]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/numa: Update NUMA hinting faults once per scan
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
598f0ec0
MG
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
cbee9f88 824 */
598f0ec0
MG
825unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
828
829/* Portion of address space to scan in MB */
830unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 831
4b96a29b
PZ
832/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833unsigned int sysctl_numa_balancing_scan_delay = 1000;
834
598f0ec0
MG
835static unsigned int task_nr_scan_windows(struct task_struct *p)
836{
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
839
840 /*
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
843 * on resident pages
844 */
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
847 if (!rss)
848 rss = nr_scan_pages;
849
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
852}
853
854/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855#define MAX_SCAN_WINDOW 2560
856
857static unsigned int task_scan_min(struct task_struct *p)
858{
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868}
869
870static unsigned int task_scan_max(struct task_struct *p)
871{
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878}
879
cbee9f88
PZ
880static void task_numa_placement(struct task_struct *p)
881{
688b7585
MG
882 int seq, nid, max_nid = -1;
883 unsigned long max_faults = 0;
cbee9f88 884
2832bc19
HD
885 if (!p->mm) /* for example, ksmd faulting in a user's mm */
886 return;
887 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
888 if (p->numa_scan_seq == seq)
889 return;
890 p->numa_scan_seq = seq;
598f0ec0 891 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 892
688b7585
MG
893 /* Find the node with the highest number of faults */
894 for_each_online_node(nid) {
745d6147
MG
895 unsigned long faults;
896
897 /* Decay existing window and copy faults since last scan */
688b7585 898 p->numa_faults[nid] >>= 1;
745d6147
MG
899 p->numa_faults[nid] += p->numa_faults_buffer[nid];
900 p->numa_faults_buffer[nid] = 0;
901
902 faults = p->numa_faults[nid];
688b7585
MG
903 if (faults > max_faults) {
904 max_faults = faults;
905 max_nid = nid;
906 }
907 }
908
909 /* Update the tasks preferred node if necessary */
910 if (max_faults && max_nid != p->numa_preferred_nid)
911 p->numa_preferred_nid = max_nid;
cbee9f88
PZ
912}
913
914/*
915 * Got a PROT_NONE fault for a page on @node.
916 */
b8593bfd 917void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
918{
919 struct task_struct *p = current;
920
10e84b97 921 if (!numabalancing_enabled)
1a687c2e
MG
922 return;
923
f809ca9a
MG
924 /* Allocate buffer to track faults on a per-node basis */
925 if (unlikely(!p->numa_faults)) {
926 int size = sizeof(*p->numa_faults) * nr_node_ids;
927
745d6147
MG
928 /* numa_faults and numa_faults_buffer share the allocation */
929 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
930 if (!p->numa_faults)
931 return;
745d6147
MG
932
933 BUG_ON(p->numa_faults_buffer);
934 p->numa_faults_buffer = p->numa_faults + nr_node_ids;
f809ca9a 935 }
cbee9f88 936
fb003b80 937 /*
b8593bfd
MG
938 * If pages are properly placed (did not migrate) then scan slower.
939 * This is reset periodically in case of phase changes
fb003b80 940 */
598f0ec0
MG
941 if (!migrated) {
942 /* Initialise if necessary */
943 if (!p->numa_scan_period_max)
944 p->numa_scan_period_max = task_scan_max(p);
945
946 p->numa_scan_period = min(p->numa_scan_period_max,
947 p->numa_scan_period + 10);
948 }
fb003b80 949
cbee9f88 950 task_numa_placement(p);
f809ca9a 951
745d6147 952 p->numa_faults_buffer[node] += pages;
cbee9f88
PZ
953}
954
6e5fb223
PZ
955static void reset_ptenuma_scan(struct task_struct *p)
956{
957 ACCESS_ONCE(p->mm->numa_scan_seq)++;
958 p->mm->numa_scan_offset = 0;
959}
960
cbee9f88
PZ
961/*
962 * The expensive part of numa migration is done from task_work context.
963 * Triggered from task_tick_numa().
964 */
965void task_numa_work(struct callback_head *work)
966{
967 unsigned long migrate, next_scan, now = jiffies;
968 struct task_struct *p = current;
969 struct mm_struct *mm = p->mm;
6e5fb223 970 struct vm_area_struct *vma;
9f40604c 971 unsigned long start, end;
598f0ec0 972 unsigned long nr_pte_updates = 0;
9f40604c 973 long pages;
cbee9f88
PZ
974
975 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
976
977 work->next = work; /* protect against double add */
978 /*
979 * Who cares about NUMA placement when they're dying.
980 *
981 * NOTE: make sure not to dereference p->mm before this check,
982 * exit_task_work() happens _after_ exit_mm() so we could be called
983 * without p->mm even though we still had it when we enqueued this
984 * work.
985 */
986 if (p->flags & PF_EXITING)
987 return;
988
7e8d16b6
MG
989 if (!mm->numa_next_reset || !mm->numa_next_scan) {
990 mm->numa_next_scan = now +
991 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
992 mm->numa_next_reset = now +
993 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
994 }
995
b8593bfd
MG
996 /*
997 * Reset the scan period if enough time has gone by. Objective is that
998 * scanning will be reduced if pages are properly placed. As tasks
999 * can enter different phases this needs to be re-examined. Lacking
1000 * proper tracking of reference behaviour, this blunt hammer is used.
1001 */
1002 migrate = mm->numa_next_reset;
1003 if (time_after(now, migrate)) {
598f0ec0 1004 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1005 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1006 xchg(&mm->numa_next_reset, next_scan);
1007 }
1008
cbee9f88
PZ
1009 /*
1010 * Enforce maximal scan/migration frequency..
1011 */
1012 migrate = mm->numa_next_scan;
1013 if (time_before(now, migrate))
1014 return;
1015
598f0ec0
MG
1016 if (p->numa_scan_period == 0) {
1017 p->numa_scan_period_max = task_scan_max(p);
1018 p->numa_scan_period = task_scan_min(p);
1019 }
cbee9f88 1020
fb003b80 1021 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1022 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1023 return;
1024
19a78d11
PZ
1025 /*
1026 * Delay this task enough that another task of this mm will likely win
1027 * the next time around.
1028 */
1029 p->node_stamp += 2 * TICK_NSEC;
1030
9f40604c
MG
1031 start = mm->numa_scan_offset;
1032 pages = sysctl_numa_balancing_scan_size;
1033 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1034 if (!pages)
1035 return;
cbee9f88 1036
6e5fb223 1037 down_read(&mm->mmap_sem);
9f40604c 1038 vma = find_vma(mm, start);
6e5fb223
PZ
1039 if (!vma) {
1040 reset_ptenuma_scan(p);
9f40604c 1041 start = 0;
6e5fb223
PZ
1042 vma = mm->mmap;
1043 }
9f40604c 1044 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
1045 if (!vma_migratable(vma))
1046 continue;
1047
1048 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 1049 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
1050 continue;
1051
9f40604c
MG
1052 do {
1053 start = max(start, vma->vm_start);
1054 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1055 end = min(end, vma->vm_end);
598f0ec0
MG
1056 nr_pte_updates += change_prot_numa(vma, start, end);
1057
1058 /*
1059 * Scan sysctl_numa_balancing_scan_size but ensure that
1060 * at least one PTE is updated so that unused virtual
1061 * address space is quickly skipped.
1062 */
1063 if (nr_pte_updates)
1064 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1065
9f40604c
MG
1066 start = end;
1067 if (pages <= 0)
1068 goto out;
1069 } while (end != vma->vm_end);
cbee9f88 1070 }
6e5fb223 1071
9f40604c 1072out:
f307cd1a
MG
1073 /*
1074 * If the whole process was scanned without updates then no NUMA
1075 * hinting faults are being recorded and scan rate should be lower.
1076 */
1077 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1078 p->numa_scan_period = min(p->numa_scan_period_max,
1079 p->numa_scan_period << 1);
1080
1081 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1082 mm->numa_next_scan = next_scan;
1083 }
1084
6e5fb223 1085 /*
c69307d5
PZ
1086 * It is possible to reach the end of the VMA list but the last few
1087 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1088 * would find the !migratable VMA on the next scan but not reset the
1089 * scanner to the start so check it now.
6e5fb223
PZ
1090 */
1091 if (vma)
9f40604c 1092 mm->numa_scan_offset = start;
6e5fb223
PZ
1093 else
1094 reset_ptenuma_scan(p);
1095 up_read(&mm->mmap_sem);
cbee9f88
PZ
1096}
1097
1098/*
1099 * Drive the periodic memory faults..
1100 */
1101void task_tick_numa(struct rq *rq, struct task_struct *curr)
1102{
1103 struct callback_head *work = &curr->numa_work;
1104 u64 period, now;
1105
1106 /*
1107 * We don't care about NUMA placement if we don't have memory.
1108 */
1109 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1110 return;
1111
1112 /*
1113 * Using runtime rather than walltime has the dual advantage that
1114 * we (mostly) drive the selection from busy threads and that the
1115 * task needs to have done some actual work before we bother with
1116 * NUMA placement.
1117 */
1118 now = curr->se.sum_exec_runtime;
1119 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1120
1121 if (now - curr->node_stamp > period) {
4b96a29b 1122 if (!curr->node_stamp)
598f0ec0 1123 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1124 curr->node_stamp += period;
cbee9f88
PZ
1125
1126 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1127 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1128 task_work_add(curr, work, true);
1129 }
1130 }
1131}
1132#else
1133static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1134{
1135}
1136#endif /* CONFIG_NUMA_BALANCING */
1137
30cfdcfc
DA
1138static void
1139account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1140{
1141 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1142 if (!parent_entity(se))
029632fb 1143 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1144#ifdef CONFIG_SMP
1145 if (entity_is_task(se))
eb95308e 1146 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1147#endif
30cfdcfc 1148 cfs_rq->nr_running++;
30cfdcfc
DA
1149}
1150
1151static void
1152account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1153{
1154 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1155 if (!parent_entity(se))
029632fb 1156 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1157 if (entity_is_task(se))
b87f1724 1158 list_del_init(&se->group_node);
30cfdcfc 1159 cfs_rq->nr_running--;
30cfdcfc
DA
1160}
1161
3ff6dcac
YZ
1162#ifdef CONFIG_FAIR_GROUP_SCHED
1163# ifdef CONFIG_SMP
cf5f0acf
PZ
1164static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1165{
1166 long tg_weight;
1167
1168 /*
1169 * Use this CPU's actual weight instead of the last load_contribution
1170 * to gain a more accurate current total weight. See
1171 * update_cfs_rq_load_contribution().
1172 */
bf5b986e 1173 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1174 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1175 tg_weight += cfs_rq->load.weight;
1176
1177 return tg_weight;
1178}
1179
6d5ab293 1180static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1181{
cf5f0acf 1182 long tg_weight, load, shares;
3ff6dcac 1183
cf5f0acf 1184 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1185 load = cfs_rq->load.weight;
3ff6dcac 1186
3ff6dcac 1187 shares = (tg->shares * load);
cf5f0acf
PZ
1188 if (tg_weight)
1189 shares /= tg_weight;
3ff6dcac
YZ
1190
1191 if (shares < MIN_SHARES)
1192 shares = MIN_SHARES;
1193 if (shares > tg->shares)
1194 shares = tg->shares;
1195
1196 return shares;
1197}
3ff6dcac 1198# else /* CONFIG_SMP */
6d5ab293 1199static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1200{
1201 return tg->shares;
1202}
3ff6dcac 1203# endif /* CONFIG_SMP */
2069dd75
PZ
1204static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1205 unsigned long weight)
1206{
19e5eebb
PT
1207 if (se->on_rq) {
1208 /* commit outstanding execution time */
1209 if (cfs_rq->curr == se)
1210 update_curr(cfs_rq);
2069dd75 1211 account_entity_dequeue(cfs_rq, se);
19e5eebb 1212 }
2069dd75
PZ
1213
1214 update_load_set(&se->load, weight);
1215
1216 if (se->on_rq)
1217 account_entity_enqueue(cfs_rq, se);
1218}
1219
82958366
PT
1220static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1221
6d5ab293 1222static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1223{
1224 struct task_group *tg;
1225 struct sched_entity *se;
3ff6dcac 1226 long shares;
2069dd75 1227
2069dd75
PZ
1228 tg = cfs_rq->tg;
1229 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1230 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1231 return;
3ff6dcac
YZ
1232#ifndef CONFIG_SMP
1233 if (likely(se->load.weight == tg->shares))
1234 return;
1235#endif
6d5ab293 1236 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1237
1238 reweight_entity(cfs_rq_of(se), se, shares);
1239}
1240#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1241static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1242{
1243}
1244#endif /* CONFIG_FAIR_GROUP_SCHED */
1245
141965c7 1246#ifdef CONFIG_SMP
5b51f2f8
PT
1247/*
1248 * We choose a half-life close to 1 scheduling period.
1249 * Note: The tables below are dependent on this value.
1250 */
1251#define LOAD_AVG_PERIOD 32
1252#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1253#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1254
1255/* Precomputed fixed inverse multiplies for multiplication by y^n */
1256static const u32 runnable_avg_yN_inv[] = {
1257 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1258 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1259 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1260 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1261 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1262 0x85aac367, 0x82cd8698,
1263};
1264
1265/*
1266 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1267 * over-estimates when re-combining.
1268 */
1269static const u32 runnable_avg_yN_sum[] = {
1270 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1271 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1272 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1273};
1274
9d85f21c
PT
1275/*
1276 * Approximate:
1277 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1278 */
1279static __always_inline u64 decay_load(u64 val, u64 n)
1280{
5b51f2f8
PT
1281 unsigned int local_n;
1282
1283 if (!n)
1284 return val;
1285 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1286 return 0;
1287
1288 /* after bounds checking we can collapse to 32-bit */
1289 local_n = n;
1290
1291 /*
1292 * As y^PERIOD = 1/2, we can combine
1293 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1294 * With a look-up table which covers k^n (n<PERIOD)
1295 *
1296 * To achieve constant time decay_load.
1297 */
1298 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1299 val >>= local_n / LOAD_AVG_PERIOD;
1300 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1301 }
1302
5b51f2f8
PT
1303 val *= runnable_avg_yN_inv[local_n];
1304 /* We don't use SRR here since we always want to round down. */
1305 return val >> 32;
1306}
1307
1308/*
1309 * For updates fully spanning n periods, the contribution to runnable
1310 * average will be: \Sum 1024*y^n
1311 *
1312 * We can compute this reasonably efficiently by combining:
1313 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1314 */
1315static u32 __compute_runnable_contrib(u64 n)
1316{
1317 u32 contrib = 0;
1318
1319 if (likely(n <= LOAD_AVG_PERIOD))
1320 return runnable_avg_yN_sum[n];
1321 else if (unlikely(n >= LOAD_AVG_MAX_N))
1322 return LOAD_AVG_MAX;
1323
1324 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1325 do {
1326 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1327 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1328
1329 n -= LOAD_AVG_PERIOD;
1330 } while (n > LOAD_AVG_PERIOD);
1331
1332 contrib = decay_load(contrib, n);
1333 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1334}
1335
1336/*
1337 * We can represent the historical contribution to runnable average as the
1338 * coefficients of a geometric series. To do this we sub-divide our runnable
1339 * history into segments of approximately 1ms (1024us); label the segment that
1340 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1341 *
1342 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1343 * p0 p1 p2
1344 * (now) (~1ms ago) (~2ms ago)
1345 *
1346 * Let u_i denote the fraction of p_i that the entity was runnable.
1347 *
1348 * We then designate the fractions u_i as our co-efficients, yielding the
1349 * following representation of historical load:
1350 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1351 *
1352 * We choose y based on the with of a reasonably scheduling period, fixing:
1353 * y^32 = 0.5
1354 *
1355 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1356 * approximately half as much as the contribution to load within the last ms
1357 * (u_0).
1358 *
1359 * When a period "rolls over" and we have new u_0`, multiplying the previous
1360 * sum again by y is sufficient to update:
1361 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1362 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1363 */
1364static __always_inline int __update_entity_runnable_avg(u64 now,
1365 struct sched_avg *sa,
1366 int runnable)
1367{
5b51f2f8
PT
1368 u64 delta, periods;
1369 u32 runnable_contrib;
9d85f21c
PT
1370 int delta_w, decayed = 0;
1371
1372 delta = now - sa->last_runnable_update;
1373 /*
1374 * This should only happen when time goes backwards, which it
1375 * unfortunately does during sched clock init when we swap over to TSC.
1376 */
1377 if ((s64)delta < 0) {
1378 sa->last_runnable_update = now;
1379 return 0;
1380 }
1381
1382 /*
1383 * Use 1024ns as the unit of measurement since it's a reasonable
1384 * approximation of 1us and fast to compute.
1385 */
1386 delta >>= 10;
1387 if (!delta)
1388 return 0;
1389 sa->last_runnable_update = now;
1390
1391 /* delta_w is the amount already accumulated against our next period */
1392 delta_w = sa->runnable_avg_period % 1024;
1393 if (delta + delta_w >= 1024) {
1394 /* period roll-over */
1395 decayed = 1;
1396
1397 /*
1398 * Now that we know we're crossing a period boundary, figure
1399 * out how much from delta we need to complete the current
1400 * period and accrue it.
1401 */
1402 delta_w = 1024 - delta_w;
5b51f2f8
PT
1403 if (runnable)
1404 sa->runnable_avg_sum += delta_w;
1405 sa->runnable_avg_period += delta_w;
1406
1407 delta -= delta_w;
1408
1409 /* Figure out how many additional periods this update spans */
1410 periods = delta / 1024;
1411 delta %= 1024;
1412
1413 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1414 periods + 1);
1415 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1416 periods + 1);
1417
1418 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1419 runnable_contrib = __compute_runnable_contrib(periods);
1420 if (runnable)
1421 sa->runnable_avg_sum += runnable_contrib;
1422 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1423 }
1424
1425 /* Remainder of delta accrued against u_0` */
1426 if (runnable)
1427 sa->runnable_avg_sum += delta;
1428 sa->runnable_avg_period += delta;
1429
1430 return decayed;
1431}
1432
9ee474f5 1433/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1434static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1435{
1436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1437 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1438
1439 decays -= se->avg.decay_count;
1440 if (!decays)
aff3e498 1441 return 0;
9ee474f5
PT
1442
1443 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1444 se->avg.decay_count = 0;
aff3e498
PT
1445
1446 return decays;
9ee474f5
PT
1447}
1448
c566e8e9
PT
1449#ifdef CONFIG_FAIR_GROUP_SCHED
1450static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1451 int force_update)
1452{
1453 struct task_group *tg = cfs_rq->tg;
bf5b986e 1454 long tg_contrib;
c566e8e9
PT
1455
1456 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1457 tg_contrib -= cfs_rq->tg_load_contrib;
1458
bf5b986e
AS
1459 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1460 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1461 cfs_rq->tg_load_contrib += tg_contrib;
1462 }
1463}
8165e145 1464
bb17f655
PT
1465/*
1466 * Aggregate cfs_rq runnable averages into an equivalent task_group
1467 * representation for computing load contributions.
1468 */
1469static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1470 struct cfs_rq *cfs_rq)
1471{
1472 struct task_group *tg = cfs_rq->tg;
1473 long contrib;
1474
1475 /* The fraction of a cpu used by this cfs_rq */
1476 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1477 sa->runnable_avg_period + 1);
1478 contrib -= cfs_rq->tg_runnable_contrib;
1479
1480 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1481 atomic_add(contrib, &tg->runnable_avg);
1482 cfs_rq->tg_runnable_contrib += contrib;
1483 }
1484}
1485
8165e145
PT
1486static inline void __update_group_entity_contrib(struct sched_entity *se)
1487{
1488 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1489 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1490 int runnable_avg;
1491
8165e145
PT
1492 u64 contrib;
1493
1494 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1495 se->avg.load_avg_contrib = div_u64(contrib,
1496 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1497
1498 /*
1499 * For group entities we need to compute a correction term in the case
1500 * that they are consuming <1 cpu so that we would contribute the same
1501 * load as a task of equal weight.
1502 *
1503 * Explicitly co-ordinating this measurement would be expensive, but
1504 * fortunately the sum of each cpus contribution forms a usable
1505 * lower-bound on the true value.
1506 *
1507 * Consider the aggregate of 2 contributions. Either they are disjoint
1508 * (and the sum represents true value) or they are disjoint and we are
1509 * understating by the aggregate of their overlap.
1510 *
1511 * Extending this to N cpus, for a given overlap, the maximum amount we
1512 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1513 * cpus that overlap for this interval and w_i is the interval width.
1514 *
1515 * On a small machine; the first term is well-bounded which bounds the
1516 * total error since w_i is a subset of the period. Whereas on a
1517 * larger machine, while this first term can be larger, if w_i is the
1518 * of consequential size guaranteed to see n_i*w_i quickly converge to
1519 * our upper bound of 1-cpu.
1520 */
1521 runnable_avg = atomic_read(&tg->runnable_avg);
1522 if (runnable_avg < NICE_0_LOAD) {
1523 se->avg.load_avg_contrib *= runnable_avg;
1524 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1525 }
8165e145 1526}
c566e8e9
PT
1527#else
1528static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1529 int force_update) {}
bb17f655
PT
1530static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1531 struct cfs_rq *cfs_rq) {}
8165e145 1532static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1533#endif
1534
8165e145
PT
1535static inline void __update_task_entity_contrib(struct sched_entity *se)
1536{
1537 u32 contrib;
1538
1539 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1540 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1541 contrib /= (se->avg.runnable_avg_period + 1);
1542 se->avg.load_avg_contrib = scale_load(contrib);
1543}
1544
2dac754e
PT
1545/* Compute the current contribution to load_avg by se, return any delta */
1546static long __update_entity_load_avg_contrib(struct sched_entity *se)
1547{
1548 long old_contrib = se->avg.load_avg_contrib;
1549
8165e145
PT
1550 if (entity_is_task(se)) {
1551 __update_task_entity_contrib(se);
1552 } else {
bb17f655 1553 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1554 __update_group_entity_contrib(se);
1555 }
2dac754e
PT
1556
1557 return se->avg.load_avg_contrib - old_contrib;
1558}
1559
9ee474f5
PT
1560static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1561 long load_contrib)
1562{
1563 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1564 cfs_rq->blocked_load_avg -= load_contrib;
1565 else
1566 cfs_rq->blocked_load_avg = 0;
1567}
1568
f1b17280
PT
1569static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1570
9d85f21c 1571/* Update a sched_entity's runnable average */
9ee474f5
PT
1572static inline void update_entity_load_avg(struct sched_entity *se,
1573 int update_cfs_rq)
9d85f21c 1574{
2dac754e
PT
1575 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1576 long contrib_delta;
f1b17280 1577 u64 now;
2dac754e 1578
f1b17280
PT
1579 /*
1580 * For a group entity we need to use their owned cfs_rq_clock_task() in
1581 * case they are the parent of a throttled hierarchy.
1582 */
1583 if (entity_is_task(se))
1584 now = cfs_rq_clock_task(cfs_rq);
1585 else
1586 now = cfs_rq_clock_task(group_cfs_rq(se));
1587
1588 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1589 return;
1590
1591 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1592
1593 if (!update_cfs_rq)
1594 return;
1595
2dac754e
PT
1596 if (se->on_rq)
1597 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1598 else
1599 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1600}
1601
1602/*
1603 * Decay the load contributed by all blocked children and account this so that
1604 * their contribution may appropriately discounted when they wake up.
1605 */
aff3e498 1606static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1607{
f1b17280 1608 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1609 u64 decays;
1610
1611 decays = now - cfs_rq->last_decay;
aff3e498 1612 if (!decays && !force_update)
9ee474f5
PT
1613 return;
1614
2509940f
AS
1615 if (atomic_long_read(&cfs_rq->removed_load)) {
1616 unsigned long removed_load;
1617 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1618 subtract_blocked_load_contrib(cfs_rq, removed_load);
1619 }
9ee474f5 1620
aff3e498
PT
1621 if (decays) {
1622 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1623 decays);
1624 atomic64_add(decays, &cfs_rq->decay_counter);
1625 cfs_rq->last_decay = now;
1626 }
c566e8e9
PT
1627
1628 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1629}
18bf2805
BS
1630
1631static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1632{
78becc27 1633 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1634 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1635}
2dac754e
PT
1636
1637/* Add the load generated by se into cfs_rq's child load-average */
1638static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1639 struct sched_entity *se,
1640 int wakeup)
2dac754e 1641{
aff3e498
PT
1642 /*
1643 * We track migrations using entity decay_count <= 0, on a wake-up
1644 * migration we use a negative decay count to track the remote decays
1645 * accumulated while sleeping.
a75cdaa9
AS
1646 *
1647 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1648 * are seen by enqueue_entity_load_avg() as a migration with an already
1649 * constructed load_avg_contrib.
aff3e498
PT
1650 */
1651 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1652 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1653 if (se->avg.decay_count) {
1654 /*
1655 * In a wake-up migration we have to approximate the
1656 * time sleeping. This is because we can't synchronize
1657 * clock_task between the two cpus, and it is not
1658 * guaranteed to be read-safe. Instead, we can
1659 * approximate this using our carried decays, which are
1660 * explicitly atomically readable.
1661 */
1662 se->avg.last_runnable_update -= (-se->avg.decay_count)
1663 << 20;
1664 update_entity_load_avg(se, 0);
1665 /* Indicate that we're now synchronized and on-rq */
1666 se->avg.decay_count = 0;
1667 }
9ee474f5
PT
1668 wakeup = 0;
1669 } else {
282cf499
AS
1670 /*
1671 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1672 * would have made count negative); we must be careful to avoid
1673 * double-accounting blocked time after synchronizing decays.
1674 */
1675 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1676 << 20;
9ee474f5
PT
1677 }
1678
aff3e498
PT
1679 /* migrated tasks did not contribute to our blocked load */
1680 if (wakeup) {
9ee474f5 1681 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1682 update_entity_load_avg(se, 0);
1683 }
9ee474f5 1684
2dac754e 1685 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1686 /* we force update consideration on load-balancer moves */
1687 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1688}
1689
9ee474f5
PT
1690/*
1691 * Remove se's load from this cfs_rq child load-average, if the entity is
1692 * transitioning to a blocked state we track its projected decay using
1693 * blocked_load_avg.
1694 */
2dac754e 1695static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1696 struct sched_entity *se,
1697 int sleep)
2dac754e 1698{
9ee474f5 1699 update_entity_load_avg(se, 1);
aff3e498
PT
1700 /* we force update consideration on load-balancer moves */
1701 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1702
2dac754e 1703 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1704 if (sleep) {
1705 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1706 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1707 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1708}
642dbc39
VG
1709
1710/*
1711 * Update the rq's load with the elapsed running time before entering
1712 * idle. if the last scheduled task is not a CFS task, idle_enter will
1713 * be the only way to update the runnable statistic.
1714 */
1715void idle_enter_fair(struct rq *this_rq)
1716{
1717 update_rq_runnable_avg(this_rq, 1);
1718}
1719
1720/*
1721 * Update the rq's load with the elapsed idle time before a task is
1722 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1723 * be the only way to update the runnable statistic.
1724 */
1725void idle_exit_fair(struct rq *this_rq)
1726{
1727 update_rq_runnable_avg(this_rq, 0);
1728}
1729
9d85f21c 1730#else
9ee474f5
PT
1731static inline void update_entity_load_avg(struct sched_entity *se,
1732 int update_cfs_rq) {}
18bf2805 1733static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1734static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1735 struct sched_entity *se,
1736 int wakeup) {}
2dac754e 1737static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1738 struct sched_entity *se,
1739 int sleep) {}
aff3e498
PT
1740static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1741 int force_update) {}
9d85f21c
PT
1742#endif
1743
2396af69 1744static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1745{
bf0f6f24 1746#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1747 struct task_struct *tsk = NULL;
1748
1749 if (entity_is_task(se))
1750 tsk = task_of(se);
1751
41acab88 1752 if (se->statistics.sleep_start) {
78becc27 1753 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1754
1755 if ((s64)delta < 0)
1756 delta = 0;
1757
41acab88
LDM
1758 if (unlikely(delta > se->statistics.sleep_max))
1759 se->statistics.sleep_max = delta;
bf0f6f24 1760
8c79a045 1761 se->statistics.sleep_start = 0;
41acab88 1762 se->statistics.sum_sleep_runtime += delta;
9745512c 1763
768d0c27 1764 if (tsk) {
e414314c 1765 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1766 trace_sched_stat_sleep(tsk, delta);
1767 }
bf0f6f24 1768 }
41acab88 1769 if (se->statistics.block_start) {
78becc27 1770 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1771
1772 if ((s64)delta < 0)
1773 delta = 0;
1774
41acab88
LDM
1775 if (unlikely(delta > se->statistics.block_max))
1776 se->statistics.block_max = delta;
bf0f6f24 1777
8c79a045 1778 se->statistics.block_start = 0;
41acab88 1779 se->statistics.sum_sleep_runtime += delta;
30084fbd 1780
e414314c 1781 if (tsk) {
8f0dfc34 1782 if (tsk->in_iowait) {
41acab88
LDM
1783 se->statistics.iowait_sum += delta;
1784 se->statistics.iowait_count++;
768d0c27 1785 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1786 }
1787
b781a602
AV
1788 trace_sched_stat_blocked(tsk, delta);
1789
e414314c
PZ
1790 /*
1791 * Blocking time is in units of nanosecs, so shift by
1792 * 20 to get a milliseconds-range estimation of the
1793 * amount of time that the task spent sleeping:
1794 */
1795 if (unlikely(prof_on == SLEEP_PROFILING)) {
1796 profile_hits(SLEEP_PROFILING,
1797 (void *)get_wchan(tsk),
1798 delta >> 20);
1799 }
1800 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1801 }
bf0f6f24
IM
1802 }
1803#endif
1804}
1805
ddc97297
PZ
1806static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1807{
1808#ifdef CONFIG_SCHED_DEBUG
1809 s64 d = se->vruntime - cfs_rq->min_vruntime;
1810
1811 if (d < 0)
1812 d = -d;
1813
1814 if (d > 3*sysctl_sched_latency)
1815 schedstat_inc(cfs_rq, nr_spread_over);
1816#endif
1817}
1818
aeb73b04
PZ
1819static void
1820place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1821{
1af5f730 1822 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1823
2cb8600e
PZ
1824 /*
1825 * The 'current' period is already promised to the current tasks,
1826 * however the extra weight of the new task will slow them down a
1827 * little, place the new task so that it fits in the slot that
1828 * stays open at the end.
1829 */
94dfb5e7 1830 if (initial && sched_feat(START_DEBIT))
f9c0b095 1831 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1832
a2e7a7eb 1833 /* sleeps up to a single latency don't count. */
5ca9880c 1834 if (!initial) {
a2e7a7eb 1835 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1836
a2e7a7eb
MG
1837 /*
1838 * Halve their sleep time's effect, to allow
1839 * for a gentler effect of sleepers:
1840 */
1841 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1842 thresh >>= 1;
51e0304c 1843
a2e7a7eb 1844 vruntime -= thresh;
aeb73b04
PZ
1845 }
1846
b5d9d734 1847 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1848 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1849}
1850
d3d9dc33
PT
1851static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1852
bf0f6f24 1853static void
88ec22d3 1854enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1855{
88ec22d3
PZ
1856 /*
1857 * Update the normalized vruntime before updating min_vruntime
0fc576d5 1858 * through calling update_curr().
88ec22d3 1859 */
371fd7e7 1860 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1861 se->vruntime += cfs_rq->min_vruntime;
1862
bf0f6f24 1863 /*
a2a2d680 1864 * Update run-time statistics of the 'current'.
bf0f6f24 1865 */
b7cc0896 1866 update_curr(cfs_rq);
f269ae04 1867 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1868 account_entity_enqueue(cfs_rq, se);
1869 update_cfs_shares(cfs_rq);
bf0f6f24 1870
88ec22d3 1871 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1872 place_entity(cfs_rq, se, 0);
2396af69 1873 enqueue_sleeper(cfs_rq, se);
e9acbff6 1874 }
bf0f6f24 1875
d2417e5a 1876 update_stats_enqueue(cfs_rq, se);
ddc97297 1877 check_spread(cfs_rq, se);
83b699ed
SV
1878 if (se != cfs_rq->curr)
1879 __enqueue_entity(cfs_rq, se);
2069dd75 1880 se->on_rq = 1;
3d4b47b4 1881
d3d9dc33 1882 if (cfs_rq->nr_running == 1) {
3d4b47b4 1883 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1884 check_enqueue_throttle(cfs_rq);
1885 }
bf0f6f24
IM
1886}
1887
2c13c919 1888static void __clear_buddies_last(struct sched_entity *se)
2002c695 1889{
2c13c919
RR
1890 for_each_sched_entity(se) {
1891 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1892 if (cfs_rq->last == se)
1893 cfs_rq->last = NULL;
1894 else
1895 break;
1896 }
1897}
2002c695 1898
2c13c919
RR
1899static void __clear_buddies_next(struct sched_entity *se)
1900{
1901 for_each_sched_entity(se) {
1902 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1903 if (cfs_rq->next == se)
1904 cfs_rq->next = NULL;
1905 else
1906 break;
1907 }
2002c695
PZ
1908}
1909
ac53db59
RR
1910static void __clear_buddies_skip(struct sched_entity *se)
1911{
1912 for_each_sched_entity(se) {
1913 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1914 if (cfs_rq->skip == se)
1915 cfs_rq->skip = NULL;
1916 else
1917 break;
1918 }
1919}
1920
a571bbea
PZ
1921static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1922{
2c13c919
RR
1923 if (cfs_rq->last == se)
1924 __clear_buddies_last(se);
1925
1926 if (cfs_rq->next == se)
1927 __clear_buddies_next(se);
ac53db59
RR
1928
1929 if (cfs_rq->skip == se)
1930 __clear_buddies_skip(se);
a571bbea
PZ
1931}
1932
6c16a6dc 1933static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1934
bf0f6f24 1935static void
371fd7e7 1936dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1937{
a2a2d680
DA
1938 /*
1939 * Update run-time statistics of the 'current'.
1940 */
1941 update_curr(cfs_rq);
17bc14b7 1942 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1943
19b6a2e3 1944 update_stats_dequeue(cfs_rq, se);
371fd7e7 1945 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1946#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1947 if (entity_is_task(se)) {
1948 struct task_struct *tsk = task_of(se);
1949
1950 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1951 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1952 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1953 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1954 }
db36cc7d 1955#endif
67e9fb2a
PZ
1956 }
1957
2002c695 1958 clear_buddies(cfs_rq, se);
4793241b 1959
83b699ed 1960 if (se != cfs_rq->curr)
30cfdcfc 1961 __dequeue_entity(cfs_rq, se);
17bc14b7 1962 se->on_rq = 0;
30cfdcfc 1963 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1964
1965 /*
1966 * Normalize the entity after updating the min_vruntime because the
1967 * update can refer to the ->curr item and we need to reflect this
1968 * movement in our normalized position.
1969 */
371fd7e7 1970 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1971 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1972
d8b4986d
PT
1973 /* return excess runtime on last dequeue */
1974 return_cfs_rq_runtime(cfs_rq);
1975
1e876231 1976 update_min_vruntime(cfs_rq);
17bc14b7 1977 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1978}
1979
1980/*
1981 * Preempt the current task with a newly woken task if needed:
1982 */
7c92e54f 1983static void
2e09bf55 1984check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1985{
11697830 1986 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1987 struct sched_entity *se;
1988 s64 delta;
11697830 1989
6d0f0ebd 1990 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1991 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1992 if (delta_exec > ideal_runtime) {
bf0f6f24 1993 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1994 /*
1995 * The current task ran long enough, ensure it doesn't get
1996 * re-elected due to buddy favours.
1997 */
1998 clear_buddies(cfs_rq, curr);
f685ceac
MG
1999 return;
2000 }
2001
2002 /*
2003 * Ensure that a task that missed wakeup preemption by a
2004 * narrow margin doesn't have to wait for a full slice.
2005 * This also mitigates buddy induced latencies under load.
2006 */
f685ceac
MG
2007 if (delta_exec < sysctl_sched_min_granularity)
2008 return;
2009
f4cfb33e
WX
2010 se = __pick_first_entity(cfs_rq);
2011 delta = curr->vruntime - se->vruntime;
f685ceac 2012
f4cfb33e
WX
2013 if (delta < 0)
2014 return;
d7d82944 2015
f4cfb33e
WX
2016 if (delta > ideal_runtime)
2017 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2018}
2019
83b699ed 2020static void
8494f412 2021set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2022{
83b699ed
SV
2023 /* 'current' is not kept within the tree. */
2024 if (se->on_rq) {
2025 /*
2026 * Any task has to be enqueued before it get to execute on
2027 * a CPU. So account for the time it spent waiting on the
2028 * runqueue.
2029 */
2030 update_stats_wait_end(cfs_rq, se);
2031 __dequeue_entity(cfs_rq, se);
2032 }
2033
79303e9e 2034 update_stats_curr_start(cfs_rq, se);
429d43bc 2035 cfs_rq->curr = se;
eba1ed4b
IM
2036#ifdef CONFIG_SCHEDSTATS
2037 /*
2038 * Track our maximum slice length, if the CPU's load is at
2039 * least twice that of our own weight (i.e. dont track it
2040 * when there are only lesser-weight tasks around):
2041 */
495eca49 2042 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2043 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2044 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2045 }
2046#endif
4a55b450 2047 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2048}
2049
3f3a4904
PZ
2050static int
2051wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2052
ac53db59
RR
2053/*
2054 * Pick the next process, keeping these things in mind, in this order:
2055 * 1) keep things fair between processes/task groups
2056 * 2) pick the "next" process, since someone really wants that to run
2057 * 3) pick the "last" process, for cache locality
2058 * 4) do not run the "skip" process, if something else is available
2059 */
f4b6755f 2060static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2061{
ac53db59 2062 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2063 struct sched_entity *left = se;
f4b6755f 2064
ac53db59
RR
2065 /*
2066 * Avoid running the skip buddy, if running something else can
2067 * be done without getting too unfair.
2068 */
2069 if (cfs_rq->skip == se) {
2070 struct sched_entity *second = __pick_next_entity(se);
2071 if (second && wakeup_preempt_entity(second, left) < 1)
2072 se = second;
2073 }
aa2ac252 2074
f685ceac
MG
2075 /*
2076 * Prefer last buddy, try to return the CPU to a preempted task.
2077 */
2078 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2079 se = cfs_rq->last;
2080
ac53db59
RR
2081 /*
2082 * Someone really wants this to run. If it's not unfair, run it.
2083 */
2084 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2085 se = cfs_rq->next;
2086
f685ceac 2087 clear_buddies(cfs_rq, se);
4793241b
PZ
2088
2089 return se;
aa2ac252
PZ
2090}
2091
d3d9dc33
PT
2092static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2093
ab6cde26 2094static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2095{
2096 /*
2097 * If still on the runqueue then deactivate_task()
2098 * was not called and update_curr() has to be done:
2099 */
2100 if (prev->on_rq)
b7cc0896 2101 update_curr(cfs_rq);
bf0f6f24 2102
d3d9dc33
PT
2103 /* throttle cfs_rqs exceeding runtime */
2104 check_cfs_rq_runtime(cfs_rq);
2105
ddc97297 2106 check_spread(cfs_rq, prev);
30cfdcfc 2107 if (prev->on_rq) {
5870db5b 2108 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2109 /* Put 'current' back into the tree. */
2110 __enqueue_entity(cfs_rq, prev);
9d85f21c 2111 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2112 update_entity_load_avg(prev, 1);
30cfdcfc 2113 }
429d43bc 2114 cfs_rq->curr = NULL;
bf0f6f24
IM
2115}
2116
8f4d37ec
PZ
2117static void
2118entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2119{
bf0f6f24 2120 /*
30cfdcfc 2121 * Update run-time statistics of the 'current'.
bf0f6f24 2122 */
30cfdcfc 2123 update_curr(cfs_rq);
bf0f6f24 2124
9d85f21c
PT
2125 /*
2126 * Ensure that runnable average is periodically updated.
2127 */
9ee474f5 2128 update_entity_load_avg(curr, 1);
aff3e498 2129 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2130 update_cfs_shares(cfs_rq);
9d85f21c 2131
8f4d37ec
PZ
2132#ifdef CONFIG_SCHED_HRTICK
2133 /*
2134 * queued ticks are scheduled to match the slice, so don't bother
2135 * validating it and just reschedule.
2136 */
983ed7a6
HH
2137 if (queued) {
2138 resched_task(rq_of(cfs_rq)->curr);
2139 return;
2140 }
8f4d37ec
PZ
2141 /*
2142 * don't let the period tick interfere with the hrtick preemption
2143 */
2144 if (!sched_feat(DOUBLE_TICK) &&
2145 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2146 return;
2147#endif
2148
2c2efaed 2149 if (cfs_rq->nr_running > 1)
2e09bf55 2150 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2151}
2152
ab84d31e
PT
2153
2154/**************************************************
2155 * CFS bandwidth control machinery
2156 */
2157
2158#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2159
2160#ifdef HAVE_JUMP_LABEL
c5905afb 2161static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2162
2163static inline bool cfs_bandwidth_used(void)
2164{
c5905afb 2165 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2166}
2167
2168void account_cfs_bandwidth_used(int enabled, int was_enabled)
2169{
2170 /* only need to count groups transitioning between enabled/!enabled */
2171 if (enabled && !was_enabled)
c5905afb 2172 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2173 else if (!enabled && was_enabled)
c5905afb 2174 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2175}
2176#else /* HAVE_JUMP_LABEL */
2177static bool cfs_bandwidth_used(void)
2178{
2179 return true;
2180}
2181
2182void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2183#endif /* HAVE_JUMP_LABEL */
2184
ab84d31e
PT
2185/*
2186 * default period for cfs group bandwidth.
2187 * default: 0.1s, units: nanoseconds
2188 */
2189static inline u64 default_cfs_period(void)
2190{
2191 return 100000000ULL;
2192}
ec12cb7f
PT
2193
2194static inline u64 sched_cfs_bandwidth_slice(void)
2195{
2196 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2197}
2198
a9cf55b2
PT
2199/*
2200 * Replenish runtime according to assigned quota and update expiration time.
2201 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2202 * additional synchronization around rq->lock.
2203 *
2204 * requires cfs_b->lock
2205 */
029632fb 2206void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2207{
2208 u64 now;
2209
2210 if (cfs_b->quota == RUNTIME_INF)
2211 return;
2212
2213 now = sched_clock_cpu(smp_processor_id());
2214 cfs_b->runtime = cfs_b->quota;
2215 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2216}
2217
029632fb
PZ
2218static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2219{
2220 return &tg->cfs_bandwidth;
2221}
2222
f1b17280
PT
2223/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2224static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2225{
2226 if (unlikely(cfs_rq->throttle_count))
2227 return cfs_rq->throttled_clock_task;
2228
78becc27 2229 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2230}
2231
85dac906
PT
2232/* returns 0 on failure to allocate runtime */
2233static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2234{
2235 struct task_group *tg = cfs_rq->tg;
2236 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2237 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2238
2239 /* note: this is a positive sum as runtime_remaining <= 0 */
2240 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2241
2242 raw_spin_lock(&cfs_b->lock);
2243 if (cfs_b->quota == RUNTIME_INF)
2244 amount = min_amount;
58088ad0 2245 else {
a9cf55b2
PT
2246 /*
2247 * If the bandwidth pool has become inactive, then at least one
2248 * period must have elapsed since the last consumption.
2249 * Refresh the global state and ensure bandwidth timer becomes
2250 * active.
2251 */
2252 if (!cfs_b->timer_active) {
2253 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2254 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2255 }
58088ad0
PT
2256
2257 if (cfs_b->runtime > 0) {
2258 amount = min(cfs_b->runtime, min_amount);
2259 cfs_b->runtime -= amount;
2260 cfs_b->idle = 0;
2261 }
ec12cb7f 2262 }
a9cf55b2 2263 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2264 raw_spin_unlock(&cfs_b->lock);
2265
2266 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2267 /*
2268 * we may have advanced our local expiration to account for allowed
2269 * spread between our sched_clock and the one on which runtime was
2270 * issued.
2271 */
2272 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2273 cfs_rq->runtime_expires = expires;
85dac906
PT
2274
2275 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2276}
2277
a9cf55b2
PT
2278/*
2279 * Note: This depends on the synchronization provided by sched_clock and the
2280 * fact that rq->clock snapshots this value.
2281 */
2282static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2283{
a9cf55b2 2284 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2285
2286 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2287 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2288 return;
2289
a9cf55b2
PT
2290 if (cfs_rq->runtime_remaining < 0)
2291 return;
2292
2293 /*
2294 * If the local deadline has passed we have to consider the
2295 * possibility that our sched_clock is 'fast' and the global deadline
2296 * has not truly expired.
2297 *
2298 * Fortunately we can check determine whether this the case by checking
2299 * whether the global deadline has advanced.
2300 */
2301
2302 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2303 /* extend local deadline, drift is bounded above by 2 ticks */
2304 cfs_rq->runtime_expires += TICK_NSEC;
2305 } else {
2306 /* global deadline is ahead, expiration has passed */
2307 cfs_rq->runtime_remaining = 0;
2308 }
2309}
2310
2311static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2312 unsigned long delta_exec)
2313{
2314 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2315 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2316 expire_cfs_rq_runtime(cfs_rq);
2317
2318 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2319 return;
2320
85dac906
PT
2321 /*
2322 * if we're unable to extend our runtime we resched so that the active
2323 * hierarchy can be throttled
2324 */
2325 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2326 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2327}
2328
6c16a6dc
PZ
2329static __always_inline
2330void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2331{
56f570e5 2332 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2333 return;
2334
2335 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2336}
2337
85dac906
PT
2338static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2339{
56f570e5 2340 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2341}
2342
64660c86
PT
2343/* check whether cfs_rq, or any parent, is throttled */
2344static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2345{
56f570e5 2346 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2347}
2348
2349/*
2350 * Ensure that neither of the group entities corresponding to src_cpu or
2351 * dest_cpu are members of a throttled hierarchy when performing group
2352 * load-balance operations.
2353 */
2354static inline int throttled_lb_pair(struct task_group *tg,
2355 int src_cpu, int dest_cpu)
2356{
2357 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2358
2359 src_cfs_rq = tg->cfs_rq[src_cpu];
2360 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2361
2362 return throttled_hierarchy(src_cfs_rq) ||
2363 throttled_hierarchy(dest_cfs_rq);
2364}
2365
2366/* updated child weight may affect parent so we have to do this bottom up */
2367static int tg_unthrottle_up(struct task_group *tg, void *data)
2368{
2369 struct rq *rq = data;
2370 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2371
2372 cfs_rq->throttle_count--;
2373#ifdef CONFIG_SMP
2374 if (!cfs_rq->throttle_count) {
f1b17280 2375 /* adjust cfs_rq_clock_task() */
78becc27 2376 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2377 cfs_rq->throttled_clock_task;
64660c86
PT
2378 }
2379#endif
2380
2381 return 0;
2382}
2383
2384static int tg_throttle_down(struct task_group *tg, void *data)
2385{
2386 struct rq *rq = data;
2387 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2388
82958366
PT
2389 /* group is entering throttled state, stop time */
2390 if (!cfs_rq->throttle_count)
78becc27 2391 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2392 cfs_rq->throttle_count++;
2393
2394 return 0;
2395}
2396
d3d9dc33 2397static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2398{
2399 struct rq *rq = rq_of(cfs_rq);
2400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2401 struct sched_entity *se;
2402 long task_delta, dequeue = 1;
2403
2404 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2405
f1b17280 2406 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2407 rcu_read_lock();
2408 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2409 rcu_read_unlock();
85dac906
PT
2410
2411 task_delta = cfs_rq->h_nr_running;
2412 for_each_sched_entity(se) {
2413 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2414 /* throttled entity or throttle-on-deactivate */
2415 if (!se->on_rq)
2416 break;
2417
2418 if (dequeue)
2419 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2420 qcfs_rq->h_nr_running -= task_delta;
2421
2422 if (qcfs_rq->load.weight)
2423 dequeue = 0;
2424 }
2425
2426 if (!se)
2427 rq->nr_running -= task_delta;
2428
2429 cfs_rq->throttled = 1;
78becc27 2430 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2431 raw_spin_lock(&cfs_b->lock);
2432 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2433 raw_spin_unlock(&cfs_b->lock);
2434}
2435
029632fb 2436void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2437{
2438 struct rq *rq = rq_of(cfs_rq);
2439 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2440 struct sched_entity *se;
2441 int enqueue = 1;
2442 long task_delta;
2443
22b958d8 2444 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2445
2446 cfs_rq->throttled = 0;
1a55af2e
FW
2447
2448 update_rq_clock(rq);
2449
671fd9da 2450 raw_spin_lock(&cfs_b->lock);
78becc27 2451 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2452 list_del_rcu(&cfs_rq->throttled_list);
2453 raw_spin_unlock(&cfs_b->lock);
2454
64660c86
PT
2455 /* update hierarchical throttle state */
2456 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2457
671fd9da
PT
2458 if (!cfs_rq->load.weight)
2459 return;
2460
2461 task_delta = cfs_rq->h_nr_running;
2462 for_each_sched_entity(se) {
2463 if (se->on_rq)
2464 enqueue = 0;
2465
2466 cfs_rq = cfs_rq_of(se);
2467 if (enqueue)
2468 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2469 cfs_rq->h_nr_running += task_delta;
2470
2471 if (cfs_rq_throttled(cfs_rq))
2472 break;
2473 }
2474
2475 if (!se)
2476 rq->nr_running += task_delta;
2477
2478 /* determine whether we need to wake up potentially idle cpu */
2479 if (rq->curr == rq->idle && rq->cfs.nr_running)
2480 resched_task(rq->curr);
2481}
2482
2483static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2484 u64 remaining, u64 expires)
2485{
2486 struct cfs_rq *cfs_rq;
2487 u64 runtime = remaining;
2488
2489 rcu_read_lock();
2490 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2491 throttled_list) {
2492 struct rq *rq = rq_of(cfs_rq);
2493
2494 raw_spin_lock(&rq->lock);
2495 if (!cfs_rq_throttled(cfs_rq))
2496 goto next;
2497
2498 runtime = -cfs_rq->runtime_remaining + 1;
2499 if (runtime > remaining)
2500 runtime = remaining;
2501 remaining -= runtime;
2502
2503 cfs_rq->runtime_remaining += runtime;
2504 cfs_rq->runtime_expires = expires;
2505
2506 /* we check whether we're throttled above */
2507 if (cfs_rq->runtime_remaining > 0)
2508 unthrottle_cfs_rq(cfs_rq);
2509
2510next:
2511 raw_spin_unlock(&rq->lock);
2512
2513 if (!remaining)
2514 break;
2515 }
2516 rcu_read_unlock();
2517
2518 return remaining;
2519}
2520
58088ad0
PT
2521/*
2522 * Responsible for refilling a task_group's bandwidth and unthrottling its
2523 * cfs_rqs as appropriate. If there has been no activity within the last
2524 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2525 * used to track this state.
2526 */
2527static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2528{
671fd9da
PT
2529 u64 runtime, runtime_expires;
2530 int idle = 1, throttled;
58088ad0
PT
2531
2532 raw_spin_lock(&cfs_b->lock);
2533 /* no need to continue the timer with no bandwidth constraint */
2534 if (cfs_b->quota == RUNTIME_INF)
2535 goto out_unlock;
2536
671fd9da
PT
2537 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2538 /* idle depends on !throttled (for the case of a large deficit) */
2539 idle = cfs_b->idle && !throttled;
e8da1b18 2540 cfs_b->nr_periods += overrun;
671fd9da 2541
a9cf55b2
PT
2542 /* if we're going inactive then everything else can be deferred */
2543 if (idle)
2544 goto out_unlock;
2545
2546 __refill_cfs_bandwidth_runtime(cfs_b);
2547
671fd9da
PT
2548 if (!throttled) {
2549 /* mark as potentially idle for the upcoming period */
2550 cfs_b->idle = 1;
2551 goto out_unlock;
2552 }
2553
e8da1b18
NR
2554 /* account preceding periods in which throttling occurred */
2555 cfs_b->nr_throttled += overrun;
2556
671fd9da
PT
2557 /*
2558 * There are throttled entities so we must first use the new bandwidth
2559 * to unthrottle them before making it generally available. This
2560 * ensures that all existing debts will be paid before a new cfs_rq is
2561 * allowed to run.
2562 */
2563 runtime = cfs_b->runtime;
2564 runtime_expires = cfs_b->runtime_expires;
2565 cfs_b->runtime = 0;
2566
2567 /*
2568 * This check is repeated as we are holding onto the new bandwidth
2569 * while we unthrottle. This can potentially race with an unthrottled
2570 * group trying to acquire new bandwidth from the global pool.
2571 */
2572 while (throttled && runtime > 0) {
2573 raw_spin_unlock(&cfs_b->lock);
2574 /* we can't nest cfs_b->lock while distributing bandwidth */
2575 runtime = distribute_cfs_runtime(cfs_b, runtime,
2576 runtime_expires);
2577 raw_spin_lock(&cfs_b->lock);
2578
2579 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2580 }
58088ad0 2581
671fd9da
PT
2582 /* return (any) remaining runtime */
2583 cfs_b->runtime = runtime;
2584 /*
2585 * While we are ensured activity in the period following an
2586 * unthrottle, this also covers the case in which the new bandwidth is
2587 * insufficient to cover the existing bandwidth deficit. (Forcing the
2588 * timer to remain active while there are any throttled entities.)
2589 */
2590 cfs_b->idle = 0;
58088ad0
PT
2591out_unlock:
2592 if (idle)
2593 cfs_b->timer_active = 0;
2594 raw_spin_unlock(&cfs_b->lock);
2595
2596 return idle;
2597}
d3d9dc33 2598
d8b4986d
PT
2599/* a cfs_rq won't donate quota below this amount */
2600static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2601/* minimum remaining period time to redistribute slack quota */
2602static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2603/* how long we wait to gather additional slack before distributing */
2604static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2605
2606/* are we near the end of the current quota period? */
2607static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2608{
2609 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2610 u64 remaining;
2611
2612 /* if the call-back is running a quota refresh is already occurring */
2613 if (hrtimer_callback_running(refresh_timer))
2614 return 1;
2615
2616 /* is a quota refresh about to occur? */
2617 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2618 if (remaining < min_expire)
2619 return 1;
2620
2621 return 0;
2622}
2623
2624static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2625{
2626 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2627
2628 /* if there's a quota refresh soon don't bother with slack */
2629 if (runtime_refresh_within(cfs_b, min_left))
2630 return;
2631
2632 start_bandwidth_timer(&cfs_b->slack_timer,
2633 ns_to_ktime(cfs_bandwidth_slack_period));
2634}
2635
2636/* we know any runtime found here is valid as update_curr() precedes return */
2637static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2638{
2639 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2640 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2641
2642 if (slack_runtime <= 0)
2643 return;
2644
2645 raw_spin_lock(&cfs_b->lock);
2646 if (cfs_b->quota != RUNTIME_INF &&
2647 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2648 cfs_b->runtime += slack_runtime;
2649
2650 /* we are under rq->lock, defer unthrottling using a timer */
2651 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2652 !list_empty(&cfs_b->throttled_cfs_rq))
2653 start_cfs_slack_bandwidth(cfs_b);
2654 }
2655 raw_spin_unlock(&cfs_b->lock);
2656
2657 /* even if it's not valid for return we don't want to try again */
2658 cfs_rq->runtime_remaining -= slack_runtime;
2659}
2660
2661static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2662{
56f570e5
PT
2663 if (!cfs_bandwidth_used())
2664 return;
2665
fccfdc6f 2666 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2667 return;
2668
2669 __return_cfs_rq_runtime(cfs_rq);
2670}
2671
2672/*
2673 * This is done with a timer (instead of inline with bandwidth return) since
2674 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2675 */
2676static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2677{
2678 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2679 u64 expires;
2680
2681 /* confirm we're still not at a refresh boundary */
2682 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2683 return;
2684
2685 raw_spin_lock(&cfs_b->lock);
2686 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2687 runtime = cfs_b->runtime;
2688 cfs_b->runtime = 0;
2689 }
2690 expires = cfs_b->runtime_expires;
2691 raw_spin_unlock(&cfs_b->lock);
2692
2693 if (!runtime)
2694 return;
2695
2696 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2697
2698 raw_spin_lock(&cfs_b->lock);
2699 if (expires == cfs_b->runtime_expires)
2700 cfs_b->runtime = runtime;
2701 raw_spin_unlock(&cfs_b->lock);
2702}
2703
d3d9dc33
PT
2704/*
2705 * When a group wakes up we want to make sure that its quota is not already
2706 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2707 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2708 */
2709static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2710{
56f570e5
PT
2711 if (!cfs_bandwidth_used())
2712 return;
2713
d3d9dc33
PT
2714 /* an active group must be handled by the update_curr()->put() path */
2715 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2716 return;
2717
2718 /* ensure the group is not already throttled */
2719 if (cfs_rq_throttled(cfs_rq))
2720 return;
2721
2722 /* update runtime allocation */
2723 account_cfs_rq_runtime(cfs_rq, 0);
2724 if (cfs_rq->runtime_remaining <= 0)
2725 throttle_cfs_rq(cfs_rq);
2726}
2727
2728/* conditionally throttle active cfs_rq's from put_prev_entity() */
2729static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2730{
56f570e5
PT
2731 if (!cfs_bandwidth_used())
2732 return;
2733
d3d9dc33
PT
2734 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2735 return;
2736
2737 /*
2738 * it's possible for a throttled entity to be forced into a running
2739 * state (e.g. set_curr_task), in this case we're finished.
2740 */
2741 if (cfs_rq_throttled(cfs_rq))
2742 return;
2743
2744 throttle_cfs_rq(cfs_rq);
2745}
029632fb 2746
029632fb
PZ
2747static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2748{
2749 struct cfs_bandwidth *cfs_b =
2750 container_of(timer, struct cfs_bandwidth, slack_timer);
2751 do_sched_cfs_slack_timer(cfs_b);
2752
2753 return HRTIMER_NORESTART;
2754}
2755
2756static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2757{
2758 struct cfs_bandwidth *cfs_b =
2759 container_of(timer, struct cfs_bandwidth, period_timer);
2760 ktime_t now;
2761 int overrun;
2762 int idle = 0;
2763
2764 for (;;) {
2765 now = hrtimer_cb_get_time(timer);
2766 overrun = hrtimer_forward(timer, now, cfs_b->period);
2767
2768 if (!overrun)
2769 break;
2770
2771 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2772 }
2773
2774 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2775}
2776
2777void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2778{
2779 raw_spin_lock_init(&cfs_b->lock);
2780 cfs_b->runtime = 0;
2781 cfs_b->quota = RUNTIME_INF;
2782 cfs_b->period = ns_to_ktime(default_cfs_period());
2783
2784 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2785 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2786 cfs_b->period_timer.function = sched_cfs_period_timer;
2787 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2788 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2789}
2790
2791static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2792{
2793 cfs_rq->runtime_enabled = 0;
2794 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2795}
2796
2797/* requires cfs_b->lock, may release to reprogram timer */
2798void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2799{
2800 /*
2801 * The timer may be active because we're trying to set a new bandwidth
2802 * period or because we're racing with the tear-down path
2803 * (timer_active==0 becomes visible before the hrtimer call-back
2804 * terminates). In either case we ensure that it's re-programmed
2805 */
2806 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2807 raw_spin_unlock(&cfs_b->lock);
2808 /* ensure cfs_b->lock is available while we wait */
2809 hrtimer_cancel(&cfs_b->period_timer);
2810
2811 raw_spin_lock(&cfs_b->lock);
2812 /* if someone else restarted the timer then we're done */
2813 if (cfs_b->timer_active)
2814 return;
2815 }
2816
2817 cfs_b->timer_active = 1;
2818 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2819}
2820
2821static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2822{
2823 hrtimer_cancel(&cfs_b->period_timer);
2824 hrtimer_cancel(&cfs_b->slack_timer);
2825}
2826
38dc3348 2827static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2828{
2829 struct cfs_rq *cfs_rq;
2830
2831 for_each_leaf_cfs_rq(rq, cfs_rq) {
2832 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2833
2834 if (!cfs_rq->runtime_enabled)
2835 continue;
2836
2837 /*
2838 * clock_task is not advancing so we just need to make sure
2839 * there's some valid quota amount
2840 */
2841 cfs_rq->runtime_remaining = cfs_b->quota;
2842 if (cfs_rq_throttled(cfs_rq))
2843 unthrottle_cfs_rq(cfs_rq);
2844 }
2845}
2846
2847#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2848static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2849{
78becc27 2850 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2851}
2852
2853static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2854 unsigned long delta_exec) {}
d3d9dc33
PT
2855static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2856static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2857static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2858
2859static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2860{
2861 return 0;
2862}
64660c86
PT
2863
2864static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2865{
2866 return 0;
2867}
2868
2869static inline int throttled_lb_pair(struct task_group *tg,
2870 int src_cpu, int dest_cpu)
2871{
2872 return 0;
2873}
029632fb
PZ
2874
2875void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2876
2877#ifdef CONFIG_FAIR_GROUP_SCHED
2878static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2879#endif
2880
029632fb
PZ
2881static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2882{
2883 return NULL;
2884}
2885static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2886static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2887
2888#endif /* CONFIG_CFS_BANDWIDTH */
2889
bf0f6f24
IM
2890/**************************************************
2891 * CFS operations on tasks:
2892 */
2893
8f4d37ec
PZ
2894#ifdef CONFIG_SCHED_HRTICK
2895static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2896{
8f4d37ec
PZ
2897 struct sched_entity *se = &p->se;
2898 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2899
2900 WARN_ON(task_rq(p) != rq);
2901
b39e66ea 2902 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2903 u64 slice = sched_slice(cfs_rq, se);
2904 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2905 s64 delta = slice - ran;
2906
2907 if (delta < 0) {
2908 if (rq->curr == p)
2909 resched_task(p);
2910 return;
2911 }
2912
2913 /*
2914 * Don't schedule slices shorter than 10000ns, that just
2915 * doesn't make sense. Rely on vruntime for fairness.
2916 */
31656519 2917 if (rq->curr != p)
157124c1 2918 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2919
31656519 2920 hrtick_start(rq, delta);
8f4d37ec
PZ
2921 }
2922}
a4c2f00f
PZ
2923
2924/*
2925 * called from enqueue/dequeue and updates the hrtick when the
2926 * current task is from our class and nr_running is low enough
2927 * to matter.
2928 */
2929static void hrtick_update(struct rq *rq)
2930{
2931 struct task_struct *curr = rq->curr;
2932
b39e66ea 2933 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2934 return;
2935
2936 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2937 hrtick_start_fair(rq, curr);
2938}
55e12e5e 2939#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2940static inline void
2941hrtick_start_fair(struct rq *rq, struct task_struct *p)
2942{
2943}
a4c2f00f
PZ
2944
2945static inline void hrtick_update(struct rq *rq)
2946{
2947}
8f4d37ec
PZ
2948#endif
2949
bf0f6f24
IM
2950/*
2951 * The enqueue_task method is called before nr_running is
2952 * increased. Here we update the fair scheduling stats and
2953 * then put the task into the rbtree:
2954 */
ea87bb78 2955static void
371fd7e7 2956enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2957{
2958 struct cfs_rq *cfs_rq;
62fb1851 2959 struct sched_entity *se = &p->se;
bf0f6f24
IM
2960
2961 for_each_sched_entity(se) {
62fb1851 2962 if (se->on_rq)
bf0f6f24
IM
2963 break;
2964 cfs_rq = cfs_rq_of(se);
88ec22d3 2965 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2966
2967 /*
2968 * end evaluation on encountering a throttled cfs_rq
2969 *
2970 * note: in the case of encountering a throttled cfs_rq we will
2971 * post the final h_nr_running increment below.
2972 */
2973 if (cfs_rq_throttled(cfs_rq))
2974 break;
953bfcd1 2975 cfs_rq->h_nr_running++;
85dac906 2976
88ec22d3 2977 flags = ENQUEUE_WAKEUP;
bf0f6f24 2978 }
8f4d37ec 2979
2069dd75 2980 for_each_sched_entity(se) {
0f317143 2981 cfs_rq = cfs_rq_of(se);
953bfcd1 2982 cfs_rq->h_nr_running++;
2069dd75 2983
85dac906
PT
2984 if (cfs_rq_throttled(cfs_rq))
2985 break;
2986
17bc14b7 2987 update_cfs_shares(cfs_rq);
9ee474f5 2988 update_entity_load_avg(se, 1);
2069dd75
PZ
2989 }
2990
18bf2805
BS
2991 if (!se) {
2992 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2993 inc_nr_running(rq);
18bf2805 2994 }
a4c2f00f 2995 hrtick_update(rq);
bf0f6f24
IM
2996}
2997
2f36825b
VP
2998static void set_next_buddy(struct sched_entity *se);
2999
bf0f6f24
IM
3000/*
3001 * The dequeue_task method is called before nr_running is
3002 * decreased. We remove the task from the rbtree and
3003 * update the fair scheduling stats:
3004 */
371fd7e7 3005static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3006{
3007 struct cfs_rq *cfs_rq;
62fb1851 3008 struct sched_entity *se = &p->se;
2f36825b 3009 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3010
3011 for_each_sched_entity(se) {
3012 cfs_rq = cfs_rq_of(se);
371fd7e7 3013 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3014
3015 /*
3016 * end evaluation on encountering a throttled cfs_rq
3017 *
3018 * note: in the case of encountering a throttled cfs_rq we will
3019 * post the final h_nr_running decrement below.
3020 */
3021 if (cfs_rq_throttled(cfs_rq))
3022 break;
953bfcd1 3023 cfs_rq->h_nr_running--;
2069dd75 3024
bf0f6f24 3025 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3026 if (cfs_rq->load.weight) {
3027 /*
3028 * Bias pick_next to pick a task from this cfs_rq, as
3029 * p is sleeping when it is within its sched_slice.
3030 */
3031 if (task_sleep && parent_entity(se))
3032 set_next_buddy(parent_entity(se));
9598c82d
PT
3033
3034 /* avoid re-evaluating load for this entity */
3035 se = parent_entity(se);
bf0f6f24 3036 break;
2f36825b 3037 }
371fd7e7 3038 flags |= DEQUEUE_SLEEP;
bf0f6f24 3039 }
8f4d37ec 3040
2069dd75 3041 for_each_sched_entity(se) {
0f317143 3042 cfs_rq = cfs_rq_of(se);
953bfcd1 3043 cfs_rq->h_nr_running--;
2069dd75 3044
85dac906
PT
3045 if (cfs_rq_throttled(cfs_rq))
3046 break;
3047
17bc14b7 3048 update_cfs_shares(cfs_rq);
9ee474f5 3049 update_entity_load_avg(se, 1);
2069dd75
PZ
3050 }
3051
18bf2805 3052 if (!se) {
85dac906 3053 dec_nr_running(rq);
18bf2805
BS
3054 update_rq_runnable_avg(rq, 1);
3055 }
a4c2f00f 3056 hrtick_update(rq);
bf0f6f24
IM
3057}
3058
e7693a36 3059#ifdef CONFIG_SMP
029632fb
PZ
3060/* Used instead of source_load when we know the type == 0 */
3061static unsigned long weighted_cpuload(const int cpu)
3062{
b92486cb 3063 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3064}
3065
3066/*
3067 * Return a low guess at the load of a migration-source cpu weighted
3068 * according to the scheduling class and "nice" value.
3069 *
3070 * We want to under-estimate the load of migration sources, to
3071 * balance conservatively.
3072 */
3073static unsigned long source_load(int cpu, int type)
3074{
3075 struct rq *rq = cpu_rq(cpu);
3076 unsigned long total = weighted_cpuload(cpu);
3077
3078 if (type == 0 || !sched_feat(LB_BIAS))
3079 return total;
3080
3081 return min(rq->cpu_load[type-1], total);
3082}
3083
3084/*
3085 * Return a high guess at the load of a migration-target cpu weighted
3086 * according to the scheduling class and "nice" value.
3087 */
3088static unsigned long target_load(int cpu, int type)
3089{
3090 struct rq *rq = cpu_rq(cpu);
3091 unsigned long total = weighted_cpuload(cpu);
3092
3093 if (type == 0 || !sched_feat(LB_BIAS))
3094 return total;
3095
3096 return max(rq->cpu_load[type-1], total);
3097}
3098
3099static unsigned long power_of(int cpu)
3100{
3101 return cpu_rq(cpu)->cpu_power;
3102}
3103
3104static unsigned long cpu_avg_load_per_task(int cpu)
3105{
3106 struct rq *rq = cpu_rq(cpu);
3107 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3108 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3109
3110 if (nr_running)
b92486cb 3111 return load_avg / nr_running;
029632fb
PZ
3112
3113 return 0;
3114}
3115
62470419
MW
3116static void record_wakee(struct task_struct *p)
3117{
3118 /*
3119 * Rough decay (wiping) for cost saving, don't worry
3120 * about the boundary, really active task won't care
3121 * about the loss.
3122 */
3123 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3124 current->wakee_flips = 0;
3125 current->wakee_flip_decay_ts = jiffies;
3126 }
3127
3128 if (current->last_wakee != p) {
3129 current->last_wakee = p;
3130 current->wakee_flips++;
3131 }
3132}
098fb9db 3133
74f8e4b2 3134static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3135{
3136 struct sched_entity *se = &p->se;
3137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3138 u64 min_vruntime;
3139
3140#ifndef CONFIG_64BIT
3141 u64 min_vruntime_copy;
88ec22d3 3142
3fe1698b
PZ
3143 do {
3144 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3145 smp_rmb();
3146 min_vruntime = cfs_rq->min_vruntime;
3147 } while (min_vruntime != min_vruntime_copy);
3148#else
3149 min_vruntime = cfs_rq->min_vruntime;
3150#endif
88ec22d3 3151
3fe1698b 3152 se->vruntime -= min_vruntime;
62470419 3153 record_wakee(p);
88ec22d3
PZ
3154}
3155
bb3469ac 3156#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3157/*
3158 * effective_load() calculates the load change as seen from the root_task_group
3159 *
3160 * Adding load to a group doesn't make a group heavier, but can cause movement
3161 * of group shares between cpus. Assuming the shares were perfectly aligned one
3162 * can calculate the shift in shares.
cf5f0acf
PZ
3163 *
3164 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3165 * on this @cpu and results in a total addition (subtraction) of @wg to the
3166 * total group weight.
3167 *
3168 * Given a runqueue weight distribution (rw_i) we can compute a shares
3169 * distribution (s_i) using:
3170 *
3171 * s_i = rw_i / \Sum rw_j (1)
3172 *
3173 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3174 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3175 * shares distribution (s_i):
3176 *
3177 * rw_i = { 2, 4, 1, 0 }
3178 * s_i = { 2/7, 4/7, 1/7, 0 }
3179 *
3180 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3181 * task used to run on and the CPU the waker is running on), we need to
3182 * compute the effect of waking a task on either CPU and, in case of a sync
3183 * wakeup, compute the effect of the current task going to sleep.
3184 *
3185 * So for a change of @wl to the local @cpu with an overall group weight change
3186 * of @wl we can compute the new shares distribution (s'_i) using:
3187 *
3188 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3189 *
3190 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3191 * differences in waking a task to CPU 0. The additional task changes the
3192 * weight and shares distributions like:
3193 *
3194 * rw'_i = { 3, 4, 1, 0 }
3195 * s'_i = { 3/8, 4/8, 1/8, 0 }
3196 *
3197 * We can then compute the difference in effective weight by using:
3198 *
3199 * dw_i = S * (s'_i - s_i) (3)
3200 *
3201 * Where 'S' is the group weight as seen by its parent.
3202 *
3203 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3204 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3205 * 4/7) times the weight of the group.
f5bfb7d9 3206 */
2069dd75 3207static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3208{
4be9daaa 3209 struct sched_entity *se = tg->se[cpu];
f1d239f7 3210
cf5f0acf 3211 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3212 return wl;
3213
4be9daaa 3214 for_each_sched_entity(se) {
cf5f0acf 3215 long w, W;
4be9daaa 3216
977dda7c 3217 tg = se->my_q->tg;
bb3469ac 3218
cf5f0acf
PZ
3219 /*
3220 * W = @wg + \Sum rw_j
3221 */
3222 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3223
cf5f0acf
PZ
3224 /*
3225 * w = rw_i + @wl
3226 */
3227 w = se->my_q->load.weight + wl;
940959e9 3228
cf5f0acf
PZ
3229 /*
3230 * wl = S * s'_i; see (2)
3231 */
3232 if (W > 0 && w < W)
3233 wl = (w * tg->shares) / W;
977dda7c
PT
3234 else
3235 wl = tg->shares;
940959e9 3236
cf5f0acf
PZ
3237 /*
3238 * Per the above, wl is the new se->load.weight value; since
3239 * those are clipped to [MIN_SHARES, ...) do so now. See
3240 * calc_cfs_shares().
3241 */
977dda7c
PT
3242 if (wl < MIN_SHARES)
3243 wl = MIN_SHARES;
cf5f0acf
PZ
3244
3245 /*
3246 * wl = dw_i = S * (s'_i - s_i); see (3)
3247 */
977dda7c 3248 wl -= se->load.weight;
cf5f0acf
PZ
3249
3250 /*
3251 * Recursively apply this logic to all parent groups to compute
3252 * the final effective load change on the root group. Since
3253 * only the @tg group gets extra weight, all parent groups can
3254 * only redistribute existing shares. @wl is the shift in shares
3255 * resulting from this level per the above.
3256 */
4be9daaa 3257 wg = 0;
4be9daaa 3258 }
bb3469ac 3259
4be9daaa 3260 return wl;
bb3469ac
PZ
3261}
3262#else
4be9daaa 3263
83378269
PZ
3264static inline unsigned long effective_load(struct task_group *tg, int cpu,
3265 unsigned long wl, unsigned long wg)
4be9daaa 3266{
83378269 3267 return wl;
bb3469ac 3268}
4be9daaa 3269
bb3469ac
PZ
3270#endif
3271
62470419
MW
3272static int wake_wide(struct task_struct *p)
3273{
7d9ffa89 3274 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3275
3276 /*
3277 * Yeah, it's the switching-frequency, could means many wakee or
3278 * rapidly switch, use factor here will just help to automatically
3279 * adjust the loose-degree, so bigger node will lead to more pull.
3280 */
3281 if (p->wakee_flips > factor) {
3282 /*
3283 * wakee is somewhat hot, it needs certain amount of cpu
3284 * resource, so if waker is far more hot, prefer to leave
3285 * it alone.
3286 */
3287 if (current->wakee_flips > (factor * p->wakee_flips))
3288 return 1;
3289 }
3290
3291 return 0;
3292}
3293
c88d5910 3294static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3295{
e37b6a7b 3296 s64 this_load, load;
c88d5910 3297 int idx, this_cpu, prev_cpu;
098fb9db 3298 unsigned long tl_per_task;
c88d5910 3299 struct task_group *tg;
83378269 3300 unsigned long weight;
b3137bc8 3301 int balanced;
098fb9db 3302
62470419
MW
3303 /*
3304 * If we wake multiple tasks be careful to not bounce
3305 * ourselves around too much.
3306 */
3307 if (wake_wide(p))
3308 return 0;
3309
c88d5910
PZ
3310 idx = sd->wake_idx;
3311 this_cpu = smp_processor_id();
3312 prev_cpu = task_cpu(p);
3313 load = source_load(prev_cpu, idx);
3314 this_load = target_load(this_cpu, idx);
098fb9db 3315
b3137bc8
MG
3316 /*
3317 * If sync wakeup then subtract the (maximum possible)
3318 * effect of the currently running task from the load
3319 * of the current CPU:
3320 */
83378269
PZ
3321 if (sync) {
3322 tg = task_group(current);
3323 weight = current->se.load.weight;
3324
c88d5910 3325 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3326 load += effective_load(tg, prev_cpu, 0, -weight);
3327 }
b3137bc8 3328
83378269
PZ
3329 tg = task_group(p);
3330 weight = p->se.load.weight;
b3137bc8 3331
71a29aa7
PZ
3332 /*
3333 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3334 * due to the sync cause above having dropped this_load to 0, we'll
3335 * always have an imbalance, but there's really nothing you can do
3336 * about that, so that's good too.
71a29aa7
PZ
3337 *
3338 * Otherwise check if either cpus are near enough in load to allow this
3339 * task to be woken on this_cpu.
3340 */
e37b6a7b
PT
3341 if (this_load > 0) {
3342 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3343
3344 this_eff_load = 100;
3345 this_eff_load *= power_of(prev_cpu);
3346 this_eff_load *= this_load +
3347 effective_load(tg, this_cpu, weight, weight);
3348
3349 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3350 prev_eff_load *= power_of(this_cpu);
3351 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3352
3353 balanced = this_eff_load <= prev_eff_load;
3354 } else
3355 balanced = true;
b3137bc8 3356
098fb9db 3357 /*
4ae7d5ce
IM
3358 * If the currently running task will sleep within
3359 * a reasonable amount of time then attract this newly
3360 * woken task:
098fb9db 3361 */
2fb7635c
PZ
3362 if (sync && balanced)
3363 return 1;
098fb9db 3364
41acab88 3365 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3366 tl_per_task = cpu_avg_load_per_task(this_cpu);
3367
c88d5910
PZ
3368 if (balanced ||
3369 (this_load <= load &&
3370 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3371 /*
3372 * This domain has SD_WAKE_AFFINE and
3373 * p is cache cold in this domain, and
3374 * there is no bad imbalance.
3375 */
c88d5910 3376 schedstat_inc(sd, ttwu_move_affine);
41acab88 3377 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3378
3379 return 1;
3380 }
3381 return 0;
3382}
3383
aaee1203
PZ
3384/*
3385 * find_idlest_group finds and returns the least busy CPU group within the
3386 * domain.
3387 */
3388static struct sched_group *
78e7ed53 3389find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3390 int this_cpu, int load_idx)
e7693a36 3391{
b3bd3de6 3392 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3393 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3394 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3395
aaee1203
PZ
3396 do {
3397 unsigned long load, avg_load;
3398 int local_group;
3399 int i;
e7693a36 3400
aaee1203
PZ
3401 /* Skip over this group if it has no CPUs allowed */
3402 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3403 tsk_cpus_allowed(p)))
aaee1203
PZ
3404 continue;
3405
3406 local_group = cpumask_test_cpu(this_cpu,
3407 sched_group_cpus(group));
3408
3409 /* Tally up the load of all CPUs in the group */
3410 avg_load = 0;
3411
3412 for_each_cpu(i, sched_group_cpus(group)) {
3413 /* Bias balancing toward cpus of our domain */
3414 if (local_group)
3415 load = source_load(i, load_idx);
3416 else
3417 load = target_load(i, load_idx);
3418
3419 avg_load += load;
3420 }
3421
3422 /* Adjust by relative CPU power of the group */
9c3f75cb 3423 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3424
3425 if (local_group) {
3426 this_load = avg_load;
aaee1203
PZ
3427 } else if (avg_load < min_load) {
3428 min_load = avg_load;
3429 idlest = group;
3430 }
3431 } while (group = group->next, group != sd->groups);
3432
3433 if (!idlest || 100*this_load < imbalance*min_load)
3434 return NULL;
3435 return idlest;
3436}
3437
3438/*
3439 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3440 */
3441static int
3442find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3443{
3444 unsigned long load, min_load = ULONG_MAX;
3445 int idlest = -1;
3446 int i;
3447
3448 /* Traverse only the allowed CPUs */
fa17b507 3449 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3450 load = weighted_cpuload(i);
3451
3452 if (load < min_load || (load == min_load && i == this_cpu)) {
3453 min_load = load;
3454 idlest = i;
e7693a36
GH
3455 }
3456 }
3457
aaee1203
PZ
3458 return idlest;
3459}
e7693a36 3460
a50bde51
PZ
3461/*
3462 * Try and locate an idle CPU in the sched_domain.
3463 */
99bd5e2f 3464static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3465{
99bd5e2f 3466 struct sched_domain *sd;
37407ea7 3467 struct sched_group *sg;
e0a79f52 3468 int i = task_cpu(p);
a50bde51 3469
e0a79f52
MG
3470 if (idle_cpu(target))
3471 return target;
99bd5e2f
SS
3472
3473 /*
e0a79f52 3474 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3475 */
e0a79f52
MG
3476 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3477 return i;
a50bde51
PZ
3478
3479 /*
37407ea7 3480 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3481 */
518cd623 3482 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3483 for_each_lower_domain(sd) {
37407ea7
LT
3484 sg = sd->groups;
3485 do {
3486 if (!cpumask_intersects(sched_group_cpus(sg),
3487 tsk_cpus_allowed(p)))
3488 goto next;
3489
3490 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3491 if (i == target || !idle_cpu(i))
37407ea7
LT
3492 goto next;
3493 }
970e1789 3494
37407ea7
LT
3495 target = cpumask_first_and(sched_group_cpus(sg),
3496 tsk_cpus_allowed(p));
3497 goto done;
3498next:
3499 sg = sg->next;
3500 } while (sg != sd->groups);
3501 }
3502done:
a50bde51
PZ
3503 return target;
3504}
3505
aaee1203
PZ
3506/*
3507 * sched_balance_self: balance the current task (running on cpu) in domains
3508 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3509 * SD_BALANCE_EXEC.
3510 *
3511 * Balance, ie. select the least loaded group.
3512 *
3513 * Returns the target CPU number, or the same CPU if no balancing is needed.
3514 *
3515 * preempt must be disabled.
3516 */
0017d735 3517static int
7608dec2 3518select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3519{
29cd8bae 3520 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3521 int cpu = smp_processor_id();
3522 int prev_cpu = task_cpu(p);
3523 int new_cpu = cpu;
99bd5e2f 3524 int want_affine = 0;
5158f4e4 3525 int sync = wake_flags & WF_SYNC;
c88d5910 3526
29baa747 3527 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3528 return prev_cpu;
3529
0763a660 3530 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3531 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3532 want_affine = 1;
3533 new_cpu = prev_cpu;
3534 }
aaee1203 3535
dce840a0 3536 rcu_read_lock();
aaee1203 3537 for_each_domain(cpu, tmp) {
e4f42888
PZ
3538 if (!(tmp->flags & SD_LOAD_BALANCE))
3539 continue;
3540
fe3bcfe1 3541 /*
99bd5e2f
SS
3542 * If both cpu and prev_cpu are part of this domain,
3543 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3544 */
99bd5e2f
SS
3545 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3546 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3547 affine_sd = tmp;
29cd8bae 3548 break;
f03542a7 3549 }
29cd8bae 3550
f03542a7 3551 if (tmp->flags & sd_flag)
29cd8bae
PZ
3552 sd = tmp;
3553 }
3554
8b911acd 3555 if (affine_sd) {
f03542a7 3556 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3557 prev_cpu = cpu;
3558
3559 new_cpu = select_idle_sibling(p, prev_cpu);
3560 goto unlock;
8b911acd 3561 }
e7693a36 3562
aaee1203 3563 while (sd) {
5158f4e4 3564 int load_idx = sd->forkexec_idx;
aaee1203 3565 struct sched_group *group;
c88d5910 3566 int weight;
098fb9db 3567
0763a660 3568 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3569 sd = sd->child;
3570 continue;
3571 }
098fb9db 3572
5158f4e4
PZ
3573 if (sd_flag & SD_BALANCE_WAKE)
3574 load_idx = sd->wake_idx;
098fb9db 3575
5158f4e4 3576 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3577 if (!group) {
3578 sd = sd->child;
3579 continue;
3580 }
4ae7d5ce 3581
d7c33c49 3582 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3583 if (new_cpu == -1 || new_cpu == cpu) {
3584 /* Now try balancing at a lower domain level of cpu */
3585 sd = sd->child;
3586 continue;
e7693a36 3587 }
aaee1203
PZ
3588
3589 /* Now try balancing at a lower domain level of new_cpu */
3590 cpu = new_cpu;
669c55e9 3591 weight = sd->span_weight;
aaee1203
PZ
3592 sd = NULL;
3593 for_each_domain(cpu, tmp) {
669c55e9 3594 if (weight <= tmp->span_weight)
aaee1203 3595 break;
0763a660 3596 if (tmp->flags & sd_flag)
aaee1203
PZ
3597 sd = tmp;
3598 }
3599 /* while loop will break here if sd == NULL */
e7693a36 3600 }
dce840a0
PZ
3601unlock:
3602 rcu_read_unlock();
e7693a36 3603
c88d5910 3604 return new_cpu;
e7693a36 3605}
0a74bef8
PT
3606
3607/*
3608 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3609 * cfs_rq_of(p) references at time of call are still valid and identify the
3610 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3611 * other assumptions, including the state of rq->lock, should be made.
3612 */
3613static void
3614migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3615{
aff3e498
PT
3616 struct sched_entity *se = &p->se;
3617 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3618
3619 /*
3620 * Load tracking: accumulate removed load so that it can be processed
3621 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3622 * to blocked load iff they have a positive decay-count. It can never
3623 * be negative here since on-rq tasks have decay-count == 0.
3624 */
3625 if (se->avg.decay_count) {
3626 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3627 atomic_long_add(se->avg.load_avg_contrib,
3628 &cfs_rq->removed_load);
aff3e498 3629 }
0a74bef8 3630}
e7693a36
GH
3631#endif /* CONFIG_SMP */
3632
e52fb7c0
PZ
3633static unsigned long
3634wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3635{
3636 unsigned long gran = sysctl_sched_wakeup_granularity;
3637
3638 /*
e52fb7c0
PZ
3639 * Since its curr running now, convert the gran from real-time
3640 * to virtual-time in his units.
13814d42
MG
3641 *
3642 * By using 'se' instead of 'curr' we penalize light tasks, so
3643 * they get preempted easier. That is, if 'se' < 'curr' then
3644 * the resulting gran will be larger, therefore penalizing the
3645 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3646 * be smaller, again penalizing the lighter task.
3647 *
3648 * This is especially important for buddies when the leftmost
3649 * task is higher priority than the buddy.
0bbd3336 3650 */
f4ad9bd2 3651 return calc_delta_fair(gran, se);
0bbd3336
PZ
3652}
3653
464b7527
PZ
3654/*
3655 * Should 'se' preempt 'curr'.
3656 *
3657 * |s1
3658 * |s2
3659 * |s3
3660 * g
3661 * |<--->|c
3662 *
3663 * w(c, s1) = -1
3664 * w(c, s2) = 0
3665 * w(c, s3) = 1
3666 *
3667 */
3668static int
3669wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3670{
3671 s64 gran, vdiff = curr->vruntime - se->vruntime;
3672
3673 if (vdiff <= 0)
3674 return -1;
3675
e52fb7c0 3676 gran = wakeup_gran(curr, se);
464b7527
PZ
3677 if (vdiff > gran)
3678 return 1;
3679
3680 return 0;
3681}
3682
02479099
PZ
3683static void set_last_buddy(struct sched_entity *se)
3684{
69c80f3e
VP
3685 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3686 return;
3687
3688 for_each_sched_entity(se)
3689 cfs_rq_of(se)->last = se;
02479099
PZ
3690}
3691
3692static void set_next_buddy(struct sched_entity *se)
3693{
69c80f3e
VP
3694 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3695 return;
3696
3697 for_each_sched_entity(se)
3698 cfs_rq_of(se)->next = se;
02479099
PZ
3699}
3700
ac53db59
RR
3701static void set_skip_buddy(struct sched_entity *se)
3702{
69c80f3e
VP
3703 for_each_sched_entity(se)
3704 cfs_rq_of(se)->skip = se;
ac53db59
RR
3705}
3706
bf0f6f24
IM
3707/*
3708 * Preempt the current task with a newly woken task if needed:
3709 */
5a9b86f6 3710static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3711{
3712 struct task_struct *curr = rq->curr;
8651a86c 3713 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3714 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3715 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3716 int next_buddy_marked = 0;
bf0f6f24 3717
4ae7d5ce
IM
3718 if (unlikely(se == pse))
3719 return;
3720
5238cdd3 3721 /*
ddcdf6e7 3722 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3723 * unconditionally check_prempt_curr() after an enqueue (which may have
3724 * lead to a throttle). This both saves work and prevents false
3725 * next-buddy nomination below.
3726 */
3727 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3728 return;
3729
2f36825b 3730 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3731 set_next_buddy(pse);
2f36825b
VP
3732 next_buddy_marked = 1;
3733 }
57fdc26d 3734
aec0a514
BR
3735 /*
3736 * We can come here with TIF_NEED_RESCHED already set from new task
3737 * wake up path.
5238cdd3
PT
3738 *
3739 * Note: this also catches the edge-case of curr being in a throttled
3740 * group (e.g. via set_curr_task), since update_curr() (in the
3741 * enqueue of curr) will have resulted in resched being set. This
3742 * prevents us from potentially nominating it as a false LAST_BUDDY
3743 * below.
aec0a514
BR
3744 */
3745 if (test_tsk_need_resched(curr))
3746 return;
3747
a2f5c9ab
DH
3748 /* Idle tasks are by definition preempted by non-idle tasks. */
3749 if (unlikely(curr->policy == SCHED_IDLE) &&
3750 likely(p->policy != SCHED_IDLE))
3751 goto preempt;
3752
91c234b4 3753 /*
a2f5c9ab
DH
3754 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3755 * is driven by the tick):
91c234b4 3756 */
8ed92e51 3757 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3758 return;
bf0f6f24 3759
464b7527 3760 find_matching_se(&se, &pse);
9bbd7374 3761 update_curr(cfs_rq_of(se));
002f128b 3762 BUG_ON(!pse);
2f36825b
VP
3763 if (wakeup_preempt_entity(se, pse) == 1) {
3764 /*
3765 * Bias pick_next to pick the sched entity that is
3766 * triggering this preemption.
3767 */
3768 if (!next_buddy_marked)
3769 set_next_buddy(pse);
3a7e73a2 3770 goto preempt;
2f36825b 3771 }
464b7527 3772
3a7e73a2 3773 return;
a65ac745 3774
3a7e73a2
PZ
3775preempt:
3776 resched_task(curr);
3777 /*
3778 * Only set the backward buddy when the current task is still
3779 * on the rq. This can happen when a wakeup gets interleaved
3780 * with schedule on the ->pre_schedule() or idle_balance()
3781 * point, either of which can * drop the rq lock.
3782 *
3783 * Also, during early boot the idle thread is in the fair class,
3784 * for obvious reasons its a bad idea to schedule back to it.
3785 */
3786 if (unlikely(!se->on_rq || curr == rq->idle))
3787 return;
3788
3789 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3790 set_last_buddy(se);
bf0f6f24
IM
3791}
3792
fb8d4724 3793static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3794{
8f4d37ec 3795 struct task_struct *p;
bf0f6f24
IM
3796 struct cfs_rq *cfs_rq = &rq->cfs;
3797 struct sched_entity *se;
3798
36ace27e 3799 if (!cfs_rq->nr_running)
bf0f6f24
IM
3800 return NULL;
3801
3802 do {
9948f4b2 3803 se = pick_next_entity(cfs_rq);
f4b6755f 3804 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3805 cfs_rq = group_cfs_rq(se);
3806 } while (cfs_rq);
3807
8f4d37ec 3808 p = task_of(se);
b39e66ea
MG
3809 if (hrtick_enabled(rq))
3810 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3811
3812 return p;
bf0f6f24
IM
3813}
3814
3815/*
3816 * Account for a descheduled task:
3817 */
31ee529c 3818static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3819{
3820 struct sched_entity *se = &prev->se;
3821 struct cfs_rq *cfs_rq;
3822
3823 for_each_sched_entity(se) {
3824 cfs_rq = cfs_rq_of(se);
ab6cde26 3825 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3826 }
3827}
3828
ac53db59
RR
3829/*
3830 * sched_yield() is very simple
3831 *
3832 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3833 */
3834static void yield_task_fair(struct rq *rq)
3835{
3836 struct task_struct *curr = rq->curr;
3837 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3838 struct sched_entity *se = &curr->se;
3839
3840 /*
3841 * Are we the only task in the tree?
3842 */
3843 if (unlikely(rq->nr_running == 1))
3844 return;
3845
3846 clear_buddies(cfs_rq, se);
3847
3848 if (curr->policy != SCHED_BATCH) {
3849 update_rq_clock(rq);
3850 /*
3851 * Update run-time statistics of the 'current'.
3852 */
3853 update_curr(cfs_rq);
916671c0
MG
3854 /*
3855 * Tell update_rq_clock() that we've just updated,
3856 * so we don't do microscopic update in schedule()
3857 * and double the fastpath cost.
3858 */
3859 rq->skip_clock_update = 1;
ac53db59
RR
3860 }
3861
3862 set_skip_buddy(se);
3863}
3864
d95f4122
MG
3865static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3866{
3867 struct sched_entity *se = &p->se;
3868
5238cdd3
PT
3869 /* throttled hierarchies are not runnable */
3870 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3871 return false;
3872
3873 /* Tell the scheduler that we'd really like pse to run next. */
3874 set_next_buddy(se);
3875
d95f4122
MG
3876 yield_task_fair(rq);
3877
3878 return true;
3879}
3880
681f3e68 3881#ifdef CONFIG_SMP
bf0f6f24 3882/**************************************************
e9c84cb8
PZ
3883 * Fair scheduling class load-balancing methods.
3884 *
3885 * BASICS
3886 *
3887 * The purpose of load-balancing is to achieve the same basic fairness the
3888 * per-cpu scheduler provides, namely provide a proportional amount of compute
3889 * time to each task. This is expressed in the following equation:
3890 *
3891 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3892 *
3893 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3894 * W_i,0 is defined as:
3895 *
3896 * W_i,0 = \Sum_j w_i,j (2)
3897 *
3898 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3899 * is derived from the nice value as per prio_to_weight[].
3900 *
3901 * The weight average is an exponential decay average of the instantaneous
3902 * weight:
3903 *
3904 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3905 *
3906 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3907 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3908 * can also include other factors [XXX].
3909 *
3910 * To achieve this balance we define a measure of imbalance which follows
3911 * directly from (1):
3912 *
3913 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3914 *
3915 * We them move tasks around to minimize the imbalance. In the continuous
3916 * function space it is obvious this converges, in the discrete case we get
3917 * a few fun cases generally called infeasible weight scenarios.
3918 *
3919 * [XXX expand on:
3920 * - infeasible weights;
3921 * - local vs global optima in the discrete case. ]
3922 *
3923 *
3924 * SCHED DOMAINS
3925 *
3926 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3927 * for all i,j solution, we create a tree of cpus that follows the hardware
3928 * topology where each level pairs two lower groups (or better). This results
3929 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3930 * tree to only the first of the previous level and we decrease the frequency
3931 * of load-balance at each level inv. proportional to the number of cpus in
3932 * the groups.
3933 *
3934 * This yields:
3935 *
3936 * log_2 n 1 n
3937 * \Sum { --- * --- * 2^i } = O(n) (5)
3938 * i = 0 2^i 2^i
3939 * `- size of each group
3940 * | | `- number of cpus doing load-balance
3941 * | `- freq
3942 * `- sum over all levels
3943 *
3944 * Coupled with a limit on how many tasks we can migrate every balance pass,
3945 * this makes (5) the runtime complexity of the balancer.
3946 *
3947 * An important property here is that each CPU is still (indirectly) connected
3948 * to every other cpu in at most O(log n) steps:
3949 *
3950 * The adjacency matrix of the resulting graph is given by:
3951 *
3952 * log_2 n
3953 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3954 * k = 0
3955 *
3956 * And you'll find that:
3957 *
3958 * A^(log_2 n)_i,j != 0 for all i,j (7)
3959 *
3960 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3961 * The task movement gives a factor of O(m), giving a convergence complexity
3962 * of:
3963 *
3964 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3965 *
3966 *
3967 * WORK CONSERVING
3968 *
3969 * In order to avoid CPUs going idle while there's still work to do, new idle
3970 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3971 * tree itself instead of relying on other CPUs to bring it work.
3972 *
3973 * This adds some complexity to both (5) and (8) but it reduces the total idle
3974 * time.
3975 *
3976 * [XXX more?]
3977 *
3978 *
3979 * CGROUPS
3980 *
3981 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3982 *
3983 * s_k,i
3984 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3985 * S_k
3986 *
3987 * Where
3988 *
3989 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3990 *
3991 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3992 *
3993 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3994 * property.
3995 *
3996 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3997 * rewrite all of this once again.]
3998 */
bf0f6f24 3999
ed387b78
HS
4000static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4001
ddcdf6e7 4002#define LBF_ALL_PINNED 0x01
367456c7 4003#define LBF_NEED_BREAK 0x02
6263322c
PZ
4004#define LBF_DST_PINNED 0x04
4005#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4006
4007struct lb_env {
4008 struct sched_domain *sd;
4009
ddcdf6e7 4010 struct rq *src_rq;
85c1e7da 4011 int src_cpu;
ddcdf6e7
PZ
4012
4013 int dst_cpu;
4014 struct rq *dst_rq;
4015
88b8dac0
SV
4016 struct cpumask *dst_grpmask;
4017 int new_dst_cpu;
ddcdf6e7 4018 enum cpu_idle_type idle;
bd939f45 4019 long imbalance;
b9403130
MW
4020 /* The set of CPUs under consideration for load-balancing */
4021 struct cpumask *cpus;
4022
ddcdf6e7 4023 unsigned int flags;
367456c7
PZ
4024
4025 unsigned int loop;
4026 unsigned int loop_break;
4027 unsigned int loop_max;
ddcdf6e7
PZ
4028};
4029
1e3c88bd 4030/*
ddcdf6e7 4031 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4032 * Both runqueues must be locked.
4033 */
ddcdf6e7 4034static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4035{
ddcdf6e7
PZ
4036 deactivate_task(env->src_rq, p, 0);
4037 set_task_cpu(p, env->dst_cpu);
4038 activate_task(env->dst_rq, p, 0);
4039 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4040}
4041
029632fb
PZ
4042/*
4043 * Is this task likely cache-hot:
4044 */
4045static int
4046task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4047{
4048 s64 delta;
4049
4050 if (p->sched_class != &fair_sched_class)
4051 return 0;
4052
4053 if (unlikely(p->policy == SCHED_IDLE))
4054 return 0;
4055
4056 /*
4057 * Buddy candidates are cache hot:
4058 */
4059 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4060 (&p->se == cfs_rq_of(&p->se)->next ||
4061 &p->se == cfs_rq_of(&p->se)->last))
4062 return 1;
4063
4064 if (sysctl_sched_migration_cost == -1)
4065 return 1;
4066 if (sysctl_sched_migration_cost == 0)
4067 return 0;
4068
4069 delta = now - p->se.exec_start;
4070
4071 return delta < (s64)sysctl_sched_migration_cost;
4072}
4073
1e3c88bd
PZ
4074/*
4075 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4076 */
4077static
8e45cb54 4078int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4079{
4080 int tsk_cache_hot = 0;
4081 /*
4082 * We do not migrate tasks that are:
d3198084 4083 * 1) throttled_lb_pair, or
1e3c88bd 4084 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4085 * 3) running (obviously), or
4086 * 4) are cache-hot on their current CPU.
1e3c88bd 4087 */
d3198084
JK
4088 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4089 return 0;
4090
ddcdf6e7 4091 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4092 int cpu;
88b8dac0 4093
41acab88 4094 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4095
6263322c
PZ
4096 env->flags |= LBF_SOME_PINNED;
4097
88b8dac0
SV
4098 /*
4099 * Remember if this task can be migrated to any other cpu in
4100 * our sched_group. We may want to revisit it if we couldn't
4101 * meet load balance goals by pulling other tasks on src_cpu.
4102 *
4103 * Also avoid computing new_dst_cpu if we have already computed
4104 * one in current iteration.
4105 */
6263322c 4106 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4107 return 0;
4108
e02e60c1
JK
4109 /* Prevent to re-select dst_cpu via env's cpus */
4110 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4111 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4112 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4113 env->new_dst_cpu = cpu;
4114 break;
4115 }
88b8dac0 4116 }
e02e60c1 4117
1e3c88bd
PZ
4118 return 0;
4119 }
88b8dac0
SV
4120
4121 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4122 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4123
ddcdf6e7 4124 if (task_running(env->src_rq, p)) {
41acab88 4125 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4126 return 0;
4127 }
4128
4129 /*
4130 * Aggressive migration if:
4131 * 1) task is cache cold, or
4132 * 2) too many balance attempts have failed.
4133 */
4134
78becc27 4135 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 4136 if (!tsk_cache_hot ||
8e45cb54 4137 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4138
1e3c88bd 4139 if (tsk_cache_hot) {
8e45cb54 4140 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4141 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4142 }
4e2dcb73 4143
1e3c88bd
PZ
4144 return 1;
4145 }
4146
4e2dcb73
ZH
4147 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4148 return 0;
1e3c88bd
PZ
4149}
4150
897c395f
PZ
4151/*
4152 * move_one_task tries to move exactly one task from busiest to this_rq, as
4153 * part of active balancing operations within "domain".
4154 * Returns 1 if successful and 0 otherwise.
4155 *
4156 * Called with both runqueues locked.
4157 */
8e45cb54 4158static int move_one_task(struct lb_env *env)
897c395f
PZ
4159{
4160 struct task_struct *p, *n;
897c395f 4161
367456c7 4162 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4163 if (!can_migrate_task(p, env))
4164 continue;
897c395f 4165
367456c7
PZ
4166 move_task(p, env);
4167 /*
4168 * Right now, this is only the second place move_task()
4169 * is called, so we can safely collect move_task()
4170 * stats here rather than inside move_task().
4171 */
4172 schedstat_inc(env->sd, lb_gained[env->idle]);
4173 return 1;
897c395f 4174 }
897c395f
PZ
4175 return 0;
4176}
4177
367456c7
PZ
4178static unsigned long task_h_load(struct task_struct *p);
4179
eb95308e
PZ
4180static const unsigned int sched_nr_migrate_break = 32;
4181
5d6523eb 4182/*
bd939f45 4183 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4184 * this_rq, as part of a balancing operation within domain "sd".
4185 * Returns 1 if successful and 0 otherwise.
4186 *
4187 * Called with both runqueues locked.
4188 */
4189static int move_tasks(struct lb_env *env)
1e3c88bd 4190{
5d6523eb
PZ
4191 struct list_head *tasks = &env->src_rq->cfs_tasks;
4192 struct task_struct *p;
367456c7
PZ
4193 unsigned long load;
4194 int pulled = 0;
1e3c88bd 4195
bd939f45 4196 if (env->imbalance <= 0)
5d6523eb 4197 return 0;
1e3c88bd 4198
5d6523eb
PZ
4199 while (!list_empty(tasks)) {
4200 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4201
367456c7
PZ
4202 env->loop++;
4203 /* We've more or less seen every task there is, call it quits */
5d6523eb 4204 if (env->loop > env->loop_max)
367456c7 4205 break;
5d6523eb
PZ
4206
4207 /* take a breather every nr_migrate tasks */
367456c7 4208 if (env->loop > env->loop_break) {
eb95308e 4209 env->loop_break += sched_nr_migrate_break;
8e45cb54 4210 env->flags |= LBF_NEED_BREAK;
ee00e66f 4211 break;
a195f004 4212 }
1e3c88bd 4213
d3198084 4214 if (!can_migrate_task(p, env))
367456c7
PZ
4215 goto next;
4216
4217 load = task_h_load(p);
5d6523eb 4218
eb95308e 4219 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4220 goto next;
4221
bd939f45 4222 if ((load / 2) > env->imbalance)
367456c7 4223 goto next;
1e3c88bd 4224
ddcdf6e7 4225 move_task(p, env);
ee00e66f 4226 pulled++;
bd939f45 4227 env->imbalance -= load;
1e3c88bd
PZ
4228
4229#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4230 /*
4231 * NEWIDLE balancing is a source of latency, so preemptible
4232 * kernels will stop after the first task is pulled to minimize
4233 * the critical section.
4234 */
5d6523eb 4235 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4236 break;
1e3c88bd
PZ
4237#endif
4238
ee00e66f
PZ
4239 /*
4240 * We only want to steal up to the prescribed amount of
4241 * weighted load.
4242 */
bd939f45 4243 if (env->imbalance <= 0)
ee00e66f 4244 break;
367456c7
PZ
4245
4246 continue;
4247next:
5d6523eb 4248 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4249 }
5d6523eb 4250
1e3c88bd 4251 /*
ddcdf6e7
PZ
4252 * Right now, this is one of only two places move_task() is called,
4253 * so we can safely collect move_task() stats here rather than
4254 * inside move_task().
1e3c88bd 4255 */
8e45cb54 4256 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4257
5d6523eb 4258 return pulled;
1e3c88bd
PZ
4259}
4260
230059de 4261#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4262/*
4263 * update tg->load_weight by folding this cpu's load_avg
4264 */
48a16753 4265static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4266{
48a16753
PT
4267 struct sched_entity *se = tg->se[cpu];
4268 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4269
48a16753
PT
4270 /* throttled entities do not contribute to load */
4271 if (throttled_hierarchy(cfs_rq))
4272 return;
9e3081ca 4273
aff3e498 4274 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4275
82958366
PT
4276 if (se) {
4277 update_entity_load_avg(se, 1);
4278 /*
4279 * We pivot on our runnable average having decayed to zero for
4280 * list removal. This generally implies that all our children
4281 * have also been removed (modulo rounding error or bandwidth
4282 * control); however, such cases are rare and we can fix these
4283 * at enqueue.
4284 *
4285 * TODO: fix up out-of-order children on enqueue.
4286 */
4287 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4288 list_del_leaf_cfs_rq(cfs_rq);
4289 } else {
48a16753 4290 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4291 update_rq_runnable_avg(rq, rq->nr_running);
4292 }
9e3081ca
PZ
4293}
4294
48a16753 4295static void update_blocked_averages(int cpu)
9e3081ca 4296{
9e3081ca 4297 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4298 struct cfs_rq *cfs_rq;
4299 unsigned long flags;
9e3081ca 4300
48a16753
PT
4301 raw_spin_lock_irqsave(&rq->lock, flags);
4302 update_rq_clock(rq);
9763b67f
PZ
4303 /*
4304 * Iterates the task_group tree in a bottom up fashion, see
4305 * list_add_leaf_cfs_rq() for details.
4306 */
64660c86 4307 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4308 /*
4309 * Note: We may want to consider periodically releasing
4310 * rq->lock about these updates so that creating many task
4311 * groups does not result in continually extending hold time.
4312 */
4313 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4314 }
48a16753
PT
4315
4316 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4317}
4318
9763b67f 4319/*
68520796 4320 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4321 * This needs to be done in a top-down fashion because the load of a child
4322 * group is a fraction of its parents load.
4323 */
68520796 4324static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4325{
68520796
VD
4326 struct rq *rq = rq_of(cfs_rq);
4327 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4328 unsigned long now = jiffies;
68520796 4329 unsigned long load;
a35b6466 4330
68520796 4331 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4332 return;
4333
68520796
VD
4334 cfs_rq->h_load_next = NULL;
4335 for_each_sched_entity(se) {
4336 cfs_rq = cfs_rq_of(se);
4337 cfs_rq->h_load_next = se;
4338 if (cfs_rq->last_h_load_update == now)
4339 break;
4340 }
a35b6466 4341
68520796 4342 if (!se) {
7e3115ef 4343 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4344 cfs_rq->last_h_load_update = now;
4345 }
4346
4347 while ((se = cfs_rq->h_load_next) != NULL) {
4348 load = cfs_rq->h_load;
4349 load = div64_ul(load * se->avg.load_avg_contrib,
4350 cfs_rq->runnable_load_avg + 1);
4351 cfs_rq = group_cfs_rq(se);
4352 cfs_rq->h_load = load;
4353 cfs_rq->last_h_load_update = now;
4354 }
9763b67f
PZ
4355}
4356
367456c7 4357static unsigned long task_h_load(struct task_struct *p)
230059de 4358{
367456c7 4359 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4360
68520796 4361 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4362 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4363 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4364}
4365#else
48a16753 4366static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4367{
4368}
4369
367456c7 4370static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4371{
a003a25b 4372 return p->se.avg.load_avg_contrib;
1e3c88bd 4373}
230059de 4374#endif
1e3c88bd 4375
1e3c88bd 4376/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4377/*
4378 * sg_lb_stats - stats of a sched_group required for load_balancing
4379 */
4380struct sg_lb_stats {
4381 unsigned long avg_load; /*Avg load across the CPUs of the group */
4382 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4383 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4384 unsigned long load_per_task;
3ae11c90 4385 unsigned long group_power;
147c5fc2
PZ
4386 unsigned int sum_nr_running; /* Nr tasks running in the group */
4387 unsigned int group_capacity;
4388 unsigned int idle_cpus;
4389 unsigned int group_weight;
1e3c88bd 4390 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4391 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4392};
4393
56cf515b
JK
4394/*
4395 * sd_lb_stats - Structure to store the statistics of a sched_domain
4396 * during load balancing.
4397 */
4398struct sd_lb_stats {
4399 struct sched_group *busiest; /* Busiest group in this sd */
4400 struct sched_group *local; /* Local group in this sd */
4401 unsigned long total_load; /* Total load of all groups in sd */
4402 unsigned long total_pwr; /* Total power of all groups in sd */
4403 unsigned long avg_load; /* Average load across all groups in sd */
4404
56cf515b 4405 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4406 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4407};
4408
147c5fc2
PZ
4409static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4410{
4411 /*
4412 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4413 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4414 * We must however clear busiest_stat::avg_load because
4415 * update_sd_pick_busiest() reads this before assignment.
4416 */
4417 *sds = (struct sd_lb_stats){
4418 .busiest = NULL,
4419 .local = NULL,
4420 .total_load = 0UL,
4421 .total_pwr = 0UL,
4422 .busiest_stat = {
4423 .avg_load = 0UL,
4424 },
4425 };
4426}
4427
1e3c88bd
PZ
4428/**
4429 * get_sd_load_idx - Obtain the load index for a given sched domain.
4430 * @sd: The sched_domain whose load_idx is to be obtained.
4431 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4432 *
4433 * Return: The load index.
1e3c88bd
PZ
4434 */
4435static inline int get_sd_load_idx(struct sched_domain *sd,
4436 enum cpu_idle_type idle)
4437{
4438 int load_idx;
4439
4440 switch (idle) {
4441 case CPU_NOT_IDLE:
4442 load_idx = sd->busy_idx;
4443 break;
4444
4445 case CPU_NEWLY_IDLE:
4446 load_idx = sd->newidle_idx;
4447 break;
4448 default:
4449 load_idx = sd->idle_idx;
4450 break;
4451 }
4452
4453 return load_idx;
4454}
4455
15f803c9 4456static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4457{
1399fa78 4458 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4459}
4460
4461unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4462{
4463 return default_scale_freq_power(sd, cpu);
4464}
4465
15f803c9 4466static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4467{
669c55e9 4468 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4469 unsigned long smt_gain = sd->smt_gain;
4470
4471 smt_gain /= weight;
4472
4473 return smt_gain;
4474}
4475
4476unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4477{
4478 return default_scale_smt_power(sd, cpu);
4479}
4480
15f803c9 4481static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4482{
4483 struct rq *rq = cpu_rq(cpu);
b654f7de 4484 u64 total, available, age_stamp, avg;
1e3c88bd 4485
b654f7de
PZ
4486 /*
4487 * Since we're reading these variables without serialization make sure
4488 * we read them once before doing sanity checks on them.
4489 */
4490 age_stamp = ACCESS_ONCE(rq->age_stamp);
4491 avg = ACCESS_ONCE(rq->rt_avg);
4492
78becc27 4493 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4494
b654f7de 4495 if (unlikely(total < avg)) {
aa483808
VP
4496 /* Ensures that power won't end up being negative */
4497 available = 0;
4498 } else {
b654f7de 4499 available = total - avg;
aa483808 4500 }
1e3c88bd 4501
1399fa78
NR
4502 if (unlikely((s64)total < SCHED_POWER_SCALE))
4503 total = SCHED_POWER_SCALE;
1e3c88bd 4504
1399fa78 4505 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4506
4507 return div_u64(available, total);
4508}
4509
4510static void update_cpu_power(struct sched_domain *sd, int cpu)
4511{
669c55e9 4512 unsigned long weight = sd->span_weight;
1399fa78 4513 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4514 struct sched_group *sdg = sd->groups;
4515
1e3c88bd
PZ
4516 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4517 if (sched_feat(ARCH_POWER))
4518 power *= arch_scale_smt_power(sd, cpu);
4519 else
4520 power *= default_scale_smt_power(sd, cpu);
4521
1399fa78 4522 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4523 }
4524
9c3f75cb 4525 sdg->sgp->power_orig = power;
9d5efe05
SV
4526
4527 if (sched_feat(ARCH_POWER))
4528 power *= arch_scale_freq_power(sd, cpu);
4529 else
4530 power *= default_scale_freq_power(sd, cpu);
4531
1399fa78 4532 power >>= SCHED_POWER_SHIFT;
9d5efe05 4533
1e3c88bd 4534 power *= scale_rt_power(cpu);
1399fa78 4535 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4536
4537 if (!power)
4538 power = 1;
4539
e51fd5e2 4540 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4541 sdg->sgp->power = power;
1e3c88bd
PZ
4542}
4543
029632fb 4544void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4545{
4546 struct sched_domain *child = sd->child;
4547 struct sched_group *group, *sdg = sd->groups;
863bffc8 4548 unsigned long power, power_orig;
4ec4412e
VG
4549 unsigned long interval;
4550
4551 interval = msecs_to_jiffies(sd->balance_interval);
4552 interval = clamp(interval, 1UL, max_load_balance_interval);
4553 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4554
4555 if (!child) {
4556 update_cpu_power(sd, cpu);
4557 return;
4558 }
4559
863bffc8 4560 power_orig = power = 0;
1e3c88bd 4561
74a5ce20
PZ
4562 if (child->flags & SD_OVERLAP) {
4563 /*
4564 * SD_OVERLAP domains cannot assume that child groups
4565 * span the current group.
4566 */
4567
863bffc8
PZ
4568 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4569 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4570
4571 power_orig += sg->sgp->power_orig;
4572 power += sg->sgp->power;
4573 }
74a5ce20
PZ
4574 } else {
4575 /*
4576 * !SD_OVERLAP domains can assume that child groups
4577 * span the current group.
4578 */
4579
4580 group = child->groups;
4581 do {
863bffc8 4582 power_orig += group->sgp->power_orig;
74a5ce20
PZ
4583 power += group->sgp->power;
4584 group = group->next;
4585 } while (group != child->groups);
4586 }
1e3c88bd 4587
863bffc8
PZ
4588 sdg->sgp->power_orig = power_orig;
4589 sdg->sgp->power = power;
1e3c88bd
PZ
4590}
4591
9d5efe05
SV
4592/*
4593 * Try and fix up capacity for tiny siblings, this is needed when
4594 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4595 * which on its own isn't powerful enough.
4596 *
4597 * See update_sd_pick_busiest() and check_asym_packing().
4598 */
4599static inline int
4600fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4601{
4602 /*
1399fa78 4603 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4604 */
a6c75f2f 4605 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4606 return 0;
4607
4608 /*
4609 * If ~90% of the cpu_power is still there, we're good.
4610 */
9c3f75cb 4611 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4612 return 1;
4613
4614 return 0;
4615}
4616
30ce5dab
PZ
4617/*
4618 * Group imbalance indicates (and tries to solve) the problem where balancing
4619 * groups is inadequate due to tsk_cpus_allowed() constraints.
4620 *
4621 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4622 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4623 * Something like:
4624 *
4625 * { 0 1 2 3 } { 4 5 6 7 }
4626 * * * * *
4627 *
4628 * If we were to balance group-wise we'd place two tasks in the first group and
4629 * two tasks in the second group. Clearly this is undesired as it will overload
4630 * cpu 3 and leave one of the cpus in the second group unused.
4631 *
4632 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
4633 * by noticing the lower domain failed to reach balance and had difficulty
4634 * moving tasks due to affinity constraints.
30ce5dab
PZ
4635 *
4636 * When this is so detected; this group becomes a candidate for busiest; see
4637 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 4638 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
4639 * to create an effective group imbalance.
4640 *
4641 * This is a somewhat tricky proposition since the next run might not find the
4642 * group imbalance and decide the groups need to be balanced again. A most
4643 * subtle and fragile situation.
4644 */
4645
6263322c 4646static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 4647{
6263322c 4648 return group->sgp->imbalance;
30ce5dab
PZ
4649}
4650
b37d9316
PZ
4651/*
4652 * Compute the group capacity.
4653 *
c61037e9
PZ
4654 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4655 * first dividing out the smt factor and computing the actual number of cores
4656 * and limit power unit capacity with that.
b37d9316
PZ
4657 */
4658static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4659{
c61037e9
PZ
4660 unsigned int capacity, smt, cpus;
4661 unsigned int power, power_orig;
4662
4663 power = group->sgp->power;
4664 power_orig = group->sgp->power_orig;
4665 cpus = group->group_weight;
b37d9316 4666
c61037e9
PZ
4667 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4668 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4669 capacity = cpus / smt; /* cores */
b37d9316 4670
c61037e9 4671 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
4672 if (!capacity)
4673 capacity = fix_small_capacity(env->sd, group);
4674
4675 return capacity;
4676}
4677
1e3c88bd
PZ
4678/**
4679 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4680 * @env: The load balancing environment.
1e3c88bd 4681 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4682 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4683 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4684 * @sgs: variable to hold the statistics for this group.
4685 */
bd939f45
PZ
4686static inline void update_sg_lb_stats(struct lb_env *env,
4687 struct sched_group *group, int load_idx,
23f0d209 4688 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 4689{
30ce5dab
PZ
4690 unsigned long nr_running;
4691 unsigned long load;
bd939f45 4692 int i;
1e3c88bd 4693
b72ff13c
PZ
4694 memset(sgs, 0, sizeof(*sgs));
4695
b9403130 4696 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4697 struct rq *rq = cpu_rq(i);
4698
e44bc5c5
PZ
4699 nr_running = rq->nr_running;
4700
1e3c88bd 4701 /* Bias balancing toward cpus of our domain */
6263322c 4702 if (local_group)
04f733b4 4703 load = target_load(i, load_idx);
6263322c 4704 else
1e3c88bd 4705 load = source_load(i, load_idx);
1e3c88bd
PZ
4706
4707 sgs->group_load += load;
e44bc5c5 4708 sgs->sum_nr_running += nr_running;
1e3c88bd 4709 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4710 if (idle_cpu(i))
4711 sgs->idle_cpus++;
1e3c88bd
PZ
4712 }
4713
1e3c88bd 4714 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
4715 sgs->group_power = group->sgp->power;
4716 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 4717
dd5feea1 4718 if (sgs->sum_nr_running)
38d0f770 4719 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4720
aae6d3dd 4721 sgs->group_weight = group->group_weight;
fab47622 4722
b37d9316
PZ
4723 sgs->group_imb = sg_imbalanced(group);
4724 sgs->group_capacity = sg_capacity(env, group);
4725
fab47622
NR
4726 if (sgs->group_capacity > sgs->sum_nr_running)
4727 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4728}
4729
532cb4c4
MN
4730/**
4731 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4732 * @env: The load balancing environment.
532cb4c4
MN
4733 * @sds: sched_domain statistics
4734 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4735 * @sgs: sched_group statistics
532cb4c4
MN
4736 *
4737 * Determine if @sg is a busier group than the previously selected
4738 * busiest group.
e69f6186
YB
4739 *
4740 * Return: %true if @sg is a busier group than the previously selected
4741 * busiest group. %false otherwise.
532cb4c4 4742 */
bd939f45 4743static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4744 struct sd_lb_stats *sds,
4745 struct sched_group *sg,
bd939f45 4746 struct sg_lb_stats *sgs)
532cb4c4 4747{
56cf515b 4748 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
4749 return false;
4750
4751 if (sgs->sum_nr_running > sgs->group_capacity)
4752 return true;
4753
4754 if (sgs->group_imb)
4755 return true;
4756
4757 /*
4758 * ASYM_PACKING needs to move all the work to the lowest
4759 * numbered CPUs in the group, therefore mark all groups
4760 * higher than ourself as busy.
4761 */
bd939f45
PZ
4762 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4763 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4764 if (!sds->busiest)
4765 return true;
4766
4767 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4768 return true;
4769 }
4770
4771 return false;
4772}
4773
1e3c88bd 4774/**
461819ac 4775 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4776 * @env: The load balancing environment.
1e3c88bd
PZ
4777 * @balance: Should we balance.
4778 * @sds: variable to hold the statistics for this sched_domain.
4779 */
bd939f45 4780static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 4781 struct sd_lb_stats *sds)
1e3c88bd 4782{
bd939f45
PZ
4783 struct sched_domain *child = env->sd->child;
4784 struct sched_group *sg = env->sd->groups;
56cf515b 4785 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
4786 int load_idx, prefer_sibling = 0;
4787
4788 if (child && child->flags & SD_PREFER_SIBLING)
4789 prefer_sibling = 1;
4790
bd939f45 4791 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4792
4793 do {
56cf515b 4794 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
4795 int local_group;
4796
bd939f45 4797 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
4798 if (local_group) {
4799 sds->local = sg;
4800 sgs = &sds->local_stat;
b72ff13c
PZ
4801
4802 if (env->idle != CPU_NEWLY_IDLE ||
4803 time_after_eq(jiffies, sg->sgp->next_update))
4804 update_group_power(env->sd, env->dst_cpu);
56cf515b 4805 }
1e3c88bd 4806
56cf515b 4807 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 4808
b72ff13c
PZ
4809 if (local_group)
4810 goto next_group;
4811
1e3c88bd
PZ
4812 /*
4813 * In case the child domain prefers tasks go to siblings
532cb4c4 4814 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4815 * and move all the excess tasks away. We lower the capacity
4816 * of a group only if the local group has the capacity to fit
4817 * these excess tasks, i.e. nr_running < group_capacity. The
4818 * extra check prevents the case where you always pull from the
4819 * heaviest group when it is already under-utilized (possible
4820 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4821 */
b72ff13c
PZ
4822 if (prefer_sibling && sds->local &&
4823 sds->local_stat.group_has_capacity)
147c5fc2 4824 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 4825
b72ff13c 4826 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 4827 sds->busiest = sg;
56cf515b 4828 sds->busiest_stat = *sgs;
1e3c88bd
PZ
4829 }
4830
b72ff13c
PZ
4831next_group:
4832 /* Now, start updating sd_lb_stats */
4833 sds->total_load += sgs->group_load;
4834 sds->total_pwr += sgs->group_power;
4835
532cb4c4 4836 sg = sg->next;
bd939f45 4837 } while (sg != env->sd->groups);
532cb4c4
MN
4838}
4839
532cb4c4
MN
4840/**
4841 * check_asym_packing - Check to see if the group is packed into the
4842 * sched doman.
4843 *
4844 * This is primarily intended to used at the sibling level. Some
4845 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4846 * case of POWER7, it can move to lower SMT modes only when higher
4847 * threads are idle. When in lower SMT modes, the threads will
4848 * perform better since they share less core resources. Hence when we
4849 * have idle threads, we want them to be the higher ones.
4850 *
4851 * This packing function is run on idle threads. It checks to see if
4852 * the busiest CPU in this domain (core in the P7 case) has a higher
4853 * CPU number than the packing function is being run on. Here we are
4854 * assuming lower CPU number will be equivalent to lower a SMT thread
4855 * number.
4856 *
e69f6186 4857 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
4858 * this CPU. The amount of the imbalance is returned in *imbalance.
4859 *
cd96891d 4860 * @env: The load balancing environment.
532cb4c4 4861 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4862 */
bd939f45 4863static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4864{
4865 int busiest_cpu;
4866
bd939f45 4867 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4868 return 0;
4869
4870 if (!sds->busiest)
4871 return 0;
4872
4873 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4874 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4875 return 0;
4876
bd939f45 4877 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
4878 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
4879 SCHED_POWER_SCALE);
bd939f45 4880
532cb4c4 4881 return 1;
1e3c88bd
PZ
4882}
4883
4884/**
4885 * fix_small_imbalance - Calculate the minor imbalance that exists
4886 * amongst the groups of a sched_domain, during
4887 * load balancing.
cd96891d 4888 * @env: The load balancing environment.
1e3c88bd 4889 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4890 */
bd939f45
PZ
4891static inline
4892void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4893{
4894 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4895 unsigned int imbn = 2;
dd5feea1 4896 unsigned long scaled_busy_load_per_task;
56cf515b 4897 struct sg_lb_stats *local, *busiest;
1e3c88bd 4898
56cf515b
JK
4899 local = &sds->local_stat;
4900 busiest = &sds->busiest_stat;
1e3c88bd 4901
56cf515b
JK
4902 if (!local->sum_nr_running)
4903 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
4904 else if (busiest->load_per_task > local->load_per_task)
4905 imbn = 1;
dd5feea1 4906
56cf515b
JK
4907 scaled_busy_load_per_task =
4908 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4909 busiest->group_power;
56cf515b 4910
3029ede3
VD
4911 if (busiest->avg_load + scaled_busy_load_per_task >=
4912 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 4913 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4914 return;
4915 }
4916
4917 /*
4918 * OK, we don't have enough imbalance to justify moving tasks,
4919 * however we may be able to increase total CPU power used by
4920 * moving them.
4921 */
4922
3ae11c90 4923 pwr_now += busiest->group_power *
56cf515b 4924 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 4925 pwr_now += local->group_power *
56cf515b 4926 min(local->load_per_task, local->avg_load);
1399fa78 4927 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4928
4929 /* Amount of load we'd subtract */
56cf515b 4930 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4931 busiest->group_power;
56cf515b 4932 if (busiest->avg_load > tmp) {
3ae11c90 4933 pwr_move += busiest->group_power *
56cf515b
JK
4934 min(busiest->load_per_task,
4935 busiest->avg_load - tmp);
4936 }
1e3c88bd
PZ
4937
4938 /* Amount of load we'd add */
3ae11c90 4939 if (busiest->avg_load * busiest->group_power <
56cf515b 4940 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
4941 tmp = (busiest->avg_load * busiest->group_power) /
4942 local->group_power;
56cf515b
JK
4943 } else {
4944 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4945 local->group_power;
56cf515b 4946 }
3ae11c90
PZ
4947 pwr_move += local->group_power *
4948 min(local->load_per_task, local->avg_load + tmp);
1399fa78 4949 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4950
4951 /* Move if we gain throughput */
4952 if (pwr_move > pwr_now)
56cf515b 4953 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4954}
4955
4956/**
4957 * calculate_imbalance - Calculate the amount of imbalance present within the
4958 * groups of a given sched_domain during load balance.
bd939f45 4959 * @env: load balance environment
1e3c88bd 4960 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4961 */
bd939f45 4962static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4963{
dd5feea1 4964 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
4965 struct sg_lb_stats *local, *busiest;
4966
4967 local = &sds->local_stat;
56cf515b 4968 busiest = &sds->busiest_stat;
dd5feea1 4969
56cf515b 4970 if (busiest->group_imb) {
30ce5dab
PZ
4971 /*
4972 * In the group_imb case we cannot rely on group-wide averages
4973 * to ensure cpu-load equilibrium, look at wider averages. XXX
4974 */
56cf515b
JK
4975 busiest->load_per_task =
4976 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
4977 }
4978
1e3c88bd
PZ
4979 /*
4980 * In the presence of smp nice balancing, certain scenarios can have
4981 * max load less than avg load(as we skip the groups at or below
4982 * its cpu_power, while calculating max_load..)
4983 */
b1885550
VD
4984 if (busiest->avg_load <= sds->avg_load ||
4985 local->avg_load >= sds->avg_load) {
bd939f45
PZ
4986 env->imbalance = 0;
4987 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4988 }
4989
56cf515b 4990 if (!busiest->group_imb) {
dd5feea1
SS
4991 /*
4992 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
4993 * Except of course for the group_imb case, since then we might
4994 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 4995 */
56cf515b
JK
4996 load_above_capacity =
4997 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 4998
1399fa78 4999 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5000 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5001 }
5002
5003 /*
5004 * We're trying to get all the cpus to the average_load, so we don't
5005 * want to push ourselves above the average load, nor do we wish to
5006 * reduce the max loaded cpu below the average load. At the same time,
5007 * we also don't want to reduce the group load below the group capacity
5008 * (so that we can implement power-savings policies etc). Thus we look
5009 * for the minimum possible imbalance.
dd5feea1 5010 */
30ce5dab 5011 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5012
5013 /* How much load to actually move to equalise the imbalance */
56cf515b 5014 env->imbalance = min(
3ae11c90
PZ
5015 max_pull * busiest->group_power,
5016 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5017 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5018
5019 /*
5020 * if *imbalance is less than the average load per runnable task
25985edc 5021 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5022 * a think about bumping its value to force at least one task to be
5023 * moved
5024 */
56cf515b 5025 if (env->imbalance < busiest->load_per_task)
bd939f45 5026 return fix_small_imbalance(env, sds);
1e3c88bd 5027}
fab47622 5028
1e3c88bd
PZ
5029/******* find_busiest_group() helpers end here *********************/
5030
5031/**
5032 * find_busiest_group - Returns the busiest group within the sched_domain
5033 * if there is an imbalance. If there isn't an imbalance, and
5034 * the user has opted for power-savings, it returns a group whose
5035 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5036 * such a group exists.
5037 *
5038 * Also calculates the amount of weighted load which should be moved
5039 * to restore balance.
5040 *
cd96891d 5041 * @env: The load balancing environment.
1e3c88bd 5042 *
e69f6186 5043 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5044 * - If no imbalance and user has opted for power-savings balance,
5045 * return the least loaded group whose CPUs can be
5046 * put to idle by rebalancing its tasks onto our group.
5047 */
56cf515b 5048static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5049{
56cf515b 5050 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5051 struct sd_lb_stats sds;
5052
147c5fc2 5053 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5054
5055 /*
5056 * Compute the various statistics relavent for load balancing at
5057 * this level.
5058 */
23f0d209 5059 update_sd_lb_stats(env, &sds);
56cf515b
JK
5060 local = &sds.local_stat;
5061 busiest = &sds.busiest_stat;
1e3c88bd 5062
bd939f45
PZ
5063 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5064 check_asym_packing(env, &sds))
532cb4c4
MN
5065 return sds.busiest;
5066
cc57aa8f 5067 /* There is no busy sibling group to pull tasks from */
56cf515b 5068 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5069 goto out_balanced;
5070
1399fa78 5071 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5072
866ab43e
PZ
5073 /*
5074 * If the busiest group is imbalanced the below checks don't
30ce5dab 5075 * work because they assume all things are equal, which typically
866ab43e
PZ
5076 * isn't true due to cpus_allowed constraints and the like.
5077 */
56cf515b 5078 if (busiest->group_imb)
866ab43e
PZ
5079 goto force_balance;
5080
cc57aa8f 5081 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5082 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5083 !busiest->group_has_capacity)
fab47622
NR
5084 goto force_balance;
5085
cc57aa8f
PZ
5086 /*
5087 * If the local group is more busy than the selected busiest group
5088 * don't try and pull any tasks.
5089 */
56cf515b 5090 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5091 goto out_balanced;
5092
cc57aa8f
PZ
5093 /*
5094 * Don't pull any tasks if this group is already above the domain
5095 * average load.
5096 */
56cf515b 5097 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5098 goto out_balanced;
5099
bd939f45 5100 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5101 /*
5102 * This cpu is idle. If the busiest group load doesn't
5103 * have more tasks than the number of available cpu's and
5104 * there is no imbalance between this and busiest group
5105 * wrt to idle cpu's, it is balanced.
5106 */
56cf515b
JK
5107 if ((local->idle_cpus < busiest->idle_cpus) &&
5108 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5109 goto out_balanced;
c186fafe
PZ
5110 } else {
5111 /*
5112 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5113 * imbalance_pct to be conservative.
5114 */
56cf515b
JK
5115 if (100 * busiest->avg_load <=
5116 env->sd->imbalance_pct * local->avg_load)
c186fafe 5117 goto out_balanced;
aae6d3dd 5118 }
1e3c88bd 5119
fab47622 5120force_balance:
1e3c88bd 5121 /* Looks like there is an imbalance. Compute it */
bd939f45 5122 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5123 return sds.busiest;
5124
5125out_balanced:
bd939f45 5126 env->imbalance = 0;
1e3c88bd
PZ
5127 return NULL;
5128}
5129
5130/*
5131 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5132 */
bd939f45 5133static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5134 struct sched_group *group)
1e3c88bd
PZ
5135{
5136 struct rq *busiest = NULL, *rq;
95a79b80 5137 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5138 int i;
5139
6906a408 5140 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5141 unsigned long power = power_of(i);
1399fa78
NR
5142 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5143 SCHED_POWER_SCALE);
1e3c88bd
PZ
5144 unsigned long wl;
5145
9d5efe05 5146 if (!capacity)
bd939f45 5147 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5148
1e3c88bd 5149 rq = cpu_rq(i);
6e40f5bb 5150 wl = weighted_cpuload(i);
1e3c88bd 5151
6e40f5bb
TG
5152 /*
5153 * When comparing with imbalance, use weighted_cpuload()
5154 * which is not scaled with the cpu power.
5155 */
bd939f45 5156 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5157 continue;
5158
6e40f5bb
TG
5159 /*
5160 * For the load comparisons with the other cpu's, consider
5161 * the weighted_cpuload() scaled with the cpu power, so that
5162 * the load can be moved away from the cpu that is potentially
5163 * running at a lower capacity.
95a79b80
JK
5164 *
5165 * Thus we're looking for max(wl_i / power_i), crosswise
5166 * multiplication to rid ourselves of the division works out
5167 * to: wl_i * power_j > wl_j * power_i; where j is our
5168 * previous maximum.
6e40f5bb 5169 */
95a79b80
JK
5170 if (wl * busiest_power > busiest_load * power) {
5171 busiest_load = wl;
5172 busiest_power = power;
1e3c88bd
PZ
5173 busiest = rq;
5174 }
5175 }
5176
5177 return busiest;
5178}
5179
5180/*
5181 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5182 * so long as it is large enough.
5183 */
5184#define MAX_PINNED_INTERVAL 512
5185
5186/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5187DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5188
bd939f45 5189static int need_active_balance(struct lb_env *env)
1af3ed3d 5190{
bd939f45
PZ
5191 struct sched_domain *sd = env->sd;
5192
5193 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5194
5195 /*
5196 * ASYM_PACKING needs to force migrate tasks from busy but
5197 * higher numbered CPUs in order to pack all tasks in the
5198 * lowest numbered CPUs.
5199 */
bd939f45 5200 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5201 return 1;
1af3ed3d
PZ
5202 }
5203
5204 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5205}
5206
969c7921
TH
5207static int active_load_balance_cpu_stop(void *data);
5208
23f0d209
JK
5209static int should_we_balance(struct lb_env *env)
5210{
5211 struct sched_group *sg = env->sd->groups;
5212 struct cpumask *sg_cpus, *sg_mask;
5213 int cpu, balance_cpu = -1;
5214
5215 /*
5216 * In the newly idle case, we will allow all the cpu's
5217 * to do the newly idle load balance.
5218 */
5219 if (env->idle == CPU_NEWLY_IDLE)
5220 return 1;
5221
5222 sg_cpus = sched_group_cpus(sg);
5223 sg_mask = sched_group_mask(sg);
5224 /* Try to find first idle cpu */
5225 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5226 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5227 continue;
5228
5229 balance_cpu = cpu;
5230 break;
5231 }
5232
5233 if (balance_cpu == -1)
5234 balance_cpu = group_balance_cpu(sg);
5235
5236 /*
5237 * First idle cpu or the first cpu(busiest) in this sched group
5238 * is eligible for doing load balancing at this and above domains.
5239 */
b0cff9d8 5240 return balance_cpu == env->dst_cpu;
23f0d209
JK
5241}
5242
1e3c88bd
PZ
5243/*
5244 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5245 * tasks if there is an imbalance.
5246 */
5247static int load_balance(int this_cpu, struct rq *this_rq,
5248 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5249 int *continue_balancing)
1e3c88bd 5250{
88b8dac0 5251 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5252 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5253 struct sched_group *group;
1e3c88bd
PZ
5254 struct rq *busiest;
5255 unsigned long flags;
e6252c3e 5256 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5257
8e45cb54
PZ
5258 struct lb_env env = {
5259 .sd = sd,
ddcdf6e7
PZ
5260 .dst_cpu = this_cpu,
5261 .dst_rq = this_rq,
88b8dac0 5262 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5263 .idle = idle,
eb95308e 5264 .loop_break = sched_nr_migrate_break,
b9403130 5265 .cpus = cpus,
8e45cb54
PZ
5266 };
5267
cfc03118
JK
5268 /*
5269 * For NEWLY_IDLE load_balancing, we don't need to consider
5270 * other cpus in our group
5271 */
e02e60c1 5272 if (idle == CPU_NEWLY_IDLE)
cfc03118 5273 env.dst_grpmask = NULL;
cfc03118 5274
1e3c88bd
PZ
5275 cpumask_copy(cpus, cpu_active_mask);
5276
1e3c88bd
PZ
5277 schedstat_inc(sd, lb_count[idle]);
5278
5279redo:
23f0d209
JK
5280 if (!should_we_balance(&env)) {
5281 *continue_balancing = 0;
1e3c88bd 5282 goto out_balanced;
23f0d209 5283 }
1e3c88bd 5284
23f0d209 5285 group = find_busiest_group(&env);
1e3c88bd
PZ
5286 if (!group) {
5287 schedstat_inc(sd, lb_nobusyg[idle]);
5288 goto out_balanced;
5289 }
5290
b9403130 5291 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5292 if (!busiest) {
5293 schedstat_inc(sd, lb_nobusyq[idle]);
5294 goto out_balanced;
5295 }
5296
78feefc5 5297 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5298
bd939f45 5299 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5300
5301 ld_moved = 0;
5302 if (busiest->nr_running > 1) {
5303 /*
5304 * Attempt to move tasks. If find_busiest_group has found
5305 * an imbalance but busiest->nr_running <= 1, the group is
5306 * still unbalanced. ld_moved simply stays zero, so it is
5307 * correctly treated as an imbalance.
5308 */
8e45cb54 5309 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5310 env.src_cpu = busiest->cpu;
5311 env.src_rq = busiest;
5312 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5313
5d6523eb 5314more_balance:
1e3c88bd 5315 local_irq_save(flags);
78feefc5 5316 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5317
5318 /*
5319 * cur_ld_moved - load moved in current iteration
5320 * ld_moved - cumulative load moved across iterations
5321 */
5322 cur_ld_moved = move_tasks(&env);
5323 ld_moved += cur_ld_moved;
78feefc5 5324 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5325 local_irq_restore(flags);
5326
5327 /*
5328 * some other cpu did the load balance for us.
5329 */
88b8dac0
SV
5330 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5331 resched_cpu(env.dst_cpu);
5332
f1cd0858
JK
5333 if (env.flags & LBF_NEED_BREAK) {
5334 env.flags &= ~LBF_NEED_BREAK;
5335 goto more_balance;
5336 }
5337
88b8dac0
SV
5338 /*
5339 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5340 * us and move them to an alternate dst_cpu in our sched_group
5341 * where they can run. The upper limit on how many times we
5342 * iterate on same src_cpu is dependent on number of cpus in our
5343 * sched_group.
5344 *
5345 * This changes load balance semantics a bit on who can move
5346 * load to a given_cpu. In addition to the given_cpu itself
5347 * (or a ilb_cpu acting on its behalf where given_cpu is
5348 * nohz-idle), we now have balance_cpu in a position to move
5349 * load to given_cpu. In rare situations, this may cause
5350 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5351 * _independently_ and at _same_ time to move some load to
5352 * given_cpu) causing exceess load to be moved to given_cpu.
5353 * This however should not happen so much in practice and
5354 * moreover subsequent load balance cycles should correct the
5355 * excess load moved.
5356 */
6263322c 5357 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5358
7aff2e3a
VD
5359 /* Prevent to re-select dst_cpu via env's cpus */
5360 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5361
78feefc5 5362 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5363 env.dst_cpu = env.new_dst_cpu;
6263322c 5364 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5365 env.loop = 0;
5366 env.loop_break = sched_nr_migrate_break;
e02e60c1 5367
88b8dac0
SV
5368 /*
5369 * Go back to "more_balance" rather than "redo" since we
5370 * need to continue with same src_cpu.
5371 */
5372 goto more_balance;
5373 }
1e3c88bd 5374
6263322c
PZ
5375 /*
5376 * We failed to reach balance because of affinity.
5377 */
5378 if (sd_parent) {
5379 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5380
5381 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5382 *group_imbalance = 1;
5383 } else if (*group_imbalance)
5384 *group_imbalance = 0;
5385 }
5386
1e3c88bd 5387 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5388 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5389 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5390 if (!cpumask_empty(cpus)) {
5391 env.loop = 0;
5392 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5393 goto redo;
bbf18b19 5394 }
1e3c88bd
PZ
5395 goto out_balanced;
5396 }
5397 }
5398
5399 if (!ld_moved) {
5400 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5401 /*
5402 * Increment the failure counter only on periodic balance.
5403 * We do not want newidle balance, which can be very
5404 * frequent, pollute the failure counter causing
5405 * excessive cache_hot migrations and active balances.
5406 */
5407 if (idle != CPU_NEWLY_IDLE)
5408 sd->nr_balance_failed++;
1e3c88bd 5409
bd939f45 5410 if (need_active_balance(&env)) {
1e3c88bd
PZ
5411 raw_spin_lock_irqsave(&busiest->lock, flags);
5412
969c7921
TH
5413 /* don't kick the active_load_balance_cpu_stop,
5414 * if the curr task on busiest cpu can't be
5415 * moved to this_cpu
1e3c88bd
PZ
5416 */
5417 if (!cpumask_test_cpu(this_cpu,
fa17b507 5418 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5419 raw_spin_unlock_irqrestore(&busiest->lock,
5420 flags);
8e45cb54 5421 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5422 goto out_one_pinned;
5423 }
5424
969c7921
TH
5425 /*
5426 * ->active_balance synchronizes accesses to
5427 * ->active_balance_work. Once set, it's cleared
5428 * only after active load balance is finished.
5429 */
1e3c88bd
PZ
5430 if (!busiest->active_balance) {
5431 busiest->active_balance = 1;
5432 busiest->push_cpu = this_cpu;
5433 active_balance = 1;
5434 }
5435 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5436
bd939f45 5437 if (active_balance) {
969c7921
TH
5438 stop_one_cpu_nowait(cpu_of(busiest),
5439 active_load_balance_cpu_stop, busiest,
5440 &busiest->active_balance_work);
bd939f45 5441 }
1e3c88bd
PZ
5442
5443 /*
5444 * We've kicked active balancing, reset the failure
5445 * counter.
5446 */
5447 sd->nr_balance_failed = sd->cache_nice_tries+1;
5448 }
5449 } else
5450 sd->nr_balance_failed = 0;
5451
5452 if (likely(!active_balance)) {
5453 /* We were unbalanced, so reset the balancing interval */
5454 sd->balance_interval = sd->min_interval;
5455 } else {
5456 /*
5457 * If we've begun active balancing, start to back off. This
5458 * case may not be covered by the all_pinned logic if there
5459 * is only 1 task on the busy runqueue (because we don't call
5460 * move_tasks).
5461 */
5462 if (sd->balance_interval < sd->max_interval)
5463 sd->balance_interval *= 2;
5464 }
5465
1e3c88bd
PZ
5466 goto out;
5467
5468out_balanced:
5469 schedstat_inc(sd, lb_balanced[idle]);
5470
5471 sd->nr_balance_failed = 0;
5472
5473out_one_pinned:
5474 /* tune up the balancing interval */
8e45cb54 5475 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5476 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5477 (sd->balance_interval < sd->max_interval))
5478 sd->balance_interval *= 2;
5479
46e49b38 5480 ld_moved = 0;
1e3c88bd 5481out:
1e3c88bd
PZ
5482 return ld_moved;
5483}
5484
1e3c88bd
PZ
5485/*
5486 * idle_balance is called by schedule() if this_cpu is about to become
5487 * idle. Attempts to pull tasks from other CPUs.
5488 */
029632fb 5489void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5490{
5491 struct sched_domain *sd;
5492 int pulled_task = 0;
5493 unsigned long next_balance = jiffies + HZ;
9bd721c5 5494 u64 curr_cost = 0;
1e3c88bd 5495
78becc27 5496 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5497
5498 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5499 return;
5500
f492e12e
PZ
5501 /*
5502 * Drop the rq->lock, but keep IRQ/preempt disabled.
5503 */
5504 raw_spin_unlock(&this_rq->lock);
5505
48a16753 5506 update_blocked_averages(this_cpu);
dce840a0 5507 rcu_read_lock();
1e3c88bd
PZ
5508 for_each_domain(this_cpu, sd) {
5509 unsigned long interval;
23f0d209 5510 int continue_balancing = 1;
9bd721c5 5511 u64 t0, domain_cost;
1e3c88bd
PZ
5512
5513 if (!(sd->flags & SD_LOAD_BALANCE))
5514 continue;
5515
9bd721c5
JL
5516 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5517 break;
5518
f492e12e 5519 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
5520 t0 = sched_clock_cpu(this_cpu);
5521
1e3c88bd 5522 /* If we've pulled tasks over stop searching: */
f492e12e 5523 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5524 sd, CPU_NEWLY_IDLE,
5525 &continue_balancing);
9bd721c5
JL
5526
5527 domain_cost = sched_clock_cpu(this_cpu) - t0;
5528 if (domain_cost > sd->max_newidle_lb_cost)
5529 sd->max_newidle_lb_cost = domain_cost;
5530
5531 curr_cost += domain_cost;
f492e12e 5532 }
1e3c88bd
PZ
5533
5534 interval = msecs_to_jiffies(sd->balance_interval);
5535 if (time_after(next_balance, sd->last_balance + interval))
5536 next_balance = sd->last_balance + interval;
d5ad140b
NR
5537 if (pulled_task) {
5538 this_rq->idle_stamp = 0;
1e3c88bd 5539 break;
d5ad140b 5540 }
1e3c88bd 5541 }
dce840a0 5542 rcu_read_unlock();
f492e12e
PZ
5543
5544 raw_spin_lock(&this_rq->lock);
5545
1e3c88bd
PZ
5546 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5547 /*
5548 * We are going idle. next_balance may be set based on
5549 * a busy processor. So reset next_balance.
5550 */
5551 this_rq->next_balance = next_balance;
5552 }
9bd721c5
JL
5553
5554 if (curr_cost > this_rq->max_idle_balance_cost)
5555 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
5556}
5557
5558/*
969c7921
TH
5559 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5560 * running tasks off the busiest CPU onto idle CPUs. It requires at
5561 * least 1 task to be running on each physical CPU where possible, and
5562 * avoids physical / logical imbalances.
1e3c88bd 5563 */
969c7921 5564static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5565{
969c7921
TH
5566 struct rq *busiest_rq = data;
5567 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5568 int target_cpu = busiest_rq->push_cpu;
969c7921 5569 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5570 struct sched_domain *sd;
969c7921
TH
5571
5572 raw_spin_lock_irq(&busiest_rq->lock);
5573
5574 /* make sure the requested cpu hasn't gone down in the meantime */
5575 if (unlikely(busiest_cpu != smp_processor_id() ||
5576 !busiest_rq->active_balance))
5577 goto out_unlock;
1e3c88bd
PZ
5578
5579 /* Is there any task to move? */
5580 if (busiest_rq->nr_running <= 1)
969c7921 5581 goto out_unlock;
1e3c88bd
PZ
5582
5583 /*
5584 * This condition is "impossible", if it occurs
5585 * we need to fix it. Originally reported by
5586 * Bjorn Helgaas on a 128-cpu setup.
5587 */
5588 BUG_ON(busiest_rq == target_rq);
5589
5590 /* move a task from busiest_rq to target_rq */
5591 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5592
5593 /* Search for an sd spanning us and the target CPU. */
dce840a0 5594 rcu_read_lock();
1e3c88bd
PZ
5595 for_each_domain(target_cpu, sd) {
5596 if ((sd->flags & SD_LOAD_BALANCE) &&
5597 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5598 break;
5599 }
5600
5601 if (likely(sd)) {
8e45cb54
PZ
5602 struct lb_env env = {
5603 .sd = sd,
ddcdf6e7
PZ
5604 .dst_cpu = target_cpu,
5605 .dst_rq = target_rq,
5606 .src_cpu = busiest_rq->cpu,
5607 .src_rq = busiest_rq,
8e45cb54
PZ
5608 .idle = CPU_IDLE,
5609 };
5610
1e3c88bd
PZ
5611 schedstat_inc(sd, alb_count);
5612
8e45cb54 5613 if (move_one_task(&env))
1e3c88bd
PZ
5614 schedstat_inc(sd, alb_pushed);
5615 else
5616 schedstat_inc(sd, alb_failed);
5617 }
dce840a0 5618 rcu_read_unlock();
1e3c88bd 5619 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5620out_unlock:
5621 busiest_rq->active_balance = 0;
5622 raw_spin_unlock_irq(&busiest_rq->lock);
5623 return 0;
1e3c88bd
PZ
5624}
5625
3451d024 5626#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5627/*
5628 * idle load balancing details
83cd4fe2
VP
5629 * - When one of the busy CPUs notice that there may be an idle rebalancing
5630 * needed, they will kick the idle load balancer, which then does idle
5631 * load balancing for all the idle CPUs.
5632 */
1e3c88bd 5633static struct {
83cd4fe2 5634 cpumask_var_t idle_cpus_mask;
0b005cf5 5635 atomic_t nr_cpus;
83cd4fe2
VP
5636 unsigned long next_balance; /* in jiffy units */
5637} nohz ____cacheline_aligned;
1e3c88bd 5638
8e7fbcbc 5639static inline int find_new_ilb(int call_cpu)
1e3c88bd 5640{
0b005cf5 5641 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5642
786d6dc7
SS
5643 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5644 return ilb;
5645
5646 return nr_cpu_ids;
1e3c88bd 5647}
1e3c88bd 5648
83cd4fe2
VP
5649/*
5650 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5651 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5652 * CPU (if there is one).
5653 */
5654static void nohz_balancer_kick(int cpu)
5655{
5656 int ilb_cpu;
5657
5658 nohz.next_balance++;
5659
0b005cf5 5660 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5661
0b005cf5
SS
5662 if (ilb_cpu >= nr_cpu_ids)
5663 return;
83cd4fe2 5664
cd490c5b 5665 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5666 return;
5667 /*
5668 * Use smp_send_reschedule() instead of resched_cpu().
5669 * This way we generate a sched IPI on the target cpu which
5670 * is idle. And the softirq performing nohz idle load balance
5671 * will be run before returning from the IPI.
5672 */
5673 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5674 return;
5675}
5676
c1cc017c 5677static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5678{
5679 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5680 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5681 atomic_dec(&nohz.nr_cpus);
5682 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5683 }
5684}
5685
69e1e811
SS
5686static inline void set_cpu_sd_state_busy(void)
5687{
5688 struct sched_domain *sd;
69e1e811 5689
69e1e811 5690 rcu_read_lock();
424c93fe 5691 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5692
5693 if (!sd || !sd->nohz_idle)
5694 goto unlock;
5695 sd->nohz_idle = 0;
5696
5697 for (; sd; sd = sd->parent)
69e1e811 5698 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5699unlock:
69e1e811
SS
5700 rcu_read_unlock();
5701}
5702
5703void set_cpu_sd_state_idle(void)
5704{
5705 struct sched_domain *sd;
69e1e811 5706
69e1e811 5707 rcu_read_lock();
424c93fe 5708 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5709
5710 if (!sd || sd->nohz_idle)
5711 goto unlock;
5712 sd->nohz_idle = 1;
5713
5714 for (; sd; sd = sd->parent)
69e1e811 5715 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5716unlock:
69e1e811
SS
5717 rcu_read_unlock();
5718}
5719
1e3c88bd 5720/*
c1cc017c 5721 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5722 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5723 */
c1cc017c 5724void nohz_balance_enter_idle(int cpu)
1e3c88bd 5725{
71325960
SS
5726 /*
5727 * If this cpu is going down, then nothing needs to be done.
5728 */
5729 if (!cpu_active(cpu))
5730 return;
5731
c1cc017c
AS
5732 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5733 return;
1e3c88bd 5734
c1cc017c
AS
5735 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5736 atomic_inc(&nohz.nr_cpus);
5737 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5738}
71325960 5739
0db0628d 5740static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
5741 unsigned long action, void *hcpu)
5742{
5743 switch (action & ~CPU_TASKS_FROZEN) {
5744 case CPU_DYING:
c1cc017c 5745 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5746 return NOTIFY_OK;
5747 default:
5748 return NOTIFY_DONE;
5749 }
5750}
1e3c88bd
PZ
5751#endif
5752
5753static DEFINE_SPINLOCK(balancing);
5754
49c022e6
PZ
5755/*
5756 * Scale the max load_balance interval with the number of CPUs in the system.
5757 * This trades load-balance latency on larger machines for less cross talk.
5758 */
029632fb 5759void update_max_interval(void)
49c022e6
PZ
5760{
5761 max_load_balance_interval = HZ*num_online_cpus()/10;
5762}
5763
1e3c88bd
PZ
5764/*
5765 * It checks each scheduling domain to see if it is due to be balanced,
5766 * and initiates a balancing operation if so.
5767 *
b9b0853a 5768 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5769 */
5770static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5771{
23f0d209 5772 int continue_balancing = 1;
1e3c88bd
PZ
5773 struct rq *rq = cpu_rq(cpu);
5774 unsigned long interval;
04f733b4 5775 struct sched_domain *sd;
1e3c88bd
PZ
5776 /* Earliest time when we have to do rebalance again */
5777 unsigned long next_balance = jiffies + 60*HZ;
5778 int update_next_balance = 0;
f48627e6
JL
5779 int need_serialize, need_decay = 0;
5780 u64 max_cost = 0;
1e3c88bd 5781
48a16753 5782 update_blocked_averages(cpu);
2069dd75 5783
dce840a0 5784 rcu_read_lock();
1e3c88bd 5785 for_each_domain(cpu, sd) {
f48627e6
JL
5786 /*
5787 * Decay the newidle max times here because this is a regular
5788 * visit to all the domains. Decay ~1% per second.
5789 */
5790 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
5791 sd->max_newidle_lb_cost =
5792 (sd->max_newidle_lb_cost * 253) / 256;
5793 sd->next_decay_max_lb_cost = jiffies + HZ;
5794 need_decay = 1;
5795 }
5796 max_cost += sd->max_newidle_lb_cost;
5797
1e3c88bd
PZ
5798 if (!(sd->flags & SD_LOAD_BALANCE))
5799 continue;
5800
f48627e6
JL
5801 /*
5802 * Stop the load balance at this level. There is another
5803 * CPU in our sched group which is doing load balancing more
5804 * actively.
5805 */
5806 if (!continue_balancing) {
5807 if (need_decay)
5808 continue;
5809 break;
5810 }
5811
1e3c88bd
PZ
5812 interval = sd->balance_interval;
5813 if (idle != CPU_IDLE)
5814 interval *= sd->busy_factor;
5815
5816 /* scale ms to jiffies */
5817 interval = msecs_to_jiffies(interval);
49c022e6 5818 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5819
5820 need_serialize = sd->flags & SD_SERIALIZE;
5821
5822 if (need_serialize) {
5823 if (!spin_trylock(&balancing))
5824 goto out;
5825 }
5826
5827 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 5828 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 5829 /*
6263322c 5830 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
5831 * env->dst_cpu, so we can't know our idle
5832 * state even if we migrated tasks. Update it.
1e3c88bd 5833 */
de5eb2dd 5834 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5835 }
5836 sd->last_balance = jiffies;
5837 }
5838 if (need_serialize)
5839 spin_unlock(&balancing);
5840out:
5841 if (time_after(next_balance, sd->last_balance + interval)) {
5842 next_balance = sd->last_balance + interval;
5843 update_next_balance = 1;
5844 }
f48627e6
JL
5845 }
5846 if (need_decay) {
1e3c88bd 5847 /*
f48627e6
JL
5848 * Ensure the rq-wide value also decays but keep it at a
5849 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 5850 */
f48627e6
JL
5851 rq->max_idle_balance_cost =
5852 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 5853 }
dce840a0 5854 rcu_read_unlock();
1e3c88bd
PZ
5855
5856 /*
5857 * next_balance will be updated only when there is a need.
5858 * When the cpu is attached to null domain for ex, it will not be
5859 * updated.
5860 */
5861 if (likely(update_next_balance))
5862 rq->next_balance = next_balance;
5863}
5864
3451d024 5865#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5866/*
3451d024 5867 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5868 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5869 */
83cd4fe2
VP
5870static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5871{
5872 struct rq *this_rq = cpu_rq(this_cpu);
5873 struct rq *rq;
5874 int balance_cpu;
5875
1c792db7
SS
5876 if (idle != CPU_IDLE ||
5877 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5878 goto end;
83cd4fe2
VP
5879
5880 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5881 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5882 continue;
5883
5884 /*
5885 * If this cpu gets work to do, stop the load balancing
5886 * work being done for other cpus. Next load
5887 * balancing owner will pick it up.
5888 */
1c792db7 5889 if (need_resched())
83cd4fe2 5890 break;
83cd4fe2 5891
5ed4f1d9
VG
5892 rq = cpu_rq(balance_cpu);
5893
5894 raw_spin_lock_irq(&rq->lock);
5895 update_rq_clock(rq);
5896 update_idle_cpu_load(rq);
5897 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5898
5899 rebalance_domains(balance_cpu, CPU_IDLE);
5900
83cd4fe2
VP
5901 if (time_after(this_rq->next_balance, rq->next_balance))
5902 this_rq->next_balance = rq->next_balance;
5903 }
5904 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5905end:
5906 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5907}
5908
5909/*
0b005cf5
SS
5910 * Current heuristic for kicking the idle load balancer in the presence
5911 * of an idle cpu is the system.
5912 * - This rq has more than one task.
5913 * - At any scheduler domain level, this cpu's scheduler group has multiple
5914 * busy cpu's exceeding the group's power.
5915 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5916 * domain span are idle.
83cd4fe2
VP
5917 */
5918static inline int nohz_kick_needed(struct rq *rq, int cpu)
5919{
5920 unsigned long now = jiffies;
0b005cf5 5921 struct sched_domain *sd;
83cd4fe2 5922
1c792db7 5923 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5924 return 0;
5925
1c792db7
SS
5926 /*
5927 * We may be recently in ticked or tickless idle mode. At the first
5928 * busy tick after returning from idle, we will update the busy stats.
5929 */
69e1e811 5930 set_cpu_sd_state_busy();
c1cc017c 5931 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5932
5933 /*
5934 * None are in tickless mode and hence no need for NOHZ idle load
5935 * balancing.
5936 */
5937 if (likely(!atomic_read(&nohz.nr_cpus)))
5938 return 0;
1c792db7
SS
5939
5940 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5941 return 0;
5942
0b005cf5
SS
5943 if (rq->nr_running >= 2)
5944 goto need_kick;
83cd4fe2 5945
067491b7 5946 rcu_read_lock();
0b005cf5
SS
5947 for_each_domain(cpu, sd) {
5948 struct sched_group *sg = sd->groups;
5949 struct sched_group_power *sgp = sg->sgp;
5950 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5951
0b005cf5 5952 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5953 goto need_kick_unlock;
0b005cf5
SS
5954
5955 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5956 && (cpumask_first_and(nohz.idle_cpus_mask,
5957 sched_domain_span(sd)) < cpu))
067491b7 5958 goto need_kick_unlock;
0b005cf5
SS
5959
5960 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5961 break;
83cd4fe2 5962 }
067491b7 5963 rcu_read_unlock();
83cd4fe2 5964 return 0;
067491b7
PZ
5965
5966need_kick_unlock:
5967 rcu_read_unlock();
0b005cf5
SS
5968need_kick:
5969 return 1;
83cd4fe2
VP
5970}
5971#else
5972static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5973#endif
5974
5975/*
5976 * run_rebalance_domains is triggered when needed from the scheduler tick.
5977 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5978 */
1e3c88bd
PZ
5979static void run_rebalance_domains(struct softirq_action *h)
5980{
5981 int this_cpu = smp_processor_id();
5982 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5983 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5984 CPU_IDLE : CPU_NOT_IDLE;
5985
5986 rebalance_domains(this_cpu, idle);
5987
1e3c88bd 5988 /*
83cd4fe2 5989 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5990 * balancing on behalf of the other idle cpus whose ticks are
5991 * stopped.
5992 */
83cd4fe2 5993 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5994}
5995
5996static inline int on_null_domain(int cpu)
5997{
90a6501f 5998 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5999}
6000
6001/*
6002 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6003 */
029632fb 6004void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6005{
1e3c88bd
PZ
6006 /* Don't need to rebalance while attached to NULL domain */
6007 if (time_after_eq(jiffies, rq->next_balance) &&
6008 likely(!on_null_domain(cpu)))
6009 raise_softirq(SCHED_SOFTIRQ);
3451d024 6010#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6011 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6012 nohz_balancer_kick(cpu);
6013#endif
1e3c88bd
PZ
6014}
6015
0bcdcf28
CE
6016static void rq_online_fair(struct rq *rq)
6017{
6018 update_sysctl();
6019}
6020
6021static void rq_offline_fair(struct rq *rq)
6022{
6023 update_sysctl();
a4c96ae3
PB
6024
6025 /* Ensure any throttled groups are reachable by pick_next_task */
6026 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6027}
6028
55e12e5e 6029#endif /* CONFIG_SMP */
e1d1484f 6030
bf0f6f24
IM
6031/*
6032 * scheduler tick hitting a task of our scheduling class:
6033 */
8f4d37ec 6034static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6035{
6036 struct cfs_rq *cfs_rq;
6037 struct sched_entity *se = &curr->se;
6038
6039 for_each_sched_entity(se) {
6040 cfs_rq = cfs_rq_of(se);
8f4d37ec 6041 entity_tick(cfs_rq, se, queued);
bf0f6f24 6042 }
18bf2805 6043
10e84b97 6044 if (numabalancing_enabled)
cbee9f88 6045 task_tick_numa(rq, curr);
3d59eebc 6046
18bf2805 6047 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6048}
6049
6050/*
cd29fe6f
PZ
6051 * called on fork with the child task as argument from the parent's context
6052 * - child not yet on the tasklist
6053 * - preemption disabled
bf0f6f24 6054 */
cd29fe6f 6055static void task_fork_fair(struct task_struct *p)
bf0f6f24 6056{
4fc420c9
DN
6057 struct cfs_rq *cfs_rq;
6058 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6059 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6060 struct rq *rq = this_rq();
6061 unsigned long flags;
6062
05fa785c 6063 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6064
861d034e
PZ
6065 update_rq_clock(rq);
6066
4fc420c9
DN
6067 cfs_rq = task_cfs_rq(current);
6068 curr = cfs_rq->curr;
6069
6c9a27f5
DN
6070 /*
6071 * Not only the cpu but also the task_group of the parent might have
6072 * been changed after parent->se.parent,cfs_rq were copied to
6073 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6074 * of child point to valid ones.
6075 */
6076 rcu_read_lock();
6077 __set_task_cpu(p, this_cpu);
6078 rcu_read_unlock();
bf0f6f24 6079
7109c442 6080 update_curr(cfs_rq);
cd29fe6f 6081
b5d9d734
MG
6082 if (curr)
6083 se->vruntime = curr->vruntime;
aeb73b04 6084 place_entity(cfs_rq, se, 1);
4d78e7b6 6085
cd29fe6f 6086 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6087 /*
edcb60a3
IM
6088 * Upon rescheduling, sched_class::put_prev_task() will place
6089 * 'current' within the tree based on its new key value.
6090 */
4d78e7b6 6091 swap(curr->vruntime, se->vruntime);
aec0a514 6092 resched_task(rq->curr);
4d78e7b6 6093 }
bf0f6f24 6094
88ec22d3
PZ
6095 se->vruntime -= cfs_rq->min_vruntime;
6096
05fa785c 6097 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6098}
6099
cb469845
SR
6100/*
6101 * Priority of the task has changed. Check to see if we preempt
6102 * the current task.
6103 */
da7a735e
PZ
6104static void
6105prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6106{
da7a735e
PZ
6107 if (!p->se.on_rq)
6108 return;
6109
cb469845
SR
6110 /*
6111 * Reschedule if we are currently running on this runqueue and
6112 * our priority decreased, or if we are not currently running on
6113 * this runqueue and our priority is higher than the current's
6114 */
da7a735e 6115 if (rq->curr == p) {
cb469845
SR
6116 if (p->prio > oldprio)
6117 resched_task(rq->curr);
6118 } else
15afe09b 6119 check_preempt_curr(rq, p, 0);
cb469845
SR
6120}
6121
da7a735e
PZ
6122static void switched_from_fair(struct rq *rq, struct task_struct *p)
6123{
6124 struct sched_entity *se = &p->se;
6125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6126
6127 /*
6128 * Ensure the task's vruntime is normalized, so that when its
6129 * switched back to the fair class the enqueue_entity(.flags=0) will
6130 * do the right thing.
6131 *
6132 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6133 * have normalized the vruntime, if it was !on_rq, then only when
6134 * the task is sleeping will it still have non-normalized vruntime.
6135 */
6136 if (!se->on_rq && p->state != TASK_RUNNING) {
6137 /*
6138 * Fix up our vruntime so that the current sleep doesn't
6139 * cause 'unlimited' sleep bonus.
6140 */
6141 place_entity(cfs_rq, se, 0);
6142 se->vruntime -= cfs_rq->min_vruntime;
6143 }
9ee474f5 6144
141965c7 6145#ifdef CONFIG_SMP
9ee474f5
PT
6146 /*
6147 * Remove our load from contribution when we leave sched_fair
6148 * and ensure we don't carry in an old decay_count if we
6149 * switch back.
6150 */
87e3c8ae
KT
6151 if (se->avg.decay_count) {
6152 __synchronize_entity_decay(se);
6153 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6154 }
6155#endif
da7a735e
PZ
6156}
6157
cb469845
SR
6158/*
6159 * We switched to the sched_fair class.
6160 */
da7a735e 6161static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6162{
da7a735e
PZ
6163 if (!p->se.on_rq)
6164 return;
6165
cb469845
SR
6166 /*
6167 * We were most likely switched from sched_rt, so
6168 * kick off the schedule if running, otherwise just see
6169 * if we can still preempt the current task.
6170 */
da7a735e 6171 if (rq->curr == p)
cb469845
SR
6172 resched_task(rq->curr);
6173 else
15afe09b 6174 check_preempt_curr(rq, p, 0);
cb469845
SR
6175}
6176
83b699ed
SV
6177/* Account for a task changing its policy or group.
6178 *
6179 * This routine is mostly called to set cfs_rq->curr field when a task
6180 * migrates between groups/classes.
6181 */
6182static void set_curr_task_fair(struct rq *rq)
6183{
6184 struct sched_entity *se = &rq->curr->se;
6185
ec12cb7f
PT
6186 for_each_sched_entity(se) {
6187 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6188
6189 set_next_entity(cfs_rq, se);
6190 /* ensure bandwidth has been allocated on our new cfs_rq */
6191 account_cfs_rq_runtime(cfs_rq, 0);
6192 }
83b699ed
SV
6193}
6194
029632fb
PZ
6195void init_cfs_rq(struct cfs_rq *cfs_rq)
6196{
6197 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6198 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6199#ifndef CONFIG_64BIT
6200 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6201#endif
141965c7 6202#ifdef CONFIG_SMP
9ee474f5 6203 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6204 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6205#endif
029632fb
PZ
6206}
6207
810b3817 6208#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6209static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6210{
aff3e498 6211 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6212 /*
6213 * If the task was not on the rq at the time of this cgroup movement
6214 * it must have been asleep, sleeping tasks keep their ->vruntime
6215 * absolute on their old rq until wakeup (needed for the fair sleeper
6216 * bonus in place_entity()).
6217 *
6218 * If it was on the rq, we've just 'preempted' it, which does convert
6219 * ->vruntime to a relative base.
6220 *
6221 * Make sure both cases convert their relative position when migrating
6222 * to another cgroup's rq. This does somewhat interfere with the
6223 * fair sleeper stuff for the first placement, but who cares.
6224 */
7ceff013
DN
6225 /*
6226 * When !on_rq, vruntime of the task has usually NOT been normalized.
6227 * But there are some cases where it has already been normalized:
6228 *
6229 * - Moving a forked child which is waiting for being woken up by
6230 * wake_up_new_task().
62af3783
DN
6231 * - Moving a task which has been woken up by try_to_wake_up() and
6232 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6233 *
6234 * To prevent boost or penalty in the new cfs_rq caused by delta
6235 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6236 */
62af3783 6237 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6238 on_rq = 1;
6239
b2b5ce02
PZ
6240 if (!on_rq)
6241 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6242 set_task_rq(p, task_cpu(p));
aff3e498
PT
6243 if (!on_rq) {
6244 cfs_rq = cfs_rq_of(&p->se);
6245 p->se.vruntime += cfs_rq->min_vruntime;
6246#ifdef CONFIG_SMP
6247 /*
6248 * migrate_task_rq_fair() will have removed our previous
6249 * contribution, but we must synchronize for ongoing future
6250 * decay.
6251 */
6252 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6253 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6254#endif
6255 }
810b3817 6256}
029632fb
PZ
6257
6258void free_fair_sched_group(struct task_group *tg)
6259{
6260 int i;
6261
6262 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6263
6264 for_each_possible_cpu(i) {
6265 if (tg->cfs_rq)
6266 kfree(tg->cfs_rq[i]);
6267 if (tg->se)
6268 kfree(tg->se[i]);
6269 }
6270
6271 kfree(tg->cfs_rq);
6272 kfree(tg->se);
6273}
6274
6275int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6276{
6277 struct cfs_rq *cfs_rq;
6278 struct sched_entity *se;
6279 int i;
6280
6281 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6282 if (!tg->cfs_rq)
6283 goto err;
6284 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6285 if (!tg->se)
6286 goto err;
6287
6288 tg->shares = NICE_0_LOAD;
6289
6290 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6291
6292 for_each_possible_cpu(i) {
6293 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6294 GFP_KERNEL, cpu_to_node(i));
6295 if (!cfs_rq)
6296 goto err;
6297
6298 se = kzalloc_node(sizeof(struct sched_entity),
6299 GFP_KERNEL, cpu_to_node(i));
6300 if (!se)
6301 goto err_free_rq;
6302
6303 init_cfs_rq(cfs_rq);
6304 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6305 }
6306
6307 return 1;
6308
6309err_free_rq:
6310 kfree(cfs_rq);
6311err:
6312 return 0;
6313}
6314
6315void unregister_fair_sched_group(struct task_group *tg, int cpu)
6316{
6317 struct rq *rq = cpu_rq(cpu);
6318 unsigned long flags;
6319
6320 /*
6321 * Only empty task groups can be destroyed; so we can speculatively
6322 * check on_list without danger of it being re-added.
6323 */
6324 if (!tg->cfs_rq[cpu]->on_list)
6325 return;
6326
6327 raw_spin_lock_irqsave(&rq->lock, flags);
6328 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6329 raw_spin_unlock_irqrestore(&rq->lock, flags);
6330}
6331
6332void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6333 struct sched_entity *se, int cpu,
6334 struct sched_entity *parent)
6335{
6336 struct rq *rq = cpu_rq(cpu);
6337
6338 cfs_rq->tg = tg;
6339 cfs_rq->rq = rq;
029632fb
PZ
6340 init_cfs_rq_runtime(cfs_rq);
6341
6342 tg->cfs_rq[cpu] = cfs_rq;
6343 tg->se[cpu] = se;
6344
6345 /* se could be NULL for root_task_group */
6346 if (!se)
6347 return;
6348
6349 if (!parent)
6350 se->cfs_rq = &rq->cfs;
6351 else
6352 se->cfs_rq = parent->my_q;
6353
6354 se->my_q = cfs_rq;
6355 update_load_set(&se->load, 0);
6356 se->parent = parent;
6357}
6358
6359static DEFINE_MUTEX(shares_mutex);
6360
6361int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6362{
6363 int i;
6364 unsigned long flags;
6365
6366 /*
6367 * We can't change the weight of the root cgroup.
6368 */
6369 if (!tg->se[0])
6370 return -EINVAL;
6371
6372 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6373
6374 mutex_lock(&shares_mutex);
6375 if (tg->shares == shares)
6376 goto done;
6377
6378 tg->shares = shares;
6379 for_each_possible_cpu(i) {
6380 struct rq *rq = cpu_rq(i);
6381 struct sched_entity *se;
6382
6383 se = tg->se[i];
6384 /* Propagate contribution to hierarchy */
6385 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6386
6387 /* Possible calls to update_curr() need rq clock */
6388 update_rq_clock(rq);
17bc14b7 6389 for_each_sched_entity(se)
029632fb
PZ
6390 update_cfs_shares(group_cfs_rq(se));
6391 raw_spin_unlock_irqrestore(&rq->lock, flags);
6392 }
6393
6394done:
6395 mutex_unlock(&shares_mutex);
6396 return 0;
6397}
6398#else /* CONFIG_FAIR_GROUP_SCHED */
6399
6400void free_fair_sched_group(struct task_group *tg) { }
6401
6402int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6403{
6404 return 1;
6405}
6406
6407void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6408
6409#endif /* CONFIG_FAIR_GROUP_SCHED */
6410
810b3817 6411
6d686f45 6412static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6413{
6414 struct sched_entity *se = &task->se;
0d721cea
PW
6415 unsigned int rr_interval = 0;
6416
6417 /*
6418 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6419 * idle runqueue:
6420 */
0d721cea 6421 if (rq->cfs.load.weight)
a59f4e07 6422 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6423
6424 return rr_interval;
6425}
6426
bf0f6f24
IM
6427/*
6428 * All the scheduling class methods:
6429 */
029632fb 6430const struct sched_class fair_sched_class = {
5522d5d5 6431 .next = &idle_sched_class,
bf0f6f24
IM
6432 .enqueue_task = enqueue_task_fair,
6433 .dequeue_task = dequeue_task_fair,
6434 .yield_task = yield_task_fair,
d95f4122 6435 .yield_to_task = yield_to_task_fair,
bf0f6f24 6436
2e09bf55 6437 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6438
6439 .pick_next_task = pick_next_task_fair,
6440 .put_prev_task = put_prev_task_fair,
6441
681f3e68 6442#ifdef CONFIG_SMP
4ce72a2c 6443 .select_task_rq = select_task_rq_fair,
0a74bef8 6444 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6445
0bcdcf28
CE
6446 .rq_online = rq_online_fair,
6447 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6448
6449 .task_waking = task_waking_fair,
681f3e68 6450#endif
bf0f6f24 6451
83b699ed 6452 .set_curr_task = set_curr_task_fair,
bf0f6f24 6453 .task_tick = task_tick_fair,
cd29fe6f 6454 .task_fork = task_fork_fair,
cb469845
SR
6455
6456 .prio_changed = prio_changed_fair,
da7a735e 6457 .switched_from = switched_from_fair,
cb469845 6458 .switched_to = switched_to_fair,
810b3817 6459
0d721cea
PW
6460 .get_rr_interval = get_rr_interval_fair,
6461
810b3817 6462#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6463 .task_move_group = task_move_group_fair,
810b3817 6464#endif
bf0f6f24
IM
6465};
6466
6467#ifdef CONFIG_SCHED_DEBUG
029632fb 6468void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6469{
bf0f6f24
IM
6470 struct cfs_rq *cfs_rq;
6471
5973e5b9 6472 rcu_read_lock();
c3b64f1e 6473 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6474 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6475 rcu_read_unlock();
bf0f6f24
IM
6476}
6477#endif
029632fb
PZ
6478
6479__init void init_sched_fair_class(void)
6480{
6481#ifdef CONFIG_SMP
6482 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6483
3451d024 6484#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6485 nohz.next_balance = jiffies;
029632fb 6486 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6487 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6488#endif
6489#endif /* SMP */
6490
6491}