]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Fix avg_load computation
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
ba7e5a27 668static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
669static unsigned long task_h_load(struct task_struct *p);
670
a75cdaa9
AS
671static inline void __update_task_entity_contrib(struct sched_entity *se);
672
673/* Give new task start runnable values to heavy its load in infant time */
674void init_task_runnable_average(struct task_struct *p)
675{
676 u32 slice;
677
678 p->se.avg.decay_count = 0;
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
683}
684#else
685void init_task_runnable_average(struct task_struct *p)
686{
687}
688#endif
689
bf0f6f24 690/*
9dbdb155 691 * Update the current task's runtime statistics.
bf0f6f24 692 */
b7cc0896 693static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 694{
429d43bc 695 struct sched_entity *curr = cfs_rq->curr;
78becc27 696 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 697 u64 delta_exec;
bf0f6f24
IM
698
699 if (unlikely(!curr))
700 return;
701
9dbdb155
PZ
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
34f28ecd 704 return;
bf0f6f24 705
8ebc91d9 706 curr->exec_start = now;
d842de87 707
9dbdb155
PZ
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
710
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
713
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
716
d842de87
SV
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
719
f977bb49 720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 721 cpuacct_charge(curtask, delta_exec);
f06febc9 722 account_group_exec_runtime(curtask, delta_exec);
d842de87 723 }
ec12cb7f
PT
724
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
726}
727
728static inline void
5870db5b 729update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 730{
78becc27 731 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
732}
733
bf0f6f24
IM
734/*
735 * Task is being enqueued - update stats:
736 */
d2417e5a 737static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
bf0f6f24
IM
739 /*
740 * Are we enqueueing a waiting task? (for current tasks
741 * a dequeue/enqueue event is a NOP)
742 */
429d43bc 743 if (se != cfs_rq->curr)
5870db5b 744 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
745}
746
bf0f6f24 747static void
9ef0a961 748update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 749{
41acab88 750 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 751 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
752 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
753 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 754 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
755#ifdef CONFIG_SCHEDSTATS
756 if (entity_is_task(se)) {
757 trace_sched_stat_wait(task_of(se),
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
759 }
760#endif
41acab88 761 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
762}
763
764static inline void
19b6a2e3 765update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Mark the end of the wait period if dequeueing a
769 * waiting task:
770 */
429d43bc 771 if (se != cfs_rq->curr)
9ef0a961 772 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
773}
774
775/*
776 * We are picking a new current task - update its stats:
777 */
778static inline void
79303e9e 779update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
780{
781 /*
782 * We are starting a new run period:
783 */
78becc27 784 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
785}
786
bf0f6f24
IM
787/**************************************************
788 * Scheduling class queueing methods:
789 */
790
cbee9f88
PZ
791#ifdef CONFIG_NUMA_BALANCING
792/*
598f0ec0
MG
793 * Approximate time to scan a full NUMA task in ms. The task scan period is
794 * calculated based on the tasks virtual memory size and
795 * numa_balancing_scan_size.
cbee9f88 796 */
598f0ec0
MG
797unsigned int sysctl_numa_balancing_scan_period_min = 1000;
798unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
799
800/* Portion of address space to scan in MB */
801unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 802
4b96a29b
PZ
803/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
804unsigned int sysctl_numa_balancing_scan_delay = 1000;
805
598f0ec0
MG
806static unsigned int task_nr_scan_windows(struct task_struct *p)
807{
808 unsigned long rss = 0;
809 unsigned long nr_scan_pages;
810
811 /*
812 * Calculations based on RSS as non-present and empty pages are skipped
813 * by the PTE scanner and NUMA hinting faults should be trapped based
814 * on resident pages
815 */
816 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
817 rss = get_mm_rss(p->mm);
818 if (!rss)
819 rss = nr_scan_pages;
820
821 rss = round_up(rss, nr_scan_pages);
822 return rss / nr_scan_pages;
823}
824
825/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
826#define MAX_SCAN_WINDOW 2560
827
828static unsigned int task_scan_min(struct task_struct *p)
829{
830 unsigned int scan, floor;
831 unsigned int windows = 1;
832
833 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
834 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
835 floor = 1000 / windows;
836
837 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
838 return max_t(unsigned int, floor, scan);
839}
840
841static unsigned int task_scan_max(struct task_struct *p)
842{
843 unsigned int smin = task_scan_min(p);
844 unsigned int smax;
845
846 /* Watch for min being lower than max due to floor calculations */
847 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
848 return max(smin, smax);
849}
850
0ec8aa00
PZ
851static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
852{
853 rq->nr_numa_running += (p->numa_preferred_nid != -1);
854 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
855}
856
857static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
858{
859 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
861}
862
8c8a743c
PZ
863struct numa_group {
864 atomic_t refcount;
865
866 spinlock_t lock; /* nr_tasks, tasks */
867 int nr_tasks;
e29cf08b 868 pid_t gid;
8c8a743c
PZ
869 struct list_head task_list;
870
871 struct rcu_head rcu;
20e07dea 872 nodemask_t active_nodes;
989348b5 873 unsigned long total_faults;
7e2703e6
RR
874 /*
875 * Faults_cpu is used to decide whether memory should move
876 * towards the CPU. As a consequence, these stats are weighted
877 * more by CPU use than by memory faults.
878 */
50ec8a40 879 unsigned long *faults_cpu;
989348b5 880 unsigned long faults[0];
8c8a743c
PZ
881};
882
be1e4e76
RR
883/* Shared or private faults. */
884#define NR_NUMA_HINT_FAULT_TYPES 2
885
886/* Memory and CPU locality */
887#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
888
889/* Averaged statistics, and temporary buffers. */
890#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
891
e29cf08b
MG
892pid_t task_numa_group_id(struct task_struct *p)
893{
894 return p->numa_group ? p->numa_group->gid : 0;
895}
896
ac8e895b
MG
897static inline int task_faults_idx(int nid, int priv)
898{
be1e4e76 899 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
900}
901
902static inline unsigned long task_faults(struct task_struct *p, int nid)
903{
ff1df896 904 if (!p->numa_faults_memory)
ac8e895b
MG
905 return 0;
906
ff1df896
RR
907 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
908 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
909}
910
83e1d2cd
MG
911static inline unsigned long group_faults(struct task_struct *p, int nid)
912{
913 if (!p->numa_group)
914 return 0;
915
82897b4f
WL
916 return p->numa_group->faults[task_faults_idx(nid, 0)] +
917 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
918}
919
20e07dea
RR
920static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
921{
922 return group->faults_cpu[task_faults_idx(nid, 0)] +
923 group->faults_cpu[task_faults_idx(nid, 1)];
924}
925
83e1d2cd
MG
926/*
927 * These return the fraction of accesses done by a particular task, or
928 * task group, on a particular numa node. The group weight is given a
929 * larger multiplier, in order to group tasks together that are almost
930 * evenly spread out between numa nodes.
931 */
932static inline unsigned long task_weight(struct task_struct *p, int nid)
933{
934 unsigned long total_faults;
935
ff1df896 936 if (!p->numa_faults_memory)
83e1d2cd
MG
937 return 0;
938
939 total_faults = p->total_numa_faults;
940
941 if (!total_faults)
942 return 0;
943
944 return 1000 * task_faults(p, nid) / total_faults;
945}
946
947static inline unsigned long group_weight(struct task_struct *p, int nid)
948{
989348b5 949 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
950 return 0;
951
989348b5 952 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
953}
954
10f39042
RR
955bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
956 int src_nid, int dst_cpu)
957{
958 struct numa_group *ng = p->numa_group;
959 int dst_nid = cpu_to_node(dst_cpu);
960 int last_cpupid, this_cpupid;
961
962 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
963
964 /*
965 * Multi-stage node selection is used in conjunction with a periodic
966 * migration fault to build a temporal task<->page relation. By using
967 * a two-stage filter we remove short/unlikely relations.
968 *
969 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
970 * a task's usage of a particular page (n_p) per total usage of this
971 * page (n_t) (in a given time-span) to a probability.
972 *
973 * Our periodic faults will sample this probability and getting the
974 * same result twice in a row, given these samples are fully
975 * independent, is then given by P(n)^2, provided our sample period
976 * is sufficiently short compared to the usage pattern.
977 *
978 * This quadric squishes small probabilities, making it less likely we
979 * act on an unlikely task<->page relation.
980 */
981 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
982 if (!cpupid_pid_unset(last_cpupid) &&
983 cpupid_to_nid(last_cpupid) != dst_nid)
984 return false;
985
986 /* Always allow migrate on private faults */
987 if (cpupid_match_pid(p, last_cpupid))
988 return true;
989
990 /* A shared fault, but p->numa_group has not been set up yet. */
991 if (!ng)
992 return true;
993
994 /*
995 * Do not migrate if the destination is not a node that
996 * is actively used by this numa group.
997 */
998 if (!node_isset(dst_nid, ng->active_nodes))
999 return false;
1000
1001 /*
1002 * Source is a node that is not actively used by this
1003 * numa group, while the destination is. Migrate.
1004 */
1005 if (!node_isset(src_nid, ng->active_nodes))
1006 return true;
1007
1008 /*
1009 * Both source and destination are nodes in active
1010 * use by this numa group. Maximize memory bandwidth
1011 * by migrating from more heavily used groups, to less
1012 * heavily used ones, spreading the load around.
1013 * Use a 1/4 hysteresis to avoid spurious page movement.
1014 */
1015 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1016}
1017
e6628d5b 1018static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1019static unsigned long source_load(int cpu, int type);
1020static unsigned long target_load(int cpu, int type);
ced549fa 1021static unsigned long capacity_of(int cpu);
58d081b5
MG
1022static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1023
fb13c7ee 1024/* Cached statistics for all CPUs within a node */
58d081b5 1025struct numa_stats {
fb13c7ee 1026 unsigned long nr_running;
58d081b5 1027 unsigned long load;
fb13c7ee
MG
1028
1029 /* Total compute capacity of CPUs on a node */
5ef20ca1 1030 unsigned long compute_capacity;
fb13c7ee
MG
1031
1032 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1033 unsigned long task_capacity;
1b6a7495 1034 int has_free_capacity;
58d081b5 1035};
e6628d5b 1036
fb13c7ee
MG
1037/*
1038 * XXX borrowed from update_sg_lb_stats
1039 */
1040static void update_numa_stats(struct numa_stats *ns, int nid)
1041{
83d7f242
RR
1042 int smt, cpu, cpus = 0;
1043 unsigned long capacity;
fb13c7ee
MG
1044
1045 memset(ns, 0, sizeof(*ns));
1046 for_each_cpu(cpu, cpumask_of_node(nid)) {
1047 struct rq *rq = cpu_rq(cpu);
1048
1049 ns->nr_running += rq->nr_running;
1050 ns->load += weighted_cpuload(cpu);
ced549fa 1051 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1052
1053 cpus++;
fb13c7ee
MG
1054 }
1055
5eca82a9
PZ
1056 /*
1057 * If we raced with hotplug and there are no CPUs left in our mask
1058 * the @ns structure is NULL'ed and task_numa_compare() will
1059 * not find this node attractive.
1060 *
1b6a7495
NP
1061 * We'll either bail at !has_free_capacity, or we'll detect a huge
1062 * imbalance and bail there.
5eca82a9
PZ
1063 */
1064 if (!cpus)
1065 return;
1066
83d7f242
RR
1067 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1068 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1069 capacity = cpus / smt; /* cores */
1070
1071 ns->task_capacity = min_t(unsigned, capacity,
1072 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1073 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1074}
1075
58d081b5
MG
1076struct task_numa_env {
1077 struct task_struct *p;
e6628d5b 1078
58d081b5
MG
1079 int src_cpu, src_nid;
1080 int dst_cpu, dst_nid;
e6628d5b 1081
58d081b5 1082 struct numa_stats src_stats, dst_stats;
e6628d5b 1083
40ea2b42 1084 int imbalance_pct;
fb13c7ee
MG
1085
1086 struct task_struct *best_task;
1087 long best_imp;
58d081b5
MG
1088 int best_cpu;
1089};
1090
fb13c7ee
MG
1091static void task_numa_assign(struct task_numa_env *env,
1092 struct task_struct *p, long imp)
1093{
1094 if (env->best_task)
1095 put_task_struct(env->best_task);
1096 if (p)
1097 get_task_struct(p);
1098
1099 env->best_task = p;
1100 env->best_imp = imp;
1101 env->best_cpu = env->dst_cpu;
1102}
1103
28a21745 1104static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1105 struct task_numa_env *env)
1106{
1107 long imb, old_imb;
28a21745
RR
1108 long orig_src_load, orig_dst_load;
1109 long src_capacity, dst_capacity;
1110
1111 /*
1112 * The load is corrected for the CPU capacity available on each node.
1113 *
1114 * src_load dst_load
1115 * ------------ vs ---------
1116 * src_capacity dst_capacity
1117 */
1118 src_capacity = env->src_stats.compute_capacity;
1119 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1120
1121 /* We care about the slope of the imbalance, not the direction. */
1122 if (dst_load < src_load)
1123 swap(dst_load, src_load);
1124
1125 /* Is the difference below the threshold? */
28a21745
RR
1126 imb = dst_load * src_capacity * 100 -
1127 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1128 if (imb <= 0)
1129 return false;
1130
1131 /*
1132 * The imbalance is above the allowed threshold.
1133 * Compare it with the old imbalance.
1134 */
28a21745
RR
1135 orig_src_load = env->src_stats.load;
1136 orig_dst_load = env->dst_stats.load;
1137
e63da036
RR
1138 if (orig_dst_load < orig_src_load)
1139 swap(orig_dst_load, orig_src_load);
1140
28a21745
RR
1141 old_imb = orig_dst_load * src_capacity * 100 -
1142 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1143
1144 /* Would this change make things worse? */
1662867a 1145 return (imb > old_imb);
e63da036
RR
1146}
1147
fb13c7ee
MG
1148/*
1149 * This checks if the overall compute and NUMA accesses of the system would
1150 * be improved if the source tasks was migrated to the target dst_cpu taking
1151 * into account that it might be best if task running on the dst_cpu should
1152 * be exchanged with the source task
1153 */
887c290e
RR
1154static void task_numa_compare(struct task_numa_env *env,
1155 long taskimp, long groupimp)
fb13c7ee
MG
1156{
1157 struct rq *src_rq = cpu_rq(env->src_cpu);
1158 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1159 struct task_struct *cur;
28a21745 1160 long src_load, dst_load;
fb13c7ee 1161 long load;
1c5d3eb3 1162 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1163 long moveimp = imp;
fb13c7ee
MG
1164
1165 rcu_read_lock();
1166 cur = ACCESS_ONCE(dst_rq->curr);
1167 if (cur->pid == 0) /* idle */
1168 cur = NULL;
1169
1170 /*
1171 * "imp" is the fault differential for the source task between the
1172 * source and destination node. Calculate the total differential for
1173 * the source task and potential destination task. The more negative
1174 * the value is, the more rmeote accesses that would be expected to
1175 * be incurred if the tasks were swapped.
1176 */
1177 if (cur) {
1178 /* Skip this swap candidate if cannot move to the source cpu */
1179 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1180 goto unlock;
1181
887c290e
RR
1182 /*
1183 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1184 * in any group then look only at task weights.
887c290e 1185 */
ca28aa53 1186 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1187 imp = taskimp + task_weight(cur, env->src_nid) -
1188 task_weight(cur, env->dst_nid);
ca28aa53
RR
1189 /*
1190 * Add some hysteresis to prevent swapping the
1191 * tasks within a group over tiny differences.
1192 */
1193 if (cur->numa_group)
1194 imp -= imp/16;
887c290e 1195 } else {
ca28aa53
RR
1196 /*
1197 * Compare the group weights. If a task is all by
1198 * itself (not part of a group), use the task weight
1199 * instead.
1200 */
ca28aa53
RR
1201 if (cur->numa_group)
1202 imp += group_weight(cur, env->src_nid) -
1203 group_weight(cur, env->dst_nid);
1204 else
1205 imp += task_weight(cur, env->src_nid) -
1206 task_weight(cur, env->dst_nid);
887c290e 1207 }
fb13c7ee
MG
1208 }
1209
0132c3e1 1210 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1211 goto unlock;
1212
1213 if (!cur) {
1214 /* Is there capacity at our destination? */
b932c03c 1215 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1216 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1217 goto unlock;
1218
1219 goto balance;
1220 }
1221
1222 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1223 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1224 dst_rq->nr_running == 1)
fb13c7ee
MG
1225 goto assign;
1226
1227 /*
1228 * In the overloaded case, try and keep the load balanced.
1229 */
1230balance:
e720fff6
PZ
1231 load = task_h_load(env->p);
1232 dst_load = env->dst_stats.load + load;
1233 src_load = env->src_stats.load - load;
fb13c7ee 1234
0132c3e1
RR
1235 if (moveimp > imp && moveimp > env->best_imp) {
1236 /*
1237 * If the improvement from just moving env->p direction is
1238 * better than swapping tasks around, check if a move is
1239 * possible. Store a slightly smaller score than moveimp,
1240 * so an actually idle CPU will win.
1241 */
1242 if (!load_too_imbalanced(src_load, dst_load, env)) {
1243 imp = moveimp - 1;
1244 cur = NULL;
1245 goto assign;
1246 }
1247 }
1248
1249 if (imp <= env->best_imp)
1250 goto unlock;
1251
fb13c7ee 1252 if (cur) {
e720fff6
PZ
1253 load = task_h_load(cur);
1254 dst_load -= load;
1255 src_load += load;
fb13c7ee
MG
1256 }
1257
28a21745 1258 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1259 goto unlock;
1260
ba7e5a27
RR
1261 /*
1262 * One idle CPU per node is evaluated for a task numa move.
1263 * Call select_idle_sibling to maybe find a better one.
1264 */
1265 if (!cur)
1266 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1267
fb13c7ee
MG
1268assign:
1269 task_numa_assign(env, cur, imp);
1270unlock:
1271 rcu_read_unlock();
1272}
1273
887c290e
RR
1274static void task_numa_find_cpu(struct task_numa_env *env,
1275 long taskimp, long groupimp)
2c8a50aa
MG
1276{
1277 int cpu;
1278
1279 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1280 /* Skip this CPU if the source task cannot migrate */
1281 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1282 continue;
1283
1284 env->dst_cpu = cpu;
887c290e 1285 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1286 }
1287}
1288
58d081b5
MG
1289static int task_numa_migrate(struct task_struct *p)
1290{
58d081b5
MG
1291 struct task_numa_env env = {
1292 .p = p,
fb13c7ee 1293
58d081b5 1294 .src_cpu = task_cpu(p),
b32e86b4 1295 .src_nid = task_node(p),
fb13c7ee
MG
1296
1297 .imbalance_pct = 112,
1298
1299 .best_task = NULL,
1300 .best_imp = 0,
1301 .best_cpu = -1
58d081b5
MG
1302 };
1303 struct sched_domain *sd;
887c290e 1304 unsigned long taskweight, groupweight;
2c8a50aa 1305 int nid, ret;
887c290e 1306 long taskimp, groupimp;
e6628d5b 1307
58d081b5 1308 /*
fb13c7ee
MG
1309 * Pick the lowest SD_NUMA domain, as that would have the smallest
1310 * imbalance and would be the first to start moving tasks about.
1311 *
1312 * And we want to avoid any moving of tasks about, as that would create
1313 * random movement of tasks -- counter the numa conditions we're trying
1314 * to satisfy here.
58d081b5
MG
1315 */
1316 rcu_read_lock();
fb13c7ee 1317 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1318 if (sd)
1319 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1320 rcu_read_unlock();
1321
46a73e8a
RR
1322 /*
1323 * Cpusets can break the scheduler domain tree into smaller
1324 * balance domains, some of which do not cross NUMA boundaries.
1325 * Tasks that are "trapped" in such domains cannot be migrated
1326 * elsewhere, so there is no point in (re)trying.
1327 */
1328 if (unlikely(!sd)) {
de1b301a 1329 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1330 return -EINVAL;
1331 }
1332
887c290e
RR
1333 taskweight = task_weight(p, env.src_nid);
1334 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1335 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1336 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1337 taskimp = task_weight(p, env.dst_nid) - taskweight;
1338 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1339 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1340
a43455a1
RR
1341 /* Try to find a spot on the preferred nid. */
1342 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1343
1344 /* No space available on the preferred nid. Look elsewhere. */
1345 if (env.best_cpu == -1) {
2c8a50aa
MG
1346 for_each_online_node(nid) {
1347 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1348 continue;
58d081b5 1349
83e1d2cd 1350 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1351 taskimp = task_weight(p, nid) - taskweight;
1352 groupimp = group_weight(p, nid) - groupweight;
1353 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1354 continue;
1355
2c8a50aa
MG
1356 env.dst_nid = nid;
1357 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1358 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1359 }
1360 }
1361
68d1b02a
RR
1362 /*
1363 * If the task is part of a workload that spans multiple NUMA nodes,
1364 * and is migrating into one of the workload's active nodes, remember
1365 * this node as the task's preferred numa node, so the workload can
1366 * settle down.
1367 * A task that migrated to a second choice node will be better off
1368 * trying for a better one later. Do not set the preferred node here.
1369 */
db015dae
RR
1370 if (p->numa_group) {
1371 if (env.best_cpu == -1)
1372 nid = env.src_nid;
1373 else
1374 nid = env.dst_nid;
1375
1376 if (node_isset(nid, p->numa_group->active_nodes))
1377 sched_setnuma(p, env.dst_nid);
1378 }
1379
1380 /* No better CPU than the current one was found. */
1381 if (env.best_cpu == -1)
1382 return -EAGAIN;
0ec8aa00 1383
04bb2f94
RR
1384 /*
1385 * Reset the scan period if the task is being rescheduled on an
1386 * alternative node to recheck if the tasks is now properly placed.
1387 */
1388 p->numa_scan_period = task_scan_min(p);
1389
fb13c7ee 1390 if (env.best_task == NULL) {
286549dc
MG
1391 ret = migrate_task_to(p, env.best_cpu);
1392 if (ret != 0)
1393 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1394 return ret;
1395 }
1396
1397 ret = migrate_swap(p, env.best_task);
286549dc
MG
1398 if (ret != 0)
1399 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1400 put_task_struct(env.best_task);
1401 return ret;
e6628d5b
MG
1402}
1403
6b9a7460
MG
1404/* Attempt to migrate a task to a CPU on the preferred node. */
1405static void numa_migrate_preferred(struct task_struct *p)
1406{
5085e2a3
RR
1407 unsigned long interval = HZ;
1408
2739d3ee 1409 /* This task has no NUMA fault statistics yet */
ff1df896 1410 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1411 return;
1412
2739d3ee 1413 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1414 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1415 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1416
1417 /* Success if task is already running on preferred CPU */
de1b301a 1418 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1419 return;
1420
1421 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1422 task_numa_migrate(p);
6b9a7460
MG
1423}
1424
20e07dea
RR
1425/*
1426 * Find the nodes on which the workload is actively running. We do this by
1427 * tracking the nodes from which NUMA hinting faults are triggered. This can
1428 * be different from the set of nodes where the workload's memory is currently
1429 * located.
1430 *
1431 * The bitmask is used to make smarter decisions on when to do NUMA page
1432 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1433 * are added when they cause over 6/16 of the maximum number of faults, but
1434 * only removed when they drop below 3/16.
1435 */
1436static void update_numa_active_node_mask(struct numa_group *numa_group)
1437{
1438 unsigned long faults, max_faults = 0;
1439 int nid;
1440
1441 for_each_online_node(nid) {
1442 faults = group_faults_cpu(numa_group, nid);
1443 if (faults > max_faults)
1444 max_faults = faults;
1445 }
1446
1447 for_each_online_node(nid) {
1448 faults = group_faults_cpu(numa_group, nid);
1449 if (!node_isset(nid, numa_group->active_nodes)) {
1450 if (faults > max_faults * 6 / 16)
1451 node_set(nid, numa_group->active_nodes);
1452 } else if (faults < max_faults * 3 / 16)
1453 node_clear(nid, numa_group->active_nodes);
1454 }
1455}
1456
04bb2f94
RR
1457/*
1458 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1459 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1460 * period will be for the next scan window. If local/(local+remote) ratio is
1461 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1462 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1463 */
1464#define NUMA_PERIOD_SLOTS 10
a22b4b01 1465#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1466
1467/*
1468 * Increase the scan period (slow down scanning) if the majority of
1469 * our memory is already on our local node, or if the majority of
1470 * the page accesses are shared with other processes.
1471 * Otherwise, decrease the scan period.
1472 */
1473static void update_task_scan_period(struct task_struct *p,
1474 unsigned long shared, unsigned long private)
1475{
1476 unsigned int period_slot;
1477 int ratio;
1478 int diff;
1479
1480 unsigned long remote = p->numa_faults_locality[0];
1481 unsigned long local = p->numa_faults_locality[1];
1482
1483 /*
1484 * If there were no record hinting faults then either the task is
1485 * completely idle or all activity is areas that are not of interest
1486 * to automatic numa balancing. Scan slower
1487 */
1488 if (local + shared == 0) {
1489 p->numa_scan_period = min(p->numa_scan_period_max,
1490 p->numa_scan_period << 1);
1491
1492 p->mm->numa_next_scan = jiffies +
1493 msecs_to_jiffies(p->numa_scan_period);
1494
1495 return;
1496 }
1497
1498 /*
1499 * Prepare to scale scan period relative to the current period.
1500 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1501 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1502 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1503 */
1504 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1505 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1506 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1507 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1508 if (!slot)
1509 slot = 1;
1510 diff = slot * period_slot;
1511 } else {
1512 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1513
1514 /*
1515 * Scale scan rate increases based on sharing. There is an
1516 * inverse relationship between the degree of sharing and
1517 * the adjustment made to the scanning period. Broadly
1518 * speaking the intent is that there is little point
1519 * scanning faster if shared accesses dominate as it may
1520 * simply bounce migrations uselessly
1521 */
04bb2f94
RR
1522 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1523 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1524 }
1525
1526 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1527 task_scan_min(p), task_scan_max(p));
1528 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1529}
1530
7e2703e6
RR
1531/*
1532 * Get the fraction of time the task has been running since the last
1533 * NUMA placement cycle. The scheduler keeps similar statistics, but
1534 * decays those on a 32ms period, which is orders of magnitude off
1535 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1536 * stats only if the task is so new there are no NUMA statistics yet.
1537 */
1538static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1539{
1540 u64 runtime, delta, now;
1541 /* Use the start of this time slice to avoid calculations. */
1542 now = p->se.exec_start;
1543 runtime = p->se.sum_exec_runtime;
1544
1545 if (p->last_task_numa_placement) {
1546 delta = runtime - p->last_sum_exec_runtime;
1547 *period = now - p->last_task_numa_placement;
1548 } else {
1549 delta = p->se.avg.runnable_avg_sum;
1550 *period = p->se.avg.runnable_avg_period;
1551 }
1552
1553 p->last_sum_exec_runtime = runtime;
1554 p->last_task_numa_placement = now;
1555
1556 return delta;
1557}
1558
cbee9f88
PZ
1559static void task_numa_placement(struct task_struct *p)
1560{
83e1d2cd
MG
1561 int seq, nid, max_nid = -1, max_group_nid = -1;
1562 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1563 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1564 unsigned long total_faults;
1565 u64 runtime, period;
7dbd13ed 1566 spinlock_t *group_lock = NULL;
cbee9f88 1567
2832bc19 1568 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1569 if (p->numa_scan_seq == seq)
1570 return;
1571 p->numa_scan_seq = seq;
598f0ec0 1572 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1573
7e2703e6
RR
1574 total_faults = p->numa_faults_locality[0] +
1575 p->numa_faults_locality[1];
1576 runtime = numa_get_avg_runtime(p, &period);
1577
7dbd13ed
MG
1578 /* If the task is part of a group prevent parallel updates to group stats */
1579 if (p->numa_group) {
1580 group_lock = &p->numa_group->lock;
60e69eed 1581 spin_lock_irq(group_lock);
7dbd13ed
MG
1582 }
1583
688b7585
MG
1584 /* Find the node with the highest number of faults */
1585 for_each_online_node(nid) {
83e1d2cd 1586 unsigned long faults = 0, group_faults = 0;
ac8e895b 1587 int priv, i;
745d6147 1588
be1e4e76 1589 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1590 long diff, f_diff, f_weight;
8c8a743c 1591
ac8e895b 1592 i = task_faults_idx(nid, priv);
745d6147 1593
ac8e895b 1594 /* Decay existing window, copy faults since last scan */
35664fd4 1595 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1596 fault_types[priv] += p->numa_faults_buffer_memory[i];
1597 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1598
7e2703e6
RR
1599 /*
1600 * Normalize the faults_from, so all tasks in a group
1601 * count according to CPU use, instead of by the raw
1602 * number of faults. Tasks with little runtime have
1603 * little over-all impact on throughput, and thus their
1604 * faults are less important.
1605 */
1606 f_weight = div64_u64(runtime << 16, period + 1);
1607 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1608 (total_faults + 1);
35664fd4 1609 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1610 p->numa_faults_buffer_cpu[i] = 0;
1611
35664fd4
RR
1612 p->numa_faults_memory[i] += diff;
1613 p->numa_faults_cpu[i] += f_diff;
ff1df896 1614 faults += p->numa_faults_memory[i];
83e1d2cd 1615 p->total_numa_faults += diff;
8c8a743c
PZ
1616 if (p->numa_group) {
1617 /* safe because we can only change our own group */
989348b5 1618 p->numa_group->faults[i] += diff;
50ec8a40 1619 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1620 p->numa_group->total_faults += diff;
1621 group_faults += p->numa_group->faults[i];
8c8a743c 1622 }
ac8e895b
MG
1623 }
1624
688b7585
MG
1625 if (faults > max_faults) {
1626 max_faults = faults;
1627 max_nid = nid;
1628 }
83e1d2cd
MG
1629
1630 if (group_faults > max_group_faults) {
1631 max_group_faults = group_faults;
1632 max_group_nid = nid;
1633 }
1634 }
1635
04bb2f94
RR
1636 update_task_scan_period(p, fault_types[0], fault_types[1]);
1637
7dbd13ed 1638 if (p->numa_group) {
20e07dea 1639 update_numa_active_node_mask(p->numa_group);
60e69eed 1640 spin_unlock_irq(group_lock);
f0b8a4af 1641 max_nid = max_group_nid;
688b7585
MG
1642 }
1643
bb97fc31
RR
1644 if (max_faults) {
1645 /* Set the new preferred node */
1646 if (max_nid != p->numa_preferred_nid)
1647 sched_setnuma(p, max_nid);
1648
1649 if (task_node(p) != p->numa_preferred_nid)
1650 numa_migrate_preferred(p);
3a7053b3 1651 }
cbee9f88
PZ
1652}
1653
8c8a743c
PZ
1654static inline int get_numa_group(struct numa_group *grp)
1655{
1656 return atomic_inc_not_zero(&grp->refcount);
1657}
1658
1659static inline void put_numa_group(struct numa_group *grp)
1660{
1661 if (atomic_dec_and_test(&grp->refcount))
1662 kfree_rcu(grp, rcu);
1663}
1664
3e6a9418
MG
1665static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1666 int *priv)
8c8a743c
PZ
1667{
1668 struct numa_group *grp, *my_grp;
1669 struct task_struct *tsk;
1670 bool join = false;
1671 int cpu = cpupid_to_cpu(cpupid);
1672 int i;
1673
1674 if (unlikely(!p->numa_group)) {
1675 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1676 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1677
1678 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1679 if (!grp)
1680 return;
1681
1682 atomic_set(&grp->refcount, 1);
1683 spin_lock_init(&grp->lock);
1684 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1685 grp->gid = p->pid;
50ec8a40 1686 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1687 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1688 nr_node_ids;
8c8a743c 1689
20e07dea
RR
1690 node_set(task_node(current), grp->active_nodes);
1691
be1e4e76 1692 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1693 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1694
989348b5 1695 grp->total_faults = p->total_numa_faults;
83e1d2cd 1696
8c8a743c
PZ
1697 list_add(&p->numa_entry, &grp->task_list);
1698 grp->nr_tasks++;
1699 rcu_assign_pointer(p->numa_group, grp);
1700 }
1701
1702 rcu_read_lock();
1703 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1704
1705 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1706 goto no_join;
8c8a743c
PZ
1707
1708 grp = rcu_dereference(tsk->numa_group);
1709 if (!grp)
3354781a 1710 goto no_join;
8c8a743c
PZ
1711
1712 my_grp = p->numa_group;
1713 if (grp == my_grp)
3354781a 1714 goto no_join;
8c8a743c
PZ
1715
1716 /*
1717 * Only join the other group if its bigger; if we're the bigger group,
1718 * the other task will join us.
1719 */
1720 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1721 goto no_join;
8c8a743c
PZ
1722
1723 /*
1724 * Tie-break on the grp address.
1725 */
1726 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1727 goto no_join;
8c8a743c 1728
dabe1d99
RR
1729 /* Always join threads in the same process. */
1730 if (tsk->mm == current->mm)
1731 join = true;
1732
1733 /* Simple filter to avoid false positives due to PID collisions */
1734 if (flags & TNF_SHARED)
1735 join = true;
8c8a743c 1736
3e6a9418
MG
1737 /* Update priv based on whether false sharing was detected */
1738 *priv = !join;
1739
dabe1d99 1740 if (join && !get_numa_group(grp))
3354781a 1741 goto no_join;
8c8a743c 1742
8c8a743c
PZ
1743 rcu_read_unlock();
1744
1745 if (!join)
1746 return;
1747
60e69eed
MG
1748 BUG_ON(irqs_disabled());
1749 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1750
be1e4e76 1751 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1752 my_grp->faults[i] -= p->numa_faults_memory[i];
1753 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1754 }
989348b5
MG
1755 my_grp->total_faults -= p->total_numa_faults;
1756 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1757
1758 list_move(&p->numa_entry, &grp->task_list);
1759 my_grp->nr_tasks--;
1760 grp->nr_tasks++;
1761
1762 spin_unlock(&my_grp->lock);
60e69eed 1763 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1764
1765 rcu_assign_pointer(p->numa_group, grp);
1766
1767 put_numa_group(my_grp);
3354781a
PZ
1768 return;
1769
1770no_join:
1771 rcu_read_unlock();
1772 return;
8c8a743c
PZ
1773}
1774
1775void task_numa_free(struct task_struct *p)
1776{
1777 struct numa_group *grp = p->numa_group;
ff1df896 1778 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1779 unsigned long flags;
1780 int i;
8c8a743c
PZ
1781
1782 if (grp) {
e9dd685c 1783 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1784 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1785 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1786 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1787
8c8a743c
PZ
1788 list_del(&p->numa_entry);
1789 grp->nr_tasks--;
e9dd685c 1790 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1791 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1792 put_numa_group(grp);
1793 }
1794
ff1df896
RR
1795 p->numa_faults_memory = NULL;
1796 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1797 p->numa_faults_cpu= NULL;
1798 p->numa_faults_buffer_cpu = NULL;
82727018 1799 kfree(numa_faults);
8c8a743c
PZ
1800}
1801
cbee9f88
PZ
1802/*
1803 * Got a PROT_NONE fault for a page on @node.
1804 */
58b46da3 1805void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1806{
1807 struct task_struct *p = current;
6688cc05 1808 bool migrated = flags & TNF_MIGRATED;
58b46da3 1809 int cpu_node = task_node(current);
792568ec 1810 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1811 int priv;
cbee9f88 1812
10e84b97 1813 if (!numabalancing_enabled)
1a687c2e
MG
1814 return;
1815
9ff1d9ff
MG
1816 /* for example, ksmd faulting in a user's mm */
1817 if (!p->mm)
1818 return;
1819
82727018
RR
1820 /* Do not worry about placement if exiting */
1821 if (p->state == TASK_DEAD)
1822 return;
1823
f809ca9a 1824 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1825 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1826 int size = sizeof(*p->numa_faults_memory) *
1827 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1828
be1e4e76 1829 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1830 if (!p->numa_faults_memory)
f809ca9a 1831 return;
745d6147 1832
ff1df896 1833 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1834 /*
1835 * The averaged statistics, shared & private, memory & cpu,
1836 * occupy the first half of the array. The second half of the
1837 * array is for current counters, which are averaged into the
1838 * first set by task_numa_placement.
1839 */
50ec8a40
RR
1840 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1841 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1842 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1843 p->total_numa_faults = 0;
04bb2f94 1844 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1845 }
cbee9f88 1846
8c8a743c
PZ
1847 /*
1848 * First accesses are treated as private, otherwise consider accesses
1849 * to be private if the accessing pid has not changed
1850 */
1851 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1852 priv = 1;
1853 } else {
1854 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1855 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1856 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1857 }
1858
792568ec
RR
1859 /*
1860 * If a workload spans multiple NUMA nodes, a shared fault that
1861 * occurs wholly within the set of nodes that the workload is
1862 * actively using should be counted as local. This allows the
1863 * scan rate to slow down when a workload has settled down.
1864 */
1865 if (!priv && !local && p->numa_group &&
1866 node_isset(cpu_node, p->numa_group->active_nodes) &&
1867 node_isset(mem_node, p->numa_group->active_nodes))
1868 local = 1;
1869
cbee9f88 1870 task_numa_placement(p);
f809ca9a 1871
2739d3ee
RR
1872 /*
1873 * Retry task to preferred node migration periodically, in case it
1874 * case it previously failed, or the scheduler moved us.
1875 */
1876 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1877 numa_migrate_preferred(p);
1878
b32e86b4
IM
1879 if (migrated)
1880 p->numa_pages_migrated += pages;
1881
58b46da3
RR
1882 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1883 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1884 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1885}
1886
6e5fb223
PZ
1887static void reset_ptenuma_scan(struct task_struct *p)
1888{
1889 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1890 p->mm->numa_scan_offset = 0;
1891}
1892
cbee9f88
PZ
1893/*
1894 * The expensive part of numa migration is done from task_work context.
1895 * Triggered from task_tick_numa().
1896 */
1897void task_numa_work(struct callback_head *work)
1898{
1899 unsigned long migrate, next_scan, now = jiffies;
1900 struct task_struct *p = current;
1901 struct mm_struct *mm = p->mm;
6e5fb223 1902 struct vm_area_struct *vma;
9f40604c 1903 unsigned long start, end;
598f0ec0 1904 unsigned long nr_pte_updates = 0;
9f40604c 1905 long pages;
cbee9f88
PZ
1906
1907 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1908
1909 work->next = work; /* protect against double add */
1910 /*
1911 * Who cares about NUMA placement when they're dying.
1912 *
1913 * NOTE: make sure not to dereference p->mm before this check,
1914 * exit_task_work() happens _after_ exit_mm() so we could be called
1915 * without p->mm even though we still had it when we enqueued this
1916 * work.
1917 */
1918 if (p->flags & PF_EXITING)
1919 return;
1920
930aa174 1921 if (!mm->numa_next_scan) {
7e8d16b6
MG
1922 mm->numa_next_scan = now +
1923 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1924 }
1925
cbee9f88
PZ
1926 /*
1927 * Enforce maximal scan/migration frequency..
1928 */
1929 migrate = mm->numa_next_scan;
1930 if (time_before(now, migrate))
1931 return;
1932
598f0ec0
MG
1933 if (p->numa_scan_period == 0) {
1934 p->numa_scan_period_max = task_scan_max(p);
1935 p->numa_scan_period = task_scan_min(p);
1936 }
cbee9f88 1937
fb003b80 1938 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1939 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1940 return;
1941
19a78d11
PZ
1942 /*
1943 * Delay this task enough that another task of this mm will likely win
1944 * the next time around.
1945 */
1946 p->node_stamp += 2 * TICK_NSEC;
1947
9f40604c
MG
1948 start = mm->numa_scan_offset;
1949 pages = sysctl_numa_balancing_scan_size;
1950 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1951 if (!pages)
1952 return;
cbee9f88 1953
6e5fb223 1954 down_read(&mm->mmap_sem);
9f40604c 1955 vma = find_vma(mm, start);
6e5fb223
PZ
1956 if (!vma) {
1957 reset_ptenuma_scan(p);
9f40604c 1958 start = 0;
6e5fb223
PZ
1959 vma = mm->mmap;
1960 }
9f40604c 1961 for (; vma; vma = vma->vm_next) {
fc314724 1962 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1963 continue;
1964
4591ce4f
MG
1965 /*
1966 * Shared library pages mapped by multiple processes are not
1967 * migrated as it is expected they are cache replicated. Avoid
1968 * hinting faults in read-only file-backed mappings or the vdso
1969 * as migrating the pages will be of marginal benefit.
1970 */
1971 if (!vma->vm_mm ||
1972 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1973 continue;
1974
3c67f474
MG
1975 /*
1976 * Skip inaccessible VMAs to avoid any confusion between
1977 * PROT_NONE and NUMA hinting ptes
1978 */
1979 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1980 continue;
4591ce4f 1981
9f40604c
MG
1982 do {
1983 start = max(start, vma->vm_start);
1984 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1985 end = min(end, vma->vm_end);
598f0ec0
MG
1986 nr_pte_updates += change_prot_numa(vma, start, end);
1987
1988 /*
1989 * Scan sysctl_numa_balancing_scan_size but ensure that
1990 * at least one PTE is updated so that unused virtual
1991 * address space is quickly skipped.
1992 */
1993 if (nr_pte_updates)
1994 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1995
9f40604c
MG
1996 start = end;
1997 if (pages <= 0)
1998 goto out;
3cf1962c
RR
1999
2000 cond_resched();
9f40604c 2001 } while (end != vma->vm_end);
cbee9f88 2002 }
6e5fb223 2003
9f40604c 2004out:
6e5fb223 2005 /*
c69307d5
PZ
2006 * It is possible to reach the end of the VMA list but the last few
2007 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2008 * would find the !migratable VMA on the next scan but not reset the
2009 * scanner to the start so check it now.
6e5fb223
PZ
2010 */
2011 if (vma)
9f40604c 2012 mm->numa_scan_offset = start;
6e5fb223
PZ
2013 else
2014 reset_ptenuma_scan(p);
2015 up_read(&mm->mmap_sem);
cbee9f88
PZ
2016}
2017
2018/*
2019 * Drive the periodic memory faults..
2020 */
2021void task_tick_numa(struct rq *rq, struct task_struct *curr)
2022{
2023 struct callback_head *work = &curr->numa_work;
2024 u64 period, now;
2025
2026 /*
2027 * We don't care about NUMA placement if we don't have memory.
2028 */
2029 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2030 return;
2031
2032 /*
2033 * Using runtime rather than walltime has the dual advantage that
2034 * we (mostly) drive the selection from busy threads and that the
2035 * task needs to have done some actual work before we bother with
2036 * NUMA placement.
2037 */
2038 now = curr->se.sum_exec_runtime;
2039 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2040
2041 if (now - curr->node_stamp > period) {
4b96a29b 2042 if (!curr->node_stamp)
598f0ec0 2043 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2044 curr->node_stamp += period;
cbee9f88
PZ
2045
2046 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2047 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2048 task_work_add(curr, work, true);
2049 }
2050 }
2051}
2052#else
2053static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2054{
2055}
0ec8aa00
PZ
2056
2057static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2058{
2059}
2060
2061static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2062{
2063}
cbee9f88
PZ
2064#endif /* CONFIG_NUMA_BALANCING */
2065
30cfdcfc
DA
2066static void
2067account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2068{
2069 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2070 if (!parent_entity(se))
029632fb 2071 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2072#ifdef CONFIG_SMP
0ec8aa00
PZ
2073 if (entity_is_task(se)) {
2074 struct rq *rq = rq_of(cfs_rq);
2075
2076 account_numa_enqueue(rq, task_of(se));
2077 list_add(&se->group_node, &rq->cfs_tasks);
2078 }
367456c7 2079#endif
30cfdcfc 2080 cfs_rq->nr_running++;
30cfdcfc
DA
2081}
2082
2083static void
2084account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2085{
2086 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2087 if (!parent_entity(se))
029632fb 2088 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2089 if (entity_is_task(se)) {
2090 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2091 list_del_init(&se->group_node);
0ec8aa00 2092 }
30cfdcfc 2093 cfs_rq->nr_running--;
30cfdcfc
DA
2094}
2095
3ff6dcac
YZ
2096#ifdef CONFIG_FAIR_GROUP_SCHED
2097# ifdef CONFIG_SMP
cf5f0acf
PZ
2098static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2099{
2100 long tg_weight;
2101
2102 /*
2103 * Use this CPU's actual weight instead of the last load_contribution
2104 * to gain a more accurate current total weight. See
2105 * update_cfs_rq_load_contribution().
2106 */
bf5b986e 2107 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2108 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2109 tg_weight += cfs_rq->load.weight;
2110
2111 return tg_weight;
2112}
2113
6d5ab293 2114static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2115{
cf5f0acf 2116 long tg_weight, load, shares;
3ff6dcac 2117
cf5f0acf 2118 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2119 load = cfs_rq->load.weight;
3ff6dcac 2120
3ff6dcac 2121 shares = (tg->shares * load);
cf5f0acf
PZ
2122 if (tg_weight)
2123 shares /= tg_weight;
3ff6dcac
YZ
2124
2125 if (shares < MIN_SHARES)
2126 shares = MIN_SHARES;
2127 if (shares > tg->shares)
2128 shares = tg->shares;
2129
2130 return shares;
2131}
3ff6dcac 2132# else /* CONFIG_SMP */
6d5ab293 2133static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2134{
2135 return tg->shares;
2136}
3ff6dcac 2137# endif /* CONFIG_SMP */
2069dd75
PZ
2138static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2139 unsigned long weight)
2140{
19e5eebb
PT
2141 if (se->on_rq) {
2142 /* commit outstanding execution time */
2143 if (cfs_rq->curr == se)
2144 update_curr(cfs_rq);
2069dd75 2145 account_entity_dequeue(cfs_rq, se);
19e5eebb 2146 }
2069dd75
PZ
2147
2148 update_load_set(&se->load, weight);
2149
2150 if (se->on_rq)
2151 account_entity_enqueue(cfs_rq, se);
2152}
2153
82958366
PT
2154static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2155
6d5ab293 2156static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2157{
2158 struct task_group *tg;
2159 struct sched_entity *se;
3ff6dcac 2160 long shares;
2069dd75 2161
2069dd75
PZ
2162 tg = cfs_rq->tg;
2163 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2164 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2165 return;
3ff6dcac
YZ
2166#ifndef CONFIG_SMP
2167 if (likely(se->load.weight == tg->shares))
2168 return;
2169#endif
6d5ab293 2170 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2171
2172 reweight_entity(cfs_rq_of(se), se, shares);
2173}
2174#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2175static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2176{
2177}
2178#endif /* CONFIG_FAIR_GROUP_SCHED */
2179
141965c7 2180#ifdef CONFIG_SMP
5b51f2f8
PT
2181/*
2182 * We choose a half-life close to 1 scheduling period.
2183 * Note: The tables below are dependent on this value.
2184 */
2185#define LOAD_AVG_PERIOD 32
2186#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2187#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2188
2189/* Precomputed fixed inverse multiplies for multiplication by y^n */
2190static const u32 runnable_avg_yN_inv[] = {
2191 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2192 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2193 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2194 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2195 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2196 0x85aac367, 0x82cd8698,
2197};
2198
2199/*
2200 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2201 * over-estimates when re-combining.
2202 */
2203static const u32 runnable_avg_yN_sum[] = {
2204 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2205 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2206 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2207};
2208
9d85f21c
PT
2209/*
2210 * Approximate:
2211 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2212 */
2213static __always_inline u64 decay_load(u64 val, u64 n)
2214{
5b51f2f8
PT
2215 unsigned int local_n;
2216
2217 if (!n)
2218 return val;
2219 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2220 return 0;
2221
2222 /* after bounds checking we can collapse to 32-bit */
2223 local_n = n;
2224
2225 /*
2226 * As y^PERIOD = 1/2, we can combine
2227 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2228 * With a look-up table which covers k^n (n<PERIOD)
2229 *
2230 * To achieve constant time decay_load.
2231 */
2232 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2233 val >>= local_n / LOAD_AVG_PERIOD;
2234 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2235 }
2236
5b51f2f8
PT
2237 val *= runnable_avg_yN_inv[local_n];
2238 /* We don't use SRR here since we always want to round down. */
2239 return val >> 32;
2240}
2241
2242/*
2243 * For updates fully spanning n periods, the contribution to runnable
2244 * average will be: \Sum 1024*y^n
2245 *
2246 * We can compute this reasonably efficiently by combining:
2247 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2248 */
2249static u32 __compute_runnable_contrib(u64 n)
2250{
2251 u32 contrib = 0;
2252
2253 if (likely(n <= LOAD_AVG_PERIOD))
2254 return runnable_avg_yN_sum[n];
2255 else if (unlikely(n >= LOAD_AVG_MAX_N))
2256 return LOAD_AVG_MAX;
2257
2258 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2259 do {
2260 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2261 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2262
2263 n -= LOAD_AVG_PERIOD;
2264 } while (n > LOAD_AVG_PERIOD);
2265
2266 contrib = decay_load(contrib, n);
2267 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2268}
2269
2270/*
2271 * We can represent the historical contribution to runnable average as the
2272 * coefficients of a geometric series. To do this we sub-divide our runnable
2273 * history into segments of approximately 1ms (1024us); label the segment that
2274 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2275 *
2276 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2277 * p0 p1 p2
2278 * (now) (~1ms ago) (~2ms ago)
2279 *
2280 * Let u_i denote the fraction of p_i that the entity was runnable.
2281 *
2282 * We then designate the fractions u_i as our co-efficients, yielding the
2283 * following representation of historical load:
2284 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2285 *
2286 * We choose y based on the with of a reasonably scheduling period, fixing:
2287 * y^32 = 0.5
2288 *
2289 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2290 * approximately half as much as the contribution to load within the last ms
2291 * (u_0).
2292 *
2293 * When a period "rolls over" and we have new u_0`, multiplying the previous
2294 * sum again by y is sufficient to update:
2295 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2296 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2297 */
2298static __always_inline int __update_entity_runnable_avg(u64 now,
2299 struct sched_avg *sa,
2300 int runnable)
2301{
5b51f2f8
PT
2302 u64 delta, periods;
2303 u32 runnable_contrib;
9d85f21c
PT
2304 int delta_w, decayed = 0;
2305
2306 delta = now - sa->last_runnable_update;
2307 /*
2308 * This should only happen when time goes backwards, which it
2309 * unfortunately does during sched clock init when we swap over to TSC.
2310 */
2311 if ((s64)delta < 0) {
2312 sa->last_runnable_update = now;
2313 return 0;
2314 }
2315
2316 /*
2317 * Use 1024ns as the unit of measurement since it's a reasonable
2318 * approximation of 1us and fast to compute.
2319 */
2320 delta >>= 10;
2321 if (!delta)
2322 return 0;
2323 sa->last_runnable_update = now;
2324
2325 /* delta_w is the amount already accumulated against our next period */
2326 delta_w = sa->runnable_avg_period % 1024;
2327 if (delta + delta_w >= 1024) {
2328 /* period roll-over */
2329 decayed = 1;
2330
2331 /*
2332 * Now that we know we're crossing a period boundary, figure
2333 * out how much from delta we need to complete the current
2334 * period and accrue it.
2335 */
2336 delta_w = 1024 - delta_w;
5b51f2f8
PT
2337 if (runnable)
2338 sa->runnable_avg_sum += delta_w;
2339 sa->runnable_avg_period += delta_w;
2340
2341 delta -= delta_w;
2342
2343 /* Figure out how many additional periods this update spans */
2344 periods = delta / 1024;
2345 delta %= 1024;
2346
2347 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2348 periods + 1);
2349 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2350 periods + 1);
2351
2352 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2353 runnable_contrib = __compute_runnable_contrib(periods);
2354 if (runnable)
2355 sa->runnable_avg_sum += runnable_contrib;
2356 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2357 }
2358
2359 /* Remainder of delta accrued against u_0` */
2360 if (runnable)
2361 sa->runnable_avg_sum += delta;
2362 sa->runnable_avg_period += delta;
2363
2364 return decayed;
2365}
2366
9ee474f5 2367/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2368static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2369{
2370 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2371 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2372
2373 decays -= se->avg.decay_count;
2374 if (!decays)
aff3e498 2375 return 0;
9ee474f5
PT
2376
2377 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2378 se->avg.decay_count = 0;
aff3e498
PT
2379
2380 return decays;
9ee474f5
PT
2381}
2382
c566e8e9
PT
2383#ifdef CONFIG_FAIR_GROUP_SCHED
2384static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2385 int force_update)
2386{
2387 struct task_group *tg = cfs_rq->tg;
bf5b986e 2388 long tg_contrib;
c566e8e9
PT
2389
2390 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2391 tg_contrib -= cfs_rq->tg_load_contrib;
2392
8236d907
JL
2393 if (!tg_contrib)
2394 return;
2395
bf5b986e
AS
2396 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2397 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2398 cfs_rq->tg_load_contrib += tg_contrib;
2399 }
2400}
8165e145 2401
bb17f655
PT
2402/*
2403 * Aggregate cfs_rq runnable averages into an equivalent task_group
2404 * representation for computing load contributions.
2405 */
2406static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2407 struct cfs_rq *cfs_rq)
2408{
2409 struct task_group *tg = cfs_rq->tg;
2410 long contrib;
2411
2412 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2413 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2414 sa->runnable_avg_period + 1);
2415 contrib -= cfs_rq->tg_runnable_contrib;
2416
2417 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2418 atomic_add(contrib, &tg->runnable_avg);
2419 cfs_rq->tg_runnable_contrib += contrib;
2420 }
2421}
2422
8165e145
PT
2423static inline void __update_group_entity_contrib(struct sched_entity *se)
2424{
2425 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2426 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2427 int runnable_avg;
2428
8165e145
PT
2429 u64 contrib;
2430
2431 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2432 se->avg.load_avg_contrib = div_u64(contrib,
2433 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2434
2435 /*
2436 * For group entities we need to compute a correction term in the case
2437 * that they are consuming <1 cpu so that we would contribute the same
2438 * load as a task of equal weight.
2439 *
2440 * Explicitly co-ordinating this measurement would be expensive, but
2441 * fortunately the sum of each cpus contribution forms a usable
2442 * lower-bound on the true value.
2443 *
2444 * Consider the aggregate of 2 contributions. Either they are disjoint
2445 * (and the sum represents true value) or they are disjoint and we are
2446 * understating by the aggregate of their overlap.
2447 *
2448 * Extending this to N cpus, for a given overlap, the maximum amount we
2449 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2450 * cpus that overlap for this interval and w_i is the interval width.
2451 *
2452 * On a small machine; the first term is well-bounded which bounds the
2453 * total error since w_i is a subset of the period. Whereas on a
2454 * larger machine, while this first term can be larger, if w_i is the
2455 * of consequential size guaranteed to see n_i*w_i quickly converge to
2456 * our upper bound of 1-cpu.
2457 */
2458 runnable_avg = atomic_read(&tg->runnable_avg);
2459 if (runnable_avg < NICE_0_LOAD) {
2460 se->avg.load_avg_contrib *= runnable_avg;
2461 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2462 }
8165e145 2463}
f5f9739d
DE
2464
2465static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2466{
2467 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2468 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2469}
6e83125c 2470#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2471static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2472 int force_update) {}
bb17f655
PT
2473static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2474 struct cfs_rq *cfs_rq) {}
8165e145 2475static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2476static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2477#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2478
8165e145
PT
2479static inline void __update_task_entity_contrib(struct sched_entity *se)
2480{
2481 u32 contrib;
2482
2483 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2484 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2485 contrib /= (se->avg.runnable_avg_period + 1);
2486 se->avg.load_avg_contrib = scale_load(contrib);
2487}
2488
2dac754e
PT
2489/* Compute the current contribution to load_avg by se, return any delta */
2490static long __update_entity_load_avg_contrib(struct sched_entity *se)
2491{
2492 long old_contrib = se->avg.load_avg_contrib;
2493
8165e145
PT
2494 if (entity_is_task(se)) {
2495 __update_task_entity_contrib(se);
2496 } else {
bb17f655 2497 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2498 __update_group_entity_contrib(se);
2499 }
2dac754e
PT
2500
2501 return se->avg.load_avg_contrib - old_contrib;
2502}
2503
9ee474f5
PT
2504static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2505 long load_contrib)
2506{
2507 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2508 cfs_rq->blocked_load_avg -= load_contrib;
2509 else
2510 cfs_rq->blocked_load_avg = 0;
2511}
2512
f1b17280
PT
2513static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2514
9d85f21c 2515/* Update a sched_entity's runnable average */
9ee474f5
PT
2516static inline void update_entity_load_avg(struct sched_entity *se,
2517 int update_cfs_rq)
9d85f21c 2518{
2dac754e
PT
2519 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2520 long contrib_delta;
f1b17280 2521 u64 now;
2dac754e 2522
f1b17280
PT
2523 /*
2524 * For a group entity we need to use their owned cfs_rq_clock_task() in
2525 * case they are the parent of a throttled hierarchy.
2526 */
2527 if (entity_is_task(se))
2528 now = cfs_rq_clock_task(cfs_rq);
2529 else
2530 now = cfs_rq_clock_task(group_cfs_rq(se));
2531
2532 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2533 return;
2534
2535 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2536
2537 if (!update_cfs_rq)
2538 return;
2539
2dac754e
PT
2540 if (se->on_rq)
2541 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2542 else
2543 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2544}
2545
2546/*
2547 * Decay the load contributed by all blocked children and account this so that
2548 * their contribution may appropriately discounted when they wake up.
2549 */
aff3e498 2550static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2551{
f1b17280 2552 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2553 u64 decays;
2554
2555 decays = now - cfs_rq->last_decay;
aff3e498 2556 if (!decays && !force_update)
9ee474f5
PT
2557 return;
2558
2509940f
AS
2559 if (atomic_long_read(&cfs_rq->removed_load)) {
2560 unsigned long removed_load;
2561 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2562 subtract_blocked_load_contrib(cfs_rq, removed_load);
2563 }
9ee474f5 2564
aff3e498
PT
2565 if (decays) {
2566 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2567 decays);
2568 atomic64_add(decays, &cfs_rq->decay_counter);
2569 cfs_rq->last_decay = now;
2570 }
c566e8e9
PT
2571
2572 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2573}
18bf2805 2574
2dac754e
PT
2575/* Add the load generated by se into cfs_rq's child load-average */
2576static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2577 struct sched_entity *se,
2578 int wakeup)
2dac754e 2579{
aff3e498
PT
2580 /*
2581 * We track migrations using entity decay_count <= 0, on a wake-up
2582 * migration we use a negative decay count to track the remote decays
2583 * accumulated while sleeping.
a75cdaa9
AS
2584 *
2585 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2586 * are seen by enqueue_entity_load_avg() as a migration with an already
2587 * constructed load_avg_contrib.
aff3e498
PT
2588 */
2589 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2590 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2591 if (se->avg.decay_count) {
2592 /*
2593 * In a wake-up migration we have to approximate the
2594 * time sleeping. This is because we can't synchronize
2595 * clock_task between the two cpus, and it is not
2596 * guaranteed to be read-safe. Instead, we can
2597 * approximate this using our carried decays, which are
2598 * explicitly atomically readable.
2599 */
2600 se->avg.last_runnable_update -= (-se->avg.decay_count)
2601 << 20;
2602 update_entity_load_avg(se, 0);
2603 /* Indicate that we're now synchronized and on-rq */
2604 se->avg.decay_count = 0;
2605 }
9ee474f5
PT
2606 wakeup = 0;
2607 } else {
9390675a 2608 __synchronize_entity_decay(se);
9ee474f5
PT
2609 }
2610
aff3e498
PT
2611 /* migrated tasks did not contribute to our blocked load */
2612 if (wakeup) {
9ee474f5 2613 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2614 update_entity_load_avg(se, 0);
2615 }
9ee474f5 2616
2dac754e 2617 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2618 /* we force update consideration on load-balancer moves */
2619 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2620}
2621
9ee474f5
PT
2622/*
2623 * Remove se's load from this cfs_rq child load-average, if the entity is
2624 * transitioning to a blocked state we track its projected decay using
2625 * blocked_load_avg.
2626 */
2dac754e 2627static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2628 struct sched_entity *se,
2629 int sleep)
2dac754e 2630{
9ee474f5 2631 update_entity_load_avg(se, 1);
aff3e498
PT
2632 /* we force update consideration on load-balancer moves */
2633 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2634
2dac754e 2635 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2636 if (sleep) {
2637 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2638 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2639 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2640}
642dbc39
VG
2641
2642/*
2643 * Update the rq's load with the elapsed running time before entering
2644 * idle. if the last scheduled task is not a CFS task, idle_enter will
2645 * be the only way to update the runnable statistic.
2646 */
2647void idle_enter_fair(struct rq *this_rq)
2648{
2649 update_rq_runnable_avg(this_rq, 1);
2650}
2651
2652/*
2653 * Update the rq's load with the elapsed idle time before a task is
2654 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2655 * be the only way to update the runnable statistic.
2656 */
2657void idle_exit_fair(struct rq *this_rq)
2658{
2659 update_rq_runnable_avg(this_rq, 0);
2660}
2661
6e83125c
PZ
2662static int idle_balance(struct rq *this_rq);
2663
38033c37
PZ
2664#else /* CONFIG_SMP */
2665
9ee474f5
PT
2666static inline void update_entity_load_avg(struct sched_entity *se,
2667 int update_cfs_rq) {}
18bf2805 2668static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2669static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2670 struct sched_entity *se,
2671 int wakeup) {}
2dac754e 2672static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2673 struct sched_entity *se,
2674 int sleep) {}
aff3e498
PT
2675static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2676 int force_update) {}
6e83125c
PZ
2677
2678static inline int idle_balance(struct rq *rq)
2679{
2680 return 0;
2681}
2682
38033c37 2683#endif /* CONFIG_SMP */
9d85f21c 2684
2396af69 2685static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2686{
bf0f6f24 2687#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2688 struct task_struct *tsk = NULL;
2689
2690 if (entity_is_task(se))
2691 tsk = task_of(se);
2692
41acab88 2693 if (se->statistics.sleep_start) {
78becc27 2694 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2695
2696 if ((s64)delta < 0)
2697 delta = 0;
2698
41acab88
LDM
2699 if (unlikely(delta > se->statistics.sleep_max))
2700 se->statistics.sleep_max = delta;
bf0f6f24 2701
8c79a045 2702 se->statistics.sleep_start = 0;
41acab88 2703 se->statistics.sum_sleep_runtime += delta;
9745512c 2704
768d0c27 2705 if (tsk) {
e414314c 2706 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2707 trace_sched_stat_sleep(tsk, delta);
2708 }
bf0f6f24 2709 }
41acab88 2710 if (se->statistics.block_start) {
78becc27 2711 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2712
2713 if ((s64)delta < 0)
2714 delta = 0;
2715
41acab88
LDM
2716 if (unlikely(delta > se->statistics.block_max))
2717 se->statistics.block_max = delta;
bf0f6f24 2718
8c79a045 2719 se->statistics.block_start = 0;
41acab88 2720 se->statistics.sum_sleep_runtime += delta;
30084fbd 2721
e414314c 2722 if (tsk) {
8f0dfc34 2723 if (tsk->in_iowait) {
41acab88
LDM
2724 se->statistics.iowait_sum += delta;
2725 se->statistics.iowait_count++;
768d0c27 2726 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2727 }
2728
b781a602
AV
2729 trace_sched_stat_blocked(tsk, delta);
2730
e414314c
PZ
2731 /*
2732 * Blocking time is in units of nanosecs, so shift by
2733 * 20 to get a milliseconds-range estimation of the
2734 * amount of time that the task spent sleeping:
2735 */
2736 if (unlikely(prof_on == SLEEP_PROFILING)) {
2737 profile_hits(SLEEP_PROFILING,
2738 (void *)get_wchan(tsk),
2739 delta >> 20);
2740 }
2741 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2742 }
bf0f6f24
IM
2743 }
2744#endif
2745}
2746
ddc97297
PZ
2747static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2748{
2749#ifdef CONFIG_SCHED_DEBUG
2750 s64 d = se->vruntime - cfs_rq->min_vruntime;
2751
2752 if (d < 0)
2753 d = -d;
2754
2755 if (d > 3*sysctl_sched_latency)
2756 schedstat_inc(cfs_rq, nr_spread_over);
2757#endif
2758}
2759
aeb73b04
PZ
2760static void
2761place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2762{
1af5f730 2763 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2764
2cb8600e
PZ
2765 /*
2766 * The 'current' period is already promised to the current tasks,
2767 * however the extra weight of the new task will slow them down a
2768 * little, place the new task so that it fits in the slot that
2769 * stays open at the end.
2770 */
94dfb5e7 2771 if (initial && sched_feat(START_DEBIT))
f9c0b095 2772 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2773
a2e7a7eb 2774 /* sleeps up to a single latency don't count. */
5ca9880c 2775 if (!initial) {
a2e7a7eb 2776 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2777
a2e7a7eb
MG
2778 /*
2779 * Halve their sleep time's effect, to allow
2780 * for a gentler effect of sleepers:
2781 */
2782 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2783 thresh >>= 1;
51e0304c 2784
a2e7a7eb 2785 vruntime -= thresh;
aeb73b04
PZ
2786 }
2787
b5d9d734 2788 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2789 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2790}
2791
d3d9dc33
PT
2792static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2793
bf0f6f24 2794static void
88ec22d3 2795enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2796{
88ec22d3
PZ
2797 /*
2798 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2799 * through calling update_curr().
88ec22d3 2800 */
371fd7e7 2801 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2802 se->vruntime += cfs_rq->min_vruntime;
2803
bf0f6f24 2804 /*
a2a2d680 2805 * Update run-time statistics of the 'current'.
bf0f6f24 2806 */
b7cc0896 2807 update_curr(cfs_rq);
f269ae04 2808 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2809 account_entity_enqueue(cfs_rq, se);
2810 update_cfs_shares(cfs_rq);
bf0f6f24 2811
88ec22d3 2812 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2813 place_entity(cfs_rq, se, 0);
2396af69 2814 enqueue_sleeper(cfs_rq, se);
e9acbff6 2815 }
bf0f6f24 2816
d2417e5a 2817 update_stats_enqueue(cfs_rq, se);
ddc97297 2818 check_spread(cfs_rq, se);
83b699ed
SV
2819 if (se != cfs_rq->curr)
2820 __enqueue_entity(cfs_rq, se);
2069dd75 2821 se->on_rq = 1;
3d4b47b4 2822
d3d9dc33 2823 if (cfs_rq->nr_running == 1) {
3d4b47b4 2824 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2825 check_enqueue_throttle(cfs_rq);
2826 }
bf0f6f24
IM
2827}
2828
2c13c919 2829static void __clear_buddies_last(struct sched_entity *se)
2002c695 2830{
2c13c919
RR
2831 for_each_sched_entity(se) {
2832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2833 if (cfs_rq->last != se)
2c13c919 2834 break;
f1044799
PZ
2835
2836 cfs_rq->last = NULL;
2c13c919
RR
2837 }
2838}
2002c695 2839
2c13c919
RR
2840static void __clear_buddies_next(struct sched_entity *se)
2841{
2842 for_each_sched_entity(se) {
2843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2844 if (cfs_rq->next != se)
2c13c919 2845 break;
f1044799
PZ
2846
2847 cfs_rq->next = NULL;
2c13c919 2848 }
2002c695
PZ
2849}
2850
ac53db59
RR
2851static void __clear_buddies_skip(struct sched_entity *se)
2852{
2853 for_each_sched_entity(se) {
2854 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2855 if (cfs_rq->skip != se)
ac53db59 2856 break;
f1044799
PZ
2857
2858 cfs_rq->skip = NULL;
ac53db59
RR
2859 }
2860}
2861
a571bbea
PZ
2862static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2863{
2c13c919
RR
2864 if (cfs_rq->last == se)
2865 __clear_buddies_last(se);
2866
2867 if (cfs_rq->next == se)
2868 __clear_buddies_next(se);
ac53db59
RR
2869
2870 if (cfs_rq->skip == se)
2871 __clear_buddies_skip(se);
a571bbea
PZ
2872}
2873
6c16a6dc 2874static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2875
bf0f6f24 2876static void
371fd7e7 2877dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2878{
a2a2d680
DA
2879 /*
2880 * Update run-time statistics of the 'current'.
2881 */
2882 update_curr(cfs_rq);
17bc14b7 2883 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2884
19b6a2e3 2885 update_stats_dequeue(cfs_rq, se);
371fd7e7 2886 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2887#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2888 if (entity_is_task(se)) {
2889 struct task_struct *tsk = task_of(se);
2890
2891 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2892 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2893 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2894 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2895 }
db36cc7d 2896#endif
67e9fb2a
PZ
2897 }
2898
2002c695 2899 clear_buddies(cfs_rq, se);
4793241b 2900
83b699ed 2901 if (se != cfs_rq->curr)
30cfdcfc 2902 __dequeue_entity(cfs_rq, se);
17bc14b7 2903 se->on_rq = 0;
30cfdcfc 2904 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2905
2906 /*
2907 * Normalize the entity after updating the min_vruntime because the
2908 * update can refer to the ->curr item and we need to reflect this
2909 * movement in our normalized position.
2910 */
371fd7e7 2911 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2912 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2913
d8b4986d
PT
2914 /* return excess runtime on last dequeue */
2915 return_cfs_rq_runtime(cfs_rq);
2916
1e876231 2917 update_min_vruntime(cfs_rq);
17bc14b7 2918 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2919}
2920
2921/*
2922 * Preempt the current task with a newly woken task if needed:
2923 */
7c92e54f 2924static void
2e09bf55 2925check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2926{
11697830 2927 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2928 struct sched_entity *se;
2929 s64 delta;
11697830 2930
6d0f0ebd 2931 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2932 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2933 if (delta_exec > ideal_runtime) {
8875125e 2934 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2935 /*
2936 * The current task ran long enough, ensure it doesn't get
2937 * re-elected due to buddy favours.
2938 */
2939 clear_buddies(cfs_rq, curr);
f685ceac
MG
2940 return;
2941 }
2942
2943 /*
2944 * Ensure that a task that missed wakeup preemption by a
2945 * narrow margin doesn't have to wait for a full slice.
2946 * This also mitigates buddy induced latencies under load.
2947 */
f685ceac
MG
2948 if (delta_exec < sysctl_sched_min_granularity)
2949 return;
2950
f4cfb33e
WX
2951 se = __pick_first_entity(cfs_rq);
2952 delta = curr->vruntime - se->vruntime;
f685ceac 2953
f4cfb33e
WX
2954 if (delta < 0)
2955 return;
d7d82944 2956
f4cfb33e 2957 if (delta > ideal_runtime)
8875125e 2958 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2959}
2960
83b699ed 2961static void
8494f412 2962set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2963{
83b699ed
SV
2964 /* 'current' is not kept within the tree. */
2965 if (se->on_rq) {
2966 /*
2967 * Any task has to be enqueued before it get to execute on
2968 * a CPU. So account for the time it spent waiting on the
2969 * runqueue.
2970 */
2971 update_stats_wait_end(cfs_rq, se);
2972 __dequeue_entity(cfs_rq, se);
2973 }
2974
79303e9e 2975 update_stats_curr_start(cfs_rq, se);
429d43bc 2976 cfs_rq->curr = se;
eba1ed4b
IM
2977#ifdef CONFIG_SCHEDSTATS
2978 /*
2979 * Track our maximum slice length, if the CPU's load is at
2980 * least twice that of our own weight (i.e. dont track it
2981 * when there are only lesser-weight tasks around):
2982 */
495eca49 2983 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2984 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2985 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2986 }
2987#endif
4a55b450 2988 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2989}
2990
3f3a4904
PZ
2991static int
2992wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2993
ac53db59
RR
2994/*
2995 * Pick the next process, keeping these things in mind, in this order:
2996 * 1) keep things fair between processes/task groups
2997 * 2) pick the "next" process, since someone really wants that to run
2998 * 3) pick the "last" process, for cache locality
2999 * 4) do not run the "skip" process, if something else is available
3000 */
678d5718
PZ
3001static struct sched_entity *
3002pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3003{
678d5718
PZ
3004 struct sched_entity *left = __pick_first_entity(cfs_rq);
3005 struct sched_entity *se;
3006
3007 /*
3008 * If curr is set we have to see if its left of the leftmost entity
3009 * still in the tree, provided there was anything in the tree at all.
3010 */
3011 if (!left || (curr && entity_before(curr, left)))
3012 left = curr;
3013
3014 se = left; /* ideally we run the leftmost entity */
f4b6755f 3015
ac53db59
RR
3016 /*
3017 * Avoid running the skip buddy, if running something else can
3018 * be done without getting too unfair.
3019 */
3020 if (cfs_rq->skip == se) {
678d5718
PZ
3021 struct sched_entity *second;
3022
3023 if (se == curr) {
3024 second = __pick_first_entity(cfs_rq);
3025 } else {
3026 second = __pick_next_entity(se);
3027 if (!second || (curr && entity_before(curr, second)))
3028 second = curr;
3029 }
3030
ac53db59
RR
3031 if (second && wakeup_preempt_entity(second, left) < 1)
3032 se = second;
3033 }
aa2ac252 3034
f685ceac
MG
3035 /*
3036 * Prefer last buddy, try to return the CPU to a preempted task.
3037 */
3038 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3039 se = cfs_rq->last;
3040
ac53db59
RR
3041 /*
3042 * Someone really wants this to run. If it's not unfair, run it.
3043 */
3044 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3045 se = cfs_rq->next;
3046
f685ceac 3047 clear_buddies(cfs_rq, se);
4793241b
PZ
3048
3049 return se;
aa2ac252
PZ
3050}
3051
678d5718 3052static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3053
ab6cde26 3054static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3055{
3056 /*
3057 * If still on the runqueue then deactivate_task()
3058 * was not called and update_curr() has to be done:
3059 */
3060 if (prev->on_rq)
b7cc0896 3061 update_curr(cfs_rq);
bf0f6f24 3062
d3d9dc33
PT
3063 /* throttle cfs_rqs exceeding runtime */
3064 check_cfs_rq_runtime(cfs_rq);
3065
ddc97297 3066 check_spread(cfs_rq, prev);
30cfdcfc 3067 if (prev->on_rq) {
5870db5b 3068 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3069 /* Put 'current' back into the tree. */
3070 __enqueue_entity(cfs_rq, prev);
9d85f21c 3071 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3072 update_entity_load_avg(prev, 1);
30cfdcfc 3073 }
429d43bc 3074 cfs_rq->curr = NULL;
bf0f6f24
IM
3075}
3076
8f4d37ec
PZ
3077static void
3078entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3079{
bf0f6f24 3080 /*
30cfdcfc 3081 * Update run-time statistics of the 'current'.
bf0f6f24 3082 */
30cfdcfc 3083 update_curr(cfs_rq);
bf0f6f24 3084
9d85f21c
PT
3085 /*
3086 * Ensure that runnable average is periodically updated.
3087 */
9ee474f5 3088 update_entity_load_avg(curr, 1);
aff3e498 3089 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3090 update_cfs_shares(cfs_rq);
9d85f21c 3091
8f4d37ec
PZ
3092#ifdef CONFIG_SCHED_HRTICK
3093 /*
3094 * queued ticks are scheduled to match the slice, so don't bother
3095 * validating it and just reschedule.
3096 */
983ed7a6 3097 if (queued) {
8875125e 3098 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3099 return;
3100 }
8f4d37ec
PZ
3101 /*
3102 * don't let the period tick interfere with the hrtick preemption
3103 */
3104 if (!sched_feat(DOUBLE_TICK) &&
3105 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3106 return;
3107#endif
3108
2c2efaed 3109 if (cfs_rq->nr_running > 1)
2e09bf55 3110 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3111}
3112
ab84d31e
PT
3113
3114/**************************************************
3115 * CFS bandwidth control machinery
3116 */
3117
3118#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3119
3120#ifdef HAVE_JUMP_LABEL
c5905afb 3121static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3122
3123static inline bool cfs_bandwidth_used(void)
3124{
c5905afb 3125 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3126}
3127
1ee14e6c 3128void cfs_bandwidth_usage_inc(void)
029632fb 3129{
1ee14e6c
BS
3130 static_key_slow_inc(&__cfs_bandwidth_used);
3131}
3132
3133void cfs_bandwidth_usage_dec(void)
3134{
3135 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3136}
3137#else /* HAVE_JUMP_LABEL */
3138static bool cfs_bandwidth_used(void)
3139{
3140 return true;
3141}
3142
1ee14e6c
BS
3143void cfs_bandwidth_usage_inc(void) {}
3144void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3145#endif /* HAVE_JUMP_LABEL */
3146
ab84d31e
PT
3147/*
3148 * default period for cfs group bandwidth.
3149 * default: 0.1s, units: nanoseconds
3150 */
3151static inline u64 default_cfs_period(void)
3152{
3153 return 100000000ULL;
3154}
ec12cb7f
PT
3155
3156static inline u64 sched_cfs_bandwidth_slice(void)
3157{
3158 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3159}
3160
a9cf55b2
PT
3161/*
3162 * Replenish runtime according to assigned quota and update expiration time.
3163 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3164 * additional synchronization around rq->lock.
3165 *
3166 * requires cfs_b->lock
3167 */
029632fb 3168void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3169{
3170 u64 now;
3171
3172 if (cfs_b->quota == RUNTIME_INF)
3173 return;
3174
3175 now = sched_clock_cpu(smp_processor_id());
3176 cfs_b->runtime = cfs_b->quota;
3177 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3178}
3179
029632fb
PZ
3180static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3181{
3182 return &tg->cfs_bandwidth;
3183}
3184
f1b17280
PT
3185/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3186static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3187{
3188 if (unlikely(cfs_rq->throttle_count))
3189 return cfs_rq->throttled_clock_task;
3190
78becc27 3191 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3192}
3193
85dac906
PT
3194/* returns 0 on failure to allocate runtime */
3195static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3196{
3197 struct task_group *tg = cfs_rq->tg;
3198 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3199 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3200
3201 /* note: this is a positive sum as runtime_remaining <= 0 */
3202 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3203
3204 raw_spin_lock(&cfs_b->lock);
3205 if (cfs_b->quota == RUNTIME_INF)
3206 amount = min_amount;
58088ad0 3207 else {
a9cf55b2
PT
3208 /*
3209 * If the bandwidth pool has become inactive, then at least one
3210 * period must have elapsed since the last consumption.
3211 * Refresh the global state and ensure bandwidth timer becomes
3212 * active.
3213 */
3214 if (!cfs_b->timer_active) {
3215 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3216 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3217 }
58088ad0
PT
3218
3219 if (cfs_b->runtime > 0) {
3220 amount = min(cfs_b->runtime, min_amount);
3221 cfs_b->runtime -= amount;
3222 cfs_b->idle = 0;
3223 }
ec12cb7f 3224 }
a9cf55b2 3225 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3226 raw_spin_unlock(&cfs_b->lock);
3227
3228 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3229 /*
3230 * we may have advanced our local expiration to account for allowed
3231 * spread between our sched_clock and the one on which runtime was
3232 * issued.
3233 */
3234 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3235 cfs_rq->runtime_expires = expires;
85dac906
PT
3236
3237 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3238}
3239
a9cf55b2
PT
3240/*
3241 * Note: This depends on the synchronization provided by sched_clock and the
3242 * fact that rq->clock snapshots this value.
3243 */
3244static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3245{
a9cf55b2 3246 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3247
3248 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3249 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3250 return;
3251
a9cf55b2
PT
3252 if (cfs_rq->runtime_remaining < 0)
3253 return;
3254
3255 /*
3256 * If the local deadline has passed we have to consider the
3257 * possibility that our sched_clock is 'fast' and the global deadline
3258 * has not truly expired.
3259 *
3260 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3261 * whether the global deadline has advanced. It is valid to compare
3262 * cfs_b->runtime_expires without any locks since we only care about
3263 * exact equality, so a partial write will still work.
a9cf55b2
PT
3264 */
3265
51f2176d 3266 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3267 /* extend local deadline, drift is bounded above by 2 ticks */
3268 cfs_rq->runtime_expires += TICK_NSEC;
3269 } else {
3270 /* global deadline is ahead, expiration has passed */
3271 cfs_rq->runtime_remaining = 0;
3272 }
3273}
3274
9dbdb155 3275static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3276{
3277 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3278 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3279 expire_cfs_rq_runtime(cfs_rq);
3280
3281 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3282 return;
3283
85dac906
PT
3284 /*
3285 * if we're unable to extend our runtime we resched so that the active
3286 * hierarchy can be throttled
3287 */
3288 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3289 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3290}
3291
6c16a6dc 3292static __always_inline
9dbdb155 3293void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3294{
56f570e5 3295 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3296 return;
3297
3298 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3299}
3300
85dac906
PT
3301static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3302{
56f570e5 3303 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3304}
3305
64660c86
PT
3306/* check whether cfs_rq, or any parent, is throttled */
3307static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3308{
56f570e5 3309 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3310}
3311
3312/*
3313 * Ensure that neither of the group entities corresponding to src_cpu or
3314 * dest_cpu are members of a throttled hierarchy when performing group
3315 * load-balance operations.
3316 */
3317static inline int throttled_lb_pair(struct task_group *tg,
3318 int src_cpu, int dest_cpu)
3319{
3320 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3321
3322 src_cfs_rq = tg->cfs_rq[src_cpu];
3323 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3324
3325 return throttled_hierarchy(src_cfs_rq) ||
3326 throttled_hierarchy(dest_cfs_rq);
3327}
3328
3329/* updated child weight may affect parent so we have to do this bottom up */
3330static int tg_unthrottle_up(struct task_group *tg, void *data)
3331{
3332 struct rq *rq = data;
3333 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3334
3335 cfs_rq->throttle_count--;
3336#ifdef CONFIG_SMP
3337 if (!cfs_rq->throttle_count) {
f1b17280 3338 /* adjust cfs_rq_clock_task() */
78becc27 3339 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3340 cfs_rq->throttled_clock_task;
64660c86
PT
3341 }
3342#endif
3343
3344 return 0;
3345}
3346
3347static int tg_throttle_down(struct task_group *tg, void *data)
3348{
3349 struct rq *rq = data;
3350 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3351
82958366
PT
3352 /* group is entering throttled state, stop time */
3353 if (!cfs_rq->throttle_count)
78becc27 3354 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3355 cfs_rq->throttle_count++;
3356
3357 return 0;
3358}
3359
d3d9dc33 3360static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3361{
3362 struct rq *rq = rq_of(cfs_rq);
3363 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3364 struct sched_entity *se;
3365 long task_delta, dequeue = 1;
3366
3367 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3368
f1b17280 3369 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3370 rcu_read_lock();
3371 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3372 rcu_read_unlock();
85dac906
PT
3373
3374 task_delta = cfs_rq->h_nr_running;
3375 for_each_sched_entity(se) {
3376 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3377 /* throttled entity or throttle-on-deactivate */
3378 if (!se->on_rq)
3379 break;
3380
3381 if (dequeue)
3382 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3383 qcfs_rq->h_nr_running -= task_delta;
3384
3385 if (qcfs_rq->load.weight)
3386 dequeue = 0;
3387 }
3388
3389 if (!se)
72465447 3390 sub_nr_running(rq, task_delta);
85dac906
PT
3391
3392 cfs_rq->throttled = 1;
78becc27 3393 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3394 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3395 /*
3396 * Add to the _head_ of the list, so that an already-started
3397 * distribute_cfs_runtime will not see us
3398 */
3399 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3400 if (!cfs_b->timer_active)
09dc4ab0 3401 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3402 raw_spin_unlock(&cfs_b->lock);
3403}
3404
029632fb 3405void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3406{
3407 struct rq *rq = rq_of(cfs_rq);
3408 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3409 struct sched_entity *se;
3410 int enqueue = 1;
3411 long task_delta;
3412
22b958d8 3413 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3414
3415 cfs_rq->throttled = 0;
1a55af2e
FW
3416
3417 update_rq_clock(rq);
3418
671fd9da 3419 raw_spin_lock(&cfs_b->lock);
78becc27 3420 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3421 list_del_rcu(&cfs_rq->throttled_list);
3422 raw_spin_unlock(&cfs_b->lock);
3423
64660c86
PT
3424 /* update hierarchical throttle state */
3425 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3426
671fd9da
PT
3427 if (!cfs_rq->load.weight)
3428 return;
3429
3430 task_delta = cfs_rq->h_nr_running;
3431 for_each_sched_entity(se) {
3432 if (se->on_rq)
3433 enqueue = 0;
3434
3435 cfs_rq = cfs_rq_of(se);
3436 if (enqueue)
3437 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3438 cfs_rq->h_nr_running += task_delta;
3439
3440 if (cfs_rq_throttled(cfs_rq))
3441 break;
3442 }
3443
3444 if (!se)
72465447 3445 add_nr_running(rq, task_delta);
671fd9da
PT
3446
3447 /* determine whether we need to wake up potentially idle cpu */
3448 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3449 resched_curr(rq);
671fd9da
PT
3450}
3451
3452static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3453 u64 remaining, u64 expires)
3454{
3455 struct cfs_rq *cfs_rq;
c06f04c7
BS
3456 u64 runtime;
3457 u64 starting_runtime = remaining;
671fd9da
PT
3458
3459 rcu_read_lock();
3460 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3461 throttled_list) {
3462 struct rq *rq = rq_of(cfs_rq);
3463
3464 raw_spin_lock(&rq->lock);
3465 if (!cfs_rq_throttled(cfs_rq))
3466 goto next;
3467
3468 runtime = -cfs_rq->runtime_remaining + 1;
3469 if (runtime > remaining)
3470 runtime = remaining;
3471 remaining -= runtime;
3472
3473 cfs_rq->runtime_remaining += runtime;
3474 cfs_rq->runtime_expires = expires;
3475
3476 /* we check whether we're throttled above */
3477 if (cfs_rq->runtime_remaining > 0)
3478 unthrottle_cfs_rq(cfs_rq);
3479
3480next:
3481 raw_spin_unlock(&rq->lock);
3482
3483 if (!remaining)
3484 break;
3485 }
3486 rcu_read_unlock();
3487
c06f04c7 3488 return starting_runtime - remaining;
671fd9da
PT
3489}
3490
58088ad0
PT
3491/*
3492 * Responsible for refilling a task_group's bandwidth and unthrottling its
3493 * cfs_rqs as appropriate. If there has been no activity within the last
3494 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3495 * used to track this state.
3496 */
3497static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3498{
671fd9da 3499 u64 runtime, runtime_expires;
51f2176d 3500 int throttled;
58088ad0 3501
58088ad0
PT
3502 /* no need to continue the timer with no bandwidth constraint */
3503 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3504 goto out_deactivate;
58088ad0 3505
671fd9da 3506 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3507 cfs_b->nr_periods += overrun;
671fd9da 3508
51f2176d
BS
3509 /*
3510 * idle depends on !throttled (for the case of a large deficit), and if
3511 * we're going inactive then everything else can be deferred
3512 */
3513 if (cfs_b->idle && !throttled)
3514 goto out_deactivate;
a9cf55b2 3515
927b54fc
BS
3516 /*
3517 * if we have relooped after returning idle once, we need to update our
3518 * status as actually running, so that other cpus doing
3519 * __start_cfs_bandwidth will stop trying to cancel us.
3520 */
3521 cfs_b->timer_active = 1;
3522
a9cf55b2
PT
3523 __refill_cfs_bandwidth_runtime(cfs_b);
3524
671fd9da
PT
3525 if (!throttled) {
3526 /* mark as potentially idle for the upcoming period */
3527 cfs_b->idle = 1;
51f2176d 3528 return 0;
671fd9da
PT
3529 }
3530
e8da1b18
NR
3531 /* account preceding periods in which throttling occurred */
3532 cfs_b->nr_throttled += overrun;
3533
671fd9da 3534 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3535
3536 /*
c06f04c7
BS
3537 * This check is repeated as we are holding onto the new bandwidth while
3538 * we unthrottle. This can potentially race with an unthrottled group
3539 * trying to acquire new bandwidth from the global pool. This can result
3540 * in us over-using our runtime if it is all used during this loop, but
3541 * only by limited amounts in that extreme case.
671fd9da 3542 */
c06f04c7
BS
3543 while (throttled && cfs_b->runtime > 0) {
3544 runtime = cfs_b->runtime;
671fd9da
PT
3545 raw_spin_unlock(&cfs_b->lock);
3546 /* we can't nest cfs_b->lock while distributing bandwidth */
3547 runtime = distribute_cfs_runtime(cfs_b, runtime,
3548 runtime_expires);
3549 raw_spin_lock(&cfs_b->lock);
3550
3551 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3552
3553 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3554 }
58088ad0 3555
671fd9da
PT
3556 /*
3557 * While we are ensured activity in the period following an
3558 * unthrottle, this also covers the case in which the new bandwidth is
3559 * insufficient to cover the existing bandwidth deficit. (Forcing the
3560 * timer to remain active while there are any throttled entities.)
3561 */
3562 cfs_b->idle = 0;
58088ad0 3563
51f2176d
BS
3564 return 0;
3565
3566out_deactivate:
3567 cfs_b->timer_active = 0;
3568 return 1;
58088ad0 3569}
d3d9dc33 3570
d8b4986d
PT
3571/* a cfs_rq won't donate quota below this amount */
3572static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3573/* minimum remaining period time to redistribute slack quota */
3574static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3575/* how long we wait to gather additional slack before distributing */
3576static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3577
db06e78c
BS
3578/*
3579 * Are we near the end of the current quota period?
3580 *
3581 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3582 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3583 * migrate_hrtimers, base is never cleared, so we are fine.
3584 */
d8b4986d
PT
3585static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3586{
3587 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3588 u64 remaining;
3589
3590 /* if the call-back is running a quota refresh is already occurring */
3591 if (hrtimer_callback_running(refresh_timer))
3592 return 1;
3593
3594 /* is a quota refresh about to occur? */
3595 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3596 if (remaining < min_expire)
3597 return 1;
3598
3599 return 0;
3600}
3601
3602static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3603{
3604 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3605
3606 /* if there's a quota refresh soon don't bother with slack */
3607 if (runtime_refresh_within(cfs_b, min_left))
3608 return;
3609
3610 start_bandwidth_timer(&cfs_b->slack_timer,
3611 ns_to_ktime(cfs_bandwidth_slack_period));
3612}
3613
3614/* we know any runtime found here is valid as update_curr() precedes return */
3615static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3616{
3617 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3618 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3619
3620 if (slack_runtime <= 0)
3621 return;
3622
3623 raw_spin_lock(&cfs_b->lock);
3624 if (cfs_b->quota != RUNTIME_INF &&
3625 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3626 cfs_b->runtime += slack_runtime;
3627
3628 /* we are under rq->lock, defer unthrottling using a timer */
3629 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3630 !list_empty(&cfs_b->throttled_cfs_rq))
3631 start_cfs_slack_bandwidth(cfs_b);
3632 }
3633 raw_spin_unlock(&cfs_b->lock);
3634
3635 /* even if it's not valid for return we don't want to try again */
3636 cfs_rq->runtime_remaining -= slack_runtime;
3637}
3638
3639static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3640{
56f570e5
PT
3641 if (!cfs_bandwidth_used())
3642 return;
3643
fccfdc6f 3644 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3645 return;
3646
3647 __return_cfs_rq_runtime(cfs_rq);
3648}
3649
3650/*
3651 * This is done with a timer (instead of inline with bandwidth return) since
3652 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3653 */
3654static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3655{
3656 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3657 u64 expires;
3658
3659 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3660 raw_spin_lock(&cfs_b->lock);
3661 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3662 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3663 return;
db06e78c 3664 }
d8b4986d 3665
c06f04c7 3666 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3667 runtime = cfs_b->runtime;
c06f04c7 3668
d8b4986d
PT
3669 expires = cfs_b->runtime_expires;
3670 raw_spin_unlock(&cfs_b->lock);
3671
3672 if (!runtime)
3673 return;
3674
3675 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3676
3677 raw_spin_lock(&cfs_b->lock);
3678 if (expires == cfs_b->runtime_expires)
c06f04c7 3679 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3680 raw_spin_unlock(&cfs_b->lock);
3681}
3682
d3d9dc33
PT
3683/*
3684 * When a group wakes up we want to make sure that its quota is not already
3685 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3686 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3687 */
3688static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3689{
56f570e5
PT
3690 if (!cfs_bandwidth_used())
3691 return;
3692
d3d9dc33
PT
3693 /* an active group must be handled by the update_curr()->put() path */
3694 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3695 return;
3696
3697 /* ensure the group is not already throttled */
3698 if (cfs_rq_throttled(cfs_rq))
3699 return;
3700
3701 /* update runtime allocation */
3702 account_cfs_rq_runtime(cfs_rq, 0);
3703 if (cfs_rq->runtime_remaining <= 0)
3704 throttle_cfs_rq(cfs_rq);
3705}
3706
3707/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3708static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3709{
56f570e5 3710 if (!cfs_bandwidth_used())
678d5718 3711 return false;
56f570e5 3712
d3d9dc33 3713 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3714 return false;
d3d9dc33
PT
3715
3716 /*
3717 * it's possible for a throttled entity to be forced into a running
3718 * state (e.g. set_curr_task), in this case we're finished.
3719 */
3720 if (cfs_rq_throttled(cfs_rq))
678d5718 3721 return true;
d3d9dc33
PT
3722
3723 throttle_cfs_rq(cfs_rq);
678d5718 3724 return true;
d3d9dc33 3725}
029632fb 3726
029632fb
PZ
3727static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3728{
3729 struct cfs_bandwidth *cfs_b =
3730 container_of(timer, struct cfs_bandwidth, slack_timer);
3731 do_sched_cfs_slack_timer(cfs_b);
3732
3733 return HRTIMER_NORESTART;
3734}
3735
3736static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3737{
3738 struct cfs_bandwidth *cfs_b =
3739 container_of(timer, struct cfs_bandwidth, period_timer);
3740 ktime_t now;
3741 int overrun;
3742 int idle = 0;
3743
51f2176d 3744 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3745 for (;;) {
3746 now = hrtimer_cb_get_time(timer);
3747 overrun = hrtimer_forward(timer, now, cfs_b->period);
3748
3749 if (!overrun)
3750 break;
3751
3752 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3753 }
51f2176d 3754 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3755
3756 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3757}
3758
3759void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3760{
3761 raw_spin_lock_init(&cfs_b->lock);
3762 cfs_b->runtime = 0;
3763 cfs_b->quota = RUNTIME_INF;
3764 cfs_b->period = ns_to_ktime(default_cfs_period());
3765
3766 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3767 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3768 cfs_b->period_timer.function = sched_cfs_period_timer;
3769 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3770 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3771}
3772
3773static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3774{
3775 cfs_rq->runtime_enabled = 0;
3776 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3777}
3778
3779/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3780void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3781{
3782 /*
3783 * The timer may be active because we're trying to set a new bandwidth
3784 * period or because we're racing with the tear-down path
3785 * (timer_active==0 becomes visible before the hrtimer call-back
3786 * terminates). In either case we ensure that it's re-programmed
3787 */
927b54fc
BS
3788 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3789 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3790 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3791 raw_spin_unlock(&cfs_b->lock);
927b54fc 3792 cpu_relax();
029632fb
PZ
3793 raw_spin_lock(&cfs_b->lock);
3794 /* if someone else restarted the timer then we're done */
09dc4ab0 3795 if (!force && cfs_b->timer_active)
029632fb
PZ
3796 return;
3797 }
3798
3799 cfs_b->timer_active = 1;
3800 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3801}
3802
3803static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3804{
3805 hrtimer_cancel(&cfs_b->period_timer);
3806 hrtimer_cancel(&cfs_b->slack_timer);
3807}
3808
0e59bdae
KT
3809static void __maybe_unused update_runtime_enabled(struct rq *rq)
3810{
3811 struct cfs_rq *cfs_rq;
3812
3813 for_each_leaf_cfs_rq(rq, cfs_rq) {
3814 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3815
3816 raw_spin_lock(&cfs_b->lock);
3817 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3818 raw_spin_unlock(&cfs_b->lock);
3819 }
3820}
3821
38dc3348 3822static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3823{
3824 struct cfs_rq *cfs_rq;
3825
3826 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3827 if (!cfs_rq->runtime_enabled)
3828 continue;
3829
3830 /*
3831 * clock_task is not advancing so we just need to make sure
3832 * there's some valid quota amount
3833 */
51f2176d 3834 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3835 /*
3836 * Offline rq is schedulable till cpu is completely disabled
3837 * in take_cpu_down(), so we prevent new cfs throttling here.
3838 */
3839 cfs_rq->runtime_enabled = 0;
3840
029632fb
PZ
3841 if (cfs_rq_throttled(cfs_rq))
3842 unthrottle_cfs_rq(cfs_rq);
3843 }
3844}
3845
3846#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3847static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3848{
78becc27 3849 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3850}
3851
9dbdb155 3852static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3853static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3854static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3855static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3856
3857static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3858{
3859 return 0;
3860}
64660c86
PT
3861
3862static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3863{
3864 return 0;
3865}
3866
3867static inline int throttled_lb_pair(struct task_group *tg,
3868 int src_cpu, int dest_cpu)
3869{
3870 return 0;
3871}
029632fb
PZ
3872
3873void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3874
3875#ifdef CONFIG_FAIR_GROUP_SCHED
3876static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3877#endif
3878
029632fb
PZ
3879static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3880{
3881 return NULL;
3882}
3883static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3884static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3885static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3886
3887#endif /* CONFIG_CFS_BANDWIDTH */
3888
bf0f6f24
IM
3889/**************************************************
3890 * CFS operations on tasks:
3891 */
3892
8f4d37ec
PZ
3893#ifdef CONFIG_SCHED_HRTICK
3894static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3895{
8f4d37ec
PZ
3896 struct sched_entity *se = &p->se;
3897 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3898
3899 WARN_ON(task_rq(p) != rq);
3900
b39e66ea 3901 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3902 u64 slice = sched_slice(cfs_rq, se);
3903 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3904 s64 delta = slice - ran;
3905
3906 if (delta < 0) {
3907 if (rq->curr == p)
8875125e 3908 resched_curr(rq);
8f4d37ec
PZ
3909 return;
3910 }
31656519 3911 hrtick_start(rq, delta);
8f4d37ec
PZ
3912 }
3913}
a4c2f00f
PZ
3914
3915/*
3916 * called from enqueue/dequeue and updates the hrtick when the
3917 * current task is from our class and nr_running is low enough
3918 * to matter.
3919 */
3920static void hrtick_update(struct rq *rq)
3921{
3922 struct task_struct *curr = rq->curr;
3923
b39e66ea 3924 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3925 return;
3926
3927 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3928 hrtick_start_fair(rq, curr);
3929}
55e12e5e 3930#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3931static inline void
3932hrtick_start_fair(struct rq *rq, struct task_struct *p)
3933{
3934}
a4c2f00f
PZ
3935
3936static inline void hrtick_update(struct rq *rq)
3937{
3938}
8f4d37ec
PZ
3939#endif
3940
bf0f6f24
IM
3941/*
3942 * The enqueue_task method is called before nr_running is
3943 * increased. Here we update the fair scheduling stats and
3944 * then put the task into the rbtree:
3945 */
ea87bb78 3946static void
371fd7e7 3947enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3948{
3949 struct cfs_rq *cfs_rq;
62fb1851 3950 struct sched_entity *se = &p->se;
bf0f6f24
IM
3951
3952 for_each_sched_entity(se) {
62fb1851 3953 if (se->on_rq)
bf0f6f24
IM
3954 break;
3955 cfs_rq = cfs_rq_of(se);
88ec22d3 3956 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3957
3958 /*
3959 * end evaluation on encountering a throttled cfs_rq
3960 *
3961 * note: in the case of encountering a throttled cfs_rq we will
3962 * post the final h_nr_running increment below.
3963 */
3964 if (cfs_rq_throttled(cfs_rq))
3965 break;
953bfcd1 3966 cfs_rq->h_nr_running++;
85dac906 3967
88ec22d3 3968 flags = ENQUEUE_WAKEUP;
bf0f6f24 3969 }
8f4d37ec 3970
2069dd75 3971 for_each_sched_entity(se) {
0f317143 3972 cfs_rq = cfs_rq_of(se);
953bfcd1 3973 cfs_rq->h_nr_running++;
2069dd75 3974
85dac906
PT
3975 if (cfs_rq_throttled(cfs_rq))
3976 break;
3977
17bc14b7 3978 update_cfs_shares(cfs_rq);
9ee474f5 3979 update_entity_load_avg(se, 1);
2069dd75
PZ
3980 }
3981
18bf2805
BS
3982 if (!se) {
3983 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3984 add_nr_running(rq, 1);
18bf2805 3985 }
a4c2f00f 3986 hrtick_update(rq);
bf0f6f24
IM
3987}
3988
2f36825b
VP
3989static void set_next_buddy(struct sched_entity *se);
3990
bf0f6f24
IM
3991/*
3992 * The dequeue_task method is called before nr_running is
3993 * decreased. We remove the task from the rbtree and
3994 * update the fair scheduling stats:
3995 */
371fd7e7 3996static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3997{
3998 struct cfs_rq *cfs_rq;
62fb1851 3999 struct sched_entity *se = &p->se;
2f36825b 4000 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4001
4002 for_each_sched_entity(se) {
4003 cfs_rq = cfs_rq_of(se);
371fd7e7 4004 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4005
4006 /*
4007 * end evaluation on encountering a throttled cfs_rq
4008 *
4009 * note: in the case of encountering a throttled cfs_rq we will
4010 * post the final h_nr_running decrement below.
4011 */
4012 if (cfs_rq_throttled(cfs_rq))
4013 break;
953bfcd1 4014 cfs_rq->h_nr_running--;
2069dd75 4015
bf0f6f24 4016 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4017 if (cfs_rq->load.weight) {
4018 /*
4019 * Bias pick_next to pick a task from this cfs_rq, as
4020 * p is sleeping when it is within its sched_slice.
4021 */
4022 if (task_sleep && parent_entity(se))
4023 set_next_buddy(parent_entity(se));
9598c82d
PT
4024
4025 /* avoid re-evaluating load for this entity */
4026 se = parent_entity(se);
bf0f6f24 4027 break;
2f36825b 4028 }
371fd7e7 4029 flags |= DEQUEUE_SLEEP;
bf0f6f24 4030 }
8f4d37ec 4031
2069dd75 4032 for_each_sched_entity(se) {
0f317143 4033 cfs_rq = cfs_rq_of(se);
953bfcd1 4034 cfs_rq->h_nr_running--;
2069dd75 4035
85dac906
PT
4036 if (cfs_rq_throttled(cfs_rq))
4037 break;
4038
17bc14b7 4039 update_cfs_shares(cfs_rq);
9ee474f5 4040 update_entity_load_avg(se, 1);
2069dd75
PZ
4041 }
4042
18bf2805 4043 if (!se) {
72465447 4044 sub_nr_running(rq, 1);
18bf2805
BS
4045 update_rq_runnable_avg(rq, 1);
4046 }
a4c2f00f 4047 hrtick_update(rq);
bf0f6f24
IM
4048}
4049
e7693a36 4050#ifdef CONFIG_SMP
029632fb
PZ
4051/* Used instead of source_load when we know the type == 0 */
4052static unsigned long weighted_cpuload(const int cpu)
4053{
b92486cb 4054 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4055}
4056
4057/*
4058 * Return a low guess at the load of a migration-source cpu weighted
4059 * according to the scheduling class and "nice" value.
4060 *
4061 * We want to under-estimate the load of migration sources, to
4062 * balance conservatively.
4063 */
4064static unsigned long source_load(int cpu, int type)
4065{
4066 struct rq *rq = cpu_rq(cpu);
4067 unsigned long total = weighted_cpuload(cpu);
4068
4069 if (type == 0 || !sched_feat(LB_BIAS))
4070 return total;
4071
4072 return min(rq->cpu_load[type-1], total);
4073}
4074
4075/*
4076 * Return a high guess at the load of a migration-target cpu weighted
4077 * according to the scheduling class and "nice" value.
4078 */
4079static unsigned long target_load(int cpu, int type)
4080{
4081 struct rq *rq = cpu_rq(cpu);
4082 unsigned long total = weighted_cpuload(cpu);
4083
4084 if (type == 0 || !sched_feat(LB_BIAS))
4085 return total;
4086
4087 return max(rq->cpu_load[type-1], total);
4088}
4089
ced549fa 4090static unsigned long capacity_of(int cpu)
029632fb 4091{
ced549fa 4092 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4093}
4094
4095static unsigned long cpu_avg_load_per_task(int cpu)
4096{
4097 struct rq *rq = cpu_rq(cpu);
65fdac08 4098 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4099 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4100
4101 if (nr_running)
b92486cb 4102 return load_avg / nr_running;
029632fb
PZ
4103
4104 return 0;
4105}
4106
62470419
MW
4107static void record_wakee(struct task_struct *p)
4108{
4109 /*
4110 * Rough decay (wiping) for cost saving, don't worry
4111 * about the boundary, really active task won't care
4112 * about the loss.
4113 */
2538d960 4114 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4115 current->wakee_flips >>= 1;
62470419
MW
4116 current->wakee_flip_decay_ts = jiffies;
4117 }
4118
4119 if (current->last_wakee != p) {
4120 current->last_wakee = p;
4121 current->wakee_flips++;
4122 }
4123}
098fb9db 4124
74f8e4b2 4125static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4126{
4127 struct sched_entity *se = &p->se;
4128 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4129 u64 min_vruntime;
4130
4131#ifndef CONFIG_64BIT
4132 u64 min_vruntime_copy;
88ec22d3 4133
3fe1698b
PZ
4134 do {
4135 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4136 smp_rmb();
4137 min_vruntime = cfs_rq->min_vruntime;
4138 } while (min_vruntime != min_vruntime_copy);
4139#else
4140 min_vruntime = cfs_rq->min_vruntime;
4141#endif
88ec22d3 4142
3fe1698b 4143 se->vruntime -= min_vruntime;
62470419 4144 record_wakee(p);
88ec22d3
PZ
4145}
4146
bb3469ac 4147#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4148/*
4149 * effective_load() calculates the load change as seen from the root_task_group
4150 *
4151 * Adding load to a group doesn't make a group heavier, but can cause movement
4152 * of group shares between cpus. Assuming the shares were perfectly aligned one
4153 * can calculate the shift in shares.
cf5f0acf
PZ
4154 *
4155 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4156 * on this @cpu and results in a total addition (subtraction) of @wg to the
4157 * total group weight.
4158 *
4159 * Given a runqueue weight distribution (rw_i) we can compute a shares
4160 * distribution (s_i) using:
4161 *
4162 * s_i = rw_i / \Sum rw_j (1)
4163 *
4164 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4165 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4166 * shares distribution (s_i):
4167 *
4168 * rw_i = { 2, 4, 1, 0 }
4169 * s_i = { 2/7, 4/7, 1/7, 0 }
4170 *
4171 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4172 * task used to run on and the CPU the waker is running on), we need to
4173 * compute the effect of waking a task on either CPU and, in case of a sync
4174 * wakeup, compute the effect of the current task going to sleep.
4175 *
4176 * So for a change of @wl to the local @cpu with an overall group weight change
4177 * of @wl we can compute the new shares distribution (s'_i) using:
4178 *
4179 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4180 *
4181 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4182 * differences in waking a task to CPU 0. The additional task changes the
4183 * weight and shares distributions like:
4184 *
4185 * rw'_i = { 3, 4, 1, 0 }
4186 * s'_i = { 3/8, 4/8, 1/8, 0 }
4187 *
4188 * We can then compute the difference in effective weight by using:
4189 *
4190 * dw_i = S * (s'_i - s_i) (3)
4191 *
4192 * Where 'S' is the group weight as seen by its parent.
4193 *
4194 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4195 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4196 * 4/7) times the weight of the group.
f5bfb7d9 4197 */
2069dd75 4198static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4199{
4be9daaa 4200 struct sched_entity *se = tg->se[cpu];
f1d239f7 4201
9722c2da 4202 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4203 return wl;
4204
4be9daaa 4205 for_each_sched_entity(se) {
cf5f0acf 4206 long w, W;
4be9daaa 4207
977dda7c 4208 tg = se->my_q->tg;
bb3469ac 4209
cf5f0acf
PZ
4210 /*
4211 * W = @wg + \Sum rw_j
4212 */
4213 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4214
cf5f0acf
PZ
4215 /*
4216 * w = rw_i + @wl
4217 */
4218 w = se->my_q->load.weight + wl;
940959e9 4219
cf5f0acf
PZ
4220 /*
4221 * wl = S * s'_i; see (2)
4222 */
4223 if (W > 0 && w < W)
4224 wl = (w * tg->shares) / W;
977dda7c
PT
4225 else
4226 wl = tg->shares;
940959e9 4227
cf5f0acf
PZ
4228 /*
4229 * Per the above, wl is the new se->load.weight value; since
4230 * those are clipped to [MIN_SHARES, ...) do so now. See
4231 * calc_cfs_shares().
4232 */
977dda7c
PT
4233 if (wl < MIN_SHARES)
4234 wl = MIN_SHARES;
cf5f0acf
PZ
4235
4236 /*
4237 * wl = dw_i = S * (s'_i - s_i); see (3)
4238 */
977dda7c 4239 wl -= se->load.weight;
cf5f0acf
PZ
4240
4241 /*
4242 * Recursively apply this logic to all parent groups to compute
4243 * the final effective load change on the root group. Since
4244 * only the @tg group gets extra weight, all parent groups can
4245 * only redistribute existing shares. @wl is the shift in shares
4246 * resulting from this level per the above.
4247 */
4be9daaa 4248 wg = 0;
4be9daaa 4249 }
bb3469ac 4250
4be9daaa 4251 return wl;
bb3469ac
PZ
4252}
4253#else
4be9daaa 4254
58d081b5 4255static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4256{
83378269 4257 return wl;
bb3469ac 4258}
4be9daaa 4259
bb3469ac
PZ
4260#endif
4261
62470419
MW
4262static int wake_wide(struct task_struct *p)
4263{
7d9ffa89 4264 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4265
4266 /*
4267 * Yeah, it's the switching-frequency, could means many wakee or
4268 * rapidly switch, use factor here will just help to automatically
4269 * adjust the loose-degree, so bigger node will lead to more pull.
4270 */
4271 if (p->wakee_flips > factor) {
4272 /*
4273 * wakee is somewhat hot, it needs certain amount of cpu
4274 * resource, so if waker is far more hot, prefer to leave
4275 * it alone.
4276 */
4277 if (current->wakee_flips > (factor * p->wakee_flips))
4278 return 1;
4279 }
4280
4281 return 0;
4282}
4283
c88d5910 4284static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4285{
e37b6a7b 4286 s64 this_load, load;
c88d5910 4287 int idx, this_cpu, prev_cpu;
c88d5910 4288 struct task_group *tg;
83378269 4289 unsigned long weight;
b3137bc8 4290 int balanced;
098fb9db 4291
62470419
MW
4292 /*
4293 * If we wake multiple tasks be careful to not bounce
4294 * ourselves around too much.
4295 */
4296 if (wake_wide(p))
4297 return 0;
4298
c88d5910
PZ
4299 idx = sd->wake_idx;
4300 this_cpu = smp_processor_id();
4301 prev_cpu = task_cpu(p);
4302 load = source_load(prev_cpu, idx);
4303 this_load = target_load(this_cpu, idx);
098fb9db 4304
b3137bc8
MG
4305 /*
4306 * If sync wakeup then subtract the (maximum possible)
4307 * effect of the currently running task from the load
4308 * of the current CPU:
4309 */
83378269
PZ
4310 if (sync) {
4311 tg = task_group(current);
4312 weight = current->se.load.weight;
4313
c88d5910 4314 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4315 load += effective_load(tg, prev_cpu, 0, -weight);
4316 }
b3137bc8 4317
83378269
PZ
4318 tg = task_group(p);
4319 weight = p->se.load.weight;
b3137bc8 4320
71a29aa7
PZ
4321 /*
4322 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4323 * due to the sync cause above having dropped this_load to 0, we'll
4324 * always have an imbalance, but there's really nothing you can do
4325 * about that, so that's good too.
71a29aa7
PZ
4326 *
4327 * Otherwise check if either cpus are near enough in load to allow this
4328 * task to be woken on this_cpu.
4329 */
e37b6a7b
PT
4330 if (this_load > 0) {
4331 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4332
4333 this_eff_load = 100;
ced549fa 4334 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4335 this_eff_load *= this_load +
4336 effective_load(tg, this_cpu, weight, weight);
4337
4338 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4339 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4340 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4341
4342 balanced = this_eff_load <= prev_eff_load;
4343 } else
4344 balanced = true;
41acab88 4345 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4346
05bfb65f
VG
4347 if (!balanced)
4348 return 0;
098fb9db 4349
05bfb65f
VG
4350 schedstat_inc(sd, ttwu_move_affine);
4351 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4352
4353 return 1;
098fb9db
IM
4354}
4355
aaee1203
PZ
4356/*
4357 * find_idlest_group finds and returns the least busy CPU group within the
4358 * domain.
4359 */
4360static struct sched_group *
78e7ed53 4361find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4362 int this_cpu, int sd_flag)
e7693a36 4363{
b3bd3de6 4364 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4365 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4366 int load_idx = sd->forkexec_idx;
aaee1203 4367 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4368
c44f2a02
VG
4369 if (sd_flag & SD_BALANCE_WAKE)
4370 load_idx = sd->wake_idx;
4371
aaee1203
PZ
4372 do {
4373 unsigned long load, avg_load;
4374 int local_group;
4375 int i;
e7693a36 4376
aaee1203
PZ
4377 /* Skip over this group if it has no CPUs allowed */
4378 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4379 tsk_cpus_allowed(p)))
aaee1203
PZ
4380 continue;
4381
4382 local_group = cpumask_test_cpu(this_cpu,
4383 sched_group_cpus(group));
4384
4385 /* Tally up the load of all CPUs in the group */
4386 avg_load = 0;
4387
4388 for_each_cpu(i, sched_group_cpus(group)) {
4389 /* Bias balancing toward cpus of our domain */
4390 if (local_group)
4391 load = source_load(i, load_idx);
4392 else
4393 load = target_load(i, load_idx);
4394
4395 avg_load += load;
4396 }
4397
63b2ca30 4398 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4399 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4400
4401 if (local_group) {
4402 this_load = avg_load;
aaee1203
PZ
4403 } else if (avg_load < min_load) {
4404 min_load = avg_load;
4405 idlest = group;
4406 }
4407 } while (group = group->next, group != sd->groups);
4408
4409 if (!idlest || 100*this_load < imbalance*min_load)
4410 return NULL;
4411 return idlest;
4412}
4413
4414/*
4415 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4416 */
4417static int
4418find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4419{
4420 unsigned long load, min_load = ULONG_MAX;
4421 int idlest = -1;
4422 int i;
4423
4424 /* Traverse only the allowed CPUs */
fa17b507 4425 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4426 load = weighted_cpuload(i);
4427
4428 if (load < min_load || (load == min_load && i == this_cpu)) {
4429 min_load = load;
4430 idlest = i;
e7693a36
GH
4431 }
4432 }
4433
aaee1203
PZ
4434 return idlest;
4435}
e7693a36 4436
a50bde51
PZ
4437/*
4438 * Try and locate an idle CPU in the sched_domain.
4439 */
99bd5e2f 4440static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4441{
99bd5e2f 4442 struct sched_domain *sd;
37407ea7 4443 struct sched_group *sg;
e0a79f52 4444 int i = task_cpu(p);
a50bde51 4445
e0a79f52
MG
4446 if (idle_cpu(target))
4447 return target;
99bd5e2f
SS
4448
4449 /*
e0a79f52 4450 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4451 */
e0a79f52
MG
4452 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4453 return i;
a50bde51
PZ
4454
4455 /*
37407ea7 4456 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4457 */
518cd623 4458 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4459 for_each_lower_domain(sd) {
37407ea7
LT
4460 sg = sd->groups;
4461 do {
4462 if (!cpumask_intersects(sched_group_cpus(sg),
4463 tsk_cpus_allowed(p)))
4464 goto next;
4465
4466 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4467 if (i == target || !idle_cpu(i))
37407ea7
LT
4468 goto next;
4469 }
970e1789 4470
37407ea7
LT
4471 target = cpumask_first_and(sched_group_cpus(sg),
4472 tsk_cpus_allowed(p));
4473 goto done;
4474next:
4475 sg = sg->next;
4476 } while (sg != sd->groups);
4477 }
4478done:
a50bde51
PZ
4479 return target;
4480}
4481
aaee1203 4482/*
de91b9cb
MR
4483 * select_task_rq_fair: Select target runqueue for the waking task in domains
4484 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4485 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4486 *
de91b9cb
MR
4487 * Balances load by selecting the idlest cpu in the idlest group, or under
4488 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4489 *
de91b9cb 4490 * Returns the target cpu number.
aaee1203
PZ
4491 *
4492 * preempt must be disabled.
4493 */
0017d735 4494static int
ac66f547 4495select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4496{
29cd8bae 4497 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4498 int cpu = smp_processor_id();
c88d5910 4499 int new_cpu = cpu;
99bd5e2f 4500 int want_affine = 0;
5158f4e4 4501 int sync = wake_flags & WF_SYNC;
c88d5910 4502
29baa747 4503 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4504 return prev_cpu;
4505
a8edd075
KT
4506 if (sd_flag & SD_BALANCE_WAKE)
4507 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4508
dce840a0 4509 rcu_read_lock();
aaee1203 4510 for_each_domain(cpu, tmp) {
e4f42888
PZ
4511 if (!(tmp->flags & SD_LOAD_BALANCE))
4512 continue;
4513
fe3bcfe1 4514 /*
99bd5e2f
SS
4515 * If both cpu and prev_cpu are part of this domain,
4516 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4517 */
99bd5e2f
SS
4518 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4519 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4520 affine_sd = tmp;
29cd8bae 4521 break;
f03542a7 4522 }
29cd8bae 4523
f03542a7 4524 if (tmp->flags & sd_flag)
29cd8bae
PZ
4525 sd = tmp;
4526 }
4527
8bf21433
RR
4528 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4529 prev_cpu = cpu;
dce840a0 4530
8bf21433 4531 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4532 new_cpu = select_idle_sibling(p, prev_cpu);
4533 goto unlock;
8b911acd 4534 }
e7693a36 4535
aaee1203
PZ
4536 while (sd) {
4537 struct sched_group *group;
c88d5910 4538 int weight;
098fb9db 4539
0763a660 4540 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4541 sd = sd->child;
4542 continue;
4543 }
098fb9db 4544
c44f2a02 4545 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4546 if (!group) {
4547 sd = sd->child;
4548 continue;
4549 }
4ae7d5ce 4550
d7c33c49 4551 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4552 if (new_cpu == -1 || new_cpu == cpu) {
4553 /* Now try balancing at a lower domain level of cpu */
4554 sd = sd->child;
4555 continue;
e7693a36 4556 }
aaee1203
PZ
4557
4558 /* Now try balancing at a lower domain level of new_cpu */
4559 cpu = new_cpu;
669c55e9 4560 weight = sd->span_weight;
aaee1203
PZ
4561 sd = NULL;
4562 for_each_domain(cpu, tmp) {
669c55e9 4563 if (weight <= tmp->span_weight)
aaee1203 4564 break;
0763a660 4565 if (tmp->flags & sd_flag)
aaee1203
PZ
4566 sd = tmp;
4567 }
4568 /* while loop will break here if sd == NULL */
e7693a36 4569 }
dce840a0
PZ
4570unlock:
4571 rcu_read_unlock();
e7693a36 4572
c88d5910 4573 return new_cpu;
e7693a36 4574}
0a74bef8
PT
4575
4576/*
4577 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4578 * cfs_rq_of(p) references at time of call are still valid and identify the
4579 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4580 * other assumptions, including the state of rq->lock, should be made.
4581 */
4582static void
4583migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4584{
aff3e498
PT
4585 struct sched_entity *se = &p->se;
4586 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4587
4588 /*
4589 * Load tracking: accumulate removed load so that it can be processed
4590 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4591 * to blocked load iff they have a positive decay-count. It can never
4592 * be negative here since on-rq tasks have decay-count == 0.
4593 */
4594 if (se->avg.decay_count) {
4595 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4596 atomic_long_add(se->avg.load_avg_contrib,
4597 &cfs_rq->removed_load);
aff3e498 4598 }
3944a927
BS
4599
4600 /* We have migrated, no longer consider this task hot */
4601 se->exec_start = 0;
0a74bef8 4602}
e7693a36
GH
4603#endif /* CONFIG_SMP */
4604
e52fb7c0
PZ
4605static unsigned long
4606wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4607{
4608 unsigned long gran = sysctl_sched_wakeup_granularity;
4609
4610 /*
e52fb7c0
PZ
4611 * Since its curr running now, convert the gran from real-time
4612 * to virtual-time in his units.
13814d42
MG
4613 *
4614 * By using 'se' instead of 'curr' we penalize light tasks, so
4615 * they get preempted easier. That is, if 'se' < 'curr' then
4616 * the resulting gran will be larger, therefore penalizing the
4617 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4618 * be smaller, again penalizing the lighter task.
4619 *
4620 * This is especially important for buddies when the leftmost
4621 * task is higher priority than the buddy.
0bbd3336 4622 */
f4ad9bd2 4623 return calc_delta_fair(gran, se);
0bbd3336
PZ
4624}
4625
464b7527
PZ
4626/*
4627 * Should 'se' preempt 'curr'.
4628 *
4629 * |s1
4630 * |s2
4631 * |s3
4632 * g
4633 * |<--->|c
4634 *
4635 * w(c, s1) = -1
4636 * w(c, s2) = 0
4637 * w(c, s3) = 1
4638 *
4639 */
4640static int
4641wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4642{
4643 s64 gran, vdiff = curr->vruntime - se->vruntime;
4644
4645 if (vdiff <= 0)
4646 return -1;
4647
e52fb7c0 4648 gran = wakeup_gran(curr, se);
464b7527
PZ
4649 if (vdiff > gran)
4650 return 1;
4651
4652 return 0;
4653}
4654
02479099
PZ
4655static void set_last_buddy(struct sched_entity *se)
4656{
69c80f3e
VP
4657 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4658 return;
4659
4660 for_each_sched_entity(se)
4661 cfs_rq_of(se)->last = se;
02479099
PZ
4662}
4663
4664static void set_next_buddy(struct sched_entity *se)
4665{
69c80f3e
VP
4666 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4667 return;
4668
4669 for_each_sched_entity(se)
4670 cfs_rq_of(se)->next = se;
02479099
PZ
4671}
4672
ac53db59
RR
4673static void set_skip_buddy(struct sched_entity *se)
4674{
69c80f3e
VP
4675 for_each_sched_entity(se)
4676 cfs_rq_of(se)->skip = se;
ac53db59
RR
4677}
4678
bf0f6f24
IM
4679/*
4680 * Preempt the current task with a newly woken task if needed:
4681 */
5a9b86f6 4682static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4683{
4684 struct task_struct *curr = rq->curr;
8651a86c 4685 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4686 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4687 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4688 int next_buddy_marked = 0;
bf0f6f24 4689
4ae7d5ce
IM
4690 if (unlikely(se == pse))
4691 return;
4692
5238cdd3 4693 /*
163122b7 4694 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4695 * unconditionally check_prempt_curr() after an enqueue (which may have
4696 * lead to a throttle). This both saves work and prevents false
4697 * next-buddy nomination below.
4698 */
4699 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4700 return;
4701
2f36825b 4702 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4703 set_next_buddy(pse);
2f36825b
VP
4704 next_buddy_marked = 1;
4705 }
57fdc26d 4706
aec0a514
BR
4707 /*
4708 * We can come here with TIF_NEED_RESCHED already set from new task
4709 * wake up path.
5238cdd3
PT
4710 *
4711 * Note: this also catches the edge-case of curr being in a throttled
4712 * group (e.g. via set_curr_task), since update_curr() (in the
4713 * enqueue of curr) will have resulted in resched being set. This
4714 * prevents us from potentially nominating it as a false LAST_BUDDY
4715 * below.
aec0a514
BR
4716 */
4717 if (test_tsk_need_resched(curr))
4718 return;
4719
a2f5c9ab
DH
4720 /* Idle tasks are by definition preempted by non-idle tasks. */
4721 if (unlikely(curr->policy == SCHED_IDLE) &&
4722 likely(p->policy != SCHED_IDLE))
4723 goto preempt;
4724
91c234b4 4725 /*
a2f5c9ab
DH
4726 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4727 * is driven by the tick):
91c234b4 4728 */
8ed92e51 4729 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4730 return;
bf0f6f24 4731
464b7527 4732 find_matching_se(&se, &pse);
9bbd7374 4733 update_curr(cfs_rq_of(se));
002f128b 4734 BUG_ON(!pse);
2f36825b
VP
4735 if (wakeup_preempt_entity(se, pse) == 1) {
4736 /*
4737 * Bias pick_next to pick the sched entity that is
4738 * triggering this preemption.
4739 */
4740 if (!next_buddy_marked)
4741 set_next_buddy(pse);
3a7e73a2 4742 goto preempt;
2f36825b 4743 }
464b7527 4744
3a7e73a2 4745 return;
a65ac745 4746
3a7e73a2 4747preempt:
8875125e 4748 resched_curr(rq);
3a7e73a2
PZ
4749 /*
4750 * Only set the backward buddy when the current task is still
4751 * on the rq. This can happen when a wakeup gets interleaved
4752 * with schedule on the ->pre_schedule() or idle_balance()
4753 * point, either of which can * drop the rq lock.
4754 *
4755 * Also, during early boot the idle thread is in the fair class,
4756 * for obvious reasons its a bad idea to schedule back to it.
4757 */
4758 if (unlikely(!se->on_rq || curr == rq->idle))
4759 return;
4760
4761 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4762 set_last_buddy(se);
bf0f6f24
IM
4763}
4764
606dba2e
PZ
4765static struct task_struct *
4766pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4767{
4768 struct cfs_rq *cfs_rq = &rq->cfs;
4769 struct sched_entity *se;
678d5718 4770 struct task_struct *p;
37e117c0 4771 int new_tasks;
678d5718 4772
6e83125c 4773again:
678d5718
PZ
4774#ifdef CONFIG_FAIR_GROUP_SCHED
4775 if (!cfs_rq->nr_running)
38033c37 4776 goto idle;
678d5718 4777
3f1d2a31 4778 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4779 goto simple;
4780
4781 /*
4782 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4783 * likely that a next task is from the same cgroup as the current.
4784 *
4785 * Therefore attempt to avoid putting and setting the entire cgroup
4786 * hierarchy, only change the part that actually changes.
4787 */
4788
4789 do {
4790 struct sched_entity *curr = cfs_rq->curr;
4791
4792 /*
4793 * Since we got here without doing put_prev_entity() we also
4794 * have to consider cfs_rq->curr. If it is still a runnable
4795 * entity, update_curr() will update its vruntime, otherwise
4796 * forget we've ever seen it.
4797 */
4798 if (curr && curr->on_rq)
4799 update_curr(cfs_rq);
4800 else
4801 curr = NULL;
4802
4803 /*
4804 * This call to check_cfs_rq_runtime() will do the throttle and
4805 * dequeue its entity in the parent(s). Therefore the 'simple'
4806 * nr_running test will indeed be correct.
4807 */
4808 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4809 goto simple;
4810
4811 se = pick_next_entity(cfs_rq, curr);
4812 cfs_rq = group_cfs_rq(se);
4813 } while (cfs_rq);
4814
4815 p = task_of(se);
4816
4817 /*
4818 * Since we haven't yet done put_prev_entity and if the selected task
4819 * is a different task than we started out with, try and touch the
4820 * least amount of cfs_rqs.
4821 */
4822 if (prev != p) {
4823 struct sched_entity *pse = &prev->se;
4824
4825 while (!(cfs_rq = is_same_group(se, pse))) {
4826 int se_depth = se->depth;
4827 int pse_depth = pse->depth;
4828
4829 if (se_depth <= pse_depth) {
4830 put_prev_entity(cfs_rq_of(pse), pse);
4831 pse = parent_entity(pse);
4832 }
4833 if (se_depth >= pse_depth) {
4834 set_next_entity(cfs_rq_of(se), se);
4835 se = parent_entity(se);
4836 }
4837 }
4838
4839 put_prev_entity(cfs_rq, pse);
4840 set_next_entity(cfs_rq, se);
4841 }
4842
4843 if (hrtick_enabled(rq))
4844 hrtick_start_fair(rq, p);
4845
4846 return p;
4847simple:
4848 cfs_rq = &rq->cfs;
4849#endif
bf0f6f24 4850
36ace27e 4851 if (!cfs_rq->nr_running)
38033c37 4852 goto idle;
bf0f6f24 4853
3f1d2a31 4854 put_prev_task(rq, prev);
606dba2e 4855
bf0f6f24 4856 do {
678d5718 4857 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4858 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4859 cfs_rq = group_cfs_rq(se);
4860 } while (cfs_rq);
4861
8f4d37ec 4862 p = task_of(se);
678d5718 4863
b39e66ea
MG
4864 if (hrtick_enabled(rq))
4865 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4866
4867 return p;
38033c37
PZ
4868
4869idle:
e4aa358b 4870 new_tasks = idle_balance(rq);
37e117c0
PZ
4871 /*
4872 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4873 * possible for any higher priority task to appear. In that case we
4874 * must re-start the pick_next_entity() loop.
4875 */
e4aa358b 4876 if (new_tasks < 0)
37e117c0
PZ
4877 return RETRY_TASK;
4878
e4aa358b 4879 if (new_tasks > 0)
38033c37 4880 goto again;
38033c37
PZ
4881
4882 return NULL;
bf0f6f24
IM
4883}
4884
4885/*
4886 * Account for a descheduled task:
4887 */
31ee529c 4888static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4889{
4890 struct sched_entity *se = &prev->se;
4891 struct cfs_rq *cfs_rq;
4892
4893 for_each_sched_entity(se) {
4894 cfs_rq = cfs_rq_of(se);
ab6cde26 4895 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4896 }
4897}
4898
ac53db59
RR
4899/*
4900 * sched_yield() is very simple
4901 *
4902 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4903 */
4904static void yield_task_fair(struct rq *rq)
4905{
4906 struct task_struct *curr = rq->curr;
4907 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4908 struct sched_entity *se = &curr->se;
4909
4910 /*
4911 * Are we the only task in the tree?
4912 */
4913 if (unlikely(rq->nr_running == 1))
4914 return;
4915
4916 clear_buddies(cfs_rq, se);
4917
4918 if (curr->policy != SCHED_BATCH) {
4919 update_rq_clock(rq);
4920 /*
4921 * Update run-time statistics of the 'current'.
4922 */
4923 update_curr(cfs_rq);
916671c0
MG
4924 /*
4925 * Tell update_rq_clock() that we've just updated,
4926 * so we don't do microscopic update in schedule()
4927 * and double the fastpath cost.
4928 */
4929 rq->skip_clock_update = 1;
ac53db59
RR
4930 }
4931
4932 set_skip_buddy(se);
4933}
4934
d95f4122
MG
4935static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4936{
4937 struct sched_entity *se = &p->se;
4938
5238cdd3
PT
4939 /* throttled hierarchies are not runnable */
4940 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4941 return false;
4942
4943 /* Tell the scheduler that we'd really like pse to run next. */
4944 set_next_buddy(se);
4945
d95f4122
MG
4946 yield_task_fair(rq);
4947
4948 return true;
4949}
4950
681f3e68 4951#ifdef CONFIG_SMP
bf0f6f24 4952/**************************************************
e9c84cb8
PZ
4953 * Fair scheduling class load-balancing methods.
4954 *
4955 * BASICS
4956 *
4957 * The purpose of load-balancing is to achieve the same basic fairness the
4958 * per-cpu scheduler provides, namely provide a proportional amount of compute
4959 * time to each task. This is expressed in the following equation:
4960 *
4961 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4962 *
4963 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4964 * W_i,0 is defined as:
4965 *
4966 * W_i,0 = \Sum_j w_i,j (2)
4967 *
4968 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4969 * is derived from the nice value as per prio_to_weight[].
4970 *
4971 * The weight average is an exponential decay average of the instantaneous
4972 * weight:
4973 *
4974 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4975 *
ced549fa 4976 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4977 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4978 * can also include other factors [XXX].
4979 *
4980 * To achieve this balance we define a measure of imbalance which follows
4981 * directly from (1):
4982 *
ced549fa 4983 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4984 *
4985 * We them move tasks around to minimize the imbalance. In the continuous
4986 * function space it is obvious this converges, in the discrete case we get
4987 * a few fun cases generally called infeasible weight scenarios.
4988 *
4989 * [XXX expand on:
4990 * - infeasible weights;
4991 * - local vs global optima in the discrete case. ]
4992 *
4993 *
4994 * SCHED DOMAINS
4995 *
4996 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4997 * for all i,j solution, we create a tree of cpus that follows the hardware
4998 * topology where each level pairs two lower groups (or better). This results
4999 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5000 * tree to only the first of the previous level and we decrease the frequency
5001 * of load-balance at each level inv. proportional to the number of cpus in
5002 * the groups.
5003 *
5004 * This yields:
5005 *
5006 * log_2 n 1 n
5007 * \Sum { --- * --- * 2^i } = O(n) (5)
5008 * i = 0 2^i 2^i
5009 * `- size of each group
5010 * | | `- number of cpus doing load-balance
5011 * | `- freq
5012 * `- sum over all levels
5013 *
5014 * Coupled with a limit on how many tasks we can migrate every balance pass,
5015 * this makes (5) the runtime complexity of the balancer.
5016 *
5017 * An important property here is that each CPU is still (indirectly) connected
5018 * to every other cpu in at most O(log n) steps:
5019 *
5020 * The adjacency matrix of the resulting graph is given by:
5021 *
5022 * log_2 n
5023 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5024 * k = 0
5025 *
5026 * And you'll find that:
5027 *
5028 * A^(log_2 n)_i,j != 0 for all i,j (7)
5029 *
5030 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5031 * The task movement gives a factor of O(m), giving a convergence complexity
5032 * of:
5033 *
5034 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5035 *
5036 *
5037 * WORK CONSERVING
5038 *
5039 * In order to avoid CPUs going idle while there's still work to do, new idle
5040 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5041 * tree itself instead of relying on other CPUs to bring it work.
5042 *
5043 * This adds some complexity to both (5) and (8) but it reduces the total idle
5044 * time.
5045 *
5046 * [XXX more?]
5047 *
5048 *
5049 * CGROUPS
5050 *
5051 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5052 *
5053 * s_k,i
5054 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5055 * S_k
5056 *
5057 * Where
5058 *
5059 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5060 *
5061 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5062 *
5063 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5064 * property.
5065 *
5066 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5067 * rewrite all of this once again.]
5068 */
bf0f6f24 5069
ed387b78
HS
5070static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5071
0ec8aa00
PZ
5072enum fbq_type { regular, remote, all };
5073
ddcdf6e7 5074#define LBF_ALL_PINNED 0x01
367456c7 5075#define LBF_NEED_BREAK 0x02
6263322c
PZ
5076#define LBF_DST_PINNED 0x04
5077#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5078
5079struct lb_env {
5080 struct sched_domain *sd;
5081
ddcdf6e7 5082 struct rq *src_rq;
85c1e7da 5083 int src_cpu;
ddcdf6e7
PZ
5084
5085 int dst_cpu;
5086 struct rq *dst_rq;
5087
88b8dac0
SV
5088 struct cpumask *dst_grpmask;
5089 int new_dst_cpu;
ddcdf6e7 5090 enum cpu_idle_type idle;
bd939f45 5091 long imbalance;
b9403130
MW
5092 /* The set of CPUs under consideration for load-balancing */
5093 struct cpumask *cpus;
5094
ddcdf6e7 5095 unsigned int flags;
367456c7
PZ
5096
5097 unsigned int loop;
5098 unsigned int loop_break;
5099 unsigned int loop_max;
0ec8aa00
PZ
5100
5101 enum fbq_type fbq_type;
163122b7 5102 struct list_head tasks;
ddcdf6e7
PZ
5103};
5104
029632fb
PZ
5105/*
5106 * Is this task likely cache-hot:
5107 */
5d5e2b1b 5108static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5109{
5110 s64 delta;
5111
e5673f28
KT
5112 lockdep_assert_held(&env->src_rq->lock);
5113
029632fb
PZ
5114 if (p->sched_class != &fair_sched_class)
5115 return 0;
5116
5117 if (unlikely(p->policy == SCHED_IDLE))
5118 return 0;
5119
5120 /*
5121 * Buddy candidates are cache hot:
5122 */
5d5e2b1b 5123 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5124 (&p->se == cfs_rq_of(&p->se)->next ||
5125 &p->se == cfs_rq_of(&p->se)->last))
5126 return 1;
5127
5128 if (sysctl_sched_migration_cost == -1)
5129 return 1;
5130 if (sysctl_sched_migration_cost == 0)
5131 return 0;
5132
5d5e2b1b 5133 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5134
5135 return delta < (s64)sysctl_sched_migration_cost;
5136}
5137
3a7053b3
MG
5138#ifdef CONFIG_NUMA_BALANCING
5139/* Returns true if the destination node has incurred more faults */
5140static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5141{
b1ad065e 5142 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5143 int src_nid, dst_nid;
5144
ff1df896 5145 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5146 !(env->sd->flags & SD_NUMA)) {
5147 return false;
5148 }
5149
5150 src_nid = cpu_to_node(env->src_cpu);
5151 dst_nid = cpu_to_node(env->dst_cpu);
5152
83e1d2cd 5153 if (src_nid == dst_nid)
3a7053b3
MG
5154 return false;
5155
b1ad065e
RR
5156 if (numa_group) {
5157 /* Task is already in the group's interleave set. */
5158 if (node_isset(src_nid, numa_group->active_nodes))
5159 return false;
83e1d2cd 5160
b1ad065e
RR
5161 /* Task is moving into the group's interleave set. */
5162 if (node_isset(dst_nid, numa_group->active_nodes))
5163 return true;
83e1d2cd 5164
b1ad065e
RR
5165 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5166 }
5167
5168 /* Encourage migration to the preferred node. */
5169 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5170 return true;
5171
b1ad065e 5172 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5173}
7a0f3083
MG
5174
5175
5176static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5177{
b1ad065e 5178 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5179 int src_nid, dst_nid;
5180
5181 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5182 return false;
5183
ff1df896 5184 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5185 return false;
5186
5187 src_nid = cpu_to_node(env->src_cpu);
5188 dst_nid = cpu_to_node(env->dst_cpu);
5189
83e1d2cd 5190 if (src_nid == dst_nid)
7a0f3083
MG
5191 return false;
5192
b1ad065e
RR
5193 if (numa_group) {
5194 /* Task is moving within/into the group's interleave set. */
5195 if (node_isset(dst_nid, numa_group->active_nodes))
5196 return false;
5197
5198 /* Task is moving out of the group's interleave set. */
5199 if (node_isset(src_nid, numa_group->active_nodes))
5200 return true;
5201
5202 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5203 }
5204
83e1d2cd
MG
5205 /* Migrating away from the preferred node is always bad. */
5206 if (src_nid == p->numa_preferred_nid)
5207 return true;
5208
b1ad065e 5209 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5210}
5211
3a7053b3
MG
5212#else
5213static inline bool migrate_improves_locality(struct task_struct *p,
5214 struct lb_env *env)
5215{
5216 return false;
5217}
7a0f3083
MG
5218
5219static inline bool migrate_degrades_locality(struct task_struct *p,
5220 struct lb_env *env)
5221{
5222 return false;
5223}
3a7053b3
MG
5224#endif
5225
1e3c88bd
PZ
5226/*
5227 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5228 */
5229static
8e45cb54 5230int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5231{
5232 int tsk_cache_hot = 0;
e5673f28
KT
5233
5234 lockdep_assert_held(&env->src_rq->lock);
5235
1e3c88bd
PZ
5236 /*
5237 * We do not migrate tasks that are:
d3198084 5238 * 1) throttled_lb_pair, or
1e3c88bd 5239 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5240 * 3) running (obviously), or
5241 * 4) are cache-hot on their current CPU.
1e3c88bd 5242 */
d3198084
JK
5243 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5244 return 0;
5245
ddcdf6e7 5246 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5247 int cpu;
88b8dac0 5248
41acab88 5249 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5250
6263322c
PZ
5251 env->flags |= LBF_SOME_PINNED;
5252
88b8dac0
SV
5253 /*
5254 * Remember if this task can be migrated to any other cpu in
5255 * our sched_group. We may want to revisit it if we couldn't
5256 * meet load balance goals by pulling other tasks on src_cpu.
5257 *
5258 * Also avoid computing new_dst_cpu if we have already computed
5259 * one in current iteration.
5260 */
6263322c 5261 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5262 return 0;
5263
e02e60c1
JK
5264 /* Prevent to re-select dst_cpu via env's cpus */
5265 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5266 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5267 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5268 env->new_dst_cpu = cpu;
5269 break;
5270 }
88b8dac0 5271 }
e02e60c1 5272
1e3c88bd
PZ
5273 return 0;
5274 }
88b8dac0
SV
5275
5276 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5277 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5278
ddcdf6e7 5279 if (task_running(env->src_rq, p)) {
41acab88 5280 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5281 return 0;
5282 }
5283
5284 /*
5285 * Aggressive migration if:
3a7053b3
MG
5286 * 1) destination numa is preferred
5287 * 2) task is cache cold, or
5288 * 3) too many balance attempts have failed.
1e3c88bd 5289 */
5d5e2b1b 5290 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5291 if (!tsk_cache_hot)
5292 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5293
5294 if (migrate_improves_locality(p, env)) {
5295#ifdef CONFIG_SCHEDSTATS
5296 if (tsk_cache_hot) {
5297 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5298 schedstat_inc(p, se.statistics.nr_forced_migrations);
5299 }
5300#endif
5301 return 1;
5302 }
5303
1e3c88bd 5304 if (!tsk_cache_hot ||
8e45cb54 5305 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5306
1e3c88bd 5307 if (tsk_cache_hot) {
8e45cb54 5308 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5309 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5310 }
4e2dcb73 5311
1e3c88bd
PZ
5312 return 1;
5313 }
5314
4e2dcb73
ZH
5315 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5316 return 0;
1e3c88bd
PZ
5317}
5318
163122b7
KT
5319/*
5320 * detach_task() -- detach the task for the migration specified in env
5321 */
5322static void detach_task(struct task_struct *p, struct lb_env *env)
5323{
5324 lockdep_assert_held(&env->src_rq->lock);
5325
5326 deactivate_task(env->src_rq, p, 0);
5327 p->on_rq = TASK_ON_RQ_MIGRATING;
5328 set_task_cpu(p, env->dst_cpu);
5329}
5330
897c395f 5331/*
e5673f28 5332 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5333 * part of active balancing operations within "domain".
897c395f 5334 *
e5673f28 5335 * Returns a task if successful and NULL otherwise.
897c395f 5336 */
e5673f28 5337static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5338{
5339 struct task_struct *p, *n;
897c395f 5340
e5673f28
KT
5341 lockdep_assert_held(&env->src_rq->lock);
5342
367456c7 5343 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5344 if (!can_migrate_task(p, env))
5345 continue;
897c395f 5346
163122b7 5347 detach_task(p, env);
e5673f28 5348
367456c7 5349 /*
e5673f28 5350 * Right now, this is only the second place where
163122b7 5351 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5352 * so we can safely collect stats here rather than
163122b7 5353 * inside detach_tasks().
367456c7
PZ
5354 */
5355 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5356 return p;
897c395f 5357 }
e5673f28
KT
5358 return NULL;
5359}
5360
eb95308e
PZ
5361static const unsigned int sched_nr_migrate_break = 32;
5362
5d6523eb 5363/*
163122b7
KT
5364 * detach_tasks() -- tries to detach up to imbalance weighted load from
5365 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5366 *
163122b7 5367 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5368 */
163122b7 5369static int detach_tasks(struct lb_env *env)
1e3c88bd 5370{
5d6523eb
PZ
5371 struct list_head *tasks = &env->src_rq->cfs_tasks;
5372 struct task_struct *p;
367456c7 5373 unsigned long load;
163122b7
KT
5374 int detached = 0;
5375
5376 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5377
bd939f45 5378 if (env->imbalance <= 0)
5d6523eb 5379 return 0;
1e3c88bd 5380
5d6523eb
PZ
5381 while (!list_empty(tasks)) {
5382 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5383
367456c7
PZ
5384 env->loop++;
5385 /* We've more or less seen every task there is, call it quits */
5d6523eb 5386 if (env->loop > env->loop_max)
367456c7 5387 break;
5d6523eb
PZ
5388
5389 /* take a breather every nr_migrate tasks */
367456c7 5390 if (env->loop > env->loop_break) {
eb95308e 5391 env->loop_break += sched_nr_migrate_break;
8e45cb54 5392 env->flags |= LBF_NEED_BREAK;
ee00e66f 5393 break;
a195f004 5394 }
1e3c88bd 5395
d3198084 5396 if (!can_migrate_task(p, env))
367456c7
PZ
5397 goto next;
5398
5399 load = task_h_load(p);
5d6523eb 5400
eb95308e 5401 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5402 goto next;
5403
bd939f45 5404 if ((load / 2) > env->imbalance)
367456c7 5405 goto next;
1e3c88bd 5406
163122b7
KT
5407 detach_task(p, env);
5408 list_add(&p->se.group_node, &env->tasks);
5409
5410 detached++;
bd939f45 5411 env->imbalance -= load;
1e3c88bd
PZ
5412
5413#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5414 /*
5415 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5416 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5417 * the critical section.
5418 */
5d6523eb 5419 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5420 break;
1e3c88bd
PZ
5421#endif
5422
ee00e66f
PZ
5423 /*
5424 * We only want to steal up to the prescribed amount of
5425 * weighted load.
5426 */
bd939f45 5427 if (env->imbalance <= 0)
ee00e66f 5428 break;
367456c7
PZ
5429
5430 continue;
5431next:
5d6523eb 5432 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5433 }
5d6523eb 5434
1e3c88bd 5435 /*
163122b7
KT
5436 * Right now, this is one of only two places we collect this stat
5437 * so we can safely collect detach_one_task() stats here rather
5438 * than inside detach_one_task().
1e3c88bd 5439 */
163122b7 5440 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5441
163122b7
KT
5442 return detached;
5443}
5444
5445/*
5446 * attach_task() -- attach the task detached by detach_task() to its new rq.
5447 */
5448static void attach_task(struct rq *rq, struct task_struct *p)
5449{
5450 lockdep_assert_held(&rq->lock);
5451
5452 BUG_ON(task_rq(p) != rq);
5453 p->on_rq = TASK_ON_RQ_QUEUED;
5454 activate_task(rq, p, 0);
5455 check_preempt_curr(rq, p, 0);
5456}
5457
5458/*
5459 * attach_one_task() -- attaches the task returned from detach_one_task() to
5460 * its new rq.
5461 */
5462static void attach_one_task(struct rq *rq, struct task_struct *p)
5463{
5464 raw_spin_lock(&rq->lock);
5465 attach_task(rq, p);
5466 raw_spin_unlock(&rq->lock);
5467}
5468
5469/*
5470 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5471 * new rq.
5472 */
5473static void attach_tasks(struct lb_env *env)
5474{
5475 struct list_head *tasks = &env->tasks;
5476 struct task_struct *p;
5477
5478 raw_spin_lock(&env->dst_rq->lock);
5479
5480 while (!list_empty(tasks)) {
5481 p = list_first_entry(tasks, struct task_struct, se.group_node);
5482 list_del_init(&p->se.group_node);
5483
5484 attach_task(env->dst_rq, p);
5485 }
5486
5487 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5488}
5489
230059de 5490#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5491/*
5492 * update tg->load_weight by folding this cpu's load_avg
5493 */
48a16753 5494static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5495{
48a16753
PT
5496 struct sched_entity *se = tg->se[cpu];
5497 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5498
48a16753
PT
5499 /* throttled entities do not contribute to load */
5500 if (throttled_hierarchy(cfs_rq))
5501 return;
9e3081ca 5502
aff3e498 5503 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5504
82958366
PT
5505 if (se) {
5506 update_entity_load_avg(se, 1);
5507 /*
5508 * We pivot on our runnable average having decayed to zero for
5509 * list removal. This generally implies that all our children
5510 * have also been removed (modulo rounding error or bandwidth
5511 * control); however, such cases are rare and we can fix these
5512 * at enqueue.
5513 *
5514 * TODO: fix up out-of-order children on enqueue.
5515 */
5516 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5517 list_del_leaf_cfs_rq(cfs_rq);
5518 } else {
48a16753 5519 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5520 update_rq_runnable_avg(rq, rq->nr_running);
5521 }
9e3081ca
PZ
5522}
5523
48a16753 5524static void update_blocked_averages(int cpu)
9e3081ca 5525{
9e3081ca 5526 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5527 struct cfs_rq *cfs_rq;
5528 unsigned long flags;
9e3081ca 5529
48a16753
PT
5530 raw_spin_lock_irqsave(&rq->lock, flags);
5531 update_rq_clock(rq);
9763b67f
PZ
5532 /*
5533 * Iterates the task_group tree in a bottom up fashion, see
5534 * list_add_leaf_cfs_rq() for details.
5535 */
64660c86 5536 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5537 /*
5538 * Note: We may want to consider periodically releasing
5539 * rq->lock about these updates so that creating many task
5540 * groups does not result in continually extending hold time.
5541 */
5542 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5543 }
48a16753
PT
5544
5545 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5546}
5547
9763b67f 5548/*
68520796 5549 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5550 * This needs to be done in a top-down fashion because the load of a child
5551 * group is a fraction of its parents load.
5552 */
68520796 5553static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5554{
68520796
VD
5555 struct rq *rq = rq_of(cfs_rq);
5556 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5557 unsigned long now = jiffies;
68520796 5558 unsigned long load;
a35b6466 5559
68520796 5560 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5561 return;
5562
68520796
VD
5563 cfs_rq->h_load_next = NULL;
5564 for_each_sched_entity(se) {
5565 cfs_rq = cfs_rq_of(se);
5566 cfs_rq->h_load_next = se;
5567 if (cfs_rq->last_h_load_update == now)
5568 break;
5569 }
a35b6466 5570
68520796 5571 if (!se) {
7e3115ef 5572 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5573 cfs_rq->last_h_load_update = now;
5574 }
5575
5576 while ((se = cfs_rq->h_load_next) != NULL) {
5577 load = cfs_rq->h_load;
5578 load = div64_ul(load * se->avg.load_avg_contrib,
5579 cfs_rq->runnable_load_avg + 1);
5580 cfs_rq = group_cfs_rq(se);
5581 cfs_rq->h_load = load;
5582 cfs_rq->last_h_load_update = now;
5583 }
9763b67f
PZ
5584}
5585
367456c7 5586static unsigned long task_h_load(struct task_struct *p)
230059de 5587{
367456c7 5588 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5589
68520796 5590 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5591 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5592 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5593}
5594#else
48a16753 5595static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5596{
5597}
5598
367456c7 5599static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5600{
a003a25b 5601 return p->se.avg.load_avg_contrib;
1e3c88bd 5602}
230059de 5603#endif
1e3c88bd 5604
1e3c88bd 5605/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5606
5607enum group_type {
5608 group_other = 0,
5609 group_imbalanced,
5610 group_overloaded,
5611};
5612
1e3c88bd
PZ
5613/*
5614 * sg_lb_stats - stats of a sched_group required for load_balancing
5615 */
5616struct sg_lb_stats {
5617 unsigned long avg_load; /*Avg load across the CPUs of the group */
5618 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5619 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5620 unsigned long load_per_task;
63b2ca30 5621 unsigned long group_capacity;
147c5fc2 5622 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5623 unsigned int group_capacity_factor;
147c5fc2
PZ
5624 unsigned int idle_cpus;
5625 unsigned int group_weight;
caeb178c 5626 enum group_type group_type;
1b6a7495 5627 int group_has_free_capacity;
0ec8aa00
PZ
5628#ifdef CONFIG_NUMA_BALANCING
5629 unsigned int nr_numa_running;
5630 unsigned int nr_preferred_running;
5631#endif
1e3c88bd
PZ
5632};
5633
56cf515b
JK
5634/*
5635 * sd_lb_stats - Structure to store the statistics of a sched_domain
5636 * during load balancing.
5637 */
5638struct sd_lb_stats {
5639 struct sched_group *busiest; /* Busiest group in this sd */
5640 struct sched_group *local; /* Local group in this sd */
5641 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5642 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5643 unsigned long avg_load; /* Average load across all groups in sd */
5644
56cf515b 5645 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5646 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5647};
5648
147c5fc2
PZ
5649static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5650{
5651 /*
5652 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5653 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5654 * We must however clear busiest_stat::avg_load because
5655 * update_sd_pick_busiest() reads this before assignment.
5656 */
5657 *sds = (struct sd_lb_stats){
5658 .busiest = NULL,
5659 .local = NULL,
5660 .total_load = 0UL,
63b2ca30 5661 .total_capacity = 0UL,
147c5fc2
PZ
5662 .busiest_stat = {
5663 .avg_load = 0UL,
caeb178c
RR
5664 .sum_nr_running = 0,
5665 .group_type = group_other,
147c5fc2
PZ
5666 },
5667 };
5668}
5669
1e3c88bd
PZ
5670/**
5671 * get_sd_load_idx - Obtain the load index for a given sched domain.
5672 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5673 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5674 *
5675 * Return: The load index.
1e3c88bd
PZ
5676 */
5677static inline int get_sd_load_idx(struct sched_domain *sd,
5678 enum cpu_idle_type idle)
5679{
5680 int load_idx;
5681
5682 switch (idle) {
5683 case CPU_NOT_IDLE:
5684 load_idx = sd->busy_idx;
5685 break;
5686
5687 case CPU_NEWLY_IDLE:
5688 load_idx = sd->newidle_idx;
5689 break;
5690 default:
5691 load_idx = sd->idle_idx;
5692 break;
5693 }
5694
5695 return load_idx;
5696}
5697
ced549fa 5698static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5699{
ca8ce3d0 5700 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5701}
5702
ca8ce3d0 5703unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5704{
ced549fa 5705 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5706}
5707
ced549fa 5708static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5709{
669c55e9 5710 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5711 unsigned long smt_gain = sd->smt_gain;
5712
5713 smt_gain /= weight;
5714
5715 return smt_gain;
5716}
5717
ca8ce3d0 5718unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5719{
ced549fa 5720 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5721}
5722
ced549fa 5723static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5724{
5725 struct rq *rq = cpu_rq(cpu);
b654f7de 5726 u64 total, available, age_stamp, avg;
cadefd3d 5727 s64 delta;
1e3c88bd 5728
b654f7de
PZ
5729 /*
5730 * Since we're reading these variables without serialization make sure
5731 * we read them once before doing sanity checks on them.
5732 */
5733 age_stamp = ACCESS_ONCE(rq->age_stamp);
5734 avg = ACCESS_ONCE(rq->rt_avg);
5735
cadefd3d
PZ
5736 delta = rq_clock(rq) - age_stamp;
5737 if (unlikely(delta < 0))
5738 delta = 0;
5739
5740 total = sched_avg_period() + delta;
aa483808 5741
b654f7de 5742 if (unlikely(total < avg)) {
ced549fa 5743 /* Ensures that capacity won't end up being negative */
aa483808
VP
5744 available = 0;
5745 } else {
b654f7de 5746 available = total - avg;
aa483808 5747 }
1e3c88bd 5748
ca8ce3d0
NP
5749 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5750 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5751
ca8ce3d0 5752 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5753
5754 return div_u64(available, total);
5755}
5756
ced549fa 5757static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5758{
669c55e9 5759 unsigned long weight = sd->span_weight;
ca8ce3d0 5760 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5761 struct sched_group *sdg = sd->groups;
5762
5d4dfddd
NP
5763 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5764 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5765 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5766 else
ced549fa 5767 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5768
ca8ce3d0 5769 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5770 }
5771
ced549fa 5772 sdg->sgc->capacity_orig = capacity;
9d5efe05 5773
5d4dfddd 5774 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5775 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5776 else
ced549fa 5777 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5778
ca8ce3d0 5779 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5780
ced549fa 5781 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5782 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5783
ced549fa
NP
5784 if (!capacity)
5785 capacity = 1;
1e3c88bd 5786
ced549fa
NP
5787 cpu_rq(cpu)->cpu_capacity = capacity;
5788 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5789}
5790
63b2ca30 5791void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5792{
5793 struct sched_domain *child = sd->child;
5794 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5795 unsigned long capacity, capacity_orig;
4ec4412e
VG
5796 unsigned long interval;
5797
5798 interval = msecs_to_jiffies(sd->balance_interval);
5799 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5800 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5801
5802 if (!child) {
ced549fa 5803 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5804 return;
5805 }
5806
63b2ca30 5807 capacity_orig = capacity = 0;
1e3c88bd 5808
74a5ce20
PZ
5809 if (child->flags & SD_OVERLAP) {
5810 /*
5811 * SD_OVERLAP domains cannot assume that child groups
5812 * span the current group.
5813 */
5814
863bffc8 5815 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5816 struct sched_group_capacity *sgc;
9abf24d4 5817 struct rq *rq = cpu_rq(cpu);
863bffc8 5818
9abf24d4 5819 /*
63b2ca30 5820 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5821 * gets here before we've attached the domains to the
5822 * runqueues.
5823 *
ced549fa
NP
5824 * Use capacity_of(), which is set irrespective of domains
5825 * in update_cpu_capacity().
9abf24d4 5826 *
63b2ca30 5827 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5828 * causing divide-by-zero issues on boot.
5829 *
63b2ca30 5830 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5831 */
5832 if (unlikely(!rq->sd)) {
ced549fa
NP
5833 capacity_orig += capacity_of(cpu);
5834 capacity += capacity_of(cpu);
9abf24d4
SD
5835 continue;
5836 }
863bffc8 5837
63b2ca30
NP
5838 sgc = rq->sd->groups->sgc;
5839 capacity_orig += sgc->capacity_orig;
5840 capacity += sgc->capacity;
863bffc8 5841 }
74a5ce20
PZ
5842 } else {
5843 /*
5844 * !SD_OVERLAP domains can assume that child groups
5845 * span the current group.
5846 */
5847
5848 group = child->groups;
5849 do {
63b2ca30
NP
5850 capacity_orig += group->sgc->capacity_orig;
5851 capacity += group->sgc->capacity;
74a5ce20
PZ
5852 group = group->next;
5853 } while (group != child->groups);
5854 }
1e3c88bd 5855
63b2ca30
NP
5856 sdg->sgc->capacity_orig = capacity_orig;
5857 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5858}
5859
9d5efe05
SV
5860/*
5861 * Try and fix up capacity for tiny siblings, this is needed when
5862 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5863 * which on its own isn't powerful enough.
5864 *
5865 * See update_sd_pick_busiest() and check_asym_packing().
5866 */
5867static inline int
5868fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5869{
5870 /*
ca8ce3d0 5871 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5872 */
5d4dfddd 5873 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5874 return 0;
5875
5876 /*
63b2ca30 5877 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5878 */
63b2ca30 5879 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5880 return 1;
5881
5882 return 0;
5883}
5884
30ce5dab
PZ
5885/*
5886 * Group imbalance indicates (and tries to solve) the problem where balancing
5887 * groups is inadequate due to tsk_cpus_allowed() constraints.
5888 *
5889 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5890 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5891 * Something like:
5892 *
5893 * { 0 1 2 3 } { 4 5 6 7 }
5894 * * * * *
5895 *
5896 * If we were to balance group-wise we'd place two tasks in the first group and
5897 * two tasks in the second group. Clearly this is undesired as it will overload
5898 * cpu 3 and leave one of the cpus in the second group unused.
5899 *
5900 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5901 * by noticing the lower domain failed to reach balance and had difficulty
5902 * moving tasks due to affinity constraints.
30ce5dab
PZ
5903 *
5904 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5905 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5906 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5907 * to create an effective group imbalance.
5908 *
5909 * This is a somewhat tricky proposition since the next run might not find the
5910 * group imbalance and decide the groups need to be balanced again. A most
5911 * subtle and fragile situation.
5912 */
5913
6263322c 5914static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5915{
63b2ca30 5916 return group->sgc->imbalance;
30ce5dab
PZ
5917}
5918
b37d9316 5919/*
0fedc6c8 5920 * Compute the group capacity factor.
b37d9316 5921 *
ced549fa 5922 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5923 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5924 * and limit unit capacity with that.
b37d9316 5925 */
0fedc6c8 5926static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5927{
0fedc6c8 5928 unsigned int capacity_factor, smt, cpus;
63b2ca30 5929 unsigned int capacity, capacity_orig;
c61037e9 5930
63b2ca30
NP
5931 capacity = group->sgc->capacity;
5932 capacity_orig = group->sgc->capacity_orig;
c61037e9 5933 cpus = group->group_weight;
b37d9316 5934
63b2ca30 5935 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5936 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5937 capacity_factor = cpus / smt; /* cores */
b37d9316 5938
63b2ca30 5939 capacity_factor = min_t(unsigned,
ca8ce3d0 5940 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5941 if (!capacity_factor)
5942 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5943
0fedc6c8 5944 return capacity_factor;
b37d9316
PZ
5945}
5946
caeb178c
RR
5947static enum group_type
5948group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5949{
5950 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5951 return group_overloaded;
5952
5953 if (sg_imbalanced(group))
5954 return group_imbalanced;
5955
5956 return group_other;
5957}
5958
1e3c88bd
PZ
5959/**
5960 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5961 * @env: The load balancing environment.
1e3c88bd 5962 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5963 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5964 * @local_group: Does group contain this_cpu.
1e3c88bd 5965 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5966 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5967 */
bd939f45
PZ
5968static inline void update_sg_lb_stats(struct lb_env *env,
5969 struct sched_group *group, int load_idx,
4486edd1
TC
5970 int local_group, struct sg_lb_stats *sgs,
5971 bool *overload)
1e3c88bd 5972{
30ce5dab 5973 unsigned long load;
bd939f45 5974 int i;
1e3c88bd 5975
b72ff13c
PZ
5976 memset(sgs, 0, sizeof(*sgs));
5977
b9403130 5978 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5979 struct rq *rq = cpu_rq(i);
5980
1e3c88bd 5981 /* Bias balancing toward cpus of our domain */
6263322c 5982 if (local_group)
04f733b4 5983 load = target_load(i, load_idx);
6263322c 5984 else
1e3c88bd 5985 load = source_load(i, load_idx);
1e3c88bd
PZ
5986
5987 sgs->group_load += load;
65fdac08 5988 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
5989
5990 if (rq->nr_running > 1)
5991 *overload = true;
5992
0ec8aa00
PZ
5993#ifdef CONFIG_NUMA_BALANCING
5994 sgs->nr_numa_running += rq->nr_numa_running;
5995 sgs->nr_preferred_running += rq->nr_preferred_running;
5996#endif
1e3c88bd 5997 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5998 if (idle_cpu(i))
5999 sgs->idle_cpus++;
1e3c88bd
PZ
6000 }
6001
63b2ca30
NP
6002 /* Adjust by relative CPU capacity of the group */
6003 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6004 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6005
dd5feea1 6006 if (sgs->sum_nr_running)
38d0f770 6007 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6008
aae6d3dd 6009 sgs->group_weight = group->group_weight;
0fedc6c8 6010 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6011 sgs->group_type = group_classify(group, sgs);
b37d9316 6012
0fedc6c8 6013 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6014 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6015}
6016
532cb4c4
MN
6017/**
6018 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6019 * @env: The load balancing environment.
532cb4c4
MN
6020 * @sds: sched_domain statistics
6021 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6022 * @sgs: sched_group statistics
532cb4c4
MN
6023 *
6024 * Determine if @sg is a busier group than the previously selected
6025 * busiest group.
e69f6186
YB
6026 *
6027 * Return: %true if @sg is a busier group than the previously selected
6028 * busiest group. %false otherwise.
532cb4c4 6029 */
bd939f45 6030static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6031 struct sd_lb_stats *sds,
6032 struct sched_group *sg,
bd939f45 6033 struct sg_lb_stats *sgs)
532cb4c4 6034{
caeb178c 6035 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6036
caeb178c 6037 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6038 return true;
6039
caeb178c
RR
6040 if (sgs->group_type < busiest->group_type)
6041 return false;
6042
6043 if (sgs->avg_load <= busiest->avg_load)
6044 return false;
6045
6046 /* This is the busiest node in its class. */
6047 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6048 return true;
6049
6050 /*
6051 * ASYM_PACKING needs to move all the work to the lowest
6052 * numbered CPUs in the group, therefore mark all groups
6053 * higher than ourself as busy.
6054 */
caeb178c 6055 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6056 if (!sds->busiest)
6057 return true;
6058
6059 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6060 return true;
6061 }
6062
6063 return false;
6064}
6065
0ec8aa00
PZ
6066#ifdef CONFIG_NUMA_BALANCING
6067static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6068{
6069 if (sgs->sum_nr_running > sgs->nr_numa_running)
6070 return regular;
6071 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6072 return remote;
6073 return all;
6074}
6075
6076static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6077{
6078 if (rq->nr_running > rq->nr_numa_running)
6079 return regular;
6080 if (rq->nr_running > rq->nr_preferred_running)
6081 return remote;
6082 return all;
6083}
6084#else
6085static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6086{
6087 return all;
6088}
6089
6090static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6091{
6092 return regular;
6093}
6094#endif /* CONFIG_NUMA_BALANCING */
6095
1e3c88bd 6096/**
461819ac 6097 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6098 * @env: The load balancing environment.
1e3c88bd
PZ
6099 * @sds: variable to hold the statistics for this sched_domain.
6100 */
0ec8aa00 6101static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6102{
bd939f45
PZ
6103 struct sched_domain *child = env->sd->child;
6104 struct sched_group *sg = env->sd->groups;
56cf515b 6105 struct sg_lb_stats tmp_sgs;
1e3c88bd 6106 int load_idx, prefer_sibling = 0;
4486edd1 6107 bool overload = false;
1e3c88bd
PZ
6108
6109 if (child && child->flags & SD_PREFER_SIBLING)
6110 prefer_sibling = 1;
6111
bd939f45 6112 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6113
6114 do {
56cf515b 6115 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6116 int local_group;
6117
bd939f45 6118 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6119 if (local_group) {
6120 sds->local = sg;
6121 sgs = &sds->local_stat;
b72ff13c
PZ
6122
6123 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6124 time_after_eq(jiffies, sg->sgc->next_update))
6125 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6126 }
1e3c88bd 6127
4486edd1
TC
6128 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6129 &overload);
1e3c88bd 6130
b72ff13c
PZ
6131 if (local_group)
6132 goto next_group;
6133
1e3c88bd
PZ
6134 /*
6135 * In case the child domain prefers tasks go to siblings
0fedc6c8 6136 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6137 * and move all the excess tasks away. We lower the capacity
6138 * of a group only if the local group has the capacity to fit
0fedc6c8 6139 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6140 * extra check prevents the case where you always pull from the
6141 * heaviest group when it is already under-utilized (possible
6142 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6143 */
b72ff13c 6144 if (prefer_sibling && sds->local &&
1b6a7495 6145 sds->local_stat.group_has_free_capacity)
0fedc6c8 6146 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6147
b72ff13c 6148 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6149 sds->busiest = sg;
56cf515b 6150 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6151 }
6152
b72ff13c
PZ
6153next_group:
6154 /* Now, start updating sd_lb_stats */
6155 sds->total_load += sgs->group_load;
63b2ca30 6156 sds->total_capacity += sgs->group_capacity;
b72ff13c 6157
532cb4c4 6158 sg = sg->next;
bd939f45 6159 } while (sg != env->sd->groups);
0ec8aa00
PZ
6160
6161 if (env->sd->flags & SD_NUMA)
6162 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6163
6164 if (!env->sd->parent) {
6165 /* update overload indicator if we are at root domain */
6166 if (env->dst_rq->rd->overload != overload)
6167 env->dst_rq->rd->overload = overload;
6168 }
6169
532cb4c4
MN
6170}
6171
532cb4c4
MN
6172/**
6173 * check_asym_packing - Check to see if the group is packed into the
6174 * sched doman.
6175 *
6176 * This is primarily intended to used at the sibling level. Some
6177 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6178 * case of POWER7, it can move to lower SMT modes only when higher
6179 * threads are idle. When in lower SMT modes, the threads will
6180 * perform better since they share less core resources. Hence when we
6181 * have idle threads, we want them to be the higher ones.
6182 *
6183 * This packing function is run on idle threads. It checks to see if
6184 * the busiest CPU in this domain (core in the P7 case) has a higher
6185 * CPU number than the packing function is being run on. Here we are
6186 * assuming lower CPU number will be equivalent to lower a SMT thread
6187 * number.
6188 *
e69f6186 6189 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6190 * this CPU. The amount of the imbalance is returned in *imbalance.
6191 *
cd96891d 6192 * @env: The load balancing environment.
532cb4c4 6193 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6194 */
bd939f45 6195static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6196{
6197 int busiest_cpu;
6198
bd939f45 6199 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6200 return 0;
6201
6202 if (!sds->busiest)
6203 return 0;
6204
6205 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6206 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6207 return 0;
6208
bd939f45 6209 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6210 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6211 SCHED_CAPACITY_SCALE);
bd939f45 6212
532cb4c4 6213 return 1;
1e3c88bd
PZ
6214}
6215
6216/**
6217 * fix_small_imbalance - Calculate the minor imbalance that exists
6218 * amongst the groups of a sched_domain, during
6219 * load balancing.
cd96891d 6220 * @env: The load balancing environment.
1e3c88bd 6221 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6222 */
bd939f45
PZ
6223static inline
6224void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6225{
63b2ca30 6226 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6227 unsigned int imbn = 2;
dd5feea1 6228 unsigned long scaled_busy_load_per_task;
56cf515b 6229 struct sg_lb_stats *local, *busiest;
1e3c88bd 6230
56cf515b
JK
6231 local = &sds->local_stat;
6232 busiest = &sds->busiest_stat;
1e3c88bd 6233
56cf515b
JK
6234 if (!local->sum_nr_running)
6235 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6236 else if (busiest->load_per_task > local->load_per_task)
6237 imbn = 1;
dd5feea1 6238
56cf515b 6239 scaled_busy_load_per_task =
ca8ce3d0 6240 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6241 busiest->group_capacity;
56cf515b 6242
3029ede3
VD
6243 if (busiest->avg_load + scaled_busy_load_per_task >=
6244 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6245 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6246 return;
6247 }
6248
6249 /*
6250 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6251 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6252 * moving them.
6253 */
6254
63b2ca30 6255 capa_now += busiest->group_capacity *
56cf515b 6256 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6257 capa_now += local->group_capacity *
56cf515b 6258 min(local->load_per_task, local->avg_load);
ca8ce3d0 6259 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6260
6261 /* Amount of load we'd subtract */
a2cd4260 6262 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6263 capa_move += busiest->group_capacity *
56cf515b 6264 min(busiest->load_per_task,
a2cd4260 6265 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6266 }
1e3c88bd
PZ
6267
6268 /* Amount of load we'd add */
63b2ca30 6269 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6270 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6271 tmp = (busiest->avg_load * busiest->group_capacity) /
6272 local->group_capacity;
56cf515b 6273 } else {
ca8ce3d0 6274 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6275 local->group_capacity;
56cf515b 6276 }
63b2ca30 6277 capa_move += local->group_capacity *
3ae11c90 6278 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6279 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6280
6281 /* Move if we gain throughput */
63b2ca30 6282 if (capa_move > capa_now)
56cf515b 6283 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6284}
6285
6286/**
6287 * calculate_imbalance - Calculate the amount of imbalance present within the
6288 * groups of a given sched_domain during load balance.
bd939f45 6289 * @env: load balance environment
1e3c88bd 6290 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6291 */
bd939f45 6292static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6293{
dd5feea1 6294 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6295 struct sg_lb_stats *local, *busiest;
6296
6297 local = &sds->local_stat;
56cf515b 6298 busiest = &sds->busiest_stat;
dd5feea1 6299
caeb178c 6300 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6301 /*
6302 * In the group_imb case we cannot rely on group-wide averages
6303 * to ensure cpu-load equilibrium, look at wider averages. XXX
6304 */
56cf515b
JK
6305 busiest->load_per_task =
6306 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6307 }
6308
1e3c88bd
PZ
6309 /*
6310 * In the presence of smp nice balancing, certain scenarios can have
6311 * max load less than avg load(as we skip the groups at or below
ced549fa 6312 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6313 */
b1885550
VD
6314 if (busiest->avg_load <= sds->avg_load ||
6315 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6316 env->imbalance = 0;
6317 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6318 }
6319
9a5d9ba6
PZ
6320 /*
6321 * If there aren't any idle cpus, avoid creating some.
6322 */
6323 if (busiest->group_type == group_overloaded &&
6324 local->group_type == group_overloaded) {
56cf515b 6325 load_above_capacity =
0fedc6c8 6326 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6327
ca8ce3d0 6328 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6329 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6330 }
6331
6332 /*
6333 * We're trying to get all the cpus to the average_load, so we don't
6334 * want to push ourselves above the average load, nor do we wish to
6335 * reduce the max loaded cpu below the average load. At the same time,
6336 * we also don't want to reduce the group load below the group capacity
6337 * (so that we can implement power-savings policies etc). Thus we look
6338 * for the minimum possible imbalance.
dd5feea1 6339 */
30ce5dab 6340 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6341
6342 /* How much load to actually move to equalise the imbalance */
56cf515b 6343 env->imbalance = min(
63b2ca30
NP
6344 max_pull * busiest->group_capacity,
6345 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6346 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6347
6348 /*
6349 * if *imbalance is less than the average load per runnable task
25985edc 6350 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6351 * a think about bumping its value to force at least one task to be
6352 * moved
6353 */
56cf515b 6354 if (env->imbalance < busiest->load_per_task)
bd939f45 6355 return fix_small_imbalance(env, sds);
1e3c88bd 6356}
fab47622 6357
1e3c88bd
PZ
6358/******* find_busiest_group() helpers end here *********************/
6359
6360/**
6361 * find_busiest_group - Returns the busiest group within the sched_domain
6362 * if there is an imbalance. If there isn't an imbalance, and
6363 * the user has opted for power-savings, it returns a group whose
6364 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6365 * such a group exists.
6366 *
6367 * Also calculates the amount of weighted load which should be moved
6368 * to restore balance.
6369 *
cd96891d 6370 * @env: The load balancing environment.
1e3c88bd 6371 *
e69f6186 6372 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6373 * - If no imbalance and user has opted for power-savings balance,
6374 * return the least loaded group whose CPUs can be
6375 * put to idle by rebalancing its tasks onto our group.
6376 */
56cf515b 6377static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6378{
56cf515b 6379 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6380 struct sd_lb_stats sds;
6381
147c5fc2 6382 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6383
6384 /*
6385 * Compute the various statistics relavent for load balancing at
6386 * this level.
6387 */
23f0d209 6388 update_sd_lb_stats(env, &sds);
56cf515b
JK
6389 local = &sds.local_stat;
6390 busiest = &sds.busiest_stat;
1e3c88bd 6391
bd939f45
PZ
6392 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6393 check_asym_packing(env, &sds))
532cb4c4
MN
6394 return sds.busiest;
6395
cc57aa8f 6396 /* There is no busy sibling group to pull tasks from */
56cf515b 6397 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6398 goto out_balanced;
6399
ca8ce3d0
NP
6400 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6401 / sds.total_capacity;
b0432d8f 6402
866ab43e
PZ
6403 /*
6404 * If the busiest group is imbalanced the below checks don't
30ce5dab 6405 * work because they assume all things are equal, which typically
866ab43e
PZ
6406 * isn't true due to cpus_allowed constraints and the like.
6407 */
caeb178c 6408 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6409 goto force_balance;
6410
cc57aa8f 6411 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6412 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6413 !busiest->group_has_free_capacity)
fab47622
NR
6414 goto force_balance;
6415
cc57aa8f
PZ
6416 /*
6417 * If the local group is more busy than the selected busiest group
6418 * don't try and pull any tasks.
6419 */
56cf515b 6420 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6421 goto out_balanced;
6422
cc57aa8f
PZ
6423 /*
6424 * Don't pull any tasks if this group is already above the domain
6425 * average load.
6426 */
56cf515b 6427 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6428 goto out_balanced;
6429
bd939f45 6430 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6431 /*
6432 * This cpu is idle. If the busiest group load doesn't
6433 * have more tasks than the number of available cpu's and
6434 * there is no imbalance between this and busiest group
6435 * wrt to idle cpu's, it is balanced.
6436 */
56cf515b
JK
6437 if ((local->idle_cpus < busiest->idle_cpus) &&
6438 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6439 goto out_balanced;
c186fafe
PZ
6440 } else {
6441 /*
6442 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6443 * imbalance_pct to be conservative.
6444 */
56cf515b
JK
6445 if (100 * busiest->avg_load <=
6446 env->sd->imbalance_pct * local->avg_load)
c186fafe 6447 goto out_balanced;
aae6d3dd 6448 }
1e3c88bd 6449
fab47622 6450force_balance:
1e3c88bd 6451 /* Looks like there is an imbalance. Compute it */
bd939f45 6452 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6453 return sds.busiest;
6454
6455out_balanced:
bd939f45 6456 env->imbalance = 0;
1e3c88bd
PZ
6457 return NULL;
6458}
6459
6460/*
6461 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6462 */
bd939f45 6463static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6464 struct sched_group *group)
1e3c88bd
PZ
6465{
6466 struct rq *busiest = NULL, *rq;
ced549fa 6467 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6468 int i;
6469
6906a408 6470 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6471 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6472 enum fbq_type rt;
6473
6474 rq = cpu_rq(i);
6475 rt = fbq_classify_rq(rq);
1e3c88bd 6476
0ec8aa00
PZ
6477 /*
6478 * We classify groups/runqueues into three groups:
6479 * - regular: there are !numa tasks
6480 * - remote: there are numa tasks that run on the 'wrong' node
6481 * - all: there is no distinction
6482 *
6483 * In order to avoid migrating ideally placed numa tasks,
6484 * ignore those when there's better options.
6485 *
6486 * If we ignore the actual busiest queue to migrate another
6487 * task, the next balance pass can still reduce the busiest
6488 * queue by moving tasks around inside the node.
6489 *
6490 * If we cannot move enough load due to this classification
6491 * the next pass will adjust the group classification and
6492 * allow migration of more tasks.
6493 *
6494 * Both cases only affect the total convergence complexity.
6495 */
6496 if (rt > env->fbq_type)
6497 continue;
6498
ced549fa 6499 capacity = capacity_of(i);
ca8ce3d0 6500 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6501 if (!capacity_factor)
6502 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6503
6e40f5bb 6504 wl = weighted_cpuload(i);
1e3c88bd 6505
6e40f5bb
TG
6506 /*
6507 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6508 * which is not scaled with the cpu capacity.
6e40f5bb 6509 */
0fedc6c8 6510 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6511 continue;
6512
6e40f5bb
TG
6513 /*
6514 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6515 * the weighted_cpuload() scaled with the cpu capacity, so
6516 * that the load can be moved away from the cpu that is
6517 * potentially running at a lower capacity.
95a79b80 6518 *
ced549fa 6519 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6520 * multiplication to rid ourselves of the division works out
ced549fa
NP
6521 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6522 * our previous maximum.
6e40f5bb 6523 */
ced549fa 6524 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6525 busiest_load = wl;
ced549fa 6526 busiest_capacity = capacity;
1e3c88bd
PZ
6527 busiest = rq;
6528 }
6529 }
6530
6531 return busiest;
6532}
6533
6534/*
6535 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6536 * so long as it is large enough.
6537 */
6538#define MAX_PINNED_INTERVAL 512
6539
6540/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6541DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6542
bd939f45 6543static int need_active_balance(struct lb_env *env)
1af3ed3d 6544{
bd939f45
PZ
6545 struct sched_domain *sd = env->sd;
6546
6547 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6548
6549 /*
6550 * ASYM_PACKING needs to force migrate tasks from busy but
6551 * higher numbered CPUs in order to pack all tasks in the
6552 * lowest numbered CPUs.
6553 */
bd939f45 6554 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6555 return 1;
1af3ed3d
PZ
6556 }
6557
6558 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6559}
6560
969c7921
TH
6561static int active_load_balance_cpu_stop(void *data);
6562
23f0d209
JK
6563static int should_we_balance(struct lb_env *env)
6564{
6565 struct sched_group *sg = env->sd->groups;
6566 struct cpumask *sg_cpus, *sg_mask;
6567 int cpu, balance_cpu = -1;
6568
6569 /*
6570 * In the newly idle case, we will allow all the cpu's
6571 * to do the newly idle load balance.
6572 */
6573 if (env->idle == CPU_NEWLY_IDLE)
6574 return 1;
6575
6576 sg_cpus = sched_group_cpus(sg);
6577 sg_mask = sched_group_mask(sg);
6578 /* Try to find first idle cpu */
6579 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6580 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6581 continue;
6582
6583 balance_cpu = cpu;
6584 break;
6585 }
6586
6587 if (balance_cpu == -1)
6588 balance_cpu = group_balance_cpu(sg);
6589
6590 /*
6591 * First idle cpu or the first cpu(busiest) in this sched group
6592 * is eligible for doing load balancing at this and above domains.
6593 */
b0cff9d8 6594 return balance_cpu == env->dst_cpu;
23f0d209
JK
6595}
6596
1e3c88bd
PZ
6597/*
6598 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6599 * tasks if there is an imbalance.
6600 */
6601static int load_balance(int this_cpu, struct rq *this_rq,
6602 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6603 int *continue_balancing)
1e3c88bd 6604{
88b8dac0 6605 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6606 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6607 struct sched_group *group;
1e3c88bd
PZ
6608 struct rq *busiest;
6609 unsigned long flags;
e6252c3e 6610 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6611
8e45cb54
PZ
6612 struct lb_env env = {
6613 .sd = sd,
ddcdf6e7
PZ
6614 .dst_cpu = this_cpu,
6615 .dst_rq = this_rq,
88b8dac0 6616 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6617 .idle = idle,
eb95308e 6618 .loop_break = sched_nr_migrate_break,
b9403130 6619 .cpus = cpus,
0ec8aa00 6620 .fbq_type = all,
163122b7 6621 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6622 };
6623
cfc03118
JK
6624 /*
6625 * For NEWLY_IDLE load_balancing, we don't need to consider
6626 * other cpus in our group
6627 */
e02e60c1 6628 if (idle == CPU_NEWLY_IDLE)
cfc03118 6629 env.dst_grpmask = NULL;
cfc03118 6630
1e3c88bd
PZ
6631 cpumask_copy(cpus, cpu_active_mask);
6632
1e3c88bd
PZ
6633 schedstat_inc(sd, lb_count[idle]);
6634
6635redo:
23f0d209
JK
6636 if (!should_we_balance(&env)) {
6637 *continue_balancing = 0;
1e3c88bd 6638 goto out_balanced;
23f0d209 6639 }
1e3c88bd 6640
23f0d209 6641 group = find_busiest_group(&env);
1e3c88bd
PZ
6642 if (!group) {
6643 schedstat_inc(sd, lb_nobusyg[idle]);
6644 goto out_balanced;
6645 }
6646
b9403130 6647 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6648 if (!busiest) {
6649 schedstat_inc(sd, lb_nobusyq[idle]);
6650 goto out_balanced;
6651 }
6652
78feefc5 6653 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6654
bd939f45 6655 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6656
6657 ld_moved = 0;
6658 if (busiest->nr_running > 1) {
6659 /*
6660 * Attempt to move tasks. If find_busiest_group has found
6661 * an imbalance but busiest->nr_running <= 1, the group is
6662 * still unbalanced. ld_moved simply stays zero, so it is
6663 * correctly treated as an imbalance.
6664 */
8e45cb54 6665 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6666 env.src_cpu = busiest->cpu;
6667 env.src_rq = busiest;
6668 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6669
5d6523eb 6670more_balance:
163122b7 6671 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6672
6673 /*
6674 * cur_ld_moved - load moved in current iteration
6675 * ld_moved - cumulative load moved across iterations
6676 */
163122b7
KT
6677 cur_ld_moved = detach_tasks(&env);
6678
6679 /*
6680 * We've detached some tasks from busiest_rq. Every
6681 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6682 * unlock busiest->lock, and we are able to be sure
6683 * that nobody can manipulate the tasks in parallel.
6684 * See task_rq_lock() family for the details.
6685 */
6686
6687 raw_spin_unlock(&busiest->lock);
6688
6689 if (cur_ld_moved) {
6690 attach_tasks(&env);
6691 ld_moved += cur_ld_moved;
6692 }
6693
1e3c88bd
PZ
6694 local_irq_restore(flags);
6695
6696 /*
6697 * some other cpu did the load balance for us.
6698 */
88b8dac0
SV
6699 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6700 resched_cpu(env.dst_cpu);
6701
f1cd0858
JK
6702 if (env.flags & LBF_NEED_BREAK) {
6703 env.flags &= ~LBF_NEED_BREAK;
6704 goto more_balance;
6705 }
6706
88b8dac0
SV
6707 /*
6708 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6709 * us and move them to an alternate dst_cpu in our sched_group
6710 * where they can run. The upper limit on how many times we
6711 * iterate on same src_cpu is dependent on number of cpus in our
6712 * sched_group.
6713 *
6714 * This changes load balance semantics a bit on who can move
6715 * load to a given_cpu. In addition to the given_cpu itself
6716 * (or a ilb_cpu acting on its behalf where given_cpu is
6717 * nohz-idle), we now have balance_cpu in a position to move
6718 * load to given_cpu. In rare situations, this may cause
6719 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6720 * _independently_ and at _same_ time to move some load to
6721 * given_cpu) causing exceess load to be moved to given_cpu.
6722 * This however should not happen so much in practice and
6723 * moreover subsequent load balance cycles should correct the
6724 * excess load moved.
6725 */
6263322c 6726 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6727
7aff2e3a
VD
6728 /* Prevent to re-select dst_cpu via env's cpus */
6729 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6730
78feefc5 6731 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6732 env.dst_cpu = env.new_dst_cpu;
6263322c 6733 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6734 env.loop = 0;
6735 env.loop_break = sched_nr_migrate_break;
e02e60c1 6736
88b8dac0
SV
6737 /*
6738 * Go back to "more_balance" rather than "redo" since we
6739 * need to continue with same src_cpu.
6740 */
6741 goto more_balance;
6742 }
1e3c88bd 6743
6263322c
PZ
6744 /*
6745 * We failed to reach balance because of affinity.
6746 */
6747 if (sd_parent) {
63b2ca30 6748 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6749
afdeee05 6750 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6751 *group_imbalance = 1;
6263322c
PZ
6752 }
6753
1e3c88bd 6754 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6755 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6756 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6757 if (!cpumask_empty(cpus)) {
6758 env.loop = 0;
6759 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6760 goto redo;
bbf18b19 6761 }
afdeee05 6762 goto out_all_pinned;
1e3c88bd
PZ
6763 }
6764 }
6765
6766 if (!ld_moved) {
6767 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6768 /*
6769 * Increment the failure counter only on periodic balance.
6770 * We do not want newidle balance, which can be very
6771 * frequent, pollute the failure counter causing
6772 * excessive cache_hot migrations and active balances.
6773 */
6774 if (idle != CPU_NEWLY_IDLE)
6775 sd->nr_balance_failed++;
1e3c88bd 6776
bd939f45 6777 if (need_active_balance(&env)) {
1e3c88bd
PZ
6778 raw_spin_lock_irqsave(&busiest->lock, flags);
6779
969c7921
TH
6780 /* don't kick the active_load_balance_cpu_stop,
6781 * if the curr task on busiest cpu can't be
6782 * moved to this_cpu
1e3c88bd
PZ
6783 */
6784 if (!cpumask_test_cpu(this_cpu,
fa17b507 6785 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6786 raw_spin_unlock_irqrestore(&busiest->lock,
6787 flags);
8e45cb54 6788 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6789 goto out_one_pinned;
6790 }
6791
969c7921
TH
6792 /*
6793 * ->active_balance synchronizes accesses to
6794 * ->active_balance_work. Once set, it's cleared
6795 * only after active load balance is finished.
6796 */
1e3c88bd
PZ
6797 if (!busiest->active_balance) {
6798 busiest->active_balance = 1;
6799 busiest->push_cpu = this_cpu;
6800 active_balance = 1;
6801 }
6802 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6803
bd939f45 6804 if (active_balance) {
969c7921
TH
6805 stop_one_cpu_nowait(cpu_of(busiest),
6806 active_load_balance_cpu_stop, busiest,
6807 &busiest->active_balance_work);
bd939f45 6808 }
1e3c88bd
PZ
6809
6810 /*
6811 * We've kicked active balancing, reset the failure
6812 * counter.
6813 */
6814 sd->nr_balance_failed = sd->cache_nice_tries+1;
6815 }
6816 } else
6817 sd->nr_balance_failed = 0;
6818
6819 if (likely(!active_balance)) {
6820 /* We were unbalanced, so reset the balancing interval */
6821 sd->balance_interval = sd->min_interval;
6822 } else {
6823 /*
6824 * If we've begun active balancing, start to back off. This
6825 * case may not be covered by the all_pinned logic if there
6826 * is only 1 task on the busy runqueue (because we don't call
163122b7 6827 * detach_tasks).
1e3c88bd
PZ
6828 */
6829 if (sd->balance_interval < sd->max_interval)
6830 sd->balance_interval *= 2;
6831 }
6832
1e3c88bd
PZ
6833 goto out;
6834
6835out_balanced:
afdeee05
VG
6836 /*
6837 * We reach balance although we may have faced some affinity
6838 * constraints. Clear the imbalance flag if it was set.
6839 */
6840 if (sd_parent) {
6841 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6842
6843 if (*group_imbalance)
6844 *group_imbalance = 0;
6845 }
6846
6847out_all_pinned:
6848 /*
6849 * We reach balance because all tasks are pinned at this level so
6850 * we can't migrate them. Let the imbalance flag set so parent level
6851 * can try to migrate them.
6852 */
1e3c88bd
PZ
6853 schedstat_inc(sd, lb_balanced[idle]);
6854
6855 sd->nr_balance_failed = 0;
6856
6857out_one_pinned:
6858 /* tune up the balancing interval */
8e45cb54 6859 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6860 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6861 (sd->balance_interval < sd->max_interval))
6862 sd->balance_interval *= 2;
6863
46e49b38 6864 ld_moved = 0;
1e3c88bd 6865out:
1e3c88bd
PZ
6866 return ld_moved;
6867}
6868
52a08ef1
JL
6869static inline unsigned long
6870get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6871{
6872 unsigned long interval = sd->balance_interval;
6873
6874 if (cpu_busy)
6875 interval *= sd->busy_factor;
6876
6877 /* scale ms to jiffies */
6878 interval = msecs_to_jiffies(interval);
6879 interval = clamp(interval, 1UL, max_load_balance_interval);
6880
6881 return interval;
6882}
6883
6884static inline void
6885update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6886{
6887 unsigned long interval, next;
6888
6889 interval = get_sd_balance_interval(sd, cpu_busy);
6890 next = sd->last_balance + interval;
6891
6892 if (time_after(*next_balance, next))
6893 *next_balance = next;
6894}
6895
1e3c88bd
PZ
6896/*
6897 * idle_balance is called by schedule() if this_cpu is about to become
6898 * idle. Attempts to pull tasks from other CPUs.
6899 */
6e83125c 6900static int idle_balance(struct rq *this_rq)
1e3c88bd 6901{
52a08ef1
JL
6902 unsigned long next_balance = jiffies + HZ;
6903 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6904 struct sched_domain *sd;
6905 int pulled_task = 0;
9bd721c5 6906 u64 curr_cost = 0;
1e3c88bd 6907
6e83125c 6908 idle_enter_fair(this_rq);
0e5b5337 6909
6e83125c
PZ
6910 /*
6911 * We must set idle_stamp _before_ calling idle_balance(), such that we
6912 * measure the duration of idle_balance() as idle time.
6913 */
6914 this_rq->idle_stamp = rq_clock(this_rq);
6915
4486edd1
TC
6916 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6917 !this_rq->rd->overload) {
52a08ef1
JL
6918 rcu_read_lock();
6919 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6920 if (sd)
6921 update_next_balance(sd, 0, &next_balance);
6922 rcu_read_unlock();
6923
6e83125c 6924 goto out;
52a08ef1 6925 }
1e3c88bd 6926
f492e12e
PZ
6927 /*
6928 * Drop the rq->lock, but keep IRQ/preempt disabled.
6929 */
6930 raw_spin_unlock(&this_rq->lock);
6931
48a16753 6932 update_blocked_averages(this_cpu);
dce840a0 6933 rcu_read_lock();
1e3c88bd 6934 for_each_domain(this_cpu, sd) {
23f0d209 6935 int continue_balancing = 1;
9bd721c5 6936 u64 t0, domain_cost;
1e3c88bd
PZ
6937
6938 if (!(sd->flags & SD_LOAD_BALANCE))
6939 continue;
6940
52a08ef1
JL
6941 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6942 update_next_balance(sd, 0, &next_balance);
9bd721c5 6943 break;
52a08ef1 6944 }
9bd721c5 6945
f492e12e 6946 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6947 t0 = sched_clock_cpu(this_cpu);
6948
f492e12e 6949 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6950 sd, CPU_NEWLY_IDLE,
6951 &continue_balancing);
9bd721c5
JL
6952
6953 domain_cost = sched_clock_cpu(this_cpu) - t0;
6954 if (domain_cost > sd->max_newidle_lb_cost)
6955 sd->max_newidle_lb_cost = domain_cost;
6956
6957 curr_cost += domain_cost;
f492e12e 6958 }
1e3c88bd 6959
52a08ef1 6960 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6961
6962 /*
6963 * Stop searching for tasks to pull if there are
6964 * now runnable tasks on this rq.
6965 */
6966 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6967 break;
1e3c88bd 6968 }
dce840a0 6969 rcu_read_unlock();
f492e12e
PZ
6970
6971 raw_spin_lock(&this_rq->lock);
6972
0e5b5337
JL
6973 if (curr_cost > this_rq->max_idle_balance_cost)
6974 this_rq->max_idle_balance_cost = curr_cost;
6975
e5fc6611 6976 /*
0e5b5337
JL
6977 * While browsing the domains, we released the rq lock, a task could
6978 * have been enqueued in the meantime. Since we're not going idle,
6979 * pretend we pulled a task.
e5fc6611 6980 */
0e5b5337 6981 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6982 pulled_task = 1;
e5fc6611 6983
52a08ef1
JL
6984out:
6985 /* Move the next balance forward */
6986 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6987 this_rq->next_balance = next_balance;
9bd721c5 6988
e4aa358b 6989 /* Is there a task of a high priority class? */
46383648 6990 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6991 pulled_task = -1;
6992
6993 if (pulled_task) {
6994 idle_exit_fair(this_rq);
6e83125c 6995 this_rq->idle_stamp = 0;
e4aa358b 6996 }
6e83125c 6997
3c4017c1 6998 return pulled_task;
1e3c88bd
PZ
6999}
7000
7001/*
969c7921
TH
7002 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7003 * running tasks off the busiest CPU onto idle CPUs. It requires at
7004 * least 1 task to be running on each physical CPU where possible, and
7005 * avoids physical / logical imbalances.
1e3c88bd 7006 */
969c7921 7007static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7008{
969c7921
TH
7009 struct rq *busiest_rq = data;
7010 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7011 int target_cpu = busiest_rq->push_cpu;
969c7921 7012 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7013 struct sched_domain *sd;
e5673f28 7014 struct task_struct *p = NULL;
969c7921
TH
7015
7016 raw_spin_lock_irq(&busiest_rq->lock);
7017
7018 /* make sure the requested cpu hasn't gone down in the meantime */
7019 if (unlikely(busiest_cpu != smp_processor_id() ||
7020 !busiest_rq->active_balance))
7021 goto out_unlock;
1e3c88bd
PZ
7022
7023 /* Is there any task to move? */
7024 if (busiest_rq->nr_running <= 1)
969c7921 7025 goto out_unlock;
1e3c88bd
PZ
7026
7027 /*
7028 * This condition is "impossible", if it occurs
7029 * we need to fix it. Originally reported by
7030 * Bjorn Helgaas on a 128-cpu setup.
7031 */
7032 BUG_ON(busiest_rq == target_rq);
7033
1e3c88bd 7034 /* Search for an sd spanning us and the target CPU. */
dce840a0 7035 rcu_read_lock();
1e3c88bd
PZ
7036 for_each_domain(target_cpu, sd) {
7037 if ((sd->flags & SD_LOAD_BALANCE) &&
7038 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7039 break;
7040 }
7041
7042 if (likely(sd)) {
8e45cb54
PZ
7043 struct lb_env env = {
7044 .sd = sd,
ddcdf6e7
PZ
7045 .dst_cpu = target_cpu,
7046 .dst_rq = target_rq,
7047 .src_cpu = busiest_rq->cpu,
7048 .src_rq = busiest_rq,
8e45cb54
PZ
7049 .idle = CPU_IDLE,
7050 };
7051
1e3c88bd
PZ
7052 schedstat_inc(sd, alb_count);
7053
e5673f28
KT
7054 p = detach_one_task(&env);
7055 if (p)
1e3c88bd
PZ
7056 schedstat_inc(sd, alb_pushed);
7057 else
7058 schedstat_inc(sd, alb_failed);
7059 }
dce840a0 7060 rcu_read_unlock();
969c7921
TH
7061out_unlock:
7062 busiest_rq->active_balance = 0;
e5673f28
KT
7063 raw_spin_unlock(&busiest_rq->lock);
7064
7065 if (p)
7066 attach_one_task(target_rq, p);
7067
7068 local_irq_enable();
7069
969c7921 7070 return 0;
1e3c88bd
PZ
7071}
7072
d987fc7f
MG
7073static inline int on_null_domain(struct rq *rq)
7074{
7075 return unlikely(!rcu_dereference_sched(rq->sd));
7076}
7077
3451d024 7078#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7079/*
7080 * idle load balancing details
83cd4fe2
VP
7081 * - When one of the busy CPUs notice that there may be an idle rebalancing
7082 * needed, they will kick the idle load balancer, which then does idle
7083 * load balancing for all the idle CPUs.
7084 */
1e3c88bd 7085static struct {
83cd4fe2 7086 cpumask_var_t idle_cpus_mask;
0b005cf5 7087 atomic_t nr_cpus;
83cd4fe2
VP
7088 unsigned long next_balance; /* in jiffy units */
7089} nohz ____cacheline_aligned;
1e3c88bd 7090
3dd0337d 7091static inline int find_new_ilb(void)
1e3c88bd 7092{
0b005cf5 7093 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7094
786d6dc7
SS
7095 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7096 return ilb;
7097
7098 return nr_cpu_ids;
1e3c88bd 7099}
1e3c88bd 7100
83cd4fe2
VP
7101/*
7102 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7103 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7104 * CPU (if there is one).
7105 */
0aeeeeba 7106static void nohz_balancer_kick(void)
83cd4fe2
VP
7107{
7108 int ilb_cpu;
7109
7110 nohz.next_balance++;
7111
3dd0337d 7112 ilb_cpu = find_new_ilb();
83cd4fe2 7113
0b005cf5
SS
7114 if (ilb_cpu >= nr_cpu_ids)
7115 return;
83cd4fe2 7116
cd490c5b 7117 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7118 return;
7119 /*
7120 * Use smp_send_reschedule() instead of resched_cpu().
7121 * This way we generate a sched IPI on the target cpu which
7122 * is idle. And the softirq performing nohz idle load balance
7123 * will be run before returning from the IPI.
7124 */
7125 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7126 return;
7127}
7128
c1cc017c 7129static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7130{
7131 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7132 /*
7133 * Completely isolated CPUs don't ever set, so we must test.
7134 */
7135 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7136 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7137 atomic_dec(&nohz.nr_cpus);
7138 }
71325960
SS
7139 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7140 }
7141}
7142
69e1e811
SS
7143static inline void set_cpu_sd_state_busy(void)
7144{
7145 struct sched_domain *sd;
37dc6b50 7146 int cpu = smp_processor_id();
69e1e811 7147
69e1e811 7148 rcu_read_lock();
37dc6b50 7149 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7150
7151 if (!sd || !sd->nohz_idle)
7152 goto unlock;
7153 sd->nohz_idle = 0;
7154
63b2ca30 7155 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7156unlock:
69e1e811
SS
7157 rcu_read_unlock();
7158}
7159
7160void set_cpu_sd_state_idle(void)
7161{
7162 struct sched_domain *sd;
37dc6b50 7163 int cpu = smp_processor_id();
69e1e811 7164
69e1e811 7165 rcu_read_lock();
37dc6b50 7166 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7167
7168 if (!sd || sd->nohz_idle)
7169 goto unlock;
7170 sd->nohz_idle = 1;
7171
63b2ca30 7172 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7173unlock:
69e1e811
SS
7174 rcu_read_unlock();
7175}
7176
1e3c88bd 7177/*
c1cc017c 7178 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7179 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7180 */
c1cc017c 7181void nohz_balance_enter_idle(int cpu)
1e3c88bd 7182{
71325960
SS
7183 /*
7184 * If this cpu is going down, then nothing needs to be done.
7185 */
7186 if (!cpu_active(cpu))
7187 return;
7188
c1cc017c
AS
7189 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7190 return;
1e3c88bd 7191
d987fc7f
MG
7192 /*
7193 * If we're a completely isolated CPU, we don't play.
7194 */
7195 if (on_null_domain(cpu_rq(cpu)))
7196 return;
7197
c1cc017c
AS
7198 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7199 atomic_inc(&nohz.nr_cpus);
7200 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7201}
71325960 7202
0db0628d 7203static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7204 unsigned long action, void *hcpu)
7205{
7206 switch (action & ~CPU_TASKS_FROZEN) {
7207 case CPU_DYING:
c1cc017c 7208 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7209 return NOTIFY_OK;
7210 default:
7211 return NOTIFY_DONE;
7212 }
7213}
1e3c88bd
PZ
7214#endif
7215
7216static DEFINE_SPINLOCK(balancing);
7217
49c022e6
PZ
7218/*
7219 * Scale the max load_balance interval with the number of CPUs in the system.
7220 * This trades load-balance latency on larger machines for less cross talk.
7221 */
029632fb 7222void update_max_interval(void)
49c022e6
PZ
7223{
7224 max_load_balance_interval = HZ*num_online_cpus()/10;
7225}
7226
1e3c88bd
PZ
7227/*
7228 * It checks each scheduling domain to see if it is due to be balanced,
7229 * and initiates a balancing operation if so.
7230 *
b9b0853a 7231 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7232 */
f7ed0a89 7233static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7234{
23f0d209 7235 int continue_balancing = 1;
f7ed0a89 7236 int cpu = rq->cpu;
1e3c88bd 7237 unsigned long interval;
04f733b4 7238 struct sched_domain *sd;
1e3c88bd
PZ
7239 /* Earliest time when we have to do rebalance again */
7240 unsigned long next_balance = jiffies + 60*HZ;
7241 int update_next_balance = 0;
f48627e6
JL
7242 int need_serialize, need_decay = 0;
7243 u64 max_cost = 0;
1e3c88bd 7244
48a16753 7245 update_blocked_averages(cpu);
2069dd75 7246
dce840a0 7247 rcu_read_lock();
1e3c88bd 7248 for_each_domain(cpu, sd) {
f48627e6
JL
7249 /*
7250 * Decay the newidle max times here because this is a regular
7251 * visit to all the domains. Decay ~1% per second.
7252 */
7253 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7254 sd->max_newidle_lb_cost =
7255 (sd->max_newidle_lb_cost * 253) / 256;
7256 sd->next_decay_max_lb_cost = jiffies + HZ;
7257 need_decay = 1;
7258 }
7259 max_cost += sd->max_newidle_lb_cost;
7260
1e3c88bd
PZ
7261 if (!(sd->flags & SD_LOAD_BALANCE))
7262 continue;
7263
f48627e6
JL
7264 /*
7265 * Stop the load balance at this level. There is another
7266 * CPU in our sched group which is doing load balancing more
7267 * actively.
7268 */
7269 if (!continue_balancing) {
7270 if (need_decay)
7271 continue;
7272 break;
7273 }
7274
52a08ef1 7275 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7276
7277 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7278 if (need_serialize) {
7279 if (!spin_trylock(&balancing))
7280 goto out;
7281 }
7282
7283 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7284 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7285 /*
6263322c 7286 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7287 * env->dst_cpu, so we can't know our idle
7288 * state even if we migrated tasks. Update it.
1e3c88bd 7289 */
de5eb2dd 7290 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7291 }
7292 sd->last_balance = jiffies;
52a08ef1 7293 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7294 }
7295 if (need_serialize)
7296 spin_unlock(&balancing);
7297out:
7298 if (time_after(next_balance, sd->last_balance + interval)) {
7299 next_balance = sd->last_balance + interval;
7300 update_next_balance = 1;
7301 }
f48627e6
JL
7302 }
7303 if (need_decay) {
1e3c88bd 7304 /*
f48627e6
JL
7305 * Ensure the rq-wide value also decays but keep it at a
7306 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7307 */
f48627e6
JL
7308 rq->max_idle_balance_cost =
7309 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7310 }
dce840a0 7311 rcu_read_unlock();
1e3c88bd
PZ
7312
7313 /*
7314 * next_balance will be updated only when there is a need.
7315 * When the cpu is attached to null domain for ex, it will not be
7316 * updated.
7317 */
7318 if (likely(update_next_balance))
7319 rq->next_balance = next_balance;
7320}
7321
3451d024 7322#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7323/*
3451d024 7324 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7325 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7326 */
208cb16b 7327static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7328{
208cb16b 7329 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7330 struct rq *rq;
7331 int balance_cpu;
7332
1c792db7
SS
7333 if (idle != CPU_IDLE ||
7334 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7335 goto end;
83cd4fe2
VP
7336
7337 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7338 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7339 continue;
7340
7341 /*
7342 * If this cpu gets work to do, stop the load balancing
7343 * work being done for other cpus. Next load
7344 * balancing owner will pick it up.
7345 */
1c792db7 7346 if (need_resched())
83cd4fe2 7347 break;
83cd4fe2 7348
5ed4f1d9
VG
7349 rq = cpu_rq(balance_cpu);
7350
ed61bbc6
TC
7351 /*
7352 * If time for next balance is due,
7353 * do the balance.
7354 */
7355 if (time_after_eq(jiffies, rq->next_balance)) {
7356 raw_spin_lock_irq(&rq->lock);
7357 update_rq_clock(rq);
7358 update_idle_cpu_load(rq);
7359 raw_spin_unlock_irq(&rq->lock);
7360 rebalance_domains(rq, CPU_IDLE);
7361 }
83cd4fe2 7362
83cd4fe2
VP
7363 if (time_after(this_rq->next_balance, rq->next_balance))
7364 this_rq->next_balance = rq->next_balance;
7365 }
7366 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7367end:
7368 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7369}
7370
7371/*
0b005cf5
SS
7372 * Current heuristic for kicking the idle load balancer in the presence
7373 * of an idle cpu is the system.
7374 * - This rq has more than one task.
7375 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7376 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7377 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7378 * domain span are idle.
83cd4fe2 7379 */
4a725627 7380static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7381{
7382 unsigned long now = jiffies;
0b005cf5 7383 struct sched_domain *sd;
63b2ca30 7384 struct sched_group_capacity *sgc;
4a725627 7385 int nr_busy, cpu = rq->cpu;
83cd4fe2 7386
4a725627 7387 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7388 return 0;
7389
1c792db7
SS
7390 /*
7391 * We may be recently in ticked or tickless idle mode. At the first
7392 * busy tick after returning from idle, we will update the busy stats.
7393 */
69e1e811 7394 set_cpu_sd_state_busy();
c1cc017c 7395 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7396
7397 /*
7398 * None are in tickless mode and hence no need for NOHZ idle load
7399 * balancing.
7400 */
7401 if (likely(!atomic_read(&nohz.nr_cpus)))
7402 return 0;
1c792db7
SS
7403
7404 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7405 return 0;
7406
0b005cf5
SS
7407 if (rq->nr_running >= 2)
7408 goto need_kick;
83cd4fe2 7409
067491b7 7410 rcu_read_lock();
37dc6b50 7411 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7412
37dc6b50 7413 if (sd) {
63b2ca30
NP
7414 sgc = sd->groups->sgc;
7415 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7416
37dc6b50 7417 if (nr_busy > 1)
067491b7 7418 goto need_kick_unlock;
83cd4fe2 7419 }
37dc6b50
PM
7420
7421 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7422
7423 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7424 sched_domain_span(sd)) < cpu))
7425 goto need_kick_unlock;
7426
067491b7 7427 rcu_read_unlock();
83cd4fe2 7428 return 0;
067491b7
PZ
7429
7430need_kick_unlock:
7431 rcu_read_unlock();
0b005cf5
SS
7432need_kick:
7433 return 1;
83cd4fe2
VP
7434}
7435#else
208cb16b 7436static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7437#endif
7438
7439/*
7440 * run_rebalance_domains is triggered when needed from the scheduler tick.
7441 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7442 */
1e3c88bd
PZ
7443static void run_rebalance_domains(struct softirq_action *h)
7444{
208cb16b 7445 struct rq *this_rq = this_rq();
6eb57e0d 7446 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7447 CPU_IDLE : CPU_NOT_IDLE;
7448
f7ed0a89 7449 rebalance_domains(this_rq, idle);
1e3c88bd 7450
1e3c88bd 7451 /*
83cd4fe2 7452 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7453 * balancing on behalf of the other idle cpus whose ticks are
7454 * stopped.
7455 */
208cb16b 7456 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7457}
7458
1e3c88bd
PZ
7459/*
7460 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7461 */
7caff66f 7462void trigger_load_balance(struct rq *rq)
1e3c88bd 7463{
1e3c88bd 7464 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7465 if (unlikely(on_null_domain(rq)))
7466 return;
7467
7468 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7469 raise_softirq(SCHED_SOFTIRQ);
3451d024 7470#ifdef CONFIG_NO_HZ_COMMON
c726099e 7471 if (nohz_kick_needed(rq))
0aeeeeba 7472 nohz_balancer_kick();
83cd4fe2 7473#endif
1e3c88bd
PZ
7474}
7475
0bcdcf28
CE
7476static void rq_online_fair(struct rq *rq)
7477{
7478 update_sysctl();
0e59bdae
KT
7479
7480 update_runtime_enabled(rq);
0bcdcf28
CE
7481}
7482
7483static void rq_offline_fair(struct rq *rq)
7484{
7485 update_sysctl();
a4c96ae3
PB
7486
7487 /* Ensure any throttled groups are reachable by pick_next_task */
7488 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7489}
7490
55e12e5e 7491#endif /* CONFIG_SMP */
e1d1484f 7492
bf0f6f24
IM
7493/*
7494 * scheduler tick hitting a task of our scheduling class:
7495 */
8f4d37ec 7496static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7497{
7498 struct cfs_rq *cfs_rq;
7499 struct sched_entity *se = &curr->se;
7500
7501 for_each_sched_entity(se) {
7502 cfs_rq = cfs_rq_of(se);
8f4d37ec 7503 entity_tick(cfs_rq, se, queued);
bf0f6f24 7504 }
18bf2805 7505
10e84b97 7506 if (numabalancing_enabled)
cbee9f88 7507 task_tick_numa(rq, curr);
3d59eebc 7508
18bf2805 7509 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7510}
7511
7512/*
cd29fe6f
PZ
7513 * called on fork with the child task as argument from the parent's context
7514 * - child not yet on the tasklist
7515 * - preemption disabled
bf0f6f24 7516 */
cd29fe6f 7517static void task_fork_fair(struct task_struct *p)
bf0f6f24 7518{
4fc420c9
DN
7519 struct cfs_rq *cfs_rq;
7520 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7521 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7522 struct rq *rq = this_rq();
7523 unsigned long flags;
7524
05fa785c 7525 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7526
861d034e
PZ
7527 update_rq_clock(rq);
7528
4fc420c9
DN
7529 cfs_rq = task_cfs_rq(current);
7530 curr = cfs_rq->curr;
7531
6c9a27f5
DN
7532 /*
7533 * Not only the cpu but also the task_group of the parent might have
7534 * been changed after parent->se.parent,cfs_rq were copied to
7535 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7536 * of child point to valid ones.
7537 */
7538 rcu_read_lock();
7539 __set_task_cpu(p, this_cpu);
7540 rcu_read_unlock();
bf0f6f24 7541
7109c442 7542 update_curr(cfs_rq);
cd29fe6f 7543
b5d9d734
MG
7544 if (curr)
7545 se->vruntime = curr->vruntime;
aeb73b04 7546 place_entity(cfs_rq, se, 1);
4d78e7b6 7547
cd29fe6f 7548 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7549 /*
edcb60a3
IM
7550 * Upon rescheduling, sched_class::put_prev_task() will place
7551 * 'current' within the tree based on its new key value.
7552 */
4d78e7b6 7553 swap(curr->vruntime, se->vruntime);
8875125e 7554 resched_curr(rq);
4d78e7b6 7555 }
bf0f6f24 7556
88ec22d3
PZ
7557 se->vruntime -= cfs_rq->min_vruntime;
7558
05fa785c 7559 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7560}
7561
cb469845
SR
7562/*
7563 * Priority of the task has changed. Check to see if we preempt
7564 * the current task.
7565 */
da7a735e
PZ
7566static void
7567prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7568{
da0c1e65 7569 if (!task_on_rq_queued(p))
da7a735e
PZ
7570 return;
7571
cb469845
SR
7572 /*
7573 * Reschedule if we are currently running on this runqueue and
7574 * our priority decreased, or if we are not currently running on
7575 * this runqueue and our priority is higher than the current's
7576 */
da7a735e 7577 if (rq->curr == p) {
cb469845 7578 if (p->prio > oldprio)
8875125e 7579 resched_curr(rq);
cb469845 7580 } else
15afe09b 7581 check_preempt_curr(rq, p, 0);
cb469845
SR
7582}
7583
da7a735e
PZ
7584static void switched_from_fair(struct rq *rq, struct task_struct *p)
7585{
7586 struct sched_entity *se = &p->se;
7587 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7588
7589 /*
791c9e02 7590 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7591 * switched back to the fair class the enqueue_entity(.flags=0) will
7592 * do the right thing.
7593 *
da0c1e65
KT
7594 * If it's queued, then the dequeue_entity(.flags=0) will already
7595 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7596 * the task is sleeping will it still have non-normalized vruntime.
7597 */
da0c1e65 7598 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7599 /*
7600 * Fix up our vruntime so that the current sleep doesn't
7601 * cause 'unlimited' sleep bonus.
7602 */
7603 place_entity(cfs_rq, se, 0);
7604 se->vruntime -= cfs_rq->min_vruntime;
7605 }
9ee474f5 7606
141965c7 7607#ifdef CONFIG_SMP
9ee474f5
PT
7608 /*
7609 * Remove our load from contribution when we leave sched_fair
7610 * and ensure we don't carry in an old decay_count if we
7611 * switch back.
7612 */
87e3c8ae
KT
7613 if (se->avg.decay_count) {
7614 __synchronize_entity_decay(se);
7615 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7616 }
7617#endif
da7a735e
PZ
7618}
7619
cb469845
SR
7620/*
7621 * We switched to the sched_fair class.
7622 */
da7a735e 7623static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7624{
eb7a59b2 7625#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7626 struct sched_entity *se = &p->se;
eb7a59b2
M
7627 /*
7628 * Since the real-depth could have been changed (only FAIR
7629 * class maintain depth value), reset depth properly.
7630 */
7631 se->depth = se->parent ? se->parent->depth + 1 : 0;
7632#endif
da0c1e65 7633 if (!task_on_rq_queued(p))
da7a735e
PZ
7634 return;
7635
cb469845
SR
7636 /*
7637 * We were most likely switched from sched_rt, so
7638 * kick off the schedule if running, otherwise just see
7639 * if we can still preempt the current task.
7640 */
da7a735e 7641 if (rq->curr == p)
8875125e 7642 resched_curr(rq);
cb469845 7643 else
15afe09b 7644 check_preempt_curr(rq, p, 0);
cb469845
SR
7645}
7646
83b699ed
SV
7647/* Account for a task changing its policy or group.
7648 *
7649 * This routine is mostly called to set cfs_rq->curr field when a task
7650 * migrates between groups/classes.
7651 */
7652static void set_curr_task_fair(struct rq *rq)
7653{
7654 struct sched_entity *se = &rq->curr->se;
7655
ec12cb7f
PT
7656 for_each_sched_entity(se) {
7657 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7658
7659 set_next_entity(cfs_rq, se);
7660 /* ensure bandwidth has been allocated on our new cfs_rq */
7661 account_cfs_rq_runtime(cfs_rq, 0);
7662 }
83b699ed
SV
7663}
7664
029632fb
PZ
7665void init_cfs_rq(struct cfs_rq *cfs_rq)
7666{
7667 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7668 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7669#ifndef CONFIG_64BIT
7670 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7671#endif
141965c7 7672#ifdef CONFIG_SMP
9ee474f5 7673 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7674 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7675#endif
029632fb
PZ
7676}
7677
810b3817 7678#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7679static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7680{
fed14d45 7681 struct sched_entity *se = &p->se;
aff3e498 7682 struct cfs_rq *cfs_rq;
fed14d45 7683
b2b5ce02
PZ
7684 /*
7685 * If the task was not on the rq at the time of this cgroup movement
7686 * it must have been asleep, sleeping tasks keep their ->vruntime
7687 * absolute on their old rq until wakeup (needed for the fair sleeper
7688 * bonus in place_entity()).
7689 *
7690 * If it was on the rq, we've just 'preempted' it, which does convert
7691 * ->vruntime to a relative base.
7692 *
7693 * Make sure both cases convert their relative position when migrating
7694 * to another cgroup's rq. This does somewhat interfere with the
7695 * fair sleeper stuff for the first placement, but who cares.
7696 */
7ceff013 7697 /*
da0c1e65 7698 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7699 * But there are some cases where it has already been normalized:
7700 *
7701 * - Moving a forked child which is waiting for being woken up by
7702 * wake_up_new_task().
62af3783
DN
7703 * - Moving a task which has been woken up by try_to_wake_up() and
7704 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7705 *
7706 * To prevent boost or penalty in the new cfs_rq caused by delta
7707 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7708 */
da0c1e65
KT
7709 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7710 queued = 1;
7ceff013 7711
da0c1e65 7712 if (!queued)
fed14d45 7713 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7714 set_task_rq(p, task_cpu(p));
fed14d45 7715 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7716 if (!queued) {
fed14d45
PZ
7717 cfs_rq = cfs_rq_of(se);
7718 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7719#ifdef CONFIG_SMP
7720 /*
7721 * migrate_task_rq_fair() will have removed our previous
7722 * contribution, but we must synchronize for ongoing future
7723 * decay.
7724 */
fed14d45
PZ
7725 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7726 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7727#endif
7728 }
810b3817 7729}
029632fb
PZ
7730
7731void free_fair_sched_group(struct task_group *tg)
7732{
7733 int i;
7734
7735 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7736
7737 for_each_possible_cpu(i) {
7738 if (tg->cfs_rq)
7739 kfree(tg->cfs_rq[i]);
7740 if (tg->se)
7741 kfree(tg->se[i]);
7742 }
7743
7744 kfree(tg->cfs_rq);
7745 kfree(tg->se);
7746}
7747
7748int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7749{
7750 struct cfs_rq *cfs_rq;
7751 struct sched_entity *se;
7752 int i;
7753
7754 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7755 if (!tg->cfs_rq)
7756 goto err;
7757 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7758 if (!tg->se)
7759 goto err;
7760
7761 tg->shares = NICE_0_LOAD;
7762
7763 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7764
7765 for_each_possible_cpu(i) {
7766 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7767 GFP_KERNEL, cpu_to_node(i));
7768 if (!cfs_rq)
7769 goto err;
7770
7771 se = kzalloc_node(sizeof(struct sched_entity),
7772 GFP_KERNEL, cpu_to_node(i));
7773 if (!se)
7774 goto err_free_rq;
7775
7776 init_cfs_rq(cfs_rq);
7777 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7778 }
7779
7780 return 1;
7781
7782err_free_rq:
7783 kfree(cfs_rq);
7784err:
7785 return 0;
7786}
7787
7788void unregister_fair_sched_group(struct task_group *tg, int cpu)
7789{
7790 struct rq *rq = cpu_rq(cpu);
7791 unsigned long flags;
7792
7793 /*
7794 * Only empty task groups can be destroyed; so we can speculatively
7795 * check on_list without danger of it being re-added.
7796 */
7797 if (!tg->cfs_rq[cpu]->on_list)
7798 return;
7799
7800 raw_spin_lock_irqsave(&rq->lock, flags);
7801 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7802 raw_spin_unlock_irqrestore(&rq->lock, flags);
7803}
7804
7805void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7806 struct sched_entity *se, int cpu,
7807 struct sched_entity *parent)
7808{
7809 struct rq *rq = cpu_rq(cpu);
7810
7811 cfs_rq->tg = tg;
7812 cfs_rq->rq = rq;
029632fb
PZ
7813 init_cfs_rq_runtime(cfs_rq);
7814
7815 tg->cfs_rq[cpu] = cfs_rq;
7816 tg->se[cpu] = se;
7817
7818 /* se could be NULL for root_task_group */
7819 if (!se)
7820 return;
7821
fed14d45 7822 if (!parent) {
029632fb 7823 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7824 se->depth = 0;
7825 } else {
029632fb 7826 se->cfs_rq = parent->my_q;
fed14d45
PZ
7827 se->depth = parent->depth + 1;
7828 }
029632fb
PZ
7829
7830 se->my_q = cfs_rq;
0ac9b1c2
PT
7831 /* guarantee group entities always have weight */
7832 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7833 se->parent = parent;
7834}
7835
7836static DEFINE_MUTEX(shares_mutex);
7837
7838int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7839{
7840 int i;
7841 unsigned long flags;
7842
7843 /*
7844 * We can't change the weight of the root cgroup.
7845 */
7846 if (!tg->se[0])
7847 return -EINVAL;
7848
7849 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7850
7851 mutex_lock(&shares_mutex);
7852 if (tg->shares == shares)
7853 goto done;
7854
7855 tg->shares = shares;
7856 for_each_possible_cpu(i) {
7857 struct rq *rq = cpu_rq(i);
7858 struct sched_entity *se;
7859
7860 se = tg->se[i];
7861 /* Propagate contribution to hierarchy */
7862 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7863
7864 /* Possible calls to update_curr() need rq clock */
7865 update_rq_clock(rq);
17bc14b7 7866 for_each_sched_entity(se)
029632fb
PZ
7867 update_cfs_shares(group_cfs_rq(se));
7868 raw_spin_unlock_irqrestore(&rq->lock, flags);
7869 }
7870
7871done:
7872 mutex_unlock(&shares_mutex);
7873 return 0;
7874}
7875#else /* CONFIG_FAIR_GROUP_SCHED */
7876
7877void free_fair_sched_group(struct task_group *tg) { }
7878
7879int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7880{
7881 return 1;
7882}
7883
7884void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7885
7886#endif /* CONFIG_FAIR_GROUP_SCHED */
7887
810b3817 7888
6d686f45 7889static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7890{
7891 struct sched_entity *se = &task->se;
0d721cea
PW
7892 unsigned int rr_interval = 0;
7893
7894 /*
7895 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7896 * idle runqueue:
7897 */
0d721cea 7898 if (rq->cfs.load.weight)
a59f4e07 7899 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7900
7901 return rr_interval;
7902}
7903
bf0f6f24
IM
7904/*
7905 * All the scheduling class methods:
7906 */
029632fb 7907const struct sched_class fair_sched_class = {
5522d5d5 7908 .next = &idle_sched_class,
bf0f6f24
IM
7909 .enqueue_task = enqueue_task_fair,
7910 .dequeue_task = dequeue_task_fair,
7911 .yield_task = yield_task_fair,
d95f4122 7912 .yield_to_task = yield_to_task_fair,
bf0f6f24 7913
2e09bf55 7914 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7915
7916 .pick_next_task = pick_next_task_fair,
7917 .put_prev_task = put_prev_task_fair,
7918
681f3e68 7919#ifdef CONFIG_SMP
4ce72a2c 7920 .select_task_rq = select_task_rq_fair,
0a74bef8 7921 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7922
0bcdcf28
CE
7923 .rq_online = rq_online_fair,
7924 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7925
7926 .task_waking = task_waking_fair,
681f3e68 7927#endif
bf0f6f24 7928
83b699ed 7929 .set_curr_task = set_curr_task_fair,
bf0f6f24 7930 .task_tick = task_tick_fair,
cd29fe6f 7931 .task_fork = task_fork_fair,
cb469845
SR
7932
7933 .prio_changed = prio_changed_fair,
da7a735e 7934 .switched_from = switched_from_fair,
cb469845 7935 .switched_to = switched_to_fair,
810b3817 7936
0d721cea
PW
7937 .get_rr_interval = get_rr_interval_fair,
7938
810b3817 7939#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7940 .task_move_group = task_move_group_fair,
810b3817 7941#endif
bf0f6f24
IM
7942};
7943
7944#ifdef CONFIG_SCHED_DEBUG
029632fb 7945void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7946{
bf0f6f24
IM
7947 struct cfs_rq *cfs_rq;
7948
5973e5b9 7949 rcu_read_lock();
c3b64f1e 7950 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7951 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7952 rcu_read_unlock();
bf0f6f24
IM
7953}
7954#endif
029632fb
PZ
7955
7956__init void init_sched_fair_class(void)
7957{
7958#ifdef CONFIG_SMP
7959 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7960
3451d024 7961#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7962 nohz.next_balance = jiffies;
029632fb 7963 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7964 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7965#endif
7966#endif /* SMP */
7967
7968}