]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/sched/fair.c
sched: Cleanup bandwidth timers
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
64192658 837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
28a21745 1201 long src_capacity, dst_capacity;
095bebf6
RR
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
28a21745
RR
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
e63da036
RR
1222
1223 /* Is the difference below the threshold? */
095bebf6
RR
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
095bebf6
RR
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
28a21745 1235
095bebf6
RR
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
e63da036 1244
095bebf6
RR
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1251}
1252
fb13c7ee
MG
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
887c290e
RR
1259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
fb13c7ee
MG
1261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
28a21745 1265 long src_load, dst_load;
fb13c7ee 1266 long load;
1c5d3eb3 1267 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1268 long moveimp = imp;
7bd95320 1269 int dist = env->dist;
fb13c7ee
MG
1270
1271 rcu_read_lock();
1effd9f1
KT
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1283 cur = NULL;
1effd9f1 1284 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1285
7af68335
PZ
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
fb13c7ee
MG
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
887c290e
RR
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1307 * in any group then look only at task weights.
887c290e 1308 */
ca28aa53 1309 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
887c290e 1318 } else {
ca28aa53
RR
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
ca28aa53 1324 if (cur->numa_group)
7bd95320
RR
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
ca28aa53 1327 else
7bd95320
RR
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
887c290e 1330 }
fb13c7ee
MG
1331 }
1332
0132c3e1 1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
b932c03c 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1339 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
fb13c7ee
MG
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
e720fff6
PZ
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
fb13c7ee 1357
0132c3e1
RR
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
fb13c7ee 1375 if (cur) {
e720fff6
PZ
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
fb13c7ee
MG
1379 }
1380
28a21745 1381 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1382 goto unlock;
1383
ba7e5a27
RR
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
fb13c7ee
MG
1391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
887c290e
RR
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
2c8a50aa
MG
1399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
887c290e 1408 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1409 }
1410}
1411
58d081b5
MG
1412static int task_numa_migrate(struct task_struct *p)
1413{
58d081b5
MG
1414 struct task_numa_env env = {
1415 .p = p,
fb13c7ee 1416
58d081b5 1417 .src_cpu = task_cpu(p),
b32e86b4 1418 .src_nid = task_node(p),
fb13c7ee
MG
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
58d081b5
MG
1425 };
1426 struct sched_domain *sd;
887c290e 1427 unsigned long taskweight, groupweight;
7bd95320 1428 int nid, ret, dist;
887c290e 1429 long taskimp, groupimp;
e6628d5b 1430
58d081b5 1431 /*
fb13c7ee
MG
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
58d081b5
MG
1438 */
1439 rcu_read_lock();
fb13c7ee 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1443 rcu_read_unlock();
1444
46a73e8a
RR
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
de1b301a 1452 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1453 return -EINVAL;
1454 }
1455
2c8a50aa 1456 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1463 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1464
a43455a1
RR
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1467
9de05d48
RR
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
58d081b5 1480
7bd95320 1481 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
7bd95320 1487
83e1d2cd 1488 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1491 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1492 continue;
1493
7bd95320 1494 env.dist = dist;
2c8a50aa
MG
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1497 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1498 }
1499 }
1500
68d1b02a
RR
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
db015dae
RR
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
0ec8aa00 1522
04bb2f94
RR
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
fb13c7ee 1529 if (env.best_task == NULL) {
286549dc
MG
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
286549dc
MG
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1539 put_task_struct(env.best_task);
1540 return ret;
e6628d5b
MG
1541}
1542
6b9a7460
MG
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
5085e2a3
RR
1546 unsigned long interval = HZ;
1547
2739d3ee 1548 /* This task has no NUMA fault statistics yet */
44dba3d5 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1550 return;
1551
2739d3ee 1552 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1555
1556 /* Success if task is already running on preferred CPU */
de1b301a 1557 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1561 task_numa_migrate(p);
6b9a7460
MG
1562}
1563
20e07dea
RR
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
04bb2f94
RR
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1602 */
1603#define NUMA_PERIOD_SLOTS 10
a22b4b01 1604#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
074c2381
MG
1625 * to automatic numa balancing. Related to that, if there were failed
1626 * migration then it implies we are migrating too quickly or the local
1627 * node is overloaded. In either case, scan slower
04bb2f94 1628 */
074c2381 1629 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1630 p->numa_scan_period = min(p->numa_scan_period_max,
1631 p->numa_scan_period << 1);
1632
1633 p->mm->numa_next_scan = jiffies +
1634 msecs_to_jiffies(p->numa_scan_period);
1635
1636 return;
1637 }
1638
1639 /*
1640 * Prepare to scale scan period relative to the current period.
1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 */
1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 if (!slot)
1650 slot = 1;
1651 diff = slot * period_slot;
1652 } else {
1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654
1655 /*
1656 * Scale scan rate increases based on sharing. There is an
1657 * inverse relationship between the degree of sharing and
1658 * the adjustment made to the scanning period. Broadly
1659 * speaking the intent is that there is little point
1660 * scanning faster if shared accesses dominate as it may
1661 * simply bounce migrations uselessly
1662 */
2847c90e 1663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 }
1666
1667 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 task_scan_min(p), task_scan_max(p));
1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670}
1671
7e2703e6
RR
1672/*
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1678 */
1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680{
1681 u64 runtime, delta, now;
1682 /* Use the start of this time slice to avoid calculations. */
1683 now = p->se.exec_start;
1684 runtime = p->se.sum_exec_runtime;
1685
1686 if (p->last_task_numa_placement) {
1687 delta = runtime - p->last_sum_exec_runtime;
1688 *period = now - p->last_task_numa_placement;
1689 } else {
1690 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1691 *period = p->se.avg.avg_period;
7e2703e6
RR
1692 }
1693
1694 p->last_sum_exec_runtime = runtime;
1695 p->last_task_numa_placement = now;
1696
1697 return delta;
1698}
1699
54009416
RR
1700/*
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1704 */
1705static int preferred_group_nid(struct task_struct *p, int nid)
1706{
1707 nodemask_t nodes;
1708 int dist;
1709
1710 /* Direct connections between all NUMA nodes. */
1711 if (sched_numa_topology_type == NUMA_DIRECT)
1712 return nid;
1713
1714 /*
1715 * On a system with glueless mesh NUMA topology, group_weight
1716 * scores nodes according to the number of NUMA hinting faults on
1717 * both the node itself, and on nearby nodes.
1718 */
1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 unsigned long score, max_score = 0;
1721 int node, max_node = nid;
1722
1723 dist = sched_max_numa_distance;
1724
1725 for_each_online_node(node) {
1726 score = group_weight(p, node, dist);
1727 if (score > max_score) {
1728 max_score = score;
1729 max_node = node;
1730 }
1731 }
1732 return max_node;
1733 }
1734
1735 /*
1736 * Finding the preferred nid in a system with NUMA backplane
1737 * interconnect topology is more involved. The goal is to locate
1738 * tasks from numa_groups near each other in the system, and
1739 * untangle workloads from different sides of the system. This requires
1740 * searching down the hierarchy of node groups, recursively searching
1741 * inside the highest scoring group of nodes. The nodemask tricks
1742 * keep the complexity of the search down.
1743 */
1744 nodes = node_online_map;
1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 unsigned long max_faults = 0;
81907478 1747 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1748 int a, b;
1749
1750 /* Are there nodes at this distance from each other? */
1751 if (!find_numa_distance(dist))
1752 continue;
1753
1754 for_each_node_mask(a, nodes) {
1755 unsigned long faults = 0;
1756 nodemask_t this_group;
1757 nodes_clear(this_group);
1758
1759 /* Sum group's NUMA faults; includes a==b case. */
1760 for_each_node_mask(b, nodes) {
1761 if (node_distance(a, b) < dist) {
1762 faults += group_faults(p, b);
1763 node_set(b, this_group);
1764 node_clear(b, nodes);
1765 }
1766 }
1767
1768 /* Remember the top group. */
1769 if (faults > max_faults) {
1770 max_faults = faults;
1771 max_group = this_group;
1772 /*
1773 * subtle: at the smallest distance there is
1774 * just one node left in each "group", the
1775 * winner is the preferred nid.
1776 */
1777 nid = a;
1778 }
1779 }
1780 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1781 if (!max_faults)
1782 break;
54009416
RR
1783 nodes = max_group;
1784 }
1785 return nid;
1786}
1787
cbee9f88
PZ
1788static void task_numa_placement(struct task_struct *p)
1789{
83e1d2cd
MG
1790 int seq, nid, max_nid = -1, max_group_nid = -1;
1791 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1792 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1793 unsigned long total_faults;
1794 u64 runtime, period;
7dbd13ed 1795 spinlock_t *group_lock = NULL;
cbee9f88 1796
2832bc19 1797 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1798 if (p->numa_scan_seq == seq)
1799 return;
1800 p->numa_scan_seq = seq;
598f0ec0 1801 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1802
7e2703e6
RR
1803 total_faults = p->numa_faults_locality[0] +
1804 p->numa_faults_locality[1];
1805 runtime = numa_get_avg_runtime(p, &period);
1806
7dbd13ed
MG
1807 /* If the task is part of a group prevent parallel updates to group stats */
1808 if (p->numa_group) {
1809 group_lock = &p->numa_group->lock;
60e69eed 1810 spin_lock_irq(group_lock);
7dbd13ed
MG
1811 }
1812
688b7585
MG
1813 /* Find the node with the highest number of faults */
1814 for_each_online_node(nid) {
44dba3d5
IM
1815 /* Keep track of the offsets in numa_faults array */
1816 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1817 unsigned long faults = 0, group_faults = 0;
44dba3d5 1818 int priv;
745d6147 1819
be1e4e76 1820 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1821 long diff, f_diff, f_weight;
8c8a743c 1822
44dba3d5
IM
1823 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1827
ac8e895b 1828 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1829 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830 fault_types[priv] += p->numa_faults[membuf_idx];
1831 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1832
7e2703e6
RR
1833 /*
1834 * Normalize the faults_from, so all tasks in a group
1835 * count according to CPU use, instead of by the raw
1836 * number of faults. Tasks with little runtime have
1837 * little over-all impact on throughput, and thus their
1838 * faults are less important.
1839 */
1840 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1841 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1842 (total_faults + 1);
44dba3d5
IM
1843 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1845
44dba3d5
IM
1846 p->numa_faults[mem_idx] += diff;
1847 p->numa_faults[cpu_idx] += f_diff;
1848 faults += p->numa_faults[mem_idx];
83e1d2cd 1849 p->total_numa_faults += diff;
8c8a743c 1850 if (p->numa_group) {
44dba3d5
IM
1851 /*
1852 * safe because we can only change our own group
1853 *
1854 * mem_idx represents the offset for a given
1855 * nid and priv in a specific region because it
1856 * is at the beginning of the numa_faults array.
1857 */
1858 p->numa_group->faults[mem_idx] += diff;
1859 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1860 p->numa_group->total_faults += diff;
44dba3d5 1861 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1862 }
ac8e895b
MG
1863 }
1864
688b7585
MG
1865 if (faults > max_faults) {
1866 max_faults = faults;
1867 max_nid = nid;
1868 }
83e1d2cd
MG
1869
1870 if (group_faults > max_group_faults) {
1871 max_group_faults = group_faults;
1872 max_group_nid = nid;
1873 }
1874 }
1875
04bb2f94
RR
1876 update_task_scan_period(p, fault_types[0], fault_types[1]);
1877
7dbd13ed 1878 if (p->numa_group) {
20e07dea 1879 update_numa_active_node_mask(p->numa_group);
60e69eed 1880 spin_unlock_irq(group_lock);
54009416 1881 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1882 }
1883
bb97fc31
RR
1884 if (max_faults) {
1885 /* Set the new preferred node */
1886 if (max_nid != p->numa_preferred_nid)
1887 sched_setnuma(p, max_nid);
1888
1889 if (task_node(p) != p->numa_preferred_nid)
1890 numa_migrate_preferred(p);
3a7053b3 1891 }
cbee9f88
PZ
1892}
1893
8c8a743c
PZ
1894static inline int get_numa_group(struct numa_group *grp)
1895{
1896 return atomic_inc_not_zero(&grp->refcount);
1897}
1898
1899static inline void put_numa_group(struct numa_group *grp)
1900{
1901 if (atomic_dec_and_test(&grp->refcount))
1902 kfree_rcu(grp, rcu);
1903}
1904
3e6a9418
MG
1905static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906 int *priv)
8c8a743c
PZ
1907{
1908 struct numa_group *grp, *my_grp;
1909 struct task_struct *tsk;
1910 bool join = false;
1911 int cpu = cpupid_to_cpu(cpupid);
1912 int i;
1913
1914 if (unlikely(!p->numa_group)) {
1915 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1916 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1917
1918 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919 if (!grp)
1920 return;
1921
1922 atomic_set(&grp->refcount, 1);
1923 spin_lock_init(&grp->lock);
e29cf08b 1924 grp->gid = p->pid;
50ec8a40 1925 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1926 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927 nr_node_ids;
8c8a743c 1928
20e07dea
RR
1929 node_set(task_node(current), grp->active_nodes);
1930
be1e4e76 1931 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1932 grp->faults[i] = p->numa_faults[i];
8c8a743c 1933
989348b5 1934 grp->total_faults = p->total_numa_faults;
83e1d2cd 1935
8c8a743c
PZ
1936 grp->nr_tasks++;
1937 rcu_assign_pointer(p->numa_group, grp);
1938 }
1939
1940 rcu_read_lock();
1941 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1942
1943 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1944 goto no_join;
8c8a743c
PZ
1945
1946 grp = rcu_dereference(tsk->numa_group);
1947 if (!grp)
3354781a 1948 goto no_join;
8c8a743c
PZ
1949
1950 my_grp = p->numa_group;
1951 if (grp == my_grp)
3354781a 1952 goto no_join;
8c8a743c
PZ
1953
1954 /*
1955 * Only join the other group if its bigger; if we're the bigger group,
1956 * the other task will join us.
1957 */
1958 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1959 goto no_join;
8c8a743c
PZ
1960
1961 /*
1962 * Tie-break on the grp address.
1963 */
1964 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1965 goto no_join;
8c8a743c 1966
dabe1d99
RR
1967 /* Always join threads in the same process. */
1968 if (tsk->mm == current->mm)
1969 join = true;
1970
1971 /* Simple filter to avoid false positives due to PID collisions */
1972 if (flags & TNF_SHARED)
1973 join = true;
8c8a743c 1974
3e6a9418
MG
1975 /* Update priv based on whether false sharing was detected */
1976 *priv = !join;
1977
dabe1d99 1978 if (join && !get_numa_group(grp))
3354781a 1979 goto no_join;
8c8a743c 1980
8c8a743c
PZ
1981 rcu_read_unlock();
1982
1983 if (!join)
1984 return;
1985
60e69eed
MG
1986 BUG_ON(irqs_disabled());
1987 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1988
be1e4e76 1989 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1990 my_grp->faults[i] -= p->numa_faults[i];
1991 grp->faults[i] += p->numa_faults[i];
8c8a743c 1992 }
989348b5
MG
1993 my_grp->total_faults -= p->total_numa_faults;
1994 grp->total_faults += p->total_numa_faults;
8c8a743c 1995
8c8a743c
PZ
1996 my_grp->nr_tasks--;
1997 grp->nr_tasks++;
1998
1999 spin_unlock(&my_grp->lock);
60e69eed 2000 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2001
2002 rcu_assign_pointer(p->numa_group, grp);
2003
2004 put_numa_group(my_grp);
3354781a
PZ
2005 return;
2006
2007no_join:
2008 rcu_read_unlock();
2009 return;
8c8a743c
PZ
2010}
2011
2012void task_numa_free(struct task_struct *p)
2013{
2014 struct numa_group *grp = p->numa_group;
44dba3d5 2015 void *numa_faults = p->numa_faults;
e9dd685c
SR
2016 unsigned long flags;
2017 int i;
8c8a743c
PZ
2018
2019 if (grp) {
e9dd685c 2020 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2021 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2022 grp->faults[i] -= p->numa_faults[i];
989348b5 2023 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2024
8c8a743c 2025 grp->nr_tasks--;
e9dd685c 2026 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2027 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2028 put_numa_group(grp);
2029 }
2030
44dba3d5 2031 p->numa_faults = NULL;
82727018 2032 kfree(numa_faults);
8c8a743c
PZ
2033}
2034
cbee9f88
PZ
2035/*
2036 * Got a PROT_NONE fault for a page on @node.
2037 */
58b46da3 2038void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2039{
2040 struct task_struct *p = current;
6688cc05 2041 bool migrated = flags & TNF_MIGRATED;
58b46da3 2042 int cpu_node = task_node(current);
792568ec 2043 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2044 int priv;
cbee9f88 2045
10e84b97 2046 if (!numabalancing_enabled)
1a687c2e
MG
2047 return;
2048
9ff1d9ff
MG
2049 /* for example, ksmd faulting in a user's mm */
2050 if (!p->mm)
2051 return;
2052
f809ca9a 2053 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2054 if (unlikely(!p->numa_faults)) {
2055 int size = sizeof(*p->numa_faults) *
be1e4e76 2056 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2057
44dba3d5
IM
2058 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059 if (!p->numa_faults)
f809ca9a 2060 return;
745d6147 2061
83e1d2cd 2062 p->total_numa_faults = 0;
04bb2f94 2063 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2064 }
cbee9f88 2065
8c8a743c
PZ
2066 /*
2067 * First accesses are treated as private, otherwise consider accesses
2068 * to be private if the accessing pid has not changed
2069 */
2070 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071 priv = 1;
2072 } else {
2073 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2074 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2075 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2076 }
2077
792568ec
RR
2078 /*
2079 * If a workload spans multiple NUMA nodes, a shared fault that
2080 * occurs wholly within the set of nodes that the workload is
2081 * actively using should be counted as local. This allows the
2082 * scan rate to slow down when a workload has settled down.
2083 */
2084 if (!priv && !local && p->numa_group &&
2085 node_isset(cpu_node, p->numa_group->active_nodes) &&
2086 node_isset(mem_node, p->numa_group->active_nodes))
2087 local = 1;
2088
cbee9f88 2089 task_numa_placement(p);
f809ca9a 2090
2739d3ee
RR
2091 /*
2092 * Retry task to preferred node migration periodically, in case it
2093 * case it previously failed, or the scheduler moved us.
2094 */
2095 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2096 numa_migrate_preferred(p);
2097
b32e86b4
IM
2098 if (migrated)
2099 p->numa_pages_migrated += pages;
074c2381
MG
2100 if (flags & TNF_MIGRATE_FAIL)
2101 p->numa_faults_locality[2] += pages;
b32e86b4 2102
44dba3d5
IM
2103 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2105 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2106}
2107
6e5fb223
PZ
2108static void reset_ptenuma_scan(struct task_struct *p)
2109{
2110 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111 p->mm->numa_scan_offset = 0;
2112}
2113
cbee9f88
PZ
2114/*
2115 * The expensive part of numa migration is done from task_work context.
2116 * Triggered from task_tick_numa().
2117 */
2118void task_numa_work(struct callback_head *work)
2119{
2120 unsigned long migrate, next_scan, now = jiffies;
2121 struct task_struct *p = current;
2122 struct mm_struct *mm = p->mm;
6e5fb223 2123 struct vm_area_struct *vma;
9f40604c 2124 unsigned long start, end;
598f0ec0 2125 unsigned long nr_pte_updates = 0;
9f40604c 2126 long pages;
cbee9f88
PZ
2127
2128 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2129
2130 work->next = work; /* protect against double add */
2131 /*
2132 * Who cares about NUMA placement when they're dying.
2133 *
2134 * NOTE: make sure not to dereference p->mm before this check,
2135 * exit_task_work() happens _after_ exit_mm() so we could be called
2136 * without p->mm even though we still had it when we enqueued this
2137 * work.
2138 */
2139 if (p->flags & PF_EXITING)
2140 return;
2141
930aa174 2142 if (!mm->numa_next_scan) {
7e8d16b6
MG
2143 mm->numa_next_scan = now +
2144 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2145 }
2146
cbee9f88
PZ
2147 /*
2148 * Enforce maximal scan/migration frequency..
2149 */
2150 migrate = mm->numa_next_scan;
2151 if (time_before(now, migrate))
2152 return;
2153
598f0ec0
MG
2154 if (p->numa_scan_period == 0) {
2155 p->numa_scan_period_max = task_scan_max(p);
2156 p->numa_scan_period = task_scan_min(p);
2157 }
cbee9f88 2158
fb003b80 2159 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2160 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161 return;
2162
19a78d11
PZ
2163 /*
2164 * Delay this task enough that another task of this mm will likely win
2165 * the next time around.
2166 */
2167 p->node_stamp += 2 * TICK_NSEC;
2168
9f40604c
MG
2169 start = mm->numa_scan_offset;
2170 pages = sysctl_numa_balancing_scan_size;
2171 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172 if (!pages)
2173 return;
cbee9f88 2174
6e5fb223 2175 down_read(&mm->mmap_sem);
9f40604c 2176 vma = find_vma(mm, start);
6e5fb223
PZ
2177 if (!vma) {
2178 reset_ptenuma_scan(p);
9f40604c 2179 start = 0;
6e5fb223
PZ
2180 vma = mm->mmap;
2181 }
9f40604c 2182 for (; vma; vma = vma->vm_next) {
6b79c57b
NH
2183 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184 is_vm_hugetlb_page(vma)) {
6e5fb223 2185 continue;
6b79c57b 2186 }
6e5fb223 2187
4591ce4f
MG
2188 /*
2189 * Shared library pages mapped by multiple processes are not
2190 * migrated as it is expected they are cache replicated. Avoid
2191 * hinting faults in read-only file-backed mappings or the vdso
2192 * as migrating the pages will be of marginal benefit.
2193 */
2194 if (!vma->vm_mm ||
2195 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196 continue;
2197
3c67f474
MG
2198 /*
2199 * Skip inaccessible VMAs to avoid any confusion between
2200 * PROT_NONE and NUMA hinting ptes
2201 */
2202 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203 continue;
4591ce4f 2204
9f40604c
MG
2205 do {
2206 start = max(start, vma->vm_start);
2207 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208 end = min(end, vma->vm_end);
598f0ec0
MG
2209 nr_pte_updates += change_prot_numa(vma, start, end);
2210
2211 /*
2212 * Scan sysctl_numa_balancing_scan_size but ensure that
2213 * at least one PTE is updated so that unused virtual
2214 * address space is quickly skipped.
2215 */
2216 if (nr_pte_updates)
2217 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2218
9f40604c
MG
2219 start = end;
2220 if (pages <= 0)
2221 goto out;
3cf1962c
RR
2222
2223 cond_resched();
9f40604c 2224 } while (end != vma->vm_end);
cbee9f88 2225 }
6e5fb223 2226
9f40604c 2227out:
6e5fb223 2228 /*
c69307d5
PZ
2229 * It is possible to reach the end of the VMA list but the last few
2230 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231 * would find the !migratable VMA on the next scan but not reset the
2232 * scanner to the start so check it now.
6e5fb223
PZ
2233 */
2234 if (vma)
9f40604c 2235 mm->numa_scan_offset = start;
6e5fb223
PZ
2236 else
2237 reset_ptenuma_scan(p);
2238 up_read(&mm->mmap_sem);
cbee9f88
PZ
2239}
2240
2241/*
2242 * Drive the periodic memory faults..
2243 */
2244void task_tick_numa(struct rq *rq, struct task_struct *curr)
2245{
2246 struct callback_head *work = &curr->numa_work;
2247 u64 period, now;
2248
2249 /*
2250 * We don't care about NUMA placement if we don't have memory.
2251 */
2252 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253 return;
2254
2255 /*
2256 * Using runtime rather than walltime has the dual advantage that
2257 * we (mostly) drive the selection from busy threads and that the
2258 * task needs to have done some actual work before we bother with
2259 * NUMA placement.
2260 */
2261 now = curr->se.sum_exec_runtime;
2262 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2263
2264 if (now - curr->node_stamp > period) {
4b96a29b 2265 if (!curr->node_stamp)
598f0ec0 2266 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2267 curr->node_stamp += period;
cbee9f88
PZ
2268
2269 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271 task_work_add(curr, work, true);
2272 }
2273 }
2274}
2275#else
2276static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2277{
2278}
0ec8aa00
PZ
2279
2280static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2281{
2282}
2283
2284static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2285{
2286}
cbee9f88
PZ
2287#endif /* CONFIG_NUMA_BALANCING */
2288
30cfdcfc
DA
2289static void
2290account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291{
2292 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2293 if (!parent_entity(se))
029632fb 2294 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2295#ifdef CONFIG_SMP
0ec8aa00
PZ
2296 if (entity_is_task(se)) {
2297 struct rq *rq = rq_of(cfs_rq);
2298
2299 account_numa_enqueue(rq, task_of(se));
2300 list_add(&se->group_node, &rq->cfs_tasks);
2301 }
367456c7 2302#endif
30cfdcfc 2303 cfs_rq->nr_running++;
30cfdcfc
DA
2304}
2305
2306static void
2307account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2308{
2309 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2310 if (!parent_entity(se))
029632fb 2311 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2312 if (entity_is_task(se)) {
2313 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2314 list_del_init(&se->group_node);
0ec8aa00 2315 }
30cfdcfc 2316 cfs_rq->nr_running--;
30cfdcfc
DA
2317}
2318
3ff6dcac
YZ
2319#ifdef CONFIG_FAIR_GROUP_SCHED
2320# ifdef CONFIG_SMP
cf5f0acf
PZ
2321static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2322{
2323 long tg_weight;
2324
2325 /*
2326 * Use this CPU's actual weight instead of the last load_contribution
2327 * to gain a more accurate current total weight. See
2328 * update_cfs_rq_load_contribution().
2329 */
bf5b986e 2330 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2331 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2332 tg_weight += cfs_rq->load.weight;
2333
2334 return tg_weight;
2335}
2336
6d5ab293 2337static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2338{
cf5f0acf 2339 long tg_weight, load, shares;
3ff6dcac 2340
cf5f0acf 2341 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2342 load = cfs_rq->load.weight;
3ff6dcac 2343
3ff6dcac 2344 shares = (tg->shares * load);
cf5f0acf
PZ
2345 if (tg_weight)
2346 shares /= tg_weight;
3ff6dcac
YZ
2347
2348 if (shares < MIN_SHARES)
2349 shares = MIN_SHARES;
2350 if (shares > tg->shares)
2351 shares = tg->shares;
2352
2353 return shares;
2354}
3ff6dcac 2355# else /* CONFIG_SMP */
6d5ab293 2356static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2357{
2358 return tg->shares;
2359}
3ff6dcac 2360# endif /* CONFIG_SMP */
2069dd75
PZ
2361static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362 unsigned long weight)
2363{
19e5eebb
PT
2364 if (se->on_rq) {
2365 /* commit outstanding execution time */
2366 if (cfs_rq->curr == se)
2367 update_curr(cfs_rq);
2069dd75 2368 account_entity_dequeue(cfs_rq, se);
19e5eebb 2369 }
2069dd75
PZ
2370
2371 update_load_set(&se->load, weight);
2372
2373 if (se->on_rq)
2374 account_entity_enqueue(cfs_rq, se);
2375}
2376
82958366
PT
2377static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2378
6d5ab293 2379static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2380{
2381 struct task_group *tg;
2382 struct sched_entity *se;
3ff6dcac 2383 long shares;
2069dd75 2384
2069dd75
PZ
2385 tg = cfs_rq->tg;
2386 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2387 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2388 return;
3ff6dcac
YZ
2389#ifndef CONFIG_SMP
2390 if (likely(se->load.weight == tg->shares))
2391 return;
2392#endif
6d5ab293 2393 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2394
2395 reweight_entity(cfs_rq_of(se), se, shares);
2396}
2397#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2398static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2399{
2400}
2401#endif /* CONFIG_FAIR_GROUP_SCHED */
2402
141965c7 2403#ifdef CONFIG_SMP
5b51f2f8
PT
2404/*
2405 * We choose a half-life close to 1 scheduling period.
2406 * Note: The tables below are dependent on this value.
2407 */
2408#define LOAD_AVG_PERIOD 32
2409#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2411
2412/* Precomputed fixed inverse multiplies for multiplication by y^n */
2413static const u32 runnable_avg_yN_inv[] = {
2414 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419 0x85aac367, 0x82cd8698,
2420};
2421
2422/*
2423 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2424 * over-estimates when re-combining.
2425 */
2426static const u32 runnable_avg_yN_sum[] = {
2427 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2430};
2431
9d85f21c
PT
2432/*
2433 * Approximate:
2434 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2435 */
2436static __always_inline u64 decay_load(u64 val, u64 n)
2437{
5b51f2f8
PT
2438 unsigned int local_n;
2439
2440 if (!n)
2441 return val;
2442 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443 return 0;
2444
2445 /* after bounds checking we can collapse to 32-bit */
2446 local_n = n;
2447
2448 /*
2449 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2450 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2452 *
2453 * To achieve constant time decay_load.
2454 */
2455 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456 val >>= local_n / LOAD_AVG_PERIOD;
2457 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2458 }
2459
5b51f2f8
PT
2460 val *= runnable_avg_yN_inv[local_n];
2461 /* We don't use SRR here since we always want to round down. */
2462 return val >> 32;
2463}
2464
2465/*
2466 * For updates fully spanning n periods, the contribution to runnable
2467 * average will be: \Sum 1024*y^n
2468 *
2469 * We can compute this reasonably efficiently by combining:
2470 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2471 */
2472static u32 __compute_runnable_contrib(u64 n)
2473{
2474 u32 contrib = 0;
2475
2476 if (likely(n <= LOAD_AVG_PERIOD))
2477 return runnable_avg_yN_sum[n];
2478 else if (unlikely(n >= LOAD_AVG_MAX_N))
2479 return LOAD_AVG_MAX;
2480
2481 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482 do {
2483 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2485
2486 n -= LOAD_AVG_PERIOD;
2487 } while (n > LOAD_AVG_PERIOD);
2488
2489 contrib = decay_load(contrib, n);
2490 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2491}
2492
2493/*
2494 * We can represent the historical contribution to runnable average as the
2495 * coefficients of a geometric series. To do this we sub-divide our runnable
2496 * history into segments of approximately 1ms (1024us); label the segment that
2497 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2498 *
2499 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500 * p0 p1 p2
2501 * (now) (~1ms ago) (~2ms ago)
2502 *
2503 * Let u_i denote the fraction of p_i that the entity was runnable.
2504 *
2505 * We then designate the fractions u_i as our co-efficients, yielding the
2506 * following representation of historical load:
2507 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2508 *
2509 * We choose y based on the with of a reasonably scheduling period, fixing:
2510 * y^32 = 0.5
2511 *
2512 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513 * approximately half as much as the contribution to load within the last ms
2514 * (u_0).
2515 *
2516 * When a period "rolls over" and we have new u_0`, multiplying the previous
2517 * sum again by y is sufficient to update:
2518 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2520 */
0c1dc6b2 2521static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2522 struct sched_avg *sa,
36ee28e4
VG
2523 int runnable,
2524 int running)
9d85f21c 2525{
5b51f2f8
PT
2526 u64 delta, periods;
2527 u32 runnable_contrib;
9d85f21c 2528 int delta_w, decayed = 0;
0c1dc6b2 2529 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2530
2531 delta = now - sa->last_runnable_update;
2532 /*
2533 * This should only happen when time goes backwards, which it
2534 * unfortunately does during sched clock init when we swap over to TSC.
2535 */
2536 if ((s64)delta < 0) {
2537 sa->last_runnable_update = now;
2538 return 0;
2539 }
2540
2541 /*
2542 * Use 1024ns as the unit of measurement since it's a reasonable
2543 * approximation of 1us and fast to compute.
2544 */
2545 delta >>= 10;
2546 if (!delta)
2547 return 0;
2548 sa->last_runnable_update = now;
2549
2550 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2551 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2552 if (delta + delta_w >= 1024) {
2553 /* period roll-over */
2554 decayed = 1;
2555
2556 /*
2557 * Now that we know we're crossing a period boundary, figure
2558 * out how much from delta we need to complete the current
2559 * period and accrue it.
2560 */
2561 delta_w = 1024 - delta_w;
5b51f2f8
PT
2562 if (runnable)
2563 sa->runnable_avg_sum += delta_w;
36ee28e4 2564 if (running)
0c1dc6b2
MR
2565 sa->running_avg_sum += delta_w * scale_freq
2566 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2567 sa->avg_period += delta_w;
5b51f2f8
PT
2568
2569 delta -= delta_w;
2570
2571 /* Figure out how many additional periods this update spans */
2572 periods = delta / 1024;
2573 delta %= 1024;
2574
2575 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576 periods + 1);
36ee28e4
VG
2577 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578 periods + 1);
2579 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2580 periods + 1);
2581
2582 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583 runnable_contrib = __compute_runnable_contrib(periods);
2584 if (runnable)
2585 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2586 if (running)
0c1dc6b2
MR
2587 sa->running_avg_sum += runnable_contrib * scale_freq
2588 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2589 sa->avg_period += runnable_contrib;
9d85f21c
PT
2590 }
2591
2592 /* Remainder of delta accrued against u_0` */
2593 if (runnable)
2594 sa->runnable_avg_sum += delta;
36ee28e4 2595 if (running)
0c1dc6b2
MR
2596 sa->running_avg_sum += delta * scale_freq
2597 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2598 sa->avg_period += delta;
9d85f21c
PT
2599
2600 return decayed;
2601}
2602
9ee474f5 2603/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2604static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2605{
2606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2608
2609 decays -= se->avg.decay_count;
63847600 2610 se->avg.decay_count = 0;
9ee474f5 2611 if (!decays)
aff3e498 2612 return 0;
9ee474f5
PT
2613
2614 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2615 se->avg.utilization_avg_contrib =
2616 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2617
2618 return decays;
9ee474f5
PT
2619}
2620
c566e8e9
PT
2621#ifdef CONFIG_FAIR_GROUP_SCHED
2622static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623 int force_update)
2624{
2625 struct task_group *tg = cfs_rq->tg;
bf5b986e 2626 long tg_contrib;
c566e8e9
PT
2627
2628 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629 tg_contrib -= cfs_rq->tg_load_contrib;
2630
8236d907
JL
2631 if (!tg_contrib)
2632 return;
2633
bf5b986e
AS
2634 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2636 cfs_rq->tg_load_contrib += tg_contrib;
2637 }
2638}
8165e145 2639
bb17f655
PT
2640/*
2641 * Aggregate cfs_rq runnable averages into an equivalent task_group
2642 * representation for computing load contributions.
2643 */
2644static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645 struct cfs_rq *cfs_rq)
2646{
2647 struct task_group *tg = cfs_rq->tg;
2648 long contrib;
2649
2650 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2651 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2652 sa->avg_period + 1);
bb17f655
PT
2653 contrib -= cfs_rq->tg_runnable_contrib;
2654
2655 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656 atomic_add(contrib, &tg->runnable_avg);
2657 cfs_rq->tg_runnable_contrib += contrib;
2658 }
2659}
2660
8165e145
PT
2661static inline void __update_group_entity_contrib(struct sched_entity *se)
2662{
2663 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2665 int runnable_avg;
2666
8165e145
PT
2667 u64 contrib;
2668
2669 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2670 se->avg.load_avg_contrib = div_u64(contrib,
2671 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2672
2673 /*
2674 * For group entities we need to compute a correction term in the case
2675 * that they are consuming <1 cpu so that we would contribute the same
2676 * load as a task of equal weight.
2677 *
2678 * Explicitly co-ordinating this measurement would be expensive, but
2679 * fortunately the sum of each cpus contribution forms a usable
2680 * lower-bound on the true value.
2681 *
2682 * Consider the aggregate of 2 contributions. Either they are disjoint
2683 * (and the sum represents true value) or they are disjoint and we are
2684 * understating by the aggregate of their overlap.
2685 *
2686 * Extending this to N cpus, for a given overlap, the maximum amount we
2687 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688 * cpus that overlap for this interval and w_i is the interval width.
2689 *
2690 * On a small machine; the first term is well-bounded which bounds the
2691 * total error since w_i is a subset of the period. Whereas on a
2692 * larger machine, while this first term can be larger, if w_i is the
2693 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694 * our upper bound of 1-cpu.
2695 */
2696 runnable_avg = atomic_read(&tg->runnable_avg);
2697 if (runnable_avg < NICE_0_LOAD) {
2698 se->avg.load_avg_contrib *= runnable_avg;
2699 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2700 }
8165e145 2701}
f5f9739d
DE
2702
2703static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2704{
0c1dc6b2
MR
2705 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706 runnable, runnable);
f5f9739d
DE
2707 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2708}
6e83125c 2709#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2710static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711 int force_update) {}
bb17f655
PT
2712static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713 struct cfs_rq *cfs_rq) {}
8165e145 2714static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2715static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2716#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2717
8165e145
PT
2718static inline void __update_task_entity_contrib(struct sched_entity *se)
2719{
2720 u32 contrib;
2721
2722 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2724 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2725 se->avg.load_avg_contrib = scale_load(contrib);
2726}
2727
2dac754e
PT
2728/* Compute the current contribution to load_avg by se, return any delta */
2729static long __update_entity_load_avg_contrib(struct sched_entity *se)
2730{
2731 long old_contrib = se->avg.load_avg_contrib;
2732
8165e145
PT
2733 if (entity_is_task(se)) {
2734 __update_task_entity_contrib(se);
2735 } else {
bb17f655 2736 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2737 __update_group_entity_contrib(se);
2738 }
2dac754e
PT
2739
2740 return se->avg.load_avg_contrib - old_contrib;
2741}
2742
36ee28e4
VG
2743
2744static inline void __update_task_entity_utilization(struct sched_entity *se)
2745{
2746 u32 contrib;
2747
2748 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750 contrib /= (se->avg.avg_period + 1);
2751 se->avg.utilization_avg_contrib = scale_load(contrib);
2752}
2753
2754static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2755{
2756 long old_contrib = se->avg.utilization_avg_contrib;
2757
2758 if (entity_is_task(se))
2759 __update_task_entity_utilization(se);
21f44866
MR
2760 else
2761 se->avg.utilization_avg_contrib =
2762 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2763
2764 return se->avg.utilization_avg_contrib - old_contrib;
2765}
2766
9ee474f5
PT
2767static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768 long load_contrib)
2769{
2770 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771 cfs_rq->blocked_load_avg -= load_contrib;
2772 else
2773 cfs_rq->blocked_load_avg = 0;
2774}
2775
f1b17280
PT
2776static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2777
9d85f21c 2778/* Update a sched_entity's runnable average */
9ee474f5
PT
2779static inline void update_entity_load_avg(struct sched_entity *se,
2780 int update_cfs_rq)
9d85f21c 2781{
2dac754e 2782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2783 long contrib_delta, utilization_delta;
0c1dc6b2 2784 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2785 u64 now;
2dac754e 2786
f1b17280
PT
2787 /*
2788 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789 * case they are the parent of a throttled hierarchy.
2790 */
2791 if (entity_is_task(se))
2792 now = cfs_rq_clock_task(cfs_rq);
2793 else
2794 now = cfs_rq_clock_task(group_cfs_rq(se));
2795
0c1dc6b2 2796 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2797 cfs_rq->curr == se))
2dac754e
PT
2798 return;
2799
2800 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2801 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2802
2803 if (!update_cfs_rq)
2804 return;
2805
36ee28e4 2806 if (se->on_rq) {
2dac754e 2807 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2808 cfs_rq->utilization_load_avg += utilization_delta;
2809 } else {
9ee474f5 2810 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2811 }
9ee474f5
PT
2812}
2813
2814/*
2815 * Decay the load contributed by all blocked children and account this so that
2816 * their contribution may appropriately discounted when they wake up.
2817 */
aff3e498 2818static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2819{
f1b17280 2820 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2821 u64 decays;
2822
2823 decays = now - cfs_rq->last_decay;
aff3e498 2824 if (!decays && !force_update)
9ee474f5
PT
2825 return;
2826
2509940f
AS
2827 if (atomic_long_read(&cfs_rq->removed_load)) {
2828 unsigned long removed_load;
2829 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2830 subtract_blocked_load_contrib(cfs_rq, removed_load);
2831 }
9ee474f5 2832
aff3e498
PT
2833 if (decays) {
2834 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835 decays);
2836 atomic64_add(decays, &cfs_rq->decay_counter);
2837 cfs_rq->last_decay = now;
2838 }
c566e8e9
PT
2839
2840 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2841}
18bf2805 2842
2dac754e
PT
2843/* Add the load generated by se into cfs_rq's child load-average */
2844static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2845 struct sched_entity *se,
2846 int wakeup)
2dac754e 2847{
aff3e498
PT
2848 /*
2849 * We track migrations using entity decay_count <= 0, on a wake-up
2850 * migration we use a negative decay count to track the remote decays
2851 * accumulated while sleeping.
a75cdaa9
AS
2852 *
2853 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854 * are seen by enqueue_entity_load_avg() as a migration with an already
2855 * constructed load_avg_contrib.
aff3e498
PT
2856 */
2857 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2858 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2859 if (se->avg.decay_count) {
2860 /*
2861 * In a wake-up migration we have to approximate the
2862 * time sleeping. This is because we can't synchronize
2863 * clock_task between the two cpus, and it is not
2864 * guaranteed to be read-safe. Instead, we can
2865 * approximate this using our carried decays, which are
2866 * explicitly atomically readable.
2867 */
2868 se->avg.last_runnable_update -= (-se->avg.decay_count)
2869 << 20;
2870 update_entity_load_avg(se, 0);
2871 /* Indicate that we're now synchronized and on-rq */
2872 se->avg.decay_count = 0;
2873 }
9ee474f5
PT
2874 wakeup = 0;
2875 } else {
9390675a 2876 __synchronize_entity_decay(se);
9ee474f5
PT
2877 }
2878
aff3e498
PT
2879 /* migrated tasks did not contribute to our blocked load */
2880 if (wakeup) {
9ee474f5 2881 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2882 update_entity_load_avg(se, 0);
2883 }
9ee474f5 2884
2dac754e 2885 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2886 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2887 /* we force update consideration on load-balancer moves */
2888 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2889}
2890
9ee474f5
PT
2891/*
2892 * Remove se's load from this cfs_rq child load-average, if the entity is
2893 * transitioning to a blocked state we track its projected decay using
2894 * blocked_load_avg.
2895 */
2dac754e 2896static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2897 struct sched_entity *se,
2898 int sleep)
2dac754e 2899{
9ee474f5 2900 update_entity_load_avg(se, 1);
aff3e498
PT
2901 /* we force update consideration on load-balancer moves */
2902 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2903
2dac754e 2904 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2905 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2906 if (sleep) {
2907 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2910}
642dbc39
VG
2911
2912/*
2913 * Update the rq's load with the elapsed running time before entering
2914 * idle. if the last scheduled task is not a CFS task, idle_enter will
2915 * be the only way to update the runnable statistic.
2916 */
2917void idle_enter_fair(struct rq *this_rq)
2918{
2919 update_rq_runnable_avg(this_rq, 1);
2920}
2921
2922/*
2923 * Update the rq's load with the elapsed idle time before a task is
2924 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925 * be the only way to update the runnable statistic.
2926 */
2927void idle_exit_fair(struct rq *this_rq)
2928{
2929 update_rq_runnable_avg(this_rq, 0);
2930}
2931
6e83125c
PZ
2932static int idle_balance(struct rq *this_rq);
2933
38033c37
PZ
2934#else /* CONFIG_SMP */
2935
9ee474f5
PT
2936static inline void update_entity_load_avg(struct sched_entity *se,
2937 int update_cfs_rq) {}
18bf2805 2938static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2939static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2940 struct sched_entity *se,
2941 int wakeup) {}
2dac754e 2942static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2943 struct sched_entity *se,
2944 int sleep) {}
aff3e498
PT
2945static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946 int force_update) {}
6e83125c
PZ
2947
2948static inline int idle_balance(struct rq *rq)
2949{
2950 return 0;
2951}
2952
38033c37 2953#endif /* CONFIG_SMP */
9d85f21c 2954
2396af69 2955static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2956{
bf0f6f24 2957#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2958 struct task_struct *tsk = NULL;
2959
2960 if (entity_is_task(se))
2961 tsk = task_of(se);
2962
41acab88 2963 if (se->statistics.sleep_start) {
78becc27 2964 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2965
2966 if ((s64)delta < 0)
2967 delta = 0;
2968
41acab88
LDM
2969 if (unlikely(delta > se->statistics.sleep_max))
2970 se->statistics.sleep_max = delta;
bf0f6f24 2971
8c79a045 2972 se->statistics.sleep_start = 0;
41acab88 2973 se->statistics.sum_sleep_runtime += delta;
9745512c 2974
768d0c27 2975 if (tsk) {
e414314c 2976 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2977 trace_sched_stat_sleep(tsk, delta);
2978 }
bf0f6f24 2979 }
41acab88 2980 if (se->statistics.block_start) {
78becc27 2981 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2982
2983 if ((s64)delta < 0)
2984 delta = 0;
2985
41acab88
LDM
2986 if (unlikely(delta > se->statistics.block_max))
2987 se->statistics.block_max = delta;
bf0f6f24 2988
8c79a045 2989 se->statistics.block_start = 0;
41acab88 2990 se->statistics.sum_sleep_runtime += delta;
30084fbd 2991
e414314c 2992 if (tsk) {
8f0dfc34 2993 if (tsk->in_iowait) {
41acab88
LDM
2994 se->statistics.iowait_sum += delta;
2995 se->statistics.iowait_count++;
768d0c27 2996 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2997 }
2998
b781a602
AV
2999 trace_sched_stat_blocked(tsk, delta);
3000
e414314c
PZ
3001 /*
3002 * Blocking time is in units of nanosecs, so shift by
3003 * 20 to get a milliseconds-range estimation of the
3004 * amount of time that the task spent sleeping:
3005 */
3006 if (unlikely(prof_on == SLEEP_PROFILING)) {
3007 profile_hits(SLEEP_PROFILING,
3008 (void *)get_wchan(tsk),
3009 delta >> 20);
3010 }
3011 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3012 }
bf0f6f24
IM
3013 }
3014#endif
3015}
3016
ddc97297
PZ
3017static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018{
3019#ifdef CONFIG_SCHED_DEBUG
3020 s64 d = se->vruntime - cfs_rq->min_vruntime;
3021
3022 if (d < 0)
3023 d = -d;
3024
3025 if (d > 3*sysctl_sched_latency)
3026 schedstat_inc(cfs_rq, nr_spread_over);
3027#endif
3028}
3029
aeb73b04
PZ
3030static void
3031place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3032{
1af5f730 3033 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3034
2cb8600e
PZ
3035 /*
3036 * The 'current' period is already promised to the current tasks,
3037 * however the extra weight of the new task will slow them down a
3038 * little, place the new task so that it fits in the slot that
3039 * stays open at the end.
3040 */
94dfb5e7 3041 if (initial && sched_feat(START_DEBIT))
f9c0b095 3042 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3043
a2e7a7eb 3044 /* sleeps up to a single latency don't count. */
5ca9880c 3045 if (!initial) {
a2e7a7eb 3046 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3047
a2e7a7eb
MG
3048 /*
3049 * Halve their sleep time's effect, to allow
3050 * for a gentler effect of sleepers:
3051 */
3052 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053 thresh >>= 1;
51e0304c 3054
a2e7a7eb 3055 vruntime -= thresh;
aeb73b04
PZ
3056 }
3057
b5d9d734 3058 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3059 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3060}
3061
d3d9dc33
PT
3062static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3063
bf0f6f24 3064static void
88ec22d3 3065enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3066{
88ec22d3
PZ
3067 /*
3068 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3069 * through calling update_curr().
88ec22d3 3070 */
371fd7e7 3071 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3072 se->vruntime += cfs_rq->min_vruntime;
3073
bf0f6f24 3074 /*
a2a2d680 3075 * Update run-time statistics of the 'current'.
bf0f6f24 3076 */
b7cc0896 3077 update_curr(cfs_rq);
f269ae04 3078 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3079 account_entity_enqueue(cfs_rq, se);
3080 update_cfs_shares(cfs_rq);
bf0f6f24 3081
88ec22d3 3082 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3083 place_entity(cfs_rq, se, 0);
2396af69 3084 enqueue_sleeper(cfs_rq, se);
e9acbff6 3085 }
bf0f6f24 3086
d2417e5a 3087 update_stats_enqueue(cfs_rq, se);
ddc97297 3088 check_spread(cfs_rq, se);
83b699ed
SV
3089 if (se != cfs_rq->curr)
3090 __enqueue_entity(cfs_rq, se);
2069dd75 3091 se->on_rq = 1;
3d4b47b4 3092
d3d9dc33 3093 if (cfs_rq->nr_running == 1) {
3d4b47b4 3094 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3095 check_enqueue_throttle(cfs_rq);
3096 }
bf0f6f24
IM
3097}
3098
2c13c919 3099static void __clear_buddies_last(struct sched_entity *se)
2002c695 3100{
2c13c919
RR
3101 for_each_sched_entity(se) {
3102 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3103 if (cfs_rq->last != se)
2c13c919 3104 break;
f1044799
PZ
3105
3106 cfs_rq->last = NULL;
2c13c919
RR
3107 }
3108}
2002c695 3109
2c13c919
RR
3110static void __clear_buddies_next(struct sched_entity *se)
3111{
3112 for_each_sched_entity(se) {
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3114 if (cfs_rq->next != se)
2c13c919 3115 break;
f1044799
PZ
3116
3117 cfs_rq->next = NULL;
2c13c919 3118 }
2002c695
PZ
3119}
3120
ac53db59
RR
3121static void __clear_buddies_skip(struct sched_entity *se)
3122{
3123 for_each_sched_entity(se) {
3124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3125 if (cfs_rq->skip != se)
ac53db59 3126 break;
f1044799
PZ
3127
3128 cfs_rq->skip = NULL;
ac53db59
RR
3129 }
3130}
3131
a571bbea
PZ
3132static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3133{
2c13c919
RR
3134 if (cfs_rq->last == se)
3135 __clear_buddies_last(se);
3136
3137 if (cfs_rq->next == se)
3138 __clear_buddies_next(se);
ac53db59
RR
3139
3140 if (cfs_rq->skip == se)
3141 __clear_buddies_skip(se);
a571bbea
PZ
3142}
3143
6c16a6dc 3144static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3145
bf0f6f24 3146static void
371fd7e7 3147dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3148{
a2a2d680
DA
3149 /*
3150 * Update run-time statistics of the 'current'.
3151 */
3152 update_curr(cfs_rq);
17bc14b7 3153 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3154
19b6a2e3 3155 update_stats_dequeue(cfs_rq, se);
371fd7e7 3156 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3157#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3158 if (entity_is_task(se)) {
3159 struct task_struct *tsk = task_of(se);
3160
3161 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3162 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3163 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3164 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3165 }
db36cc7d 3166#endif
67e9fb2a
PZ
3167 }
3168
2002c695 3169 clear_buddies(cfs_rq, se);
4793241b 3170
83b699ed 3171 if (se != cfs_rq->curr)
30cfdcfc 3172 __dequeue_entity(cfs_rq, se);
17bc14b7 3173 se->on_rq = 0;
30cfdcfc 3174 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3175
3176 /*
3177 * Normalize the entity after updating the min_vruntime because the
3178 * update can refer to the ->curr item and we need to reflect this
3179 * movement in our normalized position.
3180 */
371fd7e7 3181 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3182 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3183
d8b4986d
PT
3184 /* return excess runtime on last dequeue */
3185 return_cfs_rq_runtime(cfs_rq);
3186
1e876231 3187 update_min_vruntime(cfs_rq);
17bc14b7 3188 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3189}
3190
3191/*
3192 * Preempt the current task with a newly woken task if needed:
3193 */
7c92e54f 3194static void
2e09bf55 3195check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3196{
11697830 3197 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3198 struct sched_entity *se;
3199 s64 delta;
11697830 3200
6d0f0ebd 3201 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3202 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3203 if (delta_exec > ideal_runtime) {
8875125e 3204 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3205 /*
3206 * The current task ran long enough, ensure it doesn't get
3207 * re-elected due to buddy favours.
3208 */
3209 clear_buddies(cfs_rq, curr);
f685ceac
MG
3210 return;
3211 }
3212
3213 /*
3214 * Ensure that a task that missed wakeup preemption by a
3215 * narrow margin doesn't have to wait for a full slice.
3216 * This also mitigates buddy induced latencies under load.
3217 */
f685ceac
MG
3218 if (delta_exec < sysctl_sched_min_granularity)
3219 return;
3220
f4cfb33e
WX
3221 se = __pick_first_entity(cfs_rq);
3222 delta = curr->vruntime - se->vruntime;
f685ceac 3223
f4cfb33e
WX
3224 if (delta < 0)
3225 return;
d7d82944 3226
f4cfb33e 3227 if (delta > ideal_runtime)
8875125e 3228 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3229}
3230
83b699ed 3231static void
8494f412 3232set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3233{
83b699ed
SV
3234 /* 'current' is not kept within the tree. */
3235 if (se->on_rq) {
3236 /*
3237 * Any task has to be enqueued before it get to execute on
3238 * a CPU. So account for the time it spent waiting on the
3239 * runqueue.
3240 */
3241 update_stats_wait_end(cfs_rq, se);
3242 __dequeue_entity(cfs_rq, se);
36ee28e4 3243 update_entity_load_avg(se, 1);
83b699ed
SV
3244 }
3245
79303e9e 3246 update_stats_curr_start(cfs_rq, se);
429d43bc 3247 cfs_rq->curr = se;
eba1ed4b
IM
3248#ifdef CONFIG_SCHEDSTATS
3249 /*
3250 * Track our maximum slice length, if the CPU's load is at
3251 * least twice that of our own weight (i.e. dont track it
3252 * when there are only lesser-weight tasks around):
3253 */
495eca49 3254 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3255 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3256 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3257 }
3258#endif
4a55b450 3259 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3260}
3261
3f3a4904
PZ
3262static int
3263wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3264
ac53db59
RR
3265/*
3266 * Pick the next process, keeping these things in mind, in this order:
3267 * 1) keep things fair between processes/task groups
3268 * 2) pick the "next" process, since someone really wants that to run
3269 * 3) pick the "last" process, for cache locality
3270 * 4) do not run the "skip" process, if something else is available
3271 */
678d5718
PZ
3272static struct sched_entity *
3273pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3274{
678d5718
PZ
3275 struct sched_entity *left = __pick_first_entity(cfs_rq);
3276 struct sched_entity *se;
3277
3278 /*
3279 * If curr is set we have to see if its left of the leftmost entity
3280 * still in the tree, provided there was anything in the tree at all.
3281 */
3282 if (!left || (curr && entity_before(curr, left)))
3283 left = curr;
3284
3285 se = left; /* ideally we run the leftmost entity */
f4b6755f 3286
ac53db59
RR
3287 /*
3288 * Avoid running the skip buddy, if running something else can
3289 * be done without getting too unfair.
3290 */
3291 if (cfs_rq->skip == se) {
678d5718
PZ
3292 struct sched_entity *second;
3293
3294 if (se == curr) {
3295 second = __pick_first_entity(cfs_rq);
3296 } else {
3297 second = __pick_next_entity(se);
3298 if (!second || (curr && entity_before(curr, second)))
3299 second = curr;
3300 }
3301
ac53db59
RR
3302 if (second && wakeup_preempt_entity(second, left) < 1)
3303 se = second;
3304 }
aa2ac252 3305
f685ceac
MG
3306 /*
3307 * Prefer last buddy, try to return the CPU to a preempted task.
3308 */
3309 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310 se = cfs_rq->last;
3311
ac53db59
RR
3312 /*
3313 * Someone really wants this to run. If it's not unfair, run it.
3314 */
3315 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316 se = cfs_rq->next;
3317
f685ceac 3318 clear_buddies(cfs_rq, se);
4793241b
PZ
3319
3320 return se;
aa2ac252
PZ
3321}
3322
678d5718 3323static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3324
ab6cde26 3325static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3326{
3327 /*
3328 * If still on the runqueue then deactivate_task()
3329 * was not called and update_curr() has to be done:
3330 */
3331 if (prev->on_rq)
b7cc0896 3332 update_curr(cfs_rq);
bf0f6f24 3333
d3d9dc33
PT
3334 /* throttle cfs_rqs exceeding runtime */
3335 check_cfs_rq_runtime(cfs_rq);
3336
ddc97297 3337 check_spread(cfs_rq, prev);
30cfdcfc 3338 if (prev->on_rq) {
5870db5b 3339 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3340 /* Put 'current' back into the tree. */
3341 __enqueue_entity(cfs_rq, prev);
9d85f21c 3342 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3343 update_entity_load_avg(prev, 1);
30cfdcfc 3344 }
429d43bc 3345 cfs_rq->curr = NULL;
bf0f6f24
IM
3346}
3347
8f4d37ec
PZ
3348static void
3349entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3350{
bf0f6f24 3351 /*
30cfdcfc 3352 * Update run-time statistics of the 'current'.
bf0f6f24 3353 */
30cfdcfc 3354 update_curr(cfs_rq);
bf0f6f24 3355
9d85f21c
PT
3356 /*
3357 * Ensure that runnable average is periodically updated.
3358 */
9ee474f5 3359 update_entity_load_avg(curr, 1);
aff3e498 3360 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3361 update_cfs_shares(cfs_rq);
9d85f21c 3362
8f4d37ec
PZ
3363#ifdef CONFIG_SCHED_HRTICK
3364 /*
3365 * queued ticks are scheduled to match the slice, so don't bother
3366 * validating it and just reschedule.
3367 */
983ed7a6 3368 if (queued) {
8875125e 3369 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3370 return;
3371 }
8f4d37ec
PZ
3372 /*
3373 * don't let the period tick interfere with the hrtick preemption
3374 */
3375 if (!sched_feat(DOUBLE_TICK) &&
3376 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377 return;
3378#endif
3379
2c2efaed 3380 if (cfs_rq->nr_running > 1)
2e09bf55 3381 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3382}
3383
ab84d31e
PT
3384
3385/**************************************************
3386 * CFS bandwidth control machinery
3387 */
3388
3389#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3390
3391#ifdef HAVE_JUMP_LABEL
c5905afb 3392static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3393
3394static inline bool cfs_bandwidth_used(void)
3395{
c5905afb 3396 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3397}
3398
1ee14e6c 3399void cfs_bandwidth_usage_inc(void)
029632fb 3400{
1ee14e6c
BS
3401 static_key_slow_inc(&__cfs_bandwidth_used);
3402}
3403
3404void cfs_bandwidth_usage_dec(void)
3405{
3406 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3407}
3408#else /* HAVE_JUMP_LABEL */
3409static bool cfs_bandwidth_used(void)
3410{
3411 return true;
3412}
3413
1ee14e6c
BS
3414void cfs_bandwidth_usage_inc(void) {}
3415void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3416#endif /* HAVE_JUMP_LABEL */
3417
ab84d31e
PT
3418/*
3419 * default period for cfs group bandwidth.
3420 * default: 0.1s, units: nanoseconds
3421 */
3422static inline u64 default_cfs_period(void)
3423{
3424 return 100000000ULL;
3425}
ec12cb7f
PT
3426
3427static inline u64 sched_cfs_bandwidth_slice(void)
3428{
3429 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3430}
3431
a9cf55b2
PT
3432/*
3433 * Replenish runtime according to assigned quota and update expiration time.
3434 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435 * additional synchronization around rq->lock.
3436 *
3437 * requires cfs_b->lock
3438 */
029632fb 3439void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3440{
3441 u64 now;
3442
3443 if (cfs_b->quota == RUNTIME_INF)
3444 return;
3445
3446 now = sched_clock_cpu(smp_processor_id());
3447 cfs_b->runtime = cfs_b->quota;
3448 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3449}
3450
029632fb
PZ
3451static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3452{
3453 return &tg->cfs_bandwidth;
3454}
3455
f1b17280
PT
3456/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3457static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3458{
3459 if (unlikely(cfs_rq->throttle_count))
3460 return cfs_rq->throttled_clock_task;
3461
78becc27 3462 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3463}
3464
85dac906
PT
3465/* returns 0 on failure to allocate runtime */
3466static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3467{
3468 struct task_group *tg = cfs_rq->tg;
3469 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3470 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3471
3472 /* note: this is a positive sum as runtime_remaining <= 0 */
3473 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3474
3475 raw_spin_lock(&cfs_b->lock);
3476 if (cfs_b->quota == RUNTIME_INF)
3477 amount = min_amount;
58088ad0 3478 else {
77a4d1a1 3479 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3480
3481 if (cfs_b->runtime > 0) {
3482 amount = min(cfs_b->runtime, min_amount);
3483 cfs_b->runtime -= amount;
3484 cfs_b->idle = 0;
3485 }
ec12cb7f 3486 }
a9cf55b2 3487 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3488 raw_spin_unlock(&cfs_b->lock);
3489
3490 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3491 /*
3492 * we may have advanced our local expiration to account for allowed
3493 * spread between our sched_clock and the one on which runtime was
3494 * issued.
3495 */
3496 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3497 cfs_rq->runtime_expires = expires;
85dac906
PT
3498
3499 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3500}
3501
a9cf55b2
PT
3502/*
3503 * Note: This depends on the synchronization provided by sched_clock and the
3504 * fact that rq->clock snapshots this value.
3505 */
3506static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3507{
a9cf55b2 3508 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3509
3510 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3511 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3512 return;
3513
a9cf55b2
PT
3514 if (cfs_rq->runtime_remaining < 0)
3515 return;
3516
3517 /*
3518 * If the local deadline has passed we have to consider the
3519 * possibility that our sched_clock is 'fast' and the global deadline
3520 * has not truly expired.
3521 *
3522 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3523 * whether the global deadline has advanced. It is valid to compare
3524 * cfs_b->runtime_expires without any locks since we only care about
3525 * exact equality, so a partial write will still work.
a9cf55b2
PT
3526 */
3527
51f2176d 3528 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3529 /* extend local deadline, drift is bounded above by 2 ticks */
3530 cfs_rq->runtime_expires += TICK_NSEC;
3531 } else {
3532 /* global deadline is ahead, expiration has passed */
3533 cfs_rq->runtime_remaining = 0;
3534 }
3535}
3536
9dbdb155 3537static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3538{
3539 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3540 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3541 expire_cfs_rq_runtime(cfs_rq);
3542
3543 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3544 return;
3545
85dac906
PT
3546 /*
3547 * if we're unable to extend our runtime we resched so that the active
3548 * hierarchy can be throttled
3549 */
3550 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3551 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3552}
3553
6c16a6dc 3554static __always_inline
9dbdb155 3555void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3556{
56f570e5 3557 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3558 return;
3559
3560 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3561}
3562
85dac906
PT
3563static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3564{
56f570e5 3565 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3566}
3567
64660c86
PT
3568/* check whether cfs_rq, or any parent, is throttled */
3569static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3570{
56f570e5 3571 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3572}
3573
3574/*
3575 * Ensure that neither of the group entities corresponding to src_cpu or
3576 * dest_cpu are members of a throttled hierarchy when performing group
3577 * load-balance operations.
3578 */
3579static inline int throttled_lb_pair(struct task_group *tg,
3580 int src_cpu, int dest_cpu)
3581{
3582 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3583
3584 src_cfs_rq = tg->cfs_rq[src_cpu];
3585 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3586
3587 return throttled_hierarchy(src_cfs_rq) ||
3588 throttled_hierarchy(dest_cfs_rq);
3589}
3590
3591/* updated child weight may affect parent so we have to do this bottom up */
3592static int tg_unthrottle_up(struct task_group *tg, void *data)
3593{
3594 struct rq *rq = data;
3595 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3596
3597 cfs_rq->throttle_count--;
3598#ifdef CONFIG_SMP
3599 if (!cfs_rq->throttle_count) {
f1b17280 3600 /* adjust cfs_rq_clock_task() */
78becc27 3601 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3602 cfs_rq->throttled_clock_task;
64660c86
PT
3603 }
3604#endif
3605
3606 return 0;
3607}
3608
3609static int tg_throttle_down(struct task_group *tg, void *data)
3610{
3611 struct rq *rq = data;
3612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3613
82958366
PT
3614 /* group is entering throttled state, stop time */
3615 if (!cfs_rq->throttle_count)
78becc27 3616 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3617 cfs_rq->throttle_count++;
3618
3619 return 0;
3620}
3621
d3d9dc33 3622static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3623{
3624 struct rq *rq = rq_of(cfs_rq);
3625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3626 struct sched_entity *se;
3627 long task_delta, dequeue = 1;
77a4d1a1 3628 bool empty;
85dac906
PT
3629
3630 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3631
f1b17280 3632 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3633 rcu_read_lock();
3634 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3635 rcu_read_unlock();
85dac906
PT
3636
3637 task_delta = cfs_rq->h_nr_running;
3638 for_each_sched_entity(se) {
3639 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3640 /* throttled entity or throttle-on-deactivate */
3641 if (!se->on_rq)
3642 break;
3643
3644 if (dequeue)
3645 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3646 qcfs_rq->h_nr_running -= task_delta;
3647
3648 if (qcfs_rq->load.weight)
3649 dequeue = 0;
3650 }
3651
3652 if (!se)
72465447 3653 sub_nr_running(rq, task_delta);
85dac906
PT
3654
3655 cfs_rq->throttled = 1;
78becc27 3656 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3657 raw_spin_lock(&cfs_b->lock);
77a4d1a1
PZ
3658 empty = list_empty(&cfs_rq->throttled_list);
3659
c06f04c7
BS
3660 /*
3661 * Add to the _head_ of the list, so that an already-started
3662 * distribute_cfs_runtime will not see us
3663 */
3664 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3665
3666 /*
3667 * If we're the first throttled task, make sure the bandwidth
3668 * timer is running.
3669 */
3670 if (empty)
3671 start_cfs_bandwidth(cfs_b);
3672
85dac906
PT
3673 raw_spin_unlock(&cfs_b->lock);
3674}
3675
029632fb 3676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3677{
3678 struct rq *rq = rq_of(cfs_rq);
3679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680 struct sched_entity *se;
3681 int enqueue = 1;
3682 long task_delta;
3683
22b958d8 3684 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3685
3686 cfs_rq->throttled = 0;
1a55af2e
FW
3687
3688 update_rq_clock(rq);
3689
671fd9da 3690 raw_spin_lock(&cfs_b->lock);
78becc27 3691 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3692 list_del_rcu(&cfs_rq->throttled_list);
3693 raw_spin_unlock(&cfs_b->lock);
3694
64660c86
PT
3695 /* update hierarchical throttle state */
3696 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3697
671fd9da
PT
3698 if (!cfs_rq->load.weight)
3699 return;
3700
3701 task_delta = cfs_rq->h_nr_running;
3702 for_each_sched_entity(se) {
3703 if (se->on_rq)
3704 enqueue = 0;
3705
3706 cfs_rq = cfs_rq_of(se);
3707 if (enqueue)
3708 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709 cfs_rq->h_nr_running += task_delta;
3710
3711 if (cfs_rq_throttled(cfs_rq))
3712 break;
3713 }
3714
3715 if (!se)
72465447 3716 add_nr_running(rq, task_delta);
671fd9da
PT
3717
3718 /* determine whether we need to wake up potentially idle cpu */
3719 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3720 resched_curr(rq);
671fd9da
PT
3721}
3722
3723static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724 u64 remaining, u64 expires)
3725{
3726 struct cfs_rq *cfs_rq;
c06f04c7
BS
3727 u64 runtime;
3728 u64 starting_runtime = remaining;
671fd9da
PT
3729
3730 rcu_read_lock();
3731 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732 throttled_list) {
3733 struct rq *rq = rq_of(cfs_rq);
3734
3735 raw_spin_lock(&rq->lock);
3736 if (!cfs_rq_throttled(cfs_rq))
3737 goto next;
3738
3739 runtime = -cfs_rq->runtime_remaining + 1;
3740 if (runtime > remaining)
3741 runtime = remaining;
3742 remaining -= runtime;
3743
3744 cfs_rq->runtime_remaining += runtime;
3745 cfs_rq->runtime_expires = expires;
3746
3747 /* we check whether we're throttled above */
3748 if (cfs_rq->runtime_remaining > 0)
3749 unthrottle_cfs_rq(cfs_rq);
3750
3751next:
3752 raw_spin_unlock(&rq->lock);
3753
3754 if (!remaining)
3755 break;
3756 }
3757 rcu_read_unlock();
3758
c06f04c7 3759 return starting_runtime - remaining;
671fd9da
PT
3760}
3761
58088ad0
PT
3762/*
3763 * Responsible for refilling a task_group's bandwidth and unthrottling its
3764 * cfs_rqs as appropriate. If there has been no activity within the last
3765 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766 * used to track this state.
3767 */
3768static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3769{
671fd9da 3770 u64 runtime, runtime_expires;
51f2176d 3771 int throttled;
58088ad0 3772
58088ad0
PT
3773 /* no need to continue the timer with no bandwidth constraint */
3774 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3775 goto out_deactivate;
58088ad0 3776
671fd9da 3777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3778 cfs_b->nr_periods += overrun;
671fd9da 3779
51f2176d
BS
3780 /*
3781 * idle depends on !throttled (for the case of a large deficit), and if
3782 * we're going inactive then everything else can be deferred
3783 */
3784 if (cfs_b->idle && !throttled)
3785 goto out_deactivate;
a9cf55b2
PT
3786
3787 __refill_cfs_bandwidth_runtime(cfs_b);
3788
671fd9da
PT
3789 if (!throttled) {
3790 /* mark as potentially idle for the upcoming period */
3791 cfs_b->idle = 1;
51f2176d 3792 return 0;
671fd9da
PT
3793 }
3794
e8da1b18
NR
3795 /* account preceding periods in which throttling occurred */
3796 cfs_b->nr_throttled += overrun;
3797
671fd9da 3798 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3799
3800 /*
c06f04c7
BS
3801 * This check is repeated as we are holding onto the new bandwidth while
3802 * we unthrottle. This can potentially race with an unthrottled group
3803 * trying to acquire new bandwidth from the global pool. This can result
3804 * in us over-using our runtime if it is all used during this loop, but
3805 * only by limited amounts in that extreme case.
671fd9da 3806 */
c06f04c7
BS
3807 while (throttled && cfs_b->runtime > 0) {
3808 runtime = cfs_b->runtime;
671fd9da
PT
3809 raw_spin_unlock(&cfs_b->lock);
3810 /* we can't nest cfs_b->lock while distributing bandwidth */
3811 runtime = distribute_cfs_runtime(cfs_b, runtime,
3812 runtime_expires);
3813 raw_spin_lock(&cfs_b->lock);
3814
3815 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3816
3817 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3818 }
58088ad0 3819
671fd9da
PT
3820 /*
3821 * While we are ensured activity in the period following an
3822 * unthrottle, this also covers the case in which the new bandwidth is
3823 * insufficient to cover the existing bandwidth deficit. (Forcing the
3824 * timer to remain active while there are any throttled entities.)
3825 */
3826 cfs_b->idle = 0;
58088ad0 3827
51f2176d
BS
3828 return 0;
3829
3830out_deactivate:
51f2176d 3831 return 1;
58088ad0 3832}
d3d9dc33 3833
d8b4986d
PT
3834/* a cfs_rq won't donate quota below this amount */
3835static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3836/* minimum remaining period time to redistribute slack quota */
3837static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3838/* how long we wait to gather additional slack before distributing */
3839static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3840
db06e78c
BS
3841/*
3842 * Are we near the end of the current quota period?
3843 *
3844 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3845 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3846 * migrate_hrtimers, base is never cleared, so we are fine.
3847 */
d8b4986d
PT
3848static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3849{
3850 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3851 u64 remaining;
3852
3853 /* if the call-back is running a quota refresh is already occurring */
3854 if (hrtimer_callback_running(refresh_timer))
3855 return 1;
3856
3857 /* is a quota refresh about to occur? */
3858 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3859 if (remaining < min_expire)
3860 return 1;
3861
3862 return 0;
3863}
3864
3865static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3866{
3867 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3868
3869 /* if there's a quota refresh soon don't bother with slack */
3870 if (runtime_refresh_within(cfs_b, min_left))
3871 return;
3872
3873 start_bandwidth_timer(&cfs_b->slack_timer,
3874 ns_to_ktime(cfs_bandwidth_slack_period));
3875}
3876
3877/* we know any runtime found here is valid as update_curr() precedes return */
3878static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3879{
3880 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3881 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3882
3883 if (slack_runtime <= 0)
3884 return;
3885
3886 raw_spin_lock(&cfs_b->lock);
3887 if (cfs_b->quota != RUNTIME_INF &&
3888 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3889 cfs_b->runtime += slack_runtime;
3890
3891 /* we are under rq->lock, defer unthrottling using a timer */
3892 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3893 !list_empty(&cfs_b->throttled_cfs_rq))
3894 start_cfs_slack_bandwidth(cfs_b);
3895 }
3896 raw_spin_unlock(&cfs_b->lock);
3897
3898 /* even if it's not valid for return we don't want to try again */
3899 cfs_rq->runtime_remaining -= slack_runtime;
3900}
3901
3902static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3903{
56f570e5
PT
3904 if (!cfs_bandwidth_used())
3905 return;
3906
fccfdc6f 3907 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3908 return;
3909
3910 __return_cfs_rq_runtime(cfs_rq);
3911}
3912
3913/*
3914 * This is done with a timer (instead of inline with bandwidth return) since
3915 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3916 */
3917static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3918{
3919 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3920 u64 expires;
3921
3922 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3923 raw_spin_lock(&cfs_b->lock);
3924 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3925 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3926 return;
db06e78c 3927 }
d8b4986d 3928
c06f04c7 3929 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3930 runtime = cfs_b->runtime;
c06f04c7 3931
d8b4986d
PT
3932 expires = cfs_b->runtime_expires;
3933 raw_spin_unlock(&cfs_b->lock);
3934
3935 if (!runtime)
3936 return;
3937
3938 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3939
3940 raw_spin_lock(&cfs_b->lock);
3941 if (expires == cfs_b->runtime_expires)
c06f04c7 3942 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3943 raw_spin_unlock(&cfs_b->lock);
3944}
3945
d3d9dc33
PT
3946/*
3947 * When a group wakes up we want to make sure that its quota is not already
3948 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3949 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3950 */
3951static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3952{
56f570e5
PT
3953 if (!cfs_bandwidth_used())
3954 return;
3955
d3d9dc33
PT
3956 /* an active group must be handled by the update_curr()->put() path */
3957 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3958 return;
3959
3960 /* ensure the group is not already throttled */
3961 if (cfs_rq_throttled(cfs_rq))
3962 return;
3963
3964 /* update runtime allocation */
3965 account_cfs_rq_runtime(cfs_rq, 0);
3966 if (cfs_rq->runtime_remaining <= 0)
3967 throttle_cfs_rq(cfs_rq);
3968}
3969
3970/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3971static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3972{
56f570e5 3973 if (!cfs_bandwidth_used())
678d5718 3974 return false;
56f570e5 3975
d3d9dc33 3976 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3977 return false;
d3d9dc33
PT
3978
3979 /*
3980 * it's possible for a throttled entity to be forced into a running
3981 * state (e.g. set_curr_task), in this case we're finished.
3982 */
3983 if (cfs_rq_throttled(cfs_rq))
678d5718 3984 return true;
d3d9dc33
PT
3985
3986 throttle_cfs_rq(cfs_rq);
678d5718 3987 return true;
d3d9dc33 3988}
029632fb 3989
029632fb
PZ
3990static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3991{
3992 struct cfs_bandwidth *cfs_b =
3993 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3994
029632fb
PZ
3995 do_sched_cfs_slack_timer(cfs_b);
3996
3997 return HRTIMER_NORESTART;
3998}
3999
4000static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4001{
4002 struct cfs_bandwidth *cfs_b =
4003 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4004 int overrun;
4005 int idle = 0;
4006
51f2176d 4007 raw_spin_lock(&cfs_b->lock);
029632fb 4008 for (;;) {
77a4d1a1 4009 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4010 if (!overrun)
4011 break;
4012
4013 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4014 }
51f2176d 4015 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4016
4017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4018}
4019
4020void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4021{
4022 raw_spin_lock_init(&cfs_b->lock);
4023 cfs_b->runtime = 0;
4024 cfs_b->quota = RUNTIME_INF;
4025 cfs_b->period = ns_to_ktime(default_cfs_period());
4026
4027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4029 cfs_b->period_timer.function = sched_cfs_period_timer;
4030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4032}
4033
4034static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4035{
4036 cfs_rq->runtime_enabled = 0;
4037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4038}
4039
77a4d1a1 4040void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4041{
029632fb
PZ
4042 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4043}
4044
4045static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4046{
7f1a169b
TH
4047 /* init_cfs_bandwidth() was not called */
4048 if (!cfs_b->throttled_cfs_rq.next)
4049 return;
4050
029632fb
PZ
4051 hrtimer_cancel(&cfs_b->period_timer);
4052 hrtimer_cancel(&cfs_b->slack_timer);
4053}
4054
0e59bdae
KT
4055static void __maybe_unused update_runtime_enabled(struct rq *rq)
4056{
4057 struct cfs_rq *cfs_rq;
4058
4059 for_each_leaf_cfs_rq(rq, cfs_rq) {
4060 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4061
4062 raw_spin_lock(&cfs_b->lock);
4063 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4064 raw_spin_unlock(&cfs_b->lock);
4065 }
4066}
4067
38dc3348 4068static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4069{
4070 struct cfs_rq *cfs_rq;
4071
4072 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4073 if (!cfs_rq->runtime_enabled)
4074 continue;
4075
4076 /*
4077 * clock_task is not advancing so we just need to make sure
4078 * there's some valid quota amount
4079 */
51f2176d 4080 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4081 /*
4082 * Offline rq is schedulable till cpu is completely disabled
4083 * in take_cpu_down(), so we prevent new cfs throttling here.
4084 */
4085 cfs_rq->runtime_enabled = 0;
4086
029632fb
PZ
4087 if (cfs_rq_throttled(cfs_rq))
4088 unthrottle_cfs_rq(cfs_rq);
4089 }
4090}
4091
4092#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4093static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4094{
78becc27 4095 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4096}
4097
9dbdb155 4098static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4099static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4100static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4101static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4102
4103static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4104{
4105 return 0;
4106}
64660c86
PT
4107
4108static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4109{
4110 return 0;
4111}
4112
4113static inline int throttled_lb_pair(struct task_group *tg,
4114 int src_cpu, int dest_cpu)
4115{
4116 return 0;
4117}
029632fb
PZ
4118
4119void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4120
4121#ifdef CONFIG_FAIR_GROUP_SCHED
4122static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4123#endif
4124
029632fb
PZ
4125static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4126{
4127 return NULL;
4128}
4129static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4130static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4131static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4132
4133#endif /* CONFIG_CFS_BANDWIDTH */
4134
bf0f6f24
IM
4135/**************************************************
4136 * CFS operations on tasks:
4137 */
4138
8f4d37ec
PZ
4139#ifdef CONFIG_SCHED_HRTICK
4140static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4141{
8f4d37ec
PZ
4142 struct sched_entity *se = &p->se;
4143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4144
4145 WARN_ON(task_rq(p) != rq);
4146
b39e66ea 4147 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4148 u64 slice = sched_slice(cfs_rq, se);
4149 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4150 s64 delta = slice - ran;
4151
4152 if (delta < 0) {
4153 if (rq->curr == p)
8875125e 4154 resched_curr(rq);
8f4d37ec
PZ
4155 return;
4156 }
31656519 4157 hrtick_start(rq, delta);
8f4d37ec
PZ
4158 }
4159}
a4c2f00f
PZ
4160
4161/*
4162 * called from enqueue/dequeue and updates the hrtick when the
4163 * current task is from our class and nr_running is low enough
4164 * to matter.
4165 */
4166static void hrtick_update(struct rq *rq)
4167{
4168 struct task_struct *curr = rq->curr;
4169
b39e66ea 4170 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4171 return;
4172
4173 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4174 hrtick_start_fair(rq, curr);
4175}
55e12e5e 4176#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4177static inline void
4178hrtick_start_fair(struct rq *rq, struct task_struct *p)
4179{
4180}
a4c2f00f
PZ
4181
4182static inline void hrtick_update(struct rq *rq)
4183{
4184}
8f4d37ec
PZ
4185#endif
4186
bf0f6f24
IM
4187/*
4188 * The enqueue_task method is called before nr_running is
4189 * increased. Here we update the fair scheduling stats and
4190 * then put the task into the rbtree:
4191 */
ea87bb78 4192static void
371fd7e7 4193enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4194{
4195 struct cfs_rq *cfs_rq;
62fb1851 4196 struct sched_entity *se = &p->se;
bf0f6f24
IM
4197
4198 for_each_sched_entity(se) {
62fb1851 4199 if (se->on_rq)
bf0f6f24
IM
4200 break;
4201 cfs_rq = cfs_rq_of(se);
88ec22d3 4202 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4203
4204 /*
4205 * end evaluation on encountering a throttled cfs_rq
4206 *
4207 * note: in the case of encountering a throttled cfs_rq we will
4208 * post the final h_nr_running increment below.
4209 */
4210 if (cfs_rq_throttled(cfs_rq))
4211 break;
953bfcd1 4212 cfs_rq->h_nr_running++;
85dac906 4213
88ec22d3 4214 flags = ENQUEUE_WAKEUP;
bf0f6f24 4215 }
8f4d37ec 4216
2069dd75 4217 for_each_sched_entity(se) {
0f317143 4218 cfs_rq = cfs_rq_of(se);
953bfcd1 4219 cfs_rq->h_nr_running++;
2069dd75 4220
85dac906
PT
4221 if (cfs_rq_throttled(cfs_rq))
4222 break;
4223
17bc14b7 4224 update_cfs_shares(cfs_rq);
9ee474f5 4225 update_entity_load_avg(se, 1);
2069dd75
PZ
4226 }
4227
18bf2805
BS
4228 if (!se) {
4229 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4230 add_nr_running(rq, 1);
18bf2805 4231 }
a4c2f00f 4232 hrtick_update(rq);
bf0f6f24
IM
4233}
4234
2f36825b
VP
4235static void set_next_buddy(struct sched_entity *se);
4236
bf0f6f24
IM
4237/*
4238 * The dequeue_task method is called before nr_running is
4239 * decreased. We remove the task from the rbtree and
4240 * update the fair scheduling stats:
4241 */
371fd7e7 4242static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4243{
4244 struct cfs_rq *cfs_rq;
62fb1851 4245 struct sched_entity *se = &p->se;
2f36825b 4246 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4247
4248 for_each_sched_entity(se) {
4249 cfs_rq = cfs_rq_of(se);
371fd7e7 4250 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4251
4252 /*
4253 * end evaluation on encountering a throttled cfs_rq
4254 *
4255 * note: in the case of encountering a throttled cfs_rq we will
4256 * post the final h_nr_running decrement below.
4257 */
4258 if (cfs_rq_throttled(cfs_rq))
4259 break;
953bfcd1 4260 cfs_rq->h_nr_running--;
2069dd75 4261
bf0f6f24 4262 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4263 if (cfs_rq->load.weight) {
4264 /*
4265 * Bias pick_next to pick a task from this cfs_rq, as
4266 * p is sleeping when it is within its sched_slice.
4267 */
4268 if (task_sleep && parent_entity(se))
4269 set_next_buddy(parent_entity(se));
9598c82d
PT
4270
4271 /* avoid re-evaluating load for this entity */
4272 se = parent_entity(se);
bf0f6f24 4273 break;
2f36825b 4274 }
371fd7e7 4275 flags |= DEQUEUE_SLEEP;
bf0f6f24 4276 }
8f4d37ec 4277
2069dd75 4278 for_each_sched_entity(se) {
0f317143 4279 cfs_rq = cfs_rq_of(se);
953bfcd1 4280 cfs_rq->h_nr_running--;
2069dd75 4281
85dac906
PT
4282 if (cfs_rq_throttled(cfs_rq))
4283 break;
4284
17bc14b7 4285 update_cfs_shares(cfs_rq);
9ee474f5 4286 update_entity_load_avg(se, 1);
2069dd75
PZ
4287 }
4288
18bf2805 4289 if (!se) {
72465447 4290 sub_nr_running(rq, 1);
18bf2805
BS
4291 update_rq_runnable_avg(rq, 1);
4292 }
a4c2f00f 4293 hrtick_update(rq);
bf0f6f24
IM
4294}
4295
e7693a36 4296#ifdef CONFIG_SMP
029632fb
PZ
4297/* Used instead of source_load when we know the type == 0 */
4298static unsigned long weighted_cpuload(const int cpu)
4299{
b92486cb 4300 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4301}
4302
4303/*
4304 * Return a low guess at the load of a migration-source cpu weighted
4305 * according to the scheduling class and "nice" value.
4306 *
4307 * We want to under-estimate the load of migration sources, to
4308 * balance conservatively.
4309 */
4310static unsigned long source_load(int cpu, int type)
4311{
4312 struct rq *rq = cpu_rq(cpu);
4313 unsigned long total = weighted_cpuload(cpu);
4314
4315 if (type == 0 || !sched_feat(LB_BIAS))
4316 return total;
4317
4318 return min(rq->cpu_load[type-1], total);
4319}
4320
4321/*
4322 * Return a high guess at the load of a migration-target cpu weighted
4323 * according to the scheduling class and "nice" value.
4324 */
4325static unsigned long target_load(int cpu, int type)
4326{
4327 struct rq *rq = cpu_rq(cpu);
4328 unsigned long total = weighted_cpuload(cpu);
4329
4330 if (type == 0 || !sched_feat(LB_BIAS))
4331 return total;
4332
4333 return max(rq->cpu_load[type-1], total);
4334}
4335
ced549fa 4336static unsigned long capacity_of(int cpu)
029632fb 4337{
ced549fa 4338 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4339}
4340
ca6d75e6
VG
4341static unsigned long capacity_orig_of(int cpu)
4342{
4343 return cpu_rq(cpu)->cpu_capacity_orig;
4344}
4345
029632fb
PZ
4346static unsigned long cpu_avg_load_per_task(int cpu)
4347{
4348 struct rq *rq = cpu_rq(cpu);
65fdac08 4349 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4350 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4351
4352 if (nr_running)
b92486cb 4353 return load_avg / nr_running;
029632fb
PZ
4354
4355 return 0;
4356}
4357
62470419
MW
4358static void record_wakee(struct task_struct *p)
4359{
4360 /*
4361 * Rough decay (wiping) for cost saving, don't worry
4362 * about the boundary, really active task won't care
4363 * about the loss.
4364 */
2538d960 4365 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4366 current->wakee_flips >>= 1;
62470419
MW
4367 current->wakee_flip_decay_ts = jiffies;
4368 }
4369
4370 if (current->last_wakee != p) {
4371 current->last_wakee = p;
4372 current->wakee_flips++;
4373 }
4374}
098fb9db 4375
74f8e4b2 4376static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4377{
4378 struct sched_entity *se = &p->se;
4379 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4380 u64 min_vruntime;
4381
4382#ifndef CONFIG_64BIT
4383 u64 min_vruntime_copy;
88ec22d3 4384
3fe1698b
PZ
4385 do {
4386 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4387 smp_rmb();
4388 min_vruntime = cfs_rq->min_vruntime;
4389 } while (min_vruntime != min_vruntime_copy);
4390#else
4391 min_vruntime = cfs_rq->min_vruntime;
4392#endif
88ec22d3 4393
3fe1698b 4394 se->vruntime -= min_vruntime;
62470419 4395 record_wakee(p);
88ec22d3
PZ
4396}
4397
bb3469ac 4398#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4399/*
4400 * effective_load() calculates the load change as seen from the root_task_group
4401 *
4402 * Adding load to a group doesn't make a group heavier, but can cause movement
4403 * of group shares between cpus. Assuming the shares were perfectly aligned one
4404 * can calculate the shift in shares.
cf5f0acf
PZ
4405 *
4406 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4407 * on this @cpu and results in a total addition (subtraction) of @wg to the
4408 * total group weight.
4409 *
4410 * Given a runqueue weight distribution (rw_i) we can compute a shares
4411 * distribution (s_i) using:
4412 *
4413 * s_i = rw_i / \Sum rw_j (1)
4414 *
4415 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4416 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4417 * shares distribution (s_i):
4418 *
4419 * rw_i = { 2, 4, 1, 0 }
4420 * s_i = { 2/7, 4/7, 1/7, 0 }
4421 *
4422 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4423 * task used to run on and the CPU the waker is running on), we need to
4424 * compute the effect of waking a task on either CPU and, in case of a sync
4425 * wakeup, compute the effect of the current task going to sleep.
4426 *
4427 * So for a change of @wl to the local @cpu with an overall group weight change
4428 * of @wl we can compute the new shares distribution (s'_i) using:
4429 *
4430 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4431 *
4432 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4433 * differences in waking a task to CPU 0. The additional task changes the
4434 * weight and shares distributions like:
4435 *
4436 * rw'_i = { 3, 4, 1, 0 }
4437 * s'_i = { 3/8, 4/8, 1/8, 0 }
4438 *
4439 * We can then compute the difference in effective weight by using:
4440 *
4441 * dw_i = S * (s'_i - s_i) (3)
4442 *
4443 * Where 'S' is the group weight as seen by its parent.
4444 *
4445 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4446 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4447 * 4/7) times the weight of the group.
f5bfb7d9 4448 */
2069dd75 4449static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4450{
4be9daaa 4451 struct sched_entity *se = tg->se[cpu];
f1d239f7 4452
9722c2da 4453 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4454 return wl;
4455
4be9daaa 4456 for_each_sched_entity(se) {
cf5f0acf 4457 long w, W;
4be9daaa 4458
977dda7c 4459 tg = se->my_q->tg;
bb3469ac 4460
cf5f0acf
PZ
4461 /*
4462 * W = @wg + \Sum rw_j
4463 */
4464 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4465
cf5f0acf
PZ
4466 /*
4467 * w = rw_i + @wl
4468 */
4469 w = se->my_q->load.weight + wl;
940959e9 4470
cf5f0acf
PZ
4471 /*
4472 * wl = S * s'_i; see (2)
4473 */
4474 if (W > 0 && w < W)
32a8df4e 4475 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4476 else
4477 wl = tg->shares;
940959e9 4478
cf5f0acf
PZ
4479 /*
4480 * Per the above, wl is the new se->load.weight value; since
4481 * those are clipped to [MIN_SHARES, ...) do so now. See
4482 * calc_cfs_shares().
4483 */
977dda7c
PT
4484 if (wl < MIN_SHARES)
4485 wl = MIN_SHARES;
cf5f0acf
PZ
4486
4487 /*
4488 * wl = dw_i = S * (s'_i - s_i); see (3)
4489 */
977dda7c 4490 wl -= se->load.weight;
cf5f0acf
PZ
4491
4492 /*
4493 * Recursively apply this logic to all parent groups to compute
4494 * the final effective load change on the root group. Since
4495 * only the @tg group gets extra weight, all parent groups can
4496 * only redistribute existing shares. @wl is the shift in shares
4497 * resulting from this level per the above.
4498 */
4be9daaa 4499 wg = 0;
4be9daaa 4500 }
bb3469ac 4501
4be9daaa 4502 return wl;
bb3469ac
PZ
4503}
4504#else
4be9daaa 4505
58d081b5 4506static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4507{
83378269 4508 return wl;
bb3469ac 4509}
4be9daaa 4510
bb3469ac
PZ
4511#endif
4512
62470419
MW
4513static int wake_wide(struct task_struct *p)
4514{
7d9ffa89 4515 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4516
4517 /*
4518 * Yeah, it's the switching-frequency, could means many wakee or
4519 * rapidly switch, use factor here will just help to automatically
4520 * adjust the loose-degree, so bigger node will lead to more pull.
4521 */
4522 if (p->wakee_flips > factor) {
4523 /*
4524 * wakee is somewhat hot, it needs certain amount of cpu
4525 * resource, so if waker is far more hot, prefer to leave
4526 * it alone.
4527 */
4528 if (current->wakee_flips > (factor * p->wakee_flips))
4529 return 1;
4530 }
4531
4532 return 0;
4533}
4534
c88d5910 4535static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4536{
e37b6a7b 4537 s64 this_load, load;
bd61c98f 4538 s64 this_eff_load, prev_eff_load;
c88d5910 4539 int idx, this_cpu, prev_cpu;
c88d5910 4540 struct task_group *tg;
83378269 4541 unsigned long weight;
b3137bc8 4542 int balanced;
098fb9db 4543
62470419
MW
4544 /*
4545 * If we wake multiple tasks be careful to not bounce
4546 * ourselves around too much.
4547 */
4548 if (wake_wide(p))
4549 return 0;
4550
c88d5910
PZ
4551 idx = sd->wake_idx;
4552 this_cpu = smp_processor_id();
4553 prev_cpu = task_cpu(p);
4554 load = source_load(prev_cpu, idx);
4555 this_load = target_load(this_cpu, idx);
098fb9db 4556
b3137bc8
MG
4557 /*
4558 * If sync wakeup then subtract the (maximum possible)
4559 * effect of the currently running task from the load
4560 * of the current CPU:
4561 */
83378269
PZ
4562 if (sync) {
4563 tg = task_group(current);
4564 weight = current->se.load.weight;
4565
c88d5910 4566 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4567 load += effective_load(tg, prev_cpu, 0, -weight);
4568 }
b3137bc8 4569
83378269
PZ
4570 tg = task_group(p);
4571 weight = p->se.load.weight;
b3137bc8 4572
71a29aa7
PZ
4573 /*
4574 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4575 * due to the sync cause above having dropped this_load to 0, we'll
4576 * always have an imbalance, but there's really nothing you can do
4577 * about that, so that's good too.
71a29aa7
PZ
4578 *
4579 * Otherwise check if either cpus are near enough in load to allow this
4580 * task to be woken on this_cpu.
4581 */
bd61c98f
VG
4582 this_eff_load = 100;
4583 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4584
bd61c98f
VG
4585 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4586 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4587
bd61c98f 4588 if (this_load > 0) {
e51fd5e2
PZ
4589 this_eff_load *= this_load +
4590 effective_load(tg, this_cpu, weight, weight);
4591
e51fd5e2 4592 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4593 }
e51fd5e2 4594
bd61c98f 4595 balanced = this_eff_load <= prev_eff_load;
098fb9db 4596
41acab88 4597 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4598
05bfb65f
VG
4599 if (!balanced)
4600 return 0;
098fb9db 4601
05bfb65f
VG
4602 schedstat_inc(sd, ttwu_move_affine);
4603 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4604
4605 return 1;
098fb9db
IM
4606}
4607
aaee1203
PZ
4608/*
4609 * find_idlest_group finds and returns the least busy CPU group within the
4610 * domain.
4611 */
4612static struct sched_group *
78e7ed53 4613find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4614 int this_cpu, int sd_flag)
e7693a36 4615{
b3bd3de6 4616 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4617 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4618 int load_idx = sd->forkexec_idx;
aaee1203 4619 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4620
c44f2a02
VG
4621 if (sd_flag & SD_BALANCE_WAKE)
4622 load_idx = sd->wake_idx;
4623
aaee1203
PZ
4624 do {
4625 unsigned long load, avg_load;
4626 int local_group;
4627 int i;
e7693a36 4628
aaee1203
PZ
4629 /* Skip over this group if it has no CPUs allowed */
4630 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4631 tsk_cpus_allowed(p)))
aaee1203
PZ
4632 continue;
4633
4634 local_group = cpumask_test_cpu(this_cpu,
4635 sched_group_cpus(group));
4636
4637 /* Tally up the load of all CPUs in the group */
4638 avg_load = 0;
4639
4640 for_each_cpu(i, sched_group_cpus(group)) {
4641 /* Bias balancing toward cpus of our domain */
4642 if (local_group)
4643 load = source_load(i, load_idx);
4644 else
4645 load = target_load(i, load_idx);
4646
4647 avg_load += load;
4648 }
4649
63b2ca30 4650 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4651 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4652
4653 if (local_group) {
4654 this_load = avg_load;
aaee1203
PZ
4655 } else if (avg_load < min_load) {
4656 min_load = avg_load;
4657 idlest = group;
4658 }
4659 } while (group = group->next, group != sd->groups);
4660
4661 if (!idlest || 100*this_load < imbalance*min_load)
4662 return NULL;
4663 return idlest;
4664}
4665
4666/*
4667 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4668 */
4669static int
4670find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4671{
4672 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4673 unsigned int min_exit_latency = UINT_MAX;
4674 u64 latest_idle_timestamp = 0;
4675 int least_loaded_cpu = this_cpu;
4676 int shallowest_idle_cpu = -1;
aaee1203
PZ
4677 int i;
4678
4679 /* Traverse only the allowed CPUs */
fa17b507 4680 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4681 if (idle_cpu(i)) {
4682 struct rq *rq = cpu_rq(i);
4683 struct cpuidle_state *idle = idle_get_state(rq);
4684 if (idle && idle->exit_latency < min_exit_latency) {
4685 /*
4686 * We give priority to a CPU whose idle state
4687 * has the smallest exit latency irrespective
4688 * of any idle timestamp.
4689 */
4690 min_exit_latency = idle->exit_latency;
4691 latest_idle_timestamp = rq->idle_stamp;
4692 shallowest_idle_cpu = i;
4693 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4694 rq->idle_stamp > latest_idle_timestamp) {
4695 /*
4696 * If equal or no active idle state, then
4697 * the most recently idled CPU might have
4698 * a warmer cache.
4699 */
4700 latest_idle_timestamp = rq->idle_stamp;
4701 shallowest_idle_cpu = i;
4702 }
9f96742a 4703 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4704 load = weighted_cpuload(i);
4705 if (load < min_load || (load == min_load && i == this_cpu)) {
4706 min_load = load;
4707 least_loaded_cpu = i;
4708 }
e7693a36
GH
4709 }
4710 }
4711
83a0a96a 4712 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4713}
e7693a36 4714
a50bde51
PZ
4715/*
4716 * Try and locate an idle CPU in the sched_domain.
4717 */
99bd5e2f 4718static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4719{
99bd5e2f 4720 struct sched_domain *sd;
37407ea7 4721 struct sched_group *sg;
e0a79f52 4722 int i = task_cpu(p);
a50bde51 4723
e0a79f52
MG
4724 if (idle_cpu(target))
4725 return target;
99bd5e2f
SS
4726
4727 /*
e0a79f52 4728 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4729 */
e0a79f52
MG
4730 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4731 return i;
a50bde51
PZ
4732
4733 /*
37407ea7 4734 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4735 */
518cd623 4736 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4737 for_each_lower_domain(sd) {
37407ea7
LT
4738 sg = sd->groups;
4739 do {
4740 if (!cpumask_intersects(sched_group_cpus(sg),
4741 tsk_cpus_allowed(p)))
4742 goto next;
4743
4744 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4745 if (i == target || !idle_cpu(i))
37407ea7
LT
4746 goto next;
4747 }
970e1789 4748
37407ea7
LT
4749 target = cpumask_first_and(sched_group_cpus(sg),
4750 tsk_cpus_allowed(p));
4751 goto done;
4752next:
4753 sg = sg->next;
4754 } while (sg != sd->groups);
4755 }
4756done:
a50bde51
PZ
4757 return target;
4758}
8bb5b00c
VG
4759/*
4760 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4761 * tasks. The unit of the return value must be the one of capacity so we can
4762 * compare the usage with the capacity of the CPU that is available for CFS
4763 * task (ie cpu_capacity).
4764 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4765 * CPU. It represents the amount of utilization of a CPU in the range
4766 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4767 * capacity of the CPU because it's about the running time on this CPU.
4768 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4769 * because of unfortunate rounding in avg_period and running_load_avg or just
4770 * after migrating tasks until the average stabilizes with the new running
4771 * time. So we need to check that the usage stays into the range
4772 * [0..cpu_capacity_orig] and cap if necessary.
4773 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4774 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4775 */
4776static int get_cpu_usage(int cpu)
4777{
4778 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4779 unsigned long capacity = capacity_orig_of(cpu);
4780
4781 if (usage >= SCHED_LOAD_SCALE)
4782 return capacity;
4783
4784 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4785}
a50bde51 4786
aaee1203 4787/*
de91b9cb
MR
4788 * select_task_rq_fair: Select target runqueue for the waking task in domains
4789 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4790 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4791 *
de91b9cb
MR
4792 * Balances load by selecting the idlest cpu in the idlest group, or under
4793 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4794 *
de91b9cb 4795 * Returns the target cpu number.
aaee1203
PZ
4796 *
4797 * preempt must be disabled.
4798 */
0017d735 4799static int
ac66f547 4800select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4801{
29cd8bae 4802 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4803 int cpu = smp_processor_id();
c88d5910 4804 int new_cpu = cpu;
99bd5e2f 4805 int want_affine = 0;
5158f4e4 4806 int sync = wake_flags & WF_SYNC;
c88d5910 4807
a8edd075
KT
4808 if (sd_flag & SD_BALANCE_WAKE)
4809 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4810
dce840a0 4811 rcu_read_lock();
aaee1203 4812 for_each_domain(cpu, tmp) {
e4f42888
PZ
4813 if (!(tmp->flags & SD_LOAD_BALANCE))
4814 continue;
4815
fe3bcfe1 4816 /*
99bd5e2f
SS
4817 * If both cpu and prev_cpu are part of this domain,
4818 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4819 */
99bd5e2f
SS
4820 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4821 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4822 affine_sd = tmp;
29cd8bae 4823 break;
f03542a7 4824 }
29cd8bae 4825
f03542a7 4826 if (tmp->flags & sd_flag)
29cd8bae
PZ
4827 sd = tmp;
4828 }
4829
8bf21433
RR
4830 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4831 prev_cpu = cpu;
dce840a0 4832
8bf21433 4833 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4834 new_cpu = select_idle_sibling(p, prev_cpu);
4835 goto unlock;
8b911acd 4836 }
e7693a36 4837
aaee1203
PZ
4838 while (sd) {
4839 struct sched_group *group;
c88d5910 4840 int weight;
098fb9db 4841
0763a660 4842 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4843 sd = sd->child;
4844 continue;
4845 }
098fb9db 4846
c44f2a02 4847 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4848 if (!group) {
4849 sd = sd->child;
4850 continue;
4851 }
4ae7d5ce 4852
d7c33c49 4853 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4854 if (new_cpu == -1 || new_cpu == cpu) {
4855 /* Now try balancing at a lower domain level of cpu */
4856 sd = sd->child;
4857 continue;
e7693a36 4858 }
aaee1203
PZ
4859
4860 /* Now try balancing at a lower domain level of new_cpu */
4861 cpu = new_cpu;
669c55e9 4862 weight = sd->span_weight;
aaee1203
PZ
4863 sd = NULL;
4864 for_each_domain(cpu, tmp) {
669c55e9 4865 if (weight <= tmp->span_weight)
aaee1203 4866 break;
0763a660 4867 if (tmp->flags & sd_flag)
aaee1203
PZ
4868 sd = tmp;
4869 }
4870 /* while loop will break here if sd == NULL */
e7693a36 4871 }
dce840a0
PZ
4872unlock:
4873 rcu_read_unlock();
e7693a36 4874
c88d5910 4875 return new_cpu;
e7693a36 4876}
0a74bef8
PT
4877
4878/*
4879 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4880 * cfs_rq_of(p) references at time of call are still valid and identify the
4881 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4882 * other assumptions, including the state of rq->lock, should be made.
4883 */
4884static void
4885migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4886{
aff3e498
PT
4887 struct sched_entity *se = &p->se;
4888 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4889
4890 /*
4891 * Load tracking: accumulate removed load so that it can be processed
4892 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4893 * to blocked load iff they have a positive decay-count. It can never
4894 * be negative here since on-rq tasks have decay-count == 0.
4895 */
4896 if (se->avg.decay_count) {
4897 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4898 atomic_long_add(se->avg.load_avg_contrib,
4899 &cfs_rq->removed_load);
aff3e498 4900 }
3944a927
BS
4901
4902 /* We have migrated, no longer consider this task hot */
4903 se->exec_start = 0;
0a74bef8 4904}
e7693a36
GH
4905#endif /* CONFIG_SMP */
4906
e52fb7c0
PZ
4907static unsigned long
4908wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4909{
4910 unsigned long gran = sysctl_sched_wakeup_granularity;
4911
4912 /*
e52fb7c0
PZ
4913 * Since its curr running now, convert the gran from real-time
4914 * to virtual-time in his units.
13814d42
MG
4915 *
4916 * By using 'se' instead of 'curr' we penalize light tasks, so
4917 * they get preempted easier. That is, if 'se' < 'curr' then
4918 * the resulting gran will be larger, therefore penalizing the
4919 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4920 * be smaller, again penalizing the lighter task.
4921 *
4922 * This is especially important for buddies when the leftmost
4923 * task is higher priority than the buddy.
0bbd3336 4924 */
f4ad9bd2 4925 return calc_delta_fair(gran, se);
0bbd3336
PZ
4926}
4927
464b7527
PZ
4928/*
4929 * Should 'se' preempt 'curr'.
4930 *
4931 * |s1
4932 * |s2
4933 * |s3
4934 * g
4935 * |<--->|c
4936 *
4937 * w(c, s1) = -1
4938 * w(c, s2) = 0
4939 * w(c, s3) = 1
4940 *
4941 */
4942static int
4943wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4944{
4945 s64 gran, vdiff = curr->vruntime - se->vruntime;
4946
4947 if (vdiff <= 0)
4948 return -1;
4949
e52fb7c0 4950 gran = wakeup_gran(curr, se);
464b7527
PZ
4951 if (vdiff > gran)
4952 return 1;
4953
4954 return 0;
4955}
4956
02479099
PZ
4957static void set_last_buddy(struct sched_entity *se)
4958{
69c80f3e
VP
4959 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4960 return;
4961
4962 for_each_sched_entity(se)
4963 cfs_rq_of(se)->last = se;
02479099
PZ
4964}
4965
4966static void set_next_buddy(struct sched_entity *se)
4967{
69c80f3e
VP
4968 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4969 return;
4970
4971 for_each_sched_entity(se)
4972 cfs_rq_of(se)->next = se;
02479099
PZ
4973}
4974
ac53db59
RR
4975static void set_skip_buddy(struct sched_entity *se)
4976{
69c80f3e
VP
4977 for_each_sched_entity(se)
4978 cfs_rq_of(se)->skip = se;
ac53db59
RR
4979}
4980
bf0f6f24
IM
4981/*
4982 * Preempt the current task with a newly woken task if needed:
4983 */
5a9b86f6 4984static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4985{
4986 struct task_struct *curr = rq->curr;
8651a86c 4987 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4988 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4989 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4990 int next_buddy_marked = 0;
bf0f6f24 4991
4ae7d5ce
IM
4992 if (unlikely(se == pse))
4993 return;
4994
5238cdd3 4995 /*
163122b7 4996 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4997 * unconditionally check_prempt_curr() after an enqueue (which may have
4998 * lead to a throttle). This both saves work and prevents false
4999 * next-buddy nomination below.
5000 */
5001 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5002 return;
5003
2f36825b 5004 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5005 set_next_buddy(pse);
2f36825b
VP
5006 next_buddy_marked = 1;
5007 }
57fdc26d 5008
aec0a514
BR
5009 /*
5010 * We can come here with TIF_NEED_RESCHED already set from new task
5011 * wake up path.
5238cdd3
PT
5012 *
5013 * Note: this also catches the edge-case of curr being in a throttled
5014 * group (e.g. via set_curr_task), since update_curr() (in the
5015 * enqueue of curr) will have resulted in resched being set. This
5016 * prevents us from potentially nominating it as a false LAST_BUDDY
5017 * below.
aec0a514
BR
5018 */
5019 if (test_tsk_need_resched(curr))
5020 return;
5021
a2f5c9ab
DH
5022 /* Idle tasks are by definition preempted by non-idle tasks. */
5023 if (unlikely(curr->policy == SCHED_IDLE) &&
5024 likely(p->policy != SCHED_IDLE))
5025 goto preempt;
5026
91c234b4 5027 /*
a2f5c9ab
DH
5028 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5029 * is driven by the tick):
91c234b4 5030 */
8ed92e51 5031 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5032 return;
bf0f6f24 5033
464b7527 5034 find_matching_se(&se, &pse);
9bbd7374 5035 update_curr(cfs_rq_of(se));
002f128b 5036 BUG_ON(!pse);
2f36825b
VP
5037 if (wakeup_preempt_entity(se, pse) == 1) {
5038 /*
5039 * Bias pick_next to pick the sched entity that is
5040 * triggering this preemption.
5041 */
5042 if (!next_buddy_marked)
5043 set_next_buddy(pse);
3a7e73a2 5044 goto preempt;
2f36825b 5045 }
464b7527 5046
3a7e73a2 5047 return;
a65ac745 5048
3a7e73a2 5049preempt:
8875125e 5050 resched_curr(rq);
3a7e73a2
PZ
5051 /*
5052 * Only set the backward buddy when the current task is still
5053 * on the rq. This can happen when a wakeup gets interleaved
5054 * with schedule on the ->pre_schedule() or idle_balance()
5055 * point, either of which can * drop the rq lock.
5056 *
5057 * Also, during early boot the idle thread is in the fair class,
5058 * for obvious reasons its a bad idea to schedule back to it.
5059 */
5060 if (unlikely(!se->on_rq || curr == rq->idle))
5061 return;
5062
5063 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5064 set_last_buddy(se);
bf0f6f24
IM
5065}
5066
606dba2e
PZ
5067static struct task_struct *
5068pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5069{
5070 struct cfs_rq *cfs_rq = &rq->cfs;
5071 struct sched_entity *se;
678d5718 5072 struct task_struct *p;
37e117c0 5073 int new_tasks;
678d5718 5074
6e83125c 5075again:
678d5718
PZ
5076#ifdef CONFIG_FAIR_GROUP_SCHED
5077 if (!cfs_rq->nr_running)
38033c37 5078 goto idle;
678d5718 5079
3f1d2a31 5080 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5081 goto simple;
5082
5083 /*
5084 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5085 * likely that a next task is from the same cgroup as the current.
5086 *
5087 * Therefore attempt to avoid putting and setting the entire cgroup
5088 * hierarchy, only change the part that actually changes.
5089 */
5090
5091 do {
5092 struct sched_entity *curr = cfs_rq->curr;
5093
5094 /*
5095 * Since we got here without doing put_prev_entity() we also
5096 * have to consider cfs_rq->curr. If it is still a runnable
5097 * entity, update_curr() will update its vruntime, otherwise
5098 * forget we've ever seen it.
5099 */
5100 if (curr && curr->on_rq)
5101 update_curr(cfs_rq);
5102 else
5103 curr = NULL;
5104
5105 /*
5106 * This call to check_cfs_rq_runtime() will do the throttle and
5107 * dequeue its entity in the parent(s). Therefore the 'simple'
5108 * nr_running test will indeed be correct.
5109 */
5110 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5111 goto simple;
5112
5113 se = pick_next_entity(cfs_rq, curr);
5114 cfs_rq = group_cfs_rq(se);
5115 } while (cfs_rq);
5116
5117 p = task_of(se);
5118
5119 /*
5120 * Since we haven't yet done put_prev_entity and if the selected task
5121 * is a different task than we started out with, try and touch the
5122 * least amount of cfs_rqs.
5123 */
5124 if (prev != p) {
5125 struct sched_entity *pse = &prev->se;
5126
5127 while (!(cfs_rq = is_same_group(se, pse))) {
5128 int se_depth = se->depth;
5129 int pse_depth = pse->depth;
5130
5131 if (se_depth <= pse_depth) {
5132 put_prev_entity(cfs_rq_of(pse), pse);
5133 pse = parent_entity(pse);
5134 }
5135 if (se_depth >= pse_depth) {
5136 set_next_entity(cfs_rq_of(se), se);
5137 se = parent_entity(se);
5138 }
5139 }
5140
5141 put_prev_entity(cfs_rq, pse);
5142 set_next_entity(cfs_rq, se);
5143 }
5144
5145 if (hrtick_enabled(rq))
5146 hrtick_start_fair(rq, p);
5147
5148 return p;
5149simple:
5150 cfs_rq = &rq->cfs;
5151#endif
bf0f6f24 5152
36ace27e 5153 if (!cfs_rq->nr_running)
38033c37 5154 goto idle;
bf0f6f24 5155
3f1d2a31 5156 put_prev_task(rq, prev);
606dba2e 5157
bf0f6f24 5158 do {
678d5718 5159 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5160 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5161 cfs_rq = group_cfs_rq(se);
5162 } while (cfs_rq);
5163
8f4d37ec 5164 p = task_of(se);
678d5718 5165
b39e66ea
MG
5166 if (hrtick_enabled(rq))
5167 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5168
5169 return p;
38033c37
PZ
5170
5171idle:
e4aa358b 5172 new_tasks = idle_balance(rq);
37e117c0
PZ
5173 /*
5174 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5175 * possible for any higher priority task to appear. In that case we
5176 * must re-start the pick_next_entity() loop.
5177 */
e4aa358b 5178 if (new_tasks < 0)
37e117c0
PZ
5179 return RETRY_TASK;
5180
e4aa358b 5181 if (new_tasks > 0)
38033c37 5182 goto again;
38033c37
PZ
5183
5184 return NULL;
bf0f6f24
IM
5185}
5186
5187/*
5188 * Account for a descheduled task:
5189 */
31ee529c 5190static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5191{
5192 struct sched_entity *se = &prev->se;
5193 struct cfs_rq *cfs_rq;
5194
5195 for_each_sched_entity(se) {
5196 cfs_rq = cfs_rq_of(se);
ab6cde26 5197 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5198 }
5199}
5200
ac53db59
RR
5201/*
5202 * sched_yield() is very simple
5203 *
5204 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5205 */
5206static void yield_task_fair(struct rq *rq)
5207{
5208 struct task_struct *curr = rq->curr;
5209 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5210 struct sched_entity *se = &curr->se;
5211
5212 /*
5213 * Are we the only task in the tree?
5214 */
5215 if (unlikely(rq->nr_running == 1))
5216 return;
5217
5218 clear_buddies(cfs_rq, se);
5219
5220 if (curr->policy != SCHED_BATCH) {
5221 update_rq_clock(rq);
5222 /*
5223 * Update run-time statistics of the 'current'.
5224 */
5225 update_curr(cfs_rq);
916671c0
MG
5226 /*
5227 * Tell update_rq_clock() that we've just updated,
5228 * so we don't do microscopic update in schedule()
5229 * and double the fastpath cost.
5230 */
9edfbfed 5231 rq_clock_skip_update(rq, true);
ac53db59
RR
5232 }
5233
5234 set_skip_buddy(se);
5235}
5236
d95f4122
MG
5237static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5238{
5239 struct sched_entity *se = &p->se;
5240
5238cdd3
PT
5241 /* throttled hierarchies are not runnable */
5242 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5243 return false;
5244
5245 /* Tell the scheduler that we'd really like pse to run next. */
5246 set_next_buddy(se);
5247
d95f4122
MG
5248 yield_task_fair(rq);
5249
5250 return true;
5251}
5252
681f3e68 5253#ifdef CONFIG_SMP
bf0f6f24 5254/**************************************************
e9c84cb8
PZ
5255 * Fair scheduling class load-balancing methods.
5256 *
5257 * BASICS
5258 *
5259 * The purpose of load-balancing is to achieve the same basic fairness the
5260 * per-cpu scheduler provides, namely provide a proportional amount of compute
5261 * time to each task. This is expressed in the following equation:
5262 *
5263 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5264 *
5265 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5266 * W_i,0 is defined as:
5267 *
5268 * W_i,0 = \Sum_j w_i,j (2)
5269 *
5270 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5271 * is derived from the nice value as per prio_to_weight[].
5272 *
5273 * The weight average is an exponential decay average of the instantaneous
5274 * weight:
5275 *
5276 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5277 *
ced549fa 5278 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5279 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5280 * can also include other factors [XXX].
5281 *
5282 * To achieve this balance we define a measure of imbalance which follows
5283 * directly from (1):
5284 *
ced549fa 5285 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5286 *
5287 * We them move tasks around to minimize the imbalance. In the continuous
5288 * function space it is obvious this converges, in the discrete case we get
5289 * a few fun cases generally called infeasible weight scenarios.
5290 *
5291 * [XXX expand on:
5292 * - infeasible weights;
5293 * - local vs global optima in the discrete case. ]
5294 *
5295 *
5296 * SCHED DOMAINS
5297 *
5298 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5299 * for all i,j solution, we create a tree of cpus that follows the hardware
5300 * topology where each level pairs two lower groups (or better). This results
5301 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5302 * tree to only the first of the previous level and we decrease the frequency
5303 * of load-balance at each level inv. proportional to the number of cpus in
5304 * the groups.
5305 *
5306 * This yields:
5307 *
5308 * log_2 n 1 n
5309 * \Sum { --- * --- * 2^i } = O(n) (5)
5310 * i = 0 2^i 2^i
5311 * `- size of each group
5312 * | | `- number of cpus doing load-balance
5313 * | `- freq
5314 * `- sum over all levels
5315 *
5316 * Coupled with a limit on how many tasks we can migrate every balance pass,
5317 * this makes (5) the runtime complexity of the balancer.
5318 *
5319 * An important property here is that each CPU is still (indirectly) connected
5320 * to every other cpu in at most O(log n) steps:
5321 *
5322 * The adjacency matrix of the resulting graph is given by:
5323 *
5324 * log_2 n
5325 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5326 * k = 0
5327 *
5328 * And you'll find that:
5329 *
5330 * A^(log_2 n)_i,j != 0 for all i,j (7)
5331 *
5332 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5333 * The task movement gives a factor of O(m), giving a convergence complexity
5334 * of:
5335 *
5336 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5337 *
5338 *
5339 * WORK CONSERVING
5340 *
5341 * In order to avoid CPUs going idle while there's still work to do, new idle
5342 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5343 * tree itself instead of relying on other CPUs to bring it work.
5344 *
5345 * This adds some complexity to both (5) and (8) but it reduces the total idle
5346 * time.
5347 *
5348 * [XXX more?]
5349 *
5350 *
5351 * CGROUPS
5352 *
5353 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5354 *
5355 * s_k,i
5356 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5357 * S_k
5358 *
5359 * Where
5360 *
5361 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5362 *
5363 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5364 *
5365 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5366 * property.
5367 *
5368 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5369 * rewrite all of this once again.]
5370 */
bf0f6f24 5371
ed387b78
HS
5372static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5373
0ec8aa00
PZ
5374enum fbq_type { regular, remote, all };
5375
ddcdf6e7 5376#define LBF_ALL_PINNED 0x01
367456c7 5377#define LBF_NEED_BREAK 0x02
6263322c
PZ
5378#define LBF_DST_PINNED 0x04
5379#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5380
5381struct lb_env {
5382 struct sched_domain *sd;
5383
ddcdf6e7 5384 struct rq *src_rq;
85c1e7da 5385 int src_cpu;
ddcdf6e7
PZ
5386
5387 int dst_cpu;
5388 struct rq *dst_rq;
5389
88b8dac0
SV
5390 struct cpumask *dst_grpmask;
5391 int new_dst_cpu;
ddcdf6e7 5392 enum cpu_idle_type idle;
bd939f45 5393 long imbalance;
b9403130
MW
5394 /* The set of CPUs under consideration for load-balancing */
5395 struct cpumask *cpus;
5396
ddcdf6e7 5397 unsigned int flags;
367456c7
PZ
5398
5399 unsigned int loop;
5400 unsigned int loop_break;
5401 unsigned int loop_max;
0ec8aa00
PZ
5402
5403 enum fbq_type fbq_type;
163122b7 5404 struct list_head tasks;
ddcdf6e7
PZ
5405};
5406
029632fb
PZ
5407/*
5408 * Is this task likely cache-hot:
5409 */
5d5e2b1b 5410static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5411{
5412 s64 delta;
5413
e5673f28
KT
5414 lockdep_assert_held(&env->src_rq->lock);
5415
029632fb
PZ
5416 if (p->sched_class != &fair_sched_class)
5417 return 0;
5418
5419 if (unlikely(p->policy == SCHED_IDLE))
5420 return 0;
5421
5422 /*
5423 * Buddy candidates are cache hot:
5424 */
5d5e2b1b 5425 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5426 (&p->se == cfs_rq_of(&p->se)->next ||
5427 &p->se == cfs_rq_of(&p->se)->last))
5428 return 1;
5429
5430 if (sysctl_sched_migration_cost == -1)
5431 return 1;
5432 if (sysctl_sched_migration_cost == 0)
5433 return 0;
5434
5d5e2b1b 5435 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5436
5437 return delta < (s64)sysctl_sched_migration_cost;
5438}
5439
3a7053b3
MG
5440#ifdef CONFIG_NUMA_BALANCING
5441/* Returns true if the destination node has incurred more faults */
5442static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5443{
b1ad065e 5444 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5445 int src_nid, dst_nid;
5446
44dba3d5 5447 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5448 !(env->sd->flags & SD_NUMA)) {
5449 return false;
5450 }
5451
5452 src_nid = cpu_to_node(env->src_cpu);
5453 dst_nid = cpu_to_node(env->dst_cpu);
5454
83e1d2cd 5455 if (src_nid == dst_nid)
3a7053b3
MG
5456 return false;
5457
b1ad065e
RR
5458 if (numa_group) {
5459 /* Task is already in the group's interleave set. */
5460 if (node_isset(src_nid, numa_group->active_nodes))
5461 return false;
83e1d2cd 5462
b1ad065e
RR
5463 /* Task is moving into the group's interleave set. */
5464 if (node_isset(dst_nid, numa_group->active_nodes))
5465 return true;
83e1d2cd 5466
b1ad065e
RR
5467 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5468 }
5469
5470 /* Encourage migration to the preferred node. */
5471 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5472 return true;
5473
b1ad065e 5474 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5475}
7a0f3083
MG
5476
5477
5478static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5479{
b1ad065e 5480 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5481 int src_nid, dst_nid;
5482
5483 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5484 return false;
5485
44dba3d5 5486 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5487 return false;
5488
5489 src_nid = cpu_to_node(env->src_cpu);
5490 dst_nid = cpu_to_node(env->dst_cpu);
5491
83e1d2cd 5492 if (src_nid == dst_nid)
7a0f3083
MG
5493 return false;
5494
b1ad065e
RR
5495 if (numa_group) {
5496 /* Task is moving within/into the group's interleave set. */
5497 if (node_isset(dst_nid, numa_group->active_nodes))
5498 return false;
5499
5500 /* Task is moving out of the group's interleave set. */
5501 if (node_isset(src_nid, numa_group->active_nodes))
5502 return true;
5503
5504 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5505 }
5506
83e1d2cd
MG
5507 /* Migrating away from the preferred node is always bad. */
5508 if (src_nid == p->numa_preferred_nid)
5509 return true;
5510
b1ad065e 5511 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5512}
5513
3a7053b3
MG
5514#else
5515static inline bool migrate_improves_locality(struct task_struct *p,
5516 struct lb_env *env)
5517{
5518 return false;
5519}
7a0f3083
MG
5520
5521static inline bool migrate_degrades_locality(struct task_struct *p,
5522 struct lb_env *env)
5523{
5524 return false;
5525}
3a7053b3
MG
5526#endif
5527
1e3c88bd
PZ
5528/*
5529 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5530 */
5531static
8e45cb54 5532int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5533{
5534 int tsk_cache_hot = 0;
e5673f28
KT
5535
5536 lockdep_assert_held(&env->src_rq->lock);
5537
1e3c88bd
PZ
5538 /*
5539 * We do not migrate tasks that are:
d3198084 5540 * 1) throttled_lb_pair, or
1e3c88bd 5541 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5542 * 3) running (obviously), or
5543 * 4) are cache-hot on their current CPU.
1e3c88bd 5544 */
d3198084
JK
5545 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5546 return 0;
5547
ddcdf6e7 5548 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5549 int cpu;
88b8dac0 5550
41acab88 5551 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5552
6263322c
PZ
5553 env->flags |= LBF_SOME_PINNED;
5554
88b8dac0
SV
5555 /*
5556 * Remember if this task can be migrated to any other cpu in
5557 * our sched_group. We may want to revisit it if we couldn't
5558 * meet load balance goals by pulling other tasks on src_cpu.
5559 *
5560 * Also avoid computing new_dst_cpu if we have already computed
5561 * one in current iteration.
5562 */
6263322c 5563 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5564 return 0;
5565
e02e60c1
JK
5566 /* Prevent to re-select dst_cpu via env's cpus */
5567 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5568 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5569 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5570 env->new_dst_cpu = cpu;
5571 break;
5572 }
88b8dac0 5573 }
e02e60c1 5574
1e3c88bd
PZ
5575 return 0;
5576 }
88b8dac0
SV
5577
5578 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5579 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5580
ddcdf6e7 5581 if (task_running(env->src_rq, p)) {
41acab88 5582 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5583 return 0;
5584 }
5585
5586 /*
5587 * Aggressive migration if:
3a7053b3
MG
5588 * 1) destination numa is preferred
5589 * 2) task is cache cold, or
5590 * 3) too many balance attempts have failed.
1e3c88bd 5591 */
5d5e2b1b 5592 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5593 if (!tsk_cache_hot)
5594 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5595
7a96c231
KT
5596 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5597 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5598 if (tsk_cache_hot) {
5599 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5600 schedstat_inc(p, se.statistics.nr_forced_migrations);
5601 }
1e3c88bd
PZ
5602 return 1;
5603 }
5604
4e2dcb73
ZH
5605 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5606 return 0;
1e3c88bd
PZ
5607}
5608
897c395f 5609/*
163122b7
KT
5610 * detach_task() -- detach the task for the migration specified in env
5611 */
5612static void detach_task(struct task_struct *p, struct lb_env *env)
5613{
5614 lockdep_assert_held(&env->src_rq->lock);
5615
5616 deactivate_task(env->src_rq, p, 0);
5617 p->on_rq = TASK_ON_RQ_MIGRATING;
5618 set_task_cpu(p, env->dst_cpu);
5619}
5620
897c395f 5621/*
e5673f28 5622 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5623 * part of active balancing operations within "domain".
897c395f 5624 *
e5673f28 5625 * Returns a task if successful and NULL otherwise.
897c395f 5626 */
e5673f28 5627static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5628{
5629 struct task_struct *p, *n;
897c395f 5630
e5673f28
KT
5631 lockdep_assert_held(&env->src_rq->lock);
5632
367456c7 5633 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5634 if (!can_migrate_task(p, env))
5635 continue;
897c395f 5636
163122b7 5637 detach_task(p, env);
e5673f28 5638
367456c7 5639 /*
e5673f28 5640 * Right now, this is only the second place where
163122b7 5641 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5642 * so we can safely collect stats here rather than
163122b7 5643 * inside detach_tasks().
367456c7
PZ
5644 */
5645 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5646 return p;
897c395f 5647 }
e5673f28 5648 return NULL;
897c395f
PZ
5649}
5650
eb95308e
PZ
5651static const unsigned int sched_nr_migrate_break = 32;
5652
5d6523eb 5653/*
163122b7
KT
5654 * detach_tasks() -- tries to detach up to imbalance weighted load from
5655 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5656 *
163122b7 5657 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5658 */
163122b7 5659static int detach_tasks(struct lb_env *env)
1e3c88bd 5660{
5d6523eb
PZ
5661 struct list_head *tasks = &env->src_rq->cfs_tasks;
5662 struct task_struct *p;
367456c7 5663 unsigned long load;
163122b7
KT
5664 int detached = 0;
5665
5666 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5667
bd939f45 5668 if (env->imbalance <= 0)
5d6523eb 5669 return 0;
1e3c88bd 5670
5d6523eb
PZ
5671 while (!list_empty(tasks)) {
5672 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5673
367456c7
PZ
5674 env->loop++;
5675 /* We've more or less seen every task there is, call it quits */
5d6523eb 5676 if (env->loop > env->loop_max)
367456c7 5677 break;
5d6523eb
PZ
5678
5679 /* take a breather every nr_migrate tasks */
367456c7 5680 if (env->loop > env->loop_break) {
eb95308e 5681 env->loop_break += sched_nr_migrate_break;
8e45cb54 5682 env->flags |= LBF_NEED_BREAK;
ee00e66f 5683 break;
a195f004 5684 }
1e3c88bd 5685
d3198084 5686 if (!can_migrate_task(p, env))
367456c7
PZ
5687 goto next;
5688
5689 load = task_h_load(p);
5d6523eb 5690
eb95308e 5691 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5692 goto next;
5693
bd939f45 5694 if ((load / 2) > env->imbalance)
367456c7 5695 goto next;
1e3c88bd 5696
163122b7
KT
5697 detach_task(p, env);
5698 list_add(&p->se.group_node, &env->tasks);
5699
5700 detached++;
bd939f45 5701 env->imbalance -= load;
1e3c88bd
PZ
5702
5703#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5704 /*
5705 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5706 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5707 * the critical section.
5708 */
5d6523eb 5709 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5710 break;
1e3c88bd
PZ
5711#endif
5712
ee00e66f
PZ
5713 /*
5714 * We only want to steal up to the prescribed amount of
5715 * weighted load.
5716 */
bd939f45 5717 if (env->imbalance <= 0)
ee00e66f 5718 break;
367456c7
PZ
5719
5720 continue;
5721next:
5d6523eb 5722 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5723 }
5d6523eb 5724
1e3c88bd 5725 /*
163122b7
KT
5726 * Right now, this is one of only two places we collect this stat
5727 * so we can safely collect detach_one_task() stats here rather
5728 * than inside detach_one_task().
1e3c88bd 5729 */
163122b7 5730 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5731
163122b7
KT
5732 return detached;
5733}
5734
5735/*
5736 * attach_task() -- attach the task detached by detach_task() to its new rq.
5737 */
5738static void attach_task(struct rq *rq, struct task_struct *p)
5739{
5740 lockdep_assert_held(&rq->lock);
5741
5742 BUG_ON(task_rq(p) != rq);
5743 p->on_rq = TASK_ON_RQ_QUEUED;
5744 activate_task(rq, p, 0);
5745 check_preempt_curr(rq, p, 0);
5746}
5747
5748/*
5749 * attach_one_task() -- attaches the task returned from detach_one_task() to
5750 * its new rq.
5751 */
5752static void attach_one_task(struct rq *rq, struct task_struct *p)
5753{
5754 raw_spin_lock(&rq->lock);
5755 attach_task(rq, p);
5756 raw_spin_unlock(&rq->lock);
5757}
5758
5759/*
5760 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5761 * new rq.
5762 */
5763static void attach_tasks(struct lb_env *env)
5764{
5765 struct list_head *tasks = &env->tasks;
5766 struct task_struct *p;
5767
5768 raw_spin_lock(&env->dst_rq->lock);
5769
5770 while (!list_empty(tasks)) {
5771 p = list_first_entry(tasks, struct task_struct, se.group_node);
5772 list_del_init(&p->se.group_node);
1e3c88bd 5773
163122b7
KT
5774 attach_task(env->dst_rq, p);
5775 }
5776
5777 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5778}
5779
230059de 5780#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5781/*
5782 * update tg->load_weight by folding this cpu's load_avg
5783 */
48a16753 5784static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5785{
48a16753
PT
5786 struct sched_entity *se = tg->se[cpu];
5787 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5788
48a16753
PT
5789 /* throttled entities do not contribute to load */
5790 if (throttled_hierarchy(cfs_rq))
5791 return;
9e3081ca 5792
aff3e498 5793 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5794
82958366
PT
5795 if (se) {
5796 update_entity_load_avg(se, 1);
5797 /*
5798 * We pivot on our runnable average having decayed to zero for
5799 * list removal. This generally implies that all our children
5800 * have also been removed (modulo rounding error or bandwidth
5801 * control); however, such cases are rare and we can fix these
5802 * at enqueue.
5803 *
5804 * TODO: fix up out-of-order children on enqueue.
5805 */
5806 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5807 list_del_leaf_cfs_rq(cfs_rq);
5808 } else {
48a16753 5809 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5810 update_rq_runnable_avg(rq, rq->nr_running);
5811 }
9e3081ca
PZ
5812}
5813
48a16753 5814static void update_blocked_averages(int cpu)
9e3081ca 5815{
9e3081ca 5816 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5817 struct cfs_rq *cfs_rq;
5818 unsigned long flags;
9e3081ca 5819
48a16753
PT
5820 raw_spin_lock_irqsave(&rq->lock, flags);
5821 update_rq_clock(rq);
9763b67f
PZ
5822 /*
5823 * Iterates the task_group tree in a bottom up fashion, see
5824 * list_add_leaf_cfs_rq() for details.
5825 */
64660c86 5826 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5827 /*
5828 * Note: We may want to consider periodically releasing
5829 * rq->lock about these updates so that creating many task
5830 * groups does not result in continually extending hold time.
5831 */
5832 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5833 }
48a16753
PT
5834
5835 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5836}
5837
9763b67f 5838/*
68520796 5839 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5840 * This needs to be done in a top-down fashion because the load of a child
5841 * group is a fraction of its parents load.
5842 */
68520796 5843static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5844{
68520796
VD
5845 struct rq *rq = rq_of(cfs_rq);
5846 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5847 unsigned long now = jiffies;
68520796 5848 unsigned long load;
a35b6466 5849
68520796 5850 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5851 return;
5852
68520796
VD
5853 cfs_rq->h_load_next = NULL;
5854 for_each_sched_entity(se) {
5855 cfs_rq = cfs_rq_of(se);
5856 cfs_rq->h_load_next = se;
5857 if (cfs_rq->last_h_load_update == now)
5858 break;
5859 }
a35b6466 5860
68520796 5861 if (!se) {
7e3115ef 5862 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5863 cfs_rq->last_h_load_update = now;
5864 }
5865
5866 while ((se = cfs_rq->h_load_next) != NULL) {
5867 load = cfs_rq->h_load;
5868 load = div64_ul(load * se->avg.load_avg_contrib,
5869 cfs_rq->runnable_load_avg + 1);
5870 cfs_rq = group_cfs_rq(se);
5871 cfs_rq->h_load = load;
5872 cfs_rq->last_h_load_update = now;
5873 }
9763b67f
PZ
5874}
5875
367456c7 5876static unsigned long task_h_load(struct task_struct *p)
230059de 5877{
367456c7 5878 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5879
68520796 5880 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5881 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5882 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5883}
5884#else
48a16753 5885static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5886{
5887}
5888
367456c7 5889static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5890{
a003a25b 5891 return p->se.avg.load_avg_contrib;
1e3c88bd 5892}
230059de 5893#endif
1e3c88bd 5894
1e3c88bd 5895/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5896
5897enum group_type {
5898 group_other = 0,
5899 group_imbalanced,
5900 group_overloaded,
5901};
5902
1e3c88bd
PZ
5903/*
5904 * sg_lb_stats - stats of a sched_group required for load_balancing
5905 */
5906struct sg_lb_stats {
5907 unsigned long avg_load; /*Avg load across the CPUs of the group */
5908 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5909 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5910 unsigned long load_per_task;
63b2ca30 5911 unsigned long group_capacity;
8bb5b00c 5912 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5913 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5914 unsigned int idle_cpus;
5915 unsigned int group_weight;
caeb178c 5916 enum group_type group_type;
ea67821b 5917 int group_no_capacity;
0ec8aa00
PZ
5918#ifdef CONFIG_NUMA_BALANCING
5919 unsigned int nr_numa_running;
5920 unsigned int nr_preferred_running;
5921#endif
1e3c88bd
PZ
5922};
5923
56cf515b
JK
5924/*
5925 * sd_lb_stats - Structure to store the statistics of a sched_domain
5926 * during load balancing.
5927 */
5928struct sd_lb_stats {
5929 struct sched_group *busiest; /* Busiest group in this sd */
5930 struct sched_group *local; /* Local group in this sd */
5931 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5932 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5933 unsigned long avg_load; /* Average load across all groups in sd */
5934
56cf515b 5935 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5936 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5937};
5938
147c5fc2
PZ
5939static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5940{
5941 /*
5942 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5943 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5944 * We must however clear busiest_stat::avg_load because
5945 * update_sd_pick_busiest() reads this before assignment.
5946 */
5947 *sds = (struct sd_lb_stats){
5948 .busiest = NULL,
5949 .local = NULL,
5950 .total_load = 0UL,
63b2ca30 5951 .total_capacity = 0UL,
147c5fc2
PZ
5952 .busiest_stat = {
5953 .avg_load = 0UL,
caeb178c
RR
5954 .sum_nr_running = 0,
5955 .group_type = group_other,
147c5fc2
PZ
5956 },
5957 };
5958}
5959
1e3c88bd
PZ
5960/**
5961 * get_sd_load_idx - Obtain the load index for a given sched domain.
5962 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5963 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5964 *
5965 * Return: The load index.
1e3c88bd
PZ
5966 */
5967static inline int get_sd_load_idx(struct sched_domain *sd,
5968 enum cpu_idle_type idle)
5969{
5970 int load_idx;
5971
5972 switch (idle) {
5973 case CPU_NOT_IDLE:
5974 load_idx = sd->busy_idx;
5975 break;
5976
5977 case CPU_NEWLY_IDLE:
5978 load_idx = sd->newidle_idx;
5979 break;
5980 default:
5981 load_idx = sd->idle_idx;
5982 break;
5983 }
5984
5985 return load_idx;
5986}
5987
26bc3c50 5988static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5989{
26bc3c50
VG
5990 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5991 return sd->smt_gain / sd->span_weight;
1e3c88bd 5992
26bc3c50 5993 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5994}
5995
26bc3c50 5996unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5997{
26bc3c50 5998 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5999}
6000
ced549fa 6001static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6002{
6003 struct rq *rq = cpu_rq(cpu);
b5b4860d 6004 u64 total, used, age_stamp, avg;
cadefd3d 6005 s64 delta;
1e3c88bd 6006
b654f7de
PZ
6007 /*
6008 * Since we're reading these variables without serialization make sure
6009 * we read them once before doing sanity checks on them.
6010 */
6011 age_stamp = ACCESS_ONCE(rq->age_stamp);
6012 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 6013 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6014
cadefd3d
PZ
6015 if (unlikely(delta < 0))
6016 delta = 0;
6017
6018 total = sched_avg_period() + delta;
aa483808 6019
b5b4860d 6020 used = div_u64(avg, total);
1e3c88bd 6021
b5b4860d
VG
6022 if (likely(used < SCHED_CAPACITY_SCALE))
6023 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6024
b5b4860d 6025 return 1;
1e3c88bd
PZ
6026}
6027
ced549fa 6028static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6029{
ca8ce3d0 6030 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6031 struct sched_group *sdg = sd->groups;
6032
26bc3c50
VG
6033 if (sched_feat(ARCH_CAPACITY))
6034 capacity *= arch_scale_cpu_capacity(sd, cpu);
6035 else
6036 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6037
26bc3c50 6038 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6039
ca6d75e6 6040 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6041
ced549fa 6042 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6043 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6044
ced549fa
NP
6045 if (!capacity)
6046 capacity = 1;
1e3c88bd 6047
ced549fa
NP
6048 cpu_rq(cpu)->cpu_capacity = capacity;
6049 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6050}
6051
63b2ca30 6052void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6053{
6054 struct sched_domain *child = sd->child;
6055 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6056 unsigned long capacity;
4ec4412e
VG
6057 unsigned long interval;
6058
6059 interval = msecs_to_jiffies(sd->balance_interval);
6060 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6061 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6062
6063 if (!child) {
ced549fa 6064 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6065 return;
6066 }
6067
dc7ff76e 6068 capacity = 0;
1e3c88bd 6069
74a5ce20
PZ
6070 if (child->flags & SD_OVERLAP) {
6071 /*
6072 * SD_OVERLAP domains cannot assume that child groups
6073 * span the current group.
6074 */
6075
863bffc8 6076 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6077 struct sched_group_capacity *sgc;
9abf24d4 6078 struct rq *rq = cpu_rq(cpu);
863bffc8 6079
9abf24d4 6080 /*
63b2ca30 6081 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6082 * gets here before we've attached the domains to the
6083 * runqueues.
6084 *
ced549fa
NP
6085 * Use capacity_of(), which is set irrespective of domains
6086 * in update_cpu_capacity().
9abf24d4 6087 *
dc7ff76e 6088 * This avoids capacity from being 0 and
9abf24d4 6089 * causing divide-by-zero issues on boot.
9abf24d4
SD
6090 */
6091 if (unlikely(!rq->sd)) {
ced549fa 6092 capacity += capacity_of(cpu);
9abf24d4
SD
6093 continue;
6094 }
863bffc8 6095
63b2ca30 6096 sgc = rq->sd->groups->sgc;
63b2ca30 6097 capacity += sgc->capacity;
863bffc8 6098 }
74a5ce20
PZ
6099 } else {
6100 /*
6101 * !SD_OVERLAP domains can assume that child groups
6102 * span the current group.
6103 */
6104
6105 group = child->groups;
6106 do {
63b2ca30 6107 capacity += group->sgc->capacity;
74a5ce20
PZ
6108 group = group->next;
6109 } while (group != child->groups);
6110 }
1e3c88bd 6111
63b2ca30 6112 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6113}
6114
9d5efe05 6115/*
ea67821b
VG
6116 * Check whether the capacity of the rq has been noticeably reduced by side
6117 * activity. The imbalance_pct is used for the threshold.
6118 * Return true is the capacity is reduced
9d5efe05
SV
6119 */
6120static inline int
ea67821b 6121check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6122{
ea67821b
VG
6123 return ((rq->cpu_capacity * sd->imbalance_pct) <
6124 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6125}
6126
30ce5dab
PZ
6127/*
6128 * Group imbalance indicates (and tries to solve) the problem where balancing
6129 * groups is inadequate due to tsk_cpus_allowed() constraints.
6130 *
6131 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6132 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6133 * Something like:
6134 *
6135 * { 0 1 2 3 } { 4 5 6 7 }
6136 * * * * *
6137 *
6138 * If we were to balance group-wise we'd place two tasks in the first group and
6139 * two tasks in the second group. Clearly this is undesired as it will overload
6140 * cpu 3 and leave one of the cpus in the second group unused.
6141 *
6142 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6143 * by noticing the lower domain failed to reach balance and had difficulty
6144 * moving tasks due to affinity constraints.
30ce5dab
PZ
6145 *
6146 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6147 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6148 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6149 * to create an effective group imbalance.
6150 *
6151 * This is a somewhat tricky proposition since the next run might not find the
6152 * group imbalance and decide the groups need to be balanced again. A most
6153 * subtle and fragile situation.
6154 */
6155
6263322c 6156static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6157{
63b2ca30 6158 return group->sgc->imbalance;
30ce5dab
PZ
6159}
6160
b37d9316 6161/*
ea67821b
VG
6162 * group_has_capacity returns true if the group has spare capacity that could
6163 * be used by some tasks.
6164 * We consider that a group has spare capacity if the * number of task is
6165 * smaller than the number of CPUs or if the usage is lower than the available
6166 * capacity for CFS tasks.
6167 * For the latter, we use a threshold to stabilize the state, to take into
6168 * account the variance of the tasks' load and to return true if the available
6169 * capacity in meaningful for the load balancer.
6170 * As an example, an available capacity of 1% can appear but it doesn't make
6171 * any benefit for the load balance.
b37d9316 6172 */
ea67821b
VG
6173static inline bool
6174group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6175{
ea67821b
VG
6176 if (sgs->sum_nr_running < sgs->group_weight)
6177 return true;
c61037e9 6178
ea67821b
VG
6179 if ((sgs->group_capacity * 100) >
6180 (sgs->group_usage * env->sd->imbalance_pct))
6181 return true;
b37d9316 6182
ea67821b
VG
6183 return false;
6184}
6185
6186/*
6187 * group_is_overloaded returns true if the group has more tasks than it can
6188 * handle.
6189 * group_is_overloaded is not equals to !group_has_capacity because a group
6190 * with the exact right number of tasks, has no more spare capacity but is not
6191 * overloaded so both group_has_capacity and group_is_overloaded return
6192 * false.
6193 */
6194static inline bool
6195group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6196{
6197 if (sgs->sum_nr_running <= sgs->group_weight)
6198 return false;
b37d9316 6199
ea67821b
VG
6200 if ((sgs->group_capacity * 100) <
6201 (sgs->group_usage * env->sd->imbalance_pct))
6202 return true;
b37d9316 6203
ea67821b 6204 return false;
b37d9316
PZ
6205}
6206
ea67821b
VG
6207static enum group_type group_classify(struct lb_env *env,
6208 struct sched_group *group,
6209 struct sg_lb_stats *sgs)
caeb178c 6210{
ea67821b 6211 if (sgs->group_no_capacity)
caeb178c
RR
6212 return group_overloaded;
6213
6214 if (sg_imbalanced(group))
6215 return group_imbalanced;
6216
6217 return group_other;
6218}
6219
1e3c88bd
PZ
6220/**
6221 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6222 * @env: The load balancing environment.
1e3c88bd 6223 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6224 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6225 * @local_group: Does group contain this_cpu.
1e3c88bd 6226 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6227 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6228 */
bd939f45
PZ
6229static inline void update_sg_lb_stats(struct lb_env *env,
6230 struct sched_group *group, int load_idx,
4486edd1
TC
6231 int local_group, struct sg_lb_stats *sgs,
6232 bool *overload)
1e3c88bd 6233{
30ce5dab 6234 unsigned long load;
bd939f45 6235 int i;
1e3c88bd 6236
b72ff13c
PZ
6237 memset(sgs, 0, sizeof(*sgs));
6238
b9403130 6239 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6240 struct rq *rq = cpu_rq(i);
6241
1e3c88bd 6242 /* Bias balancing toward cpus of our domain */
6263322c 6243 if (local_group)
04f733b4 6244 load = target_load(i, load_idx);
6263322c 6245 else
1e3c88bd 6246 load = source_load(i, load_idx);
1e3c88bd
PZ
6247
6248 sgs->group_load += load;
8bb5b00c 6249 sgs->group_usage += get_cpu_usage(i);
65fdac08 6250 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6251
6252 if (rq->nr_running > 1)
6253 *overload = true;
6254
0ec8aa00
PZ
6255#ifdef CONFIG_NUMA_BALANCING
6256 sgs->nr_numa_running += rq->nr_numa_running;
6257 sgs->nr_preferred_running += rq->nr_preferred_running;
6258#endif
1e3c88bd 6259 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6260 if (idle_cpu(i))
6261 sgs->idle_cpus++;
1e3c88bd
PZ
6262 }
6263
63b2ca30
NP
6264 /* Adjust by relative CPU capacity of the group */
6265 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6266 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6267
dd5feea1 6268 if (sgs->sum_nr_running)
38d0f770 6269 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6270
aae6d3dd 6271 sgs->group_weight = group->group_weight;
b37d9316 6272
ea67821b
VG
6273 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6274 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6275}
6276
532cb4c4
MN
6277/**
6278 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6279 * @env: The load balancing environment.
532cb4c4
MN
6280 * @sds: sched_domain statistics
6281 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6282 * @sgs: sched_group statistics
532cb4c4
MN
6283 *
6284 * Determine if @sg is a busier group than the previously selected
6285 * busiest group.
e69f6186
YB
6286 *
6287 * Return: %true if @sg is a busier group than the previously selected
6288 * busiest group. %false otherwise.
532cb4c4 6289 */
bd939f45 6290static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6291 struct sd_lb_stats *sds,
6292 struct sched_group *sg,
bd939f45 6293 struct sg_lb_stats *sgs)
532cb4c4 6294{
caeb178c 6295 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6296
caeb178c 6297 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6298 return true;
6299
caeb178c
RR
6300 if (sgs->group_type < busiest->group_type)
6301 return false;
6302
6303 if (sgs->avg_load <= busiest->avg_load)
6304 return false;
6305
6306 /* This is the busiest node in its class. */
6307 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6308 return true;
6309
6310 /*
6311 * ASYM_PACKING needs to move all the work to the lowest
6312 * numbered CPUs in the group, therefore mark all groups
6313 * higher than ourself as busy.
6314 */
caeb178c 6315 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6316 if (!sds->busiest)
6317 return true;
6318
6319 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6320 return true;
6321 }
6322
6323 return false;
6324}
6325
0ec8aa00
PZ
6326#ifdef CONFIG_NUMA_BALANCING
6327static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6328{
6329 if (sgs->sum_nr_running > sgs->nr_numa_running)
6330 return regular;
6331 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6332 return remote;
6333 return all;
6334}
6335
6336static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6337{
6338 if (rq->nr_running > rq->nr_numa_running)
6339 return regular;
6340 if (rq->nr_running > rq->nr_preferred_running)
6341 return remote;
6342 return all;
6343}
6344#else
6345static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6346{
6347 return all;
6348}
6349
6350static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6351{
6352 return regular;
6353}
6354#endif /* CONFIG_NUMA_BALANCING */
6355
1e3c88bd 6356/**
461819ac 6357 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6358 * @env: The load balancing environment.
1e3c88bd
PZ
6359 * @sds: variable to hold the statistics for this sched_domain.
6360 */
0ec8aa00 6361static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6362{
bd939f45
PZ
6363 struct sched_domain *child = env->sd->child;
6364 struct sched_group *sg = env->sd->groups;
56cf515b 6365 struct sg_lb_stats tmp_sgs;
1e3c88bd 6366 int load_idx, prefer_sibling = 0;
4486edd1 6367 bool overload = false;
1e3c88bd
PZ
6368
6369 if (child && child->flags & SD_PREFER_SIBLING)
6370 prefer_sibling = 1;
6371
bd939f45 6372 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6373
6374 do {
56cf515b 6375 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6376 int local_group;
6377
bd939f45 6378 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6379 if (local_group) {
6380 sds->local = sg;
6381 sgs = &sds->local_stat;
b72ff13c
PZ
6382
6383 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6384 time_after_eq(jiffies, sg->sgc->next_update))
6385 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6386 }
1e3c88bd 6387
4486edd1
TC
6388 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6389 &overload);
1e3c88bd 6390
b72ff13c
PZ
6391 if (local_group)
6392 goto next_group;
6393
1e3c88bd
PZ
6394 /*
6395 * In case the child domain prefers tasks go to siblings
ea67821b 6396 * first, lower the sg capacity so that we'll try
75dd321d
NR
6397 * and move all the excess tasks away. We lower the capacity
6398 * of a group only if the local group has the capacity to fit
ea67821b
VG
6399 * these excess tasks. The extra check prevents the case where
6400 * you always pull from the heaviest group when it is already
6401 * under-utilized (possible with a large weight task outweighs
6402 * the tasks on the system).
1e3c88bd 6403 */
b72ff13c 6404 if (prefer_sibling && sds->local &&
ea67821b
VG
6405 group_has_capacity(env, &sds->local_stat) &&
6406 (sgs->sum_nr_running > 1)) {
6407 sgs->group_no_capacity = 1;
6408 sgs->group_type = group_overloaded;
cb0b9f24 6409 }
1e3c88bd 6410
b72ff13c 6411 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6412 sds->busiest = sg;
56cf515b 6413 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6414 }
6415
b72ff13c
PZ
6416next_group:
6417 /* Now, start updating sd_lb_stats */
6418 sds->total_load += sgs->group_load;
63b2ca30 6419 sds->total_capacity += sgs->group_capacity;
b72ff13c 6420
532cb4c4 6421 sg = sg->next;
bd939f45 6422 } while (sg != env->sd->groups);
0ec8aa00
PZ
6423
6424 if (env->sd->flags & SD_NUMA)
6425 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6426
6427 if (!env->sd->parent) {
6428 /* update overload indicator if we are at root domain */
6429 if (env->dst_rq->rd->overload != overload)
6430 env->dst_rq->rd->overload = overload;
6431 }
6432
532cb4c4
MN
6433}
6434
532cb4c4
MN
6435/**
6436 * check_asym_packing - Check to see if the group is packed into the
6437 * sched doman.
6438 *
6439 * This is primarily intended to used at the sibling level. Some
6440 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6441 * case of POWER7, it can move to lower SMT modes only when higher
6442 * threads are idle. When in lower SMT modes, the threads will
6443 * perform better since they share less core resources. Hence when we
6444 * have idle threads, we want them to be the higher ones.
6445 *
6446 * This packing function is run on idle threads. It checks to see if
6447 * the busiest CPU in this domain (core in the P7 case) has a higher
6448 * CPU number than the packing function is being run on. Here we are
6449 * assuming lower CPU number will be equivalent to lower a SMT thread
6450 * number.
6451 *
e69f6186 6452 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6453 * this CPU. The amount of the imbalance is returned in *imbalance.
6454 *
cd96891d 6455 * @env: The load balancing environment.
532cb4c4 6456 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6457 */
bd939f45 6458static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6459{
6460 int busiest_cpu;
6461
bd939f45 6462 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6463 return 0;
6464
6465 if (!sds->busiest)
6466 return 0;
6467
6468 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6469 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6470 return 0;
6471
bd939f45 6472 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6473 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6474 SCHED_CAPACITY_SCALE);
bd939f45 6475
532cb4c4 6476 return 1;
1e3c88bd
PZ
6477}
6478
6479/**
6480 * fix_small_imbalance - Calculate the minor imbalance that exists
6481 * amongst the groups of a sched_domain, during
6482 * load balancing.
cd96891d 6483 * @env: The load balancing environment.
1e3c88bd 6484 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6485 */
bd939f45
PZ
6486static inline
6487void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6488{
63b2ca30 6489 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6490 unsigned int imbn = 2;
dd5feea1 6491 unsigned long scaled_busy_load_per_task;
56cf515b 6492 struct sg_lb_stats *local, *busiest;
1e3c88bd 6493
56cf515b
JK
6494 local = &sds->local_stat;
6495 busiest = &sds->busiest_stat;
1e3c88bd 6496
56cf515b
JK
6497 if (!local->sum_nr_running)
6498 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6499 else if (busiest->load_per_task > local->load_per_task)
6500 imbn = 1;
dd5feea1 6501
56cf515b 6502 scaled_busy_load_per_task =
ca8ce3d0 6503 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6504 busiest->group_capacity;
56cf515b 6505
3029ede3
VD
6506 if (busiest->avg_load + scaled_busy_load_per_task >=
6507 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6508 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6509 return;
6510 }
6511
6512 /*
6513 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6514 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6515 * moving them.
6516 */
6517
63b2ca30 6518 capa_now += busiest->group_capacity *
56cf515b 6519 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6520 capa_now += local->group_capacity *
56cf515b 6521 min(local->load_per_task, local->avg_load);
ca8ce3d0 6522 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6523
6524 /* Amount of load we'd subtract */
a2cd4260 6525 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6526 capa_move += busiest->group_capacity *
56cf515b 6527 min(busiest->load_per_task,
a2cd4260 6528 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6529 }
1e3c88bd
PZ
6530
6531 /* Amount of load we'd add */
63b2ca30 6532 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6533 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6534 tmp = (busiest->avg_load * busiest->group_capacity) /
6535 local->group_capacity;
56cf515b 6536 } else {
ca8ce3d0 6537 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6538 local->group_capacity;
56cf515b 6539 }
63b2ca30 6540 capa_move += local->group_capacity *
3ae11c90 6541 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6542 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6543
6544 /* Move if we gain throughput */
63b2ca30 6545 if (capa_move > capa_now)
56cf515b 6546 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6547}
6548
6549/**
6550 * calculate_imbalance - Calculate the amount of imbalance present within the
6551 * groups of a given sched_domain during load balance.
bd939f45 6552 * @env: load balance environment
1e3c88bd 6553 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6554 */
bd939f45 6555static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6556{
dd5feea1 6557 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6558 struct sg_lb_stats *local, *busiest;
6559
6560 local = &sds->local_stat;
56cf515b 6561 busiest = &sds->busiest_stat;
dd5feea1 6562
caeb178c 6563 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6564 /*
6565 * In the group_imb case we cannot rely on group-wide averages
6566 * to ensure cpu-load equilibrium, look at wider averages. XXX
6567 */
56cf515b
JK
6568 busiest->load_per_task =
6569 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6570 }
6571
1e3c88bd
PZ
6572 /*
6573 * In the presence of smp nice balancing, certain scenarios can have
6574 * max load less than avg load(as we skip the groups at or below
ced549fa 6575 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6576 */
b1885550
VD
6577 if (busiest->avg_load <= sds->avg_load ||
6578 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6579 env->imbalance = 0;
6580 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6581 }
6582
9a5d9ba6
PZ
6583 /*
6584 * If there aren't any idle cpus, avoid creating some.
6585 */
6586 if (busiest->group_type == group_overloaded &&
6587 local->group_type == group_overloaded) {
ea67821b
VG
6588 load_above_capacity = busiest->sum_nr_running *
6589 SCHED_LOAD_SCALE;
6590 if (load_above_capacity > busiest->group_capacity)
6591 load_above_capacity -= busiest->group_capacity;
6592 else
6593 load_above_capacity = ~0UL;
dd5feea1
SS
6594 }
6595
6596 /*
6597 * We're trying to get all the cpus to the average_load, so we don't
6598 * want to push ourselves above the average load, nor do we wish to
6599 * reduce the max loaded cpu below the average load. At the same time,
6600 * we also don't want to reduce the group load below the group capacity
6601 * (so that we can implement power-savings policies etc). Thus we look
6602 * for the minimum possible imbalance.
dd5feea1 6603 */
30ce5dab 6604 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6605
6606 /* How much load to actually move to equalise the imbalance */
56cf515b 6607 env->imbalance = min(
63b2ca30
NP
6608 max_pull * busiest->group_capacity,
6609 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6610 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6611
6612 /*
6613 * if *imbalance is less than the average load per runnable task
25985edc 6614 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6615 * a think about bumping its value to force at least one task to be
6616 * moved
6617 */
56cf515b 6618 if (env->imbalance < busiest->load_per_task)
bd939f45 6619 return fix_small_imbalance(env, sds);
1e3c88bd 6620}
fab47622 6621
1e3c88bd
PZ
6622/******* find_busiest_group() helpers end here *********************/
6623
6624/**
6625 * find_busiest_group - Returns the busiest group within the sched_domain
6626 * if there is an imbalance. If there isn't an imbalance, and
6627 * the user has opted for power-savings, it returns a group whose
6628 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6629 * such a group exists.
6630 *
6631 * Also calculates the amount of weighted load which should be moved
6632 * to restore balance.
6633 *
cd96891d 6634 * @env: The load balancing environment.
1e3c88bd 6635 *
e69f6186 6636 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6637 * - If no imbalance and user has opted for power-savings balance,
6638 * return the least loaded group whose CPUs can be
6639 * put to idle by rebalancing its tasks onto our group.
6640 */
56cf515b 6641static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6642{
56cf515b 6643 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6644 struct sd_lb_stats sds;
6645
147c5fc2 6646 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6647
6648 /*
6649 * Compute the various statistics relavent for load balancing at
6650 * this level.
6651 */
23f0d209 6652 update_sd_lb_stats(env, &sds);
56cf515b
JK
6653 local = &sds.local_stat;
6654 busiest = &sds.busiest_stat;
1e3c88bd 6655
ea67821b 6656 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6657 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6658 check_asym_packing(env, &sds))
532cb4c4
MN
6659 return sds.busiest;
6660
cc57aa8f 6661 /* There is no busy sibling group to pull tasks from */
56cf515b 6662 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6663 goto out_balanced;
6664
ca8ce3d0
NP
6665 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6666 / sds.total_capacity;
b0432d8f 6667
866ab43e
PZ
6668 /*
6669 * If the busiest group is imbalanced the below checks don't
30ce5dab 6670 * work because they assume all things are equal, which typically
866ab43e
PZ
6671 * isn't true due to cpus_allowed constraints and the like.
6672 */
caeb178c 6673 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6674 goto force_balance;
6675
cc57aa8f 6676 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6677 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6678 busiest->group_no_capacity)
fab47622
NR
6679 goto force_balance;
6680
cc57aa8f 6681 /*
9c58c79a 6682 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6683 * don't try and pull any tasks.
6684 */
56cf515b 6685 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6686 goto out_balanced;
6687
cc57aa8f
PZ
6688 /*
6689 * Don't pull any tasks if this group is already above the domain
6690 * average load.
6691 */
56cf515b 6692 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6693 goto out_balanced;
6694
bd939f45 6695 if (env->idle == CPU_IDLE) {
aae6d3dd 6696 /*
43f4d666
VG
6697 * This cpu is idle. If the busiest group is not overloaded
6698 * and there is no imbalance between this and busiest group
6699 * wrt idle cpus, it is balanced. The imbalance becomes
6700 * significant if the diff is greater than 1 otherwise we
6701 * might end up to just move the imbalance on another group
aae6d3dd 6702 */
43f4d666
VG
6703 if ((busiest->group_type != group_overloaded) &&
6704 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6705 goto out_balanced;
c186fafe
PZ
6706 } else {
6707 /*
6708 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6709 * imbalance_pct to be conservative.
6710 */
56cf515b
JK
6711 if (100 * busiest->avg_load <=
6712 env->sd->imbalance_pct * local->avg_load)
c186fafe 6713 goto out_balanced;
aae6d3dd 6714 }
1e3c88bd 6715
fab47622 6716force_balance:
1e3c88bd 6717 /* Looks like there is an imbalance. Compute it */
bd939f45 6718 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6719 return sds.busiest;
6720
6721out_balanced:
bd939f45 6722 env->imbalance = 0;
1e3c88bd
PZ
6723 return NULL;
6724}
6725
6726/*
6727 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6728 */
bd939f45 6729static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6730 struct sched_group *group)
1e3c88bd
PZ
6731{
6732 struct rq *busiest = NULL, *rq;
ced549fa 6733 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6734 int i;
6735
6906a408 6736 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6737 unsigned long capacity, wl;
0ec8aa00
PZ
6738 enum fbq_type rt;
6739
6740 rq = cpu_rq(i);
6741 rt = fbq_classify_rq(rq);
1e3c88bd 6742
0ec8aa00
PZ
6743 /*
6744 * We classify groups/runqueues into three groups:
6745 * - regular: there are !numa tasks
6746 * - remote: there are numa tasks that run on the 'wrong' node
6747 * - all: there is no distinction
6748 *
6749 * In order to avoid migrating ideally placed numa tasks,
6750 * ignore those when there's better options.
6751 *
6752 * If we ignore the actual busiest queue to migrate another
6753 * task, the next balance pass can still reduce the busiest
6754 * queue by moving tasks around inside the node.
6755 *
6756 * If we cannot move enough load due to this classification
6757 * the next pass will adjust the group classification and
6758 * allow migration of more tasks.
6759 *
6760 * Both cases only affect the total convergence complexity.
6761 */
6762 if (rt > env->fbq_type)
6763 continue;
6764
ced549fa 6765 capacity = capacity_of(i);
9d5efe05 6766
6e40f5bb 6767 wl = weighted_cpuload(i);
1e3c88bd 6768
6e40f5bb
TG
6769 /*
6770 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6771 * which is not scaled with the cpu capacity.
6e40f5bb 6772 */
ea67821b
VG
6773
6774 if (rq->nr_running == 1 && wl > env->imbalance &&
6775 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6776 continue;
6777
6e40f5bb
TG
6778 /*
6779 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6780 * the weighted_cpuload() scaled with the cpu capacity, so
6781 * that the load can be moved away from the cpu that is
6782 * potentially running at a lower capacity.
95a79b80 6783 *
ced549fa 6784 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6785 * multiplication to rid ourselves of the division works out
ced549fa
NP
6786 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6787 * our previous maximum.
6e40f5bb 6788 */
ced549fa 6789 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6790 busiest_load = wl;
ced549fa 6791 busiest_capacity = capacity;
1e3c88bd
PZ
6792 busiest = rq;
6793 }
6794 }
6795
6796 return busiest;
6797}
6798
6799/*
6800 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6801 * so long as it is large enough.
6802 */
6803#define MAX_PINNED_INTERVAL 512
6804
6805/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6806DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6807
bd939f45 6808static int need_active_balance(struct lb_env *env)
1af3ed3d 6809{
bd939f45
PZ
6810 struct sched_domain *sd = env->sd;
6811
6812 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6813
6814 /*
6815 * ASYM_PACKING needs to force migrate tasks from busy but
6816 * higher numbered CPUs in order to pack all tasks in the
6817 * lowest numbered CPUs.
6818 */
bd939f45 6819 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6820 return 1;
1af3ed3d
PZ
6821 }
6822
1aaf90a4
VG
6823 /*
6824 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6825 * It's worth migrating the task if the src_cpu's capacity is reduced
6826 * because of other sched_class or IRQs if more capacity stays
6827 * available on dst_cpu.
6828 */
6829 if ((env->idle != CPU_NOT_IDLE) &&
6830 (env->src_rq->cfs.h_nr_running == 1)) {
6831 if ((check_cpu_capacity(env->src_rq, sd)) &&
6832 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6833 return 1;
6834 }
6835
1af3ed3d
PZ
6836 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6837}
6838
969c7921
TH
6839static int active_load_balance_cpu_stop(void *data);
6840
23f0d209
JK
6841static int should_we_balance(struct lb_env *env)
6842{
6843 struct sched_group *sg = env->sd->groups;
6844 struct cpumask *sg_cpus, *sg_mask;
6845 int cpu, balance_cpu = -1;
6846
6847 /*
6848 * In the newly idle case, we will allow all the cpu's
6849 * to do the newly idle load balance.
6850 */
6851 if (env->idle == CPU_NEWLY_IDLE)
6852 return 1;
6853
6854 sg_cpus = sched_group_cpus(sg);
6855 sg_mask = sched_group_mask(sg);
6856 /* Try to find first idle cpu */
6857 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6858 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6859 continue;
6860
6861 balance_cpu = cpu;
6862 break;
6863 }
6864
6865 if (balance_cpu == -1)
6866 balance_cpu = group_balance_cpu(sg);
6867
6868 /*
6869 * First idle cpu or the first cpu(busiest) in this sched group
6870 * is eligible for doing load balancing at this and above domains.
6871 */
b0cff9d8 6872 return balance_cpu == env->dst_cpu;
23f0d209
JK
6873}
6874
1e3c88bd
PZ
6875/*
6876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6877 * tasks if there is an imbalance.
6878 */
6879static int load_balance(int this_cpu, struct rq *this_rq,
6880 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6881 int *continue_balancing)
1e3c88bd 6882{
88b8dac0 6883 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6884 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6885 struct sched_group *group;
1e3c88bd
PZ
6886 struct rq *busiest;
6887 unsigned long flags;
4ba29684 6888 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6889
8e45cb54
PZ
6890 struct lb_env env = {
6891 .sd = sd,
ddcdf6e7
PZ
6892 .dst_cpu = this_cpu,
6893 .dst_rq = this_rq,
88b8dac0 6894 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6895 .idle = idle,
eb95308e 6896 .loop_break = sched_nr_migrate_break,
b9403130 6897 .cpus = cpus,
0ec8aa00 6898 .fbq_type = all,
163122b7 6899 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6900 };
6901
cfc03118
JK
6902 /*
6903 * For NEWLY_IDLE load_balancing, we don't need to consider
6904 * other cpus in our group
6905 */
e02e60c1 6906 if (idle == CPU_NEWLY_IDLE)
cfc03118 6907 env.dst_grpmask = NULL;
cfc03118 6908
1e3c88bd
PZ
6909 cpumask_copy(cpus, cpu_active_mask);
6910
1e3c88bd
PZ
6911 schedstat_inc(sd, lb_count[idle]);
6912
6913redo:
23f0d209
JK
6914 if (!should_we_balance(&env)) {
6915 *continue_balancing = 0;
1e3c88bd 6916 goto out_balanced;
23f0d209 6917 }
1e3c88bd 6918
23f0d209 6919 group = find_busiest_group(&env);
1e3c88bd
PZ
6920 if (!group) {
6921 schedstat_inc(sd, lb_nobusyg[idle]);
6922 goto out_balanced;
6923 }
6924
b9403130 6925 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6926 if (!busiest) {
6927 schedstat_inc(sd, lb_nobusyq[idle]);
6928 goto out_balanced;
6929 }
6930
78feefc5 6931 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6932
bd939f45 6933 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6934
1aaf90a4
VG
6935 env.src_cpu = busiest->cpu;
6936 env.src_rq = busiest;
6937
1e3c88bd
PZ
6938 ld_moved = 0;
6939 if (busiest->nr_running > 1) {
6940 /*
6941 * Attempt to move tasks. If find_busiest_group has found
6942 * an imbalance but busiest->nr_running <= 1, the group is
6943 * still unbalanced. ld_moved simply stays zero, so it is
6944 * correctly treated as an imbalance.
6945 */
8e45cb54 6946 env.flags |= LBF_ALL_PINNED;
c82513e5 6947 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6948
5d6523eb 6949more_balance:
163122b7 6950 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6951
6952 /*
6953 * cur_ld_moved - load moved in current iteration
6954 * ld_moved - cumulative load moved across iterations
6955 */
163122b7 6956 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6957
6958 /*
163122b7
KT
6959 * We've detached some tasks from busiest_rq. Every
6960 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6961 * unlock busiest->lock, and we are able to be sure
6962 * that nobody can manipulate the tasks in parallel.
6963 * See task_rq_lock() family for the details.
1e3c88bd 6964 */
163122b7
KT
6965
6966 raw_spin_unlock(&busiest->lock);
6967
6968 if (cur_ld_moved) {
6969 attach_tasks(&env);
6970 ld_moved += cur_ld_moved;
6971 }
6972
1e3c88bd 6973 local_irq_restore(flags);
88b8dac0 6974
f1cd0858
JK
6975 if (env.flags & LBF_NEED_BREAK) {
6976 env.flags &= ~LBF_NEED_BREAK;
6977 goto more_balance;
6978 }
6979
88b8dac0
SV
6980 /*
6981 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6982 * us and move them to an alternate dst_cpu in our sched_group
6983 * where they can run. The upper limit on how many times we
6984 * iterate on same src_cpu is dependent on number of cpus in our
6985 * sched_group.
6986 *
6987 * This changes load balance semantics a bit on who can move
6988 * load to a given_cpu. In addition to the given_cpu itself
6989 * (or a ilb_cpu acting on its behalf where given_cpu is
6990 * nohz-idle), we now have balance_cpu in a position to move
6991 * load to given_cpu. In rare situations, this may cause
6992 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6993 * _independently_ and at _same_ time to move some load to
6994 * given_cpu) causing exceess load to be moved to given_cpu.
6995 * This however should not happen so much in practice and
6996 * moreover subsequent load balance cycles should correct the
6997 * excess load moved.
6998 */
6263322c 6999 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7000
7aff2e3a
VD
7001 /* Prevent to re-select dst_cpu via env's cpus */
7002 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7003
78feefc5 7004 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7005 env.dst_cpu = env.new_dst_cpu;
6263322c 7006 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7007 env.loop = 0;
7008 env.loop_break = sched_nr_migrate_break;
e02e60c1 7009
88b8dac0
SV
7010 /*
7011 * Go back to "more_balance" rather than "redo" since we
7012 * need to continue with same src_cpu.
7013 */
7014 goto more_balance;
7015 }
1e3c88bd 7016
6263322c
PZ
7017 /*
7018 * We failed to reach balance because of affinity.
7019 */
7020 if (sd_parent) {
63b2ca30 7021 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7022
afdeee05 7023 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7024 *group_imbalance = 1;
6263322c
PZ
7025 }
7026
1e3c88bd 7027 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7028 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7029 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7030 if (!cpumask_empty(cpus)) {
7031 env.loop = 0;
7032 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7033 goto redo;
bbf18b19 7034 }
afdeee05 7035 goto out_all_pinned;
1e3c88bd
PZ
7036 }
7037 }
7038
7039 if (!ld_moved) {
7040 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7041 /*
7042 * Increment the failure counter only on periodic balance.
7043 * We do not want newidle balance, which can be very
7044 * frequent, pollute the failure counter causing
7045 * excessive cache_hot migrations and active balances.
7046 */
7047 if (idle != CPU_NEWLY_IDLE)
7048 sd->nr_balance_failed++;
1e3c88bd 7049
bd939f45 7050 if (need_active_balance(&env)) {
1e3c88bd
PZ
7051 raw_spin_lock_irqsave(&busiest->lock, flags);
7052
969c7921
TH
7053 /* don't kick the active_load_balance_cpu_stop,
7054 * if the curr task on busiest cpu can't be
7055 * moved to this_cpu
1e3c88bd
PZ
7056 */
7057 if (!cpumask_test_cpu(this_cpu,
fa17b507 7058 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7059 raw_spin_unlock_irqrestore(&busiest->lock,
7060 flags);
8e45cb54 7061 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7062 goto out_one_pinned;
7063 }
7064
969c7921
TH
7065 /*
7066 * ->active_balance synchronizes accesses to
7067 * ->active_balance_work. Once set, it's cleared
7068 * only after active load balance is finished.
7069 */
1e3c88bd
PZ
7070 if (!busiest->active_balance) {
7071 busiest->active_balance = 1;
7072 busiest->push_cpu = this_cpu;
7073 active_balance = 1;
7074 }
7075 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7076
bd939f45 7077 if (active_balance) {
969c7921
TH
7078 stop_one_cpu_nowait(cpu_of(busiest),
7079 active_load_balance_cpu_stop, busiest,
7080 &busiest->active_balance_work);
bd939f45 7081 }
1e3c88bd
PZ
7082
7083 /*
7084 * We've kicked active balancing, reset the failure
7085 * counter.
7086 */
7087 sd->nr_balance_failed = sd->cache_nice_tries+1;
7088 }
7089 } else
7090 sd->nr_balance_failed = 0;
7091
7092 if (likely(!active_balance)) {
7093 /* We were unbalanced, so reset the balancing interval */
7094 sd->balance_interval = sd->min_interval;
7095 } else {
7096 /*
7097 * If we've begun active balancing, start to back off. This
7098 * case may not be covered by the all_pinned logic if there
7099 * is only 1 task on the busy runqueue (because we don't call
163122b7 7100 * detach_tasks).
1e3c88bd
PZ
7101 */
7102 if (sd->balance_interval < sd->max_interval)
7103 sd->balance_interval *= 2;
7104 }
7105
1e3c88bd
PZ
7106 goto out;
7107
7108out_balanced:
afdeee05
VG
7109 /*
7110 * We reach balance although we may have faced some affinity
7111 * constraints. Clear the imbalance flag if it was set.
7112 */
7113 if (sd_parent) {
7114 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7115
7116 if (*group_imbalance)
7117 *group_imbalance = 0;
7118 }
7119
7120out_all_pinned:
7121 /*
7122 * We reach balance because all tasks are pinned at this level so
7123 * we can't migrate them. Let the imbalance flag set so parent level
7124 * can try to migrate them.
7125 */
1e3c88bd
PZ
7126 schedstat_inc(sd, lb_balanced[idle]);
7127
7128 sd->nr_balance_failed = 0;
7129
7130out_one_pinned:
7131 /* tune up the balancing interval */
8e45cb54 7132 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7133 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7134 (sd->balance_interval < sd->max_interval))
7135 sd->balance_interval *= 2;
7136
46e49b38 7137 ld_moved = 0;
1e3c88bd 7138out:
1e3c88bd
PZ
7139 return ld_moved;
7140}
7141
52a08ef1
JL
7142static inline unsigned long
7143get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7144{
7145 unsigned long interval = sd->balance_interval;
7146
7147 if (cpu_busy)
7148 interval *= sd->busy_factor;
7149
7150 /* scale ms to jiffies */
7151 interval = msecs_to_jiffies(interval);
7152 interval = clamp(interval, 1UL, max_load_balance_interval);
7153
7154 return interval;
7155}
7156
7157static inline void
7158update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7159{
7160 unsigned long interval, next;
7161
7162 interval = get_sd_balance_interval(sd, cpu_busy);
7163 next = sd->last_balance + interval;
7164
7165 if (time_after(*next_balance, next))
7166 *next_balance = next;
7167}
7168
1e3c88bd
PZ
7169/*
7170 * idle_balance is called by schedule() if this_cpu is about to become
7171 * idle. Attempts to pull tasks from other CPUs.
7172 */
6e83125c 7173static int idle_balance(struct rq *this_rq)
1e3c88bd 7174{
52a08ef1
JL
7175 unsigned long next_balance = jiffies + HZ;
7176 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7177 struct sched_domain *sd;
7178 int pulled_task = 0;
9bd721c5 7179 u64 curr_cost = 0;
1e3c88bd 7180
6e83125c 7181 idle_enter_fair(this_rq);
0e5b5337 7182
6e83125c
PZ
7183 /*
7184 * We must set idle_stamp _before_ calling idle_balance(), such that we
7185 * measure the duration of idle_balance() as idle time.
7186 */
7187 this_rq->idle_stamp = rq_clock(this_rq);
7188
4486edd1
TC
7189 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7190 !this_rq->rd->overload) {
52a08ef1
JL
7191 rcu_read_lock();
7192 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7193 if (sd)
7194 update_next_balance(sd, 0, &next_balance);
7195 rcu_read_unlock();
7196
6e83125c 7197 goto out;
52a08ef1 7198 }
1e3c88bd 7199
f492e12e
PZ
7200 /*
7201 * Drop the rq->lock, but keep IRQ/preempt disabled.
7202 */
7203 raw_spin_unlock(&this_rq->lock);
7204
48a16753 7205 update_blocked_averages(this_cpu);
dce840a0 7206 rcu_read_lock();
1e3c88bd 7207 for_each_domain(this_cpu, sd) {
23f0d209 7208 int continue_balancing = 1;
9bd721c5 7209 u64 t0, domain_cost;
1e3c88bd
PZ
7210
7211 if (!(sd->flags & SD_LOAD_BALANCE))
7212 continue;
7213
52a08ef1
JL
7214 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7215 update_next_balance(sd, 0, &next_balance);
9bd721c5 7216 break;
52a08ef1 7217 }
9bd721c5 7218
f492e12e 7219 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7220 t0 = sched_clock_cpu(this_cpu);
7221
f492e12e 7222 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7223 sd, CPU_NEWLY_IDLE,
7224 &continue_balancing);
9bd721c5
JL
7225
7226 domain_cost = sched_clock_cpu(this_cpu) - t0;
7227 if (domain_cost > sd->max_newidle_lb_cost)
7228 sd->max_newidle_lb_cost = domain_cost;
7229
7230 curr_cost += domain_cost;
f492e12e 7231 }
1e3c88bd 7232
52a08ef1 7233 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7234
7235 /*
7236 * Stop searching for tasks to pull if there are
7237 * now runnable tasks on this rq.
7238 */
7239 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7240 break;
1e3c88bd 7241 }
dce840a0 7242 rcu_read_unlock();
f492e12e
PZ
7243
7244 raw_spin_lock(&this_rq->lock);
7245
0e5b5337
JL
7246 if (curr_cost > this_rq->max_idle_balance_cost)
7247 this_rq->max_idle_balance_cost = curr_cost;
7248
e5fc6611 7249 /*
0e5b5337
JL
7250 * While browsing the domains, we released the rq lock, a task could
7251 * have been enqueued in the meantime. Since we're not going idle,
7252 * pretend we pulled a task.
e5fc6611 7253 */
0e5b5337 7254 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7255 pulled_task = 1;
e5fc6611 7256
52a08ef1
JL
7257out:
7258 /* Move the next balance forward */
7259 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7260 this_rq->next_balance = next_balance;
9bd721c5 7261
e4aa358b 7262 /* Is there a task of a high priority class? */
46383648 7263 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7264 pulled_task = -1;
7265
7266 if (pulled_task) {
7267 idle_exit_fair(this_rq);
6e83125c 7268 this_rq->idle_stamp = 0;
e4aa358b 7269 }
6e83125c 7270
3c4017c1 7271 return pulled_task;
1e3c88bd
PZ
7272}
7273
7274/*
969c7921
TH
7275 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7276 * running tasks off the busiest CPU onto idle CPUs. It requires at
7277 * least 1 task to be running on each physical CPU where possible, and
7278 * avoids physical / logical imbalances.
1e3c88bd 7279 */
969c7921 7280static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7281{
969c7921
TH
7282 struct rq *busiest_rq = data;
7283 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7284 int target_cpu = busiest_rq->push_cpu;
969c7921 7285 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7286 struct sched_domain *sd;
e5673f28 7287 struct task_struct *p = NULL;
969c7921
TH
7288
7289 raw_spin_lock_irq(&busiest_rq->lock);
7290
7291 /* make sure the requested cpu hasn't gone down in the meantime */
7292 if (unlikely(busiest_cpu != smp_processor_id() ||
7293 !busiest_rq->active_balance))
7294 goto out_unlock;
1e3c88bd
PZ
7295
7296 /* Is there any task to move? */
7297 if (busiest_rq->nr_running <= 1)
969c7921 7298 goto out_unlock;
1e3c88bd
PZ
7299
7300 /*
7301 * This condition is "impossible", if it occurs
7302 * we need to fix it. Originally reported by
7303 * Bjorn Helgaas on a 128-cpu setup.
7304 */
7305 BUG_ON(busiest_rq == target_rq);
7306
1e3c88bd 7307 /* Search for an sd spanning us and the target CPU. */
dce840a0 7308 rcu_read_lock();
1e3c88bd
PZ
7309 for_each_domain(target_cpu, sd) {
7310 if ((sd->flags & SD_LOAD_BALANCE) &&
7311 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7312 break;
7313 }
7314
7315 if (likely(sd)) {
8e45cb54
PZ
7316 struct lb_env env = {
7317 .sd = sd,
ddcdf6e7
PZ
7318 .dst_cpu = target_cpu,
7319 .dst_rq = target_rq,
7320 .src_cpu = busiest_rq->cpu,
7321 .src_rq = busiest_rq,
8e45cb54
PZ
7322 .idle = CPU_IDLE,
7323 };
7324
1e3c88bd
PZ
7325 schedstat_inc(sd, alb_count);
7326
e5673f28
KT
7327 p = detach_one_task(&env);
7328 if (p)
1e3c88bd
PZ
7329 schedstat_inc(sd, alb_pushed);
7330 else
7331 schedstat_inc(sd, alb_failed);
7332 }
dce840a0 7333 rcu_read_unlock();
969c7921
TH
7334out_unlock:
7335 busiest_rq->active_balance = 0;
e5673f28
KT
7336 raw_spin_unlock(&busiest_rq->lock);
7337
7338 if (p)
7339 attach_one_task(target_rq, p);
7340
7341 local_irq_enable();
7342
969c7921 7343 return 0;
1e3c88bd
PZ
7344}
7345
d987fc7f
MG
7346static inline int on_null_domain(struct rq *rq)
7347{
7348 return unlikely(!rcu_dereference_sched(rq->sd));
7349}
7350
3451d024 7351#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7352/*
7353 * idle load balancing details
83cd4fe2
VP
7354 * - When one of the busy CPUs notice that there may be an idle rebalancing
7355 * needed, they will kick the idle load balancer, which then does idle
7356 * load balancing for all the idle CPUs.
7357 */
1e3c88bd 7358static struct {
83cd4fe2 7359 cpumask_var_t idle_cpus_mask;
0b005cf5 7360 atomic_t nr_cpus;
83cd4fe2
VP
7361 unsigned long next_balance; /* in jiffy units */
7362} nohz ____cacheline_aligned;
1e3c88bd 7363
3dd0337d 7364static inline int find_new_ilb(void)
1e3c88bd 7365{
0b005cf5 7366 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7367
786d6dc7
SS
7368 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7369 return ilb;
7370
7371 return nr_cpu_ids;
1e3c88bd 7372}
1e3c88bd 7373
83cd4fe2
VP
7374/*
7375 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7376 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7377 * CPU (if there is one).
7378 */
0aeeeeba 7379static void nohz_balancer_kick(void)
83cd4fe2
VP
7380{
7381 int ilb_cpu;
7382
7383 nohz.next_balance++;
7384
3dd0337d 7385 ilb_cpu = find_new_ilb();
83cd4fe2 7386
0b005cf5
SS
7387 if (ilb_cpu >= nr_cpu_ids)
7388 return;
83cd4fe2 7389
cd490c5b 7390 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7391 return;
7392 /*
7393 * Use smp_send_reschedule() instead of resched_cpu().
7394 * This way we generate a sched IPI on the target cpu which
7395 * is idle. And the softirq performing nohz idle load balance
7396 * will be run before returning from the IPI.
7397 */
7398 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7399 return;
7400}
7401
c1cc017c 7402static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7403{
7404 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7405 /*
7406 * Completely isolated CPUs don't ever set, so we must test.
7407 */
7408 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7409 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7410 atomic_dec(&nohz.nr_cpus);
7411 }
71325960
SS
7412 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7413 }
7414}
7415
69e1e811
SS
7416static inline void set_cpu_sd_state_busy(void)
7417{
7418 struct sched_domain *sd;
37dc6b50 7419 int cpu = smp_processor_id();
69e1e811 7420
69e1e811 7421 rcu_read_lock();
37dc6b50 7422 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7423
7424 if (!sd || !sd->nohz_idle)
7425 goto unlock;
7426 sd->nohz_idle = 0;
7427
63b2ca30 7428 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7429unlock:
69e1e811
SS
7430 rcu_read_unlock();
7431}
7432
7433void set_cpu_sd_state_idle(void)
7434{
7435 struct sched_domain *sd;
37dc6b50 7436 int cpu = smp_processor_id();
69e1e811 7437
69e1e811 7438 rcu_read_lock();
37dc6b50 7439 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7440
7441 if (!sd || sd->nohz_idle)
7442 goto unlock;
7443 sd->nohz_idle = 1;
7444
63b2ca30 7445 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7446unlock:
69e1e811
SS
7447 rcu_read_unlock();
7448}
7449
1e3c88bd 7450/*
c1cc017c 7451 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7452 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7453 */
c1cc017c 7454void nohz_balance_enter_idle(int cpu)
1e3c88bd 7455{
71325960
SS
7456 /*
7457 * If this cpu is going down, then nothing needs to be done.
7458 */
7459 if (!cpu_active(cpu))
7460 return;
7461
c1cc017c
AS
7462 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7463 return;
1e3c88bd 7464
d987fc7f
MG
7465 /*
7466 * If we're a completely isolated CPU, we don't play.
7467 */
7468 if (on_null_domain(cpu_rq(cpu)))
7469 return;
7470
c1cc017c
AS
7471 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7472 atomic_inc(&nohz.nr_cpus);
7473 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7474}
71325960 7475
0db0628d 7476static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7477 unsigned long action, void *hcpu)
7478{
7479 switch (action & ~CPU_TASKS_FROZEN) {
7480 case CPU_DYING:
c1cc017c 7481 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7482 return NOTIFY_OK;
7483 default:
7484 return NOTIFY_DONE;
7485 }
7486}
1e3c88bd
PZ
7487#endif
7488
7489static DEFINE_SPINLOCK(balancing);
7490
49c022e6
PZ
7491/*
7492 * Scale the max load_balance interval with the number of CPUs in the system.
7493 * This trades load-balance latency on larger machines for less cross talk.
7494 */
029632fb 7495void update_max_interval(void)
49c022e6
PZ
7496{
7497 max_load_balance_interval = HZ*num_online_cpus()/10;
7498}
7499
1e3c88bd
PZ
7500/*
7501 * It checks each scheduling domain to see if it is due to be balanced,
7502 * and initiates a balancing operation if so.
7503 *
b9b0853a 7504 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7505 */
f7ed0a89 7506static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7507{
23f0d209 7508 int continue_balancing = 1;
f7ed0a89 7509 int cpu = rq->cpu;
1e3c88bd 7510 unsigned long interval;
04f733b4 7511 struct sched_domain *sd;
1e3c88bd
PZ
7512 /* Earliest time when we have to do rebalance again */
7513 unsigned long next_balance = jiffies + 60*HZ;
7514 int update_next_balance = 0;
f48627e6
JL
7515 int need_serialize, need_decay = 0;
7516 u64 max_cost = 0;
1e3c88bd 7517
48a16753 7518 update_blocked_averages(cpu);
2069dd75 7519
dce840a0 7520 rcu_read_lock();
1e3c88bd 7521 for_each_domain(cpu, sd) {
f48627e6
JL
7522 /*
7523 * Decay the newidle max times here because this is a regular
7524 * visit to all the domains. Decay ~1% per second.
7525 */
7526 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7527 sd->max_newidle_lb_cost =
7528 (sd->max_newidle_lb_cost * 253) / 256;
7529 sd->next_decay_max_lb_cost = jiffies + HZ;
7530 need_decay = 1;
7531 }
7532 max_cost += sd->max_newidle_lb_cost;
7533
1e3c88bd
PZ
7534 if (!(sd->flags & SD_LOAD_BALANCE))
7535 continue;
7536
f48627e6
JL
7537 /*
7538 * Stop the load balance at this level. There is another
7539 * CPU in our sched group which is doing load balancing more
7540 * actively.
7541 */
7542 if (!continue_balancing) {
7543 if (need_decay)
7544 continue;
7545 break;
7546 }
7547
52a08ef1 7548 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7549
7550 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7551 if (need_serialize) {
7552 if (!spin_trylock(&balancing))
7553 goto out;
7554 }
7555
7556 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7557 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7558 /*
6263322c 7559 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7560 * env->dst_cpu, so we can't know our idle
7561 * state even if we migrated tasks. Update it.
1e3c88bd 7562 */
de5eb2dd 7563 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7564 }
7565 sd->last_balance = jiffies;
52a08ef1 7566 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7567 }
7568 if (need_serialize)
7569 spin_unlock(&balancing);
7570out:
7571 if (time_after(next_balance, sd->last_balance + interval)) {
7572 next_balance = sd->last_balance + interval;
7573 update_next_balance = 1;
7574 }
f48627e6
JL
7575 }
7576 if (need_decay) {
1e3c88bd 7577 /*
f48627e6
JL
7578 * Ensure the rq-wide value also decays but keep it at a
7579 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7580 */
f48627e6
JL
7581 rq->max_idle_balance_cost =
7582 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7583 }
dce840a0 7584 rcu_read_unlock();
1e3c88bd
PZ
7585
7586 /*
7587 * next_balance will be updated only when there is a need.
7588 * When the cpu is attached to null domain for ex, it will not be
7589 * updated.
7590 */
7591 if (likely(update_next_balance))
7592 rq->next_balance = next_balance;
7593}
7594
3451d024 7595#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7596/*
3451d024 7597 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7598 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7599 */
208cb16b 7600static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7601{
208cb16b 7602 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7603 struct rq *rq;
7604 int balance_cpu;
7605
1c792db7
SS
7606 if (idle != CPU_IDLE ||
7607 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7608 goto end;
83cd4fe2
VP
7609
7610 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7611 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7612 continue;
7613
7614 /*
7615 * If this cpu gets work to do, stop the load balancing
7616 * work being done for other cpus. Next load
7617 * balancing owner will pick it up.
7618 */
1c792db7 7619 if (need_resched())
83cd4fe2 7620 break;
83cd4fe2 7621
5ed4f1d9
VG
7622 rq = cpu_rq(balance_cpu);
7623
ed61bbc6
TC
7624 /*
7625 * If time for next balance is due,
7626 * do the balance.
7627 */
7628 if (time_after_eq(jiffies, rq->next_balance)) {
7629 raw_spin_lock_irq(&rq->lock);
7630 update_rq_clock(rq);
7631 update_idle_cpu_load(rq);
7632 raw_spin_unlock_irq(&rq->lock);
7633 rebalance_domains(rq, CPU_IDLE);
7634 }
83cd4fe2 7635
83cd4fe2
VP
7636 if (time_after(this_rq->next_balance, rq->next_balance))
7637 this_rq->next_balance = rq->next_balance;
7638 }
7639 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7640end:
7641 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7642}
7643
7644/*
0b005cf5 7645 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7646 * of an idle cpu in the system.
0b005cf5 7647 * - This rq has more than one task.
1aaf90a4
VG
7648 * - This rq has at least one CFS task and the capacity of the CPU is
7649 * significantly reduced because of RT tasks or IRQs.
7650 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7651 * multiple busy cpu.
0b005cf5
SS
7652 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7653 * domain span are idle.
83cd4fe2 7654 */
1aaf90a4 7655static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7656{
7657 unsigned long now = jiffies;
0b005cf5 7658 struct sched_domain *sd;
63b2ca30 7659 struct sched_group_capacity *sgc;
4a725627 7660 int nr_busy, cpu = rq->cpu;
1aaf90a4 7661 bool kick = false;
83cd4fe2 7662
4a725627 7663 if (unlikely(rq->idle_balance))
1aaf90a4 7664 return false;
83cd4fe2 7665
1c792db7
SS
7666 /*
7667 * We may be recently in ticked or tickless idle mode. At the first
7668 * busy tick after returning from idle, we will update the busy stats.
7669 */
69e1e811 7670 set_cpu_sd_state_busy();
c1cc017c 7671 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7672
7673 /*
7674 * None are in tickless mode and hence no need for NOHZ idle load
7675 * balancing.
7676 */
7677 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7678 return false;
1c792db7
SS
7679
7680 if (time_before(now, nohz.next_balance))
1aaf90a4 7681 return false;
83cd4fe2 7682
0b005cf5 7683 if (rq->nr_running >= 2)
1aaf90a4 7684 return true;
83cd4fe2 7685
067491b7 7686 rcu_read_lock();
37dc6b50 7687 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7688 if (sd) {
63b2ca30
NP
7689 sgc = sd->groups->sgc;
7690 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7691
1aaf90a4
VG
7692 if (nr_busy > 1) {
7693 kick = true;
7694 goto unlock;
7695 }
7696
83cd4fe2 7697 }
37dc6b50 7698
1aaf90a4
VG
7699 sd = rcu_dereference(rq->sd);
7700 if (sd) {
7701 if ((rq->cfs.h_nr_running >= 1) &&
7702 check_cpu_capacity(rq, sd)) {
7703 kick = true;
7704 goto unlock;
7705 }
7706 }
37dc6b50 7707
1aaf90a4 7708 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7709 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7710 sched_domain_span(sd)) < cpu)) {
7711 kick = true;
7712 goto unlock;
7713 }
067491b7 7714
1aaf90a4 7715unlock:
067491b7 7716 rcu_read_unlock();
1aaf90a4 7717 return kick;
83cd4fe2
VP
7718}
7719#else
208cb16b 7720static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7721#endif
7722
7723/*
7724 * run_rebalance_domains is triggered when needed from the scheduler tick.
7725 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7726 */
1e3c88bd
PZ
7727static void run_rebalance_domains(struct softirq_action *h)
7728{
208cb16b 7729 struct rq *this_rq = this_rq();
6eb57e0d 7730 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7731 CPU_IDLE : CPU_NOT_IDLE;
7732
1e3c88bd 7733 /*
83cd4fe2 7734 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7735 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7736 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7737 * give the idle cpus a chance to load balance. Else we may
7738 * load balance only within the local sched_domain hierarchy
7739 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7740 */
208cb16b 7741 nohz_idle_balance(this_rq, idle);
d4573c3e 7742 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7743}
7744
1e3c88bd
PZ
7745/*
7746 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7747 */
7caff66f 7748void trigger_load_balance(struct rq *rq)
1e3c88bd 7749{
1e3c88bd 7750 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7751 if (unlikely(on_null_domain(rq)))
7752 return;
7753
7754 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7755 raise_softirq(SCHED_SOFTIRQ);
3451d024 7756#ifdef CONFIG_NO_HZ_COMMON
c726099e 7757 if (nohz_kick_needed(rq))
0aeeeeba 7758 nohz_balancer_kick();
83cd4fe2 7759#endif
1e3c88bd
PZ
7760}
7761
0bcdcf28
CE
7762static void rq_online_fair(struct rq *rq)
7763{
7764 update_sysctl();
0e59bdae
KT
7765
7766 update_runtime_enabled(rq);
0bcdcf28
CE
7767}
7768
7769static void rq_offline_fair(struct rq *rq)
7770{
7771 update_sysctl();
a4c96ae3
PB
7772
7773 /* Ensure any throttled groups are reachable by pick_next_task */
7774 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7775}
7776
55e12e5e 7777#endif /* CONFIG_SMP */
e1d1484f 7778
bf0f6f24
IM
7779/*
7780 * scheduler tick hitting a task of our scheduling class:
7781 */
8f4d37ec 7782static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7783{
7784 struct cfs_rq *cfs_rq;
7785 struct sched_entity *se = &curr->se;
7786
7787 for_each_sched_entity(se) {
7788 cfs_rq = cfs_rq_of(se);
8f4d37ec 7789 entity_tick(cfs_rq, se, queued);
bf0f6f24 7790 }
18bf2805 7791
10e84b97 7792 if (numabalancing_enabled)
cbee9f88 7793 task_tick_numa(rq, curr);
3d59eebc 7794
18bf2805 7795 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7796}
7797
7798/*
cd29fe6f
PZ
7799 * called on fork with the child task as argument from the parent's context
7800 * - child not yet on the tasklist
7801 * - preemption disabled
bf0f6f24 7802 */
cd29fe6f 7803static void task_fork_fair(struct task_struct *p)
bf0f6f24 7804{
4fc420c9
DN
7805 struct cfs_rq *cfs_rq;
7806 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7807 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7808 struct rq *rq = this_rq();
7809 unsigned long flags;
7810
05fa785c 7811 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7812
861d034e
PZ
7813 update_rq_clock(rq);
7814
4fc420c9
DN
7815 cfs_rq = task_cfs_rq(current);
7816 curr = cfs_rq->curr;
7817
6c9a27f5
DN
7818 /*
7819 * Not only the cpu but also the task_group of the parent might have
7820 * been changed after parent->se.parent,cfs_rq were copied to
7821 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7822 * of child point to valid ones.
7823 */
7824 rcu_read_lock();
7825 __set_task_cpu(p, this_cpu);
7826 rcu_read_unlock();
bf0f6f24 7827
7109c442 7828 update_curr(cfs_rq);
cd29fe6f 7829
b5d9d734
MG
7830 if (curr)
7831 se->vruntime = curr->vruntime;
aeb73b04 7832 place_entity(cfs_rq, se, 1);
4d78e7b6 7833
cd29fe6f 7834 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7835 /*
edcb60a3
IM
7836 * Upon rescheduling, sched_class::put_prev_task() will place
7837 * 'current' within the tree based on its new key value.
7838 */
4d78e7b6 7839 swap(curr->vruntime, se->vruntime);
8875125e 7840 resched_curr(rq);
4d78e7b6 7841 }
bf0f6f24 7842
88ec22d3
PZ
7843 se->vruntime -= cfs_rq->min_vruntime;
7844
05fa785c 7845 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7846}
7847
cb469845
SR
7848/*
7849 * Priority of the task has changed. Check to see if we preempt
7850 * the current task.
7851 */
da7a735e
PZ
7852static void
7853prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7854{
da0c1e65 7855 if (!task_on_rq_queued(p))
da7a735e
PZ
7856 return;
7857
cb469845
SR
7858 /*
7859 * Reschedule if we are currently running on this runqueue and
7860 * our priority decreased, or if we are not currently running on
7861 * this runqueue and our priority is higher than the current's
7862 */
da7a735e 7863 if (rq->curr == p) {
cb469845 7864 if (p->prio > oldprio)
8875125e 7865 resched_curr(rq);
cb469845 7866 } else
15afe09b 7867 check_preempt_curr(rq, p, 0);
cb469845
SR
7868}
7869
da7a735e
PZ
7870static void switched_from_fair(struct rq *rq, struct task_struct *p)
7871{
7872 struct sched_entity *se = &p->se;
7873 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7874
7875 /*
791c9e02 7876 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7877 * switched back to the fair class the enqueue_entity(.flags=0) will
7878 * do the right thing.
7879 *
da0c1e65
KT
7880 * If it's queued, then the dequeue_entity(.flags=0) will already
7881 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7882 * the task is sleeping will it still have non-normalized vruntime.
7883 */
da0c1e65 7884 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7885 /*
7886 * Fix up our vruntime so that the current sleep doesn't
7887 * cause 'unlimited' sleep bonus.
7888 */
7889 place_entity(cfs_rq, se, 0);
7890 se->vruntime -= cfs_rq->min_vruntime;
7891 }
9ee474f5 7892
141965c7 7893#ifdef CONFIG_SMP
9ee474f5
PT
7894 /*
7895 * Remove our load from contribution when we leave sched_fair
7896 * and ensure we don't carry in an old decay_count if we
7897 * switch back.
7898 */
87e3c8ae
KT
7899 if (se->avg.decay_count) {
7900 __synchronize_entity_decay(se);
7901 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7902 }
7903#endif
da7a735e
PZ
7904}
7905
cb469845
SR
7906/*
7907 * We switched to the sched_fair class.
7908 */
da7a735e 7909static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7910{
eb7a59b2 7911#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7912 struct sched_entity *se = &p->se;
eb7a59b2
M
7913 /*
7914 * Since the real-depth could have been changed (only FAIR
7915 * class maintain depth value), reset depth properly.
7916 */
7917 se->depth = se->parent ? se->parent->depth + 1 : 0;
7918#endif
da0c1e65 7919 if (!task_on_rq_queued(p))
da7a735e
PZ
7920 return;
7921
cb469845
SR
7922 /*
7923 * We were most likely switched from sched_rt, so
7924 * kick off the schedule if running, otherwise just see
7925 * if we can still preempt the current task.
7926 */
da7a735e 7927 if (rq->curr == p)
8875125e 7928 resched_curr(rq);
cb469845 7929 else
15afe09b 7930 check_preempt_curr(rq, p, 0);
cb469845
SR
7931}
7932
83b699ed
SV
7933/* Account for a task changing its policy or group.
7934 *
7935 * This routine is mostly called to set cfs_rq->curr field when a task
7936 * migrates between groups/classes.
7937 */
7938static void set_curr_task_fair(struct rq *rq)
7939{
7940 struct sched_entity *se = &rq->curr->se;
7941
ec12cb7f
PT
7942 for_each_sched_entity(se) {
7943 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7944
7945 set_next_entity(cfs_rq, se);
7946 /* ensure bandwidth has been allocated on our new cfs_rq */
7947 account_cfs_rq_runtime(cfs_rq, 0);
7948 }
83b699ed
SV
7949}
7950
029632fb
PZ
7951void init_cfs_rq(struct cfs_rq *cfs_rq)
7952{
7953 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7954 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7955#ifndef CONFIG_64BIT
7956 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7957#endif
141965c7 7958#ifdef CONFIG_SMP
9ee474f5 7959 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7960 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7961#endif
029632fb
PZ
7962}
7963
810b3817 7964#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7965static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7966{
fed14d45 7967 struct sched_entity *se = &p->se;
aff3e498 7968 struct cfs_rq *cfs_rq;
fed14d45 7969
b2b5ce02
PZ
7970 /*
7971 * If the task was not on the rq at the time of this cgroup movement
7972 * it must have been asleep, sleeping tasks keep their ->vruntime
7973 * absolute on their old rq until wakeup (needed for the fair sleeper
7974 * bonus in place_entity()).
7975 *
7976 * If it was on the rq, we've just 'preempted' it, which does convert
7977 * ->vruntime to a relative base.
7978 *
7979 * Make sure both cases convert their relative position when migrating
7980 * to another cgroup's rq. This does somewhat interfere with the
7981 * fair sleeper stuff for the first placement, but who cares.
7982 */
7ceff013 7983 /*
da0c1e65 7984 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7985 * But there are some cases where it has already been normalized:
7986 *
7987 * - Moving a forked child which is waiting for being woken up by
7988 * wake_up_new_task().
62af3783
DN
7989 * - Moving a task which has been woken up by try_to_wake_up() and
7990 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7991 *
7992 * To prevent boost or penalty in the new cfs_rq caused by delta
7993 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7994 */
da0c1e65
KT
7995 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7996 queued = 1;
7ceff013 7997
da0c1e65 7998 if (!queued)
fed14d45 7999 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8000 set_task_rq(p, task_cpu(p));
fed14d45 8001 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8002 if (!queued) {
fed14d45
PZ
8003 cfs_rq = cfs_rq_of(se);
8004 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8005#ifdef CONFIG_SMP
8006 /*
8007 * migrate_task_rq_fair() will have removed our previous
8008 * contribution, but we must synchronize for ongoing future
8009 * decay.
8010 */
fed14d45
PZ
8011 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8012 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8013#endif
8014 }
810b3817 8015}
029632fb
PZ
8016
8017void free_fair_sched_group(struct task_group *tg)
8018{
8019 int i;
8020
8021 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8022
8023 for_each_possible_cpu(i) {
8024 if (tg->cfs_rq)
8025 kfree(tg->cfs_rq[i]);
8026 if (tg->se)
8027 kfree(tg->se[i]);
8028 }
8029
8030 kfree(tg->cfs_rq);
8031 kfree(tg->se);
8032}
8033
8034int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8035{
8036 struct cfs_rq *cfs_rq;
8037 struct sched_entity *se;
8038 int i;
8039
8040 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8041 if (!tg->cfs_rq)
8042 goto err;
8043 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8044 if (!tg->se)
8045 goto err;
8046
8047 tg->shares = NICE_0_LOAD;
8048
8049 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8050
8051 for_each_possible_cpu(i) {
8052 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8053 GFP_KERNEL, cpu_to_node(i));
8054 if (!cfs_rq)
8055 goto err;
8056
8057 se = kzalloc_node(sizeof(struct sched_entity),
8058 GFP_KERNEL, cpu_to_node(i));
8059 if (!se)
8060 goto err_free_rq;
8061
8062 init_cfs_rq(cfs_rq);
8063 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8064 }
8065
8066 return 1;
8067
8068err_free_rq:
8069 kfree(cfs_rq);
8070err:
8071 return 0;
8072}
8073
8074void unregister_fair_sched_group(struct task_group *tg, int cpu)
8075{
8076 struct rq *rq = cpu_rq(cpu);
8077 unsigned long flags;
8078
8079 /*
8080 * Only empty task groups can be destroyed; so we can speculatively
8081 * check on_list without danger of it being re-added.
8082 */
8083 if (!tg->cfs_rq[cpu]->on_list)
8084 return;
8085
8086 raw_spin_lock_irqsave(&rq->lock, flags);
8087 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8088 raw_spin_unlock_irqrestore(&rq->lock, flags);
8089}
8090
8091void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8092 struct sched_entity *se, int cpu,
8093 struct sched_entity *parent)
8094{
8095 struct rq *rq = cpu_rq(cpu);
8096
8097 cfs_rq->tg = tg;
8098 cfs_rq->rq = rq;
029632fb
PZ
8099 init_cfs_rq_runtime(cfs_rq);
8100
8101 tg->cfs_rq[cpu] = cfs_rq;
8102 tg->se[cpu] = se;
8103
8104 /* se could be NULL for root_task_group */
8105 if (!se)
8106 return;
8107
fed14d45 8108 if (!parent) {
029632fb 8109 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8110 se->depth = 0;
8111 } else {
029632fb 8112 se->cfs_rq = parent->my_q;
fed14d45
PZ
8113 se->depth = parent->depth + 1;
8114 }
029632fb
PZ
8115
8116 se->my_q = cfs_rq;
0ac9b1c2
PT
8117 /* guarantee group entities always have weight */
8118 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8119 se->parent = parent;
8120}
8121
8122static DEFINE_MUTEX(shares_mutex);
8123
8124int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8125{
8126 int i;
8127 unsigned long flags;
8128
8129 /*
8130 * We can't change the weight of the root cgroup.
8131 */
8132 if (!tg->se[0])
8133 return -EINVAL;
8134
8135 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8136
8137 mutex_lock(&shares_mutex);
8138 if (tg->shares == shares)
8139 goto done;
8140
8141 tg->shares = shares;
8142 for_each_possible_cpu(i) {
8143 struct rq *rq = cpu_rq(i);
8144 struct sched_entity *se;
8145
8146 se = tg->se[i];
8147 /* Propagate contribution to hierarchy */
8148 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8149
8150 /* Possible calls to update_curr() need rq clock */
8151 update_rq_clock(rq);
17bc14b7 8152 for_each_sched_entity(se)
029632fb
PZ
8153 update_cfs_shares(group_cfs_rq(se));
8154 raw_spin_unlock_irqrestore(&rq->lock, flags);
8155 }
8156
8157done:
8158 mutex_unlock(&shares_mutex);
8159 return 0;
8160}
8161#else /* CONFIG_FAIR_GROUP_SCHED */
8162
8163void free_fair_sched_group(struct task_group *tg) { }
8164
8165int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8166{
8167 return 1;
8168}
8169
8170void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8171
8172#endif /* CONFIG_FAIR_GROUP_SCHED */
8173
810b3817 8174
6d686f45 8175static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8176{
8177 struct sched_entity *se = &task->se;
0d721cea
PW
8178 unsigned int rr_interval = 0;
8179
8180 /*
8181 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8182 * idle runqueue:
8183 */
0d721cea 8184 if (rq->cfs.load.weight)
a59f4e07 8185 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8186
8187 return rr_interval;
8188}
8189
bf0f6f24
IM
8190/*
8191 * All the scheduling class methods:
8192 */
029632fb 8193const struct sched_class fair_sched_class = {
5522d5d5 8194 .next = &idle_sched_class,
bf0f6f24
IM
8195 .enqueue_task = enqueue_task_fair,
8196 .dequeue_task = dequeue_task_fair,
8197 .yield_task = yield_task_fair,
d95f4122 8198 .yield_to_task = yield_to_task_fair,
bf0f6f24 8199
2e09bf55 8200 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8201
8202 .pick_next_task = pick_next_task_fair,
8203 .put_prev_task = put_prev_task_fair,
8204
681f3e68 8205#ifdef CONFIG_SMP
4ce72a2c 8206 .select_task_rq = select_task_rq_fair,
0a74bef8 8207 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8208
0bcdcf28
CE
8209 .rq_online = rq_online_fair,
8210 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8211
8212 .task_waking = task_waking_fair,
681f3e68 8213#endif
bf0f6f24 8214
83b699ed 8215 .set_curr_task = set_curr_task_fair,
bf0f6f24 8216 .task_tick = task_tick_fair,
cd29fe6f 8217 .task_fork = task_fork_fair,
cb469845
SR
8218
8219 .prio_changed = prio_changed_fair,
da7a735e 8220 .switched_from = switched_from_fair,
cb469845 8221 .switched_to = switched_to_fair,
810b3817 8222
0d721cea
PW
8223 .get_rr_interval = get_rr_interval_fair,
8224
6e998916
SG
8225 .update_curr = update_curr_fair,
8226
810b3817 8227#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8228 .task_move_group = task_move_group_fair,
810b3817 8229#endif
bf0f6f24
IM
8230};
8231
8232#ifdef CONFIG_SCHED_DEBUG
029632fb 8233void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8234{
bf0f6f24
IM
8235 struct cfs_rq *cfs_rq;
8236
5973e5b9 8237 rcu_read_lock();
c3b64f1e 8238 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8239 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8240 rcu_read_unlock();
bf0f6f24
IM
8241}
8242#endif
029632fb
PZ
8243
8244__init void init_sched_fair_class(void)
8245{
8246#ifdef CONFIG_SMP
8247 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8248
3451d024 8249#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8250 nohz.next_balance = jiffies;
029632fb 8251 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8252 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8253#endif
8254#endif /* SMP */
8255
8256}