq */
11385 account_cfs_rq_runtime(cfs_rq, 0);
11386 }
83b699ed
SV
11387}
11388
029632fb
PZ
11389void init_cfs_rq(struct cfs_rq *cfs_rq)
11390{
bfb06889 11391 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
11392 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11393#ifndef CONFIG_64BIT
11394 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11395#endif
141965c7 11396#ifdef CONFIG_SMP
2a2f5d4e 11397 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11398#endif
029632fb
PZ
11399}
11400
810b3817 11401#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
11402static void task_set_group_fair(struct task_struct *p)
11403{
11404 struct sched_entity *se = &p->se;
11405
11406 set_task_rq(p, task_cpu(p));
11407 se->depth = se->parent ? se->parent->depth + 1 : 0;
11408}
11409
bc54da21 11410static void task_move_group_fair(struct task_struct *p)
810b3817 11411{
daa59407 11412 detach_task_cfs_rq(p);
b2b5ce02 11413 set_task_rq(p, task_cpu(p));
6efdb105
BP
11414
11415#ifdef CONFIG_SMP
11416 /* Tell se's cfs_rq has been changed -- migrated */
11417 p->se.avg.last_update_time = 0;
11418#endif
daa59407 11419 attach_task_cfs_rq(p);
810b3817 11420}
029632fb 11421
ea86cb4b
VG
11422static void task_change_group_fair(struct task_struct *p, int type)
11423{
11424 switch (type) {
11425 case TASK_SET_GROUP:
11426 task_set_group_fair(p);
11427 break;
11428
11429 case TASK_MOVE_GROUP:
11430 task_move_group_fair(p);
11431 break;
11432 }
11433}
11434
029632fb
PZ
11435void free_fair_sched_group(struct task_group *tg)
11436{
11437 int i;
11438
11439 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11440
11441 for_each_possible_cpu(i) {
11442 if (tg->cfs_rq)
11443 kfree(tg->cfs_rq[i]);
6fe1f348 11444 if (tg->se)
029632fb
PZ
11445 kfree(tg->se[i]);
11446 }
11447
11448 kfree(tg->cfs_rq);
11449 kfree(tg->se);
11450}
11451
11452int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11453{
029632fb 11454 struct sched_entity *se;
b7fa30c9 11455 struct cfs_rq *cfs_rq;
029632fb
PZ
11456 int i;
11457
6396bb22 11458 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11459 if (!tg->cfs_rq)
11460 goto err;
6396bb22 11461 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11462 if (!tg->se)
11463 goto err;
11464
11465 tg->shares = NICE_0_LOAD;
11466
11467 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11468
11469 for_each_possible_cpu(i) {
11470 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11471 GFP_KERNEL, cpu_to_node(i));
11472 if (!cfs_rq)
11473 goto err;
11474
ceeadb83 11475 se = kzalloc_node(sizeof(struct sched_entity_stats),
029632fb
PZ
11476 GFP_KERNEL, cpu_to_node(i));
11477 if (!se)
11478 goto err_free_rq;
11479
11480 init_cfs_rq(cfs_rq);
11481 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11482 init_entity_runnable_average(se);
029632fb
PZ
11483 }
11484
11485 return 1;
11486
11487err_free_rq:
11488 kfree(cfs_rq);
11489err:
11490 return 0;
11491}
11492
8663e24d
PZ
11493void online_fair_sched_group(struct task_group *tg)
11494{
11495 struct sched_entity *se;
a46d14ec 11496 struct rq_flags rf;
8663e24d
PZ
11497 struct rq *rq;
11498 int i;
11499
11500 for_each_possible_cpu(i) {
11501 rq = cpu_rq(i);
11502 se = tg->se[i];
a46d14ec 11503 rq_lock_irq(rq, &rf);
4126bad6 11504 update_rq_clock(rq);
d0326691 11505 attach_entity_cfs_rq(se);
55e16d30 11506 sync_throttle(tg, i);
a46d14ec 11507 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11508 }
11509}
11510
6fe1f348 11511void unregister_fair_sched_group(struct task_group *tg)
029632fb 11512{
029632fb 11513 unsigned long flags;
6fe1f348
PZ
11514 struct rq *rq;
11515 int cpu;
029632fb 11516
6fe1f348
PZ
11517 for_each_possible_cpu(cpu) {
11518 if (tg->se[cpu])
11519 remove_entity_load_avg(tg->se[cpu]);
029632fb 11520
6fe1f348
PZ
11521 /*
11522 * Only empty task groups can be destroyed; so we can speculatively
11523 * check on_list without danger of it being re-added.
11524 */
11525 if (!tg->cfs_rq[cpu]->on_list)
11526 continue;
11527
11528 rq = cpu_rq(cpu);
11529
5cb9eaa3 11530 raw_spin_rq_lock_irqsave(rq, flags);
6fe1f348 11531 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5cb9eaa3 11532 raw_spin_rq_unlock_irqrestore(rq, flags);
6fe1f348 11533 }
029632fb
PZ
11534}
11535
11536void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11537 struct sched_entity *se, int cpu,
11538 struct sched_entity *parent)
11539{
11540 struct rq *rq = cpu_rq(cpu);
11541
11542 cfs_rq->tg = tg;
11543 cfs_rq->rq = rq;
029632fb
PZ
11544 init_cfs_rq_runtime(cfs_rq);
11545
11546 tg->cfs_rq[cpu] = cfs_rq;
11547 tg->se[cpu] = se;
11548
11549 /* se could be NULL for root_task_group */
11550 if (!se)
11551 return;
11552
fed14d45 11553 if (!parent) {
029632fb 11554 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11555 se->depth = 0;
11556 } else {
029632fb 11557 se->cfs_rq = parent->my_q;
fed14d45
PZ
11558 se->depth = parent->depth + 1;
11559 }
029632fb
PZ
11560
11561 se->my_q = cfs_rq;
0ac9b1c2
PT
11562 /* guarantee group entities always have weight */
11563 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11564 se->parent = parent;
11565}
11566
11567static DEFINE_MUTEX(shares_mutex);
11568
30400039 11569static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
029632fb
PZ
11570{
11571 int i;
029632fb 11572
30400039
JD
11573 lockdep_assert_held(&shares_mutex);
11574
029632fb
PZ
11575 /*
11576 * We can't change the weight of the root cgroup.
11577 */
11578 if (!tg->se[0])
11579 return -EINVAL;
11580
11581 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11582
029632fb 11583 if (tg->shares == shares)
30400039 11584 return 0;
029632fb
PZ
11585
11586 tg->shares = shares;
11587 for_each_possible_cpu(i) {
11588 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11589 struct sched_entity *se = tg->se[i];
11590 struct rq_flags rf;
029632fb 11591
029632fb 11592 /* Propagate contribution to hierarchy */
8a8c69c3 11593 rq_lock_irqsave(rq, &rf);
71b1da46 11594 update_rq_clock(rq);
89ee048f 11595 for_each_sched_entity(se) {
88c0616e 11596 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11597 update_cfs_group(se);
89ee048f 11598 }
8a8c69c3 11599 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11600 }
11601
30400039
JD
11602 return 0;
11603}
11604
11605int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11606{
11607 int ret;
11608
11609 mutex_lock(&shares_mutex);
11610 if (tg_is_idle(tg))
11611 ret = -EINVAL;
11612 else
11613 ret = __sched_group_set_shares(tg, shares);
11614 mutex_unlock(&shares_mutex);
11615
11616 return ret;
11617}
11618
11619int sched_group_set_idle(struct task_group *tg, long idle)
11620{
11621 int i;
11622
11623 if (tg == &root_task_group)
11624 return -EINVAL;
11625
11626 if (idle < 0 || idle > 1)
11627 return -EINVAL;
11628
11629 mutex_lock(&shares_mutex);
11630
11631 if (tg->idle == idle) {
11632 mutex_unlock(&shares_mutex);
11633 return 0;
11634 }
11635
11636 tg->idle = idle;
11637
11638 for_each_possible_cpu(i) {
11639 struct rq *rq = cpu_rq(i);
11640 struct sched_entity *se = tg->se[i];
a480adde 11641 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
30400039
JD
11642 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11643 long idle_task_delta;
11644 struct rq_flags rf;
11645
11646 rq_lock_irqsave(rq, &rf);
11647
11648 grp_cfs_rq->idle = idle;
11649 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11650 goto next_cpu;
11651
a480adde
JD
11652 if (se->on_rq) {
11653 parent_cfs_rq = cfs_rq_of(se);
11654 if (cfs_rq_is_idle(grp_cfs_rq))
11655 parent_cfs_rq->idle_nr_running++;
11656 else
11657 parent_cfs_rq->idle_nr_running--;
11658 }
11659
30400039
JD
11660 idle_task_delta = grp_cfs_rq->h_nr_running -
11661 grp_cfs_rq->idle_h_nr_running;
11662 if (!cfs_rq_is_idle(grp_cfs_rq))
11663 idle_task_delta *= -1;
11664
11665 for_each_sched_entity(se) {
11666 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11667
11668 if (!se->on_rq)
11669 break;
11670
11671 cfs_rq->idle_h_nr_running += idle_task_delta;
11672
11673 /* Already accounted at parent level and above. */
11674 if (cfs_rq_is_idle(cfs_rq))
11675 break;
11676 }
11677
11678next_cpu:
11679 rq_unlock_irqrestore(rq, &rf);
11680 }
11681
11682 /* Idle groups have minimum weight. */
11683 if (tg_is_idle(tg))
11684 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11685 else
11686 __sched_group_set_shares(tg, NICE_0_LOAD);
11687
029632fb
PZ
11688 mutex_unlock(&shares_mutex);
11689 return 0;
11690}
30400039 11691
029632fb
PZ
11692#else /* CONFIG_FAIR_GROUP_SCHED */
11693
11694void free_fair_sched_group(struct task_group *tg) { }
11695
11696int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11697{
11698 return 1;
11699}
11700
8663e24d
PZ
11701void online_fair_sched_group(struct task_group *tg) { }
11702
6fe1f348 11703void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11704
11705#endif /* CONFIG_FAIR_GROUP_SCHED */
11706
810b3817 11707
6d686f45 11708static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11709{
11710 struct sched_entity *se = &task->se;
0d721cea
PW
11711 unsigned int rr_interval = 0;
11712
11713 /*
11714 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11715 * idle runqueue:
11716 */
0d721cea 11717 if (rq->cfs.load.weight)
a59f4e07 11718 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11719
11720 return rr_interval;
11721}
11722
bf0f6f24
IM
11723/*
11724 * All the scheduling class methods:
11725 */
43c31ac0
PZ
11726DEFINE_SCHED_CLASS(fair) = {
11727
bf0f6f24
IM
11728 .enqueue_task = enqueue_task_fair,
11729 .dequeue_task = dequeue_task_fair,
11730 .yield_task = yield_task_fair,
d95f4122 11731 .yield_to_task = yield_to_task_fair,
bf0f6f24 11732
2e09bf55 11733 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11734
98c2f700 11735 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11736 .put_prev_task = put_prev_task_fair,
03b7fad1 11737 .set_next_task = set_next_task_fair,
bf0f6f24 11738
681f3e68 11739#ifdef CONFIG_SMP
6e2df058 11740 .balance = balance_fair,
21f56ffe 11741 .pick_task = pick_task_fair,
4ce72a2c 11742 .select_task_rq = select_task_rq_fair,
0a74bef8 11743 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11744
0bcdcf28
CE
11745 .rq_online = rq_online_fair,
11746 .rq_offline = rq_offline_fair,
88ec22d3 11747
12695578 11748 .task_dead = task_dead_fair,
c5b28038 11749 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11750#endif
bf0f6f24 11751
bf0f6f24 11752 .task_tick = task_tick_fair,
cd29fe6f 11753 .task_fork = task_fork_fair,
cb469845
SR
11754
11755 .prio_changed = prio_changed_fair,
da7a735e 11756 .switched_from = switched_from_fair,
cb469845 11757 .switched_to = switched_to_fair,
810b3817 11758
0d721cea
PW
11759 .get_rr_interval = get_rr_interval_fair,
11760
6e998916
SG
11761 .update_curr = update_curr_fair,
11762
810b3817 11763#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11764 .task_change_group = task_change_group_fair,
810b3817 11765#endif
982d9cdc
PB
11766
11767#ifdef CONFIG_UCLAMP_TASK
11768 .uclamp_enabled = 1,
11769#endif
bf0f6f24
IM
11770};
11771
11772#ifdef CONFIG_SCHED_DEBUG
029632fb 11773void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11774{
039ae8bc 11775 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11776
5973e5b9 11777 rcu_read_lock();
039ae8bc 11778 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11779 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11780 rcu_read_unlock();
bf0f6f24 11781}
397f2378
SD
11782
11783#ifdef CONFIG_NUMA_BALANCING
11784void show_numa_stats(struct task_struct *p, struct seq_file *m)
11785{
11786 int node;
11787 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11788 struct numa_group *ng;
397f2378 11789
cb361d8c
JH
11790 rcu_read_lock();
11791 ng = rcu_dereference(p->numa_group);
397f2378
SD
11792 for_each_online_node(node) {
11793 if (p->numa_faults) {
11794 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11795 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11796 }
cb361d8c
JH
11797 if (ng) {
11798 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11799 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11800 }
11801 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11802 }
cb361d8c 11803 rcu_read_unlock();
397f2378
SD
11804}
11805#endif /* CONFIG_NUMA_BALANCING */
11806#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11807
11808__init void init_sched_fair_class(void)
11809{
11810#ifdef CONFIG_SMP
11811 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11812
3451d024 11813#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11814 nohz.next_balance = jiffies;
f643ea22 11815 nohz.next_blocked = jiffies;
029632fb 11816 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11817#endif
11818#endif /* SMP */
11819
11820}
3c93a0c0
QY
11821
11822/*
11823 * Helper functions to facilitate extracting info from tracepoints.
11824 */
11825
11826const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11827{
11828#ifdef CONFIG_SMP
11829 return cfs_rq ? &cfs_rq->avg : NULL;
11830#else
11831 return NULL;
11832#endif
11833}
11834EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11835
11836char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11837{
11838 if (!cfs_rq) {
11839 if (str)
11840 strlcpy(str, "(null)", len);
11841 else
11842 return NULL;
11843 }
11844
11845 cfs_rq_tg_path(cfs_rq, str, len);
11846 return str;
11847}
11848EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11849
11850int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11851{
11852 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11853}
11854EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11855
11856const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11857{
11858#ifdef CONFIG_SMP
11859 return rq ? &rq->avg_rt : NULL;
11860#else
11861 return NULL;
11862#endif
11863}
11864EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11865
11866const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11867{
11868#ifdef CONFIG_SMP
11869 return rq ? &rq->avg_dl : NULL;
11870#else
11871 return NULL;
11872#endif
11873}
11874EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11875
11876const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11877{
11878#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11879 return rq ? &rq->avg_irq : NULL;
11880#else
11881 return NULL;
11882#endif
11883}
11884EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11885
11886int sched_trace_rq_cpu(struct rq *rq)
11887{
11888 return rq ? cpu_of(rq) : -1;
11889}
11890EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11891
51cf18c9
VD
11892int sched_trace_rq_cpu_capacity(struct rq *rq)
11893{
11894 return rq ?
11895#ifdef CONFIG_SMP
11896 rq->cpu_capacity
11897#else
11898 SCHED_CAPACITY_SCALE
11899#endif
11900 : -1;
11901}
11902EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11903
3c93a0c0
QY
11904const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11905{
11906#ifdef CONFIG_SMP
11907 return rd ? rd->span : NULL;
11908#else
11909 return NULL;
11910#endif
11911}
11912EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11913
11914int sched_trace_rq_nr_running(struct rq *rq)
11915{
11916 return rq ? rq->nr_running : -1;
11917}
11918EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);