]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/deadline: Fix the intention to re-evalute tick dependency for offline CPU
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
265#ifdef CONFIG_SCHED_DEBUG
266 WARN_ON_ONCE(!entity_is_task(se));
267#endif
268 return container_of(se, struct task_struct, se);
269}
270
b758149c
PZ
271/* Walk up scheduling entities hierarchy */
272#define for_each_sched_entity(se) \
273 for (; se; se = se->parent)
274
275static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
276{
277 return p->se.cfs_rq;
278}
279
280/* runqueue on which this entity is (to be) queued */
281static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
282{
283 return se->cfs_rq;
284}
285
286/* runqueue "owned" by this group */
287static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
288{
289 return grp->my_q;
290}
291
3d4b47b4
PZ
292static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (!cfs_rq->on_list) {
67e86250
PT
295 /*
296 * Ensure we either appear before our parent (if already
297 * enqueued) or force our parent to appear after us when it is
298 * enqueued. The fact that we always enqueue bottom-up
299 * reduces this to two cases.
300 */
301 if (cfs_rq->tg->parent &&
302 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
303 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 } else {
306 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 307 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 308 }
3d4b47b4
PZ
309
310 cfs_rq->on_list = 1;
311 }
312}
313
314static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315{
316 if (cfs_rq->on_list) {
317 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 cfs_rq->on_list = 0;
319 }
320}
321
b758149c
PZ
322/* Iterate thr' all leaf cfs_rq's on a runqueue */
323#define for_each_leaf_cfs_rq(rq, cfs_rq) \
324 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325
326/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 327static inline struct cfs_rq *
b758149c
PZ
328is_same_group(struct sched_entity *se, struct sched_entity *pse)
329{
330 if (se->cfs_rq == pse->cfs_rq)
fed14d45 331 return se->cfs_rq;
b758149c 332
fed14d45 333 return NULL;
b758149c
PZ
334}
335
336static inline struct sched_entity *parent_entity(struct sched_entity *se)
337{
338 return se->parent;
339}
340
464b7527
PZ
341static void
342find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343{
344 int se_depth, pse_depth;
345
346 /*
347 * preemption test can be made between sibling entities who are in the
348 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
349 * both tasks until we find their ancestors who are siblings of common
350 * parent.
351 */
352
353 /* First walk up until both entities are at same depth */
fed14d45
PZ
354 se_depth = (*se)->depth;
355 pse_depth = (*pse)->depth;
464b7527
PZ
356
357 while (se_depth > pse_depth) {
358 se_depth--;
359 *se = parent_entity(*se);
360 }
361
362 while (pse_depth > se_depth) {
363 pse_depth--;
364 *pse = parent_entity(*pse);
365 }
366
367 while (!is_same_group(*se, *pse)) {
368 *se = parent_entity(*se);
369 *pse = parent_entity(*pse);
370 }
371}
372
8f48894f
PZ
373#else /* !CONFIG_FAIR_GROUP_SCHED */
374
375static inline struct task_struct *task_of(struct sched_entity *se)
376{
377 return container_of(se, struct task_struct, se);
378}
bf0f6f24 379
62160e3f
IM
380static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381{
382 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
383}
384
385#define entity_is_task(se) 1
386
b758149c
PZ
387#define for_each_sched_entity(se) \
388 for (; se; se = NULL)
bf0f6f24 389
b758149c 390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 391{
b758149c 392 return &task_rq(p)->cfs;
bf0f6f24
IM
393}
394
b758149c
PZ
395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396{
397 struct task_struct *p = task_of(se);
398 struct rq *rq = task_rq(p);
399
400 return &rq->cfs;
401}
402
403/* runqueue "owned" by this group */
404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
405{
406 return NULL;
407}
408
3d4b47b4
PZ
409static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
410{
411}
412
413static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
414{
415}
416
b758149c
PZ
417#define for_each_leaf_cfs_rq(rq, cfs_rq) \
418 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419
b758149c
PZ
420static inline struct sched_entity *parent_entity(struct sched_entity *se)
421{
422 return NULL;
423}
424
464b7527
PZ
425static inline void
426find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427{
428}
429
b758149c
PZ
430#endif /* CONFIG_FAIR_GROUP_SCHED */
431
6c16a6dc 432static __always_inline
9dbdb155 433void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
434
435/**************************************************************
436 * Scheduling class tree data structure manipulation methods:
437 */
438
1bf08230 439static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 440{
1bf08230 441 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 442 if (delta > 0)
1bf08230 443 max_vruntime = vruntime;
02e0431a 444
1bf08230 445 return max_vruntime;
02e0431a
PZ
446}
447
0702e3eb 448static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
449{
450 s64 delta = (s64)(vruntime - min_vruntime);
451 if (delta < 0)
452 min_vruntime = vruntime;
453
454 return min_vruntime;
455}
456
54fdc581
FC
457static inline int entity_before(struct sched_entity *a,
458 struct sched_entity *b)
459{
460 return (s64)(a->vruntime - b->vruntime) < 0;
461}
462
1af5f730
PZ
463static void update_min_vruntime(struct cfs_rq *cfs_rq)
464{
465 u64 vruntime = cfs_rq->min_vruntime;
466
1af5f730
PZ
467 if (cfs_rq->rb_leftmost) {
468 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
469 struct sched_entity,
470 run_node);
471
97a7142f 472 vruntime = se->vruntime;
1af5f730
PZ
473 }
474
97a7142f
BP
475 if (cfs_rq->curr)
476 vruntime = min_vruntime(vruntime, cfs_rq->curr->vruntime);
477
1bf08230 478 /* ensure we never gain time by being placed backwards. */
1af5f730 479 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
480#ifndef CONFIG_64BIT
481 smp_wmb();
482 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
483#endif
1af5f730
PZ
484}
485
bf0f6f24
IM
486/*
487 * Enqueue an entity into the rb-tree:
488 */
0702e3eb 489static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
490{
491 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
492 struct rb_node *parent = NULL;
493 struct sched_entity *entry;
bf0f6f24
IM
494 int leftmost = 1;
495
496 /*
497 * Find the right place in the rbtree:
498 */
499 while (*link) {
500 parent = *link;
501 entry = rb_entry(parent, struct sched_entity, run_node);
502 /*
503 * We dont care about collisions. Nodes with
504 * the same key stay together.
505 */
2bd2d6f2 506 if (entity_before(se, entry)) {
bf0f6f24
IM
507 link = &parent->rb_left;
508 } else {
509 link = &parent->rb_right;
510 leftmost = 0;
511 }
512 }
513
514 /*
515 * Maintain a cache of leftmost tree entries (it is frequently
516 * used):
517 */
1af5f730 518 if (leftmost)
57cb499d 519 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
520
521 rb_link_node(&se->run_node, parent, link);
522 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
523}
524
0702e3eb 525static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 526{
3fe69747
PZ
527 if (cfs_rq->rb_leftmost == &se->run_node) {
528 struct rb_node *next_node;
3fe69747
PZ
529
530 next_node = rb_next(&se->run_node);
531 cfs_rq->rb_leftmost = next_node;
3fe69747 532 }
e9acbff6 533
bf0f6f24 534 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
535}
536
029632fb 537struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 538{
f4b6755f
PZ
539 struct rb_node *left = cfs_rq->rb_leftmost;
540
541 if (!left)
542 return NULL;
543
544 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
545}
546
ac53db59
RR
547static struct sched_entity *__pick_next_entity(struct sched_entity *se)
548{
549 struct rb_node *next = rb_next(&se->run_node);
550
551 if (!next)
552 return NULL;
553
554 return rb_entry(next, struct sched_entity, run_node);
555}
556
557#ifdef CONFIG_SCHED_DEBUG
029632fb 558struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 559{
7eee3e67 560 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 561
70eee74b
BS
562 if (!last)
563 return NULL;
7eee3e67
IM
564
565 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
566}
567
bf0f6f24
IM
568/**************************************************************
569 * Scheduling class statistics methods:
570 */
571
acb4a848 572int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 573 void __user *buffer, size_t *lenp,
b2be5e96
PZ
574 loff_t *ppos)
575{
8d65af78 576 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 577 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
578
579 if (ret || !write)
580 return ret;
581
582 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
583 sysctl_sched_min_granularity);
584
acb4a848
CE
585#define WRT_SYSCTL(name) \
586 (normalized_sysctl_##name = sysctl_##name / (factor))
587 WRT_SYSCTL(sched_min_granularity);
588 WRT_SYSCTL(sched_latency);
589 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
590#undef WRT_SYSCTL
591
b2be5e96
PZ
592 return 0;
593}
594#endif
647e7cac 595
a7be37ac 596/*
f9c0b095 597 * delta /= w
a7be37ac 598 */
9dbdb155 599static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 600{
f9c0b095 601 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 602 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
603
604 return delta;
605}
606
647e7cac
IM
607/*
608 * The idea is to set a period in which each task runs once.
609 *
532b1858 610 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
611 * this period because otherwise the slices get too small.
612 *
613 * p = (nr <= nl) ? l : l*nr/nl
614 */
4d78e7b6
PZ
615static u64 __sched_period(unsigned long nr_running)
616{
8e2b0bf3
BF
617 if (unlikely(nr_running > sched_nr_latency))
618 return nr_running * sysctl_sched_min_granularity;
619 else
620 return sysctl_sched_latency;
4d78e7b6
PZ
621}
622
647e7cac
IM
623/*
624 * We calculate the wall-time slice from the period by taking a part
625 * proportional to the weight.
626 *
f9c0b095 627 * s = p*P[w/rw]
647e7cac 628 */
6d0f0ebd 629static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 630{
0a582440 631 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 632
0a582440 633 for_each_sched_entity(se) {
6272d68c 634 struct load_weight *load;
3104bf03 635 struct load_weight lw;
6272d68c
LM
636
637 cfs_rq = cfs_rq_of(se);
638 load = &cfs_rq->load;
f9c0b095 639
0a582440 640 if (unlikely(!se->on_rq)) {
3104bf03 641 lw = cfs_rq->load;
0a582440
MG
642
643 update_load_add(&lw, se->load.weight);
644 load = &lw;
645 }
9dbdb155 646 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
647 }
648 return slice;
bf0f6f24
IM
649}
650
647e7cac 651/*
660cc00f 652 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 653 *
f9c0b095 654 * vs = s/w
647e7cac 655 */
f9c0b095 656static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 657{
f9c0b095 658 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
659}
660
a75cdaa9 661#ifdef CONFIG_SMP
772bd008 662static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
663static unsigned long task_h_load(struct task_struct *p);
664
9d89c257
YD
665/*
666 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
667 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
668 * dependent on this value.
9d89c257
YD
669 */
670#define LOAD_AVG_PERIOD 32
671#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 672#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 673
540247fb
YD
674/* Give new sched_entity start runnable values to heavy its load in infant time */
675void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 676{
540247fb 677 struct sched_avg *sa = &se->avg;
a75cdaa9 678
9d89c257
YD
679 sa->last_update_time = 0;
680 /*
681 * sched_avg's period_contrib should be strictly less then 1024, so
682 * we give it 1023 to make sure it is almost a period (1024us), and
683 * will definitely be update (after enqueue).
684 */
685 sa->period_contrib = 1023;
540247fb 686 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 687 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
688 /*
689 * At this point, util_avg won't be used in select_task_rq_fair anyway
690 */
691 sa->util_avg = 0;
692 sa->util_sum = 0;
9d89c257 693 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 694}
7ea241af 695
7dc603c9
PZ
696static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
697static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 698static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
699static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
700
2b8c41da
YD
701/*
702 * With new tasks being created, their initial util_avgs are extrapolated
703 * based on the cfs_rq's current util_avg:
704 *
705 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
706 *
707 * However, in many cases, the above util_avg does not give a desired
708 * value. Moreover, the sum of the util_avgs may be divergent, such
709 * as when the series is a harmonic series.
710 *
711 * To solve this problem, we also cap the util_avg of successive tasks to
712 * only 1/2 of the left utilization budget:
713 *
714 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
715 *
716 * where n denotes the nth task.
717 *
718 * For example, a simplest series from the beginning would be like:
719 *
720 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
721 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
722 *
723 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
724 * if util_avg > util_avg_cap.
725 */
726void post_init_entity_util_avg(struct sched_entity *se)
727{
728 struct cfs_rq *cfs_rq = cfs_rq_of(se);
729 struct sched_avg *sa = &se->avg;
172895e6 730 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 731 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
732
733 if (cap > 0) {
734 if (cfs_rq->avg.util_avg != 0) {
735 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
736 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
737
738 if (sa->util_avg > cap)
739 sa->util_avg = cap;
740 } else {
741 sa->util_avg = cap;
742 }
743 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
744 }
7dc603c9
PZ
745
746 if (entity_is_task(se)) {
747 struct task_struct *p = task_of(se);
748 if (p->sched_class != &fair_sched_class) {
749 /*
750 * For !fair tasks do:
751 *
752 update_cfs_rq_load_avg(now, cfs_rq, false);
753 attach_entity_load_avg(cfs_rq, se);
754 switched_from_fair(rq, p);
755 *
756 * such that the next switched_to_fair() has the
757 * expected state.
758 */
759 se->avg.last_update_time = now;
760 return;
761 }
762 }
763
7c3edd2c 764 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 765 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 766 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
767}
768
7dc603c9 769#else /* !CONFIG_SMP */
540247fb 770void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
771{
772}
2b8c41da
YD
773void post_init_entity_util_avg(struct sched_entity *se)
774{
775}
3d30544f
PZ
776static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
777{
778}
7dc603c9 779#endif /* CONFIG_SMP */
a75cdaa9 780
bf0f6f24 781/*
9dbdb155 782 * Update the current task's runtime statistics.
bf0f6f24 783 */
b7cc0896 784static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 785{
429d43bc 786 struct sched_entity *curr = cfs_rq->curr;
78becc27 787 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 788 u64 delta_exec;
bf0f6f24
IM
789
790 if (unlikely(!curr))
791 return;
792
9dbdb155
PZ
793 delta_exec = now - curr->exec_start;
794 if (unlikely((s64)delta_exec <= 0))
34f28ecd 795 return;
bf0f6f24 796
8ebc91d9 797 curr->exec_start = now;
d842de87 798
9dbdb155
PZ
799 schedstat_set(curr->statistics.exec_max,
800 max(delta_exec, curr->statistics.exec_max));
801
802 curr->sum_exec_runtime += delta_exec;
803 schedstat_add(cfs_rq, exec_clock, delta_exec);
804
805 curr->vruntime += calc_delta_fair(delta_exec, curr);
806 update_min_vruntime(cfs_rq);
807
d842de87
SV
808 if (entity_is_task(curr)) {
809 struct task_struct *curtask = task_of(curr);
810
f977bb49 811 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 812 cpuacct_charge(curtask, delta_exec);
f06febc9 813 account_group_exec_runtime(curtask, delta_exec);
d842de87 814 }
ec12cb7f
PT
815
816 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
817}
818
6e998916
SG
819static void update_curr_fair(struct rq *rq)
820{
821 update_curr(cfs_rq_of(&rq->curr->se));
822}
823
3ea94de1 824#ifdef CONFIG_SCHEDSTATS
bf0f6f24 825static inline void
5870db5b 826update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 827{
3ea94de1
JP
828 u64 wait_start = rq_clock(rq_of(cfs_rq));
829
830 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
831 likely(wait_start > se->statistics.wait_start))
832 wait_start -= se->statistics.wait_start;
833
834 se->statistics.wait_start = wait_start;
bf0f6f24
IM
835}
836
3ea94de1
JP
837static void
838update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
839{
840 struct task_struct *p;
cb251765
MG
841 u64 delta;
842
843 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
844
845 if (entity_is_task(se)) {
846 p = task_of(se);
847 if (task_on_rq_migrating(p)) {
848 /*
849 * Preserve migrating task's wait time so wait_start
850 * time stamp can be adjusted to accumulate wait time
851 * prior to migration.
852 */
853 se->statistics.wait_start = delta;
854 return;
855 }
856 trace_sched_stat_wait(p, delta);
857 }
858
859 se->statistics.wait_max = max(se->statistics.wait_max, delta);
860 se->statistics.wait_count++;
861 se->statistics.wait_sum += delta;
862 se->statistics.wait_start = 0;
863}
3ea94de1 864
bf0f6f24
IM
865/*
866 * Task is being enqueued - update stats:
867 */
cb251765
MG
868static inline void
869update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 870{
bf0f6f24
IM
871 /*
872 * Are we enqueueing a waiting task? (for current tasks
873 * a dequeue/enqueue event is a NOP)
874 */
429d43bc 875 if (se != cfs_rq->curr)
5870db5b 876 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
877}
878
bf0f6f24 879static inline void
cb251765 880update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 881{
bf0f6f24
IM
882 /*
883 * Mark the end of the wait period if dequeueing a
884 * waiting task:
885 */
429d43bc 886 if (se != cfs_rq->curr)
9ef0a961 887 update_stats_wait_end(cfs_rq, se);
cb251765
MG
888
889 if (flags & DEQUEUE_SLEEP) {
890 if (entity_is_task(se)) {
891 struct task_struct *tsk = task_of(se);
892
893 if (tsk->state & TASK_INTERRUPTIBLE)
894 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
895 if (tsk->state & TASK_UNINTERRUPTIBLE)
896 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
897 }
898 }
899
900}
901#else
902static inline void
903update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
904{
905}
906
907static inline void
908update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
909{
910}
911
912static inline void
913update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
914{
915}
916
917static inline void
918update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
919{
bf0f6f24 920}
cb251765 921#endif
bf0f6f24
IM
922
923/*
924 * We are picking a new current task - update its stats:
925 */
926static inline void
79303e9e 927update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
928{
929 /*
930 * We are starting a new run period:
931 */
78becc27 932 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
933}
934
bf0f6f24
IM
935/**************************************************
936 * Scheduling class queueing methods:
937 */
938
cbee9f88
PZ
939#ifdef CONFIG_NUMA_BALANCING
940/*
598f0ec0
MG
941 * Approximate time to scan a full NUMA task in ms. The task scan period is
942 * calculated based on the tasks virtual memory size and
943 * numa_balancing_scan_size.
cbee9f88 944 */
598f0ec0
MG
945unsigned int sysctl_numa_balancing_scan_period_min = 1000;
946unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
947
948/* Portion of address space to scan in MB */
949unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 950
4b96a29b
PZ
951/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
952unsigned int sysctl_numa_balancing_scan_delay = 1000;
953
598f0ec0
MG
954static unsigned int task_nr_scan_windows(struct task_struct *p)
955{
956 unsigned long rss = 0;
957 unsigned long nr_scan_pages;
958
959 /*
960 * Calculations based on RSS as non-present and empty pages are skipped
961 * by the PTE scanner and NUMA hinting faults should be trapped based
962 * on resident pages
963 */
964 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
965 rss = get_mm_rss(p->mm);
966 if (!rss)
967 rss = nr_scan_pages;
968
969 rss = round_up(rss, nr_scan_pages);
970 return rss / nr_scan_pages;
971}
972
973/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
974#define MAX_SCAN_WINDOW 2560
975
976static unsigned int task_scan_min(struct task_struct *p)
977{
316c1608 978 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
979 unsigned int scan, floor;
980 unsigned int windows = 1;
981
64192658
KT
982 if (scan_size < MAX_SCAN_WINDOW)
983 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
984 floor = 1000 / windows;
985
986 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
987 return max_t(unsigned int, floor, scan);
988}
989
990static unsigned int task_scan_max(struct task_struct *p)
991{
992 unsigned int smin = task_scan_min(p);
993 unsigned int smax;
994
995 /* Watch for min being lower than max due to floor calculations */
996 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
997 return max(smin, smax);
998}
999
0ec8aa00
PZ
1000static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1001{
1002 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1003 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1004}
1005
1006static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1007{
1008 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1009 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1010}
1011
8c8a743c
PZ
1012struct numa_group {
1013 atomic_t refcount;
1014
1015 spinlock_t lock; /* nr_tasks, tasks */
1016 int nr_tasks;
e29cf08b 1017 pid_t gid;
4142c3eb 1018 int active_nodes;
8c8a743c
PZ
1019
1020 struct rcu_head rcu;
989348b5 1021 unsigned long total_faults;
4142c3eb 1022 unsigned long max_faults_cpu;
7e2703e6
RR
1023 /*
1024 * Faults_cpu is used to decide whether memory should move
1025 * towards the CPU. As a consequence, these stats are weighted
1026 * more by CPU use than by memory faults.
1027 */
50ec8a40 1028 unsigned long *faults_cpu;
989348b5 1029 unsigned long faults[0];
8c8a743c
PZ
1030};
1031
be1e4e76
RR
1032/* Shared or private faults. */
1033#define NR_NUMA_HINT_FAULT_TYPES 2
1034
1035/* Memory and CPU locality */
1036#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1037
1038/* Averaged statistics, and temporary buffers. */
1039#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1040
e29cf08b
MG
1041pid_t task_numa_group_id(struct task_struct *p)
1042{
1043 return p->numa_group ? p->numa_group->gid : 0;
1044}
1045
44dba3d5
IM
1046/*
1047 * The averaged statistics, shared & private, memory & cpu,
1048 * occupy the first half of the array. The second half of the
1049 * array is for current counters, which are averaged into the
1050 * first set by task_numa_placement.
1051 */
1052static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1053{
44dba3d5 1054 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1055}
1056
1057static inline unsigned long task_faults(struct task_struct *p, int nid)
1058{
44dba3d5 1059 if (!p->numa_faults)
ac8e895b
MG
1060 return 0;
1061
44dba3d5
IM
1062 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1063 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1064}
1065
83e1d2cd
MG
1066static inline unsigned long group_faults(struct task_struct *p, int nid)
1067{
1068 if (!p->numa_group)
1069 return 0;
1070
44dba3d5
IM
1071 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1072 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1073}
1074
20e07dea
RR
1075static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1076{
44dba3d5
IM
1077 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1078 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1079}
1080
4142c3eb
RR
1081/*
1082 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1083 * considered part of a numa group's pseudo-interleaving set. Migrations
1084 * between these nodes are slowed down, to allow things to settle down.
1085 */
1086#define ACTIVE_NODE_FRACTION 3
1087
1088static bool numa_is_active_node(int nid, struct numa_group *ng)
1089{
1090 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1091}
1092
6c6b1193
RR
1093/* Handle placement on systems where not all nodes are directly connected. */
1094static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1095 int maxdist, bool task)
1096{
1097 unsigned long score = 0;
1098 int node;
1099
1100 /*
1101 * All nodes are directly connected, and the same distance
1102 * from each other. No need for fancy placement algorithms.
1103 */
1104 if (sched_numa_topology_type == NUMA_DIRECT)
1105 return 0;
1106
1107 /*
1108 * This code is called for each node, introducing N^2 complexity,
1109 * which should be ok given the number of nodes rarely exceeds 8.
1110 */
1111 for_each_online_node(node) {
1112 unsigned long faults;
1113 int dist = node_distance(nid, node);
1114
1115 /*
1116 * The furthest away nodes in the system are not interesting
1117 * for placement; nid was already counted.
1118 */
1119 if (dist == sched_max_numa_distance || node == nid)
1120 continue;
1121
1122 /*
1123 * On systems with a backplane NUMA topology, compare groups
1124 * of nodes, and move tasks towards the group with the most
1125 * memory accesses. When comparing two nodes at distance
1126 * "hoplimit", only nodes closer by than "hoplimit" are part
1127 * of each group. Skip other nodes.
1128 */
1129 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1130 dist > maxdist)
1131 continue;
1132
1133 /* Add up the faults from nearby nodes. */
1134 if (task)
1135 faults = task_faults(p, node);
1136 else
1137 faults = group_faults(p, node);
1138
1139 /*
1140 * On systems with a glueless mesh NUMA topology, there are
1141 * no fixed "groups of nodes". Instead, nodes that are not
1142 * directly connected bounce traffic through intermediate
1143 * nodes; a numa_group can occupy any set of nodes.
1144 * The further away a node is, the less the faults count.
1145 * This seems to result in good task placement.
1146 */
1147 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1148 faults *= (sched_max_numa_distance - dist);
1149 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1150 }
1151
1152 score += faults;
1153 }
1154
1155 return score;
1156}
1157
83e1d2cd
MG
1158/*
1159 * These return the fraction of accesses done by a particular task, or
1160 * task group, on a particular numa node. The group weight is given a
1161 * larger multiplier, in order to group tasks together that are almost
1162 * evenly spread out between numa nodes.
1163 */
7bd95320
RR
1164static inline unsigned long task_weight(struct task_struct *p, int nid,
1165 int dist)
83e1d2cd 1166{
7bd95320 1167 unsigned long faults, total_faults;
83e1d2cd 1168
44dba3d5 1169 if (!p->numa_faults)
83e1d2cd
MG
1170 return 0;
1171
1172 total_faults = p->total_numa_faults;
1173
1174 if (!total_faults)
1175 return 0;
1176
7bd95320 1177 faults = task_faults(p, nid);
6c6b1193
RR
1178 faults += score_nearby_nodes(p, nid, dist, true);
1179
7bd95320 1180 return 1000 * faults / total_faults;
83e1d2cd
MG
1181}
1182
7bd95320
RR
1183static inline unsigned long group_weight(struct task_struct *p, int nid,
1184 int dist)
83e1d2cd 1185{
7bd95320
RR
1186 unsigned long faults, total_faults;
1187
1188 if (!p->numa_group)
1189 return 0;
1190
1191 total_faults = p->numa_group->total_faults;
1192
1193 if (!total_faults)
83e1d2cd
MG
1194 return 0;
1195
7bd95320 1196 faults = group_faults(p, nid);
6c6b1193
RR
1197 faults += score_nearby_nodes(p, nid, dist, false);
1198
7bd95320 1199 return 1000 * faults / total_faults;
83e1d2cd
MG
1200}
1201
10f39042
RR
1202bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1203 int src_nid, int dst_cpu)
1204{
1205 struct numa_group *ng = p->numa_group;
1206 int dst_nid = cpu_to_node(dst_cpu);
1207 int last_cpupid, this_cpupid;
1208
1209 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1210
1211 /*
1212 * Multi-stage node selection is used in conjunction with a periodic
1213 * migration fault to build a temporal task<->page relation. By using
1214 * a two-stage filter we remove short/unlikely relations.
1215 *
1216 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1217 * a task's usage of a particular page (n_p) per total usage of this
1218 * page (n_t) (in a given time-span) to a probability.
1219 *
1220 * Our periodic faults will sample this probability and getting the
1221 * same result twice in a row, given these samples are fully
1222 * independent, is then given by P(n)^2, provided our sample period
1223 * is sufficiently short compared to the usage pattern.
1224 *
1225 * This quadric squishes small probabilities, making it less likely we
1226 * act on an unlikely task<->page relation.
1227 */
1228 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1229 if (!cpupid_pid_unset(last_cpupid) &&
1230 cpupid_to_nid(last_cpupid) != dst_nid)
1231 return false;
1232
1233 /* Always allow migrate on private faults */
1234 if (cpupid_match_pid(p, last_cpupid))
1235 return true;
1236
1237 /* A shared fault, but p->numa_group has not been set up yet. */
1238 if (!ng)
1239 return true;
1240
1241 /*
4142c3eb
RR
1242 * Destination node is much more heavily used than the source
1243 * node? Allow migration.
10f39042 1244 */
4142c3eb
RR
1245 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1246 ACTIVE_NODE_FRACTION)
10f39042
RR
1247 return true;
1248
1249 /*
4142c3eb
RR
1250 * Distribute memory according to CPU & memory use on each node,
1251 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1252 *
1253 * faults_cpu(dst) 3 faults_cpu(src)
1254 * --------------- * - > ---------------
1255 * faults_mem(dst) 4 faults_mem(src)
10f39042 1256 */
4142c3eb
RR
1257 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1258 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1259}
1260
e6628d5b 1261static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1262static unsigned long source_load(int cpu, int type);
1263static unsigned long target_load(int cpu, int type);
ced549fa 1264static unsigned long capacity_of(int cpu);
58d081b5
MG
1265static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1266
fb13c7ee 1267/* Cached statistics for all CPUs within a node */
58d081b5 1268struct numa_stats {
fb13c7ee 1269 unsigned long nr_running;
58d081b5 1270 unsigned long load;
fb13c7ee
MG
1271
1272 /* Total compute capacity of CPUs on a node */
5ef20ca1 1273 unsigned long compute_capacity;
fb13c7ee
MG
1274
1275 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1276 unsigned long task_capacity;
1b6a7495 1277 int has_free_capacity;
58d081b5 1278};
e6628d5b 1279
fb13c7ee
MG
1280/*
1281 * XXX borrowed from update_sg_lb_stats
1282 */
1283static void update_numa_stats(struct numa_stats *ns, int nid)
1284{
83d7f242
RR
1285 int smt, cpu, cpus = 0;
1286 unsigned long capacity;
fb13c7ee
MG
1287
1288 memset(ns, 0, sizeof(*ns));
1289 for_each_cpu(cpu, cpumask_of_node(nid)) {
1290 struct rq *rq = cpu_rq(cpu);
1291
1292 ns->nr_running += rq->nr_running;
1293 ns->load += weighted_cpuload(cpu);
ced549fa 1294 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1295
1296 cpus++;
fb13c7ee
MG
1297 }
1298
5eca82a9
PZ
1299 /*
1300 * If we raced with hotplug and there are no CPUs left in our mask
1301 * the @ns structure is NULL'ed and task_numa_compare() will
1302 * not find this node attractive.
1303 *
1b6a7495
NP
1304 * We'll either bail at !has_free_capacity, or we'll detect a huge
1305 * imbalance and bail there.
5eca82a9
PZ
1306 */
1307 if (!cpus)
1308 return;
1309
83d7f242
RR
1310 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1311 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1312 capacity = cpus / smt; /* cores */
1313
1314 ns->task_capacity = min_t(unsigned, capacity,
1315 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1316 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1317}
1318
58d081b5
MG
1319struct task_numa_env {
1320 struct task_struct *p;
e6628d5b 1321
58d081b5
MG
1322 int src_cpu, src_nid;
1323 int dst_cpu, dst_nid;
e6628d5b 1324
58d081b5 1325 struct numa_stats src_stats, dst_stats;
e6628d5b 1326
40ea2b42 1327 int imbalance_pct;
7bd95320 1328 int dist;
fb13c7ee
MG
1329
1330 struct task_struct *best_task;
1331 long best_imp;
58d081b5
MG
1332 int best_cpu;
1333};
1334
fb13c7ee
MG
1335static void task_numa_assign(struct task_numa_env *env,
1336 struct task_struct *p, long imp)
1337{
1338 if (env->best_task)
1339 put_task_struct(env->best_task);
bac78573
ON
1340 if (p)
1341 get_task_struct(p);
fb13c7ee
MG
1342
1343 env->best_task = p;
1344 env->best_imp = imp;
1345 env->best_cpu = env->dst_cpu;
1346}
1347
28a21745 1348static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1349 struct task_numa_env *env)
1350{
e4991b24
RR
1351 long imb, old_imb;
1352 long orig_src_load, orig_dst_load;
28a21745
RR
1353 long src_capacity, dst_capacity;
1354
1355 /*
1356 * The load is corrected for the CPU capacity available on each node.
1357 *
1358 * src_load dst_load
1359 * ------------ vs ---------
1360 * src_capacity dst_capacity
1361 */
1362 src_capacity = env->src_stats.compute_capacity;
1363 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1364
1365 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1366 if (dst_load < src_load)
1367 swap(dst_load, src_load);
e63da036
RR
1368
1369 /* Is the difference below the threshold? */
e4991b24
RR
1370 imb = dst_load * src_capacity * 100 -
1371 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1372 if (imb <= 0)
1373 return false;
1374
1375 /*
1376 * The imbalance is above the allowed threshold.
e4991b24 1377 * Compare it with the old imbalance.
e63da036 1378 */
28a21745 1379 orig_src_load = env->src_stats.load;
e4991b24 1380 orig_dst_load = env->dst_stats.load;
28a21745 1381
e4991b24
RR
1382 if (orig_dst_load < orig_src_load)
1383 swap(orig_dst_load, orig_src_load);
e63da036 1384
e4991b24
RR
1385 old_imb = orig_dst_load * src_capacity * 100 -
1386 orig_src_load * dst_capacity * env->imbalance_pct;
1387
1388 /* Would this change make things worse? */
1389 return (imb > old_imb);
e63da036
RR
1390}
1391
fb13c7ee
MG
1392/*
1393 * This checks if the overall compute and NUMA accesses of the system would
1394 * be improved if the source tasks was migrated to the target dst_cpu taking
1395 * into account that it might be best if task running on the dst_cpu should
1396 * be exchanged with the source task
1397 */
887c290e
RR
1398static void task_numa_compare(struct task_numa_env *env,
1399 long taskimp, long groupimp)
fb13c7ee
MG
1400{
1401 struct rq *src_rq = cpu_rq(env->src_cpu);
1402 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1403 struct task_struct *cur;
28a21745 1404 long src_load, dst_load;
fb13c7ee 1405 long load;
1c5d3eb3 1406 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1407 long moveimp = imp;
7bd95320 1408 int dist = env->dist;
fb13c7ee
MG
1409
1410 rcu_read_lock();
bac78573
ON
1411 cur = task_rcu_dereference(&dst_rq->curr);
1412 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1413 cur = NULL;
1414
7af68335
PZ
1415 /*
1416 * Because we have preemption enabled we can get migrated around and
1417 * end try selecting ourselves (current == env->p) as a swap candidate.
1418 */
1419 if (cur == env->p)
1420 goto unlock;
1421
fb13c7ee
MG
1422 /*
1423 * "imp" is the fault differential for the source task between the
1424 * source and destination node. Calculate the total differential for
1425 * the source task and potential destination task. The more negative
1426 * the value is, the more rmeote accesses that would be expected to
1427 * be incurred if the tasks were swapped.
1428 */
1429 if (cur) {
1430 /* Skip this swap candidate if cannot move to the source cpu */
1431 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1432 goto unlock;
1433
887c290e
RR
1434 /*
1435 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1436 * in any group then look only at task weights.
887c290e 1437 */
ca28aa53 1438 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1439 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1440 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1441 /*
1442 * Add some hysteresis to prevent swapping the
1443 * tasks within a group over tiny differences.
1444 */
1445 if (cur->numa_group)
1446 imp -= imp/16;
887c290e 1447 } else {
ca28aa53
RR
1448 /*
1449 * Compare the group weights. If a task is all by
1450 * itself (not part of a group), use the task weight
1451 * instead.
1452 */
ca28aa53 1453 if (cur->numa_group)
7bd95320
RR
1454 imp += group_weight(cur, env->src_nid, dist) -
1455 group_weight(cur, env->dst_nid, dist);
ca28aa53 1456 else
7bd95320
RR
1457 imp += task_weight(cur, env->src_nid, dist) -
1458 task_weight(cur, env->dst_nid, dist);
887c290e 1459 }
fb13c7ee
MG
1460 }
1461
0132c3e1 1462 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1463 goto unlock;
1464
1465 if (!cur) {
1466 /* Is there capacity at our destination? */
b932c03c 1467 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1468 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1469 goto unlock;
1470
1471 goto balance;
1472 }
1473
1474 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1475 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1476 dst_rq->nr_running == 1)
fb13c7ee
MG
1477 goto assign;
1478
1479 /*
1480 * In the overloaded case, try and keep the load balanced.
1481 */
1482balance:
e720fff6
PZ
1483 load = task_h_load(env->p);
1484 dst_load = env->dst_stats.load + load;
1485 src_load = env->src_stats.load - load;
fb13c7ee 1486
0132c3e1
RR
1487 if (moveimp > imp && moveimp > env->best_imp) {
1488 /*
1489 * If the improvement from just moving env->p direction is
1490 * better than swapping tasks around, check if a move is
1491 * possible. Store a slightly smaller score than moveimp,
1492 * so an actually idle CPU will win.
1493 */
1494 if (!load_too_imbalanced(src_load, dst_load, env)) {
1495 imp = moveimp - 1;
1496 cur = NULL;
1497 goto assign;
1498 }
1499 }
1500
1501 if (imp <= env->best_imp)
1502 goto unlock;
1503
fb13c7ee 1504 if (cur) {
e720fff6
PZ
1505 load = task_h_load(cur);
1506 dst_load -= load;
1507 src_load += load;
fb13c7ee
MG
1508 }
1509
28a21745 1510 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1511 goto unlock;
1512
ba7e5a27
RR
1513 /*
1514 * One idle CPU per node is evaluated for a task numa move.
1515 * Call select_idle_sibling to maybe find a better one.
1516 */
1517 if (!cur)
772bd008
MR
1518 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1519 env->dst_cpu);
ba7e5a27 1520
fb13c7ee
MG
1521assign:
1522 task_numa_assign(env, cur, imp);
1523unlock:
1524 rcu_read_unlock();
1525}
1526
887c290e
RR
1527static void task_numa_find_cpu(struct task_numa_env *env,
1528 long taskimp, long groupimp)
2c8a50aa
MG
1529{
1530 int cpu;
1531
1532 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1533 /* Skip this CPU if the source task cannot migrate */
1534 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1535 continue;
1536
1537 env->dst_cpu = cpu;
887c290e 1538 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1539 }
1540}
1541
6f9aad0b
RR
1542/* Only move tasks to a NUMA node less busy than the current node. */
1543static bool numa_has_capacity(struct task_numa_env *env)
1544{
1545 struct numa_stats *src = &env->src_stats;
1546 struct numa_stats *dst = &env->dst_stats;
1547
1548 if (src->has_free_capacity && !dst->has_free_capacity)
1549 return false;
1550
1551 /*
1552 * Only consider a task move if the source has a higher load
1553 * than the destination, corrected for CPU capacity on each node.
1554 *
1555 * src->load dst->load
1556 * --------------------- vs ---------------------
1557 * src->compute_capacity dst->compute_capacity
1558 */
44dcb04f
SD
1559 if (src->load * dst->compute_capacity * env->imbalance_pct >
1560
1561 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1562 return true;
1563
1564 return false;
1565}
1566
58d081b5
MG
1567static int task_numa_migrate(struct task_struct *p)
1568{
58d081b5
MG
1569 struct task_numa_env env = {
1570 .p = p,
fb13c7ee 1571
58d081b5 1572 .src_cpu = task_cpu(p),
b32e86b4 1573 .src_nid = task_node(p),
fb13c7ee
MG
1574
1575 .imbalance_pct = 112,
1576
1577 .best_task = NULL,
1578 .best_imp = 0,
4142c3eb 1579 .best_cpu = -1,
58d081b5
MG
1580 };
1581 struct sched_domain *sd;
887c290e 1582 unsigned long taskweight, groupweight;
7bd95320 1583 int nid, ret, dist;
887c290e 1584 long taskimp, groupimp;
e6628d5b 1585
58d081b5 1586 /*
fb13c7ee
MG
1587 * Pick the lowest SD_NUMA domain, as that would have the smallest
1588 * imbalance and would be the first to start moving tasks about.
1589 *
1590 * And we want to avoid any moving of tasks about, as that would create
1591 * random movement of tasks -- counter the numa conditions we're trying
1592 * to satisfy here.
58d081b5
MG
1593 */
1594 rcu_read_lock();
fb13c7ee 1595 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1596 if (sd)
1597 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1598 rcu_read_unlock();
1599
46a73e8a
RR
1600 /*
1601 * Cpusets can break the scheduler domain tree into smaller
1602 * balance domains, some of which do not cross NUMA boundaries.
1603 * Tasks that are "trapped" in such domains cannot be migrated
1604 * elsewhere, so there is no point in (re)trying.
1605 */
1606 if (unlikely(!sd)) {
de1b301a 1607 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1608 return -EINVAL;
1609 }
1610
2c8a50aa 1611 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1612 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1613 taskweight = task_weight(p, env.src_nid, dist);
1614 groupweight = group_weight(p, env.src_nid, dist);
1615 update_numa_stats(&env.src_stats, env.src_nid);
1616 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1617 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1618 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1619
a43455a1 1620 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1621 if (numa_has_capacity(&env))
1622 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1623
9de05d48
RR
1624 /*
1625 * Look at other nodes in these cases:
1626 * - there is no space available on the preferred_nid
1627 * - the task is part of a numa_group that is interleaved across
1628 * multiple NUMA nodes; in order to better consolidate the group,
1629 * we need to check other locations.
1630 */
4142c3eb 1631 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1632 for_each_online_node(nid) {
1633 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1634 continue;
58d081b5 1635
7bd95320 1636 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1637 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1638 dist != env.dist) {
1639 taskweight = task_weight(p, env.src_nid, dist);
1640 groupweight = group_weight(p, env.src_nid, dist);
1641 }
7bd95320 1642
83e1d2cd 1643 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1644 taskimp = task_weight(p, nid, dist) - taskweight;
1645 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1646 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1647 continue;
1648
7bd95320 1649 env.dist = dist;
2c8a50aa
MG
1650 env.dst_nid = nid;
1651 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1652 if (numa_has_capacity(&env))
1653 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1654 }
1655 }
1656
68d1b02a
RR
1657 /*
1658 * If the task is part of a workload that spans multiple NUMA nodes,
1659 * and is migrating into one of the workload's active nodes, remember
1660 * this node as the task's preferred numa node, so the workload can
1661 * settle down.
1662 * A task that migrated to a second choice node will be better off
1663 * trying for a better one later. Do not set the preferred node here.
1664 */
db015dae 1665 if (p->numa_group) {
4142c3eb
RR
1666 struct numa_group *ng = p->numa_group;
1667
db015dae
RR
1668 if (env.best_cpu == -1)
1669 nid = env.src_nid;
1670 else
1671 nid = env.dst_nid;
1672
4142c3eb 1673 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1674 sched_setnuma(p, env.dst_nid);
1675 }
1676
1677 /* No better CPU than the current one was found. */
1678 if (env.best_cpu == -1)
1679 return -EAGAIN;
0ec8aa00 1680
04bb2f94
RR
1681 /*
1682 * Reset the scan period if the task is being rescheduled on an
1683 * alternative node to recheck if the tasks is now properly placed.
1684 */
1685 p->numa_scan_period = task_scan_min(p);
1686
fb13c7ee 1687 if (env.best_task == NULL) {
286549dc
MG
1688 ret = migrate_task_to(p, env.best_cpu);
1689 if (ret != 0)
1690 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1691 return ret;
1692 }
1693
1694 ret = migrate_swap(p, env.best_task);
286549dc
MG
1695 if (ret != 0)
1696 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1697 put_task_struct(env.best_task);
1698 return ret;
e6628d5b
MG
1699}
1700
6b9a7460
MG
1701/* Attempt to migrate a task to a CPU on the preferred node. */
1702static void numa_migrate_preferred(struct task_struct *p)
1703{
5085e2a3
RR
1704 unsigned long interval = HZ;
1705
2739d3ee 1706 /* This task has no NUMA fault statistics yet */
44dba3d5 1707 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1708 return;
1709
2739d3ee 1710 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1711 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1712 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1713
1714 /* Success if task is already running on preferred CPU */
de1b301a 1715 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1716 return;
1717
1718 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1719 task_numa_migrate(p);
6b9a7460
MG
1720}
1721
20e07dea 1722/*
4142c3eb 1723 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1724 * tracking the nodes from which NUMA hinting faults are triggered. This can
1725 * be different from the set of nodes where the workload's memory is currently
1726 * located.
20e07dea 1727 */
4142c3eb 1728static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1729{
1730 unsigned long faults, max_faults = 0;
4142c3eb 1731 int nid, active_nodes = 0;
20e07dea
RR
1732
1733 for_each_online_node(nid) {
1734 faults = group_faults_cpu(numa_group, nid);
1735 if (faults > max_faults)
1736 max_faults = faults;
1737 }
1738
1739 for_each_online_node(nid) {
1740 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1741 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1742 active_nodes++;
20e07dea 1743 }
4142c3eb
RR
1744
1745 numa_group->max_faults_cpu = max_faults;
1746 numa_group->active_nodes = active_nodes;
20e07dea
RR
1747}
1748
04bb2f94
RR
1749/*
1750 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1751 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1752 * period will be for the next scan window. If local/(local+remote) ratio is
1753 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1754 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1755 */
1756#define NUMA_PERIOD_SLOTS 10
a22b4b01 1757#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1758
1759/*
1760 * Increase the scan period (slow down scanning) if the majority of
1761 * our memory is already on our local node, or if the majority of
1762 * the page accesses are shared with other processes.
1763 * Otherwise, decrease the scan period.
1764 */
1765static void update_task_scan_period(struct task_struct *p,
1766 unsigned long shared, unsigned long private)
1767{
1768 unsigned int period_slot;
1769 int ratio;
1770 int diff;
1771
1772 unsigned long remote = p->numa_faults_locality[0];
1773 unsigned long local = p->numa_faults_locality[1];
1774
1775 /*
1776 * If there were no record hinting faults then either the task is
1777 * completely idle or all activity is areas that are not of interest
074c2381
MG
1778 * to automatic numa balancing. Related to that, if there were failed
1779 * migration then it implies we are migrating too quickly or the local
1780 * node is overloaded. In either case, scan slower
04bb2f94 1781 */
074c2381 1782 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1783 p->numa_scan_period = min(p->numa_scan_period_max,
1784 p->numa_scan_period << 1);
1785
1786 p->mm->numa_next_scan = jiffies +
1787 msecs_to_jiffies(p->numa_scan_period);
1788
1789 return;
1790 }
1791
1792 /*
1793 * Prepare to scale scan period relative to the current period.
1794 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1795 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1796 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1797 */
1798 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1799 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1800 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1801 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1802 if (!slot)
1803 slot = 1;
1804 diff = slot * period_slot;
1805 } else {
1806 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1807
1808 /*
1809 * Scale scan rate increases based on sharing. There is an
1810 * inverse relationship between the degree of sharing and
1811 * the adjustment made to the scanning period. Broadly
1812 * speaking the intent is that there is little point
1813 * scanning faster if shared accesses dominate as it may
1814 * simply bounce migrations uselessly
1815 */
2847c90e 1816 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1817 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1818 }
1819
1820 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1821 task_scan_min(p), task_scan_max(p));
1822 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1823}
1824
7e2703e6
RR
1825/*
1826 * Get the fraction of time the task has been running since the last
1827 * NUMA placement cycle. The scheduler keeps similar statistics, but
1828 * decays those on a 32ms period, which is orders of magnitude off
1829 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1830 * stats only if the task is so new there are no NUMA statistics yet.
1831 */
1832static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1833{
1834 u64 runtime, delta, now;
1835 /* Use the start of this time slice to avoid calculations. */
1836 now = p->se.exec_start;
1837 runtime = p->se.sum_exec_runtime;
1838
1839 if (p->last_task_numa_placement) {
1840 delta = runtime - p->last_sum_exec_runtime;
1841 *period = now - p->last_task_numa_placement;
1842 } else {
9d89c257
YD
1843 delta = p->se.avg.load_sum / p->se.load.weight;
1844 *period = LOAD_AVG_MAX;
7e2703e6
RR
1845 }
1846
1847 p->last_sum_exec_runtime = runtime;
1848 p->last_task_numa_placement = now;
1849
1850 return delta;
1851}
1852
54009416
RR
1853/*
1854 * Determine the preferred nid for a task in a numa_group. This needs to
1855 * be done in a way that produces consistent results with group_weight,
1856 * otherwise workloads might not converge.
1857 */
1858static int preferred_group_nid(struct task_struct *p, int nid)
1859{
1860 nodemask_t nodes;
1861 int dist;
1862
1863 /* Direct connections between all NUMA nodes. */
1864 if (sched_numa_topology_type == NUMA_DIRECT)
1865 return nid;
1866
1867 /*
1868 * On a system with glueless mesh NUMA topology, group_weight
1869 * scores nodes according to the number of NUMA hinting faults on
1870 * both the node itself, and on nearby nodes.
1871 */
1872 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1873 unsigned long score, max_score = 0;
1874 int node, max_node = nid;
1875
1876 dist = sched_max_numa_distance;
1877
1878 for_each_online_node(node) {
1879 score = group_weight(p, node, dist);
1880 if (score > max_score) {
1881 max_score = score;
1882 max_node = node;
1883 }
1884 }
1885 return max_node;
1886 }
1887
1888 /*
1889 * Finding the preferred nid in a system with NUMA backplane
1890 * interconnect topology is more involved. The goal is to locate
1891 * tasks from numa_groups near each other in the system, and
1892 * untangle workloads from different sides of the system. This requires
1893 * searching down the hierarchy of node groups, recursively searching
1894 * inside the highest scoring group of nodes. The nodemask tricks
1895 * keep the complexity of the search down.
1896 */
1897 nodes = node_online_map;
1898 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1899 unsigned long max_faults = 0;
81907478 1900 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1901 int a, b;
1902
1903 /* Are there nodes at this distance from each other? */
1904 if (!find_numa_distance(dist))
1905 continue;
1906
1907 for_each_node_mask(a, nodes) {
1908 unsigned long faults = 0;
1909 nodemask_t this_group;
1910 nodes_clear(this_group);
1911
1912 /* Sum group's NUMA faults; includes a==b case. */
1913 for_each_node_mask(b, nodes) {
1914 if (node_distance(a, b) < dist) {
1915 faults += group_faults(p, b);
1916 node_set(b, this_group);
1917 node_clear(b, nodes);
1918 }
1919 }
1920
1921 /* Remember the top group. */
1922 if (faults > max_faults) {
1923 max_faults = faults;
1924 max_group = this_group;
1925 /*
1926 * subtle: at the smallest distance there is
1927 * just one node left in each "group", the
1928 * winner is the preferred nid.
1929 */
1930 nid = a;
1931 }
1932 }
1933 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1934 if (!max_faults)
1935 break;
54009416
RR
1936 nodes = max_group;
1937 }
1938 return nid;
1939}
1940
cbee9f88
PZ
1941static void task_numa_placement(struct task_struct *p)
1942{
83e1d2cd
MG
1943 int seq, nid, max_nid = -1, max_group_nid = -1;
1944 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1945 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1946 unsigned long total_faults;
1947 u64 runtime, period;
7dbd13ed 1948 spinlock_t *group_lock = NULL;
cbee9f88 1949
7e5a2c17
JL
1950 /*
1951 * The p->mm->numa_scan_seq field gets updated without
1952 * exclusive access. Use READ_ONCE() here to ensure
1953 * that the field is read in a single access:
1954 */
316c1608 1955 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1956 if (p->numa_scan_seq == seq)
1957 return;
1958 p->numa_scan_seq = seq;
598f0ec0 1959 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1960
7e2703e6
RR
1961 total_faults = p->numa_faults_locality[0] +
1962 p->numa_faults_locality[1];
1963 runtime = numa_get_avg_runtime(p, &period);
1964
7dbd13ed
MG
1965 /* If the task is part of a group prevent parallel updates to group stats */
1966 if (p->numa_group) {
1967 group_lock = &p->numa_group->lock;
60e69eed 1968 spin_lock_irq(group_lock);
7dbd13ed
MG
1969 }
1970
688b7585
MG
1971 /* Find the node with the highest number of faults */
1972 for_each_online_node(nid) {
44dba3d5
IM
1973 /* Keep track of the offsets in numa_faults array */
1974 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1975 unsigned long faults = 0, group_faults = 0;
44dba3d5 1976 int priv;
745d6147 1977
be1e4e76 1978 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1979 long diff, f_diff, f_weight;
8c8a743c 1980
44dba3d5
IM
1981 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1982 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1983 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1984 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1985
ac8e895b 1986 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1987 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1988 fault_types[priv] += p->numa_faults[membuf_idx];
1989 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1990
7e2703e6
RR
1991 /*
1992 * Normalize the faults_from, so all tasks in a group
1993 * count according to CPU use, instead of by the raw
1994 * number of faults. Tasks with little runtime have
1995 * little over-all impact on throughput, and thus their
1996 * faults are less important.
1997 */
1998 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1999 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2000 (total_faults + 1);
44dba3d5
IM
2001 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2002 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2003
44dba3d5
IM
2004 p->numa_faults[mem_idx] += diff;
2005 p->numa_faults[cpu_idx] += f_diff;
2006 faults += p->numa_faults[mem_idx];
83e1d2cd 2007 p->total_numa_faults += diff;
8c8a743c 2008 if (p->numa_group) {
44dba3d5
IM
2009 /*
2010 * safe because we can only change our own group
2011 *
2012 * mem_idx represents the offset for a given
2013 * nid and priv in a specific region because it
2014 * is at the beginning of the numa_faults array.
2015 */
2016 p->numa_group->faults[mem_idx] += diff;
2017 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2018 p->numa_group->total_faults += diff;
44dba3d5 2019 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2020 }
ac8e895b
MG
2021 }
2022
688b7585
MG
2023 if (faults > max_faults) {
2024 max_faults = faults;
2025 max_nid = nid;
2026 }
83e1d2cd
MG
2027
2028 if (group_faults > max_group_faults) {
2029 max_group_faults = group_faults;
2030 max_group_nid = nid;
2031 }
2032 }
2033
04bb2f94
RR
2034 update_task_scan_period(p, fault_types[0], fault_types[1]);
2035
7dbd13ed 2036 if (p->numa_group) {
4142c3eb 2037 numa_group_count_active_nodes(p->numa_group);
60e69eed 2038 spin_unlock_irq(group_lock);
54009416 2039 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2040 }
2041
bb97fc31
RR
2042 if (max_faults) {
2043 /* Set the new preferred node */
2044 if (max_nid != p->numa_preferred_nid)
2045 sched_setnuma(p, max_nid);
2046
2047 if (task_node(p) != p->numa_preferred_nid)
2048 numa_migrate_preferred(p);
3a7053b3 2049 }
cbee9f88
PZ
2050}
2051
8c8a743c
PZ
2052static inline int get_numa_group(struct numa_group *grp)
2053{
2054 return atomic_inc_not_zero(&grp->refcount);
2055}
2056
2057static inline void put_numa_group(struct numa_group *grp)
2058{
2059 if (atomic_dec_and_test(&grp->refcount))
2060 kfree_rcu(grp, rcu);
2061}
2062
3e6a9418
MG
2063static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2064 int *priv)
8c8a743c
PZ
2065{
2066 struct numa_group *grp, *my_grp;
2067 struct task_struct *tsk;
2068 bool join = false;
2069 int cpu = cpupid_to_cpu(cpupid);
2070 int i;
2071
2072 if (unlikely(!p->numa_group)) {
2073 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2074 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2075
2076 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2077 if (!grp)
2078 return;
2079
2080 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2081 grp->active_nodes = 1;
2082 grp->max_faults_cpu = 0;
8c8a743c 2083 spin_lock_init(&grp->lock);
e29cf08b 2084 grp->gid = p->pid;
50ec8a40 2085 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2086 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2087 nr_node_ids;
8c8a743c 2088
be1e4e76 2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2090 grp->faults[i] = p->numa_faults[i];
8c8a743c 2091
989348b5 2092 grp->total_faults = p->total_numa_faults;
83e1d2cd 2093
8c8a743c
PZ
2094 grp->nr_tasks++;
2095 rcu_assign_pointer(p->numa_group, grp);
2096 }
2097
2098 rcu_read_lock();
316c1608 2099 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2100
2101 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2102 goto no_join;
8c8a743c
PZ
2103
2104 grp = rcu_dereference(tsk->numa_group);
2105 if (!grp)
3354781a 2106 goto no_join;
8c8a743c
PZ
2107
2108 my_grp = p->numa_group;
2109 if (grp == my_grp)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Only join the other group if its bigger; if we're the bigger group,
2114 * the other task will join us.
2115 */
2116 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2117 goto no_join;
8c8a743c
PZ
2118
2119 /*
2120 * Tie-break on the grp address.
2121 */
2122 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2123 goto no_join;
8c8a743c 2124
dabe1d99
RR
2125 /* Always join threads in the same process. */
2126 if (tsk->mm == current->mm)
2127 join = true;
2128
2129 /* Simple filter to avoid false positives due to PID collisions */
2130 if (flags & TNF_SHARED)
2131 join = true;
8c8a743c 2132
3e6a9418
MG
2133 /* Update priv based on whether false sharing was detected */
2134 *priv = !join;
2135
dabe1d99 2136 if (join && !get_numa_group(grp))
3354781a 2137 goto no_join;
8c8a743c 2138
8c8a743c
PZ
2139 rcu_read_unlock();
2140
2141 if (!join)
2142 return;
2143
60e69eed
MG
2144 BUG_ON(irqs_disabled());
2145 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2146
be1e4e76 2147 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2148 my_grp->faults[i] -= p->numa_faults[i];
2149 grp->faults[i] += p->numa_faults[i];
8c8a743c 2150 }
989348b5
MG
2151 my_grp->total_faults -= p->total_numa_faults;
2152 grp->total_faults += p->total_numa_faults;
8c8a743c 2153
8c8a743c
PZ
2154 my_grp->nr_tasks--;
2155 grp->nr_tasks++;
2156
2157 spin_unlock(&my_grp->lock);
60e69eed 2158 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2159
2160 rcu_assign_pointer(p->numa_group, grp);
2161
2162 put_numa_group(my_grp);
3354781a
PZ
2163 return;
2164
2165no_join:
2166 rcu_read_unlock();
2167 return;
8c8a743c
PZ
2168}
2169
2170void task_numa_free(struct task_struct *p)
2171{
2172 struct numa_group *grp = p->numa_group;
44dba3d5 2173 void *numa_faults = p->numa_faults;
e9dd685c
SR
2174 unsigned long flags;
2175 int i;
8c8a743c
PZ
2176
2177 if (grp) {
e9dd685c 2178 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2179 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2180 grp->faults[i] -= p->numa_faults[i];
989348b5 2181 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2182
8c8a743c 2183 grp->nr_tasks--;
e9dd685c 2184 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2185 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2186 put_numa_group(grp);
2187 }
2188
44dba3d5 2189 p->numa_faults = NULL;
82727018 2190 kfree(numa_faults);
8c8a743c
PZ
2191}
2192
cbee9f88
PZ
2193/*
2194 * Got a PROT_NONE fault for a page on @node.
2195 */
58b46da3 2196void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2197{
2198 struct task_struct *p = current;
6688cc05 2199 bool migrated = flags & TNF_MIGRATED;
58b46da3 2200 int cpu_node = task_node(current);
792568ec 2201 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2202 struct numa_group *ng;
ac8e895b 2203 int priv;
cbee9f88 2204
2a595721 2205 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2206 return;
2207
9ff1d9ff
MG
2208 /* for example, ksmd faulting in a user's mm */
2209 if (!p->mm)
2210 return;
2211
f809ca9a 2212 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2213 if (unlikely(!p->numa_faults)) {
2214 int size = sizeof(*p->numa_faults) *
be1e4e76 2215 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2216
44dba3d5
IM
2217 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2218 if (!p->numa_faults)
f809ca9a 2219 return;
745d6147 2220
83e1d2cd 2221 p->total_numa_faults = 0;
04bb2f94 2222 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2223 }
cbee9f88 2224
8c8a743c
PZ
2225 /*
2226 * First accesses are treated as private, otherwise consider accesses
2227 * to be private if the accessing pid has not changed
2228 */
2229 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2230 priv = 1;
2231 } else {
2232 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2233 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2234 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2235 }
2236
792568ec
RR
2237 /*
2238 * If a workload spans multiple NUMA nodes, a shared fault that
2239 * occurs wholly within the set of nodes that the workload is
2240 * actively using should be counted as local. This allows the
2241 * scan rate to slow down when a workload has settled down.
2242 */
4142c3eb
RR
2243 ng = p->numa_group;
2244 if (!priv && !local && ng && ng->active_nodes > 1 &&
2245 numa_is_active_node(cpu_node, ng) &&
2246 numa_is_active_node(mem_node, ng))
792568ec
RR
2247 local = 1;
2248
cbee9f88 2249 task_numa_placement(p);
f809ca9a 2250
2739d3ee
RR
2251 /*
2252 * Retry task to preferred node migration periodically, in case it
2253 * case it previously failed, or the scheduler moved us.
2254 */
2255 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2256 numa_migrate_preferred(p);
2257
b32e86b4
IM
2258 if (migrated)
2259 p->numa_pages_migrated += pages;
074c2381
MG
2260 if (flags & TNF_MIGRATE_FAIL)
2261 p->numa_faults_locality[2] += pages;
b32e86b4 2262
44dba3d5
IM
2263 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2264 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2265 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2266}
2267
6e5fb223
PZ
2268static void reset_ptenuma_scan(struct task_struct *p)
2269{
7e5a2c17
JL
2270 /*
2271 * We only did a read acquisition of the mmap sem, so
2272 * p->mm->numa_scan_seq is written to without exclusive access
2273 * and the update is not guaranteed to be atomic. That's not
2274 * much of an issue though, since this is just used for
2275 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2276 * expensive, to avoid any form of compiler optimizations:
2277 */
316c1608 2278 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2279 p->mm->numa_scan_offset = 0;
2280}
2281
cbee9f88
PZ
2282/*
2283 * The expensive part of numa migration is done from task_work context.
2284 * Triggered from task_tick_numa().
2285 */
2286void task_numa_work(struct callback_head *work)
2287{
2288 unsigned long migrate, next_scan, now = jiffies;
2289 struct task_struct *p = current;
2290 struct mm_struct *mm = p->mm;
51170840 2291 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2292 struct vm_area_struct *vma;
9f40604c 2293 unsigned long start, end;
598f0ec0 2294 unsigned long nr_pte_updates = 0;
4620f8c1 2295 long pages, virtpages;
cbee9f88
PZ
2296
2297 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2298
2299 work->next = work; /* protect against double add */
2300 /*
2301 * Who cares about NUMA placement when they're dying.
2302 *
2303 * NOTE: make sure not to dereference p->mm before this check,
2304 * exit_task_work() happens _after_ exit_mm() so we could be called
2305 * without p->mm even though we still had it when we enqueued this
2306 * work.
2307 */
2308 if (p->flags & PF_EXITING)
2309 return;
2310
930aa174 2311 if (!mm->numa_next_scan) {
7e8d16b6
MG
2312 mm->numa_next_scan = now +
2313 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2314 }
2315
cbee9f88
PZ
2316 /*
2317 * Enforce maximal scan/migration frequency..
2318 */
2319 migrate = mm->numa_next_scan;
2320 if (time_before(now, migrate))
2321 return;
2322
598f0ec0
MG
2323 if (p->numa_scan_period == 0) {
2324 p->numa_scan_period_max = task_scan_max(p);
2325 p->numa_scan_period = task_scan_min(p);
2326 }
cbee9f88 2327
fb003b80 2328 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2329 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2330 return;
2331
19a78d11
PZ
2332 /*
2333 * Delay this task enough that another task of this mm will likely win
2334 * the next time around.
2335 */
2336 p->node_stamp += 2 * TICK_NSEC;
2337
9f40604c
MG
2338 start = mm->numa_scan_offset;
2339 pages = sysctl_numa_balancing_scan_size;
2340 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2341 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2342 if (!pages)
2343 return;
cbee9f88 2344
4620f8c1 2345
6e5fb223 2346 down_read(&mm->mmap_sem);
9f40604c 2347 vma = find_vma(mm, start);
6e5fb223
PZ
2348 if (!vma) {
2349 reset_ptenuma_scan(p);
9f40604c 2350 start = 0;
6e5fb223
PZ
2351 vma = mm->mmap;
2352 }
9f40604c 2353 for (; vma; vma = vma->vm_next) {
6b79c57b 2354 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2355 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2356 continue;
6b79c57b 2357 }
6e5fb223 2358
4591ce4f
MG
2359 /*
2360 * Shared library pages mapped by multiple processes are not
2361 * migrated as it is expected they are cache replicated. Avoid
2362 * hinting faults in read-only file-backed mappings or the vdso
2363 * as migrating the pages will be of marginal benefit.
2364 */
2365 if (!vma->vm_mm ||
2366 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2367 continue;
2368
3c67f474
MG
2369 /*
2370 * Skip inaccessible VMAs to avoid any confusion between
2371 * PROT_NONE and NUMA hinting ptes
2372 */
2373 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2374 continue;
4591ce4f 2375
9f40604c
MG
2376 do {
2377 start = max(start, vma->vm_start);
2378 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2379 end = min(end, vma->vm_end);
4620f8c1 2380 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2381
2382 /*
4620f8c1
RR
2383 * Try to scan sysctl_numa_balancing_size worth of
2384 * hpages that have at least one present PTE that
2385 * is not already pte-numa. If the VMA contains
2386 * areas that are unused or already full of prot_numa
2387 * PTEs, scan up to virtpages, to skip through those
2388 * areas faster.
598f0ec0
MG
2389 */
2390 if (nr_pte_updates)
2391 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2392 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2393
9f40604c 2394 start = end;
4620f8c1 2395 if (pages <= 0 || virtpages <= 0)
9f40604c 2396 goto out;
3cf1962c
RR
2397
2398 cond_resched();
9f40604c 2399 } while (end != vma->vm_end);
cbee9f88 2400 }
6e5fb223 2401
9f40604c 2402out:
6e5fb223 2403 /*
c69307d5
PZ
2404 * It is possible to reach the end of the VMA list but the last few
2405 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2406 * would find the !migratable VMA on the next scan but not reset the
2407 * scanner to the start so check it now.
6e5fb223
PZ
2408 */
2409 if (vma)
9f40604c 2410 mm->numa_scan_offset = start;
6e5fb223
PZ
2411 else
2412 reset_ptenuma_scan(p);
2413 up_read(&mm->mmap_sem);
51170840
RR
2414
2415 /*
2416 * Make sure tasks use at least 32x as much time to run other code
2417 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2418 * Usually update_task_scan_period slows down scanning enough; on an
2419 * overloaded system we need to limit overhead on a per task basis.
2420 */
2421 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2422 u64 diff = p->se.sum_exec_runtime - runtime;
2423 p->node_stamp += 32 * diff;
2424 }
cbee9f88
PZ
2425}
2426
2427/*
2428 * Drive the periodic memory faults..
2429 */
2430void task_tick_numa(struct rq *rq, struct task_struct *curr)
2431{
2432 struct callback_head *work = &curr->numa_work;
2433 u64 period, now;
2434
2435 /*
2436 * We don't care about NUMA placement if we don't have memory.
2437 */
2438 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2439 return;
2440
2441 /*
2442 * Using runtime rather than walltime has the dual advantage that
2443 * we (mostly) drive the selection from busy threads and that the
2444 * task needs to have done some actual work before we bother with
2445 * NUMA placement.
2446 */
2447 now = curr->se.sum_exec_runtime;
2448 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2449
25b3e5a3 2450 if (now > curr->node_stamp + period) {
4b96a29b 2451 if (!curr->node_stamp)
598f0ec0 2452 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2453 curr->node_stamp += period;
cbee9f88
PZ
2454
2455 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2456 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2457 task_work_add(curr, work, true);
2458 }
2459 }
2460}
2461#else
2462static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2463{
2464}
0ec8aa00
PZ
2465
2466static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2467{
2468}
2469
2470static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2471{
2472}
cbee9f88
PZ
2473#endif /* CONFIG_NUMA_BALANCING */
2474
30cfdcfc
DA
2475static void
2476account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2477{
2478 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2479 if (!parent_entity(se))
029632fb 2480 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2481#ifdef CONFIG_SMP
0ec8aa00
PZ
2482 if (entity_is_task(se)) {
2483 struct rq *rq = rq_of(cfs_rq);
2484
2485 account_numa_enqueue(rq, task_of(se));
2486 list_add(&se->group_node, &rq->cfs_tasks);
2487 }
367456c7 2488#endif
30cfdcfc 2489 cfs_rq->nr_running++;
30cfdcfc
DA
2490}
2491
2492static void
2493account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2494{
2495 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2496 if (!parent_entity(se))
029632fb 2497 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2498#ifdef CONFIG_SMP
0ec8aa00
PZ
2499 if (entity_is_task(se)) {
2500 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2501 list_del_init(&se->group_node);
0ec8aa00 2502 }
bfdb198c 2503#endif
30cfdcfc 2504 cfs_rq->nr_running--;
30cfdcfc
DA
2505}
2506
3ff6dcac
YZ
2507#ifdef CONFIG_FAIR_GROUP_SCHED
2508# ifdef CONFIG_SMP
ea1dc6fc 2509static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2510{
ea1dc6fc 2511 long tg_weight, load, shares;
cf5f0acf
PZ
2512
2513 /*
ea1dc6fc
PZ
2514 * This really should be: cfs_rq->avg.load_avg, but instead we use
2515 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2516 * the shares for small weight interactive tasks.
cf5f0acf 2517 */
ea1dc6fc 2518 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2519
ea1dc6fc 2520 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2521
ea1dc6fc
PZ
2522 /* Ensure tg_weight >= load */
2523 tg_weight -= cfs_rq->tg_load_avg_contrib;
2524 tg_weight += load;
3ff6dcac 2525
3ff6dcac 2526 shares = (tg->shares * load);
cf5f0acf
PZ
2527 if (tg_weight)
2528 shares /= tg_weight;
3ff6dcac
YZ
2529
2530 if (shares < MIN_SHARES)
2531 shares = MIN_SHARES;
2532 if (shares > tg->shares)
2533 shares = tg->shares;
2534
2535 return shares;
2536}
3ff6dcac 2537# else /* CONFIG_SMP */
6d5ab293 2538static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2539{
2540 return tg->shares;
2541}
3ff6dcac 2542# endif /* CONFIG_SMP */
ea1dc6fc 2543
2069dd75
PZ
2544static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2545 unsigned long weight)
2546{
19e5eebb
PT
2547 if (se->on_rq) {
2548 /* commit outstanding execution time */
2549 if (cfs_rq->curr == se)
2550 update_curr(cfs_rq);
2069dd75 2551 account_entity_dequeue(cfs_rq, se);
19e5eebb 2552 }
2069dd75
PZ
2553
2554 update_load_set(&se->load, weight);
2555
2556 if (se->on_rq)
2557 account_entity_enqueue(cfs_rq, se);
2558}
2559
82958366
PT
2560static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2561
6d5ab293 2562static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2563{
2564 struct task_group *tg;
2565 struct sched_entity *se;
3ff6dcac 2566 long shares;
2069dd75 2567
2069dd75
PZ
2568 tg = cfs_rq->tg;
2569 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2570 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2571 return;
3ff6dcac
YZ
2572#ifndef CONFIG_SMP
2573 if (likely(se->load.weight == tg->shares))
2574 return;
2575#endif
6d5ab293 2576 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2577
2578 reweight_entity(cfs_rq_of(se), se, shares);
2579}
2580#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2581static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2582{
2583}
2584#endif /* CONFIG_FAIR_GROUP_SCHED */
2585
141965c7 2586#ifdef CONFIG_SMP
5b51f2f8
PT
2587/* Precomputed fixed inverse multiplies for multiplication by y^n */
2588static const u32 runnable_avg_yN_inv[] = {
2589 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2590 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2591 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2592 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2593 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2594 0x85aac367, 0x82cd8698,
2595};
2596
2597/*
2598 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2599 * over-estimates when re-combining.
2600 */
2601static const u32 runnable_avg_yN_sum[] = {
2602 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2603 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2604 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2605};
2606
7b20b916
YD
2607/*
2608 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2609 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2610 * were generated:
2611 */
2612static const u32 __accumulated_sum_N32[] = {
2613 0, 23371, 35056, 40899, 43820, 45281,
2614 46011, 46376, 46559, 46650, 46696, 46719,
2615};
2616
9d85f21c
PT
2617/*
2618 * Approximate:
2619 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2620 */
2621static __always_inline u64 decay_load(u64 val, u64 n)
2622{
5b51f2f8
PT
2623 unsigned int local_n;
2624
2625 if (!n)
2626 return val;
2627 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2628 return 0;
2629
2630 /* after bounds checking we can collapse to 32-bit */
2631 local_n = n;
2632
2633 /*
2634 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2635 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2636 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2637 *
2638 * To achieve constant time decay_load.
2639 */
2640 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2641 val >>= local_n / LOAD_AVG_PERIOD;
2642 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2643 }
2644
9d89c257
YD
2645 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2646 return val;
5b51f2f8
PT
2647}
2648
2649/*
2650 * For updates fully spanning n periods, the contribution to runnable
2651 * average will be: \Sum 1024*y^n
2652 *
2653 * We can compute this reasonably efficiently by combining:
2654 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2655 */
2656static u32 __compute_runnable_contrib(u64 n)
2657{
2658 u32 contrib = 0;
2659
2660 if (likely(n <= LOAD_AVG_PERIOD))
2661 return runnable_avg_yN_sum[n];
2662 else if (unlikely(n >= LOAD_AVG_MAX_N))
2663 return LOAD_AVG_MAX;
2664
7b20b916
YD
2665 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2666 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2667 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2668 contrib = decay_load(contrib, n);
2669 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2670}
2671
54a21385 2672#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2673
9d85f21c
PT
2674/*
2675 * We can represent the historical contribution to runnable average as the
2676 * coefficients of a geometric series. To do this we sub-divide our runnable
2677 * history into segments of approximately 1ms (1024us); label the segment that
2678 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2679 *
2680 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2681 * p0 p1 p2
2682 * (now) (~1ms ago) (~2ms ago)
2683 *
2684 * Let u_i denote the fraction of p_i that the entity was runnable.
2685 *
2686 * We then designate the fractions u_i as our co-efficients, yielding the
2687 * following representation of historical load:
2688 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2689 *
2690 * We choose y based on the with of a reasonably scheduling period, fixing:
2691 * y^32 = 0.5
2692 *
2693 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2694 * approximately half as much as the contribution to load within the last ms
2695 * (u_0).
2696 *
2697 * When a period "rolls over" and we have new u_0`, multiplying the previous
2698 * sum again by y is sufficient to update:
2699 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2700 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2701 */
9d89c257
YD
2702static __always_inline int
2703__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2704 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2705{
e0f5f3af 2706 u64 delta, scaled_delta, periods;
9d89c257 2707 u32 contrib;
6115c793 2708 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2709 unsigned long scale_freq, scale_cpu;
9d85f21c 2710
9d89c257 2711 delta = now - sa->last_update_time;
9d85f21c
PT
2712 /*
2713 * This should only happen when time goes backwards, which it
2714 * unfortunately does during sched clock init when we swap over to TSC.
2715 */
2716 if ((s64)delta < 0) {
9d89c257 2717 sa->last_update_time = now;
9d85f21c
PT
2718 return 0;
2719 }
2720
2721 /*
2722 * Use 1024ns as the unit of measurement since it's a reasonable
2723 * approximation of 1us and fast to compute.
2724 */
2725 delta >>= 10;
2726 if (!delta)
2727 return 0;
9d89c257 2728 sa->last_update_time = now;
9d85f21c 2729
6f2b0452
DE
2730 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2731 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2732
9d85f21c 2733 /* delta_w is the amount already accumulated against our next period */
9d89c257 2734 delta_w = sa->period_contrib;
9d85f21c 2735 if (delta + delta_w >= 1024) {
9d85f21c
PT
2736 decayed = 1;
2737
9d89c257
YD
2738 /* how much left for next period will start over, we don't know yet */
2739 sa->period_contrib = 0;
2740
9d85f21c
PT
2741 /*
2742 * Now that we know we're crossing a period boundary, figure
2743 * out how much from delta we need to complete the current
2744 * period and accrue it.
2745 */
2746 delta_w = 1024 - delta_w;
54a21385 2747 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2748 if (weight) {
e0f5f3af
DE
2749 sa->load_sum += weight * scaled_delta_w;
2750 if (cfs_rq) {
2751 cfs_rq->runnable_load_sum +=
2752 weight * scaled_delta_w;
2753 }
13962234 2754 }
36ee28e4 2755 if (running)
006cdf02 2756 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2757
2758 delta -= delta_w;
2759
2760 /* Figure out how many additional periods this update spans */
2761 periods = delta / 1024;
2762 delta %= 1024;
2763
9d89c257 2764 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2765 if (cfs_rq) {
2766 cfs_rq->runnable_load_sum =
2767 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2768 }
9d89c257 2769 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2770
2771 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2772 contrib = __compute_runnable_contrib(periods);
54a21385 2773 contrib = cap_scale(contrib, scale_freq);
13962234 2774 if (weight) {
9d89c257 2775 sa->load_sum += weight * contrib;
13962234
YD
2776 if (cfs_rq)
2777 cfs_rq->runnable_load_sum += weight * contrib;
2778 }
36ee28e4 2779 if (running)
006cdf02 2780 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2781 }
2782
2783 /* Remainder of delta accrued against u_0` */
54a21385 2784 scaled_delta = cap_scale(delta, scale_freq);
13962234 2785 if (weight) {
e0f5f3af 2786 sa->load_sum += weight * scaled_delta;
13962234 2787 if (cfs_rq)
e0f5f3af 2788 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2789 }
36ee28e4 2790 if (running)
006cdf02 2791 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2792
9d89c257 2793 sa->period_contrib += delta;
9ee474f5 2794
9d89c257
YD
2795 if (decayed) {
2796 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2797 if (cfs_rq) {
2798 cfs_rq->runnable_load_avg =
2799 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2800 }
006cdf02 2801 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2802 }
aff3e498 2803
9d89c257 2804 return decayed;
9ee474f5
PT
2805}
2806
c566e8e9 2807#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2808/**
2809 * update_tg_load_avg - update the tg's load avg
2810 * @cfs_rq: the cfs_rq whose avg changed
2811 * @force: update regardless of how small the difference
2812 *
2813 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2814 * However, because tg->load_avg is a global value there are performance
2815 * considerations.
2816 *
2817 * In order to avoid having to look at the other cfs_rq's, we use a
2818 * differential update where we store the last value we propagated. This in
2819 * turn allows skipping updates if the differential is 'small'.
2820 *
2821 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2822 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2823 */
9d89c257 2824static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2825{
9d89c257 2826 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2827
aa0b7ae0
WL
2828 /*
2829 * No need to update load_avg for root_task_group as it is not used.
2830 */
2831 if (cfs_rq->tg == &root_task_group)
2832 return;
2833
9d89c257
YD
2834 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2835 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2836 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2837 }
8165e145 2838}
f5f9739d 2839
ad936d86
BP
2840/*
2841 * Called within set_task_rq() right before setting a task's cpu. The
2842 * caller only guarantees p->pi_lock is held; no other assumptions,
2843 * including the state of rq->lock, should be made.
2844 */
2845void set_task_rq_fair(struct sched_entity *se,
2846 struct cfs_rq *prev, struct cfs_rq *next)
2847{
2848 if (!sched_feat(ATTACH_AGE_LOAD))
2849 return;
2850
2851 /*
2852 * We are supposed to update the task to "current" time, then its up to
2853 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2854 * getting what current time is, so simply throw away the out-of-date
2855 * time. This will result in the wakee task is less decayed, but giving
2856 * the wakee more load sounds not bad.
2857 */
2858 if (se->avg.last_update_time && prev) {
2859 u64 p_last_update_time;
2860 u64 n_last_update_time;
2861
2862#ifndef CONFIG_64BIT
2863 u64 p_last_update_time_copy;
2864 u64 n_last_update_time_copy;
2865
2866 do {
2867 p_last_update_time_copy = prev->load_last_update_time_copy;
2868 n_last_update_time_copy = next->load_last_update_time_copy;
2869
2870 smp_rmb();
2871
2872 p_last_update_time = prev->avg.last_update_time;
2873 n_last_update_time = next->avg.last_update_time;
2874
2875 } while (p_last_update_time != p_last_update_time_copy ||
2876 n_last_update_time != n_last_update_time_copy);
2877#else
2878 p_last_update_time = prev->avg.last_update_time;
2879 n_last_update_time = next->avg.last_update_time;
2880#endif
2881 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2882 &se->avg, 0, 0, NULL);
2883 se->avg.last_update_time = n_last_update_time;
2884 }
2885}
6e83125c 2886#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2887static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2888#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2889
a2c6c91f
SM
2890static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2891{
2892 struct rq *rq = rq_of(cfs_rq);
2893 int cpu = cpu_of(rq);
2894
2895 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2896 unsigned long max = rq->cpu_capacity_orig;
2897
2898 /*
2899 * There are a few boundary cases this might miss but it should
2900 * get called often enough that that should (hopefully) not be
2901 * a real problem -- added to that it only calls on the local
2902 * CPU, so if we enqueue remotely we'll miss an update, but
2903 * the next tick/schedule should update.
2904 *
2905 * It will not get called when we go idle, because the idle
2906 * thread is a different class (!fair), nor will the utilization
2907 * number include things like RT tasks.
2908 *
2909 * As is, the util number is not freq-invariant (we'd have to
2910 * implement arch_scale_freq_capacity() for that).
2911 *
2912 * See cpu_util().
2913 */
2914 cpufreq_update_util(rq_clock(rq),
2915 min(cfs_rq->avg.util_avg, max), max);
2916 }
2917}
2918
89741892
PZ
2919/*
2920 * Unsigned subtract and clamp on underflow.
2921 *
2922 * Explicitly do a load-store to ensure the intermediate value never hits
2923 * memory. This allows lockless observations without ever seeing the negative
2924 * values.
2925 */
2926#define sub_positive(_ptr, _val) do { \
2927 typeof(_ptr) ptr = (_ptr); \
2928 typeof(*ptr) val = (_val); \
2929 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2930 res = var - val; \
2931 if (res > var) \
2932 res = 0; \
2933 WRITE_ONCE(*ptr, res); \
2934} while (0)
2935
3d30544f
PZ
2936/**
2937 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2938 * @now: current time, as per cfs_rq_clock_task()
2939 * @cfs_rq: cfs_rq to update
2940 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2941 *
2942 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2943 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2944 * post_init_entity_util_avg().
2945 *
2946 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2947 *
7c3edd2c
PZ
2948 * Returns true if the load decayed or we removed load.
2949 *
2950 * Since both these conditions indicate a changed cfs_rq->avg.load we should
2951 * call update_tg_load_avg() when this function returns true.
3d30544f 2952 */
a2c6c91f
SM
2953static inline int
2954update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2955{
9d89c257 2956 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2957 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2958
9d89c257 2959 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2960 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2961 sub_positive(&sa->load_avg, r);
2962 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2963 removed_load = 1;
8165e145 2964 }
2dac754e 2965
9d89c257
YD
2966 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2967 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2968 sub_positive(&sa->util_avg, r);
2969 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2970 removed_util = 1;
9d89c257 2971 }
36ee28e4 2972
a2c6c91f 2973 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2974 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2975
9d89c257
YD
2976#ifndef CONFIG_64BIT
2977 smp_wmb();
2978 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2979#endif
36ee28e4 2980
a2c6c91f
SM
2981 if (update_freq && (decayed || removed_util))
2982 cfs_rq_util_change(cfs_rq);
21e96f88 2983
41e0d37f 2984 return decayed || removed_load;
21e96f88
SM
2985}
2986
2987/* Update task and its cfs_rq load average */
2988static inline void update_load_avg(struct sched_entity *se, int update_tg)
2989{
2990 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2991 u64 now = cfs_rq_clock_task(cfs_rq);
2992 struct rq *rq = rq_of(cfs_rq);
2993 int cpu = cpu_of(rq);
2994
2995 /*
2996 * Track task load average for carrying it to new CPU after migrated, and
2997 * track group sched_entity load average for task_h_load calc in migration
2998 */
2999 __update_load_avg(now, cpu, &se->avg,
3000 se->on_rq * scale_load_down(se->load.weight),
3001 cfs_rq->curr == se, NULL);
3002
a2c6c91f 3003 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3004 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3005}
3006
3d30544f
PZ
3007/**
3008 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3009 * @cfs_rq: cfs_rq to attach to
3010 * @se: sched_entity to attach
3011 *
3012 * Must call update_cfs_rq_load_avg() before this, since we rely on
3013 * cfs_rq->avg.last_update_time being current.
3014 */
a05e8c51
BP
3015static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3016{
a9280514
PZ
3017 if (!sched_feat(ATTACH_AGE_LOAD))
3018 goto skip_aging;
3019
6efdb105
BP
3020 /*
3021 * If we got migrated (either between CPUs or between cgroups) we'll
3022 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3023 *
3024 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3025 */
3026 if (se->avg.last_update_time) {
3027 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3028 &se->avg, 0, 0, NULL);
3029
3030 /*
3031 * XXX: we could have just aged the entire load away if we've been
3032 * absent from the fair class for too long.
3033 */
3034 }
3035
a9280514 3036skip_aging:
a05e8c51
BP
3037 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3038 cfs_rq->avg.load_avg += se->avg.load_avg;
3039 cfs_rq->avg.load_sum += se->avg.load_sum;
3040 cfs_rq->avg.util_avg += se->avg.util_avg;
3041 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3042
3043 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3044}
3045
3d30544f
PZ
3046/**
3047 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3048 * @cfs_rq: cfs_rq to detach from
3049 * @se: sched_entity to detach
3050 *
3051 * Must call update_cfs_rq_load_avg() before this, since we rely on
3052 * cfs_rq->avg.last_update_time being current.
3053 */
a05e8c51
BP
3054static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3055{
3056 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3057 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3058 cfs_rq->curr == se, NULL);
3059
89741892
PZ
3060 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3061 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3062 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3063 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3064
3065 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3066}
3067
9d89c257
YD
3068/* Add the load generated by se into cfs_rq's load average */
3069static inline void
3070enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3071{
9d89c257
YD
3072 struct sched_avg *sa = &se->avg;
3073 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3074 int migrated, decayed;
9ee474f5 3075
a05e8c51
BP
3076 migrated = !sa->last_update_time;
3077 if (!migrated) {
9d89c257 3078 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3079 se->on_rq * scale_load_down(se->load.weight),
3080 cfs_rq->curr == se, NULL);
aff3e498 3081 }
c566e8e9 3082
a2c6c91f 3083 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3084
13962234
YD
3085 cfs_rq->runnable_load_avg += sa->load_avg;
3086 cfs_rq->runnable_load_sum += sa->load_sum;
3087
a05e8c51
BP
3088 if (migrated)
3089 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3090
9d89c257
YD
3091 if (decayed || migrated)
3092 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3093}
3094
13962234
YD
3095/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3096static inline void
3097dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3098{
3099 update_load_avg(se, 1);
3100
3101 cfs_rq->runnable_load_avg =
3102 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3103 cfs_rq->runnable_load_sum =
a05e8c51 3104 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3105}
3106
9d89c257 3107#ifndef CONFIG_64BIT
0905f04e
YD
3108static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3109{
9d89c257 3110 u64 last_update_time_copy;
0905f04e 3111 u64 last_update_time;
9ee474f5 3112
9d89c257
YD
3113 do {
3114 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3115 smp_rmb();
3116 last_update_time = cfs_rq->avg.last_update_time;
3117 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3118
3119 return last_update_time;
3120}
9d89c257 3121#else
0905f04e
YD
3122static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3123{
3124 return cfs_rq->avg.last_update_time;
3125}
9d89c257
YD
3126#endif
3127
0905f04e
YD
3128/*
3129 * Task first catches up with cfs_rq, and then subtract
3130 * itself from the cfs_rq (task must be off the queue now).
3131 */
3132void remove_entity_load_avg(struct sched_entity *se)
3133{
3134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3135 u64 last_update_time;
3136
3137 /*
7dc603c9
PZ
3138 * tasks cannot exit without having gone through wake_up_new_task() ->
3139 * post_init_entity_util_avg() which will have added things to the
3140 * cfs_rq, so we can remove unconditionally.
3141 *
3142 * Similarly for groups, they will have passed through
3143 * post_init_entity_util_avg() before unregister_sched_fair_group()
3144 * calls this.
0905f04e 3145 */
0905f04e
YD
3146
3147 last_update_time = cfs_rq_last_update_time(cfs_rq);
3148
13962234 3149 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3150 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3151 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3152}
642dbc39 3153
7ea241af
YD
3154static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3155{
3156 return cfs_rq->runnable_load_avg;
3157}
3158
3159static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3160{
3161 return cfs_rq->avg.load_avg;
3162}
3163
6e83125c
PZ
3164static int idle_balance(struct rq *this_rq);
3165
38033c37
PZ
3166#else /* CONFIG_SMP */
3167
01011473
PZ
3168static inline int
3169update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3170{
3171 return 0;
3172}
3173
536bd00c
RW
3174static inline void update_load_avg(struct sched_entity *se, int not_used)
3175{
3176 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3177 struct rq *rq = rq_of(cfs_rq);
3178
3179 cpufreq_trigger_update(rq_clock(rq));
3180}
3181
9d89c257
YD
3182static inline void
3183enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3184static inline void
3185dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3186static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3187
a05e8c51
BP
3188static inline void
3189attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3190static inline void
3191detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3192
6e83125c
PZ
3193static inline int idle_balance(struct rq *rq)
3194{
3195 return 0;
3196}
3197
38033c37 3198#endif /* CONFIG_SMP */
9d85f21c 3199
2396af69 3200static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3201{
bf0f6f24 3202#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3203 struct task_struct *tsk = NULL;
3204
3205 if (entity_is_task(se))
3206 tsk = task_of(se);
3207
41acab88 3208 if (se->statistics.sleep_start) {
78becc27 3209 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3210
3211 if ((s64)delta < 0)
3212 delta = 0;
3213
41acab88
LDM
3214 if (unlikely(delta > se->statistics.sleep_max))
3215 se->statistics.sleep_max = delta;
bf0f6f24 3216
8c79a045 3217 se->statistics.sleep_start = 0;
41acab88 3218 se->statistics.sum_sleep_runtime += delta;
9745512c 3219
768d0c27 3220 if (tsk) {
e414314c 3221 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3222 trace_sched_stat_sleep(tsk, delta);
3223 }
bf0f6f24 3224 }
41acab88 3225 if (se->statistics.block_start) {
78becc27 3226 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3227
3228 if ((s64)delta < 0)
3229 delta = 0;
3230
41acab88
LDM
3231 if (unlikely(delta > se->statistics.block_max))
3232 se->statistics.block_max = delta;
bf0f6f24 3233
8c79a045 3234 se->statistics.block_start = 0;
41acab88 3235 se->statistics.sum_sleep_runtime += delta;
30084fbd 3236
e414314c 3237 if (tsk) {
8f0dfc34 3238 if (tsk->in_iowait) {
41acab88
LDM
3239 se->statistics.iowait_sum += delta;
3240 se->statistics.iowait_count++;
768d0c27 3241 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3242 }
3243
b781a602
AV
3244 trace_sched_stat_blocked(tsk, delta);
3245
e414314c
PZ
3246 /*
3247 * Blocking time is in units of nanosecs, so shift by
3248 * 20 to get a milliseconds-range estimation of the
3249 * amount of time that the task spent sleeping:
3250 */
3251 if (unlikely(prof_on == SLEEP_PROFILING)) {
3252 profile_hits(SLEEP_PROFILING,
3253 (void *)get_wchan(tsk),
3254 delta >> 20);
3255 }
3256 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3257 }
bf0f6f24
IM
3258 }
3259#endif
3260}
3261
ddc97297
PZ
3262static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3263{
3264#ifdef CONFIG_SCHED_DEBUG
3265 s64 d = se->vruntime - cfs_rq->min_vruntime;
3266
3267 if (d < 0)
3268 d = -d;
3269
3270 if (d > 3*sysctl_sched_latency)
3271 schedstat_inc(cfs_rq, nr_spread_over);
3272#endif
3273}
3274
aeb73b04
PZ
3275static void
3276place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3277{
1af5f730 3278 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3279
2cb8600e
PZ
3280 /*
3281 * The 'current' period is already promised to the current tasks,
3282 * however the extra weight of the new task will slow them down a
3283 * little, place the new task so that it fits in the slot that
3284 * stays open at the end.
3285 */
94dfb5e7 3286 if (initial && sched_feat(START_DEBIT))
f9c0b095 3287 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3288
a2e7a7eb 3289 /* sleeps up to a single latency don't count. */
5ca9880c 3290 if (!initial) {
a2e7a7eb 3291 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3292
a2e7a7eb
MG
3293 /*
3294 * Halve their sleep time's effect, to allow
3295 * for a gentler effect of sleepers:
3296 */
3297 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3298 thresh >>= 1;
51e0304c 3299
a2e7a7eb 3300 vruntime -= thresh;
aeb73b04
PZ
3301 }
3302
b5d9d734 3303 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3304 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3305}
3306
d3d9dc33
PT
3307static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3308
cb251765
MG
3309static inline void check_schedstat_required(void)
3310{
3311#ifdef CONFIG_SCHEDSTATS
3312 if (schedstat_enabled())
3313 return;
3314
3315 /* Force schedstat enabled if a dependent tracepoint is active */
3316 if (trace_sched_stat_wait_enabled() ||
3317 trace_sched_stat_sleep_enabled() ||
3318 trace_sched_stat_iowait_enabled() ||
3319 trace_sched_stat_blocked_enabled() ||
3320 trace_sched_stat_runtime_enabled()) {
eda8dca5 3321 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3322 "stat_blocked and stat_runtime require the "
3323 "kernel parameter schedstats=enabled or "
3324 "kernel.sched_schedstats=1\n");
3325 }
3326#endif
3327}
3328
b5179ac7
PZ
3329
3330/*
3331 * MIGRATION
3332 *
3333 * dequeue
3334 * update_curr()
3335 * update_min_vruntime()
3336 * vruntime -= min_vruntime
3337 *
3338 * enqueue
3339 * update_curr()
3340 * update_min_vruntime()
3341 * vruntime += min_vruntime
3342 *
3343 * this way the vruntime transition between RQs is done when both
3344 * min_vruntime are up-to-date.
3345 *
3346 * WAKEUP (remote)
3347 *
59efa0ba 3348 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3349 * vruntime -= min_vruntime
3350 *
3351 * enqueue
3352 * update_curr()
3353 * update_min_vruntime()
3354 * vruntime += min_vruntime
3355 *
3356 * this way we don't have the most up-to-date min_vruntime on the originating
3357 * CPU and an up-to-date min_vruntime on the destination CPU.
3358 */
3359
bf0f6f24 3360static void
88ec22d3 3361enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3362{
2f950354
PZ
3363 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3364 bool curr = cfs_rq->curr == se;
3365
88ec22d3 3366 /*
2f950354
PZ
3367 * If we're the current task, we must renormalise before calling
3368 * update_curr().
88ec22d3 3369 */
2f950354 3370 if (renorm && curr)
88ec22d3
PZ
3371 se->vruntime += cfs_rq->min_vruntime;
3372
2f950354
PZ
3373 update_curr(cfs_rq);
3374
bf0f6f24 3375 /*
2f950354
PZ
3376 * Otherwise, renormalise after, such that we're placed at the current
3377 * moment in time, instead of some random moment in the past. Being
3378 * placed in the past could significantly boost this task to the
3379 * fairness detriment of existing tasks.
bf0f6f24 3380 */
2f950354
PZ
3381 if (renorm && !curr)
3382 se->vruntime += cfs_rq->min_vruntime;
3383
9d89c257 3384 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3385 account_entity_enqueue(cfs_rq, se);
3386 update_cfs_shares(cfs_rq);
bf0f6f24 3387
88ec22d3 3388 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3389 place_entity(cfs_rq, se, 0);
cb251765
MG
3390 if (schedstat_enabled())
3391 enqueue_sleeper(cfs_rq, se);
e9acbff6 3392 }
bf0f6f24 3393
cb251765
MG
3394 check_schedstat_required();
3395 if (schedstat_enabled()) {
3396 update_stats_enqueue(cfs_rq, se);
3397 check_spread(cfs_rq, se);
3398 }
2f950354 3399 if (!curr)
83b699ed 3400 __enqueue_entity(cfs_rq, se);
2069dd75 3401 se->on_rq = 1;
3d4b47b4 3402
d3d9dc33 3403 if (cfs_rq->nr_running == 1) {
3d4b47b4 3404 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3405 check_enqueue_throttle(cfs_rq);
3406 }
bf0f6f24
IM
3407}
3408
2c13c919 3409static void __clear_buddies_last(struct sched_entity *se)
2002c695 3410{
2c13c919
RR
3411 for_each_sched_entity(se) {
3412 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3413 if (cfs_rq->last != se)
2c13c919 3414 break;
f1044799
PZ
3415
3416 cfs_rq->last = NULL;
2c13c919
RR
3417 }
3418}
2002c695 3419
2c13c919
RR
3420static void __clear_buddies_next(struct sched_entity *se)
3421{
3422 for_each_sched_entity(se) {
3423 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3424 if (cfs_rq->next != se)
2c13c919 3425 break;
f1044799
PZ
3426
3427 cfs_rq->next = NULL;
2c13c919 3428 }
2002c695
PZ
3429}
3430
ac53db59
RR
3431static void __clear_buddies_skip(struct sched_entity *se)
3432{
3433 for_each_sched_entity(se) {
3434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3435 if (cfs_rq->skip != se)
ac53db59 3436 break;
f1044799
PZ
3437
3438 cfs_rq->skip = NULL;
ac53db59
RR
3439 }
3440}
3441
a571bbea
PZ
3442static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3443{
2c13c919
RR
3444 if (cfs_rq->last == se)
3445 __clear_buddies_last(se);
3446
3447 if (cfs_rq->next == se)
3448 __clear_buddies_next(se);
ac53db59
RR
3449
3450 if (cfs_rq->skip == se)
3451 __clear_buddies_skip(se);
a571bbea
PZ
3452}
3453
6c16a6dc 3454static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3455
bf0f6f24 3456static void
371fd7e7 3457dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3458{
a2a2d680
DA
3459 /*
3460 * Update run-time statistics of the 'current'.
3461 */
3462 update_curr(cfs_rq);
13962234 3463 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3464
cb251765
MG
3465 if (schedstat_enabled())
3466 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3467
2002c695 3468 clear_buddies(cfs_rq, se);
4793241b 3469
83b699ed 3470 if (se != cfs_rq->curr)
30cfdcfc 3471 __dequeue_entity(cfs_rq, se);
17bc14b7 3472 se->on_rq = 0;
30cfdcfc 3473 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3474
3475 /*
3476 * Normalize the entity after updating the min_vruntime because the
3477 * update can refer to the ->curr item and we need to reflect this
3478 * movement in our normalized position.
3479 */
371fd7e7 3480 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3481 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3482
d8b4986d
PT
3483 /* return excess runtime on last dequeue */
3484 return_cfs_rq_runtime(cfs_rq);
3485
1e876231 3486 update_min_vruntime(cfs_rq);
17bc14b7 3487 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3488}
3489
3490/*
3491 * Preempt the current task with a newly woken task if needed:
3492 */
7c92e54f 3493static void
2e09bf55 3494check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3495{
11697830 3496 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3497 struct sched_entity *se;
3498 s64 delta;
11697830 3499
6d0f0ebd 3500 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3501 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3502 if (delta_exec > ideal_runtime) {
8875125e 3503 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3504 /*
3505 * The current task ran long enough, ensure it doesn't get
3506 * re-elected due to buddy favours.
3507 */
3508 clear_buddies(cfs_rq, curr);
f685ceac
MG
3509 return;
3510 }
3511
3512 /*
3513 * Ensure that a task that missed wakeup preemption by a
3514 * narrow margin doesn't have to wait for a full slice.
3515 * This also mitigates buddy induced latencies under load.
3516 */
f685ceac
MG
3517 if (delta_exec < sysctl_sched_min_granularity)
3518 return;
3519
f4cfb33e
WX
3520 se = __pick_first_entity(cfs_rq);
3521 delta = curr->vruntime - se->vruntime;
f685ceac 3522
f4cfb33e
WX
3523 if (delta < 0)
3524 return;
d7d82944 3525
f4cfb33e 3526 if (delta > ideal_runtime)
8875125e 3527 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3528}
3529
83b699ed 3530static void
8494f412 3531set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3532{
83b699ed
SV
3533 /* 'current' is not kept within the tree. */
3534 if (se->on_rq) {
3535 /*
3536 * Any task has to be enqueued before it get to execute on
3537 * a CPU. So account for the time it spent waiting on the
3538 * runqueue.
3539 */
cb251765
MG
3540 if (schedstat_enabled())
3541 update_stats_wait_end(cfs_rq, se);
83b699ed 3542 __dequeue_entity(cfs_rq, se);
9d89c257 3543 update_load_avg(se, 1);
83b699ed
SV
3544 }
3545
79303e9e 3546 update_stats_curr_start(cfs_rq, se);
429d43bc 3547 cfs_rq->curr = se;
eba1ed4b
IM
3548#ifdef CONFIG_SCHEDSTATS
3549 /*
3550 * Track our maximum slice length, if the CPU's load is at
3551 * least twice that of our own weight (i.e. dont track it
3552 * when there are only lesser-weight tasks around):
3553 */
cb251765 3554 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3555 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3556 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3557 }
3558#endif
4a55b450 3559 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3560}
3561
3f3a4904
PZ
3562static int
3563wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3564
ac53db59
RR
3565/*
3566 * Pick the next process, keeping these things in mind, in this order:
3567 * 1) keep things fair between processes/task groups
3568 * 2) pick the "next" process, since someone really wants that to run
3569 * 3) pick the "last" process, for cache locality
3570 * 4) do not run the "skip" process, if something else is available
3571 */
678d5718
PZ
3572static struct sched_entity *
3573pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3574{
678d5718
PZ
3575 struct sched_entity *left = __pick_first_entity(cfs_rq);
3576 struct sched_entity *se;
3577
3578 /*
3579 * If curr is set we have to see if its left of the leftmost entity
3580 * still in the tree, provided there was anything in the tree at all.
3581 */
3582 if (!left || (curr && entity_before(curr, left)))
3583 left = curr;
3584
3585 se = left; /* ideally we run the leftmost entity */
f4b6755f 3586
ac53db59
RR
3587 /*
3588 * Avoid running the skip buddy, if running something else can
3589 * be done without getting too unfair.
3590 */
3591 if (cfs_rq->skip == se) {
678d5718
PZ
3592 struct sched_entity *second;
3593
3594 if (se == curr) {
3595 second = __pick_first_entity(cfs_rq);
3596 } else {
3597 second = __pick_next_entity(se);
3598 if (!second || (curr && entity_before(curr, second)))
3599 second = curr;
3600 }
3601
ac53db59
RR
3602 if (second && wakeup_preempt_entity(second, left) < 1)
3603 se = second;
3604 }
aa2ac252 3605
f685ceac
MG
3606 /*
3607 * Prefer last buddy, try to return the CPU to a preempted task.
3608 */
3609 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3610 se = cfs_rq->last;
3611
ac53db59
RR
3612 /*
3613 * Someone really wants this to run. If it's not unfair, run it.
3614 */
3615 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3616 se = cfs_rq->next;
3617
f685ceac 3618 clear_buddies(cfs_rq, se);
4793241b
PZ
3619
3620 return se;
aa2ac252
PZ
3621}
3622
678d5718 3623static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3624
ab6cde26 3625static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3626{
3627 /*
3628 * If still on the runqueue then deactivate_task()
3629 * was not called and update_curr() has to be done:
3630 */
3631 if (prev->on_rq)
b7cc0896 3632 update_curr(cfs_rq);
bf0f6f24 3633
d3d9dc33
PT
3634 /* throttle cfs_rqs exceeding runtime */
3635 check_cfs_rq_runtime(cfs_rq);
3636
cb251765
MG
3637 if (schedstat_enabled()) {
3638 check_spread(cfs_rq, prev);
3639 if (prev->on_rq)
3640 update_stats_wait_start(cfs_rq, prev);
3641 }
3642
30cfdcfc 3643 if (prev->on_rq) {
30cfdcfc
DA
3644 /* Put 'current' back into the tree. */
3645 __enqueue_entity(cfs_rq, prev);
9d85f21c 3646 /* in !on_rq case, update occurred at dequeue */
9d89c257 3647 update_load_avg(prev, 0);
30cfdcfc 3648 }
429d43bc 3649 cfs_rq->curr = NULL;
bf0f6f24
IM
3650}
3651
8f4d37ec
PZ
3652static void
3653entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3654{
bf0f6f24 3655 /*
30cfdcfc 3656 * Update run-time statistics of the 'current'.
bf0f6f24 3657 */
30cfdcfc 3658 update_curr(cfs_rq);
bf0f6f24 3659
9d85f21c
PT
3660 /*
3661 * Ensure that runnable average is periodically updated.
3662 */
9d89c257 3663 update_load_avg(curr, 1);
bf0bd948 3664 update_cfs_shares(cfs_rq);
9d85f21c 3665
8f4d37ec
PZ
3666#ifdef CONFIG_SCHED_HRTICK
3667 /*
3668 * queued ticks are scheduled to match the slice, so don't bother
3669 * validating it and just reschedule.
3670 */
983ed7a6 3671 if (queued) {
8875125e 3672 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3673 return;
3674 }
8f4d37ec
PZ
3675 /*
3676 * don't let the period tick interfere with the hrtick preemption
3677 */
3678 if (!sched_feat(DOUBLE_TICK) &&
3679 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3680 return;
3681#endif
3682
2c2efaed 3683 if (cfs_rq->nr_running > 1)
2e09bf55 3684 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3685}
3686
ab84d31e
PT
3687
3688/**************************************************
3689 * CFS bandwidth control machinery
3690 */
3691
3692#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3693
3694#ifdef HAVE_JUMP_LABEL
c5905afb 3695static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3696
3697static inline bool cfs_bandwidth_used(void)
3698{
c5905afb 3699 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3700}
3701
1ee14e6c 3702void cfs_bandwidth_usage_inc(void)
029632fb 3703{
1ee14e6c
BS
3704 static_key_slow_inc(&__cfs_bandwidth_used);
3705}
3706
3707void cfs_bandwidth_usage_dec(void)
3708{
3709 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3710}
3711#else /* HAVE_JUMP_LABEL */
3712static bool cfs_bandwidth_used(void)
3713{
3714 return true;
3715}
3716
1ee14e6c
BS
3717void cfs_bandwidth_usage_inc(void) {}
3718void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3719#endif /* HAVE_JUMP_LABEL */
3720
ab84d31e
PT
3721/*
3722 * default period for cfs group bandwidth.
3723 * default: 0.1s, units: nanoseconds
3724 */
3725static inline u64 default_cfs_period(void)
3726{
3727 return 100000000ULL;
3728}
ec12cb7f
PT
3729
3730static inline u64 sched_cfs_bandwidth_slice(void)
3731{
3732 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3733}
3734
a9cf55b2
PT
3735/*
3736 * Replenish runtime according to assigned quota and update expiration time.
3737 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3738 * additional synchronization around rq->lock.
3739 *
3740 * requires cfs_b->lock
3741 */
029632fb 3742void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3743{
3744 u64 now;
3745
3746 if (cfs_b->quota == RUNTIME_INF)
3747 return;
3748
3749 now = sched_clock_cpu(smp_processor_id());
3750 cfs_b->runtime = cfs_b->quota;
3751 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3752}
3753
029632fb
PZ
3754static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3755{
3756 return &tg->cfs_bandwidth;
3757}
3758
f1b17280
PT
3759/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3760static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3761{
3762 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3763 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3764
78becc27 3765 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3766}
3767
85dac906
PT
3768/* returns 0 on failure to allocate runtime */
3769static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3770{
3771 struct task_group *tg = cfs_rq->tg;
3772 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3773 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3774
3775 /* note: this is a positive sum as runtime_remaining <= 0 */
3776 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3777
3778 raw_spin_lock(&cfs_b->lock);
3779 if (cfs_b->quota == RUNTIME_INF)
3780 amount = min_amount;
58088ad0 3781 else {
77a4d1a1 3782 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3783
3784 if (cfs_b->runtime > 0) {
3785 amount = min(cfs_b->runtime, min_amount);
3786 cfs_b->runtime -= amount;
3787 cfs_b->idle = 0;
3788 }
ec12cb7f 3789 }
a9cf55b2 3790 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3791 raw_spin_unlock(&cfs_b->lock);
3792
3793 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3794 /*
3795 * we may have advanced our local expiration to account for allowed
3796 * spread between our sched_clock and the one on which runtime was
3797 * issued.
3798 */
3799 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3800 cfs_rq->runtime_expires = expires;
85dac906
PT
3801
3802 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3803}
3804
a9cf55b2
PT
3805/*
3806 * Note: This depends on the synchronization provided by sched_clock and the
3807 * fact that rq->clock snapshots this value.
3808 */
3809static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3810{
a9cf55b2 3811 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3812
3813 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3814 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3815 return;
3816
a9cf55b2
PT
3817 if (cfs_rq->runtime_remaining < 0)
3818 return;
3819
3820 /*
3821 * If the local deadline has passed we have to consider the
3822 * possibility that our sched_clock is 'fast' and the global deadline
3823 * has not truly expired.
3824 *
3825 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3826 * whether the global deadline has advanced. It is valid to compare
3827 * cfs_b->runtime_expires without any locks since we only care about
3828 * exact equality, so a partial write will still work.
a9cf55b2
PT
3829 */
3830
51f2176d 3831 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3832 /* extend local deadline, drift is bounded above by 2 ticks */
3833 cfs_rq->runtime_expires += TICK_NSEC;
3834 } else {
3835 /* global deadline is ahead, expiration has passed */
3836 cfs_rq->runtime_remaining = 0;
3837 }
3838}
3839
9dbdb155 3840static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3841{
3842 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3843 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3844 expire_cfs_rq_runtime(cfs_rq);
3845
3846 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3847 return;
3848
85dac906
PT
3849 /*
3850 * if we're unable to extend our runtime we resched so that the active
3851 * hierarchy can be throttled
3852 */
3853 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3854 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3855}
3856
6c16a6dc 3857static __always_inline
9dbdb155 3858void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3859{
56f570e5 3860 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3861 return;
3862
3863 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3864}
3865
85dac906
PT
3866static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3867{
56f570e5 3868 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3869}
3870
64660c86
PT
3871/* check whether cfs_rq, or any parent, is throttled */
3872static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3873{
56f570e5 3874 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3875}
3876
3877/*
3878 * Ensure that neither of the group entities corresponding to src_cpu or
3879 * dest_cpu are members of a throttled hierarchy when performing group
3880 * load-balance operations.
3881 */
3882static inline int throttled_lb_pair(struct task_group *tg,
3883 int src_cpu, int dest_cpu)
3884{
3885 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3886
3887 src_cfs_rq = tg->cfs_rq[src_cpu];
3888 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3889
3890 return throttled_hierarchy(src_cfs_rq) ||
3891 throttled_hierarchy(dest_cfs_rq);
3892}
3893
3894/* updated child weight may affect parent so we have to do this bottom up */
3895static int tg_unthrottle_up(struct task_group *tg, void *data)
3896{
3897 struct rq *rq = data;
3898 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3899
3900 cfs_rq->throttle_count--;
64660c86 3901 if (!cfs_rq->throttle_count) {
f1b17280 3902 /* adjust cfs_rq_clock_task() */
78becc27 3903 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3904 cfs_rq->throttled_clock_task;
64660c86 3905 }
64660c86
PT
3906
3907 return 0;
3908}
3909
3910static int tg_throttle_down(struct task_group *tg, void *data)
3911{
3912 struct rq *rq = data;
3913 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3914
82958366
PT
3915 /* group is entering throttled state, stop time */
3916 if (!cfs_rq->throttle_count)
78becc27 3917 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3918 cfs_rq->throttle_count++;
3919
3920 return 0;
3921}
3922
d3d9dc33 3923static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3924{
3925 struct rq *rq = rq_of(cfs_rq);
3926 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3927 struct sched_entity *se;
3928 long task_delta, dequeue = 1;
77a4d1a1 3929 bool empty;
85dac906
PT
3930
3931 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3932
f1b17280 3933 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3934 rcu_read_lock();
3935 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3936 rcu_read_unlock();
85dac906
PT
3937
3938 task_delta = cfs_rq->h_nr_running;
3939 for_each_sched_entity(se) {
3940 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3941 /* throttled entity or throttle-on-deactivate */
3942 if (!se->on_rq)
3943 break;
3944
3945 if (dequeue)
3946 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3947 qcfs_rq->h_nr_running -= task_delta;
3948
3949 if (qcfs_rq->load.weight)
3950 dequeue = 0;
3951 }
3952
3953 if (!se)
72465447 3954 sub_nr_running(rq, task_delta);
85dac906
PT
3955
3956 cfs_rq->throttled = 1;
78becc27 3957 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3958 raw_spin_lock(&cfs_b->lock);
d49db342 3959 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3960
c06f04c7
BS
3961 /*
3962 * Add to the _head_ of the list, so that an already-started
3963 * distribute_cfs_runtime will not see us
3964 */
3965 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3966
3967 /*
3968 * If we're the first throttled task, make sure the bandwidth
3969 * timer is running.
3970 */
3971 if (empty)
3972 start_cfs_bandwidth(cfs_b);
3973
85dac906
PT
3974 raw_spin_unlock(&cfs_b->lock);
3975}
3976
029632fb 3977void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3978{
3979 struct rq *rq = rq_of(cfs_rq);
3980 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3981 struct sched_entity *se;
3982 int enqueue = 1;
3983 long task_delta;
3984
22b958d8 3985 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3986
3987 cfs_rq->throttled = 0;
1a55af2e
FW
3988
3989 update_rq_clock(rq);
3990
671fd9da 3991 raw_spin_lock(&cfs_b->lock);
78becc27 3992 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3993 list_del_rcu(&cfs_rq->throttled_list);
3994 raw_spin_unlock(&cfs_b->lock);
3995
64660c86
PT
3996 /* update hierarchical throttle state */
3997 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3998
671fd9da
PT
3999 if (!cfs_rq->load.weight)
4000 return;
4001
4002 task_delta = cfs_rq->h_nr_running;
4003 for_each_sched_entity(se) {
4004 if (se->on_rq)
4005 enqueue = 0;
4006
4007 cfs_rq = cfs_rq_of(se);
4008 if (enqueue)
4009 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4010 cfs_rq->h_nr_running += task_delta;
4011
4012 if (cfs_rq_throttled(cfs_rq))
4013 break;
4014 }
4015
4016 if (!se)
72465447 4017 add_nr_running(rq, task_delta);
671fd9da
PT
4018
4019 /* determine whether we need to wake up potentially idle cpu */
4020 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4021 resched_curr(rq);
671fd9da
PT
4022}
4023
4024static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4025 u64 remaining, u64 expires)
4026{
4027 struct cfs_rq *cfs_rq;
c06f04c7
BS
4028 u64 runtime;
4029 u64 starting_runtime = remaining;
671fd9da
PT
4030
4031 rcu_read_lock();
4032 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4033 throttled_list) {
4034 struct rq *rq = rq_of(cfs_rq);
4035
4036 raw_spin_lock(&rq->lock);
4037 if (!cfs_rq_throttled(cfs_rq))
4038 goto next;
4039
4040 runtime = -cfs_rq->runtime_remaining + 1;
4041 if (runtime > remaining)
4042 runtime = remaining;
4043 remaining -= runtime;
4044
4045 cfs_rq->runtime_remaining += runtime;
4046 cfs_rq->runtime_expires = expires;
4047
4048 /* we check whether we're throttled above */
4049 if (cfs_rq->runtime_remaining > 0)
4050 unthrottle_cfs_rq(cfs_rq);
4051
4052next:
4053 raw_spin_unlock(&rq->lock);
4054
4055 if (!remaining)
4056 break;
4057 }
4058 rcu_read_unlock();
4059
c06f04c7 4060 return starting_runtime - remaining;
671fd9da
PT
4061}
4062
58088ad0
PT
4063/*
4064 * Responsible for refilling a task_group's bandwidth and unthrottling its
4065 * cfs_rqs as appropriate. If there has been no activity within the last
4066 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4067 * used to track this state.
4068 */
4069static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4070{
671fd9da 4071 u64 runtime, runtime_expires;
51f2176d 4072 int throttled;
58088ad0 4073
58088ad0
PT
4074 /* no need to continue the timer with no bandwidth constraint */
4075 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4076 goto out_deactivate;
58088ad0 4077
671fd9da 4078 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4079 cfs_b->nr_periods += overrun;
671fd9da 4080
51f2176d
BS
4081 /*
4082 * idle depends on !throttled (for the case of a large deficit), and if
4083 * we're going inactive then everything else can be deferred
4084 */
4085 if (cfs_b->idle && !throttled)
4086 goto out_deactivate;
a9cf55b2
PT
4087
4088 __refill_cfs_bandwidth_runtime(cfs_b);
4089
671fd9da
PT
4090 if (!throttled) {
4091 /* mark as potentially idle for the upcoming period */
4092 cfs_b->idle = 1;
51f2176d 4093 return 0;
671fd9da
PT
4094 }
4095
e8da1b18
NR
4096 /* account preceding periods in which throttling occurred */
4097 cfs_b->nr_throttled += overrun;
4098
671fd9da 4099 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4100
4101 /*
c06f04c7
BS
4102 * This check is repeated as we are holding onto the new bandwidth while
4103 * we unthrottle. This can potentially race with an unthrottled group
4104 * trying to acquire new bandwidth from the global pool. This can result
4105 * in us over-using our runtime if it is all used during this loop, but
4106 * only by limited amounts in that extreme case.
671fd9da 4107 */
c06f04c7
BS
4108 while (throttled && cfs_b->runtime > 0) {
4109 runtime = cfs_b->runtime;
671fd9da
PT
4110 raw_spin_unlock(&cfs_b->lock);
4111 /* we can't nest cfs_b->lock while distributing bandwidth */
4112 runtime = distribute_cfs_runtime(cfs_b, runtime,
4113 runtime_expires);
4114 raw_spin_lock(&cfs_b->lock);
4115
4116 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4117
4118 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4119 }
58088ad0 4120
671fd9da
PT
4121 /*
4122 * While we are ensured activity in the period following an
4123 * unthrottle, this also covers the case in which the new bandwidth is
4124 * insufficient to cover the existing bandwidth deficit. (Forcing the
4125 * timer to remain active while there are any throttled entities.)
4126 */
4127 cfs_b->idle = 0;
58088ad0 4128
51f2176d
BS
4129 return 0;
4130
4131out_deactivate:
51f2176d 4132 return 1;
58088ad0 4133}
d3d9dc33 4134
d8b4986d
PT
4135/* a cfs_rq won't donate quota below this amount */
4136static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4137/* minimum remaining period time to redistribute slack quota */
4138static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4139/* how long we wait to gather additional slack before distributing */
4140static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4141
db06e78c
BS
4142/*
4143 * Are we near the end of the current quota period?
4144 *
4145 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4146 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4147 * migrate_hrtimers, base is never cleared, so we are fine.
4148 */
d8b4986d
PT
4149static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4150{
4151 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4152 u64 remaining;
4153
4154 /* if the call-back is running a quota refresh is already occurring */
4155 if (hrtimer_callback_running(refresh_timer))
4156 return 1;
4157
4158 /* is a quota refresh about to occur? */
4159 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4160 if (remaining < min_expire)
4161 return 1;
4162
4163 return 0;
4164}
4165
4166static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4167{
4168 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4169
4170 /* if there's a quota refresh soon don't bother with slack */
4171 if (runtime_refresh_within(cfs_b, min_left))
4172 return;
4173
4cfafd30
PZ
4174 hrtimer_start(&cfs_b->slack_timer,
4175 ns_to_ktime(cfs_bandwidth_slack_period),
4176 HRTIMER_MODE_REL);
d8b4986d
PT
4177}
4178
4179/* we know any runtime found here is valid as update_curr() precedes return */
4180static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4181{
4182 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4183 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4184
4185 if (slack_runtime <= 0)
4186 return;
4187
4188 raw_spin_lock(&cfs_b->lock);
4189 if (cfs_b->quota != RUNTIME_INF &&
4190 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4191 cfs_b->runtime += slack_runtime;
4192
4193 /* we are under rq->lock, defer unthrottling using a timer */
4194 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4195 !list_empty(&cfs_b->throttled_cfs_rq))
4196 start_cfs_slack_bandwidth(cfs_b);
4197 }
4198 raw_spin_unlock(&cfs_b->lock);
4199
4200 /* even if it's not valid for return we don't want to try again */
4201 cfs_rq->runtime_remaining -= slack_runtime;
4202}
4203
4204static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4205{
56f570e5
PT
4206 if (!cfs_bandwidth_used())
4207 return;
4208
fccfdc6f 4209 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4210 return;
4211
4212 __return_cfs_rq_runtime(cfs_rq);
4213}
4214
4215/*
4216 * This is done with a timer (instead of inline with bandwidth return) since
4217 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4218 */
4219static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4220{
4221 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4222 u64 expires;
4223
4224 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4225 raw_spin_lock(&cfs_b->lock);
4226 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4227 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4228 return;
db06e78c 4229 }
d8b4986d 4230
c06f04c7 4231 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4232 runtime = cfs_b->runtime;
c06f04c7 4233
d8b4986d
PT
4234 expires = cfs_b->runtime_expires;
4235 raw_spin_unlock(&cfs_b->lock);
4236
4237 if (!runtime)
4238 return;
4239
4240 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4241
4242 raw_spin_lock(&cfs_b->lock);
4243 if (expires == cfs_b->runtime_expires)
c06f04c7 4244 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4245 raw_spin_unlock(&cfs_b->lock);
4246}
4247
d3d9dc33
PT
4248/*
4249 * When a group wakes up we want to make sure that its quota is not already
4250 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4251 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4252 */
4253static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4254{
56f570e5
PT
4255 if (!cfs_bandwidth_used())
4256 return;
4257
d3d9dc33
PT
4258 /* an active group must be handled by the update_curr()->put() path */
4259 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4260 return;
4261
4262 /* ensure the group is not already throttled */
4263 if (cfs_rq_throttled(cfs_rq))
4264 return;
4265
4266 /* update runtime allocation */
4267 account_cfs_rq_runtime(cfs_rq, 0);
4268 if (cfs_rq->runtime_remaining <= 0)
4269 throttle_cfs_rq(cfs_rq);
4270}
4271
55e16d30
PZ
4272static void sync_throttle(struct task_group *tg, int cpu)
4273{
4274 struct cfs_rq *pcfs_rq, *cfs_rq;
4275
4276 if (!cfs_bandwidth_used())
4277 return;
4278
4279 if (!tg->parent)
4280 return;
4281
4282 cfs_rq = tg->cfs_rq[cpu];
4283 pcfs_rq = tg->parent->cfs_rq[cpu];
4284
4285 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4286 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4287}
4288
d3d9dc33 4289/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4290static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4291{
56f570e5 4292 if (!cfs_bandwidth_used())
678d5718 4293 return false;
56f570e5 4294
d3d9dc33 4295 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4296 return false;
d3d9dc33
PT
4297
4298 /*
4299 * it's possible for a throttled entity to be forced into a running
4300 * state (e.g. set_curr_task), in this case we're finished.
4301 */
4302 if (cfs_rq_throttled(cfs_rq))
678d5718 4303 return true;
d3d9dc33
PT
4304
4305 throttle_cfs_rq(cfs_rq);
678d5718 4306 return true;
d3d9dc33 4307}
029632fb 4308
029632fb
PZ
4309static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4310{
4311 struct cfs_bandwidth *cfs_b =
4312 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4313
029632fb
PZ
4314 do_sched_cfs_slack_timer(cfs_b);
4315
4316 return HRTIMER_NORESTART;
4317}
4318
4319static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4320{
4321 struct cfs_bandwidth *cfs_b =
4322 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4323 int overrun;
4324 int idle = 0;
4325
51f2176d 4326 raw_spin_lock(&cfs_b->lock);
029632fb 4327 for (;;) {
77a4d1a1 4328 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4329 if (!overrun)
4330 break;
4331
4332 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4333 }
4cfafd30
PZ
4334 if (idle)
4335 cfs_b->period_active = 0;
51f2176d 4336 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4337
4338 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4339}
4340
4341void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4342{
4343 raw_spin_lock_init(&cfs_b->lock);
4344 cfs_b->runtime = 0;
4345 cfs_b->quota = RUNTIME_INF;
4346 cfs_b->period = ns_to_ktime(default_cfs_period());
4347
4348 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4349 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4350 cfs_b->period_timer.function = sched_cfs_period_timer;
4351 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4352 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4353}
4354
4355static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4356{
4357 cfs_rq->runtime_enabled = 0;
4358 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4359}
4360
77a4d1a1 4361void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4362{
4cfafd30 4363 lockdep_assert_held(&cfs_b->lock);
029632fb 4364
4cfafd30
PZ
4365 if (!cfs_b->period_active) {
4366 cfs_b->period_active = 1;
4367 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4368 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4369 }
029632fb
PZ
4370}
4371
4372static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4373{
7f1a169b
TH
4374 /* init_cfs_bandwidth() was not called */
4375 if (!cfs_b->throttled_cfs_rq.next)
4376 return;
4377
029632fb
PZ
4378 hrtimer_cancel(&cfs_b->period_timer);
4379 hrtimer_cancel(&cfs_b->slack_timer);
4380}
4381
0e59bdae
KT
4382static void __maybe_unused update_runtime_enabled(struct rq *rq)
4383{
4384 struct cfs_rq *cfs_rq;
4385
4386 for_each_leaf_cfs_rq(rq, cfs_rq) {
4387 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4388
4389 raw_spin_lock(&cfs_b->lock);
4390 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4391 raw_spin_unlock(&cfs_b->lock);
4392 }
4393}
4394
38dc3348 4395static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4396{
4397 struct cfs_rq *cfs_rq;
4398
4399 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4400 if (!cfs_rq->runtime_enabled)
4401 continue;
4402
4403 /*
4404 * clock_task is not advancing so we just need to make sure
4405 * there's some valid quota amount
4406 */
51f2176d 4407 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4408 /*
4409 * Offline rq is schedulable till cpu is completely disabled
4410 * in take_cpu_down(), so we prevent new cfs throttling here.
4411 */
4412 cfs_rq->runtime_enabled = 0;
4413
029632fb
PZ
4414 if (cfs_rq_throttled(cfs_rq))
4415 unthrottle_cfs_rq(cfs_rq);
4416 }
4417}
4418
4419#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4420static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4421{
78becc27 4422 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4423}
4424
9dbdb155 4425static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4426static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4427static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4428static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4429static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4430
4431static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4432{
4433 return 0;
4434}
64660c86
PT
4435
4436static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4437{
4438 return 0;
4439}
4440
4441static inline int throttled_lb_pair(struct task_group *tg,
4442 int src_cpu, int dest_cpu)
4443{
4444 return 0;
4445}
029632fb
PZ
4446
4447void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4448
4449#ifdef CONFIG_FAIR_GROUP_SCHED
4450static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4451#endif
4452
029632fb
PZ
4453static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4454{
4455 return NULL;
4456}
4457static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4458static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4459static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4460
4461#endif /* CONFIG_CFS_BANDWIDTH */
4462
bf0f6f24
IM
4463/**************************************************
4464 * CFS operations on tasks:
4465 */
4466
8f4d37ec
PZ
4467#ifdef CONFIG_SCHED_HRTICK
4468static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4469{
8f4d37ec
PZ
4470 struct sched_entity *se = &p->se;
4471 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4472
4473 WARN_ON(task_rq(p) != rq);
4474
b39e66ea 4475 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4476 u64 slice = sched_slice(cfs_rq, se);
4477 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4478 s64 delta = slice - ran;
4479
4480 if (delta < 0) {
4481 if (rq->curr == p)
8875125e 4482 resched_curr(rq);
8f4d37ec
PZ
4483 return;
4484 }
31656519 4485 hrtick_start(rq, delta);
8f4d37ec
PZ
4486 }
4487}
a4c2f00f
PZ
4488
4489/*
4490 * called from enqueue/dequeue and updates the hrtick when the
4491 * current task is from our class and nr_running is low enough
4492 * to matter.
4493 */
4494static void hrtick_update(struct rq *rq)
4495{
4496 struct task_struct *curr = rq->curr;
4497
b39e66ea 4498 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4499 return;
4500
4501 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4502 hrtick_start_fair(rq, curr);
4503}
55e12e5e 4504#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4505static inline void
4506hrtick_start_fair(struct rq *rq, struct task_struct *p)
4507{
4508}
a4c2f00f
PZ
4509
4510static inline void hrtick_update(struct rq *rq)
4511{
4512}
8f4d37ec
PZ
4513#endif
4514
bf0f6f24
IM
4515/*
4516 * The enqueue_task method is called before nr_running is
4517 * increased. Here we update the fair scheduling stats and
4518 * then put the task into the rbtree:
4519 */
ea87bb78 4520static void
371fd7e7 4521enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4522{
4523 struct cfs_rq *cfs_rq;
62fb1851 4524 struct sched_entity *se = &p->se;
bf0f6f24
IM
4525
4526 for_each_sched_entity(se) {
62fb1851 4527 if (se->on_rq)
bf0f6f24
IM
4528 break;
4529 cfs_rq = cfs_rq_of(se);
88ec22d3 4530 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4531
4532 /*
4533 * end evaluation on encountering a throttled cfs_rq
4534 *
4535 * note: in the case of encountering a throttled cfs_rq we will
4536 * post the final h_nr_running increment below.
e210bffd 4537 */
85dac906
PT
4538 if (cfs_rq_throttled(cfs_rq))
4539 break;
953bfcd1 4540 cfs_rq->h_nr_running++;
85dac906 4541
88ec22d3 4542 flags = ENQUEUE_WAKEUP;
bf0f6f24 4543 }
8f4d37ec 4544
2069dd75 4545 for_each_sched_entity(se) {
0f317143 4546 cfs_rq = cfs_rq_of(se);
953bfcd1 4547 cfs_rq->h_nr_running++;
2069dd75 4548
85dac906
PT
4549 if (cfs_rq_throttled(cfs_rq))
4550 break;
4551
9d89c257 4552 update_load_avg(se, 1);
17bc14b7 4553 update_cfs_shares(cfs_rq);
2069dd75
PZ
4554 }
4555
cd126afe 4556 if (!se)
72465447 4557 add_nr_running(rq, 1);
cd126afe 4558
a4c2f00f 4559 hrtick_update(rq);
bf0f6f24
IM
4560}
4561
2f36825b
VP
4562static void set_next_buddy(struct sched_entity *se);
4563
bf0f6f24
IM
4564/*
4565 * The dequeue_task method is called before nr_running is
4566 * decreased. We remove the task from the rbtree and
4567 * update the fair scheduling stats:
4568 */
371fd7e7 4569static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4570{
4571 struct cfs_rq *cfs_rq;
62fb1851 4572 struct sched_entity *se = &p->se;
2f36825b 4573 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4574
4575 for_each_sched_entity(se) {
4576 cfs_rq = cfs_rq_of(se);
371fd7e7 4577 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4578
4579 /*
4580 * end evaluation on encountering a throttled cfs_rq
4581 *
4582 * note: in the case of encountering a throttled cfs_rq we will
4583 * post the final h_nr_running decrement below.
4584 */
4585 if (cfs_rq_throttled(cfs_rq))
4586 break;
953bfcd1 4587 cfs_rq->h_nr_running--;
2069dd75 4588
bf0f6f24 4589 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4590 if (cfs_rq->load.weight) {
754bd598
KK
4591 /* Avoid re-evaluating load for this entity: */
4592 se = parent_entity(se);
2f36825b
VP
4593 /*
4594 * Bias pick_next to pick a task from this cfs_rq, as
4595 * p is sleeping when it is within its sched_slice.
4596 */
754bd598
KK
4597 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4598 set_next_buddy(se);
bf0f6f24 4599 break;
2f36825b 4600 }
371fd7e7 4601 flags |= DEQUEUE_SLEEP;
bf0f6f24 4602 }
8f4d37ec 4603
2069dd75 4604 for_each_sched_entity(se) {
0f317143 4605 cfs_rq = cfs_rq_of(se);
953bfcd1 4606 cfs_rq->h_nr_running--;
2069dd75 4607
85dac906
PT
4608 if (cfs_rq_throttled(cfs_rq))
4609 break;
4610
9d89c257 4611 update_load_avg(se, 1);
17bc14b7 4612 update_cfs_shares(cfs_rq);
2069dd75
PZ
4613 }
4614
cd126afe 4615 if (!se)
72465447 4616 sub_nr_running(rq, 1);
cd126afe 4617
a4c2f00f 4618 hrtick_update(rq);
bf0f6f24
IM
4619}
4620
e7693a36 4621#ifdef CONFIG_SMP
9fd81dd5 4622#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4623/*
4624 * per rq 'load' arrray crap; XXX kill this.
4625 */
4626
4627/*
d937cdc5 4628 * The exact cpuload calculated at every tick would be:
3289bdb4 4629 *
d937cdc5
PZ
4630 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4631 *
4632 * If a cpu misses updates for n ticks (as it was idle) and update gets
4633 * called on the n+1-th tick when cpu may be busy, then we have:
4634 *
4635 * load_n = (1 - 1/2^i)^n * load_0
4636 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4637 *
4638 * decay_load_missed() below does efficient calculation of
3289bdb4 4639 *
d937cdc5
PZ
4640 * load' = (1 - 1/2^i)^n * load
4641 *
4642 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4643 * This allows us to precompute the above in said factors, thereby allowing the
4644 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4645 * fixed_power_int())
3289bdb4 4646 *
d937cdc5 4647 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4648 */
4649#define DEGRADE_SHIFT 7
d937cdc5
PZ
4650
4651static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4652static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4653 { 0, 0, 0, 0, 0, 0, 0, 0 },
4654 { 64, 32, 8, 0, 0, 0, 0, 0 },
4655 { 96, 72, 40, 12, 1, 0, 0, 0 },
4656 { 112, 98, 75, 43, 15, 1, 0, 0 },
4657 { 120, 112, 98, 76, 45, 16, 2, 0 }
4658};
3289bdb4
PZ
4659
4660/*
4661 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4662 * would be when CPU is idle and so we just decay the old load without
4663 * adding any new load.
4664 */
4665static unsigned long
4666decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4667{
4668 int j = 0;
4669
4670 if (!missed_updates)
4671 return load;
4672
4673 if (missed_updates >= degrade_zero_ticks[idx])
4674 return 0;
4675
4676 if (idx == 1)
4677 return load >> missed_updates;
4678
4679 while (missed_updates) {
4680 if (missed_updates % 2)
4681 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4682
4683 missed_updates >>= 1;
4684 j++;
4685 }
4686 return load;
4687}
9fd81dd5 4688#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4689
59543275 4690/**
cee1afce 4691 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4692 * @this_rq: The rq to update statistics for
4693 * @this_load: The current load
4694 * @pending_updates: The number of missed updates
59543275 4695 *
3289bdb4 4696 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4697 * scheduler tick (TICK_NSEC).
4698 *
4699 * This function computes a decaying average:
4700 *
4701 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4702 *
4703 * Because of NOHZ it might not get called on every tick which gives need for
4704 * the @pending_updates argument.
4705 *
4706 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4707 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4708 * = A * (A * load[i]_n-2 + B) + B
4709 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4710 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4711 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4712 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4713 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4714 *
4715 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4716 * any change in load would have resulted in the tick being turned back on.
4717 *
4718 * For regular NOHZ, this reduces to:
4719 *
4720 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4721 *
4722 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4723 * term.
3289bdb4 4724 */
1f41906a
FW
4725static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4726 unsigned long pending_updates)
3289bdb4 4727{
9fd81dd5 4728 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4729 int i, scale;
4730
4731 this_rq->nr_load_updates++;
4732
4733 /* Update our load: */
4734 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4735 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4736 unsigned long old_load, new_load;
4737
4738 /* scale is effectively 1 << i now, and >> i divides by scale */
4739
7400d3bb 4740 old_load = this_rq->cpu_load[i];
9fd81dd5 4741#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4742 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4743 if (tickless_load) {
4744 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4745 /*
4746 * old_load can never be a negative value because a
4747 * decayed tickless_load cannot be greater than the
4748 * original tickless_load.
4749 */
4750 old_load += tickless_load;
4751 }
9fd81dd5 4752#endif
3289bdb4
PZ
4753 new_load = this_load;
4754 /*
4755 * Round up the averaging division if load is increasing. This
4756 * prevents us from getting stuck on 9 if the load is 10, for
4757 * example.
4758 */
4759 if (new_load > old_load)
4760 new_load += scale - 1;
4761
4762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4763 }
4764
4765 sched_avg_update(this_rq);
4766}
4767
7ea241af
YD
4768/* Used instead of source_load when we know the type == 0 */
4769static unsigned long weighted_cpuload(const int cpu)
4770{
4771 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4772}
4773
3289bdb4 4774#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4775/*
4776 * There is no sane way to deal with nohz on smp when using jiffies because the
4777 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4778 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4779 *
4780 * Therefore we need to avoid the delta approach from the regular tick when
4781 * possible since that would seriously skew the load calculation. This is why we
4782 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4783 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4784 * loop exit, nohz_idle_balance, nohz full exit...)
4785 *
4786 * This means we might still be one tick off for nohz periods.
4787 */
4788
4789static void cpu_load_update_nohz(struct rq *this_rq,
4790 unsigned long curr_jiffies,
4791 unsigned long load)
be68a682
FW
4792{
4793 unsigned long pending_updates;
4794
4795 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4796 if (pending_updates) {
4797 this_rq->last_load_update_tick = curr_jiffies;
4798 /*
4799 * In the regular NOHZ case, we were idle, this means load 0.
4800 * In the NOHZ_FULL case, we were non-idle, we should consider
4801 * its weighted load.
4802 */
1f41906a 4803 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4804 }
4805}
4806
3289bdb4
PZ
4807/*
4808 * Called from nohz_idle_balance() to update the load ratings before doing the
4809 * idle balance.
4810 */
cee1afce 4811static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4812{
3289bdb4
PZ
4813 /*
4814 * bail if there's load or we're actually up-to-date.
4815 */
be68a682 4816 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4817 return;
4818
1f41906a 4819 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4820}
4821
4822/*
1f41906a
FW
4823 * Record CPU load on nohz entry so we know the tickless load to account
4824 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4825 * than other cpu_load[idx] but it should be fine as cpu_load readers
4826 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4827 */
1f41906a 4828void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4829{
4830 struct rq *this_rq = this_rq();
1f41906a
FW
4831
4832 /*
4833 * This is all lockless but should be fine. If weighted_cpuload changes
4834 * concurrently we'll exit nohz. And cpu_load write can race with
4835 * cpu_load_update_idle() but both updater would be writing the same.
4836 */
4837 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4838}
4839
4840/*
4841 * Account the tickless load in the end of a nohz frame.
4842 */
4843void cpu_load_update_nohz_stop(void)
4844{
316c1608 4845 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4846 struct rq *this_rq = this_rq();
4847 unsigned long load;
3289bdb4
PZ
4848
4849 if (curr_jiffies == this_rq->last_load_update_tick)
4850 return;
4851
1f41906a 4852 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4853 raw_spin_lock(&this_rq->lock);
b52fad2d 4854 update_rq_clock(this_rq);
1f41906a 4855 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4856 raw_spin_unlock(&this_rq->lock);
4857}
1f41906a
FW
4858#else /* !CONFIG_NO_HZ_COMMON */
4859static inline void cpu_load_update_nohz(struct rq *this_rq,
4860 unsigned long curr_jiffies,
4861 unsigned long load) { }
4862#endif /* CONFIG_NO_HZ_COMMON */
4863
4864static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4865{
9fd81dd5 4866#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4867 /* See the mess around cpu_load_update_nohz(). */
4868 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4869#endif
1f41906a
FW
4870 cpu_load_update(this_rq, load, 1);
4871}
3289bdb4
PZ
4872
4873/*
4874 * Called from scheduler_tick()
4875 */
cee1afce 4876void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4877{
7ea241af 4878 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4879
4880 if (tick_nohz_tick_stopped())
4881 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4882 else
4883 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4884}
4885
029632fb
PZ
4886/*
4887 * Return a low guess at the load of a migration-source cpu weighted
4888 * according to the scheduling class and "nice" value.
4889 *
4890 * We want to under-estimate the load of migration sources, to
4891 * balance conservatively.
4892 */
4893static unsigned long source_load(int cpu, int type)
4894{
4895 struct rq *rq = cpu_rq(cpu);
4896 unsigned long total = weighted_cpuload(cpu);
4897
4898 if (type == 0 || !sched_feat(LB_BIAS))
4899 return total;
4900
4901 return min(rq->cpu_load[type-1], total);
4902}
4903
4904/*
4905 * Return a high guess at the load of a migration-target cpu weighted
4906 * according to the scheduling class and "nice" value.
4907 */
4908static unsigned long target_load(int cpu, int type)
4909{
4910 struct rq *rq = cpu_rq(cpu);
4911 unsigned long total = weighted_cpuload(cpu);
4912
4913 if (type == 0 || !sched_feat(LB_BIAS))
4914 return total;
4915
4916 return max(rq->cpu_load[type-1], total);
4917}
4918
ced549fa 4919static unsigned long capacity_of(int cpu)
029632fb 4920{
ced549fa 4921 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4922}
4923
ca6d75e6
VG
4924static unsigned long capacity_orig_of(int cpu)
4925{
4926 return cpu_rq(cpu)->cpu_capacity_orig;
4927}
4928
029632fb
PZ
4929static unsigned long cpu_avg_load_per_task(int cpu)
4930{
4931 struct rq *rq = cpu_rq(cpu);
316c1608 4932 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4933 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4934
4935 if (nr_running)
b92486cb 4936 return load_avg / nr_running;
029632fb
PZ
4937
4938 return 0;
4939}
4940
bb3469ac 4941#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4942/*
4943 * effective_load() calculates the load change as seen from the root_task_group
4944 *
4945 * Adding load to a group doesn't make a group heavier, but can cause movement
4946 * of group shares between cpus. Assuming the shares were perfectly aligned one
4947 * can calculate the shift in shares.
cf5f0acf
PZ
4948 *
4949 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4950 * on this @cpu and results in a total addition (subtraction) of @wg to the
4951 * total group weight.
4952 *
4953 * Given a runqueue weight distribution (rw_i) we can compute a shares
4954 * distribution (s_i) using:
4955 *
4956 * s_i = rw_i / \Sum rw_j (1)
4957 *
4958 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4959 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4960 * shares distribution (s_i):
4961 *
4962 * rw_i = { 2, 4, 1, 0 }
4963 * s_i = { 2/7, 4/7, 1/7, 0 }
4964 *
4965 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4966 * task used to run on and the CPU the waker is running on), we need to
4967 * compute the effect of waking a task on either CPU and, in case of a sync
4968 * wakeup, compute the effect of the current task going to sleep.
4969 *
4970 * So for a change of @wl to the local @cpu with an overall group weight change
4971 * of @wl we can compute the new shares distribution (s'_i) using:
4972 *
4973 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4974 *
4975 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4976 * differences in waking a task to CPU 0. The additional task changes the
4977 * weight and shares distributions like:
4978 *
4979 * rw'_i = { 3, 4, 1, 0 }
4980 * s'_i = { 3/8, 4/8, 1/8, 0 }
4981 *
4982 * We can then compute the difference in effective weight by using:
4983 *
4984 * dw_i = S * (s'_i - s_i) (3)
4985 *
4986 * Where 'S' is the group weight as seen by its parent.
4987 *
4988 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4989 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4990 * 4/7) times the weight of the group.
f5bfb7d9 4991 */
2069dd75 4992static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4993{
4be9daaa 4994 struct sched_entity *se = tg->se[cpu];
f1d239f7 4995
9722c2da 4996 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4997 return wl;
4998
4be9daaa 4999 for_each_sched_entity(se) {
7dd49125
PZ
5000 struct cfs_rq *cfs_rq = se->my_q;
5001 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5002
7dd49125 5003 tg = cfs_rq->tg;
bb3469ac 5004
cf5f0acf
PZ
5005 /*
5006 * W = @wg + \Sum rw_j
5007 */
7dd49125
PZ
5008 W = wg + atomic_long_read(&tg->load_avg);
5009
5010 /* Ensure \Sum rw_j >= rw_i */
5011 W -= cfs_rq->tg_load_avg_contrib;
5012 W += w;
4be9daaa 5013
cf5f0acf
PZ
5014 /*
5015 * w = rw_i + @wl
5016 */
7dd49125 5017 w += wl;
940959e9 5018
cf5f0acf
PZ
5019 /*
5020 * wl = S * s'_i; see (2)
5021 */
5022 if (W > 0 && w < W)
32a8df4e 5023 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5024 else
5025 wl = tg->shares;
940959e9 5026
cf5f0acf
PZ
5027 /*
5028 * Per the above, wl is the new se->load.weight value; since
5029 * those are clipped to [MIN_SHARES, ...) do so now. See
5030 * calc_cfs_shares().
5031 */
977dda7c
PT
5032 if (wl < MIN_SHARES)
5033 wl = MIN_SHARES;
cf5f0acf
PZ
5034
5035 /*
5036 * wl = dw_i = S * (s'_i - s_i); see (3)
5037 */
9d89c257 5038 wl -= se->avg.load_avg;
cf5f0acf
PZ
5039
5040 /*
5041 * Recursively apply this logic to all parent groups to compute
5042 * the final effective load change on the root group. Since
5043 * only the @tg group gets extra weight, all parent groups can
5044 * only redistribute existing shares. @wl is the shift in shares
5045 * resulting from this level per the above.
5046 */
4be9daaa 5047 wg = 0;
4be9daaa 5048 }
bb3469ac 5049
4be9daaa 5050 return wl;
bb3469ac
PZ
5051}
5052#else
4be9daaa 5053
58d081b5 5054static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5055{
83378269 5056 return wl;
bb3469ac 5057}
4be9daaa 5058
bb3469ac
PZ
5059#endif
5060
c58d25f3
PZ
5061static void record_wakee(struct task_struct *p)
5062{
5063 /*
5064 * Only decay a single time; tasks that have less then 1 wakeup per
5065 * jiffy will not have built up many flips.
5066 */
5067 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5068 current->wakee_flips >>= 1;
5069 current->wakee_flip_decay_ts = jiffies;
5070 }
5071
5072 if (current->last_wakee != p) {
5073 current->last_wakee = p;
5074 current->wakee_flips++;
5075 }
5076}
5077
63b0e9ed
MG
5078/*
5079 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5080 *
63b0e9ed 5081 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5082 * at a frequency roughly N times higher than one of its wakees.
5083 *
5084 * In order to determine whether we should let the load spread vs consolidating
5085 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5086 * partner, and a factor of lls_size higher frequency in the other.
5087 *
5088 * With both conditions met, we can be relatively sure that the relationship is
5089 * non-monogamous, with partner count exceeding socket size.
5090 *
5091 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5092 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5093 * socket size.
63b0e9ed 5094 */
62470419
MW
5095static int wake_wide(struct task_struct *p)
5096{
63b0e9ed
MG
5097 unsigned int master = current->wakee_flips;
5098 unsigned int slave = p->wakee_flips;
7d9ffa89 5099 int factor = this_cpu_read(sd_llc_size);
62470419 5100
63b0e9ed
MG
5101 if (master < slave)
5102 swap(master, slave);
5103 if (slave < factor || master < slave * factor)
5104 return 0;
5105 return 1;
62470419
MW
5106}
5107
772bd008
MR
5108static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5109 int prev_cpu, int sync)
098fb9db 5110{
e37b6a7b 5111 s64 this_load, load;
bd61c98f 5112 s64 this_eff_load, prev_eff_load;
772bd008 5113 int idx, this_cpu;
c88d5910 5114 struct task_group *tg;
83378269 5115 unsigned long weight;
b3137bc8 5116 int balanced;
098fb9db 5117
c88d5910
PZ
5118 idx = sd->wake_idx;
5119 this_cpu = smp_processor_id();
c88d5910
PZ
5120 load = source_load(prev_cpu, idx);
5121 this_load = target_load(this_cpu, idx);
098fb9db 5122
b3137bc8
MG
5123 /*
5124 * If sync wakeup then subtract the (maximum possible)
5125 * effect of the currently running task from the load
5126 * of the current CPU:
5127 */
83378269
PZ
5128 if (sync) {
5129 tg = task_group(current);
9d89c257 5130 weight = current->se.avg.load_avg;
83378269 5131
c88d5910 5132 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5133 load += effective_load(tg, prev_cpu, 0, -weight);
5134 }
b3137bc8 5135
83378269 5136 tg = task_group(p);
9d89c257 5137 weight = p->se.avg.load_avg;
b3137bc8 5138
71a29aa7
PZ
5139 /*
5140 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5141 * due to the sync cause above having dropped this_load to 0, we'll
5142 * always have an imbalance, but there's really nothing you can do
5143 * about that, so that's good too.
71a29aa7
PZ
5144 *
5145 * Otherwise check if either cpus are near enough in load to allow this
5146 * task to be woken on this_cpu.
5147 */
bd61c98f
VG
5148 this_eff_load = 100;
5149 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5150
bd61c98f
VG
5151 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5152 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5153
bd61c98f 5154 if (this_load > 0) {
e51fd5e2
PZ
5155 this_eff_load *= this_load +
5156 effective_load(tg, this_cpu, weight, weight);
5157
e51fd5e2 5158 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5159 }
e51fd5e2 5160
bd61c98f 5161 balanced = this_eff_load <= prev_eff_load;
098fb9db 5162
41acab88 5163 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5164
05bfb65f
VG
5165 if (!balanced)
5166 return 0;
098fb9db 5167
05bfb65f
VG
5168 schedstat_inc(sd, ttwu_move_affine);
5169 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5170
5171 return 1;
098fb9db
IM
5172}
5173
aaee1203
PZ
5174/*
5175 * find_idlest_group finds and returns the least busy CPU group within the
5176 * domain.
5177 */
5178static struct sched_group *
78e7ed53 5179find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5180 int this_cpu, int sd_flag)
e7693a36 5181{
b3bd3de6 5182 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5183 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5184 int load_idx = sd->forkexec_idx;
aaee1203 5185 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5186
c44f2a02
VG
5187 if (sd_flag & SD_BALANCE_WAKE)
5188 load_idx = sd->wake_idx;
5189
aaee1203
PZ
5190 do {
5191 unsigned long load, avg_load;
5192 int local_group;
5193 int i;
e7693a36 5194
aaee1203
PZ
5195 /* Skip over this group if it has no CPUs allowed */
5196 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5197 tsk_cpus_allowed(p)))
aaee1203
PZ
5198 continue;
5199
5200 local_group = cpumask_test_cpu(this_cpu,
5201 sched_group_cpus(group));
5202
5203 /* Tally up the load of all CPUs in the group */
5204 avg_load = 0;
5205
5206 for_each_cpu(i, sched_group_cpus(group)) {
5207 /* Bias balancing toward cpus of our domain */
5208 if (local_group)
5209 load = source_load(i, load_idx);
5210 else
5211 load = target_load(i, load_idx);
5212
5213 avg_load += load;
5214 }
5215
63b2ca30 5216 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5217 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5218
5219 if (local_group) {
5220 this_load = avg_load;
aaee1203
PZ
5221 } else if (avg_load < min_load) {
5222 min_load = avg_load;
5223 idlest = group;
5224 }
5225 } while (group = group->next, group != sd->groups);
5226
5227 if (!idlest || 100*this_load < imbalance*min_load)
5228 return NULL;
5229 return idlest;
5230}
5231
5232/*
5233 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5234 */
5235static int
5236find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5237{
5238 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5239 unsigned int min_exit_latency = UINT_MAX;
5240 u64 latest_idle_timestamp = 0;
5241 int least_loaded_cpu = this_cpu;
5242 int shallowest_idle_cpu = -1;
aaee1203
PZ
5243 int i;
5244
eaecf41f
MR
5245 /* Check if we have any choice: */
5246 if (group->group_weight == 1)
5247 return cpumask_first(sched_group_cpus(group));
5248
aaee1203 5249 /* Traverse only the allowed CPUs */
fa17b507 5250 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5251 if (idle_cpu(i)) {
5252 struct rq *rq = cpu_rq(i);
5253 struct cpuidle_state *idle = idle_get_state(rq);
5254 if (idle && idle->exit_latency < min_exit_latency) {
5255 /*
5256 * We give priority to a CPU whose idle state
5257 * has the smallest exit latency irrespective
5258 * of any idle timestamp.
5259 */
5260 min_exit_latency = idle->exit_latency;
5261 latest_idle_timestamp = rq->idle_stamp;
5262 shallowest_idle_cpu = i;
5263 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5264 rq->idle_stamp > latest_idle_timestamp) {
5265 /*
5266 * If equal or no active idle state, then
5267 * the most recently idled CPU might have
5268 * a warmer cache.
5269 */
5270 latest_idle_timestamp = rq->idle_stamp;
5271 shallowest_idle_cpu = i;
5272 }
9f96742a 5273 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5274 load = weighted_cpuload(i);
5275 if (load < min_load || (load == min_load && i == this_cpu)) {
5276 min_load = load;
5277 least_loaded_cpu = i;
5278 }
e7693a36
GH
5279 }
5280 }
5281
83a0a96a 5282 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5283}
e7693a36 5284
a50bde51
PZ
5285/*
5286 * Try and locate an idle CPU in the sched_domain.
5287 */
772bd008 5288static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5289{
99bd5e2f 5290 struct sched_domain *sd;
37407ea7 5291 struct sched_group *sg;
a50bde51 5292
e0a79f52
MG
5293 if (idle_cpu(target))
5294 return target;
99bd5e2f
SS
5295
5296 /*
e0a79f52 5297 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5298 */
772bd008
MR
5299 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5300 return prev;
a50bde51
PZ
5301
5302 /*
d4335581
MF
5303 * Otherwise, iterate the domains and find an eligible idle cpu.
5304 *
5305 * A completely idle sched group at higher domains is more
5306 * desirable than an idle group at a lower level, because lower
5307 * domains have smaller groups and usually share hardware
5308 * resources which causes tasks to contend on them, e.g. x86
5309 * hyperthread siblings in the lowest domain (SMT) can contend
5310 * on the shared cpu pipeline.
5311 *
5312 * However, while we prefer idle groups at higher domains
5313 * finding an idle cpu at the lowest domain is still better than
5314 * returning 'target', which we've already established, isn't
5315 * idle.
a50bde51 5316 */
518cd623 5317 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5318 for_each_lower_domain(sd) {
37407ea7
LT
5319 sg = sd->groups;
5320 do {
772bd008
MR
5321 int i;
5322
37407ea7
LT
5323 if (!cpumask_intersects(sched_group_cpus(sg),
5324 tsk_cpus_allowed(p)))
5325 goto next;
5326
d4335581 5327 /* Ensure the entire group is idle */
37407ea7 5328 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5329 if (i == target || !idle_cpu(i))
37407ea7
LT
5330 goto next;
5331 }
970e1789 5332
d4335581
MF
5333 /*
5334 * It doesn't matter which cpu we pick, the
5335 * whole group is idle.
5336 */
37407ea7
LT
5337 target = cpumask_first_and(sched_group_cpus(sg),
5338 tsk_cpus_allowed(p));
5339 goto done;
5340next:
5341 sg = sg->next;
5342 } while (sg != sd->groups);
5343 }
5344done:
a50bde51
PZ
5345 return target;
5346}
231678b7 5347
8bb5b00c 5348/*
9e91d61d 5349 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5350 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5351 * compare the utilization with the capacity of the CPU that is available for
5352 * CFS task (ie cpu_capacity).
231678b7
DE
5353 *
5354 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5355 * recent utilization of currently non-runnable tasks on a CPU. It represents
5356 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5357 * capacity_orig is the cpu_capacity available at the highest frequency
5358 * (arch_scale_freq_capacity()).
5359 * The utilization of a CPU converges towards a sum equal to or less than the
5360 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5361 * the running time on this CPU scaled by capacity_curr.
5362 *
5363 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5364 * higher than capacity_orig because of unfortunate rounding in
5365 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5366 * the average stabilizes with the new running time. We need to check that the
5367 * utilization stays within the range of [0..capacity_orig] and cap it if
5368 * necessary. Without utilization capping, a group could be seen as overloaded
5369 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5370 * available capacity. We allow utilization to overshoot capacity_curr (but not
5371 * capacity_orig) as it useful for predicting the capacity required after task
5372 * migrations (scheduler-driven DVFS).
8bb5b00c 5373 */
9e91d61d 5374static int cpu_util(int cpu)
8bb5b00c 5375{
9e91d61d 5376 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5377 unsigned long capacity = capacity_orig_of(cpu);
5378
231678b7 5379 return (util >= capacity) ? capacity : util;
8bb5b00c 5380}
a50bde51 5381
3273163c
MR
5382static inline int task_util(struct task_struct *p)
5383{
5384 return p->se.avg.util_avg;
5385}
5386
5387/*
5388 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5389 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5390 *
5391 * In that case WAKE_AFFINE doesn't make sense and we'll let
5392 * BALANCE_WAKE sort things out.
5393 */
5394static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5395{
5396 long min_cap, max_cap;
5397
5398 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5399 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5400
5401 /* Minimum capacity is close to max, no need to abort wake_affine */
5402 if (max_cap - min_cap < max_cap >> 3)
5403 return 0;
5404
5405 return min_cap * 1024 < task_util(p) * capacity_margin;
5406}
5407
aaee1203 5408/*
de91b9cb
MR
5409 * select_task_rq_fair: Select target runqueue for the waking task in domains
5410 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5411 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5412 *
de91b9cb
MR
5413 * Balances load by selecting the idlest cpu in the idlest group, or under
5414 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5415 *
de91b9cb 5416 * Returns the target cpu number.
aaee1203
PZ
5417 *
5418 * preempt must be disabled.
5419 */
0017d735 5420static int
ac66f547 5421select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5422{
29cd8bae 5423 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5424 int cpu = smp_processor_id();
63b0e9ed 5425 int new_cpu = prev_cpu;
99bd5e2f 5426 int want_affine = 0;
5158f4e4 5427 int sync = wake_flags & WF_SYNC;
c88d5910 5428
c58d25f3
PZ
5429 if (sd_flag & SD_BALANCE_WAKE) {
5430 record_wakee(p);
3273163c
MR
5431 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5432 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5433 }
aaee1203 5434
dce840a0 5435 rcu_read_lock();
aaee1203 5436 for_each_domain(cpu, tmp) {
e4f42888 5437 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5438 break;
e4f42888 5439
fe3bcfe1 5440 /*
99bd5e2f
SS
5441 * If both cpu and prev_cpu are part of this domain,
5442 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5443 */
99bd5e2f
SS
5444 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5445 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5446 affine_sd = tmp;
29cd8bae 5447 break;
f03542a7 5448 }
29cd8bae 5449
f03542a7 5450 if (tmp->flags & sd_flag)
29cd8bae 5451 sd = tmp;
63b0e9ed
MG
5452 else if (!want_affine)
5453 break;
29cd8bae
PZ
5454 }
5455
63b0e9ed
MG
5456 if (affine_sd) {
5457 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5458 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5459 new_cpu = cpu;
8b911acd 5460 }
e7693a36 5461
63b0e9ed
MG
5462 if (!sd) {
5463 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5464 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5465
5466 } else while (sd) {
aaee1203 5467 struct sched_group *group;
c88d5910 5468 int weight;
098fb9db 5469
0763a660 5470 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5471 sd = sd->child;
5472 continue;
5473 }
098fb9db 5474
c44f2a02 5475 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5476 if (!group) {
5477 sd = sd->child;
5478 continue;
5479 }
4ae7d5ce 5480
d7c33c49 5481 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5482 if (new_cpu == -1 || new_cpu == cpu) {
5483 /* Now try balancing at a lower domain level of cpu */
5484 sd = sd->child;
5485 continue;
e7693a36 5486 }
aaee1203
PZ
5487
5488 /* Now try balancing at a lower domain level of new_cpu */
5489 cpu = new_cpu;
669c55e9 5490 weight = sd->span_weight;
aaee1203
PZ
5491 sd = NULL;
5492 for_each_domain(cpu, tmp) {
669c55e9 5493 if (weight <= tmp->span_weight)
aaee1203 5494 break;
0763a660 5495 if (tmp->flags & sd_flag)
aaee1203
PZ
5496 sd = tmp;
5497 }
5498 /* while loop will break here if sd == NULL */
e7693a36 5499 }
dce840a0 5500 rcu_read_unlock();
e7693a36 5501
c88d5910 5502 return new_cpu;
e7693a36 5503}
0a74bef8
PT
5504
5505/*
5506 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5507 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5508 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5509 */
5a4fd036 5510static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5511{
59efa0ba
PZ
5512 /*
5513 * As blocked tasks retain absolute vruntime the migration needs to
5514 * deal with this by subtracting the old and adding the new
5515 * min_vruntime -- the latter is done by enqueue_entity() when placing
5516 * the task on the new runqueue.
5517 */
5518 if (p->state == TASK_WAKING) {
5519 struct sched_entity *se = &p->se;
5520 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5521 u64 min_vruntime;
5522
5523#ifndef CONFIG_64BIT
5524 u64 min_vruntime_copy;
5525
5526 do {
5527 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5528 smp_rmb();
5529 min_vruntime = cfs_rq->min_vruntime;
5530 } while (min_vruntime != min_vruntime_copy);
5531#else
5532 min_vruntime = cfs_rq->min_vruntime;
5533#endif
5534
5535 se->vruntime -= min_vruntime;
5536 }
5537
aff3e498 5538 /*
9d89c257
YD
5539 * We are supposed to update the task to "current" time, then its up to date
5540 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5541 * what current time is, so simply throw away the out-of-date time. This
5542 * will result in the wakee task is less decayed, but giving the wakee more
5543 * load sounds not bad.
aff3e498 5544 */
9d89c257
YD
5545 remove_entity_load_avg(&p->se);
5546
5547 /* Tell new CPU we are migrated */
5548 p->se.avg.last_update_time = 0;
3944a927
BS
5549
5550 /* We have migrated, no longer consider this task hot */
9d89c257 5551 p->se.exec_start = 0;
0a74bef8 5552}
12695578
YD
5553
5554static void task_dead_fair(struct task_struct *p)
5555{
5556 remove_entity_load_avg(&p->se);
5557}
e7693a36
GH
5558#endif /* CONFIG_SMP */
5559
e52fb7c0
PZ
5560static unsigned long
5561wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5562{
5563 unsigned long gran = sysctl_sched_wakeup_granularity;
5564
5565 /*
e52fb7c0
PZ
5566 * Since its curr running now, convert the gran from real-time
5567 * to virtual-time in his units.
13814d42
MG
5568 *
5569 * By using 'se' instead of 'curr' we penalize light tasks, so
5570 * they get preempted easier. That is, if 'se' < 'curr' then
5571 * the resulting gran will be larger, therefore penalizing the
5572 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5573 * be smaller, again penalizing the lighter task.
5574 *
5575 * This is especially important for buddies when the leftmost
5576 * task is higher priority than the buddy.
0bbd3336 5577 */
f4ad9bd2 5578 return calc_delta_fair(gran, se);
0bbd3336
PZ
5579}
5580
464b7527
PZ
5581/*
5582 * Should 'se' preempt 'curr'.
5583 *
5584 * |s1
5585 * |s2
5586 * |s3
5587 * g
5588 * |<--->|c
5589 *
5590 * w(c, s1) = -1
5591 * w(c, s2) = 0
5592 * w(c, s3) = 1
5593 *
5594 */
5595static int
5596wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5597{
5598 s64 gran, vdiff = curr->vruntime - se->vruntime;
5599
5600 if (vdiff <= 0)
5601 return -1;
5602
e52fb7c0 5603 gran = wakeup_gran(curr, se);
464b7527
PZ
5604 if (vdiff > gran)
5605 return 1;
5606
5607 return 0;
5608}
5609
02479099
PZ
5610static void set_last_buddy(struct sched_entity *se)
5611{
69c80f3e
VP
5612 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5613 return;
5614
5615 for_each_sched_entity(se)
5616 cfs_rq_of(se)->last = se;
02479099
PZ
5617}
5618
5619static void set_next_buddy(struct sched_entity *se)
5620{
69c80f3e
VP
5621 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5622 return;
5623
5624 for_each_sched_entity(se)
5625 cfs_rq_of(se)->next = se;
02479099
PZ
5626}
5627
ac53db59
RR
5628static void set_skip_buddy(struct sched_entity *se)
5629{
69c80f3e
VP
5630 for_each_sched_entity(se)
5631 cfs_rq_of(se)->skip = se;
ac53db59
RR
5632}
5633
bf0f6f24
IM
5634/*
5635 * Preempt the current task with a newly woken task if needed:
5636 */
5a9b86f6 5637static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5638{
5639 struct task_struct *curr = rq->curr;
8651a86c 5640 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5641 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5642 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5643 int next_buddy_marked = 0;
bf0f6f24 5644
4ae7d5ce
IM
5645 if (unlikely(se == pse))
5646 return;
5647
5238cdd3 5648 /*
163122b7 5649 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5650 * unconditionally check_prempt_curr() after an enqueue (which may have
5651 * lead to a throttle). This both saves work and prevents false
5652 * next-buddy nomination below.
5653 */
5654 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5655 return;
5656
2f36825b 5657 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5658 set_next_buddy(pse);
2f36825b
VP
5659 next_buddy_marked = 1;
5660 }
57fdc26d 5661
aec0a514
BR
5662 /*
5663 * We can come here with TIF_NEED_RESCHED already set from new task
5664 * wake up path.
5238cdd3
PT
5665 *
5666 * Note: this also catches the edge-case of curr being in a throttled
5667 * group (e.g. via set_curr_task), since update_curr() (in the
5668 * enqueue of curr) will have resulted in resched being set. This
5669 * prevents us from potentially nominating it as a false LAST_BUDDY
5670 * below.
aec0a514
BR
5671 */
5672 if (test_tsk_need_resched(curr))
5673 return;
5674
a2f5c9ab
DH
5675 /* Idle tasks are by definition preempted by non-idle tasks. */
5676 if (unlikely(curr->policy == SCHED_IDLE) &&
5677 likely(p->policy != SCHED_IDLE))
5678 goto preempt;
5679
91c234b4 5680 /*
a2f5c9ab
DH
5681 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5682 * is driven by the tick):
91c234b4 5683 */
8ed92e51 5684 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5685 return;
bf0f6f24 5686
464b7527 5687 find_matching_se(&se, &pse);
9bbd7374 5688 update_curr(cfs_rq_of(se));
002f128b 5689 BUG_ON(!pse);
2f36825b
VP
5690 if (wakeup_preempt_entity(se, pse) == 1) {
5691 /*
5692 * Bias pick_next to pick the sched entity that is
5693 * triggering this preemption.
5694 */
5695 if (!next_buddy_marked)
5696 set_next_buddy(pse);
3a7e73a2 5697 goto preempt;
2f36825b 5698 }
464b7527 5699
3a7e73a2 5700 return;
a65ac745 5701
3a7e73a2 5702preempt:
8875125e 5703 resched_curr(rq);
3a7e73a2
PZ
5704 /*
5705 * Only set the backward buddy when the current task is still
5706 * on the rq. This can happen when a wakeup gets interleaved
5707 * with schedule on the ->pre_schedule() or idle_balance()
5708 * point, either of which can * drop the rq lock.
5709 *
5710 * Also, during early boot the idle thread is in the fair class,
5711 * for obvious reasons its a bad idea to schedule back to it.
5712 */
5713 if (unlikely(!se->on_rq || curr == rq->idle))
5714 return;
5715
5716 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5717 set_last_buddy(se);
bf0f6f24
IM
5718}
5719
606dba2e 5720static struct task_struct *
e7904a28 5721pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5722{
5723 struct cfs_rq *cfs_rq = &rq->cfs;
5724 struct sched_entity *se;
678d5718 5725 struct task_struct *p;
37e117c0 5726 int new_tasks;
678d5718 5727
6e83125c 5728again:
678d5718
PZ
5729#ifdef CONFIG_FAIR_GROUP_SCHED
5730 if (!cfs_rq->nr_running)
38033c37 5731 goto idle;
678d5718 5732
3f1d2a31 5733 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5734 goto simple;
5735
5736 /*
5737 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5738 * likely that a next task is from the same cgroup as the current.
5739 *
5740 * Therefore attempt to avoid putting and setting the entire cgroup
5741 * hierarchy, only change the part that actually changes.
5742 */
5743
5744 do {
5745 struct sched_entity *curr = cfs_rq->curr;
5746
5747 /*
5748 * Since we got here without doing put_prev_entity() we also
5749 * have to consider cfs_rq->curr. If it is still a runnable
5750 * entity, update_curr() will update its vruntime, otherwise
5751 * forget we've ever seen it.
5752 */
54d27365
BS
5753 if (curr) {
5754 if (curr->on_rq)
5755 update_curr(cfs_rq);
5756 else
5757 curr = NULL;
678d5718 5758
54d27365
BS
5759 /*
5760 * This call to check_cfs_rq_runtime() will do the
5761 * throttle and dequeue its entity in the parent(s).
5762 * Therefore the 'simple' nr_running test will indeed
5763 * be correct.
5764 */
5765 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5766 goto simple;
5767 }
678d5718
PZ
5768
5769 se = pick_next_entity(cfs_rq, curr);
5770 cfs_rq = group_cfs_rq(se);
5771 } while (cfs_rq);
5772
5773 p = task_of(se);
5774
5775 /*
5776 * Since we haven't yet done put_prev_entity and if the selected task
5777 * is a different task than we started out with, try and touch the
5778 * least amount of cfs_rqs.
5779 */
5780 if (prev != p) {
5781 struct sched_entity *pse = &prev->se;
5782
5783 while (!(cfs_rq = is_same_group(se, pse))) {
5784 int se_depth = se->depth;
5785 int pse_depth = pse->depth;
5786
5787 if (se_depth <= pse_depth) {
5788 put_prev_entity(cfs_rq_of(pse), pse);
5789 pse = parent_entity(pse);
5790 }
5791 if (se_depth >= pse_depth) {
5792 set_next_entity(cfs_rq_of(se), se);
5793 se = parent_entity(se);
5794 }
5795 }
5796
5797 put_prev_entity(cfs_rq, pse);
5798 set_next_entity(cfs_rq, se);
5799 }
5800
5801 if (hrtick_enabled(rq))
5802 hrtick_start_fair(rq, p);
5803
5804 return p;
5805simple:
5806 cfs_rq = &rq->cfs;
5807#endif
bf0f6f24 5808
36ace27e 5809 if (!cfs_rq->nr_running)
38033c37 5810 goto idle;
bf0f6f24 5811
3f1d2a31 5812 put_prev_task(rq, prev);
606dba2e 5813
bf0f6f24 5814 do {
678d5718 5815 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5816 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5817 cfs_rq = group_cfs_rq(se);
5818 } while (cfs_rq);
5819
8f4d37ec 5820 p = task_of(se);
678d5718 5821
b39e66ea
MG
5822 if (hrtick_enabled(rq))
5823 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5824
5825 return p;
38033c37
PZ
5826
5827idle:
cbce1a68
PZ
5828 /*
5829 * This is OK, because current is on_cpu, which avoids it being picked
5830 * for load-balance and preemption/IRQs are still disabled avoiding
5831 * further scheduler activity on it and we're being very careful to
5832 * re-start the picking loop.
5833 */
e7904a28 5834 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5835 new_tasks = idle_balance(rq);
e7904a28 5836 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5837 /*
5838 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5839 * possible for any higher priority task to appear. In that case we
5840 * must re-start the pick_next_entity() loop.
5841 */
e4aa358b 5842 if (new_tasks < 0)
37e117c0
PZ
5843 return RETRY_TASK;
5844
e4aa358b 5845 if (new_tasks > 0)
38033c37 5846 goto again;
38033c37
PZ
5847
5848 return NULL;
bf0f6f24
IM
5849}
5850
5851/*
5852 * Account for a descheduled task:
5853 */
31ee529c 5854static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5855{
5856 struct sched_entity *se = &prev->se;
5857 struct cfs_rq *cfs_rq;
5858
5859 for_each_sched_entity(se) {
5860 cfs_rq = cfs_rq_of(se);
ab6cde26 5861 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5862 }
5863}
5864
ac53db59
RR
5865/*
5866 * sched_yield() is very simple
5867 *
5868 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5869 */
5870static void yield_task_fair(struct rq *rq)
5871{
5872 struct task_struct *curr = rq->curr;
5873 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5874 struct sched_entity *se = &curr->se;
5875
5876 /*
5877 * Are we the only task in the tree?
5878 */
5879 if (unlikely(rq->nr_running == 1))
5880 return;
5881
5882 clear_buddies(cfs_rq, se);
5883
5884 if (curr->policy != SCHED_BATCH) {
5885 update_rq_clock(rq);
5886 /*
5887 * Update run-time statistics of the 'current'.
5888 */
5889 update_curr(cfs_rq);
916671c0
MG
5890 /*
5891 * Tell update_rq_clock() that we've just updated,
5892 * so we don't do microscopic update in schedule()
5893 * and double the fastpath cost.
5894 */
9edfbfed 5895 rq_clock_skip_update(rq, true);
ac53db59
RR
5896 }
5897
5898 set_skip_buddy(se);
5899}
5900
d95f4122
MG
5901static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5902{
5903 struct sched_entity *se = &p->se;
5904
5238cdd3
PT
5905 /* throttled hierarchies are not runnable */
5906 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5907 return false;
5908
5909 /* Tell the scheduler that we'd really like pse to run next. */
5910 set_next_buddy(se);
5911
d95f4122
MG
5912 yield_task_fair(rq);
5913
5914 return true;
5915}
5916
681f3e68 5917#ifdef CONFIG_SMP
bf0f6f24 5918/**************************************************
e9c84cb8
PZ
5919 * Fair scheduling class load-balancing methods.
5920 *
5921 * BASICS
5922 *
5923 * The purpose of load-balancing is to achieve the same basic fairness the
5924 * per-cpu scheduler provides, namely provide a proportional amount of compute
5925 * time to each task. This is expressed in the following equation:
5926 *
5927 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5928 *
5929 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5930 * W_i,0 is defined as:
5931 *
5932 * W_i,0 = \Sum_j w_i,j (2)
5933 *
5934 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5935 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5936 *
5937 * The weight average is an exponential decay average of the instantaneous
5938 * weight:
5939 *
5940 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5941 *
ced549fa 5942 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5943 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5944 * can also include other factors [XXX].
5945 *
5946 * To achieve this balance we define a measure of imbalance which follows
5947 * directly from (1):
5948 *
ced549fa 5949 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5950 *
5951 * We them move tasks around to minimize the imbalance. In the continuous
5952 * function space it is obvious this converges, in the discrete case we get
5953 * a few fun cases generally called infeasible weight scenarios.
5954 *
5955 * [XXX expand on:
5956 * - infeasible weights;
5957 * - local vs global optima in the discrete case. ]
5958 *
5959 *
5960 * SCHED DOMAINS
5961 *
5962 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5963 * for all i,j solution, we create a tree of cpus that follows the hardware
5964 * topology where each level pairs two lower groups (or better). This results
5965 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5966 * tree to only the first of the previous level and we decrease the frequency
5967 * of load-balance at each level inv. proportional to the number of cpus in
5968 * the groups.
5969 *
5970 * This yields:
5971 *
5972 * log_2 n 1 n
5973 * \Sum { --- * --- * 2^i } = O(n) (5)
5974 * i = 0 2^i 2^i
5975 * `- size of each group
5976 * | | `- number of cpus doing load-balance
5977 * | `- freq
5978 * `- sum over all levels
5979 *
5980 * Coupled with a limit on how many tasks we can migrate every balance pass,
5981 * this makes (5) the runtime complexity of the balancer.
5982 *
5983 * An important property here is that each CPU is still (indirectly) connected
5984 * to every other cpu in at most O(log n) steps:
5985 *
5986 * The adjacency matrix of the resulting graph is given by:
5987 *
97a7142f 5988 * log_2 n
e9c84cb8
PZ
5989 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5990 * k = 0
5991 *
5992 * And you'll find that:
5993 *
5994 * A^(log_2 n)_i,j != 0 for all i,j (7)
5995 *
5996 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5997 * The task movement gives a factor of O(m), giving a convergence complexity
5998 * of:
5999 *
6000 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6001 *
6002 *
6003 * WORK CONSERVING
6004 *
6005 * In order to avoid CPUs going idle while there's still work to do, new idle
6006 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6007 * tree itself instead of relying on other CPUs to bring it work.
6008 *
6009 * This adds some complexity to both (5) and (8) but it reduces the total idle
6010 * time.
6011 *
6012 * [XXX more?]
6013 *
6014 *
6015 * CGROUPS
6016 *
6017 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6018 *
6019 * s_k,i
6020 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6021 * S_k
6022 *
6023 * Where
6024 *
6025 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6026 *
6027 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6028 *
6029 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6030 * property.
6031 *
6032 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6033 * rewrite all of this once again.]
97a7142f 6034 */
bf0f6f24 6035
ed387b78
HS
6036static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6037
0ec8aa00
PZ
6038enum fbq_type { regular, remote, all };
6039
ddcdf6e7 6040#define LBF_ALL_PINNED 0x01
367456c7 6041#define LBF_NEED_BREAK 0x02
6263322c
PZ
6042#define LBF_DST_PINNED 0x04
6043#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6044
6045struct lb_env {
6046 struct sched_domain *sd;
6047
ddcdf6e7 6048 struct rq *src_rq;
85c1e7da 6049 int src_cpu;
ddcdf6e7
PZ
6050
6051 int dst_cpu;
6052 struct rq *dst_rq;
6053
88b8dac0
SV
6054 struct cpumask *dst_grpmask;
6055 int new_dst_cpu;
ddcdf6e7 6056 enum cpu_idle_type idle;
bd939f45 6057 long imbalance;
b9403130
MW
6058 /* The set of CPUs under consideration for load-balancing */
6059 struct cpumask *cpus;
6060
ddcdf6e7 6061 unsigned int flags;
367456c7
PZ
6062
6063 unsigned int loop;
6064 unsigned int loop_break;
6065 unsigned int loop_max;
0ec8aa00
PZ
6066
6067 enum fbq_type fbq_type;
163122b7 6068 struct list_head tasks;
ddcdf6e7
PZ
6069};
6070
029632fb
PZ
6071/*
6072 * Is this task likely cache-hot:
6073 */
5d5e2b1b 6074static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6075{
6076 s64 delta;
6077
e5673f28
KT
6078 lockdep_assert_held(&env->src_rq->lock);
6079
029632fb
PZ
6080 if (p->sched_class != &fair_sched_class)
6081 return 0;
6082
6083 if (unlikely(p->policy == SCHED_IDLE))
6084 return 0;
6085
6086 /*
6087 * Buddy candidates are cache hot:
6088 */
5d5e2b1b 6089 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6090 (&p->se == cfs_rq_of(&p->se)->next ||
6091 &p->se == cfs_rq_of(&p->se)->last))
6092 return 1;
6093
6094 if (sysctl_sched_migration_cost == -1)
6095 return 1;
6096 if (sysctl_sched_migration_cost == 0)
6097 return 0;
6098
5d5e2b1b 6099 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6100
6101 return delta < (s64)sysctl_sched_migration_cost;
6102}
6103
3a7053b3 6104#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6105/*
2a1ed24c
SD
6106 * Returns 1, if task migration degrades locality
6107 * Returns 0, if task migration improves locality i.e migration preferred.
6108 * Returns -1, if task migration is not affected by locality.
c1ceac62 6109 */
2a1ed24c 6110static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6111{
b1ad065e 6112 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6113 unsigned long src_faults, dst_faults;
3a7053b3
MG
6114 int src_nid, dst_nid;
6115
2a595721 6116 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6117 return -1;
6118
c3b9bc5b 6119 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6120 return -1;
7a0f3083
MG
6121
6122 src_nid = cpu_to_node(env->src_cpu);
6123 dst_nid = cpu_to_node(env->dst_cpu);
6124
83e1d2cd 6125 if (src_nid == dst_nid)
2a1ed24c 6126 return -1;
7a0f3083 6127
2a1ed24c
SD
6128 /* Migrating away from the preferred node is always bad. */
6129 if (src_nid == p->numa_preferred_nid) {
6130 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6131 return 1;
6132 else
6133 return -1;
6134 }
b1ad065e 6135
c1ceac62
RR
6136 /* Encourage migration to the preferred node. */
6137 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6138 return 0;
b1ad065e 6139
c1ceac62
RR
6140 if (numa_group) {
6141 src_faults = group_faults(p, src_nid);
6142 dst_faults = group_faults(p, dst_nid);
6143 } else {
6144 src_faults = task_faults(p, src_nid);
6145 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6146 }
6147
c1ceac62 6148 return dst_faults < src_faults;
7a0f3083
MG
6149}
6150
3a7053b3 6151#else
2a1ed24c 6152static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6153 struct lb_env *env)
6154{
2a1ed24c 6155 return -1;
7a0f3083 6156}
3a7053b3
MG
6157#endif
6158
1e3c88bd
PZ
6159/*
6160 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6161 */
6162static
8e45cb54 6163int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6164{
2a1ed24c 6165 int tsk_cache_hot;
e5673f28
KT
6166
6167 lockdep_assert_held(&env->src_rq->lock);
6168
1e3c88bd
PZ
6169 /*
6170 * We do not migrate tasks that are:
d3198084 6171 * 1) throttled_lb_pair, or
1e3c88bd 6172 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6173 * 3) running (obviously), or
6174 * 4) are cache-hot on their current CPU.
1e3c88bd 6175 */
d3198084
JK
6176 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6177 return 0;
6178
ddcdf6e7 6179 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6180 int cpu;
88b8dac0 6181
41acab88 6182 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6183
6263322c
PZ
6184 env->flags |= LBF_SOME_PINNED;
6185
88b8dac0
SV
6186 /*
6187 * Remember if this task can be migrated to any other cpu in
6188 * our sched_group. We may want to revisit it if we couldn't
6189 * meet load balance goals by pulling other tasks on src_cpu.
6190 *
6191 * Also avoid computing new_dst_cpu if we have already computed
6192 * one in current iteration.
6193 */
6263322c 6194 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6195 return 0;
6196
e02e60c1
JK
6197 /* Prevent to re-select dst_cpu via env's cpus */
6198 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6199 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6200 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6201 env->new_dst_cpu = cpu;
6202 break;
6203 }
88b8dac0 6204 }
e02e60c1 6205
1e3c88bd
PZ
6206 return 0;
6207 }
88b8dac0
SV
6208
6209 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6210 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6211
ddcdf6e7 6212 if (task_running(env->src_rq, p)) {
41acab88 6213 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6214 return 0;
6215 }
6216
6217 /*
6218 * Aggressive migration if:
3a7053b3
MG
6219 * 1) destination numa is preferred
6220 * 2) task is cache cold, or
6221 * 3) too many balance attempts have failed.
1e3c88bd 6222 */
2a1ed24c
SD
6223 tsk_cache_hot = migrate_degrades_locality(p, env);
6224 if (tsk_cache_hot == -1)
6225 tsk_cache_hot = task_hot(p, env);
3a7053b3 6226
2a1ed24c 6227 if (tsk_cache_hot <= 0 ||
7a96c231 6228 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6229 if (tsk_cache_hot == 1) {
3a7053b3
MG
6230 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6231 schedstat_inc(p, se.statistics.nr_forced_migrations);
6232 }
1e3c88bd
PZ
6233 return 1;
6234 }
6235
4e2dcb73
ZH
6236 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6237 return 0;
1e3c88bd
PZ
6238}
6239
897c395f 6240/*
163122b7
KT
6241 * detach_task() -- detach the task for the migration specified in env
6242 */
6243static void detach_task(struct task_struct *p, struct lb_env *env)
6244{
6245 lockdep_assert_held(&env->src_rq->lock);
6246
163122b7 6247 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6248 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6249 set_task_cpu(p, env->dst_cpu);
6250}
6251
897c395f 6252/*
e5673f28 6253 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6254 * part of active balancing operations within "domain".
897c395f 6255 *
e5673f28 6256 * Returns a task if successful and NULL otherwise.
897c395f 6257 */
e5673f28 6258static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6259{
6260 struct task_struct *p, *n;
897c395f 6261
e5673f28
KT
6262 lockdep_assert_held(&env->src_rq->lock);
6263
367456c7 6264 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6265 if (!can_migrate_task(p, env))
6266 continue;
897c395f 6267
163122b7 6268 detach_task(p, env);
e5673f28 6269
367456c7 6270 /*
e5673f28 6271 * Right now, this is only the second place where
163122b7 6272 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6273 * so we can safely collect stats here rather than
163122b7 6274 * inside detach_tasks().
367456c7
PZ
6275 */
6276 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6277 return p;
897c395f 6278 }
e5673f28 6279 return NULL;
897c395f
PZ
6280}
6281
eb95308e
PZ
6282static const unsigned int sched_nr_migrate_break = 32;
6283
5d6523eb 6284/*
163122b7
KT
6285 * detach_tasks() -- tries to detach up to imbalance weighted load from
6286 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6287 *
163122b7 6288 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6289 */
163122b7 6290static int detach_tasks(struct lb_env *env)
1e3c88bd 6291{
5d6523eb
PZ
6292 struct list_head *tasks = &env->src_rq->cfs_tasks;
6293 struct task_struct *p;
367456c7 6294 unsigned long load;
163122b7
KT
6295 int detached = 0;
6296
6297 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6298
bd939f45 6299 if (env->imbalance <= 0)
5d6523eb 6300 return 0;
1e3c88bd 6301
5d6523eb 6302 while (!list_empty(tasks)) {
985d3a4c
YD
6303 /*
6304 * We don't want to steal all, otherwise we may be treated likewise,
6305 * which could at worst lead to a livelock crash.
6306 */
6307 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6308 break;
6309
5d6523eb 6310 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6311
367456c7
PZ
6312 env->loop++;
6313 /* We've more or less seen every task there is, call it quits */
5d6523eb 6314 if (env->loop > env->loop_max)
367456c7 6315 break;
5d6523eb
PZ
6316
6317 /* take a breather every nr_migrate tasks */
367456c7 6318 if (env->loop > env->loop_break) {
eb95308e 6319 env->loop_break += sched_nr_migrate_break;
8e45cb54 6320 env->flags |= LBF_NEED_BREAK;
ee00e66f 6321 break;
a195f004 6322 }
1e3c88bd 6323
d3198084 6324 if (!can_migrate_task(p, env))
367456c7
PZ
6325 goto next;
6326
6327 load = task_h_load(p);
5d6523eb 6328
eb95308e 6329 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6330 goto next;
6331
bd939f45 6332 if ((load / 2) > env->imbalance)
367456c7 6333 goto next;
1e3c88bd 6334
163122b7
KT
6335 detach_task(p, env);
6336 list_add(&p->se.group_node, &env->tasks);
6337
6338 detached++;
bd939f45 6339 env->imbalance -= load;
1e3c88bd
PZ
6340
6341#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6342 /*
6343 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6344 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6345 * the critical section.
6346 */
5d6523eb 6347 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6348 break;
1e3c88bd
PZ
6349#endif
6350
ee00e66f
PZ
6351 /*
6352 * We only want to steal up to the prescribed amount of
6353 * weighted load.
6354 */
bd939f45 6355 if (env->imbalance <= 0)
ee00e66f 6356 break;
367456c7
PZ
6357
6358 continue;
6359next:
5d6523eb 6360 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6361 }
5d6523eb 6362
1e3c88bd 6363 /*
163122b7
KT
6364 * Right now, this is one of only two places we collect this stat
6365 * so we can safely collect detach_one_task() stats here rather
6366 * than inside detach_one_task().
1e3c88bd 6367 */
163122b7 6368 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6369
163122b7
KT
6370 return detached;
6371}
6372
6373/*
6374 * attach_task() -- attach the task detached by detach_task() to its new rq.
6375 */
6376static void attach_task(struct rq *rq, struct task_struct *p)
6377{
6378 lockdep_assert_held(&rq->lock);
6379
6380 BUG_ON(task_rq(p) != rq);
163122b7 6381 activate_task(rq, p, 0);
3ea94de1 6382 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6383 check_preempt_curr(rq, p, 0);
6384}
6385
6386/*
6387 * attach_one_task() -- attaches the task returned from detach_one_task() to
6388 * its new rq.
6389 */
6390static void attach_one_task(struct rq *rq, struct task_struct *p)
6391{
6392 raw_spin_lock(&rq->lock);
6393 attach_task(rq, p);
6394 raw_spin_unlock(&rq->lock);
6395}
6396
6397/*
6398 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6399 * new rq.
6400 */
6401static void attach_tasks(struct lb_env *env)
6402{
6403 struct list_head *tasks = &env->tasks;
6404 struct task_struct *p;
6405
6406 raw_spin_lock(&env->dst_rq->lock);
6407
6408 while (!list_empty(tasks)) {
6409 p = list_first_entry(tasks, struct task_struct, se.group_node);
6410 list_del_init(&p->se.group_node);
1e3c88bd 6411
163122b7
KT
6412 attach_task(env->dst_rq, p);
6413 }
6414
6415 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6416}
6417
230059de 6418#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6419static void update_blocked_averages(int cpu)
9e3081ca 6420{
9e3081ca 6421 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6422 struct cfs_rq *cfs_rq;
6423 unsigned long flags;
9e3081ca 6424
48a16753
PT
6425 raw_spin_lock_irqsave(&rq->lock, flags);
6426 update_rq_clock(rq);
9d89c257 6427
9763b67f
PZ
6428 /*
6429 * Iterates the task_group tree in a bottom up fashion, see
6430 * list_add_leaf_cfs_rq() for details.
6431 */
64660c86 6432 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6433 /* throttled entities do not contribute to load */
6434 if (throttled_hierarchy(cfs_rq))
6435 continue;
48a16753 6436
a2c6c91f 6437 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6438 update_tg_load_avg(cfs_rq, 0);
6439 }
48a16753 6440 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6441}
6442
9763b67f 6443/*
68520796 6444 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6445 * This needs to be done in a top-down fashion because the load of a child
6446 * group is a fraction of its parents load.
6447 */
68520796 6448static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6449{
68520796
VD
6450 struct rq *rq = rq_of(cfs_rq);
6451 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6452 unsigned long now = jiffies;
68520796 6453 unsigned long load;
a35b6466 6454
68520796 6455 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6456 return;
6457
68520796
VD
6458 cfs_rq->h_load_next = NULL;
6459 for_each_sched_entity(se) {
6460 cfs_rq = cfs_rq_of(se);
6461 cfs_rq->h_load_next = se;
6462 if (cfs_rq->last_h_load_update == now)
6463 break;
6464 }
a35b6466 6465
68520796 6466 if (!se) {
7ea241af 6467 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6468 cfs_rq->last_h_load_update = now;
6469 }
6470
6471 while ((se = cfs_rq->h_load_next) != NULL) {
6472 load = cfs_rq->h_load;
7ea241af
YD
6473 load = div64_ul(load * se->avg.load_avg,
6474 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6475 cfs_rq = group_cfs_rq(se);
6476 cfs_rq->h_load = load;
6477 cfs_rq->last_h_load_update = now;
6478 }
9763b67f
PZ
6479}
6480
367456c7 6481static unsigned long task_h_load(struct task_struct *p)
230059de 6482{
367456c7 6483 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6484
68520796 6485 update_cfs_rq_h_load(cfs_rq);
9d89c257 6486 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6487 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6488}
6489#else
48a16753 6490static inline void update_blocked_averages(int cpu)
9e3081ca 6491{
6c1d47c0
VG
6492 struct rq *rq = cpu_rq(cpu);
6493 struct cfs_rq *cfs_rq = &rq->cfs;
6494 unsigned long flags;
6495
6496 raw_spin_lock_irqsave(&rq->lock, flags);
6497 update_rq_clock(rq);
a2c6c91f 6498 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6499 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6500}
6501
367456c7 6502static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6503{
9d89c257 6504 return p->se.avg.load_avg;
1e3c88bd 6505}
230059de 6506#endif
1e3c88bd 6507
1e3c88bd 6508/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6509
6510enum group_type {
6511 group_other = 0,
6512 group_imbalanced,
6513 group_overloaded,
6514};
6515
1e3c88bd
PZ
6516/*
6517 * sg_lb_stats - stats of a sched_group required for load_balancing
6518 */
6519struct sg_lb_stats {
6520 unsigned long avg_load; /*Avg load across the CPUs of the group */
6521 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6522 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6523 unsigned long load_per_task;
63b2ca30 6524 unsigned long group_capacity;
9e91d61d 6525 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6526 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6527 unsigned int idle_cpus;
6528 unsigned int group_weight;
caeb178c 6529 enum group_type group_type;
ea67821b 6530 int group_no_capacity;
0ec8aa00
PZ
6531#ifdef CONFIG_NUMA_BALANCING
6532 unsigned int nr_numa_running;
6533 unsigned int nr_preferred_running;
6534#endif
1e3c88bd
PZ
6535};
6536
56cf515b
JK
6537/*
6538 * sd_lb_stats - Structure to store the statistics of a sched_domain
6539 * during load balancing.
6540 */
6541struct sd_lb_stats {
6542 struct sched_group *busiest; /* Busiest group in this sd */
6543 struct sched_group *local; /* Local group in this sd */
6544 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6545 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6546 unsigned long avg_load; /* Average load across all groups in sd */
6547
56cf515b 6548 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6549 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6550};
6551
147c5fc2
PZ
6552static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6553{
6554 /*
6555 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6556 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6557 * We must however clear busiest_stat::avg_load because
6558 * update_sd_pick_busiest() reads this before assignment.
6559 */
6560 *sds = (struct sd_lb_stats){
6561 .busiest = NULL,
6562 .local = NULL,
6563 .total_load = 0UL,
63b2ca30 6564 .total_capacity = 0UL,
147c5fc2
PZ
6565 .busiest_stat = {
6566 .avg_load = 0UL,
caeb178c
RR
6567 .sum_nr_running = 0,
6568 .group_type = group_other,
147c5fc2
PZ
6569 },
6570 };
6571}
6572
1e3c88bd
PZ
6573/**
6574 * get_sd_load_idx - Obtain the load index for a given sched domain.
6575 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6576 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6577 *
6578 * Return: The load index.
1e3c88bd
PZ
6579 */
6580static inline int get_sd_load_idx(struct sched_domain *sd,
6581 enum cpu_idle_type idle)
6582{
6583 int load_idx;
6584
6585 switch (idle) {
6586 case CPU_NOT_IDLE:
6587 load_idx = sd->busy_idx;
6588 break;
6589
6590 case CPU_NEWLY_IDLE:
6591 load_idx = sd->newidle_idx;
6592 break;
6593 default:
6594 load_idx = sd->idle_idx;
6595 break;
6596 }
6597
6598 return load_idx;
6599}
6600
ced549fa 6601static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6602{
6603 struct rq *rq = cpu_rq(cpu);
b5b4860d 6604 u64 total, used, age_stamp, avg;
cadefd3d 6605 s64 delta;
1e3c88bd 6606
b654f7de
PZ
6607 /*
6608 * Since we're reading these variables without serialization make sure
6609 * we read them once before doing sanity checks on them.
6610 */
316c1608
JL
6611 age_stamp = READ_ONCE(rq->age_stamp);
6612 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6613 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6614
cadefd3d
PZ
6615 if (unlikely(delta < 0))
6616 delta = 0;
6617
6618 total = sched_avg_period() + delta;
aa483808 6619
b5b4860d 6620 used = div_u64(avg, total);
1e3c88bd 6621
b5b4860d
VG
6622 if (likely(used < SCHED_CAPACITY_SCALE))
6623 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6624
b5b4860d 6625 return 1;
1e3c88bd
PZ
6626}
6627
ced549fa 6628static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6629{
8cd5601c 6630 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6631 struct sched_group *sdg = sd->groups;
6632
ca6d75e6 6633 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6634
ced549fa 6635 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6636 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6637
ced549fa
NP
6638 if (!capacity)
6639 capacity = 1;
1e3c88bd 6640
ced549fa
NP
6641 cpu_rq(cpu)->cpu_capacity = capacity;
6642 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6643}
6644
63b2ca30 6645void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6646{
6647 struct sched_domain *child = sd->child;
6648 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6649 unsigned long capacity;
4ec4412e
VG
6650 unsigned long interval;
6651
6652 interval = msecs_to_jiffies(sd->balance_interval);
6653 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6654 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6655
6656 if (!child) {
ced549fa 6657 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6658 return;
6659 }
6660
dc7ff76e 6661 capacity = 0;
1e3c88bd 6662
74a5ce20
PZ
6663 if (child->flags & SD_OVERLAP) {
6664 /*
6665 * SD_OVERLAP domains cannot assume that child groups
6666 * span the current group.
6667 */
6668
863bffc8 6669 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6670 struct sched_group_capacity *sgc;
9abf24d4 6671 struct rq *rq = cpu_rq(cpu);
863bffc8 6672
9abf24d4 6673 /*
63b2ca30 6674 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6675 * gets here before we've attached the domains to the
6676 * runqueues.
6677 *
ced549fa
NP
6678 * Use capacity_of(), which is set irrespective of domains
6679 * in update_cpu_capacity().
9abf24d4 6680 *
dc7ff76e 6681 * This avoids capacity from being 0 and
9abf24d4 6682 * causing divide-by-zero issues on boot.
9abf24d4
SD
6683 */
6684 if (unlikely(!rq->sd)) {
ced549fa 6685 capacity += capacity_of(cpu);
9abf24d4
SD
6686 continue;
6687 }
863bffc8 6688
63b2ca30 6689 sgc = rq->sd->groups->sgc;
63b2ca30 6690 capacity += sgc->capacity;
863bffc8 6691 }
74a5ce20
PZ
6692 } else {
6693 /*
6694 * !SD_OVERLAP domains can assume that child groups
6695 * span the current group.
97a7142f 6696 */
74a5ce20
PZ
6697
6698 group = child->groups;
6699 do {
63b2ca30 6700 capacity += group->sgc->capacity;
74a5ce20
PZ
6701 group = group->next;
6702 } while (group != child->groups);
6703 }
1e3c88bd 6704
63b2ca30 6705 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6706}
6707
9d5efe05 6708/*
ea67821b
VG
6709 * Check whether the capacity of the rq has been noticeably reduced by side
6710 * activity. The imbalance_pct is used for the threshold.
6711 * Return true is the capacity is reduced
9d5efe05
SV
6712 */
6713static inline int
ea67821b 6714check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6715{
ea67821b
VG
6716 return ((rq->cpu_capacity * sd->imbalance_pct) <
6717 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6718}
6719
30ce5dab
PZ
6720/*
6721 * Group imbalance indicates (and tries to solve) the problem where balancing
6722 * groups is inadequate due to tsk_cpus_allowed() constraints.
6723 *
6724 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6725 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6726 * Something like:
6727 *
6728 * { 0 1 2 3 } { 4 5 6 7 }
6729 * * * * *
6730 *
6731 * If we were to balance group-wise we'd place two tasks in the first group and
6732 * two tasks in the second group. Clearly this is undesired as it will overload
6733 * cpu 3 and leave one of the cpus in the second group unused.
6734 *
6735 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6736 * by noticing the lower domain failed to reach balance and had difficulty
6737 * moving tasks due to affinity constraints.
30ce5dab
PZ
6738 *
6739 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6740 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6741 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6742 * to create an effective group imbalance.
6743 *
6744 * This is a somewhat tricky proposition since the next run might not find the
6745 * group imbalance and decide the groups need to be balanced again. A most
6746 * subtle and fragile situation.
6747 */
6748
6263322c 6749static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6750{
63b2ca30 6751 return group->sgc->imbalance;
30ce5dab
PZ
6752}
6753
b37d9316 6754/*
ea67821b
VG
6755 * group_has_capacity returns true if the group has spare capacity that could
6756 * be used by some tasks.
6757 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6758 * smaller than the number of CPUs or if the utilization is lower than the
6759 * available capacity for CFS tasks.
ea67821b
VG
6760 * For the latter, we use a threshold to stabilize the state, to take into
6761 * account the variance of the tasks' load and to return true if the available
6762 * capacity in meaningful for the load balancer.
6763 * As an example, an available capacity of 1% can appear but it doesn't make
6764 * any benefit for the load balance.
b37d9316 6765 */
ea67821b
VG
6766static inline bool
6767group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6768{
ea67821b
VG
6769 if (sgs->sum_nr_running < sgs->group_weight)
6770 return true;
c61037e9 6771
ea67821b 6772 if ((sgs->group_capacity * 100) >
9e91d61d 6773 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6774 return true;
b37d9316 6775
ea67821b
VG
6776 return false;
6777}
6778
6779/*
6780 * group_is_overloaded returns true if the group has more tasks than it can
6781 * handle.
6782 * group_is_overloaded is not equals to !group_has_capacity because a group
6783 * with the exact right number of tasks, has no more spare capacity but is not
6784 * overloaded so both group_has_capacity and group_is_overloaded return
6785 * false.
6786 */
6787static inline bool
6788group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6789{
6790 if (sgs->sum_nr_running <= sgs->group_weight)
6791 return false;
b37d9316 6792
ea67821b 6793 if ((sgs->group_capacity * 100) <
9e91d61d 6794 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6795 return true;
b37d9316 6796
ea67821b 6797 return false;
b37d9316
PZ
6798}
6799
79a89f92
LY
6800static inline enum
6801group_type group_classify(struct sched_group *group,
6802 struct sg_lb_stats *sgs)
caeb178c 6803{
ea67821b 6804 if (sgs->group_no_capacity)
caeb178c
RR
6805 return group_overloaded;
6806
6807 if (sg_imbalanced(group))
6808 return group_imbalanced;
6809
6810 return group_other;
6811}
6812
1e3c88bd
PZ
6813/**
6814 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6815 * @env: The load balancing environment.
1e3c88bd 6816 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6817 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6818 * @local_group: Does group contain this_cpu.
1e3c88bd 6819 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6820 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6821 */
bd939f45
PZ
6822static inline void update_sg_lb_stats(struct lb_env *env,
6823 struct sched_group *group, int load_idx,
4486edd1
TC
6824 int local_group, struct sg_lb_stats *sgs,
6825 bool *overload)
1e3c88bd 6826{
30ce5dab 6827 unsigned long load;
a426f99c 6828 int i, nr_running;
1e3c88bd 6829
b72ff13c
PZ
6830 memset(sgs, 0, sizeof(*sgs));
6831
b9403130 6832 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6833 struct rq *rq = cpu_rq(i);
6834
1e3c88bd 6835 /* Bias balancing toward cpus of our domain */
6263322c 6836 if (local_group)
04f733b4 6837 load = target_load(i, load_idx);
6263322c 6838 else
1e3c88bd 6839 load = source_load(i, load_idx);
1e3c88bd
PZ
6840
6841 sgs->group_load += load;
9e91d61d 6842 sgs->group_util += cpu_util(i);
65fdac08 6843 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6844
a426f99c
WL
6845 nr_running = rq->nr_running;
6846 if (nr_running > 1)
4486edd1
TC
6847 *overload = true;
6848
0ec8aa00
PZ
6849#ifdef CONFIG_NUMA_BALANCING
6850 sgs->nr_numa_running += rq->nr_numa_running;
6851 sgs->nr_preferred_running += rq->nr_preferred_running;
6852#endif
1e3c88bd 6853 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6854 /*
6855 * No need to call idle_cpu() if nr_running is not 0
6856 */
6857 if (!nr_running && idle_cpu(i))
aae6d3dd 6858 sgs->idle_cpus++;
1e3c88bd
PZ
6859 }
6860
63b2ca30
NP
6861 /* Adjust by relative CPU capacity of the group */
6862 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6863 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6864
dd5feea1 6865 if (sgs->sum_nr_running)
38d0f770 6866 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6867
aae6d3dd 6868 sgs->group_weight = group->group_weight;
b37d9316 6869
ea67821b 6870 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6871 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6872}
6873
532cb4c4
MN
6874/**
6875 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6876 * @env: The load balancing environment.
532cb4c4
MN
6877 * @sds: sched_domain statistics
6878 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6879 * @sgs: sched_group statistics
532cb4c4
MN
6880 *
6881 * Determine if @sg is a busier group than the previously selected
6882 * busiest group.
e69f6186
YB
6883 *
6884 * Return: %true if @sg is a busier group than the previously selected
6885 * busiest group. %false otherwise.
532cb4c4 6886 */
bd939f45 6887static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6888 struct sd_lb_stats *sds,
6889 struct sched_group *sg,
bd939f45 6890 struct sg_lb_stats *sgs)
532cb4c4 6891{
caeb178c 6892 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6893
caeb178c 6894 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6895 return true;
6896
caeb178c
RR
6897 if (sgs->group_type < busiest->group_type)
6898 return false;
6899
6900 if (sgs->avg_load <= busiest->avg_load)
6901 return false;
6902
6903 /* This is the busiest node in its class. */
6904 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6905 return true;
6906
1f621e02
SD
6907 /* No ASYM_PACKING if target cpu is already busy */
6908 if (env->idle == CPU_NOT_IDLE)
6909 return true;
532cb4c4
MN
6910 /*
6911 * ASYM_PACKING needs to move all the work to the lowest
6912 * numbered CPUs in the group, therefore mark all groups
6913 * higher than ourself as busy.
6914 */
caeb178c 6915 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6916 if (!sds->busiest)
6917 return true;
6918
1f621e02
SD
6919 /* Prefer to move from highest possible cpu's work */
6920 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6921 return true;
6922 }
6923
6924 return false;
6925}
6926
0ec8aa00
PZ
6927#ifdef CONFIG_NUMA_BALANCING
6928static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6929{
6930 if (sgs->sum_nr_running > sgs->nr_numa_running)
6931 return regular;
6932 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6933 return remote;
6934 return all;
6935}
6936
6937static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6938{
6939 if (rq->nr_running > rq->nr_numa_running)
6940 return regular;
6941 if (rq->nr_running > rq->nr_preferred_running)
6942 return remote;
6943 return all;
6944}
6945#else
6946static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6947{
6948 return all;
6949}
6950
6951static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6952{
6953 return regular;
6954}
6955#endif /* CONFIG_NUMA_BALANCING */
6956
1e3c88bd 6957/**
461819ac 6958 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6959 * @env: The load balancing environment.
1e3c88bd
PZ
6960 * @sds: variable to hold the statistics for this sched_domain.
6961 */
0ec8aa00 6962static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6963{
bd939f45
PZ
6964 struct sched_domain *child = env->sd->child;
6965 struct sched_group *sg = env->sd->groups;
56cf515b 6966 struct sg_lb_stats tmp_sgs;
1e3c88bd 6967 int load_idx, prefer_sibling = 0;
4486edd1 6968 bool overload = false;
1e3c88bd
PZ
6969
6970 if (child && child->flags & SD_PREFER_SIBLING)
6971 prefer_sibling = 1;
6972
bd939f45 6973 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6974
6975 do {
56cf515b 6976 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6977 int local_group;
6978
bd939f45 6979 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6980 if (local_group) {
6981 sds->local = sg;
6982 sgs = &sds->local_stat;
b72ff13c
PZ
6983
6984 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6985 time_after_eq(jiffies, sg->sgc->next_update))
6986 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6987 }
1e3c88bd 6988
4486edd1
TC
6989 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6990 &overload);
1e3c88bd 6991
b72ff13c
PZ
6992 if (local_group)
6993 goto next_group;
6994
1e3c88bd
PZ
6995 /*
6996 * In case the child domain prefers tasks go to siblings
ea67821b 6997 * first, lower the sg capacity so that we'll try
75dd321d
NR
6998 * and move all the excess tasks away. We lower the capacity
6999 * of a group only if the local group has the capacity to fit
ea67821b
VG
7000 * these excess tasks. The extra check prevents the case where
7001 * you always pull from the heaviest group when it is already
7002 * under-utilized (possible with a large weight task outweighs
7003 * the tasks on the system).
1e3c88bd 7004 */
b72ff13c 7005 if (prefer_sibling && sds->local &&
ea67821b
VG
7006 group_has_capacity(env, &sds->local_stat) &&
7007 (sgs->sum_nr_running > 1)) {
7008 sgs->group_no_capacity = 1;
79a89f92 7009 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7010 }
1e3c88bd 7011
b72ff13c 7012 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7013 sds->busiest = sg;
56cf515b 7014 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7015 }
7016
b72ff13c
PZ
7017next_group:
7018 /* Now, start updating sd_lb_stats */
7019 sds->total_load += sgs->group_load;
63b2ca30 7020 sds->total_capacity += sgs->group_capacity;
b72ff13c 7021
532cb4c4 7022 sg = sg->next;
bd939f45 7023 } while (sg != env->sd->groups);
0ec8aa00
PZ
7024
7025 if (env->sd->flags & SD_NUMA)
7026 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7027
7028 if (!env->sd->parent) {
7029 /* update overload indicator if we are at root domain */
7030 if (env->dst_rq->rd->overload != overload)
7031 env->dst_rq->rd->overload = overload;
7032 }
7033
532cb4c4
MN
7034}
7035
532cb4c4
MN
7036/**
7037 * check_asym_packing - Check to see if the group is packed into the
7038 * sched doman.
7039 *
7040 * This is primarily intended to used at the sibling level. Some
7041 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7042 * case of POWER7, it can move to lower SMT modes only when higher
7043 * threads are idle. When in lower SMT modes, the threads will
7044 * perform better since they share less core resources. Hence when we
7045 * have idle threads, we want them to be the higher ones.
7046 *
7047 * This packing function is run on idle threads. It checks to see if
7048 * the busiest CPU in this domain (core in the P7 case) has a higher
7049 * CPU number than the packing function is being run on. Here we are
7050 * assuming lower CPU number will be equivalent to lower a SMT thread
7051 * number.
7052 *
e69f6186 7053 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7054 * this CPU. The amount of the imbalance is returned in *imbalance.
7055 *
cd96891d 7056 * @env: The load balancing environment.
532cb4c4 7057 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7058 */
bd939f45 7059static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7060{
7061 int busiest_cpu;
7062
bd939f45 7063 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7064 return 0;
7065
1f621e02
SD
7066 if (env->idle == CPU_NOT_IDLE)
7067 return 0;
7068
532cb4c4
MN
7069 if (!sds->busiest)
7070 return 0;
7071
7072 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7073 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7074 return 0;
7075
bd939f45 7076 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7077 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7078 SCHED_CAPACITY_SCALE);
bd939f45 7079
532cb4c4 7080 return 1;
1e3c88bd
PZ
7081}
7082
7083/**
7084 * fix_small_imbalance - Calculate the minor imbalance that exists
7085 * amongst the groups of a sched_domain, during
7086 * load balancing.
cd96891d 7087 * @env: The load balancing environment.
1e3c88bd 7088 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7089 */
bd939f45
PZ
7090static inline
7091void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7092{
63b2ca30 7093 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7094 unsigned int imbn = 2;
dd5feea1 7095 unsigned long scaled_busy_load_per_task;
56cf515b 7096 struct sg_lb_stats *local, *busiest;
1e3c88bd 7097
56cf515b
JK
7098 local = &sds->local_stat;
7099 busiest = &sds->busiest_stat;
1e3c88bd 7100
56cf515b
JK
7101 if (!local->sum_nr_running)
7102 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7103 else if (busiest->load_per_task > local->load_per_task)
7104 imbn = 1;
dd5feea1 7105
56cf515b 7106 scaled_busy_load_per_task =
ca8ce3d0 7107 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7108 busiest->group_capacity;
56cf515b 7109
3029ede3
VD
7110 if (busiest->avg_load + scaled_busy_load_per_task >=
7111 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7112 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7113 return;
7114 }
7115
7116 /*
7117 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7118 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7119 * moving them.
7120 */
7121
63b2ca30 7122 capa_now += busiest->group_capacity *
56cf515b 7123 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7124 capa_now += local->group_capacity *
56cf515b 7125 min(local->load_per_task, local->avg_load);
ca8ce3d0 7126 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7127
7128 /* Amount of load we'd subtract */
a2cd4260 7129 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7130 capa_move += busiest->group_capacity *
56cf515b 7131 min(busiest->load_per_task,
a2cd4260 7132 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7133 }
1e3c88bd
PZ
7134
7135 /* Amount of load we'd add */
63b2ca30 7136 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7137 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7138 tmp = (busiest->avg_load * busiest->group_capacity) /
7139 local->group_capacity;
56cf515b 7140 } else {
ca8ce3d0 7141 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7142 local->group_capacity;
56cf515b 7143 }
63b2ca30 7144 capa_move += local->group_capacity *
3ae11c90 7145 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7146 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7147
7148 /* Move if we gain throughput */
63b2ca30 7149 if (capa_move > capa_now)
56cf515b 7150 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7151}
7152
7153/**
7154 * calculate_imbalance - Calculate the amount of imbalance present within the
7155 * groups of a given sched_domain during load balance.
bd939f45 7156 * @env: load balance environment
1e3c88bd 7157 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7158 */
bd939f45 7159static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7160{
dd5feea1 7161 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7162 struct sg_lb_stats *local, *busiest;
7163
7164 local = &sds->local_stat;
56cf515b 7165 busiest = &sds->busiest_stat;
dd5feea1 7166
caeb178c 7167 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7168 /*
7169 * In the group_imb case we cannot rely on group-wide averages
7170 * to ensure cpu-load equilibrium, look at wider averages. XXX
7171 */
56cf515b
JK
7172 busiest->load_per_task =
7173 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7174 }
7175
1e3c88bd 7176 /*
885e542c
DE
7177 * Avg load of busiest sg can be less and avg load of local sg can
7178 * be greater than avg load across all sgs of sd because avg load
7179 * factors in sg capacity and sgs with smaller group_type are
7180 * skipped when updating the busiest sg:
1e3c88bd 7181 */
b1885550
VD
7182 if (busiest->avg_load <= sds->avg_load ||
7183 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7184 env->imbalance = 0;
7185 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7186 }
7187
9a5d9ba6
PZ
7188 /*
7189 * If there aren't any idle cpus, avoid creating some.
7190 */
7191 if (busiest->group_type == group_overloaded &&
7192 local->group_type == group_overloaded) {
1be0eb2a 7193 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7194 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7195 load_above_capacity -= busiest->group_capacity;
26656215 7196 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7197 load_above_capacity /= busiest->group_capacity;
7198 } else
ea67821b 7199 load_above_capacity = ~0UL;
dd5feea1
SS
7200 }
7201
7202 /*
7203 * We're trying to get all the cpus to the average_load, so we don't
7204 * want to push ourselves above the average load, nor do we wish to
7205 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7206 * we also don't want to reduce the group load below the group
7207 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7208 */
30ce5dab 7209 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7210
7211 /* How much load to actually move to equalise the imbalance */
56cf515b 7212 env->imbalance = min(
63b2ca30
NP
7213 max_pull * busiest->group_capacity,
7214 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7215 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7216
7217 /*
7218 * if *imbalance is less than the average load per runnable task
25985edc 7219 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7220 * a think about bumping its value to force at least one task to be
7221 * moved
7222 */
56cf515b 7223 if (env->imbalance < busiest->load_per_task)
bd939f45 7224 return fix_small_imbalance(env, sds);
1e3c88bd 7225}
fab47622 7226
1e3c88bd
PZ
7227/******* find_busiest_group() helpers end here *********************/
7228
7229/**
7230 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7231 * if there is an imbalance.
1e3c88bd
PZ
7232 *
7233 * Also calculates the amount of weighted load which should be moved
7234 * to restore balance.
7235 *
cd96891d 7236 * @env: The load balancing environment.
1e3c88bd 7237 *
e69f6186 7238 * Return: - The busiest group if imbalance exists.
1e3c88bd 7239 */
56cf515b 7240static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7241{
56cf515b 7242 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7243 struct sd_lb_stats sds;
7244
147c5fc2 7245 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7246
7247 /*
7248 * Compute the various statistics relavent for load balancing at
7249 * this level.
7250 */
23f0d209 7251 update_sd_lb_stats(env, &sds);
56cf515b
JK
7252 local = &sds.local_stat;
7253 busiest = &sds.busiest_stat;
1e3c88bd 7254
ea67821b 7255 /* ASYM feature bypasses nice load balance check */
1f621e02 7256 if (check_asym_packing(env, &sds))
532cb4c4
MN
7257 return sds.busiest;
7258
cc57aa8f 7259 /* There is no busy sibling group to pull tasks from */
56cf515b 7260 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7261 goto out_balanced;
7262
ca8ce3d0
NP
7263 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7264 / sds.total_capacity;
b0432d8f 7265
866ab43e
PZ
7266 /*
7267 * If the busiest group is imbalanced the below checks don't
30ce5dab 7268 * work because they assume all things are equal, which typically
866ab43e
PZ
7269 * isn't true due to cpus_allowed constraints and the like.
7270 */
caeb178c 7271 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7272 goto force_balance;
7273
cc57aa8f 7274 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7275 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7276 busiest->group_no_capacity)
fab47622
NR
7277 goto force_balance;
7278
cc57aa8f 7279 /*
9c58c79a 7280 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7281 * don't try and pull any tasks.
7282 */
56cf515b 7283 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7284 goto out_balanced;
7285
cc57aa8f
PZ
7286 /*
7287 * Don't pull any tasks if this group is already above the domain
7288 * average load.
7289 */
56cf515b 7290 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7291 goto out_balanced;
7292
bd939f45 7293 if (env->idle == CPU_IDLE) {
aae6d3dd 7294 /*
43f4d666
VG
7295 * This cpu is idle. If the busiest group is not overloaded
7296 * and there is no imbalance between this and busiest group
7297 * wrt idle cpus, it is balanced. The imbalance becomes
7298 * significant if the diff is greater than 1 otherwise we
7299 * might end up to just move the imbalance on another group
aae6d3dd 7300 */
43f4d666
VG
7301 if ((busiest->group_type != group_overloaded) &&
7302 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7303 goto out_balanced;
c186fafe
PZ
7304 } else {
7305 /*
7306 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7307 * imbalance_pct to be conservative.
7308 */
56cf515b
JK
7309 if (100 * busiest->avg_load <=
7310 env->sd->imbalance_pct * local->avg_load)
c186fafe 7311 goto out_balanced;
aae6d3dd 7312 }
1e3c88bd 7313
fab47622 7314force_balance:
1e3c88bd 7315 /* Looks like there is an imbalance. Compute it */
bd939f45 7316 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7317 return sds.busiest;
7318
7319out_balanced:
bd939f45 7320 env->imbalance = 0;
1e3c88bd
PZ
7321 return NULL;
7322}
7323
7324/*
7325 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7326 */
bd939f45 7327static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7328 struct sched_group *group)
1e3c88bd
PZ
7329{
7330 struct rq *busiest = NULL, *rq;
ced549fa 7331 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7332 int i;
7333
6906a408 7334 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7335 unsigned long capacity, wl;
0ec8aa00
PZ
7336 enum fbq_type rt;
7337
7338 rq = cpu_rq(i);
7339 rt = fbq_classify_rq(rq);
1e3c88bd 7340
0ec8aa00
PZ
7341 /*
7342 * We classify groups/runqueues into three groups:
7343 * - regular: there are !numa tasks
7344 * - remote: there are numa tasks that run on the 'wrong' node
7345 * - all: there is no distinction
7346 *
7347 * In order to avoid migrating ideally placed numa tasks,
7348 * ignore those when there's better options.
7349 *
7350 * If we ignore the actual busiest queue to migrate another
7351 * task, the next balance pass can still reduce the busiest
7352 * queue by moving tasks around inside the node.
7353 *
7354 * If we cannot move enough load due to this classification
7355 * the next pass will adjust the group classification and
7356 * allow migration of more tasks.
7357 *
7358 * Both cases only affect the total convergence complexity.
7359 */
7360 if (rt > env->fbq_type)
7361 continue;
7362
ced549fa 7363 capacity = capacity_of(i);
9d5efe05 7364
6e40f5bb 7365 wl = weighted_cpuload(i);
1e3c88bd 7366
6e40f5bb
TG
7367 /*
7368 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7369 * which is not scaled with the cpu capacity.
6e40f5bb 7370 */
ea67821b
VG
7371
7372 if (rq->nr_running == 1 && wl > env->imbalance &&
7373 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7374 continue;
7375
6e40f5bb
TG
7376 /*
7377 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7378 * the weighted_cpuload() scaled with the cpu capacity, so
7379 * that the load can be moved away from the cpu that is
7380 * potentially running at a lower capacity.
95a79b80 7381 *
ced549fa 7382 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7383 * multiplication to rid ourselves of the division works out
ced549fa
NP
7384 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7385 * our previous maximum.
6e40f5bb 7386 */
ced549fa 7387 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7388 busiest_load = wl;
ced549fa 7389 busiest_capacity = capacity;
1e3c88bd
PZ
7390 busiest = rq;
7391 }
7392 }
7393
7394 return busiest;
7395}
7396
7397/*
7398 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7399 * so long as it is large enough.
7400 */
7401#define MAX_PINNED_INTERVAL 512
7402
7403/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7404DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7405
bd939f45 7406static int need_active_balance(struct lb_env *env)
1af3ed3d 7407{
bd939f45
PZ
7408 struct sched_domain *sd = env->sd;
7409
7410 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7411
7412 /*
7413 * ASYM_PACKING needs to force migrate tasks from busy but
7414 * higher numbered CPUs in order to pack all tasks in the
7415 * lowest numbered CPUs.
7416 */
bd939f45 7417 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7418 return 1;
1af3ed3d
PZ
7419 }
7420
1aaf90a4
VG
7421 /*
7422 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7423 * It's worth migrating the task if the src_cpu's capacity is reduced
7424 * because of other sched_class or IRQs if more capacity stays
7425 * available on dst_cpu.
7426 */
7427 if ((env->idle != CPU_NOT_IDLE) &&
7428 (env->src_rq->cfs.h_nr_running == 1)) {
7429 if ((check_cpu_capacity(env->src_rq, sd)) &&
7430 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7431 return 1;
7432 }
7433
1af3ed3d
PZ
7434 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7435}
7436
969c7921
TH
7437static int active_load_balance_cpu_stop(void *data);
7438
23f0d209
JK
7439static int should_we_balance(struct lb_env *env)
7440{
7441 struct sched_group *sg = env->sd->groups;
7442 struct cpumask *sg_cpus, *sg_mask;
7443 int cpu, balance_cpu = -1;
7444
7445 /*
7446 * In the newly idle case, we will allow all the cpu's
7447 * to do the newly idle load balance.
7448 */
7449 if (env->idle == CPU_NEWLY_IDLE)
7450 return 1;
7451
7452 sg_cpus = sched_group_cpus(sg);
7453 sg_mask = sched_group_mask(sg);
7454 /* Try to find first idle cpu */
7455 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7456 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7457 continue;
7458
7459 balance_cpu = cpu;
7460 break;
7461 }
7462
7463 if (balance_cpu == -1)
7464 balance_cpu = group_balance_cpu(sg);
7465
7466 /*
7467 * First idle cpu or the first cpu(busiest) in this sched group
7468 * is eligible for doing load balancing at this and above domains.
7469 */
b0cff9d8 7470 return balance_cpu == env->dst_cpu;
23f0d209
JK
7471}
7472
1e3c88bd
PZ
7473/*
7474 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7475 * tasks if there is an imbalance.
7476 */
7477static int load_balance(int this_cpu, struct rq *this_rq,
7478 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7479 int *continue_balancing)
1e3c88bd 7480{
88b8dac0 7481 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7482 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7483 struct sched_group *group;
1e3c88bd
PZ
7484 struct rq *busiest;
7485 unsigned long flags;
4ba29684 7486 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7487
8e45cb54
PZ
7488 struct lb_env env = {
7489 .sd = sd,
ddcdf6e7
PZ
7490 .dst_cpu = this_cpu,
7491 .dst_rq = this_rq,
88b8dac0 7492 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7493 .idle = idle,
eb95308e 7494 .loop_break = sched_nr_migrate_break,
b9403130 7495 .cpus = cpus,
0ec8aa00 7496 .fbq_type = all,
163122b7 7497 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7498 };
7499
cfc03118
JK
7500 /*
7501 * For NEWLY_IDLE load_balancing, we don't need to consider
7502 * other cpus in our group
7503 */
e02e60c1 7504 if (idle == CPU_NEWLY_IDLE)
cfc03118 7505 env.dst_grpmask = NULL;
cfc03118 7506
1e3c88bd
PZ
7507 cpumask_copy(cpus, cpu_active_mask);
7508
1e3c88bd
PZ
7509 schedstat_inc(sd, lb_count[idle]);
7510
7511redo:
23f0d209
JK
7512 if (!should_we_balance(&env)) {
7513 *continue_balancing = 0;
1e3c88bd 7514 goto out_balanced;
23f0d209 7515 }
1e3c88bd 7516
23f0d209 7517 group = find_busiest_group(&env);
1e3c88bd
PZ
7518 if (!group) {
7519 schedstat_inc(sd, lb_nobusyg[idle]);
7520 goto out_balanced;
7521 }
7522
b9403130 7523 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7524 if (!busiest) {
7525 schedstat_inc(sd, lb_nobusyq[idle]);
7526 goto out_balanced;
7527 }
7528
78feefc5 7529 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7530
bd939f45 7531 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7532
1aaf90a4
VG
7533 env.src_cpu = busiest->cpu;
7534 env.src_rq = busiest;
7535
1e3c88bd
PZ
7536 ld_moved = 0;
7537 if (busiest->nr_running > 1) {
7538 /*
7539 * Attempt to move tasks. If find_busiest_group has found
7540 * an imbalance but busiest->nr_running <= 1, the group is
7541 * still unbalanced. ld_moved simply stays zero, so it is
7542 * correctly treated as an imbalance.
7543 */
8e45cb54 7544 env.flags |= LBF_ALL_PINNED;
c82513e5 7545 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7546
5d6523eb 7547more_balance:
163122b7 7548 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7549
7550 /*
7551 * cur_ld_moved - load moved in current iteration
7552 * ld_moved - cumulative load moved across iterations
7553 */
163122b7 7554 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7555
7556 /*
163122b7
KT
7557 * We've detached some tasks from busiest_rq. Every
7558 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7559 * unlock busiest->lock, and we are able to be sure
7560 * that nobody can manipulate the tasks in parallel.
7561 * See task_rq_lock() family for the details.
1e3c88bd 7562 */
163122b7
KT
7563
7564 raw_spin_unlock(&busiest->lock);
7565
7566 if (cur_ld_moved) {
7567 attach_tasks(&env);
7568 ld_moved += cur_ld_moved;
7569 }
7570
1e3c88bd 7571 local_irq_restore(flags);
88b8dac0 7572
f1cd0858
JK
7573 if (env.flags & LBF_NEED_BREAK) {
7574 env.flags &= ~LBF_NEED_BREAK;
7575 goto more_balance;
7576 }
7577
88b8dac0
SV
7578 /*
7579 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7580 * us and move them to an alternate dst_cpu in our sched_group
7581 * where they can run. The upper limit on how many times we
7582 * iterate on same src_cpu is dependent on number of cpus in our
7583 * sched_group.
7584 *
7585 * This changes load balance semantics a bit on who can move
7586 * load to a given_cpu. In addition to the given_cpu itself
7587 * (or a ilb_cpu acting on its behalf where given_cpu is
7588 * nohz-idle), we now have balance_cpu in a position to move
7589 * load to given_cpu. In rare situations, this may cause
7590 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7591 * _independently_ and at _same_ time to move some load to
7592 * given_cpu) causing exceess load to be moved to given_cpu.
7593 * This however should not happen so much in practice and
7594 * moreover subsequent load balance cycles should correct the
7595 * excess load moved.
7596 */
6263322c 7597 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7598
7aff2e3a
VD
7599 /* Prevent to re-select dst_cpu via env's cpus */
7600 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7601
78feefc5 7602 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7603 env.dst_cpu = env.new_dst_cpu;
6263322c 7604 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7605 env.loop = 0;
7606 env.loop_break = sched_nr_migrate_break;
e02e60c1 7607
88b8dac0
SV
7608 /*
7609 * Go back to "more_balance" rather than "redo" since we
7610 * need to continue with same src_cpu.
7611 */
7612 goto more_balance;
7613 }
1e3c88bd 7614
6263322c
PZ
7615 /*
7616 * We failed to reach balance because of affinity.
7617 */
7618 if (sd_parent) {
63b2ca30 7619 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7620
afdeee05 7621 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7622 *group_imbalance = 1;
6263322c
PZ
7623 }
7624
1e3c88bd 7625 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7626 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7627 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7628 if (!cpumask_empty(cpus)) {
7629 env.loop = 0;
7630 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7631 goto redo;
bbf18b19 7632 }
afdeee05 7633 goto out_all_pinned;
1e3c88bd
PZ
7634 }
7635 }
7636
7637 if (!ld_moved) {
7638 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7639 /*
7640 * Increment the failure counter only on periodic balance.
7641 * We do not want newidle balance, which can be very
7642 * frequent, pollute the failure counter causing
7643 * excessive cache_hot migrations and active balances.
7644 */
7645 if (idle != CPU_NEWLY_IDLE)
7646 sd->nr_balance_failed++;
1e3c88bd 7647
bd939f45 7648 if (need_active_balance(&env)) {
1e3c88bd
PZ
7649 raw_spin_lock_irqsave(&busiest->lock, flags);
7650
969c7921
TH
7651 /* don't kick the active_load_balance_cpu_stop,
7652 * if the curr task on busiest cpu can't be
7653 * moved to this_cpu
1e3c88bd
PZ
7654 */
7655 if (!cpumask_test_cpu(this_cpu,
fa17b507 7656 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7657 raw_spin_unlock_irqrestore(&busiest->lock,
7658 flags);
8e45cb54 7659 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7660 goto out_one_pinned;
7661 }
7662
969c7921
TH
7663 /*
7664 * ->active_balance synchronizes accesses to
7665 * ->active_balance_work. Once set, it's cleared
7666 * only after active load balance is finished.
7667 */
1e3c88bd
PZ
7668 if (!busiest->active_balance) {
7669 busiest->active_balance = 1;
7670 busiest->push_cpu = this_cpu;
7671 active_balance = 1;
7672 }
7673 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7674
bd939f45 7675 if (active_balance) {
969c7921
TH
7676 stop_one_cpu_nowait(cpu_of(busiest),
7677 active_load_balance_cpu_stop, busiest,
7678 &busiest->active_balance_work);
bd939f45 7679 }
1e3c88bd 7680
d02c0711 7681 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7682 sd->nr_balance_failed = sd->cache_nice_tries+1;
7683 }
7684 } else
7685 sd->nr_balance_failed = 0;
7686
7687 if (likely(!active_balance)) {
7688 /* We were unbalanced, so reset the balancing interval */
7689 sd->balance_interval = sd->min_interval;
7690 } else {
7691 /*
7692 * If we've begun active balancing, start to back off. This
7693 * case may not be covered by the all_pinned logic if there
7694 * is only 1 task on the busy runqueue (because we don't call
163122b7 7695 * detach_tasks).
1e3c88bd
PZ
7696 */
7697 if (sd->balance_interval < sd->max_interval)
7698 sd->balance_interval *= 2;
7699 }
7700
1e3c88bd
PZ
7701 goto out;
7702
7703out_balanced:
afdeee05
VG
7704 /*
7705 * We reach balance although we may have faced some affinity
7706 * constraints. Clear the imbalance flag if it was set.
7707 */
7708 if (sd_parent) {
7709 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7710
7711 if (*group_imbalance)
7712 *group_imbalance = 0;
7713 }
7714
7715out_all_pinned:
7716 /*
7717 * We reach balance because all tasks are pinned at this level so
7718 * we can't migrate them. Let the imbalance flag set so parent level
7719 * can try to migrate them.
7720 */
1e3c88bd
PZ
7721 schedstat_inc(sd, lb_balanced[idle]);
7722
7723 sd->nr_balance_failed = 0;
7724
7725out_one_pinned:
7726 /* tune up the balancing interval */
8e45cb54 7727 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7728 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7729 (sd->balance_interval < sd->max_interval))
7730 sd->balance_interval *= 2;
7731
46e49b38 7732 ld_moved = 0;
1e3c88bd 7733out:
1e3c88bd
PZ
7734 return ld_moved;
7735}
7736
52a08ef1
JL
7737static inline unsigned long
7738get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7739{
7740 unsigned long interval = sd->balance_interval;
7741
7742 if (cpu_busy)
7743 interval *= sd->busy_factor;
7744
7745 /* scale ms to jiffies */
7746 interval = msecs_to_jiffies(interval);
7747 interval = clamp(interval, 1UL, max_load_balance_interval);
7748
7749 return interval;
7750}
7751
7752static inline void
31851a98 7753update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7754{
7755 unsigned long interval, next;
7756
31851a98
LY
7757 /* used by idle balance, so cpu_busy = 0 */
7758 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7759 next = sd->last_balance + interval;
7760
7761 if (time_after(*next_balance, next))
7762 *next_balance = next;
7763}
7764
1e3c88bd
PZ
7765/*
7766 * idle_balance is called by schedule() if this_cpu is about to become
7767 * idle. Attempts to pull tasks from other CPUs.
7768 */
6e83125c 7769static int idle_balance(struct rq *this_rq)
1e3c88bd 7770{
52a08ef1
JL
7771 unsigned long next_balance = jiffies + HZ;
7772 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7773 struct sched_domain *sd;
7774 int pulled_task = 0;
9bd721c5 7775 u64 curr_cost = 0;
1e3c88bd 7776
6e83125c
PZ
7777 /*
7778 * We must set idle_stamp _before_ calling idle_balance(), such that we
7779 * measure the duration of idle_balance() as idle time.
7780 */
7781 this_rq->idle_stamp = rq_clock(this_rq);
7782
4486edd1
TC
7783 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7784 !this_rq->rd->overload) {
52a08ef1
JL
7785 rcu_read_lock();
7786 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7787 if (sd)
31851a98 7788 update_next_balance(sd, &next_balance);
52a08ef1
JL
7789 rcu_read_unlock();
7790
6e83125c 7791 goto out;
52a08ef1 7792 }
1e3c88bd 7793
f492e12e
PZ
7794 raw_spin_unlock(&this_rq->lock);
7795
48a16753 7796 update_blocked_averages(this_cpu);
dce840a0 7797 rcu_read_lock();
1e3c88bd 7798 for_each_domain(this_cpu, sd) {
23f0d209 7799 int continue_balancing = 1;
9bd721c5 7800 u64 t0, domain_cost;
1e3c88bd
PZ
7801
7802 if (!(sd->flags & SD_LOAD_BALANCE))
7803 continue;
7804
52a08ef1 7805 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7806 update_next_balance(sd, &next_balance);
9bd721c5 7807 break;
52a08ef1 7808 }
9bd721c5 7809
f492e12e 7810 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7811 t0 = sched_clock_cpu(this_cpu);
7812
f492e12e 7813 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7814 sd, CPU_NEWLY_IDLE,
7815 &continue_balancing);
9bd721c5
JL
7816
7817 domain_cost = sched_clock_cpu(this_cpu) - t0;
7818 if (domain_cost > sd->max_newidle_lb_cost)
7819 sd->max_newidle_lb_cost = domain_cost;
7820
7821 curr_cost += domain_cost;
f492e12e 7822 }
1e3c88bd 7823
31851a98 7824 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7825
7826 /*
7827 * Stop searching for tasks to pull if there are
7828 * now runnable tasks on this rq.
7829 */
7830 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7831 break;
1e3c88bd 7832 }
dce840a0 7833 rcu_read_unlock();
f492e12e
PZ
7834
7835 raw_spin_lock(&this_rq->lock);
7836
0e5b5337
JL
7837 if (curr_cost > this_rq->max_idle_balance_cost)
7838 this_rq->max_idle_balance_cost = curr_cost;
7839
e5fc6611 7840 /*
0e5b5337
JL
7841 * While browsing the domains, we released the rq lock, a task could
7842 * have been enqueued in the meantime. Since we're not going idle,
7843 * pretend we pulled a task.
e5fc6611 7844 */
0e5b5337 7845 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7846 pulled_task = 1;
e5fc6611 7847
52a08ef1
JL
7848out:
7849 /* Move the next balance forward */
7850 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7851 this_rq->next_balance = next_balance;
9bd721c5 7852
e4aa358b 7853 /* Is there a task of a high priority class? */
46383648 7854 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7855 pulled_task = -1;
7856
38c6ade2 7857 if (pulled_task)
6e83125c
PZ
7858 this_rq->idle_stamp = 0;
7859
3c4017c1 7860 return pulled_task;
1e3c88bd
PZ
7861}
7862
7863/*
969c7921
TH
7864 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7865 * running tasks off the busiest CPU onto idle CPUs. It requires at
7866 * least 1 task to be running on each physical CPU where possible, and
7867 * avoids physical / logical imbalances.
1e3c88bd 7868 */
969c7921 7869static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7870{
969c7921
TH
7871 struct rq *busiest_rq = data;
7872 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7873 int target_cpu = busiest_rq->push_cpu;
969c7921 7874 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7875 struct sched_domain *sd;
e5673f28 7876 struct task_struct *p = NULL;
969c7921
TH
7877
7878 raw_spin_lock_irq(&busiest_rq->lock);
7879
7880 /* make sure the requested cpu hasn't gone down in the meantime */
7881 if (unlikely(busiest_cpu != smp_processor_id() ||
7882 !busiest_rq->active_balance))
7883 goto out_unlock;
1e3c88bd
PZ
7884
7885 /* Is there any task to move? */
7886 if (busiest_rq->nr_running <= 1)
969c7921 7887 goto out_unlock;
1e3c88bd
PZ
7888
7889 /*
7890 * This condition is "impossible", if it occurs
7891 * we need to fix it. Originally reported by
7892 * Bjorn Helgaas on a 128-cpu setup.
7893 */
7894 BUG_ON(busiest_rq == target_rq);
7895
1e3c88bd 7896 /* Search for an sd spanning us and the target CPU. */
dce840a0 7897 rcu_read_lock();
1e3c88bd
PZ
7898 for_each_domain(target_cpu, sd) {
7899 if ((sd->flags & SD_LOAD_BALANCE) &&
7900 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7901 break;
7902 }
7903
7904 if (likely(sd)) {
8e45cb54
PZ
7905 struct lb_env env = {
7906 .sd = sd,
ddcdf6e7
PZ
7907 .dst_cpu = target_cpu,
7908 .dst_rq = target_rq,
7909 .src_cpu = busiest_rq->cpu,
7910 .src_rq = busiest_rq,
8e45cb54
PZ
7911 .idle = CPU_IDLE,
7912 };
7913
1e3c88bd
PZ
7914 schedstat_inc(sd, alb_count);
7915
e5673f28 7916 p = detach_one_task(&env);
d02c0711 7917 if (p) {
1e3c88bd 7918 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7919 /* Active balancing done, reset the failure counter. */
7920 sd->nr_balance_failed = 0;
7921 } else {
1e3c88bd 7922 schedstat_inc(sd, alb_failed);
d02c0711 7923 }
1e3c88bd 7924 }
dce840a0 7925 rcu_read_unlock();
969c7921
TH
7926out_unlock:
7927 busiest_rq->active_balance = 0;
e5673f28
KT
7928 raw_spin_unlock(&busiest_rq->lock);
7929
7930 if (p)
7931 attach_one_task(target_rq, p);
7932
7933 local_irq_enable();
7934
969c7921 7935 return 0;
1e3c88bd
PZ
7936}
7937
d987fc7f
MG
7938static inline int on_null_domain(struct rq *rq)
7939{
7940 return unlikely(!rcu_dereference_sched(rq->sd));
7941}
7942
3451d024 7943#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7944/*
7945 * idle load balancing details
83cd4fe2
VP
7946 * - When one of the busy CPUs notice that there may be an idle rebalancing
7947 * needed, they will kick the idle load balancer, which then does idle
7948 * load balancing for all the idle CPUs.
7949 */
1e3c88bd 7950static struct {
83cd4fe2 7951 cpumask_var_t idle_cpus_mask;
0b005cf5 7952 atomic_t nr_cpus;
83cd4fe2
VP
7953 unsigned long next_balance; /* in jiffy units */
7954} nohz ____cacheline_aligned;
1e3c88bd 7955
3dd0337d 7956static inline int find_new_ilb(void)
1e3c88bd 7957{
0b005cf5 7958 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7959
786d6dc7
SS
7960 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7961 return ilb;
7962
7963 return nr_cpu_ids;
1e3c88bd 7964}
1e3c88bd 7965
83cd4fe2
VP
7966/*
7967 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7968 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7969 * CPU (if there is one).
7970 */
0aeeeeba 7971static void nohz_balancer_kick(void)
83cd4fe2
VP
7972{
7973 int ilb_cpu;
7974
7975 nohz.next_balance++;
7976
3dd0337d 7977 ilb_cpu = find_new_ilb();
83cd4fe2 7978
0b005cf5
SS
7979 if (ilb_cpu >= nr_cpu_ids)
7980 return;
83cd4fe2 7981
cd490c5b 7982 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7983 return;
7984 /*
7985 * Use smp_send_reschedule() instead of resched_cpu().
7986 * This way we generate a sched IPI on the target cpu which
7987 * is idle. And the softirq performing nohz idle load balance
7988 * will be run before returning from the IPI.
7989 */
7990 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7991 return;
7992}
7993
20a5c8cc 7994void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7995{
7996 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7997 /*
7998 * Completely isolated CPUs don't ever set, so we must test.
7999 */
8000 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8001 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8002 atomic_dec(&nohz.nr_cpus);
8003 }
71325960
SS
8004 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8005 }
8006}
8007
69e1e811
SS
8008static inline void set_cpu_sd_state_busy(void)
8009{
8010 struct sched_domain *sd;
37dc6b50 8011 int cpu = smp_processor_id();
69e1e811 8012
69e1e811 8013 rcu_read_lock();
37dc6b50 8014 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8015
8016 if (!sd || !sd->nohz_idle)
8017 goto unlock;
8018 sd->nohz_idle = 0;
8019
63b2ca30 8020 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8021unlock:
69e1e811
SS
8022 rcu_read_unlock();
8023}
8024
8025void set_cpu_sd_state_idle(void)
8026{
8027 struct sched_domain *sd;
37dc6b50 8028 int cpu = smp_processor_id();
69e1e811 8029
69e1e811 8030 rcu_read_lock();
37dc6b50 8031 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8032
8033 if (!sd || sd->nohz_idle)
8034 goto unlock;
8035 sd->nohz_idle = 1;
8036
63b2ca30 8037 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8038unlock:
69e1e811
SS
8039 rcu_read_unlock();
8040}
8041
1e3c88bd 8042/*
c1cc017c 8043 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8044 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8045 */
c1cc017c 8046void nohz_balance_enter_idle(int cpu)
1e3c88bd 8047{
71325960
SS
8048 /*
8049 * If this cpu is going down, then nothing needs to be done.
8050 */
8051 if (!cpu_active(cpu))
8052 return;
8053
c1cc017c
AS
8054 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8055 return;
1e3c88bd 8056
d987fc7f
MG
8057 /*
8058 * If we're a completely isolated CPU, we don't play.
8059 */
8060 if (on_null_domain(cpu_rq(cpu)))
8061 return;
8062
c1cc017c
AS
8063 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8064 atomic_inc(&nohz.nr_cpus);
8065 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8066}
8067#endif
8068
8069static DEFINE_SPINLOCK(balancing);
8070
49c022e6
PZ
8071/*
8072 * Scale the max load_balance interval with the number of CPUs in the system.
8073 * This trades load-balance latency on larger machines for less cross talk.
8074 */
029632fb 8075void update_max_interval(void)
49c022e6
PZ
8076{
8077 max_load_balance_interval = HZ*num_online_cpus()/10;
8078}
8079
1e3c88bd
PZ
8080/*
8081 * It checks each scheduling domain to see if it is due to be balanced,
8082 * and initiates a balancing operation if so.
8083 *
b9b0853a 8084 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8085 */
f7ed0a89 8086static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8087{
23f0d209 8088 int continue_balancing = 1;
f7ed0a89 8089 int cpu = rq->cpu;
1e3c88bd 8090 unsigned long interval;
04f733b4 8091 struct sched_domain *sd;
1e3c88bd
PZ
8092 /* Earliest time when we have to do rebalance again */
8093 unsigned long next_balance = jiffies + 60*HZ;
8094 int update_next_balance = 0;
f48627e6
JL
8095 int need_serialize, need_decay = 0;
8096 u64 max_cost = 0;
1e3c88bd 8097
48a16753 8098 update_blocked_averages(cpu);
2069dd75 8099
dce840a0 8100 rcu_read_lock();
1e3c88bd 8101 for_each_domain(cpu, sd) {
f48627e6
JL
8102 /*
8103 * Decay the newidle max times here because this is a regular
8104 * visit to all the domains. Decay ~1% per second.
8105 */
8106 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8107 sd->max_newidle_lb_cost =
8108 (sd->max_newidle_lb_cost * 253) / 256;
8109 sd->next_decay_max_lb_cost = jiffies + HZ;
8110 need_decay = 1;
8111 }
8112 max_cost += sd->max_newidle_lb_cost;
8113
1e3c88bd
PZ
8114 if (!(sd->flags & SD_LOAD_BALANCE))
8115 continue;
8116
f48627e6
JL
8117 /*
8118 * Stop the load balance at this level. There is another
8119 * CPU in our sched group which is doing load balancing more
8120 * actively.
8121 */
8122 if (!continue_balancing) {
8123 if (need_decay)
8124 continue;
8125 break;
8126 }
8127
52a08ef1 8128 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8129
8130 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8131 if (need_serialize) {
8132 if (!spin_trylock(&balancing))
8133 goto out;
8134 }
8135
8136 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8137 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8138 /*
6263322c 8139 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8140 * env->dst_cpu, so we can't know our idle
8141 * state even if we migrated tasks. Update it.
1e3c88bd 8142 */
de5eb2dd 8143 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8144 }
8145 sd->last_balance = jiffies;
52a08ef1 8146 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8147 }
8148 if (need_serialize)
8149 spin_unlock(&balancing);
8150out:
8151 if (time_after(next_balance, sd->last_balance + interval)) {
8152 next_balance = sd->last_balance + interval;
8153 update_next_balance = 1;
8154 }
f48627e6
JL
8155 }
8156 if (need_decay) {
1e3c88bd 8157 /*
f48627e6
JL
8158 * Ensure the rq-wide value also decays but keep it at a
8159 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8160 */
f48627e6
JL
8161 rq->max_idle_balance_cost =
8162 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8163 }
dce840a0 8164 rcu_read_unlock();
1e3c88bd
PZ
8165
8166 /*
8167 * next_balance will be updated only when there is a need.
8168 * When the cpu is attached to null domain for ex, it will not be
8169 * updated.
8170 */
c5afb6a8 8171 if (likely(update_next_balance)) {
1e3c88bd 8172 rq->next_balance = next_balance;
c5afb6a8
VG
8173
8174#ifdef CONFIG_NO_HZ_COMMON
8175 /*
8176 * If this CPU has been elected to perform the nohz idle
8177 * balance. Other idle CPUs have already rebalanced with
8178 * nohz_idle_balance() and nohz.next_balance has been
8179 * updated accordingly. This CPU is now running the idle load
8180 * balance for itself and we need to update the
8181 * nohz.next_balance accordingly.
8182 */
8183 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8184 nohz.next_balance = rq->next_balance;
8185#endif
8186 }
1e3c88bd
PZ
8187}
8188
3451d024 8189#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8190/*
3451d024 8191 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8192 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8193 */
208cb16b 8194static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8195{
208cb16b 8196 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8197 struct rq *rq;
8198 int balance_cpu;
c5afb6a8
VG
8199 /* Earliest time when we have to do rebalance again */
8200 unsigned long next_balance = jiffies + 60*HZ;
8201 int update_next_balance = 0;
83cd4fe2 8202
1c792db7
SS
8203 if (idle != CPU_IDLE ||
8204 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8205 goto end;
83cd4fe2
VP
8206
8207 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8208 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8209 continue;
8210
8211 /*
8212 * If this cpu gets work to do, stop the load balancing
8213 * work being done for other cpus. Next load
8214 * balancing owner will pick it up.
8215 */
1c792db7 8216 if (need_resched())
83cd4fe2 8217 break;
83cd4fe2 8218
5ed4f1d9
VG
8219 rq = cpu_rq(balance_cpu);
8220
ed61bbc6
TC
8221 /*
8222 * If time for next balance is due,
8223 * do the balance.
8224 */
8225 if (time_after_eq(jiffies, rq->next_balance)) {
8226 raw_spin_lock_irq(&rq->lock);
8227 update_rq_clock(rq);
cee1afce 8228 cpu_load_update_idle(rq);
ed61bbc6
TC
8229 raw_spin_unlock_irq(&rq->lock);
8230 rebalance_domains(rq, CPU_IDLE);
8231 }
83cd4fe2 8232
c5afb6a8
VG
8233 if (time_after(next_balance, rq->next_balance)) {
8234 next_balance = rq->next_balance;
8235 update_next_balance = 1;
8236 }
83cd4fe2 8237 }
c5afb6a8
VG
8238
8239 /*
8240 * next_balance will be updated only when there is a need.
8241 * When the CPU is attached to null domain for ex, it will not be
8242 * updated.
8243 */
8244 if (likely(update_next_balance))
8245 nohz.next_balance = next_balance;
1c792db7
SS
8246end:
8247 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8248}
8249
8250/*
0b005cf5 8251 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8252 * of an idle cpu in the system.
0b005cf5 8253 * - This rq has more than one task.
1aaf90a4
VG
8254 * - This rq has at least one CFS task and the capacity of the CPU is
8255 * significantly reduced because of RT tasks or IRQs.
8256 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8257 * multiple busy cpu.
0b005cf5
SS
8258 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8259 * domain span are idle.
83cd4fe2 8260 */
1aaf90a4 8261static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8262{
8263 unsigned long now = jiffies;
0b005cf5 8264 struct sched_domain *sd;
63b2ca30 8265 struct sched_group_capacity *sgc;
4a725627 8266 int nr_busy, cpu = rq->cpu;
1aaf90a4 8267 bool kick = false;
83cd4fe2 8268
4a725627 8269 if (unlikely(rq->idle_balance))
1aaf90a4 8270 return false;
83cd4fe2 8271
1c792db7
SS
8272 /*
8273 * We may be recently in ticked or tickless idle mode. At the first
8274 * busy tick after returning from idle, we will update the busy stats.
8275 */
69e1e811 8276 set_cpu_sd_state_busy();
c1cc017c 8277 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8278
8279 /*
8280 * None are in tickless mode and hence no need for NOHZ idle load
8281 * balancing.
8282 */
8283 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8284 return false;
1c792db7
SS
8285
8286 if (time_before(now, nohz.next_balance))
1aaf90a4 8287 return false;
83cd4fe2 8288
0b005cf5 8289 if (rq->nr_running >= 2)
1aaf90a4 8290 return true;
83cd4fe2 8291
067491b7 8292 rcu_read_lock();
37dc6b50 8293 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8294 if (sd) {
63b2ca30
NP
8295 sgc = sd->groups->sgc;
8296 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8297
1aaf90a4
VG
8298 if (nr_busy > 1) {
8299 kick = true;
8300 goto unlock;
8301 }
8302
83cd4fe2 8303 }
37dc6b50 8304
1aaf90a4
VG
8305 sd = rcu_dereference(rq->sd);
8306 if (sd) {
8307 if ((rq->cfs.h_nr_running >= 1) &&
8308 check_cpu_capacity(rq, sd)) {
8309 kick = true;
8310 goto unlock;
8311 }
8312 }
37dc6b50 8313
1aaf90a4 8314 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8315 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8316 sched_domain_span(sd)) < cpu)) {
8317 kick = true;
8318 goto unlock;
8319 }
067491b7 8320
1aaf90a4 8321unlock:
067491b7 8322 rcu_read_unlock();
1aaf90a4 8323 return kick;
83cd4fe2
VP
8324}
8325#else
208cb16b 8326static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8327#endif
8328
8329/*
8330 * run_rebalance_domains is triggered when needed from the scheduler tick.
8331 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8332 */
1e3c88bd
PZ
8333static void run_rebalance_domains(struct softirq_action *h)
8334{
208cb16b 8335 struct rq *this_rq = this_rq();
6eb57e0d 8336 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8337 CPU_IDLE : CPU_NOT_IDLE;
8338
1e3c88bd 8339 /*
83cd4fe2 8340 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8341 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8342 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8343 * give the idle cpus a chance to load balance. Else we may
8344 * load balance only within the local sched_domain hierarchy
8345 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8346 */
208cb16b 8347 nohz_idle_balance(this_rq, idle);
d4573c3e 8348 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8349}
8350
1e3c88bd
PZ
8351/*
8352 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8353 */
7caff66f 8354void trigger_load_balance(struct rq *rq)
1e3c88bd 8355{
1e3c88bd 8356 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8357 if (unlikely(on_null_domain(rq)))
8358 return;
8359
8360 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8361 raise_softirq(SCHED_SOFTIRQ);
3451d024 8362#ifdef CONFIG_NO_HZ_COMMON
c726099e 8363 if (nohz_kick_needed(rq))
0aeeeeba 8364 nohz_balancer_kick();
83cd4fe2 8365#endif
1e3c88bd
PZ
8366}
8367
0bcdcf28
CE
8368static void rq_online_fair(struct rq *rq)
8369{
8370 update_sysctl();
0e59bdae
KT
8371
8372 update_runtime_enabled(rq);
0bcdcf28
CE
8373}
8374
8375static void rq_offline_fair(struct rq *rq)
8376{
8377 update_sysctl();
a4c96ae3
PB
8378
8379 /* Ensure any throttled groups are reachable by pick_next_task */
8380 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8381}
8382
55e12e5e 8383#endif /* CONFIG_SMP */
e1d1484f 8384
bf0f6f24
IM
8385/*
8386 * scheduler tick hitting a task of our scheduling class:
8387 */
8f4d37ec 8388static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8389{
8390 struct cfs_rq *cfs_rq;
8391 struct sched_entity *se = &curr->se;
8392
8393 for_each_sched_entity(se) {
8394 cfs_rq = cfs_rq_of(se);
8f4d37ec 8395 entity_tick(cfs_rq, se, queued);
bf0f6f24 8396 }
18bf2805 8397
b52da86e 8398 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8399 task_tick_numa(rq, curr);
bf0f6f24
IM
8400}
8401
8402/*
cd29fe6f
PZ
8403 * called on fork with the child task as argument from the parent's context
8404 * - child not yet on the tasklist
8405 * - preemption disabled
bf0f6f24 8406 */
cd29fe6f 8407static void task_fork_fair(struct task_struct *p)
bf0f6f24 8408{
4fc420c9
DN
8409 struct cfs_rq *cfs_rq;
8410 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8411 struct rq *rq = this_rq();
bf0f6f24 8412
e210bffd 8413 raw_spin_lock(&rq->lock);
861d034e
PZ
8414 update_rq_clock(rq);
8415
4fc420c9
DN
8416 cfs_rq = task_cfs_rq(current);
8417 curr = cfs_rq->curr;
e210bffd
PZ
8418 if (curr) {
8419 update_curr(cfs_rq);
b5d9d734 8420 se->vruntime = curr->vruntime;
e210bffd 8421 }
aeb73b04 8422 place_entity(cfs_rq, se, 1);
4d78e7b6 8423
cd29fe6f 8424 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8425 /*
edcb60a3
IM
8426 * Upon rescheduling, sched_class::put_prev_task() will place
8427 * 'current' within the tree based on its new key value.
8428 */
4d78e7b6 8429 swap(curr->vruntime, se->vruntime);
8875125e 8430 resched_curr(rq);
4d78e7b6 8431 }
bf0f6f24 8432
88ec22d3 8433 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8434 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8435}
8436
cb469845
SR
8437/*
8438 * Priority of the task has changed. Check to see if we preempt
8439 * the current task.
8440 */
da7a735e
PZ
8441static void
8442prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8443{
da0c1e65 8444 if (!task_on_rq_queued(p))
da7a735e
PZ
8445 return;
8446
cb469845
SR
8447 /*
8448 * Reschedule if we are currently running on this runqueue and
8449 * our priority decreased, or if we are not currently running on
8450 * this runqueue and our priority is higher than the current's
8451 */
da7a735e 8452 if (rq->curr == p) {
cb469845 8453 if (p->prio > oldprio)
8875125e 8454 resched_curr(rq);
cb469845 8455 } else
15afe09b 8456 check_preempt_curr(rq, p, 0);
cb469845
SR
8457}
8458
daa59407 8459static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8460{
8461 struct sched_entity *se = &p->se;
da7a735e
PZ
8462
8463 /*
daa59407
BP
8464 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8465 * the dequeue_entity(.flags=0) will already have normalized the
8466 * vruntime.
8467 */
8468 if (p->on_rq)
8469 return true;
8470
8471 /*
8472 * When !on_rq, vruntime of the task has usually NOT been normalized.
8473 * But there are some cases where it has already been normalized:
da7a735e 8474 *
daa59407
BP
8475 * - A forked child which is waiting for being woken up by
8476 * wake_up_new_task().
8477 * - A task which has been woken up by try_to_wake_up() and
8478 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8479 */
daa59407
BP
8480 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8481 return true;
8482
8483 return false;
8484}
8485
8486static void detach_task_cfs_rq(struct task_struct *p)
8487{
8488 struct sched_entity *se = &p->se;
8489 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8490 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8491
8492 if (!vruntime_normalized(p)) {
da7a735e
PZ
8493 /*
8494 * Fix up our vruntime so that the current sleep doesn't
8495 * cause 'unlimited' sleep bonus.
8496 */
8497 place_entity(cfs_rq, se, 0);
8498 se->vruntime -= cfs_rq->min_vruntime;
8499 }
9ee474f5 8500
9d89c257 8501 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8502 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8503 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8504 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8505}
8506
daa59407 8507static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8508{
f36c019c 8509 struct sched_entity *se = &p->se;
daa59407 8510 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8511 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8512
8513#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8514 /*
8515 * Since the real-depth could have been changed (only FAIR
8516 * class maintain depth value), reset depth properly.
8517 */
8518 se->depth = se->parent ? se->parent->depth + 1 : 0;
8519#endif
7855a35a 8520
6efdb105 8521 /* Synchronize task with its cfs_rq */
7c3edd2c 8522 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8523 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8524 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8525
8526 if (!vruntime_normalized(p))
8527 se->vruntime += cfs_rq->min_vruntime;
8528}
6efdb105 8529
daa59407
BP
8530static void switched_from_fair(struct rq *rq, struct task_struct *p)
8531{
8532 detach_task_cfs_rq(p);
8533}
8534
8535static void switched_to_fair(struct rq *rq, struct task_struct *p)
8536{
8537 attach_task_cfs_rq(p);
7855a35a 8538
daa59407 8539 if (task_on_rq_queued(p)) {
7855a35a 8540 /*
daa59407
BP
8541 * We were most likely switched from sched_rt, so
8542 * kick off the schedule if running, otherwise just see
8543 * if we can still preempt the current task.
7855a35a 8544 */
daa59407
BP
8545 if (rq->curr == p)
8546 resched_curr(rq);
8547 else
8548 check_preempt_curr(rq, p, 0);
7855a35a 8549 }
cb469845
SR
8550}
8551
83b699ed
SV
8552/* Account for a task changing its policy or group.
8553 *
8554 * This routine is mostly called to set cfs_rq->curr field when a task
8555 * migrates between groups/classes.
8556 */
8557static void set_curr_task_fair(struct rq *rq)
8558{
8559 struct sched_entity *se = &rq->curr->se;
8560
ec12cb7f
PT
8561 for_each_sched_entity(se) {
8562 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8563
8564 set_next_entity(cfs_rq, se);
8565 /* ensure bandwidth has been allocated on our new cfs_rq */
8566 account_cfs_rq_runtime(cfs_rq, 0);
8567 }
83b699ed
SV
8568}
8569
029632fb
PZ
8570void init_cfs_rq(struct cfs_rq *cfs_rq)
8571{
8572 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8573 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8574#ifndef CONFIG_64BIT
8575 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8576#endif
141965c7 8577#ifdef CONFIG_SMP
9d89c257
YD
8578 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8579 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8580#endif
029632fb
PZ
8581}
8582
810b3817 8583#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8584static void task_set_group_fair(struct task_struct *p)
8585{
8586 struct sched_entity *se = &p->se;
8587
8588 set_task_rq(p, task_cpu(p));
8589 se->depth = se->parent ? se->parent->depth + 1 : 0;
8590}
8591
bc54da21 8592static void task_move_group_fair(struct task_struct *p)
810b3817 8593{
daa59407 8594 detach_task_cfs_rq(p);
b2b5ce02 8595 set_task_rq(p, task_cpu(p));
6efdb105
BP
8596
8597#ifdef CONFIG_SMP
8598 /* Tell se's cfs_rq has been changed -- migrated */
8599 p->se.avg.last_update_time = 0;
8600#endif
daa59407 8601 attach_task_cfs_rq(p);
810b3817 8602}
029632fb 8603
ea86cb4b
VG
8604static void task_change_group_fair(struct task_struct *p, int type)
8605{
8606 switch (type) {
8607 case TASK_SET_GROUP:
8608 task_set_group_fair(p);
8609 break;
8610
8611 case TASK_MOVE_GROUP:
8612 task_move_group_fair(p);
8613 break;
8614 }
8615}
8616
029632fb
PZ
8617void free_fair_sched_group(struct task_group *tg)
8618{
8619 int i;
8620
8621 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8622
8623 for_each_possible_cpu(i) {
8624 if (tg->cfs_rq)
8625 kfree(tg->cfs_rq[i]);
6fe1f348 8626 if (tg->se)
029632fb
PZ
8627 kfree(tg->se[i]);
8628 }
8629
8630 kfree(tg->cfs_rq);
8631 kfree(tg->se);
8632}
8633
8634int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8635{
029632fb 8636 struct sched_entity *se;
b7fa30c9
PZ
8637 struct cfs_rq *cfs_rq;
8638 struct rq *rq;
029632fb
PZ
8639 int i;
8640
8641 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8642 if (!tg->cfs_rq)
8643 goto err;
8644 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8645 if (!tg->se)
8646 goto err;
8647
8648 tg->shares = NICE_0_LOAD;
8649
8650 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8651
8652 for_each_possible_cpu(i) {
b7fa30c9
PZ
8653 rq = cpu_rq(i);
8654
029632fb
PZ
8655 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8656 GFP_KERNEL, cpu_to_node(i));
8657 if (!cfs_rq)
8658 goto err;
8659
8660 se = kzalloc_node(sizeof(struct sched_entity),
8661 GFP_KERNEL, cpu_to_node(i));
8662 if (!se)
8663 goto err_free_rq;
8664
8665 init_cfs_rq(cfs_rq);
8666 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8667 init_entity_runnable_average(se);
029632fb
PZ
8668 }
8669
8670 return 1;
8671
8672err_free_rq:
8673 kfree(cfs_rq);
8674err:
8675 return 0;
8676}
8677
8663e24d
PZ
8678void online_fair_sched_group(struct task_group *tg)
8679{
8680 struct sched_entity *se;
8681 struct rq *rq;
8682 int i;
8683
8684 for_each_possible_cpu(i) {
8685 rq = cpu_rq(i);
8686 se = tg->se[i];
8687
8688 raw_spin_lock_irq(&rq->lock);
8689 post_init_entity_util_avg(se);
55e16d30 8690 sync_throttle(tg, i);
8663e24d
PZ
8691 raw_spin_unlock_irq(&rq->lock);
8692 }
8693}
8694
6fe1f348 8695void unregister_fair_sched_group(struct task_group *tg)
029632fb 8696{
029632fb 8697 unsigned long flags;
6fe1f348
PZ
8698 struct rq *rq;
8699 int cpu;
029632fb 8700
6fe1f348
PZ
8701 for_each_possible_cpu(cpu) {
8702 if (tg->se[cpu])
8703 remove_entity_load_avg(tg->se[cpu]);
029632fb 8704
6fe1f348
PZ
8705 /*
8706 * Only empty task groups can be destroyed; so we can speculatively
8707 * check on_list without danger of it being re-added.
8708 */
8709 if (!tg->cfs_rq[cpu]->on_list)
8710 continue;
8711
8712 rq = cpu_rq(cpu);
8713
8714 raw_spin_lock_irqsave(&rq->lock, flags);
8715 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8716 raw_spin_unlock_irqrestore(&rq->lock, flags);
8717 }
029632fb
PZ
8718}
8719
8720void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8721 struct sched_entity *se, int cpu,
8722 struct sched_entity *parent)
8723{
8724 struct rq *rq = cpu_rq(cpu);
8725
8726 cfs_rq->tg = tg;
8727 cfs_rq->rq = rq;
029632fb
PZ
8728 init_cfs_rq_runtime(cfs_rq);
8729
8730 tg->cfs_rq[cpu] = cfs_rq;
8731 tg->se[cpu] = se;
8732
8733 /* se could be NULL for root_task_group */
8734 if (!se)
8735 return;
8736
fed14d45 8737 if (!parent) {
029632fb 8738 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8739 se->depth = 0;
8740 } else {
029632fb 8741 se->cfs_rq = parent->my_q;
fed14d45
PZ
8742 se->depth = parent->depth + 1;
8743 }
029632fb
PZ
8744
8745 se->my_q = cfs_rq;
0ac9b1c2
PT
8746 /* guarantee group entities always have weight */
8747 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8748 se->parent = parent;
8749}
8750
8751static DEFINE_MUTEX(shares_mutex);
8752
8753int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8754{
8755 int i;
8756 unsigned long flags;
8757
8758 /*
8759 * We can't change the weight of the root cgroup.
8760 */
8761 if (!tg->se[0])
8762 return -EINVAL;
8763
8764 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8765
8766 mutex_lock(&shares_mutex);
8767 if (tg->shares == shares)
8768 goto done;
8769
8770 tg->shares = shares;
8771 for_each_possible_cpu(i) {
8772 struct rq *rq = cpu_rq(i);
8773 struct sched_entity *se;
8774
8775 se = tg->se[i];
8776 /* Propagate contribution to hierarchy */
8777 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8778
8779 /* Possible calls to update_curr() need rq clock */
8780 update_rq_clock(rq);
17bc14b7 8781 for_each_sched_entity(se)
029632fb
PZ
8782 update_cfs_shares(group_cfs_rq(se));
8783 raw_spin_unlock_irqrestore(&rq->lock, flags);
8784 }
8785
8786done:
8787 mutex_unlock(&shares_mutex);
8788 return 0;
8789}
8790#else /* CONFIG_FAIR_GROUP_SCHED */
8791
8792void free_fair_sched_group(struct task_group *tg) { }
8793
8794int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8795{
8796 return 1;
8797}
8798
8663e24d
PZ
8799void online_fair_sched_group(struct task_group *tg) { }
8800
6fe1f348 8801void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8802
8803#endif /* CONFIG_FAIR_GROUP_SCHED */
8804
810b3817 8805
6d686f45 8806static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8807{
8808 struct sched_entity *se = &task->se;
0d721cea
PW
8809 unsigned int rr_interval = 0;
8810
8811 /*
8812 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8813 * idle runqueue:
8814 */
0d721cea 8815 if (rq->cfs.load.weight)
a59f4e07 8816 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8817
8818 return rr_interval;
8819}
8820
bf0f6f24
IM
8821/*
8822 * All the scheduling class methods:
8823 */
029632fb 8824const struct sched_class fair_sched_class = {
5522d5d5 8825 .next = &idle_sched_class,
bf0f6f24
IM
8826 .enqueue_task = enqueue_task_fair,
8827 .dequeue_task = dequeue_task_fair,
8828 .yield_task = yield_task_fair,
d95f4122 8829 .yield_to_task = yield_to_task_fair,
bf0f6f24 8830
2e09bf55 8831 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8832
8833 .pick_next_task = pick_next_task_fair,
8834 .put_prev_task = put_prev_task_fair,
8835
681f3e68 8836#ifdef CONFIG_SMP
4ce72a2c 8837 .select_task_rq = select_task_rq_fair,
0a74bef8 8838 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8839
0bcdcf28
CE
8840 .rq_online = rq_online_fair,
8841 .rq_offline = rq_offline_fair,
88ec22d3 8842
12695578 8843 .task_dead = task_dead_fair,
c5b28038 8844 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8845#endif
bf0f6f24 8846
83b699ed 8847 .set_curr_task = set_curr_task_fair,
bf0f6f24 8848 .task_tick = task_tick_fair,
cd29fe6f 8849 .task_fork = task_fork_fair,
cb469845
SR
8850
8851 .prio_changed = prio_changed_fair,
da7a735e 8852 .switched_from = switched_from_fair,
cb469845 8853 .switched_to = switched_to_fair,
810b3817 8854
0d721cea
PW
8855 .get_rr_interval = get_rr_interval_fair,
8856
6e998916
SG
8857 .update_curr = update_curr_fair,
8858
810b3817 8859#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8860 .task_change_group = task_change_group_fair,
810b3817 8861#endif
bf0f6f24
IM
8862};
8863
8864#ifdef CONFIG_SCHED_DEBUG
029632fb 8865void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8866{
bf0f6f24
IM
8867 struct cfs_rq *cfs_rq;
8868
5973e5b9 8869 rcu_read_lock();
c3b64f1e 8870 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8871 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8872 rcu_read_unlock();
bf0f6f24 8873}
397f2378
SD
8874
8875#ifdef CONFIG_NUMA_BALANCING
8876void show_numa_stats(struct task_struct *p, struct seq_file *m)
8877{
8878 int node;
8879 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8880
8881 for_each_online_node(node) {
8882 if (p->numa_faults) {
8883 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8884 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8885 }
8886 if (p->numa_group) {
8887 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8888 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8889 }
8890 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8891 }
8892}
8893#endif /* CONFIG_NUMA_BALANCING */
8894#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8895
8896__init void init_sched_fair_class(void)
8897{
8898#ifdef CONFIG_SMP
8899 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8900
3451d024 8901#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8902 nohz.next_balance = jiffies;
029632fb 8903 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8904#endif
8905#endif /* SMP */
8906
8907}