]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/core: Convert signal_struct.sigcnt to refcount_t
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 251
62160e3f 252/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
253static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254{
62160e3f 255 return cfs_rq->rq;
bf0f6f24
IM
256}
257
8f48894f
PZ
258static inline struct task_struct *task_of(struct sched_entity *se)
259{
9148a3a1 260 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
3d4b47b4
PZ
285static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286{
287 if (!cfs_rq->on_list) {
9c2791f9
VG
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
67e86250
PT
290 /*
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
67e86250
PT
298 */
299 if (cfs_rq->tg->parent &&
9c2791f9
VG
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 /*
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
306 */
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 /*
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
312 * list.
313 */
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
316 /*
317 * cfs rq without parent should be put
318 * at the tail of the list.
319 */
67e86250 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
321 &rq->leaf_cfs_rq_list);
322 /*
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
325 */
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 } else {
328 /*
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
333 */
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
336 /*
337 * update tmp_alone_branch to points to the new beg
338 * of the branch
339 */
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 341 }
3d4b47b4
PZ
342
343 cfs_rq->on_list = 1;
344 }
345}
346
347static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348{
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 cfs_rq->on_list = 0;
352 }
353}
354
c40f7d74
LT
355/* Iterate through all leaf cfs_rq's on a runqueue: */
356#define for_each_leaf_cfs_rq(rq, cfs_rq) \
357 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
b758149c
PZ
358
359/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 360static inline struct cfs_rq *
b758149c
PZ
361is_same_group(struct sched_entity *se, struct sched_entity *pse)
362{
363 if (se->cfs_rq == pse->cfs_rq)
fed14d45 364 return se->cfs_rq;
b758149c 365
fed14d45 366 return NULL;
b758149c
PZ
367}
368
369static inline struct sched_entity *parent_entity(struct sched_entity *se)
370{
371 return se->parent;
372}
373
464b7527
PZ
374static void
375find_matching_se(struct sched_entity **se, struct sched_entity **pse)
376{
377 int se_depth, pse_depth;
378
379 /*
380 * preemption test can be made between sibling entities who are in the
381 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
382 * both tasks until we find their ancestors who are siblings of common
383 * parent.
384 */
385
386 /* First walk up until both entities are at same depth */
fed14d45
PZ
387 se_depth = (*se)->depth;
388 pse_depth = (*pse)->depth;
464b7527
PZ
389
390 while (se_depth > pse_depth) {
391 se_depth--;
392 *se = parent_entity(*se);
393 }
394
395 while (pse_depth > se_depth) {
396 pse_depth--;
397 *pse = parent_entity(*pse);
398 }
399
400 while (!is_same_group(*se, *pse)) {
401 *se = parent_entity(*se);
402 *pse = parent_entity(*pse);
403 }
404}
405
8f48894f
PZ
406#else /* !CONFIG_FAIR_GROUP_SCHED */
407
408static inline struct task_struct *task_of(struct sched_entity *se)
409{
410 return container_of(se, struct task_struct, se);
411}
bf0f6f24 412
62160e3f
IM
413static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
414{
415 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
416}
417
bf0f6f24 418
b758149c
PZ
419#define for_each_sched_entity(se) \
420 for (; se; se = NULL)
bf0f6f24 421
b758149c 422static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 423{
b758149c 424 return &task_rq(p)->cfs;
bf0f6f24
IM
425}
426
b758149c
PZ
427static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
428{
429 struct task_struct *p = task_of(se);
430 struct rq *rq = task_rq(p);
431
432 return &rq->cfs;
433}
434
435/* runqueue "owned" by this group */
436static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
437{
438 return NULL;
439}
440
3d4b47b4
PZ
441static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
442{
443}
444
445static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
446{
447}
448
c40f7d74
LT
449#define for_each_leaf_cfs_rq(rq, cfs_rq) \
450 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
b758149c 451
b758149c
PZ
452static inline struct sched_entity *parent_entity(struct sched_entity *se)
453{
454 return NULL;
455}
456
464b7527
PZ
457static inline void
458find_matching_se(struct sched_entity **se, struct sched_entity **pse)
459{
460}
461
b758149c
PZ
462#endif /* CONFIG_FAIR_GROUP_SCHED */
463
6c16a6dc 464static __always_inline
9dbdb155 465void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
466
467/**************************************************************
468 * Scheduling class tree data structure manipulation methods:
469 */
470
1bf08230 471static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 472{
1bf08230 473 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 474 if (delta > 0)
1bf08230 475 max_vruntime = vruntime;
02e0431a 476
1bf08230 477 return max_vruntime;
02e0431a
PZ
478}
479
0702e3eb 480static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
481{
482 s64 delta = (s64)(vruntime - min_vruntime);
483 if (delta < 0)
484 min_vruntime = vruntime;
485
486 return min_vruntime;
487}
488
54fdc581
FC
489static inline int entity_before(struct sched_entity *a,
490 struct sched_entity *b)
491{
492 return (s64)(a->vruntime - b->vruntime) < 0;
493}
494
1af5f730
PZ
495static void update_min_vruntime(struct cfs_rq *cfs_rq)
496{
b60205c7 497 struct sched_entity *curr = cfs_rq->curr;
bfb06889 498 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 499
1af5f730
PZ
500 u64 vruntime = cfs_rq->min_vruntime;
501
b60205c7
PZ
502 if (curr) {
503 if (curr->on_rq)
504 vruntime = curr->vruntime;
505 else
506 curr = NULL;
507 }
1af5f730 508
bfb06889
DB
509 if (leftmost) { /* non-empty tree */
510 struct sched_entity *se;
511 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 512
b60205c7 513 if (!curr)
1af5f730
PZ
514 vruntime = se->vruntime;
515 else
516 vruntime = min_vruntime(vruntime, se->vruntime);
517 }
518
1bf08230 519 /* ensure we never gain time by being placed backwards. */
1af5f730 520 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
521#ifndef CONFIG_64BIT
522 smp_wmb();
523 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
524#endif
1af5f730
PZ
525}
526
bf0f6f24
IM
527/*
528 * Enqueue an entity into the rb-tree:
529 */
0702e3eb 530static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 531{
bfb06889 532 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
533 struct rb_node *parent = NULL;
534 struct sched_entity *entry;
bfb06889 535 bool leftmost = true;
bf0f6f24
IM
536
537 /*
538 * Find the right place in the rbtree:
539 */
540 while (*link) {
541 parent = *link;
542 entry = rb_entry(parent, struct sched_entity, run_node);
543 /*
544 * We dont care about collisions. Nodes with
545 * the same key stay together.
546 */
2bd2d6f2 547 if (entity_before(se, entry)) {
bf0f6f24
IM
548 link = &parent->rb_left;
549 } else {
550 link = &parent->rb_right;
bfb06889 551 leftmost = false;
bf0f6f24
IM
552 }
553 }
554
bf0f6f24 555 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
556 rb_insert_color_cached(&se->run_node,
557 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
558}
559
0702e3eb 560static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 561{
bfb06889 562 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
563}
564
029632fb 565struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 566{
bfb06889 567 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
568
569 if (!left)
570 return NULL;
571
572 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
573}
574
ac53db59
RR
575static struct sched_entity *__pick_next_entity(struct sched_entity *se)
576{
577 struct rb_node *next = rb_next(&se->run_node);
578
579 if (!next)
580 return NULL;
581
582 return rb_entry(next, struct sched_entity, run_node);
583}
584
585#ifdef CONFIG_SCHED_DEBUG
029632fb 586struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 587{
bfb06889 588 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 589
70eee74b
BS
590 if (!last)
591 return NULL;
7eee3e67
IM
592
593 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
594}
595
bf0f6f24
IM
596/**************************************************************
597 * Scheduling class statistics methods:
598 */
599
acb4a848 600int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 601 void __user *buffer, size_t *lenp,
b2be5e96
PZ
602 loff_t *ppos)
603{
8d65af78 604 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 605 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
606
607 if (ret || !write)
608 return ret;
609
610 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
611 sysctl_sched_min_granularity);
612
acb4a848
CE
613#define WRT_SYSCTL(name) \
614 (normalized_sysctl_##name = sysctl_##name / (factor))
615 WRT_SYSCTL(sched_min_granularity);
616 WRT_SYSCTL(sched_latency);
617 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
618#undef WRT_SYSCTL
619
b2be5e96
PZ
620 return 0;
621}
622#endif
647e7cac 623
a7be37ac 624/*
f9c0b095 625 * delta /= w
a7be37ac 626 */
9dbdb155 627static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 628{
f9c0b095 629 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 630 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
631
632 return delta;
633}
634
647e7cac
IM
635/*
636 * The idea is to set a period in which each task runs once.
637 *
532b1858 638 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
639 * this period because otherwise the slices get too small.
640 *
641 * p = (nr <= nl) ? l : l*nr/nl
642 */
4d78e7b6
PZ
643static u64 __sched_period(unsigned long nr_running)
644{
8e2b0bf3
BF
645 if (unlikely(nr_running > sched_nr_latency))
646 return nr_running * sysctl_sched_min_granularity;
647 else
648 return sysctl_sched_latency;
4d78e7b6
PZ
649}
650
647e7cac
IM
651/*
652 * We calculate the wall-time slice from the period by taking a part
653 * proportional to the weight.
654 *
f9c0b095 655 * s = p*P[w/rw]
647e7cac 656 */
6d0f0ebd 657static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 658{
0a582440 659 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 660
0a582440 661 for_each_sched_entity(se) {
6272d68c 662 struct load_weight *load;
3104bf03 663 struct load_weight lw;
6272d68c
LM
664
665 cfs_rq = cfs_rq_of(se);
666 load = &cfs_rq->load;
f9c0b095 667
0a582440 668 if (unlikely(!se->on_rq)) {
3104bf03 669 lw = cfs_rq->load;
0a582440
MG
670
671 update_load_add(&lw, se->load.weight);
672 load = &lw;
673 }
9dbdb155 674 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
675 }
676 return slice;
bf0f6f24
IM
677}
678
647e7cac 679/*
660cc00f 680 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 681 *
f9c0b095 682 * vs = s/w
647e7cac 683 */
f9c0b095 684static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 685{
f9c0b095 686 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
687}
688
a75cdaa9 689#ifdef CONFIG_SMP
c0796298 690#include "pelt.h"
283e2ed3
PZ
691#include "sched-pelt.h"
692
772bd008 693static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 694static unsigned long task_h_load(struct task_struct *p);
3b1baa64 695static unsigned long capacity_of(int cpu);
fb13c7ee 696
540247fb
YD
697/* Give new sched_entity start runnable values to heavy its load in infant time */
698void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 699{
540247fb 700 struct sched_avg *sa = &se->avg;
a75cdaa9 701
f207934f
PZ
702 memset(sa, 0, sizeof(*sa));
703
b5a9b340 704 /*
dfcb245e 705 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 706 * they get a chance to stabilize to their real load level.
dfcb245e 707 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
708 * nothing has been attached to the task group yet.
709 */
710 if (entity_is_task(se))
1ea6c46a 711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 712
f207934f
PZ
713 se->runnable_weight = se->load.weight;
714
9d89c257 715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 716}
7ea241af 717
7dc603c9 718static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 719static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 720
2b8c41da
YD
721/*
722 * With new tasks being created, their initial util_avgs are extrapolated
723 * based on the cfs_rq's current util_avg:
724 *
725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726 *
727 * However, in many cases, the above util_avg does not give a desired
728 * value. Moreover, the sum of the util_avgs may be divergent, such
729 * as when the series is a harmonic series.
730 *
731 * To solve this problem, we also cap the util_avg of successive tasks to
732 * only 1/2 of the left utilization budget:
733 *
8fe5c5a9 734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 735 *
8fe5c5a9 736 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 737 *
8fe5c5a9
QP
738 * For example, for a CPU with 1024 of capacity, a simplest series from
739 * the beginning would be like:
2b8c41da
YD
740 *
741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743 *
744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745 * if util_avg > util_avg_cap.
746 */
747void post_init_entity_util_avg(struct sched_entity *se)
748{
749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
753
754 if (cap > 0) {
755 if (cfs_rq->avg.util_avg != 0) {
756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
757 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758
759 if (sa->util_avg > cap)
760 sa->util_avg = cap;
761 } else {
762 sa->util_avg = cap;
763 }
2b8c41da 764 }
7dc603c9
PZ
765
766 if (entity_is_task(se)) {
767 struct task_struct *p = task_of(se);
768 if (p->sched_class != &fair_sched_class) {
769 /*
770 * For !fair tasks do:
771 *
3a123bbb 772 update_cfs_rq_load_avg(now, cfs_rq);
ea14b57e 773 attach_entity_load_avg(cfs_rq, se, 0);
7dc603c9
PZ
774 switched_from_fair(rq, p);
775 *
776 * such that the next switched_to_fair() has the
777 * expected state.
778 */
df217913 779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
780 return;
781 }
782 }
783
df217913 784 attach_entity_cfs_rq(se);
2b8c41da
YD
785}
786
7dc603c9 787#else /* !CONFIG_SMP */
540247fb 788void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
789{
790}
2b8c41da
YD
791void post_init_entity_util_avg(struct sched_entity *se)
792{
793}
3d30544f
PZ
794static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795{
796}
7dc603c9 797#endif /* CONFIG_SMP */
a75cdaa9 798
bf0f6f24 799/*
9dbdb155 800 * Update the current task's runtime statistics.
bf0f6f24 801 */
b7cc0896 802static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 803{
429d43bc 804 struct sched_entity *curr = cfs_rq->curr;
78becc27 805 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 806 u64 delta_exec;
bf0f6f24
IM
807
808 if (unlikely(!curr))
809 return;
810
9dbdb155
PZ
811 delta_exec = now - curr->exec_start;
812 if (unlikely((s64)delta_exec <= 0))
34f28ecd 813 return;
bf0f6f24 814
8ebc91d9 815 curr->exec_start = now;
d842de87 816
9dbdb155
PZ
817 schedstat_set(curr->statistics.exec_max,
818 max(delta_exec, curr->statistics.exec_max));
819
820 curr->sum_exec_runtime += delta_exec;
ae92882e 821 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
822
823 curr->vruntime += calc_delta_fair(delta_exec, curr);
824 update_min_vruntime(cfs_rq);
825
d842de87
SV
826 if (entity_is_task(curr)) {
827 struct task_struct *curtask = task_of(curr);
828
f977bb49 829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 830 cgroup_account_cputime(curtask, delta_exec);
f06febc9 831 account_group_exec_runtime(curtask, delta_exec);
d842de87 832 }
ec12cb7f
PT
833
834 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
835}
836
6e998916
SG
837static void update_curr_fair(struct rq *rq)
838{
839 update_curr(cfs_rq_of(&rq->curr->se));
840}
841
bf0f6f24 842static inline void
5870db5b 843update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 844{
4fa8d299
JP
845 u64 wait_start, prev_wait_start;
846
847 if (!schedstat_enabled())
848 return;
849
850 wait_start = rq_clock(rq_of(cfs_rq));
851 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
852
853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
854 likely(wait_start > prev_wait_start))
855 wait_start -= prev_wait_start;
3ea94de1 856
2ed41a55 857 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
858}
859
4fa8d299 860static inline void
3ea94de1
JP
861update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862{
863 struct task_struct *p;
cb251765
MG
864 u64 delta;
865
4fa8d299
JP
866 if (!schedstat_enabled())
867 return;
868
869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
870
871 if (entity_is_task(se)) {
872 p = task_of(se);
873 if (task_on_rq_migrating(p)) {
874 /*
875 * Preserve migrating task's wait time so wait_start
876 * time stamp can be adjusted to accumulate wait time
877 * prior to migration.
878 */
2ed41a55 879 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
880 return;
881 }
882 trace_sched_stat_wait(p, delta);
883 }
884
2ed41a55 885 __schedstat_set(se->statistics.wait_max,
4fa8d299 886 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
887 __schedstat_inc(se->statistics.wait_count);
888 __schedstat_add(se->statistics.wait_sum, delta);
889 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 890}
3ea94de1 891
4fa8d299 892static inline void
1a3d027c
JP
893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *tsk = NULL;
4fa8d299
JP
896 u64 sleep_start, block_start;
897
898 if (!schedstat_enabled())
899 return;
900
901 sleep_start = schedstat_val(se->statistics.sleep_start);
902 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
903
904 if (entity_is_task(se))
905 tsk = task_of(se);
906
4fa8d299
JP
907 if (sleep_start) {
908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
909
910 if ((s64)delta < 0)
911 delta = 0;
912
4fa8d299 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 914 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 915
2ed41a55
PZ
916 __schedstat_set(se->statistics.sleep_start, 0);
917 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
918
919 if (tsk) {
920 account_scheduler_latency(tsk, delta >> 10, 1);
921 trace_sched_stat_sleep(tsk, delta);
922 }
923 }
4fa8d299
JP
924 if (block_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
926
927 if ((s64)delta < 0)
928 delta = 0;
929
4fa8d299 930 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 931 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 932
2ed41a55
PZ
933 __schedstat_set(se->statistics.block_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
935
936 if (tsk) {
937 if (tsk->in_iowait) {
2ed41a55
PZ
938 __schedstat_add(se->statistics.iowait_sum, delta);
939 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
940 trace_sched_stat_iowait(tsk, delta);
941 }
942
943 trace_sched_stat_blocked(tsk, delta);
944
945 /*
946 * Blocking time is in units of nanosecs, so shift by
947 * 20 to get a milliseconds-range estimation of the
948 * amount of time that the task spent sleeping:
949 */
950 if (unlikely(prof_on == SLEEP_PROFILING)) {
951 profile_hits(SLEEP_PROFILING,
952 (void *)get_wchan(tsk),
953 delta >> 20);
954 }
955 account_scheduler_latency(tsk, delta >> 10, 0);
956 }
957 }
3ea94de1 958}
3ea94de1 959
bf0f6f24
IM
960/*
961 * Task is being enqueued - update stats:
962 */
cb251765 963static inline void
1a3d027c 964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 965{
4fa8d299
JP
966 if (!schedstat_enabled())
967 return;
968
bf0f6f24
IM
969 /*
970 * Are we enqueueing a waiting task? (for current tasks
971 * a dequeue/enqueue event is a NOP)
972 */
429d43bc 973 if (se != cfs_rq->curr)
5870db5b 974 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
975
976 if (flags & ENQUEUE_WAKEUP)
977 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
978}
979
bf0f6f24 980static inline void
cb251765 981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 982{
4fa8d299
JP
983
984 if (!schedstat_enabled())
985 return;
986
bf0f6f24
IM
987 /*
988 * Mark the end of the wait period if dequeueing a
989 * waiting task:
990 */
429d43bc 991 if (se != cfs_rq->curr)
9ef0a961 992 update_stats_wait_end(cfs_rq, se);
cb251765 993
4fa8d299
JP
994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 struct task_struct *tsk = task_of(se);
cb251765 996
4fa8d299 997 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 998 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
999 rq_clock(rq_of(cfs_rq)));
1000 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1001 __schedstat_set(se->statistics.block_start,
4fa8d299 1002 rq_clock(rq_of(cfs_rq)));
cb251765 1003 }
cb251765
MG
1004}
1005
bf0f6f24
IM
1006/*
1007 * We are picking a new current task - update its stats:
1008 */
1009static inline void
79303e9e 1010update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1011{
1012 /*
1013 * We are starting a new run period:
1014 */
78becc27 1015 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1016}
1017
bf0f6f24
IM
1018/**************************************************
1019 * Scheduling class queueing methods:
1020 */
1021
cbee9f88
PZ
1022#ifdef CONFIG_NUMA_BALANCING
1023/*
598f0ec0
MG
1024 * Approximate time to scan a full NUMA task in ms. The task scan period is
1025 * calculated based on the tasks virtual memory size and
1026 * numa_balancing_scan_size.
cbee9f88 1027 */
598f0ec0
MG
1028unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1030
1031/* Portion of address space to scan in MB */
1032unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1033
4b96a29b
PZ
1034/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036
b5dd77c8
RR
1037struct numa_group {
1038 atomic_t refcount;
1039
1040 spinlock_t lock; /* nr_tasks, tasks */
1041 int nr_tasks;
1042 pid_t gid;
1043 int active_nodes;
1044
1045 struct rcu_head rcu;
1046 unsigned long total_faults;
1047 unsigned long max_faults_cpu;
1048 /*
1049 * Faults_cpu is used to decide whether memory should move
1050 * towards the CPU. As a consequence, these stats are weighted
1051 * more by CPU use than by memory faults.
1052 */
1053 unsigned long *faults_cpu;
1054 unsigned long faults[0];
1055};
1056
1057static inline unsigned long group_faults_priv(struct numa_group *ng);
1058static inline unsigned long group_faults_shared(struct numa_group *ng);
1059
598f0ec0
MG
1060static unsigned int task_nr_scan_windows(struct task_struct *p)
1061{
1062 unsigned long rss = 0;
1063 unsigned long nr_scan_pages;
1064
1065 /*
1066 * Calculations based on RSS as non-present and empty pages are skipped
1067 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 * on resident pages
1069 */
1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 rss = get_mm_rss(p->mm);
1072 if (!rss)
1073 rss = nr_scan_pages;
1074
1075 rss = round_up(rss, nr_scan_pages);
1076 return rss / nr_scan_pages;
1077}
1078
1079/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080#define MAX_SCAN_WINDOW 2560
1081
1082static unsigned int task_scan_min(struct task_struct *p)
1083{
316c1608 1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1085 unsigned int scan, floor;
1086 unsigned int windows = 1;
1087
64192658
KT
1088 if (scan_size < MAX_SCAN_WINDOW)
1089 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1090 floor = 1000 / windows;
1091
1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 return max_t(unsigned int, floor, scan);
1094}
1095
b5dd77c8
RR
1096static unsigned int task_scan_start(struct task_struct *p)
1097{
1098 unsigned long smin = task_scan_min(p);
1099 unsigned long period = smin;
1100
1101 /* Scale the maximum scan period with the amount of shared memory. */
1102 if (p->numa_group) {
1103 struct numa_group *ng = p->numa_group;
1104 unsigned long shared = group_faults_shared(ng);
1105 unsigned long private = group_faults_priv(ng);
1106
1107 period *= atomic_read(&ng->refcount);
1108 period *= shared + 1;
1109 period /= private + shared + 1;
1110 }
1111
1112 return max(smin, period);
1113}
1114
598f0ec0
MG
1115static unsigned int task_scan_max(struct task_struct *p)
1116{
b5dd77c8
RR
1117 unsigned long smin = task_scan_min(p);
1118 unsigned long smax;
598f0ec0
MG
1119
1120 /* Watch for min being lower than max due to floor calculations */
1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1122
1123 /* Scale the maximum scan period with the amount of shared memory. */
1124 if (p->numa_group) {
1125 struct numa_group *ng = p->numa_group;
1126 unsigned long shared = group_faults_shared(ng);
1127 unsigned long private = group_faults_priv(ng);
1128 unsigned long period = smax;
1129
1130 period *= atomic_read(&ng->refcount);
1131 period *= shared + 1;
1132 period /= private + shared + 1;
1133
1134 smax = max(smax, period);
1135 }
1136
598f0ec0
MG
1137 return max(smin, smax);
1138}
1139
13784475
MG
1140void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141{
1142 int mm_users = 0;
1143 struct mm_struct *mm = p->mm;
1144
1145 if (mm) {
1146 mm_users = atomic_read(&mm->mm_users);
1147 if (mm_users == 1) {
1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 mm->numa_scan_seq = 0;
1150 }
1151 }
1152 p->node_stamp = 0;
1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1155 p->numa_work.next = &p->numa_work;
1156 p->numa_faults = NULL;
1157 p->numa_group = NULL;
1158 p->last_task_numa_placement = 0;
1159 p->last_sum_exec_runtime = 0;
1160
1161 /* New address space, reset the preferred nid */
1162 if (!(clone_flags & CLONE_VM)) {
1163 p->numa_preferred_nid = -1;
1164 return;
1165 }
1166
1167 /*
1168 * New thread, keep existing numa_preferred_nid which should be copied
1169 * already by arch_dup_task_struct but stagger when scans start.
1170 */
1171 if (mm) {
1172 unsigned int delay;
1173
1174 delay = min_t(unsigned int, task_scan_max(current),
1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 delay += 2 * TICK_NSEC;
1177 p->node_stamp = delay;
1178 }
1179}
1180
0ec8aa00
PZ
1181static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182{
1183 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185}
1186
1187static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188{
1189 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191}
1192
be1e4e76
RR
1193/* Shared or private faults. */
1194#define NR_NUMA_HINT_FAULT_TYPES 2
1195
1196/* Memory and CPU locality */
1197#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198
1199/* Averaged statistics, and temporary buffers. */
1200#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201
e29cf08b
MG
1202pid_t task_numa_group_id(struct task_struct *p)
1203{
1204 return p->numa_group ? p->numa_group->gid : 0;
1205}
1206
44dba3d5 1207/*
97fb7a0a 1208 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1209 * occupy the first half of the array. The second half of the
1210 * array is for current counters, which are averaged into the
1211 * first set by task_numa_placement.
1212 */
1213static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1214{
44dba3d5 1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1216}
1217
1218static inline unsigned long task_faults(struct task_struct *p, int nid)
1219{
44dba3d5 1220 if (!p->numa_faults)
ac8e895b
MG
1221 return 0;
1222
44dba3d5
IM
1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1225}
1226
83e1d2cd
MG
1227static inline unsigned long group_faults(struct task_struct *p, int nid)
1228{
1229 if (!p->numa_group)
1230 return 0;
1231
44dba3d5
IM
1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1234}
1235
20e07dea
RR
1236static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237{
44dba3d5
IM
1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1240}
1241
b5dd77c8
RR
1242static inline unsigned long group_faults_priv(struct numa_group *ng)
1243{
1244 unsigned long faults = 0;
1245 int node;
1246
1247 for_each_online_node(node) {
1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 }
1250
1251 return faults;
1252}
1253
1254static inline unsigned long group_faults_shared(struct numa_group *ng)
1255{
1256 unsigned long faults = 0;
1257 int node;
1258
1259 for_each_online_node(node) {
1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 }
1262
1263 return faults;
1264}
1265
4142c3eb
RR
1266/*
1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268 * considered part of a numa group's pseudo-interleaving set. Migrations
1269 * between these nodes are slowed down, to allow things to settle down.
1270 */
1271#define ACTIVE_NODE_FRACTION 3
1272
1273static bool numa_is_active_node(int nid, struct numa_group *ng)
1274{
1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276}
1277
6c6b1193
RR
1278/* Handle placement on systems where not all nodes are directly connected. */
1279static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 int maxdist, bool task)
1281{
1282 unsigned long score = 0;
1283 int node;
1284
1285 /*
1286 * All nodes are directly connected, and the same distance
1287 * from each other. No need for fancy placement algorithms.
1288 */
1289 if (sched_numa_topology_type == NUMA_DIRECT)
1290 return 0;
1291
1292 /*
1293 * This code is called for each node, introducing N^2 complexity,
1294 * which should be ok given the number of nodes rarely exceeds 8.
1295 */
1296 for_each_online_node(node) {
1297 unsigned long faults;
1298 int dist = node_distance(nid, node);
1299
1300 /*
1301 * The furthest away nodes in the system are not interesting
1302 * for placement; nid was already counted.
1303 */
1304 if (dist == sched_max_numa_distance || node == nid)
1305 continue;
1306
1307 /*
1308 * On systems with a backplane NUMA topology, compare groups
1309 * of nodes, and move tasks towards the group with the most
1310 * memory accesses. When comparing two nodes at distance
1311 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 * of each group. Skip other nodes.
1313 */
1314 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1315 dist >= maxdist)
6c6b1193
RR
1316 continue;
1317
1318 /* Add up the faults from nearby nodes. */
1319 if (task)
1320 faults = task_faults(p, node);
1321 else
1322 faults = group_faults(p, node);
1323
1324 /*
1325 * On systems with a glueless mesh NUMA topology, there are
1326 * no fixed "groups of nodes". Instead, nodes that are not
1327 * directly connected bounce traffic through intermediate
1328 * nodes; a numa_group can occupy any set of nodes.
1329 * The further away a node is, the less the faults count.
1330 * This seems to result in good task placement.
1331 */
1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 faults *= (sched_max_numa_distance - dist);
1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 }
1336
1337 score += faults;
1338 }
1339
1340 return score;
1341}
1342
83e1d2cd
MG
1343/*
1344 * These return the fraction of accesses done by a particular task, or
1345 * task group, on a particular numa node. The group weight is given a
1346 * larger multiplier, in order to group tasks together that are almost
1347 * evenly spread out between numa nodes.
1348 */
7bd95320
RR
1349static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 int dist)
83e1d2cd 1351{
7bd95320 1352 unsigned long faults, total_faults;
83e1d2cd 1353
44dba3d5 1354 if (!p->numa_faults)
83e1d2cd
MG
1355 return 0;
1356
1357 total_faults = p->total_numa_faults;
1358
1359 if (!total_faults)
1360 return 0;
1361
7bd95320 1362 faults = task_faults(p, nid);
6c6b1193
RR
1363 faults += score_nearby_nodes(p, nid, dist, true);
1364
7bd95320 1365 return 1000 * faults / total_faults;
83e1d2cd
MG
1366}
1367
7bd95320
RR
1368static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 int dist)
83e1d2cd 1370{
7bd95320
RR
1371 unsigned long faults, total_faults;
1372
1373 if (!p->numa_group)
1374 return 0;
1375
1376 total_faults = p->numa_group->total_faults;
1377
1378 if (!total_faults)
83e1d2cd
MG
1379 return 0;
1380
7bd95320 1381 faults = group_faults(p, nid);
6c6b1193
RR
1382 faults += score_nearby_nodes(p, nid, dist, false);
1383
7bd95320 1384 return 1000 * faults / total_faults;
83e1d2cd
MG
1385}
1386
10f39042
RR
1387bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 int src_nid, int dst_cpu)
1389{
1390 struct numa_group *ng = p->numa_group;
1391 int dst_nid = cpu_to_node(dst_cpu);
1392 int last_cpupid, this_cpupid;
1393
1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1395 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1396
1397 /*
1398 * Allow first faults or private faults to migrate immediately early in
1399 * the lifetime of a task. The magic number 4 is based on waiting for
1400 * two full passes of the "multi-stage node selection" test that is
1401 * executed below.
1402 */
1403 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1404 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1405 return true;
10f39042
RR
1406
1407 /*
1408 * Multi-stage node selection is used in conjunction with a periodic
1409 * migration fault to build a temporal task<->page relation. By using
1410 * a two-stage filter we remove short/unlikely relations.
1411 *
1412 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1413 * a task's usage of a particular page (n_p) per total usage of this
1414 * page (n_t) (in a given time-span) to a probability.
1415 *
1416 * Our periodic faults will sample this probability and getting the
1417 * same result twice in a row, given these samples are fully
1418 * independent, is then given by P(n)^2, provided our sample period
1419 * is sufficiently short compared to the usage pattern.
1420 *
1421 * This quadric squishes small probabilities, making it less likely we
1422 * act on an unlikely task<->page relation.
1423 */
10f39042
RR
1424 if (!cpupid_pid_unset(last_cpupid) &&
1425 cpupid_to_nid(last_cpupid) != dst_nid)
1426 return false;
1427
1428 /* Always allow migrate on private faults */
1429 if (cpupid_match_pid(p, last_cpupid))
1430 return true;
1431
1432 /* A shared fault, but p->numa_group has not been set up yet. */
1433 if (!ng)
1434 return true;
1435
1436 /*
4142c3eb
RR
1437 * Destination node is much more heavily used than the source
1438 * node? Allow migration.
10f39042 1439 */
4142c3eb
RR
1440 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1441 ACTIVE_NODE_FRACTION)
10f39042
RR
1442 return true;
1443
1444 /*
4142c3eb
RR
1445 * Distribute memory according to CPU & memory use on each node,
1446 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1447 *
1448 * faults_cpu(dst) 3 faults_cpu(src)
1449 * --------------- * - > ---------------
1450 * faults_mem(dst) 4 faults_mem(src)
10f39042 1451 */
4142c3eb
RR
1452 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1453 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1454}
1455
c7132dd6 1456static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1457static unsigned long source_load(int cpu, int type);
1458static unsigned long target_load(int cpu, int type);
58d081b5 1459
fb13c7ee 1460/* Cached statistics for all CPUs within a node */
58d081b5
MG
1461struct numa_stats {
1462 unsigned long load;
fb13c7ee
MG
1463
1464 /* Total compute capacity of CPUs on a node */
5ef20ca1 1465 unsigned long compute_capacity;
58d081b5 1466};
e6628d5b 1467
fb13c7ee
MG
1468/*
1469 * XXX borrowed from update_sg_lb_stats
1470 */
1471static void update_numa_stats(struct numa_stats *ns, int nid)
1472{
d90707eb 1473 int cpu;
fb13c7ee
MG
1474
1475 memset(ns, 0, sizeof(*ns));
1476 for_each_cpu(cpu, cpumask_of_node(nid)) {
1477 struct rq *rq = cpu_rq(cpu);
1478
c7132dd6 1479 ns->load += weighted_cpuload(rq);
ced549fa 1480 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1481 }
1482
fb13c7ee
MG
1483}
1484
58d081b5
MG
1485struct task_numa_env {
1486 struct task_struct *p;
e6628d5b 1487
58d081b5
MG
1488 int src_cpu, src_nid;
1489 int dst_cpu, dst_nid;
e6628d5b 1490
58d081b5 1491 struct numa_stats src_stats, dst_stats;
e6628d5b 1492
40ea2b42 1493 int imbalance_pct;
7bd95320 1494 int dist;
fb13c7ee
MG
1495
1496 struct task_struct *best_task;
1497 long best_imp;
58d081b5
MG
1498 int best_cpu;
1499};
1500
fb13c7ee
MG
1501static void task_numa_assign(struct task_numa_env *env,
1502 struct task_struct *p, long imp)
1503{
a4739eca
SD
1504 struct rq *rq = cpu_rq(env->dst_cpu);
1505
1506 /* Bail out if run-queue part of active NUMA balance. */
1507 if (xchg(&rq->numa_migrate_on, 1))
1508 return;
1509
1510 /*
1511 * Clear previous best_cpu/rq numa-migrate flag, since task now
1512 * found a better CPU to move/swap.
1513 */
1514 if (env->best_cpu != -1) {
1515 rq = cpu_rq(env->best_cpu);
1516 WRITE_ONCE(rq->numa_migrate_on, 0);
1517 }
1518
fb13c7ee
MG
1519 if (env->best_task)
1520 put_task_struct(env->best_task);
bac78573
ON
1521 if (p)
1522 get_task_struct(p);
fb13c7ee
MG
1523
1524 env->best_task = p;
1525 env->best_imp = imp;
1526 env->best_cpu = env->dst_cpu;
1527}
1528
28a21745 1529static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1530 struct task_numa_env *env)
1531{
e4991b24
RR
1532 long imb, old_imb;
1533 long orig_src_load, orig_dst_load;
28a21745
RR
1534 long src_capacity, dst_capacity;
1535
1536 /*
1537 * The load is corrected for the CPU capacity available on each node.
1538 *
1539 * src_load dst_load
1540 * ------------ vs ---------
1541 * src_capacity dst_capacity
1542 */
1543 src_capacity = env->src_stats.compute_capacity;
1544 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1545
5f95ba7a 1546 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1547
28a21745 1548 orig_src_load = env->src_stats.load;
e4991b24 1549 orig_dst_load = env->dst_stats.load;
28a21745 1550
5f95ba7a 1551 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1552
1553 /* Would this change make things worse? */
1554 return (imb > old_imb);
e63da036
RR
1555}
1556
6fd98e77
SD
1557/*
1558 * Maximum NUMA importance can be 1998 (2*999);
1559 * SMALLIMP @ 30 would be close to 1998/64.
1560 * Used to deter task migration.
1561 */
1562#define SMALLIMP 30
1563
fb13c7ee
MG
1564/*
1565 * This checks if the overall compute and NUMA accesses of the system would
1566 * be improved if the source tasks was migrated to the target dst_cpu taking
1567 * into account that it might be best if task running on the dst_cpu should
1568 * be exchanged with the source task
1569 */
887c290e 1570static void task_numa_compare(struct task_numa_env *env,
305c1fac 1571 long taskimp, long groupimp, bool maymove)
fb13c7ee 1572{
fb13c7ee
MG
1573 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1574 struct task_struct *cur;
28a21745 1575 long src_load, dst_load;
fb13c7ee 1576 long load;
1c5d3eb3 1577 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1578 long moveimp = imp;
7bd95320 1579 int dist = env->dist;
fb13c7ee 1580
a4739eca
SD
1581 if (READ_ONCE(dst_rq->numa_migrate_on))
1582 return;
1583
fb13c7ee 1584 rcu_read_lock();
bac78573
ON
1585 cur = task_rcu_dereference(&dst_rq->curr);
1586 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1587 cur = NULL;
1588
7af68335
PZ
1589 /*
1590 * Because we have preemption enabled we can get migrated around and
1591 * end try selecting ourselves (current == env->p) as a swap candidate.
1592 */
1593 if (cur == env->p)
1594 goto unlock;
1595
305c1fac 1596 if (!cur) {
6fd98e77 1597 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1598 goto assign;
1599 else
1600 goto unlock;
1601 }
1602
fb13c7ee
MG
1603 /*
1604 * "imp" is the fault differential for the source task between the
1605 * source and destination node. Calculate the total differential for
1606 * the source task and potential destination task. The more negative
305c1fac 1607 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1608 * be incurred if the tasks were swapped.
1609 */
305c1fac
SD
1610 /* Skip this swap candidate if cannot move to the source cpu */
1611 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1612 goto unlock;
fb13c7ee 1613
305c1fac
SD
1614 /*
1615 * If dst and source tasks are in the same NUMA group, or not
1616 * in any group then look only at task weights.
1617 */
1618 if (cur->numa_group == env->p->numa_group) {
1619 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1620 task_weight(cur, env->dst_nid, dist);
887c290e 1621 /*
305c1fac
SD
1622 * Add some hysteresis to prevent swapping the
1623 * tasks within a group over tiny differences.
887c290e 1624 */
305c1fac
SD
1625 if (cur->numa_group)
1626 imp -= imp / 16;
1627 } else {
1628 /*
1629 * Compare the group weights. If a task is all by itself
1630 * (not part of a group), use the task weight instead.
1631 */
1632 if (cur->numa_group && env->p->numa_group)
1633 imp += group_weight(cur, env->src_nid, dist) -
1634 group_weight(cur, env->dst_nid, dist);
1635 else
1636 imp += task_weight(cur, env->src_nid, dist) -
1637 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1638 }
1639
305c1fac 1640 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1641 imp = moveimp;
305c1fac 1642 cur = NULL;
fb13c7ee 1643 goto assign;
305c1fac 1644 }
fb13c7ee 1645
6fd98e77
SD
1646 /*
1647 * If the NUMA importance is less than SMALLIMP,
1648 * task migration might only result in ping pong
1649 * of tasks and also hurt performance due to cache
1650 * misses.
1651 */
1652 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1653 goto unlock;
1654
fb13c7ee
MG
1655 /*
1656 * In the overloaded case, try and keep the load balanced.
1657 */
305c1fac
SD
1658 load = task_h_load(env->p) - task_h_load(cur);
1659 if (!load)
1660 goto assign;
1661
e720fff6
PZ
1662 dst_load = env->dst_stats.load + load;
1663 src_load = env->src_stats.load - load;
fb13c7ee 1664
28a21745 1665 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1666 goto unlock;
1667
305c1fac 1668assign:
ba7e5a27
RR
1669 /*
1670 * One idle CPU per node is evaluated for a task numa move.
1671 * Call select_idle_sibling to maybe find a better one.
1672 */
10e2f1ac
PZ
1673 if (!cur) {
1674 /*
97fb7a0a 1675 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1676 * can be used from IRQ context.
1677 */
1678 local_irq_disable();
772bd008
MR
1679 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1680 env->dst_cpu);
10e2f1ac
PZ
1681 local_irq_enable();
1682 }
ba7e5a27 1683
fb13c7ee
MG
1684 task_numa_assign(env, cur, imp);
1685unlock:
1686 rcu_read_unlock();
1687}
1688
887c290e
RR
1689static void task_numa_find_cpu(struct task_numa_env *env,
1690 long taskimp, long groupimp)
2c8a50aa 1691{
305c1fac
SD
1692 long src_load, dst_load, load;
1693 bool maymove = false;
2c8a50aa
MG
1694 int cpu;
1695
305c1fac
SD
1696 load = task_h_load(env->p);
1697 dst_load = env->dst_stats.load + load;
1698 src_load = env->src_stats.load - load;
1699
1700 /*
1701 * If the improvement from just moving env->p direction is better
1702 * than swapping tasks around, check if a move is possible.
1703 */
1704 maymove = !load_too_imbalanced(src_load, dst_load, env);
1705
2c8a50aa
MG
1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 /* Skip this CPU if the source task cannot migrate */
0c98d344 1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1709 continue;
1710
1711 env->dst_cpu = cpu;
305c1fac 1712 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1713 }
1714}
1715
58d081b5
MG
1716static int task_numa_migrate(struct task_struct *p)
1717{
58d081b5
MG
1718 struct task_numa_env env = {
1719 .p = p,
fb13c7ee 1720
58d081b5 1721 .src_cpu = task_cpu(p),
b32e86b4 1722 .src_nid = task_node(p),
fb13c7ee
MG
1723
1724 .imbalance_pct = 112,
1725
1726 .best_task = NULL,
1727 .best_imp = 0,
4142c3eb 1728 .best_cpu = -1,
58d081b5
MG
1729 };
1730 struct sched_domain *sd;
a4739eca 1731 struct rq *best_rq;
887c290e 1732 unsigned long taskweight, groupweight;
7bd95320 1733 int nid, ret, dist;
887c290e 1734 long taskimp, groupimp;
e6628d5b 1735
58d081b5 1736 /*
fb13c7ee
MG
1737 * Pick the lowest SD_NUMA domain, as that would have the smallest
1738 * imbalance and would be the first to start moving tasks about.
1739 *
1740 * And we want to avoid any moving of tasks about, as that would create
1741 * random movement of tasks -- counter the numa conditions we're trying
1742 * to satisfy here.
58d081b5
MG
1743 */
1744 rcu_read_lock();
fb13c7ee 1745 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1746 if (sd)
1747 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1748 rcu_read_unlock();
1749
46a73e8a
RR
1750 /*
1751 * Cpusets can break the scheduler domain tree into smaller
1752 * balance domains, some of which do not cross NUMA boundaries.
1753 * Tasks that are "trapped" in such domains cannot be migrated
1754 * elsewhere, so there is no point in (re)trying.
1755 */
1756 if (unlikely(!sd)) {
8cd45eee 1757 sched_setnuma(p, task_node(p));
46a73e8a
RR
1758 return -EINVAL;
1759 }
1760
2c8a50aa 1761 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1762 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1763 taskweight = task_weight(p, env.src_nid, dist);
1764 groupweight = group_weight(p, env.src_nid, dist);
1765 update_numa_stats(&env.src_stats, env.src_nid);
1766 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1767 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1768 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1769
a43455a1 1770 /* Try to find a spot on the preferred nid. */
2d4056fa 1771 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1772
9de05d48
RR
1773 /*
1774 * Look at other nodes in these cases:
1775 * - there is no space available on the preferred_nid
1776 * - the task is part of a numa_group that is interleaved across
1777 * multiple NUMA nodes; in order to better consolidate the group,
1778 * we need to check other locations.
1779 */
4142c3eb 1780 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1781 for_each_online_node(nid) {
1782 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1783 continue;
58d081b5 1784
7bd95320 1785 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1786 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1787 dist != env.dist) {
1788 taskweight = task_weight(p, env.src_nid, dist);
1789 groupweight = group_weight(p, env.src_nid, dist);
1790 }
7bd95320 1791
83e1d2cd 1792 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1793 taskimp = task_weight(p, nid, dist) - taskweight;
1794 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1795 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1796 continue;
1797
7bd95320 1798 env.dist = dist;
2c8a50aa
MG
1799 env.dst_nid = nid;
1800 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1801 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1802 }
1803 }
1804
68d1b02a
RR
1805 /*
1806 * If the task is part of a workload that spans multiple NUMA nodes,
1807 * and is migrating into one of the workload's active nodes, remember
1808 * this node as the task's preferred numa node, so the workload can
1809 * settle down.
1810 * A task that migrated to a second choice node will be better off
1811 * trying for a better one later. Do not set the preferred node here.
1812 */
db015dae
RR
1813 if (p->numa_group) {
1814 if (env.best_cpu == -1)
1815 nid = env.src_nid;
1816 else
8cd45eee 1817 nid = cpu_to_node(env.best_cpu);
db015dae 1818
8cd45eee
SD
1819 if (nid != p->numa_preferred_nid)
1820 sched_setnuma(p, nid);
db015dae
RR
1821 }
1822
1823 /* No better CPU than the current one was found. */
1824 if (env.best_cpu == -1)
1825 return -EAGAIN;
0ec8aa00 1826
a4739eca 1827 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1828 if (env.best_task == NULL) {
286549dc 1829 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1830 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1831 if (ret != 0)
1832 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1833 return ret;
1834 }
1835
0ad4e3df 1836 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1837 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1838
286549dc
MG
1839 if (ret != 0)
1840 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1841 put_task_struct(env.best_task);
1842 return ret;
e6628d5b
MG
1843}
1844
6b9a7460
MG
1845/* Attempt to migrate a task to a CPU on the preferred node. */
1846static void numa_migrate_preferred(struct task_struct *p)
1847{
5085e2a3
RR
1848 unsigned long interval = HZ;
1849
2739d3ee 1850 /* This task has no NUMA fault statistics yet */
44dba3d5 1851 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1852 return;
1853
2739d3ee 1854 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1855 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1856 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1857
1858 /* Success if task is already running on preferred CPU */
de1b301a 1859 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1860 return;
1861
1862 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1863 task_numa_migrate(p);
6b9a7460
MG
1864}
1865
20e07dea 1866/*
4142c3eb 1867 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1868 * tracking the nodes from which NUMA hinting faults are triggered. This can
1869 * be different from the set of nodes where the workload's memory is currently
1870 * located.
20e07dea 1871 */
4142c3eb 1872static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1873{
1874 unsigned long faults, max_faults = 0;
4142c3eb 1875 int nid, active_nodes = 0;
20e07dea
RR
1876
1877 for_each_online_node(nid) {
1878 faults = group_faults_cpu(numa_group, nid);
1879 if (faults > max_faults)
1880 max_faults = faults;
1881 }
1882
1883 for_each_online_node(nid) {
1884 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1885 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1886 active_nodes++;
20e07dea 1887 }
4142c3eb
RR
1888
1889 numa_group->max_faults_cpu = max_faults;
1890 numa_group->active_nodes = active_nodes;
20e07dea
RR
1891}
1892
04bb2f94
RR
1893/*
1894 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1895 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1896 * period will be for the next scan window. If local/(local+remote) ratio is
1897 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1898 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1899 */
1900#define NUMA_PERIOD_SLOTS 10
a22b4b01 1901#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1902
1903/*
1904 * Increase the scan period (slow down scanning) if the majority of
1905 * our memory is already on our local node, or if the majority of
1906 * the page accesses are shared with other processes.
1907 * Otherwise, decrease the scan period.
1908 */
1909static void update_task_scan_period(struct task_struct *p,
1910 unsigned long shared, unsigned long private)
1911{
1912 unsigned int period_slot;
37ec97de 1913 int lr_ratio, ps_ratio;
04bb2f94
RR
1914 int diff;
1915
1916 unsigned long remote = p->numa_faults_locality[0];
1917 unsigned long local = p->numa_faults_locality[1];
1918
1919 /*
1920 * If there were no record hinting faults then either the task is
1921 * completely idle or all activity is areas that are not of interest
074c2381
MG
1922 * to automatic numa balancing. Related to that, if there were failed
1923 * migration then it implies we are migrating too quickly or the local
1924 * node is overloaded. In either case, scan slower
04bb2f94 1925 */
074c2381 1926 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1927 p->numa_scan_period = min(p->numa_scan_period_max,
1928 p->numa_scan_period << 1);
1929
1930 p->mm->numa_next_scan = jiffies +
1931 msecs_to_jiffies(p->numa_scan_period);
1932
1933 return;
1934 }
1935
1936 /*
1937 * Prepare to scale scan period relative to the current period.
1938 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1939 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1940 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1941 */
1942 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1943 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1944 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1945
1946 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1947 /*
1948 * Most memory accesses are local. There is no need to
1949 * do fast NUMA scanning, since memory is already local.
1950 */
1951 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1952 if (!slot)
1953 slot = 1;
1954 diff = slot * period_slot;
1955 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1956 /*
1957 * Most memory accesses are shared with other tasks.
1958 * There is no point in continuing fast NUMA scanning,
1959 * since other tasks may just move the memory elsewhere.
1960 */
1961 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1962 if (!slot)
1963 slot = 1;
1964 diff = slot * period_slot;
1965 } else {
04bb2f94 1966 /*
37ec97de
RR
1967 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1968 * yet they are not on the local NUMA node. Speed up
1969 * NUMA scanning to get the memory moved over.
04bb2f94 1970 */
37ec97de
RR
1971 int ratio = max(lr_ratio, ps_ratio);
1972 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1973 }
1974
1975 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1976 task_scan_min(p), task_scan_max(p));
1977 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1978}
1979
7e2703e6
RR
1980/*
1981 * Get the fraction of time the task has been running since the last
1982 * NUMA placement cycle. The scheduler keeps similar statistics, but
1983 * decays those on a 32ms period, which is orders of magnitude off
1984 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1985 * stats only if the task is so new there are no NUMA statistics yet.
1986 */
1987static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1988{
1989 u64 runtime, delta, now;
1990 /* Use the start of this time slice to avoid calculations. */
1991 now = p->se.exec_start;
1992 runtime = p->se.sum_exec_runtime;
1993
1994 if (p->last_task_numa_placement) {
1995 delta = runtime - p->last_sum_exec_runtime;
1996 *period = now - p->last_task_numa_placement;
1997 } else {
c7b50216 1998 delta = p->se.avg.load_sum;
9d89c257 1999 *period = LOAD_AVG_MAX;
7e2703e6
RR
2000 }
2001
2002 p->last_sum_exec_runtime = runtime;
2003 p->last_task_numa_placement = now;
2004
2005 return delta;
2006}
2007
54009416
RR
2008/*
2009 * Determine the preferred nid for a task in a numa_group. This needs to
2010 * be done in a way that produces consistent results with group_weight,
2011 * otherwise workloads might not converge.
2012 */
2013static int preferred_group_nid(struct task_struct *p, int nid)
2014{
2015 nodemask_t nodes;
2016 int dist;
2017
2018 /* Direct connections between all NUMA nodes. */
2019 if (sched_numa_topology_type == NUMA_DIRECT)
2020 return nid;
2021
2022 /*
2023 * On a system with glueless mesh NUMA topology, group_weight
2024 * scores nodes according to the number of NUMA hinting faults on
2025 * both the node itself, and on nearby nodes.
2026 */
2027 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2028 unsigned long score, max_score = 0;
2029 int node, max_node = nid;
2030
2031 dist = sched_max_numa_distance;
2032
2033 for_each_online_node(node) {
2034 score = group_weight(p, node, dist);
2035 if (score > max_score) {
2036 max_score = score;
2037 max_node = node;
2038 }
2039 }
2040 return max_node;
2041 }
2042
2043 /*
2044 * Finding the preferred nid in a system with NUMA backplane
2045 * interconnect topology is more involved. The goal is to locate
2046 * tasks from numa_groups near each other in the system, and
2047 * untangle workloads from different sides of the system. This requires
2048 * searching down the hierarchy of node groups, recursively searching
2049 * inside the highest scoring group of nodes. The nodemask tricks
2050 * keep the complexity of the search down.
2051 */
2052 nodes = node_online_map;
2053 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2054 unsigned long max_faults = 0;
81907478 2055 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2056 int a, b;
2057
2058 /* Are there nodes at this distance from each other? */
2059 if (!find_numa_distance(dist))
2060 continue;
2061
2062 for_each_node_mask(a, nodes) {
2063 unsigned long faults = 0;
2064 nodemask_t this_group;
2065 nodes_clear(this_group);
2066
2067 /* Sum group's NUMA faults; includes a==b case. */
2068 for_each_node_mask(b, nodes) {
2069 if (node_distance(a, b) < dist) {
2070 faults += group_faults(p, b);
2071 node_set(b, this_group);
2072 node_clear(b, nodes);
2073 }
2074 }
2075
2076 /* Remember the top group. */
2077 if (faults > max_faults) {
2078 max_faults = faults;
2079 max_group = this_group;
2080 /*
2081 * subtle: at the smallest distance there is
2082 * just one node left in each "group", the
2083 * winner is the preferred nid.
2084 */
2085 nid = a;
2086 }
2087 }
2088 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2089 if (!max_faults)
2090 break;
54009416
RR
2091 nodes = max_group;
2092 }
2093 return nid;
2094}
2095
cbee9f88
PZ
2096static void task_numa_placement(struct task_struct *p)
2097{
f03bb676
SD
2098 int seq, nid, max_nid = -1;
2099 unsigned long max_faults = 0;
04bb2f94 2100 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2101 unsigned long total_faults;
2102 u64 runtime, period;
7dbd13ed 2103 spinlock_t *group_lock = NULL;
cbee9f88 2104
7e5a2c17
JL
2105 /*
2106 * The p->mm->numa_scan_seq field gets updated without
2107 * exclusive access. Use READ_ONCE() here to ensure
2108 * that the field is read in a single access:
2109 */
316c1608 2110 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2111 if (p->numa_scan_seq == seq)
2112 return;
2113 p->numa_scan_seq = seq;
598f0ec0 2114 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2115
7e2703e6
RR
2116 total_faults = p->numa_faults_locality[0] +
2117 p->numa_faults_locality[1];
2118 runtime = numa_get_avg_runtime(p, &period);
2119
7dbd13ed
MG
2120 /* If the task is part of a group prevent parallel updates to group stats */
2121 if (p->numa_group) {
2122 group_lock = &p->numa_group->lock;
60e69eed 2123 spin_lock_irq(group_lock);
7dbd13ed
MG
2124 }
2125
688b7585
MG
2126 /* Find the node with the highest number of faults */
2127 for_each_online_node(nid) {
44dba3d5
IM
2128 /* Keep track of the offsets in numa_faults array */
2129 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2130 unsigned long faults = 0, group_faults = 0;
44dba3d5 2131 int priv;
745d6147 2132
be1e4e76 2133 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2134 long diff, f_diff, f_weight;
8c8a743c 2135
44dba3d5
IM
2136 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2137 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2138 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2139 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2140
ac8e895b 2141 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2142 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2143 fault_types[priv] += p->numa_faults[membuf_idx];
2144 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2145
7e2703e6
RR
2146 /*
2147 * Normalize the faults_from, so all tasks in a group
2148 * count according to CPU use, instead of by the raw
2149 * number of faults. Tasks with little runtime have
2150 * little over-all impact on throughput, and thus their
2151 * faults are less important.
2152 */
2153 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2154 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2155 (total_faults + 1);
44dba3d5
IM
2156 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2157 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2158
44dba3d5
IM
2159 p->numa_faults[mem_idx] += diff;
2160 p->numa_faults[cpu_idx] += f_diff;
2161 faults += p->numa_faults[mem_idx];
83e1d2cd 2162 p->total_numa_faults += diff;
8c8a743c 2163 if (p->numa_group) {
44dba3d5
IM
2164 /*
2165 * safe because we can only change our own group
2166 *
2167 * mem_idx represents the offset for a given
2168 * nid and priv in a specific region because it
2169 * is at the beginning of the numa_faults array.
2170 */
2171 p->numa_group->faults[mem_idx] += diff;
2172 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2173 p->numa_group->total_faults += diff;
44dba3d5 2174 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2175 }
ac8e895b
MG
2176 }
2177
f03bb676
SD
2178 if (!p->numa_group) {
2179 if (faults > max_faults) {
2180 max_faults = faults;
2181 max_nid = nid;
2182 }
2183 } else if (group_faults > max_faults) {
2184 max_faults = group_faults;
688b7585
MG
2185 max_nid = nid;
2186 }
83e1d2cd
MG
2187 }
2188
7dbd13ed 2189 if (p->numa_group) {
4142c3eb 2190 numa_group_count_active_nodes(p->numa_group);
60e69eed 2191 spin_unlock_irq(group_lock);
f03bb676 2192 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2193 }
2194
bb97fc31
RR
2195 if (max_faults) {
2196 /* Set the new preferred node */
2197 if (max_nid != p->numa_preferred_nid)
2198 sched_setnuma(p, max_nid);
3a7053b3 2199 }
30619c89
SD
2200
2201 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2202}
2203
8c8a743c
PZ
2204static inline int get_numa_group(struct numa_group *grp)
2205{
2206 return atomic_inc_not_zero(&grp->refcount);
2207}
2208
2209static inline void put_numa_group(struct numa_group *grp)
2210{
2211 if (atomic_dec_and_test(&grp->refcount))
2212 kfree_rcu(grp, rcu);
2213}
2214
3e6a9418
MG
2215static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2216 int *priv)
8c8a743c
PZ
2217{
2218 struct numa_group *grp, *my_grp;
2219 struct task_struct *tsk;
2220 bool join = false;
2221 int cpu = cpupid_to_cpu(cpupid);
2222 int i;
2223
2224 if (unlikely(!p->numa_group)) {
2225 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2226 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2227
2228 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2229 if (!grp)
2230 return;
2231
2232 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2233 grp->active_nodes = 1;
2234 grp->max_faults_cpu = 0;
8c8a743c 2235 spin_lock_init(&grp->lock);
e29cf08b 2236 grp->gid = p->pid;
50ec8a40 2237 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2238 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2239 nr_node_ids;
8c8a743c 2240
be1e4e76 2241 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2242 grp->faults[i] = p->numa_faults[i];
8c8a743c 2243
989348b5 2244 grp->total_faults = p->total_numa_faults;
83e1d2cd 2245
8c8a743c
PZ
2246 grp->nr_tasks++;
2247 rcu_assign_pointer(p->numa_group, grp);
2248 }
2249
2250 rcu_read_lock();
316c1608 2251 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2252
2253 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2254 goto no_join;
8c8a743c
PZ
2255
2256 grp = rcu_dereference(tsk->numa_group);
2257 if (!grp)
3354781a 2258 goto no_join;
8c8a743c
PZ
2259
2260 my_grp = p->numa_group;
2261 if (grp == my_grp)
3354781a 2262 goto no_join;
8c8a743c
PZ
2263
2264 /*
2265 * Only join the other group if its bigger; if we're the bigger group,
2266 * the other task will join us.
2267 */
2268 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2269 goto no_join;
8c8a743c
PZ
2270
2271 /*
2272 * Tie-break on the grp address.
2273 */
2274 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2275 goto no_join;
8c8a743c 2276
dabe1d99
RR
2277 /* Always join threads in the same process. */
2278 if (tsk->mm == current->mm)
2279 join = true;
2280
2281 /* Simple filter to avoid false positives due to PID collisions */
2282 if (flags & TNF_SHARED)
2283 join = true;
8c8a743c 2284
3e6a9418
MG
2285 /* Update priv based on whether false sharing was detected */
2286 *priv = !join;
2287
dabe1d99 2288 if (join && !get_numa_group(grp))
3354781a 2289 goto no_join;
8c8a743c 2290
8c8a743c
PZ
2291 rcu_read_unlock();
2292
2293 if (!join)
2294 return;
2295
60e69eed
MG
2296 BUG_ON(irqs_disabled());
2297 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2298
be1e4e76 2299 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2300 my_grp->faults[i] -= p->numa_faults[i];
2301 grp->faults[i] += p->numa_faults[i];
8c8a743c 2302 }
989348b5
MG
2303 my_grp->total_faults -= p->total_numa_faults;
2304 grp->total_faults += p->total_numa_faults;
8c8a743c 2305
8c8a743c
PZ
2306 my_grp->nr_tasks--;
2307 grp->nr_tasks++;
2308
2309 spin_unlock(&my_grp->lock);
60e69eed 2310 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2311
2312 rcu_assign_pointer(p->numa_group, grp);
2313
2314 put_numa_group(my_grp);
3354781a
PZ
2315 return;
2316
2317no_join:
2318 rcu_read_unlock();
2319 return;
8c8a743c
PZ
2320}
2321
2322void task_numa_free(struct task_struct *p)
2323{
2324 struct numa_group *grp = p->numa_group;
44dba3d5 2325 void *numa_faults = p->numa_faults;
e9dd685c
SR
2326 unsigned long flags;
2327 int i;
8c8a743c
PZ
2328
2329 if (grp) {
e9dd685c 2330 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2331 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2332 grp->faults[i] -= p->numa_faults[i];
989348b5 2333 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2334
8c8a743c 2335 grp->nr_tasks--;
e9dd685c 2336 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2337 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2338 put_numa_group(grp);
2339 }
2340
44dba3d5 2341 p->numa_faults = NULL;
82727018 2342 kfree(numa_faults);
8c8a743c
PZ
2343}
2344
cbee9f88
PZ
2345/*
2346 * Got a PROT_NONE fault for a page on @node.
2347 */
58b46da3 2348void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2349{
2350 struct task_struct *p = current;
6688cc05 2351 bool migrated = flags & TNF_MIGRATED;
58b46da3 2352 int cpu_node = task_node(current);
792568ec 2353 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2354 struct numa_group *ng;
ac8e895b 2355 int priv;
cbee9f88 2356
2a595721 2357 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2358 return;
2359
9ff1d9ff
MG
2360 /* for example, ksmd faulting in a user's mm */
2361 if (!p->mm)
2362 return;
2363
f809ca9a 2364 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2365 if (unlikely(!p->numa_faults)) {
2366 int size = sizeof(*p->numa_faults) *
be1e4e76 2367 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2368
44dba3d5
IM
2369 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2370 if (!p->numa_faults)
f809ca9a 2371 return;
745d6147 2372
83e1d2cd 2373 p->total_numa_faults = 0;
04bb2f94 2374 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2375 }
cbee9f88 2376
8c8a743c
PZ
2377 /*
2378 * First accesses are treated as private, otherwise consider accesses
2379 * to be private if the accessing pid has not changed
2380 */
2381 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2382 priv = 1;
2383 } else {
2384 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2385 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2386 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2387 }
2388
792568ec
RR
2389 /*
2390 * If a workload spans multiple NUMA nodes, a shared fault that
2391 * occurs wholly within the set of nodes that the workload is
2392 * actively using should be counted as local. This allows the
2393 * scan rate to slow down when a workload has settled down.
2394 */
4142c3eb
RR
2395 ng = p->numa_group;
2396 if (!priv && !local && ng && ng->active_nodes > 1 &&
2397 numa_is_active_node(cpu_node, ng) &&
2398 numa_is_active_node(mem_node, ng))
792568ec
RR
2399 local = 1;
2400
2739d3ee 2401 /*
e1ff516a
YW
2402 * Retry to migrate task to preferred node periodically, in case it
2403 * previously failed, or the scheduler moved us.
2739d3ee 2404 */
b6a60cf3
SD
2405 if (time_after(jiffies, p->numa_migrate_retry)) {
2406 task_numa_placement(p);
6b9a7460 2407 numa_migrate_preferred(p);
b6a60cf3 2408 }
6b9a7460 2409
b32e86b4
IM
2410 if (migrated)
2411 p->numa_pages_migrated += pages;
074c2381
MG
2412 if (flags & TNF_MIGRATE_FAIL)
2413 p->numa_faults_locality[2] += pages;
b32e86b4 2414
44dba3d5
IM
2415 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2416 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2417 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2418}
2419
6e5fb223
PZ
2420static void reset_ptenuma_scan(struct task_struct *p)
2421{
7e5a2c17
JL
2422 /*
2423 * We only did a read acquisition of the mmap sem, so
2424 * p->mm->numa_scan_seq is written to without exclusive access
2425 * and the update is not guaranteed to be atomic. That's not
2426 * much of an issue though, since this is just used for
2427 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2428 * expensive, to avoid any form of compiler optimizations:
2429 */
316c1608 2430 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2431 p->mm->numa_scan_offset = 0;
2432}
2433
cbee9f88
PZ
2434/*
2435 * The expensive part of numa migration is done from task_work context.
2436 * Triggered from task_tick_numa().
2437 */
2438void task_numa_work(struct callback_head *work)
2439{
2440 unsigned long migrate, next_scan, now = jiffies;
2441 struct task_struct *p = current;
2442 struct mm_struct *mm = p->mm;
51170840 2443 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2444 struct vm_area_struct *vma;
9f40604c 2445 unsigned long start, end;
598f0ec0 2446 unsigned long nr_pte_updates = 0;
4620f8c1 2447 long pages, virtpages;
cbee9f88 2448
9148a3a1 2449 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2450
2451 work->next = work; /* protect against double add */
2452 /*
2453 * Who cares about NUMA placement when they're dying.
2454 *
2455 * NOTE: make sure not to dereference p->mm before this check,
2456 * exit_task_work() happens _after_ exit_mm() so we could be called
2457 * without p->mm even though we still had it when we enqueued this
2458 * work.
2459 */
2460 if (p->flags & PF_EXITING)
2461 return;
2462
930aa174 2463 if (!mm->numa_next_scan) {
7e8d16b6
MG
2464 mm->numa_next_scan = now +
2465 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2466 }
2467
cbee9f88
PZ
2468 /*
2469 * Enforce maximal scan/migration frequency..
2470 */
2471 migrate = mm->numa_next_scan;
2472 if (time_before(now, migrate))
2473 return;
2474
598f0ec0
MG
2475 if (p->numa_scan_period == 0) {
2476 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2477 p->numa_scan_period = task_scan_start(p);
598f0ec0 2478 }
cbee9f88 2479
fb003b80 2480 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2481 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2482 return;
2483
19a78d11
PZ
2484 /*
2485 * Delay this task enough that another task of this mm will likely win
2486 * the next time around.
2487 */
2488 p->node_stamp += 2 * TICK_NSEC;
2489
9f40604c
MG
2490 start = mm->numa_scan_offset;
2491 pages = sysctl_numa_balancing_scan_size;
2492 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2493 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2494 if (!pages)
2495 return;
cbee9f88 2496
4620f8c1 2497
8655d549
VB
2498 if (!down_read_trylock(&mm->mmap_sem))
2499 return;
9f40604c 2500 vma = find_vma(mm, start);
6e5fb223
PZ
2501 if (!vma) {
2502 reset_ptenuma_scan(p);
9f40604c 2503 start = 0;
6e5fb223
PZ
2504 vma = mm->mmap;
2505 }
9f40604c 2506 for (; vma; vma = vma->vm_next) {
6b79c57b 2507 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2508 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2509 continue;
6b79c57b 2510 }
6e5fb223 2511
4591ce4f
MG
2512 /*
2513 * Shared library pages mapped by multiple processes are not
2514 * migrated as it is expected they are cache replicated. Avoid
2515 * hinting faults in read-only file-backed mappings or the vdso
2516 * as migrating the pages will be of marginal benefit.
2517 */
2518 if (!vma->vm_mm ||
2519 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2520 continue;
2521
3c67f474
MG
2522 /*
2523 * Skip inaccessible VMAs to avoid any confusion between
2524 * PROT_NONE and NUMA hinting ptes
2525 */
2526 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2527 continue;
4591ce4f 2528
9f40604c
MG
2529 do {
2530 start = max(start, vma->vm_start);
2531 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2532 end = min(end, vma->vm_end);
4620f8c1 2533 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2534
2535 /*
4620f8c1
RR
2536 * Try to scan sysctl_numa_balancing_size worth of
2537 * hpages that have at least one present PTE that
2538 * is not already pte-numa. If the VMA contains
2539 * areas that are unused or already full of prot_numa
2540 * PTEs, scan up to virtpages, to skip through those
2541 * areas faster.
598f0ec0
MG
2542 */
2543 if (nr_pte_updates)
2544 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2545 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2546
9f40604c 2547 start = end;
4620f8c1 2548 if (pages <= 0 || virtpages <= 0)
9f40604c 2549 goto out;
3cf1962c
RR
2550
2551 cond_resched();
9f40604c 2552 } while (end != vma->vm_end);
cbee9f88 2553 }
6e5fb223 2554
9f40604c 2555out:
6e5fb223 2556 /*
c69307d5
PZ
2557 * It is possible to reach the end of the VMA list but the last few
2558 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2559 * would find the !migratable VMA on the next scan but not reset the
2560 * scanner to the start so check it now.
6e5fb223
PZ
2561 */
2562 if (vma)
9f40604c 2563 mm->numa_scan_offset = start;
6e5fb223
PZ
2564 else
2565 reset_ptenuma_scan(p);
2566 up_read(&mm->mmap_sem);
51170840
RR
2567
2568 /*
2569 * Make sure tasks use at least 32x as much time to run other code
2570 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2571 * Usually update_task_scan_period slows down scanning enough; on an
2572 * overloaded system we need to limit overhead on a per task basis.
2573 */
2574 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2575 u64 diff = p->se.sum_exec_runtime - runtime;
2576 p->node_stamp += 32 * diff;
2577 }
cbee9f88
PZ
2578}
2579
2580/*
2581 * Drive the periodic memory faults..
2582 */
2583void task_tick_numa(struct rq *rq, struct task_struct *curr)
2584{
2585 struct callback_head *work = &curr->numa_work;
2586 u64 period, now;
2587
2588 /*
2589 * We don't care about NUMA placement if we don't have memory.
2590 */
2591 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2592 return;
2593
2594 /*
2595 * Using runtime rather than walltime has the dual advantage that
2596 * we (mostly) drive the selection from busy threads and that the
2597 * task needs to have done some actual work before we bother with
2598 * NUMA placement.
2599 */
2600 now = curr->se.sum_exec_runtime;
2601 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2602
25b3e5a3 2603 if (now > curr->node_stamp + period) {
4b96a29b 2604 if (!curr->node_stamp)
b5dd77c8 2605 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2606 curr->node_stamp += period;
cbee9f88
PZ
2607
2608 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2609 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2610 task_work_add(curr, work, true);
2611 }
2612 }
2613}
3fed382b 2614
3f9672ba
SD
2615static void update_scan_period(struct task_struct *p, int new_cpu)
2616{
2617 int src_nid = cpu_to_node(task_cpu(p));
2618 int dst_nid = cpu_to_node(new_cpu);
2619
05cbdf4f
MG
2620 if (!static_branch_likely(&sched_numa_balancing))
2621 return;
2622
3f9672ba
SD
2623 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2624 return;
2625
05cbdf4f
MG
2626 if (src_nid == dst_nid)
2627 return;
2628
2629 /*
2630 * Allow resets if faults have been trapped before one scan
2631 * has completed. This is most likely due to a new task that
2632 * is pulled cross-node due to wakeups or load balancing.
2633 */
2634 if (p->numa_scan_seq) {
2635 /*
2636 * Avoid scan adjustments if moving to the preferred
2637 * node or if the task was not previously running on
2638 * the preferred node.
2639 */
2640 if (dst_nid == p->numa_preferred_nid ||
2641 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2642 return;
2643 }
2644
2645 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2646}
2647
cbee9f88
PZ
2648#else
2649static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650{
2651}
0ec8aa00
PZ
2652
2653static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654{
2655}
2656
2657static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658{
2659}
3fed382b 2660
3f9672ba
SD
2661static inline void update_scan_period(struct task_struct *p, int new_cpu)
2662{
2663}
2664
cbee9f88
PZ
2665#endif /* CONFIG_NUMA_BALANCING */
2666
30cfdcfc
DA
2667static void
2668account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2669{
2670 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2671 if (!parent_entity(se))
029632fb 2672 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2673#ifdef CONFIG_SMP
0ec8aa00
PZ
2674 if (entity_is_task(se)) {
2675 struct rq *rq = rq_of(cfs_rq);
2676
2677 account_numa_enqueue(rq, task_of(se));
2678 list_add(&se->group_node, &rq->cfs_tasks);
2679 }
367456c7 2680#endif
30cfdcfc 2681 cfs_rq->nr_running++;
30cfdcfc
DA
2682}
2683
2684static void
2685account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2686{
2687 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2688 if (!parent_entity(se))
029632fb 2689 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2690#ifdef CONFIG_SMP
0ec8aa00
PZ
2691 if (entity_is_task(se)) {
2692 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2693 list_del_init(&se->group_node);
0ec8aa00 2694 }
bfdb198c 2695#endif
30cfdcfc 2696 cfs_rq->nr_running--;
30cfdcfc
DA
2697}
2698
8d5b9025
PZ
2699/*
2700 * Signed add and clamp on underflow.
2701 *
2702 * Explicitly do a load-store to ensure the intermediate value never hits
2703 * memory. This allows lockless observations without ever seeing the negative
2704 * values.
2705 */
2706#define add_positive(_ptr, _val) do { \
2707 typeof(_ptr) ptr = (_ptr); \
2708 typeof(_val) val = (_val); \
2709 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2710 \
2711 res = var + val; \
2712 \
2713 if (val < 0 && res > var) \
2714 res = 0; \
2715 \
2716 WRITE_ONCE(*ptr, res); \
2717} while (0)
2718
2719/*
2720 * Unsigned subtract and clamp on underflow.
2721 *
2722 * Explicitly do a load-store to ensure the intermediate value never hits
2723 * memory. This allows lockless observations without ever seeing the negative
2724 * values.
2725 */
2726#define sub_positive(_ptr, _val) do { \
2727 typeof(_ptr) ptr = (_ptr); \
2728 typeof(*ptr) val = (_val); \
2729 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2730 res = var - val; \
2731 if (res > var) \
2732 res = 0; \
2733 WRITE_ONCE(*ptr, res); \
2734} while (0)
2735
b5c0ce7b
PB
2736/*
2737 * Remove and clamp on negative, from a local variable.
2738 *
2739 * A variant of sub_positive(), which does not use explicit load-store
2740 * and is thus optimized for local variable updates.
2741 */
2742#define lsub_positive(_ptr, _val) do { \
2743 typeof(_ptr) ptr = (_ptr); \
2744 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2745} while (0)
2746
8d5b9025 2747#ifdef CONFIG_SMP
8d5b9025
PZ
2748static inline void
2749enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
1ea6c46a
PZ
2751 cfs_rq->runnable_weight += se->runnable_weight;
2752
2753 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2754 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2755}
2756
2757static inline void
2758dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759{
1ea6c46a
PZ
2760 cfs_rq->runnable_weight -= se->runnable_weight;
2761
2762 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2763 sub_positive(&cfs_rq->avg.runnable_load_sum,
2764 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2765}
2766
2767static inline void
2768enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2769{
2770 cfs_rq->avg.load_avg += se->avg.load_avg;
2771 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2772}
2773
2774static inline void
2775dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776{
2777 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2778 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2779}
2780#else
2781static inline void
2782enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2783static inline void
2784dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2785static inline void
2786enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2787static inline void
2788dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2789#endif
2790
9059393e 2791static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2792 unsigned long weight, unsigned long runnable)
9059393e
VG
2793{
2794 if (se->on_rq) {
2795 /* commit outstanding execution time */
2796 if (cfs_rq->curr == se)
2797 update_curr(cfs_rq);
2798 account_entity_dequeue(cfs_rq, se);
2799 dequeue_runnable_load_avg(cfs_rq, se);
2800 }
2801 dequeue_load_avg(cfs_rq, se);
2802
1ea6c46a 2803 se->runnable_weight = runnable;
9059393e
VG
2804 update_load_set(&se->load, weight);
2805
2806#ifdef CONFIG_SMP
1ea6c46a
PZ
2807 do {
2808 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2809
2810 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2811 se->avg.runnable_load_avg =
2812 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2813 } while (0);
9059393e
VG
2814#endif
2815
2816 enqueue_load_avg(cfs_rq, se);
2817 if (se->on_rq) {
2818 account_entity_enqueue(cfs_rq, se);
2819 enqueue_runnable_load_avg(cfs_rq, se);
2820 }
2821}
2822
2823void reweight_task(struct task_struct *p, int prio)
2824{
2825 struct sched_entity *se = &p->se;
2826 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2827 struct load_weight *load = &se->load;
2828 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2829
1ea6c46a 2830 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2831 load->inv_weight = sched_prio_to_wmult[prio];
2832}
2833
3ff6dcac 2834#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2835#ifdef CONFIG_SMP
cef27403
PZ
2836/*
2837 * All this does is approximate the hierarchical proportion which includes that
2838 * global sum we all love to hate.
2839 *
2840 * That is, the weight of a group entity, is the proportional share of the
2841 * group weight based on the group runqueue weights. That is:
2842 *
2843 * tg->weight * grq->load.weight
2844 * ge->load.weight = ----------------------------- (1)
2845 * \Sum grq->load.weight
2846 *
2847 * Now, because computing that sum is prohibitively expensive to compute (been
2848 * there, done that) we approximate it with this average stuff. The average
2849 * moves slower and therefore the approximation is cheaper and more stable.
2850 *
2851 * So instead of the above, we substitute:
2852 *
2853 * grq->load.weight -> grq->avg.load_avg (2)
2854 *
2855 * which yields the following:
2856 *
2857 * tg->weight * grq->avg.load_avg
2858 * ge->load.weight = ------------------------------ (3)
2859 * tg->load_avg
2860 *
2861 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2862 *
2863 * That is shares_avg, and it is right (given the approximation (2)).
2864 *
2865 * The problem with it is that because the average is slow -- it was designed
2866 * to be exactly that of course -- this leads to transients in boundary
2867 * conditions. In specific, the case where the group was idle and we start the
2868 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2869 * yielding bad latency etc..
2870 *
2871 * Now, in that special case (1) reduces to:
2872 *
2873 * tg->weight * grq->load.weight
17de4ee0 2874 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2875 * grp->load.weight
2876 *
2877 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2878 *
2879 * So what we do is modify our approximation (3) to approach (4) in the (near)
2880 * UP case, like:
2881 *
2882 * ge->load.weight =
2883 *
2884 * tg->weight * grq->load.weight
2885 * --------------------------------------------------- (5)
2886 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2887 *
17de4ee0
PZ
2888 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2889 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2890 *
2891 *
2892 * tg->weight * grq->load.weight
2893 * ge->load.weight = ----------------------------- (6)
2894 * tg_load_avg'
2895 *
2896 * Where:
2897 *
2898 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2899 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2900 *
2901 * And that is shares_weight and is icky. In the (near) UP case it approaches
2902 * (4) while in the normal case it approaches (3). It consistently
2903 * overestimates the ge->load.weight and therefore:
2904 *
2905 * \Sum ge->load.weight >= tg->weight
2906 *
2907 * hence icky!
2908 */
2c8e4dce 2909static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2910{
7c80cfc9
PZ
2911 long tg_weight, tg_shares, load, shares;
2912 struct task_group *tg = cfs_rq->tg;
2913
2914 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2915
3d4b60d3 2916 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2917
ea1dc6fc 2918 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2919
ea1dc6fc
PZ
2920 /* Ensure tg_weight >= load */
2921 tg_weight -= cfs_rq->tg_load_avg_contrib;
2922 tg_weight += load;
3ff6dcac 2923
7c80cfc9 2924 shares = (tg_shares * load);
cf5f0acf
PZ
2925 if (tg_weight)
2926 shares /= tg_weight;
3ff6dcac 2927
b8fd8423
DE
2928 /*
2929 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2930 * of a group with small tg->shares value. It is a floor value which is
2931 * assigned as a minimum load.weight to the sched_entity representing
2932 * the group on a CPU.
2933 *
2934 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2935 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2936 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2937 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2938 * instead of 0.
2939 */
7c80cfc9 2940 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2941}
2c8e4dce
JB
2942
2943/*
17de4ee0
PZ
2944 * This calculates the effective runnable weight for a group entity based on
2945 * the group entity weight calculated above.
2946 *
2947 * Because of the above approximation (2), our group entity weight is
2948 * an load_avg based ratio (3). This means that it includes blocked load and
2949 * does not represent the runnable weight.
2950 *
2951 * Approximate the group entity's runnable weight per ratio from the group
2952 * runqueue:
2953 *
2954 * grq->avg.runnable_load_avg
2955 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2956 * grq->avg.load_avg
2957 *
2958 * However, analogous to above, since the avg numbers are slow, this leads to
2959 * transients in the from-idle case. Instead we use:
2960 *
2961 * ge->runnable_weight = ge->load.weight *
2962 *
2963 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2964 * ----------------------------------------------------- (8)
2965 * max(grq->avg.load_avg, grq->load.weight)
2966 *
2967 * Where these max() serve both to use the 'instant' values to fix the slow
2968 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2969 */
2970static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2971{
17de4ee0
PZ
2972 long runnable, load_avg;
2973
2974 load_avg = max(cfs_rq->avg.load_avg,
2975 scale_load_down(cfs_rq->load.weight));
2976
2977 runnable = max(cfs_rq->avg.runnable_load_avg,
2978 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2979
2980 runnable *= shares;
2981 if (load_avg)
2982 runnable /= load_avg;
17de4ee0 2983
2c8e4dce
JB
2984 return clamp_t(long, runnable, MIN_SHARES, shares);
2985}
387f77cc 2986#endif /* CONFIG_SMP */
ea1dc6fc 2987
82958366
PT
2988static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2989
1ea6c46a
PZ
2990/*
2991 * Recomputes the group entity based on the current state of its group
2992 * runqueue.
2993 */
2994static void update_cfs_group(struct sched_entity *se)
2069dd75 2995{
1ea6c46a
PZ
2996 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2997 long shares, runnable;
2069dd75 2998
1ea6c46a 2999 if (!gcfs_rq)
89ee048f
VG
3000 return;
3001
1ea6c46a 3002 if (throttled_hierarchy(gcfs_rq))
2069dd75 3003 return;
89ee048f 3004
3ff6dcac 3005#ifndef CONFIG_SMP
1ea6c46a 3006 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3007
3008 if (likely(se->load.weight == shares))
3ff6dcac 3009 return;
7c80cfc9 3010#else
2c8e4dce
JB
3011 shares = calc_group_shares(gcfs_rq);
3012 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3013#endif
2069dd75 3014
1ea6c46a 3015 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3016}
89ee048f 3017
2069dd75 3018#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3019static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3020{
3021}
3022#endif /* CONFIG_FAIR_GROUP_SCHED */
3023
ea14b57e 3024static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3025{
43964409
LT
3026 struct rq *rq = rq_of(cfs_rq);
3027
ea14b57e 3028 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3029 /*
3030 * There are a few boundary cases this might miss but it should
3031 * get called often enough that that should (hopefully) not be
9783be2c 3032 * a real problem.
a030d738
VK
3033 *
3034 * It will not get called when we go idle, because the idle
3035 * thread is a different class (!fair), nor will the utilization
3036 * number include things like RT tasks.
3037 *
3038 * As is, the util number is not freq-invariant (we'd have to
3039 * implement arch_scale_freq_capacity() for that).
3040 *
3041 * See cpu_util().
3042 */
ea14b57e 3043 cpufreq_update_util(rq, flags);
a030d738
VK
3044 }
3045}
3046
141965c7 3047#ifdef CONFIG_SMP
c566e8e9 3048#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3049/**
3050 * update_tg_load_avg - update the tg's load avg
3051 * @cfs_rq: the cfs_rq whose avg changed
3052 * @force: update regardless of how small the difference
3053 *
3054 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3055 * However, because tg->load_avg is a global value there are performance
3056 * considerations.
3057 *
3058 * In order to avoid having to look at the other cfs_rq's, we use a
3059 * differential update where we store the last value we propagated. This in
3060 * turn allows skipping updates if the differential is 'small'.
3061 *
815abf5a 3062 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3063 */
9d89c257 3064static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3065{
9d89c257 3066 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3067
aa0b7ae0
WL
3068 /*
3069 * No need to update load_avg for root_task_group as it is not used.
3070 */
3071 if (cfs_rq->tg == &root_task_group)
3072 return;
3073
9d89c257
YD
3074 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3075 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3076 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3077 }
8165e145 3078}
f5f9739d 3079
ad936d86 3080/*
97fb7a0a 3081 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3082 * caller only guarantees p->pi_lock is held; no other assumptions,
3083 * including the state of rq->lock, should be made.
3084 */
3085void set_task_rq_fair(struct sched_entity *se,
3086 struct cfs_rq *prev, struct cfs_rq *next)
3087{
0ccb977f
PZ
3088 u64 p_last_update_time;
3089 u64 n_last_update_time;
3090
ad936d86
BP
3091 if (!sched_feat(ATTACH_AGE_LOAD))
3092 return;
3093
3094 /*
3095 * We are supposed to update the task to "current" time, then its up to
3096 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3097 * getting what current time is, so simply throw away the out-of-date
3098 * time. This will result in the wakee task is less decayed, but giving
3099 * the wakee more load sounds not bad.
3100 */
0ccb977f
PZ
3101 if (!(se->avg.last_update_time && prev))
3102 return;
ad936d86
BP
3103
3104#ifndef CONFIG_64BIT
0ccb977f 3105 {
ad936d86
BP
3106 u64 p_last_update_time_copy;
3107 u64 n_last_update_time_copy;
3108
3109 do {
3110 p_last_update_time_copy = prev->load_last_update_time_copy;
3111 n_last_update_time_copy = next->load_last_update_time_copy;
3112
3113 smp_rmb();
3114
3115 p_last_update_time = prev->avg.last_update_time;
3116 n_last_update_time = next->avg.last_update_time;
3117
3118 } while (p_last_update_time != p_last_update_time_copy ||
3119 n_last_update_time != n_last_update_time_copy);
0ccb977f 3120 }
ad936d86 3121#else
0ccb977f
PZ
3122 p_last_update_time = prev->avg.last_update_time;
3123 n_last_update_time = next->avg.last_update_time;
ad936d86 3124#endif
0ccb977f
PZ
3125 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3126 se->avg.last_update_time = n_last_update_time;
ad936d86 3127}
09a43ace 3128
0e2d2aaa
PZ
3129
3130/*
3131 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3132 * propagate its contribution. The key to this propagation is the invariant
3133 * that for each group:
3134 *
3135 * ge->avg == grq->avg (1)
3136 *
3137 * _IFF_ we look at the pure running and runnable sums. Because they
3138 * represent the very same entity, just at different points in the hierarchy.
3139 *
a4c3c049
VG
3140 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3141 * sum over (but still wrong, because the group entity and group rq do not have
3142 * their PELT windows aligned).
0e2d2aaa
PZ
3143 *
3144 * However, update_tg_cfs_runnable() is more complex. So we have:
3145 *
3146 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3147 *
3148 * And since, like util, the runnable part should be directly transferable,
3149 * the following would _appear_ to be the straight forward approach:
3150 *
a4c3c049 3151 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3152 *
3153 * And per (1) we have:
3154 *
a4c3c049 3155 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3156 *
3157 * Which gives:
3158 *
3159 * ge->load.weight * grq->avg.load_avg
3160 * ge->avg.load_avg = ----------------------------------- (4)
3161 * grq->load.weight
3162 *
3163 * Except that is wrong!
3164 *
3165 * Because while for entities historical weight is not important and we
3166 * really only care about our future and therefore can consider a pure
3167 * runnable sum, runqueues can NOT do this.
3168 *
3169 * We specifically want runqueues to have a load_avg that includes
3170 * historical weights. Those represent the blocked load, the load we expect
3171 * to (shortly) return to us. This only works by keeping the weights as
3172 * integral part of the sum. We therefore cannot decompose as per (3).
3173 *
a4c3c049
VG
3174 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3175 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3176 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3177 * runnable section of these tasks overlap (or not). If they were to perfectly
3178 * align the rq as a whole would be runnable 2/3 of the time. If however we
3179 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3180 *
a4c3c049 3181 * So we'll have to approximate.. :/
0e2d2aaa 3182 *
a4c3c049 3183 * Given the constraint:
0e2d2aaa 3184 *
a4c3c049 3185 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3186 *
a4c3c049
VG
3187 * We can construct a rule that adds runnable to a rq by assuming minimal
3188 * overlap.
0e2d2aaa 3189 *
a4c3c049 3190 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3191 *
a4c3c049 3192 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3193 *
a4c3c049 3194 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3195 *
0e2d2aaa
PZ
3196 */
3197
09a43ace 3198static inline void
0e2d2aaa 3199update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3200{
09a43ace
VG
3201 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3202
3203 /* Nothing to update */
3204 if (!delta)
3205 return;
3206
a4c3c049
VG
3207 /*
3208 * The relation between sum and avg is:
3209 *
3210 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3211 *
3212 * however, the PELT windows are not aligned between grq and gse.
3213 */
3214
09a43ace
VG
3215 /* Set new sched_entity's utilization */
3216 se->avg.util_avg = gcfs_rq->avg.util_avg;
3217 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3218
3219 /* Update parent cfs_rq utilization */
3220 add_positive(&cfs_rq->avg.util_avg, delta);
3221 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3222}
3223
09a43ace 3224static inline void
0e2d2aaa 3225update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3226{
a4c3c049
VG
3227 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3228 unsigned long runnable_load_avg, load_avg;
3229 u64 runnable_load_sum, load_sum = 0;
3230 s64 delta_sum;
09a43ace 3231
0e2d2aaa
PZ
3232 if (!runnable_sum)
3233 return;
09a43ace 3234
0e2d2aaa 3235 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3236
a4c3c049
VG
3237 if (runnable_sum >= 0) {
3238 /*
3239 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3240 * the CPU is saturated running == runnable.
3241 */
3242 runnable_sum += se->avg.load_sum;
3243 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3244 } else {
3245 /*
3246 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3247 * assuming all tasks are equally runnable.
3248 */
3249 if (scale_load_down(gcfs_rq->load.weight)) {
3250 load_sum = div_s64(gcfs_rq->avg.load_sum,
3251 scale_load_down(gcfs_rq->load.weight));
3252 }
3253
3254 /* But make sure to not inflate se's runnable */
3255 runnable_sum = min(se->avg.load_sum, load_sum);
3256 }
3257
3258 /*
3259 * runnable_sum can't be lower than running_sum
97fb7a0a 3260 * As running sum is scale with CPU capacity wehreas the runnable sum
a4c3c049
VG
3261 * is not we rescale running_sum 1st
3262 */
3263 running_sum = se->avg.util_sum /
3264 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3265 runnable_sum = max(runnable_sum, running_sum);
3266
0e2d2aaa
PZ
3267 load_sum = (s64)se_weight(se) * runnable_sum;
3268 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3269
a4c3c049
VG
3270 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3271 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3272
a4c3c049
VG
3273 se->avg.load_sum = runnable_sum;
3274 se->avg.load_avg = load_avg;
3275 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3276 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3277
1ea6c46a
PZ
3278 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3279 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3280 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3281 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3282
a4c3c049
VG
3283 se->avg.runnable_load_sum = runnable_sum;
3284 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3285
09a43ace 3286 if (se->on_rq) {
a4c3c049
VG
3287 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3288 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3289 }
3290}
3291
0e2d2aaa 3292static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3293{
0e2d2aaa
PZ
3294 cfs_rq->propagate = 1;
3295 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3296}
3297
3298/* Update task and its cfs_rq load average */
3299static inline int propagate_entity_load_avg(struct sched_entity *se)
3300{
0e2d2aaa 3301 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3302
3303 if (entity_is_task(se))
3304 return 0;
3305
0e2d2aaa
PZ
3306 gcfs_rq = group_cfs_rq(se);
3307 if (!gcfs_rq->propagate)
09a43ace
VG
3308 return 0;
3309
0e2d2aaa
PZ
3310 gcfs_rq->propagate = 0;
3311
09a43ace
VG
3312 cfs_rq = cfs_rq_of(se);
3313
0e2d2aaa 3314 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3315
0e2d2aaa
PZ
3316 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3317 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3318
3319 return 1;
3320}
3321
bc427898
VG
3322/*
3323 * Check if we need to update the load and the utilization of a blocked
3324 * group_entity:
3325 */
3326static inline bool skip_blocked_update(struct sched_entity *se)
3327{
3328 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3329
3330 /*
3331 * If sched_entity still have not zero load or utilization, we have to
3332 * decay it:
3333 */
3334 if (se->avg.load_avg || se->avg.util_avg)
3335 return false;
3336
3337 /*
3338 * If there is a pending propagation, we have to update the load and
3339 * the utilization of the sched_entity:
3340 */
0e2d2aaa 3341 if (gcfs_rq->propagate)
bc427898
VG
3342 return false;
3343
3344 /*
3345 * Otherwise, the load and the utilization of the sched_entity is
3346 * already zero and there is no pending propagation, so it will be a
3347 * waste of time to try to decay it:
3348 */
3349 return true;
3350}
3351
6e83125c 3352#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3353
9d89c257 3354static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3355
3356static inline int propagate_entity_load_avg(struct sched_entity *se)
3357{
3358 return 0;
3359}
3360
0e2d2aaa 3361static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3362
6e83125c 3363#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3364
3d30544f
PZ
3365/**
3366 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3367 * @now: current time, as per cfs_rq_clock_task()
3368 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3369 *
3370 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3371 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3372 * post_init_entity_util_avg().
3373 *
3374 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3375 *
7c3edd2c
PZ
3376 * Returns true if the load decayed or we removed load.
3377 *
3378 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3379 * call update_tg_load_avg() when this function returns true.
3d30544f 3380 */
a2c6c91f 3381static inline int
3a123bbb 3382update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3383{
0e2d2aaa 3384 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3385 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3386 int decayed = 0;
2dac754e 3387
2a2f5d4e
PZ
3388 if (cfs_rq->removed.nr) {
3389 unsigned long r;
9a2dd585 3390 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3391
3392 raw_spin_lock(&cfs_rq->removed.lock);
3393 swap(cfs_rq->removed.util_avg, removed_util);
3394 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3395 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3396 cfs_rq->removed.nr = 0;
3397 raw_spin_unlock(&cfs_rq->removed.lock);
3398
2a2f5d4e 3399 r = removed_load;
89741892 3400 sub_positive(&sa->load_avg, r);
9a2dd585 3401 sub_positive(&sa->load_sum, r * divider);
2dac754e 3402
2a2f5d4e 3403 r = removed_util;
89741892 3404 sub_positive(&sa->util_avg, r);
9a2dd585 3405 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3406
0e2d2aaa 3407 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3408
3409 decayed = 1;
9d89c257 3410 }
36ee28e4 3411
2a2f5d4e 3412 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3413
9d89c257
YD
3414#ifndef CONFIG_64BIT
3415 smp_wmb();
3416 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3417#endif
36ee28e4 3418
2a2f5d4e 3419 if (decayed)
ea14b57e 3420 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3421
2a2f5d4e 3422 return decayed;
21e96f88
SM
3423}
3424
3d30544f
PZ
3425/**
3426 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3427 * @cfs_rq: cfs_rq to attach to
3428 * @se: sched_entity to attach
882a78a9 3429 * @flags: migration hints
3d30544f
PZ
3430 *
3431 * Must call update_cfs_rq_load_avg() before this, since we rely on
3432 * cfs_rq->avg.last_update_time being current.
3433 */
ea14b57e 3434static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3435{
f207934f
PZ
3436 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3437
3438 /*
3439 * When we attach the @se to the @cfs_rq, we must align the decay
3440 * window because without that, really weird and wonderful things can
3441 * happen.
3442 *
3443 * XXX illustrate
3444 */
a05e8c51 3445 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3446 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3447
3448 /*
3449 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3450 * period_contrib. This isn't strictly correct, but since we're
3451 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3452 * _sum a little.
3453 */
3454 se->avg.util_sum = se->avg.util_avg * divider;
3455
3456 se->avg.load_sum = divider;
3457 if (se_weight(se)) {
3458 se->avg.load_sum =
3459 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3460 }
3461
3462 se->avg.runnable_load_sum = se->avg.load_sum;
3463
8d5b9025 3464 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3465 cfs_rq->avg.util_avg += se->avg.util_avg;
3466 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3467
3468 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3469
ea14b57e 3470 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3471}
3472
3d30544f
PZ
3473/**
3474 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3475 * @cfs_rq: cfs_rq to detach from
3476 * @se: sched_entity to detach
3477 *
3478 * Must call update_cfs_rq_load_avg() before this, since we rely on
3479 * cfs_rq->avg.last_update_time being current.
3480 */
a05e8c51
BP
3481static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3482{
8d5b9025 3483 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3484 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3485 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3486
3487 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3488
ea14b57e 3489 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3490}
3491
b382a531
PZ
3492/*
3493 * Optional action to be done while updating the load average
3494 */
3495#define UPDATE_TG 0x1
3496#define SKIP_AGE_LOAD 0x2
3497#define DO_ATTACH 0x4
3498
3499/* Update task and its cfs_rq load average */
3500static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3501{
3502 u64 now = cfs_rq_clock_task(cfs_rq);
3503 struct rq *rq = rq_of(cfs_rq);
3504 int cpu = cpu_of(rq);
3505 int decayed;
3506
3507 /*
3508 * Track task load average for carrying it to new CPU after migrated, and
3509 * track group sched_entity load average for task_h_load calc in migration
3510 */
3511 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3512 __update_load_avg_se(now, cpu, cfs_rq, se);
3513
3514 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3515 decayed |= propagate_entity_load_avg(se);
3516
3517 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3518
ea14b57e
PZ
3519 /*
3520 * DO_ATTACH means we're here from enqueue_entity().
3521 * !last_update_time means we've passed through
3522 * migrate_task_rq_fair() indicating we migrated.
3523 *
3524 * IOW we're enqueueing a task on a new CPU.
3525 */
3526 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3527 update_tg_load_avg(cfs_rq, 0);
3528
3529 } else if (decayed && (flags & UPDATE_TG))
3530 update_tg_load_avg(cfs_rq, 0);
3531}
3532
9d89c257 3533#ifndef CONFIG_64BIT
0905f04e
YD
3534static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3535{
9d89c257 3536 u64 last_update_time_copy;
0905f04e 3537 u64 last_update_time;
9ee474f5 3538
9d89c257
YD
3539 do {
3540 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3541 smp_rmb();
3542 last_update_time = cfs_rq->avg.last_update_time;
3543 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3544
3545 return last_update_time;
3546}
9d89c257 3547#else
0905f04e
YD
3548static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3549{
3550 return cfs_rq->avg.last_update_time;
3551}
9d89c257
YD
3552#endif
3553
104cb16d
MR
3554/*
3555 * Synchronize entity load avg of dequeued entity without locking
3556 * the previous rq.
3557 */
3558void sync_entity_load_avg(struct sched_entity *se)
3559{
3560 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3561 u64 last_update_time;
3562
3563 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3564 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3565}
3566
0905f04e
YD
3567/*
3568 * Task first catches up with cfs_rq, and then subtract
3569 * itself from the cfs_rq (task must be off the queue now).
3570 */
3571void remove_entity_load_avg(struct sched_entity *se)
3572{
3573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3574 unsigned long flags;
0905f04e
YD
3575
3576 /*
7dc603c9
PZ
3577 * tasks cannot exit without having gone through wake_up_new_task() ->
3578 * post_init_entity_util_avg() which will have added things to the
3579 * cfs_rq, so we can remove unconditionally.
3580 *
3581 * Similarly for groups, they will have passed through
3582 * post_init_entity_util_avg() before unregister_sched_fair_group()
3583 * calls this.
0905f04e 3584 */
0905f04e 3585
104cb16d 3586 sync_entity_load_avg(se);
2a2f5d4e
PZ
3587
3588 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3589 ++cfs_rq->removed.nr;
3590 cfs_rq->removed.util_avg += se->avg.util_avg;
3591 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3592 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3593 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3594}
642dbc39 3595
7ea241af
YD
3596static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3597{
1ea6c46a 3598 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3599}
3600
3601static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3602{
3603 return cfs_rq->avg.load_avg;
3604}
3605
46f69fa3 3606static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3607
7f65ea42
PB
3608static inline unsigned long task_util(struct task_struct *p)
3609{
3610 return READ_ONCE(p->se.avg.util_avg);
3611}
3612
3613static inline unsigned long _task_util_est(struct task_struct *p)
3614{
3615 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3616
92a801e5 3617 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3618}
3619
3620static inline unsigned long task_util_est(struct task_struct *p)
3621{
3622 return max(task_util(p), _task_util_est(p));
3623}
3624
3625static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3626 struct task_struct *p)
3627{
3628 unsigned int enqueued;
3629
3630 if (!sched_feat(UTIL_EST))
3631 return;
3632
3633 /* Update root cfs_rq's estimated utilization */
3634 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3635 enqueued += _task_util_est(p);
7f65ea42
PB
3636 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3637}
3638
3639/*
3640 * Check if a (signed) value is within a specified (unsigned) margin,
3641 * based on the observation that:
3642 *
3643 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3644 *
3645 * NOTE: this only works when value + maring < INT_MAX.
3646 */
3647static inline bool within_margin(int value, int margin)
3648{
3649 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3650}
3651
3652static void
3653util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3654{
3655 long last_ewma_diff;
3656 struct util_est ue;
3657
3658 if (!sched_feat(UTIL_EST))
3659 return;
3660
3482d98b
VG
3661 /* Update root cfs_rq's estimated utilization */
3662 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3663 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3664 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3665
3666 /*
3667 * Skip update of task's estimated utilization when the task has not
3668 * yet completed an activation, e.g. being migrated.
3669 */
3670 if (!task_sleep)
3671 return;
3672
d519329f
PB
3673 /*
3674 * If the PELT values haven't changed since enqueue time,
3675 * skip the util_est update.
3676 */
3677 ue = p->se.avg.util_est;
3678 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3679 return;
3680
7f65ea42
PB
3681 /*
3682 * Skip update of task's estimated utilization when its EWMA is
3683 * already ~1% close to its last activation value.
3684 */
d519329f 3685 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3686 last_ewma_diff = ue.enqueued - ue.ewma;
3687 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3688 return;
3689
3690 /*
3691 * Update Task's estimated utilization
3692 *
3693 * When *p completes an activation we can consolidate another sample
3694 * of the task size. This is done by storing the current PELT value
3695 * as ue.enqueued and by using this value to update the Exponential
3696 * Weighted Moving Average (EWMA):
3697 *
3698 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3699 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3700 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3701 * = w * ( last_ewma_diff ) + ewma(t-1)
3702 * = w * (last_ewma_diff + ewma(t-1) / w)
3703 *
3704 * Where 'w' is the weight of new samples, which is configured to be
3705 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3706 */
3707 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3708 ue.ewma += last_ewma_diff;
3709 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3710 WRITE_ONCE(p->se.avg.util_est, ue);
3711}
3712
3b1baa64
MR
3713static inline int task_fits_capacity(struct task_struct *p, long capacity)
3714{
3715 return capacity * 1024 > task_util_est(p) * capacity_margin;
3716}
3717
3718static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3719{
3720 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3721 return;
3722
3723 if (!p) {
3724 rq->misfit_task_load = 0;
3725 return;
3726 }
3727
3728 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3729 rq->misfit_task_load = 0;
3730 return;
3731 }
3732
3733 rq->misfit_task_load = task_h_load(p);
3734}
3735
38033c37
PZ
3736#else /* CONFIG_SMP */
3737
d31b1a66
VG
3738#define UPDATE_TG 0x0
3739#define SKIP_AGE_LOAD 0x0
b382a531 3740#define DO_ATTACH 0x0
d31b1a66 3741
88c0616e 3742static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3743{
ea14b57e 3744 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3745}
3746
9d89c257 3747static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3748
a05e8c51 3749static inline void
ea14b57e 3750attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3751static inline void
3752detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3753
46f69fa3 3754static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3755{
3756 return 0;
3757}
3758
7f65ea42
PB
3759static inline void
3760util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3761
3762static inline void
3763util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3764 bool task_sleep) {}
3b1baa64 3765static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3766
38033c37 3767#endif /* CONFIG_SMP */
9d85f21c 3768
ddc97297
PZ
3769static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3770{
3771#ifdef CONFIG_SCHED_DEBUG
3772 s64 d = se->vruntime - cfs_rq->min_vruntime;
3773
3774 if (d < 0)
3775 d = -d;
3776
3777 if (d > 3*sysctl_sched_latency)
ae92882e 3778 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3779#endif
3780}
3781
aeb73b04
PZ
3782static void
3783place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3784{
1af5f730 3785 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3786
2cb8600e
PZ
3787 /*
3788 * The 'current' period is already promised to the current tasks,
3789 * however the extra weight of the new task will slow them down a
3790 * little, place the new task so that it fits in the slot that
3791 * stays open at the end.
3792 */
94dfb5e7 3793 if (initial && sched_feat(START_DEBIT))
f9c0b095 3794 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3795
a2e7a7eb 3796 /* sleeps up to a single latency don't count. */
5ca9880c 3797 if (!initial) {
a2e7a7eb 3798 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3799
a2e7a7eb
MG
3800 /*
3801 * Halve their sleep time's effect, to allow
3802 * for a gentler effect of sleepers:
3803 */
3804 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3805 thresh >>= 1;
51e0304c 3806
a2e7a7eb 3807 vruntime -= thresh;
aeb73b04
PZ
3808 }
3809
b5d9d734 3810 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3811 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3812}
3813
d3d9dc33
PT
3814static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3815
cb251765
MG
3816static inline void check_schedstat_required(void)
3817{
3818#ifdef CONFIG_SCHEDSTATS
3819 if (schedstat_enabled())
3820 return;
3821
3822 /* Force schedstat enabled if a dependent tracepoint is active */
3823 if (trace_sched_stat_wait_enabled() ||
3824 trace_sched_stat_sleep_enabled() ||
3825 trace_sched_stat_iowait_enabled() ||
3826 trace_sched_stat_blocked_enabled() ||
3827 trace_sched_stat_runtime_enabled()) {
eda8dca5 3828 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3829 "stat_blocked and stat_runtime require the "
f67abed5 3830 "kernel parameter schedstats=enable or "
cb251765
MG
3831 "kernel.sched_schedstats=1\n");
3832 }
3833#endif
3834}
3835
b5179ac7
PZ
3836
3837/*
3838 * MIGRATION
3839 *
3840 * dequeue
3841 * update_curr()
3842 * update_min_vruntime()
3843 * vruntime -= min_vruntime
3844 *
3845 * enqueue
3846 * update_curr()
3847 * update_min_vruntime()
3848 * vruntime += min_vruntime
3849 *
3850 * this way the vruntime transition between RQs is done when both
3851 * min_vruntime are up-to-date.
3852 *
3853 * WAKEUP (remote)
3854 *
59efa0ba 3855 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3856 * vruntime -= min_vruntime
3857 *
3858 * enqueue
3859 * update_curr()
3860 * update_min_vruntime()
3861 * vruntime += min_vruntime
3862 *
3863 * this way we don't have the most up-to-date min_vruntime on the originating
3864 * CPU and an up-to-date min_vruntime on the destination CPU.
3865 */
3866
bf0f6f24 3867static void
88ec22d3 3868enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3869{
2f950354
PZ
3870 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3871 bool curr = cfs_rq->curr == se;
3872
88ec22d3 3873 /*
2f950354
PZ
3874 * If we're the current task, we must renormalise before calling
3875 * update_curr().
88ec22d3 3876 */
2f950354 3877 if (renorm && curr)
88ec22d3
PZ
3878 se->vruntime += cfs_rq->min_vruntime;
3879
2f950354
PZ
3880 update_curr(cfs_rq);
3881
bf0f6f24 3882 /*
2f950354
PZ
3883 * Otherwise, renormalise after, such that we're placed at the current
3884 * moment in time, instead of some random moment in the past. Being
3885 * placed in the past could significantly boost this task to the
3886 * fairness detriment of existing tasks.
bf0f6f24 3887 */
2f950354
PZ
3888 if (renorm && !curr)
3889 se->vruntime += cfs_rq->min_vruntime;
3890
89ee048f
VG
3891 /*
3892 * When enqueuing a sched_entity, we must:
3893 * - Update loads to have both entity and cfs_rq synced with now.
3894 * - Add its load to cfs_rq->runnable_avg
3895 * - For group_entity, update its weight to reflect the new share of
3896 * its group cfs_rq
3897 * - Add its new weight to cfs_rq->load.weight
3898 */
b382a531 3899 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3900 update_cfs_group(se);
b5b3e35f 3901 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3902 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3903
1a3d027c 3904 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3905 place_entity(cfs_rq, se, 0);
bf0f6f24 3906
cb251765 3907 check_schedstat_required();
4fa8d299
JP
3908 update_stats_enqueue(cfs_rq, se, flags);
3909 check_spread(cfs_rq, se);
2f950354 3910 if (!curr)
83b699ed 3911 __enqueue_entity(cfs_rq, se);
2069dd75 3912 se->on_rq = 1;
3d4b47b4 3913
d3d9dc33 3914 if (cfs_rq->nr_running == 1) {
3d4b47b4 3915 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3916 check_enqueue_throttle(cfs_rq);
3917 }
bf0f6f24
IM
3918}
3919
2c13c919 3920static void __clear_buddies_last(struct sched_entity *se)
2002c695 3921{
2c13c919
RR
3922 for_each_sched_entity(se) {
3923 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3924 if (cfs_rq->last != se)
2c13c919 3925 break;
f1044799
PZ
3926
3927 cfs_rq->last = NULL;
2c13c919
RR
3928 }
3929}
2002c695 3930
2c13c919
RR
3931static void __clear_buddies_next(struct sched_entity *se)
3932{
3933 for_each_sched_entity(se) {
3934 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3935 if (cfs_rq->next != se)
2c13c919 3936 break;
f1044799
PZ
3937
3938 cfs_rq->next = NULL;
2c13c919 3939 }
2002c695
PZ
3940}
3941
ac53db59
RR
3942static void __clear_buddies_skip(struct sched_entity *se)
3943{
3944 for_each_sched_entity(se) {
3945 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3946 if (cfs_rq->skip != se)
ac53db59 3947 break;
f1044799
PZ
3948
3949 cfs_rq->skip = NULL;
ac53db59
RR
3950 }
3951}
3952
a571bbea
PZ
3953static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3954{
2c13c919
RR
3955 if (cfs_rq->last == se)
3956 __clear_buddies_last(se);
3957
3958 if (cfs_rq->next == se)
3959 __clear_buddies_next(se);
ac53db59
RR
3960
3961 if (cfs_rq->skip == se)
3962 __clear_buddies_skip(se);
a571bbea
PZ
3963}
3964
6c16a6dc 3965static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3966
bf0f6f24 3967static void
371fd7e7 3968dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3969{
a2a2d680
DA
3970 /*
3971 * Update run-time statistics of the 'current'.
3972 */
3973 update_curr(cfs_rq);
89ee048f
VG
3974
3975 /*
3976 * When dequeuing a sched_entity, we must:
3977 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
3978 * - Subtract its load from the cfs_rq->runnable_avg.
3979 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
3980 * - For group entity, update its weight to reflect the new share
3981 * of its group cfs_rq.
3982 */
88c0616e 3983 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3984 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3985
4fa8d299 3986 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3987
2002c695 3988 clear_buddies(cfs_rq, se);
4793241b 3989
83b699ed 3990 if (se != cfs_rq->curr)
30cfdcfc 3991 __dequeue_entity(cfs_rq, se);
17bc14b7 3992 se->on_rq = 0;
30cfdcfc 3993 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3994
3995 /*
b60205c7
PZ
3996 * Normalize after update_curr(); which will also have moved
3997 * min_vruntime if @se is the one holding it back. But before doing
3998 * update_min_vruntime() again, which will discount @se's position and
3999 * can move min_vruntime forward still more.
88ec22d3 4000 */
371fd7e7 4001 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4002 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4003
d8b4986d
PT
4004 /* return excess runtime on last dequeue */
4005 return_cfs_rq_runtime(cfs_rq);
4006
1ea6c46a 4007 update_cfs_group(se);
b60205c7
PZ
4008
4009 /*
4010 * Now advance min_vruntime if @se was the entity holding it back,
4011 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4012 * put back on, and if we advance min_vruntime, we'll be placed back
4013 * further than we started -- ie. we'll be penalized.
4014 */
9845c49c 4015 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4016 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4017}
4018
4019/*
4020 * Preempt the current task with a newly woken task if needed:
4021 */
7c92e54f 4022static void
2e09bf55 4023check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4024{
11697830 4025 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4026 struct sched_entity *se;
4027 s64 delta;
11697830 4028
6d0f0ebd 4029 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4030 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4031 if (delta_exec > ideal_runtime) {
8875125e 4032 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4033 /*
4034 * The current task ran long enough, ensure it doesn't get
4035 * re-elected due to buddy favours.
4036 */
4037 clear_buddies(cfs_rq, curr);
f685ceac
MG
4038 return;
4039 }
4040
4041 /*
4042 * Ensure that a task that missed wakeup preemption by a
4043 * narrow margin doesn't have to wait for a full slice.
4044 * This also mitigates buddy induced latencies under load.
4045 */
f685ceac
MG
4046 if (delta_exec < sysctl_sched_min_granularity)
4047 return;
4048
f4cfb33e
WX
4049 se = __pick_first_entity(cfs_rq);
4050 delta = curr->vruntime - se->vruntime;
f685ceac 4051
f4cfb33e
WX
4052 if (delta < 0)
4053 return;
d7d82944 4054
f4cfb33e 4055 if (delta > ideal_runtime)
8875125e 4056 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4057}
4058
83b699ed 4059static void
8494f412 4060set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4061{
83b699ed
SV
4062 /* 'current' is not kept within the tree. */
4063 if (se->on_rq) {
4064 /*
4065 * Any task has to be enqueued before it get to execute on
4066 * a CPU. So account for the time it spent waiting on the
4067 * runqueue.
4068 */
4fa8d299 4069 update_stats_wait_end(cfs_rq, se);
83b699ed 4070 __dequeue_entity(cfs_rq, se);
88c0616e 4071 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4072 }
4073
79303e9e 4074 update_stats_curr_start(cfs_rq, se);
429d43bc 4075 cfs_rq->curr = se;
4fa8d299 4076
eba1ed4b
IM
4077 /*
4078 * Track our maximum slice length, if the CPU's load is at
4079 * least twice that of our own weight (i.e. dont track it
4080 * when there are only lesser-weight tasks around):
4081 */
cb251765 4082 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4083 schedstat_set(se->statistics.slice_max,
4084 max((u64)schedstat_val(se->statistics.slice_max),
4085 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4086 }
4fa8d299 4087
4a55b450 4088 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4089}
4090
3f3a4904
PZ
4091static int
4092wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4093
ac53db59
RR
4094/*
4095 * Pick the next process, keeping these things in mind, in this order:
4096 * 1) keep things fair between processes/task groups
4097 * 2) pick the "next" process, since someone really wants that to run
4098 * 3) pick the "last" process, for cache locality
4099 * 4) do not run the "skip" process, if something else is available
4100 */
678d5718
PZ
4101static struct sched_entity *
4102pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4103{
678d5718
PZ
4104 struct sched_entity *left = __pick_first_entity(cfs_rq);
4105 struct sched_entity *se;
4106
4107 /*
4108 * If curr is set we have to see if its left of the leftmost entity
4109 * still in the tree, provided there was anything in the tree at all.
4110 */
4111 if (!left || (curr && entity_before(curr, left)))
4112 left = curr;
4113
4114 se = left; /* ideally we run the leftmost entity */
f4b6755f 4115
ac53db59
RR
4116 /*
4117 * Avoid running the skip buddy, if running something else can
4118 * be done without getting too unfair.
4119 */
4120 if (cfs_rq->skip == se) {
678d5718
PZ
4121 struct sched_entity *second;
4122
4123 if (se == curr) {
4124 second = __pick_first_entity(cfs_rq);
4125 } else {
4126 second = __pick_next_entity(se);
4127 if (!second || (curr && entity_before(curr, second)))
4128 second = curr;
4129 }
4130
ac53db59
RR
4131 if (second && wakeup_preempt_entity(second, left) < 1)
4132 se = second;
4133 }
aa2ac252 4134
f685ceac
MG
4135 /*
4136 * Prefer last buddy, try to return the CPU to a preempted task.
4137 */
4138 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4139 se = cfs_rq->last;
4140
ac53db59
RR
4141 /*
4142 * Someone really wants this to run. If it's not unfair, run it.
4143 */
4144 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4145 se = cfs_rq->next;
4146
f685ceac 4147 clear_buddies(cfs_rq, se);
4793241b
PZ
4148
4149 return se;
aa2ac252
PZ
4150}
4151
678d5718 4152static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4153
ab6cde26 4154static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4155{
4156 /*
4157 * If still on the runqueue then deactivate_task()
4158 * was not called and update_curr() has to be done:
4159 */
4160 if (prev->on_rq)
b7cc0896 4161 update_curr(cfs_rq);
bf0f6f24 4162
d3d9dc33
PT
4163 /* throttle cfs_rqs exceeding runtime */
4164 check_cfs_rq_runtime(cfs_rq);
4165
4fa8d299 4166 check_spread(cfs_rq, prev);
cb251765 4167
30cfdcfc 4168 if (prev->on_rq) {
4fa8d299 4169 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4170 /* Put 'current' back into the tree. */
4171 __enqueue_entity(cfs_rq, prev);
9d85f21c 4172 /* in !on_rq case, update occurred at dequeue */
88c0616e 4173 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4174 }
429d43bc 4175 cfs_rq->curr = NULL;
bf0f6f24
IM
4176}
4177
8f4d37ec
PZ
4178static void
4179entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4180{
bf0f6f24 4181 /*
30cfdcfc 4182 * Update run-time statistics of the 'current'.
bf0f6f24 4183 */
30cfdcfc 4184 update_curr(cfs_rq);
bf0f6f24 4185
9d85f21c
PT
4186 /*
4187 * Ensure that runnable average is periodically updated.
4188 */
88c0616e 4189 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4190 update_cfs_group(curr);
9d85f21c 4191
8f4d37ec
PZ
4192#ifdef CONFIG_SCHED_HRTICK
4193 /*
4194 * queued ticks are scheduled to match the slice, so don't bother
4195 * validating it and just reschedule.
4196 */
983ed7a6 4197 if (queued) {
8875125e 4198 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4199 return;
4200 }
8f4d37ec
PZ
4201 /*
4202 * don't let the period tick interfere with the hrtick preemption
4203 */
4204 if (!sched_feat(DOUBLE_TICK) &&
4205 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4206 return;
4207#endif
4208
2c2efaed 4209 if (cfs_rq->nr_running > 1)
2e09bf55 4210 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4211}
4212
ab84d31e
PT
4213
4214/**************************************************
4215 * CFS bandwidth control machinery
4216 */
4217
4218#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4219
e9666d10 4220#ifdef CONFIG_JUMP_LABEL
c5905afb 4221static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4222
4223static inline bool cfs_bandwidth_used(void)
4224{
c5905afb 4225 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4226}
4227
1ee14e6c 4228void cfs_bandwidth_usage_inc(void)
029632fb 4229{
ce48c146 4230 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4231}
4232
4233void cfs_bandwidth_usage_dec(void)
4234{
ce48c146 4235 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4236}
e9666d10 4237#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4238static bool cfs_bandwidth_used(void)
4239{
4240 return true;
4241}
4242
1ee14e6c
BS
4243void cfs_bandwidth_usage_inc(void) {}
4244void cfs_bandwidth_usage_dec(void) {}
e9666d10 4245#endif /* CONFIG_JUMP_LABEL */
029632fb 4246
ab84d31e
PT
4247/*
4248 * default period for cfs group bandwidth.
4249 * default: 0.1s, units: nanoseconds
4250 */
4251static inline u64 default_cfs_period(void)
4252{
4253 return 100000000ULL;
4254}
ec12cb7f
PT
4255
4256static inline u64 sched_cfs_bandwidth_slice(void)
4257{
4258 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4259}
4260
a9cf55b2
PT
4261/*
4262 * Replenish runtime according to assigned quota and update expiration time.
4263 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4264 * additional synchronization around rq->lock.
4265 *
4266 * requires cfs_b->lock
4267 */
029632fb 4268void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4269{
4270 u64 now;
4271
4272 if (cfs_b->quota == RUNTIME_INF)
4273 return;
4274
4275 now = sched_clock_cpu(smp_processor_id());
4276 cfs_b->runtime = cfs_b->quota;
4277 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4278 cfs_b->expires_seq++;
a9cf55b2
PT
4279}
4280
029632fb
PZ
4281static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4282{
4283 return &tg->cfs_bandwidth;
4284}
4285
f1b17280
PT
4286/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4287static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4288{
4289 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4290 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4291
78becc27 4292 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4293}
4294
85dac906
PT
4295/* returns 0 on failure to allocate runtime */
4296static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4297{
4298 struct task_group *tg = cfs_rq->tg;
4299 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4300 u64 amount = 0, min_amount, expires;
512ac999 4301 int expires_seq;
ec12cb7f
PT
4302
4303 /* note: this is a positive sum as runtime_remaining <= 0 */
4304 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4305
4306 raw_spin_lock(&cfs_b->lock);
4307 if (cfs_b->quota == RUNTIME_INF)
4308 amount = min_amount;
58088ad0 4309 else {
77a4d1a1 4310 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4311
4312 if (cfs_b->runtime > 0) {
4313 amount = min(cfs_b->runtime, min_amount);
4314 cfs_b->runtime -= amount;
4315 cfs_b->idle = 0;
4316 }
ec12cb7f 4317 }
512ac999 4318 expires_seq = cfs_b->expires_seq;
a9cf55b2 4319 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4320 raw_spin_unlock(&cfs_b->lock);
4321
4322 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4323 /*
4324 * we may have advanced our local expiration to account for allowed
4325 * spread between our sched_clock and the one on which runtime was
4326 * issued.
4327 */
512ac999
XP
4328 if (cfs_rq->expires_seq != expires_seq) {
4329 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4330 cfs_rq->runtime_expires = expires;
512ac999 4331 }
85dac906
PT
4332
4333 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4334}
4335
a9cf55b2
PT
4336/*
4337 * Note: This depends on the synchronization provided by sched_clock and the
4338 * fact that rq->clock snapshots this value.
4339 */
4340static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4341{
a9cf55b2 4342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4343
4344 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4345 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4346 return;
4347
a9cf55b2
PT
4348 if (cfs_rq->runtime_remaining < 0)
4349 return;
4350
4351 /*
4352 * If the local deadline has passed we have to consider the
4353 * possibility that our sched_clock is 'fast' and the global deadline
4354 * has not truly expired.
4355 *
4356 * Fortunately we can check determine whether this the case by checking
512ac999 4357 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4358 */
512ac999 4359 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4360 /* extend local deadline, drift is bounded above by 2 ticks */
4361 cfs_rq->runtime_expires += TICK_NSEC;
4362 } else {
4363 /* global deadline is ahead, expiration has passed */
4364 cfs_rq->runtime_remaining = 0;
4365 }
4366}
4367
9dbdb155 4368static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4369{
4370 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4371 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4372 expire_cfs_rq_runtime(cfs_rq);
4373
4374 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4375 return;
4376
85dac906
PT
4377 /*
4378 * if we're unable to extend our runtime we resched so that the active
4379 * hierarchy can be throttled
4380 */
4381 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4382 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4383}
4384
6c16a6dc 4385static __always_inline
9dbdb155 4386void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4387{
56f570e5 4388 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4389 return;
4390
4391 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4392}
4393
85dac906
PT
4394static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4395{
56f570e5 4396 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4397}
4398
64660c86
PT
4399/* check whether cfs_rq, or any parent, is throttled */
4400static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4401{
56f570e5 4402 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4403}
4404
4405/*
4406 * Ensure that neither of the group entities corresponding to src_cpu or
4407 * dest_cpu are members of a throttled hierarchy when performing group
4408 * load-balance operations.
4409 */
4410static inline int throttled_lb_pair(struct task_group *tg,
4411 int src_cpu, int dest_cpu)
4412{
4413 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4414
4415 src_cfs_rq = tg->cfs_rq[src_cpu];
4416 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4417
4418 return throttled_hierarchy(src_cfs_rq) ||
4419 throttled_hierarchy(dest_cfs_rq);
4420}
4421
64660c86
PT
4422static int tg_unthrottle_up(struct task_group *tg, void *data)
4423{
4424 struct rq *rq = data;
4425 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4426
4427 cfs_rq->throttle_count--;
64660c86 4428 if (!cfs_rq->throttle_count) {
f1b17280 4429 /* adjust cfs_rq_clock_task() */
78becc27 4430 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4431 cfs_rq->throttled_clock_task;
64660c86 4432 }
64660c86
PT
4433
4434 return 0;
4435}
4436
4437static int tg_throttle_down(struct task_group *tg, void *data)
4438{
4439 struct rq *rq = data;
4440 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4441
82958366
PT
4442 /* group is entering throttled state, stop time */
4443 if (!cfs_rq->throttle_count)
78becc27 4444 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4445 cfs_rq->throttle_count++;
4446
4447 return 0;
4448}
4449
d3d9dc33 4450static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4451{
4452 struct rq *rq = rq_of(cfs_rq);
4453 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4454 struct sched_entity *se;
4455 long task_delta, dequeue = 1;
77a4d1a1 4456 bool empty;
85dac906
PT
4457
4458 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4459
f1b17280 4460 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4461 rcu_read_lock();
4462 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4463 rcu_read_unlock();
85dac906
PT
4464
4465 task_delta = cfs_rq->h_nr_running;
4466 for_each_sched_entity(se) {
4467 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4468 /* throttled entity or throttle-on-deactivate */
4469 if (!se->on_rq)
4470 break;
4471
4472 if (dequeue)
4473 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4474 qcfs_rq->h_nr_running -= task_delta;
4475
4476 if (qcfs_rq->load.weight)
4477 dequeue = 0;
4478 }
4479
4480 if (!se)
72465447 4481 sub_nr_running(rq, task_delta);
85dac906
PT
4482
4483 cfs_rq->throttled = 1;
78becc27 4484 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4485 raw_spin_lock(&cfs_b->lock);
d49db342 4486 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4487
c06f04c7
BS
4488 /*
4489 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4490 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4491 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4492 */
baa9be4f
PA
4493 if (cfs_b->distribute_running)
4494 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4495 else
4496 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4497
4498 /*
4499 * If we're the first throttled task, make sure the bandwidth
4500 * timer is running.
4501 */
4502 if (empty)
4503 start_cfs_bandwidth(cfs_b);
4504
85dac906
PT
4505 raw_spin_unlock(&cfs_b->lock);
4506}
4507
029632fb 4508void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4509{
4510 struct rq *rq = rq_of(cfs_rq);
4511 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4512 struct sched_entity *se;
4513 int enqueue = 1;
4514 long task_delta;
4515
22b958d8 4516 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4517
4518 cfs_rq->throttled = 0;
1a55af2e
FW
4519
4520 update_rq_clock(rq);
4521
671fd9da 4522 raw_spin_lock(&cfs_b->lock);
78becc27 4523 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4524 list_del_rcu(&cfs_rq->throttled_list);
4525 raw_spin_unlock(&cfs_b->lock);
4526
64660c86
PT
4527 /* update hierarchical throttle state */
4528 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4529
671fd9da
PT
4530 if (!cfs_rq->load.weight)
4531 return;
4532
4533 task_delta = cfs_rq->h_nr_running;
4534 for_each_sched_entity(se) {
4535 if (se->on_rq)
4536 enqueue = 0;
4537
4538 cfs_rq = cfs_rq_of(se);
4539 if (enqueue)
4540 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4541 cfs_rq->h_nr_running += task_delta;
4542
4543 if (cfs_rq_throttled(cfs_rq))
4544 break;
4545 }
4546
4547 if (!se)
72465447 4548 add_nr_running(rq, task_delta);
671fd9da 4549
97fb7a0a 4550 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4551 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4552 resched_curr(rq);
671fd9da
PT
4553}
4554
4555static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4556 u64 remaining, u64 expires)
4557{
4558 struct cfs_rq *cfs_rq;
c06f04c7
BS
4559 u64 runtime;
4560 u64 starting_runtime = remaining;
671fd9da
PT
4561
4562 rcu_read_lock();
4563 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4564 throttled_list) {
4565 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4566 struct rq_flags rf;
671fd9da 4567
c0ad4aa4 4568 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4569 if (!cfs_rq_throttled(cfs_rq))
4570 goto next;
4571
4572 runtime = -cfs_rq->runtime_remaining + 1;
4573 if (runtime > remaining)
4574 runtime = remaining;
4575 remaining -= runtime;
4576
4577 cfs_rq->runtime_remaining += runtime;
4578 cfs_rq->runtime_expires = expires;
4579
4580 /* we check whether we're throttled above */
4581 if (cfs_rq->runtime_remaining > 0)
4582 unthrottle_cfs_rq(cfs_rq);
4583
4584next:
c0ad4aa4 4585 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4586
4587 if (!remaining)
4588 break;
4589 }
4590 rcu_read_unlock();
4591
c06f04c7 4592 return starting_runtime - remaining;
671fd9da
PT
4593}
4594
58088ad0
PT
4595/*
4596 * Responsible for refilling a task_group's bandwidth and unthrottling its
4597 * cfs_rqs as appropriate. If there has been no activity within the last
4598 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4599 * used to track this state.
4600 */
c0ad4aa4 4601static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4602{
671fd9da 4603 u64 runtime, runtime_expires;
51f2176d 4604 int throttled;
58088ad0 4605
58088ad0
PT
4606 /* no need to continue the timer with no bandwidth constraint */
4607 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4608 goto out_deactivate;
58088ad0 4609
671fd9da 4610 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4611 cfs_b->nr_periods += overrun;
671fd9da 4612
51f2176d
BS
4613 /*
4614 * idle depends on !throttled (for the case of a large deficit), and if
4615 * we're going inactive then everything else can be deferred
4616 */
4617 if (cfs_b->idle && !throttled)
4618 goto out_deactivate;
a9cf55b2
PT
4619
4620 __refill_cfs_bandwidth_runtime(cfs_b);
4621
671fd9da
PT
4622 if (!throttled) {
4623 /* mark as potentially idle for the upcoming period */
4624 cfs_b->idle = 1;
51f2176d 4625 return 0;
671fd9da
PT
4626 }
4627
e8da1b18
NR
4628 /* account preceding periods in which throttling occurred */
4629 cfs_b->nr_throttled += overrun;
4630
671fd9da 4631 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4632
4633 /*
c06f04c7
BS
4634 * This check is repeated as we are holding onto the new bandwidth while
4635 * we unthrottle. This can potentially race with an unthrottled group
4636 * trying to acquire new bandwidth from the global pool. This can result
4637 * in us over-using our runtime if it is all used during this loop, but
4638 * only by limited amounts in that extreme case.
671fd9da 4639 */
baa9be4f 4640 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4641 runtime = cfs_b->runtime;
baa9be4f 4642 cfs_b->distribute_running = 1;
c0ad4aa4 4643 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da
PT
4644 /* we can't nest cfs_b->lock while distributing bandwidth */
4645 runtime = distribute_cfs_runtime(cfs_b, runtime,
4646 runtime_expires);
c0ad4aa4 4647 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4648
baa9be4f 4649 cfs_b->distribute_running = 0;
671fd9da 4650 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4651
b5c0ce7b 4652 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4653 }
58088ad0 4654
671fd9da
PT
4655 /*
4656 * While we are ensured activity in the period following an
4657 * unthrottle, this also covers the case in which the new bandwidth is
4658 * insufficient to cover the existing bandwidth deficit. (Forcing the
4659 * timer to remain active while there are any throttled entities.)
4660 */
4661 cfs_b->idle = 0;
58088ad0 4662
51f2176d
BS
4663 return 0;
4664
4665out_deactivate:
51f2176d 4666 return 1;
58088ad0 4667}
d3d9dc33 4668
d8b4986d
PT
4669/* a cfs_rq won't donate quota below this amount */
4670static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4671/* minimum remaining period time to redistribute slack quota */
4672static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4673/* how long we wait to gather additional slack before distributing */
4674static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4675
db06e78c
BS
4676/*
4677 * Are we near the end of the current quota period?
4678 *
4679 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4680 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4681 * migrate_hrtimers, base is never cleared, so we are fine.
4682 */
d8b4986d
PT
4683static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4684{
4685 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4686 u64 remaining;
4687
4688 /* if the call-back is running a quota refresh is already occurring */
4689 if (hrtimer_callback_running(refresh_timer))
4690 return 1;
4691
4692 /* is a quota refresh about to occur? */
4693 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4694 if (remaining < min_expire)
4695 return 1;
4696
4697 return 0;
4698}
4699
4700static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4701{
4702 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4703
4704 /* if there's a quota refresh soon don't bother with slack */
4705 if (runtime_refresh_within(cfs_b, min_left))
4706 return;
4707
4cfafd30
PZ
4708 hrtimer_start(&cfs_b->slack_timer,
4709 ns_to_ktime(cfs_bandwidth_slack_period),
4710 HRTIMER_MODE_REL);
d8b4986d
PT
4711}
4712
4713/* we know any runtime found here is valid as update_curr() precedes return */
4714static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4715{
4716 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4717 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4718
4719 if (slack_runtime <= 0)
4720 return;
4721
4722 raw_spin_lock(&cfs_b->lock);
4723 if (cfs_b->quota != RUNTIME_INF &&
4724 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4725 cfs_b->runtime += slack_runtime;
4726
4727 /* we are under rq->lock, defer unthrottling using a timer */
4728 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4729 !list_empty(&cfs_b->throttled_cfs_rq))
4730 start_cfs_slack_bandwidth(cfs_b);
4731 }
4732 raw_spin_unlock(&cfs_b->lock);
4733
4734 /* even if it's not valid for return we don't want to try again */
4735 cfs_rq->runtime_remaining -= slack_runtime;
4736}
4737
4738static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4739{
56f570e5
PT
4740 if (!cfs_bandwidth_used())
4741 return;
4742
fccfdc6f 4743 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4744 return;
4745
4746 __return_cfs_rq_runtime(cfs_rq);
4747}
4748
4749/*
4750 * This is done with a timer (instead of inline with bandwidth return) since
4751 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4752 */
4753static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4754{
4755 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4756 unsigned long flags;
d8b4986d
PT
4757 u64 expires;
4758
4759 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4760 raw_spin_lock_irqsave(&cfs_b->lock, flags);
baa9be4f 4761 if (cfs_b->distribute_running) {
c0ad4aa4 4762 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4763 return;
4764 }
4765
db06e78c 4766 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4767 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4768 return;
db06e78c 4769 }
d8b4986d 4770
c06f04c7 4771 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4772 runtime = cfs_b->runtime;
c06f04c7 4773
d8b4986d 4774 expires = cfs_b->runtime_expires;
baa9be4f
PA
4775 if (runtime)
4776 cfs_b->distribute_running = 1;
4777
c0ad4aa4 4778 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4779
4780 if (!runtime)
4781 return;
4782
4783 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4784
c0ad4aa4 4785 raw_spin_lock_irqsave(&cfs_b->lock, flags);
d8b4986d 4786 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4787 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4788 cfs_b->distribute_running = 0;
c0ad4aa4 4789 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4790}
4791
d3d9dc33
PT
4792/*
4793 * When a group wakes up we want to make sure that its quota is not already
4794 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4795 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4796 */
4797static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4798{
56f570e5
PT
4799 if (!cfs_bandwidth_used())
4800 return;
4801
d3d9dc33
PT
4802 /* an active group must be handled by the update_curr()->put() path */
4803 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4804 return;
4805
4806 /* ensure the group is not already throttled */
4807 if (cfs_rq_throttled(cfs_rq))
4808 return;
4809
4810 /* update runtime allocation */
4811 account_cfs_rq_runtime(cfs_rq, 0);
4812 if (cfs_rq->runtime_remaining <= 0)
4813 throttle_cfs_rq(cfs_rq);
4814}
4815
55e16d30
PZ
4816static void sync_throttle(struct task_group *tg, int cpu)
4817{
4818 struct cfs_rq *pcfs_rq, *cfs_rq;
4819
4820 if (!cfs_bandwidth_used())
4821 return;
4822
4823 if (!tg->parent)
4824 return;
4825
4826 cfs_rq = tg->cfs_rq[cpu];
4827 pcfs_rq = tg->parent->cfs_rq[cpu];
4828
4829 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4830 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4831}
4832
d3d9dc33 4833/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4834static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4835{
56f570e5 4836 if (!cfs_bandwidth_used())
678d5718 4837 return false;
56f570e5 4838
d3d9dc33 4839 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4840 return false;
d3d9dc33
PT
4841
4842 /*
4843 * it's possible for a throttled entity to be forced into a running
4844 * state (e.g. set_curr_task), in this case we're finished.
4845 */
4846 if (cfs_rq_throttled(cfs_rq))
678d5718 4847 return true;
d3d9dc33
PT
4848
4849 throttle_cfs_rq(cfs_rq);
678d5718 4850 return true;
d3d9dc33 4851}
029632fb 4852
029632fb
PZ
4853static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4854{
4855 struct cfs_bandwidth *cfs_b =
4856 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4857
029632fb
PZ
4858 do_sched_cfs_slack_timer(cfs_b);
4859
4860 return HRTIMER_NORESTART;
4861}
4862
4863static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4864{
4865 struct cfs_bandwidth *cfs_b =
4866 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4867 unsigned long flags;
029632fb
PZ
4868 int overrun;
4869 int idle = 0;
4870
c0ad4aa4 4871 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4872 for (;;) {
77a4d1a1 4873 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4874 if (!overrun)
4875 break;
4876
c0ad4aa4 4877 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4878 }
4cfafd30
PZ
4879 if (idle)
4880 cfs_b->period_active = 0;
c0ad4aa4 4881 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4882
4883 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4884}
4885
4886void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4887{
4888 raw_spin_lock_init(&cfs_b->lock);
4889 cfs_b->runtime = 0;
4890 cfs_b->quota = RUNTIME_INF;
4891 cfs_b->period = ns_to_ktime(default_cfs_period());
4892
4893 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4894 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4895 cfs_b->period_timer.function = sched_cfs_period_timer;
4896 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4897 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4898 cfs_b->distribute_running = 0;
029632fb
PZ
4899}
4900
4901static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4902{
4903 cfs_rq->runtime_enabled = 0;
4904 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4905}
4906
77a4d1a1 4907void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4908{
f1d1be8a
XP
4909 u64 overrun;
4910
4cfafd30 4911 lockdep_assert_held(&cfs_b->lock);
029632fb 4912
f1d1be8a
XP
4913 if (cfs_b->period_active)
4914 return;
4915
4916 cfs_b->period_active = 1;
4917 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4918 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4919 cfs_b->expires_seq++;
4920 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4921}
4922
4923static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4924{
7f1a169b
TH
4925 /* init_cfs_bandwidth() was not called */
4926 if (!cfs_b->throttled_cfs_rq.next)
4927 return;
4928
029632fb
PZ
4929 hrtimer_cancel(&cfs_b->period_timer);
4930 hrtimer_cancel(&cfs_b->slack_timer);
4931}
4932
502ce005 4933/*
97fb7a0a 4934 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4935 *
4936 * The race is harmless, since modifying bandwidth settings of unhooked group
4937 * bits doesn't do much.
4938 */
4939
4940/* cpu online calback */
0e59bdae
KT
4941static void __maybe_unused update_runtime_enabled(struct rq *rq)
4942{
502ce005 4943 struct task_group *tg;
0e59bdae 4944
502ce005
PZ
4945 lockdep_assert_held(&rq->lock);
4946
4947 rcu_read_lock();
4948 list_for_each_entry_rcu(tg, &task_groups, list) {
4949 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4950 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4951
4952 raw_spin_lock(&cfs_b->lock);
4953 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4954 raw_spin_unlock(&cfs_b->lock);
4955 }
502ce005 4956 rcu_read_unlock();
0e59bdae
KT
4957}
4958
502ce005 4959/* cpu offline callback */
38dc3348 4960static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4961{
502ce005
PZ
4962 struct task_group *tg;
4963
4964 lockdep_assert_held(&rq->lock);
4965
4966 rcu_read_lock();
4967 list_for_each_entry_rcu(tg, &task_groups, list) {
4968 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4969
029632fb
PZ
4970 if (!cfs_rq->runtime_enabled)
4971 continue;
4972
4973 /*
4974 * clock_task is not advancing so we just need to make sure
4975 * there's some valid quota amount
4976 */
51f2176d 4977 cfs_rq->runtime_remaining = 1;
0e59bdae 4978 /*
97fb7a0a 4979 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
4980 * in take_cpu_down(), so we prevent new cfs throttling here.
4981 */
4982 cfs_rq->runtime_enabled = 0;
4983
029632fb
PZ
4984 if (cfs_rq_throttled(cfs_rq))
4985 unthrottle_cfs_rq(cfs_rq);
4986 }
502ce005 4987 rcu_read_unlock();
029632fb
PZ
4988}
4989
4990#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4991static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4992{
78becc27 4993 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4994}
4995
9dbdb155 4996static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4997static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4998static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4999static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5000static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5001
5002static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5003{
5004 return 0;
5005}
64660c86
PT
5006
5007static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5008{
5009 return 0;
5010}
5011
5012static inline int throttled_lb_pair(struct task_group *tg,
5013 int src_cpu, int dest_cpu)
5014{
5015 return 0;
5016}
029632fb
PZ
5017
5018void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5019
5020#ifdef CONFIG_FAIR_GROUP_SCHED
5021static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5022#endif
5023
029632fb
PZ
5024static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5025{
5026 return NULL;
5027}
5028static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5029static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5030static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5031
5032#endif /* CONFIG_CFS_BANDWIDTH */
5033
bf0f6f24
IM
5034/**************************************************
5035 * CFS operations on tasks:
5036 */
5037
8f4d37ec
PZ
5038#ifdef CONFIG_SCHED_HRTICK
5039static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5040{
8f4d37ec
PZ
5041 struct sched_entity *se = &p->se;
5042 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5043
9148a3a1 5044 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5045
8bf46a39 5046 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5047 u64 slice = sched_slice(cfs_rq, se);
5048 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5049 s64 delta = slice - ran;
5050
5051 if (delta < 0) {
5052 if (rq->curr == p)
8875125e 5053 resched_curr(rq);
8f4d37ec
PZ
5054 return;
5055 }
31656519 5056 hrtick_start(rq, delta);
8f4d37ec
PZ
5057 }
5058}
a4c2f00f
PZ
5059
5060/*
5061 * called from enqueue/dequeue and updates the hrtick when the
5062 * current task is from our class and nr_running is low enough
5063 * to matter.
5064 */
5065static void hrtick_update(struct rq *rq)
5066{
5067 struct task_struct *curr = rq->curr;
5068
b39e66ea 5069 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5070 return;
5071
5072 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5073 hrtick_start_fair(rq, curr);
5074}
55e12e5e 5075#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5076static inline void
5077hrtick_start_fair(struct rq *rq, struct task_struct *p)
5078{
5079}
a4c2f00f
PZ
5080
5081static inline void hrtick_update(struct rq *rq)
5082{
5083}
8f4d37ec
PZ
5084#endif
5085
2802bf3c
MR
5086#ifdef CONFIG_SMP
5087static inline unsigned long cpu_util(int cpu);
5088static unsigned long capacity_of(int cpu);
5089
5090static inline bool cpu_overutilized(int cpu)
5091{
5092 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5093}
5094
5095static inline void update_overutilized_status(struct rq *rq)
5096{
5097 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5098 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5099}
5100#else
5101static inline void update_overutilized_status(struct rq *rq) { }
5102#endif
5103
bf0f6f24
IM
5104/*
5105 * The enqueue_task method is called before nr_running is
5106 * increased. Here we update the fair scheduling stats and
5107 * then put the task into the rbtree:
5108 */
ea87bb78 5109static void
371fd7e7 5110enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5111{
5112 struct cfs_rq *cfs_rq;
62fb1851 5113 struct sched_entity *se = &p->se;
bf0f6f24 5114
2539fc82
PB
5115 /*
5116 * The code below (indirectly) updates schedutil which looks at
5117 * the cfs_rq utilization to select a frequency.
5118 * Let's add the task's estimated utilization to the cfs_rq's
5119 * estimated utilization, before we update schedutil.
5120 */
5121 util_est_enqueue(&rq->cfs, p);
5122
8c34ab19
RW
5123 /*
5124 * If in_iowait is set, the code below may not trigger any cpufreq
5125 * utilization updates, so do it here explicitly with the IOWAIT flag
5126 * passed.
5127 */
5128 if (p->in_iowait)
674e7541 5129 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5130
bf0f6f24 5131 for_each_sched_entity(se) {
62fb1851 5132 if (se->on_rq)
bf0f6f24
IM
5133 break;
5134 cfs_rq = cfs_rq_of(se);
88ec22d3 5135 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5136
5137 /*
5138 * end evaluation on encountering a throttled cfs_rq
5139 *
5140 * note: in the case of encountering a throttled cfs_rq we will
5141 * post the final h_nr_running increment below.
e210bffd 5142 */
85dac906
PT
5143 if (cfs_rq_throttled(cfs_rq))
5144 break;
953bfcd1 5145 cfs_rq->h_nr_running++;
85dac906 5146
88ec22d3 5147 flags = ENQUEUE_WAKEUP;
bf0f6f24 5148 }
8f4d37ec 5149
2069dd75 5150 for_each_sched_entity(se) {
0f317143 5151 cfs_rq = cfs_rq_of(se);
953bfcd1 5152 cfs_rq->h_nr_running++;
2069dd75 5153
85dac906
PT
5154 if (cfs_rq_throttled(cfs_rq))
5155 break;
5156
88c0616e 5157 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5158 update_cfs_group(se);
2069dd75
PZ
5159 }
5160
2802bf3c 5161 if (!se) {
72465447 5162 add_nr_running(rq, 1);
2802bf3c
MR
5163 /*
5164 * Since new tasks are assigned an initial util_avg equal to
5165 * half of the spare capacity of their CPU, tiny tasks have the
5166 * ability to cross the overutilized threshold, which will
5167 * result in the load balancer ruining all the task placement
5168 * done by EAS. As a way to mitigate that effect, do not account
5169 * for the first enqueue operation of new tasks during the
5170 * overutilized flag detection.
5171 *
5172 * A better way of solving this problem would be to wait for
5173 * the PELT signals of tasks to converge before taking them
5174 * into account, but that is not straightforward to implement,
5175 * and the following generally works well enough in practice.
5176 */
5177 if (flags & ENQUEUE_WAKEUP)
5178 update_overutilized_status(rq);
5179
5180 }
cd126afe 5181
a4c2f00f 5182 hrtick_update(rq);
bf0f6f24
IM
5183}
5184
2f36825b
VP
5185static void set_next_buddy(struct sched_entity *se);
5186
bf0f6f24
IM
5187/*
5188 * The dequeue_task method is called before nr_running is
5189 * decreased. We remove the task from the rbtree and
5190 * update the fair scheduling stats:
5191 */
371fd7e7 5192static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5193{
5194 struct cfs_rq *cfs_rq;
62fb1851 5195 struct sched_entity *se = &p->se;
2f36825b 5196 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5197
5198 for_each_sched_entity(se) {
5199 cfs_rq = cfs_rq_of(se);
371fd7e7 5200 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5201
5202 /*
5203 * end evaluation on encountering a throttled cfs_rq
5204 *
5205 * note: in the case of encountering a throttled cfs_rq we will
5206 * post the final h_nr_running decrement below.
5207 */
5208 if (cfs_rq_throttled(cfs_rq))
5209 break;
953bfcd1 5210 cfs_rq->h_nr_running--;
2069dd75 5211
bf0f6f24 5212 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5213 if (cfs_rq->load.weight) {
754bd598
KK
5214 /* Avoid re-evaluating load for this entity: */
5215 se = parent_entity(se);
2f36825b
VP
5216 /*
5217 * Bias pick_next to pick a task from this cfs_rq, as
5218 * p is sleeping when it is within its sched_slice.
5219 */
754bd598
KK
5220 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5221 set_next_buddy(se);
bf0f6f24 5222 break;
2f36825b 5223 }
371fd7e7 5224 flags |= DEQUEUE_SLEEP;
bf0f6f24 5225 }
8f4d37ec 5226
2069dd75 5227 for_each_sched_entity(se) {
0f317143 5228 cfs_rq = cfs_rq_of(se);
953bfcd1 5229 cfs_rq->h_nr_running--;
2069dd75 5230
85dac906
PT
5231 if (cfs_rq_throttled(cfs_rq))
5232 break;
5233
88c0616e 5234 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5235 update_cfs_group(se);
2069dd75
PZ
5236 }
5237
cd126afe 5238 if (!se)
72465447 5239 sub_nr_running(rq, 1);
cd126afe 5240
7f65ea42 5241 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5242 hrtick_update(rq);
bf0f6f24
IM
5243}
5244
e7693a36 5245#ifdef CONFIG_SMP
10e2f1ac
PZ
5246
5247/* Working cpumask for: load_balance, load_balance_newidle. */
5248DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5249DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5250
9fd81dd5 5251#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5252/*
5253 * per rq 'load' arrray crap; XXX kill this.
5254 */
5255
5256/*
d937cdc5 5257 * The exact cpuload calculated at every tick would be:
3289bdb4 5258 *
d937cdc5
PZ
5259 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5260 *
97fb7a0a
IM
5261 * If a CPU misses updates for n ticks (as it was idle) and update gets
5262 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5263 *
5264 * load_n = (1 - 1/2^i)^n * load_0
5265 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5266 *
5267 * decay_load_missed() below does efficient calculation of
3289bdb4 5268 *
d937cdc5
PZ
5269 * load' = (1 - 1/2^i)^n * load
5270 *
5271 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5272 * This allows us to precompute the above in said factors, thereby allowing the
5273 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5274 * fixed_power_int())
3289bdb4 5275 *
d937cdc5 5276 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5277 */
5278#define DEGRADE_SHIFT 7
d937cdc5
PZ
5279
5280static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5281static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5282 { 0, 0, 0, 0, 0, 0, 0, 0 },
5283 { 64, 32, 8, 0, 0, 0, 0, 0 },
5284 { 96, 72, 40, 12, 1, 0, 0, 0 },
5285 { 112, 98, 75, 43, 15, 1, 0, 0 },
5286 { 120, 112, 98, 76, 45, 16, 2, 0 }
5287};
3289bdb4
PZ
5288
5289/*
5290 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5291 * would be when CPU is idle and so we just decay the old load without
5292 * adding any new load.
5293 */
5294static unsigned long
5295decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5296{
5297 int j = 0;
5298
5299 if (!missed_updates)
5300 return load;
5301
5302 if (missed_updates >= degrade_zero_ticks[idx])
5303 return 0;
5304
5305 if (idx == 1)
5306 return load >> missed_updates;
5307
5308 while (missed_updates) {
5309 if (missed_updates % 2)
5310 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5311
5312 missed_updates >>= 1;
5313 j++;
5314 }
5315 return load;
5316}
e022e0d3
PZ
5317
5318static struct {
5319 cpumask_var_t idle_cpus_mask;
5320 atomic_t nr_cpus;
f643ea22 5321 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5322 unsigned long next_balance; /* in jiffy units */
f643ea22 5323 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5324} nohz ____cacheline_aligned;
5325
9fd81dd5 5326#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5327
59543275 5328/**
cee1afce 5329 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5330 * @this_rq: The rq to update statistics for
5331 * @this_load: The current load
5332 * @pending_updates: The number of missed updates
59543275 5333 *
3289bdb4 5334 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5335 * scheduler tick (TICK_NSEC).
5336 *
5337 * This function computes a decaying average:
5338 *
5339 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5340 *
5341 * Because of NOHZ it might not get called on every tick which gives need for
5342 * the @pending_updates argument.
5343 *
5344 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5345 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5346 * = A * (A * load[i]_n-2 + B) + B
5347 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5348 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5349 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5350 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5351 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5352 *
5353 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5354 * any change in load would have resulted in the tick being turned back on.
5355 *
5356 * For regular NOHZ, this reduces to:
5357 *
5358 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5359 *
5360 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5361 * term.
3289bdb4 5362 */
1f41906a
FW
5363static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5364 unsigned long pending_updates)
3289bdb4 5365{
9fd81dd5 5366 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5367 int i, scale;
5368
5369 this_rq->nr_load_updates++;
5370
5371 /* Update our load: */
5372 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5373 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5374 unsigned long old_load, new_load;
5375
5376 /* scale is effectively 1 << i now, and >> i divides by scale */
5377
7400d3bb 5378 old_load = this_rq->cpu_load[i];
9fd81dd5 5379#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5380 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5381 if (tickless_load) {
5382 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5383 /*
5384 * old_load can never be a negative value because a
5385 * decayed tickless_load cannot be greater than the
5386 * original tickless_load.
5387 */
5388 old_load += tickless_load;
5389 }
9fd81dd5 5390#endif
3289bdb4
PZ
5391 new_load = this_load;
5392 /*
5393 * Round up the averaging division if load is increasing. This
5394 * prevents us from getting stuck on 9 if the load is 10, for
5395 * example.
5396 */
5397 if (new_load > old_load)
5398 new_load += scale - 1;
5399
5400 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5401 }
3289bdb4
PZ
5402}
5403
7ea241af 5404/* Used instead of source_load when we know the type == 0 */
c7132dd6 5405static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5406{
c7132dd6 5407 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5408}
5409
3289bdb4 5410#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5411/*
5412 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5413 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5414 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5415 *
5416 * Therefore we need to avoid the delta approach from the regular tick when
5417 * possible since that would seriously skew the load calculation. This is why we
5418 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5419 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5420 * loop exit, nohz_idle_balance, nohz full exit...)
5421 *
5422 * This means we might still be one tick off for nohz periods.
5423 */
5424
5425static void cpu_load_update_nohz(struct rq *this_rq,
5426 unsigned long curr_jiffies,
5427 unsigned long load)
be68a682
FW
5428{
5429 unsigned long pending_updates;
5430
5431 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5432 if (pending_updates) {
5433 this_rq->last_load_update_tick = curr_jiffies;
5434 /*
5435 * In the regular NOHZ case, we were idle, this means load 0.
5436 * In the NOHZ_FULL case, we were non-idle, we should consider
5437 * its weighted load.
5438 */
1f41906a 5439 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5440 }
5441}
5442
3289bdb4
PZ
5443/*
5444 * Called from nohz_idle_balance() to update the load ratings before doing the
5445 * idle balance.
5446 */
cee1afce 5447static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5448{
3289bdb4
PZ
5449 /*
5450 * bail if there's load or we're actually up-to-date.
5451 */
c7132dd6 5452 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5453 return;
5454
1f41906a 5455 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5456}
5457
5458/*
1f41906a
FW
5459 * Record CPU load on nohz entry so we know the tickless load to account
5460 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5461 * than other cpu_load[idx] but it should be fine as cpu_load readers
5462 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5463 */
1f41906a 5464void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5465{
5466 struct rq *this_rq = this_rq();
1f41906a
FW
5467
5468 /*
5469 * This is all lockless but should be fine. If weighted_cpuload changes
5470 * concurrently we'll exit nohz. And cpu_load write can race with
5471 * cpu_load_update_idle() but both updater would be writing the same.
5472 */
c7132dd6 5473 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5474}
5475
5476/*
5477 * Account the tickless load in the end of a nohz frame.
5478 */
5479void cpu_load_update_nohz_stop(void)
5480{
316c1608 5481 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5482 struct rq *this_rq = this_rq();
5483 unsigned long load;
8a8c69c3 5484 struct rq_flags rf;
3289bdb4
PZ
5485
5486 if (curr_jiffies == this_rq->last_load_update_tick)
5487 return;
5488
c7132dd6 5489 load = weighted_cpuload(this_rq);
8a8c69c3 5490 rq_lock(this_rq, &rf);
b52fad2d 5491 update_rq_clock(this_rq);
1f41906a 5492 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5493 rq_unlock(this_rq, &rf);
3289bdb4 5494}
1f41906a
FW
5495#else /* !CONFIG_NO_HZ_COMMON */
5496static inline void cpu_load_update_nohz(struct rq *this_rq,
5497 unsigned long curr_jiffies,
5498 unsigned long load) { }
5499#endif /* CONFIG_NO_HZ_COMMON */
5500
5501static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5502{
9fd81dd5 5503#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5504 /* See the mess around cpu_load_update_nohz(). */
5505 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5506#endif
1f41906a
FW
5507 cpu_load_update(this_rq, load, 1);
5508}
3289bdb4
PZ
5509
5510/*
5511 * Called from scheduler_tick()
5512 */
cee1afce 5513void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5514{
c7132dd6 5515 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5516
5517 if (tick_nohz_tick_stopped())
5518 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5519 else
5520 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5521}
5522
029632fb 5523/*
97fb7a0a 5524 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5525 * according to the scheduling class and "nice" value.
5526 *
5527 * We want to under-estimate the load of migration sources, to
5528 * balance conservatively.
5529 */
5530static unsigned long source_load(int cpu, int type)
5531{
5532 struct rq *rq = cpu_rq(cpu);
c7132dd6 5533 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5534
5535 if (type == 0 || !sched_feat(LB_BIAS))
5536 return total;
5537
5538 return min(rq->cpu_load[type-1], total);
5539}
5540
5541/*
97fb7a0a 5542 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5543 * according to the scheduling class and "nice" value.
5544 */
5545static unsigned long target_load(int cpu, int type)
5546{
5547 struct rq *rq = cpu_rq(cpu);
c7132dd6 5548 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5549
5550 if (type == 0 || !sched_feat(LB_BIAS))
5551 return total;
5552
5553 return max(rq->cpu_load[type-1], total);
5554}
5555
ced549fa 5556static unsigned long capacity_of(int cpu)
029632fb 5557{
ced549fa 5558 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5559}
5560
ca6d75e6
VG
5561static unsigned long capacity_orig_of(int cpu)
5562{
5563 return cpu_rq(cpu)->cpu_capacity_orig;
5564}
5565
029632fb
PZ
5566static unsigned long cpu_avg_load_per_task(int cpu)
5567{
5568 struct rq *rq = cpu_rq(cpu);
316c1608 5569 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5570 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5571
5572 if (nr_running)
b92486cb 5573 return load_avg / nr_running;
029632fb
PZ
5574
5575 return 0;
5576}
5577
c58d25f3
PZ
5578static void record_wakee(struct task_struct *p)
5579{
5580 /*
5581 * Only decay a single time; tasks that have less then 1 wakeup per
5582 * jiffy will not have built up many flips.
5583 */
5584 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5585 current->wakee_flips >>= 1;
5586 current->wakee_flip_decay_ts = jiffies;
5587 }
5588
5589 if (current->last_wakee != p) {
5590 current->last_wakee = p;
5591 current->wakee_flips++;
5592 }
5593}
5594
63b0e9ed
MG
5595/*
5596 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5597 *
63b0e9ed 5598 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5599 * at a frequency roughly N times higher than one of its wakees.
5600 *
5601 * In order to determine whether we should let the load spread vs consolidating
5602 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5603 * partner, and a factor of lls_size higher frequency in the other.
5604 *
5605 * With both conditions met, we can be relatively sure that the relationship is
5606 * non-monogamous, with partner count exceeding socket size.
5607 *
5608 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5609 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5610 * socket size.
63b0e9ed 5611 */
62470419
MW
5612static int wake_wide(struct task_struct *p)
5613{
63b0e9ed
MG
5614 unsigned int master = current->wakee_flips;
5615 unsigned int slave = p->wakee_flips;
7d9ffa89 5616 int factor = this_cpu_read(sd_llc_size);
62470419 5617
63b0e9ed
MG
5618 if (master < slave)
5619 swap(master, slave);
5620 if (slave < factor || master < slave * factor)
5621 return 0;
5622 return 1;
62470419
MW
5623}
5624
90001d67 5625/*
d153b153
PZ
5626 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5627 * soonest. For the purpose of speed we only consider the waking and previous
5628 * CPU.
90001d67 5629 *
7332dec0
MG
5630 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5631 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5632 *
5633 * wake_affine_weight() - considers the weight to reflect the average
5634 * scheduling latency of the CPUs. This seems to work
5635 * for the overloaded case.
90001d67 5636 */
3b76c4a3 5637static int
89a55f56 5638wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5639{
7332dec0
MG
5640 /*
5641 * If this_cpu is idle, it implies the wakeup is from interrupt
5642 * context. Only allow the move if cache is shared. Otherwise an
5643 * interrupt intensive workload could force all tasks onto one
5644 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5645 *
5646 * If the prev_cpu is idle and cache affine then avoid a migration.
5647 * There is no guarantee that the cache hot data from an interrupt
5648 * is more important than cache hot data on the prev_cpu and from
5649 * a cpufreq perspective, it's better to have higher utilisation
5650 * on one CPU.
7332dec0 5651 */
943d355d
RJ
5652 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5653 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5654
d153b153 5655 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5656 return this_cpu;
90001d67 5657
3b76c4a3 5658 return nr_cpumask_bits;
90001d67
PZ
5659}
5660
3b76c4a3 5661static int
f2cdd9cc
PZ
5662wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5663 int this_cpu, int prev_cpu, int sync)
90001d67 5664{
90001d67
PZ
5665 s64 this_eff_load, prev_eff_load;
5666 unsigned long task_load;
5667
f2cdd9cc 5668 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5669
90001d67
PZ
5670 if (sync) {
5671 unsigned long current_load = task_h_load(current);
5672
f2cdd9cc 5673 if (current_load > this_eff_load)
3b76c4a3 5674 return this_cpu;
90001d67 5675
f2cdd9cc 5676 this_eff_load -= current_load;
90001d67
PZ
5677 }
5678
90001d67
PZ
5679 task_load = task_h_load(p);
5680
f2cdd9cc
PZ
5681 this_eff_load += task_load;
5682 if (sched_feat(WA_BIAS))
5683 this_eff_load *= 100;
5684 this_eff_load *= capacity_of(prev_cpu);
90001d67 5685
eeb60398 5686 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5687 prev_eff_load -= task_load;
5688 if (sched_feat(WA_BIAS))
5689 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5690 prev_eff_load *= capacity_of(this_cpu);
90001d67 5691
082f764a
MG
5692 /*
5693 * If sync, adjust the weight of prev_eff_load such that if
5694 * prev_eff == this_eff that select_idle_sibling() will consider
5695 * stacking the wakee on top of the waker if no other CPU is
5696 * idle.
5697 */
5698 if (sync)
5699 prev_eff_load += 1;
5700
5701 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5702}
5703
772bd008 5704static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5705 int this_cpu, int prev_cpu, int sync)
098fb9db 5706{
3b76c4a3 5707 int target = nr_cpumask_bits;
098fb9db 5708
89a55f56 5709 if (sched_feat(WA_IDLE))
3b76c4a3 5710 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5711
3b76c4a3
MG
5712 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5713 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5714
ae92882e 5715 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5716 if (target == nr_cpumask_bits)
5717 return prev_cpu;
098fb9db 5718
3b76c4a3
MG
5719 schedstat_inc(sd->ttwu_move_affine);
5720 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5721 return target;
098fb9db
IM
5722}
5723
c469933e 5724static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5725
c469933e 5726static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5727{
c469933e 5728 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5729}
5730
aaee1203
PZ
5731/*
5732 * find_idlest_group finds and returns the least busy CPU group within the
5733 * domain.
6fee85cc
BJ
5734 *
5735 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5736 */
5737static struct sched_group *
78e7ed53 5738find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5739 int this_cpu, int sd_flag)
e7693a36 5740{
b3bd3de6 5741 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5742 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5743 unsigned long min_runnable_load = ULONG_MAX;
5744 unsigned long this_runnable_load = ULONG_MAX;
5745 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5746 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5747 int load_idx = sd->forkexec_idx;
6b94780e
VG
5748 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5749 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5750 (sd->imbalance_pct-100) / 100;
e7693a36 5751
c44f2a02
VG
5752 if (sd_flag & SD_BALANCE_WAKE)
5753 load_idx = sd->wake_idx;
5754
aaee1203 5755 do {
6b94780e
VG
5756 unsigned long load, avg_load, runnable_load;
5757 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5758 int local_group;
5759 int i;
e7693a36 5760
aaee1203 5761 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5762 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5763 &p->cpus_allowed))
aaee1203
PZ
5764 continue;
5765
5766 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5767 sched_group_span(group));
aaee1203 5768
6a0b19c0
MR
5769 /*
5770 * Tally up the load of all CPUs in the group and find
5771 * the group containing the CPU with most spare capacity.
5772 */
aaee1203 5773 avg_load = 0;
6b94780e 5774 runnable_load = 0;
6a0b19c0 5775 max_spare_cap = 0;
aaee1203 5776
ae4df9d6 5777 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5778 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5779 if (local_group)
5780 load = source_load(i, load_idx);
5781 else
5782 load = target_load(i, load_idx);
5783
6b94780e
VG
5784 runnable_load += load;
5785
5786 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5787
c469933e 5788 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5789
5790 if (spare_cap > max_spare_cap)
5791 max_spare_cap = spare_cap;
aaee1203
PZ
5792 }
5793
63b2ca30 5794 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5795 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5796 group->sgc->capacity;
5797 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5798 group->sgc->capacity;
aaee1203
PZ
5799
5800 if (local_group) {
6b94780e
VG
5801 this_runnable_load = runnable_load;
5802 this_avg_load = avg_load;
6a0b19c0
MR
5803 this_spare = max_spare_cap;
5804 } else {
6b94780e
VG
5805 if (min_runnable_load > (runnable_load + imbalance)) {
5806 /*
5807 * The runnable load is significantly smaller
97fb7a0a 5808 * so we can pick this new CPU:
6b94780e
VG
5809 */
5810 min_runnable_load = runnable_load;
5811 min_avg_load = avg_load;
5812 idlest = group;
5813 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5814 (100*min_avg_load > imbalance_scale*avg_load)) {
5815 /*
5816 * The runnable loads are close so take the
97fb7a0a 5817 * blocked load into account through avg_load:
6b94780e
VG
5818 */
5819 min_avg_load = avg_load;
6a0b19c0
MR
5820 idlest = group;
5821 }
5822
5823 if (most_spare < max_spare_cap) {
5824 most_spare = max_spare_cap;
5825 most_spare_sg = group;
5826 }
aaee1203
PZ
5827 }
5828 } while (group = group->next, group != sd->groups);
5829
6a0b19c0
MR
5830 /*
5831 * The cross-over point between using spare capacity or least load
5832 * is too conservative for high utilization tasks on partially
5833 * utilized systems if we require spare_capacity > task_util(p),
5834 * so we allow for some task stuffing by using
5835 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5836 *
5837 * Spare capacity can't be used for fork because the utilization has
5838 * not been set yet, we must first select a rq to compute the initial
5839 * utilization.
6a0b19c0 5840 */
f519a3f1
VG
5841 if (sd_flag & SD_BALANCE_FORK)
5842 goto skip_spare;
5843
6a0b19c0 5844 if (this_spare > task_util(p) / 2 &&
6b94780e 5845 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5846 return NULL;
6b94780e
VG
5847
5848 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5849 return most_spare_sg;
5850
f519a3f1 5851skip_spare:
6b94780e
VG
5852 if (!idlest)
5853 return NULL;
5854
2c833627
MG
5855 /*
5856 * When comparing groups across NUMA domains, it's possible for the
5857 * local domain to be very lightly loaded relative to the remote
5858 * domains but "imbalance" skews the comparison making remote CPUs
5859 * look much more favourable. When considering cross-domain, add
5860 * imbalance to the runnable load on the remote node and consider
5861 * staying local.
5862 */
5863 if ((sd->flags & SD_NUMA) &&
5864 min_runnable_load + imbalance >= this_runnable_load)
5865 return NULL;
5866
6b94780e 5867 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5868 return NULL;
6b94780e
VG
5869
5870 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5871 (100*this_avg_load < imbalance_scale*min_avg_load))
5872 return NULL;
5873
aaee1203
PZ
5874 return idlest;
5875}
5876
5877/*
97fb7a0a 5878 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5879 */
5880static int
18bd1b4b 5881find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5882{
5883 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5884 unsigned int min_exit_latency = UINT_MAX;
5885 u64 latest_idle_timestamp = 0;
5886 int least_loaded_cpu = this_cpu;
5887 int shallowest_idle_cpu = -1;
aaee1203
PZ
5888 int i;
5889
eaecf41f
MR
5890 /* Check if we have any choice: */
5891 if (group->group_weight == 1)
ae4df9d6 5892 return cpumask_first(sched_group_span(group));
eaecf41f 5893
aaee1203 5894 /* Traverse only the allowed CPUs */
ae4df9d6 5895 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5896 if (available_idle_cpu(i)) {
83a0a96a
NP
5897 struct rq *rq = cpu_rq(i);
5898 struct cpuidle_state *idle = idle_get_state(rq);
5899 if (idle && idle->exit_latency < min_exit_latency) {
5900 /*
5901 * We give priority to a CPU whose idle state
5902 * has the smallest exit latency irrespective
5903 * of any idle timestamp.
5904 */
5905 min_exit_latency = idle->exit_latency;
5906 latest_idle_timestamp = rq->idle_stamp;
5907 shallowest_idle_cpu = i;
5908 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5909 rq->idle_stamp > latest_idle_timestamp) {
5910 /*
5911 * If equal or no active idle state, then
5912 * the most recently idled CPU might have
5913 * a warmer cache.
5914 */
5915 latest_idle_timestamp = rq->idle_stamp;
5916 shallowest_idle_cpu = i;
5917 }
9f96742a 5918 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5919 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5920 if (load < min_load) {
83a0a96a
NP
5921 min_load = load;
5922 least_loaded_cpu = i;
5923 }
e7693a36
GH
5924 }
5925 }
5926
83a0a96a 5927 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5928}
e7693a36 5929
18bd1b4b
BJ
5930static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5931 int cpu, int prev_cpu, int sd_flag)
5932{
93f50f90 5933 int new_cpu = cpu;
18bd1b4b 5934
6fee85cc
BJ
5935 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5936 return prev_cpu;
5937
c976a862 5938 /*
c469933e
PB
5939 * We need task's util for capacity_spare_without, sync it up to
5940 * prev_cpu's last_update_time.
c976a862
VK
5941 */
5942 if (!(sd_flag & SD_BALANCE_FORK))
5943 sync_entity_load_avg(&p->se);
5944
18bd1b4b
BJ
5945 while (sd) {
5946 struct sched_group *group;
5947 struct sched_domain *tmp;
5948 int weight;
5949
5950 if (!(sd->flags & sd_flag)) {
5951 sd = sd->child;
5952 continue;
5953 }
5954
5955 group = find_idlest_group(sd, p, cpu, sd_flag);
5956 if (!group) {
5957 sd = sd->child;
5958 continue;
5959 }
5960
5961 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5962 if (new_cpu == cpu) {
97fb7a0a 5963 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5964 sd = sd->child;
5965 continue;
5966 }
5967
97fb7a0a 5968 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5969 cpu = new_cpu;
5970 weight = sd->span_weight;
5971 sd = NULL;
5972 for_each_domain(cpu, tmp) {
5973 if (weight <= tmp->span_weight)
5974 break;
5975 if (tmp->flags & sd_flag)
5976 sd = tmp;
5977 }
18bd1b4b
BJ
5978 }
5979
5980 return new_cpu;
5981}
5982
10e2f1ac 5983#ifdef CONFIG_SCHED_SMT
ba2591a5 5984DEFINE_STATIC_KEY_FALSE(sched_smt_present);
10e2f1ac
PZ
5985
5986static inline void set_idle_cores(int cpu, int val)
5987{
5988 struct sched_domain_shared *sds;
5989
5990 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5991 if (sds)
5992 WRITE_ONCE(sds->has_idle_cores, val);
5993}
5994
5995static inline bool test_idle_cores(int cpu, bool def)
5996{
5997 struct sched_domain_shared *sds;
5998
5999 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6000 if (sds)
6001 return READ_ONCE(sds->has_idle_cores);
6002
6003 return def;
6004}
6005
6006/*
6007 * Scans the local SMT mask to see if the entire core is idle, and records this
6008 * information in sd_llc_shared->has_idle_cores.
6009 *
6010 * Since SMT siblings share all cache levels, inspecting this limited remote
6011 * state should be fairly cheap.
6012 */
1b568f0a 6013void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6014{
6015 int core = cpu_of(rq);
6016 int cpu;
6017
6018 rcu_read_lock();
6019 if (test_idle_cores(core, true))
6020 goto unlock;
6021
6022 for_each_cpu(cpu, cpu_smt_mask(core)) {
6023 if (cpu == core)
6024 continue;
6025
943d355d 6026 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6027 goto unlock;
6028 }
6029
6030 set_idle_cores(core, 1);
6031unlock:
6032 rcu_read_unlock();
6033}
6034
6035/*
6036 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6037 * there are no idle cores left in the system; tracked through
6038 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6039 */
6040static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6041{
6042 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6043 int core, cpu;
10e2f1ac 6044
1b568f0a
PZ
6045 if (!static_branch_likely(&sched_smt_present))
6046 return -1;
6047
10e2f1ac
PZ
6048 if (!test_idle_cores(target, false))
6049 return -1;
6050
0c98d344 6051 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 6052
c743f0a5 6053 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6054 bool idle = true;
6055
6056 for_each_cpu(cpu, cpu_smt_mask(core)) {
6057 cpumask_clear_cpu(cpu, cpus);
943d355d 6058 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6059 idle = false;
6060 }
6061
6062 if (idle)
6063 return core;
6064 }
6065
6066 /*
6067 * Failed to find an idle core; stop looking for one.
6068 */
6069 set_idle_cores(target, 0);
6070
6071 return -1;
6072}
6073
6074/*
6075 * Scan the local SMT mask for idle CPUs.
6076 */
6077static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6078{
6079 int cpu;
6080
1b568f0a
PZ
6081 if (!static_branch_likely(&sched_smt_present))
6082 return -1;
6083
10e2f1ac 6084 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6085 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6086 continue;
943d355d 6087 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6088 return cpu;
6089 }
6090
6091 return -1;
6092}
6093
6094#else /* CONFIG_SCHED_SMT */
6095
6096static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6097{
6098 return -1;
6099}
6100
6101static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6102{
6103 return -1;
6104}
6105
6106#endif /* CONFIG_SCHED_SMT */
6107
6108/*
6109 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6110 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6111 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6112 */
10e2f1ac
PZ
6113static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6114{
9cfb38a7 6115 struct sched_domain *this_sd;
1ad3aaf3 6116 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6117 u64 time, cost;
6118 s64 delta;
1ad3aaf3 6119 int cpu, nr = INT_MAX;
10e2f1ac 6120
9cfb38a7
WL
6121 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6122 if (!this_sd)
6123 return -1;
6124
10e2f1ac
PZ
6125 /*
6126 * Due to large variance we need a large fuzz factor; hackbench in
6127 * particularly is sensitive here.
6128 */
1ad3aaf3
PZ
6129 avg_idle = this_rq()->avg_idle / 512;
6130 avg_cost = this_sd->avg_scan_cost + 1;
6131
6132 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6133 return -1;
6134
1ad3aaf3
PZ
6135 if (sched_feat(SIS_PROP)) {
6136 u64 span_avg = sd->span_weight * avg_idle;
6137 if (span_avg > 4*avg_cost)
6138 nr = div_u64(span_avg, avg_cost);
6139 else
6140 nr = 4;
6141 }
6142
10e2f1ac
PZ
6143 time = local_clock();
6144
c743f0a5 6145 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6146 if (!--nr)
6147 return -1;
0c98d344 6148 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6149 continue;
943d355d 6150 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6151 break;
6152 }
6153
6154 time = local_clock() - time;
6155 cost = this_sd->avg_scan_cost;
6156 delta = (s64)(time - cost) / 8;
6157 this_sd->avg_scan_cost += delta;
6158
6159 return cpu;
6160}
6161
6162/*
6163 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6164 */
772bd008 6165static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6166{
99bd5e2f 6167 struct sched_domain *sd;
32e839dd 6168 int i, recent_used_cpu;
a50bde51 6169
943d355d 6170 if (available_idle_cpu(target))
e0a79f52 6171 return target;
99bd5e2f
SS
6172
6173 /*
97fb7a0a 6174 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6175 */
943d355d 6176 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6177 return prev;
a50bde51 6178
97fb7a0a 6179 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6180 recent_used_cpu = p->recent_used_cpu;
6181 if (recent_used_cpu != prev &&
6182 recent_used_cpu != target &&
6183 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6184 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6185 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6186 /*
6187 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6188 * candidate for the next wake:
32e839dd
MG
6189 */
6190 p->recent_used_cpu = prev;
6191 return recent_used_cpu;
6192 }
6193
518cd623 6194 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6195 if (!sd)
6196 return target;
772bd008 6197
10e2f1ac
PZ
6198 i = select_idle_core(p, sd, target);
6199 if ((unsigned)i < nr_cpumask_bits)
6200 return i;
37407ea7 6201
10e2f1ac
PZ
6202 i = select_idle_cpu(p, sd, target);
6203 if ((unsigned)i < nr_cpumask_bits)
6204 return i;
6205
6206 i = select_idle_smt(p, sd, target);
6207 if ((unsigned)i < nr_cpumask_bits)
6208 return i;
970e1789 6209
a50bde51
PZ
6210 return target;
6211}
231678b7 6212
f9be3e59
PB
6213/**
6214 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6215 * @cpu: the CPU to get the utilization of
6216 *
6217 * The unit of the return value must be the one of capacity so we can compare
6218 * the utilization with the capacity of the CPU that is available for CFS task
6219 * (ie cpu_capacity).
231678b7
DE
6220 *
6221 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6222 * recent utilization of currently non-runnable tasks on a CPU. It represents
6223 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6224 * capacity_orig is the cpu_capacity available at the highest frequency
6225 * (arch_scale_freq_capacity()).
6226 * The utilization of a CPU converges towards a sum equal to or less than the
6227 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6228 * the running time on this CPU scaled by capacity_curr.
6229 *
f9be3e59
PB
6230 * The estimated utilization of a CPU is defined to be the maximum between its
6231 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6232 * currently RUNNABLE on that CPU.
6233 * This allows to properly represent the expected utilization of a CPU which
6234 * has just got a big task running since a long sleep period. At the same time
6235 * however it preserves the benefits of the "blocked utilization" in
6236 * describing the potential for other tasks waking up on the same CPU.
6237 *
231678b7
DE
6238 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6239 * higher than capacity_orig because of unfortunate rounding in
6240 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6241 * the average stabilizes with the new running time. We need to check that the
6242 * utilization stays within the range of [0..capacity_orig] and cap it if
6243 * necessary. Without utilization capping, a group could be seen as overloaded
6244 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6245 * available capacity. We allow utilization to overshoot capacity_curr (but not
6246 * capacity_orig) as it useful for predicting the capacity required after task
6247 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6248 *
6249 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6250 */
f9be3e59 6251static inline unsigned long cpu_util(int cpu)
8bb5b00c 6252{
f9be3e59
PB
6253 struct cfs_rq *cfs_rq;
6254 unsigned int util;
6255
6256 cfs_rq = &cpu_rq(cpu)->cfs;
6257 util = READ_ONCE(cfs_rq->avg.util_avg);
6258
6259 if (sched_feat(UTIL_EST))
6260 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6261
f9be3e59 6262 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6263}
a50bde51 6264
104cb16d 6265/*
c469933e
PB
6266 * cpu_util_without: compute cpu utilization without any contributions from *p
6267 * @cpu: the CPU which utilization is requested
6268 * @p: the task which utilization should be discounted
6269 *
6270 * The utilization of a CPU is defined by the utilization of tasks currently
6271 * enqueued on that CPU as well as tasks which are currently sleeping after an
6272 * execution on that CPU.
6273 *
6274 * This method returns the utilization of the specified CPU by discounting the
6275 * utilization of the specified task, whenever the task is currently
6276 * contributing to the CPU utilization.
104cb16d 6277 */
c469933e 6278static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6279{
f9be3e59
PB
6280 struct cfs_rq *cfs_rq;
6281 unsigned int util;
104cb16d
MR
6282
6283 /* Task has no contribution or is new */
f9be3e59 6284 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6285 return cpu_util(cpu);
6286
f9be3e59
PB
6287 cfs_rq = &cpu_rq(cpu)->cfs;
6288 util = READ_ONCE(cfs_rq->avg.util_avg);
6289
c469933e 6290 /* Discount task's util from CPU's util */
b5c0ce7b 6291 lsub_positive(&util, task_util(p));
104cb16d 6292
f9be3e59
PB
6293 /*
6294 * Covered cases:
6295 *
6296 * a) if *p is the only task sleeping on this CPU, then:
6297 * cpu_util (== task_util) > util_est (== 0)
6298 * and thus we return:
c469933e 6299 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6300 *
6301 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6302 * IDLE, then:
6303 * cpu_util >= task_util
6304 * cpu_util > util_est (== 0)
6305 * and thus we discount *p's blocked utilization to return:
c469933e 6306 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6307 *
6308 * c) if other tasks are RUNNABLE on that CPU and
6309 * util_est > cpu_util
6310 * then we use util_est since it returns a more restrictive
6311 * estimation of the spare capacity on that CPU, by just
6312 * considering the expected utilization of tasks already
6313 * runnable on that CPU.
6314 *
6315 * Cases a) and b) are covered by the above code, while case c) is
6316 * covered by the following code when estimated utilization is
6317 * enabled.
6318 */
c469933e
PB
6319 if (sched_feat(UTIL_EST)) {
6320 unsigned int estimated =
6321 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6322
6323 /*
6324 * Despite the following checks we still have a small window
6325 * for a possible race, when an execl's select_task_rq_fair()
6326 * races with LB's detach_task():
6327 *
6328 * detach_task()
6329 * p->on_rq = TASK_ON_RQ_MIGRATING;
6330 * ---------------------------------- A
6331 * deactivate_task() \
6332 * dequeue_task() + RaceTime
6333 * util_est_dequeue() /
6334 * ---------------------------------- B
6335 *
6336 * The additional check on "current == p" it's required to
6337 * properly fix the execl regression and it helps in further
6338 * reducing the chances for the above race.
6339 */
b5c0ce7b
PB
6340 if (unlikely(task_on_rq_queued(p) || current == p))
6341 lsub_positive(&estimated, _task_util_est(p));
6342
c469933e
PB
6343 util = max(util, estimated);
6344 }
f9be3e59
PB
6345
6346 /*
6347 * Utilization (estimated) can exceed the CPU capacity, thus let's
6348 * clamp to the maximum CPU capacity to ensure consistency with
6349 * the cpu_util call.
6350 */
6351 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6352}
6353
3273163c
MR
6354/*
6355 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6356 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6357 *
6358 * In that case WAKE_AFFINE doesn't make sense and we'll let
6359 * BALANCE_WAKE sort things out.
6360 */
6361static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6362{
6363 long min_cap, max_cap;
6364
df054e84
MR
6365 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6366 return 0;
6367
3273163c
MR
6368 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6369 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6370
6371 /* Minimum capacity is close to max, no need to abort wake_affine */
6372 if (max_cap - min_cap < max_cap >> 3)
6373 return 0;
6374
104cb16d
MR
6375 /* Bring task utilization in sync with prev_cpu */
6376 sync_entity_load_avg(&p->se);
6377
3b1baa64 6378 return !task_fits_capacity(p, min_cap);
3273163c
MR
6379}
6380
390031e4
QP
6381/*
6382 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6383 * to @dst_cpu.
6384 */
6385static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6386{
6387 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6388 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6389
6390 /*
6391 * If @p migrates from @cpu to another, remove its contribution. Or,
6392 * if @p migrates from another CPU to @cpu, add its contribution. In
6393 * the other cases, @cpu is not impacted by the migration, so the
6394 * util_avg should already be correct.
6395 */
6396 if (task_cpu(p) == cpu && dst_cpu != cpu)
6397 sub_positive(&util, task_util(p));
6398 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6399 util += task_util(p);
6400
6401 if (sched_feat(UTIL_EST)) {
6402 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6403
6404 /*
6405 * During wake-up, the task isn't enqueued yet and doesn't
6406 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6407 * so just add it (if needed) to "simulate" what will be
6408 * cpu_util() after the task has been enqueued.
6409 */
6410 if (dst_cpu == cpu)
6411 util_est += _task_util_est(p);
6412
6413 util = max(util, util_est);
6414 }
6415
6416 return min(util, capacity_orig_of(cpu));
6417}
6418
6419/*
6420 * compute_energy(): Estimates the energy that would be consumed if @p was
6421 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6422 * landscape of the * CPUs after the task migration, and uses the Energy Model
6423 * to compute what would be the energy if we decided to actually migrate that
6424 * task.
6425 */
6426static long
6427compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6428{
6429 long util, max_util, sum_util, energy = 0;
6430 int cpu;
6431
6432 for (; pd; pd = pd->next) {
6433 max_util = sum_util = 0;
6434 /*
6435 * The capacity state of CPUs of the current rd can be driven by
6436 * CPUs of another rd if they belong to the same performance
6437 * domain. So, account for the utilization of these CPUs too
6438 * by masking pd with cpu_online_mask instead of the rd span.
6439 *
6440 * If an entire performance domain is outside of the current rd,
6441 * it will not appear in its pd list and will not be accounted
6442 * by compute_energy().
6443 */
6444 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6445 util = cpu_util_next(cpu, p, dst_cpu);
6446 util = schedutil_energy_util(cpu, util);
6447 max_util = max(util, max_util);
6448 sum_util += util;
6449 }
6450
6451 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6452 }
6453
6454 return energy;
6455}
6456
732cd75b
QP
6457/*
6458 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6459 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6460 * spare capacity in each performance domain and uses it as a potential
6461 * candidate to execute the task. Then, it uses the Energy Model to figure
6462 * out which of the CPU candidates is the most energy-efficient.
6463 *
6464 * The rationale for this heuristic is as follows. In a performance domain,
6465 * all the most energy efficient CPU candidates (according to the Energy
6466 * Model) are those for which we'll request a low frequency. When there are
6467 * several CPUs for which the frequency request will be the same, we don't
6468 * have enough data to break the tie between them, because the Energy Model
6469 * only includes active power costs. With this model, if we assume that
6470 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6471 * the maximum spare capacity in a performance domain is guaranteed to be among
6472 * the best candidates of the performance domain.
6473 *
6474 * In practice, it could be preferable from an energy standpoint to pack
6475 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6476 * but that could also hurt our chances to go cluster idle, and we have no
6477 * ways to tell with the current Energy Model if this is actually a good
6478 * idea or not. So, find_energy_efficient_cpu() basically favors
6479 * cluster-packing, and spreading inside a cluster. That should at least be
6480 * a good thing for latency, and this is consistent with the idea that most
6481 * of the energy savings of EAS come from the asymmetry of the system, and
6482 * not so much from breaking the tie between identical CPUs. That's also the
6483 * reason why EAS is enabled in the topology code only for systems where
6484 * SD_ASYM_CPUCAPACITY is set.
6485 *
6486 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6487 * they don't have any useful utilization data yet and it's not possible to
6488 * forecast their impact on energy consumption. Consequently, they will be
6489 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6490 * to be energy-inefficient in some use-cases. The alternative would be to
6491 * bias new tasks towards specific types of CPUs first, or to try to infer
6492 * their util_avg from the parent task, but those heuristics could hurt
6493 * other use-cases too. So, until someone finds a better way to solve this,
6494 * let's keep things simple by re-using the existing slow path.
6495 */
6496
6497static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6498{
6499 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6500 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6501 int cpu, best_energy_cpu = prev_cpu;
6502 struct perf_domain *head, *pd;
6503 unsigned long cpu_cap, util;
6504 struct sched_domain *sd;
6505
6506 rcu_read_lock();
6507 pd = rcu_dereference(rd->pd);
6508 if (!pd || READ_ONCE(rd->overutilized))
6509 goto fail;
6510 head = pd;
6511
6512 /*
6513 * Energy-aware wake-up happens on the lowest sched_domain starting
6514 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6515 */
6516 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6517 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6518 sd = sd->parent;
6519 if (!sd)
6520 goto fail;
6521
6522 sync_entity_load_avg(&p->se);
6523 if (!task_util_est(p))
6524 goto unlock;
6525
6526 for (; pd; pd = pd->next) {
6527 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6528 int max_spare_cap_cpu = -1;
6529
6530 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6531 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6532 continue;
6533
6534 /* Skip CPUs that will be overutilized. */
6535 util = cpu_util_next(cpu, p, cpu);
6536 cpu_cap = capacity_of(cpu);
6537 if (cpu_cap * 1024 < util * capacity_margin)
6538 continue;
6539
6540 /* Always use prev_cpu as a candidate. */
6541 if (cpu == prev_cpu) {
6542 prev_energy = compute_energy(p, prev_cpu, head);
6543 best_energy = min(best_energy, prev_energy);
6544 continue;
6545 }
6546
6547 /*
6548 * Find the CPU with the maximum spare capacity in
6549 * the performance domain
6550 */
6551 spare_cap = cpu_cap - util;
6552 if (spare_cap > max_spare_cap) {
6553 max_spare_cap = spare_cap;
6554 max_spare_cap_cpu = cpu;
6555 }
6556 }
6557
6558 /* Evaluate the energy impact of using this CPU. */
6559 if (max_spare_cap_cpu >= 0) {
6560 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6561 if (cur_energy < best_energy) {
6562 best_energy = cur_energy;
6563 best_energy_cpu = max_spare_cap_cpu;
6564 }
6565 }
6566 }
6567unlock:
6568 rcu_read_unlock();
6569
6570 /*
6571 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6572 * least 6% of the energy used by prev_cpu.
6573 */
6574 if (prev_energy == ULONG_MAX)
6575 return best_energy_cpu;
6576
6577 if ((prev_energy - best_energy) > (prev_energy >> 4))
6578 return best_energy_cpu;
6579
6580 return prev_cpu;
6581
6582fail:
6583 rcu_read_unlock();
6584
6585 return -1;
6586}
6587
aaee1203 6588/*
de91b9cb
MR
6589 * select_task_rq_fair: Select target runqueue for the waking task in domains
6590 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6591 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6592 *
97fb7a0a
IM
6593 * Balances load by selecting the idlest CPU in the idlest group, or under
6594 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6595 *
97fb7a0a 6596 * Returns the target CPU number.
aaee1203
PZ
6597 *
6598 * preempt must be disabled.
6599 */
0017d735 6600static int
ac66f547 6601select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6602{
f1d88b44 6603 struct sched_domain *tmp, *sd = NULL;
c88d5910 6604 int cpu = smp_processor_id();
63b0e9ed 6605 int new_cpu = prev_cpu;
99bd5e2f 6606 int want_affine = 0;
24d0c1d6 6607 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6608
c58d25f3
PZ
6609 if (sd_flag & SD_BALANCE_WAKE) {
6610 record_wakee(p);
732cd75b 6611
f8a696f2 6612 if (sched_energy_enabled()) {
732cd75b
QP
6613 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6614 if (new_cpu >= 0)
6615 return new_cpu;
6616 new_cpu = prev_cpu;
6617 }
6618
6619 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6620 cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6621 }
aaee1203 6622
dce840a0 6623 rcu_read_lock();
aaee1203 6624 for_each_domain(cpu, tmp) {
e4f42888 6625 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6626 break;
e4f42888 6627
fe3bcfe1 6628 /*
97fb7a0a 6629 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6630 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6631 */
99bd5e2f
SS
6632 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6633 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6634 if (cpu != prev_cpu)
6635 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6636
6637 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6638 break;
f03542a7 6639 }
29cd8bae 6640
f03542a7 6641 if (tmp->flags & sd_flag)
29cd8bae 6642 sd = tmp;
63b0e9ed
MG
6643 else if (!want_affine)
6644 break;
29cd8bae
PZ
6645 }
6646
f1d88b44
VK
6647 if (unlikely(sd)) {
6648 /* Slow path */
18bd1b4b 6649 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6650 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6651 /* Fast path */
6652
6653 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6654
6655 if (want_affine)
6656 current->recent_used_cpu = cpu;
e7693a36 6657 }
dce840a0 6658 rcu_read_unlock();
e7693a36 6659
c88d5910 6660 return new_cpu;
e7693a36 6661}
0a74bef8 6662
144d8487
PZ
6663static void detach_entity_cfs_rq(struct sched_entity *se);
6664
0a74bef8 6665/*
97fb7a0a 6666 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6667 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6668 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6669 */
3f9672ba 6670static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6671{
59efa0ba
PZ
6672 /*
6673 * As blocked tasks retain absolute vruntime the migration needs to
6674 * deal with this by subtracting the old and adding the new
6675 * min_vruntime -- the latter is done by enqueue_entity() when placing
6676 * the task on the new runqueue.
6677 */
6678 if (p->state == TASK_WAKING) {
6679 struct sched_entity *se = &p->se;
6680 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6681 u64 min_vruntime;
6682
6683#ifndef CONFIG_64BIT
6684 u64 min_vruntime_copy;
6685
6686 do {
6687 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6688 smp_rmb();
6689 min_vruntime = cfs_rq->min_vruntime;
6690 } while (min_vruntime != min_vruntime_copy);
6691#else
6692 min_vruntime = cfs_rq->min_vruntime;
6693#endif
6694
6695 se->vruntime -= min_vruntime;
6696 }
6697
144d8487
PZ
6698 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6699 /*
6700 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6701 * rq->lock and can modify state directly.
6702 */
6703 lockdep_assert_held(&task_rq(p)->lock);
6704 detach_entity_cfs_rq(&p->se);
6705
6706 } else {
6707 /*
6708 * We are supposed to update the task to "current" time, then
6709 * its up to date and ready to go to new CPU/cfs_rq. But we
6710 * have difficulty in getting what current time is, so simply
6711 * throw away the out-of-date time. This will result in the
6712 * wakee task is less decayed, but giving the wakee more load
6713 * sounds not bad.
6714 */
6715 remove_entity_load_avg(&p->se);
6716 }
9d89c257
YD
6717
6718 /* Tell new CPU we are migrated */
6719 p->se.avg.last_update_time = 0;
3944a927
BS
6720
6721 /* We have migrated, no longer consider this task hot */
9d89c257 6722 p->se.exec_start = 0;
3f9672ba
SD
6723
6724 update_scan_period(p, new_cpu);
0a74bef8 6725}
12695578
YD
6726
6727static void task_dead_fair(struct task_struct *p)
6728{
6729 remove_entity_load_avg(&p->se);
6730}
e7693a36
GH
6731#endif /* CONFIG_SMP */
6732
a555e9d8 6733static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6734{
6735 unsigned long gran = sysctl_sched_wakeup_granularity;
6736
6737 /*
e52fb7c0
PZ
6738 * Since its curr running now, convert the gran from real-time
6739 * to virtual-time in his units.
13814d42
MG
6740 *
6741 * By using 'se' instead of 'curr' we penalize light tasks, so
6742 * they get preempted easier. That is, if 'se' < 'curr' then
6743 * the resulting gran will be larger, therefore penalizing the
6744 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6745 * be smaller, again penalizing the lighter task.
6746 *
6747 * This is especially important for buddies when the leftmost
6748 * task is higher priority than the buddy.
0bbd3336 6749 */
f4ad9bd2 6750 return calc_delta_fair(gran, se);
0bbd3336
PZ
6751}
6752
464b7527
PZ
6753/*
6754 * Should 'se' preempt 'curr'.
6755 *
6756 * |s1
6757 * |s2
6758 * |s3
6759 * g
6760 * |<--->|c
6761 *
6762 * w(c, s1) = -1
6763 * w(c, s2) = 0
6764 * w(c, s3) = 1
6765 *
6766 */
6767static int
6768wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6769{
6770 s64 gran, vdiff = curr->vruntime - se->vruntime;
6771
6772 if (vdiff <= 0)
6773 return -1;
6774
a555e9d8 6775 gran = wakeup_gran(se);
464b7527
PZ
6776 if (vdiff > gran)
6777 return 1;
6778
6779 return 0;
6780}
6781
02479099
PZ
6782static void set_last_buddy(struct sched_entity *se)
6783{
1da1843f 6784 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6785 return;
6786
c5ae366e
DA
6787 for_each_sched_entity(se) {
6788 if (SCHED_WARN_ON(!se->on_rq))
6789 return;
69c80f3e 6790 cfs_rq_of(se)->last = se;
c5ae366e 6791 }
02479099
PZ
6792}
6793
6794static void set_next_buddy(struct sched_entity *se)
6795{
1da1843f 6796 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6797 return;
6798
c5ae366e
DA
6799 for_each_sched_entity(se) {
6800 if (SCHED_WARN_ON(!se->on_rq))
6801 return;
69c80f3e 6802 cfs_rq_of(se)->next = se;
c5ae366e 6803 }
02479099
PZ
6804}
6805
ac53db59
RR
6806static void set_skip_buddy(struct sched_entity *se)
6807{
69c80f3e
VP
6808 for_each_sched_entity(se)
6809 cfs_rq_of(se)->skip = se;
ac53db59
RR
6810}
6811
bf0f6f24
IM
6812/*
6813 * Preempt the current task with a newly woken task if needed:
6814 */
5a9b86f6 6815static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6816{
6817 struct task_struct *curr = rq->curr;
8651a86c 6818 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6819 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6820 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6821 int next_buddy_marked = 0;
bf0f6f24 6822
4ae7d5ce
IM
6823 if (unlikely(se == pse))
6824 return;
6825
5238cdd3 6826 /*
163122b7 6827 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6828 * unconditionally check_prempt_curr() after an enqueue (which may have
6829 * lead to a throttle). This both saves work and prevents false
6830 * next-buddy nomination below.
6831 */
6832 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6833 return;
6834
2f36825b 6835 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6836 set_next_buddy(pse);
2f36825b
VP
6837 next_buddy_marked = 1;
6838 }
57fdc26d 6839
aec0a514
BR
6840 /*
6841 * We can come here with TIF_NEED_RESCHED already set from new task
6842 * wake up path.
5238cdd3
PT
6843 *
6844 * Note: this also catches the edge-case of curr being in a throttled
6845 * group (e.g. via set_curr_task), since update_curr() (in the
6846 * enqueue of curr) will have resulted in resched being set. This
6847 * prevents us from potentially nominating it as a false LAST_BUDDY
6848 * below.
aec0a514
BR
6849 */
6850 if (test_tsk_need_resched(curr))
6851 return;
6852
a2f5c9ab 6853 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6854 if (unlikely(task_has_idle_policy(curr)) &&
6855 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6856 goto preempt;
6857
91c234b4 6858 /*
a2f5c9ab
DH
6859 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6860 * is driven by the tick):
91c234b4 6861 */
8ed92e51 6862 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6863 return;
bf0f6f24 6864
464b7527 6865 find_matching_se(&se, &pse);
9bbd7374 6866 update_curr(cfs_rq_of(se));
002f128b 6867 BUG_ON(!pse);
2f36825b
VP
6868 if (wakeup_preempt_entity(se, pse) == 1) {
6869 /*
6870 * Bias pick_next to pick the sched entity that is
6871 * triggering this preemption.
6872 */
6873 if (!next_buddy_marked)
6874 set_next_buddy(pse);
3a7e73a2 6875 goto preempt;
2f36825b 6876 }
464b7527 6877
3a7e73a2 6878 return;
a65ac745 6879
3a7e73a2 6880preempt:
8875125e 6881 resched_curr(rq);
3a7e73a2
PZ
6882 /*
6883 * Only set the backward buddy when the current task is still
6884 * on the rq. This can happen when a wakeup gets interleaved
6885 * with schedule on the ->pre_schedule() or idle_balance()
6886 * point, either of which can * drop the rq lock.
6887 *
6888 * Also, during early boot the idle thread is in the fair class,
6889 * for obvious reasons its a bad idea to schedule back to it.
6890 */
6891 if (unlikely(!se->on_rq || curr == rq->idle))
6892 return;
6893
6894 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6895 set_last_buddy(se);
bf0f6f24
IM
6896}
6897
606dba2e 6898static struct task_struct *
d8ac8971 6899pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6900{
6901 struct cfs_rq *cfs_rq = &rq->cfs;
6902 struct sched_entity *se;
678d5718 6903 struct task_struct *p;
37e117c0 6904 int new_tasks;
678d5718 6905
6e83125c 6906again:
678d5718 6907 if (!cfs_rq->nr_running)
38033c37 6908 goto idle;
678d5718 6909
9674f5ca 6910#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6911 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6912 goto simple;
6913
6914 /*
6915 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6916 * likely that a next task is from the same cgroup as the current.
6917 *
6918 * Therefore attempt to avoid putting and setting the entire cgroup
6919 * hierarchy, only change the part that actually changes.
6920 */
6921
6922 do {
6923 struct sched_entity *curr = cfs_rq->curr;
6924
6925 /*
6926 * Since we got here without doing put_prev_entity() we also
6927 * have to consider cfs_rq->curr. If it is still a runnable
6928 * entity, update_curr() will update its vruntime, otherwise
6929 * forget we've ever seen it.
6930 */
54d27365
BS
6931 if (curr) {
6932 if (curr->on_rq)
6933 update_curr(cfs_rq);
6934 else
6935 curr = NULL;
678d5718 6936
54d27365
BS
6937 /*
6938 * This call to check_cfs_rq_runtime() will do the
6939 * throttle and dequeue its entity in the parent(s).
9674f5ca 6940 * Therefore the nr_running test will indeed
54d27365
BS
6941 * be correct.
6942 */
9674f5ca
VK
6943 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6944 cfs_rq = &rq->cfs;
6945
6946 if (!cfs_rq->nr_running)
6947 goto idle;
6948
54d27365 6949 goto simple;
9674f5ca 6950 }
54d27365 6951 }
678d5718
PZ
6952
6953 se = pick_next_entity(cfs_rq, curr);
6954 cfs_rq = group_cfs_rq(se);
6955 } while (cfs_rq);
6956
6957 p = task_of(se);
6958
6959 /*
6960 * Since we haven't yet done put_prev_entity and if the selected task
6961 * is a different task than we started out with, try and touch the
6962 * least amount of cfs_rqs.
6963 */
6964 if (prev != p) {
6965 struct sched_entity *pse = &prev->se;
6966
6967 while (!(cfs_rq = is_same_group(se, pse))) {
6968 int se_depth = se->depth;
6969 int pse_depth = pse->depth;
6970
6971 if (se_depth <= pse_depth) {
6972 put_prev_entity(cfs_rq_of(pse), pse);
6973 pse = parent_entity(pse);
6974 }
6975 if (se_depth >= pse_depth) {
6976 set_next_entity(cfs_rq_of(se), se);
6977 se = parent_entity(se);
6978 }
6979 }
6980
6981 put_prev_entity(cfs_rq, pse);
6982 set_next_entity(cfs_rq, se);
6983 }
6984
93824900 6985 goto done;
678d5718 6986simple:
678d5718 6987#endif
bf0f6f24 6988
3f1d2a31 6989 put_prev_task(rq, prev);
606dba2e 6990
bf0f6f24 6991 do {
678d5718 6992 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6993 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6994 cfs_rq = group_cfs_rq(se);
6995 } while (cfs_rq);
6996
8f4d37ec 6997 p = task_of(se);
678d5718 6998
13a453c2 6999done: __maybe_unused;
93824900
UR
7000#ifdef CONFIG_SMP
7001 /*
7002 * Move the next running task to the front of
7003 * the list, so our cfs_tasks list becomes MRU
7004 * one.
7005 */
7006 list_move(&p->se.group_node, &rq->cfs_tasks);
7007#endif
7008
b39e66ea
MG
7009 if (hrtick_enabled(rq))
7010 hrtick_start_fair(rq, p);
8f4d37ec 7011
3b1baa64
MR
7012 update_misfit_status(p, rq);
7013
8f4d37ec 7014 return p;
38033c37
PZ
7015
7016idle:
3b1baa64 7017 update_misfit_status(NULL, rq);
46f69fa3
MF
7018 new_tasks = idle_balance(rq, rf);
7019
37e117c0
PZ
7020 /*
7021 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7022 * possible for any higher priority task to appear. In that case we
7023 * must re-start the pick_next_entity() loop.
7024 */
e4aa358b 7025 if (new_tasks < 0)
37e117c0
PZ
7026 return RETRY_TASK;
7027
e4aa358b 7028 if (new_tasks > 0)
38033c37 7029 goto again;
38033c37
PZ
7030
7031 return NULL;
bf0f6f24
IM
7032}
7033
7034/*
7035 * Account for a descheduled task:
7036 */
31ee529c 7037static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7038{
7039 struct sched_entity *se = &prev->se;
7040 struct cfs_rq *cfs_rq;
7041
7042 for_each_sched_entity(se) {
7043 cfs_rq = cfs_rq_of(se);
ab6cde26 7044 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7045 }
7046}
7047
ac53db59
RR
7048/*
7049 * sched_yield() is very simple
7050 *
7051 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7052 */
7053static void yield_task_fair(struct rq *rq)
7054{
7055 struct task_struct *curr = rq->curr;
7056 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7057 struct sched_entity *se = &curr->se;
7058
7059 /*
7060 * Are we the only task in the tree?
7061 */
7062 if (unlikely(rq->nr_running == 1))
7063 return;
7064
7065 clear_buddies(cfs_rq, se);
7066
7067 if (curr->policy != SCHED_BATCH) {
7068 update_rq_clock(rq);
7069 /*
7070 * Update run-time statistics of the 'current'.
7071 */
7072 update_curr(cfs_rq);
916671c0
MG
7073 /*
7074 * Tell update_rq_clock() that we've just updated,
7075 * so we don't do microscopic update in schedule()
7076 * and double the fastpath cost.
7077 */
adcc8da8 7078 rq_clock_skip_update(rq);
ac53db59
RR
7079 }
7080
7081 set_skip_buddy(se);
7082}
7083
d95f4122
MG
7084static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7085{
7086 struct sched_entity *se = &p->se;
7087
5238cdd3
PT
7088 /* throttled hierarchies are not runnable */
7089 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7090 return false;
7091
7092 /* Tell the scheduler that we'd really like pse to run next. */
7093 set_next_buddy(se);
7094
d95f4122
MG
7095 yield_task_fair(rq);
7096
7097 return true;
7098}
7099
681f3e68 7100#ifdef CONFIG_SMP
bf0f6f24 7101/**************************************************
e9c84cb8
PZ
7102 * Fair scheduling class load-balancing methods.
7103 *
7104 * BASICS
7105 *
7106 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7107 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7108 * time to each task. This is expressed in the following equation:
7109 *
7110 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7111 *
97fb7a0a 7112 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7113 * W_i,0 is defined as:
7114 *
7115 * W_i,0 = \Sum_j w_i,j (2)
7116 *
97fb7a0a 7117 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7118 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7119 *
7120 * The weight average is an exponential decay average of the instantaneous
7121 * weight:
7122 *
7123 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7124 *
97fb7a0a 7125 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7126 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7127 * can also include other factors [XXX].
7128 *
7129 * To achieve this balance we define a measure of imbalance which follows
7130 * directly from (1):
7131 *
ced549fa 7132 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7133 *
7134 * We them move tasks around to minimize the imbalance. In the continuous
7135 * function space it is obvious this converges, in the discrete case we get
7136 * a few fun cases generally called infeasible weight scenarios.
7137 *
7138 * [XXX expand on:
7139 * - infeasible weights;
7140 * - local vs global optima in the discrete case. ]
7141 *
7142 *
7143 * SCHED DOMAINS
7144 *
7145 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7146 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7147 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7148 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7149 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7150 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7151 * the groups.
7152 *
7153 * This yields:
7154 *
7155 * log_2 n 1 n
7156 * \Sum { --- * --- * 2^i } = O(n) (5)
7157 * i = 0 2^i 2^i
7158 * `- size of each group
97fb7a0a 7159 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7160 * | `- freq
7161 * `- sum over all levels
7162 *
7163 * Coupled with a limit on how many tasks we can migrate every balance pass,
7164 * this makes (5) the runtime complexity of the balancer.
7165 *
7166 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7167 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7168 *
7169 * The adjacency matrix of the resulting graph is given by:
7170 *
97a7142f 7171 * log_2 n
e9c84cb8
PZ
7172 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7173 * k = 0
7174 *
7175 * And you'll find that:
7176 *
7177 * A^(log_2 n)_i,j != 0 for all i,j (7)
7178 *
97fb7a0a 7179 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7180 * The task movement gives a factor of O(m), giving a convergence complexity
7181 * of:
7182 *
7183 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7184 *
7185 *
7186 * WORK CONSERVING
7187 *
7188 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7189 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7190 * tree itself instead of relying on other CPUs to bring it work.
7191 *
7192 * This adds some complexity to both (5) and (8) but it reduces the total idle
7193 * time.
7194 *
7195 * [XXX more?]
7196 *
7197 *
7198 * CGROUPS
7199 *
7200 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7201 *
7202 * s_k,i
7203 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7204 * S_k
7205 *
7206 * Where
7207 *
7208 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7209 *
97fb7a0a 7210 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7211 *
7212 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7213 * property.
7214 *
7215 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7216 * rewrite all of this once again.]
97a7142f 7217 */
bf0f6f24 7218
ed387b78
HS
7219static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7220
0ec8aa00
PZ
7221enum fbq_type { regular, remote, all };
7222
3b1baa64
MR
7223enum group_type {
7224 group_other = 0,
7225 group_misfit_task,
7226 group_imbalanced,
7227 group_overloaded,
7228};
7229
ddcdf6e7 7230#define LBF_ALL_PINNED 0x01
367456c7 7231#define LBF_NEED_BREAK 0x02
6263322c
PZ
7232#define LBF_DST_PINNED 0x04
7233#define LBF_SOME_PINNED 0x08
e022e0d3 7234#define LBF_NOHZ_STATS 0x10
f643ea22 7235#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7236
7237struct lb_env {
7238 struct sched_domain *sd;
7239
ddcdf6e7 7240 struct rq *src_rq;
85c1e7da 7241 int src_cpu;
ddcdf6e7
PZ
7242
7243 int dst_cpu;
7244 struct rq *dst_rq;
7245
88b8dac0
SV
7246 struct cpumask *dst_grpmask;
7247 int new_dst_cpu;
ddcdf6e7 7248 enum cpu_idle_type idle;
bd939f45 7249 long imbalance;
b9403130
MW
7250 /* The set of CPUs under consideration for load-balancing */
7251 struct cpumask *cpus;
7252
ddcdf6e7 7253 unsigned int flags;
367456c7
PZ
7254
7255 unsigned int loop;
7256 unsigned int loop_break;
7257 unsigned int loop_max;
0ec8aa00
PZ
7258
7259 enum fbq_type fbq_type;
cad68e55 7260 enum group_type src_grp_type;
163122b7 7261 struct list_head tasks;
ddcdf6e7
PZ
7262};
7263
029632fb
PZ
7264/*
7265 * Is this task likely cache-hot:
7266 */
5d5e2b1b 7267static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7268{
7269 s64 delta;
7270
e5673f28
KT
7271 lockdep_assert_held(&env->src_rq->lock);
7272
029632fb
PZ
7273 if (p->sched_class != &fair_sched_class)
7274 return 0;
7275
1da1843f 7276 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7277 return 0;
7278
7279 /*
7280 * Buddy candidates are cache hot:
7281 */
5d5e2b1b 7282 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7283 (&p->se == cfs_rq_of(&p->se)->next ||
7284 &p->se == cfs_rq_of(&p->se)->last))
7285 return 1;
7286
7287 if (sysctl_sched_migration_cost == -1)
7288 return 1;
7289 if (sysctl_sched_migration_cost == 0)
7290 return 0;
7291
5d5e2b1b 7292 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7293
7294 return delta < (s64)sysctl_sched_migration_cost;
7295}
7296
3a7053b3 7297#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7298/*
2a1ed24c
SD
7299 * Returns 1, if task migration degrades locality
7300 * Returns 0, if task migration improves locality i.e migration preferred.
7301 * Returns -1, if task migration is not affected by locality.
c1ceac62 7302 */
2a1ed24c 7303static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7304{
b1ad065e 7305 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7306 unsigned long src_weight, dst_weight;
7307 int src_nid, dst_nid, dist;
3a7053b3 7308
2a595721 7309 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7310 return -1;
7311
c3b9bc5b 7312 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7313 return -1;
7a0f3083
MG
7314
7315 src_nid = cpu_to_node(env->src_cpu);
7316 dst_nid = cpu_to_node(env->dst_cpu);
7317
83e1d2cd 7318 if (src_nid == dst_nid)
2a1ed24c 7319 return -1;
7a0f3083 7320
2a1ed24c
SD
7321 /* Migrating away from the preferred node is always bad. */
7322 if (src_nid == p->numa_preferred_nid) {
7323 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7324 return 1;
7325 else
7326 return -1;
7327 }
b1ad065e 7328
c1ceac62
RR
7329 /* Encourage migration to the preferred node. */
7330 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7331 return 0;
b1ad065e 7332
739294fb 7333 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7334 if (env->idle == CPU_IDLE)
739294fb
RR
7335 return -1;
7336
f35678b6 7337 dist = node_distance(src_nid, dst_nid);
c1ceac62 7338 if (numa_group) {
f35678b6
SD
7339 src_weight = group_weight(p, src_nid, dist);
7340 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7341 } else {
f35678b6
SD
7342 src_weight = task_weight(p, src_nid, dist);
7343 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7344 }
7345
f35678b6 7346 return dst_weight < src_weight;
7a0f3083
MG
7347}
7348
3a7053b3 7349#else
2a1ed24c 7350static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7351 struct lb_env *env)
7352{
2a1ed24c 7353 return -1;
7a0f3083 7354}
3a7053b3
MG
7355#endif
7356
1e3c88bd
PZ
7357/*
7358 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7359 */
7360static
8e45cb54 7361int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7362{
2a1ed24c 7363 int tsk_cache_hot;
e5673f28
KT
7364
7365 lockdep_assert_held(&env->src_rq->lock);
7366
1e3c88bd
PZ
7367 /*
7368 * We do not migrate tasks that are:
d3198084 7369 * 1) throttled_lb_pair, or
1e3c88bd 7370 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7371 * 3) running (obviously), or
7372 * 4) are cache-hot on their current CPU.
1e3c88bd 7373 */
d3198084
JK
7374 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7375 return 0;
7376
0c98d344 7377 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7378 int cpu;
88b8dac0 7379
ae92882e 7380 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7381
6263322c
PZ
7382 env->flags |= LBF_SOME_PINNED;
7383
88b8dac0 7384 /*
97fb7a0a 7385 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7386 * our sched_group. We may want to revisit it if we couldn't
7387 * meet load balance goals by pulling other tasks on src_cpu.
7388 *
65a4433a
JH
7389 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7390 * already computed one in current iteration.
88b8dac0 7391 */
65a4433a 7392 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7393 return 0;
7394
97fb7a0a 7395 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7396 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7397 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7398 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7399 env->new_dst_cpu = cpu;
7400 break;
7401 }
88b8dac0 7402 }
e02e60c1 7403
1e3c88bd
PZ
7404 return 0;
7405 }
88b8dac0
SV
7406
7407 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7408 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7409
ddcdf6e7 7410 if (task_running(env->src_rq, p)) {
ae92882e 7411 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7412 return 0;
7413 }
7414
7415 /*
7416 * Aggressive migration if:
3a7053b3
MG
7417 * 1) destination numa is preferred
7418 * 2) task is cache cold, or
7419 * 3) too many balance attempts have failed.
1e3c88bd 7420 */
2a1ed24c
SD
7421 tsk_cache_hot = migrate_degrades_locality(p, env);
7422 if (tsk_cache_hot == -1)
7423 tsk_cache_hot = task_hot(p, env);
3a7053b3 7424
2a1ed24c 7425 if (tsk_cache_hot <= 0 ||
7a96c231 7426 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7427 if (tsk_cache_hot == 1) {
ae92882e
JP
7428 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7429 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7430 }
1e3c88bd
PZ
7431 return 1;
7432 }
7433
ae92882e 7434 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7435 return 0;
1e3c88bd
PZ
7436}
7437
897c395f 7438/*
163122b7
KT
7439 * detach_task() -- detach the task for the migration specified in env
7440 */
7441static void detach_task(struct task_struct *p, struct lb_env *env)
7442{
7443 lockdep_assert_held(&env->src_rq->lock);
7444
163122b7 7445 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7446 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7447 set_task_cpu(p, env->dst_cpu);
7448}
7449
897c395f 7450/*
e5673f28 7451 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7452 * part of active balancing operations within "domain".
897c395f 7453 *
e5673f28 7454 * Returns a task if successful and NULL otherwise.
897c395f 7455 */
e5673f28 7456static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7457{
93824900 7458 struct task_struct *p;
897c395f 7459
e5673f28
KT
7460 lockdep_assert_held(&env->src_rq->lock);
7461
93824900
UR
7462 list_for_each_entry_reverse(p,
7463 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7464 if (!can_migrate_task(p, env))
7465 continue;
897c395f 7466
163122b7 7467 detach_task(p, env);
e5673f28 7468
367456c7 7469 /*
e5673f28 7470 * Right now, this is only the second place where
163122b7 7471 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7472 * so we can safely collect stats here rather than
163122b7 7473 * inside detach_tasks().
367456c7 7474 */
ae92882e 7475 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7476 return p;
897c395f 7477 }
e5673f28 7478 return NULL;
897c395f
PZ
7479}
7480
eb95308e
PZ
7481static const unsigned int sched_nr_migrate_break = 32;
7482
5d6523eb 7483/*
163122b7
KT
7484 * detach_tasks() -- tries to detach up to imbalance weighted load from
7485 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7486 *
163122b7 7487 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7488 */
163122b7 7489static int detach_tasks(struct lb_env *env)
1e3c88bd 7490{
5d6523eb
PZ
7491 struct list_head *tasks = &env->src_rq->cfs_tasks;
7492 struct task_struct *p;
367456c7 7493 unsigned long load;
163122b7
KT
7494 int detached = 0;
7495
7496 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7497
bd939f45 7498 if (env->imbalance <= 0)
5d6523eb 7499 return 0;
1e3c88bd 7500
5d6523eb 7501 while (!list_empty(tasks)) {
985d3a4c
YD
7502 /*
7503 * We don't want to steal all, otherwise we may be treated likewise,
7504 * which could at worst lead to a livelock crash.
7505 */
7506 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7507 break;
7508
93824900 7509 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7510
367456c7
PZ
7511 env->loop++;
7512 /* We've more or less seen every task there is, call it quits */
5d6523eb 7513 if (env->loop > env->loop_max)
367456c7 7514 break;
5d6523eb
PZ
7515
7516 /* take a breather every nr_migrate tasks */
367456c7 7517 if (env->loop > env->loop_break) {
eb95308e 7518 env->loop_break += sched_nr_migrate_break;
8e45cb54 7519 env->flags |= LBF_NEED_BREAK;
ee00e66f 7520 break;
a195f004 7521 }
1e3c88bd 7522
d3198084 7523 if (!can_migrate_task(p, env))
367456c7
PZ
7524 goto next;
7525
7526 load = task_h_load(p);
5d6523eb 7527
eb95308e 7528 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7529 goto next;
7530
bd939f45 7531 if ((load / 2) > env->imbalance)
367456c7 7532 goto next;
1e3c88bd 7533
163122b7
KT
7534 detach_task(p, env);
7535 list_add(&p->se.group_node, &env->tasks);
7536
7537 detached++;
bd939f45 7538 env->imbalance -= load;
1e3c88bd
PZ
7539
7540#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7541 /*
7542 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7543 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7544 * the critical section.
7545 */
5d6523eb 7546 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7547 break;
1e3c88bd
PZ
7548#endif
7549
ee00e66f
PZ
7550 /*
7551 * We only want to steal up to the prescribed amount of
7552 * weighted load.
7553 */
bd939f45 7554 if (env->imbalance <= 0)
ee00e66f 7555 break;
367456c7
PZ
7556
7557 continue;
7558next:
93824900 7559 list_move(&p->se.group_node, tasks);
1e3c88bd 7560 }
5d6523eb 7561
1e3c88bd 7562 /*
163122b7
KT
7563 * Right now, this is one of only two places we collect this stat
7564 * so we can safely collect detach_one_task() stats here rather
7565 * than inside detach_one_task().
1e3c88bd 7566 */
ae92882e 7567 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7568
163122b7
KT
7569 return detached;
7570}
7571
7572/*
7573 * attach_task() -- attach the task detached by detach_task() to its new rq.
7574 */
7575static void attach_task(struct rq *rq, struct task_struct *p)
7576{
7577 lockdep_assert_held(&rq->lock);
7578
7579 BUG_ON(task_rq(p) != rq);
5704ac0a 7580 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7581 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7582 check_preempt_curr(rq, p, 0);
7583}
7584
7585/*
7586 * attach_one_task() -- attaches the task returned from detach_one_task() to
7587 * its new rq.
7588 */
7589static void attach_one_task(struct rq *rq, struct task_struct *p)
7590{
8a8c69c3
PZ
7591 struct rq_flags rf;
7592
7593 rq_lock(rq, &rf);
5704ac0a 7594 update_rq_clock(rq);
163122b7 7595 attach_task(rq, p);
8a8c69c3 7596 rq_unlock(rq, &rf);
163122b7
KT
7597}
7598
7599/*
7600 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7601 * new rq.
7602 */
7603static void attach_tasks(struct lb_env *env)
7604{
7605 struct list_head *tasks = &env->tasks;
7606 struct task_struct *p;
8a8c69c3 7607 struct rq_flags rf;
163122b7 7608
8a8c69c3 7609 rq_lock(env->dst_rq, &rf);
5704ac0a 7610 update_rq_clock(env->dst_rq);
163122b7
KT
7611
7612 while (!list_empty(tasks)) {
7613 p = list_first_entry(tasks, struct task_struct, se.group_node);
7614 list_del_init(&p->se.group_node);
1e3c88bd 7615
163122b7
KT
7616 attach_task(env->dst_rq, p);
7617 }
7618
8a8c69c3 7619 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7620}
7621
1936c53c
VG
7622static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7623{
7624 if (cfs_rq->avg.load_avg)
7625 return true;
7626
7627 if (cfs_rq->avg.util_avg)
7628 return true;
7629
7630 return false;
7631}
7632
91c27493 7633static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7634{
7635 if (READ_ONCE(rq->avg_rt.util_avg))
7636 return true;
7637
3727e0e1
VG
7638 if (READ_ONCE(rq->avg_dl.util_avg))
7639 return true;
7640
11d4afd4 7641#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7642 if (READ_ONCE(rq->avg_irq.util_avg))
7643 return true;
7644#endif
7645
371bf427
VG
7646 return false;
7647}
7648
1936c53c
VG
7649#ifdef CONFIG_FAIR_GROUP_SCHED
7650
48a16753 7651static void update_blocked_averages(int cpu)
9e3081ca 7652{
9e3081ca 7653 struct rq *rq = cpu_rq(cpu);
c40f7d74 7654 struct cfs_rq *cfs_rq;
12b04875 7655 const struct sched_class *curr_class;
8a8c69c3 7656 struct rq_flags rf;
f643ea22 7657 bool done = true;
9e3081ca 7658
8a8c69c3 7659 rq_lock_irqsave(rq, &rf);
48a16753 7660 update_rq_clock(rq);
9d89c257 7661
9763b67f
PZ
7662 /*
7663 * Iterates the task_group tree in a bottom up fashion, see
7664 * list_add_leaf_cfs_rq() for details.
7665 */
c40f7d74 7666 for_each_leaf_cfs_rq(rq, cfs_rq) {
bc427898
VG
7667 struct sched_entity *se;
7668
9d89c257
YD
7669 /* throttled entities do not contribute to load */
7670 if (throttled_hierarchy(cfs_rq))
7671 continue;
48a16753 7672
3a123bbb 7673 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7674 update_tg_load_avg(cfs_rq, 0);
4e516076 7675
bc427898
VG
7676 /* Propagate pending load changes to the parent, if any: */
7677 se = cfs_rq->tg->se[cpu];
7678 if (se && !skip_blocked_update(se))
88c0616e 7679 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7680
1936c53c
VG
7681 /* Don't need periodic decay once load/util_avg are null */
7682 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7683 done = false;
9d89c257 7684 }
12b04875
VG
7685
7686 curr_class = rq->curr->sched_class;
7687 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7688 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
91c27493 7689 update_irq_load_avg(rq, 0);
371bf427 7690 /* Don't need periodic decay once load/util_avg are null */
91c27493 7691 if (others_have_blocked(rq))
371bf427 7692 done = false;
e022e0d3
PZ
7693
7694#ifdef CONFIG_NO_HZ_COMMON
7695 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7696 if (done)
7697 rq->has_blocked_load = 0;
e022e0d3 7698#endif
8a8c69c3 7699 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7700}
7701
9763b67f 7702/*
68520796 7703 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7704 * This needs to be done in a top-down fashion because the load of a child
7705 * group is a fraction of its parents load.
7706 */
68520796 7707static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7708{
68520796
VD
7709 struct rq *rq = rq_of(cfs_rq);
7710 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7711 unsigned long now = jiffies;
68520796 7712 unsigned long load;
a35b6466 7713
68520796 7714 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7715 return;
7716
68520796
VD
7717 cfs_rq->h_load_next = NULL;
7718 for_each_sched_entity(se) {
7719 cfs_rq = cfs_rq_of(se);
7720 cfs_rq->h_load_next = se;
7721 if (cfs_rq->last_h_load_update == now)
7722 break;
7723 }
a35b6466 7724
68520796 7725 if (!se) {
7ea241af 7726 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7727 cfs_rq->last_h_load_update = now;
7728 }
7729
7730 while ((se = cfs_rq->h_load_next) != NULL) {
7731 load = cfs_rq->h_load;
7ea241af
YD
7732 load = div64_ul(load * se->avg.load_avg,
7733 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7734 cfs_rq = group_cfs_rq(se);
7735 cfs_rq->h_load = load;
7736 cfs_rq->last_h_load_update = now;
7737 }
9763b67f
PZ
7738}
7739
367456c7 7740static unsigned long task_h_load(struct task_struct *p)
230059de 7741{
367456c7 7742 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7743
68520796 7744 update_cfs_rq_h_load(cfs_rq);
9d89c257 7745 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7746 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7747}
7748#else
48a16753 7749static inline void update_blocked_averages(int cpu)
9e3081ca 7750{
6c1d47c0
VG
7751 struct rq *rq = cpu_rq(cpu);
7752 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7753 const struct sched_class *curr_class;
8a8c69c3 7754 struct rq_flags rf;
6c1d47c0 7755
8a8c69c3 7756 rq_lock_irqsave(rq, &rf);
6c1d47c0 7757 update_rq_clock(rq);
3a123bbb 7758 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
12b04875
VG
7759
7760 curr_class = rq->curr->sched_class;
7761 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7762 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
91c27493 7763 update_irq_load_avg(rq, 0);
e022e0d3
PZ
7764#ifdef CONFIG_NO_HZ_COMMON
7765 rq->last_blocked_load_update_tick = jiffies;
91c27493 7766 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
f643ea22 7767 rq->has_blocked_load = 0;
e022e0d3 7768#endif
8a8c69c3 7769 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7770}
7771
367456c7 7772static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7773{
9d89c257 7774 return p->se.avg.load_avg;
1e3c88bd 7775}
230059de 7776#endif
1e3c88bd 7777
1e3c88bd 7778/********** Helpers for find_busiest_group ************************/
caeb178c 7779
1e3c88bd
PZ
7780/*
7781 * sg_lb_stats - stats of a sched_group required for load_balancing
7782 */
7783struct sg_lb_stats {
7784 unsigned long avg_load; /*Avg load across the CPUs of the group */
7785 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7786 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7787 unsigned long load_per_task;
63b2ca30 7788 unsigned long group_capacity;
9e91d61d 7789 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7790 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7791 unsigned int idle_cpus;
7792 unsigned int group_weight;
caeb178c 7793 enum group_type group_type;
ea67821b 7794 int group_no_capacity;
3b1baa64 7795 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7796#ifdef CONFIG_NUMA_BALANCING
7797 unsigned int nr_numa_running;
7798 unsigned int nr_preferred_running;
7799#endif
1e3c88bd
PZ
7800};
7801
56cf515b
JK
7802/*
7803 * sd_lb_stats - Structure to store the statistics of a sched_domain
7804 * during load balancing.
7805 */
7806struct sd_lb_stats {
7807 struct sched_group *busiest; /* Busiest group in this sd */
7808 struct sched_group *local; /* Local group in this sd */
90001d67 7809 unsigned long total_running;
56cf515b 7810 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7811 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7812 unsigned long avg_load; /* Average load across all groups in sd */
7813
56cf515b 7814 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7815 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7816};
7817
147c5fc2
PZ
7818static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7819{
7820 /*
7821 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7822 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7823 * We must however clear busiest_stat::avg_load because
7824 * update_sd_pick_busiest() reads this before assignment.
7825 */
7826 *sds = (struct sd_lb_stats){
7827 .busiest = NULL,
7828 .local = NULL,
90001d67 7829 .total_running = 0UL,
147c5fc2 7830 .total_load = 0UL,
63b2ca30 7831 .total_capacity = 0UL,
147c5fc2
PZ
7832 .busiest_stat = {
7833 .avg_load = 0UL,
caeb178c
RR
7834 .sum_nr_running = 0,
7835 .group_type = group_other,
147c5fc2
PZ
7836 },
7837 };
7838}
7839
1e3c88bd
PZ
7840/**
7841 * get_sd_load_idx - Obtain the load index for a given sched domain.
7842 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7843 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7844 *
7845 * Return: The load index.
1e3c88bd
PZ
7846 */
7847static inline int get_sd_load_idx(struct sched_domain *sd,
7848 enum cpu_idle_type idle)
7849{
7850 int load_idx;
7851
7852 switch (idle) {
7853 case CPU_NOT_IDLE:
7854 load_idx = sd->busy_idx;
7855 break;
7856
7857 case CPU_NEWLY_IDLE:
7858 load_idx = sd->newidle_idx;
7859 break;
7860 default:
7861 load_idx = sd->idle_idx;
7862 break;
7863 }
7864
7865 return load_idx;
7866}
7867
287cdaac 7868static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7869{
7870 struct rq *rq = cpu_rq(cpu);
287cdaac 7871 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
523e979d 7872 unsigned long used, free;
523e979d 7873 unsigned long irq;
b654f7de 7874
2e62c474 7875 irq = cpu_util_irq(rq);
cadefd3d 7876
523e979d
VG
7877 if (unlikely(irq >= max))
7878 return 1;
aa483808 7879
523e979d
VG
7880 used = READ_ONCE(rq->avg_rt.util_avg);
7881 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7882
523e979d
VG
7883 if (unlikely(used >= max))
7884 return 1;
1e3c88bd 7885
523e979d 7886 free = max - used;
2e62c474
VG
7887
7888 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7889}
7890
ced549fa 7891static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7892{
287cdaac 7893 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7894 struct sched_group *sdg = sd->groups;
7895
523e979d 7896 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd 7897
ced549fa
NP
7898 if (!capacity)
7899 capacity = 1;
1e3c88bd 7900
ced549fa
NP
7901 cpu_rq(cpu)->cpu_capacity = capacity;
7902 sdg->sgc->capacity = capacity;
bf475ce0 7903 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7904 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7905}
7906
63b2ca30 7907void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7908{
7909 struct sched_domain *child = sd->child;
7910 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7911 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7912 unsigned long interval;
7913
7914 interval = msecs_to_jiffies(sd->balance_interval);
7915 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7916 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7917
7918 if (!child) {
ced549fa 7919 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7920 return;
7921 }
7922
dc7ff76e 7923 capacity = 0;
bf475ce0 7924 min_capacity = ULONG_MAX;
e3d6d0cb 7925 max_capacity = 0;
1e3c88bd 7926
74a5ce20
PZ
7927 if (child->flags & SD_OVERLAP) {
7928 /*
7929 * SD_OVERLAP domains cannot assume that child groups
7930 * span the current group.
7931 */
7932
ae4df9d6 7933 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7934 struct sched_group_capacity *sgc;
9abf24d4 7935 struct rq *rq = cpu_rq(cpu);
863bffc8 7936
9abf24d4 7937 /*
63b2ca30 7938 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7939 * gets here before we've attached the domains to the
7940 * runqueues.
7941 *
ced549fa
NP
7942 * Use capacity_of(), which is set irrespective of domains
7943 * in update_cpu_capacity().
9abf24d4 7944 *
dc7ff76e 7945 * This avoids capacity from being 0 and
9abf24d4 7946 * causing divide-by-zero issues on boot.
9abf24d4
SD
7947 */
7948 if (unlikely(!rq->sd)) {
ced549fa 7949 capacity += capacity_of(cpu);
bf475ce0
MR
7950 } else {
7951 sgc = rq->sd->groups->sgc;
7952 capacity += sgc->capacity;
9abf24d4 7953 }
863bffc8 7954
bf475ce0 7955 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7956 max_capacity = max(capacity, max_capacity);
863bffc8 7957 }
74a5ce20
PZ
7958 } else {
7959 /*
7960 * !SD_OVERLAP domains can assume that child groups
7961 * span the current group.
97a7142f 7962 */
74a5ce20
PZ
7963
7964 group = child->groups;
7965 do {
bf475ce0
MR
7966 struct sched_group_capacity *sgc = group->sgc;
7967
7968 capacity += sgc->capacity;
7969 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7970 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7971 group = group->next;
7972 } while (group != child->groups);
7973 }
1e3c88bd 7974
63b2ca30 7975 sdg->sgc->capacity = capacity;
bf475ce0 7976 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7977 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7978}
7979
9d5efe05 7980/*
ea67821b
VG
7981 * Check whether the capacity of the rq has been noticeably reduced by side
7982 * activity. The imbalance_pct is used for the threshold.
7983 * Return true is the capacity is reduced
9d5efe05
SV
7984 */
7985static inline int
ea67821b 7986check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7987{
ea67821b
VG
7988 return ((rq->cpu_capacity * sd->imbalance_pct) <
7989 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7990}
7991
30ce5dab
PZ
7992/*
7993 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7994 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 7995 *
97fb7a0a
IM
7996 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7997 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7998 * Something like:
7999 *
2b4d5b25
IM
8000 * { 0 1 2 3 } { 4 5 6 7 }
8001 * * * * *
30ce5dab
PZ
8002 *
8003 * If we were to balance group-wise we'd place two tasks in the first group and
8004 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8005 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8006 *
8007 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8008 * by noticing the lower domain failed to reach balance and had difficulty
8009 * moving tasks due to affinity constraints.
30ce5dab
PZ
8010 *
8011 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8012 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8013 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8014 * to create an effective group imbalance.
8015 *
8016 * This is a somewhat tricky proposition since the next run might not find the
8017 * group imbalance and decide the groups need to be balanced again. A most
8018 * subtle and fragile situation.
8019 */
8020
6263322c 8021static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8022{
63b2ca30 8023 return group->sgc->imbalance;
30ce5dab
PZ
8024}
8025
b37d9316 8026/*
ea67821b
VG
8027 * group_has_capacity returns true if the group has spare capacity that could
8028 * be used by some tasks.
8029 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8030 * smaller than the number of CPUs or if the utilization is lower than the
8031 * available capacity for CFS tasks.
ea67821b
VG
8032 * For the latter, we use a threshold to stabilize the state, to take into
8033 * account the variance of the tasks' load and to return true if the available
8034 * capacity in meaningful for the load balancer.
8035 * As an example, an available capacity of 1% can appear but it doesn't make
8036 * any benefit for the load balance.
b37d9316 8037 */
ea67821b
VG
8038static inline bool
8039group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 8040{
ea67821b
VG
8041 if (sgs->sum_nr_running < sgs->group_weight)
8042 return true;
c61037e9 8043
ea67821b 8044 if ((sgs->group_capacity * 100) >
9e91d61d 8045 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8046 return true;
b37d9316 8047
ea67821b
VG
8048 return false;
8049}
8050
8051/*
8052 * group_is_overloaded returns true if the group has more tasks than it can
8053 * handle.
8054 * group_is_overloaded is not equals to !group_has_capacity because a group
8055 * with the exact right number of tasks, has no more spare capacity but is not
8056 * overloaded so both group_has_capacity and group_is_overloaded return
8057 * false.
8058 */
8059static inline bool
8060group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8061{
8062 if (sgs->sum_nr_running <= sgs->group_weight)
8063 return false;
b37d9316 8064
ea67821b 8065 if ((sgs->group_capacity * 100) <
9e91d61d 8066 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8067 return true;
b37d9316 8068
ea67821b 8069 return false;
b37d9316
PZ
8070}
8071
9e0994c0 8072/*
e3d6d0cb 8073 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8074 * per-CPU capacity than sched_group ref.
8075 */
8076static inline bool
e3d6d0cb 8077group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
8078{
8079 return sg->sgc->min_capacity * capacity_margin <
8080 ref->sgc->min_capacity * 1024;
8081}
8082
e3d6d0cb
MR
8083/*
8084 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8085 * per-CPU capacity_orig than sched_group ref.
8086 */
8087static inline bool
8088group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8089{
8090 return sg->sgc->max_capacity * capacity_margin <
8091 ref->sgc->max_capacity * 1024;
8092}
8093
79a89f92
LY
8094static inline enum
8095group_type group_classify(struct sched_group *group,
8096 struct sg_lb_stats *sgs)
caeb178c 8097{
ea67821b 8098 if (sgs->group_no_capacity)
caeb178c
RR
8099 return group_overloaded;
8100
8101 if (sg_imbalanced(group))
8102 return group_imbalanced;
8103
3b1baa64
MR
8104 if (sgs->group_misfit_task_load)
8105 return group_misfit_task;
8106
caeb178c
RR
8107 return group_other;
8108}
8109
63928384 8110static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8111{
8112#ifdef CONFIG_NO_HZ_COMMON
8113 unsigned int cpu = rq->cpu;
8114
f643ea22
VG
8115 if (!rq->has_blocked_load)
8116 return false;
8117
e022e0d3 8118 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8119 return false;
e022e0d3 8120
63928384 8121 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8122 return true;
e022e0d3
PZ
8123
8124 update_blocked_averages(cpu);
f643ea22
VG
8125
8126 return rq->has_blocked_load;
8127#else
8128 return false;
e022e0d3
PZ
8129#endif
8130}
8131
1e3c88bd
PZ
8132/**
8133 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8134 * @env: The load balancing environment.
1e3c88bd 8135 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8136 * @sgs: variable to hold the statistics for this group.
630246a0 8137 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8138 */
bd939f45 8139static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8140 struct sched_group *group,
8141 struct sg_lb_stats *sgs,
8142 int *sg_status)
1e3c88bd 8143{
630246a0
QP
8144 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8145 int load_idx = get_sd_load_idx(env->sd, env->idle);
30ce5dab 8146 unsigned long load;
a426f99c 8147 int i, nr_running;
1e3c88bd 8148
b72ff13c
PZ
8149 memset(sgs, 0, sizeof(*sgs));
8150
ae4df9d6 8151 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8152 struct rq *rq = cpu_rq(i);
8153
63928384 8154 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8155 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8156
97fb7a0a 8157 /* Bias balancing toward CPUs of our domain: */
6263322c 8158 if (local_group)
04f733b4 8159 load = target_load(i, load_idx);
6263322c 8160 else
1e3c88bd 8161 load = source_load(i, load_idx);
1e3c88bd
PZ
8162
8163 sgs->group_load += load;
9e91d61d 8164 sgs->group_util += cpu_util(i);
65fdac08 8165 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8166
a426f99c
WL
8167 nr_running = rq->nr_running;
8168 if (nr_running > 1)
630246a0 8169 *sg_status |= SG_OVERLOAD;
4486edd1 8170
2802bf3c
MR
8171 if (cpu_overutilized(i))
8172 *sg_status |= SG_OVERUTILIZED;
4486edd1 8173
0ec8aa00
PZ
8174#ifdef CONFIG_NUMA_BALANCING
8175 sgs->nr_numa_running += rq->nr_numa_running;
8176 sgs->nr_preferred_running += rq->nr_preferred_running;
8177#endif
c7132dd6 8178 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
8179 /*
8180 * No need to call idle_cpu() if nr_running is not 0
8181 */
8182 if (!nr_running && idle_cpu(i))
aae6d3dd 8183 sgs->idle_cpus++;
3b1baa64
MR
8184
8185 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8186 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8187 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8188 *sg_status |= SG_OVERLOAD;
757ffdd7 8189 }
1e3c88bd
PZ
8190 }
8191
63b2ca30
NP
8192 /* Adjust by relative CPU capacity of the group */
8193 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8194 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8195
dd5feea1 8196 if (sgs->sum_nr_running)
38d0f770 8197 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 8198
aae6d3dd 8199 sgs->group_weight = group->group_weight;
b37d9316 8200
ea67821b 8201 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8202 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8203}
8204
532cb4c4
MN
8205/**
8206 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8207 * @env: The load balancing environment.
532cb4c4
MN
8208 * @sds: sched_domain statistics
8209 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8210 * @sgs: sched_group statistics
532cb4c4
MN
8211 *
8212 * Determine if @sg is a busier group than the previously selected
8213 * busiest group.
e69f6186
YB
8214 *
8215 * Return: %true if @sg is a busier group than the previously selected
8216 * busiest group. %false otherwise.
532cb4c4 8217 */
bd939f45 8218static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8219 struct sd_lb_stats *sds,
8220 struct sched_group *sg,
bd939f45 8221 struct sg_lb_stats *sgs)
532cb4c4 8222{
caeb178c 8223 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8224
cad68e55
MR
8225 /*
8226 * Don't try to pull misfit tasks we can't help.
8227 * We can use max_capacity here as reduction in capacity on some
8228 * CPUs in the group should either be possible to resolve
8229 * internally or be covered by avg_load imbalance (eventually).
8230 */
8231 if (sgs->group_type == group_misfit_task &&
8232 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8233 !group_has_capacity(env, &sds->local_stat)))
8234 return false;
8235
caeb178c 8236 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8237 return true;
8238
caeb178c
RR
8239 if (sgs->group_type < busiest->group_type)
8240 return false;
8241
8242 if (sgs->avg_load <= busiest->avg_load)
8243 return false;
8244
9e0994c0
MR
8245 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8246 goto asym_packing;
8247
8248 /*
8249 * Candidate sg has no more than one task per CPU and
8250 * has higher per-CPU capacity. Migrating tasks to less
8251 * capable CPUs may harm throughput. Maximize throughput,
8252 * power/energy consequences are not considered.
8253 */
8254 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8255 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8256 return false;
8257
cad68e55
MR
8258 /*
8259 * If we have more than one misfit sg go with the biggest misfit.
8260 */
8261 if (sgs->group_type == group_misfit_task &&
8262 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8263 return false;
8264
8265asym_packing:
caeb178c
RR
8266 /* This is the busiest node in its class. */
8267 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8268 return true;
8269
97fb7a0a 8270 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8271 if (env->idle == CPU_NOT_IDLE)
8272 return true;
532cb4c4 8273 /*
afe06efd
TC
8274 * ASYM_PACKING needs to move all the work to the highest
8275 * prority CPUs in the group, therefore mark all groups
8276 * of lower priority than ourself as busy.
532cb4c4 8277 */
afe06efd
TC
8278 if (sgs->sum_nr_running &&
8279 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8280 if (!sds->busiest)
8281 return true;
8282
97fb7a0a 8283 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8284 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8285 sg->asym_prefer_cpu))
532cb4c4
MN
8286 return true;
8287 }
8288
8289 return false;
8290}
8291
0ec8aa00
PZ
8292#ifdef CONFIG_NUMA_BALANCING
8293static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8294{
8295 if (sgs->sum_nr_running > sgs->nr_numa_running)
8296 return regular;
8297 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8298 return remote;
8299 return all;
8300}
8301
8302static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8303{
8304 if (rq->nr_running > rq->nr_numa_running)
8305 return regular;
8306 if (rq->nr_running > rq->nr_preferred_running)
8307 return remote;
8308 return all;
8309}
8310#else
8311static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8312{
8313 return all;
8314}
8315
8316static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8317{
8318 return regular;
8319}
8320#endif /* CONFIG_NUMA_BALANCING */
8321
1e3c88bd 8322/**
461819ac 8323 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8324 * @env: The load balancing environment.
1e3c88bd
PZ
8325 * @sds: variable to hold the statistics for this sched_domain.
8326 */
0ec8aa00 8327static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8328{
bd939f45
PZ
8329 struct sched_domain *child = env->sd->child;
8330 struct sched_group *sg = env->sd->groups;
05b40e05 8331 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8332 struct sg_lb_stats tmp_sgs;
dbbad719 8333 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8334 int sg_status = 0;
1e3c88bd 8335
e022e0d3 8336#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8337 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8338 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8339#endif
8340
1e3c88bd 8341 do {
56cf515b 8342 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8343 int local_group;
8344
ae4df9d6 8345 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8346 if (local_group) {
8347 sds->local = sg;
05b40e05 8348 sgs = local;
b72ff13c
PZ
8349
8350 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8351 time_after_eq(jiffies, sg->sgc->next_update))
8352 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8353 }
1e3c88bd 8354
630246a0 8355 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8356
b72ff13c
PZ
8357 if (local_group)
8358 goto next_group;
8359
1e3c88bd
PZ
8360 /*
8361 * In case the child domain prefers tasks go to siblings
ea67821b 8362 * first, lower the sg capacity so that we'll try
75dd321d
NR
8363 * and move all the excess tasks away. We lower the capacity
8364 * of a group only if the local group has the capacity to fit
ea67821b
VG
8365 * these excess tasks. The extra check prevents the case where
8366 * you always pull from the heaviest group when it is already
8367 * under-utilized (possible with a large weight task outweighs
8368 * the tasks on the system).
1e3c88bd 8369 */
b72ff13c 8370 if (prefer_sibling && sds->local &&
05b40e05
SD
8371 group_has_capacity(env, local) &&
8372 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8373 sgs->group_no_capacity = 1;
79a89f92 8374 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8375 }
1e3c88bd 8376
b72ff13c 8377 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8378 sds->busiest = sg;
56cf515b 8379 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8380 }
8381
b72ff13c
PZ
8382next_group:
8383 /* Now, start updating sd_lb_stats */
90001d67 8384 sds->total_running += sgs->sum_nr_running;
b72ff13c 8385 sds->total_load += sgs->group_load;
63b2ca30 8386 sds->total_capacity += sgs->group_capacity;
b72ff13c 8387
532cb4c4 8388 sg = sg->next;
bd939f45 8389 } while (sg != env->sd->groups);
0ec8aa00 8390
f643ea22
VG
8391#ifdef CONFIG_NO_HZ_COMMON
8392 if ((env->flags & LBF_NOHZ_AGAIN) &&
8393 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8394
8395 WRITE_ONCE(nohz.next_blocked,
8396 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8397 }
8398#endif
8399
0ec8aa00
PZ
8400 if (env->sd->flags & SD_NUMA)
8401 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8402
8403 if (!env->sd->parent) {
2802bf3c
MR
8404 struct root_domain *rd = env->dst_rq->rd;
8405
4486edd1 8406 /* update overload indicator if we are at root domain */
2802bf3c
MR
8407 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8408
8409 /* Update over-utilization (tipping point, U >= 0) indicator */
8410 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8411 } else if (sg_status & SG_OVERUTILIZED) {
8412 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
4486edd1 8413 }
532cb4c4
MN
8414}
8415
532cb4c4
MN
8416/**
8417 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8418 * sched domain.
532cb4c4
MN
8419 *
8420 * This is primarily intended to used at the sibling level. Some
8421 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8422 * case of POWER7, it can move to lower SMT modes only when higher
8423 * threads are idle. When in lower SMT modes, the threads will
8424 * perform better since they share less core resources. Hence when we
8425 * have idle threads, we want them to be the higher ones.
8426 *
8427 * This packing function is run on idle threads. It checks to see if
8428 * the busiest CPU in this domain (core in the P7 case) has a higher
8429 * CPU number than the packing function is being run on. Here we are
8430 * assuming lower CPU number will be equivalent to lower a SMT thread
8431 * number.
8432 *
e69f6186 8433 * Return: 1 when packing is required and a task should be moved to
46123355 8434 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8435 *
cd96891d 8436 * @env: The load balancing environment.
532cb4c4 8437 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8438 */
bd939f45 8439static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8440{
8441 int busiest_cpu;
8442
bd939f45 8443 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8444 return 0;
8445
1f621e02
SD
8446 if (env->idle == CPU_NOT_IDLE)
8447 return 0;
8448
532cb4c4
MN
8449 if (!sds->busiest)
8450 return 0;
8451
afe06efd
TC
8452 busiest_cpu = sds->busiest->asym_prefer_cpu;
8453 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8454 return 0;
8455
4ad4e481 8456 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8457
532cb4c4 8458 return 1;
1e3c88bd
PZ
8459}
8460
8461/**
8462 * fix_small_imbalance - Calculate the minor imbalance that exists
8463 * amongst the groups of a sched_domain, during
8464 * load balancing.
cd96891d 8465 * @env: The load balancing environment.
1e3c88bd 8466 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8467 */
bd939f45
PZ
8468static inline
8469void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8470{
63b2ca30 8471 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8472 unsigned int imbn = 2;
dd5feea1 8473 unsigned long scaled_busy_load_per_task;
56cf515b 8474 struct sg_lb_stats *local, *busiest;
1e3c88bd 8475
56cf515b
JK
8476 local = &sds->local_stat;
8477 busiest = &sds->busiest_stat;
1e3c88bd 8478
56cf515b
JK
8479 if (!local->sum_nr_running)
8480 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8481 else if (busiest->load_per_task > local->load_per_task)
8482 imbn = 1;
dd5feea1 8483
56cf515b 8484 scaled_busy_load_per_task =
ca8ce3d0 8485 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8486 busiest->group_capacity;
56cf515b 8487
3029ede3
VD
8488 if (busiest->avg_load + scaled_busy_load_per_task >=
8489 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8490 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8491 return;
8492 }
8493
8494 /*
8495 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8496 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8497 * moving them.
8498 */
8499
63b2ca30 8500 capa_now += busiest->group_capacity *
56cf515b 8501 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8502 capa_now += local->group_capacity *
56cf515b 8503 min(local->load_per_task, local->avg_load);
ca8ce3d0 8504 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8505
8506 /* Amount of load we'd subtract */
a2cd4260 8507 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8508 capa_move += busiest->group_capacity *
56cf515b 8509 min(busiest->load_per_task,
a2cd4260 8510 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8511 }
1e3c88bd
PZ
8512
8513 /* Amount of load we'd add */
63b2ca30 8514 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8515 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8516 tmp = (busiest->avg_load * busiest->group_capacity) /
8517 local->group_capacity;
56cf515b 8518 } else {
ca8ce3d0 8519 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8520 local->group_capacity;
56cf515b 8521 }
63b2ca30 8522 capa_move += local->group_capacity *
3ae11c90 8523 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8524 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8525
8526 /* Move if we gain throughput */
63b2ca30 8527 if (capa_move > capa_now)
56cf515b 8528 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8529}
8530
8531/**
8532 * calculate_imbalance - Calculate the amount of imbalance present within the
8533 * groups of a given sched_domain during load balance.
bd939f45 8534 * @env: load balance environment
1e3c88bd 8535 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8536 */
bd939f45 8537static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8538{
dd5feea1 8539 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8540 struct sg_lb_stats *local, *busiest;
8541
8542 local = &sds->local_stat;
56cf515b 8543 busiest = &sds->busiest_stat;
dd5feea1 8544
caeb178c 8545 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8546 /*
8547 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8548 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8549 */
56cf515b
JK
8550 busiest->load_per_task =
8551 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8552 }
8553
1e3c88bd 8554 /*
885e542c
DE
8555 * Avg load of busiest sg can be less and avg load of local sg can
8556 * be greater than avg load across all sgs of sd because avg load
8557 * factors in sg capacity and sgs with smaller group_type are
8558 * skipped when updating the busiest sg:
1e3c88bd 8559 */
cad68e55
MR
8560 if (busiest->group_type != group_misfit_task &&
8561 (busiest->avg_load <= sds->avg_load ||
8562 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8563 env->imbalance = 0;
8564 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8565 }
8566
9a5d9ba6 8567 /*
97fb7a0a 8568 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8569 */
8570 if (busiest->group_type == group_overloaded &&
8571 local->group_type == group_overloaded) {
1be0eb2a 8572 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8573 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8574 load_above_capacity -= busiest->group_capacity;
26656215 8575 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8576 load_above_capacity /= busiest->group_capacity;
8577 } else
ea67821b 8578 load_above_capacity = ~0UL;
dd5feea1
SS
8579 }
8580
8581 /*
97fb7a0a 8582 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8583 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8584 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8585 * we also don't want to reduce the group load below the group
8586 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8587 */
30ce5dab 8588 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8589
8590 /* How much load to actually move to equalise the imbalance */
56cf515b 8591 env->imbalance = min(
63b2ca30
NP
8592 max_pull * busiest->group_capacity,
8593 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8594 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8595
cad68e55
MR
8596 /* Boost imbalance to allow misfit task to be balanced. */
8597 if (busiest->group_type == group_misfit_task) {
8598 env->imbalance = max_t(long, env->imbalance,
8599 busiest->group_misfit_task_load);
8600 }
8601
1e3c88bd
PZ
8602 /*
8603 * if *imbalance is less than the average load per runnable task
25985edc 8604 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8605 * a think about bumping its value to force at least one task to be
8606 * moved
8607 */
56cf515b 8608 if (env->imbalance < busiest->load_per_task)
bd939f45 8609 return fix_small_imbalance(env, sds);
1e3c88bd 8610}
fab47622 8611
1e3c88bd
PZ
8612/******* find_busiest_group() helpers end here *********************/
8613
8614/**
8615 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8616 * if there is an imbalance.
1e3c88bd
PZ
8617 *
8618 * Also calculates the amount of weighted load which should be moved
8619 * to restore balance.
8620 *
cd96891d 8621 * @env: The load balancing environment.
1e3c88bd 8622 *
e69f6186 8623 * Return: - The busiest group if imbalance exists.
1e3c88bd 8624 */
56cf515b 8625static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8626{
56cf515b 8627 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8628 struct sd_lb_stats sds;
8629
147c5fc2 8630 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8631
8632 /*
8633 * Compute the various statistics relavent for load balancing at
8634 * this level.
8635 */
23f0d209 8636 update_sd_lb_stats(env, &sds);
2802bf3c 8637
f8a696f2 8638 if (sched_energy_enabled()) {
2802bf3c
MR
8639 struct root_domain *rd = env->dst_rq->rd;
8640
8641 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8642 goto out_balanced;
8643 }
8644
56cf515b
JK
8645 local = &sds.local_stat;
8646 busiest = &sds.busiest_stat;
1e3c88bd 8647
ea67821b 8648 /* ASYM feature bypasses nice load balance check */
1f621e02 8649 if (check_asym_packing(env, &sds))
532cb4c4
MN
8650 return sds.busiest;
8651
cc57aa8f 8652 /* There is no busy sibling group to pull tasks from */
56cf515b 8653 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8654 goto out_balanced;
8655
90001d67 8656 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8657 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8658 / sds.total_capacity;
b0432d8f 8659
866ab43e
PZ
8660 /*
8661 * If the busiest group is imbalanced the below checks don't
30ce5dab 8662 * work because they assume all things are equal, which typically
866ab43e
PZ
8663 * isn't true due to cpus_allowed constraints and the like.
8664 */
caeb178c 8665 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8666 goto force_balance;
8667
583ffd99
BJ
8668 /*
8669 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8670 * capacities from resulting in underutilization due to avg_load.
8671 */
8672 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8673 busiest->group_no_capacity)
fab47622
NR
8674 goto force_balance;
8675
cad68e55
MR
8676 /* Misfit tasks should be dealt with regardless of the avg load */
8677 if (busiest->group_type == group_misfit_task)
8678 goto force_balance;
8679
cc57aa8f 8680 /*
9c58c79a 8681 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8682 * don't try and pull any tasks.
8683 */
56cf515b 8684 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8685 goto out_balanced;
8686
cc57aa8f
PZ
8687 /*
8688 * Don't pull any tasks if this group is already above the domain
8689 * average load.
8690 */
56cf515b 8691 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8692 goto out_balanced;
8693
bd939f45 8694 if (env->idle == CPU_IDLE) {
aae6d3dd 8695 /*
97fb7a0a 8696 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8697 * and there is no imbalance between this and busiest group
97fb7a0a 8698 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8699 * significant if the diff is greater than 1 otherwise we
8700 * might end up to just move the imbalance on another group
aae6d3dd 8701 */
43f4d666
VG
8702 if ((busiest->group_type != group_overloaded) &&
8703 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8704 goto out_balanced;
c186fafe
PZ
8705 } else {
8706 /*
8707 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8708 * imbalance_pct to be conservative.
8709 */
56cf515b
JK
8710 if (100 * busiest->avg_load <=
8711 env->sd->imbalance_pct * local->avg_load)
c186fafe 8712 goto out_balanced;
aae6d3dd 8713 }
1e3c88bd 8714
fab47622 8715force_balance:
1e3c88bd 8716 /* Looks like there is an imbalance. Compute it */
cad68e55 8717 env->src_grp_type = busiest->group_type;
bd939f45 8718 calculate_imbalance(env, &sds);
bb3485c8 8719 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8720
8721out_balanced:
bd939f45 8722 env->imbalance = 0;
1e3c88bd
PZ
8723 return NULL;
8724}
8725
8726/*
97fb7a0a 8727 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8728 */
bd939f45 8729static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8730 struct sched_group *group)
1e3c88bd
PZ
8731{
8732 struct rq *busiest = NULL, *rq;
ced549fa 8733 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8734 int i;
8735
ae4df9d6 8736 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8737 unsigned long capacity, wl;
0ec8aa00
PZ
8738 enum fbq_type rt;
8739
8740 rq = cpu_rq(i);
8741 rt = fbq_classify_rq(rq);
1e3c88bd 8742
0ec8aa00
PZ
8743 /*
8744 * We classify groups/runqueues into three groups:
8745 * - regular: there are !numa tasks
8746 * - remote: there are numa tasks that run on the 'wrong' node
8747 * - all: there is no distinction
8748 *
8749 * In order to avoid migrating ideally placed numa tasks,
8750 * ignore those when there's better options.
8751 *
8752 * If we ignore the actual busiest queue to migrate another
8753 * task, the next balance pass can still reduce the busiest
8754 * queue by moving tasks around inside the node.
8755 *
8756 * If we cannot move enough load due to this classification
8757 * the next pass will adjust the group classification and
8758 * allow migration of more tasks.
8759 *
8760 * Both cases only affect the total convergence complexity.
8761 */
8762 if (rt > env->fbq_type)
8763 continue;
8764
cad68e55
MR
8765 /*
8766 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8767 * seek the "biggest" misfit task.
8768 */
8769 if (env->src_grp_type == group_misfit_task) {
8770 if (rq->misfit_task_load > busiest_load) {
8771 busiest_load = rq->misfit_task_load;
8772 busiest = rq;
8773 }
8774
8775 continue;
8776 }
8777
ced549fa 8778 capacity = capacity_of(i);
9d5efe05 8779
4ad3831a
CR
8780 /*
8781 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8782 * eventually lead to active_balancing high->low capacity.
8783 * Higher per-CPU capacity is considered better than balancing
8784 * average load.
8785 */
8786 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8787 capacity_of(env->dst_cpu) < capacity &&
8788 rq->nr_running == 1)
8789 continue;
8790
c7132dd6 8791 wl = weighted_cpuload(rq);
1e3c88bd 8792
6e40f5bb
TG
8793 /*
8794 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8795 * which is not scaled with the CPU capacity.
6e40f5bb 8796 */
ea67821b
VG
8797
8798 if (rq->nr_running == 1 && wl > env->imbalance &&
8799 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8800 continue;
8801
6e40f5bb 8802 /*
97fb7a0a
IM
8803 * For the load comparisons with the other CPU's, consider
8804 * the weighted_cpuload() scaled with the CPU capacity, so
8805 * that the load can be moved away from the CPU that is
ced549fa 8806 * potentially running at a lower capacity.
95a79b80 8807 *
ced549fa 8808 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8809 * multiplication to rid ourselves of the division works out
ced549fa
NP
8810 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8811 * our previous maximum.
6e40f5bb 8812 */
ced549fa 8813 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8814 busiest_load = wl;
ced549fa 8815 busiest_capacity = capacity;
1e3c88bd
PZ
8816 busiest = rq;
8817 }
8818 }
8819
8820 return busiest;
8821}
8822
8823/*
8824 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8825 * so long as it is large enough.
8826 */
8827#define MAX_PINNED_INTERVAL 512
8828
46a745d9
VG
8829static inline bool
8830asym_active_balance(struct lb_env *env)
1af3ed3d 8831{
46a745d9
VG
8832 /*
8833 * ASYM_PACKING needs to force migrate tasks from busy but
8834 * lower priority CPUs in order to pack all tasks in the
8835 * highest priority CPUs.
8836 */
8837 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8838 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8839}
bd939f45 8840
46a745d9
VG
8841static inline bool
8842voluntary_active_balance(struct lb_env *env)
8843{
8844 struct sched_domain *sd = env->sd;
532cb4c4 8845
46a745d9
VG
8846 if (asym_active_balance(env))
8847 return 1;
1af3ed3d 8848
1aaf90a4
VG
8849 /*
8850 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8851 * It's worth migrating the task if the src_cpu's capacity is reduced
8852 * because of other sched_class or IRQs if more capacity stays
8853 * available on dst_cpu.
8854 */
8855 if ((env->idle != CPU_NOT_IDLE) &&
8856 (env->src_rq->cfs.h_nr_running == 1)) {
8857 if ((check_cpu_capacity(env->src_rq, sd)) &&
8858 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8859 return 1;
8860 }
8861
cad68e55
MR
8862 if (env->src_grp_type == group_misfit_task)
8863 return 1;
8864
46a745d9
VG
8865 return 0;
8866}
8867
8868static int need_active_balance(struct lb_env *env)
8869{
8870 struct sched_domain *sd = env->sd;
8871
8872 if (voluntary_active_balance(env))
8873 return 1;
8874
1af3ed3d
PZ
8875 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8876}
8877
969c7921
TH
8878static int active_load_balance_cpu_stop(void *data);
8879
23f0d209
JK
8880static int should_we_balance(struct lb_env *env)
8881{
8882 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8883 int cpu, balance_cpu = -1;
8884
024c9d2f
PZ
8885 /*
8886 * Ensure the balancing environment is consistent; can happen
8887 * when the softirq triggers 'during' hotplug.
8888 */
8889 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8890 return 0;
8891
23f0d209 8892 /*
97fb7a0a 8893 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8894 * to do the newly idle load balance.
8895 */
8896 if (env->idle == CPU_NEWLY_IDLE)
8897 return 1;
8898
97fb7a0a 8899 /* Try to find first idle CPU */
e5c14b1f 8900 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8901 if (!idle_cpu(cpu))
23f0d209
JK
8902 continue;
8903
8904 balance_cpu = cpu;
8905 break;
8906 }
8907
8908 if (balance_cpu == -1)
8909 balance_cpu = group_balance_cpu(sg);
8910
8911 /*
97fb7a0a 8912 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8913 * is eligible for doing load balancing at this and above domains.
8914 */
b0cff9d8 8915 return balance_cpu == env->dst_cpu;
23f0d209
JK
8916}
8917
1e3c88bd
PZ
8918/*
8919 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8920 * tasks if there is an imbalance.
8921 */
8922static int load_balance(int this_cpu, struct rq *this_rq,
8923 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8924 int *continue_balancing)
1e3c88bd 8925{
88b8dac0 8926 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8927 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8928 struct sched_group *group;
1e3c88bd 8929 struct rq *busiest;
8a8c69c3 8930 struct rq_flags rf;
4ba29684 8931 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8932
8e45cb54
PZ
8933 struct lb_env env = {
8934 .sd = sd,
ddcdf6e7
PZ
8935 .dst_cpu = this_cpu,
8936 .dst_rq = this_rq,
ae4df9d6 8937 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8938 .idle = idle,
eb95308e 8939 .loop_break = sched_nr_migrate_break,
b9403130 8940 .cpus = cpus,
0ec8aa00 8941 .fbq_type = all,
163122b7 8942 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8943 };
8944
65a4433a 8945 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8946
ae92882e 8947 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8948
8949redo:
23f0d209
JK
8950 if (!should_we_balance(&env)) {
8951 *continue_balancing = 0;
1e3c88bd 8952 goto out_balanced;
23f0d209 8953 }
1e3c88bd 8954
23f0d209 8955 group = find_busiest_group(&env);
1e3c88bd 8956 if (!group) {
ae92882e 8957 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8958 goto out_balanced;
8959 }
8960
b9403130 8961 busiest = find_busiest_queue(&env, group);
1e3c88bd 8962 if (!busiest) {
ae92882e 8963 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8964 goto out_balanced;
8965 }
8966
78feefc5 8967 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8968
ae92882e 8969 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8970
1aaf90a4
VG
8971 env.src_cpu = busiest->cpu;
8972 env.src_rq = busiest;
8973
1e3c88bd
PZ
8974 ld_moved = 0;
8975 if (busiest->nr_running > 1) {
8976 /*
8977 * Attempt to move tasks. If find_busiest_group has found
8978 * an imbalance but busiest->nr_running <= 1, the group is
8979 * still unbalanced. ld_moved simply stays zero, so it is
8980 * correctly treated as an imbalance.
8981 */
8e45cb54 8982 env.flags |= LBF_ALL_PINNED;
c82513e5 8983 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8984
5d6523eb 8985more_balance:
8a8c69c3 8986 rq_lock_irqsave(busiest, &rf);
3bed5e21 8987 update_rq_clock(busiest);
88b8dac0
SV
8988
8989 /*
8990 * cur_ld_moved - load moved in current iteration
8991 * ld_moved - cumulative load moved across iterations
8992 */
163122b7 8993 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8994
8995 /*
163122b7
KT
8996 * We've detached some tasks from busiest_rq. Every
8997 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8998 * unlock busiest->lock, and we are able to be sure
8999 * that nobody can manipulate the tasks in parallel.
9000 * See task_rq_lock() family for the details.
1e3c88bd 9001 */
163122b7 9002
8a8c69c3 9003 rq_unlock(busiest, &rf);
163122b7
KT
9004
9005 if (cur_ld_moved) {
9006 attach_tasks(&env);
9007 ld_moved += cur_ld_moved;
9008 }
9009
8a8c69c3 9010 local_irq_restore(rf.flags);
88b8dac0 9011
f1cd0858
JK
9012 if (env.flags & LBF_NEED_BREAK) {
9013 env.flags &= ~LBF_NEED_BREAK;
9014 goto more_balance;
9015 }
9016
88b8dac0
SV
9017 /*
9018 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9019 * us and move them to an alternate dst_cpu in our sched_group
9020 * where they can run. The upper limit on how many times we
97fb7a0a 9021 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9022 * sched_group.
9023 *
9024 * This changes load balance semantics a bit on who can move
9025 * load to a given_cpu. In addition to the given_cpu itself
9026 * (or a ilb_cpu acting on its behalf where given_cpu is
9027 * nohz-idle), we now have balance_cpu in a position to move
9028 * load to given_cpu. In rare situations, this may cause
9029 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9030 * _independently_ and at _same_ time to move some load to
9031 * given_cpu) causing exceess load to be moved to given_cpu.
9032 * This however should not happen so much in practice and
9033 * moreover subsequent load balance cycles should correct the
9034 * excess load moved.
9035 */
6263322c 9036 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9037
97fb7a0a 9038 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
9039 cpumask_clear_cpu(env.dst_cpu, env.cpus);
9040
78feefc5 9041 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9042 env.dst_cpu = env.new_dst_cpu;
6263322c 9043 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9044 env.loop = 0;
9045 env.loop_break = sched_nr_migrate_break;
e02e60c1 9046
88b8dac0
SV
9047 /*
9048 * Go back to "more_balance" rather than "redo" since we
9049 * need to continue with same src_cpu.
9050 */
9051 goto more_balance;
9052 }
1e3c88bd 9053
6263322c
PZ
9054 /*
9055 * We failed to reach balance because of affinity.
9056 */
9057 if (sd_parent) {
63b2ca30 9058 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9059
afdeee05 9060 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9061 *group_imbalance = 1;
6263322c
PZ
9062 }
9063
1e3c88bd 9064 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9065 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 9066 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9067 /*
9068 * Attempting to continue load balancing at the current
9069 * sched_domain level only makes sense if there are
9070 * active CPUs remaining as possible busiest CPUs to
9071 * pull load from which are not contained within the
9072 * destination group that is receiving any migrated
9073 * load.
9074 */
9075 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9076 env.loop = 0;
9077 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9078 goto redo;
bbf18b19 9079 }
afdeee05 9080 goto out_all_pinned;
1e3c88bd
PZ
9081 }
9082 }
9083
9084 if (!ld_moved) {
ae92882e 9085 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9086 /*
9087 * Increment the failure counter only on periodic balance.
9088 * We do not want newidle balance, which can be very
9089 * frequent, pollute the failure counter causing
9090 * excessive cache_hot migrations and active balances.
9091 */
9092 if (idle != CPU_NEWLY_IDLE)
9093 sd->nr_balance_failed++;
1e3c88bd 9094
bd939f45 9095 if (need_active_balance(&env)) {
8a8c69c3
PZ
9096 unsigned long flags;
9097
1e3c88bd
PZ
9098 raw_spin_lock_irqsave(&busiest->lock, flags);
9099
97fb7a0a
IM
9100 /*
9101 * Don't kick the active_load_balance_cpu_stop,
9102 * if the curr task on busiest CPU can't be
9103 * moved to this_cpu:
1e3c88bd 9104 */
0c98d344 9105 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
9106 raw_spin_unlock_irqrestore(&busiest->lock,
9107 flags);
8e45cb54 9108 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9109 goto out_one_pinned;
9110 }
9111
969c7921
TH
9112 /*
9113 * ->active_balance synchronizes accesses to
9114 * ->active_balance_work. Once set, it's cleared
9115 * only after active load balance is finished.
9116 */
1e3c88bd
PZ
9117 if (!busiest->active_balance) {
9118 busiest->active_balance = 1;
9119 busiest->push_cpu = this_cpu;
9120 active_balance = 1;
9121 }
9122 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9123
bd939f45 9124 if (active_balance) {
969c7921
TH
9125 stop_one_cpu_nowait(cpu_of(busiest),
9126 active_load_balance_cpu_stop, busiest,
9127 &busiest->active_balance_work);
bd939f45 9128 }
1e3c88bd 9129
d02c0711 9130 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9131 sd->nr_balance_failed = sd->cache_nice_tries+1;
9132 }
9133 } else
9134 sd->nr_balance_failed = 0;
9135
46a745d9 9136 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9137 /* We were unbalanced, so reset the balancing interval */
9138 sd->balance_interval = sd->min_interval;
9139 } else {
9140 /*
9141 * If we've begun active balancing, start to back off. This
9142 * case may not be covered by the all_pinned logic if there
9143 * is only 1 task on the busy runqueue (because we don't call
163122b7 9144 * detach_tasks).
1e3c88bd
PZ
9145 */
9146 if (sd->balance_interval < sd->max_interval)
9147 sd->balance_interval *= 2;
9148 }
9149
1e3c88bd
PZ
9150 goto out;
9151
9152out_balanced:
afdeee05
VG
9153 /*
9154 * We reach balance although we may have faced some affinity
9155 * constraints. Clear the imbalance flag if it was set.
9156 */
9157 if (sd_parent) {
9158 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9159
9160 if (*group_imbalance)
9161 *group_imbalance = 0;
9162 }
9163
9164out_all_pinned:
9165 /*
9166 * We reach balance because all tasks are pinned at this level so
9167 * we can't migrate them. Let the imbalance flag set so parent level
9168 * can try to migrate them.
9169 */
ae92882e 9170 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9171
9172 sd->nr_balance_failed = 0;
9173
9174out_one_pinned:
3f130a37
VS
9175 ld_moved = 0;
9176
9177 /*
9178 * idle_balance() disregards balance intervals, so we could repeatedly
9179 * reach this code, which would lead to balance_interval skyrocketting
9180 * in a short amount of time. Skip the balance_interval increase logic
9181 * to avoid that.
9182 */
9183 if (env.idle == CPU_NEWLY_IDLE)
9184 goto out;
9185
1e3c88bd 9186 /* tune up the balancing interval */
47b7aee1
VS
9187 if ((env.flags & LBF_ALL_PINNED &&
9188 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9189 sd->balance_interval < sd->max_interval)
1e3c88bd 9190 sd->balance_interval *= 2;
1e3c88bd 9191out:
1e3c88bd
PZ
9192 return ld_moved;
9193}
9194
52a08ef1
JL
9195static inline unsigned long
9196get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9197{
9198 unsigned long interval = sd->balance_interval;
9199
9200 if (cpu_busy)
9201 interval *= sd->busy_factor;
9202
9203 /* scale ms to jiffies */
9204 interval = msecs_to_jiffies(interval);
9205 interval = clamp(interval, 1UL, max_load_balance_interval);
9206
9207 return interval;
9208}
9209
9210static inline void
31851a98 9211update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9212{
9213 unsigned long interval, next;
9214
31851a98
LY
9215 /* used by idle balance, so cpu_busy = 0 */
9216 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9217 next = sd->last_balance + interval;
9218
9219 if (time_after(*next_balance, next))
9220 *next_balance = next;
9221}
9222
1e3c88bd 9223/*
97fb7a0a 9224 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9225 * running tasks off the busiest CPU onto idle CPUs. It requires at
9226 * least 1 task to be running on each physical CPU where possible, and
9227 * avoids physical / logical imbalances.
1e3c88bd 9228 */
969c7921 9229static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9230{
969c7921
TH
9231 struct rq *busiest_rq = data;
9232 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9233 int target_cpu = busiest_rq->push_cpu;
969c7921 9234 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9235 struct sched_domain *sd;
e5673f28 9236 struct task_struct *p = NULL;
8a8c69c3 9237 struct rq_flags rf;
969c7921 9238
8a8c69c3 9239 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9240 /*
9241 * Between queueing the stop-work and running it is a hole in which
9242 * CPUs can become inactive. We should not move tasks from or to
9243 * inactive CPUs.
9244 */
9245 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9246 goto out_unlock;
969c7921 9247
97fb7a0a 9248 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9249 if (unlikely(busiest_cpu != smp_processor_id() ||
9250 !busiest_rq->active_balance))
9251 goto out_unlock;
1e3c88bd
PZ
9252
9253 /* Is there any task to move? */
9254 if (busiest_rq->nr_running <= 1)
969c7921 9255 goto out_unlock;
1e3c88bd
PZ
9256
9257 /*
9258 * This condition is "impossible", if it occurs
9259 * we need to fix it. Originally reported by
97fb7a0a 9260 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9261 */
9262 BUG_ON(busiest_rq == target_rq);
9263
1e3c88bd 9264 /* Search for an sd spanning us and the target CPU. */
dce840a0 9265 rcu_read_lock();
1e3c88bd
PZ
9266 for_each_domain(target_cpu, sd) {
9267 if ((sd->flags & SD_LOAD_BALANCE) &&
9268 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9269 break;
9270 }
9271
9272 if (likely(sd)) {
8e45cb54
PZ
9273 struct lb_env env = {
9274 .sd = sd,
ddcdf6e7
PZ
9275 .dst_cpu = target_cpu,
9276 .dst_rq = target_rq,
9277 .src_cpu = busiest_rq->cpu,
9278 .src_rq = busiest_rq,
8e45cb54 9279 .idle = CPU_IDLE,
65a4433a
JH
9280 /*
9281 * can_migrate_task() doesn't need to compute new_dst_cpu
9282 * for active balancing. Since we have CPU_IDLE, but no
9283 * @dst_grpmask we need to make that test go away with lying
9284 * about DST_PINNED.
9285 */
9286 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9287 };
9288
ae92882e 9289 schedstat_inc(sd->alb_count);
3bed5e21 9290 update_rq_clock(busiest_rq);
1e3c88bd 9291
e5673f28 9292 p = detach_one_task(&env);
d02c0711 9293 if (p) {
ae92882e 9294 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9295 /* Active balancing done, reset the failure counter. */
9296 sd->nr_balance_failed = 0;
9297 } else {
ae92882e 9298 schedstat_inc(sd->alb_failed);
d02c0711 9299 }
1e3c88bd 9300 }
dce840a0 9301 rcu_read_unlock();
969c7921
TH
9302out_unlock:
9303 busiest_rq->active_balance = 0;
8a8c69c3 9304 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9305
9306 if (p)
9307 attach_one_task(target_rq, p);
9308
9309 local_irq_enable();
9310
969c7921 9311 return 0;
1e3c88bd
PZ
9312}
9313
af3fe03c
PZ
9314static DEFINE_SPINLOCK(balancing);
9315
9316/*
9317 * Scale the max load_balance interval with the number of CPUs in the system.
9318 * This trades load-balance latency on larger machines for less cross talk.
9319 */
9320void update_max_interval(void)
9321{
9322 max_load_balance_interval = HZ*num_online_cpus()/10;
9323}
9324
9325/*
9326 * It checks each scheduling domain to see if it is due to be balanced,
9327 * and initiates a balancing operation if so.
9328 *
9329 * Balancing parameters are set up in init_sched_domains.
9330 */
9331static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9332{
9333 int continue_balancing = 1;
9334 int cpu = rq->cpu;
9335 unsigned long interval;
9336 struct sched_domain *sd;
9337 /* Earliest time when we have to do rebalance again */
9338 unsigned long next_balance = jiffies + 60*HZ;
9339 int update_next_balance = 0;
9340 int need_serialize, need_decay = 0;
9341 u64 max_cost = 0;
9342
9343 rcu_read_lock();
9344 for_each_domain(cpu, sd) {
9345 /*
9346 * Decay the newidle max times here because this is a regular
9347 * visit to all the domains. Decay ~1% per second.
9348 */
9349 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9350 sd->max_newidle_lb_cost =
9351 (sd->max_newidle_lb_cost * 253) / 256;
9352 sd->next_decay_max_lb_cost = jiffies + HZ;
9353 need_decay = 1;
9354 }
9355 max_cost += sd->max_newidle_lb_cost;
9356
9357 if (!(sd->flags & SD_LOAD_BALANCE))
9358 continue;
9359
9360 /*
9361 * Stop the load balance at this level. There is another
9362 * CPU in our sched group which is doing load balancing more
9363 * actively.
9364 */
9365 if (!continue_balancing) {
9366 if (need_decay)
9367 continue;
9368 break;
9369 }
9370
9371 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9372
9373 need_serialize = sd->flags & SD_SERIALIZE;
9374 if (need_serialize) {
9375 if (!spin_trylock(&balancing))
9376 goto out;
9377 }
9378
9379 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9380 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9381 /*
9382 * The LBF_DST_PINNED logic could have changed
9383 * env->dst_cpu, so we can't know our idle
9384 * state even if we migrated tasks. Update it.
9385 */
9386 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9387 }
9388 sd->last_balance = jiffies;
9389 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9390 }
9391 if (need_serialize)
9392 spin_unlock(&balancing);
9393out:
9394 if (time_after(next_balance, sd->last_balance + interval)) {
9395 next_balance = sd->last_balance + interval;
9396 update_next_balance = 1;
9397 }
9398 }
9399 if (need_decay) {
9400 /*
9401 * Ensure the rq-wide value also decays but keep it at a
9402 * reasonable floor to avoid funnies with rq->avg_idle.
9403 */
9404 rq->max_idle_balance_cost =
9405 max((u64)sysctl_sched_migration_cost, max_cost);
9406 }
9407 rcu_read_unlock();
9408
9409 /*
9410 * next_balance will be updated only when there is a need.
9411 * When the cpu is attached to null domain for ex, it will not be
9412 * updated.
9413 */
9414 if (likely(update_next_balance)) {
9415 rq->next_balance = next_balance;
9416
9417#ifdef CONFIG_NO_HZ_COMMON
9418 /*
9419 * If this CPU has been elected to perform the nohz idle
9420 * balance. Other idle CPUs have already rebalanced with
9421 * nohz_idle_balance() and nohz.next_balance has been
9422 * updated accordingly. This CPU is now running the idle load
9423 * balance for itself and we need to update the
9424 * nohz.next_balance accordingly.
9425 */
9426 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9427 nohz.next_balance = rq->next_balance;
9428#endif
9429 }
9430}
9431
d987fc7f
MG
9432static inline int on_null_domain(struct rq *rq)
9433{
9434 return unlikely(!rcu_dereference_sched(rq->sd));
9435}
9436
3451d024 9437#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9438/*
9439 * idle load balancing details
83cd4fe2
VP
9440 * - When one of the busy CPUs notice that there may be an idle rebalancing
9441 * needed, they will kick the idle load balancer, which then does idle
9442 * load balancing for all the idle CPUs.
9443 */
1e3c88bd 9444
3dd0337d 9445static inline int find_new_ilb(void)
1e3c88bd 9446{
0b005cf5 9447 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 9448
786d6dc7
SS
9449 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9450 return ilb;
9451
9452 return nr_cpu_ids;
1e3c88bd 9453}
1e3c88bd 9454
83cd4fe2
VP
9455/*
9456 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9457 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9458 * CPU (if there is one).
9459 */
a4064fb6 9460static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9461{
9462 int ilb_cpu;
9463
9464 nohz.next_balance++;
9465
3dd0337d 9466 ilb_cpu = find_new_ilb();
83cd4fe2 9467
0b005cf5
SS
9468 if (ilb_cpu >= nr_cpu_ids)
9469 return;
83cd4fe2 9470
a4064fb6 9471 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9472 if (flags & NOHZ_KICK_MASK)
1c792db7 9473 return;
4550487a 9474
1c792db7
SS
9475 /*
9476 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9477 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9478 * is idle. And the softirq performing nohz idle load balance
9479 * will be run before returning from the IPI.
9480 */
9481 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9482}
9483
9484/*
9485 * Current heuristic for kicking the idle load balancer in the presence
9486 * of an idle cpu in the system.
9487 * - This rq has more than one task.
9488 * - This rq has at least one CFS task and the capacity of the CPU is
9489 * significantly reduced because of RT tasks or IRQs.
9490 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9491 * multiple busy cpu.
9492 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9493 * domain span are idle.
9494 */
9495static void nohz_balancer_kick(struct rq *rq)
9496{
9497 unsigned long now = jiffies;
9498 struct sched_domain_shared *sds;
9499 struct sched_domain *sd;
9500 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9501 unsigned int flags = 0;
4550487a
PZ
9502
9503 if (unlikely(rq->idle_balance))
9504 return;
9505
9506 /*
9507 * We may be recently in ticked or tickless idle mode. At the first
9508 * busy tick after returning from idle, we will update the busy stats.
9509 */
00357f5e 9510 nohz_balance_exit_idle(rq);
4550487a
PZ
9511
9512 /*
9513 * None are in tickless mode and hence no need for NOHZ idle load
9514 * balancing.
9515 */
9516 if (likely(!atomic_read(&nohz.nr_cpus)))
9517 return;
9518
f643ea22
VG
9519 if (READ_ONCE(nohz.has_blocked) &&
9520 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9521 flags = NOHZ_STATS_KICK;
9522
4550487a 9523 if (time_before(now, nohz.next_balance))
a4064fb6 9524 goto out;
4550487a 9525
5fbdfae5 9526 if (rq->nr_running >= 2 || rq->misfit_task_load) {
a4064fb6 9527 flags = NOHZ_KICK_MASK;
4550487a
PZ
9528 goto out;
9529 }
9530
9531 rcu_read_lock();
9532 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9533 if (sds) {
9534 /*
9535 * XXX: write a coherent comment on why we do this.
9536 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9537 */
9538 nr_busy = atomic_read(&sds->nr_busy_cpus);
9539 if (nr_busy > 1) {
a4064fb6 9540 flags = NOHZ_KICK_MASK;
4550487a
PZ
9541 goto unlock;
9542 }
9543
9544 }
9545
9546 sd = rcu_dereference(rq->sd);
9547 if (sd) {
9548 if ((rq->cfs.h_nr_running >= 1) &&
9549 check_cpu_capacity(rq, sd)) {
a4064fb6 9550 flags = NOHZ_KICK_MASK;
4550487a
PZ
9551 goto unlock;
9552 }
9553 }
9554
011b27bb 9555 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a
PZ
9556 if (sd) {
9557 for_each_cpu(i, sched_domain_span(sd)) {
9558 if (i == cpu ||
9559 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9560 continue;
9561
9562 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9563 flags = NOHZ_KICK_MASK;
4550487a
PZ
9564 goto unlock;
9565 }
9566 }
9567 }
9568unlock:
9569 rcu_read_unlock();
9570out:
a4064fb6
PZ
9571 if (flags)
9572 kick_ilb(flags);
83cd4fe2
VP
9573}
9574
00357f5e 9575static void set_cpu_sd_state_busy(int cpu)
71325960 9576{
00357f5e 9577 struct sched_domain *sd;
a22e47a4 9578
00357f5e
PZ
9579 rcu_read_lock();
9580 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9581
00357f5e
PZ
9582 if (!sd || !sd->nohz_idle)
9583 goto unlock;
9584 sd->nohz_idle = 0;
9585
9586 atomic_inc(&sd->shared->nr_busy_cpus);
9587unlock:
9588 rcu_read_unlock();
71325960
SS
9589}
9590
00357f5e
PZ
9591void nohz_balance_exit_idle(struct rq *rq)
9592{
9593 SCHED_WARN_ON(rq != this_rq());
9594
9595 if (likely(!rq->nohz_tick_stopped))
9596 return;
9597
9598 rq->nohz_tick_stopped = 0;
9599 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9600 atomic_dec(&nohz.nr_cpus);
9601
9602 set_cpu_sd_state_busy(rq->cpu);
9603}
9604
9605static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9606{
9607 struct sched_domain *sd;
69e1e811 9608
69e1e811 9609 rcu_read_lock();
0e369d75 9610 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9611
9612 if (!sd || sd->nohz_idle)
9613 goto unlock;
9614 sd->nohz_idle = 1;
9615
0e369d75 9616 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9617unlock:
69e1e811
SS
9618 rcu_read_unlock();
9619}
9620
1e3c88bd 9621/*
97fb7a0a 9622 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9623 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9624 */
c1cc017c 9625void nohz_balance_enter_idle(int cpu)
1e3c88bd 9626{
00357f5e
PZ
9627 struct rq *rq = cpu_rq(cpu);
9628
9629 SCHED_WARN_ON(cpu != smp_processor_id());
9630
97fb7a0a 9631 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9632 if (!cpu_active(cpu))
9633 return;
9634
387bc8b5 9635 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9636 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9637 return;
9638
f643ea22
VG
9639 /*
9640 * Can be set safely without rq->lock held
9641 * If a clear happens, it will have evaluated last additions because
9642 * rq->lock is held during the check and the clear
9643 */
9644 rq->has_blocked_load = 1;
9645
9646 /*
9647 * The tick is still stopped but load could have been added in the
9648 * meantime. We set the nohz.has_blocked flag to trig a check of the
9649 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9650 * of nohz.has_blocked can only happen after checking the new load
9651 */
00357f5e 9652 if (rq->nohz_tick_stopped)
f643ea22 9653 goto out;
1e3c88bd 9654
97fb7a0a 9655 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9656 if (on_null_domain(rq))
d987fc7f
MG
9657 return;
9658
00357f5e
PZ
9659 rq->nohz_tick_stopped = 1;
9660
c1cc017c
AS
9661 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9662 atomic_inc(&nohz.nr_cpus);
00357f5e 9663
f643ea22
VG
9664 /*
9665 * Ensures that if nohz_idle_balance() fails to observe our
9666 * @idle_cpus_mask store, it must observe the @has_blocked
9667 * store.
9668 */
9669 smp_mb__after_atomic();
9670
00357f5e 9671 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9672
9673out:
9674 /*
9675 * Each time a cpu enter idle, we assume that it has blocked load and
9676 * enable the periodic update of the load of idle cpus
9677 */
9678 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9679}
1e3c88bd 9680
1e3c88bd 9681/*
31e77c93
VG
9682 * Internal function that runs load balance for all idle cpus. The load balance
9683 * can be a simple update of blocked load or a complete load balance with
9684 * tasks movement depending of flags.
9685 * The function returns false if the loop has stopped before running
9686 * through all idle CPUs.
1e3c88bd 9687 */
31e77c93
VG
9688static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9689 enum cpu_idle_type idle)
83cd4fe2 9690{
c5afb6a8 9691 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9692 unsigned long now = jiffies;
9693 unsigned long next_balance = now + 60*HZ;
f643ea22 9694 bool has_blocked_load = false;
c5afb6a8 9695 int update_next_balance = 0;
b7031a02 9696 int this_cpu = this_rq->cpu;
b7031a02 9697 int balance_cpu;
31e77c93 9698 int ret = false;
b7031a02 9699 struct rq *rq;
83cd4fe2 9700
b7031a02 9701 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9702
f643ea22
VG
9703 /*
9704 * We assume there will be no idle load after this update and clear
9705 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9706 * set the has_blocked flag and trig another update of idle load.
9707 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9708 * setting the flag, we are sure to not clear the state and not
9709 * check the load of an idle cpu.
9710 */
9711 WRITE_ONCE(nohz.has_blocked, 0);
9712
9713 /*
9714 * Ensures that if we miss the CPU, we must see the has_blocked
9715 * store from nohz_balance_enter_idle().
9716 */
9717 smp_mb();
9718
83cd4fe2 9719 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9720 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9721 continue;
9722
9723 /*
97fb7a0a
IM
9724 * If this CPU gets work to do, stop the load balancing
9725 * work being done for other CPUs. Next load
83cd4fe2
VP
9726 * balancing owner will pick it up.
9727 */
f643ea22
VG
9728 if (need_resched()) {
9729 has_blocked_load = true;
9730 goto abort;
9731 }
83cd4fe2 9732
5ed4f1d9
VG
9733 rq = cpu_rq(balance_cpu);
9734
63928384 9735 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9736
ed61bbc6
TC
9737 /*
9738 * If time for next balance is due,
9739 * do the balance.
9740 */
9741 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9742 struct rq_flags rf;
9743
31e77c93 9744 rq_lock_irqsave(rq, &rf);
ed61bbc6 9745 update_rq_clock(rq);
cee1afce 9746 cpu_load_update_idle(rq);
31e77c93 9747 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9748
b7031a02
PZ
9749 if (flags & NOHZ_BALANCE_KICK)
9750 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9751 }
83cd4fe2 9752
c5afb6a8
VG
9753 if (time_after(next_balance, rq->next_balance)) {
9754 next_balance = rq->next_balance;
9755 update_next_balance = 1;
9756 }
83cd4fe2 9757 }
c5afb6a8 9758
31e77c93
VG
9759 /* Newly idle CPU doesn't need an update */
9760 if (idle != CPU_NEWLY_IDLE) {
9761 update_blocked_averages(this_cpu);
9762 has_blocked_load |= this_rq->has_blocked_load;
9763 }
9764
b7031a02
PZ
9765 if (flags & NOHZ_BALANCE_KICK)
9766 rebalance_domains(this_rq, CPU_IDLE);
9767
f643ea22
VG
9768 WRITE_ONCE(nohz.next_blocked,
9769 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9770
31e77c93
VG
9771 /* The full idle balance loop has been done */
9772 ret = true;
9773
f643ea22
VG
9774abort:
9775 /* There is still blocked load, enable periodic update */
9776 if (has_blocked_load)
9777 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9778
c5afb6a8
VG
9779 /*
9780 * next_balance will be updated only when there is a need.
9781 * When the CPU is attached to null domain for ex, it will not be
9782 * updated.
9783 */
9784 if (likely(update_next_balance))
9785 nohz.next_balance = next_balance;
b7031a02 9786
31e77c93
VG
9787 return ret;
9788}
9789
9790/*
9791 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9792 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9793 */
9794static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9795{
9796 int this_cpu = this_rq->cpu;
9797 unsigned int flags;
9798
9799 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9800 return false;
9801
9802 if (idle != CPU_IDLE) {
9803 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9804 return false;
9805 }
9806
80eb8657 9807 /* could be _relaxed() */
31e77c93
VG
9808 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9809 if (!(flags & NOHZ_KICK_MASK))
9810 return false;
9811
9812 _nohz_idle_balance(this_rq, flags, idle);
9813
b7031a02 9814 return true;
83cd4fe2 9815}
31e77c93
VG
9816
9817static void nohz_newidle_balance(struct rq *this_rq)
9818{
9819 int this_cpu = this_rq->cpu;
9820
9821 /*
9822 * This CPU doesn't want to be disturbed by scheduler
9823 * housekeeping
9824 */
9825 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9826 return;
9827
9828 /* Will wake up very soon. No time for doing anything else*/
9829 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9830 return;
9831
9832 /* Don't need to update blocked load of idle CPUs*/
9833 if (!READ_ONCE(nohz.has_blocked) ||
9834 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9835 return;
9836
9837 raw_spin_unlock(&this_rq->lock);
9838 /*
9839 * This CPU is going to be idle and blocked load of idle CPUs
9840 * need to be updated. Run the ilb locally as it is a good
9841 * candidate for ilb instead of waking up another idle CPU.
9842 * Kick an normal ilb if we failed to do the update.
9843 */
9844 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9845 kick_ilb(NOHZ_STATS_KICK);
9846 raw_spin_lock(&this_rq->lock);
9847}
9848
dd707247
PZ
9849#else /* !CONFIG_NO_HZ_COMMON */
9850static inline void nohz_balancer_kick(struct rq *rq) { }
9851
31e77c93 9852static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9853{
9854 return false;
9855}
31e77c93
VG
9856
9857static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9858#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9859
47ea5412
PZ
9860/*
9861 * idle_balance is called by schedule() if this_cpu is about to become
9862 * idle. Attempts to pull tasks from other CPUs.
9863 */
9864static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9865{
9866 unsigned long next_balance = jiffies + HZ;
9867 int this_cpu = this_rq->cpu;
9868 struct sched_domain *sd;
9869 int pulled_task = 0;
9870 u64 curr_cost = 0;
9871
9872 /*
9873 * We must set idle_stamp _before_ calling idle_balance(), such that we
9874 * measure the duration of idle_balance() as idle time.
9875 */
9876 this_rq->idle_stamp = rq_clock(this_rq);
9877
9878 /*
9879 * Do not pull tasks towards !active CPUs...
9880 */
9881 if (!cpu_active(this_cpu))
9882 return 0;
9883
9884 /*
9885 * This is OK, because current is on_cpu, which avoids it being picked
9886 * for load-balance and preemption/IRQs are still disabled avoiding
9887 * further scheduler activity on it and we're being very careful to
9888 * re-start the picking loop.
9889 */
9890 rq_unpin_lock(this_rq, rf);
9891
9892 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9893 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9894
47ea5412
PZ
9895 rcu_read_lock();
9896 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9897 if (sd)
9898 update_next_balance(sd, &next_balance);
9899 rcu_read_unlock();
9900
31e77c93
VG
9901 nohz_newidle_balance(this_rq);
9902
47ea5412
PZ
9903 goto out;
9904 }
9905
9906 raw_spin_unlock(&this_rq->lock);
9907
9908 update_blocked_averages(this_cpu);
9909 rcu_read_lock();
9910 for_each_domain(this_cpu, sd) {
9911 int continue_balancing = 1;
9912 u64 t0, domain_cost;
9913
9914 if (!(sd->flags & SD_LOAD_BALANCE))
9915 continue;
9916
9917 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9918 update_next_balance(sd, &next_balance);
9919 break;
9920 }
9921
9922 if (sd->flags & SD_BALANCE_NEWIDLE) {
9923 t0 = sched_clock_cpu(this_cpu);
9924
9925 pulled_task = load_balance(this_cpu, this_rq,
9926 sd, CPU_NEWLY_IDLE,
9927 &continue_balancing);
9928
9929 domain_cost = sched_clock_cpu(this_cpu) - t0;
9930 if (domain_cost > sd->max_newidle_lb_cost)
9931 sd->max_newidle_lb_cost = domain_cost;
9932
9933 curr_cost += domain_cost;
9934 }
9935
9936 update_next_balance(sd, &next_balance);
9937
9938 /*
9939 * Stop searching for tasks to pull if there are
9940 * now runnable tasks on this rq.
9941 */
9942 if (pulled_task || this_rq->nr_running > 0)
9943 break;
9944 }
9945 rcu_read_unlock();
9946
9947 raw_spin_lock(&this_rq->lock);
9948
9949 if (curr_cost > this_rq->max_idle_balance_cost)
9950 this_rq->max_idle_balance_cost = curr_cost;
9951
457be908 9952out:
47ea5412
PZ
9953 /*
9954 * While browsing the domains, we released the rq lock, a task could
9955 * have been enqueued in the meantime. Since we're not going idle,
9956 * pretend we pulled a task.
9957 */
9958 if (this_rq->cfs.h_nr_running && !pulled_task)
9959 pulled_task = 1;
9960
47ea5412
PZ
9961 /* Move the next balance forward */
9962 if (time_after(this_rq->next_balance, next_balance))
9963 this_rq->next_balance = next_balance;
9964
9965 /* Is there a task of a high priority class? */
9966 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9967 pulled_task = -1;
9968
9969 if (pulled_task)
9970 this_rq->idle_stamp = 0;
9971
9972 rq_repin_lock(this_rq, rf);
9973
9974 return pulled_task;
9975}
9976
83cd4fe2
VP
9977/*
9978 * run_rebalance_domains is triggered when needed from the scheduler tick.
9979 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9980 */
0766f788 9981static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9982{
208cb16b 9983 struct rq *this_rq = this_rq();
6eb57e0d 9984 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9985 CPU_IDLE : CPU_NOT_IDLE;
9986
1e3c88bd 9987 /*
97fb7a0a
IM
9988 * If this CPU has a pending nohz_balance_kick, then do the
9989 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9990 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9991 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9992 * load balance only within the local sched_domain hierarchy
9993 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9994 */
b7031a02
PZ
9995 if (nohz_idle_balance(this_rq, idle))
9996 return;
9997
9998 /* normal load balance */
9999 update_blocked_averages(this_rq->cpu);
d4573c3e 10000 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10001}
10002
1e3c88bd
PZ
10003/*
10004 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10005 */
7caff66f 10006void trigger_load_balance(struct rq *rq)
1e3c88bd 10007{
1e3c88bd 10008 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10009 if (unlikely(on_null_domain(rq)))
10010 return;
10011
10012 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10013 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10014
10015 nohz_balancer_kick(rq);
1e3c88bd
PZ
10016}
10017
0bcdcf28
CE
10018static void rq_online_fair(struct rq *rq)
10019{
10020 update_sysctl();
0e59bdae
KT
10021
10022 update_runtime_enabled(rq);
0bcdcf28
CE
10023}
10024
10025static void rq_offline_fair(struct rq *rq)
10026{
10027 update_sysctl();
a4c96ae3
PB
10028
10029 /* Ensure any throttled groups are reachable by pick_next_task */
10030 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10031}
10032
55e12e5e 10033#endif /* CONFIG_SMP */
e1d1484f 10034
bf0f6f24 10035/*
d84b3131
FW
10036 * scheduler tick hitting a task of our scheduling class.
10037 *
10038 * NOTE: This function can be called remotely by the tick offload that
10039 * goes along full dynticks. Therefore no local assumption can be made
10040 * and everything must be accessed through the @rq and @curr passed in
10041 * parameters.
bf0f6f24 10042 */
8f4d37ec 10043static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10044{
10045 struct cfs_rq *cfs_rq;
10046 struct sched_entity *se = &curr->se;
10047
10048 for_each_sched_entity(se) {
10049 cfs_rq = cfs_rq_of(se);
8f4d37ec 10050 entity_tick(cfs_rq, se, queued);
bf0f6f24 10051 }
18bf2805 10052
b52da86e 10053 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10054 task_tick_numa(rq, curr);
3b1baa64
MR
10055
10056 update_misfit_status(curr, rq);
2802bf3c 10057 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10058}
10059
10060/*
cd29fe6f
PZ
10061 * called on fork with the child task as argument from the parent's context
10062 * - child not yet on the tasklist
10063 * - preemption disabled
bf0f6f24 10064 */
cd29fe6f 10065static void task_fork_fair(struct task_struct *p)
bf0f6f24 10066{
4fc420c9
DN
10067 struct cfs_rq *cfs_rq;
10068 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10069 struct rq *rq = this_rq();
8a8c69c3 10070 struct rq_flags rf;
bf0f6f24 10071
8a8c69c3 10072 rq_lock(rq, &rf);
861d034e
PZ
10073 update_rq_clock(rq);
10074
4fc420c9
DN
10075 cfs_rq = task_cfs_rq(current);
10076 curr = cfs_rq->curr;
e210bffd
PZ
10077 if (curr) {
10078 update_curr(cfs_rq);
b5d9d734 10079 se->vruntime = curr->vruntime;
e210bffd 10080 }
aeb73b04 10081 place_entity(cfs_rq, se, 1);
4d78e7b6 10082
cd29fe6f 10083 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10084 /*
edcb60a3
IM
10085 * Upon rescheduling, sched_class::put_prev_task() will place
10086 * 'current' within the tree based on its new key value.
10087 */
4d78e7b6 10088 swap(curr->vruntime, se->vruntime);
8875125e 10089 resched_curr(rq);
4d78e7b6 10090 }
bf0f6f24 10091
88ec22d3 10092 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10093 rq_unlock(rq, &rf);
bf0f6f24
IM
10094}
10095
cb469845
SR
10096/*
10097 * Priority of the task has changed. Check to see if we preempt
10098 * the current task.
10099 */
da7a735e
PZ
10100static void
10101prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10102{
da0c1e65 10103 if (!task_on_rq_queued(p))
da7a735e
PZ
10104 return;
10105
cb469845
SR
10106 /*
10107 * Reschedule if we are currently running on this runqueue and
10108 * our priority decreased, or if we are not currently running on
10109 * this runqueue and our priority is higher than the current's
10110 */
da7a735e 10111 if (rq->curr == p) {
cb469845 10112 if (p->prio > oldprio)
8875125e 10113 resched_curr(rq);
cb469845 10114 } else
15afe09b 10115 check_preempt_curr(rq, p, 0);
cb469845
SR
10116}
10117
daa59407 10118static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10119{
10120 struct sched_entity *se = &p->se;
da7a735e
PZ
10121
10122 /*
daa59407
BP
10123 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10124 * the dequeue_entity(.flags=0) will already have normalized the
10125 * vruntime.
10126 */
10127 if (p->on_rq)
10128 return true;
10129
10130 /*
10131 * When !on_rq, vruntime of the task has usually NOT been normalized.
10132 * But there are some cases where it has already been normalized:
da7a735e 10133 *
daa59407
BP
10134 * - A forked child which is waiting for being woken up by
10135 * wake_up_new_task().
10136 * - A task which has been woken up by try_to_wake_up() and
10137 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10138 */
d0cdb3ce
SM
10139 if (!se->sum_exec_runtime ||
10140 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10141 return true;
10142
10143 return false;
10144}
10145
09a43ace
VG
10146#ifdef CONFIG_FAIR_GROUP_SCHED
10147/*
10148 * Propagate the changes of the sched_entity across the tg tree to make it
10149 * visible to the root
10150 */
10151static void propagate_entity_cfs_rq(struct sched_entity *se)
10152{
10153 struct cfs_rq *cfs_rq;
10154
10155 /* Start to propagate at parent */
10156 se = se->parent;
10157
10158 for_each_sched_entity(se) {
10159 cfs_rq = cfs_rq_of(se);
10160
10161 if (cfs_rq_throttled(cfs_rq))
10162 break;
10163
88c0616e 10164 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10165 }
10166}
10167#else
10168static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10169#endif
10170
df217913 10171static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10172{
daa59407
BP
10173 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10174
9d89c257 10175 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10176 update_load_avg(cfs_rq, se, 0);
a05e8c51 10177 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10178 update_tg_load_avg(cfs_rq, false);
09a43ace 10179 propagate_entity_cfs_rq(se);
da7a735e
PZ
10180}
10181
df217913 10182static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10183{
daa59407 10184 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10185
10186#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10187 /*
10188 * Since the real-depth could have been changed (only FAIR
10189 * class maintain depth value), reset depth properly.
10190 */
10191 se->depth = se->parent ? se->parent->depth + 1 : 0;
10192#endif
7855a35a 10193
df217913 10194 /* Synchronize entity with its cfs_rq */
88c0616e 10195 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10196 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10197 update_tg_load_avg(cfs_rq, false);
09a43ace 10198 propagate_entity_cfs_rq(se);
df217913
VG
10199}
10200
10201static void detach_task_cfs_rq(struct task_struct *p)
10202{
10203 struct sched_entity *se = &p->se;
10204 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10205
10206 if (!vruntime_normalized(p)) {
10207 /*
10208 * Fix up our vruntime so that the current sleep doesn't
10209 * cause 'unlimited' sleep bonus.
10210 */
10211 place_entity(cfs_rq, se, 0);
10212 se->vruntime -= cfs_rq->min_vruntime;
10213 }
10214
10215 detach_entity_cfs_rq(se);
10216}
10217
10218static void attach_task_cfs_rq(struct task_struct *p)
10219{
10220 struct sched_entity *se = &p->se;
10221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10222
10223 attach_entity_cfs_rq(se);
daa59407
BP
10224
10225 if (!vruntime_normalized(p))
10226 se->vruntime += cfs_rq->min_vruntime;
10227}
6efdb105 10228
daa59407
BP
10229static void switched_from_fair(struct rq *rq, struct task_struct *p)
10230{
10231 detach_task_cfs_rq(p);
10232}
10233
10234static void switched_to_fair(struct rq *rq, struct task_struct *p)
10235{
10236 attach_task_cfs_rq(p);
7855a35a 10237
daa59407 10238 if (task_on_rq_queued(p)) {
7855a35a 10239 /*
daa59407
BP
10240 * We were most likely switched from sched_rt, so
10241 * kick off the schedule if running, otherwise just see
10242 * if we can still preempt the current task.
7855a35a 10243 */
daa59407
BP
10244 if (rq->curr == p)
10245 resched_curr(rq);
10246 else
10247 check_preempt_curr(rq, p, 0);
7855a35a 10248 }
cb469845
SR
10249}
10250
83b699ed
SV
10251/* Account for a task changing its policy or group.
10252 *
10253 * This routine is mostly called to set cfs_rq->curr field when a task
10254 * migrates between groups/classes.
10255 */
10256static void set_curr_task_fair(struct rq *rq)
10257{
10258 struct sched_entity *se = &rq->curr->se;
10259
ec12cb7f
PT
10260 for_each_sched_entity(se) {
10261 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10262
10263 set_next_entity(cfs_rq, se);
10264 /* ensure bandwidth has been allocated on our new cfs_rq */
10265 account_cfs_rq_runtime(cfs_rq, 0);
10266 }
83b699ed
SV
10267}
10268
029632fb
PZ
10269void init_cfs_rq(struct cfs_rq *cfs_rq)
10270{
bfb06889 10271 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10272 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10273#ifndef CONFIG_64BIT
10274 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10275#endif
141965c7 10276#ifdef CONFIG_SMP
2a2f5d4e 10277 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10278#endif
029632fb
PZ
10279}
10280
810b3817 10281#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10282static void task_set_group_fair(struct task_struct *p)
10283{
10284 struct sched_entity *se = &p->se;
10285
10286 set_task_rq(p, task_cpu(p));
10287 se->depth = se->parent ? se->parent->depth + 1 : 0;
10288}
10289
bc54da21 10290static void task_move_group_fair(struct task_struct *p)
810b3817 10291{
daa59407 10292 detach_task_cfs_rq(p);
b2b5ce02 10293 set_task_rq(p, task_cpu(p));
6efdb105
BP
10294
10295#ifdef CONFIG_SMP
10296 /* Tell se's cfs_rq has been changed -- migrated */
10297 p->se.avg.last_update_time = 0;
10298#endif
daa59407 10299 attach_task_cfs_rq(p);
810b3817 10300}
029632fb 10301
ea86cb4b
VG
10302static void task_change_group_fair(struct task_struct *p, int type)
10303{
10304 switch (type) {
10305 case TASK_SET_GROUP:
10306 task_set_group_fair(p);
10307 break;
10308
10309 case TASK_MOVE_GROUP:
10310 task_move_group_fair(p);
10311 break;
10312 }
10313}
10314
029632fb
PZ
10315void free_fair_sched_group(struct task_group *tg)
10316{
10317 int i;
10318
10319 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10320
10321 for_each_possible_cpu(i) {
10322 if (tg->cfs_rq)
10323 kfree(tg->cfs_rq[i]);
6fe1f348 10324 if (tg->se)
029632fb
PZ
10325 kfree(tg->se[i]);
10326 }
10327
10328 kfree(tg->cfs_rq);
10329 kfree(tg->se);
10330}
10331
10332int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10333{
029632fb 10334 struct sched_entity *se;
b7fa30c9 10335 struct cfs_rq *cfs_rq;
029632fb
PZ
10336 int i;
10337
6396bb22 10338 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10339 if (!tg->cfs_rq)
10340 goto err;
6396bb22 10341 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10342 if (!tg->se)
10343 goto err;
10344
10345 tg->shares = NICE_0_LOAD;
10346
10347 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10348
10349 for_each_possible_cpu(i) {
10350 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10351 GFP_KERNEL, cpu_to_node(i));
10352 if (!cfs_rq)
10353 goto err;
10354
10355 se = kzalloc_node(sizeof(struct sched_entity),
10356 GFP_KERNEL, cpu_to_node(i));
10357 if (!se)
10358 goto err_free_rq;
10359
10360 init_cfs_rq(cfs_rq);
10361 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10362 init_entity_runnable_average(se);
029632fb
PZ
10363 }
10364
10365 return 1;
10366
10367err_free_rq:
10368 kfree(cfs_rq);
10369err:
10370 return 0;
10371}
10372
8663e24d
PZ
10373void online_fair_sched_group(struct task_group *tg)
10374{
10375 struct sched_entity *se;
10376 struct rq *rq;
10377 int i;
10378
10379 for_each_possible_cpu(i) {
10380 rq = cpu_rq(i);
10381 se = tg->se[i];
10382
10383 raw_spin_lock_irq(&rq->lock);
4126bad6 10384 update_rq_clock(rq);
d0326691 10385 attach_entity_cfs_rq(se);
55e16d30 10386 sync_throttle(tg, i);
8663e24d
PZ
10387 raw_spin_unlock_irq(&rq->lock);
10388 }
10389}
10390
6fe1f348 10391void unregister_fair_sched_group(struct task_group *tg)
029632fb 10392{
029632fb 10393 unsigned long flags;
6fe1f348
PZ
10394 struct rq *rq;
10395 int cpu;
029632fb 10396
6fe1f348
PZ
10397 for_each_possible_cpu(cpu) {
10398 if (tg->se[cpu])
10399 remove_entity_load_avg(tg->se[cpu]);
029632fb 10400
6fe1f348
PZ
10401 /*
10402 * Only empty task groups can be destroyed; so we can speculatively
10403 * check on_list without danger of it being re-added.
10404 */
10405 if (!tg->cfs_rq[cpu]->on_list)
10406 continue;
10407
10408 rq = cpu_rq(cpu);
10409
10410 raw_spin_lock_irqsave(&rq->lock, flags);
10411 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10412 raw_spin_unlock_irqrestore(&rq->lock, flags);
10413 }
029632fb
PZ
10414}
10415
10416void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10417 struct sched_entity *se, int cpu,
10418 struct sched_entity *parent)
10419{
10420 struct rq *rq = cpu_rq(cpu);
10421
10422 cfs_rq->tg = tg;
10423 cfs_rq->rq = rq;
029632fb
PZ
10424 init_cfs_rq_runtime(cfs_rq);
10425
10426 tg->cfs_rq[cpu] = cfs_rq;
10427 tg->se[cpu] = se;
10428
10429 /* se could be NULL for root_task_group */
10430 if (!se)
10431 return;
10432
fed14d45 10433 if (!parent) {
029632fb 10434 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10435 se->depth = 0;
10436 } else {
029632fb 10437 se->cfs_rq = parent->my_q;
fed14d45
PZ
10438 se->depth = parent->depth + 1;
10439 }
029632fb
PZ
10440
10441 se->my_q = cfs_rq;
0ac9b1c2
PT
10442 /* guarantee group entities always have weight */
10443 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10444 se->parent = parent;
10445}
10446
10447static DEFINE_MUTEX(shares_mutex);
10448
10449int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10450{
10451 int i;
029632fb
PZ
10452
10453 /*
10454 * We can't change the weight of the root cgroup.
10455 */
10456 if (!tg->se[0])
10457 return -EINVAL;
10458
10459 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10460
10461 mutex_lock(&shares_mutex);
10462 if (tg->shares == shares)
10463 goto done;
10464
10465 tg->shares = shares;
10466 for_each_possible_cpu(i) {
10467 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10468 struct sched_entity *se = tg->se[i];
10469 struct rq_flags rf;
029632fb 10470
029632fb 10471 /* Propagate contribution to hierarchy */
8a8c69c3 10472 rq_lock_irqsave(rq, &rf);
71b1da46 10473 update_rq_clock(rq);
89ee048f 10474 for_each_sched_entity(se) {
88c0616e 10475 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10476 update_cfs_group(se);
89ee048f 10477 }
8a8c69c3 10478 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10479 }
10480
10481done:
10482 mutex_unlock(&shares_mutex);
10483 return 0;
10484}
10485#else /* CONFIG_FAIR_GROUP_SCHED */
10486
10487void free_fair_sched_group(struct task_group *tg) { }
10488
10489int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10490{
10491 return 1;
10492}
10493
8663e24d
PZ
10494void online_fair_sched_group(struct task_group *tg) { }
10495
6fe1f348 10496void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10497
10498#endif /* CONFIG_FAIR_GROUP_SCHED */
10499
810b3817 10500
6d686f45 10501static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10502{
10503 struct sched_entity *se = &task->se;
0d721cea
PW
10504 unsigned int rr_interval = 0;
10505
10506 /*
10507 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10508 * idle runqueue:
10509 */
0d721cea 10510 if (rq->cfs.load.weight)
a59f4e07 10511 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10512
10513 return rr_interval;
10514}
10515
bf0f6f24
IM
10516/*
10517 * All the scheduling class methods:
10518 */
029632fb 10519const struct sched_class fair_sched_class = {
5522d5d5 10520 .next = &idle_sched_class,
bf0f6f24
IM
10521 .enqueue_task = enqueue_task_fair,
10522 .dequeue_task = dequeue_task_fair,
10523 .yield_task = yield_task_fair,
d95f4122 10524 .yield_to_task = yield_to_task_fair,
bf0f6f24 10525
2e09bf55 10526 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10527
10528 .pick_next_task = pick_next_task_fair,
10529 .put_prev_task = put_prev_task_fair,
10530
681f3e68 10531#ifdef CONFIG_SMP
4ce72a2c 10532 .select_task_rq = select_task_rq_fair,
0a74bef8 10533 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10534
0bcdcf28
CE
10535 .rq_online = rq_online_fair,
10536 .rq_offline = rq_offline_fair,
88ec22d3 10537
12695578 10538 .task_dead = task_dead_fair,
c5b28038 10539 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10540#endif
bf0f6f24 10541
83b699ed 10542 .set_curr_task = set_curr_task_fair,
bf0f6f24 10543 .task_tick = task_tick_fair,
cd29fe6f 10544 .task_fork = task_fork_fair,
cb469845
SR
10545
10546 .prio_changed = prio_changed_fair,
da7a735e 10547 .switched_from = switched_from_fair,
cb469845 10548 .switched_to = switched_to_fair,
810b3817 10549
0d721cea
PW
10550 .get_rr_interval = get_rr_interval_fair,
10551
6e998916
SG
10552 .update_curr = update_curr_fair,
10553
810b3817 10554#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10555 .task_change_group = task_change_group_fair,
810b3817 10556#endif
bf0f6f24
IM
10557};
10558
10559#ifdef CONFIG_SCHED_DEBUG
029632fb 10560void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10561{
c40f7d74 10562 struct cfs_rq *cfs_rq;
bf0f6f24 10563
5973e5b9 10564 rcu_read_lock();
c40f7d74 10565 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 10566 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10567 rcu_read_unlock();
bf0f6f24 10568}
397f2378
SD
10569
10570#ifdef CONFIG_NUMA_BALANCING
10571void show_numa_stats(struct task_struct *p, struct seq_file *m)
10572{
10573 int node;
10574 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10575
10576 for_each_online_node(node) {
10577 if (p->numa_faults) {
10578 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10579 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10580 }
10581 if (p->numa_group) {
10582 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10583 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10584 }
10585 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10586 }
10587}
10588#endif /* CONFIG_NUMA_BALANCING */
10589#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10590
10591__init void init_sched_fair_class(void)
10592{
10593#ifdef CONFIG_SMP
10594 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10595
3451d024 10596#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10597 nohz.next_balance = jiffies;
f643ea22 10598 nohz.next_blocked = jiffies;
029632fb 10599 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10600#endif
10601#endif /* SMP */
10602
10603}