]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/Documentation: Add 'sched-pelt' tool
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c
PZ
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374
375/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 376static inline struct cfs_rq *
b758149c
PZ
377is_same_group(struct sched_entity *se, struct sched_entity *pse)
378{
379 if (se->cfs_rq == pse->cfs_rq)
fed14d45 380 return se->cfs_rq;
b758149c 381
fed14d45 382 return NULL;
b758149c
PZ
383}
384
385static inline struct sched_entity *parent_entity(struct sched_entity *se)
386{
387 return se->parent;
388}
389
464b7527
PZ
390static void
391find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392{
393 int se_depth, pse_depth;
394
395 /*
396 * preemption test can be made between sibling entities who are in the
397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 * both tasks until we find their ancestors who are siblings of common
399 * parent.
400 */
401
402 /* First walk up until both entities are at same depth */
fed14d45
PZ
403 se_depth = (*se)->depth;
404 pse_depth = (*pse)->depth;
464b7527
PZ
405
406 while (se_depth > pse_depth) {
407 se_depth--;
408 *se = parent_entity(*se);
409 }
410
411 while (pse_depth > se_depth) {
412 pse_depth--;
413 *pse = parent_entity(*pse);
414 }
415
416 while (!is_same_group(*se, *pse)) {
417 *se = parent_entity(*se);
418 *pse = parent_entity(*pse);
419 }
420}
421
8f48894f
PZ
422#else /* !CONFIG_FAIR_GROUP_SCHED */
423
424static inline struct task_struct *task_of(struct sched_entity *se)
425{
426 return container_of(se, struct task_struct, se);
427}
bf0f6f24 428
62160e3f
IM
429static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430{
431 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
432}
433
434#define entity_is_task(se) 1
435
b758149c
PZ
436#define for_each_sched_entity(se) \
437 for (; se; se = NULL)
bf0f6f24 438
b758149c 439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 440{
b758149c 441 return &task_rq(p)->cfs;
bf0f6f24
IM
442}
443
b758149c
PZ
444static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445{
446 struct task_struct *p = task_of(se);
447 struct rq *rq = task_rq(p);
448
449 return &rq->cfs;
450}
451
452/* runqueue "owned" by this group */
453static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454{
455 return NULL;
456}
457
3d4b47b4
PZ
458static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459{
460}
461
462static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463{
464}
465
b758149c
PZ
466#define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468
b758149c
PZ
469static inline struct sched_entity *parent_entity(struct sched_entity *se)
470{
471 return NULL;
472}
473
464b7527
PZ
474static inline void
475find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476{
477}
478
b758149c
PZ
479#endif /* CONFIG_FAIR_GROUP_SCHED */
480
6c16a6dc 481static __always_inline
9dbdb155 482void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
483
484/**************************************************************
485 * Scheduling class tree data structure manipulation methods:
486 */
487
1bf08230 488static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 489{
1bf08230 490 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 491 if (delta > 0)
1bf08230 492 max_vruntime = vruntime;
02e0431a 493
1bf08230 494 return max_vruntime;
02e0431a
PZ
495}
496
0702e3eb 497static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
498{
499 s64 delta = (s64)(vruntime - min_vruntime);
500 if (delta < 0)
501 min_vruntime = vruntime;
502
503 return min_vruntime;
504}
505
54fdc581
FC
506static inline int entity_before(struct sched_entity *a,
507 struct sched_entity *b)
508{
509 return (s64)(a->vruntime - b->vruntime) < 0;
510}
511
1af5f730
PZ
512static void update_min_vruntime(struct cfs_rq *cfs_rq)
513{
b60205c7
PZ
514 struct sched_entity *curr = cfs_rq->curr;
515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730
PZ
524
525 if (cfs_rq->rb_leftmost) {
526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 struct sched_entity,
528 run_node);
529
b60205c7 530 if (!curr)
1af5f730
PZ
531 vruntime = se->vruntime;
532 else
533 vruntime = min_vruntime(vruntime, se->vruntime);
534 }
535
1bf08230 536 /* ensure we never gain time by being placed backwards. */
1af5f730 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
538#ifndef CONFIG_64BIT
539 smp_wmb();
540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541#endif
1af5f730
PZ
542}
543
bf0f6f24
IM
544/*
545 * Enqueue an entity into the rb-tree:
546 */
0702e3eb 547static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
548{
549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 struct rb_node *parent = NULL;
551 struct sched_entity *entry;
bf0f6f24
IM
552 int leftmost = 1;
553
554 /*
555 * Find the right place in the rbtree:
556 */
557 while (*link) {
558 parent = *link;
559 entry = rb_entry(parent, struct sched_entity, run_node);
560 /*
561 * We dont care about collisions. Nodes with
562 * the same key stay together.
563 */
2bd2d6f2 564 if (entity_before(se, entry)) {
bf0f6f24
IM
565 link = &parent->rb_left;
566 } else {
567 link = &parent->rb_right;
568 leftmost = 0;
569 }
570 }
571
572 /*
573 * Maintain a cache of leftmost tree entries (it is frequently
574 * used):
575 */
1af5f730 576 if (leftmost)
57cb499d 577 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
578
579 rb_link_node(&se->run_node, parent, link);
580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
0702e3eb 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 584{
3fe69747
PZ
585 if (cfs_rq->rb_leftmost == &se->run_node) {
586 struct rb_node *next_node;
3fe69747
PZ
587
588 next_node = rb_next(&se->run_node);
589 cfs_rq->rb_leftmost = next_node;
3fe69747 590 }
e9acbff6 591
bf0f6f24 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
593}
594
029632fb 595struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 596{
f4b6755f
PZ
597 struct rb_node *left = cfs_rq->rb_leftmost;
598
599 if (!left)
600 return NULL;
601
602 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
603}
604
ac53db59
RR
605static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606{
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return rb_entry(next, struct sched_entity, run_node);
613}
614
615#ifdef CONFIG_SCHED_DEBUG
029632fb 616struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 617{
7eee3e67 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 619
70eee74b
BS
620 if (!last)
621 return NULL;
7eee3e67
IM
622
623 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
624}
625
bf0f6f24
IM
626/**************************************************************
627 * Scheduling class statistics methods:
628 */
629
acb4a848 630int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 631 void __user *buffer, size_t *lenp,
b2be5e96
PZ
632 loff_t *ppos)
633{
8d65af78 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 635 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
636
637 if (ret || !write)
638 return ret;
639
640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 sysctl_sched_min_granularity);
642
acb4a848
CE
643#define WRT_SYSCTL(name) \
644 (normalized_sysctl_##name = sysctl_##name / (factor))
645 WRT_SYSCTL(sched_min_granularity);
646 WRT_SYSCTL(sched_latency);
647 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
648#undef WRT_SYSCTL
649
b2be5e96
PZ
650 return 0;
651}
652#endif
647e7cac 653
a7be37ac 654/*
f9c0b095 655 * delta /= w
a7be37ac 656 */
9dbdb155 657static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 658{
f9c0b095 659 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
661
662 return delta;
663}
664
647e7cac
IM
665/*
666 * The idea is to set a period in which each task runs once.
667 *
532b1858 668 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
669 * this period because otherwise the slices get too small.
670 *
671 * p = (nr <= nl) ? l : l*nr/nl
672 */
4d78e7b6
PZ
673static u64 __sched_period(unsigned long nr_running)
674{
8e2b0bf3
BF
675 if (unlikely(nr_running > sched_nr_latency))
676 return nr_running * sysctl_sched_min_granularity;
677 else
678 return sysctl_sched_latency;
4d78e7b6
PZ
679}
680
647e7cac
IM
681/*
682 * We calculate the wall-time slice from the period by taking a part
683 * proportional to the weight.
684 *
f9c0b095 685 * s = p*P[w/rw]
647e7cac 686 */
6d0f0ebd 687static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 688{
0a582440 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 690
0a582440 691 for_each_sched_entity(se) {
6272d68c 692 struct load_weight *load;
3104bf03 693 struct load_weight lw;
6272d68c
LM
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
f9c0b095 697
0a582440 698 if (unlikely(!se->on_rq)) {
3104bf03 699 lw = cfs_rq->load;
0a582440
MG
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
9dbdb155 704 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
705 }
706 return slice;
bf0f6f24
IM
707}
708
647e7cac 709/*
660cc00f 710 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 711 *
f9c0b095 712 * vs = s/w
647e7cac 713 */
f9c0b095 714static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 715{
f9c0b095 716 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
717}
718
a75cdaa9 719#ifdef CONFIG_SMP
772bd008 720static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
721static unsigned long task_h_load(struct task_struct *p);
722
9d89c257
YD
723/*
724 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
725 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
726 * dependent on this value.
9d89c257
YD
727 */
728#define LOAD_AVG_PERIOD 32
729#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
a75cdaa9 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
9d89c257
YD
736 sa->last_update_time = 0;
737 /*
738 * sched_avg's period_contrib should be strictly less then 1024, so
739 * we give it 1023 to make sure it is almost a period (1024us), and
740 * will definitely be update (after enqueue).
741 */
742 sa->period_contrib = 1023;
b5a9b340
VG
743 /*
744 * Tasks are intialized with full load to be seen as heavy tasks until
745 * they get a chance to stabilize to their real load level.
746 * Group entities are intialized with zero load to reflect the fact that
747 * nothing has been attached to the task group yet.
748 */
749 if (entity_is_task(se))
750 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 751 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
752 /*
753 * At this point, util_avg won't be used in select_task_rq_fair anyway
754 */
755 sa->util_avg = 0;
756 sa->util_sum = 0;
9d89c257 757 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 758}
7ea241af 759
7dc603c9 760static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 761static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 762
2b8c41da
YD
763/*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
776 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
777 *
778 * where n denotes the nth task.
779 *
780 * For example, a simplest series from the beginning would be like:
781 *
782 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
783 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
784 *
785 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
786 * if util_avg > util_avg_cap.
787 */
788void post_init_entity_util_avg(struct sched_entity *se)
789{
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
172895e6 792 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
793
794 if (cap > 0) {
795 if (cfs_rq->avg.util_avg != 0) {
796 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
797 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
798
799 if (sa->util_avg > cap)
800 sa->util_avg = cap;
801 } else {
802 sa->util_avg = cap;
803 }
804 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
805 }
7dc603c9
PZ
806
807 if (entity_is_task(se)) {
808 struct task_struct *p = task_of(se);
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq, false);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
df217913 820 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
821 return;
822 }
823 }
824
df217913 825 attach_entity_cfs_rq(se);
2b8c41da
YD
826}
827
7dc603c9 828#else /* !CONFIG_SMP */
540247fb 829void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
830{
831}
2b8c41da
YD
832void post_init_entity_util_avg(struct sched_entity *se)
833{
834}
3d30544f
PZ
835static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
836{
837}
7dc603c9 838#endif /* CONFIG_SMP */
a75cdaa9 839
bf0f6f24 840/*
9dbdb155 841 * Update the current task's runtime statistics.
bf0f6f24 842 */
b7cc0896 843static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 844{
429d43bc 845 struct sched_entity *curr = cfs_rq->curr;
78becc27 846 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 847 u64 delta_exec;
bf0f6f24
IM
848
849 if (unlikely(!curr))
850 return;
851
9dbdb155
PZ
852 delta_exec = now - curr->exec_start;
853 if (unlikely((s64)delta_exec <= 0))
34f28ecd 854 return;
bf0f6f24 855
8ebc91d9 856 curr->exec_start = now;
d842de87 857
9dbdb155
PZ
858 schedstat_set(curr->statistics.exec_max,
859 max(delta_exec, curr->statistics.exec_max));
860
861 curr->sum_exec_runtime += delta_exec;
ae92882e 862 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
863
864 curr->vruntime += calc_delta_fair(delta_exec, curr);
865 update_min_vruntime(cfs_rq);
866
d842de87
SV
867 if (entity_is_task(curr)) {
868 struct task_struct *curtask = task_of(curr);
869
f977bb49 870 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 871 cpuacct_charge(curtask, delta_exec);
f06febc9 872 account_group_exec_runtime(curtask, delta_exec);
d842de87 873 }
ec12cb7f
PT
874
875 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
876}
877
6e998916
SG
878static void update_curr_fair(struct rq *rq)
879{
880 update_curr(cfs_rq_of(&rq->curr->se));
881}
882
bf0f6f24 883static inline void
5870db5b 884update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 885{
4fa8d299
JP
886 u64 wait_start, prev_wait_start;
887
888 if (!schedstat_enabled())
889 return;
890
891 wait_start = rq_clock(rq_of(cfs_rq));
892 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
893
894 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
895 likely(wait_start > prev_wait_start))
896 wait_start -= prev_wait_start;
3ea94de1 897
4fa8d299 898 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
899}
900
4fa8d299 901static inline void
3ea94de1
JP
902update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
903{
904 struct task_struct *p;
cb251765
MG
905 u64 delta;
906
4fa8d299
JP
907 if (!schedstat_enabled())
908 return;
909
910 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
911
912 if (entity_is_task(se)) {
913 p = task_of(se);
914 if (task_on_rq_migrating(p)) {
915 /*
916 * Preserve migrating task's wait time so wait_start
917 * time stamp can be adjusted to accumulate wait time
918 * prior to migration.
919 */
4fa8d299 920 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
921 return;
922 }
923 trace_sched_stat_wait(p, delta);
924 }
925
4fa8d299
JP
926 schedstat_set(se->statistics.wait_max,
927 max(schedstat_val(se->statistics.wait_max), delta));
928 schedstat_inc(se->statistics.wait_count);
929 schedstat_add(se->statistics.wait_sum, delta);
930 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 931}
3ea94de1 932
4fa8d299 933static inline void
1a3d027c
JP
934update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
935{
936 struct task_struct *tsk = NULL;
4fa8d299
JP
937 u64 sleep_start, block_start;
938
939 if (!schedstat_enabled())
940 return;
941
942 sleep_start = schedstat_val(se->statistics.sleep_start);
943 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
944
945 if (entity_is_task(se))
946 tsk = task_of(se);
947
4fa8d299
JP
948 if (sleep_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
955 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.sleep_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 account_scheduler_latency(tsk, delta >> 10, 1);
962 trace_sched_stat_sleep(tsk, delta);
963 }
964 }
4fa8d299
JP
965 if (block_start) {
966 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
967
968 if ((s64)delta < 0)
969 delta = 0;
970
4fa8d299
JP
971 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
972 schedstat_set(se->statistics.block_max, delta);
1a3d027c 973
4fa8d299
JP
974 schedstat_set(se->statistics.block_start, 0);
975 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
976
977 if (tsk) {
978 if (tsk->in_iowait) {
4fa8d299
JP
979 schedstat_add(se->statistics.iowait_sum, delta);
980 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
981 trace_sched_stat_iowait(tsk, delta);
982 }
983
984 trace_sched_stat_blocked(tsk, delta);
985
986 /*
987 * Blocking time is in units of nanosecs, so shift by
988 * 20 to get a milliseconds-range estimation of the
989 * amount of time that the task spent sleeping:
990 */
991 if (unlikely(prof_on == SLEEP_PROFILING)) {
992 profile_hits(SLEEP_PROFILING,
993 (void *)get_wchan(tsk),
994 delta >> 20);
995 }
996 account_scheduler_latency(tsk, delta >> 10, 0);
997 }
998 }
3ea94de1 999}
3ea94de1 1000
bf0f6f24
IM
1001/*
1002 * Task is being enqueued - update stats:
1003 */
cb251765 1004static inline void
1a3d027c 1005update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007 if (!schedstat_enabled())
1008 return;
1009
bf0f6f24
IM
1010 /*
1011 * Are we enqueueing a waiting task? (for current tasks
1012 * a dequeue/enqueue event is a NOP)
1013 */
429d43bc 1014 if (se != cfs_rq->curr)
5870db5b 1015 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1016
1017 if (flags & ENQUEUE_WAKEUP)
1018 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1019}
1020
bf0f6f24 1021static inline void
cb251765 1022update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1023{
4fa8d299
JP
1024
1025 if (!schedstat_enabled())
1026 return;
1027
bf0f6f24
IM
1028 /*
1029 * Mark the end of the wait period if dequeueing a
1030 * waiting task:
1031 */
429d43bc 1032 if (se != cfs_rq->curr)
9ef0a961 1033 update_stats_wait_end(cfs_rq, se);
cb251765 1034
4fa8d299
JP
1035 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1036 struct task_struct *tsk = task_of(se);
cb251765 1037
4fa8d299
JP
1038 if (tsk->state & TASK_INTERRUPTIBLE)
1039 schedstat_set(se->statistics.sleep_start,
1040 rq_clock(rq_of(cfs_rq)));
1041 if (tsk->state & TASK_UNINTERRUPTIBLE)
1042 schedstat_set(se->statistics.block_start,
1043 rq_clock(rq_of(cfs_rq)));
cb251765 1044 }
cb251765
MG
1045}
1046
bf0f6f24
IM
1047/*
1048 * We are picking a new current task - update its stats:
1049 */
1050static inline void
79303e9e 1051update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1052{
1053 /*
1054 * We are starting a new run period:
1055 */
78becc27 1056 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1057}
1058
bf0f6f24
IM
1059/**************************************************
1060 * Scheduling class queueing methods:
1061 */
1062
cbee9f88
PZ
1063#ifdef CONFIG_NUMA_BALANCING
1064/*
598f0ec0
MG
1065 * Approximate time to scan a full NUMA task in ms. The task scan period is
1066 * calculated based on the tasks virtual memory size and
1067 * numa_balancing_scan_size.
cbee9f88 1068 */
598f0ec0
MG
1069unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1070unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1071
1072/* Portion of address space to scan in MB */
1073unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1074
4b96a29b
PZ
1075/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1076unsigned int sysctl_numa_balancing_scan_delay = 1000;
1077
598f0ec0
MG
1078static unsigned int task_nr_scan_windows(struct task_struct *p)
1079{
1080 unsigned long rss = 0;
1081 unsigned long nr_scan_pages;
1082
1083 /*
1084 * Calculations based on RSS as non-present and empty pages are skipped
1085 * by the PTE scanner and NUMA hinting faults should be trapped based
1086 * on resident pages
1087 */
1088 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089 rss = get_mm_rss(p->mm);
1090 if (!rss)
1091 rss = nr_scan_pages;
1092
1093 rss = round_up(rss, nr_scan_pages);
1094 return rss / nr_scan_pages;
1095}
1096
1097/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1098#define MAX_SCAN_WINDOW 2560
1099
1100static unsigned int task_scan_min(struct task_struct *p)
1101{
316c1608 1102 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1103 unsigned int scan, floor;
1104 unsigned int windows = 1;
1105
64192658
KT
1106 if (scan_size < MAX_SCAN_WINDOW)
1107 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1108 floor = 1000 / windows;
1109
1110 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111 return max_t(unsigned int, floor, scan);
1112}
1113
1114static unsigned int task_scan_max(struct task_struct *p)
1115{
1116 unsigned int smin = task_scan_min(p);
1117 unsigned int smax;
1118
1119 /* Watch for min being lower than max due to floor calculations */
1120 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1121 return max(smin, smax);
1122}
1123
0ec8aa00
PZ
1124static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1125{
1126 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1127 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1128}
1129
1130static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1131{
1132 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1133 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1134}
1135
8c8a743c
PZ
1136struct numa_group {
1137 atomic_t refcount;
1138
1139 spinlock_t lock; /* nr_tasks, tasks */
1140 int nr_tasks;
e29cf08b 1141 pid_t gid;
4142c3eb 1142 int active_nodes;
8c8a743c
PZ
1143
1144 struct rcu_head rcu;
989348b5 1145 unsigned long total_faults;
4142c3eb 1146 unsigned long max_faults_cpu;
7e2703e6
RR
1147 /*
1148 * Faults_cpu is used to decide whether memory should move
1149 * towards the CPU. As a consequence, these stats are weighted
1150 * more by CPU use than by memory faults.
1151 */
50ec8a40 1152 unsigned long *faults_cpu;
989348b5 1153 unsigned long faults[0];
8c8a743c
PZ
1154};
1155
be1e4e76
RR
1156/* Shared or private faults. */
1157#define NR_NUMA_HINT_FAULT_TYPES 2
1158
1159/* Memory and CPU locality */
1160#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1161
1162/* Averaged statistics, and temporary buffers. */
1163#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1164
e29cf08b
MG
1165pid_t task_numa_group_id(struct task_struct *p)
1166{
1167 return p->numa_group ? p->numa_group->gid : 0;
1168}
1169
44dba3d5
IM
1170/*
1171 * The averaged statistics, shared & private, memory & cpu,
1172 * occupy the first half of the array. The second half of the
1173 * array is for current counters, which are averaged into the
1174 * first set by task_numa_placement.
1175 */
1176static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1177{
44dba3d5 1178 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1179}
1180
1181static inline unsigned long task_faults(struct task_struct *p, int nid)
1182{
44dba3d5 1183 if (!p->numa_faults)
ac8e895b
MG
1184 return 0;
1185
44dba3d5
IM
1186 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1187 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1188}
1189
83e1d2cd
MG
1190static inline unsigned long group_faults(struct task_struct *p, int nid)
1191{
1192 if (!p->numa_group)
1193 return 0;
1194
44dba3d5
IM
1195 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1196 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1197}
1198
20e07dea
RR
1199static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1200{
44dba3d5
IM
1201 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1202 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1203}
1204
4142c3eb
RR
1205/*
1206 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1207 * considered part of a numa group's pseudo-interleaving set. Migrations
1208 * between these nodes are slowed down, to allow things to settle down.
1209 */
1210#define ACTIVE_NODE_FRACTION 3
1211
1212static bool numa_is_active_node(int nid, struct numa_group *ng)
1213{
1214 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1215}
1216
6c6b1193
RR
1217/* Handle placement on systems where not all nodes are directly connected. */
1218static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1219 int maxdist, bool task)
1220{
1221 unsigned long score = 0;
1222 int node;
1223
1224 /*
1225 * All nodes are directly connected, and the same distance
1226 * from each other. No need for fancy placement algorithms.
1227 */
1228 if (sched_numa_topology_type == NUMA_DIRECT)
1229 return 0;
1230
1231 /*
1232 * This code is called for each node, introducing N^2 complexity,
1233 * which should be ok given the number of nodes rarely exceeds 8.
1234 */
1235 for_each_online_node(node) {
1236 unsigned long faults;
1237 int dist = node_distance(nid, node);
1238
1239 /*
1240 * The furthest away nodes in the system are not interesting
1241 * for placement; nid was already counted.
1242 */
1243 if (dist == sched_max_numa_distance || node == nid)
1244 continue;
1245
1246 /*
1247 * On systems with a backplane NUMA topology, compare groups
1248 * of nodes, and move tasks towards the group with the most
1249 * memory accesses. When comparing two nodes at distance
1250 * "hoplimit", only nodes closer by than "hoplimit" are part
1251 * of each group. Skip other nodes.
1252 */
1253 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1254 dist > maxdist)
1255 continue;
1256
1257 /* Add up the faults from nearby nodes. */
1258 if (task)
1259 faults = task_faults(p, node);
1260 else
1261 faults = group_faults(p, node);
1262
1263 /*
1264 * On systems with a glueless mesh NUMA topology, there are
1265 * no fixed "groups of nodes". Instead, nodes that are not
1266 * directly connected bounce traffic through intermediate
1267 * nodes; a numa_group can occupy any set of nodes.
1268 * The further away a node is, the less the faults count.
1269 * This seems to result in good task placement.
1270 */
1271 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1272 faults *= (sched_max_numa_distance - dist);
1273 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1274 }
1275
1276 score += faults;
1277 }
1278
1279 return score;
1280}
1281
83e1d2cd
MG
1282/*
1283 * These return the fraction of accesses done by a particular task, or
1284 * task group, on a particular numa node. The group weight is given a
1285 * larger multiplier, in order to group tasks together that are almost
1286 * evenly spread out between numa nodes.
1287 */
7bd95320
RR
1288static inline unsigned long task_weight(struct task_struct *p, int nid,
1289 int dist)
83e1d2cd 1290{
7bd95320 1291 unsigned long faults, total_faults;
83e1d2cd 1292
44dba3d5 1293 if (!p->numa_faults)
83e1d2cd
MG
1294 return 0;
1295
1296 total_faults = p->total_numa_faults;
1297
1298 if (!total_faults)
1299 return 0;
1300
7bd95320 1301 faults = task_faults(p, nid);
6c6b1193
RR
1302 faults += score_nearby_nodes(p, nid, dist, true);
1303
7bd95320 1304 return 1000 * faults / total_faults;
83e1d2cd
MG
1305}
1306
7bd95320
RR
1307static inline unsigned long group_weight(struct task_struct *p, int nid,
1308 int dist)
83e1d2cd 1309{
7bd95320
RR
1310 unsigned long faults, total_faults;
1311
1312 if (!p->numa_group)
1313 return 0;
1314
1315 total_faults = p->numa_group->total_faults;
1316
1317 if (!total_faults)
83e1d2cd
MG
1318 return 0;
1319
7bd95320 1320 faults = group_faults(p, nid);
6c6b1193
RR
1321 faults += score_nearby_nodes(p, nid, dist, false);
1322
7bd95320 1323 return 1000 * faults / total_faults;
83e1d2cd
MG
1324}
1325
10f39042
RR
1326bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1327 int src_nid, int dst_cpu)
1328{
1329 struct numa_group *ng = p->numa_group;
1330 int dst_nid = cpu_to_node(dst_cpu);
1331 int last_cpupid, this_cpupid;
1332
1333 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1334
1335 /*
1336 * Multi-stage node selection is used in conjunction with a periodic
1337 * migration fault to build a temporal task<->page relation. By using
1338 * a two-stage filter we remove short/unlikely relations.
1339 *
1340 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1341 * a task's usage of a particular page (n_p) per total usage of this
1342 * page (n_t) (in a given time-span) to a probability.
1343 *
1344 * Our periodic faults will sample this probability and getting the
1345 * same result twice in a row, given these samples are fully
1346 * independent, is then given by P(n)^2, provided our sample period
1347 * is sufficiently short compared to the usage pattern.
1348 *
1349 * This quadric squishes small probabilities, making it less likely we
1350 * act on an unlikely task<->page relation.
1351 */
1352 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1353 if (!cpupid_pid_unset(last_cpupid) &&
1354 cpupid_to_nid(last_cpupid) != dst_nid)
1355 return false;
1356
1357 /* Always allow migrate on private faults */
1358 if (cpupid_match_pid(p, last_cpupid))
1359 return true;
1360
1361 /* A shared fault, but p->numa_group has not been set up yet. */
1362 if (!ng)
1363 return true;
1364
1365 /*
4142c3eb
RR
1366 * Destination node is much more heavily used than the source
1367 * node? Allow migration.
10f39042 1368 */
4142c3eb
RR
1369 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1370 ACTIVE_NODE_FRACTION)
10f39042
RR
1371 return true;
1372
1373 /*
4142c3eb
RR
1374 * Distribute memory according to CPU & memory use on each node,
1375 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1376 *
1377 * faults_cpu(dst) 3 faults_cpu(src)
1378 * --------------- * - > ---------------
1379 * faults_mem(dst) 4 faults_mem(src)
10f39042 1380 */
4142c3eb
RR
1381 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1382 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1383}
1384
e6628d5b 1385static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1386static unsigned long source_load(int cpu, int type);
1387static unsigned long target_load(int cpu, int type);
ced549fa 1388static unsigned long capacity_of(int cpu);
58d081b5
MG
1389static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1390
fb13c7ee 1391/* Cached statistics for all CPUs within a node */
58d081b5 1392struct numa_stats {
fb13c7ee 1393 unsigned long nr_running;
58d081b5 1394 unsigned long load;
fb13c7ee
MG
1395
1396 /* Total compute capacity of CPUs on a node */
5ef20ca1 1397 unsigned long compute_capacity;
fb13c7ee
MG
1398
1399 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1400 unsigned long task_capacity;
1b6a7495 1401 int has_free_capacity;
58d081b5 1402};
e6628d5b 1403
fb13c7ee
MG
1404/*
1405 * XXX borrowed from update_sg_lb_stats
1406 */
1407static void update_numa_stats(struct numa_stats *ns, int nid)
1408{
83d7f242
RR
1409 int smt, cpu, cpus = 0;
1410 unsigned long capacity;
fb13c7ee
MG
1411
1412 memset(ns, 0, sizeof(*ns));
1413 for_each_cpu(cpu, cpumask_of_node(nid)) {
1414 struct rq *rq = cpu_rq(cpu);
1415
1416 ns->nr_running += rq->nr_running;
1417 ns->load += weighted_cpuload(cpu);
ced549fa 1418 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1419
1420 cpus++;
fb13c7ee
MG
1421 }
1422
5eca82a9
PZ
1423 /*
1424 * If we raced with hotplug and there are no CPUs left in our mask
1425 * the @ns structure is NULL'ed and task_numa_compare() will
1426 * not find this node attractive.
1427 *
1b6a7495
NP
1428 * We'll either bail at !has_free_capacity, or we'll detect a huge
1429 * imbalance and bail there.
5eca82a9
PZ
1430 */
1431 if (!cpus)
1432 return;
1433
83d7f242
RR
1434 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1435 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1436 capacity = cpus / smt; /* cores */
1437
1438 ns->task_capacity = min_t(unsigned, capacity,
1439 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1440 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1441}
1442
58d081b5
MG
1443struct task_numa_env {
1444 struct task_struct *p;
e6628d5b 1445
58d081b5
MG
1446 int src_cpu, src_nid;
1447 int dst_cpu, dst_nid;
e6628d5b 1448
58d081b5 1449 struct numa_stats src_stats, dst_stats;
e6628d5b 1450
40ea2b42 1451 int imbalance_pct;
7bd95320 1452 int dist;
fb13c7ee
MG
1453
1454 struct task_struct *best_task;
1455 long best_imp;
58d081b5
MG
1456 int best_cpu;
1457};
1458
fb13c7ee
MG
1459static void task_numa_assign(struct task_numa_env *env,
1460 struct task_struct *p, long imp)
1461{
1462 if (env->best_task)
1463 put_task_struct(env->best_task);
bac78573
ON
1464 if (p)
1465 get_task_struct(p);
fb13c7ee
MG
1466
1467 env->best_task = p;
1468 env->best_imp = imp;
1469 env->best_cpu = env->dst_cpu;
1470}
1471
28a21745 1472static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1473 struct task_numa_env *env)
1474{
e4991b24
RR
1475 long imb, old_imb;
1476 long orig_src_load, orig_dst_load;
28a21745
RR
1477 long src_capacity, dst_capacity;
1478
1479 /*
1480 * The load is corrected for the CPU capacity available on each node.
1481 *
1482 * src_load dst_load
1483 * ------------ vs ---------
1484 * src_capacity dst_capacity
1485 */
1486 src_capacity = env->src_stats.compute_capacity;
1487 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1488
1489 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1490 if (dst_load < src_load)
1491 swap(dst_load, src_load);
e63da036
RR
1492
1493 /* Is the difference below the threshold? */
e4991b24
RR
1494 imb = dst_load * src_capacity * 100 -
1495 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1496 if (imb <= 0)
1497 return false;
1498
1499 /*
1500 * The imbalance is above the allowed threshold.
e4991b24 1501 * Compare it with the old imbalance.
e63da036 1502 */
28a21745 1503 orig_src_load = env->src_stats.load;
e4991b24 1504 orig_dst_load = env->dst_stats.load;
28a21745 1505
e4991b24
RR
1506 if (orig_dst_load < orig_src_load)
1507 swap(orig_dst_load, orig_src_load);
e63da036 1508
e4991b24
RR
1509 old_imb = orig_dst_load * src_capacity * 100 -
1510 orig_src_load * dst_capacity * env->imbalance_pct;
1511
1512 /* Would this change make things worse? */
1513 return (imb > old_imb);
e63da036
RR
1514}
1515
fb13c7ee
MG
1516/*
1517 * This checks if the overall compute and NUMA accesses of the system would
1518 * be improved if the source tasks was migrated to the target dst_cpu taking
1519 * into account that it might be best if task running on the dst_cpu should
1520 * be exchanged with the source task
1521 */
887c290e
RR
1522static void task_numa_compare(struct task_numa_env *env,
1523 long taskimp, long groupimp)
fb13c7ee
MG
1524{
1525 struct rq *src_rq = cpu_rq(env->src_cpu);
1526 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1527 struct task_struct *cur;
28a21745 1528 long src_load, dst_load;
fb13c7ee 1529 long load;
1c5d3eb3 1530 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1531 long moveimp = imp;
7bd95320 1532 int dist = env->dist;
fb13c7ee
MG
1533
1534 rcu_read_lock();
bac78573
ON
1535 cur = task_rcu_dereference(&dst_rq->curr);
1536 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1537 cur = NULL;
1538
7af68335
PZ
1539 /*
1540 * Because we have preemption enabled we can get migrated around and
1541 * end try selecting ourselves (current == env->p) as a swap candidate.
1542 */
1543 if (cur == env->p)
1544 goto unlock;
1545
fb13c7ee
MG
1546 /*
1547 * "imp" is the fault differential for the source task between the
1548 * source and destination node. Calculate the total differential for
1549 * the source task and potential destination task. The more negative
1550 * the value is, the more rmeote accesses that would be expected to
1551 * be incurred if the tasks were swapped.
1552 */
1553 if (cur) {
1554 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1555 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1556 goto unlock;
1557
887c290e
RR
1558 /*
1559 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1560 * in any group then look only at task weights.
887c290e 1561 */
ca28aa53 1562 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1563 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1564 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1565 /*
1566 * Add some hysteresis to prevent swapping the
1567 * tasks within a group over tiny differences.
1568 */
1569 if (cur->numa_group)
1570 imp -= imp/16;
887c290e 1571 } else {
ca28aa53
RR
1572 /*
1573 * Compare the group weights. If a task is all by
1574 * itself (not part of a group), use the task weight
1575 * instead.
1576 */
ca28aa53 1577 if (cur->numa_group)
7bd95320
RR
1578 imp += group_weight(cur, env->src_nid, dist) -
1579 group_weight(cur, env->dst_nid, dist);
ca28aa53 1580 else
7bd95320
RR
1581 imp += task_weight(cur, env->src_nid, dist) -
1582 task_weight(cur, env->dst_nid, dist);
887c290e 1583 }
fb13c7ee
MG
1584 }
1585
0132c3e1 1586 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1587 goto unlock;
1588
1589 if (!cur) {
1590 /* Is there capacity at our destination? */
b932c03c 1591 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1592 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1593 goto unlock;
1594
1595 goto balance;
1596 }
1597
1598 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1599 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1600 dst_rq->nr_running == 1)
fb13c7ee
MG
1601 goto assign;
1602
1603 /*
1604 * In the overloaded case, try and keep the load balanced.
1605 */
1606balance:
e720fff6
PZ
1607 load = task_h_load(env->p);
1608 dst_load = env->dst_stats.load + load;
1609 src_load = env->src_stats.load - load;
fb13c7ee 1610
0132c3e1
RR
1611 if (moveimp > imp && moveimp > env->best_imp) {
1612 /*
1613 * If the improvement from just moving env->p direction is
1614 * better than swapping tasks around, check if a move is
1615 * possible. Store a slightly smaller score than moveimp,
1616 * so an actually idle CPU will win.
1617 */
1618 if (!load_too_imbalanced(src_load, dst_load, env)) {
1619 imp = moveimp - 1;
1620 cur = NULL;
1621 goto assign;
1622 }
1623 }
1624
1625 if (imp <= env->best_imp)
1626 goto unlock;
1627
fb13c7ee 1628 if (cur) {
e720fff6
PZ
1629 load = task_h_load(cur);
1630 dst_load -= load;
1631 src_load += load;
fb13c7ee
MG
1632 }
1633
28a21745 1634 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1635 goto unlock;
1636
ba7e5a27
RR
1637 /*
1638 * One idle CPU per node is evaluated for a task numa move.
1639 * Call select_idle_sibling to maybe find a better one.
1640 */
10e2f1ac
PZ
1641 if (!cur) {
1642 /*
1643 * select_idle_siblings() uses an per-cpu cpumask that
1644 * can be used from IRQ context.
1645 */
1646 local_irq_disable();
772bd008
MR
1647 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1648 env->dst_cpu);
10e2f1ac
PZ
1649 local_irq_enable();
1650 }
ba7e5a27 1651
fb13c7ee
MG
1652assign:
1653 task_numa_assign(env, cur, imp);
1654unlock:
1655 rcu_read_unlock();
1656}
1657
887c290e
RR
1658static void task_numa_find_cpu(struct task_numa_env *env,
1659 long taskimp, long groupimp)
2c8a50aa
MG
1660{
1661 int cpu;
1662
1663 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1664 /* Skip this CPU if the source task cannot migrate */
0c98d344 1665 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1666 continue;
1667
1668 env->dst_cpu = cpu;
887c290e 1669 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1670 }
1671}
1672
6f9aad0b
RR
1673/* Only move tasks to a NUMA node less busy than the current node. */
1674static bool numa_has_capacity(struct task_numa_env *env)
1675{
1676 struct numa_stats *src = &env->src_stats;
1677 struct numa_stats *dst = &env->dst_stats;
1678
1679 if (src->has_free_capacity && !dst->has_free_capacity)
1680 return false;
1681
1682 /*
1683 * Only consider a task move if the source has a higher load
1684 * than the destination, corrected for CPU capacity on each node.
1685 *
1686 * src->load dst->load
1687 * --------------------- vs ---------------------
1688 * src->compute_capacity dst->compute_capacity
1689 */
44dcb04f
SD
1690 if (src->load * dst->compute_capacity * env->imbalance_pct >
1691
1692 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1693 return true;
1694
1695 return false;
1696}
1697
58d081b5
MG
1698static int task_numa_migrate(struct task_struct *p)
1699{
58d081b5
MG
1700 struct task_numa_env env = {
1701 .p = p,
fb13c7ee 1702
58d081b5 1703 .src_cpu = task_cpu(p),
b32e86b4 1704 .src_nid = task_node(p),
fb13c7ee
MG
1705
1706 .imbalance_pct = 112,
1707
1708 .best_task = NULL,
1709 .best_imp = 0,
4142c3eb 1710 .best_cpu = -1,
58d081b5
MG
1711 };
1712 struct sched_domain *sd;
887c290e 1713 unsigned long taskweight, groupweight;
7bd95320 1714 int nid, ret, dist;
887c290e 1715 long taskimp, groupimp;
e6628d5b 1716
58d081b5 1717 /*
fb13c7ee
MG
1718 * Pick the lowest SD_NUMA domain, as that would have the smallest
1719 * imbalance and would be the first to start moving tasks about.
1720 *
1721 * And we want to avoid any moving of tasks about, as that would create
1722 * random movement of tasks -- counter the numa conditions we're trying
1723 * to satisfy here.
58d081b5
MG
1724 */
1725 rcu_read_lock();
fb13c7ee 1726 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1727 if (sd)
1728 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1729 rcu_read_unlock();
1730
46a73e8a
RR
1731 /*
1732 * Cpusets can break the scheduler domain tree into smaller
1733 * balance domains, some of which do not cross NUMA boundaries.
1734 * Tasks that are "trapped" in such domains cannot be migrated
1735 * elsewhere, so there is no point in (re)trying.
1736 */
1737 if (unlikely(!sd)) {
de1b301a 1738 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1739 return -EINVAL;
1740 }
1741
2c8a50aa 1742 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1743 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1744 taskweight = task_weight(p, env.src_nid, dist);
1745 groupweight = group_weight(p, env.src_nid, dist);
1746 update_numa_stats(&env.src_stats, env.src_nid);
1747 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1748 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1749 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1750
a43455a1 1751 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1752 if (numa_has_capacity(&env))
1753 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1754
9de05d48
RR
1755 /*
1756 * Look at other nodes in these cases:
1757 * - there is no space available on the preferred_nid
1758 * - the task is part of a numa_group that is interleaved across
1759 * multiple NUMA nodes; in order to better consolidate the group,
1760 * we need to check other locations.
1761 */
4142c3eb 1762 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1763 for_each_online_node(nid) {
1764 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1765 continue;
58d081b5 1766
7bd95320 1767 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1768 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1769 dist != env.dist) {
1770 taskweight = task_weight(p, env.src_nid, dist);
1771 groupweight = group_weight(p, env.src_nid, dist);
1772 }
7bd95320 1773
83e1d2cd 1774 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1775 taskimp = task_weight(p, nid, dist) - taskweight;
1776 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1777 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1778 continue;
1779
7bd95320 1780 env.dist = dist;
2c8a50aa
MG
1781 env.dst_nid = nid;
1782 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1783 if (numa_has_capacity(&env))
1784 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1785 }
1786 }
1787
68d1b02a
RR
1788 /*
1789 * If the task is part of a workload that spans multiple NUMA nodes,
1790 * and is migrating into one of the workload's active nodes, remember
1791 * this node as the task's preferred numa node, so the workload can
1792 * settle down.
1793 * A task that migrated to a second choice node will be better off
1794 * trying for a better one later. Do not set the preferred node here.
1795 */
db015dae 1796 if (p->numa_group) {
4142c3eb
RR
1797 struct numa_group *ng = p->numa_group;
1798
db015dae
RR
1799 if (env.best_cpu == -1)
1800 nid = env.src_nid;
1801 else
1802 nid = env.dst_nid;
1803
4142c3eb 1804 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1805 sched_setnuma(p, env.dst_nid);
1806 }
1807
1808 /* No better CPU than the current one was found. */
1809 if (env.best_cpu == -1)
1810 return -EAGAIN;
0ec8aa00 1811
04bb2f94
RR
1812 /*
1813 * Reset the scan period if the task is being rescheduled on an
1814 * alternative node to recheck if the tasks is now properly placed.
1815 */
1816 p->numa_scan_period = task_scan_min(p);
1817
fb13c7ee 1818 if (env.best_task == NULL) {
286549dc
MG
1819 ret = migrate_task_to(p, env.best_cpu);
1820 if (ret != 0)
1821 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1822 return ret;
1823 }
1824
1825 ret = migrate_swap(p, env.best_task);
286549dc
MG
1826 if (ret != 0)
1827 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1828 put_task_struct(env.best_task);
1829 return ret;
e6628d5b
MG
1830}
1831
6b9a7460
MG
1832/* Attempt to migrate a task to a CPU on the preferred node. */
1833static void numa_migrate_preferred(struct task_struct *p)
1834{
5085e2a3
RR
1835 unsigned long interval = HZ;
1836
2739d3ee 1837 /* This task has no NUMA fault statistics yet */
44dba3d5 1838 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1839 return;
1840
2739d3ee 1841 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1842 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1843 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1844
1845 /* Success if task is already running on preferred CPU */
de1b301a 1846 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1847 return;
1848
1849 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1850 task_numa_migrate(p);
6b9a7460
MG
1851}
1852
20e07dea 1853/*
4142c3eb 1854 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1855 * tracking the nodes from which NUMA hinting faults are triggered. This can
1856 * be different from the set of nodes where the workload's memory is currently
1857 * located.
20e07dea 1858 */
4142c3eb 1859static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1860{
1861 unsigned long faults, max_faults = 0;
4142c3eb 1862 int nid, active_nodes = 0;
20e07dea
RR
1863
1864 for_each_online_node(nid) {
1865 faults = group_faults_cpu(numa_group, nid);
1866 if (faults > max_faults)
1867 max_faults = faults;
1868 }
1869
1870 for_each_online_node(nid) {
1871 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1872 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1873 active_nodes++;
20e07dea 1874 }
4142c3eb
RR
1875
1876 numa_group->max_faults_cpu = max_faults;
1877 numa_group->active_nodes = active_nodes;
20e07dea
RR
1878}
1879
04bb2f94
RR
1880/*
1881 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1882 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1883 * period will be for the next scan window. If local/(local+remote) ratio is
1884 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1885 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1886 */
1887#define NUMA_PERIOD_SLOTS 10
a22b4b01 1888#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1889
1890/*
1891 * Increase the scan period (slow down scanning) if the majority of
1892 * our memory is already on our local node, or if the majority of
1893 * the page accesses are shared with other processes.
1894 * Otherwise, decrease the scan period.
1895 */
1896static void update_task_scan_period(struct task_struct *p,
1897 unsigned long shared, unsigned long private)
1898{
1899 unsigned int period_slot;
1900 int ratio;
1901 int diff;
1902
1903 unsigned long remote = p->numa_faults_locality[0];
1904 unsigned long local = p->numa_faults_locality[1];
1905
1906 /*
1907 * If there were no record hinting faults then either the task is
1908 * completely idle or all activity is areas that are not of interest
074c2381
MG
1909 * to automatic numa balancing. Related to that, if there were failed
1910 * migration then it implies we are migrating too quickly or the local
1911 * node is overloaded. In either case, scan slower
04bb2f94 1912 */
074c2381 1913 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1914 p->numa_scan_period = min(p->numa_scan_period_max,
1915 p->numa_scan_period << 1);
1916
1917 p->mm->numa_next_scan = jiffies +
1918 msecs_to_jiffies(p->numa_scan_period);
1919
1920 return;
1921 }
1922
1923 /*
1924 * Prepare to scale scan period relative to the current period.
1925 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1926 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1927 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1928 */
1929 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1930 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1931 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1932 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1933 if (!slot)
1934 slot = 1;
1935 diff = slot * period_slot;
1936 } else {
1937 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1938
1939 /*
1940 * Scale scan rate increases based on sharing. There is an
1941 * inverse relationship between the degree of sharing and
1942 * the adjustment made to the scanning period. Broadly
1943 * speaking the intent is that there is little point
1944 * scanning faster if shared accesses dominate as it may
1945 * simply bounce migrations uselessly
1946 */
2847c90e 1947 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1948 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1949 }
1950
1951 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1952 task_scan_min(p), task_scan_max(p));
1953 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1954}
1955
7e2703e6
RR
1956/*
1957 * Get the fraction of time the task has been running since the last
1958 * NUMA placement cycle. The scheduler keeps similar statistics, but
1959 * decays those on a 32ms period, which is orders of magnitude off
1960 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1961 * stats only if the task is so new there are no NUMA statistics yet.
1962 */
1963static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1964{
1965 u64 runtime, delta, now;
1966 /* Use the start of this time slice to avoid calculations. */
1967 now = p->se.exec_start;
1968 runtime = p->se.sum_exec_runtime;
1969
1970 if (p->last_task_numa_placement) {
1971 delta = runtime - p->last_sum_exec_runtime;
1972 *period = now - p->last_task_numa_placement;
1973 } else {
9d89c257
YD
1974 delta = p->se.avg.load_sum / p->se.load.weight;
1975 *period = LOAD_AVG_MAX;
7e2703e6
RR
1976 }
1977
1978 p->last_sum_exec_runtime = runtime;
1979 p->last_task_numa_placement = now;
1980
1981 return delta;
1982}
1983
54009416
RR
1984/*
1985 * Determine the preferred nid for a task in a numa_group. This needs to
1986 * be done in a way that produces consistent results with group_weight,
1987 * otherwise workloads might not converge.
1988 */
1989static int preferred_group_nid(struct task_struct *p, int nid)
1990{
1991 nodemask_t nodes;
1992 int dist;
1993
1994 /* Direct connections between all NUMA nodes. */
1995 if (sched_numa_topology_type == NUMA_DIRECT)
1996 return nid;
1997
1998 /*
1999 * On a system with glueless mesh NUMA topology, group_weight
2000 * scores nodes according to the number of NUMA hinting faults on
2001 * both the node itself, and on nearby nodes.
2002 */
2003 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2004 unsigned long score, max_score = 0;
2005 int node, max_node = nid;
2006
2007 dist = sched_max_numa_distance;
2008
2009 for_each_online_node(node) {
2010 score = group_weight(p, node, dist);
2011 if (score > max_score) {
2012 max_score = score;
2013 max_node = node;
2014 }
2015 }
2016 return max_node;
2017 }
2018
2019 /*
2020 * Finding the preferred nid in a system with NUMA backplane
2021 * interconnect topology is more involved. The goal is to locate
2022 * tasks from numa_groups near each other in the system, and
2023 * untangle workloads from different sides of the system. This requires
2024 * searching down the hierarchy of node groups, recursively searching
2025 * inside the highest scoring group of nodes. The nodemask tricks
2026 * keep the complexity of the search down.
2027 */
2028 nodes = node_online_map;
2029 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2030 unsigned long max_faults = 0;
81907478 2031 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2032 int a, b;
2033
2034 /* Are there nodes at this distance from each other? */
2035 if (!find_numa_distance(dist))
2036 continue;
2037
2038 for_each_node_mask(a, nodes) {
2039 unsigned long faults = 0;
2040 nodemask_t this_group;
2041 nodes_clear(this_group);
2042
2043 /* Sum group's NUMA faults; includes a==b case. */
2044 for_each_node_mask(b, nodes) {
2045 if (node_distance(a, b) < dist) {
2046 faults += group_faults(p, b);
2047 node_set(b, this_group);
2048 node_clear(b, nodes);
2049 }
2050 }
2051
2052 /* Remember the top group. */
2053 if (faults > max_faults) {
2054 max_faults = faults;
2055 max_group = this_group;
2056 /*
2057 * subtle: at the smallest distance there is
2058 * just one node left in each "group", the
2059 * winner is the preferred nid.
2060 */
2061 nid = a;
2062 }
2063 }
2064 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2065 if (!max_faults)
2066 break;
54009416
RR
2067 nodes = max_group;
2068 }
2069 return nid;
2070}
2071
cbee9f88
PZ
2072static void task_numa_placement(struct task_struct *p)
2073{
83e1d2cd
MG
2074 int seq, nid, max_nid = -1, max_group_nid = -1;
2075 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2076 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2077 unsigned long total_faults;
2078 u64 runtime, period;
7dbd13ed 2079 spinlock_t *group_lock = NULL;
cbee9f88 2080
7e5a2c17
JL
2081 /*
2082 * The p->mm->numa_scan_seq field gets updated without
2083 * exclusive access. Use READ_ONCE() here to ensure
2084 * that the field is read in a single access:
2085 */
316c1608 2086 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2087 if (p->numa_scan_seq == seq)
2088 return;
2089 p->numa_scan_seq = seq;
598f0ec0 2090 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2091
7e2703e6
RR
2092 total_faults = p->numa_faults_locality[0] +
2093 p->numa_faults_locality[1];
2094 runtime = numa_get_avg_runtime(p, &period);
2095
7dbd13ed
MG
2096 /* If the task is part of a group prevent parallel updates to group stats */
2097 if (p->numa_group) {
2098 group_lock = &p->numa_group->lock;
60e69eed 2099 spin_lock_irq(group_lock);
7dbd13ed
MG
2100 }
2101
688b7585
MG
2102 /* Find the node with the highest number of faults */
2103 for_each_online_node(nid) {
44dba3d5
IM
2104 /* Keep track of the offsets in numa_faults array */
2105 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2106 unsigned long faults = 0, group_faults = 0;
44dba3d5 2107 int priv;
745d6147 2108
be1e4e76 2109 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2110 long diff, f_diff, f_weight;
8c8a743c 2111
44dba3d5
IM
2112 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2113 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2114 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2115 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2116
ac8e895b 2117 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2118 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2119 fault_types[priv] += p->numa_faults[membuf_idx];
2120 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2121
7e2703e6
RR
2122 /*
2123 * Normalize the faults_from, so all tasks in a group
2124 * count according to CPU use, instead of by the raw
2125 * number of faults. Tasks with little runtime have
2126 * little over-all impact on throughput, and thus their
2127 * faults are less important.
2128 */
2129 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2130 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2131 (total_faults + 1);
44dba3d5
IM
2132 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2133 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2134
44dba3d5
IM
2135 p->numa_faults[mem_idx] += diff;
2136 p->numa_faults[cpu_idx] += f_diff;
2137 faults += p->numa_faults[mem_idx];
83e1d2cd 2138 p->total_numa_faults += diff;
8c8a743c 2139 if (p->numa_group) {
44dba3d5
IM
2140 /*
2141 * safe because we can only change our own group
2142 *
2143 * mem_idx represents the offset for a given
2144 * nid and priv in a specific region because it
2145 * is at the beginning of the numa_faults array.
2146 */
2147 p->numa_group->faults[mem_idx] += diff;
2148 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2149 p->numa_group->total_faults += diff;
44dba3d5 2150 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2151 }
ac8e895b
MG
2152 }
2153
688b7585
MG
2154 if (faults > max_faults) {
2155 max_faults = faults;
2156 max_nid = nid;
2157 }
83e1d2cd
MG
2158
2159 if (group_faults > max_group_faults) {
2160 max_group_faults = group_faults;
2161 max_group_nid = nid;
2162 }
2163 }
2164
04bb2f94
RR
2165 update_task_scan_period(p, fault_types[0], fault_types[1]);
2166
7dbd13ed 2167 if (p->numa_group) {
4142c3eb 2168 numa_group_count_active_nodes(p->numa_group);
60e69eed 2169 spin_unlock_irq(group_lock);
54009416 2170 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2171 }
2172
bb97fc31
RR
2173 if (max_faults) {
2174 /* Set the new preferred node */
2175 if (max_nid != p->numa_preferred_nid)
2176 sched_setnuma(p, max_nid);
2177
2178 if (task_node(p) != p->numa_preferred_nid)
2179 numa_migrate_preferred(p);
3a7053b3 2180 }
cbee9f88
PZ
2181}
2182
8c8a743c
PZ
2183static inline int get_numa_group(struct numa_group *grp)
2184{
2185 return atomic_inc_not_zero(&grp->refcount);
2186}
2187
2188static inline void put_numa_group(struct numa_group *grp)
2189{
2190 if (atomic_dec_and_test(&grp->refcount))
2191 kfree_rcu(grp, rcu);
2192}
2193
3e6a9418
MG
2194static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2195 int *priv)
8c8a743c
PZ
2196{
2197 struct numa_group *grp, *my_grp;
2198 struct task_struct *tsk;
2199 bool join = false;
2200 int cpu = cpupid_to_cpu(cpupid);
2201 int i;
2202
2203 if (unlikely(!p->numa_group)) {
2204 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2205 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2206
2207 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2208 if (!grp)
2209 return;
2210
2211 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2212 grp->active_nodes = 1;
2213 grp->max_faults_cpu = 0;
8c8a743c 2214 spin_lock_init(&grp->lock);
e29cf08b 2215 grp->gid = p->pid;
50ec8a40 2216 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2217 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2218 nr_node_ids;
8c8a743c 2219
be1e4e76 2220 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2221 grp->faults[i] = p->numa_faults[i];
8c8a743c 2222
989348b5 2223 grp->total_faults = p->total_numa_faults;
83e1d2cd 2224
8c8a743c
PZ
2225 grp->nr_tasks++;
2226 rcu_assign_pointer(p->numa_group, grp);
2227 }
2228
2229 rcu_read_lock();
316c1608 2230 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2231
2232 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2233 goto no_join;
8c8a743c
PZ
2234
2235 grp = rcu_dereference(tsk->numa_group);
2236 if (!grp)
3354781a 2237 goto no_join;
8c8a743c
PZ
2238
2239 my_grp = p->numa_group;
2240 if (grp == my_grp)
3354781a 2241 goto no_join;
8c8a743c
PZ
2242
2243 /*
2244 * Only join the other group if its bigger; if we're the bigger group,
2245 * the other task will join us.
2246 */
2247 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2248 goto no_join;
8c8a743c
PZ
2249
2250 /*
2251 * Tie-break on the grp address.
2252 */
2253 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2254 goto no_join;
8c8a743c 2255
dabe1d99
RR
2256 /* Always join threads in the same process. */
2257 if (tsk->mm == current->mm)
2258 join = true;
2259
2260 /* Simple filter to avoid false positives due to PID collisions */
2261 if (flags & TNF_SHARED)
2262 join = true;
8c8a743c 2263
3e6a9418
MG
2264 /* Update priv based on whether false sharing was detected */
2265 *priv = !join;
2266
dabe1d99 2267 if (join && !get_numa_group(grp))
3354781a 2268 goto no_join;
8c8a743c 2269
8c8a743c
PZ
2270 rcu_read_unlock();
2271
2272 if (!join)
2273 return;
2274
60e69eed
MG
2275 BUG_ON(irqs_disabled());
2276 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2277
be1e4e76 2278 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2279 my_grp->faults[i] -= p->numa_faults[i];
2280 grp->faults[i] += p->numa_faults[i];
8c8a743c 2281 }
989348b5
MG
2282 my_grp->total_faults -= p->total_numa_faults;
2283 grp->total_faults += p->total_numa_faults;
8c8a743c 2284
8c8a743c
PZ
2285 my_grp->nr_tasks--;
2286 grp->nr_tasks++;
2287
2288 spin_unlock(&my_grp->lock);
60e69eed 2289 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2290
2291 rcu_assign_pointer(p->numa_group, grp);
2292
2293 put_numa_group(my_grp);
3354781a
PZ
2294 return;
2295
2296no_join:
2297 rcu_read_unlock();
2298 return;
8c8a743c
PZ
2299}
2300
2301void task_numa_free(struct task_struct *p)
2302{
2303 struct numa_group *grp = p->numa_group;
44dba3d5 2304 void *numa_faults = p->numa_faults;
e9dd685c
SR
2305 unsigned long flags;
2306 int i;
8c8a743c
PZ
2307
2308 if (grp) {
e9dd685c 2309 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2310 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2311 grp->faults[i] -= p->numa_faults[i];
989348b5 2312 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2313
8c8a743c 2314 grp->nr_tasks--;
e9dd685c 2315 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2316 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2317 put_numa_group(grp);
2318 }
2319
44dba3d5 2320 p->numa_faults = NULL;
82727018 2321 kfree(numa_faults);
8c8a743c
PZ
2322}
2323
cbee9f88
PZ
2324/*
2325 * Got a PROT_NONE fault for a page on @node.
2326 */
58b46da3 2327void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2328{
2329 struct task_struct *p = current;
6688cc05 2330 bool migrated = flags & TNF_MIGRATED;
58b46da3 2331 int cpu_node = task_node(current);
792568ec 2332 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2333 struct numa_group *ng;
ac8e895b 2334 int priv;
cbee9f88 2335
2a595721 2336 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2337 return;
2338
9ff1d9ff
MG
2339 /* for example, ksmd faulting in a user's mm */
2340 if (!p->mm)
2341 return;
2342
f809ca9a 2343 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2344 if (unlikely(!p->numa_faults)) {
2345 int size = sizeof(*p->numa_faults) *
be1e4e76 2346 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2347
44dba3d5
IM
2348 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2349 if (!p->numa_faults)
f809ca9a 2350 return;
745d6147 2351
83e1d2cd 2352 p->total_numa_faults = 0;
04bb2f94 2353 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2354 }
cbee9f88 2355
8c8a743c
PZ
2356 /*
2357 * First accesses are treated as private, otherwise consider accesses
2358 * to be private if the accessing pid has not changed
2359 */
2360 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2361 priv = 1;
2362 } else {
2363 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2364 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2365 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2366 }
2367
792568ec
RR
2368 /*
2369 * If a workload spans multiple NUMA nodes, a shared fault that
2370 * occurs wholly within the set of nodes that the workload is
2371 * actively using should be counted as local. This allows the
2372 * scan rate to slow down when a workload has settled down.
2373 */
4142c3eb
RR
2374 ng = p->numa_group;
2375 if (!priv && !local && ng && ng->active_nodes > 1 &&
2376 numa_is_active_node(cpu_node, ng) &&
2377 numa_is_active_node(mem_node, ng))
792568ec
RR
2378 local = 1;
2379
cbee9f88 2380 task_numa_placement(p);
f809ca9a 2381
2739d3ee
RR
2382 /*
2383 * Retry task to preferred node migration periodically, in case it
2384 * case it previously failed, or the scheduler moved us.
2385 */
2386 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2387 numa_migrate_preferred(p);
2388
b32e86b4
IM
2389 if (migrated)
2390 p->numa_pages_migrated += pages;
074c2381
MG
2391 if (flags & TNF_MIGRATE_FAIL)
2392 p->numa_faults_locality[2] += pages;
b32e86b4 2393
44dba3d5
IM
2394 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2395 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2396 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2397}
2398
6e5fb223
PZ
2399static void reset_ptenuma_scan(struct task_struct *p)
2400{
7e5a2c17
JL
2401 /*
2402 * We only did a read acquisition of the mmap sem, so
2403 * p->mm->numa_scan_seq is written to without exclusive access
2404 * and the update is not guaranteed to be atomic. That's not
2405 * much of an issue though, since this is just used for
2406 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2407 * expensive, to avoid any form of compiler optimizations:
2408 */
316c1608 2409 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2410 p->mm->numa_scan_offset = 0;
2411}
2412
cbee9f88
PZ
2413/*
2414 * The expensive part of numa migration is done from task_work context.
2415 * Triggered from task_tick_numa().
2416 */
2417void task_numa_work(struct callback_head *work)
2418{
2419 unsigned long migrate, next_scan, now = jiffies;
2420 struct task_struct *p = current;
2421 struct mm_struct *mm = p->mm;
51170840 2422 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2423 struct vm_area_struct *vma;
9f40604c 2424 unsigned long start, end;
598f0ec0 2425 unsigned long nr_pte_updates = 0;
4620f8c1 2426 long pages, virtpages;
cbee9f88 2427
9148a3a1 2428 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2429
2430 work->next = work; /* protect against double add */
2431 /*
2432 * Who cares about NUMA placement when they're dying.
2433 *
2434 * NOTE: make sure not to dereference p->mm before this check,
2435 * exit_task_work() happens _after_ exit_mm() so we could be called
2436 * without p->mm even though we still had it when we enqueued this
2437 * work.
2438 */
2439 if (p->flags & PF_EXITING)
2440 return;
2441
930aa174 2442 if (!mm->numa_next_scan) {
7e8d16b6
MG
2443 mm->numa_next_scan = now +
2444 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2445 }
2446
cbee9f88
PZ
2447 /*
2448 * Enforce maximal scan/migration frequency..
2449 */
2450 migrate = mm->numa_next_scan;
2451 if (time_before(now, migrate))
2452 return;
2453
598f0ec0
MG
2454 if (p->numa_scan_period == 0) {
2455 p->numa_scan_period_max = task_scan_max(p);
2456 p->numa_scan_period = task_scan_min(p);
2457 }
cbee9f88 2458
fb003b80 2459 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2460 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2461 return;
2462
19a78d11
PZ
2463 /*
2464 * Delay this task enough that another task of this mm will likely win
2465 * the next time around.
2466 */
2467 p->node_stamp += 2 * TICK_NSEC;
2468
9f40604c
MG
2469 start = mm->numa_scan_offset;
2470 pages = sysctl_numa_balancing_scan_size;
2471 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2472 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2473 if (!pages)
2474 return;
cbee9f88 2475
4620f8c1 2476
6e5fb223 2477 down_read(&mm->mmap_sem);
9f40604c 2478 vma = find_vma(mm, start);
6e5fb223
PZ
2479 if (!vma) {
2480 reset_ptenuma_scan(p);
9f40604c 2481 start = 0;
6e5fb223
PZ
2482 vma = mm->mmap;
2483 }
9f40604c 2484 for (; vma; vma = vma->vm_next) {
6b79c57b 2485 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2486 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2487 continue;
6b79c57b 2488 }
6e5fb223 2489
4591ce4f
MG
2490 /*
2491 * Shared library pages mapped by multiple processes are not
2492 * migrated as it is expected they are cache replicated. Avoid
2493 * hinting faults in read-only file-backed mappings or the vdso
2494 * as migrating the pages will be of marginal benefit.
2495 */
2496 if (!vma->vm_mm ||
2497 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2498 continue;
2499
3c67f474
MG
2500 /*
2501 * Skip inaccessible VMAs to avoid any confusion between
2502 * PROT_NONE and NUMA hinting ptes
2503 */
2504 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2505 continue;
4591ce4f 2506
9f40604c
MG
2507 do {
2508 start = max(start, vma->vm_start);
2509 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2510 end = min(end, vma->vm_end);
4620f8c1 2511 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2512
2513 /*
4620f8c1
RR
2514 * Try to scan sysctl_numa_balancing_size worth of
2515 * hpages that have at least one present PTE that
2516 * is not already pte-numa. If the VMA contains
2517 * areas that are unused or already full of prot_numa
2518 * PTEs, scan up to virtpages, to skip through those
2519 * areas faster.
598f0ec0
MG
2520 */
2521 if (nr_pte_updates)
2522 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2523 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2524
9f40604c 2525 start = end;
4620f8c1 2526 if (pages <= 0 || virtpages <= 0)
9f40604c 2527 goto out;
3cf1962c
RR
2528
2529 cond_resched();
9f40604c 2530 } while (end != vma->vm_end);
cbee9f88 2531 }
6e5fb223 2532
9f40604c 2533out:
6e5fb223 2534 /*
c69307d5
PZ
2535 * It is possible to reach the end of the VMA list but the last few
2536 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2537 * would find the !migratable VMA on the next scan but not reset the
2538 * scanner to the start so check it now.
6e5fb223
PZ
2539 */
2540 if (vma)
9f40604c 2541 mm->numa_scan_offset = start;
6e5fb223
PZ
2542 else
2543 reset_ptenuma_scan(p);
2544 up_read(&mm->mmap_sem);
51170840
RR
2545
2546 /*
2547 * Make sure tasks use at least 32x as much time to run other code
2548 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2549 * Usually update_task_scan_period slows down scanning enough; on an
2550 * overloaded system we need to limit overhead on a per task basis.
2551 */
2552 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2553 u64 diff = p->se.sum_exec_runtime - runtime;
2554 p->node_stamp += 32 * diff;
2555 }
cbee9f88
PZ
2556}
2557
2558/*
2559 * Drive the periodic memory faults..
2560 */
2561void task_tick_numa(struct rq *rq, struct task_struct *curr)
2562{
2563 struct callback_head *work = &curr->numa_work;
2564 u64 period, now;
2565
2566 /*
2567 * We don't care about NUMA placement if we don't have memory.
2568 */
2569 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2570 return;
2571
2572 /*
2573 * Using runtime rather than walltime has the dual advantage that
2574 * we (mostly) drive the selection from busy threads and that the
2575 * task needs to have done some actual work before we bother with
2576 * NUMA placement.
2577 */
2578 now = curr->se.sum_exec_runtime;
2579 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2580
25b3e5a3 2581 if (now > curr->node_stamp + period) {
4b96a29b 2582 if (!curr->node_stamp)
598f0ec0 2583 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2584 curr->node_stamp += period;
cbee9f88
PZ
2585
2586 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2587 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2588 task_work_add(curr, work, true);
2589 }
2590 }
2591}
2592#else
2593static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2594{
2595}
0ec8aa00
PZ
2596
2597static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2598{
2599}
2600
2601static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2602{
2603}
cbee9f88
PZ
2604#endif /* CONFIG_NUMA_BALANCING */
2605
30cfdcfc
DA
2606static void
2607account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2608{
2609 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2610 if (!parent_entity(se))
029632fb 2611 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2612#ifdef CONFIG_SMP
0ec8aa00
PZ
2613 if (entity_is_task(se)) {
2614 struct rq *rq = rq_of(cfs_rq);
2615
2616 account_numa_enqueue(rq, task_of(se));
2617 list_add(&se->group_node, &rq->cfs_tasks);
2618 }
367456c7 2619#endif
30cfdcfc 2620 cfs_rq->nr_running++;
30cfdcfc
DA
2621}
2622
2623static void
2624account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2625{
2626 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2627 if (!parent_entity(se))
029632fb 2628 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2629#ifdef CONFIG_SMP
0ec8aa00
PZ
2630 if (entity_is_task(se)) {
2631 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2632 list_del_init(&se->group_node);
0ec8aa00 2633 }
bfdb198c 2634#endif
30cfdcfc 2635 cfs_rq->nr_running--;
30cfdcfc
DA
2636}
2637
3ff6dcac
YZ
2638#ifdef CONFIG_FAIR_GROUP_SCHED
2639# ifdef CONFIG_SMP
ea1dc6fc 2640static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2641{
ea1dc6fc 2642 long tg_weight, load, shares;
cf5f0acf
PZ
2643
2644 /*
ea1dc6fc
PZ
2645 * This really should be: cfs_rq->avg.load_avg, but instead we use
2646 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2647 * the shares for small weight interactive tasks.
cf5f0acf 2648 */
ea1dc6fc 2649 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2650
ea1dc6fc 2651 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2652
ea1dc6fc
PZ
2653 /* Ensure tg_weight >= load */
2654 tg_weight -= cfs_rq->tg_load_avg_contrib;
2655 tg_weight += load;
3ff6dcac 2656
3ff6dcac 2657 shares = (tg->shares * load);
cf5f0acf
PZ
2658 if (tg_weight)
2659 shares /= tg_weight;
3ff6dcac 2660
b8fd8423
DE
2661 /*
2662 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2663 * of a group with small tg->shares value. It is a floor value which is
2664 * assigned as a minimum load.weight to the sched_entity representing
2665 * the group on a CPU.
2666 *
2667 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2668 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2669 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2670 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2671 * instead of 0.
2672 */
3ff6dcac
YZ
2673 if (shares < MIN_SHARES)
2674 shares = MIN_SHARES;
2675 if (shares > tg->shares)
2676 shares = tg->shares;
2677
2678 return shares;
2679}
3ff6dcac 2680# else /* CONFIG_SMP */
6d5ab293 2681static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2682{
2683 return tg->shares;
2684}
3ff6dcac 2685# endif /* CONFIG_SMP */
ea1dc6fc 2686
2069dd75
PZ
2687static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2688 unsigned long weight)
2689{
19e5eebb
PT
2690 if (se->on_rq) {
2691 /* commit outstanding execution time */
2692 if (cfs_rq->curr == se)
2693 update_curr(cfs_rq);
2069dd75 2694 account_entity_dequeue(cfs_rq, se);
19e5eebb 2695 }
2069dd75
PZ
2696
2697 update_load_set(&se->load, weight);
2698
2699 if (se->on_rq)
2700 account_entity_enqueue(cfs_rq, se);
2701}
2702
82958366
PT
2703static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2704
89ee048f 2705static void update_cfs_shares(struct sched_entity *se)
2069dd75 2706{
89ee048f 2707 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2708 struct task_group *tg;
3ff6dcac 2709 long shares;
2069dd75 2710
89ee048f
VG
2711 if (!cfs_rq)
2712 return;
2713
2714 if (throttled_hierarchy(cfs_rq))
2069dd75 2715 return;
89ee048f
VG
2716
2717 tg = cfs_rq->tg;
2718
3ff6dcac
YZ
2719#ifndef CONFIG_SMP
2720 if (likely(se->load.weight == tg->shares))
2721 return;
2722#endif
6d5ab293 2723 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2724
2725 reweight_entity(cfs_rq_of(se), se, shares);
2726}
89ee048f 2727
2069dd75 2728#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2729static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2730{
2731}
2732#endif /* CONFIG_FAIR_GROUP_SCHED */
2733
141965c7 2734#ifdef CONFIG_SMP
5b51f2f8
PT
2735/* Precomputed fixed inverse multiplies for multiplication by y^n */
2736static const u32 runnable_avg_yN_inv[] = {
2737 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2738 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2739 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2740 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2741 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2742 0x85aac367, 0x82cd8698,
2743};
2744
9d85f21c
PT
2745/*
2746 * Approximate:
2747 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2748 */
a481db34 2749static u64 decay_load(u64 val, u64 n)
9d85f21c 2750{
5b51f2f8
PT
2751 unsigned int local_n;
2752
05296e75 2753 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2754 return 0;
2755
2756 /* after bounds checking we can collapse to 32-bit */
2757 local_n = n;
2758
2759 /*
2760 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2761 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2762 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2763 *
2764 * To achieve constant time decay_load.
2765 */
2766 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2767 val >>= local_n / LOAD_AVG_PERIOD;
2768 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2769 }
2770
9d89c257
YD
2771 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2772 return val;
5b51f2f8
PT
2773}
2774
05296e75 2775static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2776{
05296e75 2777 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2778
a481db34
YD
2779 /*
2780 * c1 = d1 y^(p+1)
2781 */
05296e75 2782 c1 = decay_load((u64)d1, periods);
a481db34 2783
a481db34 2784 /*
05296e75
PZ
2785 * p
2786 * c2 = 1024 \Sum y^n
2787 * n=1
a481db34 2788 *
05296e75
PZ
2789 * inf inf
2790 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2791 * n=0 n=p+1
a481db34 2792 */
05296e75 2793 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2794
2795 return c1 + c2 + c3;
9d85f21c
PT
2796}
2797
54a21385 2798#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2799
a481db34
YD
2800/*
2801 * Accumulate the three separate parts of the sum; d1 the remainder
2802 * of the last (incomplete) period, d2 the span of full periods and d3
2803 * the remainder of the (incomplete) current period.
2804 *
2805 * d1 d2 d3
2806 * ^ ^ ^
2807 * | | |
2808 * |<->|<----------------->|<--->|
2809 * ... |---x---|------| ... |------|-----x (now)
2810 *
2811 * p
2812 * u' = (u + d1) y^(p+1) + 1024 \Sum y^n + d3 y^0
2813 * n=1
2814 *
2815 * = u y^(p+1) + (Step 1)
2816 *
2817 * p
2818 * d1 y^(p+1) + 1024 \Sum y^n + d3 y^0 (Step 2)
2819 * n=1
2820 */
2821static __always_inline u32
2822accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2823 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2824{
2825 unsigned long scale_freq, scale_cpu;
05296e75 2826 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2827 u64 periods;
a481db34
YD
2828
2829 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2830 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2831
2832 delta += sa->period_contrib;
2833 periods = delta / 1024; /* A period is 1024us (~1ms) */
2834
2835 /*
2836 * Step 1: decay old *_sum if we crossed period boundaries.
2837 */
2838 if (periods) {
2839 sa->load_sum = decay_load(sa->load_sum, periods);
2840 if (cfs_rq) {
2841 cfs_rq->runnable_load_sum =
2842 decay_load(cfs_rq->runnable_load_sum, periods);
2843 }
2844 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2845
05296e75
PZ
2846 /*
2847 * Step 2
2848 */
2849 delta %= 1024;
2850 contrib = __accumulate_pelt_segments(periods,
2851 1024 - sa->period_contrib, delta);
2852 }
a481db34
YD
2853 sa->period_contrib = delta;
2854
2855 contrib = cap_scale(contrib, scale_freq);
2856 if (weight) {
2857 sa->load_sum += weight * contrib;
2858 if (cfs_rq)
2859 cfs_rq->runnable_load_sum += weight * contrib;
2860 }
2861 if (running)
2862 sa->util_sum += contrib * scale_cpu;
2863
2864 return periods;
2865}
2866
9d85f21c
PT
2867/*
2868 * We can represent the historical contribution to runnable average as the
2869 * coefficients of a geometric series. To do this we sub-divide our runnable
2870 * history into segments of approximately 1ms (1024us); label the segment that
2871 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2872 *
2873 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2874 * p0 p1 p2
2875 * (now) (~1ms ago) (~2ms ago)
2876 *
2877 * Let u_i denote the fraction of p_i that the entity was runnable.
2878 *
2879 * We then designate the fractions u_i as our co-efficients, yielding the
2880 * following representation of historical load:
2881 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2882 *
2883 * We choose y based on the with of a reasonably scheduling period, fixing:
2884 * y^32 = 0.5
2885 *
2886 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2887 * approximately half as much as the contribution to load within the last ms
2888 * (u_0).
2889 *
2890 * When a period "rolls over" and we have new u_0`, multiplying the previous
2891 * sum again by y is sufficient to update:
2892 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2893 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2894 */
9d89c257 2895static __always_inline int
0ccb977f 2896___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2897 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2898{
a481db34 2899 u64 delta;
9d85f21c 2900
9d89c257 2901 delta = now - sa->last_update_time;
9d85f21c
PT
2902 /*
2903 * This should only happen when time goes backwards, which it
2904 * unfortunately does during sched clock init when we swap over to TSC.
2905 */
2906 if ((s64)delta < 0) {
9d89c257 2907 sa->last_update_time = now;
9d85f21c
PT
2908 return 0;
2909 }
2910
2911 /*
2912 * Use 1024ns as the unit of measurement since it's a reasonable
2913 * approximation of 1us and fast to compute.
2914 */
2915 delta >>= 10;
2916 if (!delta)
2917 return 0;
9d89c257 2918 sa->last_update_time = now;
9d85f21c 2919
a481db34
YD
2920 /*
2921 * Now we know we crossed measurement unit boundaries. The *_avg
2922 * accrues by two steps:
2923 *
2924 * Step 1: accumulate *_sum since last_update_time. If we haven't
2925 * crossed period boundaries, finish.
2926 */
2927 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2928 return 0;
9ee474f5 2929
a481db34
YD
2930 /*
2931 * Step 2: update *_avg.
2932 */
2933 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2934 if (cfs_rq) {
2935 cfs_rq->runnable_load_avg =
2936 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
9d89c257 2937 }
a481db34 2938 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
aff3e498 2939
a481db34 2940 return 1;
9ee474f5
PT
2941}
2942
0ccb977f
PZ
2943static int
2944__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2945{
2946 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2947}
2948
2949static int
2950__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2951{
2952 return ___update_load_avg(now, cpu, &se->avg,
2953 se->on_rq * scale_load_down(se->load.weight),
2954 cfs_rq->curr == se, NULL);
2955}
2956
2957static int
2958__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2959{
2960 return ___update_load_avg(now, cpu, &cfs_rq->avg,
2961 scale_load_down(cfs_rq->load.weight),
2962 cfs_rq->curr != NULL, cfs_rq);
2963}
2964
09a43ace
VG
2965/*
2966 * Signed add and clamp on underflow.
2967 *
2968 * Explicitly do a load-store to ensure the intermediate value never hits
2969 * memory. This allows lockless observations without ever seeing the negative
2970 * values.
2971 */
2972#define add_positive(_ptr, _val) do { \
2973 typeof(_ptr) ptr = (_ptr); \
2974 typeof(_val) val = (_val); \
2975 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2976 \
2977 res = var + val; \
2978 \
2979 if (val < 0 && res > var) \
2980 res = 0; \
2981 \
2982 WRITE_ONCE(*ptr, res); \
2983} while (0)
2984
c566e8e9 2985#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2986/**
2987 * update_tg_load_avg - update the tg's load avg
2988 * @cfs_rq: the cfs_rq whose avg changed
2989 * @force: update regardless of how small the difference
2990 *
2991 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2992 * However, because tg->load_avg is a global value there are performance
2993 * considerations.
2994 *
2995 * In order to avoid having to look at the other cfs_rq's, we use a
2996 * differential update where we store the last value we propagated. This in
2997 * turn allows skipping updates if the differential is 'small'.
2998 *
2999 * Updating tg's load_avg is necessary before update_cfs_share() (which is
3000 * done) and effective_load() (which is not done because it is too costly).
bb17f655 3001 */
9d89c257 3002static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3003{
9d89c257 3004 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3005
aa0b7ae0
WL
3006 /*
3007 * No need to update load_avg for root_task_group as it is not used.
3008 */
3009 if (cfs_rq->tg == &root_task_group)
3010 return;
3011
9d89c257
YD
3012 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3013 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3014 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3015 }
8165e145 3016}
f5f9739d 3017
ad936d86
BP
3018/*
3019 * Called within set_task_rq() right before setting a task's cpu. The
3020 * caller only guarantees p->pi_lock is held; no other assumptions,
3021 * including the state of rq->lock, should be made.
3022 */
3023void set_task_rq_fair(struct sched_entity *se,
3024 struct cfs_rq *prev, struct cfs_rq *next)
3025{
0ccb977f
PZ
3026 u64 p_last_update_time;
3027 u64 n_last_update_time;
3028
ad936d86
BP
3029 if (!sched_feat(ATTACH_AGE_LOAD))
3030 return;
3031
3032 /*
3033 * We are supposed to update the task to "current" time, then its up to
3034 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3035 * getting what current time is, so simply throw away the out-of-date
3036 * time. This will result in the wakee task is less decayed, but giving
3037 * the wakee more load sounds not bad.
3038 */
0ccb977f
PZ
3039 if (!(se->avg.last_update_time && prev))
3040 return;
ad936d86
BP
3041
3042#ifndef CONFIG_64BIT
0ccb977f 3043 {
ad936d86
BP
3044 u64 p_last_update_time_copy;
3045 u64 n_last_update_time_copy;
3046
3047 do {
3048 p_last_update_time_copy = prev->load_last_update_time_copy;
3049 n_last_update_time_copy = next->load_last_update_time_copy;
3050
3051 smp_rmb();
3052
3053 p_last_update_time = prev->avg.last_update_time;
3054 n_last_update_time = next->avg.last_update_time;
3055
3056 } while (p_last_update_time != p_last_update_time_copy ||
3057 n_last_update_time != n_last_update_time_copy);
0ccb977f 3058 }
ad936d86 3059#else
0ccb977f
PZ
3060 p_last_update_time = prev->avg.last_update_time;
3061 n_last_update_time = next->avg.last_update_time;
ad936d86 3062#endif
0ccb977f
PZ
3063 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3064 se->avg.last_update_time = n_last_update_time;
ad936d86 3065}
09a43ace
VG
3066
3067/* Take into account change of utilization of a child task group */
3068static inline void
3069update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3070{
3071 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3072 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3073
3074 /* Nothing to update */
3075 if (!delta)
3076 return;
3077
3078 /* Set new sched_entity's utilization */
3079 se->avg.util_avg = gcfs_rq->avg.util_avg;
3080 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3081
3082 /* Update parent cfs_rq utilization */
3083 add_positive(&cfs_rq->avg.util_avg, delta);
3084 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3085}
3086
3087/* Take into account change of load of a child task group */
3088static inline void
3089update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3090{
3091 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3092 long delta, load = gcfs_rq->avg.load_avg;
3093
3094 /*
3095 * If the load of group cfs_rq is null, the load of the
3096 * sched_entity will also be null so we can skip the formula
3097 */
3098 if (load) {
3099 long tg_load;
3100
3101 /* Get tg's load and ensure tg_load > 0 */
3102 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3103
3104 /* Ensure tg_load >= load and updated with current load*/
3105 tg_load -= gcfs_rq->tg_load_avg_contrib;
3106 tg_load += load;
3107
3108 /*
3109 * We need to compute a correction term in the case that the
3110 * task group is consuming more CPU than a task of equal
3111 * weight. A task with a weight equals to tg->shares will have
3112 * a load less or equal to scale_load_down(tg->shares).
3113 * Similarly, the sched_entities that represent the task group
3114 * at parent level, can't have a load higher than
3115 * scale_load_down(tg->shares). And the Sum of sched_entities'
3116 * load must be <= scale_load_down(tg->shares).
3117 */
3118 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3119 /* scale gcfs_rq's load into tg's shares*/
3120 load *= scale_load_down(gcfs_rq->tg->shares);
3121 load /= tg_load;
3122 }
3123 }
3124
3125 delta = load - se->avg.load_avg;
3126
3127 /* Nothing to update */
3128 if (!delta)
3129 return;
3130
3131 /* Set new sched_entity's load */
3132 se->avg.load_avg = load;
3133 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3134
3135 /* Update parent cfs_rq load */
3136 add_positive(&cfs_rq->avg.load_avg, delta);
3137 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3138
3139 /*
3140 * If the sched_entity is already enqueued, we also have to update the
3141 * runnable load avg.
3142 */
3143 if (se->on_rq) {
3144 /* Update parent cfs_rq runnable_load_avg */
3145 add_positive(&cfs_rq->runnable_load_avg, delta);
3146 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3147 }
3148}
3149
3150static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3151{
3152 cfs_rq->propagate_avg = 1;
3153}
3154
3155static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3156{
3157 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3158
3159 if (!cfs_rq->propagate_avg)
3160 return 0;
3161
3162 cfs_rq->propagate_avg = 0;
3163 return 1;
3164}
3165
3166/* Update task and its cfs_rq load average */
3167static inline int propagate_entity_load_avg(struct sched_entity *se)
3168{
3169 struct cfs_rq *cfs_rq;
3170
3171 if (entity_is_task(se))
3172 return 0;
3173
3174 if (!test_and_clear_tg_cfs_propagate(se))
3175 return 0;
3176
3177 cfs_rq = cfs_rq_of(se);
3178
3179 set_tg_cfs_propagate(cfs_rq);
3180
3181 update_tg_cfs_util(cfs_rq, se);
3182 update_tg_cfs_load(cfs_rq, se);
3183
3184 return 1;
3185}
3186
bc427898
VG
3187/*
3188 * Check if we need to update the load and the utilization of a blocked
3189 * group_entity:
3190 */
3191static inline bool skip_blocked_update(struct sched_entity *se)
3192{
3193 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3194
3195 /*
3196 * If sched_entity still have not zero load or utilization, we have to
3197 * decay it:
3198 */
3199 if (se->avg.load_avg || se->avg.util_avg)
3200 return false;
3201
3202 /*
3203 * If there is a pending propagation, we have to update the load and
3204 * the utilization of the sched_entity:
3205 */
3206 if (gcfs_rq->propagate_avg)
3207 return false;
3208
3209 /*
3210 * Otherwise, the load and the utilization of the sched_entity is
3211 * already zero and there is no pending propagation, so it will be a
3212 * waste of time to try to decay it:
3213 */
3214 return true;
3215}
3216
6e83125c 3217#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3218
9d89c257 3219static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3220
3221static inline int propagate_entity_load_avg(struct sched_entity *se)
3222{
3223 return 0;
3224}
3225
3226static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3227
6e83125c 3228#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3229
a2c6c91f
SM
3230static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3231{
58919e83 3232 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3233 /*
3234 * There are a few boundary cases this might miss but it should
3235 * get called often enough that that should (hopefully) not be
3236 * a real problem -- added to that it only calls on the local
3237 * CPU, so if we enqueue remotely we'll miss an update, but
3238 * the next tick/schedule should update.
3239 *
3240 * It will not get called when we go idle, because the idle
3241 * thread is a different class (!fair), nor will the utilization
3242 * number include things like RT tasks.
3243 *
3244 * As is, the util number is not freq-invariant (we'd have to
3245 * implement arch_scale_freq_capacity() for that).
3246 *
3247 * See cpu_util().
3248 */
12bde33d 3249 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3250 }
3251}
3252
89741892
PZ
3253/*
3254 * Unsigned subtract and clamp on underflow.
3255 *
3256 * Explicitly do a load-store to ensure the intermediate value never hits
3257 * memory. This allows lockless observations without ever seeing the negative
3258 * values.
3259 */
3260#define sub_positive(_ptr, _val) do { \
3261 typeof(_ptr) ptr = (_ptr); \
3262 typeof(*ptr) val = (_val); \
3263 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3264 res = var - val; \
3265 if (res > var) \
3266 res = 0; \
3267 WRITE_ONCE(*ptr, res); \
3268} while (0)
3269
3d30544f
PZ
3270/**
3271 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3272 * @now: current time, as per cfs_rq_clock_task()
3273 * @cfs_rq: cfs_rq to update
3274 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3275 *
3276 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3277 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3278 * post_init_entity_util_avg().
3279 *
3280 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3281 *
7c3edd2c
PZ
3282 * Returns true if the load decayed or we removed load.
3283 *
3284 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3285 * call update_tg_load_avg() when this function returns true.
3d30544f 3286 */
a2c6c91f
SM
3287static inline int
3288update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3289{
9d89c257 3290 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3291 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3292
9d89c257 3293 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3294 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3295 sub_positive(&sa->load_avg, r);
3296 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3297 removed_load = 1;
4e516076 3298 set_tg_cfs_propagate(cfs_rq);
8165e145 3299 }
2dac754e 3300
9d89c257
YD
3301 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3302 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3303 sub_positive(&sa->util_avg, r);
3304 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3305 removed_util = 1;
4e516076 3306 set_tg_cfs_propagate(cfs_rq);
9d89c257 3307 }
36ee28e4 3308
0ccb977f 3309 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3310
9d89c257
YD
3311#ifndef CONFIG_64BIT
3312 smp_wmb();
3313 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3314#endif
36ee28e4 3315
a2c6c91f
SM
3316 if (update_freq && (decayed || removed_util))
3317 cfs_rq_util_change(cfs_rq);
21e96f88 3318
41e0d37f 3319 return decayed || removed_load;
21e96f88
SM
3320}
3321
d31b1a66
VG
3322/*
3323 * Optional action to be done while updating the load average
3324 */
3325#define UPDATE_TG 0x1
3326#define SKIP_AGE_LOAD 0x2
3327
21e96f88 3328/* Update task and its cfs_rq load average */
d31b1a66 3329static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3330{
3331 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3332 u64 now = cfs_rq_clock_task(cfs_rq);
3333 struct rq *rq = rq_of(cfs_rq);
3334 int cpu = cpu_of(rq);
09a43ace 3335 int decayed;
21e96f88
SM
3336
3337 /*
3338 * Track task load average for carrying it to new CPU after migrated, and
3339 * track group sched_entity load average for task_h_load calc in migration
3340 */
0ccb977f
PZ
3341 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3342 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3343
09a43ace
VG
3344 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3345 decayed |= propagate_entity_load_avg(se);
3346
3347 if (decayed && (flags & UPDATE_TG))
21e96f88 3348 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3349}
3350
3d30544f
PZ
3351/**
3352 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3353 * @cfs_rq: cfs_rq to attach to
3354 * @se: sched_entity to attach
3355 *
3356 * Must call update_cfs_rq_load_avg() before this, since we rely on
3357 * cfs_rq->avg.last_update_time being current.
3358 */
a05e8c51
BP
3359static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3360{
3361 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3362 cfs_rq->avg.load_avg += se->avg.load_avg;
3363 cfs_rq->avg.load_sum += se->avg.load_sum;
3364 cfs_rq->avg.util_avg += se->avg.util_avg;
3365 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3366 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3367
3368 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3369}
3370
3d30544f
PZ
3371/**
3372 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3373 * @cfs_rq: cfs_rq to detach from
3374 * @se: sched_entity to detach
3375 *
3376 * Must call update_cfs_rq_load_avg() before this, since we rely on
3377 * cfs_rq->avg.last_update_time being current.
3378 */
a05e8c51
BP
3379static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3380{
a05e8c51 3381
89741892
PZ
3382 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3383 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3384 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3385 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3386 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3387
3388 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3389}
3390
9d89c257
YD
3391/* Add the load generated by se into cfs_rq's load average */
3392static inline void
3393enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3394{
9d89c257 3395 struct sched_avg *sa = &se->avg;
18bf2805 3396
13962234
YD
3397 cfs_rq->runnable_load_avg += sa->load_avg;
3398 cfs_rq->runnable_load_sum += sa->load_sum;
3399
d31b1a66 3400 if (!sa->last_update_time) {
a05e8c51 3401 attach_entity_load_avg(cfs_rq, se);
9d89c257 3402 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3403 }
2dac754e
PT
3404}
3405
13962234
YD
3406/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3407static inline void
3408dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3409{
13962234
YD
3410 cfs_rq->runnable_load_avg =
3411 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3412 cfs_rq->runnable_load_sum =
a05e8c51 3413 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3414}
3415
9d89c257 3416#ifndef CONFIG_64BIT
0905f04e
YD
3417static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3418{
9d89c257 3419 u64 last_update_time_copy;
0905f04e 3420 u64 last_update_time;
9ee474f5 3421
9d89c257
YD
3422 do {
3423 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3424 smp_rmb();
3425 last_update_time = cfs_rq->avg.last_update_time;
3426 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3427
3428 return last_update_time;
3429}
9d89c257 3430#else
0905f04e
YD
3431static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3432{
3433 return cfs_rq->avg.last_update_time;
3434}
9d89c257
YD
3435#endif
3436
104cb16d
MR
3437/*
3438 * Synchronize entity load avg of dequeued entity without locking
3439 * the previous rq.
3440 */
3441void sync_entity_load_avg(struct sched_entity *se)
3442{
3443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3444 u64 last_update_time;
3445
3446 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3447 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3448}
3449
0905f04e
YD
3450/*
3451 * Task first catches up with cfs_rq, and then subtract
3452 * itself from the cfs_rq (task must be off the queue now).
3453 */
3454void remove_entity_load_avg(struct sched_entity *se)
3455{
3456 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3457
3458 /*
7dc603c9
PZ
3459 * tasks cannot exit without having gone through wake_up_new_task() ->
3460 * post_init_entity_util_avg() which will have added things to the
3461 * cfs_rq, so we can remove unconditionally.
3462 *
3463 * Similarly for groups, they will have passed through
3464 * post_init_entity_util_avg() before unregister_sched_fair_group()
3465 * calls this.
0905f04e 3466 */
0905f04e 3467
104cb16d 3468 sync_entity_load_avg(se);
9d89c257
YD
3469 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3470 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3471}
642dbc39 3472
7ea241af
YD
3473static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3474{
3475 return cfs_rq->runnable_load_avg;
3476}
3477
3478static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3479{
3480 return cfs_rq->avg.load_avg;
3481}
3482
46f69fa3 3483static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3484
38033c37
PZ
3485#else /* CONFIG_SMP */
3486
01011473
PZ
3487static inline int
3488update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3489{
3490 return 0;
3491}
3492
d31b1a66
VG
3493#define UPDATE_TG 0x0
3494#define SKIP_AGE_LOAD 0x0
3495
3496static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3497{
12bde33d 3498 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3499}
3500
9d89c257
YD
3501static inline void
3502enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3503static inline void
3504dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3505static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3506
a05e8c51
BP
3507static inline void
3508attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3509static inline void
3510detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3511
46f69fa3 3512static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3513{
3514 return 0;
3515}
3516
38033c37 3517#endif /* CONFIG_SMP */
9d85f21c 3518
ddc97297
PZ
3519static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3520{
3521#ifdef CONFIG_SCHED_DEBUG
3522 s64 d = se->vruntime - cfs_rq->min_vruntime;
3523
3524 if (d < 0)
3525 d = -d;
3526
3527 if (d > 3*sysctl_sched_latency)
ae92882e 3528 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3529#endif
3530}
3531
aeb73b04
PZ
3532static void
3533place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3534{
1af5f730 3535 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3536
2cb8600e
PZ
3537 /*
3538 * The 'current' period is already promised to the current tasks,
3539 * however the extra weight of the new task will slow them down a
3540 * little, place the new task so that it fits in the slot that
3541 * stays open at the end.
3542 */
94dfb5e7 3543 if (initial && sched_feat(START_DEBIT))
f9c0b095 3544 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3545
a2e7a7eb 3546 /* sleeps up to a single latency don't count. */
5ca9880c 3547 if (!initial) {
a2e7a7eb 3548 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3549
a2e7a7eb
MG
3550 /*
3551 * Halve their sleep time's effect, to allow
3552 * for a gentler effect of sleepers:
3553 */
3554 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3555 thresh >>= 1;
51e0304c 3556
a2e7a7eb 3557 vruntime -= thresh;
aeb73b04
PZ
3558 }
3559
b5d9d734 3560 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3561 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3562}
3563
d3d9dc33
PT
3564static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3565
cb251765
MG
3566static inline void check_schedstat_required(void)
3567{
3568#ifdef CONFIG_SCHEDSTATS
3569 if (schedstat_enabled())
3570 return;
3571
3572 /* Force schedstat enabled if a dependent tracepoint is active */
3573 if (trace_sched_stat_wait_enabled() ||
3574 trace_sched_stat_sleep_enabled() ||
3575 trace_sched_stat_iowait_enabled() ||
3576 trace_sched_stat_blocked_enabled() ||
3577 trace_sched_stat_runtime_enabled()) {
eda8dca5 3578 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3579 "stat_blocked and stat_runtime require the "
3580 "kernel parameter schedstats=enabled or "
3581 "kernel.sched_schedstats=1\n");
3582 }
3583#endif
3584}
3585
b5179ac7
PZ
3586
3587/*
3588 * MIGRATION
3589 *
3590 * dequeue
3591 * update_curr()
3592 * update_min_vruntime()
3593 * vruntime -= min_vruntime
3594 *
3595 * enqueue
3596 * update_curr()
3597 * update_min_vruntime()
3598 * vruntime += min_vruntime
3599 *
3600 * this way the vruntime transition between RQs is done when both
3601 * min_vruntime are up-to-date.
3602 *
3603 * WAKEUP (remote)
3604 *
59efa0ba 3605 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3606 * vruntime -= min_vruntime
3607 *
3608 * enqueue
3609 * update_curr()
3610 * update_min_vruntime()
3611 * vruntime += min_vruntime
3612 *
3613 * this way we don't have the most up-to-date min_vruntime on the originating
3614 * CPU and an up-to-date min_vruntime on the destination CPU.
3615 */
3616
bf0f6f24 3617static void
88ec22d3 3618enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3619{
2f950354
PZ
3620 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3621 bool curr = cfs_rq->curr == se;
3622
88ec22d3 3623 /*
2f950354
PZ
3624 * If we're the current task, we must renormalise before calling
3625 * update_curr().
88ec22d3 3626 */
2f950354 3627 if (renorm && curr)
88ec22d3
PZ
3628 se->vruntime += cfs_rq->min_vruntime;
3629
2f950354
PZ
3630 update_curr(cfs_rq);
3631
bf0f6f24 3632 /*
2f950354
PZ
3633 * Otherwise, renormalise after, such that we're placed at the current
3634 * moment in time, instead of some random moment in the past. Being
3635 * placed in the past could significantly boost this task to the
3636 * fairness detriment of existing tasks.
bf0f6f24 3637 */
2f950354
PZ
3638 if (renorm && !curr)
3639 se->vruntime += cfs_rq->min_vruntime;
3640
89ee048f
VG
3641 /*
3642 * When enqueuing a sched_entity, we must:
3643 * - Update loads to have both entity and cfs_rq synced with now.
3644 * - Add its load to cfs_rq->runnable_avg
3645 * - For group_entity, update its weight to reflect the new share of
3646 * its group cfs_rq
3647 * - Add its new weight to cfs_rq->load.weight
3648 */
d31b1a66 3649 update_load_avg(se, UPDATE_TG);
9d89c257 3650 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3651 update_cfs_shares(se);
17bc14b7 3652 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3653
1a3d027c 3654 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3655 place_entity(cfs_rq, se, 0);
bf0f6f24 3656
cb251765 3657 check_schedstat_required();
4fa8d299
JP
3658 update_stats_enqueue(cfs_rq, se, flags);
3659 check_spread(cfs_rq, se);
2f950354 3660 if (!curr)
83b699ed 3661 __enqueue_entity(cfs_rq, se);
2069dd75 3662 se->on_rq = 1;
3d4b47b4 3663
d3d9dc33 3664 if (cfs_rq->nr_running == 1) {
3d4b47b4 3665 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3666 check_enqueue_throttle(cfs_rq);
3667 }
bf0f6f24
IM
3668}
3669
2c13c919 3670static void __clear_buddies_last(struct sched_entity *se)
2002c695 3671{
2c13c919
RR
3672 for_each_sched_entity(se) {
3673 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3674 if (cfs_rq->last != se)
2c13c919 3675 break;
f1044799
PZ
3676
3677 cfs_rq->last = NULL;
2c13c919
RR
3678 }
3679}
2002c695 3680
2c13c919
RR
3681static void __clear_buddies_next(struct sched_entity *se)
3682{
3683 for_each_sched_entity(se) {
3684 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3685 if (cfs_rq->next != se)
2c13c919 3686 break;
f1044799
PZ
3687
3688 cfs_rq->next = NULL;
2c13c919 3689 }
2002c695
PZ
3690}
3691
ac53db59
RR
3692static void __clear_buddies_skip(struct sched_entity *se)
3693{
3694 for_each_sched_entity(se) {
3695 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3696 if (cfs_rq->skip != se)
ac53db59 3697 break;
f1044799
PZ
3698
3699 cfs_rq->skip = NULL;
ac53db59
RR
3700 }
3701}
3702
a571bbea
PZ
3703static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3704{
2c13c919
RR
3705 if (cfs_rq->last == se)
3706 __clear_buddies_last(se);
3707
3708 if (cfs_rq->next == se)
3709 __clear_buddies_next(se);
ac53db59
RR
3710
3711 if (cfs_rq->skip == se)
3712 __clear_buddies_skip(se);
a571bbea
PZ
3713}
3714
6c16a6dc 3715static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3716
bf0f6f24 3717static void
371fd7e7 3718dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3719{
a2a2d680
DA
3720 /*
3721 * Update run-time statistics of the 'current'.
3722 */
3723 update_curr(cfs_rq);
89ee048f
VG
3724
3725 /*
3726 * When dequeuing a sched_entity, we must:
3727 * - Update loads to have both entity and cfs_rq synced with now.
3728 * - Substract its load from the cfs_rq->runnable_avg.
3729 * - Substract its previous weight from cfs_rq->load.weight.
3730 * - For group entity, update its weight to reflect the new share
3731 * of its group cfs_rq.
3732 */
d31b1a66 3733 update_load_avg(se, UPDATE_TG);
13962234 3734 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3735
4fa8d299 3736 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3737
2002c695 3738 clear_buddies(cfs_rq, se);
4793241b 3739
83b699ed 3740 if (se != cfs_rq->curr)
30cfdcfc 3741 __dequeue_entity(cfs_rq, se);
17bc14b7 3742 se->on_rq = 0;
30cfdcfc 3743 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3744
3745 /*
b60205c7
PZ
3746 * Normalize after update_curr(); which will also have moved
3747 * min_vruntime if @se is the one holding it back. But before doing
3748 * update_min_vruntime() again, which will discount @se's position and
3749 * can move min_vruntime forward still more.
88ec22d3 3750 */
371fd7e7 3751 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3752 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3753
d8b4986d
PT
3754 /* return excess runtime on last dequeue */
3755 return_cfs_rq_runtime(cfs_rq);
3756
89ee048f 3757 update_cfs_shares(se);
b60205c7
PZ
3758
3759 /*
3760 * Now advance min_vruntime if @se was the entity holding it back,
3761 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3762 * put back on, and if we advance min_vruntime, we'll be placed back
3763 * further than we started -- ie. we'll be penalized.
3764 */
3765 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3766 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3767}
3768
3769/*
3770 * Preempt the current task with a newly woken task if needed:
3771 */
7c92e54f 3772static void
2e09bf55 3773check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3774{
11697830 3775 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3776 struct sched_entity *se;
3777 s64 delta;
11697830 3778
6d0f0ebd 3779 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3780 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3781 if (delta_exec > ideal_runtime) {
8875125e 3782 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3783 /*
3784 * The current task ran long enough, ensure it doesn't get
3785 * re-elected due to buddy favours.
3786 */
3787 clear_buddies(cfs_rq, curr);
f685ceac
MG
3788 return;
3789 }
3790
3791 /*
3792 * Ensure that a task that missed wakeup preemption by a
3793 * narrow margin doesn't have to wait for a full slice.
3794 * This also mitigates buddy induced latencies under load.
3795 */
f685ceac
MG
3796 if (delta_exec < sysctl_sched_min_granularity)
3797 return;
3798
f4cfb33e
WX
3799 se = __pick_first_entity(cfs_rq);
3800 delta = curr->vruntime - se->vruntime;
f685ceac 3801
f4cfb33e
WX
3802 if (delta < 0)
3803 return;
d7d82944 3804
f4cfb33e 3805 if (delta > ideal_runtime)
8875125e 3806 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3807}
3808
83b699ed 3809static void
8494f412 3810set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3811{
83b699ed
SV
3812 /* 'current' is not kept within the tree. */
3813 if (se->on_rq) {
3814 /*
3815 * Any task has to be enqueued before it get to execute on
3816 * a CPU. So account for the time it spent waiting on the
3817 * runqueue.
3818 */
4fa8d299 3819 update_stats_wait_end(cfs_rq, se);
83b699ed 3820 __dequeue_entity(cfs_rq, se);
d31b1a66 3821 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3822 }
3823
79303e9e 3824 update_stats_curr_start(cfs_rq, se);
429d43bc 3825 cfs_rq->curr = se;
4fa8d299 3826
eba1ed4b
IM
3827 /*
3828 * Track our maximum slice length, if the CPU's load is at
3829 * least twice that of our own weight (i.e. dont track it
3830 * when there are only lesser-weight tasks around):
3831 */
cb251765 3832 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3833 schedstat_set(se->statistics.slice_max,
3834 max((u64)schedstat_val(se->statistics.slice_max),
3835 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3836 }
4fa8d299 3837
4a55b450 3838 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3839}
3840
3f3a4904
PZ
3841static int
3842wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3843
ac53db59
RR
3844/*
3845 * Pick the next process, keeping these things in mind, in this order:
3846 * 1) keep things fair between processes/task groups
3847 * 2) pick the "next" process, since someone really wants that to run
3848 * 3) pick the "last" process, for cache locality
3849 * 4) do not run the "skip" process, if something else is available
3850 */
678d5718
PZ
3851static struct sched_entity *
3852pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3853{
678d5718
PZ
3854 struct sched_entity *left = __pick_first_entity(cfs_rq);
3855 struct sched_entity *se;
3856
3857 /*
3858 * If curr is set we have to see if its left of the leftmost entity
3859 * still in the tree, provided there was anything in the tree at all.
3860 */
3861 if (!left || (curr && entity_before(curr, left)))
3862 left = curr;
3863
3864 se = left; /* ideally we run the leftmost entity */
f4b6755f 3865
ac53db59
RR
3866 /*
3867 * Avoid running the skip buddy, if running something else can
3868 * be done without getting too unfair.
3869 */
3870 if (cfs_rq->skip == se) {
678d5718
PZ
3871 struct sched_entity *second;
3872
3873 if (se == curr) {
3874 second = __pick_first_entity(cfs_rq);
3875 } else {
3876 second = __pick_next_entity(se);
3877 if (!second || (curr && entity_before(curr, second)))
3878 second = curr;
3879 }
3880
ac53db59
RR
3881 if (second && wakeup_preempt_entity(second, left) < 1)
3882 se = second;
3883 }
aa2ac252 3884
f685ceac
MG
3885 /*
3886 * Prefer last buddy, try to return the CPU to a preempted task.
3887 */
3888 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3889 se = cfs_rq->last;
3890
ac53db59
RR
3891 /*
3892 * Someone really wants this to run. If it's not unfair, run it.
3893 */
3894 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3895 se = cfs_rq->next;
3896
f685ceac 3897 clear_buddies(cfs_rq, se);
4793241b
PZ
3898
3899 return se;
aa2ac252
PZ
3900}
3901
678d5718 3902static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3903
ab6cde26 3904static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3905{
3906 /*
3907 * If still on the runqueue then deactivate_task()
3908 * was not called and update_curr() has to be done:
3909 */
3910 if (prev->on_rq)
b7cc0896 3911 update_curr(cfs_rq);
bf0f6f24 3912
d3d9dc33
PT
3913 /* throttle cfs_rqs exceeding runtime */
3914 check_cfs_rq_runtime(cfs_rq);
3915
4fa8d299 3916 check_spread(cfs_rq, prev);
cb251765 3917
30cfdcfc 3918 if (prev->on_rq) {
4fa8d299 3919 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3920 /* Put 'current' back into the tree. */
3921 __enqueue_entity(cfs_rq, prev);
9d85f21c 3922 /* in !on_rq case, update occurred at dequeue */
9d89c257 3923 update_load_avg(prev, 0);
30cfdcfc 3924 }
429d43bc 3925 cfs_rq->curr = NULL;
bf0f6f24
IM
3926}
3927
8f4d37ec
PZ
3928static void
3929entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3930{
bf0f6f24 3931 /*
30cfdcfc 3932 * Update run-time statistics of the 'current'.
bf0f6f24 3933 */
30cfdcfc 3934 update_curr(cfs_rq);
bf0f6f24 3935
9d85f21c
PT
3936 /*
3937 * Ensure that runnable average is periodically updated.
3938 */
d31b1a66 3939 update_load_avg(curr, UPDATE_TG);
89ee048f 3940 update_cfs_shares(curr);
9d85f21c 3941
8f4d37ec
PZ
3942#ifdef CONFIG_SCHED_HRTICK
3943 /*
3944 * queued ticks are scheduled to match the slice, so don't bother
3945 * validating it and just reschedule.
3946 */
983ed7a6 3947 if (queued) {
8875125e 3948 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3949 return;
3950 }
8f4d37ec
PZ
3951 /*
3952 * don't let the period tick interfere with the hrtick preemption
3953 */
3954 if (!sched_feat(DOUBLE_TICK) &&
3955 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3956 return;
3957#endif
3958
2c2efaed 3959 if (cfs_rq->nr_running > 1)
2e09bf55 3960 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3961}
3962
ab84d31e
PT
3963
3964/**************************************************
3965 * CFS bandwidth control machinery
3966 */
3967
3968#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3969
3970#ifdef HAVE_JUMP_LABEL
c5905afb 3971static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3972
3973static inline bool cfs_bandwidth_used(void)
3974{
c5905afb 3975 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3976}
3977
1ee14e6c 3978void cfs_bandwidth_usage_inc(void)
029632fb 3979{
1ee14e6c
BS
3980 static_key_slow_inc(&__cfs_bandwidth_used);
3981}
3982
3983void cfs_bandwidth_usage_dec(void)
3984{
3985 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3986}
3987#else /* HAVE_JUMP_LABEL */
3988static bool cfs_bandwidth_used(void)
3989{
3990 return true;
3991}
3992
1ee14e6c
BS
3993void cfs_bandwidth_usage_inc(void) {}
3994void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3995#endif /* HAVE_JUMP_LABEL */
3996
ab84d31e
PT
3997/*
3998 * default period for cfs group bandwidth.
3999 * default: 0.1s, units: nanoseconds
4000 */
4001static inline u64 default_cfs_period(void)
4002{
4003 return 100000000ULL;
4004}
ec12cb7f
PT
4005
4006static inline u64 sched_cfs_bandwidth_slice(void)
4007{
4008 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4009}
4010
a9cf55b2
PT
4011/*
4012 * Replenish runtime according to assigned quota and update expiration time.
4013 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4014 * additional synchronization around rq->lock.
4015 *
4016 * requires cfs_b->lock
4017 */
029632fb 4018void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4019{
4020 u64 now;
4021
4022 if (cfs_b->quota == RUNTIME_INF)
4023 return;
4024
4025 now = sched_clock_cpu(smp_processor_id());
4026 cfs_b->runtime = cfs_b->quota;
4027 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4028}
4029
029632fb
PZ
4030static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4031{
4032 return &tg->cfs_bandwidth;
4033}
4034
f1b17280
PT
4035/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4036static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4037{
4038 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4039 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4040
78becc27 4041 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4042}
4043
85dac906
PT
4044/* returns 0 on failure to allocate runtime */
4045static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4046{
4047 struct task_group *tg = cfs_rq->tg;
4048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4049 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4050
4051 /* note: this is a positive sum as runtime_remaining <= 0 */
4052 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4053
4054 raw_spin_lock(&cfs_b->lock);
4055 if (cfs_b->quota == RUNTIME_INF)
4056 amount = min_amount;
58088ad0 4057 else {
77a4d1a1 4058 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4059
4060 if (cfs_b->runtime > 0) {
4061 amount = min(cfs_b->runtime, min_amount);
4062 cfs_b->runtime -= amount;
4063 cfs_b->idle = 0;
4064 }
ec12cb7f 4065 }
a9cf55b2 4066 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4067 raw_spin_unlock(&cfs_b->lock);
4068
4069 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4070 /*
4071 * we may have advanced our local expiration to account for allowed
4072 * spread between our sched_clock and the one on which runtime was
4073 * issued.
4074 */
4075 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4076 cfs_rq->runtime_expires = expires;
85dac906
PT
4077
4078 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4079}
4080
a9cf55b2
PT
4081/*
4082 * Note: This depends on the synchronization provided by sched_clock and the
4083 * fact that rq->clock snapshots this value.
4084 */
4085static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4086{
a9cf55b2 4087 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4088
4089 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4090 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4091 return;
4092
a9cf55b2
PT
4093 if (cfs_rq->runtime_remaining < 0)
4094 return;
4095
4096 /*
4097 * If the local deadline has passed we have to consider the
4098 * possibility that our sched_clock is 'fast' and the global deadline
4099 * has not truly expired.
4100 *
4101 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4102 * whether the global deadline has advanced. It is valid to compare
4103 * cfs_b->runtime_expires without any locks since we only care about
4104 * exact equality, so a partial write will still work.
a9cf55b2
PT
4105 */
4106
51f2176d 4107 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4108 /* extend local deadline, drift is bounded above by 2 ticks */
4109 cfs_rq->runtime_expires += TICK_NSEC;
4110 } else {
4111 /* global deadline is ahead, expiration has passed */
4112 cfs_rq->runtime_remaining = 0;
4113 }
4114}
4115
9dbdb155 4116static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4117{
4118 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4119 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4120 expire_cfs_rq_runtime(cfs_rq);
4121
4122 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4123 return;
4124
85dac906
PT
4125 /*
4126 * if we're unable to extend our runtime we resched so that the active
4127 * hierarchy can be throttled
4128 */
4129 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4130 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4131}
4132
6c16a6dc 4133static __always_inline
9dbdb155 4134void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4135{
56f570e5 4136 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4137 return;
4138
4139 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4140}
4141
85dac906
PT
4142static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4143{
56f570e5 4144 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4145}
4146
64660c86
PT
4147/* check whether cfs_rq, or any parent, is throttled */
4148static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4149{
56f570e5 4150 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4151}
4152
4153/*
4154 * Ensure that neither of the group entities corresponding to src_cpu or
4155 * dest_cpu are members of a throttled hierarchy when performing group
4156 * load-balance operations.
4157 */
4158static inline int throttled_lb_pair(struct task_group *tg,
4159 int src_cpu, int dest_cpu)
4160{
4161 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4162
4163 src_cfs_rq = tg->cfs_rq[src_cpu];
4164 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4165
4166 return throttled_hierarchy(src_cfs_rq) ||
4167 throttled_hierarchy(dest_cfs_rq);
4168}
4169
4170/* updated child weight may affect parent so we have to do this bottom up */
4171static int tg_unthrottle_up(struct task_group *tg, void *data)
4172{
4173 struct rq *rq = data;
4174 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4175
4176 cfs_rq->throttle_count--;
64660c86 4177 if (!cfs_rq->throttle_count) {
f1b17280 4178 /* adjust cfs_rq_clock_task() */
78becc27 4179 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4180 cfs_rq->throttled_clock_task;
64660c86 4181 }
64660c86
PT
4182
4183 return 0;
4184}
4185
4186static int tg_throttle_down(struct task_group *tg, void *data)
4187{
4188 struct rq *rq = data;
4189 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4190
82958366
PT
4191 /* group is entering throttled state, stop time */
4192 if (!cfs_rq->throttle_count)
78becc27 4193 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4194 cfs_rq->throttle_count++;
4195
4196 return 0;
4197}
4198
d3d9dc33 4199static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4200{
4201 struct rq *rq = rq_of(cfs_rq);
4202 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4203 struct sched_entity *se;
4204 long task_delta, dequeue = 1;
77a4d1a1 4205 bool empty;
85dac906
PT
4206
4207 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4208
f1b17280 4209 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4210 rcu_read_lock();
4211 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4212 rcu_read_unlock();
85dac906
PT
4213
4214 task_delta = cfs_rq->h_nr_running;
4215 for_each_sched_entity(se) {
4216 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4217 /* throttled entity or throttle-on-deactivate */
4218 if (!se->on_rq)
4219 break;
4220
4221 if (dequeue)
4222 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4223 qcfs_rq->h_nr_running -= task_delta;
4224
4225 if (qcfs_rq->load.weight)
4226 dequeue = 0;
4227 }
4228
4229 if (!se)
72465447 4230 sub_nr_running(rq, task_delta);
85dac906
PT
4231
4232 cfs_rq->throttled = 1;
78becc27 4233 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4234 raw_spin_lock(&cfs_b->lock);
d49db342 4235 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4236
c06f04c7
BS
4237 /*
4238 * Add to the _head_ of the list, so that an already-started
4239 * distribute_cfs_runtime will not see us
4240 */
4241 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4242
4243 /*
4244 * If we're the first throttled task, make sure the bandwidth
4245 * timer is running.
4246 */
4247 if (empty)
4248 start_cfs_bandwidth(cfs_b);
4249
85dac906
PT
4250 raw_spin_unlock(&cfs_b->lock);
4251}
4252
029632fb 4253void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4254{
4255 struct rq *rq = rq_of(cfs_rq);
4256 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4257 struct sched_entity *se;
4258 int enqueue = 1;
4259 long task_delta;
4260
22b958d8 4261 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4262
4263 cfs_rq->throttled = 0;
1a55af2e
FW
4264
4265 update_rq_clock(rq);
4266
671fd9da 4267 raw_spin_lock(&cfs_b->lock);
78becc27 4268 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4269 list_del_rcu(&cfs_rq->throttled_list);
4270 raw_spin_unlock(&cfs_b->lock);
4271
64660c86
PT
4272 /* update hierarchical throttle state */
4273 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4274
671fd9da
PT
4275 if (!cfs_rq->load.weight)
4276 return;
4277
4278 task_delta = cfs_rq->h_nr_running;
4279 for_each_sched_entity(se) {
4280 if (se->on_rq)
4281 enqueue = 0;
4282
4283 cfs_rq = cfs_rq_of(se);
4284 if (enqueue)
4285 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4286 cfs_rq->h_nr_running += task_delta;
4287
4288 if (cfs_rq_throttled(cfs_rq))
4289 break;
4290 }
4291
4292 if (!se)
72465447 4293 add_nr_running(rq, task_delta);
671fd9da
PT
4294
4295 /* determine whether we need to wake up potentially idle cpu */
4296 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4297 resched_curr(rq);
671fd9da
PT
4298}
4299
4300static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4301 u64 remaining, u64 expires)
4302{
4303 struct cfs_rq *cfs_rq;
c06f04c7
BS
4304 u64 runtime;
4305 u64 starting_runtime = remaining;
671fd9da
PT
4306
4307 rcu_read_lock();
4308 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4309 throttled_list) {
4310 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4311 struct rq_flags rf;
671fd9da 4312
8a8c69c3 4313 rq_lock(rq, &rf);
671fd9da
PT
4314 if (!cfs_rq_throttled(cfs_rq))
4315 goto next;
4316
4317 runtime = -cfs_rq->runtime_remaining + 1;
4318 if (runtime > remaining)
4319 runtime = remaining;
4320 remaining -= runtime;
4321
4322 cfs_rq->runtime_remaining += runtime;
4323 cfs_rq->runtime_expires = expires;
4324
4325 /* we check whether we're throttled above */
4326 if (cfs_rq->runtime_remaining > 0)
4327 unthrottle_cfs_rq(cfs_rq);
4328
4329next:
8a8c69c3 4330 rq_unlock(rq, &rf);
671fd9da
PT
4331
4332 if (!remaining)
4333 break;
4334 }
4335 rcu_read_unlock();
4336
c06f04c7 4337 return starting_runtime - remaining;
671fd9da
PT
4338}
4339
58088ad0
PT
4340/*
4341 * Responsible for refilling a task_group's bandwidth and unthrottling its
4342 * cfs_rqs as appropriate. If there has been no activity within the last
4343 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4344 * used to track this state.
4345 */
4346static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4347{
671fd9da 4348 u64 runtime, runtime_expires;
51f2176d 4349 int throttled;
58088ad0 4350
58088ad0
PT
4351 /* no need to continue the timer with no bandwidth constraint */
4352 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4353 goto out_deactivate;
58088ad0 4354
671fd9da 4355 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4356 cfs_b->nr_periods += overrun;
671fd9da 4357
51f2176d
BS
4358 /*
4359 * idle depends on !throttled (for the case of a large deficit), and if
4360 * we're going inactive then everything else can be deferred
4361 */
4362 if (cfs_b->idle && !throttled)
4363 goto out_deactivate;
a9cf55b2
PT
4364
4365 __refill_cfs_bandwidth_runtime(cfs_b);
4366
671fd9da
PT
4367 if (!throttled) {
4368 /* mark as potentially idle for the upcoming period */
4369 cfs_b->idle = 1;
51f2176d 4370 return 0;
671fd9da
PT
4371 }
4372
e8da1b18
NR
4373 /* account preceding periods in which throttling occurred */
4374 cfs_b->nr_throttled += overrun;
4375
671fd9da 4376 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4377
4378 /*
c06f04c7
BS
4379 * This check is repeated as we are holding onto the new bandwidth while
4380 * we unthrottle. This can potentially race with an unthrottled group
4381 * trying to acquire new bandwidth from the global pool. This can result
4382 * in us over-using our runtime if it is all used during this loop, but
4383 * only by limited amounts in that extreme case.
671fd9da 4384 */
c06f04c7
BS
4385 while (throttled && cfs_b->runtime > 0) {
4386 runtime = cfs_b->runtime;
671fd9da
PT
4387 raw_spin_unlock(&cfs_b->lock);
4388 /* we can't nest cfs_b->lock while distributing bandwidth */
4389 runtime = distribute_cfs_runtime(cfs_b, runtime,
4390 runtime_expires);
4391 raw_spin_lock(&cfs_b->lock);
4392
4393 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4394
4395 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4396 }
58088ad0 4397
671fd9da
PT
4398 /*
4399 * While we are ensured activity in the period following an
4400 * unthrottle, this also covers the case in which the new bandwidth is
4401 * insufficient to cover the existing bandwidth deficit. (Forcing the
4402 * timer to remain active while there are any throttled entities.)
4403 */
4404 cfs_b->idle = 0;
58088ad0 4405
51f2176d
BS
4406 return 0;
4407
4408out_deactivate:
51f2176d 4409 return 1;
58088ad0 4410}
d3d9dc33 4411
d8b4986d
PT
4412/* a cfs_rq won't donate quota below this amount */
4413static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4414/* minimum remaining period time to redistribute slack quota */
4415static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4416/* how long we wait to gather additional slack before distributing */
4417static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4418
db06e78c
BS
4419/*
4420 * Are we near the end of the current quota period?
4421 *
4422 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4423 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4424 * migrate_hrtimers, base is never cleared, so we are fine.
4425 */
d8b4986d
PT
4426static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4427{
4428 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4429 u64 remaining;
4430
4431 /* if the call-back is running a quota refresh is already occurring */
4432 if (hrtimer_callback_running(refresh_timer))
4433 return 1;
4434
4435 /* is a quota refresh about to occur? */
4436 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4437 if (remaining < min_expire)
4438 return 1;
4439
4440 return 0;
4441}
4442
4443static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4444{
4445 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4446
4447 /* if there's a quota refresh soon don't bother with slack */
4448 if (runtime_refresh_within(cfs_b, min_left))
4449 return;
4450
4cfafd30
PZ
4451 hrtimer_start(&cfs_b->slack_timer,
4452 ns_to_ktime(cfs_bandwidth_slack_period),
4453 HRTIMER_MODE_REL);
d8b4986d
PT
4454}
4455
4456/* we know any runtime found here is valid as update_curr() precedes return */
4457static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4458{
4459 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4460 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4461
4462 if (slack_runtime <= 0)
4463 return;
4464
4465 raw_spin_lock(&cfs_b->lock);
4466 if (cfs_b->quota != RUNTIME_INF &&
4467 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4468 cfs_b->runtime += slack_runtime;
4469
4470 /* we are under rq->lock, defer unthrottling using a timer */
4471 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4472 !list_empty(&cfs_b->throttled_cfs_rq))
4473 start_cfs_slack_bandwidth(cfs_b);
4474 }
4475 raw_spin_unlock(&cfs_b->lock);
4476
4477 /* even if it's not valid for return we don't want to try again */
4478 cfs_rq->runtime_remaining -= slack_runtime;
4479}
4480
4481static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4482{
56f570e5
PT
4483 if (!cfs_bandwidth_used())
4484 return;
4485
fccfdc6f 4486 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4487 return;
4488
4489 __return_cfs_rq_runtime(cfs_rq);
4490}
4491
4492/*
4493 * This is done with a timer (instead of inline with bandwidth return) since
4494 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4495 */
4496static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4497{
4498 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4499 u64 expires;
4500
4501 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4502 raw_spin_lock(&cfs_b->lock);
4503 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4504 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4505 return;
db06e78c 4506 }
d8b4986d 4507
c06f04c7 4508 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4509 runtime = cfs_b->runtime;
c06f04c7 4510
d8b4986d
PT
4511 expires = cfs_b->runtime_expires;
4512 raw_spin_unlock(&cfs_b->lock);
4513
4514 if (!runtime)
4515 return;
4516
4517 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4518
4519 raw_spin_lock(&cfs_b->lock);
4520 if (expires == cfs_b->runtime_expires)
c06f04c7 4521 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4522 raw_spin_unlock(&cfs_b->lock);
4523}
4524
d3d9dc33
PT
4525/*
4526 * When a group wakes up we want to make sure that its quota is not already
4527 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4528 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4529 */
4530static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4531{
56f570e5
PT
4532 if (!cfs_bandwidth_used())
4533 return;
4534
d3d9dc33
PT
4535 /* an active group must be handled by the update_curr()->put() path */
4536 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4537 return;
4538
4539 /* ensure the group is not already throttled */
4540 if (cfs_rq_throttled(cfs_rq))
4541 return;
4542
4543 /* update runtime allocation */
4544 account_cfs_rq_runtime(cfs_rq, 0);
4545 if (cfs_rq->runtime_remaining <= 0)
4546 throttle_cfs_rq(cfs_rq);
4547}
4548
55e16d30
PZ
4549static void sync_throttle(struct task_group *tg, int cpu)
4550{
4551 struct cfs_rq *pcfs_rq, *cfs_rq;
4552
4553 if (!cfs_bandwidth_used())
4554 return;
4555
4556 if (!tg->parent)
4557 return;
4558
4559 cfs_rq = tg->cfs_rq[cpu];
4560 pcfs_rq = tg->parent->cfs_rq[cpu];
4561
4562 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4563 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4564}
4565
d3d9dc33 4566/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4567static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4568{
56f570e5 4569 if (!cfs_bandwidth_used())
678d5718 4570 return false;
56f570e5 4571
d3d9dc33 4572 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4573 return false;
d3d9dc33
PT
4574
4575 /*
4576 * it's possible for a throttled entity to be forced into a running
4577 * state (e.g. set_curr_task), in this case we're finished.
4578 */
4579 if (cfs_rq_throttled(cfs_rq))
678d5718 4580 return true;
d3d9dc33
PT
4581
4582 throttle_cfs_rq(cfs_rq);
678d5718 4583 return true;
d3d9dc33 4584}
029632fb 4585
029632fb
PZ
4586static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4587{
4588 struct cfs_bandwidth *cfs_b =
4589 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4590
029632fb
PZ
4591 do_sched_cfs_slack_timer(cfs_b);
4592
4593 return HRTIMER_NORESTART;
4594}
4595
4596static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4597{
4598 struct cfs_bandwidth *cfs_b =
4599 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4600 int overrun;
4601 int idle = 0;
4602
51f2176d 4603 raw_spin_lock(&cfs_b->lock);
029632fb 4604 for (;;) {
77a4d1a1 4605 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4606 if (!overrun)
4607 break;
4608
4609 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4610 }
4cfafd30
PZ
4611 if (idle)
4612 cfs_b->period_active = 0;
51f2176d 4613 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4614
4615 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4616}
4617
4618void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4619{
4620 raw_spin_lock_init(&cfs_b->lock);
4621 cfs_b->runtime = 0;
4622 cfs_b->quota = RUNTIME_INF;
4623 cfs_b->period = ns_to_ktime(default_cfs_period());
4624
4625 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4626 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4627 cfs_b->period_timer.function = sched_cfs_period_timer;
4628 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4629 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4630}
4631
4632static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4633{
4634 cfs_rq->runtime_enabled = 0;
4635 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4636}
4637
77a4d1a1 4638void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4639{
4cfafd30 4640 lockdep_assert_held(&cfs_b->lock);
029632fb 4641
4cfafd30
PZ
4642 if (!cfs_b->period_active) {
4643 cfs_b->period_active = 1;
4644 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4645 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4646 }
029632fb
PZ
4647}
4648
4649static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4650{
7f1a169b
TH
4651 /* init_cfs_bandwidth() was not called */
4652 if (!cfs_b->throttled_cfs_rq.next)
4653 return;
4654
029632fb
PZ
4655 hrtimer_cancel(&cfs_b->period_timer);
4656 hrtimer_cancel(&cfs_b->slack_timer);
4657}
4658
0e59bdae
KT
4659static void __maybe_unused update_runtime_enabled(struct rq *rq)
4660{
4661 struct cfs_rq *cfs_rq;
4662
4663 for_each_leaf_cfs_rq(rq, cfs_rq) {
4664 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4665
4666 raw_spin_lock(&cfs_b->lock);
4667 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4668 raw_spin_unlock(&cfs_b->lock);
4669 }
4670}
4671
38dc3348 4672static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4673{
4674 struct cfs_rq *cfs_rq;
4675
4676 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4677 if (!cfs_rq->runtime_enabled)
4678 continue;
4679
4680 /*
4681 * clock_task is not advancing so we just need to make sure
4682 * there's some valid quota amount
4683 */
51f2176d 4684 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4685 /*
4686 * Offline rq is schedulable till cpu is completely disabled
4687 * in take_cpu_down(), so we prevent new cfs throttling here.
4688 */
4689 cfs_rq->runtime_enabled = 0;
4690
029632fb
PZ
4691 if (cfs_rq_throttled(cfs_rq))
4692 unthrottle_cfs_rq(cfs_rq);
4693 }
4694}
4695
4696#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4697static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4698{
78becc27 4699 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4700}
4701
9dbdb155 4702static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4703static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4704static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4705static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4706static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4707
4708static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4709{
4710 return 0;
4711}
64660c86
PT
4712
4713static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4714{
4715 return 0;
4716}
4717
4718static inline int throttled_lb_pair(struct task_group *tg,
4719 int src_cpu, int dest_cpu)
4720{
4721 return 0;
4722}
029632fb
PZ
4723
4724void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4725
4726#ifdef CONFIG_FAIR_GROUP_SCHED
4727static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4728#endif
4729
029632fb
PZ
4730static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4731{
4732 return NULL;
4733}
4734static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4735static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4736static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4737
4738#endif /* CONFIG_CFS_BANDWIDTH */
4739
bf0f6f24
IM
4740/**************************************************
4741 * CFS operations on tasks:
4742 */
4743
8f4d37ec
PZ
4744#ifdef CONFIG_SCHED_HRTICK
4745static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4746{
8f4d37ec
PZ
4747 struct sched_entity *se = &p->se;
4748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4749
9148a3a1 4750 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4751
8bf46a39 4752 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4753 u64 slice = sched_slice(cfs_rq, se);
4754 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4755 s64 delta = slice - ran;
4756
4757 if (delta < 0) {
4758 if (rq->curr == p)
8875125e 4759 resched_curr(rq);
8f4d37ec
PZ
4760 return;
4761 }
31656519 4762 hrtick_start(rq, delta);
8f4d37ec
PZ
4763 }
4764}
a4c2f00f
PZ
4765
4766/*
4767 * called from enqueue/dequeue and updates the hrtick when the
4768 * current task is from our class and nr_running is low enough
4769 * to matter.
4770 */
4771static void hrtick_update(struct rq *rq)
4772{
4773 struct task_struct *curr = rq->curr;
4774
b39e66ea 4775 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4776 return;
4777
4778 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4779 hrtick_start_fair(rq, curr);
4780}
55e12e5e 4781#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4782static inline void
4783hrtick_start_fair(struct rq *rq, struct task_struct *p)
4784{
4785}
a4c2f00f
PZ
4786
4787static inline void hrtick_update(struct rq *rq)
4788{
4789}
8f4d37ec
PZ
4790#endif
4791
bf0f6f24
IM
4792/*
4793 * The enqueue_task method is called before nr_running is
4794 * increased. Here we update the fair scheduling stats and
4795 * then put the task into the rbtree:
4796 */
ea87bb78 4797static void
371fd7e7 4798enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4799{
4800 struct cfs_rq *cfs_rq;
62fb1851 4801 struct sched_entity *se = &p->se;
bf0f6f24 4802
8c34ab19
RW
4803 /*
4804 * If in_iowait is set, the code below may not trigger any cpufreq
4805 * utilization updates, so do it here explicitly with the IOWAIT flag
4806 * passed.
4807 */
4808 if (p->in_iowait)
4809 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4810
bf0f6f24 4811 for_each_sched_entity(se) {
62fb1851 4812 if (se->on_rq)
bf0f6f24
IM
4813 break;
4814 cfs_rq = cfs_rq_of(se);
88ec22d3 4815 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4816
4817 /*
4818 * end evaluation on encountering a throttled cfs_rq
4819 *
4820 * note: in the case of encountering a throttled cfs_rq we will
4821 * post the final h_nr_running increment below.
e210bffd 4822 */
85dac906
PT
4823 if (cfs_rq_throttled(cfs_rq))
4824 break;
953bfcd1 4825 cfs_rq->h_nr_running++;
85dac906 4826
88ec22d3 4827 flags = ENQUEUE_WAKEUP;
bf0f6f24 4828 }
8f4d37ec 4829
2069dd75 4830 for_each_sched_entity(se) {
0f317143 4831 cfs_rq = cfs_rq_of(se);
953bfcd1 4832 cfs_rq->h_nr_running++;
2069dd75 4833
85dac906
PT
4834 if (cfs_rq_throttled(cfs_rq))
4835 break;
4836
d31b1a66 4837 update_load_avg(se, UPDATE_TG);
89ee048f 4838 update_cfs_shares(se);
2069dd75
PZ
4839 }
4840
cd126afe 4841 if (!se)
72465447 4842 add_nr_running(rq, 1);
cd126afe 4843
a4c2f00f 4844 hrtick_update(rq);
bf0f6f24
IM
4845}
4846
2f36825b
VP
4847static void set_next_buddy(struct sched_entity *se);
4848
bf0f6f24
IM
4849/*
4850 * The dequeue_task method is called before nr_running is
4851 * decreased. We remove the task from the rbtree and
4852 * update the fair scheduling stats:
4853 */
371fd7e7 4854static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4855{
4856 struct cfs_rq *cfs_rq;
62fb1851 4857 struct sched_entity *se = &p->se;
2f36825b 4858 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4859
4860 for_each_sched_entity(se) {
4861 cfs_rq = cfs_rq_of(se);
371fd7e7 4862 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4863
4864 /*
4865 * end evaluation on encountering a throttled cfs_rq
4866 *
4867 * note: in the case of encountering a throttled cfs_rq we will
4868 * post the final h_nr_running decrement below.
4869 */
4870 if (cfs_rq_throttled(cfs_rq))
4871 break;
953bfcd1 4872 cfs_rq->h_nr_running--;
2069dd75 4873
bf0f6f24 4874 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4875 if (cfs_rq->load.weight) {
754bd598
KK
4876 /* Avoid re-evaluating load for this entity: */
4877 se = parent_entity(se);
2f36825b
VP
4878 /*
4879 * Bias pick_next to pick a task from this cfs_rq, as
4880 * p is sleeping when it is within its sched_slice.
4881 */
754bd598
KK
4882 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4883 set_next_buddy(se);
bf0f6f24 4884 break;
2f36825b 4885 }
371fd7e7 4886 flags |= DEQUEUE_SLEEP;
bf0f6f24 4887 }
8f4d37ec 4888
2069dd75 4889 for_each_sched_entity(se) {
0f317143 4890 cfs_rq = cfs_rq_of(se);
953bfcd1 4891 cfs_rq->h_nr_running--;
2069dd75 4892
85dac906
PT
4893 if (cfs_rq_throttled(cfs_rq))
4894 break;
4895
d31b1a66 4896 update_load_avg(se, UPDATE_TG);
89ee048f 4897 update_cfs_shares(se);
2069dd75
PZ
4898 }
4899
cd126afe 4900 if (!se)
72465447 4901 sub_nr_running(rq, 1);
cd126afe 4902
a4c2f00f 4903 hrtick_update(rq);
bf0f6f24
IM
4904}
4905
e7693a36 4906#ifdef CONFIG_SMP
10e2f1ac
PZ
4907
4908/* Working cpumask for: load_balance, load_balance_newidle. */
4909DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4910DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4911
9fd81dd5 4912#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4913/*
4914 * per rq 'load' arrray crap; XXX kill this.
4915 */
4916
4917/*
d937cdc5 4918 * The exact cpuload calculated at every tick would be:
3289bdb4 4919 *
d937cdc5
PZ
4920 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4921 *
4922 * If a cpu misses updates for n ticks (as it was idle) and update gets
4923 * called on the n+1-th tick when cpu may be busy, then we have:
4924 *
4925 * load_n = (1 - 1/2^i)^n * load_0
4926 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4927 *
4928 * decay_load_missed() below does efficient calculation of
3289bdb4 4929 *
d937cdc5
PZ
4930 * load' = (1 - 1/2^i)^n * load
4931 *
4932 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4933 * This allows us to precompute the above in said factors, thereby allowing the
4934 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4935 * fixed_power_int())
3289bdb4 4936 *
d937cdc5 4937 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4938 */
4939#define DEGRADE_SHIFT 7
d937cdc5
PZ
4940
4941static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4942static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4943 { 0, 0, 0, 0, 0, 0, 0, 0 },
4944 { 64, 32, 8, 0, 0, 0, 0, 0 },
4945 { 96, 72, 40, 12, 1, 0, 0, 0 },
4946 { 112, 98, 75, 43, 15, 1, 0, 0 },
4947 { 120, 112, 98, 76, 45, 16, 2, 0 }
4948};
3289bdb4
PZ
4949
4950/*
4951 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4952 * would be when CPU is idle and so we just decay the old load without
4953 * adding any new load.
4954 */
4955static unsigned long
4956decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4957{
4958 int j = 0;
4959
4960 if (!missed_updates)
4961 return load;
4962
4963 if (missed_updates >= degrade_zero_ticks[idx])
4964 return 0;
4965
4966 if (idx == 1)
4967 return load >> missed_updates;
4968
4969 while (missed_updates) {
4970 if (missed_updates % 2)
4971 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4972
4973 missed_updates >>= 1;
4974 j++;
4975 }
4976 return load;
4977}
9fd81dd5 4978#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4979
59543275 4980/**
cee1afce 4981 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4982 * @this_rq: The rq to update statistics for
4983 * @this_load: The current load
4984 * @pending_updates: The number of missed updates
59543275 4985 *
3289bdb4 4986 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4987 * scheduler tick (TICK_NSEC).
4988 *
4989 * This function computes a decaying average:
4990 *
4991 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4992 *
4993 * Because of NOHZ it might not get called on every tick which gives need for
4994 * the @pending_updates argument.
4995 *
4996 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4997 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4998 * = A * (A * load[i]_n-2 + B) + B
4999 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5000 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5001 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5002 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5003 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5004 *
5005 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5006 * any change in load would have resulted in the tick being turned back on.
5007 *
5008 * For regular NOHZ, this reduces to:
5009 *
5010 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5011 *
5012 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5013 * term.
3289bdb4 5014 */
1f41906a
FW
5015static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5016 unsigned long pending_updates)
3289bdb4 5017{
9fd81dd5 5018 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5019 int i, scale;
5020
5021 this_rq->nr_load_updates++;
5022
5023 /* Update our load: */
5024 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5025 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5026 unsigned long old_load, new_load;
5027
5028 /* scale is effectively 1 << i now, and >> i divides by scale */
5029
7400d3bb 5030 old_load = this_rq->cpu_load[i];
9fd81dd5 5031#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5032 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5033 if (tickless_load) {
5034 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5035 /*
5036 * old_load can never be a negative value because a
5037 * decayed tickless_load cannot be greater than the
5038 * original tickless_load.
5039 */
5040 old_load += tickless_load;
5041 }
9fd81dd5 5042#endif
3289bdb4
PZ
5043 new_load = this_load;
5044 /*
5045 * Round up the averaging division if load is increasing. This
5046 * prevents us from getting stuck on 9 if the load is 10, for
5047 * example.
5048 */
5049 if (new_load > old_load)
5050 new_load += scale - 1;
5051
5052 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5053 }
5054
5055 sched_avg_update(this_rq);
5056}
5057
7ea241af
YD
5058/* Used instead of source_load when we know the type == 0 */
5059static unsigned long weighted_cpuload(const int cpu)
5060{
5061 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5062}
5063
3289bdb4 5064#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5065/*
5066 * There is no sane way to deal with nohz on smp when using jiffies because the
5067 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5068 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5069 *
5070 * Therefore we need to avoid the delta approach from the regular tick when
5071 * possible since that would seriously skew the load calculation. This is why we
5072 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5073 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5074 * loop exit, nohz_idle_balance, nohz full exit...)
5075 *
5076 * This means we might still be one tick off for nohz periods.
5077 */
5078
5079static void cpu_load_update_nohz(struct rq *this_rq,
5080 unsigned long curr_jiffies,
5081 unsigned long load)
be68a682
FW
5082{
5083 unsigned long pending_updates;
5084
5085 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5086 if (pending_updates) {
5087 this_rq->last_load_update_tick = curr_jiffies;
5088 /*
5089 * In the regular NOHZ case, we were idle, this means load 0.
5090 * In the NOHZ_FULL case, we were non-idle, we should consider
5091 * its weighted load.
5092 */
1f41906a 5093 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5094 }
5095}
5096
3289bdb4
PZ
5097/*
5098 * Called from nohz_idle_balance() to update the load ratings before doing the
5099 * idle balance.
5100 */
cee1afce 5101static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5102{
3289bdb4
PZ
5103 /*
5104 * bail if there's load or we're actually up-to-date.
5105 */
be68a682 5106 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5107 return;
5108
1f41906a 5109 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5110}
5111
5112/*
1f41906a
FW
5113 * Record CPU load on nohz entry so we know the tickless load to account
5114 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5115 * than other cpu_load[idx] but it should be fine as cpu_load readers
5116 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5117 */
1f41906a 5118void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5119{
5120 struct rq *this_rq = this_rq();
1f41906a
FW
5121
5122 /*
5123 * This is all lockless but should be fine. If weighted_cpuload changes
5124 * concurrently we'll exit nohz. And cpu_load write can race with
5125 * cpu_load_update_idle() but both updater would be writing the same.
5126 */
5127 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5128}
5129
5130/*
5131 * Account the tickless load in the end of a nohz frame.
5132 */
5133void cpu_load_update_nohz_stop(void)
5134{
316c1608 5135 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5136 struct rq *this_rq = this_rq();
5137 unsigned long load;
8a8c69c3 5138 struct rq_flags rf;
3289bdb4
PZ
5139
5140 if (curr_jiffies == this_rq->last_load_update_tick)
5141 return;
5142
1f41906a 5143 load = weighted_cpuload(cpu_of(this_rq));
8a8c69c3 5144 rq_lock(this_rq, &rf);
b52fad2d 5145 update_rq_clock(this_rq);
1f41906a 5146 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5147 rq_unlock(this_rq, &rf);
3289bdb4 5148}
1f41906a
FW
5149#else /* !CONFIG_NO_HZ_COMMON */
5150static inline void cpu_load_update_nohz(struct rq *this_rq,
5151 unsigned long curr_jiffies,
5152 unsigned long load) { }
5153#endif /* CONFIG_NO_HZ_COMMON */
5154
5155static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5156{
9fd81dd5 5157#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5158 /* See the mess around cpu_load_update_nohz(). */
5159 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5160#endif
1f41906a
FW
5161 cpu_load_update(this_rq, load, 1);
5162}
3289bdb4
PZ
5163
5164/*
5165 * Called from scheduler_tick()
5166 */
cee1afce 5167void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5168{
7ea241af 5169 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5170
5171 if (tick_nohz_tick_stopped())
5172 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5173 else
5174 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5175}
5176
029632fb
PZ
5177/*
5178 * Return a low guess at the load of a migration-source cpu weighted
5179 * according to the scheduling class and "nice" value.
5180 *
5181 * We want to under-estimate the load of migration sources, to
5182 * balance conservatively.
5183 */
5184static unsigned long source_load(int cpu, int type)
5185{
5186 struct rq *rq = cpu_rq(cpu);
5187 unsigned long total = weighted_cpuload(cpu);
5188
5189 if (type == 0 || !sched_feat(LB_BIAS))
5190 return total;
5191
5192 return min(rq->cpu_load[type-1], total);
5193}
5194
5195/*
5196 * Return a high guess at the load of a migration-target cpu weighted
5197 * according to the scheduling class and "nice" value.
5198 */
5199static unsigned long target_load(int cpu, int type)
5200{
5201 struct rq *rq = cpu_rq(cpu);
5202 unsigned long total = weighted_cpuload(cpu);
5203
5204 if (type == 0 || !sched_feat(LB_BIAS))
5205 return total;
5206
5207 return max(rq->cpu_load[type-1], total);
5208}
5209
ced549fa 5210static unsigned long capacity_of(int cpu)
029632fb 5211{
ced549fa 5212 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5213}
5214
ca6d75e6
VG
5215static unsigned long capacity_orig_of(int cpu)
5216{
5217 return cpu_rq(cpu)->cpu_capacity_orig;
5218}
5219
029632fb
PZ
5220static unsigned long cpu_avg_load_per_task(int cpu)
5221{
5222 struct rq *rq = cpu_rq(cpu);
316c1608 5223 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5224 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5225
5226 if (nr_running)
b92486cb 5227 return load_avg / nr_running;
029632fb
PZ
5228
5229 return 0;
5230}
5231
bb3469ac 5232#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5233/*
5234 * effective_load() calculates the load change as seen from the root_task_group
5235 *
5236 * Adding load to a group doesn't make a group heavier, but can cause movement
5237 * of group shares between cpus. Assuming the shares were perfectly aligned one
5238 * can calculate the shift in shares.
cf5f0acf
PZ
5239 *
5240 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5241 * on this @cpu and results in a total addition (subtraction) of @wg to the
5242 * total group weight.
5243 *
5244 * Given a runqueue weight distribution (rw_i) we can compute a shares
5245 * distribution (s_i) using:
5246 *
5247 * s_i = rw_i / \Sum rw_j (1)
5248 *
5249 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5250 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5251 * shares distribution (s_i):
5252 *
5253 * rw_i = { 2, 4, 1, 0 }
5254 * s_i = { 2/7, 4/7, 1/7, 0 }
5255 *
5256 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5257 * task used to run on and the CPU the waker is running on), we need to
5258 * compute the effect of waking a task on either CPU and, in case of a sync
5259 * wakeup, compute the effect of the current task going to sleep.
5260 *
5261 * So for a change of @wl to the local @cpu with an overall group weight change
5262 * of @wl we can compute the new shares distribution (s'_i) using:
5263 *
5264 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5265 *
5266 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5267 * differences in waking a task to CPU 0. The additional task changes the
5268 * weight and shares distributions like:
5269 *
5270 * rw'_i = { 3, 4, 1, 0 }
5271 * s'_i = { 3/8, 4/8, 1/8, 0 }
5272 *
5273 * We can then compute the difference in effective weight by using:
5274 *
5275 * dw_i = S * (s'_i - s_i) (3)
5276 *
5277 * Where 'S' is the group weight as seen by its parent.
5278 *
5279 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5280 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5281 * 4/7) times the weight of the group.
f5bfb7d9 5282 */
2069dd75 5283static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5284{
4be9daaa 5285 struct sched_entity *se = tg->se[cpu];
f1d239f7 5286
9722c2da 5287 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5288 return wl;
5289
4be9daaa 5290 for_each_sched_entity(se) {
7dd49125
PZ
5291 struct cfs_rq *cfs_rq = se->my_q;
5292 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5293
7dd49125 5294 tg = cfs_rq->tg;
bb3469ac 5295
cf5f0acf
PZ
5296 /*
5297 * W = @wg + \Sum rw_j
5298 */
7dd49125
PZ
5299 W = wg + atomic_long_read(&tg->load_avg);
5300
5301 /* Ensure \Sum rw_j >= rw_i */
5302 W -= cfs_rq->tg_load_avg_contrib;
5303 W += w;
4be9daaa 5304
cf5f0acf
PZ
5305 /*
5306 * w = rw_i + @wl
5307 */
7dd49125 5308 w += wl;
940959e9 5309
cf5f0acf
PZ
5310 /*
5311 * wl = S * s'_i; see (2)
5312 */
5313 if (W > 0 && w < W)
ab522e33 5314 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5315 else
ab522e33 5316 wl = scale_load_down(tg->shares);
940959e9 5317
cf5f0acf
PZ
5318 /*
5319 * Per the above, wl is the new se->load.weight value; since
5320 * those are clipped to [MIN_SHARES, ...) do so now. See
5321 * calc_cfs_shares().
5322 */
977dda7c
PT
5323 if (wl < MIN_SHARES)
5324 wl = MIN_SHARES;
cf5f0acf
PZ
5325
5326 /*
5327 * wl = dw_i = S * (s'_i - s_i); see (3)
5328 */
9d89c257 5329 wl -= se->avg.load_avg;
cf5f0acf
PZ
5330
5331 /*
5332 * Recursively apply this logic to all parent groups to compute
5333 * the final effective load change on the root group. Since
5334 * only the @tg group gets extra weight, all parent groups can
5335 * only redistribute existing shares. @wl is the shift in shares
5336 * resulting from this level per the above.
5337 */
4be9daaa 5338 wg = 0;
4be9daaa 5339 }
bb3469ac 5340
4be9daaa 5341 return wl;
bb3469ac
PZ
5342}
5343#else
4be9daaa 5344
58d081b5 5345static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5346{
83378269 5347 return wl;
bb3469ac 5348}
4be9daaa 5349
bb3469ac
PZ
5350#endif
5351
c58d25f3
PZ
5352static void record_wakee(struct task_struct *p)
5353{
5354 /*
5355 * Only decay a single time; tasks that have less then 1 wakeup per
5356 * jiffy will not have built up many flips.
5357 */
5358 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5359 current->wakee_flips >>= 1;
5360 current->wakee_flip_decay_ts = jiffies;
5361 }
5362
5363 if (current->last_wakee != p) {
5364 current->last_wakee = p;
5365 current->wakee_flips++;
5366 }
5367}
5368
63b0e9ed
MG
5369/*
5370 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5371 *
63b0e9ed 5372 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5373 * at a frequency roughly N times higher than one of its wakees.
5374 *
5375 * In order to determine whether we should let the load spread vs consolidating
5376 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5377 * partner, and a factor of lls_size higher frequency in the other.
5378 *
5379 * With both conditions met, we can be relatively sure that the relationship is
5380 * non-monogamous, with partner count exceeding socket size.
5381 *
5382 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5383 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5384 * socket size.
63b0e9ed 5385 */
62470419
MW
5386static int wake_wide(struct task_struct *p)
5387{
63b0e9ed
MG
5388 unsigned int master = current->wakee_flips;
5389 unsigned int slave = p->wakee_flips;
7d9ffa89 5390 int factor = this_cpu_read(sd_llc_size);
62470419 5391
63b0e9ed
MG
5392 if (master < slave)
5393 swap(master, slave);
5394 if (slave < factor || master < slave * factor)
5395 return 0;
5396 return 1;
62470419
MW
5397}
5398
772bd008
MR
5399static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5400 int prev_cpu, int sync)
098fb9db 5401{
e37b6a7b 5402 s64 this_load, load;
bd61c98f 5403 s64 this_eff_load, prev_eff_load;
772bd008 5404 int idx, this_cpu;
c88d5910 5405 struct task_group *tg;
83378269 5406 unsigned long weight;
b3137bc8 5407 int balanced;
098fb9db 5408
c88d5910
PZ
5409 idx = sd->wake_idx;
5410 this_cpu = smp_processor_id();
c88d5910
PZ
5411 load = source_load(prev_cpu, idx);
5412 this_load = target_load(this_cpu, idx);
098fb9db 5413
b3137bc8
MG
5414 /*
5415 * If sync wakeup then subtract the (maximum possible)
5416 * effect of the currently running task from the load
5417 * of the current CPU:
5418 */
83378269
PZ
5419 if (sync) {
5420 tg = task_group(current);
9d89c257 5421 weight = current->se.avg.load_avg;
83378269 5422
c88d5910 5423 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5424 load += effective_load(tg, prev_cpu, 0, -weight);
5425 }
b3137bc8 5426
83378269 5427 tg = task_group(p);
9d89c257 5428 weight = p->se.avg.load_avg;
b3137bc8 5429
71a29aa7
PZ
5430 /*
5431 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5432 * due to the sync cause above having dropped this_load to 0, we'll
5433 * always have an imbalance, but there's really nothing you can do
5434 * about that, so that's good too.
71a29aa7
PZ
5435 *
5436 * Otherwise check if either cpus are near enough in load to allow this
5437 * task to be woken on this_cpu.
5438 */
bd61c98f
VG
5439 this_eff_load = 100;
5440 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5441
bd61c98f
VG
5442 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5443 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5444
bd61c98f 5445 if (this_load > 0) {
e51fd5e2
PZ
5446 this_eff_load *= this_load +
5447 effective_load(tg, this_cpu, weight, weight);
5448
e51fd5e2 5449 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5450 }
e51fd5e2 5451
bd61c98f 5452 balanced = this_eff_load <= prev_eff_load;
098fb9db 5453
ae92882e 5454 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5455
05bfb65f
VG
5456 if (!balanced)
5457 return 0;
098fb9db 5458
ae92882e
JP
5459 schedstat_inc(sd->ttwu_move_affine);
5460 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5461
5462 return 1;
098fb9db
IM
5463}
5464
6a0b19c0
MR
5465static inline int task_util(struct task_struct *p);
5466static int cpu_util_wake(int cpu, struct task_struct *p);
5467
5468static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5469{
5470 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5471}
5472
aaee1203
PZ
5473/*
5474 * find_idlest_group finds and returns the least busy CPU group within the
5475 * domain.
5476 */
5477static struct sched_group *
78e7ed53 5478find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5479 int this_cpu, int sd_flag)
e7693a36 5480{
b3bd3de6 5481 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5482 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5483 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5484 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5485 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5486 int load_idx = sd->forkexec_idx;
6b94780e
VG
5487 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5488 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5489 (sd->imbalance_pct-100) / 100;
e7693a36 5490
c44f2a02
VG
5491 if (sd_flag & SD_BALANCE_WAKE)
5492 load_idx = sd->wake_idx;
5493
aaee1203 5494 do {
6b94780e
VG
5495 unsigned long load, avg_load, runnable_load;
5496 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5497 int local_group;
5498 int i;
e7693a36 5499
aaee1203
PZ
5500 /* Skip over this group if it has no CPUs allowed */
5501 if (!cpumask_intersects(sched_group_cpus(group),
0c98d344 5502 &p->cpus_allowed))
aaee1203
PZ
5503 continue;
5504
5505 local_group = cpumask_test_cpu(this_cpu,
5506 sched_group_cpus(group));
5507
6a0b19c0
MR
5508 /*
5509 * Tally up the load of all CPUs in the group and find
5510 * the group containing the CPU with most spare capacity.
5511 */
aaee1203 5512 avg_load = 0;
6b94780e 5513 runnable_load = 0;
6a0b19c0 5514 max_spare_cap = 0;
aaee1203
PZ
5515
5516 for_each_cpu(i, sched_group_cpus(group)) {
5517 /* Bias balancing toward cpus of our domain */
5518 if (local_group)
5519 load = source_load(i, load_idx);
5520 else
5521 load = target_load(i, load_idx);
5522
6b94780e
VG
5523 runnable_load += load;
5524
5525 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5526
5527 spare_cap = capacity_spare_wake(i, p);
5528
5529 if (spare_cap > max_spare_cap)
5530 max_spare_cap = spare_cap;
aaee1203
PZ
5531 }
5532
63b2ca30 5533 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5534 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5535 group->sgc->capacity;
5536 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5537 group->sgc->capacity;
aaee1203
PZ
5538
5539 if (local_group) {
6b94780e
VG
5540 this_runnable_load = runnable_load;
5541 this_avg_load = avg_load;
6a0b19c0
MR
5542 this_spare = max_spare_cap;
5543 } else {
6b94780e
VG
5544 if (min_runnable_load > (runnable_load + imbalance)) {
5545 /*
5546 * The runnable load is significantly smaller
5547 * so we can pick this new cpu
5548 */
5549 min_runnable_load = runnable_load;
5550 min_avg_load = avg_load;
5551 idlest = group;
5552 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5553 (100*min_avg_load > imbalance_scale*avg_load)) {
5554 /*
5555 * The runnable loads are close so take the
5556 * blocked load into account through avg_load.
5557 */
5558 min_avg_load = avg_load;
6a0b19c0
MR
5559 idlest = group;
5560 }
5561
5562 if (most_spare < max_spare_cap) {
5563 most_spare = max_spare_cap;
5564 most_spare_sg = group;
5565 }
aaee1203
PZ
5566 }
5567 } while (group = group->next, group != sd->groups);
5568
6a0b19c0
MR
5569 /*
5570 * The cross-over point between using spare capacity or least load
5571 * is too conservative for high utilization tasks on partially
5572 * utilized systems if we require spare_capacity > task_util(p),
5573 * so we allow for some task stuffing by using
5574 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5575 *
5576 * Spare capacity can't be used for fork because the utilization has
5577 * not been set yet, we must first select a rq to compute the initial
5578 * utilization.
6a0b19c0 5579 */
f519a3f1
VG
5580 if (sd_flag & SD_BALANCE_FORK)
5581 goto skip_spare;
5582
6a0b19c0 5583 if (this_spare > task_util(p) / 2 &&
6b94780e 5584 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5585 return NULL;
6b94780e
VG
5586
5587 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5588 return most_spare_sg;
5589
f519a3f1 5590skip_spare:
6b94780e
VG
5591 if (!idlest)
5592 return NULL;
5593
5594 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5595 return NULL;
6b94780e
VG
5596
5597 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5598 (100*this_avg_load < imbalance_scale*min_avg_load))
5599 return NULL;
5600
aaee1203
PZ
5601 return idlest;
5602}
5603
5604/*
5605 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5606 */
5607static int
5608find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5609{
5610 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5611 unsigned int min_exit_latency = UINT_MAX;
5612 u64 latest_idle_timestamp = 0;
5613 int least_loaded_cpu = this_cpu;
5614 int shallowest_idle_cpu = -1;
aaee1203
PZ
5615 int i;
5616
eaecf41f
MR
5617 /* Check if we have any choice: */
5618 if (group->group_weight == 1)
5619 return cpumask_first(sched_group_cpus(group));
5620
aaee1203 5621 /* Traverse only the allowed CPUs */
0c98d344 5622 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
83a0a96a
NP
5623 if (idle_cpu(i)) {
5624 struct rq *rq = cpu_rq(i);
5625 struct cpuidle_state *idle = idle_get_state(rq);
5626 if (idle && idle->exit_latency < min_exit_latency) {
5627 /*
5628 * We give priority to a CPU whose idle state
5629 * has the smallest exit latency irrespective
5630 * of any idle timestamp.
5631 */
5632 min_exit_latency = idle->exit_latency;
5633 latest_idle_timestamp = rq->idle_stamp;
5634 shallowest_idle_cpu = i;
5635 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5636 rq->idle_stamp > latest_idle_timestamp) {
5637 /*
5638 * If equal or no active idle state, then
5639 * the most recently idled CPU might have
5640 * a warmer cache.
5641 */
5642 latest_idle_timestamp = rq->idle_stamp;
5643 shallowest_idle_cpu = i;
5644 }
9f96742a 5645 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5646 load = weighted_cpuload(i);
5647 if (load < min_load || (load == min_load && i == this_cpu)) {
5648 min_load = load;
5649 least_loaded_cpu = i;
5650 }
e7693a36
GH
5651 }
5652 }
5653
83a0a96a 5654 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5655}
e7693a36 5656
a50bde51 5657/*
10e2f1ac
PZ
5658 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5659 * (@start), and wraps around.
5660 *
5661 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5662 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5663 * through the LLC domain.
5664 *
5665 * Especially tbench is found sensitive to this.
5666 */
5667
5668static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5669{
5670 int next;
5671
5672again:
5673 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5674
5675 if (*wrapped) {
5676 if (next >= start)
5677 return nr_cpumask_bits;
5678 } else {
5679 if (next >= nr_cpumask_bits) {
5680 *wrapped = 1;
5681 n = -1;
5682 goto again;
5683 }
5684 }
5685
5686 return next;
5687}
5688
5689#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5690 for ((wrap) = 0, (cpu) = (start)-1; \
5691 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5692 (cpu) < nr_cpumask_bits; )
5693
5694#ifdef CONFIG_SCHED_SMT
5695
5696static inline void set_idle_cores(int cpu, int val)
5697{
5698 struct sched_domain_shared *sds;
5699
5700 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5701 if (sds)
5702 WRITE_ONCE(sds->has_idle_cores, val);
5703}
5704
5705static inline bool test_idle_cores(int cpu, bool def)
5706{
5707 struct sched_domain_shared *sds;
5708
5709 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5710 if (sds)
5711 return READ_ONCE(sds->has_idle_cores);
5712
5713 return def;
5714}
5715
5716/*
5717 * Scans the local SMT mask to see if the entire core is idle, and records this
5718 * information in sd_llc_shared->has_idle_cores.
5719 *
5720 * Since SMT siblings share all cache levels, inspecting this limited remote
5721 * state should be fairly cheap.
5722 */
1b568f0a 5723void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5724{
5725 int core = cpu_of(rq);
5726 int cpu;
5727
5728 rcu_read_lock();
5729 if (test_idle_cores(core, true))
5730 goto unlock;
5731
5732 for_each_cpu(cpu, cpu_smt_mask(core)) {
5733 if (cpu == core)
5734 continue;
5735
5736 if (!idle_cpu(cpu))
5737 goto unlock;
5738 }
5739
5740 set_idle_cores(core, 1);
5741unlock:
5742 rcu_read_unlock();
5743}
5744
5745/*
5746 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5747 * there are no idle cores left in the system; tracked through
5748 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5749 */
5750static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5751{
5752 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5753 int core, cpu, wrap;
5754
1b568f0a
PZ
5755 if (!static_branch_likely(&sched_smt_present))
5756 return -1;
5757
10e2f1ac
PZ
5758 if (!test_idle_cores(target, false))
5759 return -1;
5760
0c98d344 5761 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac
PZ
5762
5763 for_each_cpu_wrap(core, cpus, target, wrap) {
5764 bool idle = true;
5765
5766 for_each_cpu(cpu, cpu_smt_mask(core)) {
5767 cpumask_clear_cpu(cpu, cpus);
5768 if (!idle_cpu(cpu))
5769 idle = false;
5770 }
5771
5772 if (idle)
5773 return core;
5774 }
5775
5776 /*
5777 * Failed to find an idle core; stop looking for one.
5778 */
5779 set_idle_cores(target, 0);
5780
5781 return -1;
5782}
5783
5784/*
5785 * Scan the local SMT mask for idle CPUs.
5786 */
5787static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5788{
5789 int cpu;
5790
1b568f0a
PZ
5791 if (!static_branch_likely(&sched_smt_present))
5792 return -1;
5793
10e2f1ac 5794 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5795 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5796 continue;
5797 if (idle_cpu(cpu))
5798 return cpu;
5799 }
5800
5801 return -1;
5802}
5803
5804#else /* CONFIG_SCHED_SMT */
5805
5806static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5807{
5808 return -1;
5809}
5810
5811static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5812{
5813 return -1;
5814}
5815
5816#endif /* CONFIG_SCHED_SMT */
5817
5818/*
5819 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5820 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5821 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5822 */
10e2f1ac
PZ
5823static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5824{
9cfb38a7
WL
5825 struct sched_domain *this_sd;
5826 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5827 u64 time, cost;
5828 s64 delta;
5829 int cpu, wrap;
5830
9cfb38a7
WL
5831 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5832 if (!this_sd)
5833 return -1;
5834
5835 avg_cost = this_sd->avg_scan_cost;
5836
10e2f1ac
PZ
5837 /*
5838 * Due to large variance we need a large fuzz factor; hackbench in
5839 * particularly is sensitive here.
5840 */
4c77b18c 5841 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
10e2f1ac
PZ
5842 return -1;
5843
5844 time = local_clock();
5845
5846 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
0c98d344 5847 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5848 continue;
5849 if (idle_cpu(cpu))
5850 break;
5851 }
5852
5853 time = local_clock() - time;
5854 cost = this_sd->avg_scan_cost;
5855 delta = (s64)(time - cost) / 8;
5856 this_sd->avg_scan_cost += delta;
5857
5858 return cpu;
5859}
5860
5861/*
5862 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5863 */
772bd008 5864static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5865{
99bd5e2f 5866 struct sched_domain *sd;
10e2f1ac 5867 int i;
a50bde51 5868
e0a79f52
MG
5869 if (idle_cpu(target))
5870 return target;
99bd5e2f
SS
5871
5872 /*
10e2f1ac 5873 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5874 */
772bd008
MR
5875 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5876 return prev;
a50bde51 5877
518cd623 5878 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5879 if (!sd)
5880 return target;
772bd008 5881
10e2f1ac
PZ
5882 i = select_idle_core(p, sd, target);
5883 if ((unsigned)i < nr_cpumask_bits)
5884 return i;
37407ea7 5885
10e2f1ac
PZ
5886 i = select_idle_cpu(p, sd, target);
5887 if ((unsigned)i < nr_cpumask_bits)
5888 return i;
5889
5890 i = select_idle_smt(p, sd, target);
5891 if ((unsigned)i < nr_cpumask_bits)
5892 return i;
970e1789 5893
a50bde51
PZ
5894 return target;
5895}
231678b7 5896
8bb5b00c 5897/*
9e91d61d 5898 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5899 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5900 * compare the utilization with the capacity of the CPU that is available for
5901 * CFS task (ie cpu_capacity).
231678b7
DE
5902 *
5903 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5904 * recent utilization of currently non-runnable tasks on a CPU. It represents
5905 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5906 * capacity_orig is the cpu_capacity available at the highest frequency
5907 * (arch_scale_freq_capacity()).
5908 * The utilization of a CPU converges towards a sum equal to or less than the
5909 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5910 * the running time on this CPU scaled by capacity_curr.
5911 *
5912 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5913 * higher than capacity_orig because of unfortunate rounding in
5914 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5915 * the average stabilizes with the new running time. We need to check that the
5916 * utilization stays within the range of [0..capacity_orig] and cap it if
5917 * necessary. Without utilization capping, a group could be seen as overloaded
5918 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5919 * available capacity. We allow utilization to overshoot capacity_curr (but not
5920 * capacity_orig) as it useful for predicting the capacity required after task
5921 * migrations (scheduler-driven DVFS).
8bb5b00c 5922 */
9e91d61d 5923static int cpu_util(int cpu)
8bb5b00c 5924{
9e91d61d 5925 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5926 unsigned long capacity = capacity_orig_of(cpu);
5927
231678b7 5928 return (util >= capacity) ? capacity : util;
8bb5b00c 5929}
a50bde51 5930
3273163c
MR
5931static inline int task_util(struct task_struct *p)
5932{
5933 return p->se.avg.util_avg;
5934}
5935
104cb16d
MR
5936/*
5937 * cpu_util_wake: Compute cpu utilization with any contributions from
5938 * the waking task p removed.
5939 */
5940static int cpu_util_wake(int cpu, struct task_struct *p)
5941{
5942 unsigned long util, capacity;
5943
5944 /* Task has no contribution or is new */
5945 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5946 return cpu_util(cpu);
5947
5948 capacity = capacity_orig_of(cpu);
5949 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5950
5951 return (util >= capacity) ? capacity : util;
5952}
5953
3273163c
MR
5954/*
5955 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5956 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5957 *
5958 * In that case WAKE_AFFINE doesn't make sense and we'll let
5959 * BALANCE_WAKE sort things out.
5960 */
5961static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5962{
5963 long min_cap, max_cap;
5964
5965 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5966 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5967
5968 /* Minimum capacity is close to max, no need to abort wake_affine */
5969 if (max_cap - min_cap < max_cap >> 3)
5970 return 0;
5971
104cb16d
MR
5972 /* Bring task utilization in sync with prev_cpu */
5973 sync_entity_load_avg(&p->se);
5974
3273163c
MR
5975 return min_cap * 1024 < task_util(p) * capacity_margin;
5976}
5977
aaee1203 5978/*
de91b9cb
MR
5979 * select_task_rq_fair: Select target runqueue for the waking task in domains
5980 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5981 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5982 *
de91b9cb
MR
5983 * Balances load by selecting the idlest cpu in the idlest group, or under
5984 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5985 *
de91b9cb 5986 * Returns the target cpu number.
aaee1203
PZ
5987 *
5988 * preempt must be disabled.
5989 */
0017d735 5990static int
ac66f547 5991select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5992{
29cd8bae 5993 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5994 int cpu = smp_processor_id();
63b0e9ed 5995 int new_cpu = prev_cpu;
99bd5e2f 5996 int want_affine = 0;
5158f4e4 5997 int sync = wake_flags & WF_SYNC;
c88d5910 5998
c58d25f3
PZ
5999 if (sd_flag & SD_BALANCE_WAKE) {
6000 record_wakee(p);
3273163c 6001 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6002 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6003 }
aaee1203 6004
dce840a0 6005 rcu_read_lock();
aaee1203 6006 for_each_domain(cpu, tmp) {
e4f42888 6007 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6008 break;
e4f42888 6009
fe3bcfe1 6010 /*
99bd5e2f
SS
6011 * If both cpu and prev_cpu are part of this domain,
6012 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6013 */
99bd5e2f
SS
6014 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6015 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6016 affine_sd = tmp;
29cd8bae 6017 break;
f03542a7 6018 }
29cd8bae 6019
f03542a7 6020 if (tmp->flags & sd_flag)
29cd8bae 6021 sd = tmp;
63b0e9ed
MG
6022 else if (!want_affine)
6023 break;
29cd8bae
PZ
6024 }
6025
63b0e9ed
MG
6026 if (affine_sd) {
6027 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 6028 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6029 new_cpu = cpu;
8b911acd 6030 }
e7693a36 6031
63b0e9ed
MG
6032 if (!sd) {
6033 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6034 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6035
6036 } else while (sd) {
aaee1203 6037 struct sched_group *group;
c88d5910 6038 int weight;
098fb9db 6039
0763a660 6040 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6041 sd = sd->child;
6042 continue;
6043 }
098fb9db 6044
c44f2a02 6045 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6046 if (!group) {
6047 sd = sd->child;
6048 continue;
6049 }
4ae7d5ce 6050
d7c33c49 6051 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6052 if (new_cpu == -1 || new_cpu == cpu) {
6053 /* Now try balancing at a lower domain level of cpu */
6054 sd = sd->child;
6055 continue;
e7693a36 6056 }
aaee1203
PZ
6057
6058 /* Now try balancing at a lower domain level of new_cpu */
6059 cpu = new_cpu;
669c55e9 6060 weight = sd->span_weight;
aaee1203
PZ
6061 sd = NULL;
6062 for_each_domain(cpu, tmp) {
669c55e9 6063 if (weight <= tmp->span_weight)
aaee1203 6064 break;
0763a660 6065 if (tmp->flags & sd_flag)
aaee1203
PZ
6066 sd = tmp;
6067 }
6068 /* while loop will break here if sd == NULL */
e7693a36 6069 }
dce840a0 6070 rcu_read_unlock();
e7693a36 6071
c88d5910 6072 return new_cpu;
e7693a36 6073}
0a74bef8
PT
6074
6075/*
6076 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6077 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6078 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6079 */
5a4fd036 6080static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6081{
59efa0ba
PZ
6082 /*
6083 * As blocked tasks retain absolute vruntime the migration needs to
6084 * deal with this by subtracting the old and adding the new
6085 * min_vruntime -- the latter is done by enqueue_entity() when placing
6086 * the task on the new runqueue.
6087 */
6088 if (p->state == TASK_WAKING) {
6089 struct sched_entity *se = &p->se;
6090 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6091 u64 min_vruntime;
6092
6093#ifndef CONFIG_64BIT
6094 u64 min_vruntime_copy;
6095
6096 do {
6097 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6098 smp_rmb();
6099 min_vruntime = cfs_rq->min_vruntime;
6100 } while (min_vruntime != min_vruntime_copy);
6101#else
6102 min_vruntime = cfs_rq->min_vruntime;
6103#endif
6104
6105 se->vruntime -= min_vruntime;
6106 }
6107
aff3e498 6108 /*
9d89c257
YD
6109 * We are supposed to update the task to "current" time, then its up to date
6110 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6111 * what current time is, so simply throw away the out-of-date time. This
6112 * will result in the wakee task is less decayed, but giving the wakee more
6113 * load sounds not bad.
aff3e498 6114 */
9d89c257
YD
6115 remove_entity_load_avg(&p->se);
6116
6117 /* Tell new CPU we are migrated */
6118 p->se.avg.last_update_time = 0;
3944a927
BS
6119
6120 /* We have migrated, no longer consider this task hot */
9d89c257 6121 p->se.exec_start = 0;
0a74bef8 6122}
12695578
YD
6123
6124static void task_dead_fair(struct task_struct *p)
6125{
6126 remove_entity_load_avg(&p->se);
6127}
e7693a36
GH
6128#endif /* CONFIG_SMP */
6129
e52fb7c0
PZ
6130static unsigned long
6131wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6132{
6133 unsigned long gran = sysctl_sched_wakeup_granularity;
6134
6135 /*
e52fb7c0
PZ
6136 * Since its curr running now, convert the gran from real-time
6137 * to virtual-time in his units.
13814d42
MG
6138 *
6139 * By using 'se' instead of 'curr' we penalize light tasks, so
6140 * they get preempted easier. That is, if 'se' < 'curr' then
6141 * the resulting gran will be larger, therefore penalizing the
6142 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6143 * be smaller, again penalizing the lighter task.
6144 *
6145 * This is especially important for buddies when the leftmost
6146 * task is higher priority than the buddy.
0bbd3336 6147 */
f4ad9bd2 6148 return calc_delta_fair(gran, se);
0bbd3336
PZ
6149}
6150
464b7527
PZ
6151/*
6152 * Should 'se' preempt 'curr'.
6153 *
6154 * |s1
6155 * |s2
6156 * |s3
6157 * g
6158 * |<--->|c
6159 *
6160 * w(c, s1) = -1
6161 * w(c, s2) = 0
6162 * w(c, s3) = 1
6163 *
6164 */
6165static int
6166wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6167{
6168 s64 gran, vdiff = curr->vruntime - se->vruntime;
6169
6170 if (vdiff <= 0)
6171 return -1;
6172
e52fb7c0 6173 gran = wakeup_gran(curr, se);
464b7527
PZ
6174 if (vdiff > gran)
6175 return 1;
6176
6177 return 0;
6178}
6179
02479099
PZ
6180static void set_last_buddy(struct sched_entity *se)
6181{
69c80f3e
VP
6182 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6183 return;
6184
6185 for_each_sched_entity(se)
6186 cfs_rq_of(se)->last = se;
02479099
PZ
6187}
6188
6189static void set_next_buddy(struct sched_entity *se)
6190{
69c80f3e
VP
6191 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6192 return;
6193
6194 for_each_sched_entity(se)
6195 cfs_rq_of(se)->next = se;
02479099
PZ
6196}
6197
ac53db59
RR
6198static void set_skip_buddy(struct sched_entity *se)
6199{
69c80f3e
VP
6200 for_each_sched_entity(se)
6201 cfs_rq_of(se)->skip = se;
ac53db59
RR
6202}
6203
bf0f6f24
IM
6204/*
6205 * Preempt the current task with a newly woken task if needed:
6206 */
5a9b86f6 6207static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6208{
6209 struct task_struct *curr = rq->curr;
8651a86c 6210 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6211 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6212 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6213 int next_buddy_marked = 0;
bf0f6f24 6214
4ae7d5ce
IM
6215 if (unlikely(se == pse))
6216 return;
6217
5238cdd3 6218 /*
163122b7 6219 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6220 * unconditionally check_prempt_curr() after an enqueue (which may have
6221 * lead to a throttle). This both saves work and prevents false
6222 * next-buddy nomination below.
6223 */
6224 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6225 return;
6226
2f36825b 6227 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6228 set_next_buddy(pse);
2f36825b
VP
6229 next_buddy_marked = 1;
6230 }
57fdc26d 6231
aec0a514
BR
6232 /*
6233 * We can come here with TIF_NEED_RESCHED already set from new task
6234 * wake up path.
5238cdd3
PT
6235 *
6236 * Note: this also catches the edge-case of curr being in a throttled
6237 * group (e.g. via set_curr_task), since update_curr() (in the
6238 * enqueue of curr) will have resulted in resched being set. This
6239 * prevents us from potentially nominating it as a false LAST_BUDDY
6240 * below.
aec0a514
BR
6241 */
6242 if (test_tsk_need_resched(curr))
6243 return;
6244
a2f5c9ab
DH
6245 /* Idle tasks are by definition preempted by non-idle tasks. */
6246 if (unlikely(curr->policy == SCHED_IDLE) &&
6247 likely(p->policy != SCHED_IDLE))
6248 goto preempt;
6249
91c234b4 6250 /*
a2f5c9ab
DH
6251 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6252 * is driven by the tick):
91c234b4 6253 */
8ed92e51 6254 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6255 return;
bf0f6f24 6256
464b7527 6257 find_matching_se(&se, &pse);
9bbd7374 6258 update_curr(cfs_rq_of(se));
002f128b 6259 BUG_ON(!pse);
2f36825b
VP
6260 if (wakeup_preempt_entity(se, pse) == 1) {
6261 /*
6262 * Bias pick_next to pick the sched entity that is
6263 * triggering this preemption.
6264 */
6265 if (!next_buddy_marked)
6266 set_next_buddy(pse);
3a7e73a2 6267 goto preempt;
2f36825b 6268 }
464b7527 6269
3a7e73a2 6270 return;
a65ac745 6271
3a7e73a2 6272preempt:
8875125e 6273 resched_curr(rq);
3a7e73a2
PZ
6274 /*
6275 * Only set the backward buddy when the current task is still
6276 * on the rq. This can happen when a wakeup gets interleaved
6277 * with schedule on the ->pre_schedule() or idle_balance()
6278 * point, either of which can * drop the rq lock.
6279 *
6280 * Also, during early boot the idle thread is in the fair class,
6281 * for obvious reasons its a bad idea to schedule back to it.
6282 */
6283 if (unlikely(!se->on_rq || curr == rq->idle))
6284 return;
6285
6286 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6287 set_last_buddy(se);
bf0f6f24
IM
6288}
6289
606dba2e 6290static struct task_struct *
d8ac8971 6291pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6292{
6293 struct cfs_rq *cfs_rq = &rq->cfs;
6294 struct sched_entity *se;
678d5718 6295 struct task_struct *p;
37e117c0 6296 int new_tasks;
678d5718 6297
6e83125c 6298again:
678d5718
PZ
6299#ifdef CONFIG_FAIR_GROUP_SCHED
6300 if (!cfs_rq->nr_running)
38033c37 6301 goto idle;
678d5718 6302
3f1d2a31 6303 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6304 goto simple;
6305
6306 /*
6307 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6308 * likely that a next task is from the same cgroup as the current.
6309 *
6310 * Therefore attempt to avoid putting and setting the entire cgroup
6311 * hierarchy, only change the part that actually changes.
6312 */
6313
6314 do {
6315 struct sched_entity *curr = cfs_rq->curr;
6316
6317 /*
6318 * Since we got here without doing put_prev_entity() we also
6319 * have to consider cfs_rq->curr. If it is still a runnable
6320 * entity, update_curr() will update its vruntime, otherwise
6321 * forget we've ever seen it.
6322 */
54d27365
BS
6323 if (curr) {
6324 if (curr->on_rq)
6325 update_curr(cfs_rq);
6326 else
6327 curr = NULL;
678d5718 6328
54d27365
BS
6329 /*
6330 * This call to check_cfs_rq_runtime() will do the
6331 * throttle and dequeue its entity in the parent(s).
6332 * Therefore the 'simple' nr_running test will indeed
6333 * be correct.
6334 */
6335 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6336 goto simple;
6337 }
678d5718
PZ
6338
6339 se = pick_next_entity(cfs_rq, curr);
6340 cfs_rq = group_cfs_rq(se);
6341 } while (cfs_rq);
6342
6343 p = task_of(se);
6344
6345 /*
6346 * Since we haven't yet done put_prev_entity and if the selected task
6347 * is a different task than we started out with, try and touch the
6348 * least amount of cfs_rqs.
6349 */
6350 if (prev != p) {
6351 struct sched_entity *pse = &prev->se;
6352
6353 while (!(cfs_rq = is_same_group(se, pse))) {
6354 int se_depth = se->depth;
6355 int pse_depth = pse->depth;
6356
6357 if (se_depth <= pse_depth) {
6358 put_prev_entity(cfs_rq_of(pse), pse);
6359 pse = parent_entity(pse);
6360 }
6361 if (se_depth >= pse_depth) {
6362 set_next_entity(cfs_rq_of(se), se);
6363 se = parent_entity(se);
6364 }
6365 }
6366
6367 put_prev_entity(cfs_rq, pse);
6368 set_next_entity(cfs_rq, se);
6369 }
6370
6371 if (hrtick_enabled(rq))
6372 hrtick_start_fair(rq, p);
6373
6374 return p;
6375simple:
6376 cfs_rq = &rq->cfs;
6377#endif
bf0f6f24 6378
36ace27e 6379 if (!cfs_rq->nr_running)
38033c37 6380 goto idle;
bf0f6f24 6381
3f1d2a31 6382 put_prev_task(rq, prev);
606dba2e 6383
bf0f6f24 6384 do {
678d5718 6385 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6386 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6387 cfs_rq = group_cfs_rq(se);
6388 } while (cfs_rq);
6389
8f4d37ec 6390 p = task_of(se);
678d5718 6391
b39e66ea
MG
6392 if (hrtick_enabled(rq))
6393 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6394
6395 return p;
38033c37
PZ
6396
6397idle:
46f69fa3
MF
6398 new_tasks = idle_balance(rq, rf);
6399
37e117c0
PZ
6400 /*
6401 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6402 * possible for any higher priority task to appear. In that case we
6403 * must re-start the pick_next_entity() loop.
6404 */
e4aa358b 6405 if (new_tasks < 0)
37e117c0
PZ
6406 return RETRY_TASK;
6407
e4aa358b 6408 if (new_tasks > 0)
38033c37 6409 goto again;
38033c37
PZ
6410
6411 return NULL;
bf0f6f24
IM
6412}
6413
6414/*
6415 * Account for a descheduled task:
6416 */
31ee529c 6417static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6418{
6419 struct sched_entity *se = &prev->se;
6420 struct cfs_rq *cfs_rq;
6421
6422 for_each_sched_entity(se) {
6423 cfs_rq = cfs_rq_of(se);
ab6cde26 6424 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6425 }
6426}
6427
ac53db59
RR
6428/*
6429 * sched_yield() is very simple
6430 *
6431 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6432 */
6433static void yield_task_fair(struct rq *rq)
6434{
6435 struct task_struct *curr = rq->curr;
6436 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6437 struct sched_entity *se = &curr->se;
6438
6439 /*
6440 * Are we the only task in the tree?
6441 */
6442 if (unlikely(rq->nr_running == 1))
6443 return;
6444
6445 clear_buddies(cfs_rq, se);
6446
6447 if (curr->policy != SCHED_BATCH) {
6448 update_rq_clock(rq);
6449 /*
6450 * Update run-time statistics of the 'current'.
6451 */
6452 update_curr(cfs_rq);
916671c0
MG
6453 /*
6454 * Tell update_rq_clock() that we've just updated,
6455 * so we don't do microscopic update in schedule()
6456 * and double the fastpath cost.
6457 */
9edfbfed 6458 rq_clock_skip_update(rq, true);
ac53db59
RR
6459 }
6460
6461 set_skip_buddy(se);
6462}
6463
d95f4122
MG
6464static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6465{
6466 struct sched_entity *se = &p->se;
6467
5238cdd3
PT
6468 /* throttled hierarchies are not runnable */
6469 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6470 return false;
6471
6472 /* Tell the scheduler that we'd really like pse to run next. */
6473 set_next_buddy(se);
6474
d95f4122
MG
6475 yield_task_fair(rq);
6476
6477 return true;
6478}
6479
681f3e68 6480#ifdef CONFIG_SMP
bf0f6f24 6481/**************************************************
e9c84cb8
PZ
6482 * Fair scheduling class load-balancing methods.
6483 *
6484 * BASICS
6485 *
6486 * The purpose of load-balancing is to achieve the same basic fairness the
6487 * per-cpu scheduler provides, namely provide a proportional amount of compute
6488 * time to each task. This is expressed in the following equation:
6489 *
6490 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6491 *
6492 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6493 * W_i,0 is defined as:
6494 *
6495 * W_i,0 = \Sum_j w_i,j (2)
6496 *
6497 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6498 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6499 *
6500 * The weight average is an exponential decay average of the instantaneous
6501 * weight:
6502 *
6503 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6504 *
ced549fa 6505 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6506 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6507 * can also include other factors [XXX].
6508 *
6509 * To achieve this balance we define a measure of imbalance which follows
6510 * directly from (1):
6511 *
ced549fa 6512 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6513 *
6514 * We them move tasks around to minimize the imbalance. In the continuous
6515 * function space it is obvious this converges, in the discrete case we get
6516 * a few fun cases generally called infeasible weight scenarios.
6517 *
6518 * [XXX expand on:
6519 * - infeasible weights;
6520 * - local vs global optima in the discrete case. ]
6521 *
6522 *
6523 * SCHED DOMAINS
6524 *
6525 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6526 * for all i,j solution, we create a tree of cpus that follows the hardware
6527 * topology where each level pairs two lower groups (or better). This results
6528 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6529 * tree to only the first of the previous level and we decrease the frequency
6530 * of load-balance at each level inv. proportional to the number of cpus in
6531 * the groups.
6532 *
6533 * This yields:
6534 *
6535 * log_2 n 1 n
6536 * \Sum { --- * --- * 2^i } = O(n) (5)
6537 * i = 0 2^i 2^i
6538 * `- size of each group
6539 * | | `- number of cpus doing load-balance
6540 * | `- freq
6541 * `- sum over all levels
6542 *
6543 * Coupled with a limit on how many tasks we can migrate every balance pass,
6544 * this makes (5) the runtime complexity of the balancer.
6545 *
6546 * An important property here is that each CPU is still (indirectly) connected
6547 * to every other cpu in at most O(log n) steps:
6548 *
6549 * The adjacency matrix of the resulting graph is given by:
6550 *
97a7142f 6551 * log_2 n
e9c84cb8
PZ
6552 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6553 * k = 0
6554 *
6555 * And you'll find that:
6556 *
6557 * A^(log_2 n)_i,j != 0 for all i,j (7)
6558 *
6559 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6560 * The task movement gives a factor of O(m), giving a convergence complexity
6561 * of:
6562 *
6563 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6564 *
6565 *
6566 * WORK CONSERVING
6567 *
6568 * In order to avoid CPUs going idle while there's still work to do, new idle
6569 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6570 * tree itself instead of relying on other CPUs to bring it work.
6571 *
6572 * This adds some complexity to both (5) and (8) but it reduces the total idle
6573 * time.
6574 *
6575 * [XXX more?]
6576 *
6577 *
6578 * CGROUPS
6579 *
6580 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6581 *
6582 * s_k,i
6583 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6584 * S_k
6585 *
6586 * Where
6587 *
6588 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6589 *
6590 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6591 *
6592 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6593 * property.
6594 *
6595 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6596 * rewrite all of this once again.]
97a7142f 6597 */
bf0f6f24 6598
ed387b78
HS
6599static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6600
0ec8aa00
PZ
6601enum fbq_type { regular, remote, all };
6602
ddcdf6e7 6603#define LBF_ALL_PINNED 0x01
367456c7 6604#define LBF_NEED_BREAK 0x02
6263322c
PZ
6605#define LBF_DST_PINNED 0x04
6606#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6607
6608struct lb_env {
6609 struct sched_domain *sd;
6610
ddcdf6e7 6611 struct rq *src_rq;
85c1e7da 6612 int src_cpu;
ddcdf6e7
PZ
6613
6614 int dst_cpu;
6615 struct rq *dst_rq;
6616
88b8dac0
SV
6617 struct cpumask *dst_grpmask;
6618 int new_dst_cpu;
ddcdf6e7 6619 enum cpu_idle_type idle;
bd939f45 6620 long imbalance;
b9403130
MW
6621 /* The set of CPUs under consideration for load-balancing */
6622 struct cpumask *cpus;
6623
ddcdf6e7 6624 unsigned int flags;
367456c7
PZ
6625
6626 unsigned int loop;
6627 unsigned int loop_break;
6628 unsigned int loop_max;
0ec8aa00
PZ
6629
6630 enum fbq_type fbq_type;
163122b7 6631 struct list_head tasks;
ddcdf6e7
PZ
6632};
6633
029632fb
PZ
6634/*
6635 * Is this task likely cache-hot:
6636 */
5d5e2b1b 6637static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6638{
6639 s64 delta;
6640
e5673f28
KT
6641 lockdep_assert_held(&env->src_rq->lock);
6642
029632fb
PZ
6643 if (p->sched_class != &fair_sched_class)
6644 return 0;
6645
6646 if (unlikely(p->policy == SCHED_IDLE))
6647 return 0;
6648
6649 /*
6650 * Buddy candidates are cache hot:
6651 */
5d5e2b1b 6652 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6653 (&p->se == cfs_rq_of(&p->se)->next ||
6654 &p->se == cfs_rq_of(&p->se)->last))
6655 return 1;
6656
6657 if (sysctl_sched_migration_cost == -1)
6658 return 1;
6659 if (sysctl_sched_migration_cost == 0)
6660 return 0;
6661
5d5e2b1b 6662 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6663
6664 return delta < (s64)sysctl_sched_migration_cost;
6665}
6666
3a7053b3 6667#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6668/*
2a1ed24c
SD
6669 * Returns 1, if task migration degrades locality
6670 * Returns 0, if task migration improves locality i.e migration preferred.
6671 * Returns -1, if task migration is not affected by locality.
c1ceac62 6672 */
2a1ed24c 6673static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6674{
b1ad065e 6675 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6676 unsigned long src_faults, dst_faults;
3a7053b3
MG
6677 int src_nid, dst_nid;
6678
2a595721 6679 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6680 return -1;
6681
c3b9bc5b 6682 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6683 return -1;
7a0f3083
MG
6684
6685 src_nid = cpu_to_node(env->src_cpu);
6686 dst_nid = cpu_to_node(env->dst_cpu);
6687
83e1d2cd 6688 if (src_nid == dst_nid)
2a1ed24c 6689 return -1;
7a0f3083 6690
2a1ed24c
SD
6691 /* Migrating away from the preferred node is always bad. */
6692 if (src_nid == p->numa_preferred_nid) {
6693 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6694 return 1;
6695 else
6696 return -1;
6697 }
b1ad065e 6698
c1ceac62
RR
6699 /* Encourage migration to the preferred node. */
6700 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6701 return 0;
b1ad065e 6702
c1ceac62
RR
6703 if (numa_group) {
6704 src_faults = group_faults(p, src_nid);
6705 dst_faults = group_faults(p, dst_nid);
6706 } else {
6707 src_faults = task_faults(p, src_nid);
6708 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6709 }
6710
c1ceac62 6711 return dst_faults < src_faults;
7a0f3083
MG
6712}
6713
3a7053b3 6714#else
2a1ed24c 6715static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6716 struct lb_env *env)
6717{
2a1ed24c 6718 return -1;
7a0f3083 6719}
3a7053b3
MG
6720#endif
6721
1e3c88bd
PZ
6722/*
6723 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6724 */
6725static
8e45cb54 6726int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6727{
2a1ed24c 6728 int tsk_cache_hot;
e5673f28
KT
6729
6730 lockdep_assert_held(&env->src_rq->lock);
6731
1e3c88bd
PZ
6732 /*
6733 * We do not migrate tasks that are:
d3198084 6734 * 1) throttled_lb_pair, or
1e3c88bd 6735 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6736 * 3) running (obviously), or
6737 * 4) are cache-hot on their current CPU.
1e3c88bd 6738 */
d3198084
JK
6739 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6740 return 0;
6741
0c98d344 6742 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6743 int cpu;
88b8dac0 6744
ae92882e 6745 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6746
6263322c
PZ
6747 env->flags |= LBF_SOME_PINNED;
6748
88b8dac0
SV
6749 /*
6750 * Remember if this task can be migrated to any other cpu in
6751 * our sched_group. We may want to revisit it if we couldn't
6752 * meet load balance goals by pulling other tasks on src_cpu.
6753 *
6754 * Also avoid computing new_dst_cpu if we have already computed
6755 * one in current iteration.
6756 */
6263322c 6757 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6758 return 0;
6759
e02e60c1
JK
6760 /* Prevent to re-select dst_cpu via env's cpus */
6761 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6762 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6763 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6764 env->new_dst_cpu = cpu;
6765 break;
6766 }
88b8dac0 6767 }
e02e60c1 6768
1e3c88bd
PZ
6769 return 0;
6770 }
88b8dac0
SV
6771
6772 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6773 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6774
ddcdf6e7 6775 if (task_running(env->src_rq, p)) {
ae92882e 6776 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6777 return 0;
6778 }
6779
6780 /*
6781 * Aggressive migration if:
3a7053b3
MG
6782 * 1) destination numa is preferred
6783 * 2) task is cache cold, or
6784 * 3) too many balance attempts have failed.
1e3c88bd 6785 */
2a1ed24c
SD
6786 tsk_cache_hot = migrate_degrades_locality(p, env);
6787 if (tsk_cache_hot == -1)
6788 tsk_cache_hot = task_hot(p, env);
3a7053b3 6789
2a1ed24c 6790 if (tsk_cache_hot <= 0 ||
7a96c231 6791 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6792 if (tsk_cache_hot == 1) {
ae92882e
JP
6793 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6794 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6795 }
1e3c88bd
PZ
6796 return 1;
6797 }
6798
ae92882e 6799 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6800 return 0;
1e3c88bd
PZ
6801}
6802
897c395f 6803/*
163122b7
KT
6804 * detach_task() -- detach the task for the migration specified in env
6805 */
6806static void detach_task(struct task_struct *p, struct lb_env *env)
6807{
6808 lockdep_assert_held(&env->src_rq->lock);
6809
163122b7 6810 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6811 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6812 set_task_cpu(p, env->dst_cpu);
6813}
6814
897c395f 6815/*
e5673f28 6816 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6817 * part of active balancing operations within "domain".
897c395f 6818 *
e5673f28 6819 * Returns a task if successful and NULL otherwise.
897c395f 6820 */
e5673f28 6821static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6822{
6823 struct task_struct *p, *n;
897c395f 6824
e5673f28
KT
6825 lockdep_assert_held(&env->src_rq->lock);
6826
367456c7 6827 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6828 if (!can_migrate_task(p, env))
6829 continue;
897c395f 6830
163122b7 6831 detach_task(p, env);
e5673f28 6832
367456c7 6833 /*
e5673f28 6834 * Right now, this is only the second place where
163122b7 6835 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6836 * so we can safely collect stats here rather than
163122b7 6837 * inside detach_tasks().
367456c7 6838 */
ae92882e 6839 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6840 return p;
897c395f 6841 }
e5673f28 6842 return NULL;
897c395f
PZ
6843}
6844
eb95308e
PZ
6845static const unsigned int sched_nr_migrate_break = 32;
6846
5d6523eb 6847/*
163122b7
KT
6848 * detach_tasks() -- tries to detach up to imbalance weighted load from
6849 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6850 *
163122b7 6851 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6852 */
163122b7 6853static int detach_tasks(struct lb_env *env)
1e3c88bd 6854{
5d6523eb
PZ
6855 struct list_head *tasks = &env->src_rq->cfs_tasks;
6856 struct task_struct *p;
367456c7 6857 unsigned long load;
163122b7
KT
6858 int detached = 0;
6859
6860 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6861
bd939f45 6862 if (env->imbalance <= 0)
5d6523eb 6863 return 0;
1e3c88bd 6864
5d6523eb 6865 while (!list_empty(tasks)) {
985d3a4c
YD
6866 /*
6867 * We don't want to steal all, otherwise we may be treated likewise,
6868 * which could at worst lead to a livelock crash.
6869 */
6870 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6871 break;
6872
5d6523eb 6873 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6874
367456c7
PZ
6875 env->loop++;
6876 /* We've more or less seen every task there is, call it quits */
5d6523eb 6877 if (env->loop > env->loop_max)
367456c7 6878 break;
5d6523eb
PZ
6879
6880 /* take a breather every nr_migrate tasks */
367456c7 6881 if (env->loop > env->loop_break) {
eb95308e 6882 env->loop_break += sched_nr_migrate_break;
8e45cb54 6883 env->flags |= LBF_NEED_BREAK;
ee00e66f 6884 break;
a195f004 6885 }
1e3c88bd 6886
d3198084 6887 if (!can_migrate_task(p, env))
367456c7
PZ
6888 goto next;
6889
6890 load = task_h_load(p);
5d6523eb 6891
eb95308e 6892 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6893 goto next;
6894
bd939f45 6895 if ((load / 2) > env->imbalance)
367456c7 6896 goto next;
1e3c88bd 6897
163122b7
KT
6898 detach_task(p, env);
6899 list_add(&p->se.group_node, &env->tasks);
6900
6901 detached++;
bd939f45 6902 env->imbalance -= load;
1e3c88bd
PZ
6903
6904#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6905 /*
6906 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6907 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6908 * the critical section.
6909 */
5d6523eb 6910 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6911 break;
1e3c88bd
PZ
6912#endif
6913
ee00e66f
PZ
6914 /*
6915 * We only want to steal up to the prescribed amount of
6916 * weighted load.
6917 */
bd939f45 6918 if (env->imbalance <= 0)
ee00e66f 6919 break;
367456c7
PZ
6920
6921 continue;
6922next:
5d6523eb 6923 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6924 }
5d6523eb 6925
1e3c88bd 6926 /*
163122b7
KT
6927 * Right now, this is one of only two places we collect this stat
6928 * so we can safely collect detach_one_task() stats here rather
6929 * than inside detach_one_task().
1e3c88bd 6930 */
ae92882e 6931 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6932
163122b7
KT
6933 return detached;
6934}
6935
6936/*
6937 * attach_task() -- attach the task detached by detach_task() to its new rq.
6938 */
6939static void attach_task(struct rq *rq, struct task_struct *p)
6940{
6941 lockdep_assert_held(&rq->lock);
6942
6943 BUG_ON(task_rq(p) != rq);
5704ac0a 6944 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6945 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6946 check_preempt_curr(rq, p, 0);
6947}
6948
6949/*
6950 * attach_one_task() -- attaches the task returned from detach_one_task() to
6951 * its new rq.
6952 */
6953static void attach_one_task(struct rq *rq, struct task_struct *p)
6954{
8a8c69c3
PZ
6955 struct rq_flags rf;
6956
6957 rq_lock(rq, &rf);
5704ac0a 6958 update_rq_clock(rq);
163122b7 6959 attach_task(rq, p);
8a8c69c3 6960 rq_unlock(rq, &rf);
163122b7
KT
6961}
6962
6963/*
6964 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6965 * new rq.
6966 */
6967static void attach_tasks(struct lb_env *env)
6968{
6969 struct list_head *tasks = &env->tasks;
6970 struct task_struct *p;
8a8c69c3 6971 struct rq_flags rf;
163122b7 6972
8a8c69c3 6973 rq_lock(env->dst_rq, &rf);
5704ac0a 6974 update_rq_clock(env->dst_rq);
163122b7
KT
6975
6976 while (!list_empty(tasks)) {
6977 p = list_first_entry(tasks, struct task_struct, se.group_node);
6978 list_del_init(&p->se.group_node);
1e3c88bd 6979
163122b7
KT
6980 attach_task(env->dst_rq, p);
6981 }
6982
8a8c69c3 6983 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6984}
6985
230059de 6986#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6987static void update_blocked_averages(int cpu)
9e3081ca 6988{
9e3081ca 6989 struct rq *rq = cpu_rq(cpu);
48a16753 6990 struct cfs_rq *cfs_rq;
8a8c69c3 6991 struct rq_flags rf;
9e3081ca 6992
8a8c69c3 6993 rq_lock_irqsave(rq, &rf);
48a16753 6994 update_rq_clock(rq);
9d89c257 6995
9763b67f
PZ
6996 /*
6997 * Iterates the task_group tree in a bottom up fashion, see
6998 * list_add_leaf_cfs_rq() for details.
6999 */
64660c86 7000 for_each_leaf_cfs_rq(rq, cfs_rq) {
bc427898
VG
7001 struct sched_entity *se;
7002
9d89c257
YD
7003 /* throttled entities do not contribute to load */
7004 if (throttled_hierarchy(cfs_rq))
7005 continue;
48a16753 7006
a2c6c91f 7007 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 7008 update_tg_load_avg(cfs_rq, 0);
4e516076 7009
bc427898
VG
7010 /* Propagate pending load changes to the parent, if any: */
7011 se = cfs_rq->tg->se[cpu];
7012 if (se && !skip_blocked_update(se))
7013 update_load_avg(se, 0);
9d89c257 7014 }
8a8c69c3 7015 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7016}
7017
9763b67f 7018/*
68520796 7019 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7020 * This needs to be done in a top-down fashion because the load of a child
7021 * group is a fraction of its parents load.
7022 */
68520796 7023static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7024{
68520796
VD
7025 struct rq *rq = rq_of(cfs_rq);
7026 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7027 unsigned long now = jiffies;
68520796 7028 unsigned long load;
a35b6466 7029
68520796 7030 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7031 return;
7032
68520796
VD
7033 cfs_rq->h_load_next = NULL;
7034 for_each_sched_entity(se) {
7035 cfs_rq = cfs_rq_of(se);
7036 cfs_rq->h_load_next = se;
7037 if (cfs_rq->last_h_load_update == now)
7038 break;
7039 }
a35b6466 7040
68520796 7041 if (!se) {
7ea241af 7042 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7043 cfs_rq->last_h_load_update = now;
7044 }
7045
7046 while ((se = cfs_rq->h_load_next) != NULL) {
7047 load = cfs_rq->h_load;
7ea241af
YD
7048 load = div64_ul(load * se->avg.load_avg,
7049 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7050 cfs_rq = group_cfs_rq(se);
7051 cfs_rq->h_load = load;
7052 cfs_rq->last_h_load_update = now;
7053 }
9763b67f
PZ
7054}
7055
367456c7 7056static unsigned long task_h_load(struct task_struct *p)
230059de 7057{
367456c7 7058 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7059
68520796 7060 update_cfs_rq_h_load(cfs_rq);
9d89c257 7061 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7062 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7063}
7064#else
48a16753 7065static inline void update_blocked_averages(int cpu)
9e3081ca 7066{
6c1d47c0
VG
7067 struct rq *rq = cpu_rq(cpu);
7068 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7069 struct rq_flags rf;
6c1d47c0 7070
8a8c69c3 7071 rq_lock_irqsave(rq, &rf);
6c1d47c0 7072 update_rq_clock(rq);
a2c6c91f 7073 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8a8c69c3 7074 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7075}
7076
367456c7 7077static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7078{
9d89c257 7079 return p->se.avg.load_avg;
1e3c88bd 7080}
230059de 7081#endif
1e3c88bd 7082
1e3c88bd 7083/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7084
7085enum group_type {
7086 group_other = 0,
7087 group_imbalanced,
7088 group_overloaded,
7089};
7090
1e3c88bd
PZ
7091/*
7092 * sg_lb_stats - stats of a sched_group required for load_balancing
7093 */
7094struct sg_lb_stats {
7095 unsigned long avg_load; /*Avg load across the CPUs of the group */
7096 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7097 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7098 unsigned long load_per_task;
63b2ca30 7099 unsigned long group_capacity;
9e91d61d 7100 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7101 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7102 unsigned int idle_cpus;
7103 unsigned int group_weight;
caeb178c 7104 enum group_type group_type;
ea67821b 7105 int group_no_capacity;
0ec8aa00
PZ
7106#ifdef CONFIG_NUMA_BALANCING
7107 unsigned int nr_numa_running;
7108 unsigned int nr_preferred_running;
7109#endif
1e3c88bd
PZ
7110};
7111
56cf515b
JK
7112/*
7113 * sd_lb_stats - Structure to store the statistics of a sched_domain
7114 * during load balancing.
7115 */
7116struct sd_lb_stats {
7117 struct sched_group *busiest; /* Busiest group in this sd */
7118 struct sched_group *local; /* Local group in this sd */
7119 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7120 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7121 unsigned long avg_load; /* Average load across all groups in sd */
7122
56cf515b 7123 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7124 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7125};
7126
147c5fc2
PZ
7127static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7128{
7129 /*
7130 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7131 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7132 * We must however clear busiest_stat::avg_load because
7133 * update_sd_pick_busiest() reads this before assignment.
7134 */
7135 *sds = (struct sd_lb_stats){
7136 .busiest = NULL,
7137 .local = NULL,
7138 .total_load = 0UL,
63b2ca30 7139 .total_capacity = 0UL,
147c5fc2
PZ
7140 .busiest_stat = {
7141 .avg_load = 0UL,
caeb178c
RR
7142 .sum_nr_running = 0,
7143 .group_type = group_other,
147c5fc2
PZ
7144 },
7145 };
7146}
7147
1e3c88bd
PZ
7148/**
7149 * get_sd_load_idx - Obtain the load index for a given sched domain.
7150 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7151 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7152 *
7153 * Return: The load index.
1e3c88bd
PZ
7154 */
7155static inline int get_sd_load_idx(struct sched_domain *sd,
7156 enum cpu_idle_type idle)
7157{
7158 int load_idx;
7159
7160 switch (idle) {
7161 case CPU_NOT_IDLE:
7162 load_idx = sd->busy_idx;
7163 break;
7164
7165 case CPU_NEWLY_IDLE:
7166 load_idx = sd->newidle_idx;
7167 break;
7168 default:
7169 load_idx = sd->idle_idx;
7170 break;
7171 }
7172
7173 return load_idx;
7174}
7175
ced549fa 7176static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7177{
7178 struct rq *rq = cpu_rq(cpu);
b5b4860d 7179 u64 total, used, age_stamp, avg;
cadefd3d 7180 s64 delta;
1e3c88bd 7181
b654f7de
PZ
7182 /*
7183 * Since we're reading these variables without serialization make sure
7184 * we read them once before doing sanity checks on them.
7185 */
316c1608
JL
7186 age_stamp = READ_ONCE(rq->age_stamp);
7187 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7188 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7189
cadefd3d
PZ
7190 if (unlikely(delta < 0))
7191 delta = 0;
7192
7193 total = sched_avg_period() + delta;
aa483808 7194
b5b4860d 7195 used = div_u64(avg, total);
1e3c88bd 7196
b5b4860d
VG
7197 if (likely(used < SCHED_CAPACITY_SCALE))
7198 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7199
b5b4860d 7200 return 1;
1e3c88bd
PZ
7201}
7202
ced549fa 7203static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7204{
8cd5601c 7205 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7206 struct sched_group *sdg = sd->groups;
7207
ca6d75e6 7208 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7209
ced549fa 7210 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7211 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7212
ced549fa
NP
7213 if (!capacity)
7214 capacity = 1;
1e3c88bd 7215
ced549fa
NP
7216 cpu_rq(cpu)->cpu_capacity = capacity;
7217 sdg->sgc->capacity = capacity;
bf475ce0 7218 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7219}
7220
63b2ca30 7221void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7222{
7223 struct sched_domain *child = sd->child;
7224 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7225 unsigned long capacity, min_capacity;
4ec4412e
VG
7226 unsigned long interval;
7227
7228 interval = msecs_to_jiffies(sd->balance_interval);
7229 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7230 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7231
7232 if (!child) {
ced549fa 7233 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7234 return;
7235 }
7236
dc7ff76e 7237 capacity = 0;
bf475ce0 7238 min_capacity = ULONG_MAX;
1e3c88bd 7239
74a5ce20
PZ
7240 if (child->flags & SD_OVERLAP) {
7241 /*
7242 * SD_OVERLAP domains cannot assume that child groups
7243 * span the current group.
7244 */
7245
863bffc8 7246 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7247 struct sched_group_capacity *sgc;
9abf24d4 7248 struct rq *rq = cpu_rq(cpu);
863bffc8 7249
9abf24d4 7250 /*
63b2ca30 7251 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7252 * gets here before we've attached the domains to the
7253 * runqueues.
7254 *
ced549fa
NP
7255 * Use capacity_of(), which is set irrespective of domains
7256 * in update_cpu_capacity().
9abf24d4 7257 *
dc7ff76e 7258 * This avoids capacity from being 0 and
9abf24d4 7259 * causing divide-by-zero issues on boot.
9abf24d4
SD
7260 */
7261 if (unlikely(!rq->sd)) {
ced549fa 7262 capacity += capacity_of(cpu);
bf475ce0
MR
7263 } else {
7264 sgc = rq->sd->groups->sgc;
7265 capacity += sgc->capacity;
9abf24d4 7266 }
863bffc8 7267
bf475ce0 7268 min_capacity = min(capacity, min_capacity);
863bffc8 7269 }
74a5ce20
PZ
7270 } else {
7271 /*
7272 * !SD_OVERLAP domains can assume that child groups
7273 * span the current group.
97a7142f 7274 */
74a5ce20
PZ
7275
7276 group = child->groups;
7277 do {
bf475ce0
MR
7278 struct sched_group_capacity *sgc = group->sgc;
7279
7280 capacity += sgc->capacity;
7281 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7282 group = group->next;
7283 } while (group != child->groups);
7284 }
1e3c88bd 7285
63b2ca30 7286 sdg->sgc->capacity = capacity;
bf475ce0 7287 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7288}
7289
9d5efe05 7290/*
ea67821b
VG
7291 * Check whether the capacity of the rq has been noticeably reduced by side
7292 * activity. The imbalance_pct is used for the threshold.
7293 * Return true is the capacity is reduced
9d5efe05
SV
7294 */
7295static inline int
ea67821b 7296check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7297{
ea67821b
VG
7298 return ((rq->cpu_capacity * sd->imbalance_pct) <
7299 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7300}
7301
30ce5dab
PZ
7302/*
7303 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7304 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7305 *
7306 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7307 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7308 * Something like:
7309 *
2b4d5b25
IM
7310 * { 0 1 2 3 } { 4 5 6 7 }
7311 * * * * *
30ce5dab
PZ
7312 *
7313 * If we were to balance group-wise we'd place two tasks in the first group and
7314 * two tasks in the second group. Clearly this is undesired as it will overload
7315 * cpu 3 and leave one of the cpus in the second group unused.
7316 *
7317 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7318 * by noticing the lower domain failed to reach balance and had difficulty
7319 * moving tasks due to affinity constraints.
30ce5dab
PZ
7320 *
7321 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7322 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7323 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7324 * to create an effective group imbalance.
7325 *
7326 * This is a somewhat tricky proposition since the next run might not find the
7327 * group imbalance and decide the groups need to be balanced again. A most
7328 * subtle and fragile situation.
7329 */
7330
6263322c 7331static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7332{
63b2ca30 7333 return group->sgc->imbalance;
30ce5dab
PZ
7334}
7335
b37d9316 7336/*
ea67821b
VG
7337 * group_has_capacity returns true if the group has spare capacity that could
7338 * be used by some tasks.
7339 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7340 * smaller than the number of CPUs or if the utilization is lower than the
7341 * available capacity for CFS tasks.
ea67821b
VG
7342 * For the latter, we use a threshold to stabilize the state, to take into
7343 * account the variance of the tasks' load and to return true if the available
7344 * capacity in meaningful for the load balancer.
7345 * As an example, an available capacity of 1% can appear but it doesn't make
7346 * any benefit for the load balance.
b37d9316 7347 */
ea67821b
VG
7348static inline bool
7349group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7350{
ea67821b
VG
7351 if (sgs->sum_nr_running < sgs->group_weight)
7352 return true;
c61037e9 7353
ea67821b 7354 if ((sgs->group_capacity * 100) >
9e91d61d 7355 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7356 return true;
b37d9316 7357
ea67821b
VG
7358 return false;
7359}
7360
7361/*
7362 * group_is_overloaded returns true if the group has more tasks than it can
7363 * handle.
7364 * group_is_overloaded is not equals to !group_has_capacity because a group
7365 * with the exact right number of tasks, has no more spare capacity but is not
7366 * overloaded so both group_has_capacity and group_is_overloaded return
7367 * false.
7368 */
7369static inline bool
7370group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7371{
7372 if (sgs->sum_nr_running <= sgs->group_weight)
7373 return false;
b37d9316 7374
ea67821b 7375 if ((sgs->group_capacity * 100) <
9e91d61d 7376 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7377 return true;
b37d9316 7378
ea67821b 7379 return false;
b37d9316
PZ
7380}
7381
9e0994c0
MR
7382/*
7383 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7384 * per-CPU capacity than sched_group ref.
7385 */
7386static inline bool
7387group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7388{
7389 return sg->sgc->min_capacity * capacity_margin <
7390 ref->sgc->min_capacity * 1024;
7391}
7392
79a89f92
LY
7393static inline enum
7394group_type group_classify(struct sched_group *group,
7395 struct sg_lb_stats *sgs)
caeb178c 7396{
ea67821b 7397 if (sgs->group_no_capacity)
caeb178c
RR
7398 return group_overloaded;
7399
7400 if (sg_imbalanced(group))
7401 return group_imbalanced;
7402
7403 return group_other;
7404}
7405
1e3c88bd
PZ
7406/**
7407 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7408 * @env: The load balancing environment.
1e3c88bd 7409 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7410 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7411 * @local_group: Does group contain this_cpu.
1e3c88bd 7412 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7413 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7414 */
bd939f45
PZ
7415static inline void update_sg_lb_stats(struct lb_env *env,
7416 struct sched_group *group, int load_idx,
4486edd1
TC
7417 int local_group, struct sg_lb_stats *sgs,
7418 bool *overload)
1e3c88bd 7419{
30ce5dab 7420 unsigned long load;
a426f99c 7421 int i, nr_running;
1e3c88bd 7422
b72ff13c
PZ
7423 memset(sgs, 0, sizeof(*sgs));
7424
b9403130 7425 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7426 struct rq *rq = cpu_rq(i);
7427
1e3c88bd 7428 /* Bias balancing toward cpus of our domain */
6263322c 7429 if (local_group)
04f733b4 7430 load = target_load(i, load_idx);
6263322c 7431 else
1e3c88bd 7432 load = source_load(i, load_idx);
1e3c88bd
PZ
7433
7434 sgs->group_load += load;
9e91d61d 7435 sgs->group_util += cpu_util(i);
65fdac08 7436 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7437
a426f99c
WL
7438 nr_running = rq->nr_running;
7439 if (nr_running > 1)
4486edd1
TC
7440 *overload = true;
7441
0ec8aa00
PZ
7442#ifdef CONFIG_NUMA_BALANCING
7443 sgs->nr_numa_running += rq->nr_numa_running;
7444 sgs->nr_preferred_running += rq->nr_preferred_running;
7445#endif
1e3c88bd 7446 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7447 /*
7448 * No need to call idle_cpu() if nr_running is not 0
7449 */
7450 if (!nr_running && idle_cpu(i))
aae6d3dd 7451 sgs->idle_cpus++;
1e3c88bd
PZ
7452 }
7453
63b2ca30
NP
7454 /* Adjust by relative CPU capacity of the group */
7455 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7456 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7457
dd5feea1 7458 if (sgs->sum_nr_running)
38d0f770 7459 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7460
aae6d3dd 7461 sgs->group_weight = group->group_weight;
b37d9316 7462
ea67821b 7463 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7464 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7465}
7466
532cb4c4
MN
7467/**
7468 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7469 * @env: The load balancing environment.
532cb4c4
MN
7470 * @sds: sched_domain statistics
7471 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7472 * @sgs: sched_group statistics
532cb4c4
MN
7473 *
7474 * Determine if @sg is a busier group than the previously selected
7475 * busiest group.
e69f6186
YB
7476 *
7477 * Return: %true if @sg is a busier group than the previously selected
7478 * busiest group. %false otherwise.
532cb4c4 7479 */
bd939f45 7480static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7481 struct sd_lb_stats *sds,
7482 struct sched_group *sg,
bd939f45 7483 struct sg_lb_stats *sgs)
532cb4c4 7484{
caeb178c 7485 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7486
caeb178c 7487 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7488 return true;
7489
caeb178c
RR
7490 if (sgs->group_type < busiest->group_type)
7491 return false;
7492
7493 if (sgs->avg_load <= busiest->avg_load)
7494 return false;
7495
9e0994c0
MR
7496 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7497 goto asym_packing;
7498
7499 /*
7500 * Candidate sg has no more than one task per CPU and
7501 * has higher per-CPU capacity. Migrating tasks to less
7502 * capable CPUs may harm throughput. Maximize throughput,
7503 * power/energy consequences are not considered.
7504 */
7505 if (sgs->sum_nr_running <= sgs->group_weight &&
7506 group_smaller_cpu_capacity(sds->local, sg))
7507 return false;
7508
7509asym_packing:
caeb178c
RR
7510 /* This is the busiest node in its class. */
7511 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7512 return true;
7513
1f621e02
SD
7514 /* No ASYM_PACKING if target cpu is already busy */
7515 if (env->idle == CPU_NOT_IDLE)
7516 return true;
532cb4c4 7517 /*
afe06efd
TC
7518 * ASYM_PACKING needs to move all the work to the highest
7519 * prority CPUs in the group, therefore mark all groups
7520 * of lower priority than ourself as busy.
532cb4c4 7521 */
afe06efd
TC
7522 if (sgs->sum_nr_running &&
7523 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7524 if (!sds->busiest)
7525 return true;
7526
afe06efd
TC
7527 /* Prefer to move from lowest priority cpu's work */
7528 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7529 sg->asym_prefer_cpu))
532cb4c4
MN
7530 return true;
7531 }
7532
7533 return false;
7534}
7535
0ec8aa00
PZ
7536#ifdef CONFIG_NUMA_BALANCING
7537static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7538{
7539 if (sgs->sum_nr_running > sgs->nr_numa_running)
7540 return regular;
7541 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7542 return remote;
7543 return all;
7544}
7545
7546static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7547{
7548 if (rq->nr_running > rq->nr_numa_running)
7549 return regular;
7550 if (rq->nr_running > rq->nr_preferred_running)
7551 return remote;
7552 return all;
7553}
7554#else
7555static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7556{
7557 return all;
7558}
7559
7560static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7561{
7562 return regular;
7563}
7564#endif /* CONFIG_NUMA_BALANCING */
7565
1e3c88bd 7566/**
461819ac 7567 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7568 * @env: The load balancing environment.
1e3c88bd
PZ
7569 * @sds: variable to hold the statistics for this sched_domain.
7570 */
0ec8aa00 7571static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7572{
bd939f45
PZ
7573 struct sched_domain *child = env->sd->child;
7574 struct sched_group *sg = env->sd->groups;
05b40e05 7575 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7576 struct sg_lb_stats tmp_sgs;
1e3c88bd 7577 int load_idx, prefer_sibling = 0;
4486edd1 7578 bool overload = false;
1e3c88bd
PZ
7579
7580 if (child && child->flags & SD_PREFER_SIBLING)
7581 prefer_sibling = 1;
7582
bd939f45 7583 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7584
7585 do {
56cf515b 7586 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7587 int local_group;
7588
bd939f45 7589 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7590 if (local_group) {
7591 sds->local = sg;
05b40e05 7592 sgs = local;
b72ff13c
PZ
7593
7594 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7595 time_after_eq(jiffies, sg->sgc->next_update))
7596 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7597 }
1e3c88bd 7598
4486edd1
TC
7599 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7600 &overload);
1e3c88bd 7601
b72ff13c
PZ
7602 if (local_group)
7603 goto next_group;
7604
1e3c88bd
PZ
7605 /*
7606 * In case the child domain prefers tasks go to siblings
ea67821b 7607 * first, lower the sg capacity so that we'll try
75dd321d
NR
7608 * and move all the excess tasks away. We lower the capacity
7609 * of a group only if the local group has the capacity to fit
ea67821b
VG
7610 * these excess tasks. The extra check prevents the case where
7611 * you always pull from the heaviest group when it is already
7612 * under-utilized (possible with a large weight task outweighs
7613 * the tasks on the system).
1e3c88bd 7614 */
b72ff13c 7615 if (prefer_sibling && sds->local &&
05b40e05
SD
7616 group_has_capacity(env, local) &&
7617 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7618 sgs->group_no_capacity = 1;
79a89f92 7619 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7620 }
1e3c88bd 7621
b72ff13c 7622 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7623 sds->busiest = sg;
56cf515b 7624 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7625 }
7626
b72ff13c
PZ
7627next_group:
7628 /* Now, start updating sd_lb_stats */
7629 sds->total_load += sgs->group_load;
63b2ca30 7630 sds->total_capacity += sgs->group_capacity;
b72ff13c 7631
532cb4c4 7632 sg = sg->next;
bd939f45 7633 } while (sg != env->sd->groups);
0ec8aa00
PZ
7634
7635 if (env->sd->flags & SD_NUMA)
7636 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7637
7638 if (!env->sd->parent) {
7639 /* update overload indicator if we are at root domain */
7640 if (env->dst_rq->rd->overload != overload)
7641 env->dst_rq->rd->overload = overload;
7642 }
7643
532cb4c4
MN
7644}
7645
532cb4c4
MN
7646/**
7647 * check_asym_packing - Check to see if the group is packed into the
7648 * sched doman.
7649 *
7650 * This is primarily intended to used at the sibling level. Some
7651 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7652 * case of POWER7, it can move to lower SMT modes only when higher
7653 * threads are idle. When in lower SMT modes, the threads will
7654 * perform better since they share less core resources. Hence when we
7655 * have idle threads, we want them to be the higher ones.
7656 *
7657 * This packing function is run on idle threads. It checks to see if
7658 * the busiest CPU in this domain (core in the P7 case) has a higher
7659 * CPU number than the packing function is being run on. Here we are
7660 * assuming lower CPU number will be equivalent to lower a SMT thread
7661 * number.
7662 *
e69f6186 7663 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7664 * this CPU. The amount of the imbalance is returned in *imbalance.
7665 *
cd96891d 7666 * @env: The load balancing environment.
532cb4c4 7667 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7668 */
bd939f45 7669static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7670{
7671 int busiest_cpu;
7672
bd939f45 7673 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7674 return 0;
7675
1f621e02
SD
7676 if (env->idle == CPU_NOT_IDLE)
7677 return 0;
7678
532cb4c4
MN
7679 if (!sds->busiest)
7680 return 0;
7681
afe06efd
TC
7682 busiest_cpu = sds->busiest->asym_prefer_cpu;
7683 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7684 return 0;
7685
bd939f45 7686 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7687 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7688 SCHED_CAPACITY_SCALE);
bd939f45 7689
532cb4c4 7690 return 1;
1e3c88bd
PZ
7691}
7692
7693/**
7694 * fix_small_imbalance - Calculate the minor imbalance that exists
7695 * amongst the groups of a sched_domain, during
7696 * load balancing.
cd96891d 7697 * @env: The load balancing environment.
1e3c88bd 7698 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7699 */
bd939f45
PZ
7700static inline
7701void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7702{
63b2ca30 7703 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7704 unsigned int imbn = 2;
dd5feea1 7705 unsigned long scaled_busy_load_per_task;
56cf515b 7706 struct sg_lb_stats *local, *busiest;
1e3c88bd 7707
56cf515b
JK
7708 local = &sds->local_stat;
7709 busiest = &sds->busiest_stat;
1e3c88bd 7710
56cf515b
JK
7711 if (!local->sum_nr_running)
7712 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7713 else if (busiest->load_per_task > local->load_per_task)
7714 imbn = 1;
dd5feea1 7715
56cf515b 7716 scaled_busy_load_per_task =
ca8ce3d0 7717 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7718 busiest->group_capacity;
56cf515b 7719
3029ede3
VD
7720 if (busiest->avg_load + scaled_busy_load_per_task >=
7721 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7722 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7723 return;
7724 }
7725
7726 /*
7727 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7728 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7729 * moving them.
7730 */
7731
63b2ca30 7732 capa_now += busiest->group_capacity *
56cf515b 7733 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7734 capa_now += local->group_capacity *
56cf515b 7735 min(local->load_per_task, local->avg_load);
ca8ce3d0 7736 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7737
7738 /* Amount of load we'd subtract */
a2cd4260 7739 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7740 capa_move += busiest->group_capacity *
56cf515b 7741 min(busiest->load_per_task,
a2cd4260 7742 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7743 }
1e3c88bd
PZ
7744
7745 /* Amount of load we'd add */
63b2ca30 7746 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7747 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7748 tmp = (busiest->avg_load * busiest->group_capacity) /
7749 local->group_capacity;
56cf515b 7750 } else {
ca8ce3d0 7751 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7752 local->group_capacity;
56cf515b 7753 }
63b2ca30 7754 capa_move += local->group_capacity *
3ae11c90 7755 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7756 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7757
7758 /* Move if we gain throughput */
63b2ca30 7759 if (capa_move > capa_now)
56cf515b 7760 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7761}
7762
7763/**
7764 * calculate_imbalance - Calculate the amount of imbalance present within the
7765 * groups of a given sched_domain during load balance.
bd939f45 7766 * @env: load balance environment
1e3c88bd 7767 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7768 */
bd939f45 7769static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7770{
dd5feea1 7771 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7772 struct sg_lb_stats *local, *busiest;
7773
7774 local = &sds->local_stat;
56cf515b 7775 busiest = &sds->busiest_stat;
dd5feea1 7776
caeb178c 7777 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7778 /*
7779 * In the group_imb case we cannot rely on group-wide averages
7780 * to ensure cpu-load equilibrium, look at wider averages. XXX
7781 */
56cf515b
JK
7782 busiest->load_per_task =
7783 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7784 }
7785
1e3c88bd 7786 /*
885e542c
DE
7787 * Avg load of busiest sg can be less and avg load of local sg can
7788 * be greater than avg load across all sgs of sd because avg load
7789 * factors in sg capacity and sgs with smaller group_type are
7790 * skipped when updating the busiest sg:
1e3c88bd 7791 */
b1885550
VD
7792 if (busiest->avg_load <= sds->avg_load ||
7793 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7794 env->imbalance = 0;
7795 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7796 }
7797
9a5d9ba6
PZ
7798 /*
7799 * If there aren't any idle cpus, avoid creating some.
7800 */
7801 if (busiest->group_type == group_overloaded &&
7802 local->group_type == group_overloaded) {
1be0eb2a 7803 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7804 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7805 load_above_capacity -= busiest->group_capacity;
26656215 7806 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7807 load_above_capacity /= busiest->group_capacity;
7808 } else
ea67821b 7809 load_above_capacity = ~0UL;
dd5feea1
SS
7810 }
7811
7812 /*
7813 * We're trying to get all the cpus to the average_load, so we don't
7814 * want to push ourselves above the average load, nor do we wish to
7815 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7816 * we also don't want to reduce the group load below the group
7817 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7818 */
30ce5dab 7819 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7820
7821 /* How much load to actually move to equalise the imbalance */
56cf515b 7822 env->imbalance = min(
63b2ca30
NP
7823 max_pull * busiest->group_capacity,
7824 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7825 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7826
7827 /*
7828 * if *imbalance is less than the average load per runnable task
25985edc 7829 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7830 * a think about bumping its value to force at least one task to be
7831 * moved
7832 */
56cf515b 7833 if (env->imbalance < busiest->load_per_task)
bd939f45 7834 return fix_small_imbalance(env, sds);
1e3c88bd 7835}
fab47622 7836
1e3c88bd
PZ
7837/******* find_busiest_group() helpers end here *********************/
7838
7839/**
7840 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7841 * if there is an imbalance.
1e3c88bd
PZ
7842 *
7843 * Also calculates the amount of weighted load which should be moved
7844 * to restore balance.
7845 *
cd96891d 7846 * @env: The load balancing environment.
1e3c88bd 7847 *
e69f6186 7848 * Return: - The busiest group if imbalance exists.
1e3c88bd 7849 */
56cf515b 7850static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7851{
56cf515b 7852 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7853 struct sd_lb_stats sds;
7854
147c5fc2 7855 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7856
7857 /*
7858 * Compute the various statistics relavent for load balancing at
7859 * this level.
7860 */
23f0d209 7861 update_sd_lb_stats(env, &sds);
56cf515b
JK
7862 local = &sds.local_stat;
7863 busiest = &sds.busiest_stat;
1e3c88bd 7864
ea67821b 7865 /* ASYM feature bypasses nice load balance check */
1f621e02 7866 if (check_asym_packing(env, &sds))
532cb4c4
MN
7867 return sds.busiest;
7868
cc57aa8f 7869 /* There is no busy sibling group to pull tasks from */
56cf515b 7870 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7871 goto out_balanced;
7872
ca8ce3d0
NP
7873 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7874 / sds.total_capacity;
b0432d8f 7875
866ab43e
PZ
7876 /*
7877 * If the busiest group is imbalanced the below checks don't
30ce5dab 7878 * work because they assume all things are equal, which typically
866ab43e
PZ
7879 * isn't true due to cpus_allowed constraints and the like.
7880 */
caeb178c 7881 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7882 goto force_balance;
7883
cc57aa8f 7884 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7885 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7886 busiest->group_no_capacity)
fab47622
NR
7887 goto force_balance;
7888
cc57aa8f 7889 /*
9c58c79a 7890 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7891 * don't try and pull any tasks.
7892 */
56cf515b 7893 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7894 goto out_balanced;
7895
cc57aa8f
PZ
7896 /*
7897 * Don't pull any tasks if this group is already above the domain
7898 * average load.
7899 */
56cf515b 7900 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7901 goto out_balanced;
7902
bd939f45 7903 if (env->idle == CPU_IDLE) {
aae6d3dd 7904 /*
43f4d666
VG
7905 * This cpu is idle. If the busiest group is not overloaded
7906 * and there is no imbalance between this and busiest group
7907 * wrt idle cpus, it is balanced. The imbalance becomes
7908 * significant if the diff is greater than 1 otherwise we
7909 * might end up to just move the imbalance on another group
aae6d3dd 7910 */
43f4d666
VG
7911 if ((busiest->group_type != group_overloaded) &&
7912 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7913 goto out_balanced;
c186fafe
PZ
7914 } else {
7915 /*
7916 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7917 * imbalance_pct to be conservative.
7918 */
56cf515b
JK
7919 if (100 * busiest->avg_load <=
7920 env->sd->imbalance_pct * local->avg_load)
c186fafe 7921 goto out_balanced;
aae6d3dd 7922 }
1e3c88bd 7923
fab47622 7924force_balance:
1e3c88bd 7925 /* Looks like there is an imbalance. Compute it */
bd939f45 7926 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7927 return sds.busiest;
7928
7929out_balanced:
bd939f45 7930 env->imbalance = 0;
1e3c88bd
PZ
7931 return NULL;
7932}
7933
7934/*
7935 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7936 */
bd939f45 7937static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7938 struct sched_group *group)
1e3c88bd
PZ
7939{
7940 struct rq *busiest = NULL, *rq;
ced549fa 7941 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7942 int i;
7943
6906a408 7944 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7945 unsigned long capacity, wl;
0ec8aa00
PZ
7946 enum fbq_type rt;
7947
7948 rq = cpu_rq(i);
7949 rt = fbq_classify_rq(rq);
1e3c88bd 7950
0ec8aa00
PZ
7951 /*
7952 * We classify groups/runqueues into three groups:
7953 * - regular: there are !numa tasks
7954 * - remote: there are numa tasks that run on the 'wrong' node
7955 * - all: there is no distinction
7956 *
7957 * In order to avoid migrating ideally placed numa tasks,
7958 * ignore those when there's better options.
7959 *
7960 * If we ignore the actual busiest queue to migrate another
7961 * task, the next balance pass can still reduce the busiest
7962 * queue by moving tasks around inside the node.
7963 *
7964 * If we cannot move enough load due to this classification
7965 * the next pass will adjust the group classification and
7966 * allow migration of more tasks.
7967 *
7968 * Both cases only affect the total convergence complexity.
7969 */
7970 if (rt > env->fbq_type)
7971 continue;
7972
ced549fa 7973 capacity = capacity_of(i);
9d5efe05 7974
6e40f5bb 7975 wl = weighted_cpuload(i);
1e3c88bd 7976
6e40f5bb
TG
7977 /*
7978 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7979 * which is not scaled with the cpu capacity.
6e40f5bb 7980 */
ea67821b
VG
7981
7982 if (rq->nr_running == 1 && wl > env->imbalance &&
7983 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7984 continue;
7985
6e40f5bb
TG
7986 /*
7987 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7988 * the weighted_cpuload() scaled with the cpu capacity, so
7989 * that the load can be moved away from the cpu that is
7990 * potentially running at a lower capacity.
95a79b80 7991 *
ced549fa 7992 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7993 * multiplication to rid ourselves of the division works out
ced549fa
NP
7994 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7995 * our previous maximum.
6e40f5bb 7996 */
ced549fa 7997 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7998 busiest_load = wl;
ced549fa 7999 busiest_capacity = capacity;
1e3c88bd
PZ
8000 busiest = rq;
8001 }
8002 }
8003
8004 return busiest;
8005}
8006
8007/*
8008 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8009 * so long as it is large enough.
8010 */
8011#define MAX_PINNED_INTERVAL 512
8012
bd939f45 8013static int need_active_balance(struct lb_env *env)
1af3ed3d 8014{
bd939f45
PZ
8015 struct sched_domain *sd = env->sd;
8016
8017 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8018
8019 /*
8020 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8021 * lower priority CPUs in order to pack all tasks in the
8022 * highest priority CPUs.
532cb4c4 8023 */
afe06efd
TC
8024 if ((sd->flags & SD_ASYM_PACKING) &&
8025 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8026 return 1;
1af3ed3d
PZ
8027 }
8028
1aaf90a4
VG
8029 /*
8030 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8031 * It's worth migrating the task if the src_cpu's capacity is reduced
8032 * because of other sched_class or IRQs if more capacity stays
8033 * available on dst_cpu.
8034 */
8035 if ((env->idle != CPU_NOT_IDLE) &&
8036 (env->src_rq->cfs.h_nr_running == 1)) {
8037 if ((check_cpu_capacity(env->src_rq, sd)) &&
8038 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8039 return 1;
8040 }
8041
1af3ed3d
PZ
8042 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8043}
8044
969c7921
TH
8045static int active_load_balance_cpu_stop(void *data);
8046
23f0d209
JK
8047static int should_we_balance(struct lb_env *env)
8048{
8049 struct sched_group *sg = env->sd->groups;
8050 struct cpumask *sg_cpus, *sg_mask;
8051 int cpu, balance_cpu = -1;
8052
8053 /*
8054 * In the newly idle case, we will allow all the cpu's
8055 * to do the newly idle load balance.
8056 */
8057 if (env->idle == CPU_NEWLY_IDLE)
8058 return 1;
8059
8060 sg_cpus = sched_group_cpus(sg);
8061 sg_mask = sched_group_mask(sg);
8062 /* Try to find first idle cpu */
8063 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8064 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8065 continue;
8066
8067 balance_cpu = cpu;
8068 break;
8069 }
8070
8071 if (balance_cpu == -1)
8072 balance_cpu = group_balance_cpu(sg);
8073
8074 /*
8075 * First idle cpu or the first cpu(busiest) in this sched group
8076 * is eligible for doing load balancing at this and above domains.
8077 */
b0cff9d8 8078 return balance_cpu == env->dst_cpu;
23f0d209
JK
8079}
8080
1e3c88bd
PZ
8081/*
8082 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8083 * tasks if there is an imbalance.
8084 */
8085static int load_balance(int this_cpu, struct rq *this_rq,
8086 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8087 int *continue_balancing)
1e3c88bd 8088{
88b8dac0 8089 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8090 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8091 struct sched_group *group;
1e3c88bd 8092 struct rq *busiest;
8a8c69c3 8093 struct rq_flags rf;
4ba29684 8094 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8095
8e45cb54
PZ
8096 struct lb_env env = {
8097 .sd = sd,
ddcdf6e7
PZ
8098 .dst_cpu = this_cpu,
8099 .dst_rq = this_rq,
88b8dac0 8100 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 8101 .idle = idle,
eb95308e 8102 .loop_break = sched_nr_migrate_break,
b9403130 8103 .cpus = cpus,
0ec8aa00 8104 .fbq_type = all,
163122b7 8105 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8106 };
8107
cfc03118
JK
8108 /*
8109 * For NEWLY_IDLE load_balancing, we don't need to consider
8110 * other cpus in our group
8111 */
e02e60c1 8112 if (idle == CPU_NEWLY_IDLE)
cfc03118 8113 env.dst_grpmask = NULL;
cfc03118 8114
1e3c88bd
PZ
8115 cpumask_copy(cpus, cpu_active_mask);
8116
ae92882e 8117 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8118
8119redo:
23f0d209
JK
8120 if (!should_we_balance(&env)) {
8121 *continue_balancing = 0;
1e3c88bd 8122 goto out_balanced;
23f0d209 8123 }
1e3c88bd 8124
23f0d209 8125 group = find_busiest_group(&env);
1e3c88bd 8126 if (!group) {
ae92882e 8127 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8128 goto out_balanced;
8129 }
8130
b9403130 8131 busiest = find_busiest_queue(&env, group);
1e3c88bd 8132 if (!busiest) {
ae92882e 8133 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8134 goto out_balanced;
8135 }
8136
78feefc5 8137 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8138
ae92882e 8139 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8140
1aaf90a4
VG
8141 env.src_cpu = busiest->cpu;
8142 env.src_rq = busiest;
8143
1e3c88bd
PZ
8144 ld_moved = 0;
8145 if (busiest->nr_running > 1) {
8146 /*
8147 * Attempt to move tasks. If find_busiest_group has found
8148 * an imbalance but busiest->nr_running <= 1, the group is
8149 * still unbalanced. ld_moved simply stays zero, so it is
8150 * correctly treated as an imbalance.
8151 */
8e45cb54 8152 env.flags |= LBF_ALL_PINNED;
c82513e5 8153 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8154
5d6523eb 8155more_balance:
8a8c69c3 8156 rq_lock_irqsave(busiest, &rf);
3bed5e21 8157 update_rq_clock(busiest);
88b8dac0
SV
8158
8159 /*
8160 * cur_ld_moved - load moved in current iteration
8161 * ld_moved - cumulative load moved across iterations
8162 */
163122b7 8163 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8164
8165 /*
163122b7
KT
8166 * We've detached some tasks from busiest_rq. Every
8167 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8168 * unlock busiest->lock, and we are able to be sure
8169 * that nobody can manipulate the tasks in parallel.
8170 * See task_rq_lock() family for the details.
1e3c88bd 8171 */
163122b7 8172
8a8c69c3 8173 rq_unlock(busiest, &rf);
163122b7
KT
8174
8175 if (cur_ld_moved) {
8176 attach_tasks(&env);
8177 ld_moved += cur_ld_moved;
8178 }
8179
8a8c69c3 8180 local_irq_restore(rf.flags);
88b8dac0 8181
f1cd0858
JK
8182 if (env.flags & LBF_NEED_BREAK) {
8183 env.flags &= ~LBF_NEED_BREAK;
8184 goto more_balance;
8185 }
8186
88b8dac0
SV
8187 /*
8188 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8189 * us and move them to an alternate dst_cpu in our sched_group
8190 * where they can run. The upper limit on how many times we
8191 * iterate on same src_cpu is dependent on number of cpus in our
8192 * sched_group.
8193 *
8194 * This changes load balance semantics a bit on who can move
8195 * load to a given_cpu. In addition to the given_cpu itself
8196 * (or a ilb_cpu acting on its behalf where given_cpu is
8197 * nohz-idle), we now have balance_cpu in a position to move
8198 * load to given_cpu. In rare situations, this may cause
8199 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8200 * _independently_ and at _same_ time to move some load to
8201 * given_cpu) causing exceess load to be moved to given_cpu.
8202 * This however should not happen so much in practice and
8203 * moreover subsequent load balance cycles should correct the
8204 * excess load moved.
8205 */
6263322c 8206 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8207
7aff2e3a
VD
8208 /* Prevent to re-select dst_cpu via env's cpus */
8209 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8210
78feefc5 8211 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8212 env.dst_cpu = env.new_dst_cpu;
6263322c 8213 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8214 env.loop = 0;
8215 env.loop_break = sched_nr_migrate_break;
e02e60c1 8216
88b8dac0
SV
8217 /*
8218 * Go back to "more_balance" rather than "redo" since we
8219 * need to continue with same src_cpu.
8220 */
8221 goto more_balance;
8222 }
1e3c88bd 8223
6263322c
PZ
8224 /*
8225 * We failed to reach balance because of affinity.
8226 */
8227 if (sd_parent) {
63b2ca30 8228 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8229
afdeee05 8230 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8231 *group_imbalance = 1;
6263322c
PZ
8232 }
8233
1e3c88bd 8234 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8235 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8236 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8237 if (!cpumask_empty(cpus)) {
8238 env.loop = 0;
8239 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8240 goto redo;
bbf18b19 8241 }
afdeee05 8242 goto out_all_pinned;
1e3c88bd
PZ
8243 }
8244 }
8245
8246 if (!ld_moved) {
ae92882e 8247 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8248 /*
8249 * Increment the failure counter only on periodic balance.
8250 * We do not want newidle balance, which can be very
8251 * frequent, pollute the failure counter causing
8252 * excessive cache_hot migrations and active balances.
8253 */
8254 if (idle != CPU_NEWLY_IDLE)
8255 sd->nr_balance_failed++;
1e3c88bd 8256
bd939f45 8257 if (need_active_balance(&env)) {
8a8c69c3
PZ
8258 unsigned long flags;
8259
1e3c88bd
PZ
8260 raw_spin_lock_irqsave(&busiest->lock, flags);
8261
969c7921
TH
8262 /* don't kick the active_load_balance_cpu_stop,
8263 * if the curr task on busiest cpu can't be
8264 * moved to this_cpu
1e3c88bd 8265 */
0c98d344 8266 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8267 raw_spin_unlock_irqrestore(&busiest->lock,
8268 flags);
8e45cb54 8269 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8270 goto out_one_pinned;
8271 }
8272
969c7921
TH
8273 /*
8274 * ->active_balance synchronizes accesses to
8275 * ->active_balance_work. Once set, it's cleared
8276 * only after active load balance is finished.
8277 */
1e3c88bd
PZ
8278 if (!busiest->active_balance) {
8279 busiest->active_balance = 1;
8280 busiest->push_cpu = this_cpu;
8281 active_balance = 1;
8282 }
8283 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8284
bd939f45 8285 if (active_balance) {
969c7921
TH
8286 stop_one_cpu_nowait(cpu_of(busiest),
8287 active_load_balance_cpu_stop, busiest,
8288 &busiest->active_balance_work);
bd939f45 8289 }
1e3c88bd 8290
d02c0711 8291 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8292 sd->nr_balance_failed = sd->cache_nice_tries+1;
8293 }
8294 } else
8295 sd->nr_balance_failed = 0;
8296
8297 if (likely(!active_balance)) {
8298 /* We were unbalanced, so reset the balancing interval */
8299 sd->balance_interval = sd->min_interval;
8300 } else {
8301 /*
8302 * If we've begun active balancing, start to back off. This
8303 * case may not be covered by the all_pinned logic if there
8304 * is only 1 task on the busy runqueue (because we don't call
163122b7 8305 * detach_tasks).
1e3c88bd
PZ
8306 */
8307 if (sd->balance_interval < sd->max_interval)
8308 sd->balance_interval *= 2;
8309 }
8310
1e3c88bd
PZ
8311 goto out;
8312
8313out_balanced:
afdeee05
VG
8314 /*
8315 * We reach balance although we may have faced some affinity
8316 * constraints. Clear the imbalance flag if it was set.
8317 */
8318 if (sd_parent) {
8319 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8320
8321 if (*group_imbalance)
8322 *group_imbalance = 0;
8323 }
8324
8325out_all_pinned:
8326 /*
8327 * We reach balance because all tasks are pinned at this level so
8328 * we can't migrate them. Let the imbalance flag set so parent level
8329 * can try to migrate them.
8330 */
ae92882e 8331 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8332
8333 sd->nr_balance_failed = 0;
8334
8335out_one_pinned:
8336 /* tune up the balancing interval */
8e45cb54 8337 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8338 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8339 (sd->balance_interval < sd->max_interval))
8340 sd->balance_interval *= 2;
8341
46e49b38 8342 ld_moved = 0;
1e3c88bd 8343out:
1e3c88bd
PZ
8344 return ld_moved;
8345}
8346
52a08ef1
JL
8347static inline unsigned long
8348get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8349{
8350 unsigned long interval = sd->balance_interval;
8351
8352 if (cpu_busy)
8353 interval *= sd->busy_factor;
8354
8355 /* scale ms to jiffies */
8356 interval = msecs_to_jiffies(interval);
8357 interval = clamp(interval, 1UL, max_load_balance_interval);
8358
8359 return interval;
8360}
8361
8362static inline void
31851a98 8363update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8364{
8365 unsigned long interval, next;
8366
31851a98
LY
8367 /* used by idle balance, so cpu_busy = 0 */
8368 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8369 next = sd->last_balance + interval;
8370
8371 if (time_after(*next_balance, next))
8372 *next_balance = next;
8373}
8374
1e3c88bd
PZ
8375/*
8376 * idle_balance is called by schedule() if this_cpu is about to become
8377 * idle. Attempts to pull tasks from other CPUs.
8378 */
46f69fa3 8379static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8380{
52a08ef1
JL
8381 unsigned long next_balance = jiffies + HZ;
8382 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8383 struct sched_domain *sd;
8384 int pulled_task = 0;
9bd721c5 8385 u64 curr_cost = 0;
1e3c88bd 8386
6e83125c
PZ
8387 /*
8388 * We must set idle_stamp _before_ calling idle_balance(), such that we
8389 * measure the duration of idle_balance() as idle time.
8390 */
8391 this_rq->idle_stamp = rq_clock(this_rq);
8392
46f69fa3
MF
8393 /*
8394 * This is OK, because current is on_cpu, which avoids it being picked
8395 * for load-balance and preemption/IRQs are still disabled avoiding
8396 * further scheduler activity on it and we're being very careful to
8397 * re-start the picking loop.
8398 */
8399 rq_unpin_lock(this_rq, rf);
8400
4486edd1
TC
8401 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8402 !this_rq->rd->overload) {
52a08ef1
JL
8403 rcu_read_lock();
8404 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8405 if (sd)
31851a98 8406 update_next_balance(sd, &next_balance);
52a08ef1
JL
8407 rcu_read_unlock();
8408
6e83125c 8409 goto out;
52a08ef1 8410 }
1e3c88bd 8411
f492e12e
PZ
8412 raw_spin_unlock(&this_rq->lock);
8413
48a16753 8414 update_blocked_averages(this_cpu);
dce840a0 8415 rcu_read_lock();
1e3c88bd 8416 for_each_domain(this_cpu, sd) {
23f0d209 8417 int continue_balancing = 1;
9bd721c5 8418 u64 t0, domain_cost;
1e3c88bd
PZ
8419
8420 if (!(sd->flags & SD_LOAD_BALANCE))
8421 continue;
8422
52a08ef1 8423 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8424 update_next_balance(sd, &next_balance);
9bd721c5 8425 break;
52a08ef1 8426 }
9bd721c5 8427
f492e12e 8428 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8429 t0 = sched_clock_cpu(this_cpu);
8430
f492e12e 8431 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8432 sd, CPU_NEWLY_IDLE,
8433 &continue_balancing);
9bd721c5
JL
8434
8435 domain_cost = sched_clock_cpu(this_cpu) - t0;
8436 if (domain_cost > sd->max_newidle_lb_cost)
8437 sd->max_newidle_lb_cost = domain_cost;
8438
8439 curr_cost += domain_cost;
f492e12e 8440 }
1e3c88bd 8441
31851a98 8442 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8443
8444 /*
8445 * Stop searching for tasks to pull if there are
8446 * now runnable tasks on this rq.
8447 */
8448 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8449 break;
1e3c88bd 8450 }
dce840a0 8451 rcu_read_unlock();
f492e12e
PZ
8452
8453 raw_spin_lock(&this_rq->lock);
8454
0e5b5337
JL
8455 if (curr_cost > this_rq->max_idle_balance_cost)
8456 this_rq->max_idle_balance_cost = curr_cost;
8457
e5fc6611 8458 /*
0e5b5337
JL
8459 * While browsing the domains, we released the rq lock, a task could
8460 * have been enqueued in the meantime. Since we're not going idle,
8461 * pretend we pulled a task.
e5fc6611 8462 */
0e5b5337 8463 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8464 pulled_task = 1;
e5fc6611 8465
52a08ef1
JL
8466out:
8467 /* Move the next balance forward */
8468 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8469 this_rq->next_balance = next_balance;
9bd721c5 8470
e4aa358b 8471 /* Is there a task of a high priority class? */
46383648 8472 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8473 pulled_task = -1;
8474
38c6ade2 8475 if (pulled_task)
6e83125c
PZ
8476 this_rq->idle_stamp = 0;
8477
46f69fa3
MF
8478 rq_repin_lock(this_rq, rf);
8479
3c4017c1 8480 return pulled_task;
1e3c88bd
PZ
8481}
8482
8483/*
969c7921
TH
8484 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8485 * running tasks off the busiest CPU onto idle CPUs. It requires at
8486 * least 1 task to be running on each physical CPU where possible, and
8487 * avoids physical / logical imbalances.
1e3c88bd 8488 */
969c7921 8489static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8490{
969c7921
TH
8491 struct rq *busiest_rq = data;
8492 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8493 int target_cpu = busiest_rq->push_cpu;
969c7921 8494 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8495 struct sched_domain *sd;
e5673f28 8496 struct task_struct *p = NULL;
8a8c69c3 8497 struct rq_flags rf;
969c7921 8498
8a8c69c3 8499 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8500
8501 /* make sure the requested cpu hasn't gone down in the meantime */
8502 if (unlikely(busiest_cpu != smp_processor_id() ||
8503 !busiest_rq->active_balance))
8504 goto out_unlock;
1e3c88bd
PZ
8505
8506 /* Is there any task to move? */
8507 if (busiest_rq->nr_running <= 1)
969c7921 8508 goto out_unlock;
1e3c88bd
PZ
8509
8510 /*
8511 * This condition is "impossible", if it occurs
8512 * we need to fix it. Originally reported by
8513 * Bjorn Helgaas on a 128-cpu setup.
8514 */
8515 BUG_ON(busiest_rq == target_rq);
8516
1e3c88bd 8517 /* Search for an sd spanning us and the target CPU. */
dce840a0 8518 rcu_read_lock();
1e3c88bd
PZ
8519 for_each_domain(target_cpu, sd) {
8520 if ((sd->flags & SD_LOAD_BALANCE) &&
8521 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8522 break;
8523 }
8524
8525 if (likely(sd)) {
8e45cb54
PZ
8526 struct lb_env env = {
8527 .sd = sd,
ddcdf6e7
PZ
8528 .dst_cpu = target_cpu,
8529 .dst_rq = target_rq,
8530 .src_cpu = busiest_rq->cpu,
8531 .src_rq = busiest_rq,
8e45cb54
PZ
8532 .idle = CPU_IDLE,
8533 };
8534
ae92882e 8535 schedstat_inc(sd->alb_count);
3bed5e21 8536 update_rq_clock(busiest_rq);
1e3c88bd 8537
e5673f28 8538 p = detach_one_task(&env);
d02c0711 8539 if (p) {
ae92882e 8540 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8541 /* Active balancing done, reset the failure counter. */
8542 sd->nr_balance_failed = 0;
8543 } else {
ae92882e 8544 schedstat_inc(sd->alb_failed);
d02c0711 8545 }
1e3c88bd 8546 }
dce840a0 8547 rcu_read_unlock();
969c7921
TH
8548out_unlock:
8549 busiest_rq->active_balance = 0;
8a8c69c3 8550 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8551
8552 if (p)
8553 attach_one_task(target_rq, p);
8554
8555 local_irq_enable();
8556
969c7921 8557 return 0;
1e3c88bd
PZ
8558}
8559
d987fc7f
MG
8560static inline int on_null_domain(struct rq *rq)
8561{
8562 return unlikely(!rcu_dereference_sched(rq->sd));
8563}
8564
3451d024 8565#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8566/*
8567 * idle load balancing details
83cd4fe2
VP
8568 * - When one of the busy CPUs notice that there may be an idle rebalancing
8569 * needed, they will kick the idle load balancer, which then does idle
8570 * load balancing for all the idle CPUs.
8571 */
1e3c88bd 8572static struct {
83cd4fe2 8573 cpumask_var_t idle_cpus_mask;
0b005cf5 8574 atomic_t nr_cpus;
83cd4fe2
VP
8575 unsigned long next_balance; /* in jiffy units */
8576} nohz ____cacheline_aligned;
1e3c88bd 8577
3dd0337d 8578static inline int find_new_ilb(void)
1e3c88bd 8579{
0b005cf5 8580 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8581
786d6dc7
SS
8582 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8583 return ilb;
8584
8585 return nr_cpu_ids;
1e3c88bd 8586}
1e3c88bd 8587
83cd4fe2
VP
8588/*
8589 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8590 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8591 * CPU (if there is one).
8592 */
0aeeeeba 8593static void nohz_balancer_kick(void)
83cd4fe2
VP
8594{
8595 int ilb_cpu;
8596
8597 nohz.next_balance++;
8598
3dd0337d 8599 ilb_cpu = find_new_ilb();
83cd4fe2 8600
0b005cf5
SS
8601 if (ilb_cpu >= nr_cpu_ids)
8602 return;
83cd4fe2 8603
cd490c5b 8604 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8605 return;
8606 /*
8607 * Use smp_send_reschedule() instead of resched_cpu().
8608 * This way we generate a sched IPI on the target cpu which
8609 * is idle. And the softirq performing nohz idle load balance
8610 * will be run before returning from the IPI.
8611 */
8612 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8613 return;
8614}
8615
20a5c8cc 8616void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8617{
8618 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8619 /*
8620 * Completely isolated CPUs don't ever set, so we must test.
8621 */
8622 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8623 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8624 atomic_dec(&nohz.nr_cpus);
8625 }
71325960
SS
8626 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8627 }
8628}
8629
69e1e811
SS
8630static inline void set_cpu_sd_state_busy(void)
8631{
8632 struct sched_domain *sd;
37dc6b50 8633 int cpu = smp_processor_id();
69e1e811 8634
69e1e811 8635 rcu_read_lock();
0e369d75 8636 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8637
8638 if (!sd || !sd->nohz_idle)
8639 goto unlock;
8640 sd->nohz_idle = 0;
8641
0e369d75 8642 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8643unlock:
69e1e811
SS
8644 rcu_read_unlock();
8645}
8646
8647void set_cpu_sd_state_idle(void)
8648{
8649 struct sched_domain *sd;
37dc6b50 8650 int cpu = smp_processor_id();
69e1e811 8651
69e1e811 8652 rcu_read_lock();
0e369d75 8653 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8654
8655 if (!sd || sd->nohz_idle)
8656 goto unlock;
8657 sd->nohz_idle = 1;
8658
0e369d75 8659 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8660unlock:
69e1e811
SS
8661 rcu_read_unlock();
8662}
8663
1e3c88bd 8664/*
c1cc017c 8665 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8666 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8667 */
c1cc017c 8668void nohz_balance_enter_idle(int cpu)
1e3c88bd 8669{
71325960
SS
8670 /*
8671 * If this cpu is going down, then nothing needs to be done.
8672 */
8673 if (!cpu_active(cpu))
8674 return;
8675
c1cc017c
AS
8676 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8677 return;
1e3c88bd 8678
d987fc7f
MG
8679 /*
8680 * If we're a completely isolated CPU, we don't play.
8681 */
8682 if (on_null_domain(cpu_rq(cpu)))
8683 return;
8684
c1cc017c
AS
8685 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8686 atomic_inc(&nohz.nr_cpus);
8687 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8688}
8689#endif
8690
8691static DEFINE_SPINLOCK(balancing);
8692
49c022e6
PZ
8693/*
8694 * Scale the max load_balance interval with the number of CPUs in the system.
8695 * This trades load-balance latency on larger machines for less cross talk.
8696 */
029632fb 8697void update_max_interval(void)
49c022e6
PZ
8698{
8699 max_load_balance_interval = HZ*num_online_cpus()/10;
8700}
8701
1e3c88bd
PZ
8702/*
8703 * It checks each scheduling domain to see if it is due to be balanced,
8704 * and initiates a balancing operation if so.
8705 *
b9b0853a 8706 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8707 */
f7ed0a89 8708static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8709{
23f0d209 8710 int continue_balancing = 1;
f7ed0a89 8711 int cpu = rq->cpu;
1e3c88bd 8712 unsigned long interval;
04f733b4 8713 struct sched_domain *sd;
1e3c88bd
PZ
8714 /* Earliest time when we have to do rebalance again */
8715 unsigned long next_balance = jiffies + 60*HZ;
8716 int update_next_balance = 0;
f48627e6
JL
8717 int need_serialize, need_decay = 0;
8718 u64 max_cost = 0;
1e3c88bd 8719
48a16753 8720 update_blocked_averages(cpu);
2069dd75 8721
dce840a0 8722 rcu_read_lock();
1e3c88bd 8723 for_each_domain(cpu, sd) {
f48627e6
JL
8724 /*
8725 * Decay the newidle max times here because this is a regular
8726 * visit to all the domains. Decay ~1% per second.
8727 */
8728 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8729 sd->max_newidle_lb_cost =
8730 (sd->max_newidle_lb_cost * 253) / 256;
8731 sd->next_decay_max_lb_cost = jiffies + HZ;
8732 need_decay = 1;
8733 }
8734 max_cost += sd->max_newidle_lb_cost;
8735
1e3c88bd
PZ
8736 if (!(sd->flags & SD_LOAD_BALANCE))
8737 continue;
8738
f48627e6
JL
8739 /*
8740 * Stop the load balance at this level. There is another
8741 * CPU in our sched group which is doing load balancing more
8742 * actively.
8743 */
8744 if (!continue_balancing) {
8745 if (need_decay)
8746 continue;
8747 break;
8748 }
8749
52a08ef1 8750 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8751
8752 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8753 if (need_serialize) {
8754 if (!spin_trylock(&balancing))
8755 goto out;
8756 }
8757
8758 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8759 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8760 /*
6263322c 8761 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8762 * env->dst_cpu, so we can't know our idle
8763 * state even if we migrated tasks. Update it.
1e3c88bd 8764 */
de5eb2dd 8765 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8766 }
8767 sd->last_balance = jiffies;
52a08ef1 8768 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8769 }
8770 if (need_serialize)
8771 spin_unlock(&balancing);
8772out:
8773 if (time_after(next_balance, sd->last_balance + interval)) {
8774 next_balance = sd->last_balance + interval;
8775 update_next_balance = 1;
8776 }
f48627e6
JL
8777 }
8778 if (need_decay) {
1e3c88bd 8779 /*
f48627e6
JL
8780 * Ensure the rq-wide value also decays but keep it at a
8781 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8782 */
f48627e6
JL
8783 rq->max_idle_balance_cost =
8784 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8785 }
dce840a0 8786 rcu_read_unlock();
1e3c88bd
PZ
8787
8788 /*
8789 * next_balance will be updated only when there is a need.
8790 * When the cpu is attached to null domain for ex, it will not be
8791 * updated.
8792 */
c5afb6a8 8793 if (likely(update_next_balance)) {
1e3c88bd 8794 rq->next_balance = next_balance;
c5afb6a8
VG
8795
8796#ifdef CONFIG_NO_HZ_COMMON
8797 /*
8798 * If this CPU has been elected to perform the nohz idle
8799 * balance. Other idle CPUs have already rebalanced with
8800 * nohz_idle_balance() and nohz.next_balance has been
8801 * updated accordingly. This CPU is now running the idle load
8802 * balance for itself and we need to update the
8803 * nohz.next_balance accordingly.
8804 */
8805 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8806 nohz.next_balance = rq->next_balance;
8807#endif
8808 }
1e3c88bd
PZ
8809}
8810
3451d024 8811#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8812/*
3451d024 8813 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8814 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8815 */
208cb16b 8816static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8817{
208cb16b 8818 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8819 struct rq *rq;
8820 int balance_cpu;
c5afb6a8
VG
8821 /* Earliest time when we have to do rebalance again */
8822 unsigned long next_balance = jiffies + 60*HZ;
8823 int update_next_balance = 0;
83cd4fe2 8824
1c792db7
SS
8825 if (idle != CPU_IDLE ||
8826 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8827 goto end;
83cd4fe2
VP
8828
8829 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8830 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8831 continue;
8832
8833 /*
8834 * If this cpu gets work to do, stop the load balancing
8835 * work being done for other cpus. Next load
8836 * balancing owner will pick it up.
8837 */
1c792db7 8838 if (need_resched())
83cd4fe2 8839 break;
83cd4fe2 8840
5ed4f1d9
VG
8841 rq = cpu_rq(balance_cpu);
8842
ed61bbc6
TC
8843 /*
8844 * If time for next balance is due,
8845 * do the balance.
8846 */
8847 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8848 struct rq_flags rf;
8849
8850 rq_lock_irq(rq, &rf);
ed61bbc6 8851 update_rq_clock(rq);
cee1afce 8852 cpu_load_update_idle(rq);
8a8c69c3
PZ
8853 rq_unlock_irq(rq, &rf);
8854
ed61bbc6
TC
8855 rebalance_domains(rq, CPU_IDLE);
8856 }
83cd4fe2 8857
c5afb6a8
VG
8858 if (time_after(next_balance, rq->next_balance)) {
8859 next_balance = rq->next_balance;
8860 update_next_balance = 1;
8861 }
83cd4fe2 8862 }
c5afb6a8
VG
8863
8864 /*
8865 * next_balance will be updated only when there is a need.
8866 * When the CPU is attached to null domain for ex, it will not be
8867 * updated.
8868 */
8869 if (likely(update_next_balance))
8870 nohz.next_balance = next_balance;
1c792db7
SS
8871end:
8872 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8873}
8874
8875/*
0b005cf5 8876 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8877 * of an idle cpu in the system.
0b005cf5 8878 * - This rq has more than one task.
1aaf90a4
VG
8879 * - This rq has at least one CFS task and the capacity of the CPU is
8880 * significantly reduced because of RT tasks or IRQs.
8881 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8882 * multiple busy cpu.
0b005cf5
SS
8883 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8884 * domain span are idle.
83cd4fe2 8885 */
1aaf90a4 8886static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8887{
8888 unsigned long now = jiffies;
0e369d75 8889 struct sched_domain_shared *sds;
0b005cf5 8890 struct sched_domain *sd;
afe06efd 8891 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8892 bool kick = false;
83cd4fe2 8893
4a725627 8894 if (unlikely(rq->idle_balance))
1aaf90a4 8895 return false;
83cd4fe2 8896
1c792db7
SS
8897 /*
8898 * We may be recently in ticked or tickless idle mode. At the first
8899 * busy tick after returning from idle, we will update the busy stats.
8900 */
69e1e811 8901 set_cpu_sd_state_busy();
c1cc017c 8902 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8903
8904 /*
8905 * None are in tickless mode and hence no need for NOHZ idle load
8906 * balancing.
8907 */
8908 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8909 return false;
1c792db7
SS
8910
8911 if (time_before(now, nohz.next_balance))
1aaf90a4 8912 return false;
83cd4fe2 8913
0b005cf5 8914 if (rq->nr_running >= 2)
1aaf90a4 8915 return true;
83cd4fe2 8916
067491b7 8917 rcu_read_lock();
0e369d75
PZ
8918 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8919 if (sds) {
8920 /*
8921 * XXX: write a coherent comment on why we do this.
8922 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8923 */
8924 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8925 if (nr_busy > 1) {
8926 kick = true;
8927 goto unlock;
8928 }
8929
83cd4fe2 8930 }
37dc6b50 8931
1aaf90a4
VG
8932 sd = rcu_dereference(rq->sd);
8933 if (sd) {
8934 if ((rq->cfs.h_nr_running >= 1) &&
8935 check_cpu_capacity(rq, sd)) {
8936 kick = true;
8937 goto unlock;
8938 }
8939 }
37dc6b50 8940
1aaf90a4 8941 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8942 if (sd) {
8943 for_each_cpu(i, sched_domain_span(sd)) {
8944 if (i == cpu ||
8945 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8946 continue;
067491b7 8947
afe06efd
TC
8948 if (sched_asym_prefer(i, cpu)) {
8949 kick = true;
8950 goto unlock;
8951 }
8952 }
8953 }
1aaf90a4 8954unlock:
067491b7 8955 rcu_read_unlock();
1aaf90a4 8956 return kick;
83cd4fe2
VP
8957}
8958#else
208cb16b 8959static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8960#endif
8961
8962/*
8963 * run_rebalance_domains is triggered when needed from the scheduler tick.
8964 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8965 */
0766f788 8966static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8967{
208cb16b 8968 struct rq *this_rq = this_rq();
6eb57e0d 8969 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8970 CPU_IDLE : CPU_NOT_IDLE;
8971
1e3c88bd 8972 /*
83cd4fe2 8973 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8974 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8975 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8976 * give the idle cpus a chance to load balance. Else we may
8977 * load balance only within the local sched_domain hierarchy
8978 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8979 */
208cb16b 8980 nohz_idle_balance(this_rq, idle);
d4573c3e 8981 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8982}
8983
1e3c88bd
PZ
8984/*
8985 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8986 */
7caff66f 8987void trigger_load_balance(struct rq *rq)
1e3c88bd 8988{
1e3c88bd 8989 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8990 if (unlikely(on_null_domain(rq)))
8991 return;
8992
8993 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8994 raise_softirq(SCHED_SOFTIRQ);
3451d024 8995#ifdef CONFIG_NO_HZ_COMMON
c726099e 8996 if (nohz_kick_needed(rq))
0aeeeeba 8997 nohz_balancer_kick();
83cd4fe2 8998#endif
1e3c88bd
PZ
8999}
9000
0bcdcf28
CE
9001static void rq_online_fair(struct rq *rq)
9002{
9003 update_sysctl();
0e59bdae
KT
9004
9005 update_runtime_enabled(rq);
0bcdcf28
CE
9006}
9007
9008static void rq_offline_fair(struct rq *rq)
9009{
9010 update_sysctl();
a4c96ae3
PB
9011
9012 /* Ensure any throttled groups are reachable by pick_next_task */
9013 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9014}
9015
55e12e5e 9016#endif /* CONFIG_SMP */
e1d1484f 9017
bf0f6f24
IM
9018/*
9019 * scheduler tick hitting a task of our scheduling class:
9020 */
8f4d37ec 9021static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9022{
9023 struct cfs_rq *cfs_rq;
9024 struct sched_entity *se = &curr->se;
9025
9026 for_each_sched_entity(se) {
9027 cfs_rq = cfs_rq_of(se);
8f4d37ec 9028 entity_tick(cfs_rq, se, queued);
bf0f6f24 9029 }
18bf2805 9030
b52da86e 9031 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9032 task_tick_numa(rq, curr);
bf0f6f24
IM
9033}
9034
9035/*
cd29fe6f
PZ
9036 * called on fork with the child task as argument from the parent's context
9037 * - child not yet on the tasklist
9038 * - preemption disabled
bf0f6f24 9039 */
cd29fe6f 9040static void task_fork_fair(struct task_struct *p)
bf0f6f24 9041{
4fc420c9
DN
9042 struct cfs_rq *cfs_rq;
9043 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9044 struct rq *rq = this_rq();
8a8c69c3 9045 struct rq_flags rf;
bf0f6f24 9046
8a8c69c3 9047 rq_lock(rq, &rf);
861d034e
PZ
9048 update_rq_clock(rq);
9049
4fc420c9
DN
9050 cfs_rq = task_cfs_rq(current);
9051 curr = cfs_rq->curr;
e210bffd
PZ
9052 if (curr) {
9053 update_curr(cfs_rq);
b5d9d734 9054 se->vruntime = curr->vruntime;
e210bffd 9055 }
aeb73b04 9056 place_entity(cfs_rq, se, 1);
4d78e7b6 9057
cd29fe6f 9058 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9059 /*
edcb60a3
IM
9060 * Upon rescheduling, sched_class::put_prev_task() will place
9061 * 'current' within the tree based on its new key value.
9062 */
4d78e7b6 9063 swap(curr->vruntime, se->vruntime);
8875125e 9064 resched_curr(rq);
4d78e7b6 9065 }
bf0f6f24 9066
88ec22d3 9067 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9068 rq_unlock(rq, &rf);
bf0f6f24
IM
9069}
9070
cb469845
SR
9071/*
9072 * Priority of the task has changed. Check to see if we preempt
9073 * the current task.
9074 */
da7a735e
PZ
9075static void
9076prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9077{
da0c1e65 9078 if (!task_on_rq_queued(p))
da7a735e
PZ
9079 return;
9080
cb469845
SR
9081 /*
9082 * Reschedule if we are currently running on this runqueue and
9083 * our priority decreased, or if we are not currently running on
9084 * this runqueue and our priority is higher than the current's
9085 */
da7a735e 9086 if (rq->curr == p) {
cb469845 9087 if (p->prio > oldprio)
8875125e 9088 resched_curr(rq);
cb469845 9089 } else
15afe09b 9090 check_preempt_curr(rq, p, 0);
cb469845
SR
9091}
9092
daa59407 9093static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9094{
9095 struct sched_entity *se = &p->se;
da7a735e
PZ
9096
9097 /*
daa59407
BP
9098 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9099 * the dequeue_entity(.flags=0) will already have normalized the
9100 * vruntime.
9101 */
9102 if (p->on_rq)
9103 return true;
9104
9105 /*
9106 * When !on_rq, vruntime of the task has usually NOT been normalized.
9107 * But there are some cases where it has already been normalized:
da7a735e 9108 *
daa59407
BP
9109 * - A forked child which is waiting for being woken up by
9110 * wake_up_new_task().
9111 * - A task which has been woken up by try_to_wake_up() and
9112 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9113 */
daa59407
BP
9114 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9115 return true;
9116
9117 return false;
9118}
9119
09a43ace
VG
9120#ifdef CONFIG_FAIR_GROUP_SCHED
9121/*
9122 * Propagate the changes of the sched_entity across the tg tree to make it
9123 * visible to the root
9124 */
9125static void propagate_entity_cfs_rq(struct sched_entity *se)
9126{
9127 struct cfs_rq *cfs_rq;
9128
9129 /* Start to propagate at parent */
9130 se = se->parent;
9131
9132 for_each_sched_entity(se) {
9133 cfs_rq = cfs_rq_of(se);
9134
9135 if (cfs_rq_throttled(cfs_rq))
9136 break;
9137
9138 update_load_avg(se, UPDATE_TG);
9139 }
9140}
9141#else
9142static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9143#endif
9144
df217913 9145static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9146{
daa59407
BP
9147 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9148
9d89c257 9149 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9150 update_load_avg(se, 0);
a05e8c51 9151 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9152 update_tg_load_avg(cfs_rq, false);
09a43ace 9153 propagate_entity_cfs_rq(se);
da7a735e
PZ
9154}
9155
df217913 9156static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9157{
daa59407 9158 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9159
9160#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9161 /*
9162 * Since the real-depth could have been changed (only FAIR
9163 * class maintain depth value), reset depth properly.
9164 */
9165 se->depth = se->parent ? se->parent->depth + 1 : 0;
9166#endif
7855a35a 9167
df217913 9168 /* Synchronize entity with its cfs_rq */
d31b1a66 9169 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9170 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9171 update_tg_load_avg(cfs_rq, false);
09a43ace 9172 propagate_entity_cfs_rq(se);
df217913
VG
9173}
9174
9175static void detach_task_cfs_rq(struct task_struct *p)
9176{
9177 struct sched_entity *se = &p->se;
9178 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9179
9180 if (!vruntime_normalized(p)) {
9181 /*
9182 * Fix up our vruntime so that the current sleep doesn't
9183 * cause 'unlimited' sleep bonus.
9184 */
9185 place_entity(cfs_rq, se, 0);
9186 se->vruntime -= cfs_rq->min_vruntime;
9187 }
9188
9189 detach_entity_cfs_rq(se);
9190}
9191
9192static void attach_task_cfs_rq(struct task_struct *p)
9193{
9194 struct sched_entity *se = &p->se;
9195 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9196
9197 attach_entity_cfs_rq(se);
daa59407
BP
9198
9199 if (!vruntime_normalized(p))
9200 se->vruntime += cfs_rq->min_vruntime;
9201}
6efdb105 9202
daa59407
BP
9203static void switched_from_fair(struct rq *rq, struct task_struct *p)
9204{
9205 detach_task_cfs_rq(p);
9206}
9207
9208static void switched_to_fair(struct rq *rq, struct task_struct *p)
9209{
9210 attach_task_cfs_rq(p);
7855a35a 9211
daa59407 9212 if (task_on_rq_queued(p)) {
7855a35a 9213 /*
daa59407
BP
9214 * We were most likely switched from sched_rt, so
9215 * kick off the schedule if running, otherwise just see
9216 * if we can still preempt the current task.
7855a35a 9217 */
daa59407
BP
9218 if (rq->curr == p)
9219 resched_curr(rq);
9220 else
9221 check_preempt_curr(rq, p, 0);
7855a35a 9222 }
cb469845
SR
9223}
9224
83b699ed
SV
9225/* Account for a task changing its policy or group.
9226 *
9227 * This routine is mostly called to set cfs_rq->curr field when a task
9228 * migrates between groups/classes.
9229 */
9230static void set_curr_task_fair(struct rq *rq)
9231{
9232 struct sched_entity *se = &rq->curr->se;
9233
ec12cb7f
PT
9234 for_each_sched_entity(se) {
9235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9236
9237 set_next_entity(cfs_rq, se);
9238 /* ensure bandwidth has been allocated on our new cfs_rq */
9239 account_cfs_rq_runtime(cfs_rq, 0);
9240 }
83b699ed
SV
9241}
9242
029632fb
PZ
9243void init_cfs_rq(struct cfs_rq *cfs_rq)
9244{
9245 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9246 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9247#ifndef CONFIG_64BIT
9248 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9249#endif
141965c7 9250#ifdef CONFIG_SMP
09a43ace
VG
9251#ifdef CONFIG_FAIR_GROUP_SCHED
9252 cfs_rq->propagate_avg = 0;
9253#endif
9d89c257
YD
9254 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9255 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9256#endif
029632fb
PZ
9257}
9258
810b3817 9259#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9260static void task_set_group_fair(struct task_struct *p)
9261{
9262 struct sched_entity *se = &p->se;
9263
9264 set_task_rq(p, task_cpu(p));
9265 se->depth = se->parent ? se->parent->depth + 1 : 0;
9266}
9267
bc54da21 9268static void task_move_group_fair(struct task_struct *p)
810b3817 9269{
daa59407 9270 detach_task_cfs_rq(p);
b2b5ce02 9271 set_task_rq(p, task_cpu(p));
6efdb105
BP
9272
9273#ifdef CONFIG_SMP
9274 /* Tell se's cfs_rq has been changed -- migrated */
9275 p->se.avg.last_update_time = 0;
9276#endif
daa59407 9277 attach_task_cfs_rq(p);
810b3817 9278}
029632fb 9279
ea86cb4b
VG
9280static void task_change_group_fair(struct task_struct *p, int type)
9281{
9282 switch (type) {
9283 case TASK_SET_GROUP:
9284 task_set_group_fair(p);
9285 break;
9286
9287 case TASK_MOVE_GROUP:
9288 task_move_group_fair(p);
9289 break;
9290 }
9291}
9292
029632fb
PZ
9293void free_fair_sched_group(struct task_group *tg)
9294{
9295 int i;
9296
9297 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9298
9299 for_each_possible_cpu(i) {
9300 if (tg->cfs_rq)
9301 kfree(tg->cfs_rq[i]);
6fe1f348 9302 if (tg->se)
029632fb
PZ
9303 kfree(tg->se[i]);
9304 }
9305
9306 kfree(tg->cfs_rq);
9307 kfree(tg->se);
9308}
9309
9310int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9311{
029632fb 9312 struct sched_entity *se;
b7fa30c9 9313 struct cfs_rq *cfs_rq;
029632fb
PZ
9314 int i;
9315
9316 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9317 if (!tg->cfs_rq)
9318 goto err;
9319 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9320 if (!tg->se)
9321 goto err;
9322
9323 tg->shares = NICE_0_LOAD;
9324
9325 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9326
9327 for_each_possible_cpu(i) {
9328 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9329 GFP_KERNEL, cpu_to_node(i));
9330 if (!cfs_rq)
9331 goto err;
9332
9333 se = kzalloc_node(sizeof(struct sched_entity),
9334 GFP_KERNEL, cpu_to_node(i));
9335 if (!se)
9336 goto err_free_rq;
9337
9338 init_cfs_rq(cfs_rq);
9339 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9340 init_entity_runnable_average(se);
029632fb
PZ
9341 }
9342
9343 return 1;
9344
9345err_free_rq:
9346 kfree(cfs_rq);
9347err:
9348 return 0;
9349}
9350
8663e24d
PZ
9351void online_fair_sched_group(struct task_group *tg)
9352{
9353 struct sched_entity *se;
9354 struct rq *rq;
9355 int i;
9356
9357 for_each_possible_cpu(i) {
9358 rq = cpu_rq(i);
9359 se = tg->se[i];
9360
9361 raw_spin_lock_irq(&rq->lock);
4126bad6 9362 update_rq_clock(rq);
d0326691 9363 attach_entity_cfs_rq(se);
55e16d30 9364 sync_throttle(tg, i);
8663e24d
PZ
9365 raw_spin_unlock_irq(&rq->lock);
9366 }
9367}
9368
6fe1f348 9369void unregister_fair_sched_group(struct task_group *tg)
029632fb 9370{
029632fb 9371 unsigned long flags;
6fe1f348
PZ
9372 struct rq *rq;
9373 int cpu;
029632fb 9374
6fe1f348
PZ
9375 for_each_possible_cpu(cpu) {
9376 if (tg->se[cpu])
9377 remove_entity_load_avg(tg->se[cpu]);
029632fb 9378
6fe1f348
PZ
9379 /*
9380 * Only empty task groups can be destroyed; so we can speculatively
9381 * check on_list without danger of it being re-added.
9382 */
9383 if (!tg->cfs_rq[cpu]->on_list)
9384 continue;
9385
9386 rq = cpu_rq(cpu);
9387
9388 raw_spin_lock_irqsave(&rq->lock, flags);
9389 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9390 raw_spin_unlock_irqrestore(&rq->lock, flags);
9391 }
029632fb
PZ
9392}
9393
9394void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9395 struct sched_entity *se, int cpu,
9396 struct sched_entity *parent)
9397{
9398 struct rq *rq = cpu_rq(cpu);
9399
9400 cfs_rq->tg = tg;
9401 cfs_rq->rq = rq;
029632fb
PZ
9402 init_cfs_rq_runtime(cfs_rq);
9403
9404 tg->cfs_rq[cpu] = cfs_rq;
9405 tg->se[cpu] = se;
9406
9407 /* se could be NULL for root_task_group */
9408 if (!se)
9409 return;
9410
fed14d45 9411 if (!parent) {
029632fb 9412 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9413 se->depth = 0;
9414 } else {
029632fb 9415 se->cfs_rq = parent->my_q;
fed14d45
PZ
9416 se->depth = parent->depth + 1;
9417 }
029632fb
PZ
9418
9419 se->my_q = cfs_rq;
0ac9b1c2
PT
9420 /* guarantee group entities always have weight */
9421 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9422 se->parent = parent;
9423}
9424
9425static DEFINE_MUTEX(shares_mutex);
9426
9427int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9428{
9429 int i;
029632fb
PZ
9430
9431 /*
9432 * We can't change the weight of the root cgroup.
9433 */
9434 if (!tg->se[0])
9435 return -EINVAL;
9436
9437 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9438
9439 mutex_lock(&shares_mutex);
9440 if (tg->shares == shares)
9441 goto done;
9442
9443 tg->shares = shares;
9444 for_each_possible_cpu(i) {
9445 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9446 struct sched_entity *se = tg->se[i];
9447 struct rq_flags rf;
029632fb 9448
029632fb 9449 /* Propagate contribution to hierarchy */
8a8c69c3 9450 rq_lock_irqsave(rq, &rf);
71b1da46 9451 update_rq_clock(rq);
89ee048f
VG
9452 for_each_sched_entity(se) {
9453 update_load_avg(se, UPDATE_TG);
9454 update_cfs_shares(se);
9455 }
8a8c69c3 9456 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9457 }
9458
9459done:
9460 mutex_unlock(&shares_mutex);
9461 return 0;
9462}
9463#else /* CONFIG_FAIR_GROUP_SCHED */
9464
9465void free_fair_sched_group(struct task_group *tg) { }
9466
9467int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9468{
9469 return 1;
9470}
9471
8663e24d
PZ
9472void online_fair_sched_group(struct task_group *tg) { }
9473
6fe1f348 9474void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9475
9476#endif /* CONFIG_FAIR_GROUP_SCHED */
9477
810b3817 9478
6d686f45 9479static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9480{
9481 struct sched_entity *se = &task->se;
0d721cea
PW
9482 unsigned int rr_interval = 0;
9483
9484 /*
9485 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9486 * idle runqueue:
9487 */
0d721cea 9488 if (rq->cfs.load.weight)
a59f4e07 9489 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9490
9491 return rr_interval;
9492}
9493
bf0f6f24
IM
9494/*
9495 * All the scheduling class methods:
9496 */
029632fb 9497const struct sched_class fair_sched_class = {
5522d5d5 9498 .next = &idle_sched_class,
bf0f6f24
IM
9499 .enqueue_task = enqueue_task_fair,
9500 .dequeue_task = dequeue_task_fair,
9501 .yield_task = yield_task_fair,
d95f4122 9502 .yield_to_task = yield_to_task_fair,
bf0f6f24 9503
2e09bf55 9504 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9505
9506 .pick_next_task = pick_next_task_fair,
9507 .put_prev_task = put_prev_task_fair,
9508
681f3e68 9509#ifdef CONFIG_SMP
4ce72a2c 9510 .select_task_rq = select_task_rq_fair,
0a74bef8 9511 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9512
0bcdcf28
CE
9513 .rq_online = rq_online_fair,
9514 .rq_offline = rq_offline_fair,
88ec22d3 9515
12695578 9516 .task_dead = task_dead_fair,
c5b28038 9517 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9518#endif
bf0f6f24 9519
83b699ed 9520 .set_curr_task = set_curr_task_fair,
bf0f6f24 9521 .task_tick = task_tick_fair,
cd29fe6f 9522 .task_fork = task_fork_fair,
cb469845
SR
9523
9524 .prio_changed = prio_changed_fair,
da7a735e 9525 .switched_from = switched_from_fair,
cb469845 9526 .switched_to = switched_to_fair,
810b3817 9527
0d721cea
PW
9528 .get_rr_interval = get_rr_interval_fair,
9529
6e998916
SG
9530 .update_curr = update_curr_fair,
9531
810b3817 9532#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9533 .task_change_group = task_change_group_fair,
810b3817 9534#endif
bf0f6f24
IM
9535};
9536
9537#ifdef CONFIG_SCHED_DEBUG
029632fb 9538void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9539{
bf0f6f24
IM
9540 struct cfs_rq *cfs_rq;
9541
5973e5b9 9542 rcu_read_lock();
c3b64f1e 9543 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9544 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9545 rcu_read_unlock();
bf0f6f24 9546}
397f2378
SD
9547
9548#ifdef CONFIG_NUMA_BALANCING
9549void show_numa_stats(struct task_struct *p, struct seq_file *m)
9550{
9551 int node;
9552 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9553
9554 for_each_online_node(node) {
9555 if (p->numa_faults) {
9556 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9557 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9558 }
9559 if (p->numa_group) {
9560 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9561 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9562 }
9563 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9564 }
9565}
9566#endif /* CONFIG_NUMA_BALANCING */
9567#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9568
9569__init void init_sched_fair_class(void)
9570{
9571#ifdef CONFIG_SMP
9572 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9573
3451d024 9574#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9575 nohz.next_balance = jiffies;
029632fb 9576 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9577#endif
9578#endif /* SMP */
9579
9580}