]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/fair: Defer calling scaling functions
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
2a595721 2072 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2366 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2376 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
54a21385 2518#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2519
9d85f21c
PT
2520/*
2521 * We can represent the historical contribution to runnable average as the
2522 * coefficients of a geometric series. To do this we sub-divide our runnable
2523 * history into segments of approximately 1ms (1024us); label the segment that
2524 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2525 *
2526 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2527 * p0 p1 p2
2528 * (now) (~1ms ago) (~2ms ago)
2529 *
2530 * Let u_i denote the fraction of p_i that the entity was runnable.
2531 *
2532 * We then designate the fractions u_i as our co-efficients, yielding the
2533 * following representation of historical load:
2534 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2535 *
2536 * We choose y based on the with of a reasonably scheduling period, fixing:
2537 * y^32 = 0.5
2538 *
2539 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2540 * approximately half as much as the contribution to load within the last ms
2541 * (u_0).
2542 *
2543 * When a period "rolls over" and we have new u_0`, multiplying the previous
2544 * sum again by y is sufficient to update:
2545 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2546 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2547 */
9d89c257
YD
2548static __always_inline int
2549__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2550 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2551{
e0f5f3af 2552 u64 delta, scaled_delta, periods;
9d89c257 2553 u32 contrib;
6115c793 2554 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2555 unsigned long scale_freq, scale_cpu;
9d85f21c 2556
9d89c257 2557 delta = now - sa->last_update_time;
9d85f21c
PT
2558 /*
2559 * This should only happen when time goes backwards, which it
2560 * unfortunately does during sched clock init when we swap over to TSC.
2561 */
2562 if ((s64)delta < 0) {
9d89c257 2563 sa->last_update_time = now;
9d85f21c
PT
2564 return 0;
2565 }
2566
2567 /*
2568 * Use 1024ns as the unit of measurement since it's a reasonable
2569 * approximation of 1us and fast to compute.
2570 */
2571 delta >>= 10;
2572 if (!delta)
2573 return 0;
9d89c257 2574 sa->last_update_time = now;
9d85f21c 2575
6f2b0452
DE
2576 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2577 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2578
9d85f21c 2579 /* delta_w is the amount already accumulated against our next period */
9d89c257 2580 delta_w = sa->period_contrib;
9d85f21c 2581 if (delta + delta_w >= 1024) {
9d85f21c
PT
2582 decayed = 1;
2583
9d89c257
YD
2584 /* how much left for next period will start over, we don't know yet */
2585 sa->period_contrib = 0;
2586
9d85f21c
PT
2587 /*
2588 * Now that we know we're crossing a period boundary, figure
2589 * out how much from delta we need to complete the current
2590 * period and accrue it.
2591 */
2592 delta_w = 1024 - delta_w;
54a21385 2593 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2594 if (weight) {
e0f5f3af
DE
2595 sa->load_sum += weight * scaled_delta_w;
2596 if (cfs_rq) {
2597 cfs_rq->runnable_load_sum +=
2598 weight * scaled_delta_w;
2599 }
13962234 2600 }
36ee28e4 2601 if (running)
54a21385 2602 sa->util_sum += cap_scale(scaled_delta_w, scale_cpu);
5b51f2f8
PT
2603
2604 delta -= delta_w;
2605
2606 /* Figure out how many additional periods this update spans */
2607 periods = delta / 1024;
2608 delta %= 1024;
2609
9d89c257 2610 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2611 if (cfs_rq) {
2612 cfs_rq->runnable_load_sum =
2613 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2614 }
9d89c257 2615 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2616
2617 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2618 contrib = __compute_runnable_contrib(periods);
54a21385 2619 contrib = cap_scale(contrib, scale_freq);
13962234 2620 if (weight) {
9d89c257 2621 sa->load_sum += weight * contrib;
13962234
YD
2622 if (cfs_rq)
2623 cfs_rq->runnable_load_sum += weight * contrib;
2624 }
36ee28e4 2625 if (running)
54a21385 2626 sa->util_sum += cap_scale(contrib, scale_cpu);
9d85f21c
PT
2627 }
2628
2629 /* Remainder of delta accrued against u_0` */
54a21385 2630 scaled_delta = cap_scale(delta, scale_freq);
13962234 2631 if (weight) {
e0f5f3af 2632 sa->load_sum += weight * scaled_delta;
13962234 2633 if (cfs_rq)
e0f5f3af 2634 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2635 }
36ee28e4 2636 if (running)
54a21385 2637 sa->util_sum += cap_scale(scaled_delta, scale_cpu);
9ee474f5 2638
9d89c257 2639 sa->period_contrib += delta;
9ee474f5 2640
9d89c257
YD
2641 if (decayed) {
2642 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2643 if (cfs_rq) {
2644 cfs_rq->runnable_load_avg =
2645 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2646 }
9d89c257
YD
2647 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2648 }
aff3e498 2649
9d89c257 2650 return decayed;
9ee474f5
PT
2651}
2652
c566e8e9 2653#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2654/*
9d89c257
YD
2655 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2656 * and effective_load (which is not done because it is too costly).
bb17f655 2657 */
9d89c257 2658static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2659{
9d89c257 2660 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2661
9d89c257
YD
2662 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2663 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2664 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2665 }
8165e145 2666}
f5f9739d 2667
6e83125c 2668#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2669static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2670#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2671
9d89c257 2672static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2673
9d89c257
YD
2674/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2675static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2676{
9d89c257 2677 struct sched_avg *sa = &cfs_rq->avg;
a05e8c51 2678 int decayed;
2dac754e 2679
9d89c257
YD
2680 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2681 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2682 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2683 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2684 }
2dac754e 2685
9d89c257
YD
2686 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2687 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2688 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2689 sa->util_sum = max_t(s32, sa->util_sum -
2690 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2691 }
36ee28e4 2692
9d89c257 2693 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2694 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2695
9d89c257
YD
2696#ifndef CONFIG_64BIT
2697 smp_wmb();
2698 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2699#endif
36ee28e4 2700
9d89c257 2701 return decayed;
9ee474f5
PT
2702}
2703
9d89c257
YD
2704/* Update task and its cfs_rq load average */
2705static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2706{
2dac754e 2707 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2708 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2709 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2710
f1b17280 2711 /*
9d89c257
YD
2712 * Track task load average for carrying it to new CPU after migrated, and
2713 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2714 */
9d89c257 2715 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2716 se->on_rq * scale_load_down(se->load.weight),
2717 cfs_rq->curr == se, NULL);
f1b17280 2718
9d89c257
YD
2719 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2720 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2721}
2722
a05e8c51
BP
2723static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2724{
a9280514
PZ
2725 if (!sched_feat(ATTACH_AGE_LOAD))
2726 goto skip_aging;
2727
6efdb105
BP
2728 /*
2729 * If we got migrated (either between CPUs or between cgroups) we'll
2730 * have aged the average right before clearing @last_update_time.
2731 */
2732 if (se->avg.last_update_time) {
2733 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2734 &se->avg, 0, 0, NULL);
2735
2736 /*
2737 * XXX: we could have just aged the entire load away if we've been
2738 * absent from the fair class for too long.
2739 */
2740 }
2741
a9280514 2742skip_aging:
a05e8c51
BP
2743 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2744 cfs_rq->avg.load_avg += se->avg.load_avg;
2745 cfs_rq->avg.load_sum += se->avg.load_sum;
2746 cfs_rq->avg.util_avg += se->avg.util_avg;
2747 cfs_rq->avg.util_sum += se->avg.util_sum;
2748}
2749
2750static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2751{
2752 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2753 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2754 cfs_rq->curr == se, NULL);
2755
2756 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2757 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2758 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2759 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2760}
2761
9d89c257
YD
2762/* Add the load generated by se into cfs_rq's load average */
2763static inline void
2764enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2765{
9d89c257
YD
2766 struct sched_avg *sa = &se->avg;
2767 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2768 int migrated, decayed;
9ee474f5 2769
a05e8c51
BP
2770 migrated = !sa->last_update_time;
2771 if (!migrated) {
9d89c257 2772 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2773 se->on_rq * scale_load_down(se->load.weight),
2774 cfs_rq->curr == se, NULL);
aff3e498 2775 }
c566e8e9 2776
9d89c257 2777 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2778
13962234
YD
2779 cfs_rq->runnable_load_avg += sa->load_avg;
2780 cfs_rq->runnable_load_sum += sa->load_sum;
2781
a05e8c51
BP
2782 if (migrated)
2783 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2784
9d89c257
YD
2785 if (decayed || migrated)
2786 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2787}
2788
13962234
YD
2789/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2790static inline void
2791dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2792{
2793 update_load_avg(se, 1);
2794
2795 cfs_rq->runnable_load_avg =
2796 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2797 cfs_rq->runnable_load_sum =
a05e8c51 2798 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2799}
2800
9ee474f5 2801/*
9d89c257
YD
2802 * Task first catches up with cfs_rq, and then subtract
2803 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2804 */
9d89c257 2805void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2806{
9d89c257
YD
2807 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2808 u64 last_update_time;
2809
2810#ifndef CONFIG_64BIT
2811 u64 last_update_time_copy;
9ee474f5 2812
9d89c257
YD
2813 do {
2814 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2815 smp_rmb();
2816 last_update_time = cfs_rq->avg.last_update_time;
2817 } while (last_update_time != last_update_time_copy);
2818#else
2819 last_update_time = cfs_rq->avg.last_update_time;
2820#endif
2821
13962234 2822 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2823 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2824 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2825}
642dbc39
VG
2826
2827/*
2828 * Update the rq's load with the elapsed running time before entering
2829 * idle. if the last scheduled task is not a CFS task, idle_enter will
2830 * be the only way to update the runnable statistic.
2831 */
2832void idle_enter_fair(struct rq *this_rq)
2833{
642dbc39
VG
2834}
2835
2836/*
2837 * Update the rq's load with the elapsed idle time before a task is
2838 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2839 * be the only way to update the runnable statistic.
2840 */
2841void idle_exit_fair(struct rq *this_rq)
2842{
642dbc39
VG
2843}
2844
7ea241af
YD
2845static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2846{
2847 return cfs_rq->runnable_load_avg;
2848}
2849
2850static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2851{
2852 return cfs_rq->avg.load_avg;
2853}
2854
6e83125c
PZ
2855static int idle_balance(struct rq *this_rq);
2856
38033c37
PZ
2857#else /* CONFIG_SMP */
2858
9d89c257
YD
2859static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2860static inline void
2861enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2862static inline void
2863dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2864static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2865
a05e8c51
BP
2866static inline void
2867attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2868static inline void
2869detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2870
6e83125c
PZ
2871static inline int idle_balance(struct rq *rq)
2872{
2873 return 0;
2874}
2875
38033c37 2876#endif /* CONFIG_SMP */
9d85f21c 2877
2396af69 2878static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2879{
bf0f6f24 2880#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2881 struct task_struct *tsk = NULL;
2882
2883 if (entity_is_task(se))
2884 tsk = task_of(se);
2885
41acab88 2886 if (se->statistics.sleep_start) {
78becc27 2887 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2888
2889 if ((s64)delta < 0)
2890 delta = 0;
2891
41acab88
LDM
2892 if (unlikely(delta > se->statistics.sleep_max))
2893 se->statistics.sleep_max = delta;
bf0f6f24 2894
8c79a045 2895 se->statistics.sleep_start = 0;
41acab88 2896 se->statistics.sum_sleep_runtime += delta;
9745512c 2897
768d0c27 2898 if (tsk) {
e414314c 2899 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2900 trace_sched_stat_sleep(tsk, delta);
2901 }
bf0f6f24 2902 }
41acab88 2903 if (se->statistics.block_start) {
78becc27 2904 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2905
2906 if ((s64)delta < 0)
2907 delta = 0;
2908
41acab88
LDM
2909 if (unlikely(delta > se->statistics.block_max))
2910 se->statistics.block_max = delta;
bf0f6f24 2911
8c79a045 2912 se->statistics.block_start = 0;
41acab88 2913 se->statistics.sum_sleep_runtime += delta;
30084fbd 2914
e414314c 2915 if (tsk) {
8f0dfc34 2916 if (tsk->in_iowait) {
41acab88
LDM
2917 se->statistics.iowait_sum += delta;
2918 se->statistics.iowait_count++;
768d0c27 2919 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2920 }
2921
b781a602
AV
2922 trace_sched_stat_blocked(tsk, delta);
2923
e414314c
PZ
2924 /*
2925 * Blocking time is in units of nanosecs, so shift by
2926 * 20 to get a milliseconds-range estimation of the
2927 * amount of time that the task spent sleeping:
2928 */
2929 if (unlikely(prof_on == SLEEP_PROFILING)) {
2930 profile_hits(SLEEP_PROFILING,
2931 (void *)get_wchan(tsk),
2932 delta >> 20);
2933 }
2934 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2935 }
bf0f6f24
IM
2936 }
2937#endif
2938}
2939
ddc97297
PZ
2940static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2941{
2942#ifdef CONFIG_SCHED_DEBUG
2943 s64 d = se->vruntime - cfs_rq->min_vruntime;
2944
2945 if (d < 0)
2946 d = -d;
2947
2948 if (d > 3*sysctl_sched_latency)
2949 schedstat_inc(cfs_rq, nr_spread_over);
2950#endif
2951}
2952
aeb73b04
PZ
2953static void
2954place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2955{
1af5f730 2956 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2957
2cb8600e
PZ
2958 /*
2959 * The 'current' period is already promised to the current tasks,
2960 * however the extra weight of the new task will slow them down a
2961 * little, place the new task so that it fits in the slot that
2962 * stays open at the end.
2963 */
94dfb5e7 2964 if (initial && sched_feat(START_DEBIT))
f9c0b095 2965 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2966
a2e7a7eb 2967 /* sleeps up to a single latency don't count. */
5ca9880c 2968 if (!initial) {
a2e7a7eb 2969 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2970
a2e7a7eb
MG
2971 /*
2972 * Halve their sleep time's effect, to allow
2973 * for a gentler effect of sleepers:
2974 */
2975 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2976 thresh >>= 1;
51e0304c 2977
a2e7a7eb 2978 vruntime -= thresh;
aeb73b04
PZ
2979 }
2980
b5d9d734 2981 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2982 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2983}
2984
d3d9dc33
PT
2985static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2986
bf0f6f24 2987static void
88ec22d3 2988enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2989{
88ec22d3
PZ
2990 /*
2991 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2992 * through calling update_curr().
88ec22d3 2993 */
371fd7e7 2994 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2995 se->vruntime += cfs_rq->min_vruntime;
2996
bf0f6f24 2997 /*
a2a2d680 2998 * Update run-time statistics of the 'current'.
bf0f6f24 2999 */
b7cc0896 3000 update_curr(cfs_rq);
9d89c257 3001 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3002 account_entity_enqueue(cfs_rq, se);
3003 update_cfs_shares(cfs_rq);
bf0f6f24 3004
88ec22d3 3005 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3006 place_entity(cfs_rq, se, 0);
2396af69 3007 enqueue_sleeper(cfs_rq, se);
e9acbff6 3008 }
bf0f6f24 3009
d2417e5a 3010 update_stats_enqueue(cfs_rq, se);
ddc97297 3011 check_spread(cfs_rq, se);
83b699ed
SV
3012 if (se != cfs_rq->curr)
3013 __enqueue_entity(cfs_rq, se);
2069dd75 3014 se->on_rq = 1;
3d4b47b4 3015
d3d9dc33 3016 if (cfs_rq->nr_running == 1) {
3d4b47b4 3017 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3018 check_enqueue_throttle(cfs_rq);
3019 }
bf0f6f24
IM
3020}
3021
2c13c919 3022static void __clear_buddies_last(struct sched_entity *se)
2002c695 3023{
2c13c919
RR
3024 for_each_sched_entity(se) {
3025 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3026 if (cfs_rq->last != se)
2c13c919 3027 break;
f1044799
PZ
3028
3029 cfs_rq->last = NULL;
2c13c919
RR
3030 }
3031}
2002c695 3032
2c13c919
RR
3033static void __clear_buddies_next(struct sched_entity *se)
3034{
3035 for_each_sched_entity(se) {
3036 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3037 if (cfs_rq->next != se)
2c13c919 3038 break;
f1044799
PZ
3039
3040 cfs_rq->next = NULL;
2c13c919 3041 }
2002c695
PZ
3042}
3043
ac53db59
RR
3044static void __clear_buddies_skip(struct sched_entity *se)
3045{
3046 for_each_sched_entity(se) {
3047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3048 if (cfs_rq->skip != se)
ac53db59 3049 break;
f1044799
PZ
3050
3051 cfs_rq->skip = NULL;
ac53db59
RR
3052 }
3053}
3054
a571bbea
PZ
3055static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3056{
2c13c919
RR
3057 if (cfs_rq->last == se)
3058 __clear_buddies_last(se);
3059
3060 if (cfs_rq->next == se)
3061 __clear_buddies_next(se);
ac53db59
RR
3062
3063 if (cfs_rq->skip == se)
3064 __clear_buddies_skip(se);
a571bbea
PZ
3065}
3066
6c16a6dc 3067static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3068
bf0f6f24 3069static void
371fd7e7 3070dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3071{
a2a2d680
DA
3072 /*
3073 * Update run-time statistics of the 'current'.
3074 */
3075 update_curr(cfs_rq);
13962234 3076 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3077
19b6a2e3 3078 update_stats_dequeue(cfs_rq, se);
371fd7e7 3079 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3080#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3081 if (entity_is_task(se)) {
3082 struct task_struct *tsk = task_of(se);
3083
3084 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3085 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3086 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3087 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3088 }
db36cc7d 3089#endif
67e9fb2a
PZ
3090 }
3091
2002c695 3092 clear_buddies(cfs_rq, se);
4793241b 3093
83b699ed 3094 if (se != cfs_rq->curr)
30cfdcfc 3095 __dequeue_entity(cfs_rq, se);
17bc14b7 3096 se->on_rq = 0;
30cfdcfc 3097 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3098
3099 /*
3100 * Normalize the entity after updating the min_vruntime because the
3101 * update can refer to the ->curr item and we need to reflect this
3102 * movement in our normalized position.
3103 */
371fd7e7 3104 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3105 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3106
d8b4986d
PT
3107 /* return excess runtime on last dequeue */
3108 return_cfs_rq_runtime(cfs_rq);
3109
1e876231 3110 update_min_vruntime(cfs_rq);
17bc14b7 3111 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3112}
3113
3114/*
3115 * Preempt the current task with a newly woken task if needed:
3116 */
7c92e54f 3117static void
2e09bf55 3118check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3119{
11697830 3120 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3121 struct sched_entity *se;
3122 s64 delta;
11697830 3123
6d0f0ebd 3124 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3125 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3126 if (delta_exec > ideal_runtime) {
8875125e 3127 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3128 /*
3129 * The current task ran long enough, ensure it doesn't get
3130 * re-elected due to buddy favours.
3131 */
3132 clear_buddies(cfs_rq, curr);
f685ceac
MG
3133 return;
3134 }
3135
3136 /*
3137 * Ensure that a task that missed wakeup preemption by a
3138 * narrow margin doesn't have to wait for a full slice.
3139 * This also mitigates buddy induced latencies under load.
3140 */
f685ceac
MG
3141 if (delta_exec < sysctl_sched_min_granularity)
3142 return;
3143
f4cfb33e
WX
3144 se = __pick_first_entity(cfs_rq);
3145 delta = curr->vruntime - se->vruntime;
f685ceac 3146
f4cfb33e
WX
3147 if (delta < 0)
3148 return;
d7d82944 3149
f4cfb33e 3150 if (delta > ideal_runtime)
8875125e 3151 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3152}
3153
83b699ed 3154static void
8494f412 3155set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3156{
83b699ed
SV
3157 /* 'current' is not kept within the tree. */
3158 if (se->on_rq) {
3159 /*
3160 * Any task has to be enqueued before it get to execute on
3161 * a CPU. So account for the time it spent waiting on the
3162 * runqueue.
3163 */
3164 update_stats_wait_end(cfs_rq, se);
3165 __dequeue_entity(cfs_rq, se);
9d89c257 3166 update_load_avg(se, 1);
83b699ed
SV
3167 }
3168
79303e9e 3169 update_stats_curr_start(cfs_rq, se);
429d43bc 3170 cfs_rq->curr = se;
eba1ed4b
IM
3171#ifdef CONFIG_SCHEDSTATS
3172 /*
3173 * Track our maximum slice length, if the CPU's load is at
3174 * least twice that of our own weight (i.e. dont track it
3175 * when there are only lesser-weight tasks around):
3176 */
495eca49 3177 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3178 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3179 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3180 }
3181#endif
4a55b450 3182 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3183}
3184
3f3a4904
PZ
3185static int
3186wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3187
ac53db59
RR
3188/*
3189 * Pick the next process, keeping these things in mind, in this order:
3190 * 1) keep things fair between processes/task groups
3191 * 2) pick the "next" process, since someone really wants that to run
3192 * 3) pick the "last" process, for cache locality
3193 * 4) do not run the "skip" process, if something else is available
3194 */
678d5718
PZ
3195static struct sched_entity *
3196pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3197{
678d5718
PZ
3198 struct sched_entity *left = __pick_first_entity(cfs_rq);
3199 struct sched_entity *se;
3200
3201 /*
3202 * If curr is set we have to see if its left of the leftmost entity
3203 * still in the tree, provided there was anything in the tree at all.
3204 */
3205 if (!left || (curr && entity_before(curr, left)))
3206 left = curr;
3207
3208 se = left; /* ideally we run the leftmost entity */
f4b6755f 3209
ac53db59
RR
3210 /*
3211 * Avoid running the skip buddy, if running something else can
3212 * be done without getting too unfair.
3213 */
3214 if (cfs_rq->skip == se) {
678d5718
PZ
3215 struct sched_entity *second;
3216
3217 if (se == curr) {
3218 second = __pick_first_entity(cfs_rq);
3219 } else {
3220 second = __pick_next_entity(se);
3221 if (!second || (curr && entity_before(curr, second)))
3222 second = curr;
3223 }
3224
ac53db59
RR
3225 if (second && wakeup_preempt_entity(second, left) < 1)
3226 se = second;
3227 }
aa2ac252 3228
f685ceac
MG
3229 /*
3230 * Prefer last buddy, try to return the CPU to a preempted task.
3231 */
3232 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3233 se = cfs_rq->last;
3234
ac53db59
RR
3235 /*
3236 * Someone really wants this to run. If it's not unfair, run it.
3237 */
3238 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3239 se = cfs_rq->next;
3240
f685ceac 3241 clear_buddies(cfs_rq, se);
4793241b
PZ
3242
3243 return se;
aa2ac252
PZ
3244}
3245
678d5718 3246static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3247
ab6cde26 3248static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3249{
3250 /*
3251 * If still on the runqueue then deactivate_task()
3252 * was not called and update_curr() has to be done:
3253 */
3254 if (prev->on_rq)
b7cc0896 3255 update_curr(cfs_rq);
bf0f6f24 3256
d3d9dc33
PT
3257 /* throttle cfs_rqs exceeding runtime */
3258 check_cfs_rq_runtime(cfs_rq);
3259
ddc97297 3260 check_spread(cfs_rq, prev);
30cfdcfc 3261 if (prev->on_rq) {
5870db5b 3262 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3263 /* Put 'current' back into the tree. */
3264 __enqueue_entity(cfs_rq, prev);
9d85f21c 3265 /* in !on_rq case, update occurred at dequeue */
9d89c257 3266 update_load_avg(prev, 0);
30cfdcfc 3267 }
429d43bc 3268 cfs_rq->curr = NULL;
bf0f6f24
IM
3269}
3270
8f4d37ec
PZ
3271static void
3272entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3273{
bf0f6f24 3274 /*
30cfdcfc 3275 * Update run-time statistics of the 'current'.
bf0f6f24 3276 */
30cfdcfc 3277 update_curr(cfs_rq);
bf0f6f24 3278
9d85f21c
PT
3279 /*
3280 * Ensure that runnable average is periodically updated.
3281 */
9d89c257 3282 update_load_avg(curr, 1);
bf0bd948 3283 update_cfs_shares(cfs_rq);
9d85f21c 3284
8f4d37ec
PZ
3285#ifdef CONFIG_SCHED_HRTICK
3286 /*
3287 * queued ticks are scheduled to match the slice, so don't bother
3288 * validating it and just reschedule.
3289 */
983ed7a6 3290 if (queued) {
8875125e 3291 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3292 return;
3293 }
8f4d37ec
PZ
3294 /*
3295 * don't let the period tick interfere with the hrtick preemption
3296 */
3297 if (!sched_feat(DOUBLE_TICK) &&
3298 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3299 return;
3300#endif
3301
2c2efaed 3302 if (cfs_rq->nr_running > 1)
2e09bf55 3303 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3304}
3305
ab84d31e
PT
3306
3307/**************************************************
3308 * CFS bandwidth control machinery
3309 */
3310
3311#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3312
3313#ifdef HAVE_JUMP_LABEL
c5905afb 3314static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3315
3316static inline bool cfs_bandwidth_used(void)
3317{
c5905afb 3318 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3319}
3320
1ee14e6c 3321void cfs_bandwidth_usage_inc(void)
029632fb 3322{
1ee14e6c
BS
3323 static_key_slow_inc(&__cfs_bandwidth_used);
3324}
3325
3326void cfs_bandwidth_usage_dec(void)
3327{
3328 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3329}
3330#else /* HAVE_JUMP_LABEL */
3331static bool cfs_bandwidth_used(void)
3332{
3333 return true;
3334}
3335
1ee14e6c
BS
3336void cfs_bandwidth_usage_inc(void) {}
3337void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3338#endif /* HAVE_JUMP_LABEL */
3339
ab84d31e
PT
3340/*
3341 * default period for cfs group bandwidth.
3342 * default: 0.1s, units: nanoseconds
3343 */
3344static inline u64 default_cfs_period(void)
3345{
3346 return 100000000ULL;
3347}
ec12cb7f
PT
3348
3349static inline u64 sched_cfs_bandwidth_slice(void)
3350{
3351 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3352}
3353
a9cf55b2
PT
3354/*
3355 * Replenish runtime according to assigned quota and update expiration time.
3356 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3357 * additional synchronization around rq->lock.
3358 *
3359 * requires cfs_b->lock
3360 */
029632fb 3361void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3362{
3363 u64 now;
3364
3365 if (cfs_b->quota == RUNTIME_INF)
3366 return;
3367
3368 now = sched_clock_cpu(smp_processor_id());
3369 cfs_b->runtime = cfs_b->quota;
3370 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3371}
3372
029632fb
PZ
3373static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3374{
3375 return &tg->cfs_bandwidth;
3376}
3377
f1b17280
PT
3378/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3379static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3380{
3381 if (unlikely(cfs_rq->throttle_count))
3382 return cfs_rq->throttled_clock_task;
3383
78becc27 3384 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3385}
3386
85dac906
PT
3387/* returns 0 on failure to allocate runtime */
3388static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3389{
3390 struct task_group *tg = cfs_rq->tg;
3391 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3392 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3393
3394 /* note: this is a positive sum as runtime_remaining <= 0 */
3395 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3396
3397 raw_spin_lock(&cfs_b->lock);
3398 if (cfs_b->quota == RUNTIME_INF)
3399 amount = min_amount;
58088ad0 3400 else {
77a4d1a1 3401 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3402
3403 if (cfs_b->runtime > 0) {
3404 amount = min(cfs_b->runtime, min_amount);
3405 cfs_b->runtime -= amount;
3406 cfs_b->idle = 0;
3407 }
ec12cb7f 3408 }
a9cf55b2 3409 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3410 raw_spin_unlock(&cfs_b->lock);
3411
3412 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3413 /*
3414 * we may have advanced our local expiration to account for allowed
3415 * spread between our sched_clock and the one on which runtime was
3416 * issued.
3417 */
3418 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3419 cfs_rq->runtime_expires = expires;
85dac906
PT
3420
3421 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3422}
3423
a9cf55b2
PT
3424/*
3425 * Note: This depends on the synchronization provided by sched_clock and the
3426 * fact that rq->clock snapshots this value.
3427 */
3428static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3429{
a9cf55b2 3430 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3431
3432 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3433 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3434 return;
3435
a9cf55b2
PT
3436 if (cfs_rq->runtime_remaining < 0)
3437 return;
3438
3439 /*
3440 * If the local deadline has passed we have to consider the
3441 * possibility that our sched_clock is 'fast' and the global deadline
3442 * has not truly expired.
3443 *
3444 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3445 * whether the global deadline has advanced. It is valid to compare
3446 * cfs_b->runtime_expires without any locks since we only care about
3447 * exact equality, so a partial write will still work.
a9cf55b2
PT
3448 */
3449
51f2176d 3450 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3451 /* extend local deadline, drift is bounded above by 2 ticks */
3452 cfs_rq->runtime_expires += TICK_NSEC;
3453 } else {
3454 /* global deadline is ahead, expiration has passed */
3455 cfs_rq->runtime_remaining = 0;
3456 }
3457}
3458
9dbdb155 3459static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3460{
3461 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3462 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3463 expire_cfs_rq_runtime(cfs_rq);
3464
3465 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3466 return;
3467
85dac906
PT
3468 /*
3469 * if we're unable to extend our runtime we resched so that the active
3470 * hierarchy can be throttled
3471 */
3472 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3473 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3474}
3475
6c16a6dc 3476static __always_inline
9dbdb155 3477void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3478{
56f570e5 3479 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3480 return;
3481
3482 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3483}
3484
85dac906
PT
3485static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3486{
56f570e5 3487 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3488}
3489
64660c86
PT
3490/* check whether cfs_rq, or any parent, is throttled */
3491static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3492{
56f570e5 3493 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3494}
3495
3496/*
3497 * Ensure that neither of the group entities corresponding to src_cpu or
3498 * dest_cpu are members of a throttled hierarchy when performing group
3499 * load-balance operations.
3500 */
3501static inline int throttled_lb_pair(struct task_group *tg,
3502 int src_cpu, int dest_cpu)
3503{
3504 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3505
3506 src_cfs_rq = tg->cfs_rq[src_cpu];
3507 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3508
3509 return throttled_hierarchy(src_cfs_rq) ||
3510 throttled_hierarchy(dest_cfs_rq);
3511}
3512
3513/* updated child weight may affect parent so we have to do this bottom up */
3514static int tg_unthrottle_up(struct task_group *tg, void *data)
3515{
3516 struct rq *rq = data;
3517 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3518
3519 cfs_rq->throttle_count--;
3520#ifdef CONFIG_SMP
3521 if (!cfs_rq->throttle_count) {
f1b17280 3522 /* adjust cfs_rq_clock_task() */
78becc27 3523 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3524 cfs_rq->throttled_clock_task;
64660c86
PT
3525 }
3526#endif
3527
3528 return 0;
3529}
3530
3531static int tg_throttle_down(struct task_group *tg, void *data)
3532{
3533 struct rq *rq = data;
3534 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3535
82958366
PT
3536 /* group is entering throttled state, stop time */
3537 if (!cfs_rq->throttle_count)
78becc27 3538 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3539 cfs_rq->throttle_count++;
3540
3541 return 0;
3542}
3543
d3d9dc33 3544static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3545{
3546 struct rq *rq = rq_of(cfs_rq);
3547 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3548 struct sched_entity *se;
3549 long task_delta, dequeue = 1;
77a4d1a1 3550 bool empty;
85dac906
PT
3551
3552 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3553
f1b17280 3554 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3555 rcu_read_lock();
3556 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3557 rcu_read_unlock();
85dac906
PT
3558
3559 task_delta = cfs_rq->h_nr_running;
3560 for_each_sched_entity(se) {
3561 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3562 /* throttled entity or throttle-on-deactivate */
3563 if (!se->on_rq)
3564 break;
3565
3566 if (dequeue)
3567 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3568 qcfs_rq->h_nr_running -= task_delta;
3569
3570 if (qcfs_rq->load.weight)
3571 dequeue = 0;
3572 }
3573
3574 if (!se)
72465447 3575 sub_nr_running(rq, task_delta);
85dac906
PT
3576
3577 cfs_rq->throttled = 1;
78becc27 3578 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3579 raw_spin_lock(&cfs_b->lock);
d49db342 3580 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3581
c06f04c7
BS
3582 /*
3583 * Add to the _head_ of the list, so that an already-started
3584 * distribute_cfs_runtime will not see us
3585 */
3586 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3587
3588 /*
3589 * If we're the first throttled task, make sure the bandwidth
3590 * timer is running.
3591 */
3592 if (empty)
3593 start_cfs_bandwidth(cfs_b);
3594
85dac906
PT
3595 raw_spin_unlock(&cfs_b->lock);
3596}
3597
029632fb 3598void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3599{
3600 struct rq *rq = rq_of(cfs_rq);
3601 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3602 struct sched_entity *se;
3603 int enqueue = 1;
3604 long task_delta;
3605
22b958d8 3606 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3607
3608 cfs_rq->throttled = 0;
1a55af2e
FW
3609
3610 update_rq_clock(rq);
3611
671fd9da 3612 raw_spin_lock(&cfs_b->lock);
78becc27 3613 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3614 list_del_rcu(&cfs_rq->throttled_list);
3615 raw_spin_unlock(&cfs_b->lock);
3616
64660c86
PT
3617 /* update hierarchical throttle state */
3618 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3619
671fd9da
PT
3620 if (!cfs_rq->load.weight)
3621 return;
3622
3623 task_delta = cfs_rq->h_nr_running;
3624 for_each_sched_entity(se) {
3625 if (se->on_rq)
3626 enqueue = 0;
3627
3628 cfs_rq = cfs_rq_of(se);
3629 if (enqueue)
3630 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3631 cfs_rq->h_nr_running += task_delta;
3632
3633 if (cfs_rq_throttled(cfs_rq))
3634 break;
3635 }
3636
3637 if (!se)
72465447 3638 add_nr_running(rq, task_delta);
671fd9da
PT
3639
3640 /* determine whether we need to wake up potentially idle cpu */
3641 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3642 resched_curr(rq);
671fd9da
PT
3643}
3644
3645static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3646 u64 remaining, u64 expires)
3647{
3648 struct cfs_rq *cfs_rq;
c06f04c7
BS
3649 u64 runtime;
3650 u64 starting_runtime = remaining;
671fd9da
PT
3651
3652 rcu_read_lock();
3653 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3654 throttled_list) {
3655 struct rq *rq = rq_of(cfs_rq);
3656
3657 raw_spin_lock(&rq->lock);
3658 if (!cfs_rq_throttled(cfs_rq))
3659 goto next;
3660
3661 runtime = -cfs_rq->runtime_remaining + 1;
3662 if (runtime > remaining)
3663 runtime = remaining;
3664 remaining -= runtime;
3665
3666 cfs_rq->runtime_remaining += runtime;
3667 cfs_rq->runtime_expires = expires;
3668
3669 /* we check whether we're throttled above */
3670 if (cfs_rq->runtime_remaining > 0)
3671 unthrottle_cfs_rq(cfs_rq);
3672
3673next:
3674 raw_spin_unlock(&rq->lock);
3675
3676 if (!remaining)
3677 break;
3678 }
3679 rcu_read_unlock();
3680
c06f04c7 3681 return starting_runtime - remaining;
671fd9da
PT
3682}
3683
58088ad0
PT
3684/*
3685 * Responsible for refilling a task_group's bandwidth and unthrottling its
3686 * cfs_rqs as appropriate. If there has been no activity within the last
3687 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3688 * used to track this state.
3689 */
3690static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3691{
671fd9da 3692 u64 runtime, runtime_expires;
51f2176d 3693 int throttled;
58088ad0 3694
58088ad0
PT
3695 /* no need to continue the timer with no bandwidth constraint */
3696 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3697 goto out_deactivate;
58088ad0 3698
671fd9da 3699 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3700 cfs_b->nr_periods += overrun;
671fd9da 3701
51f2176d
BS
3702 /*
3703 * idle depends on !throttled (for the case of a large deficit), and if
3704 * we're going inactive then everything else can be deferred
3705 */
3706 if (cfs_b->idle && !throttled)
3707 goto out_deactivate;
a9cf55b2
PT
3708
3709 __refill_cfs_bandwidth_runtime(cfs_b);
3710
671fd9da
PT
3711 if (!throttled) {
3712 /* mark as potentially idle for the upcoming period */
3713 cfs_b->idle = 1;
51f2176d 3714 return 0;
671fd9da
PT
3715 }
3716
e8da1b18
NR
3717 /* account preceding periods in which throttling occurred */
3718 cfs_b->nr_throttled += overrun;
3719
671fd9da 3720 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3721
3722 /*
c06f04c7
BS
3723 * This check is repeated as we are holding onto the new bandwidth while
3724 * we unthrottle. This can potentially race with an unthrottled group
3725 * trying to acquire new bandwidth from the global pool. This can result
3726 * in us over-using our runtime if it is all used during this loop, but
3727 * only by limited amounts in that extreme case.
671fd9da 3728 */
c06f04c7
BS
3729 while (throttled && cfs_b->runtime > 0) {
3730 runtime = cfs_b->runtime;
671fd9da
PT
3731 raw_spin_unlock(&cfs_b->lock);
3732 /* we can't nest cfs_b->lock while distributing bandwidth */
3733 runtime = distribute_cfs_runtime(cfs_b, runtime,
3734 runtime_expires);
3735 raw_spin_lock(&cfs_b->lock);
3736
3737 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3738
3739 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3740 }
58088ad0 3741
671fd9da
PT
3742 /*
3743 * While we are ensured activity in the period following an
3744 * unthrottle, this also covers the case in which the new bandwidth is
3745 * insufficient to cover the existing bandwidth deficit. (Forcing the
3746 * timer to remain active while there are any throttled entities.)
3747 */
3748 cfs_b->idle = 0;
58088ad0 3749
51f2176d
BS
3750 return 0;
3751
3752out_deactivate:
51f2176d 3753 return 1;
58088ad0 3754}
d3d9dc33 3755
d8b4986d
PT
3756/* a cfs_rq won't donate quota below this amount */
3757static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3758/* minimum remaining period time to redistribute slack quota */
3759static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3760/* how long we wait to gather additional slack before distributing */
3761static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3762
db06e78c
BS
3763/*
3764 * Are we near the end of the current quota period?
3765 *
3766 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3767 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3768 * migrate_hrtimers, base is never cleared, so we are fine.
3769 */
d8b4986d
PT
3770static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3771{
3772 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3773 u64 remaining;
3774
3775 /* if the call-back is running a quota refresh is already occurring */
3776 if (hrtimer_callback_running(refresh_timer))
3777 return 1;
3778
3779 /* is a quota refresh about to occur? */
3780 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3781 if (remaining < min_expire)
3782 return 1;
3783
3784 return 0;
3785}
3786
3787static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3788{
3789 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3790
3791 /* if there's a quota refresh soon don't bother with slack */
3792 if (runtime_refresh_within(cfs_b, min_left))
3793 return;
3794
4cfafd30
PZ
3795 hrtimer_start(&cfs_b->slack_timer,
3796 ns_to_ktime(cfs_bandwidth_slack_period),
3797 HRTIMER_MODE_REL);
d8b4986d
PT
3798}
3799
3800/* we know any runtime found here is valid as update_curr() precedes return */
3801static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3802{
3803 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3804 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3805
3806 if (slack_runtime <= 0)
3807 return;
3808
3809 raw_spin_lock(&cfs_b->lock);
3810 if (cfs_b->quota != RUNTIME_INF &&
3811 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3812 cfs_b->runtime += slack_runtime;
3813
3814 /* we are under rq->lock, defer unthrottling using a timer */
3815 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3816 !list_empty(&cfs_b->throttled_cfs_rq))
3817 start_cfs_slack_bandwidth(cfs_b);
3818 }
3819 raw_spin_unlock(&cfs_b->lock);
3820
3821 /* even if it's not valid for return we don't want to try again */
3822 cfs_rq->runtime_remaining -= slack_runtime;
3823}
3824
3825static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3826{
56f570e5
PT
3827 if (!cfs_bandwidth_used())
3828 return;
3829
fccfdc6f 3830 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3831 return;
3832
3833 __return_cfs_rq_runtime(cfs_rq);
3834}
3835
3836/*
3837 * This is done with a timer (instead of inline with bandwidth return) since
3838 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3839 */
3840static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3841{
3842 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3843 u64 expires;
3844
3845 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3846 raw_spin_lock(&cfs_b->lock);
3847 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3848 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3849 return;
db06e78c 3850 }
d8b4986d 3851
c06f04c7 3852 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3853 runtime = cfs_b->runtime;
c06f04c7 3854
d8b4986d
PT
3855 expires = cfs_b->runtime_expires;
3856 raw_spin_unlock(&cfs_b->lock);
3857
3858 if (!runtime)
3859 return;
3860
3861 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3862
3863 raw_spin_lock(&cfs_b->lock);
3864 if (expires == cfs_b->runtime_expires)
c06f04c7 3865 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3866 raw_spin_unlock(&cfs_b->lock);
3867}
3868
d3d9dc33
PT
3869/*
3870 * When a group wakes up we want to make sure that its quota is not already
3871 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3872 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3873 */
3874static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3875{
56f570e5
PT
3876 if (!cfs_bandwidth_used())
3877 return;
3878
d3d9dc33
PT
3879 /* an active group must be handled by the update_curr()->put() path */
3880 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3881 return;
3882
3883 /* ensure the group is not already throttled */
3884 if (cfs_rq_throttled(cfs_rq))
3885 return;
3886
3887 /* update runtime allocation */
3888 account_cfs_rq_runtime(cfs_rq, 0);
3889 if (cfs_rq->runtime_remaining <= 0)
3890 throttle_cfs_rq(cfs_rq);
3891}
3892
3893/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3894static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3895{
56f570e5 3896 if (!cfs_bandwidth_used())
678d5718 3897 return false;
56f570e5 3898
d3d9dc33 3899 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3900 return false;
d3d9dc33
PT
3901
3902 /*
3903 * it's possible for a throttled entity to be forced into a running
3904 * state (e.g. set_curr_task), in this case we're finished.
3905 */
3906 if (cfs_rq_throttled(cfs_rq))
678d5718 3907 return true;
d3d9dc33
PT
3908
3909 throttle_cfs_rq(cfs_rq);
678d5718 3910 return true;
d3d9dc33 3911}
029632fb 3912
029632fb
PZ
3913static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3914{
3915 struct cfs_bandwidth *cfs_b =
3916 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3917
029632fb
PZ
3918 do_sched_cfs_slack_timer(cfs_b);
3919
3920 return HRTIMER_NORESTART;
3921}
3922
3923static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3924{
3925 struct cfs_bandwidth *cfs_b =
3926 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3927 int overrun;
3928 int idle = 0;
3929
51f2176d 3930 raw_spin_lock(&cfs_b->lock);
029632fb 3931 for (;;) {
77a4d1a1 3932 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3933 if (!overrun)
3934 break;
3935
3936 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3937 }
4cfafd30
PZ
3938 if (idle)
3939 cfs_b->period_active = 0;
51f2176d 3940 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3941
3942 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3943}
3944
3945void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3946{
3947 raw_spin_lock_init(&cfs_b->lock);
3948 cfs_b->runtime = 0;
3949 cfs_b->quota = RUNTIME_INF;
3950 cfs_b->period = ns_to_ktime(default_cfs_period());
3951
3952 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3953 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3954 cfs_b->period_timer.function = sched_cfs_period_timer;
3955 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3956 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3957}
3958
3959static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3960{
3961 cfs_rq->runtime_enabled = 0;
3962 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3963}
3964
77a4d1a1 3965void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3966{
4cfafd30 3967 lockdep_assert_held(&cfs_b->lock);
029632fb 3968
4cfafd30
PZ
3969 if (!cfs_b->period_active) {
3970 cfs_b->period_active = 1;
3971 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3972 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3973 }
029632fb
PZ
3974}
3975
3976static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3977{
7f1a169b
TH
3978 /* init_cfs_bandwidth() was not called */
3979 if (!cfs_b->throttled_cfs_rq.next)
3980 return;
3981
029632fb
PZ
3982 hrtimer_cancel(&cfs_b->period_timer);
3983 hrtimer_cancel(&cfs_b->slack_timer);
3984}
3985
0e59bdae
KT
3986static void __maybe_unused update_runtime_enabled(struct rq *rq)
3987{
3988 struct cfs_rq *cfs_rq;
3989
3990 for_each_leaf_cfs_rq(rq, cfs_rq) {
3991 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3992
3993 raw_spin_lock(&cfs_b->lock);
3994 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3995 raw_spin_unlock(&cfs_b->lock);
3996 }
3997}
3998
38dc3348 3999static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4000{
4001 struct cfs_rq *cfs_rq;
4002
4003 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4004 if (!cfs_rq->runtime_enabled)
4005 continue;
4006
4007 /*
4008 * clock_task is not advancing so we just need to make sure
4009 * there's some valid quota amount
4010 */
51f2176d 4011 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4012 /*
4013 * Offline rq is schedulable till cpu is completely disabled
4014 * in take_cpu_down(), so we prevent new cfs throttling here.
4015 */
4016 cfs_rq->runtime_enabled = 0;
4017
029632fb
PZ
4018 if (cfs_rq_throttled(cfs_rq))
4019 unthrottle_cfs_rq(cfs_rq);
4020 }
4021}
4022
4023#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4024static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4025{
78becc27 4026 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4027}
4028
9dbdb155 4029static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4030static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4031static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4032static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4033
4034static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4035{
4036 return 0;
4037}
64660c86
PT
4038
4039static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4040{
4041 return 0;
4042}
4043
4044static inline int throttled_lb_pair(struct task_group *tg,
4045 int src_cpu, int dest_cpu)
4046{
4047 return 0;
4048}
029632fb
PZ
4049
4050void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4051
4052#ifdef CONFIG_FAIR_GROUP_SCHED
4053static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4054#endif
4055
029632fb
PZ
4056static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4057{
4058 return NULL;
4059}
4060static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4061static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4062static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4063
4064#endif /* CONFIG_CFS_BANDWIDTH */
4065
bf0f6f24
IM
4066/**************************************************
4067 * CFS operations on tasks:
4068 */
4069
8f4d37ec
PZ
4070#ifdef CONFIG_SCHED_HRTICK
4071static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4072{
8f4d37ec
PZ
4073 struct sched_entity *se = &p->se;
4074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4075
4076 WARN_ON(task_rq(p) != rq);
4077
b39e66ea 4078 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4079 u64 slice = sched_slice(cfs_rq, se);
4080 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4081 s64 delta = slice - ran;
4082
4083 if (delta < 0) {
4084 if (rq->curr == p)
8875125e 4085 resched_curr(rq);
8f4d37ec
PZ
4086 return;
4087 }
31656519 4088 hrtick_start(rq, delta);
8f4d37ec
PZ
4089 }
4090}
a4c2f00f
PZ
4091
4092/*
4093 * called from enqueue/dequeue and updates the hrtick when the
4094 * current task is from our class and nr_running is low enough
4095 * to matter.
4096 */
4097static void hrtick_update(struct rq *rq)
4098{
4099 struct task_struct *curr = rq->curr;
4100
b39e66ea 4101 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4102 return;
4103
4104 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4105 hrtick_start_fair(rq, curr);
4106}
55e12e5e 4107#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4108static inline void
4109hrtick_start_fair(struct rq *rq, struct task_struct *p)
4110{
4111}
a4c2f00f
PZ
4112
4113static inline void hrtick_update(struct rq *rq)
4114{
4115}
8f4d37ec
PZ
4116#endif
4117
bf0f6f24
IM
4118/*
4119 * The enqueue_task method is called before nr_running is
4120 * increased. Here we update the fair scheduling stats and
4121 * then put the task into the rbtree:
4122 */
ea87bb78 4123static void
371fd7e7 4124enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4125{
4126 struct cfs_rq *cfs_rq;
62fb1851 4127 struct sched_entity *se = &p->se;
bf0f6f24
IM
4128
4129 for_each_sched_entity(se) {
62fb1851 4130 if (se->on_rq)
bf0f6f24
IM
4131 break;
4132 cfs_rq = cfs_rq_of(se);
88ec22d3 4133 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4134
4135 /*
4136 * end evaluation on encountering a throttled cfs_rq
4137 *
4138 * note: in the case of encountering a throttled cfs_rq we will
4139 * post the final h_nr_running increment below.
4140 */
4141 if (cfs_rq_throttled(cfs_rq))
4142 break;
953bfcd1 4143 cfs_rq->h_nr_running++;
85dac906 4144
88ec22d3 4145 flags = ENQUEUE_WAKEUP;
bf0f6f24 4146 }
8f4d37ec 4147
2069dd75 4148 for_each_sched_entity(se) {
0f317143 4149 cfs_rq = cfs_rq_of(se);
953bfcd1 4150 cfs_rq->h_nr_running++;
2069dd75 4151
85dac906
PT
4152 if (cfs_rq_throttled(cfs_rq))
4153 break;
4154
9d89c257 4155 update_load_avg(se, 1);
17bc14b7 4156 update_cfs_shares(cfs_rq);
2069dd75
PZ
4157 }
4158
cd126afe 4159 if (!se)
72465447 4160 add_nr_running(rq, 1);
cd126afe 4161
a4c2f00f 4162 hrtick_update(rq);
bf0f6f24
IM
4163}
4164
2f36825b
VP
4165static void set_next_buddy(struct sched_entity *se);
4166
bf0f6f24
IM
4167/*
4168 * The dequeue_task method is called before nr_running is
4169 * decreased. We remove the task from the rbtree and
4170 * update the fair scheduling stats:
4171 */
371fd7e7 4172static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4173{
4174 struct cfs_rq *cfs_rq;
62fb1851 4175 struct sched_entity *se = &p->se;
2f36825b 4176 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4177
4178 for_each_sched_entity(se) {
4179 cfs_rq = cfs_rq_of(se);
371fd7e7 4180 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4181
4182 /*
4183 * end evaluation on encountering a throttled cfs_rq
4184 *
4185 * note: in the case of encountering a throttled cfs_rq we will
4186 * post the final h_nr_running decrement below.
4187 */
4188 if (cfs_rq_throttled(cfs_rq))
4189 break;
953bfcd1 4190 cfs_rq->h_nr_running--;
2069dd75 4191
bf0f6f24 4192 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4193 if (cfs_rq->load.weight) {
4194 /*
4195 * Bias pick_next to pick a task from this cfs_rq, as
4196 * p is sleeping when it is within its sched_slice.
4197 */
4198 if (task_sleep && parent_entity(se))
4199 set_next_buddy(parent_entity(se));
9598c82d
PT
4200
4201 /* avoid re-evaluating load for this entity */
4202 se = parent_entity(se);
bf0f6f24 4203 break;
2f36825b 4204 }
371fd7e7 4205 flags |= DEQUEUE_SLEEP;
bf0f6f24 4206 }
8f4d37ec 4207
2069dd75 4208 for_each_sched_entity(se) {
0f317143 4209 cfs_rq = cfs_rq_of(se);
953bfcd1 4210 cfs_rq->h_nr_running--;
2069dd75 4211
85dac906
PT
4212 if (cfs_rq_throttled(cfs_rq))
4213 break;
4214
9d89c257 4215 update_load_avg(se, 1);
17bc14b7 4216 update_cfs_shares(cfs_rq);
2069dd75
PZ
4217 }
4218
cd126afe 4219 if (!se)
72465447 4220 sub_nr_running(rq, 1);
cd126afe 4221
a4c2f00f 4222 hrtick_update(rq);
bf0f6f24
IM
4223}
4224
e7693a36 4225#ifdef CONFIG_SMP
3289bdb4
PZ
4226
4227/*
4228 * per rq 'load' arrray crap; XXX kill this.
4229 */
4230
4231/*
4232 * The exact cpuload at various idx values, calculated at every tick would be
4233 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4234 *
4235 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4236 * on nth tick when cpu may be busy, then we have:
4237 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4238 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4239 *
4240 * decay_load_missed() below does efficient calculation of
4241 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4242 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4243 *
4244 * The calculation is approximated on a 128 point scale.
4245 * degrade_zero_ticks is the number of ticks after which load at any
4246 * particular idx is approximated to be zero.
4247 * degrade_factor is a precomputed table, a row for each load idx.
4248 * Each column corresponds to degradation factor for a power of two ticks,
4249 * based on 128 point scale.
4250 * Example:
4251 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4252 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4253 *
4254 * With this power of 2 load factors, we can degrade the load n times
4255 * by looking at 1 bits in n and doing as many mult/shift instead of
4256 * n mult/shifts needed by the exact degradation.
4257 */
4258#define DEGRADE_SHIFT 7
4259static const unsigned char
4260 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4261static const unsigned char
4262 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4263 {0, 0, 0, 0, 0, 0, 0, 0},
4264 {64, 32, 8, 0, 0, 0, 0, 0},
4265 {96, 72, 40, 12, 1, 0, 0},
4266 {112, 98, 75, 43, 15, 1, 0},
4267 {120, 112, 98, 76, 45, 16, 2} };
4268
4269/*
4270 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4271 * would be when CPU is idle and so we just decay the old load without
4272 * adding any new load.
4273 */
4274static unsigned long
4275decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4276{
4277 int j = 0;
4278
4279 if (!missed_updates)
4280 return load;
4281
4282 if (missed_updates >= degrade_zero_ticks[idx])
4283 return 0;
4284
4285 if (idx == 1)
4286 return load >> missed_updates;
4287
4288 while (missed_updates) {
4289 if (missed_updates % 2)
4290 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4291
4292 missed_updates >>= 1;
4293 j++;
4294 }
4295 return load;
4296}
4297
4298/*
4299 * Update rq->cpu_load[] statistics. This function is usually called every
4300 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4301 * every tick. We fix it up based on jiffies.
4302 */
4303static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4304 unsigned long pending_updates)
4305{
4306 int i, scale;
4307
4308 this_rq->nr_load_updates++;
4309
4310 /* Update our load: */
4311 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4312 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4313 unsigned long old_load, new_load;
4314
4315 /* scale is effectively 1 << i now, and >> i divides by scale */
4316
4317 old_load = this_rq->cpu_load[i];
4318 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4319 new_load = this_load;
4320 /*
4321 * Round up the averaging division if load is increasing. This
4322 * prevents us from getting stuck on 9 if the load is 10, for
4323 * example.
4324 */
4325 if (new_load > old_load)
4326 new_load += scale - 1;
4327
4328 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4329 }
4330
4331 sched_avg_update(this_rq);
4332}
4333
7ea241af
YD
4334/* Used instead of source_load when we know the type == 0 */
4335static unsigned long weighted_cpuload(const int cpu)
4336{
4337 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4338}
4339
3289bdb4
PZ
4340#ifdef CONFIG_NO_HZ_COMMON
4341/*
4342 * There is no sane way to deal with nohz on smp when using jiffies because the
4343 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4344 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4345 *
4346 * Therefore we cannot use the delta approach from the regular tick since that
4347 * would seriously skew the load calculation. However we'll make do for those
4348 * updates happening while idle (nohz_idle_balance) or coming out of idle
4349 * (tick_nohz_idle_exit).
4350 *
4351 * This means we might still be one tick off for nohz periods.
4352 */
4353
4354/*
4355 * Called from nohz_idle_balance() to update the load ratings before doing the
4356 * idle balance.
4357 */
4358static void update_idle_cpu_load(struct rq *this_rq)
4359{
316c1608 4360 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4361 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4362 unsigned long pending_updates;
4363
4364 /*
4365 * bail if there's load or we're actually up-to-date.
4366 */
4367 if (load || curr_jiffies == this_rq->last_load_update_tick)
4368 return;
4369
4370 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4371 this_rq->last_load_update_tick = curr_jiffies;
4372
4373 __update_cpu_load(this_rq, load, pending_updates);
4374}
4375
4376/*
4377 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4378 */
4379void update_cpu_load_nohz(void)
4380{
4381 struct rq *this_rq = this_rq();
316c1608 4382 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4383 unsigned long pending_updates;
4384
4385 if (curr_jiffies == this_rq->last_load_update_tick)
4386 return;
4387
4388 raw_spin_lock(&this_rq->lock);
4389 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4390 if (pending_updates) {
4391 this_rq->last_load_update_tick = curr_jiffies;
4392 /*
4393 * We were idle, this means load 0, the current load might be
4394 * !0 due to remote wakeups and the sort.
4395 */
4396 __update_cpu_load(this_rq, 0, pending_updates);
4397 }
4398 raw_spin_unlock(&this_rq->lock);
4399}
4400#endif /* CONFIG_NO_HZ */
4401
4402/*
4403 * Called from scheduler_tick()
4404 */
4405void update_cpu_load_active(struct rq *this_rq)
4406{
7ea241af 4407 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4408 /*
4409 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4410 */
4411 this_rq->last_load_update_tick = jiffies;
4412 __update_cpu_load(this_rq, load, 1);
4413}
4414
029632fb
PZ
4415/*
4416 * Return a low guess at the load of a migration-source cpu weighted
4417 * according to the scheduling class and "nice" value.
4418 *
4419 * We want to under-estimate the load of migration sources, to
4420 * balance conservatively.
4421 */
4422static unsigned long source_load(int cpu, int type)
4423{
4424 struct rq *rq = cpu_rq(cpu);
4425 unsigned long total = weighted_cpuload(cpu);
4426
4427 if (type == 0 || !sched_feat(LB_BIAS))
4428 return total;
4429
4430 return min(rq->cpu_load[type-1], total);
4431}
4432
4433/*
4434 * Return a high guess at the load of a migration-target cpu weighted
4435 * according to the scheduling class and "nice" value.
4436 */
4437static unsigned long target_load(int cpu, int type)
4438{
4439 struct rq *rq = cpu_rq(cpu);
4440 unsigned long total = weighted_cpuload(cpu);
4441
4442 if (type == 0 || !sched_feat(LB_BIAS))
4443 return total;
4444
4445 return max(rq->cpu_load[type-1], total);
4446}
4447
ced549fa 4448static unsigned long capacity_of(int cpu)
029632fb 4449{
ced549fa 4450 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4451}
4452
ca6d75e6
VG
4453static unsigned long capacity_orig_of(int cpu)
4454{
4455 return cpu_rq(cpu)->cpu_capacity_orig;
4456}
4457
029632fb
PZ
4458static unsigned long cpu_avg_load_per_task(int cpu)
4459{
4460 struct rq *rq = cpu_rq(cpu);
316c1608 4461 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4462 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4463
4464 if (nr_running)
b92486cb 4465 return load_avg / nr_running;
029632fb
PZ
4466
4467 return 0;
4468}
4469
62470419
MW
4470static void record_wakee(struct task_struct *p)
4471{
4472 /*
4473 * Rough decay (wiping) for cost saving, don't worry
4474 * about the boundary, really active task won't care
4475 * about the loss.
4476 */
2538d960 4477 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4478 current->wakee_flips >>= 1;
62470419
MW
4479 current->wakee_flip_decay_ts = jiffies;
4480 }
4481
4482 if (current->last_wakee != p) {
4483 current->last_wakee = p;
4484 current->wakee_flips++;
4485 }
4486}
098fb9db 4487
74f8e4b2 4488static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4489{
4490 struct sched_entity *se = &p->se;
4491 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4492 u64 min_vruntime;
4493
4494#ifndef CONFIG_64BIT
4495 u64 min_vruntime_copy;
88ec22d3 4496
3fe1698b
PZ
4497 do {
4498 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4499 smp_rmb();
4500 min_vruntime = cfs_rq->min_vruntime;
4501 } while (min_vruntime != min_vruntime_copy);
4502#else
4503 min_vruntime = cfs_rq->min_vruntime;
4504#endif
88ec22d3 4505
3fe1698b 4506 se->vruntime -= min_vruntime;
62470419 4507 record_wakee(p);
88ec22d3
PZ
4508}
4509
bb3469ac 4510#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4511/*
4512 * effective_load() calculates the load change as seen from the root_task_group
4513 *
4514 * Adding load to a group doesn't make a group heavier, but can cause movement
4515 * of group shares between cpus. Assuming the shares were perfectly aligned one
4516 * can calculate the shift in shares.
cf5f0acf
PZ
4517 *
4518 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4519 * on this @cpu and results in a total addition (subtraction) of @wg to the
4520 * total group weight.
4521 *
4522 * Given a runqueue weight distribution (rw_i) we can compute a shares
4523 * distribution (s_i) using:
4524 *
4525 * s_i = rw_i / \Sum rw_j (1)
4526 *
4527 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4528 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4529 * shares distribution (s_i):
4530 *
4531 * rw_i = { 2, 4, 1, 0 }
4532 * s_i = { 2/7, 4/7, 1/7, 0 }
4533 *
4534 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4535 * task used to run on and the CPU the waker is running on), we need to
4536 * compute the effect of waking a task on either CPU and, in case of a sync
4537 * wakeup, compute the effect of the current task going to sleep.
4538 *
4539 * So for a change of @wl to the local @cpu with an overall group weight change
4540 * of @wl we can compute the new shares distribution (s'_i) using:
4541 *
4542 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4543 *
4544 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4545 * differences in waking a task to CPU 0. The additional task changes the
4546 * weight and shares distributions like:
4547 *
4548 * rw'_i = { 3, 4, 1, 0 }
4549 * s'_i = { 3/8, 4/8, 1/8, 0 }
4550 *
4551 * We can then compute the difference in effective weight by using:
4552 *
4553 * dw_i = S * (s'_i - s_i) (3)
4554 *
4555 * Where 'S' is the group weight as seen by its parent.
4556 *
4557 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4558 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4559 * 4/7) times the weight of the group.
f5bfb7d9 4560 */
2069dd75 4561static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4562{
4be9daaa 4563 struct sched_entity *se = tg->se[cpu];
f1d239f7 4564
9722c2da 4565 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4566 return wl;
4567
4be9daaa 4568 for_each_sched_entity(se) {
cf5f0acf 4569 long w, W;
4be9daaa 4570
977dda7c 4571 tg = se->my_q->tg;
bb3469ac 4572
cf5f0acf
PZ
4573 /*
4574 * W = @wg + \Sum rw_j
4575 */
4576 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4577
cf5f0acf
PZ
4578 /*
4579 * w = rw_i + @wl
4580 */
7ea241af 4581 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4582
cf5f0acf
PZ
4583 /*
4584 * wl = S * s'_i; see (2)
4585 */
4586 if (W > 0 && w < W)
32a8df4e 4587 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4588 else
4589 wl = tg->shares;
940959e9 4590
cf5f0acf
PZ
4591 /*
4592 * Per the above, wl is the new se->load.weight value; since
4593 * those are clipped to [MIN_SHARES, ...) do so now. See
4594 * calc_cfs_shares().
4595 */
977dda7c
PT
4596 if (wl < MIN_SHARES)
4597 wl = MIN_SHARES;
cf5f0acf
PZ
4598
4599 /*
4600 * wl = dw_i = S * (s'_i - s_i); see (3)
4601 */
9d89c257 4602 wl -= se->avg.load_avg;
cf5f0acf
PZ
4603
4604 /*
4605 * Recursively apply this logic to all parent groups to compute
4606 * the final effective load change on the root group. Since
4607 * only the @tg group gets extra weight, all parent groups can
4608 * only redistribute existing shares. @wl is the shift in shares
4609 * resulting from this level per the above.
4610 */
4be9daaa 4611 wg = 0;
4be9daaa 4612 }
bb3469ac 4613
4be9daaa 4614 return wl;
bb3469ac
PZ
4615}
4616#else
4be9daaa 4617
58d081b5 4618static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4619{
83378269 4620 return wl;
bb3469ac 4621}
4be9daaa 4622
bb3469ac
PZ
4623#endif
4624
63b0e9ed
MG
4625/*
4626 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4627 * A waker of many should wake a different task than the one last awakened
4628 * at a frequency roughly N times higher than one of its wakees. In order
4629 * to determine whether we should let the load spread vs consolodating to
4630 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4631 * partner, and a factor of lls_size higher frequency in the other. With
4632 * both conditions met, we can be relatively sure that the relationship is
4633 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4634 * being client/server, worker/dispatcher, interrupt source or whatever is
4635 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4636 */
62470419
MW
4637static int wake_wide(struct task_struct *p)
4638{
63b0e9ed
MG
4639 unsigned int master = current->wakee_flips;
4640 unsigned int slave = p->wakee_flips;
7d9ffa89 4641 int factor = this_cpu_read(sd_llc_size);
62470419 4642
63b0e9ed
MG
4643 if (master < slave)
4644 swap(master, slave);
4645 if (slave < factor || master < slave * factor)
4646 return 0;
4647 return 1;
62470419
MW
4648}
4649
c88d5910 4650static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4651{
e37b6a7b 4652 s64 this_load, load;
bd61c98f 4653 s64 this_eff_load, prev_eff_load;
c88d5910 4654 int idx, this_cpu, prev_cpu;
c88d5910 4655 struct task_group *tg;
83378269 4656 unsigned long weight;
b3137bc8 4657 int balanced;
098fb9db 4658
c88d5910
PZ
4659 idx = sd->wake_idx;
4660 this_cpu = smp_processor_id();
4661 prev_cpu = task_cpu(p);
4662 load = source_load(prev_cpu, idx);
4663 this_load = target_load(this_cpu, idx);
098fb9db 4664
b3137bc8
MG
4665 /*
4666 * If sync wakeup then subtract the (maximum possible)
4667 * effect of the currently running task from the load
4668 * of the current CPU:
4669 */
83378269
PZ
4670 if (sync) {
4671 tg = task_group(current);
9d89c257 4672 weight = current->se.avg.load_avg;
83378269 4673
c88d5910 4674 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4675 load += effective_load(tg, prev_cpu, 0, -weight);
4676 }
b3137bc8 4677
83378269 4678 tg = task_group(p);
9d89c257 4679 weight = p->se.avg.load_avg;
b3137bc8 4680
71a29aa7
PZ
4681 /*
4682 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4683 * due to the sync cause above having dropped this_load to 0, we'll
4684 * always have an imbalance, but there's really nothing you can do
4685 * about that, so that's good too.
71a29aa7
PZ
4686 *
4687 * Otherwise check if either cpus are near enough in load to allow this
4688 * task to be woken on this_cpu.
4689 */
bd61c98f
VG
4690 this_eff_load = 100;
4691 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4692
bd61c98f
VG
4693 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4694 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4695
bd61c98f 4696 if (this_load > 0) {
e51fd5e2
PZ
4697 this_eff_load *= this_load +
4698 effective_load(tg, this_cpu, weight, weight);
4699
e51fd5e2 4700 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4701 }
e51fd5e2 4702
bd61c98f 4703 balanced = this_eff_load <= prev_eff_load;
098fb9db 4704
41acab88 4705 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4706
05bfb65f
VG
4707 if (!balanced)
4708 return 0;
098fb9db 4709
05bfb65f
VG
4710 schedstat_inc(sd, ttwu_move_affine);
4711 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4712
4713 return 1;
098fb9db
IM
4714}
4715
aaee1203
PZ
4716/*
4717 * find_idlest_group finds and returns the least busy CPU group within the
4718 * domain.
4719 */
4720static struct sched_group *
78e7ed53 4721find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4722 int this_cpu, int sd_flag)
e7693a36 4723{
b3bd3de6 4724 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4725 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4726 int load_idx = sd->forkexec_idx;
aaee1203 4727 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4728
c44f2a02
VG
4729 if (sd_flag & SD_BALANCE_WAKE)
4730 load_idx = sd->wake_idx;
4731
aaee1203
PZ
4732 do {
4733 unsigned long load, avg_load;
4734 int local_group;
4735 int i;
e7693a36 4736
aaee1203
PZ
4737 /* Skip over this group if it has no CPUs allowed */
4738 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4739 tsk_cpus_allowed(p)))
aaee1203
PZ
4740 continue;
4741
4742 local_group = cpumask_test_cpu(this_cpu,
4743 sched_group_cpus(group));
4744
4745 /* Tally up the load of all CPUs in the group */
4746 avg_load = 0;
4747
4748 for_each_cpu(i, sched_group_cpus(group)) {
4749 /* Bias balancing toward cpus of our domain */
4750 if (local_group)
4751 load = source_load(i, load_idx);
4752 else
4753 load = target_load(i, load_idx);
4754
4755 avg_load += load;
4756 }
4757
63b2ca30 4758 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4759 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4760
4761 if (local_group) {
4762 this_load = avg_load;
aaee1203
PZ
4763 } else if (avg_load < min_load) {
4764 min_load = avg_load;
4765 idlest = group;
4766 }
4767 } while (group = group->next, group != sd->groups);
4768
4769 if (!idlest || 100*this_load < imbalance*min_load)
4770 return NULL;
4771 return idlest;
4772}
4773
4774/*
4775 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4776 */
4777static int
4778find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4779{
4780 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4781 unsigned int min_exit_latency = UINT_MAX;
4782 u64 latest_idle_timestamp = 0;
4783 int least_loaded_cpu = this_cpu;
4784 int shallowest_idle_cpu = -1;
aaee1203
PZ
4785 int i;
4786
4787 /* Traverse only the allowed CPUs */
fa17b507 4788 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4789 if (idle_cpu(i)) {
4790 struct rq *rq = cpu_rq(i);
4791 struct cpuidle_state *idle = idle_get_state(rq);
4792 if (idle && idle->exit_latency < min_exit_latency) {
4793 /*
4794 * We give priority to a CPU whose idle state
4795 * has the smallest exit latency irrespective
4796 * of any idle timestamp.
4797 */
4798 min_exit_latency = idle->exit_latency;
4799 latest_idle_timestamp = rq->idle_stamp;
4800 shallowest_idle_cpu = i;
4801 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4802 rq->idle_stamp > latest_idle_timestamp) {
4803 /*
4804 * If equal or no active idle state, then
4805 * the most recently idled CPU might have
4806 * a warmer cache.
4807 */
4808 latest_idle_timestamp = rq->idle_stamp;
4809 shallowest_idle_cpu = i;
4810 }
9f96742a 4811 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4812 load = weighted_cpuload(i);
4813 if (load < min_load || (load == min_load && i == this_cpu)) {
4814 min_load = load;
4815 least_loaded_cpu = i;
4816 }
e7693a36
GH
4817 }
4818 }
4819
83a0a96a 4820 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4821}
e7693a36 4822
a50bde51
PZ
4823/*
4824 * Try and locate an idle CPU in the sched_domain.
4825 */
99bd5e2f 4826static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4827{
99bd5e2f 4828 struct sched_domain *sd;
37407ea7 4829 struct sched_group *sg;
e0a79f52 4830 int i = task_cpu(p);
a50bde51 4831
e0a79f52
MG
4832 if (idle_cpu(target))
4833 return target;
99bd5e2f
SS
4834
4835 /*
e0a79f52 4836 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4837 */
e0a79f52
MG
4838 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4839 return i;
a50bde51
PZ
4840
4841 /*
37407ea7 4842 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4843 */
518cd623 4844 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4845 for_each_lower_domain(sd) {
37407ea7
LT
4846 sg = sd->groups;
4847 do {
4848 if (!cpumask_intersects(sched_group_cpus(sg),
4849 tsk_cpus_allowed(p)))
4850 goto next;
4851
4852 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4853 if (i == target || !idle_cpu(i))
37407ea7
LT
4854 goto next;
4855 }
970e1789 4856
37407ea7
LT
4857 target = cpumask_first_and(sched_group_cpus(sg),
4858 tsk_cpus_allowed(p));
4859 goto done;
4860next:
4861 sg = sg->next;
4862 } while (sg != sd->groups);
4863 }
4864done:
a50bde51
PZ
4865 return target;
4866}
231678b7 4867
8bb5b00c 4868/*
9e91d61d 4869 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 4870 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
4871 * compare the utilization with the capacity of the CPU that is available for
4872 * CFS task (ie cpu_capacity).
231678b7
DE
4873 *
4874 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4875 * recent utilization of currently non-runnable tasks on a CPU. It represents
4876 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4877 * capacity_orig is the cpu_capacity available at the highest frequency
4878 * (arch_scale_freq_capacity()).
4879 * The utilization of a CPU converges towards a sum equal to or less than the
4880 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4881 * the running time on this CPU scaled by capacity_curr.
4882 *
4883 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4884 * higher than capacity_orig because of unfortunate rounding in
4885 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4886 * the average stabilizes with the new running time. We need to check that the
4887 * utilization stays within the range of [0..capacity_orig] and cap it if
4888 * necessary. Without utilization capping, a group could be seen as overloaded
4889 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4890 * available capacity. We allow utilization to overshoot capacity_curr (but not
4891 * capacity_orig) as it useful for predicting the capacity required after task
4892 * migrations (scheduler-driven DVFS).
8bb5b00c 4893 */
9e91d61d 4894static int cpu_util(int cpu)
8bb5b00c 4895{
9e91d61d 4896 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4897 unsigned long capacity = capacity_orig_of(cpu);
4898
231678b7 4899 return (util >= capacity) ? capacity : util;
8bb5b00c 4900}
a50bde51 4901
aaee1203 4902/*
de91b9cb
MR
4903 * select_task_rq_fair: Select target runqueue for the waking task in domains
4904 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4905 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4906 *
de91b9cb
MR
4907 * Balances load by selecting the idlest cpu in the idlest group, or under
4908 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4909 *
de91b9cb 4910 * Returns the target cpu number.
aaee1203
PZ
4911 *
4912 * preempt must be disabled.
4913 */
0017d735 4914static int
ac66f547 4915select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4916{
29cd8bae 4917 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4918 int cpu = smp_processor_id();
63b0e9ed 4919 int new_cpu = prev_cpu;
99bd5e2f 4920 int want_affine = 0;
5158f4e4 4921 int sync = wake_flags & WF_SYNC;
c88d5910 4922
a8edd075 4923 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4924 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4925
dce840a0 4926 rcu_read_lock();
aaee1203 4927 for_each_domain(cpu, tmp) {
e4f42888 4928 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4929 break;
e4f42888 4930
fe3bcfe1 4931 /*
99bd5e2f
SS
4932 * If both cpu and prev_cpu are part of this domain,
4933 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4934 */
99bd5e2f
SS
4935 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4936 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4937 affine_sd = tmp;
29cd8bae 4938 break;
f03542a7 4939 }
29cd8bae 4940
f03542a7 4941 if (tmp->flags & sd_flag)
29cd8bae 4942 sd = tmp;
63b0e9ed
MG
4943 else if (!want_affine)
4944 break;
29cd8bae
PZ
4945 }
4946
63b0e9ed
MG
4947 if (affine_sd) {
4948 sd = NULL; /* Prefer wake_affine over balance flags */
4949 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4950 new_cpu = cpu;
8b911acd 4951 }
e7693a36 4952
63b0e9ed
MG
4953 if (!sd) {
4954 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4955 new_cpu = select_idle_sibling(p, new_cpu);
4956
4957 } else while (sd) {
aaee1203 4958 struct sched_group *group;
c88d5910 4959 int weight;
098fb9db 4960
0763a660 4961 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4962 sd = sd->child;
4963 continue;
4964 }
098fb9db 4965
c44f2a02 4966 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4967 if (!group) {
4968 sd = sd->child;
4969 continue;
4970 }
4ae7d5ce 4971
d7c33c49 4972 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4973 if (new_cpu == -1 || new_cpu == cpu) {
4974 /* Now try balancing at a lower domain level of cpu */
4975 sd = sd->child;
4976 continue;
e7693a36 4977 }
aaee1203
PZ
4978
4979 /* Now try balancing at a lower domain level of new_cpu */
4980 cpu = new_cpu;
669c55e9 4981 weight = sd->span_weight;
aaee1203
PZ
4982 sd = NULL;
4983 for_each_domain(cpu, tmp) {
669c55e9 4984 if (weight <= tmp->span_weight)
aaee1203 4985 break;
0763a660 4986 if (tmp->flags & sd_flag)
aaee1203
PZ
4987 sd = tmp;
4988 }
4989 /* while loop will break here if sd == NULL */
e7693a36 4990 }
dce840a0 4991 rcu_read_unlock();
e7693a36 4992
c88d5910 4993 return new_cpu;
e7693a36 4994}
0a74bef8
PT
4995
4996/*
4997 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4998 * cfs_rq_of(p) references at time of call are still valid and identify the
4999 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5000 * other assumptions, including the state of rq->lock, should be made.
5001 */
9d89c257 5002static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 5003{
aff3e498 5004 /*
9d89c257
YD
5005 * We are supposed to update the task to "current" time, then its up to date
5006 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5007 * what current time is, so simply throw away the out-of-date time. This
5008 * will result in the wakee task is less decayed, but giving the wakee more
5009 * load sounds not bad.
aff3e498 5010 */
9d89c257
YD
5011 remove_entity_load_avg(&p->se);
5012
5013 /* Tell new CPU we are migrated */
5014 p->se.avg.last_update_time = 0;
3944a927
BS
5015
5016 /* We have migrated, no longer consider this task hot */
9d89c257 5017 p->se.exec_start = 0;
0a74bef8 5018}
12695578
YD
5019
5020static void task_dead_fair(struct task_struct *p)
5021{
5022 remove_entity_load_avg(&p->se);
5023}
e7693a36
GH
5024#endif /* CONFIG_SMP */
5025
e52fb7c0
PZ
5026static unsigned long
5027wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5028{
5029 unsigned long gran = sysctl_sched_wakeup_granularity;
5030
5031 /*
e52fb7c0
PZ
5032 * Since its curr running now, convert the gran from real-time
5033 * to virtual-time in his units.
13814d42
MG
5034 *
5035 * By using 'se' instead of 'curr' we penalize light tasks, so
5036 * they get preempted easier. That is, if 'se' < 'curr' then
5037 * the resulting gran will be larger, therefore penalizing the
5038 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5039 * be smaller, again penalizing the lighter task.
5040 *
5041 * This is especially important for buddies when the leftmost
5042 * task is higher priority than the buddy.
0bbd3336 5043 */
f4ad9bd2 5044 return calc_delta_fair(gran, se);
0bbd3336
PZ
5045}
5046
464b7527
PZ
5047/*
5048 * Should 'se' preempt 'curr'.
5049 *
5050 * |s1
5051 * |s2
5052 * |s3
5053 * g
5054 * |<--->|c
5055 *
5056 * w(c, s1) = -1
5057 * w(c, s2) = 0
5058 * w(c, s3) = 1
5059 *
5060 */
5061static int
5062wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5063{
5064 s64 gran, vdiff = curr->vruntime - se->vruntime;
5065
5066 if (vdiff <= 0)
5067 return -1;
5068
e52fb7c0 5069 gran = wakeup_gran(curr, se);
464b7527
PZ
5070 if (vdiff > gran)
5071 return 1;
5072
5073 return 0;
5074}
5075
02479099
PZ
5076static void set_last_buddy(struct sched_entity *se)
5077{
69c80f3e
VP
5078 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5079 return;
5080
5081 for_each_sched_entity(se)
5082 cfs_rq_of(se)->last = se;
02479099
PZ
5083}
5084
5085static void set_next_buddy(struct sched_entity *se)
5086{
69c80f3e
VP
5087 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5088 return;
5089
5090 for_each_sched_entity(se)
5091 cfs_rq_of(se)->next = se;
02479099
PZ
5092}
5093
ac53db59
RR
5094static void set_skip_buddy(struct sched_entity *se)
5095{
69c80f3e
VP
5096 for_each_sched_entity(se)
5097 cfs_rq_of(se)->skip = se;
ac53db59
RR
5098}
5099
bf0f6f24
IM
5100/*
5101 * Preempt the current task with a newly woken task if needed:
5102 */
5a9b86f6 5103static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5104{
5105 struct task_struct *curr = rq->curr;
8651a86c 5106 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5107 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5108 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5109 int next_buddy_marked = 0;
bf0f6f24 5110
4ae7d5ce
IM
5111 if (unlikely(se == pse))
5112 return;
5113
5238cdd3 5114 /*
163122b7 5115 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5116 * unconditionally check_prempt_curr() after an enqueue (which may have
5117 * lead to a throttle). This both saves work and prevents false
5118 * next-buddy nomination below.
5119 */
5120 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5121 return;
5122
2f36825b 5123 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5124 set_next_buddy(pse);
2f36825b
VP
5125 next_buddy_marked = 1;
5126 }
57fdc26d 5127
aec0a514
BR
5128 /*
5129 * We can come here with TIF_NEED_RESCHED already set from new task
5130 * wake up path.
5238cdd3
PT
5131 *
5132 * Note: this also catches the edge-case of curr being in a throttled
5133 * group (e.g. via set_curr_task), since update_curr() (in the
5134 * enqueue of curr) will have resulted in resched being set. This
5135 * prevents us from potentially nominating it as a false LAST_BUDDY
5136 * below.
aec0a514
BR
5137 */
5138 if (test_tsk_need_resched(curr))
5139 return;
5140
a2f5c9ab
DH
5141 /* Idle tasks are by definition preempted by non-idle tasks. */
5142 if (unlikely(curr->policy == SCHED_IDLE) &&
5143 likely(p->policy != SCHED_IDLE))
5144 goto preempt;
5145
91c234b4 5146 /*
a2f5c9ab
DH
5147 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5148 * is driven by the tick):
91c234b4 5149 */
8ed92e51 5150 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5151 return;
bf0f6f24 5152
464b7527 5153 find_matching_se(&se, &pse);
9bbd7374 5154 update_curr(cfs_rq_of(se));
002f128b 5155 BUG_ON(!pse);
2f36825b
VP
5156 if (wakeup_preempt_entity(se, pse) == 1) {
5157 /*
5158 * Bias pick_next to pick the sched entity that is
5159 * triggering this preemption.
5160 */
5161 if (!next_buddy_marked)
5162 set_next_buddy(pse);
3a7e73a2 5163 goto preempt;
2f36825b 5164 }
464b7527 5165
3a7e73a2 5166 return;
a65ac745 5167
3a7e73a2 5168preempt:
8875125e 5169 resched_curr(rq);
3a7e73a2
PZ
5170 /*
5171 * Only set the backward buddy when the current task is still
5172 * on the rq. This can happen when a wakeup gets interleaved
5173 * with schedule on the ->pre_schedule() or idle_balance()
5174 * point, either of which can * drop the rq lock.
5175 *
5176 * Also, during early boot the idle thread is in the fair class,
5177 * for obvious reasons its a bad idea to schedule back to it.
5178 */
5179 if (unlikely(!se->on_rq || curr == rq->idle))
5180 return;
5181
5182 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5183 set_last_buddy(se);
bf0f6f24
IM
5184}
5185
606dba2e
PZ
5186static struct task_struct *
5187pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5188{
5189 struct cfs_rq *cfs_rq = &rq->cfs;
5190 struct sched_entity *se;
678d5718 5191 struct task_struct *p;
37e117c0 5192 int new_tasks;
678d5718 5193
6e83125c 5194again:
678d5718
PZ
5195#ifdef CONFIG_FAIR_GROUP_SCHED
5196 if (!cfs_rq->nr_running)
38033c37 5197 goto idle;
678d5718 5198
3f1d2a31 5199 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5200 goto simple;
5201
5202 /*
5203 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5204 * likely that a next task is from the same cgroup as the current.
5205 *
5206 * Therefore attempt to avoid putting and setting the entire cgroup
5207 * hierarchy, only change the part that actually changes.
5208 */
5209
5210 do {
5211 struct sched_entity *curr = cfs_rq->curr;
5212
5213 /*
5214 * Since we got here without doing put_prev_entity() we also
5215 * have to consider cfs_rq->curr. If it is still a runnable
5216 * entity, update_curr() will update its vruntime, otherwise
5217 * forget we've ever seen it.
5218 */
54d27365
BS
5219 if (curr) {
5220 if (curr->on_rq)
5221 update_curr(cfs_rq);
5222 else
5223 curr = NULL;
678d5718 5224
54d27365
BS
5225 /*
5226 * This call to check_cfs_rq_runtime() will do the
5227 * throttle and dequeue its entity in the parent(s).
5228 * Therefore the 'simple' nr_running test will indeed
5229 * be correct.
5230 */
5231 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5232 goto simple;
5233 }
678d5718
PZ
5234
5235 se = pick_next_entity(cfs_rq, curr);
5236 cfs_rq = group_cfs_rq(se);
5237 } while (cfs_rq);
5238
5239 p = task_of(se);
5240
5241 /*
5242 * Since we haven't yet done put_prev_entity and if the selected task
5243 * is a different task than we started out with, try and touch the
5244 * least amount of cfs_rqs.
5245 */
5246 if (prev != p) {
5247 struct sched_entity *pse = &prev->se;
5248
5249 while (!(cfs_rq = is_same_group(se, pse))) {
5250 int se_depth = se->depth;
5251 int pse_depth = pse->depth;
5252
5253 if (se_depth <= pse_depth) {
5254 put_prev_entity(cfs_rq_of(pse), pse);
5255 pse = parent_entity(pse);
5256 }
5257 if (se_depth >= pse_depth) {
5258 set_next_entity(cfs_rq_of(se), se);
5259 se = parent_entity(se);
5260 }
5261 }
5262
5263 put_prev_entity(cfs_rq, pse);
5264 set_next_entity(cfs_rq, se);
5265 }
5266
5267 if (hrtick_enabled(rq))
5268 hrtick_start_fair(rq, p);
5269
5270 return p;
5271simple:
5272 cfs_rq = &rq->cfs;
5273#endif
bf0f6f24 5274
36ace27e 5275 if (!cfs_rq->nr_running)
38033c37 5276 goto idle;
bf0f6f24 5277
3f1d2a31 5278 put_prev_task(rq, prev);
606dba2e 5279
bf0f6f24 5280 do {
678d5718 5281 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5282 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5283 cfs_rq = group_cfs_rq(se);
5284 } while (cfs_rq);
5285
8f4d37ec 5286 p = task_of(se);
678d5718 5287
b39e66ea
MG
5288 if (hrtick_enabled(rq))
5289 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5290
5291 return p;
38033c37
PZ
5292
5293idle:
cbce1a68
PZ
5294 /*
5295 * This is OK, because current is on_cpu, which avoids it being picked
5296 * for load-balance and preemption/IRQs are still disabled avoiding
5297 * further scheduler activity on it and we're being very careful to
5298 * re-start the picking loop.
5299 */
5300 lockdep_unpin_lock(&rq->lock);
e4aa358b 5301 new_tasks = idle_balance(rq);
cbce1a68 5302 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5303 /*
5304 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5305 * possible for any higher priority task to appear. In that case we
5306 * must re-start the pick_next_entity() loop.
5307 */
e4aa358b 5308 if (new_tasks < 0)
37e117c0
PZ
5309 return RETRY_TASK;
5310
e4aa358b 5311 if (new_tasks > 0)
38033c37 5312 goto again;
38033c37
PZ
5313
5314 return NULL;
bf0f6f24
IM
5315}
5316
5317/*
5318 * Account for a descheduled task:
5319 */
31ee529c 5320static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5321{
5322 struct sched_entity *se = &prev->se;
5323 struct cfs_rq *cfs_rq;
5324
5325 for_each_sched_entity(se) {
5326 cfs_rq = cfs_rq_of(se);
ab6cde26 5327 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5328 }
5329}
5330
ac53db59
RR
5331/*
5332 * sched_yield() is very simple
5333 *
5334 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5335 */
5336static void yield_task_fair(struct rq *rq)
5337{
5338 struct task_struct *curr = rq->curr;
5339 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5340 struct sched_entity *se = &curr->se;
5341
5342 /*
5343 * Are we the only task in the tree?
5344 */
5345 if (unlikely(rq->nr_running == 1))
5346 return;
5347
5348 clear_buddies(cfs_rq, se);
5349
5350 if (curr->policy != SCHED_BATCH) {
5351 update_rq_clock(rq);
5352 /*
5353 * Update run-time statistics of the 'current'.
5354 */
5355 update_curr(cfs_rq);
916671c0
MG
5356 /*
5357 * Tell update_rq_clock() that we've just updated,
5358 * so we don't do microscopic update in schedule()
5359 * and double the fastpath cost.
5360 */
9edfbfed 5361 rq_clock_skip_update(rq, true);
ac53db59
RR
5362 }
5363
5364 set_skip_buddy(se);
5365}
5366
d95f4122
MG
5367static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5368{
5369 struct sched_entity *se = &p->se;
5370
5238cdd3
PT
5371 /* throttled hierarchies are not runnable */
5372 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5373 return false;
5374
5375 /* Tell the scheduler that we'd really like pse to run next. */
5376 set_next_buddy(se);
5377
d95f4122
MG
5378 yield_task_fair(rq);
5379
5380 return true;
5381}
5382
681f3e68 5383#ifdef CONFIG_SMP
bf0f6f24 5384/**************************************************
e9c84cb8
PZ
5385 * Fair scheduling class load-balancing methods.
5386 *
5387 * BASICS
5388 *
5389 * The purpose of load-balancing is to achieve the same basic fairness the
5390 * per-cpu scheduler provides, namely provide a proportional amount of compute
5391 * time to each task. This is expressed in the following equation:
5392 *
5393 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5394 *
5395 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5396 * W_i,0 is defined as:
5397 *
5398 * W_i,0 = \Sum_j w_i,j (2)
5399 *
5400 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5401 * is derived from the nice value as per prio_to_weight[].
5402 *
5403 * The weight average is an exponential decay average of the instantaneous
5404 * weight:
5405 *
5406 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5407 *
ced549fa 5408 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5409 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5410 * can also include other factors [XXX].
5411 *
5412 * To achieve this balance we define a measure of imbalance which follows
5413 * directly from (1):
5414 *
ced549fa 5415 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5416 *
5417 * We them move tasks around to minimize the imbalance. In the continuous
5418 * function space it is obvious this converges, in the discrete case we get
5419 * a few fun cases generally called infeasible weight scenarios.
5420 *
5421 * [XXX expand on:
5422 * - infeasible weights;
5423 * - local vs global optima in the discrete case. ]
5424 *
5425 *
5426 * SCHED DOMAINS
5427 *
5428 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5429 * for all i,j solution, we create a tree of cpus that follows the hardware
5430 * topology where each level pairs two lower groups (or better). This results
5431 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5432 * tree to only the first of the previous level and we decrease the frequency
5433 * of load-balance at each level inv. proportional to the number of cpus in
5434 * the groups.
5435 *
5436 * This yields:
5437 *
5438 * log_2 n 1 n
5439 * \Sum { --- * --- * 2^i } = O(n) (5)
5440 * i = 0 2^i 2^i
5441 * `- size of each group
5442 * | | `- number of cpus doing load-balance
5443 * | `- freq
5444 * `- sum over all levels
5445 *
5446 * Coupled with a limit on how many tasks we can migrate every balance pass,
5447 * this makes (5) the runtime complexity of the balancer.
5448 *
5449 * An important property here is that each CPU is still (indirectly) connected
5450 * to every other cpu in at most O(log n) steps:
5451 *
5452 * The adjacency matrix of the resulting graph is given by:
5453 *
5454 * log_2 n
5455 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5456 * k = 0
5457 *
5458 * And you'll find that:
5459 *
5460 * A^(log_2 n)_i,j != 0 for all i,j (7)
5461 *
5462 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5463 * The task movement gives a factor of O(m), giving a convergence complexity
5464 * of:
5465 *
5466 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5467 *
5468 *
5469 * WORK CONSERVING
5470 *
5471 * In order to avoid CPUs going idle while there's still work to do, new idle
5472 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5473 * tree itself instead of relying on other CPUs to bring it work.
5474 *
5475 * This adds some complexity to both (5) and (8) but it reduces the total idle
5476 * time.
5477 *
5478 * [XXX more?]
5479 *
5480 *
5481 * CGROUPS
5482 *
5483 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5484 *
5485 * s_k,i
5486 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5487 * S_k
5488 *
5489 * Where
5490 *
5491 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5492 *
5493 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5494 *
5495 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5496 * property.
5497 *
5498 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5499 * rewrite all of this once again.]
5500 */
bf0f6f24 5501
ed387b78
HS
5502static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5503
0ec8aa00
PZ
5504enum fbq_type { regular, remote, all };
5505
ddcdf6e7 5506#define LBF_ALL_PINNED 0x01
367456c7 5507#define LBF_NEED_BREAK 0x02
6263322c
PZ
5508#define LBF_DST_PINNED 0x04
5509#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5510
5511struct lb_env {
5512 struct sched_domain *sd;
5513
ddcdf6e7 5514 struct rq *src_rq;
85c1e7da 5515 int src_cpu;
ddcdf6e7
PZ
5516
5517 int dst_cpu;
5518 struct rq *dst_rq;
5519
88b8dac0
SV
5520 struct cpumask *dst_grpmask;
5521 int new_dst_cpu;
ddcdf6e7 5522 enum cpu_idle_type idle;
bd939f45 5523 long imbalance;
b9403130
MW
5524 /* The set of CPUs under consideration for load-balancing */
5525 struct cpumask *cpus;
5526
ddcdf6e7 5527 unsigned int flags;
367456c7
PZ
5528
5529 unsigned int loop;
5530 unsigned int loop_break;
5531 unsigned int loop_max;
0ec8aa00
PZ
5532
5533 enum fbq_type fbq_type;
163122b7 5534 struct list_head tasks;
ddcdf6e7
PZ
5535};
5536
029632fb
PZ
5537/*
5538 * Is this task likely cache-hot:
5539 */
5d5e2b1b 5540static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5541{
5542 s64 delta;
5543
e5673f28
KT
5544 lockdep_assert_held(&env->src_rq->lock);
5545
029632fb
PZ
5546 if (p->sched_class != &fair_sched_class)
5547 return 0;
5548
5549 if (unlikely(p->policy == SCHED_IDLE))
5550 return 0;
5551
5552 /*
5553 * Buddy candidates are cache hot:
5554 */
5d5e2b1b 5555 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5556 (&p->se == cfs_rq_of(&p->se)->next ||
5557 &p->se == cfs_rq_of(&p->se)->last))
5558 return 1;
5559
5560 if (sysctl_sched_migration_cost == -1)
5561 return 1;
5562 if (sysctl_sched_migration_cost == 0)
5563 return 0;
5564
5d5e2b1b 5565 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5566
5567 return delta < (s64)sysctl_sched_migration_cost;
5568}
5569
3a7053b3 5570#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5571/*
2a1ed24c
SD
5572 * Returns 1, if task migration degrades locality
5573 * Returns 0, if task migration improves locality i.e migration preferred.
5574 * Returns -1, if task migration is not affected by locality.
c1ceac62 5575 */
2a1ed24c 5576static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5577{
b1ad065e 5578 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5579 unsigned long src_faults, dst_faults;
3a7053b3
MG
5580 int src_nid, dst_nid;
5581
2a595721 5582 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5583 return -1;
5584
c3b9bc5b 5585 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5586 return -1;
7a0f3083
MG
5587
5588 src_nid = cpu_to_node(env->src_cpu);
5589 dst_nid = cpu_to_node(env->dst_cpu);
5590
83e1d2cd 5591 if (src_nid == dst_nid)
2a1ed24c 5592 return -1;
7a0f3083 5593
2a1ed24c
SD
5594 /* Migrating away from the preferred node is always bad. */
5595 if (src_nid == p->numa_preferred_nid) {
5596 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5597 return 1;
5598 else
5599 return -1;
5600 }
b1ad065e 5601
c1ceac62
RR
5602 /* Encourage migration to the preferred node. */
5603 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5604 return 0;
b1ad065e 5605
c1ceac62
RR
5606 if (numa_group) {
5607 src_faults = group_faults(p, src_nid);
5608 dst_faults = group_faults(p, dst_nid);
5609 } else {
5610 src_faults = task_faults(p, src_nid);
5611 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5612 }
5613
c1ceac62 5614 return dst_faults < src_faults;
7a0f3083
MG
5615}
5616
3a7053b3 5617#else
2a1ed24c 5618static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5619 struct lb_env *env)
5620{
2a1ed24c 5621 return -1;
7a0f3083 5622}
3a7053b3
MG
5623#endif
5624
1e3c88bd
PZ
5625/*
5626 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5627 */
5628static
8e45cb54 5629int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5630{
2a1ed24c 5631 int tsk_cache_hot;
e5673f28
KT
5632
5633 lockdep_assert_held(&env->src_rq->lock);
5634
1e3c88bd
PZ
5635 /*
5636 * We do not migrate tasks that are:
d3198084 5637 * 1) throttled_lb_pair, or
1e3c88bd 5638 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5639 * 3) running (obviously), or
5640 * 4) are cache-hot on their current CPU.
1e3c88bd 5641 */
d3198084
JK
5642 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5643 return 0;
5644
ddcdf6e7 5645 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5646 int cpu;
88b8dac0 5647
41acab88 5648 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5649
6263322c
PZ
5650 env->flags |= LBF_SOME_PINNED;
5651
88b8dac0
SV
5652 /*
5653 * Remember if this task can be migrated to any other cpu in
5654 * our sched_group. We may want to revisit it if we couldn't
5655 * meet load balance goals by pulling other tasks on src_cpu.
5656 *
5657 * Also avoid computing new_dst_cpu if we have already computed
5658 * one in current iteration.
5659 */
6263322c 5660 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5661 return 0;
5662
e02e60c1
JK
5663 /* Prevent to re-select dst_cpu via env's cpus */
5664 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5665 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5666 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5667 env->new_dst_cpu = cpu;
5668 break;
5669 }
88b8dac0 5670 }
e02e60c1 5671
1e3c88bd
PZ
5672 return 0;
5673 }
88b8dac0
SV
5674
5675 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5676 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5677
ddcdf6e7 5678 if (task_running(env->src_rq, p)) {
41acab88 5679 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5680 return 0;
5681 }
5682
5683 /*
5684 * Aggressive migration if:
3a7053b3
MG
5685 * 1) destination numa is preferred
5686 * 2) task is cache cold, or
5687 * 3) too many balance attempts have failed.
1e3c88bd 5688 */
2a1ed24c
SD
5689 tsk_cache_hot = migrate_degrades_locality(p, env);
5690 if (tsk_cache_hot == -1)
5691 tsk_cache_hot = task_hot(p, env);
3a7053b3 5692
2a1ed24c 5693 if (tsk_cache_hot <= 0 ||
7a96c231 5694 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5695 if (tsk_cache_hot == 1) {
3a7053b3
MG
5696 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5697 schedstat_inc(p, se.statistics.nr_forced_migrations);
5698 }
1e3c88bd
PZ
5699 return 1;
5700 }
5701
4e2dcb73
ZH
5702 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5703 return 0;
1e3c88bd
PZ
5704}
5705
897c395f 5706/*
163122b7
KT
5707 * detach_task() -- detach the task for the migration specified in env
5708 */
5709static void detach_task(struct task_struct *p, struct lb_env *env)
5710{
5711 lockdep_assert_held(&env->src_rq->lock);
5712
5713 deactivate_task(env->src_rq, p, 0);
5714 p->on_rq = TASK_ON_RQ_MIGRATING;
5715 set_task_cpu(p, env->dst_cpu);
5716}
5717
897c395f 5718/*
e5673f28 5719 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5720 * part of active balancing operations within "domain".
897c395f 5721 *
e5673f28 5722 * Returns a task if successful and NULL otherwise.
897c395f 5723 */
e5673f28 5724static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5725{
5726 struct task_struct *p, *n;
897c395f 5727
e5673f28
KT
5728 lockdep_assert_held(&env->src_rq->lock);
5729
367456c7 5730 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5731 if (!can_migrate_task(p, env))
5732 continue;
897c395f 5733
163122b7 5734 detach_task(p, env);
e5673f28 5735
367456c7 5736 /*
e5673f28 5737 * Right now, this is only the second place where
163122b7 5738 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5739 * so we can safely collect stats here rather than
163122b7 5740 * inside detach_tasks().
367456c7
PZ
5741 */
5742 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5743 return p;
897c395f 5744 }
e5673f28 5745 return NULL;
897c395f
PZ
5746}
5747
eb95308e
PZ
5748static const unsigned int sched_nr_migrate_break = 32;
5749
5d6523eb 5750/*
163122b7
KT
5751 * detach_tasks() -- tries to detach up to imbalance weighted load from
5752 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5753 *
163122b7 5754 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5755 */
163122b7 5756static int detach_tasks(struct lb_env *env)
1e3c88bd 5757{
5d6523eb
PZ
5758 struct list_head *tasks = &env->src_rq->cfs_tasks;
5759 struct task_struct *p;
367456c7 5760 unsigned long load;
163122b7
KT
5761 int detached = 0;
5762
5763 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5764
bd939f45 5765 if (env->imbalance <= 0)
5d6523eb 5766 return 0;
1e3c88bd 5767
5d6523eb 5768 while (!list_empty(tasks)) {
985d3a4c
YD
5769 /*
5770 * We don't want to steal all, otherwise we may be treated likewise,
5771 * which could at worst lead to a livelock crash.
5772 */
5773 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5774 break;
5775
5d6523eb 5776 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5777
367456c7
PZ
5778 env->loop++;
5779 /* We've more or less seen every task there is, call it quits */
5d6523eb 5780 if (env->loop > env->loop_max)
367456c7 5781 break;
5d6523eb
PZ
5782
5783 /* take a breather every nr_migrate tasks */
367456c7 5784 if (env->loop > env->loop_break) {
eb95308e 5785 env->loop_break += sched_nr_migrate_break;
8e45cb54 5786 env->flags |= LBF_NEED_BREAK;
ee00e66f 5787 break;
a195f004 5788 }
1e3c88bd 5789
d3198084 5790 if (!can_migrate_task(p, env))
367456c7
PZ
5791 goto next;
5792
5793 load = task_h_load(p);
5d6523eb 5794
eb95308e 5795 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5796 goto next;
5797
bd939f45 5798 if ((load / 2) > env->imbalance)
367456c7 5799 goto next;
1e3c88bd 5800
163122b7
KT
5801 detach_task(p, env);
5802 list_add(&p->se.group_node, &env->tasks);
5803
5804 detached++;
bd939f45 5805 env->imbalance -= load;
1e3c88bd
PZ
5806
5807#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5808 /*
5809 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5810 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5811 * the critical section.
5812 */
5d6523eb 5813 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5814 break;
1e3c88bd
PZ
5815#endif
5816
ee00e66f
PZ
5817 /*
5818 * We only want to steal up to the prescribed amount of
5819 * weighted load.
5820 */
bd939f45 5821 if (env->imbalance <= 0)
ee00e66f 5822 break;
367456c7
PZ
5823
5824 continue;
5825next:
5d6523eb 5826 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5827 }
5d6523eb 5828
1e3c88bd 5829 /*
163122b7
KT
5830 * Right now, this is one of only two places we collect this stat
5831 * so we can safely collect detach_one_task() stats here rather
5832 * than inside detach_one_task().
1e3c88bd 5833 */
163122b7 5834 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5835
163122b7
KT
5836 return detached;
5837}
5838
5839/*
5840 * attach_task() -- attach the task detached by detach_task() to its new rq.
5841 */
5842static void attach_task(struct rq *rq, struct task_struct *p)
5843{
5844 lockdep_assert_held(&rq->lock);
5845
5846 BUG_ON(task_rq(p) != rq);
5847 p->on_rq = TASK_ON_RQ_QUEUED;
5848 activate_task(rq, p, 0);
5849 check_preempt_curr(rq, p, 0);
5850}
5851
5852/*
5853 * attach_one_task() -- attaches the task returned from detach_one_task() to
5854 * its new rq.
5855 */
5856static void attach_one_task(struct rq *rq, struct task_struct *p)
5857{
5858 raw_spin_lock(&rq->lock);
5859 attach_task(rq, p);
5860 raw_spin_unlock(&rq->lock);
5861}
5862
5863/*
5864 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5865 * new rq.
5866 */
5867static void attach_tasks(struct lb_env *env)
5868{
5869 struct list_head *tasks = &env->tasks;
5870 struct task_struct *p;
5871
5872 raw_spin_lock(&env->dst_rq->lock);
5873
5874 while (!list_empty(tasks)) {
5875 p = list_first_entry(tasks, struct task_struct, se.group_node);
5876 list_del_init(&p->se.group_node);
1e3c88bd 5877
163122b7
KT
5878 attach_task(env->dst_rq, p);
5879 }
5880
5881 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5882}
5883
230059de 5884#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5885static void update_blocked_averages(int cpu)
9e3081ca 5886{
9e3081ca 5887 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5888 struct cfs_rq *cfs_rq;
5889 unsigned long flags;
9e3081ca 5890
48a16753
PT
5891 raw_spin_lock_irqsave(&rq->lock, flags);
5892 update_rq_clock(rq);
9d89c257 5893
9763b67f
PZ
5894 /*
5895 * Iterates the task_group tree in a bottom up fashion, see
5896 * list_add_leaf_cfs_rq() for details.
5897 */
64660c86 5898 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5899 /* throttled entities do not contribute to load */
5900 if (throttled_hierarchy(cfs_rq))
5901 continue;
48a16753 5902
9d89c257
YD
5903 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5904 update_tg_load_avg(cfs_rq, 0);
5905 }
48a16753 5906 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5907}
5908
9763b67f 5909/*
68520796 5910 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5911 * This needs to be done in a top-down fashion because the load of a child
5912 * group is a fraction of its parents load.
5913 */
68520796 5914static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5915{
68520796
VD
5916 struct rq *rq = rq_of(cfs_rq);
5917 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5918 unsigned long now = jiffies;
68520796 5919 unsigned long load;
a35b6466 5920
68520796 5921 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5922 return;
5923
68520796
VD
5924 cfs_rq->h_load_next = NULL;
5925 for_each_sched_entity(se) {
5926 cfs_rq = cfs_rq_of(se);
5927 cfs_rq->h_load_next = se;
5928 if (cfs_rq->last_h_load_update == now)
5929 break;
5930 }
a35b6466 5931
68520796 5932 if (!se) {
7ea241af 5933 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5934 cfs_rq->last_h_load_update = now;
5935 }
5936
5937 while ((se = cfs_rq->h_load_next) != NULL) {
5938 load = cfs_rq->h_load;
7ea241af
YD
5939 load = div64_ul(load * se->avg.load_avg,
5940 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5941 cfs_rq = group_cfs_rq(se);
5942 cfs_rq->h_load = load;
5943 cfs_rq->last_h_load_update = now;
5944 }
9763b67f
PZ
5945}
5946
367456c7 5947static unsigned long task_h_load(struct task_struct *p)
230059de 5948{
367456c7 5949 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5950
68520796 5951 update_cfs_rq_h_load(cfs_rq);
9d89c257 5952 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5953 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5954}
5955#else
48a16753 5956static inline void update_blocked_averages(int cpu)
9e3081ca 5957{
6c1d47c0
VG
5958 struct rq *rq = cpu_rq(cpu);
5959 struct cfs_rq *cfs_rq = &rq->cfs;
5960 unsigned long flags;
5961
5962 raw_spin_lock_irqsave(&rq->lock, flags);
5963 update_rq_clock(rq);
5964 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5965 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5966}
5967
367456c7 5968static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5969{
9d89c257 5970 return p->se.avg.load_avg;
1e3c88bd 5971}
230059de 5972#endif
1e3c88bd 5973
1e3c88bd 5974/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5975
5976enum group_type {
5977 group_other = 0,
5978 group_imbalanced,
5979 group_overloaded,
5980};
5981
1e3c88bd
PZ
5982/*
5983 * sg_lb_stats - stats of a sched_group required for load_balancing
5984 */
5985struct sg_lb_stats {
5986 unsigned long avg_load; /*Avg load across the CPUs of the group */
5987 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5988 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5989 unsigned long load_per_task;
63b2ca30 5990 unsigned long group_capacity;
9e91d61d 5991 unsigned long group_util; /* Total utilization of the group */
147c5fc2 5992 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5993 unsigned int idle_cpus;
5994 unsigned int group_weight;
caeb178c 5995 enum group_type group_type;
ea67821b 5996 int group_no_capacity;
0ec8aa00
PZ
5997#ifdef CONFIG_NUMA_BALANCING
5998 unsigned int nr_numa_running;
5999 unsigned int nr_preferred_running;
6000#endif
1e3c88bd
PZ
6001};
6002
56cf515b
JK
6003/*
6004 * sd_lb_stats - Structure to store the statistics of a sched_domain
6005 * during load balancing.
6006 */
6007struct sd_lb_stats {
6008 struct sched_group *busiest; /* Busiest group in this sd */
6009 struct sched_group *local; /* Local group in this sd */
6010 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6011 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6012 unsigned long avg_load; /* Average load across all groups in sd */
6013
56cf515b 6014 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6015 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6016};
6017
147c5fc2
PZ
6018static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6019{
6020 /*
6021 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6022 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6023 * We must however clear busiest_stat::avg_load because
6024 * update_sd_pick_busiest() reads this before assignment.
6025 */
6026 *sds = (struct sd_lb_stats){
6027 .busiest = NULL,
6028 .local = NULL,
6029 .total_load = 0UL,
63b2ca30 6030 .total_capacity = 0UL,
147c5fc2
PZ
6031 .busiest_stat = {
6032 .avg_load = 0UL,
caeb178c
RR
6033 .sum_nr_running = 0,
6034 .group_type = group_other,
147c5fc2
PZ
6035 },
6036 };
6037}
6038
1e3c88bd
PZ
6039/**
6040 * get_sd_load_idx - Obtain the load index for a given sched domain.
6041 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6042 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6043 *
6044 * Return: The load index.
1e3c88bd
PZ
6045 */
6046static inline int get_sd_load_idx(struct sched_domain *sd,
6047 enum cpu_idle_type idle)
6048{
6049 int load_idx;
6050
6051 switch (idle) {
6052 case CPU_NOT_IDLE:
6053 load_idx = sd->busy_idx;
6054 break;
6055
6056 case CPU_NEWLY_IDLE:
6057 load_idx = sd->newidle_idx;
6058 break;
6059 default:
6060 load_idx = sd->idle_idx;
6061 break;
6062 }
6063
6064 return load_idx;
6065}
6066
ced549fa 6067static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6068{
6069 struct rq *rq = cpu_rq(cpu);
b5b4860d 6070 u64 total, used, age_stamp, avg;
cadefd3d 6071 s64 delta;
1e3c88bd 6072
b654f7de
PZ
6073 /*
6074 * Since we're reading these variables without serialization make sure
6075 * we read them once before doing sanity checks on them.
6076 */
316c1608
JL
6077 age_stamp = READ_ONCE(rq->age_stamp);
6078 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6079 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6080
cadefd3d
PZ
6081 if (unlikely(delta < 0))
6082 delta = 0;
6083
6084 total = sched_avg_period() + delta;
aa483808 6085
b5b4860d 6086 used = div_u64(avg, total);
1e3c88bd 6087
b5b4860d
VG
6088 if (likely(used < SCHED_CAPACITY_SCALE))
6089 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6090
b5b4860d 6091 return 1;
1e3c88bd
PZ
6092}
6093
ced549fa 6094static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6095{
8cd5601c 6096 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6097 struct sched_group *sdg = sd->groups;
6098
ca6d75e6 6099 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6100
ced549fa 6101 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6102 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6103
ced549fa
NP
6104 if (!capacity)
6105 capacity = 1;
1e3c88bd 6106
ced549fa
NP
6107 cpu_rq(cpu)->cpu_capacity = capacity;
6108 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6109}
6110
63b2ca30 6111void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6112{
6113 struct sched_domain *child = sd->child;
6114 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6115 unsigned long capacity;
4ec4412e
VG
6116 unsigned long interval;
6117
6118 interval = msecs_to_jiffies(sd->balance_interval);
6119 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6120 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6121
6122 if (!child) {
ced549fa 6123 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6124 return;
6125 }
6126
dc7ff76e 6127 capacity = 0;
1e3c88bd 6128
74a5ce20
PZ
6129 if (child->flags & SD_OVERLAP) {
6130 /*
6131 * SD_OVERLAP domains cannot assume that child groups
6132 * span the current group.
6133 */
6134
863bffc8 6135 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6136 struct sched_group_capacity *sgc;
9abf24d4 6137 struct rq *rq = cpu_rq(cpu);
863bffc8 6138
9abf24d4 6139 /*
63b2ca30 6140 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6141 * gets here before we've attached the domains to the
6142 * runqueues.
6143 *
ced549fa
NP
6144 * Use capacity_of(), which is set irrespective of domains
6145 * in update_cpu_capacity().
9abf24d4 6146 *
dc7ff76e 6147 * This avoids capacity from being 0 and
9abf24d4 6148 * causing divide-by-zero issues on boot.
9abf24d4
SD
6149 */
6150 if (unlikely(!rq->sd)) {
ced549fa 6151 capacity += capacity_of(cpu);
9abf24d4
SD
6152 continue;
6153 }
863bffc8 6154
63b2ca30 6155 sgc = rq->sd->groups->sgc;
63b2ca30 6156 capacity += sgc->capacity;
863bffc8 6157 }
74a5ce20
PZ
6158 } else {
6159 /*
6160 * !SD_OVERLAP domains can assume that child groups
6161 * span the current group.
6162 */
6163
6164 group = child->groups;
6165 do {
63b2ca30 6166 capacity += group->sgc->capacity;
74a5ce20
PZ
6167 group = group->next;
6168 } while (group != child->groups);
6169 }
1e3c88bd 6170
63b2ca30 6171 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6172}
6173
9d5efe05 6174/*
ea67821b
VG
6175 * Check whether the capacity of the rq has been noticeably reduced by side
6176 * activity. The imbalance_pct is used for the threshold.
6177 * Return true is the capacity is reduced
9d5efe05
SV
6178 */
6179static inline int
ea67821b 6180check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6181{
ea67821b
VG
6182 return ((rq->cpu_capacity * sd->imbalance_pct) <
6183 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6184}
6185
30ce5dab
PZ
6186/*
6187 * Group imbalance indicates (and tries to solve) the problem where balancing
6188 * groups is inadequate due to tsk_cpus_allowed() constraints.
6189 *
6190 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6191 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6192 * Something like:
6193 *
6194 * { 0 1 2 3 } { 4 5 6 7 }
6195 * * * * *
6196 *
6197 * If we were to balance group-wise we'd place two tasks in the first group and
6198 * two tasks in the second group. Clearly this is undesired as it will overload
6199 * cpu 3 and leave one of the cpus in the second group unused.
6200 *
6201 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6202 * by noticing the lower domain failed to reach balance and had difficulty
6203 * moving tasks due to affinity constraints.
30ce5dab
PZ
6204 *
6205 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6206 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6207 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6208 * to create an effective group imbalance.
6209 *
6210 * This is a somewhat tricky proposition since the next run might not find the
6211 * group imbalance and decide the groups need to be balanced again. A most
6212 * subtle and fragile situation.
6213 */
6214
6263322c 6215static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6216{
63b2ca30 6217 return group->sgc->imbalance;
30ce5dab
PZ
6218}
6219
b37d9316 6220/*
ea67821b
VG
6221 * group_has_capacity returns true if the group has spare capacity that could
6222 * be used by some tasks.
6223 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6224 * smaller than the number of CPUs or if the utilization is lower than the
6225 * available capacity for CFS tasks.
ea67821b
VG
6226 * For the latter, we use a threshold to stabilize the state, to take into
6227 * account the variance of the tasks' load and to return true if the available
6228 * capacity in meaningful for the load balancer.
6229 * As an example, an available capacity of 1% can appear but it doesn't make
6230 * any benefit for the load balance.
b37d9316 6231 */
ea67821b
VG
6232static inline bool
6233group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6234{
ea67821b
VG
6235 if (sgs->sum_nr_running < sgs->group_weight)
6236 return true;
c61037e9 6237
ea67821b 6238 if ((sgs->group_capacity * 100) >
9e91d61d 6239 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6240 return true;
b37d9316 6241
ea67821b
VG
6242 return false;
6243}
6244
6245/*
6246 * group_is_overloaded returns true if the group has more tasks than it can
6247 * handle.
6248 * group_is_overloaded is not equals to !group_has_capacity because a group
6249 * with the exact right number of tasks, has no more spare capacity but is not
6250 * overloaded so both group_has_capacity and group_is_overloaded return
6251 * false.
6252 */
6253static inline bool
6254group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6255{
6256 if (sgs->sum_nr_running <= sgs->group_weight)
6257 return false;
b37d9316 6258
ea67821b 6259 if ((sgs->group_capacity * 100) <
9e91d61d 6260 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6261 return true;
b37d9316 6262
ea67821b 6263 return false;
b37d9316
PZ
6264}
6265
ea67821b
VG
6266static enum group_type group_classify(struct lb_env *env,
6267 struct sched_group *group,
6268 struct sg_lb_stats *sgs)
caeb178c 6269{
ea67821b 6270 if (sgs->group_no_capacity)
caeb178c
RR
6271 return group_overloaded;
6272
6273 if (sg_imbalanced(group))
6274 return group_imbalanced;
6275
6276 return group_other;
6277}
6278
1e3c88bd
PZ
6279/**
6280 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6281 * @env: The load balancing environment.
1e3c88bd 6282 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6283 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6284 * @local_group: Does group contain this_cpu.
1e3c88bd 6285 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6286 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6287 */
bd939f45
PZ
6288static inline void update_sg_lb_stats(struct lb_env *env,
6289 struct sched_group *group, int load_idx,
4486edd1
TC
6290 int local_group, struct sg_lb_stats *sgs,
6291 bool *overload)
1e3c88bd 6292{
30ce5dab 6293 unsigned long load;
bd939f45 6294 int i;
1e3c88bd 6295
b72ff13c
PZ
6296 memset(sgs, 0, sizeof(*sgs));
6297
b9403130 6298 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6299 struct rq *rq = cpu_rq(i);
6300
1e3c88bd 6301 /* Bias balancing toward cpus of our domain */
6263322c 6302 if (local_group)
04f733b4 6303 load = target_load(i, load_idx);
6263322c 6304 else
1e3c88bd 6305 load = source_load(i, load_idx);
1e3c88bd
PZ
6306
6307 sgs->group_load += load;
9e91d61d 6308 sgs->group_util += cpu_util(i);
65fdac08 6309 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6310
6311 if (rq->nr_running > 1)
6312 *overload = true;
6313
0ec8aa00
PZ
6314#ifdef CONFIG_NUMA_BALANCING
6315 sgs->nr_numa_running += rq->nr_numa_running;
6316 sgs->nr_preferred_running += rq->nr_preferred_running;
6317#endif
1e3c88bd 6318 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6319 if (idle_cpu(i))
6320 sgs->idle_cpus++;
1e3c88bd
PZ
6321 }
6322
63b2ca30
NP
6323 /* Adjust by relative CPU capacity of the group */
6324 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6325 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6326
dd5feea1 6327 if (sgs->sum_nr_running)
38d0f770 6328 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6329
aae6d3dd 6330 sgs->group_weight = group->group_weight;
b37d9316 6331
ea67821b
VG
6332 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6333 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6334}
6335
532cb4c4
MN
6336/**
6337 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6338 * @env: The load balancing environment.
532cb4c4
MN
6339 * @sds: sched_domain statistics
6340 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6341 * @sgs: sched_group statistics
532cb4c4
MN
6342 *
6343 * Determine if @sg is a busier group than the previously selected
6344 * busiest group.
e69f6186
YB
6345 *
6346 * Return: %true if @sg is a busier group than the previously selected
6347 * busiest group. %false otherwise.
532cb4c4 6348 */
bd939f45 6349static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6350 struct sd_lb_stats *sds,
6351 struct sched_group *sg,
bd939f45 6352 struct sg_lb_stats *sgs)
532cb4c4 6353{
caeb178c 6354 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6355
caeb178c 6356 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6357 return true;
6358
caeb178c
RR
6359 if (sgs->group_type < busiest->group_type)
6360 return false;
6361
6362 if (sgs->avg_load <= busiest->avg_load)
6363 return false;
6364
6365 /* This is the busiest node in its class. */
6366 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6367 return true;
6368
6369 /*
6370 * ASYM_PACKING needs to move all the work to the lowest
6371 * numbered CPUs in the group, therefore mark all groups
6372 * higher than ourself as busy.
6373 */
caeb178c 6374 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6375 if (!sds->busiest)
6376 return true;
6377
6378 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6379 return true;
6380 }
6381
6382 return false;
6383}
6384
0ec8aa00
PZ
6385#ifdef CONFIG_NUMA_BALANCING
6386static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6387{
6388 if (sgs->sum_nr_running > sgs->nr_numa_running)
6389 return regular;
6390 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6391 return remote;
6392 return all;
6393}
6394
6395static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6396{
6397 if (rq->nr_running > rq->nr_numa_running)
6398 return regular;
6399 if (rq->nr_running > rq->nr_preferred_running)
6400 return remote;
6401 return all;
6402}
6403#else
6404static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6405{
6406 return all;
6407}
6408
6409static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6410{
6411 return regular;
6412}
6413#endif /* CONFIG_NUMA_BALANCING */
6414
1e3c88bd 6415/**
461819ac 6416 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6417 * @env: The load balancing environment.
1e3c88bd
PZ
6418 * @sds: variable to hold the statistics for this sched_domain.
6419 */
0ec8aa00 6420static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6421{
bd939f45
PZ
6422 struct sched_domain *child = env->sd->child;
6423 struct sched_group *sg = env->sd->groups;
56cf515b 6424 struct sg_lb_stats tmp_sgs;
1e3c88bd 6425 int load_idx, prefer_sibling = 0;
4486edd1 6426 bool overload = false;
1e3c88bd
PZ
6427
6428 if (child && child->flags & SD_PREFER_SIBLING)
6429 prefer_sibling = 1;
6430
bd939f45 6431 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6432
6433 do {
56cf515b 6434 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6435 int local_group;
6436
bd939f45 6437 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6438 if (local_group) {
6439 sds->local = sg;
6440 sgs = &sds->local_stat;
b72ff13c
PZ
6441
6442 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6443 time_after_eq(jiffies, sg->sgc->next_update))
6444 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6445 }
1e3c88bd 6446
4486edd1
TC
6447 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6448 &overload);
1e3c88bd 6449
b72ff13c
PZ
6450 if (local_group)
6451 goto next_group;
6452
1e3c88bd
PZ
6453 /*
6454 * In case the child domain prefers tasks go to siblings
ea67821b 6455 * first, lower the sg capacity so that we'll try
75dd321d
NR
6456 * and move all the excess tasks away. We lower the capacity
6457 * of a group only if the local group has the capacity to fit
ea67821b
VG
6458 * these excess tasks. The extra check prevents the case where
6459 * you always pull from the heaviest group when it is already
6460 * under-utilized (possible with a large weight task outweighs
6461 * the tasks on the system).
1e3c88bd 6462 */
b72ff13c 6463 if (prefer_sibling && sds->local &&
ea67821b
VG
6464 group_has_capacity(env, &sds->local_stat) &&
6465 (sgs->sum_nr_running > 1)) {
6466 sgs->group_no_capacity = 1;
6467 sgs->group_type = group_overloaded;
cb0b9f24 6468 }
1e3c88bd 6469
b72ff13c 6470 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6471 sds->busiest = sg;
56cf515b 6472 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6473 }
6474
b72ff13c
PZ
6475next_group:
6476 /* Now, start updating sd_lb_stats */
6477 sds->total_load += sgs->group_load;
63b2ca30 6478 sds->total_capacity += sgs->group_capacity;
b72ff13c 6479
532cb4c4 6480 sg = sg->next;
bd939f45 6481 } while (sg != env->sd->groups);
0ec8aa00
PZ
6482
6483 if (env->sd->flags & SD_NUMA)
6484 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6485
6486 if (!env->sd->parent) {
6487 /* update overload indicator if we are at root domain */
6488 if (env->dst_rq->rd->overload != overload)
6489 env->dst_rq->rd->overload = overload;
6490 }
6491
532cb4c4
MN
6492}
6493
532cb4c4
MN
6494/**
6495 * check_asym_packing - Check to see if the group is packed into the
6496 * sched doman.
6497 *
6498 * This is primarily intended to used at the sibling level. Some
6499 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6500 * case of POWER7, it can move to lower SMT modes only when higher
6501 * threads are idle. When in lower SMT modes, the threads will
6502 * perform better since they share less core resources. Hence when we
6503 * have idle threads, we want them to be the higher ones.
6504 *
6505 * This packing function is run on idle threads. It checks to see if
6506 * the busiest CPU in this domain (core in the P7 case) has a higher
6507 * CPU number than the packing function is being run on. Here we are
6508 * assuming lower CPU number will be equivalent to lower a SMT thread
6509 * number.
6510 *
e69f6186 6511 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6512 * this CPU. The amount of the imbalance is returned in *imbalance.
6513 *
cd96891d 6514 * @env: The load balancing environment.
532cb4c4 6515 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6516 */
bd939f45 6517static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6518{
6519 int busiest_cpu;
6520
bd939f45 6521 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6522 return 0;
6523
6524 if (!sds->busiest)
6525 return 0;
6526
6527 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6528 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6529 return 0;
6530
bd939f45 6531 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6532 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6533 SCHED_CAPACITY_SCALE);
bd939f45 6534
532cb4c4 6535 return 1;
1e3c88bd
PZ
6536}
6537
6538/**
6539 * fix_small_imbalance - Calculate the minor imbalance that exists
6540 * amongst the groups of a sched_domain, during
6541 * load balancing.
cd96891d 6542 * @env: The load balancing environment.
1e3c88bd 6543 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6544 */
bd939f45
PZ
6545static inline
6546void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6547{
63b2ca30 6548 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6549 unsigned int imbn = 2;
dd5feea1 6550 unsigned long scaled_busy_load_per_task;
56cf515b 6551 struct sg_lb_stats *local, *busiest;
1e3c88bd 6552
56cf515b
JK
6553 local = &sds->local_stat;
6554 busiest = &sds->busiest_stat;
1e3c88bd 6555
56cf515b
JK
6556 if (!local->sum_nr_running)
6557 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6558 else if (busiest->load_per_task > local->load_per_task)
6559 imbn = 1;
dd5feea1 6560
56cf515b 6561 scaled_busy_load_per_task =
ca8ce3d0 6562 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6563 busiest->group_capacity;
56cf515b 6564
3029ede3
VD
6565 if (busiest->avg_load + scaled_busy_load_per_task >=
6566 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6567 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6568 return;
6569 }
6570
6571 /*
6572 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6573 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6574 * moving them.
6575 */
6576
63b2ca30 6577 capa_now += busiest->group_capacity *
56cf515b 6578 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6579 capa_now += local->group_capacity *
56cf515b 6580 min(local->load_per_task, local->avg_load);
ca8ce3d0 6581 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6582
6583 /* Amount of load we'd subtract */
a2cd4260 6584 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6585 capa_move += busiest->group_capacity *
56cf515b 6586 min(busiest->load_per_task,
a2cd4260 6587 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6588 }
1e3c88bd
PZ
6589
6590 /* Amount of load we'd add */
63b2ca30 6591 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6592 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6593 tmp = (busiest->avg_load * busiest->group_capacity) /
6594 local->group_capacity;
56cf515b 6595 } else {
ca8ce3d0 6596 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6597 local->group_capacity;
56cf515b 6598 }
63b2ca30 6599 capa_move += local->group_capacity *
3ae11c90 6600 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6601 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6602
6603 /* Move if we gain throughput */
63b2ca30 6604 if (capa_move > capa_now)
56cf515b 6605 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6606}
6607
6608/**
6609 * calculate_imbalance - Calculate the amount of imbalance present within the
6610 * groups of a given sched_domain during load balance.
bd939f45 6611 * @env: load balance environment
1e3c88bd 6612 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6613 */
bd939f45 6614static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6615{
dd5feea1 6616 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6617 struct sg_lb_stats *local, *busiest;
6618
6619 local = &sds->local_stat;
56cf515b 6620 busiest = &sds->busiest_stat;
dd5feea1 6621
caeb178c 6622 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6623 /*
6624 * In the group_imb case we cannot rely on group-wide averages
6625 * to ensure cpu-load equilibrium, look at wider averages. XXX
6626 */
56cf515b
JK
6627 busiest->load_per_task =
6628 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6629 }
6630
1e3c88bd
PZ
6631 /*
6632 * In the presence of smp nice balancing, certain scenarios can have
6633 * max load less than avg load(as we skip the groups at or below
ced549fa 6634 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6635 */
b1885550
VD
6636 if (busiest->avg_load <= sds->avg_load ||
6637 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6638 env->imbalance = 0;
6639 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6640 }
6641
9a5d9ba6
PZ
6642 /*
6643 * If there aren't any idle cpus, avoid creating some.
6644 */
6645 if (busiest->group_type == group_overloaded &&
6646 local->group_type == group_overloaded) {
ea67821b
VG
6647 load_above_capacity = busiest->sum_nr_running *
6648 SCHED_LOAD_SCALE;
6649 if (load_above_capacity > busiest->group_capacity)
6650 load_above_capacity -= busiest->group_capacity;
6651 else
6652 load_above_capacity = ~0UL;
dd5feea1
SS
6653 }
6654
6655 /*
6656 * We're trying to get all the cpus to the average_load, so we don't
6657 * want to push ourselves above the average load, nor do we wish to
6658 * reduce the max loaded cpu below the average load. At the same time,
6659 * we also don't want to reduce the group load below the group capacity
6660 * (so that we can implement power-savings policies etc). Thus we look
6661 * for the minimum possible imbalance.
dd5feea1 6662 */
30ce5dab 6663 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6664
6665 /* How much load to actually move to equalise the imbalance */
56cf515b 6666 env->imbalance = min(
63b2ca30
NP
6667 max_pull * busiest->group_capacity,
6668 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6669 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6670
6671 /*
6672 * if *imbalance is less than the average load per runnable task
25985edc 6673 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6674 * a think about bumping its value to force at least one task to be
6675 * moved
6676 */
56cf515b 6677 if (env->imbalance < busiest->load_per_task)
bd939f45 6678 return fix_small_imbalance(env, sds);
1e3c88bd 6679}
fab47622 6680
1e3c88bd
PZ
6681/******* find_busiest_group() helpers end here *********************/
6682
6683/**
6684 * find_busiest_group - Returns the busiest group within the sched_domain
6685 * if there is an imbalance. If there isn't an imbalance, and
6686 * the user has opted for power-savings, it returns a group whose
6687 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6688 * such a group exists.
6689 *
6690 * Also calculates the amount of weighted load which should be moved
6691 * to restore balance.
6692 *
cd96891d 6693 * @env: The load balancing environment.
1e3c88bd 6694 *
e69f6186 6695 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6696 * - If no imbalance and user has opted for power-savings balance,
6697 * return the least loaded group whose CPUs can be
6698 * put to idle by rebalancing its tasks onto our group.
6699 */
56cf515b 6700static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6701{
56cf515b 6702 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6703 struct sd_lb_stats sds;
6704
147c5fc2 6705 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6706
6707 /*
6708 * Compute the various statistics relavent for load balancing at
6709 * this level.
6710 */
23f0d209 6711 update_sd_lb_stats(env, &sds);
56cf515b
JK
6712 local = &sds.local_stat;
6713 busiest = &sds.busiest_stat;
1e3c88bd 6714
ea67821b 6715 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6716 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6717 check_asym_packing(env, &sds))
532cb4c4
MN
6718 return sds.busiest;
6719
cc57aa8f 6720 /* There is no busy sibling group to pull tasks from */
56cf515b 6721 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6722 goto out_balanced;
6723
ca8ce3d0
NP
6724 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6725 / sds.total_capacity;
b0432d8f 6726
866ab43e
PZ
6727 /*
6728 * If the busiest group is imbalanced the below checks don't
30ce5dab 6729 * work because they assume all things are equal, which typically
866ab43e
PZ
6730 * isn't true due to cpus_allowed constraints and the like.
6731 */
caeb178c 6732 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6733 goto force_balance;
6734
cc57aa8f 6735 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6736 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6737 busiest->group_no_capacity)
fab47622
NR
6738 goto force_balance;
6739
cc57aa8f 6740 /*
9c58c79a 6741 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6742 * don't try and pull any tasks.
6743 */
56cf515b 6744 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6745 goto out_balanced;
6746
cc57aa8f
PZ
6747 /*
6748 * Don't pull any tasks if this group is already above the domain
6749 * average load.
6750 */
56cf515b 6751 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6752 goto out_balanced;
6753
bd939f45 6754 if (env->idle == CPU_IDLE) {
aae6d3dd 6755 /*
43f4d666
VG
6756 * This cpu is idle. If the busiest group is not overloaded
6757 * and there is no imbalance between this and busiest group
6758 * wrt idle cpus, it is balanced. The imbalance becomes
6759 * significant if the diff is greater than 1 otherwise we
6760 * might end up to just move the imbalance on another group
aae6d3dd 6761 */
43f4d666
VG
6762 if ((busiest->group_type != group_overloaded) &&
6763 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6764 goto out_balanced;
c186fafe
PZ
6765 } else {
6766 /*
6767 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6768 * imbalance_pct to be conservative.
6769 */
56cf515b
JK
6770 if (100 * busiest->avg_load <=
6771 env->sd->imbalance_pct * local->avg_load)
c186fafe 6772 goto out_balanced;
aae6d3dd 6773 }
1e3c88bd 6774
fab47622 6775force_balance:
1e3c88bd 6776 /* Looks like there is an imbalance. Compute it */
bd939f45 6777 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6778 return sds.busiest;
6779
6780out_balanced:
bd939f45 6781 env->imbalance = 0;
1e3c88bd
PZ
6782 return NULL;
6783}
6784
6785/*
6786 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6787 */
bd939f45 6788static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6789 struct sched_group *group)
1e3c88bd
PZ
6790{
6791 struct rq *busiest = NULL, *rq;
ced549fa 6792 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6793 int i;
6794
6906a408 6795 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6796 unsigned long capacity, wl;
0ec8aa00
PZ
6797 enum fbq_type rt;
6798
6799 rq = cpu_rq(i);
6800 rt = fbq_classify_rq(rq);
1e3c88bd 6801
0ec8aa00
PZ
6802 /*
6803 * We classify groups/runqueues into three groups:
6804 * - regular: there are !numa tasks
6805 * - remote: there are numa tasks that run on the 'wrong' node
6806 * - all: there is no distinction
6807 *
6808 * In order to avoid migrating ideally placed numa tasks,
6809 * ignore those when there's better options.
6810 *
6811 * If we ignore the actual busiest queue to migrate another
6812 * task, the next balance pass can still reduce the busiest
6813 * queue by moving tasks around inside the node.
6814 *
6815 * If we cannot move enough load due to this classification
6816 * the next pass will adjust the group classification and
6817 * allow migration of more tasks.
6818 *
6819 * Both cases only affect the total convergence complexity.
6820 */
6821 if (rt > env->fbq_type)
6822 continue;
6823
ced549fa 6824 capacity = capacity_of(i);
9d5efe05 6825
6e40f5bb 6826 wl = weighted_cpuload(i);
1e3c88bd 6827
6e40f5bb
TG
6828 /*
6829 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6830 * which is not scaled with the cpu capacity.
6e40f5bb 6831 */
ea67821b
VG
6832
6833 if (rq->nr_running == 1 && wl > env->imbalance &&
6834 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6835 continue;
6836
6e40f5bb
TG
6837 /*
6838 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6839 * the weighted_cpuload() scaled with the cpu capacity, so
6840 * that the load can be moved away from the cpu that is
6841 * potentially running at a lower capacity.
95a79b80 6842 *
ced549fa 6843 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6844 * multiplication to rid ourselves of the division works out
ced549fa
NP
6845 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6846 * our previous maximum.
6e40f5bb 6847 */
ced549fa 6848 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6849 busiest_load = wl;
ced549fa 6850 busiest_capacity = capacity;
1e3c88bd
PZ
6851 busiest = rq;
6852 }
6853 }
6854
6855 return busiest;
6856}
6857
6858/*
6859 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6860 * so long as it is large enough.
6861 */
6862#define MAX_PINNED_INTERVAL 512
6863
6864/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6865DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6866
bd939f45 6867static int need_active_balance(struct lb_env *env)
1af3ed3d 6868{
bd939f45
PZ
6869 struct sched_domain *sd = env->sd;
6870
6871 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6872
6873 /*
6874 * ASYM_PACKING needs to force migrate tasks from busy but
6875 * higher numbered CPUs in order to pack all tasks in the
6876 * lowest numbered CPUs.
6877 */
bd939f45 6878 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6879 return 1;
1af3ed3d
PZ
6880 }
6881
1aaf90a4
VG
6882 /*
6883 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6884 * It's worth migrating the task if the src_cpu's capacity is reduced
6885 * because of other sched_class or IRQs if more capacity stays
6886 * available on dst_cpu.
6887 */
6888 if ((env->idle != CPU_NOT_IDLE) &&
6889 (env->src_rq->cfs.h_nr_running == 1)) {
6890 if ((check_cpu_capacity(env->src_rq, sd)) &&
6891 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6892 return 1;
6893 }
6894
1af3ed3d
PZ
6895 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6896}
6897
969c7921
TH
6898static int active_load_balance_cpu_stop(void *data);
6899
23f0d209
JK
6900static int should_we_balance(struct lb_env *env)
6901{
6902 struct sched_group *sg = env->sd->groups;
6903 struct cpumask *sg_cpus, *sg_mask;
6904 int cpu, balance_cpu = -1;
6905
6906 /*
6907 * In the newly idle case, we will allow all the cpu's
6908 * to do the newly idle load balance.
6909 */
6910 if (env->idle == CPU_NEWLY_IDLE)
6911 return 1;
6912
6913 sg_cpus = sched_group_cpus(sg);
6914 sg_mask = sched_group_mask(sg);
6915 /* Try to find first idle cpu */
6916 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6917 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6918 continue;
6919
6920 balance_cpu = cpu;
6921 break;
6922 }
6923
6924 if (balance_cpu == -1)
6925 balance_cpu = group_balance_cpu(sg);
6926
6927 /*
6928 * First idle cpu or the first cpu(busiest) in this sched group
6929 * is eligible for doing load balancing at this and above domains.
6930 */
b0cff9d8 6931 return balance_cpu == env->dst_cpu;
23f0d209
JK
6932}
6933
1e3c88bd
PZ
6934/*
6935 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6936 * tasks if there is an imbalance.
6937 */
6938static int load_balance(int this_cpu, struct rq *this_rq,
6939 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6940 int *continue_balancing)
1e3c88bd 6941{
88b8dac0 6942 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6943 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6944 struct sched_group *group;
1e3c88bd
PZ
6945 struct rq *busiest;
6946 unsigned long flags;
4ba29684 6947 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6948
8e45cb54
PZ
6949 struct lb_env env = {
6950 .sd = sd,
ddcdf6e7
PZ
6951 .dst_cpu = this_cpu,
6952 .dst_rq = this_rq,
88b8dac0 6953 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6954 .idle = idle,
eb95308e 6955 .loop_break = sched_nr_migrate_break,
b9403130 6956 .cpus = cpus,
0ec8aa00 6957 .fbq_type = all,
163122b7 6958 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6959 };
6960
cfc03118
JK
6961 /*
6962 * For NEWLY_IDLE load_balancing, we don't need to consider
6963 * other cpus in our group
6964 */
e02e60c1 6965 if (idle == CPU_NEWLY_IDLE)
cfc03118 6966 env.dst_grpmask = NULL;
cfc03118 6967
1e3c88bd
PZ
6968 cpumask_copy(cpus, cpu_active_mask);
6969
1e3c88bd
PZ
6970 schedstat_inc(sd, lb_count[idle]);
6971
6972redo:
23f0d209
JK
6973 if (!should_we_balance(&env)) {
6974 *continue_balancing = 0;
1e3c88bd 6975 goto out_balanced;
23f0d209 6976 }
1e3c88bd 6977
23f0d209 6978 group = find_busiest_group(&env);
1e3c88bd
PZ
6979 if (!group) {
6980 schedstat_inc(sd, lb_nobusyg[idle]);
6981 goto out_balanced;
6982 }
6983
b9403130 6984 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6985 if (!busiest) {
6986 schedstat_inc(sd, lb_nobusyq[idle]);
6987 goto out_balanced;
6988 }
6989
78feefc5 6990 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6991
bd939f45 6992 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6993
1aaf90a4
VG
6994 env.src_cpu = busiest->cpu;
6995 env.src_rq = busiest;
6996
1e3c88bd
PZ
6997 ld_moved = 0;
6998 if (busiest->nr_running > 1) {
6999 /*
7000 * Attempt to move tasks. If find_busiest_group has found
7001 * an imbalance but busiest->nr_running <= 1, the group is
7002 * still unbalanced. ld_moved simply stays zero, so it is
7003 * correctly treated as an imbalance.
7004 */
8e45cb54 7005 env.flags |= LBF_ALL_PINNED;
c82513e5 7006 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7007
5d6523eb 7008more_balance:
163122b7 7009 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7010
7011 /*
7012 * cur_ld_moved - load moved in current iteration
7013 * ld_moved - cumulative load moved across iterations
7014 */
163122b7 7015 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7016
7017 /*
163122b7
KT
7018 * We've detached some tasks from busiest_rq. Every
7019 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7020 * unlock busiest->lock, and we are able to be sure
7021 * that nobody can manipulate the tasks in parallel.
7022 * See task_rq_lock() family for the details.
1e3c88bd 7023 */
163122b7
KT
7024
7025 raw_spin_unlock(&busiest->lock);
7026
7027 if (cur_ld_moved) {
7028 attach_tasks(&env);
7029 ld_moved += cur_ld_moved;
7030 }
7031
1e3c88bd 7032 local_irq_restore(flags);
88b8dac0 7033
f1cd0858
JK
7034 if (env.flags & LBF_NEED_BREAK) {
7035 env.flags &= ~LBF_NEED_BREAK;
7036 goto more_balance;
7037 }
7038
88b8dac0
SV
7039 /*
7040 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7041 * us and move them to an alternate dst_cpu in our sched_group
7042 * where they can run. The upper limit on how many times we
7043 * iterate on same src_cpu is dependent on number of cpus in our
7044 * sched_group.
7045 *
7046 * This changes load balance semantics a bit on who can move
7047 * load to a given_cpu. In addition to the given_cpu itself
7048 * (or a ilb_cpu acting on its behalf where given_cpu is
7049 * nohz-idle), we now have balance_cpu in a position to move
7050 * load to given_cpu. In rare situations, this may cause
7051 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7052 * _independently_ and at _same_ time to move some load to
7053 * given_cpu) causing exceess load to be moved to given_cpu.
7054 * This however should not happen so much in practice and
7055 * moreover subsequent load balance cycles should correct the
7056 * excess load moved.
7057 */
6263322c 7058 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7059
7aff2e3a
VD
7060 /* Prevent to re-select dst_cpu via env's cpus */
7061 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7062
78feefc5 7063 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7064 env.dst_cpu = env.new_dst_cpu;
6263322c 7065 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7066 env.loop = 0;
7067 env.loop_break = sched_nr_migrate_break;
e02e60c1 7068
88b8dac0
SV
7069 /*
7070 * Go back to "more_balance" rather than "redo" since we
7071 * need to continue with same src_cpu.
7072 */
7073 goto more_balance;
7074 }
1e3c88bd 7075
6263322c
PZ
7076 /*
7077 * We failed to reach balance because of affinity.
7078 */
7079 if (sd_parent) {
63b2ca30 7080 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7081
afdeee05 7082 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7083 *group_imbalance = 1;
6263322c
PZ
7084 }
7085
1e3c88bd 7086 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7087 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7088 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7089 if (!cpumask_empty(cpus)) {
7090 env.loop = 0;
7091 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7092 goto redo;
bbf18b19 7093 }
afdeee05 7094 goto out_all_pinned;
1e3c88bd
PZ
7095 }
7096 }
7097
7098 if (!ld_moved) {
7099 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7100 /*
7101 * Increment the failure counter only on periodic balance.
7102 * We do not want newidle balance, which can be very
7103 * frequent, pollute the failure counter causing
7104 * excessive cache_hot migrations and active balances.
7105 */
7106 if (idle != CPU_NEWLY_IDLE)
7107 sd->nr_balance_failed++;
1e3c88bd 7108
bd939f45 7109 if (need_active_balance(&env)) {
1e3c88bd
PZ
7110 raw_spin_lock_irqsave(&busiest->lock, flags);
7111
969c7921
TH
7112 /* don't kick the active_load_balance_cpu_stop,
7113 * if the curr task on busiest cpu can't be
7114 * moved to this_cpu
1e3c88bd
PZ
7115 */
7116 if (!cpumask_test_cpu(this_cpu,
fa17b507 7117 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7118 raw_spin_unlock_irqrestore(&busiest->lock,
7119 flags);
8e45cb54 7120 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7121 goto out_one_pinned;
7122 }
7123
969c7921
TH
7124 /*
7125 * ->active_balance synchronizes accesses to
7126 * ->active_balance_work. Once set, it's cleared
7127 * only after active load balance is finished.
7128 */
1e3c88bd
PZ
7129 if (!busiest->active_balance) {
7130 busiest->active_balance = 1;
7131 busiest->push_cpu = this_cpu;
7132 active_balance = 1;
7133 }
7134 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7135
bd939f45 7136 if (active_balance) {
969c7921
TH
7137 stop_one_cpu_nowait(cpu_of(busiest),
7138 active_load_balance_cpu_stop, busiest,
7139 &busiest->active_balance_work);
bd939f45 7140 }
1e3c88bd
PZ
7141
7142 /*
7143 * We've kicked active balancing, reset the failure
7144 * counter.
7145 */
7146 sd->nr_balance_failed = sd->cache_nice_tries+1;
7147 }
7148 } else
7149 sd->nr_balance_failed = 0;
7150
7151 if (likely(!active_balance)) {
7152 /* We were unbalanced, so reset the balancing interval */
7153 sd->balance_interval = sd->min_interval;
7154 } else {
7155 /*
7156 * If we've begun active balancing, start to back off. This
7157 * case may not be covered by the all_pinned logic if there
7158 * is only 1 task on the busy runqueue (because we don't call
163122b7 7159 * detach_tasks).
1e3c88bd
PZ
7160 */
7161 if (sd->balance_interval < sd->max_interval)
7162 sd->balance_interval *= 2;
7163 }
7164
1e3c88bd
PZ
7165 goto out;
7166
7167out_balanced:
afdeee05
VG
7168 /*
7169 * We reach balance although we may have faced some affinity
7170 * constraints. Clear the imbalance flag if it was set.
7171 */
7172 if (sd_parent) {
7173 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7174
7175 if (*group_imbalance)
7176 *group_imbalance = 0;
7177 }
7178
7179out_all_pinned:
7180 /*
7181 * We reach balance because all tasks are pinned at this level so
7182 * we can't migrate them. Let the imbalance flag set so parent level
7183 * can try to migrate them.
7184 */
1e3c88bd
PZ
7185 schedstat_inc(sd, lb_balanced[idle]);
7186
7187 sd->nr_balance_failed = 0;
7188
7189out_one_pinned:
7190 /* tune up the balancing interval */
8e45cb54 7191 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7192 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7193 (sd->balance_interval < sd->max_interval))
7194 sd->balance_interval *= 2;
7195
46e49b38 7196 ld_moved = 0;
1e3c88bd 7197out:
1e3c88bd
PZ
7198 return ld_moved;
7199}
7200
52a08ef1
JL
7201static inline unsigned long
7202get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7203{
7204 unsigned long interval = sd->balance_interval;
7205
7206 if (cpu_busy)
7207 interval *= sd->busy_factor;
7208
7209 /* scale ms to jiffies */
7210 interval = msecs_to_jiffies(interval);
7211 interval = clamp(interval, 1UL, max_load_balance_interval);
7212
7213 return interval;
7214}
7215
7216static inline void
7217update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7218{
7219 unsigned long interval, next;
7220
7221 interval = get_sd_balance_interval(sd, cpu_busy);
7222 next = sd->last_balance + interval;
7223
7224 if (time_after(*next_balance, next))
7225 *next_balance = next;
7226}
7227
1e3c88bd
PZ
7228/*
7229 * idle_balance is called by schedule() if this_cpu is about to become
7230 * idle. Attempts to pull tasks from other CPUs.
7231 */
6e83125c 7232static int idle_balance(struct rq *this_rq)
1e3c88bd 7233{
52a08ef1
JL
7234 unsigned long next_balance = jiffies + HZ;
7235 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7236 struct sched_domain *sd;
7237 int pulled_task = 0;
9bd721c5 7238 u64 curr_cost = 0;
1e3c88bd 7239
6e83125c 7240 idle_enter_fair(this_rq);
0e5b5337 7241
6e83125c
PZ
7242 /*
7243 * We must set idle_stamp _before_ calling idle_balance(), such that we
7244 * measure the duration of idle_balance() as idle time.
7245 */
7246 this_rq->idle_stamp = rq_clock(this_rq);
7247
4486edd1
TC
7248 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7249 !this_rq->rd->overload) {
52a08ef1
JL
7250 rcu_read_lock();
7251 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7252 if (sd)
7253 update_next_balance(sd, 0, &next_balance);
7254 rcu_read_unlock();
7255
6e83125c 7256 goto out;
52a08ef1 7257 }
1e3c88bd 7258
f492e12e
PZ
7259 raw_spin_unlock(&this_rq->lock);
7260
48a16753 7261 update_blocked_averages(this_cpu);
dce840a0 7262 rcu_read_lock();
1e3c88bd 7263 for_each_domain(this_cpu, sd) {
23f0d209 7264 int continue_balancing = 1;
9bd721c5 7265 u64 t0, domain_cost;
1e3c88bd
PZ
7266
7267 if (!(sd->flags & SD_LOAD_BALANCE))
7268 continue;
7269
52a08ef1
JL
7270 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7271 update_next_balance(sd, 0, &next_balance);
9bd721c5 7272 break;
52a08ef1 7273 }
9bd721c5 7274
f492e12e 7275 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7276 t0 = sched_clock_cpu(this_cpu);
7277
f492e12e 7278 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7279 sd, CPU_NEWLY_IDLE,
7280 &continue_balancing);
9bd721c5
JL
7281
7282 domain_cost = sched_clock_cpu(this_cpu) - t0;
7283 if (domain_cost > sd->max_newidle_lb_cost)
7284 sd->max_newidle_lb_cost = domain_cost;
7285
7286 curr_cost += domain_cost;
f492e12e 7287 }
1e3c88bd 7288
52a08ef1 7289 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7290
7291 /*
7292 * Stop searching for tasks to pull if there are
7293 * now runnable tasks on this rq.
7294 */
7295 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7296 break;
1e3c88bd 7297 }
dce840a0 7298 rcu_read_unlock();
f492e12e
PZ
7299
7300 raw_spin_lock(&this_rq->lock);
7301
0e5b5337
JL
7302 if (curr_cost > this_rq->max_idle_balance_cost)
7303 this_rq->max_idle_balance_cost = curr_cost;
7304
e5fc6611 7305 /*
0e5b5337
JL
7306 * While browsing the domains, we released the rq lock, a task could
7307 * have been enqueued in the meantime. Since we're not going idle,
7308 * pretend we pulled a task.
e5fc6611 7309 */
0e5b5337 7310 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7311 pulled_task = 1;
e5fc6611 7312
52a08ef1
JL
7313out:
7314 /* Move the next balance forward */
7315 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7316 this_rq->next_balance = next_balance;
9bd721c5 7317
e4aa358b 7318 /* Is there a task of a high priority class? */
46383648 7319 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7320 pulled_task = -1;
7321
7322 if (pulled_task) {
7323 idle_exit_fair(this_rq);
6e83125c 7324 this_rq->idle_stamp = 0;
e4aa358b 7325 }
6e83125c 7326
3c4017c1 7327 return pulled_task;
1e3c88bd
PZ
7328}
7329
7330/*
969c7921
TH
7331 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7332 * running tasks off the busiest CPU onto idle CPUs. It requires at
7333 * least 1 task to be running on each physical CPU where possible, and
7334 * avoids physical / logical imbalances.
1e3c88bd 7335 */
969c7921 7336static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7337{
969c7921
TH
7338 struct rq *busiest_rq = data;
7339 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7340 int target_cpu = busiest_rq->push_cpu;
969c7921 7341 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7342 struct sched_domain *sd;
e5673f28 7343 struct task_struct *p = NULL;
969c7921
TH
7344
7345 raw_spin_lock_irq(&busiest_rq->lock);
7346
7347 /* make sure the requested cpu hasn't gone down in the meantime */
7348 if (unlikely(busiest_cpu != smp_processor_id() ||
7349 !busiest_rq->active_balance))
7350 goto out_unlock;
1e3c88bd
PZ
7351
7352 /* Is there any task to move? */
7353 if (busiest_rq->nr_running <= 1)
969c7921 7354 goto out_unlock;
1e3c88bd
PZ
7355
7356 /*
7357 * This condition is "impossible", if it occurs
7358 * we need to fix it. Originally reported by
7359 * Bjorn Helgaas on a 128-cpu setup.
7360 */
7361 BUG_ON(busiest_rq == target_rq);
7362
1e3c88bd 7363 /* Search for an sd spanning us and the target CPU. */
dce840a0 7364 rcu_read_lock();
1e3c88bd
PZ
7365 for_each_domain(target_cpu, sd) {
7366 if ((sd->flags & SD_LOAD_BALANCE) &&
7367 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7368 break;
7369 }
7370
7371 if (likely(sd)) {
8e45cb54
PZ
7372 struct lb_env env = {
7373 .sd = sd,
ddcdf6e7
PZ
7374 .dst_cpu = target_cpu,
7375 .dst_rq = target_rq,
7376 .src_cpu = busiest_rq->cpu,
7377 .src_rq = busiest_rq,
8e45cb54
PZ
7378 .idle = CPU_IDLE,
7379 };
7380
1e3c88bd
PZ
7381 schedstat_inc(sd, alb_count);
7382
e5673f28
KT
7383 p = detach_one_task(&env);
7384 if (p)
1e3c88bd
PZ
7385 schedstat_inc(sd, alb_pushed);
7386 else
7387 schedstat_inc(sd, alb_failed);
7388 }
dce840a0 7389 rcu_read_unlock();
969c7921
TH
7390out_unlock:
7391 busiest_rq->active_balance = 0;
e5673f28
KT
7392 raw_spin_unlock(&busiest_rq->lock);
7393
7394 if (p)
7395 attach_one_task(target_rq, p);
7396
7397 local_irq_enable();
7398
969c7921 7399 return 0;
1e3c88bd
PZ
7400}
7401
d987fc7f
MG
7402static inline int on_null_domain(struct rq *rq)
7403{
7404 return unlikely(!rcu_dereference_sched(rq->sd));
7405}
7406
3451d024 7407#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7408/*
7409 * idle load balancing details
83cd4fe2
VP
7410 * - When one of the busy CPUs notice that there may be an idle rebalancing
7411 * needed, they will kick the idle load balancer, which then does idle
7412 * load balancing for all the idle CPUs.
7413 */
1e3c88bd 7414static struct {
83cd4fe2 7415 cpumask_var_t idle_cpus_mask;
0b005cf5 7416 atomic_t nr_cpus;
83cd4fe2
VP
7417 unsigned long next_balance; /* in jiffy units */
7418} nohz ____cacheline_aligned;
1e3c88bd 7419
3dd0337d 7420static inline int find_new_ilb(void)
1e3c88bd 7421{
0b005cf5 7422 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7423
786d6dc7
SS
7424 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7425 return ilb;
7426
7427 return nr_cpu_ids;
1e3c88bd 7428}
1e3c88bd 7429
83cd4fe2
VP
7430/*
7431 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7432 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7433 * CPU (if there is one).
7434 */
0aeeeeba 7435static void nohz_balancer_kick(void)
83cd4fe2
VP
7436{
7437 int ilb_cpu;
7438
7439 nohz.next_balance++;
7440
3dd0337d 7441 ilb_cpu = find_new_ilb();
83cd4fe2 7442
0b005cf5
SS
7443 if (ilb_cpu >= nr_cpu_ids)
7444 return;
83cd4fe2 7445
cd490c5b 7446 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7447 return;
7448 /*
7449 * Use smp_send_reschedule() instead of resched_cpu().
7450 * This way we generate a sched IPI on the target cpu which
7451 * is idle. And the softirq performing nohz idle load balance
7452 * will be run before returning from the IPI.
7453 */
7454 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7455 return;
7456}
7457
c1cc017c 7458static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7459{
7460 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7461 /*
7462 * Completely isolated CPUs don't ever set, so we must test.
7463 */
7464 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7465 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7466 atomic_dec(&nohz.nr_cpus);
7467 }
71325960
SS
7468 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7469 }
7470}
7471
69e1e811
SS
7472static inline void set_cpu_sd_state_busy(void)
7473{
7474 struct sched_domain *sd;
37dc6b50 7475 int cpu = smp_processor_id();
69e1e811 7476
69e1e811 7477 rcu_read_lock();
37dc6b50 7478 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7479
7480 if (!sd || !sd->nohz_idle)
7481 goto unlock;
7482 sd->nohz_idle = 0;
7483
63b2ca30 7484 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7485unlock:
69e1e811
SS
7486 rcu_read_unlock();
7487}
7488
7489void set_cpu_sd_state_idle(void)
7490{
7491 struct sched_domain *sd;
37dc6b50 7492 int cpu = smp_processor_id();
69e1e811 7493
69e1e811 7494 rcu_read_lock();
37dc6b50 7495 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7496
7497 if (!sd || sd->nohz_idle)
7498 goto unlock;
7499 sd->nohz_idle = 1;
7500
63b2ca30 7501 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7502unlock:
69e1e811
SS
7503 rcu_read_unlock();
7504}
7505
1e3c88bd 7506/*
c1cc017c 7507 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7508 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7509 */
c1cc017c 7510void nohz_balance_enter_idle(int cpu)
1e3c88bd 7511{
71325960
SS
7512 /*
7513 * If this cpu is going down, then nothing needs to be done.
7514 */
7515 if (!cpu_active(cpu))
7516 return;
7517
c1cc017c
AS
7518 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7519 return;
1e3c88bd 7520
d987fc7f
MG
7521 /*
7522 * If we're a completely isolated CPU, we don't play.
7523 */
7524 if (on_null_domain(cpu_rq(cpu)))
7525 return;
7526
c1cc017c
AS
7527 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7528 atomic_inc(&nohz.nr_cpus);
7529 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7530}
71325960 7531
0db0628d 7532static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7533 unsigned long action, void *hcpu)
7534{
7535 switch (action & ~CPU_TASKS_FROZEN) {
7536 case CPU_DYING:
c1cc017c 7537 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7538 return NOTIFY_OK;
7539 default:
7540 return NOTIFY_DONE;
7541 }
7542}
1e3c88bd
PZ
7543#endif
7544
7545static DEFINE_SPINLOCK(balancing);
7546
49c022e6
PZ
7547/*
7548 * Scale the max load_balance interval with the number of CPUs in the system.
7549 * This trades load-balance latency on larger machines for less cross talk.
7550 */
029632fb 7551void update_max_interval(void)
49c022e6
PZ
7552{
7553 max_load_balance_interval = HZ*num_online_cpus()/10;
7554}
7555
1e3c88bd
PZ
7556/*
7557 * It checks each scheduling domain to see if it is due to be balanced,
7558 * and initiates a balancing operation if so.
7559 *
b9b0853a 7560 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7561 */
f7ed0a89 7562static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7563{
23f0d209 7564 int continue_balancing = 1;
f7ed0a89 7565 int cpu = rq->cpu;
1e3c88bd 7566 unsigned long interval;
04f733b4 7567 struct sched_domain *sd;
1e3c88bd
PZ
7568 /* Earliest time when we have to do rebalance again */
7569 unsigned long next_balance = jiffies + 60*HZ;
7570 int update_next_balance = 0;
f48627e6
JL
7571 int need_serialize, need_decay = 0;
7572 u64 max_cost = 0;
1e3c88bd 7573
48a16753 7574 update_blocked_averages(cpu);
2069dd75 7575
dce840a0 7576 rcu_read_lock();
1e3c88bd 7577 for_each_domain(cpu, sd) {
f48627e6
JL
7578 /*
7579 * Decay the newidle max times here because this is a regular
7580 * visit to all the domains. Decay ~1% per second.
7581 */
7582 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7583 sd->max_newidle_lb_cost =
7584 (sd->max_newidle_lb_cost * 253) / 256;
7585 sd->next_decay_max_lb_cost = jiffies + HZ;
7586 need_decay = 1;
7587 }
7588 max_cost += sd->max_newidle_lb_cost;
7589
1e3c88bd
PZ
7590 if (!(sd->flags & SD_LOAD_BALANCE))
7591 continue;
7592
f48627e6
JL
7593 /*
7594 * Stop the load balance at this level. There is another
7595 * CPU in our sched group which is doing load balancing more
7596 * actively.
7597 */
7598 if (!continue_balancing) {
7599 if (need_decay)
7600 continue;
7601 break;
7602 }
7603
52a08ef1 7604 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7605
7606 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7607 if (need_serialize) {
7608 if (!spin_trylock(&balancing))
7609 goto out;
7610 }
7611
7612 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7613 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7614 /*
6263322c 7615 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7616 * env->dst_cpu, so we can't know our idle
7617 * state even if we migrated tasks. Update it.
1e3c88bd 7618 */
de5eb2dd 7619 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7620 }
7621 sd->last_balance = jiffies;
52a08ef1 7622 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7623 }
7624 if (need_serialize)
7625 spin_unlock(&balancing);
7626out:
7627 if (time_after(next_balance, sd->last_balance + interval)) {
7628 next_balance = sd->last_balance + interval;
7629 update_next_balance = 1;
7630 }
f48627e6
JL
7631 }
7632 if (need_decay) {
1e3c88bd 7633 /*
f48627e6
JL
7634 * Ensure the rq-wide value also decays but keep it at a
7635 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7636 */
f48627e6
JL
7637 rq->max_idle_balance_cost =
7638 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7639 }
dce840a0 7640 rcu_read_unlock();
1e3c88bd
PZ
7641
7642 /*
7643 * next_balance will be updated only when there is a need.
7644 * When the cpu is attached to null domain for ex, it will not be
7645 * updated.
7646 */
c5afb6a8 7647 if (likely(update_next_balance)) {
1e3c88bd 7648 rq->next_balance = next_balance;
c5afb6a8
VG
7649
7650#ifdef CONFIG_NO_HZ_COMMON
7651 /*
7652 * If this CPU has been elected to perform the nohz idle
7653 * balance. Other idle CPUs have already rebalanced with
7654 * nohz_idle_balance() and nohz.next_balance has been
7655 * updated accordingly. This CPU is now running the idle load
7656 * balance for itself and we need to update the
7657 * nohz.next_balance accordingly.
7658 */
7659 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7660 nohz.next_balance = rq->next_balance;
7661#endif
7662 }
1e3c88bd
PZ
7663}
7664
3451d024 7665#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7666/*
3451d024 7667 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7668 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7669 */
208cb16b 7670static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7671{
208cb16b 7672 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7673 struct rq *rq;
7674 int balance_cpu;
c5afb6a8
VG
7675 /* Earliest time when we have to do rebalance again */
7676 unsigned long next_balance = jiffies + 60*HZ;
7677 int update_next_balance = 0;
83cd4fe2 7678
1c792db7
SS
7679 if (idle != CPU_IDLE ||
7680 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7681 goto end;
83cd4fe2
VP
7682
7683 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7684 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7685 continue;
7686
7687 /*
7688 * If this cpu gets work to do, stop the load balancing
7689 * work being done for other cpus. Next load
7690 * balancing owner will pick it up.
7691 */
1c792db7 7692 if (need_resched())
83cd4fe2 7693 break;
83cd4fe2 7694
5ed4f1d9
VG
7695 rq = cpu_rq(balance_cpu);
7696
ed61bbc6
TC
7697 /*
7698 * If time for next balance is due,
7699 * do the balance.
7700 */
7701 if (time_after_eq(jiffies, rq->next_balance)) {
7702 raw_spin_lock_irq(&rq->lock);
7703 update_rq_clock(rq);
7704 update_idle_cpu_load(rq);
7705 raw_spin_unlock_irq(&rq->lock);
7706 rebalance_domains(rq, CPU_IDLE);
7707 }
83cd4fe2 7708
c5afb6a8
VG
7709 if (time_after(next_balance, rq->next_balance)) {
7710 next_balance = rq->next_balance;
7711 update_next_balance = 1;
7712 }
83cd4fe2 7713 }
c5afb6a8
VG
7714
7715 /*
7716 * next_balance will be updated only when there is a need.
7717 * When the CPU is attached to null domain for ex, it will not be
7718 * updated.
7719 */
7720 if (likely(update_next_balance))
7721 nohz.next_balance = next_balance;
1c792db7
SS
7722end:
7723 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7724}
7725
7726/*
0b005cf5 7727 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7728 * of an idle cpu in the system.
0b005cf5 7729 * - This rq has more than one task.
1aaf90a4
VG
7730 * - This rq has at least one CFS task and the capacity of the CPU is
7731 * significantly reduced because of RT tasks or IRQs.
7732 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7733 * multiple busy cpu.
0b005cf5
SS
7734 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7735 * domain span are idle.
83cd4fe2 7736 */
1aaf90a4 7737static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7738{
7739 unsigned long now = jiffies;
0b005cf5 7740 struct sched_domain *sd;
63b2ca30 7741 struct sched_group_capacity *sgc;
4a725627 7742 int nr_busy, cpu = rq->cpu;
1aaf90a4 7743 bool kick = false;
83cd4fe2 7744
4a725627 7745 if (unlikely(rq->idle_balance))
1aaf90a4 7746 return false;
83cd4fe2 7747
1c792db7
SS
7748 /*
7749 * We may be recently in ticked or tickless idle mode. At the first
7750 * busy tick after returning from idle, we will update the busy stats.
7751 */
69e1e811 7752 set_cpu_sd_state_busy();
c1cc017c 7753 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7754
7755 /*
7756 * None are in tickless mode and hence no need for NOHZ idle load
7757 * balancing.
7758 */
7759 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7760 return false;
1c792db7
SS
7761
7762 if (time_before(now, nohz.next_balance))
1aaf90a4 7763 return false;
83cd4fe2 7764
0b005cf5 7765 if (rq->nr_running >= 2)
1aaf90a4 7766 return true;
83cd4fe2 7767
067491b7 7768 rcu_read_lock();
37dc6b50 7769 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7770 if (sd) {
63b2ca30
NP
7771 sgc = sd->groups->sgc;
7772 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7773
1aaf90a4
VG
7774 if (nr_busy > 1) {
7775 kick = true;
7776 goto unlock;
7777 }
7778
83cd4fe2 7779 }
37dc6b50 7780
1aaf90a4
VG
7781 sd = rcu_dereference(rq->sd);
7782 if (sd) {
7783 if ((rq->cfs.h_nr_running >= 1) &&
7784 check_cpu_capacity(rq, sd)) {
7785 kick = true;
7786 goto unlock;
7787 }
7788 }
37dc6b50 7789
1aaf90a4 7790 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7791 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7792 sched_domain_span(sd)) < cpu)) {
7793 kick = true;
7794 goto unlock;
7795 }
067491b7 7796
1aaf90a4 7797unlock:
067491b7 7798 rcu_read_unlock();
1aaf90a4 7799 return kick;
83cd4fe2
VP
7800}
7801#else
208cb16b 7802static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7803#endif
7804
7805/*
7806 * run_rebalance_domains is triggered when needed from the scheduler tick.
7807 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7808 */
1e3c88bd
PZ
7809static void run_rebalance_domains(struct softirq_action *h)
7810{
208cb16b 7811 struct rq *this_rq = this_rq();
6eb57e0d 7812 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7813 CPU_IDLE : CPU_NOT_IDLE;
7814
1e3c88bd 7815 /*
83cd4fe2 7816 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7817 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7818 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7819 * give the idle cpus a chance to load balance. Else we may
7820 * load balance only within the local sched_domain hierarchy
7821 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7822 */
208cb16b 7823 nohz_idle_balance(this_rq, idle);
d4573c3e 7824 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7825}
7826
1e3c88bd
PZ
7827/*
7828 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7829 */
7caff66f 7830void trigger_load_balance(struct rq *rq)
1e3c88bd 7831{
1e3c88bd 7832 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7833 if (unlikely(on_null_domain(rq)))
7834 return;
7835
7836 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7837 raise_softirq(SCHED_SOFTIRQ);
3451d024 7838#ifdef CONFIG_NO_HZ_COMMON
c726099e 7839 if (nohz_kick_needed(rq))
0aeeeeba 7840 nohz_balancer_kick();
83cd4fe2 7841#endif
1e3c88bd
PZ
7842}
7843
0bcdcf28
CE
7844static void rq_online_fair(struct rq *rq)
7845{
7846 update_sysctl();
0e59bdae
KT
7847
7848 update_runtime_enabled(rq);
0bcdcf28
CE
7849}
7850
7851static void rq_offline_fair(struct rq *rq)
7852{
7853 update_sysctl();
a4c96ae3
PB
7854
7855 /* Ensure any throttled groups are reachable by pick_next_task */
7856 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7857}
7858
55e12e5e 7859#endif /* CONFIG_SMP */
e1d1484f 7860
bf0f6f24
IM
7861/*
7862 * scheduler tick hitting a task of our scheduling class:
7863 */
8f4d37ec 7864static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7865{
7866 struct cfs_rq *cfs_rq;
7867 struct sched_entity *se = &curr->se;
7868
7869 for_each_sched_entity(se) {
7870 cfs_rq = cfs_rq_of(se);
8f4d37ec 7871 entity_tick(cfs_rq, se, queued);
bf0f6f24 7872 }
18bf2805 7873
2a595721 7874 if (!static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7875 task_tick_numa(rq, curr);
bf0f6f24
IM
7876}
7877
7878/*
cd29fe6f
PZ
7879 * called on fork with the child task as argument from the parent's context
7880 * - child not yet on the tasklist
7881 * - preemption disabled
bf0f6f24 7882 */
cd29fe6f 7883static void task_fork_fair(struct task_struct *p)
bf0f6f24 7884{
4fc420c9
DN
7885 struct cfs_rq *cfs_rq;
7886 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7887 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7888 struct rq *rq = this_rq();
7889 unsigned long flags;
7890
05fa785c 7891 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7892
861d034e
PZ
7893 update_rq_clock(rq);
7894
4fc420c9
DN
7895 cfs_rq = task_cfs_rq(current);
7896 curr = cfs_rq->curr;
7897
6c9a27f5
DN
7898 /*
7899 * Not only the cpu but also the task_group of the parent might have
7900 * been changed after parent->se.parent,cfs_rq were copied to
7901 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7902 * of child point to valid ones.
7903 */
7904 rcu_read_lock();
7905 __set_task_cpu(p, this_cpu);
7906 rcu_read_unlock();
bf0f6f24 7907
7109c442 7908 update_curr(cfs_rq);
cd29fe6f 7909
b5d9d734
MG
7910 if (curr)
7911 se->vruntime = curr->vruntime;
aeb73b04 7912 place_entity(cfs_rq, se, 1);
4d78e7b6 7913
cd29fe6f 7914 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7915 /*
edcb60a3
IM
7916 * Upon rescheduling, sched_class::put_prev_task() will place
7917 * 'current' within the tree based on its new key value.
7918 */
4d78e7b6 7919 swap(curr->vruntime, se->vruntime);
8875125e 7920 resched_curr(rq);
4d78e7b6 7921 }
bf0f6f24 7922
88ec22d3
PZ
7923 se->vruntime -= cfs_rq->min_vruntime;
7924
05fa785c 7925 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7926}
7927
cb469845
SR
7928/*
7929 * Priority of the task has changed. Check to see if we preempt
7930 * the current task.
7931 */
da7a735e
PZ
7932static void
7933prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7934{
da0c1e65 7935 if (!task_on_rq_queued(p))
da7a735e
PZ
7936 return;
7937
cb469845
SR
7938 /*
7939 * Reschedule if we are currently running on this runqueue and
7940 * our priority decreased, or if we are not currently running on
7941 * this runqueue and our priority is higher than the current's
7942 */
da7a735e 7943 if (rq->curr == p) {
cb469845 7944 if (p->prio > oldprio)
8875125e 7945 resched_curr(rq);
cb469845 7946 } else
15afe09b 7947 check_preempt_curr(rq, p, 0);
cb469845
SR
7948}
7949
daa59407 7950static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7951{
7952 struct sched_entity *se = &p->se;
da7a735e
PZ
7953
7954 /*
daa59407
BP
7955 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7956 * the dequeue_entity(.flags=0) will already have normalized the
7957 * vruntime.
7958 */
7959 if (p->on_rq)
7960 return true;
7961
7962 /*
7963 * When !on_rq, vruntime of the task has usually NOT been normalized.
7964 * But there are some cases where it has already been normalized:
da7a735e 7965 *
daa59407
BP
7966 * - A forked child which is waiting for being woken up by
7967 * wake_up_new_task().
7968 * - A task which has been woken up by try_to_wake_up() and
7969 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7970 */
daa59407
BP
7971 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7972 return true;
7973
7974 return false;
7975}
7976
7977static void detach_task_cfs_rq(struct task_struct *p)
7978{
7979 struct sched_entity *se = &p->se;
7980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7981
7982 if (!vruntime_normalized(p)) {
da7a735e
PZ
7983 /*
7984 * Fix up our vruntime so that the current sleep doesn't
7985 * cause 'unlimited' sleep bonus.
7986 */
7987 place_entity(cfs_rq, se, 0);
7988 se->vruntime -= cfs_rq->min_vruntime;
7989 }
9ee474f5 7990
9d89c257 7991 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 7992 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
7993}
7994
daa59407 7995static void attach_task_cfs_rq(struct task_struct *p)
cb469845 7996{
f36c019c 7997 struct sched_entity *se = &p->se;
daa59407 7998 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
7999
8000#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8001 /*
8002 * Since the real-depth could have been changed (only FAIR
8003 * class maintain depth value), reset depth properly.
8004 */
8005 se->depth = se->parent ? se->parent->depth + 1 : 0;
8006#endif
7855a35a 8007
6efdb105 8008 /* Synchronize task with its cfs_rq */
daa59407
BP
8009 attach_entity_load_avg(cfs_rq, se);
8010
8011 if (!vruntime_normalized(p))
8012 se->vruntime += cfs_rq->min_vruntime;
8013}
6efdb105 8014
daa59407
BP
8015static void switched_from_fair(struct rq *rq, struct task_struct *p)
8016{
8017 detach_task_cfs_rq(p);
8018}
8019
8020static void switched_to_fair(struct rq *rq, struct task_struct *p)
8021{
8022 attach_task_cfs_rq(p);
7855a35a 8023
daa59407 8024 if (task_on_rq_queued(p)) {
7855a35a 8025 /*
daa59407
BP
8026 * We were most likely switched from sched_rt, so
8027 * kick off the schedule if running, otherwise just see
8028 * if we can still preempt the current task.
7855a35a 8029 */
daa59407
BP
8030 if (rq->curr == p)
8031 resched_curr(rq);
8032 else
8033 check_preempt_curr(rq, p, 0);
7855a35a 8034 }
cb469845
SR
8035}
8036
83b699ed
SV
8037/* Account for a task changing its policy or group.
8038 *
8039 * This routine is mostly called to set cfs_rq->curr field when a task
8040 * migrates between groups/classes.
8041 */
8042static void set_curr_task_fair(struct rq *rq)
8043{
8044 struct sched_entity *se = &rq->curr->se;
8045
ec12cb7f
PT
8046 for_each_sched_entity(se) {
8047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8048
8049 set_next_entity(cfs_rq, se);
8050 /* ensure bandwidth has been allocated on our new cfs_rq */
8051 account_cfs_rq_runtime(cfs_rq, 0);
8052 }
83b699ed
SV
8053}
8054
029632fb
PZ
8055void init_cfs_rq(struct cfs_rq *cfs_rq)
8056{
8057 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8058 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8059#ifndef CONFIG_64BIT
8060 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8061#endif
141965c7 8062#ifdef CONFIG_SMP
9d89c257
YD
8063 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8064 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8065#endif
029632fb
PZ
8066}
8067
810b3817 8068#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8069static void task_move_group_fair(struct task_struct *p)
810b3817 8070{
daa59407 8071 detach_task_cfs_rq(p);
b2b5ce02 8072 set_task_rq(p, task_cpu(p));
6efdb105
BP
8073
8074#ifdef CONFIG_SMP
8075 /* Tell se's cfs_rq has been changed -- migrated */
8076 p->se.avg.last_update_time = 0;
8077#endif
daa59407 8078 attach_task_cfs_rq(p);
810b3817 8079}
029632fb
PZ
8080
8081void free_fair_sched_group(struct task_group *tg)
8082{
8083 int i;
8084
8085 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8086
8087 for_each_possible_cpu(i) {
8088 if (tg->cfs_rq)
8089 kfree(tg->cfs_rq[i]);
12695578
YD
8090 if (tg->se) {
8091 if (tg->se[i])
8092 remove_entity_load_avg(tg->se[i]);
029632fb 8093 kfree(tg->se[i]);
12695578 8094 }
029632fb
PZ
8095 }
8096
8097 kfree(tg->cfs_rq);
8098 kfree(tg->se);
8099}
8100
8101int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8102{
8103 struct cfs_rq *cfs_rq;
8104 struct sched_entity *se;
8105 int i;
8106
8107 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8108 if (!tg->cfs_rq)
8109 goto err;
8110 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8111 if (!tg->se)
8112 goto err;
8113
8114 tg->shares = NICE_0_LOAD;
8115
8116 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8117
8118 for_each_possible_cpu(i) {
8119 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8120 GFP_KERNEL, cpu_to_node(i));
8121 if (!cfs_rq)
8122 goto err;
8123
8124 se = kzalloc_node(sizeof(struct sched_entity),
8125 GFP_KERNEL, cpu_to_node(i));
8126 if (!se)
8127 goto err_free_rq;
8128
8129 init_cfs_rq(cfs_rq);
8130 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8131 init_entity_runnable_average(se);
029632fb
PZ
8132 }
8133
8134 return 1;
8135
8136err_free_rq:
8137 kfree(cfs_rq);
8138err:
8139 return 0;
8140}
8141
8142void unregister_fair_sched_group(struct task_group *tg, int cpu)
8143{
8144 struct rq *rq = cpu_rq(cpu);
8145 unsigned long flags;
8146
8147 /*
8148 * Only empty task groups can be destroyed; so we can speculatively
8149 * check on_list without danger of it being re-added.
8150 */
8151 if (!tg->cfs_rq[cpu]->on_list)
8152 return;
8153
8154 raw_spin_lock_irqsave(&rq->lock, flags);
8155 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8156 raw_spin_unlock_irqrestore(&rq->lock, flags);
8157}
8158
8159void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8160 struct sched_entity *se, int cpu,
8161 struct sched_entity *parent)
8162{
8163 struct rq *rq = cpu_rq(cpu);
8164
8165 cfs_rq->tg = tg;
8166 cfs_rq->rq = rq;
029632fb
PZ
8167 init_cfs_rq_runtime(cfs_rq);
8168
8169 tg->cfs_rq[cpu] = cfs_rq;
8170 tg->se[cpu] = se;
8171
8172 /* se could be NULL for root_task_group */
8173 if (!se)
8174 return;
8175
fed14d45 8176 if (!parent) {
029632fb 8177 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8178 se->depth = 0;
8179 } else {
029632fb 8180 se->cfs_rq = parent->my_q;
fed14d45
PZ
8181 se->depth = parent->depth + 1;
8182 }
029632fb
PZ
8183
8184 se->my_q = cfs_rq;
0ac9b1c2
PT
8185 /* guarantee group entities always have weight */
8186 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8187 se->parent = parent;
8188}
8189
8190static DEFINE_MUTEX(shares_mutex);
8191
8192int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8193{
8194 int i;
8195 unsigned long flags;
8196
8197 /*
8198 * We can't change the weight of the root cgroup.
8199 */
8200 if (!tg->se[0])
8201 return -EINVAL;
8202
8203 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8204
8205 mutex_lock(&shares_mutex);
8206 if (tg->shares == shares)
8207 goto done;
8208
8209 tg->shares = shares;
8210 for_each_possible_cpu(i) {
8211 struct rq *rq = cpu_rq(i);
8212 struct sched_entity *se;
8213
8214 se = tg->se[i];
8215 /* Propagate contribution to hierarchy */
8216 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8217
8218 /* Possible calls to update_curr() need rq clock */
8219 update_rq_clock(rq);
17bc14b7 8220 for_each_sched_entity(se)
029632fb
PZ
8221 update_cfs_shares(group_cfs_rq(se));
8222 raw_spin_unlock_irqrestore(&rq->lock, flags);
8223 }
8224
8225done:
8226 mutex_unlock(&shares_mutex);
8227 return 0;
8228}
8229#else /* CONFIG_FAIR_GROUP_SCHED */
8230
8231void free_fair_sched_group(struct task_group *tg) { }
8232
8233int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8234{
8235 return 1;
8236}
8237
8238void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8239
8240#endif /* CONFIG_FAIR_GROUP_SCHED */
8241
810b3817 8242
6d686f45 8243static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8244{
8245 struct sched_entity *se = &task->se;
0d721cea
PW
8246 unsigned int rr_interval = 0;
8247
8248 /*
8249 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8250 * idle runqueue:
8251 */
0d721cea 8252 if (rq->cfs.load.weight)
a59f4e07 8253 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8254
8255 return rr_interval;
8256}
8257
bf0f6f24
IM
8258/*
8259 * All the scheduling class methods:
8260 */
029632fb 8261const struct sched_class fair_sched_class = {
5522d5d5 8262 .next = &idle_sched_class,
bf0f6f24
IM
8263 .enqueue_task = enqueue_task_fair,
8264 .dequeue_task = dequeue_task_fair,
8265 .yield_task = yield_task_fair,
d95f4122 8266 .yield_to_task = yield_to_task_fair,
bf0f6f24 8267
2e09bf55 8268 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8269
8270 .pick_next_task = pick_next_task_fair,
8271 .put_prev_task = put_prev_task_fair,
8272
681f3e68 8273#ifdef CONFIG_SMP
4ce72a2c 8274 .select_task_rq = select_task_rq_fair,
0a74bef8 8275 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8276
0bcdcf28
CE
8277 .rq_online = rq_online_fair,
8278 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8279
8280 .task_waking = task_waking_fair,
12695578 8281 .task_dead = task_dead_fair,
c5b28038 8282 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8283#endif
bf0f6f24 8284
83b699ed 8285 .set_curr_task = set_curr_task_fair,
bf0f6f24 8286 .task_tick = task_tick_fair,
cd29fe6f 8287 .task_fork = task_fork_fair,
cb469845
SR
8288
8289 .prio_changed = prio_changed_fair,
da7a735e 8290 .switched_from = switched_from_fair,
cb469845 8291 .switched_to = switched_to_fair,
810b3817 8292
0d721cea
PW
8293 .get_rr_interval = get_rr_interval_fair,
8294
6e998916
SG
8295 .update_curr = update_curr_fair,
8296
810b3817 8297#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8298 .task_move_group = task_move_group_fair,
810b3817 8299#endif
bf0f6f24
IM
8300};
8301
8302#ifdef CONFIG_SCHED_DEBUG
029632fb 8303void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8304{
bf0f6f24
IM
8305 struct cfs_rq *cfs_rq;
8306
5973e5b9 8307 rcu_read_lock();
c3b64f1e 8308 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8309 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8310 rcu_read_unlock();
bf0f6f24 8311}
397f2378
SD
8312
8313#ifdef CONFIG_NUMA_BALANCING
8314void show_numa_stats(struct task_struct *p, struct seq_file *m)
8315{
8316 int node;
8317 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8318
8319 for_each_online_node(node) {
8320 if (p->numa_faults) {
8321 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8322 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8323 }
8324 if (p->numa_group) {
8325 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8326 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8327 }
8328 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8329 }
8330}
8331#endif /* CONFIG_NUMA_BALANCING */
8332#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8333
8334__init void init_sched_fair_class(void)
8335{
8336#ifdef CONFIG_SMP
8337 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8338
3451d024 8339#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8340 nohz.next_balance = jiffies;
029632fb 8341 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8342 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8343#endif
8344#endif /* SMP */
8345
8346}