]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Clean up domain traversal in select_idle_sibling()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
ec12cb7f
PT
419static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
c09595f6
PZ
779#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780static void
781add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782{
783 cfs_rq->task_weight += weight;
784}
785#else
786static inline void
787add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788{
789}
790#endif
791
30cfdcfc
DA
792static void
793account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 798 if (entity_is_task(se)) {
c09595f6 799 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
800 list_add(&se->group_node, &cfs_rq->tasks);
801 }
30cfdcfc 802 cfs_rq->nr_running++;
30cfdcfc
DA
803}
804
805static void
806account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 809 if (!parent_entity(se))
029632fb 810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 811 if (entity_is_task(se)) {
c09595f6 812 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
813 list_del_init(&se->group_node);
814 }
30cfdcfc 815 cfs_rq->nr_running--;
30cfdcfc
DA
816}
817
3ff6dcac 818#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
819/* we need this in update_cfs_load and load-balance functions below */
820static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 821# ifdef CONFIG_SMP
d6b55918
PT
822static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
824{
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
827
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
830
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
834 }
835}
836
837static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 838{
a7a4f8a7 839 u64 period = sysctl_sched_shares_window;
2069dd75 840 u64 now, delta;
e33078ba 841 unsigned long load = cfs_rq->load.weight;
2069dd75 842
64660c86 843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
844 return;
845
05ca62c6 846 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
847 delta = now - cfs_rq->load_stamp;
848
e33078ba
PT
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
f07333bf 854 delta = period - 1;
e33078ba
PT
855 }
856
2069dd75 857 cfs_rq->load_stamp = now;
3b3d190e 858 cfs_rq->load_unacc_exec_time = 0;
2069dd75 859 cfs_rq->load_period += delta;
e33078ba
PT
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
863 }
2069dd75 864
d6b55918
PT
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
869
2069dd75
PZ
870 while (cfs_rq->load_period > period) {
871 /*
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
875 */
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
879 }
3d4b47b4 880
e33078ba
PT
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
883}
884
cf5f0acf
PZ
885static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886{
887 long tg_weight;
888
889 /*
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
893 */
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
897
898 return tg_weight;
899}
900
6d5ab293 901static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 902{
cf5f0acf 903 long tg_weight, load, shares;
3ff6dcac 904
cf5f0acf 905 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 906 load = cfs_rq->load.weight;
3ff6dcac 907
3ff6dcac 908 shares = (tg->shares * load);
cf5f0acf
PZ
909 if (tg_weight)
910 shares /= tg_weight;
3ff6dcac
YZ
911
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
916
917 return shares;
918}
919
920static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921{
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
6d5ab293 924 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
925 }
926}
927# else /* CONFIG_SMP */
928static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929{
930}
931
6d5ab293 932static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
933{
934 return tg->shares;
935}
936
937static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938{
939}
940# endif /* CONFIG_SMP */
2069dd75
PZ
941static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
943{
19e5eebb
PT
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
2069dd75 948 account_entity_dequeue(cfs_rq, se);
19e5eebb 949 }
2069dd75
PZ
950
951 update_load_set(&se->load, weight);
952
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
955}
956
6d5ab293 957static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
958{
959 struct task_group *tg;
960 struct sched_entity *se;
3ff6dcac 961 long shares;
2069dd75 962
2069dd75
PZ
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 965 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 966 return;
3ff6dcac
YZ
967#ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970#endif
6d5ab293 971 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
972
973 reweight_entity(cfs_rq_of(se), se, shares);
974}
975#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 976static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
977{
978}
979
6d5ab293 980static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
981{
982}
43365bd7
PT
983
984static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985{
986}
2069dd75
PZ
987#endif /* CONFIG_FAIR_GROUP_SCHED */
988
2396af69 989static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 990{
bf0f6f24 991#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
992 struct task_struct *tsk = NULL;
993
994 if (entity_is_task(se))
995 tsk = task_of(se);
996
41acab88
LDM
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
999
1000 if ((s64)delta < 0)
1001 delta = 0;
1002
41acab88
LDM
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
bf0f6f24 1005
41acab88
LDM
1006 se->statistics.sleep_start = 0;
1007 se->statistics.sum_sleep_runtime += delta;
9745512c 1008
768d0c27 1009 if (tsk) {
e414314c 1010 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1011 trace_sched_stat_sleep(tsk, delta);
1012 }
bf0f6f24 1013 }
41acab88
LDM
1014 if (se->statistics.block_start) {
1015 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1016
1017 if ((s64)delta < 0)
1018 delta = 0;
1019
41acab88
LDM
1020 if (unlikely(delta > se->statistics.block_max))
1021 se->statistics.block_max = delta;
bf0f6f24 1022
41acab88
LDM
1023 se->statistics.block_start = 0;
1024 se->statistics.sum_sleep_runtime += delta;
30084fbd 1025
e414314c 1026 if (tsk) {
8f0dfc34 1027 if (tsk->in_iowait) {
41acab88
LDM
1028 se->statistics.iowait_sum += delta;
1029 se->statistics.iowait_count++;
768d0c27 1030 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1031 }
1032
b781a602
AV
1033 trace_sched_stat_blocked(tsk, delta);
1034
e414314c
PZ
1035 /*
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 profile_hits(SLEEP_PROFILING,
1042 (void *)get_wchan(tsk),
1043 delta >> 20);
1044 }
1045 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1046 }
bf0f6f24
IM
1047 }
1048#endif
1049}
1050
ddc97297
PZ
1051static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052{
1053#ifdef CONFIG_SCHED_DEBUG
1054 s64 d = se->vruntime - cfs_rq->min_vruntime;
1055
1056 if (d < 0)
1057 d = -d;
1058
1059 if (d > 3*sysctl_sched_latency)
1060 schedstat_inc(cfs_rq, nr_spread_over);
1061#endif
1062}
1063
aeb73b04
PZ
1064static void
1065place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1066{
1af5f730 1067 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1068
2cb8600e
PZ
1069 /*
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1074 */
94dfb5e7 1075 if (initial && sched_feat(START_DEBIT))
f9c0b095 1076 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1077
a2e7a7eb 1078 /* sleeps up to a single latency don't count. */
5ca9880c 1079 if (!initial) {
a2e7a7eb 1080 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1081
a2e7a7eb
MG
1082 /*
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1085 */
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1087 thresh >>= 1;
51e0304c 1088
a2e7a7eb 1089 vruntime -= thresh;
aeb73b04
PZ
1090 }
1091
b5d9d734
MG
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime = max_vruntime(se->vruntime, vruntime);
1094
67e9fb2a 1095 se->vruntime = vruntime;
aeb73b04
PZ
1096}
1097
d3d9dc33
PT
1098static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1099
bf0f6f24 1100static void
88ec22d3 1101enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1102{
88ec22d3
PZ
1103 /*
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1106 */
371fd7e7 1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1108 se->vruntime += cfs_rq->min_vruntime;
1109
bf0f6f24 1110 /*
a2a2d680 1111 * Update run-time statistics of the 'current'.
bf0f6f24 1112 */
b7cc0896 1113 update_curr(cfs_rq);
d6b55918 1114 update_cfs_load(cfs_rq, 0);
a992241d 1115 account_entity_enqueue(cfs_rq, se);
6d5ab293 1116 update_cfs_shares(cfs_rq);
bf0f6f24 1117
88ec22d3 1118 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1119 place_entity(cfs_rq, se, 0);
2396af69 1120 enqueue_sleeper(cfs_rq, se);
e9acbff6 1121 }
bf0f6f24 1122
d2417e5a 1123 update_stats_enqueue(cfs_rq, se);
ddc97297 1124 check_spread(cfs_rq, se);
83b699ed
SV
1125 if (se != cfs_rq->curr)
1126 __enqueue_entity(cfs_rq, se);
2069dd75 1127 se->on_rq = 1;
3d4b47b4 1128
d3d9dc33 1129 if (cfs_rq->nr_running == 1) {
3d4b47b4 1130 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1131 check_enqueue_throttle(cfs_rq);
1132 }
bf0f6f24
IM
1133}
1134
2c13c919 1135static void __clear_buddies_last(struct sched_entity *se)
2002c695 1136{
2c13c919
RR
1137 for_each_sched_entity(se) {
1138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1139 if (cfs_rq->last == se)
1140 cfs_rq->last = NULL;
1141 else
1142 break;
1143 }
1144}
2002c695 1145
2c13c919
RR
1146static void __clear_buddies_next(struct sched_entity *se)
1147{
1148 for_each_sched_entity(se) {
1149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1150 if (cfs_rq->next == se)
1151 cfs_rq->next = NULL;
1152 else
1153 break;
1154 }
2002c695
PZ
1155}
1156
ac53db59
RR
1157static void __clear_buddies_skip(struct sched_entity *se)
1158{
1159 for_each_sched_entity(se) {
1160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1161 if (cfs_rq->skip == se)
1162 cfs_rq->skip = NULL;
1163 else
1164 break;
1165 }
1166}
1167
a571bbea
PZ
1168static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1169{
2c13c919
RR
1170 if (cfs_rq->last == se)
1171 __clear_buddies_last(se);
1172
1173 if (cfs_rq->next == se)
1174 __clear_buddies_next(se);
ac53db59
RR
1175
1176 if (cfs_rq->skip == se)
1177 __clear_buddies_skip(se);
a571bbea
PZ
1178}
1179
d8b4986d
PT
1180static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1181
bf0f6f24 1182static void
371fd7e7 1183dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1184{
a2a2d680
DA
1185 /*
1186 * Update run-time statistics of the 'current'.
1187 */
1188 update_curr(cfs_rq);
1189
19b6a2e3 1190 update_stats_dequeue(cfs_rq, se);
371fd7e7 1191 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1192#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1193 if (entity_is_task(se)) {
1194 struct task_struct *tsk = task_of(se);
1195
1196 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1198 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1199 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1200 }
db36cc7d 1201#endif
67e9fb2a
PZ
1202 }
1203
2002c695 1204 clear_buddies(cfs_rq, se);
4793241b 1205
83b699ed 1206 if (se != cfs_rq->curr)
30cfdcfc 1207 __dequeue_entity(cfs_rq, se);
2069dd75 1208 se->on_rq = 0;
d6b55918 1209 update_cfs_load(cfs_rq, 0);
30cfdcfc 1210 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1211
1212 /*
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1216 */
371fd7e7 1217 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1218 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1219
d8b4986d
PT
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq);
1222
1e876231
PZ
1223 update_min_vruntime(cfs_rq);
1224 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1225}
1226
1227/*
1228 * Preempt the current task with a newly woken task if needed:
1229 */
7c92e54f 1230static void
2e09bf55 1231check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1232{
11697830 1233 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1234 struct sched_entity *se;
1235 s64 delta;
11697830 1236
6d0f0ebd 1237 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1239 if (delta_exec > ideal_runtime) {
bf0f6f24 1240 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1241 /*
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1244 */
1245 clear_buddies(cfs_rq, curr);
f685ceac
MG
1246 return;
1247 }
1248
1249 /*
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1253 */
f685ceac
MG
1254 if (delta_exec < sysctl_sched_min_granularity)
1255 return;
1256
f4cfb33e
WX
1257 se = __pick_first_entity(cfs_rq);
1258 delta = curr->vruntime - se->vruntime;
f685ceac 1259
f4cfb33e
WX
1260 if (delta < 0)
1261 return;
d7d82944 1262
f4cfb33e
WX
1263 if (delta > ideal_runtime)
1264 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1265}
1266
83b699ed 1267static void
8494f412 1268set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1269{
83b699ed
SV
1270 /* 'current' is not kept within the tree. */
1271 if (se->on_rq) {
1272 /*
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1275 * runqueue.
1276 */
1277 update_stats_wait_end(cfs_rq, se);
1278 __dequeue_entity(cfs_rq, se);
1279 }
1280
79303e9e 1281 update_stats_curr_start(cfs_rq, se);
429d43bc 1282 cfs_rq->curr = se;
eba1ed4b
IM
1283#ifdef CONFIG_SCHEDSTATS
1284 /*
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1288 */
495eca49 1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1290 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1291 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1292 }
1293#endif
4a55b450 1294 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1295}
1296
3f3a4904
PZ
1297static int
1298wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299
ac53db59
RR
1300/*
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1306 */
f4b6755f 1307static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1308{
ac53db59 1309 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1310 struct sched_entity *left = se;
f4b6755f 1311
ac53db59
RR
1312 /*
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1315 */
1316 if (cfs_rq->skip == se) {
1317 struct sched_entity *second = __pick_next_entity(se);
1318 if (second && wakeup_preempt_entity(second, left) < 1)
1319 se = second;
1320 }
aa2ac252 1321
f685ceac
MG
1322 /*
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1324 */
1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1326 se = cfs_rq->last;
1327
ac53db59
RR
1328 /*
1329 * Someone really wants this to run. If it's not unfair, run it.
1330 */
1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1332 se = cfs_rq->next;
1333
f685ceac 1334 clear_buddies(cfs_rq, se);
4793241b
PZ
1335
1336 return se;
aa2ac252
PZ
1337}
1338
d3d9dc33
PT
1339static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1340
ab6cde26 1341static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1342{
1343 /*
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1346 */
1347 if (prev->on_rq)
b7cc0896 1348 update_curr(cfs_rq);
bf0f6f24 1349
d3d9dc33
PT
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq);
1352
ddc97297 1353 check_spread(cfs_rq, prev);
30cfdcfc 1354 if (prev->on_rq) {
5870db5b 1355 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq, prev);
1358 }
429d43bc 1359 cfs_rq->curr = NULL;
bf0f6f24
IM
1360}
1361
8f4d37ec
PZ
1362static void
1363entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1364{
bf0f6f24 1365 /*
30cfdcfc 1366 * Update run-time statistics of the 'current'.
bf0f6f24 1367 */
30cfdcfc 1368 update_curr(cfs_rq);
bf0f6f24 1369
43365bd7
PT
1370 /*
1371 * Update share accounting for long-running entities.
1372 */
1373 update_entity_shares_tick(cfs_rq);
1374
8f4d37ec
PZ
1375#ifdef CONFIG_SCHED_HRTICK
1376 /*
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1379 */
983ed7a6
HH
1380 if (queued) {
1381 resched_task(rq_of(cfs_rq)->curr);
1382 return;
1383 }
8f4d37ec
PZ
1384 /*
1385 * don't let the period tick interfere with the hrtick preemption
1386 */
1387 if (!sched_feat(DOUBLE_TICK) &&
1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1389 return;
1390#endif
1391
2c2efaed 1392 if (cfs_rq->nr_running > 1)
2e09bf55 1393 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1394}
1395
ab84d31e
PT
1396
1397/**************************************************
1398 * CFS bandwidth control machinery
1399 */
1400
1401#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1402
1403#ifdef HAVE_JUMP_LABEL
1404static struct jump_label_key __cfs_bandwidth_used;
1405
1406static inline bool cfs_bandwidth_used(void)
1407{
1408 return static_branch(&__cfs_bandwidth_used);
1409}
1410
1411void account_cfs_bandwidth_used(int enabled, int was_enabled)
1412{
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled && !was_enabled)
1415 jump_label_inc(&__cfs_bandwidth_used);
1416 else if (!enabled && was_enabled)
1417 jump_label_dec(&__cfs_bandwidth_used);
1418}
1419#else /* HAVE_JUMP_LABEL */
1420static bool cfs_bandwidth_used(void)
1421{
1422 return true;
1423}
1424
1425void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1426#endif /* HAVE_JUMP_LABEL */
1427
ab84d31e
PT
1428/*
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1431 */
1432static inline u64 default_cfs_period(void)
1433{
1434 return 100000000ULL;
1435}
ec12cb7f
PT
1436
1437static inline u64 sched_cfs_bandwidth_slice(void)
1438{
1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1440}
1441
a9cf55b2
PT
1442/*
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1446 *
1447 * requires cfs_b->lock
1448 */
029632fb 1449void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1450{
1451 u64 now;
1452
1453 if (cfs_b->quota == RUNTIME_INF)
1454 return;
1455
1456 now = sched_clock_cpu(smp_processor_id());
1457 cfs_b->runtime = cfs_b->quota;
1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459}
1460
029632fb
PZ
1461static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1462{
1463 return &tg->cfs_bandwidth;
1464}
1465
85dac906
PT
1466/* returns 0 on failure to allocate runtime */
1467static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1468{
1469 struct task_group *tg = cfs_rq->tg;
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1471 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1472
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1475
1476 raw_spin_lock(&cfs_b->lock);
1477 if (cfs_b->quota == RUNTIME_INF)
1478 amount = min_amount;
58088ad0 1479 else {
a9cf55b2
PT
1480 /*
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1484 * active.
1485 */
1486 if (!cfs_b->timer_active) {
1487 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1488 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1489 }
58088ad0
PT
1490
1491 if (cfs_b->runtime > 0) {
1492 amount = min(cfs_b->runtime, min_amount);
1493 cfs_b->runtime -= amount;
1494 cfs_b->idle = 0;
1495 }
ec12cb7f 1496 }
a9cf55b2 1497 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1498 raw_spin_unlock(&cfs_b->lock);
1499
1500 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1501 /*
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1504 * issued.
1505 */
1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1507 cfs_rq->runtime_expires = expires;
85dac906
PT
1508
1509 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1510}
1511
a9cf55b2
PT
1512/*
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1515 */
1516static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1517{
a9cf55b2
PT
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct rq *rq = rq_of(cfs_rq);
1520
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1523 return;
1524
a9cf55b2
PT
1525 if (cfs_rq->runtime_remaining < 0)
1526 return;
1527
1528 /*
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1532 *
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1535 */
1536
1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq->runtime_expires += TICK_NSEC;
1540 } else {
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq->runtime_remaining = 0;
1543 }
1544}
1545
1546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1547 unsigned long delta_exec)
1548{
1549 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1550 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1551 expire_cfs_rq_runtime(cfs_rq);
1552
1553 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1554 return;
1555
85dac906
PT
1556 /*
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1559 */
1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1561 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1562}
1563
1564static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1565 unsigned long delta_exec)
1566{
56f570e5 1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1568 return;
1569
1570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571}
1572
85dac906
PT
1573static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1574{
56f570e5 1575 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1576}
1577
64660c86
PT
1578/* check whether cfs_rq, or any parent, is throttled */
1579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1580{
56f570e5 1581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1582}
1583
1584/*
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1588 */
1589static inline int throttled_lb_pair(struct task_group *tg,
1590 int src_cpu, int dest_cpu)
1591{
1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1593
1594 src_cfs_rq = tg->cfs_rq[src_cpu];
1595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1596
1597 return throttled_hierarchy(src_cfs_rq) ||
1598 throttled_hierarchy(dest_cfs_rq);
1599}
1600
1601/* updated child weight may affect parent so we have to do this bottom up */
1602static int tg_unthrottle_up(struct task_group *tg, void *data)
1603{
1604 struct rq *rq = data;
1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1606
1607 cfs_rq->throttle_count--;
1608#ifdef CONFIG_SMP
1609 if (!cfs_rq->throttle_count) {
1610 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1611
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq->load_stamp += delta;
1614 cfs_rq->load_last += delta;
1615
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq);
1618 }
1619#endif
1620
1621 return 0;
1622}
1623
1624static int tg_throttle_down(struct task_group *tg, void *data)
1625{
1626 struct rq *rq = data;
1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1628
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq->throttle_count)
1631 update_cfs_load(cfs_rq, 0);
1632 cfs_rq->throttle_count++;
1633
1634 return 0;
1635}
1636
d3d9dc33 1637static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1638{
1639 struct rq *rq = rq_of(cfs_rq);
1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1641 struct sched_entity *se;
1642 long task_delta, dequeue = 1;
1643
1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1645
1646 /* account load preceding throttle */
64660c86
PT
1647 rcu_read_lock();
1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1649 rcu_read_unlock();
85dac906
PT
1650
1651 task_delta = cfs_rq->h_nr_running;
1652 for_each_sched_entity(se) {
1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1654 /* throttled entity or throttle-on-deactivate */
1655 if (!se->on_rq)
1656 break;
1657
1658 if (dequeue)
1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1660 qcfs_rq->h_nr_running -= task_delta;
1661
1662 if (qcfs_rq->load.weight)
1663 dequeue = 0;
1664 }
1665
1666 if (!se)
1667 rq->nr_running -= task_delta;
1668
1669 cfs_rq->throttled = 1;
e8da1b18 1670 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1671 raw_spin_lock(&cfs_b->lock);
1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1673 raw_spin_unlock(&cfs_b->lock);
1674}
1675
029632fb 1676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1677{
1678 struct rq *rq = rq_of(cfs_rq);
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1680 struct sched_entity *se;
1681 int enqueue = 1;
1682 long task_delta;
1683
1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1685
1686 cfs_rq->throttled = 0;
1687 raw_spin_lock(&cfs_b->lock);
e8da1b18 1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1689 list_del_rcu(&cfs_rq->throttled_list);
1690 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1691 cfs_rq->throttled_timestamp = 0;
671fd9da 1692
64660c86
PT
1693 update_rq_clock(rq);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1696
671fd9da
PT
1697 if (!cfs_rq->load.weight)
1698 return;
1699
1700 task_delta = cfs_rq->h_nr_running;
1701 for_each_sched_entity(se) {
1702 if (se->on_rq)
1703 enqueue = 0;
1704
1705 cfs_rq = cfs_rq_of(se);
1706 if (enqueue)
1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1708 cfs_rq->h_nr_running += task_delta;
1709
1710 if (cfs_rq_throttled(cfs_rq))
1711 break;
1712 }
1713
1714 if (!se)
1715 rq->nr_running += task_delta;
1716
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq->curr == rq->idle && rq->cfs.nr_running)
1719 resched_task(rq->curr);
1720}
1721
1722static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1723 u64 remaining, u64 expires)
1724{
1725 struct cfs_rq *cfs_rq;
1726 u64 runtime = remaining;
1727
1728 rcu_read_lock();
1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1730 throttled_list) {
1731 struct rq *rq = rq_of(cfs_rq);
1732
1733 raw_spin_lock(&rq->lock);
1734 if (!cfs_rq_throttled(cfs_rq))
1735 goto next;
1736
1737 runtime = -cfs_rq->runtime_remaining + 1;
1738 if (runtime > remaining)
1739 runtime = remaining;
1740 remaining -= runtime;
1741
1742 cfs_rq->runtime_remaining += runtime;
1743 cfs_rq->runtime_expires = expires;
1744
1745 /* we check whether we're throttled above */
1746 if (cfs_rq->runtime_remaining > 0)
1747 unthrottle_cfs_rq(cfs_rq);
1748
1749next:
1750 raw_spin_unlock(&rq->lock);
1751
1752 if (!remaining)
1753 break;
1754 }
1755 rcu_read_unlock();
1756
1757 return remaining;
1758}
1759
58088ad0
PT
1760/*
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1765 */
1766static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1767{
671fd9da
PT
1768 u64 runtime, runtime_expires;
1769 int idle = 1, throttled;
58088ad0
PT
1770
1771 raw_spin_lock(&cfs_b->lock);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b->quota == RUNTIME_INF)
1774 goto out_unlock;
1775
671fd9da
PT
1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle = cfs_b->idle && !throttled;
e8da1b18 1779 cfs_b->nr_periods += overrun;
671fd9da 1780
a9cf55b2
PT
1781 /* if we're going inactive then everything else can be deferred */
1782 if (idle)
1783 goto out_unlock;
1784
1785 __refill_cfs_bandwidth_runtime(cfs_b);
1786
671fd9da
PT
1787 if (!throttled) {
1788 /* mark as potentially idle for the upcoming period */
1789 cfs_b->idle = 1;
1790 goto out_unlock;
1791 }
1792
e8da1b18
NR
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b->nr_throttled += overrun;
1795
671fd9da
PT
1796 /*
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1800 * allowed to run.
1801 */
1802 runtime = cfs_b->runtime;
1803 runtime_expires = cfs_b->runtime_expires;
1804 cfs_b->runtime = 0;
1805
1806 /*
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1810 */
1811 while (throttled && runtime > 0) {
1812 raw_spin_unlock(&cfs_b->lock);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime = distribute_cfs_runtime(cfs_b, runtime,
1815 runtime_expires);
1816 raw_spin_lock(&cfs_b->lock);
1817
1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 }
58088ad0 1820
671fd9da
PT
1821 /* return (any) remaining runtime */
1822 cfs_b->runtime = runtime;
1823 /*
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1828 */
1829 cfs_b->idle = 0;
58088ad0
PT
1830out_unlock:
1831 if (idle)
1832 cfs_b->timer_active = 0;
1833 raw_spin_unlock(&cfs_b->lock);
1834
1835 return idle;
1836}
d3d9dc33 1837
d8b4986d
PT
1838/* a cfs_rq won't donate quota below this amount */
1839static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1840/* minimum remaining period time to redistribute slack quota */
1841static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1842/* how long we wait to gather additional slack before distributing */
1843static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1844
1845/* are we near the end of the current quota period? */
1846static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1847{
1848 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1849 u64 remaining;
1850
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer))
1853 return 1;
1854
1855 /* is a quota refresh about to occur? */
1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1857 if (remaining < min_expire)
1858 return 1;
1859
1860 return 0;
1861}
1862
1863static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1864{
1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1866
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b, min_left))
1869 return;
1870
1871 start_bandwidth_timer(&cfs_b->slack_timer,
1872 ns_to_ktime(cfs_bandwidth_slack_period));
1873}
1874
1875/* we know any runtime found here is valid as update_curr() precedes return */
1876static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1877{
1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1880
1881 if (slack_runtime <= 0)
1882 return;
1883
1884 raw_spin_lock(&cfs_b->lock);
1885 if (cfs_b->quota != RUNTIME_INF &&
1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1887 cfs_b->runtime += slack_runtime;
1888
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b->throttled_cfs_rq))
1892 start_cfs_slack_bandwidth(cfs_b);
1893 }
1894 raw_spin_unlock(&cfs_b->lock);
1895
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq->runtime_remaining -= slack_runtime;
1898}
1899
1900static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1901{
56f570e5
PT
1902 if (!cfs_bandwidth_used())
1903 return;
1904
fccfdc6f 1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1906 return;
1907
1908 __return_cfs_rq_runtime(cfs_rq);
1909}
1910
1911/*
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1914 */
1915static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1916{
1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1918 u64 expires;
1919
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1922 return;
1923
1924 raw_spin_lock(&cfs_b->lock);
1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1926 runtime = cfs_b->runtime;
1927 cfs_b->runtime = 0;
1928 }
1929 expires = cfs_b->runtime_expires;
1930 raw_spin_unlock(&cfs_b->lock);
1931
1932 if (!runtime)
1933 return;
1934
1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 if (expires == cfs_b->runtime_expires)
1939 cfs_b->runtime = runtime;
1940 raw_spin_unlock(&cfs_b->lock);
1941}
1942
d3d9dc33
PT
1943/*
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1947 */
1948static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1949{
56f570e5
PT
1950 if (!cfs_bandwidth_used())
1951 return;
1952
d3d9dc33
PT
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1955 return;
1956
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq))
1959 return;
1960
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq, 0);
1963 if (cfs_rq->runtime_remaining <= 0)
1964 throttle_cfs_rq(cfs_rq);
1965}
1966
1967/* conditionally throttle active cfs_rq's from put_prev_entity() */
1968static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1969{
56f570e5
PT
1970 if (!cfs_bandwidth_used())
1971 return;
1972
d3d9dc33
PT
1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1974 return;
1975
1976 /*
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1979 */
1980 if (cfs_rq_throttled(cfs_rq))
1981 return;
1982
1983 throttle_cfs_rq(cfs_rq);
1984}
029632fb
PZ
1985
1986static inline u64 default_cfs_period(void);
1987static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1988static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1989
1990static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1991{
1992 struct cfs_bandwidth *cfs_b =
1993 container_of(timer, struct cfs_bandwidth, slack_timer);
1994 do_sched_cfs_slack_timer(cfs_b);
1995
1996 return HRTIMER_NORESTART;
1997}
1998
1999static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2000{
2001 struct cfs_bandwidth *cfs_b =
2002 container_of(timer, struct cfs_bandwidth, period_timer);
2003 ktime_t now;
2004 int overrun;
2005 int idle = 0;
2006
2007 for (;;) {
2008 now = hrtimer_cb_get_time(timer);
2009 overrun = hrtimer_forward(timer, now, cfs_b->period);
2010
2011 if (!overrun)
2012 break;
2013
2014 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 }
2016
2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018}
2019
2020void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2021{
2022 raw_spin_lock_init(&cfs_b->lock);
2023 cfs_b->runtime = 0;
2024 cfs_b->quota = RUNTIME_INF;
2025 cfs_b->period = ns_to_ktime(default_cfs_period());
2026
2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->period_timer.function = sched_cfs_period_timer;
2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032}
2033
2034static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2035{
2036 cfs_rq->runtime_enabled = 0;
2037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038}
2039
2040/* requires cfs_b->lock, may release to reprogram timer */
2041void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042{
2043 /*
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2048 */
2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2050 raw_spin_unlock(&cfs_b->lock);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b->period_timer);
2053
2054 raw_spin_lock(&cfs_b->lock);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b->timer_active)
2057 return;
2058 }
2059
2060 cfs_b->timer_active = 1;
2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062}
2063
2064static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2065{
2066 hrtimer_cancel(&cfs_b->period_timer);
2067 hrtimer_cancel(&cfs_b->slack_timer);
2068}
2069
2070void unthrottle_offline_cfs_rqs(struct rq *rq)
2071{
2072 struct cfs_rq *cfs_rq;
2073
2074 for_each_leaf_cfs_rq(rq, cfs_rq) {
2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2076
2077 if (!cfs_rq->runtime_enabled)
2078 continue;
2079
2080 /*
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2083 */
2084 cfs_rq->runtime_remaining = cfs_b->quota;
2085 if (cfs_rq_throttled(cfs_rq))
2086 unthrottle_cfs_rq(cfs_rq);
2087 }
2088}
2089
2090#else /* CONFIG_CFS_BANDWIDTH */
ec12cb7f
PT
2091static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2092 unsigned long delta_exec) {}
d3d9dc33
PT
2093static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 2095static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2096
2097static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2098{
2099 return 0;
2100}
64660c86
PT
2101
2102static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2103{
2104 return 0;
2105}
2106
2107static inline int throttled_lb_pair(struct task_group *tg,
2108 int src_cpu, int dest_cpu)
2109{
2110 return 0;
2111}
029632fb
PZ
2112
2113void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2114
2115#ifdef CONFIG_FAIR_GROUP_SCHED
2116static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2117#endif
2118
029632fb
PZ
2119static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2120{
2121 return NULL;
2122}
2123static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2124void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2125
2126#endif /* CONFIG_CFS_BANDWIDTH */
2127
bf0f6f24
IM
2128/**************************************************
2129 * CFS operations on tasks:
2130 */
2131
8f4d37ec
PZ
2132#ifdef CONFIG_SCHED_HRTICK
2133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2134{
8f4d37ec
PZ
2135 struct sched_entity *se = &p->se;
2136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137
2138 WARN_ON(task_rq(p) != rq);
2139
2140 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
2141 u64 slice = sched_slice(cfs_rq, se);
2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2143 s64 delta = slice - ran;
2144
2145 if (delta < 0) {
2146 if (rq->curr == p)
2147 resched_task(p);
2148 return;
2149 }
2150
2151 /*
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2154 */
31656519 2155 if (rq->curr != p)
157124c1 2156 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2157
31656519 2158 hrtick_start(rq, delta);
8f4d37ec
PZ
2159 }
2160}
a4c2f00f
PZ
2161
2162/*
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2165 * to matter.
2166 */
2167static void hrtick_update(struct rq *rq)
2168{
2169 struct task_struct *curr = rq->curr;
2170
2171 if (curr->sched_class != &fair_sched_class)
2172 return;
2173
2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2175 hrtick_start_fair(rq, curr);
2176}
55e12e5e 2177#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2178static inline void
2179hrtick_start_fair(struct rq *rq, struct task_struct *p)
2180{
2181}
a4c2f00f
PZ
2182
2183static inline void hrtick_update(struct rq *rq)
2184{
2185}
8f4d37ec
PZ
2186#endif
2187
bf0f6f24
IM
2188/*
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2192 */
ea87bb78 2193static void
371fd7e7 2194enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2195{
2196 struct cfs_rq *cfs_rq;
62fb1851 2197 struct sched_entity *se = &p->se;
bf0f6f24
IM
2198
2199 for_each_sched_entity(se) {
62fb1851 2200 if (se->on_rq)
bf0f6f24
IM
2201 break;
2202 cfs_rq = cfs_rq_of(se);
88ec22d3 2203 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2204
2205 /*
2206 * end evaluation on encountering a throttled cfs_rq
2207 *
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2210 */
2211 if (cfs_rq_throttled(cfs_rq))
2212 break;
953bfcd1 2213 cfs_rq->h_nr_running++;
85dac906 2214
88ec22d3 2215 flags = ENQUEUE_WAKEUP;
bf0f6f24 2216 }
8f4d37ec 2217
2069dd75 2218 for_each_sched_entity(se) {
0f317143 2219 cfs_rq = cfs_rq_of(se);
953bfcd1 2220 cfs_rq->h_nr_running++;
2069dd75 2221
85dac906
PT
2222 if (cfs_rq_throttled(cfs_rq))
2223 break;
2224
d6b55918 2225 update_cfs_load(cfs_rq, 0);
6d5ab293 2226 update_cfs_shares(cfs_rq);
2069dd75
PZ
2227 }
2228
85dac906
PT
2229 if (!se)
2230 inc_nr_running(rq);
a4c2f00f 2231 hrtick_update(rq);
bf0f6f24
IM
2232}
2233
2f36825b
VP
2234static void set_next_buddy(struct sched_entity *se);
2235
bf0f6f24
IM
2236/*
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2240 */
371fd7e7 2241static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2242{
2243 struct cfs_rq *cfs_rq;
62fb1851 2244 struct sched_entity *se = &p->se;
2f36825b 2245 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2246
2247 for_each_sched_entity(se) {
2248 cfs_rq = cfs_rq_of(se);
371fd7e7 2249 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2250
2251 /*
2252 * end evaluation on encountering a throttled cfs_rq
2253 *
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2256 */
2257 if (cfs_rq_throttled(cfs_rq))
2258 break;
953bfcd1 2259 cfs_rq->h_nr_running--;
2069dd75 2260
bf0f6f24 2261 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2262 if (cfs_rq->load.weight) {
2263 /*
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2266 */
2267 if (task_sleep && parent_entity(se))
2268 set_next_buddy(parent_entity(se));
9598c82d
PT
2269
2270 /* avoid re-evaluating load for this entity */
2271 se = parent_entity(se);
bf0f6f24 2272 break;
2f36825b 2273 }
371fd7e7 2274 flags |= DEQUEUE_SLEEP;
bf0f6f24 2275 }
8f4d37ec 2276
2069dd75 2277 for_each_sched_entity(se) {
0f317143 2278 cfs_rq = cfs_rq_of(se);
953bfcd1 2279 cfs_rq->h_nr_running--;
2069dd75 2280
85dac906
PT
2281 if (cfs_rq_throttled(cfs_rq))
2282 break;
2283
d6b55918 2284 update_cfs_load(cfs_rq, 0);
6d5ab293 2285 update_cfs_shares(cfs_rq);
2069dd75
PZ
2286 }
2287
85dac906
PT
2288 if (!se)
2289 dec_nr_running(rq);
a4c2f00f 2290 hrtick_update(rq);
bf0f6f24
IM
2291}
2292
e7693a36 2293#ifdef CONFIG_SMP
029632fb
PZ
2294/* Used instead of source_load when we know the type == 0 */
2295static unsigned long weighted_cpuload(const int cpu)
2296{
2297 return cpu_rq(cpu)->load.weight;
2298}
2299
2300/*
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2303 *
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2306 */
2307static unsigned long source_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return min(rq->cpu_load[type-1], total);
2316}
2317
2318/*
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2321 */
2322static unsigned long target_load(int cpu, int type)
2323{
2324 struct rq *rq = cpu_rq(cpu);
2325 unsigned long total = weighted_cpuload(cpu);
2326
2327 if (type == 0 || !sched_feat(LB_BIAS))
2328 return total;
2329
2330 return max(rq->cpu_load[type-1], total);
2331}
2332
2333static unsigned long power_of(int cpu)
2334{
2335 return cpu_rq(cpu)->cpu_power;
2336}
2337
2338static unsigned long cpu_avg_load_per_task(int cpu)
2339{
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2342
2343 if (nr_running)
2344 return rq->load.weight / nr_running;
2345
2346 return 0;
2347}
2348
098fb9db 2349
74f8e4b2 2350static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2351{
2352 struct sched_entity *se = &p->se;
2353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2354 u64 min_vruntime;
2355
2356#ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy;
88ec22d3 2358
3fe1698b
PZ
2359 do {
2360 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2361 smp_rmb();
2362 min_vruntime = cfs_rq->min_vruntime;
2363 } while (min_vruntime != min_vruntime_copy);
2364#else
2365 min_vruntime = cfs_rq->min_vruntime;
2366#endif
88ec22d3 2367
3fe1698b 2368 se->vruntime -= min_vruntime;
88ec22d3
PZ
2369}
2370
bb3469ac 2371#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2372/*
2373 * effective_load() calculates the load change as seen from the root_task_group
2374 *
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
cf5f0acf
PZ
2378 *
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2382 *
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2385 *
2386 * s_i = rw_i / \Sum rw_j (1)
2387 *
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2391 *
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2394 *
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2399 *
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2402 *
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2404 *
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2408 *
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2411 *
2412 * We can then compute the difference in effective weight by using:
2413 *
2414 * dw_i = S * (s'_i - s_i) (3)
2415 *
2416 * Where 'S' is the group weight as seen by its parent.
2417 *
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
f5bfb7d9 2421 */
2069dd75 2422static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2423{
4be9daaa 2424 struct sched_entity *se = tg->se[cpu];
f1d239f7 2425
cf5f0acf 2426 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2427 return wl;
2428
4be9daaa 2429 for_each_sched_entity(se) {
cf5f0acf 2430 long w, W;
4be9daaa 2431
977dda7c 2432 tg = se->my_q->tg;
bb3469ac 2433
cf5f0acf
PZ
2434 /*
2435 * W = @wg + \Sum rw_j
2436 */
2437 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2438
cf5f0acf
PZ
2439 /*
2440 * w = rw_i + @wl
2441 */
2442 w = se->my_q->load.weight + wl;
940959e9 2443
cf5f0acf
PZ
2444 /*
2445 * wl = S * s'_i; see (2)
2446 */
2447 if (W > 0 && w < W)
2448 wl = (w * tg->shares) / W;
977dda7c
PT
2449 else
2450 wl = tg->shares;
940959e9 2451
cf5f0acf
PZ
2452 /*
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2456 */
977dda7c
PT
2457 if (wl < MIN_SHARES)
2458 wl = MIN_SHARES;
cf5f0acf
PZ
2459
2460 /*
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2462 */
977dda7c 2463 wl -= se->load.weight;
cf5f0acf
PZ
2464
2465 /*
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2471 */
4be9daaa 2472 wg = 0;
4be9daaa 2473 }
bb3469ac 2474
4be9daaa 2475 return wl;
bb3469ac
PZ
2476}
2477#else
4be9daaa 2478
83378269
PZ
2479static inline unsigned long effective_load(struct task_group *tg, int cpu,
2480 unsigned long wl, unsigned long wg)
4be9daaa 2481{
83378269 2482 return wl;
bb3469ac 2483}
4be9daaa 2484
bb3469ac
PZ
2485#endif
2486
c88d5910 2487static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2488{
e37b6a7b 2489 s64 this_load, load;
c88d5910 2490 int idx, this_cpu, prev_cpu;
098fb9db 2491 unsigned long tl_per_task;
c88d5910 2492 struct task_group *tg;
83378269 2493 unsigned long weight;
b3137bc8 2494 int balanced;
098fb9db 2495
c88d5910
PZ
2496 idx = sd->wake_idx;
2497 this_cpu = smp_processor_id();
2498 prev_cpu = task_cpu(p);
2499 load = source_load(prev_cpu, idx);
2500 this_load = target_load(this_cpu, idx);
098fb9db 2501
b3137bc8
MG
2502 /*
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2506 */
83378269
PZ
2507 if (sync) {
2508 tg = task_group(current);
2509 weight = current->se.load.weight;
2510
c88d5910 2511 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2512 load += effective_load(tg, prev_cpu, 0, -weight);
2513 }
b3137bc8 2514
83378269
PZ
2515 tg = task_group(p);
2516 weight = p->se.load.weight;
b3137bc8 2517
71a29aa7
PZ
2518 /*
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
71a29aa7
PZ
2523 *
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2526 */
e37b6a7b
PT
2527 if (this_load > 0) {
2528 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2529
2530 this_eff_load = 100;
2531 this_eff_load *= power_of(prev_cpu);
2532 this_eff_load *= this_load +
2533 effective_load(tg, this_cpu, weight, weight);
2534
2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2536 prev_eff_load *= power_of(this_cpu);
2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2538
2539 balanced = this_eff_load <= prev_eff_load;
2540 } else
2541 balanced = true;
b3137bc8 2542
098fb9db 2543 /*
4ae7d5ce
IM
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2546 * woken task:
098fb9db 2547 */
2fb7635c
PZ
2548 if (sync && balanced)
2549 return 1;
098fb9db 2550
41acab88 2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2552 tl_per_task = cpu_avg_load_per_task(this_cpu);
2553
c88d5910
PZ
2554 if (balanced ||
2555 (this_load <= load &&
2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2557 /*
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2561 */
c88d5910 2562 schedstat_inc(sd, ttwu_move_affine);
41acab88 2563 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2564
2565 return 1;
2566 }
2567 return 0;
2568}
2569
aaee1203
PZ
2570/*
2571 * find_idlest_group finds and returns the least busy CPU group within the
2572 * domain.
2573 */
2574static struct sched_group *
78e7ed53 2575find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2576 int this_cpu, int load_idx)
e7693a36 2577{
b3bd3de6 2578 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2579 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2580 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2581
aaee1203
PZ
2582 do {
2583 unsigned long load, avg_load;
2584 int local_group;
2585 int i;
e7693a36 2586
aaee1203
PZ
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2589 tsk_cpus_allowed(p)))
aaee1203
PZ
2590 continue;
2591
2592 local_group = cpumask_test_cpu(this_cpu,
2593 sched_group_cpus(group));
2594
2595 /* Tally up the load of all CPUs in the group */
2596 avg_load = 0;
2597
2598 for_each_cpu(i, sched_group_cpus(group)) {
2599 /* Bias balancing toward cpus of our domain */
2600 if (local_group)
2601 load = source_load(i, load_idx);
2602 else
2603 load = target_load(i, load_idx);
2604
2605 avg_load += load;
2606 }
2607
2608 /* Adjust by relative CPU power of the group */
9c3f75cb 2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2610
2611 if (local_group) {
2612 this_load = avg_load;
aaee1203
PZ
2613 } else if (avg_load < min_load) {
2614 min_load = avg_load;
2615 idlest = group;
2616 }
2617 } while (group = group->next, group != sd->groups);
2618
2619 if (!idlest || 100*this_load < imbalance*min_load)
2620 return NULL;
2621 return idlest;
2622}
2623
2624/*
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2626 */
2627static int
2628find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2629{
2630 unsigned long load, min_load = ULONG_MAX;
2631 int idlest = -1;
2632 int i;
2633
2634 /* Traverse only the allowed CPUs */
fa17b507 2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2636 load = weighted_cpuload(i);
2637
2638 if (load < min_load || (load == min_load && i == this_cpu)) {
2639 min_load = load;
2640 idlest = i;
e7693a36
GH
2641 }
2642 }
2643
aaee1203
PZ
2644 return idlest;
2645}
e7693a36 2646
77e81365
SS
2647/**
2648 * highest_flag_domain - Return highest sched_domain containing flag.
2649 * @cpu: The cpu whose highest level of sched domain is to
2650 * be returned.
2651 * @flag: The flag to check for the highest sched_domain
2652 * for the given cpu.
2653 *
2654 * Returns the highest sched_domain of a cpu which contains the given flag.
2655 */
2656static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2657{
2658 struct sched_domain *sd, *hsd = NULL;
2659
2660 for_each_domain(cpu, sd) {
2661 if (!(sd->flags & flag))
2662 break;
2663 hsd = sd;
2664 }
2665
2666 return hsd;
2667}
2668
a50bde51
PZ
2669/*
2670 * Try and locate an idle CPU in the sched_domain.
2671 */
99bd5e2f 2672static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2673{
2674 int cpu = smp_processor_id();
2675 int prev_cpu = task_cpu(p);
99bd5e2f 2676 struct sched_domain *sd;
4dcfe102 2677 struct sched_group *sg;
77e81365 2678 int i;
a50bde51
PZ
2679
2680 /*
99bd5e2f
SS
2681 * If the task is going to be woken-up on this cpu and if it is
2682 * already idle, then it is the right target.
a50bde51 2683 */
99bd5e2f
SS
2684 if (target == cpu && idle_cpu(cpu))
2685 return cpu;
2686
2687 /*
2688 * If the task is going to be woken-up on the cpu where it previously
2689 * ran and if it is currently idle, then it the right target.
2690 */
2691 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2692 return prev_cpu;
a50bde51
PZ
2693
2694 /*
99bd5e2f 2695 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2696 */
dce840a0 2697 rcu_read_lock();
99bd5e2f 2698
77e81365
SS
2699 sd = highest_flag_domain(target, SD_SHARE_PKG_RESOURCES);
2700 for_each_lower_domain(sd) {
4dcfe102
PZ
2701 sg = sd->groups;
2702 do {
2703 if (!cpumask_intersects(sched_group_cpus(sg),
2704 tsk_cpus_allowed(p)))
2705 goto next;
2706
2707 for_each_cpu(i, sched_group_cpus(sg)) {
2708 if (!idle_cpu(i))
2709 goto next;
2710 }
2711
2712 target = cpumask_first_and(sched_group_cpus(sg),
2713 tsk_cpus_allowed(p));
2714 goto done;
2715next:
2716 sg = sg->next;
2717 } while (sg != sd->groups);
a50bde51 2718 }
4dcfe102 2719done:
dce840a0 2720 rcu_read_unlock();
a50bde51
PZ
2721
2722 return target;
2723}
2724
aaee1203
PZ
2725/*
2726 * sched_balance_self: balance the current task (running on cpu) in domains
2727 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2728 * SD_BALANCE_EXEC.
2729 *
2730 * Balance, ie. select the least loaded group.
2731 *
2732 * Returns the target CPU number, or the same CPU if no balancing is needed.
2733 *
2734 * preempt must be disabled.
2735 */
0017d735 2736static int
7608dec2 2737select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2738{
29cd8bae 2739 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2740 int cpu = smp_processor_id();
2741 int prev_cpu = task_cpu(p);
2742 int new_cpu = cpu;
99bd5e2f 2743 int want_affine = 0;
29cd8bae 2744 int want_sd = 1;
5158f4e4 2745 int sync = wake_flags & WF_SYNC;
c88d5910 2746
0763a660 2747 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2748 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2749 want_affine = 1;
2750 new_cpu = prev_cpu;
2751 }
aaee1203 2752
dce840a0 2753 rcu_read_lock();
aaee1203 2754 for_each_domain(cpu, tmp) {
e4f42888
PZ
2755 if (!(tmp->flags & SD_LOAD_BALANCE))
2756 continue;
2757
aaee1203 2758 /*
ae154be1
PZ
2759 * If power savings logic is enabled for a domain, see if we
2760 * are not overloaded, if so, don't balance wider.
aaee1203 2761 */
59abf026 2762 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2763 unsigned long power = 0;
2764 unsigned long nr_running = 0;
2765 unsigned long capacity;
2766 int i;
2767
2768 for_each_cpu(i, sched_domain_span(tmp)) {
2769 power += power_of(i);
2770 nr_running += cpu_rq(i)->cfs.nr_running;
2771 }
2772
1399fa78 2773 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2774
59abf026
PZ
2775 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2776 nr_running /= 2;
2777
2778 if (nr_running < capacity)
29cd8bae 2779 want_sd = 0;
ae154be1 2780 }
aaee1203 2781
fe3bcfe1 2782 /*
99bd5e2f
SS
2783 * If both cpu and prev_cpu are part of this domain,
2784 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2785 */
99bd5e2f
SS
2786 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2787 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2788 affine_sd = tmp;
2789 want_affine = 0;
c88d5910
PZ
2790 }
2791
29cd8bae
PZ
2792 if (!want_sd && !want_affine)
2793 break;
2794
0763a660 2795 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2796 continue;
2797
29cd8bae
PZ
2798 if (want_sd)
2799 sd = tmp;
2800 }
2801
8b911acd 2802 if (affine_sd) {
99bd5e2f 2803 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2804 prev_cpu = cpu;
2805
2806 new_cpu = select_idle_sibling(p, prev_cpu);
2807 goto unlock;
8b911acd 2808 }
e7693a36 2809
aaee1203 2810 while (sd) {
5158f4e4 2811 int load_idx = sd->forkexec_idx;
aaee1203 2812 struct sched_group *group;
c88d5910 2813 int weight;
098fb9db 2814
0763a660 2815 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2816 sd = sd->child;
2817 continue;
2818 }
098fb9db 2819
5158f4e4
PZ
2820 if (sd_flag & SD_BALANCE_WAKE)
2821 load_idx = sd->wake_idx;
098fb9db 2822
5158f4e4 2823 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2824 if (!group) {
2825 sd = sd->child;
2826 continue;
2827 }
4ae7d5ce 2828
d7c33c49 2829 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2830 if (new_cpu == -1 || new_cpu == cpu) {
2831 /* Now try balancing at a lower domain level of cpu */
2832 sd = sd->child;
2833 continue;
e7693a36 2834 }
aaee1203
PZ
2835
2836 /* Now try balancing at a lower domain level of new_cpu */
2837 cpu = new_cpu;
669c55e9 2838 weight = sd->span_weight;
aaee1203
PZ
2839 sd = NULL;
2840 for_each_domain(cpu, tmp) {
669c55e9 2841 if (weight <= tmp->span_weight)
aaee1203 2842 break;
0763a660 2843 if (tmp->flags & sd_flag)
aaee1203
PZ
2844 sd = tmp;
2845 }
2846 /* while loop will break here if sd == NULL */
e7693a36 2847 }
dce840a0
PZ
2848unlock:
2849 rcu_read_unlock();
e7693a36 2850
c88d5910 2851 return new_cpu;
e7693a36
GH
2852}
2853#endif /* CONFIG_SMP */
2854
e52fb7c0
PZ
2855static unsigned long
2856wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2857{
2858 unsigned long gran = sysctl_sched_wakeup_granularity;
2859
2860 /*
e52fb7c0
PZ
2861 * Since its curr running now, convert the gran from real-time
2862 * to virtual-time in his units.
13814d42
MG
2863 *
2864 * By using 'se' instead of 'curr' we penalize light tasks, so
2865 * they get preempted easier. That is, if 'se' < 'curr' then
2866 * the resulting gran will be larger, therefore penalizing the
2867 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2868 * be smaller, again penalizing the lighter task.
2869 *
2870 * This is especially important for buddies when the leftmost
2871 * task is higher priority than the buddy.
0bbd3336 2872 */
f4ad9bd2 2873 return calc_delta_fair(gran, se);
0bbd3336
PZ
2874}
2875
464b7527
PZ
2876/*
2877 * Should 'se' preempt 'curr'.
2878 *
2879 * |s1
2880 * |s2
2881 * |s3
2882 * g
2883 * |<--->|c
2884 *
2885 * w(c, s1) = -1
2886 * w(c, s2) = 0
2887 * w(c, s3) = 1
2888 *
2889 */
2890static int
2891wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2892{
2893 s64 gran, vdiff = curr->vruntime - se->vruntime;
2894
2895 if (vdiff <= 0)
2896 return -1;
2897
e52fb7c0 2898 gran = wakeup_gran(curr, se);
464b7527
PZ
2899 if (vdiff > gran)
2900 return 1;
2901
2902 return 0;
2903}
2904
02479099
PZ
2905static void set_last_buddy(struct sched_entity *se)
2906{
69c80f3e
VP
2907 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2908 return;
2909
2910 for_each_sched_entity(se)
2911 cfs_rq_of(se)->last = se;
02479099
PZ
2912}
2913
2914static void set_next_buddy(struct sched_entity *se)
2915{
69c80f3e
VP
2916 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2917 return;
2918
2919 for_each_sched_entity(se)
2920 cfs_rq_of(se)->next = se;
02479099
PZ
2921}
2922
ac53db59
RR
2923static void set_skip_buddy(struct sched_entity *se)
2924{
69c80f3e
VP
2925 for_each_sched_entity(se)
2926 cfs_rq_of(se)->skip = se;
ac53db59
RR
2927}
2928
bf0f6f24
IM
2929/*
2930 * Preempt the current task with a newly woken task if needed:
2931 */
5a9b86f6 2932static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2933{
2934 struct task_struct *curr = rq->curr;
8651a86c 2935 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2936 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2937 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2938 int next_buddy_marked = 0;
bf0f6f24 2939
4ae7d5ce
IM
2940 if (unlikely(se == pse))
2941 return;
2942
5238cdd3
PT
2943 /*
2944 * This is possible from callers such as pull_task(), in which we
2945 * unconditionally check_prempt_curr() after an enqueue (which may have
2946 * lead to a throttle). This both saves work and prevents false
2947 * next-buddy nomination below.
2948 */
2949 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2950 return;
2951
2f36825b 2952 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2953 set_next_buddy(pse);
2f36825b
VP
2954 next_buddy_marked = 1;
2955 }
57fdc26d 2956
aec0a514
BR
2957 /*
2958 * We can come here with TIF_NEED_RESCHED already set from new task
2959 * wake up path.
5238cdd3
PT
2960 *
2961 * Note: this also catches the edge-case of curr being in a throttled
2962 * group (e.g. via set_curr_task), since update_curr() (in the
2963 * enqueue of curr) will have resulted in resched being set. This
2964 * prevents us from potentially nominating it as a false LAST_BUDDY
2965 * below.
aec0a514
BR
2966 */
2967 if (test_tsk_need_resched(curr))
2968 return;
2969
a2f5c9ab
DH
2970 /* Idle tasks are by definition preempted by non-idle tasks. */
2971 if (unlikely(curr->policy == SCHED_IDLE) &&
2972 likely(p->policy != SCHED_IDLE))
2973 goto preempt;
2974
91c234b4 2975 /*
a2f5c9ab
DH
2976 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2977 * is driven by the tick):
91c234b4 2978 */
6bc912b7 2979 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2980 return;
bf0f6f24 2981
464b7527 2982 find_matching_se(&se, &pse);
9bbd7374 2983 update_curr(cfs_rq_of(se));
002f128b 2984 BUG_ON(!pse);
2f36825b
VP
2985 if (wakeup_preempt_entity(se, pse) == 1) {
2986 /*
2987 * Bias pick_next to pick the sched entity that is
2988 * triggering this preemption.
2989 */
2990 if (!next_buddy_marked)
2991 set_next_buddy(pse);
3a7e73a2 2992 goto preempt;
2f36825b 2993 }
464b7527 2994
3a7e73a2 2995 return;
a65ac745 2996
3a7e73a2
PZ
2997preempt:
2998 resched_task(curr);
2999 /*
3000 * Only set the backward buddy when the current task is still
3001 * on the rq. This can happen when a wakeup gets interleaved
3002 * with schedule on the ->pre_schedule() or idle_balance()
3003 * point, either of which can * drop the rq lock.
3004 *
3005 * Also, during early boot the idle thread is in the fair class,
3006 * for obvious reasons its a bad idea to schedule back to it.
3007 */
3008 if (unlikely(!se->on_rq || curr == rq->idle))
3009 return;
3010
3011 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3012 set_last_buddy(se);
bf0f6f24
IM
3013}
3014
fb8d4724 3015static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3016{
8f4d37ec 3017 struct task_struct *p;
bf0f6f24
IM
3018 struct cfs_rq *cfs_rq = &rq->cfs;
3019 struct sched_entity *se;
3020
36ace27e 3021 if (!cfs_rq->nr_running)
bf0f6f24
IM
3022 return NULL;
3023
3024 do {
9948f4b2 3025 se = pick_next_entity(cfs_rq);
f4b6755f 3026 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3027 cfs_rq = group_cfs_rq(se);
3028 } while (cfs_rq);
3029
8f4d37ec
PZ
3030 p = task_of(se);
3031 hrtick_start_fair(rq, p);
3032
3033 return p;
bf0f6f24
IM
3034}
3035
3036/*
3037 * Account for a descheduled task:
3038 */
31ee529c 3039static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3040{
3041 struct sched_entity *se = &prev->se;
3042 struct cfs_rq *cfs_rq;
3043
3044 for_each_sched_entity(se) {
3045 cfs_rq = cfs_rq_of(se);
ab6cde26 3046 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3047 }
3048}
3049
ac53db59
RR
3050/*
3051 * sched_yield() is very simple
3052 *
3053 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3054 */
3055static void yield_task_fair(struct rq *rq)
3056{
3057 struct task_struct *curr = rq->curr;
3058 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3059 struct sched_entity *se = &curr->se;
3060
3061 /*
3062 * Are we the only task in the tree?
3063 */
3064 if (unlikely(rq->nr_running == 1))
3065 return;
3066
3067 clear_buddies(cfs_rq, se);
3068
3069 if (curr->policy != SCHED_BATCH) {
3070 update_rq_clock(rq);
3071 /*
3072 * Update run-time statistics of the 'current'.
3073 */
3074 update_curr(cfs_rq);
3075 }
3076
3077 set_skip_buddy(se);
3078}
3079
d95f4122
MG
3080static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3081{
3082 struct sched_entity *se = &p->se;
3083
5238cdd3
PT
3084 /* throttled hierarchies are not runnable */
3085 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3086 return false;
3087
3088 /* Tell the scheduler that we'd really like pse to run next. */
3089 set_next_buddy(se);
3090
d95f4122
MG
3091 yield_task_fair(rq);
3092
3093 return true;
3094}
3095
681f3e68 3096#ifdef CONFIG_SMP
bf0f6f24
IM
3097/**************************************************
3098 * Fair scheduling class load-balancing methods:
3099 */
3100
1e3c88bd
PZ
3101/*
3102 * pull_task - move a task from a remote runqueue to the local runqueue.
3103 * Both runqueues must be locked.
3104 */
3105static void pull_task(struct rq *src_rq, struct task_struct *p,
3106 struct rq *this_rq, int this_cpu)
3107{
3108 deactivate_task(src_rq, p, 0);
3109 set_task_cpu(p, this_cpu);
3110 activate_task(this_rq, p, 0);
3111 check_preempt_curr(this_rq, p, 0);
3112}
3113
029632fb
PZ
3114/*
3115 * Is this task likely cache-hot:
3116 */
3117static int
3118task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3119{
3120 s64 delta;
3121
3122 if (p->sched_class != &fair_sched_class)
3123 return 0;
3124
3125 if (unlikely(p->policy == SCHED_IDLE))
3126 return 0;
3127
3128 /*
3129 * Buddy candidates are cache hot:
3130 */
3131 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3132 (&p->se == cfs_rq_of(&p->se)->next ||
3133 &p->se == cfs_rq_of(&p->se)->last))
3134 return 1;
3135
3136 if (sysctl_sched_migration_cost == -1)
3137 return 1;
3138 if (sysctl_sched_migration_cost == 0)
3139 return 0;
3140
3141 delta = now - p->se.exec_start;
3142
3143 return delta < (s64)sysctl_sched_migration_cost;
3144}
3145
1e3c88bd
PZ
3146/*
3147 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3148 */
3149static
3150int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3151 struct sched_domain *sd, enum cpu_idle_type idle,
3152 int *all_pinned)
3153{
3154 int tsk_cache_hot = 0;
3155 /*
3156 * We do not migrate tasks that are:
3157 * 1) running (obviously), or
3158 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3159 * 3) are cache-hot on their current CPU.
3160 */
fa17b507 3161 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
41acab88 3162 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3163 return 0;
3164 }
3165 *all_pinned = 0;
3166
3167 if (task_running(rq, p)) {
41acab88 3168 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3169 return 0;
3170 }
3171
3172 /*
3173 * Aggressive migration if:
3174 * 1) task is cache cold, or
3175 * 2) too many balance attempts have failed.
3176 */
3177
305e6835 3178 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
3179 if (!tsk_cache_hot ||
3180 sd->nr_balance_failed > sd->cache_nice_tries) {
3181#ifdef CONFIG_SCHEDSTATS
3182 if (tsk_cache_hot) {
3183 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 3184 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3185 }
3186#endif
3187 return 1;
3188 }
3189
3190 if (tsk_cache_hot) {
41acab88 3191 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3192 return 0;
3193 }
3194 return 1;
3195}
3196
897c395f
PZ
3197/*
3198 * move_one_task tries to move exactly one task from busiest to this_rq, as
3199 * part of active balancing operations within "domain".
3200 * Returns 1 if successful and 0 otherwise.
3201 *
3202 * Called with both runqueues locked.
3203 */
3204static int
3205move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3206 struct sched_domain *sd, enum cpu_idle_type idle)
3207{
3208 struct task_struct *p, *n;
3209 struct cfs_rq *cfs_rq;
3210 int pinned = 0;
3211
3212 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3213 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
3214 if (throttled_lb_pair(task_group(p),
3215 busiest->cpu, this_cpu))
3216 break;
897c395f
PZ
3217
3218 if (!can_migrate_task(p, busiest, this_cpu,
3219 sd, idle, &pinned))
3220 continue;
3221
3222 pull_task(busiest, p, this_rq, this_cpu);
3223 /*
3224 * Right now, this is only the second place pull_task()
3225 * is called, so we can safely collect pull_task()
3226 * stats here rather than inside pull_task().
3227 */
3228 schedstat_inc(sd, lb_gained[idle]);
3229 return 1;
3230 }
3231 }
3232
3233 return 0;
3234}
3235
1e3c88bd
PZ
3236static unsigned long
3237balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3238 unsigned long max_load_move, struct sched_domain *sd,
3239 enum cpu_idle_type idle, int *all_pinned,
931aeeda 3240 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 3241{
b30aef17 3242 int loops = 0, pulled = 0;
1e3c88bd 3243 long rem_load_move = max_load_move;
ee00e66f 3244 struct task_struct *p, *n;
1e3c88bd
PZ
3245
3246 if (max_load_move == 0)
3247 goto out;
3248
ee00e66f
PZ
3249 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3250 if (loops++ > sysctl_sched_nr_migrate)
3251 break;
1e3c88bd 3252
ee00e66f 3253 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
3254 !can_migrate_task(p, busiest, this_cpu, sd, idle,
3255 all_pinned))
ee00e66f 3256 continue;
1e3c88bd 3257
ee00e66f
PZ
3258 pull_task(busiest, p, this_rq, this_cpu);
3259 pulled++;
3260 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
3261
3262#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3263 /*
3264 * NEWIDLE balancing is a source of latency, so preemptible
3265 * kernels will stop after the first task is pulled to minimize
3266 * the critical section.
3267 */
3268 if (idle == CPU_NEWLY_IDLE)
3269 break;
1e3c88bd
PZ
3270#endif
3271
ee00e66f
PZ
3272 /*
3273 * We only want to steal up to the prescribed amount of
3274 * weighted load.
3275 */
3276 if (rem_load_move <= 0)
3277 break;
1e3c88bd
PZ
3278 }
3279out:
3280 /*
3281 * Right now, this is one of only two places pull_task() is called,
3282 * so we can safely collect pull_task() stats here rather than
3283 * inside pull_task().
3284 */
3285 schedstat_add(sd, lb_gained[idle], pulled);
3286
1e3c88bd
PZ
3287 return max_load_move - rem_load_move;
3288}
3289
230059de 3290#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3291/*
3292 * update tg->load_weight by folding this cpu's load_avg
3293 */
67e86250 3294static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3295{
3296 struct cfs_rq *cfs_rq;
3297 unsigned long flags;
3298 struct rq *rq;
9e3081ca
PZ
3299
3300 if (!tg->se[cpu])
3301 return 0;
3302
3303 rq = cpu_rq(cpu);
3304 cfs_rq = tg->cfs_rq[cpu];
3305
3306 raw_spin_lock_irqsave(&rq->lock, flags);
3307
3308 update_rq_clock(rq);
d6b55918 3309 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3310
3311 /*
3312 * We need to update shares after updating tg->load_weight in
3313 * order to adjust the weight of groups with long running tasks.
3314 */
6d5ab293 3315 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3316
3317 raw_spin_unlock_irqrestore(&rq->lock, flags);
3318
3319 return 0;
3320}
3321
3322static void update_shares(int cpu)
3323{
3324 struct cfs_rq *cfs_rq;
3325 struct rq *rq = cpu_rq(cpu);
3326
3327 rcu_read_lock();
9763b67f
PZ
3328 /*
3329 * Iterates the task_group tree in a bottom up fashion, see
3330 * list_add_leaf_cfs_rq() for details.
3331 */
64660c86
PT
3332 for_each_leaf_cfs_rq(rq, cfs_rq) {
3333 /* throttled entities do not contribute to load */
3334 if (throttled_hierarchy(cfs_rq))
3335 continue;
3336
67e86250 3337 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3338 }
9e3081ca
PZ
3339 rcu_read_unlock();
3340}
3341
9763b67f
PZ
3342/*
3343 * Compute the cpu's hierarchical load factor for each task group.
3344 * This needs to be done in a top-down fashion because the load of a child
3345 * group is a fraction of its parents load.
3346 */
3347static int tg_load_down(struct task_group *tg, void *data)
3348{
3349 unsigned long load;
3350 long cpu = (long)data;
3351
3352 if (!tg->parent) {
3353 load = cpu_rq(cpu)->load.weight;
3354 } else {
3355 load = tg->parent->cfs_rq[cpu]->h_load;
3356 load *= tg->se[cpu]->load.weight;
3357 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3358 }
3359
3360 tg->cfs_rq[cpu]->h_load = load;
3361
3362 return 0;
3363}
3364
3365static void update_h_load(long cpu)
3366{
3367 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3368}
3369
230059de
PZ
3370static unsigned long
3371load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3372 unsigned long max_load_move,
3373 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3374 int *all_pinned)
230059de
PZ
3375{
3376 long rem_load_move = max_load_move;
9763b67f 3377 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
3378
3379 rcu_read_lock();
9763b67f 3380 update_h_load(cpu_of(busiest));
230059de 3381
9763b67f 3382 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
3383 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3384 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3385 u64 rem_load, moved_load;
3386
3387 /*
64660c86 3388 * empty group or part of a throttled hierarchy
230059de 3389 */
64660c86
PT
3390 if (!busiest_cfs_rq->task_weight ||
3391 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
3392 continue;
3393
3394 rem_load = (u64)rem_load_move * busiest_weight;
3395 rem_load = div_u64(rem_load, busiest_h_load + 1);
3396
3397 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 3398 rem_load, sd, idle, all_pinned,
230059de
PZ
3399 busiest_cfs_rq);
3400
3401 if (!moved_load)
3402 continue;
3403
3404 moved_load *= busiest_h_load;
3405 moved_load = div_u64(moved_load, busiest_weight + 1);
3406
3407 rem_load_move -= moved_load;
3408 if (rem_load_move < 0)
3409 break;
3410 }
3411 rcu_read_unlock();
3412
3413 return max_load_move - rem_load_move;
3414}
3415#else
9e3081ca
PZ
3416static inline void update_shares(int cpu)
3417{
3418}
3419
230059de
PZ
3420static unsigned long
3421load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3422 unsigned long max_load_move,
3423 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3424 int *all_pinned)
230059de
PZ
3425{
3426 return balance_tasks(this_rq, this_cpu, busiest,
3427 max_load_move, sd, idle, all_pinned,
931aeeda 3428 &busiest->cfs);
230059de
PZ
3429}
3430#endif
3431
1e3c88bd
PZ
3432/*
3433 * move_tasks tries to move up to max_load_move weighted load from busiest to
3434 * this_rq, as part of a balancing operation within domain "sd".
3435 * Returns 1 if successful and 0 otherwise.
3436 *
3437 * Called with both runqueues locked.
3438 */
3439static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3440 unsigned long max_load_move,
3441 struct sched_domain *sd, enum cpu_idle_type idle,
3442 int *all_pinned)
3443{
3d45fd80 3444 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
3445
3446 do {
3d45fd80 3447 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 3448 max_load_move - total_load_moved,
931aeeda 3449 sd, idle, all_pinned);
3d45fd80
PZ
3450
3451 total_load_moved += load_moved;
1e3c88bd
PZ
3452
3453#ifdef CONFIG_PREEMPT
3454 /*
3455 * NEWIDLE balancing is a source of latency, so preemptible
3456 * kernels will stop after the first task is pulled to minimize
3457 * the critical section.
3458 */
3459 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3460 break;
baa8c110
PZ
3461
3462 if (raw_spin_is_contended(&this_rq->lock) ||
3463 raw_spin_is_contended(&busiest->lock))
3464 break;
1e3c88bd 3465#endif
3d45fd80 3466 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3467
3468 return total_load_moved > 0;
3469}
3470
1e3c88bd
PZ
3471/********** Helpers for find_busiest_group ************************/
3472/*
3473 * sd_lb_stats - Structure to store the statistics of a sched_domain
3474 * during load balancing.
3475 */
3476struct sd_lb_stats {
3477 struct sched_group *busiest; /* Busiest group in this sd */
3478 struct sched_group *this; /* Local group in this sd */
3479 unsigned long total_load; /* Total load of all groups in sd */
3480 unsigned long total_pwr; /* Total power of all groups in sd */
3481 unsigned long avg_load; /* Average load across all groups in sd */
3482
3483 /** Statistics of this group */
3484 unsigned long this_load;
3485 unsigned long this_load_per_task;
3486 unsigned long this_nr_running;
fab47622 3487 unsigned long this_has_capacity;
aae6d3dd 3488 unsigned int this_idle_cpus;
1e3c88bd
PZ
3489
3490 /* Statistics of the busiest group */
aae6d3dd 3491 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3492 unsigned long max_load;
3493 unsigned long busiest_load_per_task;
3494 unsigned long busiest_nr_running;
dd5feea1 3495 unsigned long busiest_group_capacity;
fab47622 3496 unsigned long busiest_has_capacity;
aae6d3dd 3497 unsigned int busiest_group_weight;
1e3c88bd
PZ
3498
3499 int group_imb; /* Is there imbalance in this sd */
3500#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3501 int power_savings_balance; /* Is powersave balance needed for this sd */
3502 struct sched_group *group_min; /* Least loaded group in sd */
3503 struct sched_group *group_leader; /* Group which relieves group_min */
3504 unsigned long min_load_per_task; /* load_per_task in group_min */
3505 unsigned long leader_nr_running; /* Nr running of group_leader */
3506 unsigned long min_nr_running; /* Nr running of group_min */
3507#endif
3508};
3509
3510/*
3511 * sg_lb_stats - stats of a sched_group required for load_balancing
3512 */
3513struct sg_lb_stats {
3514 unsigned long avg_load; /*Avg load across the CPUs of the group */
3515 unsigned long group_load; /* Total load over the CPUs of the group */
3516 unsigned long sum_nr_running; /* Nr tasks running in the group */
3517 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3518 unsigned long group_capacity;
aae6d3dd
SS
3519 unsigned long idle_cpus;
3520 unsigned long group_weight;
1e3c88bd 3521 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3522 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3523};
3524
1e3c88bd
PZ
3525/**
3526 * get_sd_load_idx - Obtain the load index for a given sched domain.
3527 * @sd: The sched_domain whose load_idx is to be obtained.
3528 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3529 */
3530static inline int get_sd_load_idx(struct sched_domain *sd,
3531 enum cpu_idle_type idle)
3532{
3533 int load_idx;
3534
3535 switch (idle) {
3536 case CPU_NOT_IDLE:
3537 load_idx = sd->busy_idx;
3538 break;
3539
3540 case CPU_NEWLY_IDLE:
3541 load_idx = sd->newidle_idx;
3542 break;
3543 default:
3544 load_idx = sd->idle_idx;
3545 break;
3546 }
3547
3548 return load_idx;
3549}
3550
3551
3552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3553/**
3554 * init_sd_power_savings_stats - Initialize power savings statistics for
3555 * the given sched_domain, during load balancing.
3556 *
3557 * @sd: Sched domain whose power-savings statistics are to be initialized.
3558 * @sds: Variable containing the statistics for sd.
3559 * @idle: Idle status of the CPU at which we're performing load-balancing.
3560 */
3561static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3562 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3563{
3564 /*
3565 * Busy processors will not participate in power savings
3566 * balance.
3567 */
3568 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3569 sds->power_savings_balance = 0;
3570 else {
3571 sds->power_savings_balance = 1;
3572 sds->min_nr_running = ULONG_MAX;
3573 sds->leader_nr_running = 0;
3574 }
3575}
3576
3577/**
3578 * update_sd_power_savings_stats - Update the power saving stats for a
3579 * sched_domain while performing load balancing.
3580 *
3581 * @group: sched_group belonging to the sched_domain under consideration.
3582 * @sds: Variable containing the statistics of the sched_domain
3583 * @local_group: Does group contain the CPU for which we're performing
3584 * load balancing ?
3585 * @sgs: Variable containing the statistics of the group.
3586 */
3587static inline void update_sd_power_savings_stats(struct sched_group *group,
3588 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3589{
3590
3591 if (!sds->power_savings_balance)
3592 return;
3593
3594 /*
3595 * If the local group is idle or completely loaded
3596 * no need to do power savings balance at this domain
3597 */
3598 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3599 !sds->this_nr_running))
3600 sds->power_savings_balance = 0;
3601
3602 /*
3603 * If a group is already running at full capacity or idle,
3604 * don't include that group in power savings calculations
3605 */
3606 if (!sds->power_savings_balance ||
3607 sgs->sum_nr_running >= sgs->group_capacity ||
3608 !sgs->sum_nr_running)
3609 return;
3610
3611 /*
3612 * Calculate the group which has the least non-idle load.
3613 * This is the group from where we need to pick up the load
3614 * for saving power
3615 */
3616 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3617 (sgs->sum_nr_running == sds->min_nr_running &&
3618 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3619 sds->group_min = group;
3620 sds->min_nr_running = sgs->sum_nr_running;
3621 sds->min_load_per_task = sgs->sum_weighted_load /
3622 sgs->sum_nr_running;
3623 }
3624
3625 /*
3626 * Calculate the group which is almost near its
3627 * capacity but still has some space to pick up some load
3628 * from other group and save more power
3629 */
3630 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3631 return;
3632
3633 if (sgs->sum_nr_running > sds->leader_nr_running ||
3634 (sgs->sum_nr_running == sds->leader_nr_running &&
3635 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3636 sds->group_leader = group;
3637 sds->leader_nr_running = sgs->sum_nr_running;
3638 }
3639}
3640
3641/**
3642 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3643 * @sds: Variable containing the statistics of the sched_domain
3644 * under consideration.
3645 * @this_cpu: Cpu at which we're currently performing load-balancing.
3646 * @imbalance: Variable to store the imbalance.
3647 *
3648 * Description:
3649 * Check if we have potential to perform some power-savings balance.
3650 * If yes, set the busiest group to be the least loaded group in the
3651 * sched_domain, so that it's CPUs can be put to idle.
3652 *
3653 * Returns 1 if there is potential to perform power-savings balance.
3654 * Else returns 0.
3655 */
3656static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3657 int this_cpu, unsigned long *imbalance)
3658{
3659 if (!sds->power_savings_balance)
3660 return 0;
3661
3662 if (sds->this != sds->group_leader ||
3663 sds->group_leader == sds->group_min)
3664 return 0;
3665
3666 *imbalance = sds->min_load_per_task;
3667 sds->busiest = sds->group_min;
3668
3669 return 1;
3670
3671}
3672#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3673static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3674 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3675{
3676 return;
3677}
3678
3679static inline void update_sd_power_savings_stats(struct sched_group *group,
3680 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3681{
3682 return;
3683}
3684
3685static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3686 int this_cpu, unsigned long *imbalance)
3687{
3688 return 0;
3689}
3690#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3691
3692
3693unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3694{
1399fa78 3695 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3696}
3697
3698unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3699{
3700 return default_scale_freq_power(sd, cpu);
3701}
3702
3703unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3704{
669c55e9 3705 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3706 unsigned long smt_gain = sd->smt_gain;
3707
3708 smt_gain /= weight;
3709
3710 return smt_gain;
3711}
3712
3713unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3714{
3715 return default_scale_smt_power(sd, cpu);
3716}
3717
3718unsigned long scale_rt_power(int cpu)
3719{
3720 struct rq *rq = cpu_rq(cpu);
3721 u64 total, available;
3722
1e3c88bd 3723 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3724
3725 if (unlikely(total < rq->rt_avg)) {
3726 /* Ensures that power won't end up being negative */
3727 available = 0;
3728 } else {
3729 available = total - rq->rt_avg;
3730 }
1e3c88bd 3731
1399fa78
NR
3732 if (unlikely((s64)total < SCHED_POWER_SCALE))
3733 total = SCHED_POWER_SCALE;
1e3c88bd 3734
1399fa78 3735 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3736
3737 return div_u64(available, total);
3738}
3739
3740static void update_cpu_power(struct sched_domain *sd, int cpu)
3741{
669c55e9 3742 unsigned long weight = sd->span_weight;
1399fa78 3743 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3744 struct sched_group *sdg = sd->groups;
3745
1e3c88bd
PZ
3746 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3747 if (sched_feat(ARCH_POWER))
3748 power *= arch_scale_smt_power(sd, cpu);
3749 else
3750 power *= default_scale_smt_power(sd, cpu);
3751
1399fa78 3752 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3753 }
3754
9c3f75cb 3755 sdg->sgp->power_orig = power;
9d5efe05
SV
3756
3757 if (sched_feat(ARCH_POWER))
3758 power *= arch_scale_freq_power(sd, cpu);
3759 else
3760 power *= default_scale_freq_power(sd, cpu);
3761
1399fa78 3762 power >>= SCHED_POWER_SHIFT;
9d5efe05 3763
1e3c88bd 3764 power *= scale_rt_power(cpu);
1399fa78 3765 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3766
3767 if (!power)
3768 power = 1;
3769
e51fd5e2 3770 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3771 sdg->sgp->power = power;
1e3c88bd
PZ
3772}
3773
029632fb 3774void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3775{
3776 struct sched_domain *child = sd->child;
3777 struct sched_group *group, *sdg = sd->groups;
3778 unsigned long power;
3779
3780 if (!child) {
3781 update_cpu_power(sd, cpu);
3782 return;
3783 }
3784
3785 power = 0;
3786
3787 group = child->groups;
3788 do {
9c3f75cb 3789 power += group->sgp->power;
1e3c88bd
PZ
3790 group = group->next;
3791 } while (group != child->groups);
3792
9c3f75cb 3793 sdg->sgp->power = power;
1e3c88bd
PZ
3794}
3795
9d5efe05
SV
3796/*
3797 * Try and fix up capacity for tiny siblings, this is needed when
3798 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3799 * which on its own isn't powerful enough.
3800 *
3801 * See update_sd_pick_busiest() and check_asym_packing().
3802 */
3803static inline int
3804fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3805{
3806 /*
1399fa78 3807 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3808 */
a6c75f2f 3809 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3810 return 0;
3811
3812 /*
3813 * If ~90% of the cpu_power is still there, we're good.
3814 */
9c3f75cb 3815 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3816 return 1;
3817
3818 return 0;
3819}
3820
1e3c88bd
PZ
3821/**
3822 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3823 * @sd: The sched_domain whose statistics are to be updated.
3824 * @group: sched_group whose statistics are to be updated.
3825 * @this_cpu: Cpu for which load balance is currently performed.
3826 * @idle: Idle status of this_cpu
3827 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3828 * @local_group: Does group contain this_cpu.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sgs: variable to hold the statistics for this group.
3832 */
3833static inline void update_sg_lb_stats(struct sched_domain *sd,
3834 struct sched_group *group, int this_cpu,
46e49b38 3835 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3836 int local_group, const struct cpumask *cpus,
3837 int *balance, struct sg_lb_stats *sgs)
3838{
2582f0eb 3839 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3840 int i;
3841 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3842 unsigned long avg_load_per_task = 0;
1e3c88bd 3843
871e35bc 3844 if (local_group)
1e3c88bd 3845 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3846
3847 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3848 max_cpu_load = 0;
3849 min_cpu_load = ~0UL;
2582f0eb 3850 max_nr_running = 0;
1e3c88bd
PZ
3851
3852 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3853 struct rq *rq = cpu_rq(i);
3854
1e3c88bd
PZ
3855 /* Bias balancing toward cpus of our domain */
3856 if (local_group) {
3857 if (idle_cpu(i) && !first_idle_cpu) {
3858 first_idle_cpu = 1;
3859 balance_cpu = i;
3860 }
3861
3862 load = target_load(i, load_idx);
3863 } else {
3864 load = source_load(i, load_idx);
2582f0eb 3865 if (load > max_cpu_load) {
1e3c88bd 3866 max_cpu_load = load;
2582f0eb
NR
3867 max_nr_running = rq->nr_running;
3868 }
1e3c88bd
PZ
3869 if (min_cpu_load > load)
3870 min_cpu_load = load;
3871 }
3872
3873 sgs->group_load += load;
3874 sgs->sum_nr_running += rq->nr_running;
3875 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3876 if (idle_cpu(i))
3877 sgs->idle_cpus++;
1e3c88bd
PZ
3878 }
3879
3880 /*
3881 * First idle cpu or the first cpu(busiest) in this sched group
3882 * is eligible for doing load balancing at this and above
3883 * domains. In the newly idle case, we will allow all the cpu's
3884 * to do the newly idle load balance.
3885 */
bbc8cb5b
PZ
3886 if (idle != CPU_NEWLY_IDLE && local_group) {
3887 if (balance_cpu != this_cpu) {
3888 *balance = 0;
3889 return;
3890 }
3891 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3892 }
3893
3894 /* Adjust by relative CPU power of the group */
9c3f75cb 3895 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3896
1e3c88bd
PZ
3897 /*
3898 * Consider the group unbalanced when the imbalance is larger
866ab43e 3899 * than the average weight of a task.
1e3c88bd
PZ
3900 *
3901 * APZ: with cgroup the avg task weight can vary wildly and
3902 * might not be a suitable number - should we keep a
3903 * normalized nr_running number somewhere that negates
3904 * the hierarchy?
3905 */
dd5feea1
SS
3906 if (sgs->sum_nr_running)
3907 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3908
866ab43e 3909 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3910 sgs->group_imb = 1;
3911
9c3f75cb 3912 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3913 SCHED_POWER_SCALE);
9d5efe05
SV
3914 if (!sgs->group_capacity)
3915 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3916 sgs->group_weight = group->group_weight;
fab47622
NR
3917
3918 if (sgs->group_capacity > sgs->sum_nr_running)
3919 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3920}
3921
532cb4c4
MN
3922/**
3923 * update_sd_pick_busiest - return 1 on busiest group
3924 * @sd: sched_domain whose statistics are to be checked
3925 * @sds: sched_domain statistics
3926 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3927 * @sgs: sched_group statistics
3928 * @this_cpu: the current cpu
532cb4c4
MN
3929 *
3930 * Determine if @sg is a busier group than the previously selected
3931 * busiest group.
3932 */
3933static bool update_sd_pick_busiest(struct sched_domain *sd,
3934 struct sd_lb_stats *sds,
3935 struct sched_group *sg,
3936 struct sg_lb_stats *sgs,
3937 int this_cpu)
3938{
3939 if (sgs->avg_load <= sds->max_load)
3940 return false;
3941
3942 if (sgs->sum_nr_running > sgs->group_capacity)
3943 return true;
3944
3945 if (sgs->group_imb)
3946 return true;
3947
3948 /*
3949 * ASYM_PACKING needs to move all the work to the lowest
3950 * numbered CPUs in the group, therefore mark all groups
3951 * higher than ourself as busy.
3952 */
3953 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3954 this_cpu < group_first_cpu(sg)) {
3955 if (!sds->busiest)
3956 return true;
3957
3958 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3959 return true;
3960 }
3961
3962 return false;
3963}
3964
1e3c88bd 3965/**
461819ac 3966 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3967 * @sd: sched_domain whose statistics are to be updated.
3968 * @this_cpu: Cpu for which load balance is currently performed.
3969 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3970 * @cpus: Set of cpus considered for load balancing.
3971 * @balance: Should we balance.
3972 * @sds: variable to hold the statistics for this sched_domain.
3973 */
3974static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3975 enum cpu_idle_type idle, const struct cpumask *cpus,
3976 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3977{
3978 struct sched_domain *child = sd->child;
532cb4c4 3979 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3980 struct sg_lb_stats sgs;
3981 int load_idx, prefer_sibling = 0;
3982
3983 if (child && child->flags & SD_PREFER_SIBLING)
3984 prefer_sibling = 1;
3985
3986 init_sd_power_savings_stats(sd, sds, idle);
3987 load_idx = get_sd_load_idx(sd, idle);
3988
3989 do {
3990 int local_group;
3991
532cb4c4 3992 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3993 memset(&sgs, 0, sizeof(sgs));
46e49b38 3994 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3995 local_group, cpus, balance, &sgs);
3996
8f190fb3 3997 if (local_group && !(*balance))
1e3c88bd
PZ
3998 return;
3999
4000 sds->total_load += sgs.group_load;
9c3f75cb 4001 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4002
4003 /*
4004 * In case the child domain prefers tasks go to siblings
532cb4c4 4005 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4006 * and move all the excess tasks away. We lower the capacity
4007 * of a group only if the local group has the capacity to fit
4008 * these excess tasks, i.e. nr_running < group_capacity. The
4009 * extra check prevents the case where you always pull from the
4010 * heaviest group when it is already under-utilized (possible
4011 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4012 */
75dd321d 4013 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4014 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4015
4016 if (local_group) {
4017 sds->this_load = sgs.avg_load;
532cb4c4 4018 sds->this = sg;
1e3c88bd
PZ
4019 sds->this_nr_running = sgs.sum_nr_running;
4020 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4021 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4022 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 4023 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 4024 sds->max_load = sgs.avg_load;
532cb4c4 4025 sds->busiest = sg;
1e3c88bd 4026 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4027 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4028 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4029 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4030 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4031 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4032 sds->group_imb = sgs.group_imb;
4033 }
4034
532cb4c4
MN
4035 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4036 sg = sg->next;
4037 } while (sg != sd->groups);
4038}
4039
532cb4c4
MN
4040/**
4041 * check_asym_packing - Check to see if the group is packed into the
4042 * sched doman.
4043 *
4044 * This is primarily intended to used at the sibling level. Some
4045 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4046 * case of POWER7, it can move to lower SMT modes only when higher
4047 * threads are idle. When in lower SMT modes, the threads will
4048 * perform better since they share less core resources. Hence when we
4049 * have idle threads, we want them to be the higher ones.
4050 *
4051 * This packing function is run on idle threads. It checks to see if
4052 * the busiest CPU in this domain (core in the P7 case) has a higher
4053 * CPU number than the packing function is being run on. Here we are
4054 * assuming lower CPU number will be equivalent to lower a SMT thread
4055 * number.
4056 *
b6b12294
MN
4057 * Returns 1 when packing is required and a task should be moved to
4058 * this CPU. The amount of the imbalance is returned in *imbalance.
4059 *
532cb4c4
MN
4060 * @sd: The sched_domain whose packing is to be checked.
4061 * @sds: Statistics of the sched_domain which is to be packed
4062 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4063 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
4064 */
4065static int check_asym_packing(struct sched_domain *sd,
4066 struct sd_lb_stats *sds,
4067 int this_cpu, unsigned long *imbalance)
4068{
4069 int busiest_cpu;
4070
4071 if (!(sd->flags & SD_ASYM_PACKING))
4072 return 0;
4073
4074 if (!sds->busiest)
4075 return 0;
4076
4077 busiest_cpu = group_first_cpu(sds->busiest);
4078 if (this_cpu > busiest_cpu)
4079 return 0;
4080
9c3f75cb 4081 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 4082 SCHED_POWER_SCALE);
532cb4c4 4083 return 1;
1e3c88bd
PZ
4084}
4085
4086/**
4087 * fix_small_imbalance - Calculate the minor imbalance that exists
4088 * amongst the groups of a sched_domain, during
4089 * load balancing.
4090 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4091 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4092 * @imbalance: Variable to store the imbalance.
4093 */
4094static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4095 int this_cpu, unsigned long *imbalance)
4096{
4097 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4098 unsigned int imbn = 2;
dd5feea1 4099 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4100
4101 if (sds->this_nr_running) {
4102 sds->this_load_per_task /= sds->this_nr_running;
4103 if (sds->busiest_load_per_task >
4104 sds->this_load_per_task)
4105 imbn = 1;
4106 } else
4107 sds->this_load_per_task =
4108 cpu_avg_load_per_task(this_cpu);
4109
dd5feea1 4110 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4111 * SCHED_POWER_SCALE;
9c3f75cb 4112 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4113
4114 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4115 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
4116 *imbalance = sds->busiest_load_per_task;
4117 return;
4118 }
4119
4120 /*
4121 * OK, we don't have enough imbalance to justify moving tasks,
4122 * however we may be able to increase total CPU power used by
4123 * moving them.
4124 */
4125
9c3f75cb 4126 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4127 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4128 pwr_now += sds->this->sgp->power *
1e3c88bd 4129 min(sds->this_load_per_task, sds->this_load);
1399fa78 4130 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4131
4132 /* Amount of load we'd subtract */
1399fa78 4133 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4134 sds->busiest->sgp->power;
1e3c88bd 4135 if (sds->max_load > tmp)
9c3f75cb 4136 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4137 min(sds->busiest_load_per_task, sds->max_load - tmp);
4138
4139 /* Amount of load we'd add */
9c3f75cb 4140 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4141 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4142 tmp = (sds->max_load * sds->busiest->sgp->power) /
4143 sds->this->sgp->power;
1e3c88bd 4144 else
1399fa78 4145 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4146 sds->this->sgp->power;
4147 pwr_move += sds->this->sgp->power *
1e3c88bd 4148 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4149 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4150
4151 /* Move if we gain throughput */
4152 if (pwr_move > pwr_now)
4153 *imbalance = sds->busiest_load_per_task;
4154}
4155
4156/**
4157 * calculate_imbalance - Calculate the amount of imbalance present within the
4158 * groups of a given sched_domain during load balance.
4159 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4160 * @this_cpu: Cpu for which currently load balance is being performed.
4161 * @imbalance: The variable to store the imbalance.
4162 */
4163static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4164 unsigned long *imbalance)
4165{
dd5feea1
SS
4166 unsigned long max_pull, load_above_capacity = ~0UL;
4167
4168 sds->busiest_load_per_task /= sds->busiest_nr_running;
4169 if (sds->group_imb) {
4170 sds->busiest_load_per_task =
4171 min(sds->busiest_load_per_task, sds->avg_load);
4172 }
4173
1e3c88bd
PZ
4174 /*
4175 * In the presence of smp nice balancing, certain scenarios can have
4176 * max load less than avg load(as we skip the groups at or below
4177 * its cpu_power, while calculating max_load..)
4178 */
4179 if (sds->max_load < sds->avg_load) {
4180 *imbalance = 0;
4181 return fix_small_imbalance(sds, this_cpu, imbalance);
4182 }
4183
dd5feea1
SS
4184 if (!sds->group_imb) {
4185 /*
4186 * Don't want to pull so many tasks that a group would go idle.
4187 */
4188 load_above_capacity = (sds->busiest_nr_running -
4189 sds->busiest_group_capacity);
4190
1399fa78 4191 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4192
9c3f75cb 4193 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4194 }
4195
4196 /*
4197 * We're trying to get all the cpus to the average_load, so we don't
4198 * want to push ourselves above the average load, nor do we wish to
4199 * reduce the max loaded cpu below the average load. At the same time,
4200 * we also don't want to reduce the group load below the group capacity
4201 * (so that we can implement power-savings policies etc). Thus we look
4202 * for the minimum possible imbalance.
4203 * Be careful of negative numbers as they'll appear as very large values
4204 * with unsigned longs.
4205 */
4206 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4207
4208 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
4209 *imbalance = min(max_pull * sds->busiest->sgp->power,
4210 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4211 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4212
4213 /*
4214 * if *imbalance is less than the average load per runnable task
25985edc 4215 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4216 * a think about bumping its value to force at least one task to be
4217 * moved
4218 */
4219 if (*imbalance < sds->busiest_load_per_task)
4220 return fix_small_imbalance(sds, this_cpu, imbalance);
4221
4222}
fab47622 4223
1e3c88bd
PZ
4224/******* find_busiest_group() helpers end here *********************/
4225
4226/**
4227 * find_busiest_group - Returns the busiest group within the sched_domain
4228 * if there is an imbalance. If there isn't an imbalance, and
4229 * the user has opted for power-savings, it returns a group whose
4230 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4231 * such a group exists.
4232 *
4233 * Also calculates the amount of weighted load which should be moved
4234 * to restore balance.
4235 *
4236 * @sd: The sched_domain whose busiest group is to be returned.
4237 * @this_cpu: The cpu for which load balancing is currently being performed.
4238 * @imbalance: Variable which stores amount of weighted load which should
4239 * be moved to restore balance/put a group to idle.
4240 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4241 * @cpus: The set of CPUs under consideration for load-balancing.
4242 * @balance: Pointer to a variable indicating if this_cpu
4243 * is the appropriate cpu to perform load balancing at this_level.
4244 *
4245 * Returns: - the busiest group if imbalance exists.
4246 * - If no imbalance and user has opted for power-savings balance,
4247 * return the least loaded group whose CPUs can be
4248 * put to idle by rebalancing its tasks onto our group.
4249 */
4250static struct sched_group *
4251find_busiest_group(struct sched_domain *sd, int this_cpu,
4252 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 4253 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4254{
4255 struct sd_lb_stats sds;
4256
4257 memset(&sds, 0, sizeof(sds));
4258
4259 /*
4260 * Compute the various statistics relavent for load balancing at
4261 * this level.
4262 */
46e49b38 4263 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 4264
cc57aa8f
PZ
4265 /*
4266 * this_cpu is not the appropriate cpu to perform load balancing at
4267 * this level.
1e3c88bd 4268 */
8f190fb3 4269 if (!(*balance))
1e3c88bd
PZ
4270 goto ret;
4271
532cb4c4
MN
4272 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4273 check_asym_packing(sd, &sds, this_cpu, imbalance))
4274 return sds.busiest;
4275
cc57aa8f 4276 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4277 if (!sds.busiest || sds.busiest_nr_running == 0)
4278 goto out_balanced;
4279
1399fa78 4280 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4281
866ab43e
PZ
4282 /*
4283 * If the busiest group is imbalanced the below checks don't
4284 * work because they assumes all things are equal, which typically
4285 * isn't true due to cpus_allowed constraints and the like.
4286 */
4287 if (sds.group_imb)
4288 goto force_balance;
4289
cc57aa8f 4290 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
4291 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4292 !sds.busiest_has_capacity)
4293 goto force_balance;
4294
cc57aa8f
PZ
4295 /*
4296 * If the local group is more busy than the selected busiest group
4297 * don't try and pull any tasks.
4298 */
1e3c88bd
PZ
4299 if (sds.this_load >= sds.max_load)
4300 goto out_balanced;
4301
cc57aa8f
PZ
4302 /*
4303 * Don't pull any tasks if this group is already above the domain
4304 * average load.
4305 */
1e3c88bd
PZ
4306 if (sds.this_load >= sds.avg_load)
4307 goto out_balanced;
4308
c186fafe 4309 if (idle == CPU_IDLE) {
aae6d3dd
SS
4310 /*
4311 * This cpu is idle. If the busiest group load doesn't
4312 * have more tasks than the number of available cpu's and
4313 * there is no imbalance between this and busiest group
4314 * wrt to idle cpu's, it is balanced.
4315 */
c186fafe 4316 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4317 sds.busiest_nr_running <= sds.busiest_group_weight)
4318 goto out_balanced;
c186fafe
PZ
4319 } else {
4320 /*
4321 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4322 * imbalance_pct to be conservative.
4323 */
4324 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4325 goto out_balanced;
aae6d3dd 4326 }
1e3c88bd 4327
fab47622 4328force_balance:
1e3c88bd
PZ
4329 /* Looks like there is an imbalance. Compute it */
4330 calculate_imbalance(&sds, this_cpu, imbalance);
4331 return sds.busiest;
4332
4333out_balanced:
4334 /*
4335 * There is no obvious imbalance. But check if we can do some balancing
4336 * to save power.
4337 */
4338 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4339 return sds.busiest;
4340ret:
4341 *imbalance = 0;
4342 return NULL;
4343}
4344
4345/*
4346 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4347 */
4348static struct rq *
9d5efe05
SV
4349find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4350 enum cpu_idle_type idle, unsigned long imbalance,
4351 const struct cpumask *cpus)
1e3c88bd
PZ
4352{
4353 struct rq *busiest = NULL, *rq;
4354 unsigned long max_load = 0;
4355 int i;
4356
4357 for_each_cpu(i, sched_group_cpus(group)) {
4358 unsigned long power = power_of(i);
1399fa78
NR
4359 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4360 SCHED_POWER_SCALE);
1e3c88bd
PZ
4361 unsigned long wl;
4362
9d5efe05
SV
4363 if (!capacity)
4364 capacity = fix_small_capacity(sd, group);
4365
1e3c88bd
PZ
4366 if (!cpumask_test_cpu(i, cpus))
4367 continue;
4368
4369 rq = cpu_rq(i);
6e40f5bb 4370 wl = weighted_cpuload(i);
1e3c88bd 4371
6e40f5bb
TG
4372 /*
4373 * When comparing with imbalance, use weighted_cpuload()
4374 * which is not scaled with the cpu power.
4375 */
1e3c88bd
PZ
4376 if (capacity && rq->nr_running == 1 && wl > imbalance)
4377 continue;
4378
6e40f5bb
TG
4379 /*
4380 * For the load comparisons with the other cpu's, consider
4381 * the weighted_cpuload() scaled with the cpu power, so that
4382 * the load can be moved away from the cpu that is potentially
4383 * running at a lower capacity.
4384 */
1399fa78 4385 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4386
1e3c88bd
PZ
4387 if (wl > max_load) {
4388 max_load = wl;
4389 busiest = rq;
4390 }
4391 }
4392
4393 return busiest;
4394}
4395
4396/*
4397 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4398 * so long as it is large enough.
4399 */
4400#define MAX_PINNED_INTERVAL 512
4401
4402/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4403DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4404
46e49b38 4405static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4406 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4407{
4408 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4409
4410 /*
4411 * ASYM_PACKING needs to force migrate tasks from busy but
4412 * higher numbered CPUs in order to pack all tasks in the
4413 * lowest numbered CPUs.
4414 */
4415 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4416 return 1;
4417
1af3ed3d
PZ
4418 /*
4419 * The only task running in a non-idle cpu can be moved to this
4420 * cpu in an attempt to completely freeup the other CPU
4421 * package.
4422 *
4423 * The package power saving logic comes from
4424 * find_busiest_group(). If there are no imbalance, then
4425 * f_b_g() will return NULL. However when sched_mc={1,2} then
4426 * f_b_g() will select a group from which a running task may be
4427 * pulled to this cpu in order to make the other package idle.
4428 * If there is no opportunity to make a package idle and if
4429 * there are no imbalance, then f_b_g() will return NULL and no
4430 * action will be taken in load_balance_newidle().
4431 *
4432 * Under normal task pull operation due to imbalance, there
4433 * will be more than one task in the source run queue and
4434 * move_tasks() will succeed. ld_moved will be true and this
4435 * active balance code will not be triggered.
4436 */
1af3ed3d
PZ
4437 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4438 return 0;
4439 }
4440
4441 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4442}
4443
969c7921
TH
4444static int active_load_balance_cpu_stop(void *data);
4445
1e3c88bd
PZ
4446/*
4447 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4448 * tasks if there is an imbalance.
4449 */
4450static int load_balance(int this_cpu, struct rq *this_rq,
4451 struct sched_domain *sd, enum cpu_idle_type idle,
4452 int *balance)
4453{
46e49b38 4454 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
4455 struct sched_group *group;
4456 unsigned long imbalance;
4457 struct rq *busiest;
4458 unsigned long flags;
4459 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4460
4461 cpumask_copy(cpus, cpu_active_mask);
4462
1e3c88bd
PZ
4463 schedstat_inc(sd, lb_count[idle]);
4464
4465redo:
46e49b38 4466 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4467 cpus, balance);
4468
4469 if (*balance == 0)
4470 goto out_balanced;
4471
4472 if (!group) {
4473 schedstat_inc(sd, lb_nobusyg[idle]);
4474 goto out_balanced;
4475 }
4476
9d5efe05 4477 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4478 if (!busiest) {
4479 schedstat_inc(sd, lb_nobusyq[idle]);
4480 goto out_balanced;
4481 }
4482
4483 BUG_ON(busiest == this_rq);
4484
4485 schedstat_add(sd, lb_imbalance[idle], imbalance);
4486
4487 ld_moved = 0;
4488 if (busiest->nr_running > 1) {
4489 /*
4490 * Attempt to move tasks. If find_busiest_group has found
4491 * an imbalance but busiest->nr_running <= 1, the group is
4492 * still unbalanced. ld_moved simply stays zero, so it is
4493 * correctly treated as an imbalance.
4494 */
b30aef17 4495 all_pinned = 1;
1e3c88bd
PZ
4496 local_irq_save(flags);
4497 double_rq_lock(this_rq, busiest);
4498 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4499 imbalance, sd, idle, &all_pinned);
4500 double_rq_unlock(this_rq, busiest);
4501 local_irq_restore(flags);
4502
4503 /*
4504 * some other cpu did the load balance for us.
4505 */
4506 if (ld_moved && this_cpu != smp_processor_id())
4507 resched_cpu(this_cpu);
4508
4509 /* All tasks on this runqueue were pinned by CPU affinity */
4510 if (unlikely(all_pinned)) {
4511 cpumask_clear_cpu(cpu_of(busiest), cpus);
4512 if (!cpumask_empty(cpus))
4513 goto redo;
4514 goto out_balanced;
4515 }
4516 }
4517
4518 if (!ld_moved) {
4519 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4520 /*
4521 * Increment the failure counter only on periodic balance.
4522 * We do not want newidle balance, which can be very
4523 * frequent, pollute the failure counter causing
4524 * excessive cache_hot migrations and active balances.
4525 */
4526 if (idle != CPU_NEWLY_IDLE)
4527 sd->nr_balance_failed++;
1e3c88bd 4528
46e49b38 4529 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4530 raw_spin_lock_irqsave(&busiest->lock, flags);
4531
969c7921
TH
4532 /* don't kick the active_load_balance_cpu_stop,
4533 * if the curr task on busiest cpu can't be
4534 * moved to this_cpu
1e3c88bd
PZ
4535 */
4536 if (!cpumask_test_cpu(this_cpu,
fa17b507 4537 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4538 raw_spin_unlock_irqrestore(&busiest->lock,
4539 flags);
4540 all_pinned = 1;
4541 goto out_one_pinned;
4542 }
4543
969c7921
TH
4544 /*
4545 * ->active_balance synchronizes accesses to
4546 * ->active_balance_work. Once set, it's cleared
4547 * only after active load balance is finished.
4548 */
1e3c88bd
PZ
4549 if (!busiest->active_balance) {
4550 busiest->active_balance = 1;
4551 busiest->push_cpu = this_cpu;
4552 active_balance = 1;
4553 }
4554 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4555
1e3c88bd 4556 if (active_balance)
969c7921
TH
4557 stop_one_cpu_nowait(cpu_of(busiest),
4558 active_load_balance_cpu_stop, busiest,
4559 &busiest->active_balance_work);
1e3c88bd
PZ
4560
4561 /*
4562 * We've kicked active balancing, reset the failure
4563 * counter.
4564 */
4565 sd->nr_balance_failed = sd->cache_nice_tries+1;
4566 }
4567 } else
4568 sd->nr_balance_failed = 0;
4569
4570 if (likely(!active_balance)) {
4571 /* We were unbalanced, so reset the balancing interval */
4572 sd->balance_interval = sd->min_interval;
4573 } else {
4574 /*
4575 * If we've begun active balancing, start to back off. This
4576 * case may not be covered by the all_pinned logic if there
4577 * is only 1 task on the busy runqueue (because we don't call
4578 * move_tasks).
4579 */
4580 if (sd->balance_interval < sd->max_interval)
4581 sd->balance_interval *= 2;
4582 }
4583
1e3c88bd
PZ
4584 goto out;
4585
4586out_balanced:
4587 schedstat_inc(sd, lb_balanced[idle]);
4588
4589 sd->nr_balance_failed = 0;
4590
4591out_one_pinned:
4592 /* tune up the balancing interval */
4593 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4594 (sd->balance_interval < sd->max_interval))
4595 sd->balance_interval *= 2;
4596
46e49b38 4597 ld_moved = 0;
1e3c88bd 4598out:
1e3c88bd
PZ
4599 return ld_moved;
4600}
4601
1e3c88bd
PZ
4602/*
4603 * idle_balance is called by schedule() if this_cpu is about to become
4604 * idle. Attempts to pull tasks from other CPUs.
4605 */
029632fb 4606void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4607{
4608 struct sched_domain *sd;
4609 int pulled_task = 0;
4610 unsigned long next_balance = jiffies + HZ;
4611
4612 this_rq->idle_stamp = this_rq->clock;
4613
4614 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4615 return;
4616
f492e12e
PZ
4617 /*
4618 * Drop the rq->lock, but keep IRQ/preempt disabled.
4619 */
4620 raw_spin_unlock(&this_rq->lock);
4621
c66eaf61 4622 update_shares(this_cpu);
dce840a0 4623 rcu_read_lock();
1e3c88bd
PZ
4624 for_each_domain(this_cpu, sd) {
4625 unsigned long interval;
f492e12e 4626 int balance = 1;
1e3c88bd
PZ
4627
4628 if (!(sd->flags & SD_LOAD_BALANCE))
4629 continue;
4630
f492e12e 4631 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4632 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4633 pulled_task = load_balance(this_cpu, this_rq,
4634 sd, CPU_NEWLY_IDLE, &balance);
4635 }
1e3c88bd
PZ
4636
4637 interval = msecs_to_jiffies(sd->balance_interval);
4638 if (time_after(next_balance, sd->last_balance + interval))
4639 next_balance = sd->last_balance + interval;
d5ad140b
NR
4640 if (pulled_task) {
4641 this_rq->idle_stamp = 0;
1e3c88bd 4642 break;
d5ad140b 4643 }
1e3c88bd 4644 }
dce840a0 4645 rcu_read_unlock();
f492e12e
PZ
4646
4647 raw_spin_lock(&this_rq->lock);
4648
1e3c88bd
PZ
4649 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4650 /*
4651 * We are going idle. next_balance may be set based on
4652 * a busy processor. So reset next_balance.
4653 */
4654 this_rq->next_balance = next_balance;
4655 }
4656}
4657
4658/*
969c7921
TH
4659 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4660 * running tasks off the busiest CPU onto idle CPUs. It requires at
4661 * least 1 task to be running on each physical CPU where possible, and
4662 * avoids physical / logical imbalances.
1e3c88bd 4663 */
969c7921 4664static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4665{
969c7921
TH
4666 struct rq *busiest_rq = data;
4667 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4668 int target_cpu = busiest_rq->push_cpu;
969c7921 4669 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4670 struct sched_domain *sd;
969c7921
TH
4671
4672 raw_spin_lock_irq(&busiest_rq->lock);
4673
4674 /* make sure the requested cpu hasn't gone down in the meantime */
4675 if (unlikely(busiest_cpu != smp_processor_id() ||
4676 !busiest_rq->active_balance))
4677 goto out_unlock;
1e3c88bd
PZ
4678
4679 /* Is there any task to move? */
4680 if (busiest_rq->nr_running <= 1)
969c7921 4681 goto out_unlock;
1e3c88bd
PZ
4682
4683 /*
4684 * This condition is "impossible", if it occurs
4685 * we need to fix it. Originally reported by
4686 * Bjorn Helgaas on a 128-cpu setup.
4687 */
4688 BUG_ON(busiest_rq == target_rq);
4689
4690 /* move a task from busiest_rq to target_rq */
4691 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4692
4693 /* Search for an sd spanning us and the target CPU. */
dce840a0 4694 rcu_read_lock();
1e3c88bd
PZ
4695 for_each_domain(target_cpu, sd) {
4696 if ((sd->flags & SD_LOAD_BALANCE) &&
4697 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4698 break;
4699 }
4700
4701 if (likely(sd)) {
4702 schedstat_inc(sd, alb_count);
4703
4704 if (move_one_task(target_rq, target_cpu, busiest_rq,
4705 sd, CPU_IDLE))
4706 schedstat_inc(sd, alb_pushed);
4707 else
4708 schedstat_inc(sd, alb_failed);
4709 }
dce840a0 4710 rcu_read_unlock();
1e3c88bd 4711 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4712out_unlock:
4713 busiest_rq->active_balance = 0;
4714 raw_spin_unlock_irq(&busiest_rq->lock);
4715 return 0;
1e3c88bd
PZ
4716}
4717
4718#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4719/*
4720 * idle load balancing details
4721 * - One of the idle CPUs nominates itself as idle load_balancer, while
4722 * entering idle.
4723 * - This idle load balancer CPU will also go into tickless mode when
4724 * it is idle, just like all other idle CPUs
4725 * - When one of the busy CPUs notice that there may be an idle rebalancing
4726 * needed, they will kick the idle load balancer, which then does idle
4727 * load balancing for all the idle CPUs.
4728 */
1e3c88bd
PZ
4729static struct {
4730 atomic_t load_balancer;
83cd4fe2
VP
4731 atomic_t first_pick_cpu;
4732 atomic_t second_pick_cpu;
4733 cpumask_var_t idle_cpus_mask;
4734 cpumask_var_t grp_idle_mask;
4735 unsigned long next_balance; /* in jiffy units */
4736} nohz ____cacheline_aligned;
1e3c88bd
PZ
4737
4738int get_nohz_load_balancer(void)
4739{
4740 return atomic_read(&nohz.load_balancer);
4741}
4742
4743#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4744/**
4745 * lowest_flag_domain - Return lowest sched_domain containing flag.
4746 * @cpu: The cpu whose lowest level of sched domain is to
4747 * be returned.
4748 * @flag: The flag to check for the lowest sched_domain
4749 * for the given cpu.
4750 *
4751 * Returns the lowest sched_domain of a cpu which contains the given flag.
4752 */
4753static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4754{
4755 struct sched_domain *sd;
4756
4757 for_each_domain(cpu, sd)
08354716 4758 if (sd->flags & flag)
1e3c88bd
PZ
4759 break;
4760
4761 return sd;
4762}
4763
4764/**
4765 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4766 * @cpu: The cpu whose domains we're iterating over.
4767 * @sd: variable holding the value of the power_savings_sd
4768 * for cpu.
4769 * @flag: The flag to filter the sched_domains to be iterated.
4770 *
4771 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4772 * set, starting from the lowest sched_domain to the highest.
4773 */
4774#define for_each_flag_domain(cpu, sd, flag) \
4775 for (sd = lowest_flag_domain(cpu, flag); \
4776 (sd && (sd->flags & flag)); sd = sd->parent)
4777
4778/**
4779 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4780 * @ilb_group: group to be checked for semi-idleness
4781 *
4782 * Returns: 1 if the group is semi-idle. 0 otherwise.
4783 *
4784 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4785 * and atleast one non-idle CPU. This helper function checks if the given
4786 * sched_group is semi-idle or not.
4787 */
4788static inline int is_semi_idle_group(struct sched_group *ilb_group)
4789{
83cd4fe2 4790 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
4791 sched_group_cpus(ilb_group));
4792
4793 /*
4794 * A sched_group is semi-idle when it has atleast one busy cpu
4795 * and atleast one idle cpu.
4796 */
83cd4fe2 4797 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
4798 return 0;
4799
83cd4fe2 4800 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
4801 return 0;
4802
4803 return 1;
4804}
4805/**
4806 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4807 * @cpu: The cpu which is nominating a new idle_load_balancer.
4808 *
4809 * Returns: Returns the id of the idle load balancer if it exists,
4810 * Else, returns >= nr_cpu_ids.
4811 *
4812 * This algorithm picks the idle load balancer such that it belongs to a
4813 * semi-idle powersavings sched_domain. The idea is to try and avoid
4814 * completely idle packages/cores just for the purpose of idle load balancing
4815 * when there are other idle cpu's which are better suited for that job.
4816 */
4817static int find_new_ilb(int cpu)
4818{
4819 struct sched_domain *sd;
4820 struct sched_group *ilb_group;
dce840a0 4821 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4822
4823 /*
4824 * Have idle load balancer selection from semi-idle packages only
4825 * when power-aware load balancing is enabled
4826 */
4827 if (!(sched_smt_power_savings || sched_mc_power_savings))
4828 goto out_done;
4829
4830 /*
4831 * Optimize for the case when we have no idle CPUs or only one
4832 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4833 */
83cd4fe2 4834 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4835 goto out_done;
4836
dce840a0 4837 rcu_read_lock();
1e3c88bd
PZ
4838 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4839 ilb_group = sd->groups;
4840
4841 do {
dce840a0
PZ
4842 if (is_semi_idle_group(ilb_group)) {
4843 ilb = cpumask_first(nohz.grp_idle_mask);
4844 goto unlock;
4845 }
1e3c88bd
PZ
4846
4847 ilb_group = ilb_group->next;
4848
4849 } while (ilb_group != sd->groups);
4850 }
dce840a0
PZ
4851unlock:
4852 rcu_read_unlock();
1e3c88bd
PZ
4853
4854out_done:
dce840a0 4855 return ilb;
1e3c88bd
PZ
4856}
4857#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4858static inline int find_new_ilb(int call_cpu)
4859{
83cd4fe2 4860 return nr_cpu_ids;
1e3c88bd
PZ
4861}
4862#endif
4863
83cd4fe2
VP
4864/*
4865 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4866 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4867 * CPU (if there is one).
4868 */
4869static void nohz_balancer_kick(int cpu)
4870{
4871 int ilb_cpu;
4872
4873 nohz.next_balance++;
4874
4875 ilb_cpu = get_nohz_load_balancer();
4876
4877 if (ilb_cpu >= nr_cpu_ids) {
4878 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4879 if (ilb_cpu >= nr_cpu_ids)
4880 return;
4881 }
4882
4883 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
83cd4fe2 4884 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
ca38062e
SS
4885
4886 smp_mb();
4887 /*
4888 * Use smp_send_reschedule() instead of resched_cpu().
4889 * This way we generate a sched IPI on the target cpu which
4890 * is idle. And the softirq performing nohz idle load balance
4891 * will be run before returning from the IPI.
4892 */
4893 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4894 }
4895 return;
4896}
4897
1e3c88bd
PZ
4898/*
4899 * This routine will try to nominate the ilb (idle load balancing)
4900 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4901 * load balancing on behalf of all those cpus.
1e3c88bd 4902 *
83cd4fe2
VP
4903 * When the ilb owner becomes busy, we will not have new ilb owner until some
4904 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4905 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4906 *
83cd4fe2
VP
4907 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4908 * ilb owner CPU in future (when there is a need for idle load balancing on
4909 * behalf of all idle CPUs).
1e3c88bd 4910 */
83cd4fe2 4911void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4912{
4913 int cpu = smp_processor_id();
4914
4915 if (stop_tick) {
1e3c88bd
PZ
4916 if (!cpu_active(cpu)) {
4917 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4918 return;
1e3c88bd
PZ
4919
4920 /*
4921 * If we are going offline and still the leader,
4922 * give up!
4923 */
83cd4fe2
VP
4924 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4925 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4926 BUG();
4927
83cd4fe2 4928 return;
1e3c88bd
PZ
4929 }
4930
83cd4fe2 4931 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4932
83cd4fe2
VP
4933 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4934 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4935 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4936 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4937
83cd4fe2 4938 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4939 int new_ilb;
4940
83cd4fe2
VP
4941 /* make me the ilb owner */
4942 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4943 cpu) != nr_cpu_ids)
4944 return;
4945
1e3c88bd
PZ
4946 /*
4947 * Check to see if there is a more power-efficient
4948 * ilb.
4949 */
4950 new_ilb = find_new_ilb(cpu);
4951 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4952 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4953 resched_cpu(new_ilb);
83cd4fe2 4954 return;
1e3c88bd 4955 }
83cd4fe2 4956 return;
1e3c88bd
PZ
4957 }
4958 } else {
83cd4fe2
VP
4959 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4960 return;
1e3c88bd 4961
83cd4fe2 4962 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4963
4964 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4965 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4966 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4967 BUG();
4968 }
83cd4fe2 4969 return;
1e3c88bd
PZ
4970}
4971#endif
4972
4973static DEFINE_SPINLOCK(balancing);
4974
49c022e6
PZ
4975static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4976
4977/*
4978 * Scale the max load_balance interval with the number of CPUs in the system.
4979 * This trades load-balance latency on larger machines for less cross talk.
4980 */
029632fb 4981void update_max_interval(void)
49c022e6
PZ
4982{
4983 max_load_balance_interval = HZ*num_online_cpus()/10;
4984}
4985
1e3c88bd
PZ
4986/*
4987 * It checks each scheduling domain to see if it is due to be balanced,
4988 * and initiates a balancing operation if so.
4989 *
4990 * Balancing parameters are set up in arch_init_sched_domains.
4991 */
4992static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4993{
4994 int balance = 1;
4995 struct rq *rq = cpu_rq(cpu);
4996 unsigned long interval;
4997 struct sched_domain *sd;
4998 /* Earliest time when we have to do rebalance again */
4999 unsigned long next_balance = jiffies + 60*HZ;
5000 int update_next_balance = 0;
5001 int need_serialize;
5002
2069dd75
PZ
5003 update_shares(cpu);
5004
dce840a0 5005 rcu_read_lock();
1e3c88bd
PZ
5006 for_each_domain(cpu, sd) {
5007 if (!(sd->flags & SD_LOAD_BALANCE))
5008 continue;
5009
5010 interval = sd->balance_interval;
5011 if (idle != CPU_IDLE)
5012 interval *= sd->busy_factor;
5013
5014 /* scale ms to jiffies */
5015 interval = msecs_to_jiffies(interval);
49c022e6 5016 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5017
5018 need_serialize = sd->flags & SD_SERIALIZE;
5019
5020 if (need_serialize) {
5021 if (!spin_trylock(&balancing))
5022 goto out;
5023 }
5024
5025 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5026 if (load_balance(cpu, rq, sd, idle, &balance)) {
5027 /*
5028 * We've pulled tasks over so either we're no
c186fafe 5029 * longer idle.
1e3c88bd
PZ
5030 */
5031 idle = CPU_NOT_IDLE;
5032 }
5033 sd->last_balance = jiffies;
5034 }
5035 if (need_serialize)
5036 spin_unlock(&balancing);
5037out:
5038 if (time_after(next_balance, sd->last_balance + interval)) {
5039 next_balance = sd->last_balance + interval;
5040 update_next_balance = 1;
5041 }
5042
5043 /*
5044 * Stop the load balance at this level. There is another
5045 * CPU in our sched group which is doing load balancing more
5046 * actively.
5047 */
5048 if (!balance)
5049 break;
5050 }
dce840a0 5051 rcu_read_unlock();
1e3c88bd
PZ
5052
5053 /*
5054 * next_balance will be updated only when there is a need.
5055 * When the cpu is attached to null domain for ex, it will not be
5056 * updated.
5057 */
5058 if (likely(update_next_balance))
5059 rq->next_balance = next_balance;
5060}
5061
83cd4fe2 5062#ifdef CONFIG_NO_HZ
1e3c88bd 5063/*
83cd4fe2 5064 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5065 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5066 */
83cd4fe2
VP
5067static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5068{
5069 struct rq *this_rq = cpu_rq(this_cpu);
5070 struct rq *rq;
5071 int balance_cpu;
5072
5073 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
5074 return;
5075
5076 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5077 if (balance_cpu == this_cpu)
5078 continue;
5079
5080 /*
5081 * If this cpu gets work to do, stop the load balancing
5082 * work being done for other cpus. Next load
5083 * balancing owner will pick it up.
5084 */
5085 if (need_resched()) {
5086 this_rq->nohz_balance_kick = 0;
5087 break;
5088 }
5089
5090 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5091 update_rq_clock(this_rq);
83cd4fe2
VP
5092 update_cpu_load(this_rq);
5093 raw_spin_unlock_irq(&this_rq->lock);
5094
5095 rebalance_domains(balance_cpu, CPU_IDLE);
5096
5097 rq = cpu_rq(balance_cpu);
5098 if (time_after(this_rq->next_balance, rq->next_balance))
5099 this_rq->next_balance = rq->next_balance;
5100 }
5101 nohz.next_balance = this_rq->next_balance;
5102 this_rq->nohz_balance_kick = 0;
5103}
5104
5105/*
5106 * Current heuristic for kicking the idle load balancer
5107 * - first_pick_cpu is the one of the busy CPUs. It will kick
5108 * idle load balancer when it has more than one process active. This
5109 * eliminates the need for idle load balancing altogether when we have
5110 * only one running process in the system (common case).
5111 * - If there are more than one busy CPU, idle load balancer may have
5112 * to run for active_load_balance to happen (i.e., two busy CPUs are
5113 * SMT or core siblings and can run better if they move to different
5114 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
5115 * which will kick idle load balancer as soon as it has any load.
5116 */
5117static inline int nohz_kick_needed(struct rq *rq, int cpu)
5118{
5119 unsigned long now = jiffies;
5120 int ret;
5121 int first_pick_cpu, second_pick_cpu;
5122
5123 if (time_before(now, nohz.next_balance))
5124 return 0;
5125
6eb57e0d 5126 if (idle_cpu(cpu))
83cd4fe2
VP
5127 return 0;
5128
5129 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
5130 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
5131
5132 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
5133 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
5134 return 0;
5135
5136 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
5137 if (ret == nr_cpu_ids || ret == cpu) {
5138 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
5139 if (rq->nr_running > 1)
5140 return 1;
5141 } else {
5142 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
5143 if (ret == nr_cpu_ids || ret == cpu) {
5144 if (rq->nr_running)
5145 return 1;
5146 }
5147 }
5148 return 0;
5149}
5150#else
5151static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5152#endif
5153
5154/*
5155 * run_rebalance_domains is triggered when needed from the scheduler tick.
5156 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5157 */
1e3c88bd
PZ
5158static void run_rebalance_domains(struct softirq_action *h)
5159{
5160 int this_cpu = smp_processor_id();
5161 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5162 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5163 CPU_IDLE : CPU_NOT_IDLE;
5164
5165 rebalance_domains(this_cpu, idle);
5166
1e3c88bd 5167 /*
83cd4fe2 5168 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5169 * balancing on behalf of the other idle cpus whose ticks are
5170 * stopped.
5171 */
83cd4fe2 5172 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5173}
5174
5175static inline int on_null_domain(int cpu)
5176{
90a6501f 5177 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5178}
5179
5180/*
5181 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5182 */
029632fb 5183void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5184{
1e3c88bd
PZ
5185 /* Don't need to rebalance while attached to NULL domain */
5186 if (time_after_eq(jiffies, rq->next_balance) &&
5187 likely(!on_null_domain(cpu)))
5188 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
5189#ifdef CONFIG_NO_HZ
5190 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5191 nohz_balancer_kick(cpu);
5192#endif
1e3c88bd
PZ
5193}
5194
0bcdcf28
CE
5195static void rq_online_fair(struct rq *rq)
5196{
5197 update_sysctl();
5198}
5199
5200static void rq_offline_fair(struct rq *rq)
5201{
5202 update_sysctl();
5203}
5204
55e12e5e 5205#endif /* CONFIG_SMP */
e1d1484f 5206
bf0f6f24
IM
5207/*
5208 * scheduler tick hitting a task of our scheduling class:
5209 */
8f4d37ec 5210static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5211{
5212 struct cfs_rq *cfs_rq;
5213 struct sched_entity *se = &curr->se;
5214
5215 for_each_sched_entity(se) {
5216 cfs_rq = cfs_rq_of(se);
8f4d37ec 5217 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5218 }
5219}
5220
5221/*
cd29fe6f
PZ
5222 * called on fork with the child task as argument from the parent's context
5223 * - child not yet on the tasklist
5224 * - preemption disabled
bf0f6f24 5225 */
cd29fe6f 5226static void task_fork_fair(struct task_struct *p)
bf0f6f24 5227{
cd29fe6f 5228 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 5229 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 5230 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5231 struct rq *rq = this_rq();
5232 unsigned long flags;
5233
05fa785c 5234 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5235
861d034e
PZ
5236 update_rq_clock(rq);
5237
b0a0f667
PM
5238 if (unlikely(task_cpu(p) != this_cpu)) {
5239 rcu_read_lock();
cd29fe6f 5240 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5241 rcu_read_unlock();
5242 }
bf0f6f24 5243
7109c442 5244 update_curr(cfs_rq);
cd29fe6f 5245
b5d9d734
MG
5246 if (curr)
5247 se->vruntime = curr->vruntime;
aeb73b04 5248 place_entity(cfs_rq, se, 1);
4d78e7b6 5249
cd29fe6f 5250 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5251 /*
edcb60a3
IM
5252 * Upon rescheduling, sched_class::put_prev_task() will place
5253 * 'current' within the tree based on its new key value.
5254 */
4d78e7b6 5255 swap(curr->vruntime, se->vruntime);
aec0a514 5256 resched_task(rq->curr);
4d78e7b6 5257 }
bf0f6f24 5258
88ec22d3
PZ
5259 se->vruntime -= cfs_rq->min_vruntime;
5260
05fa785c 5261 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5262}
5263
cb469845
SR
5264/*
5265 * Priority of the task has changed. Check to see if we preempt
5266 * the current task.
5267 */
da7a735e
PZ
5268static void
5269prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5270{
da7a735e
PZ
5271 if (!p->se.on_rq)
5272 return;
5273
cb469845
SR
5274 /*
5275 * Reschedule if we are currently running on this runqueue and
5276 * our priority decreased, or if we are not currently running on
5277 * this runqueue and our priority is higher than the current's
5278 */
da7a735e 5279 if (rq->curr == p) {
cb469845
SR
5280 if (p->prio > oldprio)
5281 resched_task(rq->curr);
5282 } else
15afe09b 5283 check_preempt_curr(rq, p, 0);
cb469845
SR
5284}
5285
da7a735e
PZ
5286static void switched_from_fair(struct rq *rq, struct task_struct *p)
5287{
5288 struct sched_entity *se = &p->se;
5289 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5290
5291 /*
5292 * Ensure the task's vruntime is normalized, so that when its
5293 * switched back to the fair class the enqueue_entity(.flags=0) will
5294 * do the right thing.
5295 *
5296 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5297 * have normalized the vruntime, if it was !on_rq, then only when
5298 * the task is sleeping will it still have non-normalized vruntime.
5299 */
5300 if (!se->on_rq && p->state != TASK_RUNNING) {
5301 /*
5302 * Fix up our vruntime so that the current sleep doesn't
5303 * cause 'unlimited' sleep bonus.
5304 */
5305 place_entity(cfs_rq, se, 0);
5306 se->vruntime -= cfs_rq->min_vruntime;
5307 }
5308}
5309
cb469845
SR
5310/*
5311 * We switched to the sched_fair class.
5312 */
da7a735e 5313static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5314{
da7a735e
PZ
5315 if (!p->se.on_rq)
5316 return;
5317
cb469845
SR
5318 /*
5319 * We were most likely switched from sched_rt, so
5320 * kick off the schedule if running, otherwise just see
5321 * if we can still preempt the current task.
5322 */
da7a735e 5323 if (rq->curr == p)
cb469845
SR
5324 resched_task(rq->curr);
5325 else
15afe09b 5326 check_preempt_curr(rq, p, 0);
cb469845
SR
5327}
5328
83b699ed
SV
5329/* Account for a task changing its policy or group.
5330 *
5331 * This routine is mostly called to set cfs_rq->curr field when a task
5332 * migrates between groups/classes.
5333 */
5334static void set_curr_task_fair(struct rq *rq)
5335{
5336 struct sched_entity *se = &rq->curr->se;
5337
ec12cb7f
PT
5338 for_each_sched_entity(se) {
5339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5340
5341 set_next_entity(cfs_rq, se);
5342 /* ensure bandwidth has been allocated on our new cfs_rq */
5343 account_cfs_rq_runtime(cfs_rq, 0);
5344 }
83b699ed
SV
5345}
5346
029632fb
PZ
5347void init_cfs_rq(struct cfs_rq *cfs_rq)
5348{
5349 cfs_rq->tasks_timeline = RB_ROOT;
5350 INIT_LIST_HEAD(&cfs_rq->tasks);
5351 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5352#ifndef CONFIG_64BIT
5353 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5354#endif
5355}
5356
810b3817 5357#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5358static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5359{
b2b5ce02
PZ
5360 /*
5361 * If the task was not on the rq at the time of this cgroup movement
5362 * it must have been asleep, sleeping tasks keep their ->vruntime
5363 * absolute on their old rq until wakeup (needed for the fair sleeper
5364 * bonus in place_entity()).
5365 *
5366 * If it was on the rq, we've just 'preempted' it, which does convert
5367 * ->vruntime to a relative base.
5368 *
5369 * Make sure both cases convert their relative position when migrating
5370 * to another cgroup's rq. This does somewhat interfere with the
5371 * fair sleeper stuff for the first placement, but who cares.
5372 */
5373 if (!on_rq)
5374 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5375 set_task_rq(p, task_cpu(p));
88ec22d3 5376 if (!on_rq)
b2b5ce02 5377 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5378}
029632fb
PZ
5379
5380void free_fair_sched_group(struct task_group *tg)
5381{
5382 int i;
5383
5384 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5385
5386 for_each_possible_cpu(i) {
5387 if (tg->cfs_rq)
5388 kfree(tg->cfs_rq[i]);
5389 if (tg->se)
5390 kfree(tg->se[i]);
5391 }
5392
5393 kfree(tg->cfs_rq);
5394 kfree(tg->se);
5395}
5396
5397int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5398{
5399 struct cfs_rq *cfs_rq;
5400 struct sched_entity *se;
5401 int i;
5402
5403 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5404 if (!tg->cfs_rq)
5405 goto err;
5406 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5407 if (!tg->se)
5408 goto err;
5409
5410 tg->shares = NICE_0_LOAD;
5411
5412 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5413
5414 for_each_possible_cpu(i) {
5415 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5416 GFP_KERNEL, cpu_to_node(i));
5417 if (!cfs_rq)
5418 goto err;
5419
5420 se = kzalloc_node(sizeof(struct sched_entity),
5421 GFP_KERNEL, cpu_to_node(i));
5422 if (!se)
5423 goto err_free_rq;
5424
5425 init_cfs_rq(cfs_rq);
5426 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5427 }
5428
5429 return 1;
5430
5431err_free_rq:
5432 kfree(cfs_rq);
5433err:
5434 return 0;
5435}
5436
5437void unregister_fair_sched_group(struct task_group *tg, int cpu)
5438{
5439 struct rq *rq = cpu_rq(cpu);
5440 unsigned long flags;
5441
5442 /*
5443 * Only empty task groups can be destroyed; so we can speculatively
5444 * check on_list without danger of it being re-added.
5445 */
5446 if (!tg->cfs_rq[cpu]->on_list)
5447 return;
5448
5449 raw_spin_lock_irqsave(&rq->lock, flags);
5450 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5451 raw_spin_unlock_irqrestore(&rq->lock, flags);
5452}
5453
5454void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5455 struct sched_entity *se, int cpu,
5456 struct sched_entity *parent)
5457{
5458 struct rq *rq = cpu_rq(cpu);
5459
5460 cfs_rq->tg = tg;
5461 cfs_rq->rq = rq;
5462#ifdef CONFIG_SMP
5463 /* allow initial update_cfs_load() to truncate */
5464 cfs_rq->load_stamp = 1;
810b3817 5465#endif
029632fb
PZ
5466 init_cfs_rq_runtime(cfs_rq);
5467
5468 tg->cfs_rq[cpu] = cfs_rq;
5469 tg->se[cpu] = se;
5470
5471 /* se could be NULL for root_task_group */
5472 if (!se)
5473 return;
5474
5475 if (!parent)
5476 se->cfs_rq = &rq->cfs;
5477 else
5478 se->cfs_rq = parent->my_q;
5479
5480 se->my_q = cfs_rq;
5481 update_load_set(&se->load, 0);
5482 se->parent = parent;
5483}
5484
5485static DEFINE_MUTEX(shares_mutex);
5486
5487int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5488{
5489 int i;
5490 unsigned long flags;
5491
5492 /*
5493 * We can't change the weight of the root cgroup.
5494 */
5495 if (!tg->se[0])
5496 return -EINVAL;
5497
5498 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5499
5500 mutex_lock(&shares_mutex);
5501 if (tg->shares == shares)
5502 goto done;
5503
5504 tg->shares = shares;
5505 for_each_possible_cpu(i) {
5506 struct rq *rq = cpu_rq(i);
5507 struct sched_entity *se;
5508
5509 se = tg->se[i];
5510 /* Propagate contribution to hierarchy */
5511 raw_spin_lock_irqsave(&rq->lock, flags);
5512 for_each_sched_entity(se)
5513 update_cfs_shares(group_cfs_rq(se));
5514 raw_spin_unlock_irqrestore(&rq->lock, flags);
5515 }
5516
5517done:
5518 mutex_unlock(&shares_mutex);
5519 return 0;
5520}
5521#else /* CONFIG_FAIR_GROUP_SCHED */
5522
5523void free_fair_sched_group(struct task_group *tg) { }
5524
5525int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5526{
5527 return 1;
5528}
5529
5530void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5531
5532#endif /* CONFIG_FAIR_GROUP_SCHED */
5533
810b3817 5534
6d686f45 5535static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5536{
5537 struct sched_entity *se = &task->se;
0d721cea
PW
5538 unsigned int rr_interval = 0;
5539
5540 /*
5541 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5542 * idle runqueue:
5543 */
0d721cea
PW
5544 if (rq->cfs.load.weight)
5545 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5546
5547 return rr_interval;
5548}
5549
bf0f6f24
IM
5550/*
5551 * All the scheduling class methods:
5552 */
029632fb 5553const struct sched_class fair_sched_class = {
5522d5d5 5554 .next = &idle_sched_class,
bf0f6f24
IM
5555 .enqueue_task = enqueue_task_fair,
5556 .dequeue_task = dequeue_task_fair,
5557 .yield_task = yield_task_fair,
d95f4122 5558 .yield_to_task = yield_to_task_fair,
bf0f6f24 5559
2e09bf55 5560 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5561
5562 .pick_next_task = pick_next_task_fair,
5563 .put_prev_task = put_prev_task_fair,
5564
681f3e68 5565#ifdef CONFIG_SMP
4ce72a2c
LZ
5566 .select_task_rq = select_task_rq_fair,
5567
0bcdcf28
CE
5568 .rq_online = rq_online_fair,
5569 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5570
5571 .task_waking = task_waking_fair,
681f3e68 5572#endif
bf0f6f24 5573
83b699ed 5574 .set_curr_task = set_curr_task_fair,
bf0f6f24 5575 .task_tick = task_tick_fair,
cd29fe6f 5576 .task_fork = task_fork_fair,
cb469845
SR
5577
5578 .prio_changed = prio_changed_fair,
da7a735e 5579 .switched_from = switched_from_fair,
cb469845 5580 .switched_to = switched_to_fair,
810b3817 5581
0d721cea
PW
5582 .get_rr_interval = get_rr_interval_fair,
5583
810b3817 5584#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5585 .task_move_group = task_move_group_fair,
810b3817 5586#endif
bf0f6f24
IM
5587};
5588
5589#ifdef CONFIG_SCHED_DEBUG
029632fb 5590void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5591{
bf0f6f24
IM
5592 struct cfs_rq *cfs_rq;
5593
5973e5b9 5594 rcu_read_lock();
c3b64f1e 5595 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5596 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5597 rcu_read_unlock();
bf0f6f24
IM
5598}
5599#endif
029632fb
PZ
5600
5601__init void init_sched_fair_class(void)
5602{
5603#ifdef CONFIG_SMP
5604 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5605
5606#ifdef CONFIG_NO_HZ
5607 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5608 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
5609 atomic_set(&nohz.load_balancer, nr_cpu_ids);
5610 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
5611 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
5612#endif
5613#endif /* SMP */
5614
5615}