]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/fair: Add detailed description to the sched load avg metrics
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
9d85f21c
PT
2605/*
2606 * Approximate:
2607 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2608 */
2609static __always_inline u64 decay_load(u64 val, u64 n)
2610{
5b51f2f8
PT
2611 unsigned int local_n;
2612
2613 if (!n)
2614 return val;
2615 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2616 return 0;
2617
2618 /* after bounds checking we can collapse to 32-bit */
2619 local_n = n;
2620
2621 /*
2622 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2623 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2624 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2625 *
2626 * To achieve constant time decay_load.
2627 */
2628 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2629 val >>= local_n / LOAD_AVG_PERIOD;
2630 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2631 }
2632
9d89c257
YD
2633 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2634 return val;
5b51f2f8
PT
2635}
2636
2637/*
2638 * For updates fully spanning n periods, the contribution to runnable
2639 * average will be: \Sum 1024*y^n
2640 *
2641 * We can compute this reasonably efficiently by combining:
2642 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2643 */
2644static u32 __compute_runnable_contrib(u64 n)
2645{
2646 u32 contrib = 0;
2647
2648 if (likely(n <= LOAD_AVG_PERIOD))
2649 return runnable_avg_yN_sum[n];
2650 else if (unlikely(n >= LOAD_AVG_MAX_N))
2651 return LOAD_AVG_MAX;
2652
2653 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2654 do {
2655 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2656 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2657
2658 n -= LOAD_AVG_PERIOD;
2659 } while (n > LOAD_AVG_PERIOD);
2660
2661 contrib = decay_load(contrib, n);
2662 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2663}
2664
54a21385 2665#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2666
9d85f21c
PT
2667/*
2668 * We can represent the historical contribution to runnable average as the
2669 * coefficients of a geometric series. To do this we sub-divide our runnable
2670 * history into segments of approximately 1ms (1024us); label the segment that
2671 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2672 *
2673 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2674 * p0 p1 p2
2675 * (now) (~1ms ago) (~2ms ago)
2676 *
2677 * Let u_i denote the fraction of p_i that the entity was runnable.
2678 *
2679 * We then designate the fractions u_i as our co-efficients, yielding the
2680 * following representation of historical load:
2681 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2682 *
2683 * We choose y based on the with of a reasonably scheduling period, fixing:
2684 * y^32 = 0.5
2685 *
2686 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2687 * approximately half as much as the contribution to load within the last ms
2688 * (u_0).
2689 *
2690 * When a period "rolls over" and we have new u_0`, multiplying the previous
2691 * sum again by y is sufficient to update:
2692 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2693 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2694 */
9d89c257
YD
2695static __always_inline int
2696__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2697 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2698{
e0f5f3af 2699 u64 delta, scaled_delta, periods;
9d89c257 2700 u32 contrib;
6115c793 2701 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2702 unsigned long scale_freq, scale_cpu;
9d85f21c 2703
9d89c257 2704 delta = now - sa->last_update_time;
9d85f21c
PT
2705 /*
2706 * This should only happen when time goes backwards, which it
2707 * unfortunately does during sched clock init when we swap over to TSC.
2708 */
2709 if ((s64)delta < 0) {
9d89c257 2710 sa->last_update_time = now;
9d85f21c
PT
2711 return 0;
2712 }
2713
2714 /*
2715 * Use 1024ns as the unit of measurement since it's a reasonable
2716 * approximation of 1us and fast to compute.
2717 */
2718 delta >>= 10;
2719 if (!delta)
2720 return 0;
9d89c257 2721 sa->last_update_time = now;
9d85f21c 2722
6f2b0452
DE
2723 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2724 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2725
9d85f21c 2726 /* delta_w is the amount already accumulated against our next period */
9d89c257 2727 delta_w = sa->period_contrib;
9d85f21c 2728 if (delta + delta_w >= 1024) {
9d85f21c
PT
2729 decayed = 1;
2730
9d89c257
YD
2731 /* how much left for next period will start over, we don't know yet */
2732 sa->period_contrib = 0;
2733
9d85f21c
PT
2734 /*
2735 * Now that we know we're crossing a period boundary, figure
2736 * out how much from delta we need to complete the current
2737 * period and accrue it.
2738 */
2739 delta_w = 1024 - delta_w;
54a21385 2740 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2741 if (weight) {
e0f5f3af
DE
2742 sa->load_sum += weight * scaled_delta_w;
2743 if (cfs_rq) {
2744 cfs_rq->runnable_load_sum +=
2745 weight * scaled_delta_w;
2746 }
13962234 2747 }
36ee28e4 2748 if (running)
006cdf02 2749 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2750
2751 delta -= delta_w;
2752
2753 /* Figure out how many additional periods this update spans */
2754 periods = delta / 1024;
2755 delta %= 1024;
2756
9d89c257 2757 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2758 if (cfs_rq) {
2759 cfs_rq->runnable_load_sum =
2760 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2761 }
9d89c257 2762 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2763
2764 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2765 contrib = __compute_runnable_contrib(periods);
54a21385 2766 contrib = cap_scale(contrib, scale_freq);
13962234 2767 if (weight) {
9d89c257 2768 sa->load_sum += weight * contrib;
13962234
YD
2769 if (cfs_rq)
2770 cfs_rq->runnable_load_sum += weight * contrib;
2771 }
36ee28e4 2772 if (running)
006cdf02 2773 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2774 }
2775
2776 /* Remainder of delta accrued against u_0` */
54a21385 2777 scaled_delta = cap_scale(delta, scale_freq);
13962234 2778 if (weight) {
e0f5f3af 2779 sa->load_sum += weight * scaled_delta;
13962234 2780 if (cfs_rq)
e0f5f3af 2781 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2782 }
36ee28e4 2783 if (running)
006cdf02 2784 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2785
9d89c257 2786 sa->period_contrib += delta;
9ee474f5 2787
9d89c257
YD
2788 if (decayed) {
2789 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2790 if (cfs_rq) {
2791 cfs_rq->runnable_load_avg =
2792 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2793 }
006cdf02 2794 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2795 }
aff3e498 2796
9d89c257 2797 return decayed;
9ee474f5
PT
2798}
2799
c566e8e9 2800#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2801/*
9d89c257
YD
2802 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2803 * and effective_load (which is not done because it is too costly).
bb17f655 2804 */
9d89c257 2805static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2806{
9d89c257 2807 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2808
aa0b7ae0
WL
2809 /*
2810 * No need to update load_avg for root_task_group as it is not used.
2811 */
2812 if (cfs_rq->tg == &root_task_group)
2813 return;
2814
9d89c257
YD
2815 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2816 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2817 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2818 }
8165e145 2819}
f5f9739d 2820
ad936d86
BP
2821/*
2822 * Called within set_task_rq() right before setting a task's cpu. The
2823 * caller only guarantees p->pi_lock is held; no other assumptions,
2824 * including the state of rq->lock, should be made.
2825 */
2826void set_task_rq_fair(struct sched_entity *se,
2827 struct cfs_rq *prev, struct cfs_rq *next)
2828{
2829 if (!sched_feat(ATTACH_AGE_LOAD))
2830 return;
2831
2832 /*
2833 * We are supposed to update the task to "current" time, then its up to
2834 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2835 * getting what current time is, so simply throw away the out-of-date
2836 * time. This will result in the wakee task is less decayed, but giving
2837 * the wakee more load sounds not bad.
2838 */
2839 if (se->avg.last_update_time && prev) {
2840 u64 p_last_update_time;
2841 u64 n_last_update_time;
2842
2843#ifndef CONFIG_64BIT
2844 u64 p_last_update_time_copy;
2845 u64 n_last_update_time_copy;
2846
2847 do {
2848 p_last_update_time_copy = prev->load_last_update_time_copy;
2849 n_last_update_time_copy = next->load_last_update_time_copy;
2850
2851 smp_rmb();
2852
2853 p_last_update_time = prev->avg.last_update_time;
2854 n_last_update_time = next->avg.last_update_time;
2855
2856 } while (p_last_update_time != p_last_update_time_copy ||
2857 n_last_update_time != n_last_update_time_copy);
2858#else
2859 p_last_update_time = prev->avg.last_update_time;
2860 n_last_update_time = next->avg.last_update_time;
2861#endif
2862 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2863 &se->avg, 0, 0, NULL);
2864 se->avg.last_update_time = n_last_update_time;
2865 }
2866}
6e83125c 2867#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2868static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2869#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2870
9d89c257 2871static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2872
a2c6c91f
SM
2873static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2874{
2875 struct rq *rq = rq_of(cfs_rq);
2876 int cpu = cpu_of(rq);
2877
2878 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2879 unsigned long max = rq->cpu_capacity_orig;
2880
2881 /*
2882 * There are a few boundary cases this might miss but it should
2883 * get called often enough that that should (hopefully) not be
2884 * a real problem -- added to that it only calls on the local
2885 * CPU, so if we enqueue remotely we'll miss an update, but
2886 * the next tick/schedule should update.
2887 *
2888 * It will not get called when we go idle, because the idle
2889 * thread is a different class (!fair), nor will the utilization
2890 * number include things like RT tasks.
2891 *
2892 * As is, the util number is not freq-invariant (we'd have to
2893 * implement arch_scale_freq_capacity() for that).
2894 *
2895 * See cpu_util().
2896 */
2897 cpufreq_update_util(rq_clock(rq),
2898 min(cfs_rq->avg.util_avg, max), max);
2899 }
2900}
2901
9d89c257 2902/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2903static inline int
2904update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2905{
9d89c257 2906 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2907 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2908
9d89c257 2909 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2910 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2911 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2912 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2913 removed_load = 1;
8165e145 2914 }
2dac754e 2915
9d89c257
YD
2916 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2917 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2918 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2919 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2920 removed_util = 1;
9d89c257 2921 }
36ee28e4 2922
a2c6c91f 2923 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2924 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2925
9d89c257
YD
2926#ifndef CONFIG_64BIT
2927 smp_wmb();
2928 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2929#endif
36ee28e4 2930
a2c6c91f
SM
2931 if (update_freq && (decayed || removed_util))
2932 cfs_rq_util_change(cfs_rq);
21e96f88 2933
41e0d37f 2934 return decayed || removed_load;
21e96f88
SM
2935}
2936
2937/* Update task and its cfs_rq load average */
2938static inline void update_load_avg(struct sched_entity *se, int update_tg)
2939{
2940 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2941 u64 now = cfs_rq_clock_task(cfs_rq);
2942 struct rq *rq = rq_of(cfs_rq);
2943 int cpu = cpu_of(rq);
2944
2945 /*
2946 * Track task load average for carrying it to new CPU after migrated, and
2947 * track group sched_entity load average for task_h_load calc in migration
2948 */
2949 __update_load_avg(now, cpu, &se->avg,
2950 se->on_rq * scale_load_down(se->load.weight),
2951 cfs_rq->curr == se, NULL);
2952
a2c6c91f 2953 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2954 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2955}
2956
a05e8c51
BP
2957static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2958{
a9280514
PZ
2959 if (!sched_feat(ATTACH_AGE_LOAD))
2960 goto skip_aging;
2961
6efdb105
BP
2962 /*
2963 * If we got migrated (either between CPUs or between cgroups) we'll
2964 * have aged the average right before clearing @last_update_time.
2965 */
2966 if (se->avg.last_update_time) {
2967 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2968 &se->avg, 0, 0, NULL);
2969
2970 /*
2971 * XXX: we could have just aged the entire load away if we've been
2972 * absent from the fair class for too long.
2973 */
2974 }
2975
a9280514 2976skip_aging:
a05e8c51
BP
2977 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2978 cfs_rq->avg.load_avg += se->avg.load_avg;
2979 cfs_rq->avg.load_sum += se->avg.load_sum;
2980 cfs_rq->avg.util_avg += se->avg.util_avg;
2981 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2982
2983 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2984}
2985
2986static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987{
2988 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2989 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2990 cfs_rq->curr == se, NULL);
2991
2992 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2993 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2994 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2995 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
a2c6c91f
SM
2996
2997 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2998}
2999
9d89c257
YD
3000/* Add the load generated by se into cfs_rq's load average */
3001static inline void
3002enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3003{
9d89c257
YD
3004 struct sched_avg *sa = &se->avg;
3005 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3006 int migrated, decayed;
9ee474f5 3007
a05e8c51
BP
3008 migrated = !sa->last_update_time;
3009 if (!migrated) {
9d89c257 3010 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3011 se->on_rq * scale_load_down(se->load.weight),
3012 cfs_rq->curr == se, NULL);
aff3e498 3013 }
c566e8e9 3014
a2c6c91f 3015 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3016
13962234
YD
3017 cfs_rq->runnable_load_avg += sa->load_avg;
3018 cfs_rq->runnable_load_sum += sa->load_sum;
3019
a05e8c51
BP
3020 if (migrated)
3021 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3022
9d89c257
YD
3023 if (decayed || migrated)
3024 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3025}
3026
13962234
YD
3027/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3028static inline void
3029dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3030{
3031 update_load_avg(se, 1);
3032
3033 cfs_rq->runnable_load_avg =
3034 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3035 cfs_rq->runnable_load_sum =
a05e8c51 3036 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3037}
3038
9d89c257 3039#ifndef CONFIG_64BIT
0905f04e
YD
3040static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3041{
9d89c257 3042 u64 last_update_time_copy;
0905f04e 3043 u64 last_update_time;
9ee474f5 3044
9d89c257
YD
3045 do {
3046 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3047 smp_rmb();
3048 last_update_time = cfs_rq->avg.last_update_time;
3049 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3050
3051 return last_update_time;
3052}
9d89c257 3053#else
0905f04e
YD
3054static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3055{
3056 return cfs_rq->avg.last_update_time;
3057}
9d89c257
YD
3058#endif
3059
0905f04e
YD
3060/*
3061 * Task first catches up with cfs_rq, and then subtract
3062 * itself from the cfs_rq (task must be off the queue now).
3063 */
3064void remove_entity_load_avg(struct sched_entity *se)
3065{
3066 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3067 u64 last_update_time;
3068
3069 /*
3070 * Newly created task or never used group entity should not be removed
3071 * from its (source) cfs_rq
3072 */
3073 if (se->avg.last_update_time == 0)
3074 return;
3075
3076 last_update_time = cfs_rq_last_update_time(cfs_rq);
3077
13962234 3078 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3079 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3080 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3081}
642dbc39 3082
7ea241af
YD
3083static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3084{
3085 return cfs_rq->runnable_load_avg;
3086}
3087
3088static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3089{
3090 return cfs_rq->avg.load_avg;
3091}
3092
6e83125c
PZ
3093static int idle_balance(struct rq *this_rq);
3094
38033c37
PZ
3095#else /* CONFIG_SMP */
3096
9d89c257
YD
3097static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3098static inline void
3099enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3100static inline void
3101dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3102static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3103
a05e8c51
BP
3104static inline void
3105attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3106static inline void
3107detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3108
6e83125c
PZ
3109static inline int idle_balance(struct rq *rq)
3110{
3111 return 0;
3112}
3113
38033c37 3114#endif /* CONFIG_SMP */
9d85f21c 3115
2396af69 3116static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3117{
bf0f6f24 3118#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3119 struct task_struct *tsk = NULL;
3120
3121 if (entity_is_task(se))
3122 tsk = task_of(se);
3123
41acab88 3124 if (se->statistics.sleep_start) {
78becc27 3125 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3126
3127 if ((s64)delta < 0)
3128 delta = 0;
3129
41acab88
LDM
3130 if (unlikely(delta > se->statistics.sleep_max))
3131 se->statistics.sleep_max = delta;
bf0f6f24 3132
8c79a045 3133 se->statistics.sleep_start = 0;
41acab88 3134 se->statistics.sum_sleep_runtime += delta;
9745512c 3135
768d0c27 3136 if (tsk) {
e414314c 3137 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3138 trace_sched_stat_sleep(tsk, delta);
3139 }
bf0f6f24 3140 }
41acab88 3141 if (se->statistics.block_start) {
78becc27 3142 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3143
3144 if ((s64)delta < 0)
3145 delta = 0;
3146
41acab88
LDM
3147 if (unlikely(delta > se->statistics.block_max))
3148 se->statistics.block_max = delta;
bf0f6f24 3149
8c79a045 3150 se->statistics.block_start = 0;
41acab88 3151 se->statistics.sum_sleep_runtime += delta;
30084fbd 3152
e414314c 3153 if (tsk) {
8f0dfc34 3154 if (tsk->in_iowait) {
41acab88
LDM
3155 se->statistics.iowait_sum += delta;
3156 se->statistics.iowait_count++;
768d0c27 3157 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3158 }
3159
b781a602
AV
3160 trace_sched_stat_blocked(tsk, delta);
3161
e414314c
PZ
3162 /*
3163 * Blocking time is in units of nanosecs, so shift by
3164 * 20 to get a milliseconds-range estimation of the
3165 * amount of time that the task spent sleeping:
3166 */
3167 if (unlikely(prof_on == SLEEP_PROFILING)) {
3168 profile_hits(SLEEP_PROFILING,
3169 (void *)get_wchan(tsk),
3170 delta >> 20);
3171 }
3172 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3173 }
bf0f6f24
IM
3174 }
3175#endif
3176}
3177
ddc97297
PZ
3178static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3179{
3180#ifdef CONFIG_SCHED_DEBUG
3181 s64 d = se->vruntime - cfs_rq->min_vruntime;
3182
3183 if (d < 0)
3184 d = -d;
3185
3186 if (d > 3*sysctl_sched_latency)
3187 schedstat_inc(cfs_rq, nr_spread_over);
3188#endif
3189}
3190
aeb73b04
PZ
3191static void
3192place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3193{
1af5f730 3194 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3195
2cb8600e
PZ
3196 /*
3197 * The 'current' period is already promised to the current tasks,
3198 * however the extra weight of the new task will slow them down a
3199 * little, place the new task so that it fits in the slot that
3200 * stays open at the end.
3201 */
94dfb5e7 3202 if (initial && sched_feat(START_DEBIT))
f9c0b095 3203 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3204
a2e7a7eb 3205 /* sleeps up to a single latency don't count. */
5ca9880c 3206 if (!initial) {
a2e7a7eb 3207 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3208
a2e7a7eb
MG
3209 /*
3210 * Halve their sleep time's effect, to allow
3211 * for a gentler effect of sleepers:
3212 */
3213 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3214 thresh >>= 1;
51e0304c 3215
a2e7a7eb 3216 vruntime -= thresh;
aeb73b04
PZ
3217 }
3218
b5d9d734 3219 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3220 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3221}
3222
d3d9dc33
PT
3223static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3224
cb251765
MG
3225static inline void check_schedstat_required(void)
3226{
3227#ifdef CONFIG_SCHEDSTATS
3228 if (schedstat_enabled())
3229 return;
3230
3231 /* Force schedstat enabled if a dependent tracepoint is active */
3232 if (trace_sched_stat_wait_enabled() ||
3233 trace_sched_stat_sleep_enabled() ||
3234 trace_sched_stat_iowait_enabled() ||
3235 trace_sched_stat_blocked_enabled() ||
3236 trace_sched_stat_runtime_enabled()) {
3237 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3238 "stat_blocked and stat_runtime require the "
3239 "kernel parameter schedstats=enabled or "
3240 "kernel.sched_schedstats=1\n");
3241 }
3242#endif
3243}
3244
bf0f6f24 3245static void
88ec22d3 3246enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3247{
3a47d512
PZ
3248 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3249 bool curr = cfs_rq->curr == se;
3250
88ec22d3 3251 /*
3a47d512
PZ
3252 * If we're the current task, we must renormalise before calling
3253 * update_curr().
88ec22d3 3254 */
3a47d512 3255 if (renorm && curr)
88ec22d3
PZ
3256 se->vruntime += cfs_rq->min_vruntime;
3257
3a47d512
PZ
3258 update_curr(cfs_rq);
3259
bf0f6f24 3260 /*
3a47d512
PZ
3261 * Otherwise, renormalise after, such that we're placed at the current
3262 * moment in time, instead of some random moment in the past.
bf0f6f24 3263 */
3a47d512
PZ
3264 if (renorm && !curr)
3265 se->vruntime += cfs_rq->min_vruntime;
3266
9d89c257 3267 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3268 account_entity_enqueue(cfs_rq, se);
3269 update_cfs_shares(cfs_rq);
bf0f6f24 3270
88ec22d3 3271 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3272 place_entity(cfs_rq, se, 0);
cb251765
MG
3273 if (schedstat_enabled())
3274 enqueue_sleeper(cfs_rq, se);
e9acbff6 3275 }
bf0f6f24 3276
cb251765
MG
3277 check_schedstat_required();
3278 if (schedstat_enabled()) {
3279 update_stats_enqueue(cfs_rq, se);
3280 check_spread(cfs_rq, se);
3281 }
3a47d512 3282 if (!curr)
83b699ed 3283 __enqueue_entity(cfs_rq, se);
2069dd75 3284 se->on_rq = 1;
3d4b47b4 3285
d3d9dc33 3286 if (cfs_rq->nr_running == 1) {
3d4b47b4 3287 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3288 check_enqueue_throttle(cfs_rq);
3289 }
bf0f6f24
IM
3290}
3291
2c13c919 3292static void __clear_buddies_last(struct sched_entity *se)
2002c695 3293{
2c13c919
RR
3294 for_each_sched_entity(se) {
3295 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3296 if (cfs_rq->last != se)
2c13c919 3297 break;
f1044799
PZ
3298
3299 cfs_rq->last = NULL;
2c13c919
RR
3300 }
3301}
2002c695 3302
2c13c919
RR
3303static void __clear_buddies_next(struct sched_entity *se)
3304{
3305 for_each_sched_entity(se) {
3306 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3307 if (cfs_rq->next != se)
2c13c919 3308 break;
f1044799
PZ
3309
3310 cfs_rq->next = NULL;
2c13c919 3311 }
2002c695
PZ
3312}
3313
ac53db59
RR
3314static void __clear_buddies_skip(struct sched_entity *se)
3315{
3316 for_each_sched_entity(se) {
3317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3318 if (cfs_rq->skip != se)
ac53db59 3319 break;
f1044799
PZ
3320
3321 cfs_rq->skip = NULL;
ac53db59
RR
3322 }
3323}
3324
a571bbea
PZ
3325static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3326{
2c13c919
RR
3327 if (cfs_rq->last == se)
3328 __clear_buddies_last(se);
3329
3330 if (cfs_rq->next == se)
3331 __clear_buddies_next(se);
ac53db59
RR
3332
3333 if (cfs_rq->skip == se)
3334 __clear_buddies_skip(se);
a571bbea
PZ
3335}
3336
6c16a6dc 3337static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3338
bf0f6f24 3339static void
371fd7e7 3340dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3341{
a2a2d680
DA
3342 /*
3343 * Update run-time statistics of the 'current'.
3344 */
3345 update_curr(cfs_rq);
13962234 3346 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3347
cb251765
MG
3348 if (schedstat_enabled())
3349 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3350
2002c695 3351 clear_buddies(cfs_rq, se);
4793241b 3352
83b699ed 3353 if (se != cfs_rq->curr)
30cfdcfc 3354 __dequeue_entity(cfs_rq, se);
17bc14b7 3355 se->on_rq = 0;
30cfdcfc 3356 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3357
3358 /*
3359 * Normalize the entity after updating the min_vruntime because the
3360 * update can refer to the ->curr item and we need to reflect this
3361 * movement in our normalized position.
3362 */
371fd7e7 3363 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3364 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3365
d8b4986d
PT
3366 /* return excess runtime on last dequeue */
3367 return_cfs_rq_runtime(cfs_rq);
3368
1e876231 3369 update_min_vruntime(cfs_rq);
17bc14b7 3370 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3371}
3372
3373/*
3374 * Preempt the current task with a newly woken task if needed:
3375 */
7c92e54f 3376static void
2e09bf55 3377check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3378{
11697830 3379 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3380 struct sched_entity *se;
3381 s64 delta;
11697830 3382
6d0f0ebd 3383 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3384 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3385 if (delta_exec > ideal_runtime) {
8875125e 3386 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3387 /*
3388 * The current task ran long enough, ensure it doesn't get
3389 * re-elected due to buddy favours.
3390 */
3391 clear_buddies(cfs_rq, curr);
f685ceac
MG
3392 return;
3393 }
3394
3395 /*
3396 * Ensure that a task that missed wakeup preemption by a
3397 * narrow margin doesn't have to wait for a full slice.
3398 * This also mitigates buddy induced latencies under load.
3399 */
f685ceac
MG
3400 if (delta_exec < sysctl_sched_min_granularity)
3401 return;
3402
f4cfb33e
WX
3403 se = __pick_first_entity(cfs_rq);
3404 delta = curr->vruntime - se->vruntime;
f685ceac 3405
f4cfb33e
WX
3406 if (delta < 0)
3407 return;
d7d82944 3408
f4cfb33e 3409 if (delta > ideal_runtime)
8875125e 3410 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3411}
3412
83b699ed 3413static void
8494f412 3414set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3415{
83b699ed
SV
3416 /* 'current' is not kept within the tree. */
3417 if (se->on_rq) {
3418 /*
3419 * Any task has to be enqueued before it get to execute on
3420 * a CPU. So account for the time it spent waiting on the
3421 * runqueue.
3422 */
cb251765
MG
3423 if (schedstat_enabled())
3424 update_stats_wait_end(cfs_rq, se);
83b699ed 3425 __dequeue_entity(cfs_rq, se);
9d89c257 3426 update_load_avg(se, 1);
83b699ed
SV
3427 }
3428
79303e9e 3429 update_stats_curr_start(cfs_rq, se);
429d43bc 3430 cfs_rq->curr = se;
eba1ed4b
IM
3431#ifdef CONFIG_SCHEDSTATS
3432 /*
3433 * Track our maximum slice length, if the CPU's load is at
3434 * least twice that of our own weight (i.e. dont track it
3435 * when there are only lesser-weight tasks around):
3436 */
cb251765 3437 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3438 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3439 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3440 }
3441#endif
4a55b450 3442 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3443}
3444
3f3a4904
PZ
3445static int
3446wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3447
ac53db59
RR
3448/*
3449 * Pick the next process, keeping these things in mind, in this order:
3450 * 1) keep things fair between processes/task groups
3451 * 2) pick the "next" process, since someone really wants that to run
3452 * 3) pick the "last" process, for cache locality
3453 * 4) do not run the "skip" process, if something else is available
3454 */
678d5718
PZ
3455static struct sched_entity *
3456pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3457{
678d5718
PZ
3458 struct sched_entity *left = __pick_first_entity(cfs_rq);
3459 struct sched_entity *se;
3460
3461 /*
3462 * If curr is set we have to see if its left of the leftmost entity
3463 * still in the tree, provided there was anything in the tree at all.
3464 */
3465 if (!left || (curr && entity_before(curr, left)))
3466 left = curr;
3467
3468 se = left; /* ideally we run the leftmost entity */
f4b6755f 3469
ac53db59
RR
3470 /*
3471 * Avoid running the skip buddy, if running something else can
3472 * be done without getting too unfair.
3473 */
3474 if (cfs_rq->skip == se) {
678d5718
PZ
3475 struct sched_entity *second;
3476
3477 if (se == curr) {
3478 second = __pick_first_entity(cfs_rq);
3479 } else {
3480 second = __pick_next_entity(se);
3481 if (!second || (curr && entity_before(curr, second)))
3482 second = curr;
3483 }
3484
ac53db59
RR
3485 if (second && wakeup_preempt_entity(second, left) < 1)
3486 se = second;
3487 }
aa2ac252 3488
f685ceac
MG
3489 /*
3490 * Prefer last buddy, try to return the CPU to a preempted task.
3491 */
3492 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3493 se = cfs_rq->last;
3494
ac53db59
RR
3495 /*
3496 * Someone really wants this to run. If it's not unfair, run it.
3497 */
3498 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3499 se = cfs_rq->next;
3500
f685ceac 3501 clear_buddies(cfs_rq, se);
4793241b
PZ
3502
3503 return se;
aa2ac252
PZ
3504}
3505
678d5718 3506static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3507
ab6cde26 3508static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3509{
3510 /*
3511 * If still on the runqueue then deactivate_task()
3512 * was not called and update_curr() has to be done:
3513 */
3514 if (prev->on_rq)
b7cc0896 3515 update_curr(cfs_rq);
bf0f6f24 3516
d3d9dc33
PT
3517 /* throttle cfs_rqs exceeding runtime */
3518 check_cfs_rq_runtime(cfs_rq);
3519
cb251765
MG
3520 if (schedstat_enabled()) {
3521 check_spread(cfs_rq, prev);
3522 if (prev->on_rq)
3523 update_stats_wait_start(cfs_rq, prev);
3524 }
3525
30cfdcfc 3526 if (prev->on_rq) {
30cfdcfc
DA
3527 /* Put 'current' back into the tree. */
3528 __enqueue_entity(cfs_rq, prev);
9d85f21c 3529 /* in !on_rq case, update occurred at dequeue */
9d89c257 3530 update_load_avg(prev, 0);
30cfdcfc 3531 }
429d43bc 3532 cfs_rq->curr = NULL;
bf0f6f24
IM
3533}
3534
8f4d37ec
PZ
3535static void
3536entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3537{
bf0f6f24 3538 /*
30cfdcfc 3539 * Update run-time statistics of the 'current'.
bf0f6f24 3540 */
30cfdcfc 3541 update_curr(cfs_rq);
bf0f6f24 3542
9d85f21c
PT
3543 /*
3544 * Ensure that runnable average is periodically updated.
3545 */
9d89c257 3546 update_load_avg(curr, 1);
bf0bd948 3547 update_cfs_shares(cfs_rq);
9d85f21c 3548
8f4d37ec
PZ
3549#ifdef CONFIG_SCHED_HRTICK
3550 /*
3551 * queued ticks are scheduled to match the slice, so don't bother
3552 * validating it and just reschedule.
3553 */
983ed7a6 3554 if (queued) {
8875125e 3555 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3556 return;
3557 }
8f4d37ec
PZ
3558 /*
3559 * don't let the period tick interfere with the hrtick preemption
3560 */
3561 if (!sched_feat(DOUBLE_TICK) &&
3562 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3563 return;
3564#endif
3565
2c2efaed 3566 if (cfs_rq->nr_running > 1)
2e09bf55 3567 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3568}
3569
ab84d31e
PT
3570
3571/**************************************************
3572 * CFS bandwidth control machinery
3573 */
3574
3575#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3576
3577#ifdef HAVE_JUMP_LABEL
c5905afb 3578static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3579
3580static inline bool cfs_bandwidth_used(void)
3581{
c5905afb 3582 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3583}
3584
1ee14e6c 3585void cfs_bandwidth_usage_inc(void)
029632fb 3586{
1ee14e6c
BS
3587 static_key_slow_inc(&__cfs_bandwidth_used);
3588}
3589
3590void cfs_bandwidth_usage_dec(void)
3591{
3592 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3593}
3594#else /* HAVE_JUMP_LABEL */
3595static bool cfs_bandwidth_used(void)
3596{
3597 return true;
3598}
3599
1ee14e6c
BS
3600void cfs_bandwidth_usage_inc(void) {}
3601void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3602#endif /* HAVE_JUMP_LABEL */
3603
ab84d31e
PT
3604/*
3605 * default period for cfs group bandwidth.
3606 * default: 0.1s, units: nanoseconds
3607 */
3608static inline u64 default_cfs_period(void)
3609{
3610 return 100000000ULL;
3611}
ec12cb7f
PT
3612
3613static inline u64 sched_cfs_bandwidth_slice(void)
3614{
3615 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3616}
3617
a9cf55b2
PT
3618/*
3619 * Replenish runtime according to assigned quota and update expiration time.
3620 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3621 * additional synchronization around rq->lock.
3622 *
3623 * requires cfs_b->lock
3624 */
029632fb 3625void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3626{
3627 u64 now;
3628
3629 if (cfs_b->quota == RUNTIME_INF)
3630 return;
3631
3632 now = sched_clock_cpu(smp_processor_id());
3633 cfs_b->runtime = cfs_b->quota;
3634 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3635}
3636
029632fb
PZ
3637static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3638{
3639 return &tg->cfs_bandwidth;
3640}
3641
f1b17280
PT
3642/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3643static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3644{
3645 if (unlikely(cfs_rq->throttle_count))
3646 return cfs_rq->throttled_clock_task;
3647
78becc27 3648 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3649}
3650
85dac906
PT
3651/* returns 0 on failure to allocate runtime */
3652static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3653{
3654 struct task_group *tg = cfs_rq->tg;
3655 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3656 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3657
3658 /* note: this is a positive sum as runtime_remaining <= 0 */
3659 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3660
3661 raw_spin_lock(&cfs_b->lock);
3662 if (cfs_b->quota == RUNTIME_INF)
3663 amount = min_amount;
58088ad0 3664 else {
77a4d1a1 3665 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3666
3667 if (cfs_b->runtime > 0) {
3668 amount = min(cfs_b->runtime, min_amount);
3669 cfs_b->runtime -= amount;
3670 cfs_b->idle = 0;
3671 }
ec12cb7f 3672 }
a9cf55b2 3673 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3674 raw_spin_unlock(&cfs_b->lock);
3675
3676 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3677 /*
3678 * we may have advanced our local expiration to account for allowed
3679 * spread between our sched_clock and the one on which runtime was
3680 * issued.
3681 */
3682 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3683 cfs_rq->runtime_expires = expires;
85dac906
PT
3684
3685 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3686}
3687
a9cf55b2
PT
3688/*
3689 * Note: This depends on the synchronization provided by sched_clock and the
3690 * fact that rq->clock snapshots this value.
3691 */
3692static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3693{
a9cf55b2 3694 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3695
3696 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3697 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3698 return;
3699
a9cf55b2
PT
3700 if (cfs_rq->runtime_remaining < 0)
3701 return;
3702
3703 /*
3704 * If the local deadline has passed we have to consider the
3705 * possibility that our sched_clock is 'fast' and the global deadline
3706 * has not truly expired.
3707 *
3708 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3709 * whether the global deadline has advanced. It is valid to compare
3710 * cfs_b->runtime_expires without any locks since we only care about
3711 * exact equality, so a partial write will still work.
a9cf55b2
PT
3712 */
3713
51f2176d 3714 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3715 /* extend local deadline, drift is bounded above by 2 ticks */
3716 cfs_rq->runtime_expires += TICK_NSEC;
3717 } else {
3718 /* global deadline is ahead, expiration has passed */
3719 cfs_rq->runtime_remaining = 0;
3720 }
3721}
3722
9dbdb155 3723static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3724{
3725 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3726 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3727 expire_cfs_rq_runtime(cfs_rq);
3728
3729 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3730 return;
3731
85dac906
PT
3732 /*
3733 * if we're unable to extend our runtime we resched so that the active
3734 * hierarchy can be throttled
3735 */
3736 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3737 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3738}
3739
6c16a6dc 3740static __always_inline
9dbdb155 3741void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3742{
56f570e5 3743 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3744 return;
3745
3746 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3747}
3748
85dac906
PT
3749static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3750{
56f570e5 3751 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3752}
3753
64660c86
PT
3754/* check whether cfs_rq, or any parent, is throttled */
3755static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3756{
56f570e5 3757 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3758}
3759
3760/*
3761 * Ensure that neither of the group entities corresponding to src_cpu or
3762 * dest_cpu are members of a throttled hierarchy when performing group
3763 * load-balance operations.
3764 */
3765static inline int throttled_lb_pair(struct task_group *tg,
3766 int src_cpu, int dest_cpu)
3767{
3768 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3769
3770 src_cfs_rq = tg->cfs_rq[src_cpu];
3771 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3772
3773 return throttled_hierarchy(src_cfs_rq) ||
3774 throttled_hierarchy(dest_cfs_rq);
3775}
3776
3777/* updated child weight may affect parent so we have to do this bottom up */
3778static int tg_unthrottle_up(struct task_group *tg, void *data)
3779{
3780 struct rq *rq = data;
3781 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3782
3783 cfs_rq->throttle_count--;
3784#ifdef CONFIG_SMP
3785 if (!cfs_rq->throttle_count) {
f1b17280 3786 /* adjust cfs_rq_clock_task() */
78becc27 3787 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3788 cfs_rq->throttled_clock_task;
64660c86
PT
3789 }
3790#endif
3791
3792 return 0;
3793}
3794
3795static int tg_throttle_down(struct task_group *tg, void *data)
3796{
3797 struct rq *rq = data;
3798 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3799
82958366
PT
3800 /* group is entering throttled state, stop time */
3801 if (!cfs_rq->throttle_count)
78becc27 3802 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3803 cfs_rq->throttle_count++;
3804
3805 return 0;
3806}
3807
d3d9dc33 3808static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3809{
3810 struct rq *rq = rq_of(cfs_rq);
3811 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3812 struct sched_entity *se;
3813 long task_delta, dequeue = 1;
77a4d1a1 3814 bool empty;
85dac906
PT
3815
3816 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3817
f1b17280 3818 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3819 rcu_read_lock();
3820 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3821 rcu_read_unlock();
85dac906
PT
3822
3823 task_delta = cfs_rq->h_nr_running;
3824 for_each_sched_entity(se) {
3825 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3826 /* throttled entity or throttle-on-deactivate */
3827 if (!se->on_rq)
3828 break;
3829
3830 if (dequeue)
3831 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3832 qcfs_rq->h_nr_running -= task_delta;
3833
3834 if (qcfs_rq->load.weight)
3835 dequeue = 0;
3836 }
3837
3838 if (!se)
72465447 3839 sub_nr_running(rq, task_delta);
85dac906
PT
3840
3841 cfs_rq->throttled = 1;
78becc27 3842 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3843 raw_spin_lock(&cfs_b->lock);
d49db342 3844 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3845
c06f04c7
BS
3846 /*
3847 * Add to the _head_ of the list, so that an already-started
3848 * distribute_cfs_runtime will not see us
3849 */
3850 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3851
3852 /*
3853 * If we're the first throttled task, make sure the bandwidth
3854 * timer is running.
3855 */
3856 if (empty)
3857 start_cfs_bandwidth(cfs_b);
3858
85dac906
PT
3859 raw_spin_unlock(&cfs_b->lock);
3860}
3861
029632fb 3862void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3863{
3864 struct rq *rq = rq_of(cfs_rq);
3865 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3866 struct sched_entity *se;
3867 int enqueue = 1;
3868 long task_delta;
3869
22b958d8 3870 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3871
3872 cfs_rq->throttled = 0;
1a55af2e
FW
3873
3874 update_rq_clock(rq);
3875
671fd9da 3876 raw_spin_lock(&cfs_b->lock);
78becc27 3877 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3878 list_del_rcu(&cfs_rq->throttled_list);
3879 raw_spin_unlock(&cfs_b->lock);
3880
64660c86
PT
3881 /* update hierarchical throttle state */
3882 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3883
671fd9da
PT
3884 if (!cfs_rq->load.weight)
3885 return;
3886
3887 task_delta = cfs_rq->h_nr_running;
3888 for_each_sched_entity(se) {
3889 if (se->on_rq)
3890 enqueue = 0;
3891
3892 cfs_rq = cfs_rq_of(se);
3893 if (enqueue)
3894 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3895 cfs_rq->h_nr_running += task_delta;
3896
3897 if (cfs_rq_throttled(cfs_rq))
3898 break;
3899 }
3900
3901 if (!se)
72465447 3902 add_nr_running(rq, task_delta);
671fd9da
PT
3903
3904 /* determine whether we need to wake up potentially idle cpu */
3905 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3906 resched_curr(rq);
671fd9da
PT
3907}
3908
3909static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3910 u64 remaining, u64 expires)
3911{
3912 struct cfs_rq *cfs_rq;
c06f04c7
BS
3913 u64 runtime;
3914 u64 starting_runtime = remaining;
671fd9da
PT
3915
3916 rcu_read_lock();
3917 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3918 throttled_list) {
3919 struct rq *rq = rq_of(cfs_rq);
3920
3921 raw_spin_lock(&rq->lock);
3922 if (!cfs_rq_throttled(cfs_rq))
3923 goto next;
3924
3925 runtime = -cfs_rq->runtime_remaining + 1;
3926 if (runtime > remaining)
3927 runtime = remaining;
3928 remaining -= runtime;
3929
3930 cfs_rq->runtime_remaining += runtime;
3931 cfs_rq->runtime_expires = expires;
3932
3933 /* we check whether we're throttled above */
3934 if (cfs_rq->runtime_remaining > 0)
3935 unthrottle_cfs_rq(cfs_rq);
3936
3937next:
3938 raw_spin_unlock(&rq->lock);
3939
3940 if (!remaining)
3941 break;
3942 }
3943 rcu_read_unlock();
3944
c06f04c7 3945 return starting_runtime - remaining;
671fd9da
PT
3946}
3947
58088ad0
PT
3948/*
3949 * Responsible for refilling a task_group's bandwidth and unthrottling its
3950 * cfs_rqs as appropriate. If there has been no activity within the last
3951 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3952 * used to track this state.
3953 */
3954static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3955{
671fd9da 3956 u64 runtime, runtime_expires;
51f2176d 3957 int throttled;
58088ad0 3958
58088ad0
PT
3959 /* no need to continue the timer with no bandwidth constraint */
3960 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3961 goto out_deactivate;
58088ad0 3962
671fd9da 3963 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3964 cfs_b->nr_periods += overrun;
671fd9da 3965
51f2176d
BS
3966 /*
3967 * idle depends on !throttled (for the case of a large deficit), and if
3968 * we're going inactive then everything else can be deferred
3969 */
3970 if (cfs_b->idle && !throttled)
3971 goto out_deactivate;
a9cf55b2
PT
3972
3973 __refill_cfs_bandwidth_runtime(cfs_b);
3974
671fd9da
PT
3975 if (!throttled) {
3976 /* mark as potentially idle for the upcoming period */
3977 cfs_b->idle = 1;
51f2176d 3978 return 0;
671fd9da
PT
3979 }
3980
e8da1b18
NR
3981 /* account preceding periods in which throttling occurred */
3982 cfs_b->nr_throttled += overrun;
3983
671fd9da 3984 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3985
3986 /*
c06f04c7
BS
3987 * This check is repeated as we are holding onto the new bandwidth while
3988 * we unthrottle. This can potentially race with an unthrottled group
3989 * trying to acquire new bandwidth from the global pool. This can result
3990 * in us over-using our runtime if it is all used during this loop, but
3991 * only by limited amounts in that extreme case.
671fd9da 3992 */
c06f04c7
BS
3993 while (throttled && cfs_b->runtime > 0) {
3994 runtime = cfs_b->runtime;
671fd9da
PT
3995 raw_spin_unlock(&cfs_b->lock);
3996 /* we can't nest cfs_b->lock while distributing bandwidth */
3997 runtime = distribute_cfs_runtime(cfs_b, runtime,
3998 runtime_expires);
3999 raw_spin_lock(&cfs_b->lock);
4000
4001 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4002
4003 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4004 }
58088ad0 4005
671fd9da
PT
4006 /*
4007 * While we are ensured activity in the period following an
4008 * unthrottle, this also covers the case in which the new bandwidth is
4009 * insufficient to cover the existing bandwidth deficit. (Forcing the
4010 * timer to remain active while there are any throttled entities.)
4011 */
4012 cfs_b->idle = 0;
58088ad0 4013
51f2176d
BS
4014 return 0;
4015
4016out_deactivate:
51f2176d 4017 return 1;
58088ad0 4018}
d3d9dc33 4019
d8b4986d
PT
4020/* a cfs_rq won't donate quota below this amount */
4021static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4022/* minimum remaining period time to redistribute slack quota */
4023static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4024/* how long we wait to gather additional slack before distributing */
4025static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4026
db06e78c
BS
4027/*
4028 * Are we near the end of the current quota period?
4029 *
4030 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4031 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4032 * migrate_hrtimers, base is never cleared, so we are fine.
4033 */
d8b4986d
PT
4034static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4035{
4036 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4037 u64 remaining;
4038
4039 /* if the call-back is running a quota refresh is already occurring */
4040 if (hrtimer_callback_running(refresh_timer))
4041 return 1;
4042
4043 /* is a quota refresh about to occur? */
4044 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4045 if (remaining < min_expire)
4046 return 1;
4047
4048 return 0;
4049}
4050
4051static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4052{
4053 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4054
4055 /* if there's a quota refresh soon don't bother with slack */
4056 if (runtime_refresh_within(cfs_b, min_left))
4057 return;
4058
4cfafd30
PZ
4059 hrtimer_start(&cfs_b->slack_timer,
4060 ns_to_ktime(cfs_bandwidth_slack_period),
4061 HRTIMER_MODE_REL);
d8b4986d
PT
4062}
4063
4064/* we know any runtime found here is valid as update_curr() precedes return */
4065static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4066{
4067 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4068 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4069
4070 if (slack_runtime <= 0)
4071 return;
4072
4073 raw_spin_lock(&cfs_b->lock);
4074 if (cfs_b->quota != RUNTIME_INF &&
4075 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4076 cfs_b->runtime += slack_runtime;
4077
4078 /* we are under rq->lock, defer unthrottling using a timer */
4079 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4080 !list_empty(&cfs_b->throttled_cfs_rq))
4081 start_cfs_slack_bandwidth(cfs_b);
4082 }
4083 raw_spin_unlock(&cfs_b->lock);
4084
4085 /* even if it's not valid for return we don't want to try again */
4086 cfs_rq->runtime_remaining -= slack_runtime;
4087}
4088
4089static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4090{
56f570e5
PT
4091 if (!cfs_bandwidth_used())
4092 return;
4093
fccfdc6f 4094 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4095 return;
4096
4097 __return_cfs_rq_runtime(cfs_rq);
4098}
4099
4100/*
4101 * This is done with a timer (instead of inline with bandwidth return) since
4102 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4103 */
4104static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4105{
4106 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4107 u64 expires;
4108
4109 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4110 raw_spin_lock(&cfs_b->lock);
4111 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4112 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4113 return;
db06e78c 4114 }
d8b4986d 4115
c06f04c7 4116 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4117 runtime = cfs_b->runtime;
c06f04c7 4118
d8b4986d
PT
4119 expires = cfs_b->runtime_expires;
4120 raw_spin_unlock(&cfs_b->lock);
4121
4122 if (!runtime)
4123 return;
4124
4125 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4126
4127 raw_spin_lock(&cfs_b->lock);
4128 if (expires == cfs_b->runtime_expires)
c06f04c7 4129 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4130 raw_spin_unlock(&cfs_b->lock);
4131}
4132
d3d9dc33
PT
4133/*
4134 * When a group wakes up we want to make sure that its quota is not already
4135 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4136 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4137 */
4138static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4139{
56f570e5
PT
4140 if (!cfs_bandwidth_used())
4141 return;
4142
d3d9dc33
PT
4143 /* an active group must be handled by the update_curr()->put() path */
4144 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4145 return;
4146
4147 /* ensure the group is not already throttled */
4148 if (cfs_rq_throttled(cfs_rq))
4149 return;
4150
4151 /* update runtime allocation */
4152 account_cfs_rq_runtime(cfs_rq, 0);
4153 if (cfs_rq->runtime_remaining <= 0)
4154 throttle_cfs_rq(cfs_rq);
4155}
4156
4157/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4158static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4159{
56f570e5 4160 if (!cfs_bandwidth_used())
678d5718 4161 return false;
56f570e5 4162
d3d9dc33 4163 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4164 return false;
d3d9dc33
PT
4165
4166 /*
4167 * it's possible for a throttled entity to be forced into a running
4168 * state (e.g. set_curr_task), in this case we're finished.
4169 */
4170 if (cfs_rq_throttled(cfs_rq))
678d5718 4171 return true;
d3d9dc33
PT
4172
4173 throttle_cfs_rq(cfs_rq);
678d5718 4174 return true;
d3d9dc33 4175}
029632fb 4176
029632fb
PZ
4177static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4178{
4179 struct cfs_bandwidth *cfs_b =
4180 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4181
029632fb
PZ
4182 do_sched_cfs_slack_timer(cfs_b);
4183
4184 return HRTIMER_NORESTART;
4185}
4186
4187static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4188{
4189 struct cfs_bandwidth *cfs_b =
4190 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4191 int overrun;
4192 int idle = 0;
4193
51f2176d 4194 raw_spin_lock(&cfs_b->lock);
029632fb 4195 for (;;) {
77a4d1a1 4196 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4197 if (!overrun)
4198 break;
4199
4200 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4201 }
4cfafd30
PZ
4202 if (idle)
4203 cfs_b->period_active = 0;
51f2176d 4204 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4205
4206 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4207}
4208
4209void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4210{
4211 raw_spin_lock_init(&cfs_b->lock);
4212 cfs_b->runtime = 0;
4213 cfs_b->quota = RUNTIME_INF;
4214 cfs_b->period = ns_to_ktime(default_cfs_period());
4215
4216 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4217 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4218 cfs_b->period_timer.function = sched_cfs_period_timer;
4219 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4220 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4221}
4222
4223static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4224{
4225 cfs_rq->runtime_enabled = 0;
4226 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4227}
4228
77a4d1a1 4229void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4230{
4cfafd30 4231 lockdep_assert_held(&cfs_b->lock);
029632fb 4232
4cfafd30
PZ
4233 if (!cfs_b->period_active) {
4234 cfs_b->period_active = 1;
4235 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4236 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4237 }
029632fb
PZ
4238}
4239
4240static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4241{
7f1a169b
TH
4242 /* init_cfs_bandwidth() was not called */
4243 if (!cfs_b->throttled_cfs_rq.next)
4244 return;
4245
029632fb
PZ
4246 hrtimer_cancel(&cfs_b->period_timer);
4247 hrtimer_cancel(&cfs_b->slack_timer);
4248}
4249
0e59bdae
KT
4250static void __maybe_unused update_runtime_enabled(struct rq *rq)
4251{
4252 struct cfs_rq *cfs_rq;
4253
4254 for_each_leaf_cfs_rq(rq, cfs_rq) {
4255 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4256
4257 raw_spin_lock(&cfs_b->lock);
4258 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4259 raw_spin_unlock(&cfs_b->lock);
4260 }
4261}
4262
38dc3348 4263static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4264{
4265 struct cfs_rq *cfs_rq;
4266
4267 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4268 if (!cfs_rq->runtime_enabled)
4269 continue;
4270
4271 /*
4272 * clock_task is not advancing so we just need to make sure
4273 * there's some valid quota amount
4274 */
51f2176d 4275 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4276 /*
4277 * Offline rq is schedulable till cpu is completely disabled
4278 * in take_cpu_down(), so we prevent new cfs throttling here.
4279 */
4280 cfs_rq->runtime_enabled = 0;
4281
029632fb
PZ
4282 if (cfs_rq_throttled(cfs_rq))
4283 unthrottle_cfs_rq(cfs_rq);
4284 }
4285}
4286
4287#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4288static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4289{
78becc27 4290 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4291}
4292
9dbdb155 4293static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4294static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4295static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4296static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4297
4298static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4299{
4300 return 0;
4301}
64660c86
PT
4302
4303static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4304{
4305 return 0;
4306}
4307
4308static inline int throttled_lb_pair(struct task_group *tg,
4309 int src_cpu, int dest_cpu)
4310{
4311 return 0;
4312}
029632fb
PZ
4313
4314void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4315
4316#ifdef CONFIG_FAIR_GROUP_SCHED
4317static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4318#endif
4319
029632fb
PZ
4320static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4321{
4322 return NULL;
4323}
4324static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4325static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4326static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4327
4328#endif /* CONFIG_CFS_BANDWIDTH */
4329
bf0f6f24
IM
4330/**************************************************
4331 * CFS operations on tasks:
4332 */
4333
8f4d37ec
PZ
4334#ifdef CONFIG_SCHED_HRTICK
4335static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4336{
8f4d37ec
PZ
4337 struct sched_entity *se = &p->se;
4338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4339
4340 WARN_ON(task_rq(p) != rq);
4341
b39e66ea 4342 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4343 u64 slice = sched_slice(cfs_rq, se);
4344 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4345 s64 delta = slice - ran;
4346
4347 if (delta < 0) {
4348 if (rq->curr == p)
8875125e 4349 resched_curr(rq);
8f4d37ec
PZ
4350 return;
4351 }
31656519 4352 hrtick_start(rq, delta);
8f4d37ec
PZ
4353 }
4354}
a4c2f00f
PZ
4355
4356/*
4357 * called from enqueue/dequeue and updates the hrtick when the
4358 * current task is from our class and nr_running is low enough
4359 * to matter.
4360 */
4361static void hrtick_update(struct rq *rq)
4362{
4363 struct task_struct *curr = rq->curr;
4364
b39e66ea 4365 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4366 return;
4367
4368 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4369 hrtick_start_fair(rq, curr);
4370}
55e12e5e 4371#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4372static inline void
4373hrtick_start_fair(struct rq *rq, struct task_struct *p)
4374{
4375}
a4c2f00f
PZ
4376
4377static inline void hrtick_update(struct rq *rq)
4378{
4379}
8f4d37ec
PZ
4380#endif
4381
bf0f6f24
IM
4382/*
4383 * The enqueue_task method is called before nr_running is
4384 * increased. Here we update the fair scheduling stats and
4385 * then put the task into the rbtree:
4386 */
ea87bb78 4387static void
371fd7e7 4388enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4389{
4390 struct cfs_rq *cfs_rq;
62fb1851 4391 struct sched_entity *se = &p->se;
bf0f6f24
IM
4392
4393 for_each_sched_entity(se) {
62fb1851 4394 if (se->on_rq)
bf0f6f24
IM
4395 break;
4396 cfs_rq = cfs_rq_of(se);
88ec22d3 4397 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4398
4399 /*
4400 * end evaluation on encountering a throttled cfs_rq
4401 *
4402 * note: in the case of encountering a throttled cfs_rq we will
4403 * post the final h_nr_running increment below.
4404 */
4405 if (cfs_rq_throttled(cfs_rq))
4406 break;
953bfcd1 4407 cfs_rq->h_nr_running++;
85dac906 4408
88ec22d3 4409 flags = ENQUEUE_WAKEUP;
bf0f6f24 4410 }
8f4d37ec 4411
2069dd75 4412 for_each_sched_entity(se) {
0f317143 4413 cfs_rq = cfs_rq_of(se);
953bfcd1 4414 cfs_rq->h_nr_running++;
2069dd75 4415
85dac906
PT
4416 if (cfs_rq_throttled(cfs_rq))
4417 break;
4418
9d89c257 4419 update_load_avg(se, 1);
17bc14b7 4420 update_cfs_shares(cfs_rq);
2069dd75
PZ
4421 }
4422
cd126afe 4423 if (!se)
72465447 4424 add_nr_running(rq, 1);
cd126afe 4425
a4c2f00f 4426 hrtick_update(rq);
bf0f6f24
IM
4427}
4428
2f36825b
VP
4429static void set_next_buddy(struct sched_entity *se);
4430
bf0f6f24
IM
4431/*
4432 * The dequeue_task method is called before nr_running is
4433 * decreased. We remove the task from the rbtree and
4434 * update the fair scheduling stats:
4435 */
371fd7e7 4436static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4437{
4438 struct cfs_rq *cfs_rq;
62fb1851 4439 struct sched_entity *se = &p->se;
2f36825b 4440 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4441
4442 for_each_sched_entity(se) {
4443 cfs_rq = cfs_rq_of(se);
371fd7e7 4444 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4445
4446 /*
4447 * end evaluation on encountering a throttled cfs_rq
4448 *
4449 * note: in the case of encountering a throttled cfs_rq we will
4450 * post the final h_nr_running decrement below.
4451 */
4452 if (cfs_rq_throttled(cfs_rq))
4453 break;
953bfcd1 4454 cfs_rq->h_nr_running--;
2069dd75 4455
bf0f6f24 4456 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4457 if (cfs_rq->load.weight) {
4458 /*
4459 * Bias pick_next to pick a task from this cfs_rq, as
4460 * p is sleeping when it is within its sched_slice.
4461 */
4462 if (task_sleep && parent_entity(se))
4463 set_next_buddy(parent_entity(se));
9598c82d
PT
4464
4465 /* avoid re-evaluating load for this entity */
4466 se = parent_entity(se);
bf0f6f24 4467 break;
2f36825b 4468 }
371fd7e7 4469 flags |= DEQUEUE_SLEEP;
bf0f6f24 4470 }
8f4d37ec 4471
2069dd75 4472 for_each_sched_entity(se) {
0f317143 4473 cfs_rq = cfs_rq_of(se);
953bfcd1 4474 cfs_rq->h_nr_running--;
2069dd75 4475
85dac906
PT
4476 if (cfs_rq_throttled(cfs_rq))
4477 break;
4478
9d89c257 4479 update_load_avg(se, 1);
17bc14b7 4480 update_cfs_shares(cfs_rq);
2069dd75
PZ
4481 }
4482
cd126afe 4483 if (!se)
72465447 4484 sub_nr_running(rq, 1);
cd126afe 4485
a4c2f00f 4486 hrtick_update(rq);
bf0f6f24
IM
4487}
4488
e7693a36 4489#ifdef CONFIG_SMP
9fd81dd5 4490#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4491/*
4492 * per rq 'load' arrray crap; XXX kill this.
4493 */
4494
4495/*
d937cdc5 4496 * The exact cpuload calculated at every tick would be:
3289bdb4 4497 *
d937cdc5
PZ
4498 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4499 *
4500 * If a cpu misses updates for n ticks (as it was idle) and update gets
4501 * called on the n+1-th tick when cpu may be busy, then we have:
4502 *
4503 * load_n = (1 - 1/2^i)^n * load_0
4504 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4505 *
4506 * decay_load_missed() below does efficient calculation of
3289bdb4 4507 *
d937cdc5
PZ
4508 * load' = (1 - 1/2^i)^n * load
4509 *
4510 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4511 * This allows us to precompute the above in said factors, thereby allowing the
4512 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4513 * fixed_power_int())
3289bdb4 4514 *
d937cdc5 4515 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4516 */
4517#define DEGRADE_SHIFT 7
d937cdc5
PZ
4518
4519static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4520static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4521 { 0, 0, 0, 0, 0, 0, 0, 0 },
4522 { 64, 32, 8, 0, 0, 0, 0, 0 },
4523 { 96, 72, 40, 12, 1, 0, 0, 0 },
4524 { 112, 98, 75, 43, 15, 1, 0, 0 },
4525 { 120, 112, 98, 76, 45, 16, 2, 0 }
4526};
3289bdb4
PZ
4527
4528/*
4529 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4530 * would be when CPU is idle and so we just decay the old load without
4531 * adding any new load.
4532 */
4533static unsigned long
4534decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4535{
4536 int j = 0;
4537
4538 if (!missed_updates)
4539 return load;
4540
4541 if (missed_updates >= degrade_zero_ticks[idx])
4542 return 0;
4543
4544 if (idx == 1)
4545 return load >> missed_updates;
4546
4547 while (missed_updates) {
4548 if (missed_updates % 2)
4549 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4550
4551 missed_updates >>= 1;
4552 j++;
4553 }
4554 return load;
4555}
9fd81dd5 4556#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4557
59543275 4558/**
cee1afce 4559 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4560 * @this_rq: The rq to update statistics for
4561 * @this_load: The current load
4562 * @pending_updates: The number of missed updates
59543275 4563 *
3289bdb4 4564 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4565 * scheduler tick (TICK_NSEC).
4566 *
4567 * This function computes a decaying average:
4568 *
4569 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4570 *
4571 * Because of NOHZ it might not get called on every tick which gives need for
4572 * the @pending_updates argument.
4573 *
4574 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4575 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4576 * = A * (A * load[i]_n-2 + B) + B
4577 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4578 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4579 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4580 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4581 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4582 *
4583 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4584 * any change in load would have resulted in the tick being turned back on.
4585 *
4586 * For regular NOHZ, this reduces to:
4587 *
4588 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4589 *
4590 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4591 * term.
3289bdb4 4592 */
1f41906a
FW
4593static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4594 unsigned long pending_updates)
3289bdb4 4595{
9fd81dd5 4596 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4597 int i, scale;
4598
4599 this_rq->nr_load_updates++;
4600
4601 /* Update our load: */
4602 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4603 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4604 unsigned long old_load, new_load;
4605
4606 /* scale is effectively 1 << i now, and >> i divides by scale */
4607
7400d3bb 4608 old_load = this_rq->cpu_load[i];
9fd81dd5 4609#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4610 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4611 if (tickless_load) {
4612 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4613 /*
4614 * old_load can never be a negative value because a
4615 * decayed tickless_load cannot be greater than the
4616 * original tickless_load.
4617 */
4618 old_load += tickless_load;
4619 }
9fd81dd5 4620#endif
3289bdb4
PZ
4621 new_load = this_load;
4622 /*
4623 * Round up the averaging division if load is increasing. This
4624 * prevents us from getting stuck on 9 if the load is 10, for
4625 * example.
4626 */
4627 if (new_load > old_load)
4628 new_load += scale - 1;
4629
4630 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4631 }
4632
4633 sched_avg_update(this_rq);
4634}
4635
7ea241af
YD
4636/* Used instead of source_load when we know the type == 0 */
4637static unsigned long weighted_cpuload(const int cpu)
4638{
4639 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4640}
4641
3289bdb4 4642#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4643/*
4644 * There is no sane way to deal with nohz on smp when using jiffies because the
4645 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4646 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4647 *
4648 * Therefore we need to avoid the delta approach from the regular tick when
4649 * possible since that would seriously skew the load calculation. This is why we
4650 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4651 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4652 * loop exit, nohz_idle_balance, nohz full exit...)
4653 *
4654 * This means we might still be one tick off for nohz periods.
4655 */
4656
4657static void cpu_load_update_nohz(struct rq *this_rq,
4658 unsigned long curr_jiffies,
4659 unsigned long load)
be68a682
FW
4660{
4661 unsigned long pending_updates;
4662
4663 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4664 if (pending_updates) {
4665 this_rq->last_load_update_tick = curr_jiffies;
4666 /*
4667 * In the regular NOHZ case, we were idle, this means load 0.
4668 * In the NOHZ_FULL case, we were non-idle, we should consider
4669 * its weighted load.
4670 */
1f41906a 4671 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4672 }
4673}
4674
3289bdb4
PZ
4675/*
4676 * Called from nohz_idle_balance() to update the load ratings before doing the
4677 * idle balance.
4678 */
cee1afce 4679static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4680{
3289bdb4
PZ
4681 /*
4682 * bail if there's load or we're actually up-to-date.
4683 */
be68a682 4684 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4685 return;
4686
1f41906a 4687 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4688}
4689
4690/*
1f41906a
FW
4691 * Record CPU load on nohz entry so we know the tickless load to account
4692 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4693 * than other cpu_load[idx] but it should be fine as cpu_load readers
4694 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4695 */
1f41906a 4696void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4697{
4698 struct rq *this_rq = this_rq();
1f41906a
FW
4699
4700 /*
4701 * This is all lockless but should be fine. If weighted_cpuload changes
4702 * concurrently we'll exit nohz. And cpu_load write can race with
4703 * cpu_load_update_idle() but both updater would be writing the same.
4704 */
4705 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4706}
4707
4708/*
4709 * Account the tickless load in the end of a nohz frame.
4710 */
4711void cpu_load_update_nohz_stop(void)
4712{
316c1608 4713 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4714 struct rq *this_rq = this_rq();
4715 unsigned long load;
3289bdb4
PZ
4716
4717 if (curr_jiffies == this_rq->last_load_update_tick)
4718 return;
4719
1f41906a 4720 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4721 raw_spin_lock(&this_rq->lock);
1f41906a 4722 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4723 raw_spin_unlock(&this_rq->lock);
4724}
1f41906a
FW
4725#else /* !CONFIG_NO_HZ_COMMON */
4726static inline void cpu_load_update_nohz(struct rq *this_rq,
4727 unsigned long curr_jiffies,
4728 unsigned long load) { }
4729#endif /* CONFIG_NO_HZ_COMMON */
4730
4731static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4732{
9fd81dd5 4733#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4734 /* See the mess around cpu_load_update_nohz(). */
4735 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4736#endif
1f41906a
FW
4737 cpu_load_update(this_rq, load, 1);
4738}
3289bdb4
PZ
4739
4740/*
4741 * Called from scheduler_tick()
4742 */
cee1afce 4743void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4744{
7ea241af 4745 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4746
4747 if (tick_nohz_tick_stopped())
4748 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4749 else
4750 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4751}
4752
029632fb
PZ
4753/*
4754 * Return a low guess at the load of a migration-source cpu weighted
4755 * according to the scheduling class and "nice" value.
4756 *
4757 * We want to under-estimate the load of migration sources, to
4758 * balance conservatively.
4759 */
4760static unsigned long source_load(int cpu, int type)
4761{
4762 struct rq *rq = cpu_rq(cpu);
4763 unsigned long total = weighted_cpuload(cpu);
4764
4765 if (type == 0 || !sched_feat(LB_BIAS))
4766 return total;
4767
4768 return min(rq->cpu_load[type-1], total);
4769}
4770
4771/*
4772 * Return a high guess at the load of a migration-target cpu weighted
4773 * according to the scheduling class and "nice" value.
4774 */
4775static unsigned long target_load(int cpu, int type)
4776{
4777 struct rq *rq = cpu_rq(cpu);
4778 unsigned long total = weighted_cpuload(cpu);
4779
4780 if (type == 0 || !sched_feat(LB_BIAS))
4781 return total;
4782
4783 return max(rq->cpu_load[type-1], total);
4784}
4785
ced549fa 4786static unsigned long capacity_of(int cpu)
029632fb 4787{
ced549fa 4788 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4789}
4790
ca6d75e6
VG
4791static unsigned long capacity_orig_of(int cpu)
4792{
4793 return cpu_rq(cpu)->cpu_capacity_orig;
4794}
4795
029632fb
PZ
4796static unsigned long cpu_avg_load_per_task(int cpu)
4797{
4798 struct rq *rq = cpu_rq(cpu);
316c1608 4799 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4800 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4801
4802 if (nr_running)
b92486cb 4803 return load_avg / nr_running;
029632fb
PZ
4804
4805 return 0;
4806}
4807
62470419
MW
4808static void record_wakee(struct task_struct *p)
4809{
4810 /*
4811 * Rough decay (wiping) for cost saving, don't worry
4812 * about the boundary, really active task won't care
4813 * about the loss.
4814 */
2538d960 4815 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4816 current->wakee_flips >>= 1;
62470419
MW
4817 current->wakee_flip_decay_ts = jiffies;
4818 }
4819
4820 if (current->last_wakee != p) {
4821 current->last_wakee = p;
4822 current->wakee_flips++;
4823 }
4824}
098fb9db 4825
74f8e4b2 4826static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4827{
4828 struct sched_entity *se = &p->se;
4829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4830 u64 min_vruntime;
4831
4832#ifndef CONFIG_64BIT
4833 u64 min_vruntime_copy;
88ec22d3 4834
3fe1698b
PZ
4835 do {
4836 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4837 smp_rmb();
4838 min_vruntime = cfs_rq->min_vruntime;
4839 } while (min_vruntime != min_vruntime_copy);
4840#else
4841 min_vruntime = cfs_rq->min_vruntime;
4842#endif
88ec22d3 4843
3fe1698b 4844 se->vruntime -= min_vruntime;
62470419 4845 record_wakee(p);
88ec22d3
PZ
4846}
4847
bb3469ac 4848#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4849/*
4850 * effective_load() calculates the load change as seen from the root_task_group
4851 *
4852 * Adding load to a group doesn't make a group heavier, but can cause movement
4853 * of group shares between cpus. Assuming the shares were perfectly aligned one
4854 * can calculate the shift in shares.
cf5f0acf
PZ
4855 *
4856 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4857 * on this @cpu and results in a total addition (subtraction) of @wg to the
4858 * total group weight.
4859 *
4860 * Given a runqueue weight distribution (rw_i) we can compute a shares
4861 * distribution (s_i) using:
4862 *
4863 * s_i = rw_i / \Sum rw_j (1)
4864 *
4865 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4866 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4867 * shares distribution (s_i):
4868 *
4869 * rw_i = { 2, 4, 1, 0 }
4870 * s_i = { 2/7, 4/7, 1/7, 0 }
4871 *
4872 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4873 * task used to run on and the CPU the waker is running on), we need to
4874 * compute the effect of waking a task on either CPU and, in case of a sync
4875 * wakeup, compute the effect of the current task going to sleep.
4876 *
4877 * So for a change of @wl to the local @cpu with an overall group weight change
4878 * of @wl we can compute the new shares distribution (s'_i) using:
4879 *
4880 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4881 *
4882 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4883 * differences in waking a task to CPU 0. The additional task changes the
4884 * weight and shares distributions like:
4885 *
4886 * rw'_i = { 3, 4, 1, 0 }
4887 * s'_i = { 3/8, 4/8, 1/8, 0 }
4888 *
4889 * We can then compute the difference in effective weight by using:
4890 *
4891 * dw_i = S * (s'_i - s_i) (3)
4892 *
4893 * Where 'S' is the group weight as seen by its parent.
4894 *
4895 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4896 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4897 * 4/7) times the weight of the group.
f5bfb7d9 4898 */
2069dd75 4899static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4900{
4be9daaa 4901 struct sched_entity *se = tg->se[cpu];
f1d239f7 4902
9722c2da 4903 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4904 return wl;
4905
4be9daaa 4906 for_each_sched_entity(se) {
cf5f0acf 4907 long w, W;
4be9daaa 4908
977dda7c 4909 tg = se->my_q->tg;
bb3469ac 4910
cf5f0acf
PZ
4911 /*
4912 * W = @wg + \Sum rw_j
4913 */
4914 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4915
cf5f0acf
PZ
4916 /*
4917 * w = rw_i + @wl
4918 */
7ea241af 4919 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4920
cf5f0acf
PZ
4921 /*
4922 * wl = S * s'_i; see (2)
4923 */
4924 if (W > 0 && w < W)
32a8df4e 4925 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4926 else
4927 wl = tg->shares;
940959e9 4928
cf5f0acf
PZ
4929 /*
4930 * Per the above, wl is the new se->load.weight value; since
4931 * those are clipped to [MIN_SHARES, ...) do so now. See
4932 * calc_cfs_shares().
4933 */
977dda7c
PT
4934 if (wl < MIN_SHARES)
4935 wl = MIN_SHARES;
cf5f0acf
PZ
4936
4937 /*
4938 * wl = dw_i = S * (s'_i - s_i); see (3)
4939 */
9d89c257 4940 wl -= se->avg.load_avg;
cf5f0acf
PZ
4941
4942 /*
4943 * Recursively apply this logic to all parent groups to compute
4944 * the final effective load change on the root group. Since
4945 * only the @tg group gets extra weight, all parent groups can
4946 * only redistribute existing shares. @wl is the shift in shares
4947 * resulting from this level per the above.
4948 */
4be9daaa 4949 wg = 0;
4be9daaa 4950 }
bb3469ac 4951
4be9daaa 4952 return wl;
bb3469ac
PZ
4953}
4954#else
4be9daaa 4955
58d081b5 4956static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4957{
83378269 4958 return wl;
bb3469ac 4959}
4be9daaa 4960
bb3469ac
PZ
4961#endif
4962
63b0e9ed
MG
4963/*
4964 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4965 * A waker of many should wake a different task than the one last awakened
4966 * at a frequency roughly N times higher than one of its wakees. In order
4967 * to determine whether we should let the load spread vs consolodating to
4968 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4969 * partner, and a factor of lls_size higher frequency in the other. With
4970 * both conditions met, we can be relatively sure that the relationship is
4971 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4972 * being client/server, worker/dispatcher, interrupt source or whatever is
4973 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4974 */
62470419
MW
4975static int wake_wide(struct task_struct *p)
4976{
63b0e9ed
MG
4977 unsigned int master = current->wakee_flips;
4978 unsigned int slave = p->wakee_flips;
7d9ffa89 4979 int factor = this_cpu_read(sd_llc_size);
62470419 4980
63b0e9ed
MG
4981 if (master < slave)
4982 swap(master, slave);
4983 if (slave < factor || master < slave * factor)
4984 return 0;
4985 return 1;
62470419
MW
4986}
4987
c88d5910 4988static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4989{
e37b6a7b 4990 s64 this_load, load;
bd61c98f 4991 s64 this_eff_load, prev_eff_load;
c88d5910 4992 int idx, this_cpu, prev_cpu;
c88d5910 4993 struct task_group *tg;
83378269 4994 unsigned long weight;
b3137bc8 4995 int balanced;
098fb9db 4996
c88d5910
PZ
4997 idx = sd->wake_idx;
4998 this_cpu = smp_processor_id();
4999 prev_cpu = task_cpu(p);
5000 load = source_load(prev_cpu, idx);
5001 this_load = target_load(this_cpu, idx);
098fb9db 5002
b3137bc8
MG
5003 /*
5004 * If sync wakeup then subtract the (maximum possible)
5005 * effect of the currently running task from the load
5006 * of the current CPU:
5007 */
83378269
PZ
5008 if (sync) {
5009 tg = task_group(current);
9d89c257 5010 weight = current->se.avg.load_avg;
83378269 5011
c88d5910 5012 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5013 load += effective_load(tg, prev_cpu, 0, -weight);
5014 }
b3137bc8 5015
83378269 5016 tg = task_group(p);
9d89c257 5017 weight = p->se.avg.load_avg;
b3137bc8 5018
71a29aa7
PZ
5019 /*
5020 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5021 * due to the sync cause above having dropped this_load to 0, we'll
5022 * always have an imbalance, but there's really nothing you can do
5023 * about that, so that's good too.
71a29aa7
PZ
5024 *
5025 * Otherwise check if either cpus are near enough in load to allow this
5026 * task to be woken on this_cpu.
5027 */
bd61c98f
VG
5028 this_eff_load = 100;
5029 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5030
bd61c98f
VG
5031 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5032 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5033
bd61c98f 5034 if (this_load > 0) {
e51fd5e2
PZ
5035 this_eff_load *= this_load +
5036 effective_load(tg, this_cpu, weight, weight);
5037
e51fd5e2 5038 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5039 }
e51fd5e2 5040
bd61c98f 5041 balanced = this_eff_load <= prev_eff_load;
098fb9db 5042
41acab88 5043 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5044
05bfb65f
VG
5045 if (!balanced)
5046 return 0;
098fb9db 5047
05bfb65f
VG
5048 schedstat_inc(sd, ttwu_move_affine);
5049 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5050
5051 return 1;
098fb9db
IM
5052}
5053
aaee1203
PZ
5054/*
5055 * find_idlest_group finds and returns the least busy CPU group within the
5056 * domain.
5057 */
5058static struct sched_group *
78e7ed53 5059find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5060 int this_cpu, int sd_flag)
e7693a36 5061{
b3bd3de6 5062 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5063 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5064 int load_idx = sd->forkexec_idx;
aaee1203 5065 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5066
c44f2a02
VG
5067 if (sd_flag & SD_BALANCE_WAKE)
5068 load_idx = sd->wake_idx;
5069
aaee1203
PZ
5070 do {
5071 unsigned long load, avg_load;
5072 int local_group;
5073 int i;
e7693a36 5074
aaee1203
PZ
5075 /* Skip over this group if it has no CPUs allowed */
5076 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5077 tsk_cpus_allowed(p)))
aaee1203
PZ
5078 continue;
5079
5080 local_group = cpumask_test_cpu(this_cpu,
5081 sched_group_cpus(group));
5082
5083 /* Tally up the load of all CPUs in the group */
5084 avg_load = 0;
5085
5086 for_each_cpu(i, sched_group_cpus(group)) {
5087 /* Bias balancing toward cpus of our domain */
5088 if (local_group)
5089 load = source_load(i, load_idx);
5090 else
5091 load = target_load(i, load_idx);
5092
5093 avg_load += load;
5094 }
5095
63b2ca30 5096 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5097 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5098
5099 if (local_group) {
5100 this_load = avg_load;
aaee1203
PZ
5101 } else if (avg_load < min_load) {
5102 min_load = avg_load;
5103 idlest = group;
5104 }
5105 } while (group = group->next, group != sd->groups);
5106
5107 if (!idlest || 100*this_load < imbalance*min_load)
5108 return NULL;
5109 return idlest;
5110}
5111
5112/*
5113 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5114 */
5115static int
5116find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5117{
5118 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5119 unsigned int min_exit_latency = UINT_MAX;
5120 u64 latest_idle_timestamp = 0;
5121 int least_loaded_cpu = this_cpu;
5122 int shallowest_idle_cpu = -1;
aaee1203
PZ
5123 int i;
5124
5125 /* Traverse only the allowed CPUs */
fa17b507 5126 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5127 if (idle_cpu(i)) {
5128 struct rq *rq = cpu_rq(i);
5129 struct cpuidle_state *idle = idle_get_state(rq);
5130 if (idle && idle->exit_latency < min_exit_latency) {
5131 /*
5132 * We give priority to a CPU whose idle state
5133 * has the smallest exit latency irrespective
5134 * of any idle timestamp.
5135 */
5136 min_exit_latency = idle->exit_latency;
5137 latest_idle_timestamp = rq->idle_stamp;
5138 shallowest_idle_cpu = i;
5139 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5140 rq->idle_stamp > latest_idle_timestamp) {
5141 /*
5142 * If equal or no active idle state, then
5143 * the most recently idled CPU might have
5144 * a warmer cache.
5145 */
5146 latest_idle_timestamp = rq->idle_stamp;
5147 shallowest_idle_cpu = i;
5148 }
9f96742a 5149 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5150 load = weighted_cpuload(i);
5151 if (load < min_load || (load == min_load && i == this_cpu)) {
5152 min_load = load;
5153 least_loaded_cpu = i;
5154 }
e7693a36
GH
5155 }
5156 }
5157
83a0a96a 5158 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5159}
e7693a36 5160
a50bde51
PZ
5161/*
5162 * Try and locate an idle CPU in the sched_domain.
5163 */
99bd5e2f 5164static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5165{
99bd5e2f 5166 struct sched_domain *sd;
37407ea7 5167 struct sched_group *sg;
e0a79f52 5168 int i = task_cpu(p);
a50bde51 5169
e0a79f52
MG
5170 if (idle_cpu(target))
5171 return target;
99bd5e2f
SS
5172
5173 /*
e0a79f52 5174 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5175 */
e0a79f52
MG
5176 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5177 return i;
a50bde51
PZ
5178
5179 /*
d4335581
MF
5180 * Otherwise, iterate the domains and find an eligible idle cpu.
5181 *
5182 * A completely idle sched group at higher domains is more
5183 * desirable than an idle group at a lower level, because lower
5184 * domains have smaller groups and usually share hardware
5185 * resources which causes tasks to contend on them, e.g. x86
5186 * hyperthread siblings in the lowest domain (SMT) can contend
5187 * on the shared cpu pipeline.
5188 *
5189 * However, while we prefer idle groups at higher domains
5190 * finding an idle cpu at the lowest domain is still better than
5191 * returning 'target', which we've already established, isn't
5192 * idle.
a50bde51 5193 */
518cd623 5194 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5195 for_each_lower_domain(sd) {
37407ea7
LT
5196 sg = sd->groups;
5197 do {
5198 if (!cpumask_intersects(sched_group_cpus(sg),
5199 tsk_cpus_allowed(p)))
5200 goto next;
5201
d4335581 5202 /* Ensure the entire group is idle */
37407ea7 5203 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5204 if (i == target || !idle_cpu(i))
37407ea7
LT
5205 goto next;
5206 }
970e1789 5207
d4335581
MF
5208 /*
5209 * It doesn't matter which cpu we pick, the
5210 * whole group is idle.
5211 */
37407ea7
LT
5212 target = cpumask_first_and(sched_group_cpus(sg),
5213 tsk_cpus_allowed(p));
5214 goto done;
5215next:
5216 sg = sg->next;
5217 } while (sg != sd->groups);
5218 }
5219done:
a50bde51
PZ
5220 return target;
5221}
231678b7 5222
8bb5b00c 5223/*
9e91d61d 5224 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5225 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5226 * compare the utilization with the capacity of the CPU that is available for
5227 * CFS task (ie cpu_capacity).
231678b7
DE
5228 *
5229 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5230 * recent utilization of currently non-runnable tasks on a CPU. It represents
5231 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5232 * capacity_orig is the cpu_capacity available at the highest frequency
5233 * (arch_scale_freq_capacity()).
5234 * The utilization of a CPU converges towards a sum equal to or less than the
5235 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5236 * the running time on this CPU scaled by capacity_curr.
5237 *
5238 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5239 * higher than capacity_orig because of unfortunate rounding in
5240 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5241 * the average stabilizes with the new running time. We need to check that the
5242 * utilization stays within the range of [0..capacity_orig] and cap it if
5243 * necessary. Without utilization capping, a group could be seen as overloaded
5244 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5245 * available capacity. We allow utilization to overshoot capacity_curr (but not
5246 * capacity_orig) as it useful for predicting the capacity required after task
5247 * migrations (scheduler-driven DVFS).
8bb5b00c 5248 */
9e91d61d 5249static int cpu_util(int cpu)
8bb5b00c 5250{
9e91d61d 5251 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5252 unsigned long capacity = capacity_orig_of(cpu);
5253
231678b7 5254 return (util >= capacity) ? capacity : util;
8bb5b00c 5255}
a50bde51 5256
aaee1203 5257/*
de91b9cb
MR
5258 * select_task_rq_fair: Select target runqueue for the waking task in domains
5259 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5260 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5261 *
de91b9cb
MR
5262 * Balances load by selecting the idlest cpu in the idlest group, or under
5263 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5264 *
de91b9cb 5265 * Returns the target cpu number.
aaee1203
PZ
5266 *
5267 * preempt must be disabled.
5268 */
0017d735 5269static int
ac66f547 5270select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5271{
29cd8bae 5272 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5273 int cpu = smp_processor_id();
63b0e9ed 5274 int new_cpu = prev_cpu;
99bd5e2f 5275 int want_affine = 0;
5158f4e4 5276 int sync = wake_flags & WF_SYNC;
c88d5910 5277
a8edd075 5278 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5279 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5280
dce840a0 5281 rcu_read_lock();
aaee1203 5282 for_each_domain(cpu, tmp) {
e4f42888 5283 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5284 break;
e4f42888 5285
fe3bcfe1 5286 /*
99bd5e2f
SS
5287 * If both cpu and prev_cpu are part of this domain,
5288 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5289 */
99bd5e2f
SS
5290 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5291 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5292 affine_sd = tmp;
29cd8bae 5293 break;
f03542a7 5294 }
29cd8bae 5295
f03542a7 5296 if (tmp->flags & sd_flag)
29cd8bae 5297 sd = tmp;
63b0e9ed
MG
5298 else if (!want_affine)
5299 break;
29cd8bae
PZ
5300 }
5301
63b0e9ed
MG
5302 if (affine_sd) {
5303 sd = NULL; /* Prefer wake_affine over balance flags */
5304 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5305 new_cpu = cpu;
8b911acd 5306 }
e7693a36 5307
63b0e9ed
MG
5308 if (!sd) {
5309 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5310 new_cpu = select_idle_sibling(p, new_cpu);
5311
5312 } else while (sd) {
aaee1203 5313 struct sched_group *group;
c88d5910 5314 int weight;
098fb9db 5315
0763a660 5316 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5317 sd = sd->child;
5318 continue;
5319 }
098fb9db 5320
c44f2a02 5321 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5322 if (!group) {
5323 sd = sd->child;
5324 continue;
5325 }
4ae7d5ce 5326
d7c33c49 5327 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5328 if (new_cpu == -1 || new_cpu == cpu) {
5329 /* Now try balancing at a lower domain level of cpu */
5330 sd = sd->child;
5331 continue;
e7693a36 5332 }
aaee1203
PZ
5333
5334 /* Now try balancing at a lower domain level of new_cpu */
5335 cpu = new_cpu;
669c55e9 5336 weight = sd->span_weight;
aaee1203
PZ
5337 sd = NULL;
5338 for_each_domain(cpu, tmp) {
669c55e9 5339 if (weight <= tmp->span_weight)
aaee1203 5340 break;
0763a660 5341 if (tmp->flags & sd_flag)
aaee1203
PZ
5342 sd = tmp;
5343 }
5344 /* while loop will break here if sd == NULL */
e7693a36 5345 }
dce840a0 5346 rcu_read_unlock();
e7693a36 5347
c88d5910 5348 return new_cpu;
e7693a36 5349}
0a74bef8
PT
5350
5351/*
5352 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5353 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5354 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5355 */
5a4fd036 5356static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5357{
aff3e498 5358 /*
9d89c257
YD
5359 * We are supposed to update the task to "current" time, then its up to date
5360 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5361 * what current time is, so simply throw away the out-of-date time. This
5362 * will result in the wakee task is less decayed, but giving the wakee more
5363 * load sounds not bad.
aff3e498 5364 */
9d89c257
YD
5365 remove_entity_load_avg(&p->se);
5366
5367 /* Tell new CPU we are migrated */
5368 p->se.avg.last_update_time = 0;
3944a927
BS
5369
5370 /* We have migrated, no longer consider this task hot */
9d89c257 5371 p->se.exec_start = 0;
0a74bef8 5372}
12695578
YD
5373
5374static void task_dead_fair(struct task_struct *p)
5375{
5376 remove_entity_load_avg(&p->se);
5377}
e7693a36
GH
5378#endif /* CONFIG_SMP */
5379
e52fb7c0
PZ
5380static unsigned long
5381wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5382{
5383 unsigned long gran = sysctl_sched_wakeup_granularity;
5384
5385 /*
e52fb7c0
PZ
5386 * Since its curr running now, convert the gran from real-time
5387 * to virtual-time in his units.
13814d42
MG
5388 *
5389 * By using 'se' instead of 'curr' we penalize light tasks, so
5390 * they get preempted easier. That is, if 'se' < 'curr' then
5391 * the resulting gran will be larger, therefore penalizing the
5392 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5393 * be smaller, again penalizing the lighter task.
5394 *
5395 * This is especially important for buddies when the leftmost
5396 * task is higher priority than the buddy.
0bbd3336 5397 */
f4ad9bd2 5398 return calc_delta_fair(gran, se);
0bbd3336
PZ
5399}
5400
464b7527
PZ
5401/*
5402 * Should 'se' preempt 'curr'.
5403 *
5404 * |s1
5405 * |s2
5406 * |s3
5407 * g
5408 * |<--->|c
5409 *
5410 * w(c, s1) = -1
5411 * w(c, s2) = 0
5412 * w(c, s3) = 1
5413 *
5414 */
5415static int
5416wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5417{
5418 s64 gran, vdiff = curr->vruntime - se->vruntime;
5419
5420 if (vdiff <= 0)
5421 return -1;
5422
e52fb7c0 5423 gran = wakeup_gran(curr, se);
464b7527
PZ
5424 if (vdiff > gran)
5425 return 1;
5426
5427 return 0;
5428}
5429
02479099
PZ
5430static void set_last_buddy(struct sched_entity *se)
5431{
69c80f3e
VP
5432 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5433 return;
5434
5435 for_each_sched_entity(se)
5436 cfs_rq_of(se)->last = se;
02479099
PZ
5437}
5438
5439static void set_next_buddy(struct sched_entity *se)
5440{
69c80f3e
VP
5441 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5442 return;
5443
5444 for_each_sched_entity(se)
5445 cfs_rq_of(se)->next = se;
02479099
PZ
5446}
5447
ac53db59
RR
5448static void set_skip_buddy(struct sched_entity *se)
5449{
69c80f3e
VP
5450 for_each_sched_entity(se)
5451 cfs_rq_of(se)->skip = se;
ac53db59
RR
5452}
5453
bf0f6f24
IM
5454/*
5455 * Preempt the current task with a newly woken task if needed:
5456 */
5a9b86f6 5457static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5458{
5459 struct task_struct *curr = rq->curr;
8651a86c 5460 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5461 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5462 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5463 int next_buddy_marked = 0;
bf0f6f24 5464
4ae7d5ce
IM
5465 if (unlikely(se == pse))
5466 return;
5467
5238cdd3 5468 /*
163122b7 5469 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5470 * unconditionally check_prempt_curr() after an enqueue (which may have
5471 * lead to a throttle). This both saves work and prevents false
5472 * next-buddy nomination below.
5473 */
5474 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5475 return;
5476
2f36825b 5477 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5478 set_next_buddy(pse);
2f36825b
VP
5479 next_buddy_marked = 1;
5480 }
57fdc26d 5481
aec0a514
BR
5482 /*
5483 * We can come here with TIF_NEED_RESCHED already set from new task
5484 * wake up path.
5238cdd3
PT
5485 *
5486 * Note: this also catches the edge-case of curr being in a throttled
5487 * group (e.g. via set_curr_task), since update_curr() (in the
5488 * enqueue of curr) will have resulted in resched being set. This
5489 * prevents us from potentially nominating it as a false LAST_BUDDY
5490 * below.
aec0a514
BR
5491 */
5492 if (test_tsk_need_resched(curr))
5493 return;
5494
a2f5c9ab
DH
5495 /* Idle tasks are by definition preempted by non-idle tasks. */
5496 if (unlikely(curr->policy == SCHED_IDLE) &&
5497 likely(p->policy != SCHED_IDLE))
5498 goto preempt;
5499
91c234b4 5500 /*
a2f5c9ab
DH
5501 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5502 * is driven by the tick):
91c234b4 5503 */
8ed92e51 5504 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5505 return;
bf0f6f24 5506
464b7527 5507 find_matching_se(&se, &pse);
9bbd7374 5508 update_curr(cfs_rq_of(se));
002f128b 5509 BUG_ON(!pse);
2f36825b
VP
5510 if (wakeup_preempt_entity(se, pse) == 1) {
5511 /*
5512 * Bias pick_next to pick the sched entity that is
5513 * triggering this preemption.
5514 */
5515 if (!next_buddy_marked)
5516 set_next_buddy(pse);
3a7e73a2 5517 goto preempt;
2f36825b 5518 }
464b7527 5519
3a7e73a2 5520 return;
a65ac745 5521
3a7e73a2 5522preempt:
8875125e 5523 resched_curr(rq);
3a7e73a2
PZ
5524 /*
5525 * Only set the backward buddy when the current task is still
5526 * on the rq. This can happen when a wakeup gets interleaved
5527 * with schedule on the ->pre_schedule() or idle_balance()
5528 * point, either of which can * drop the rq lock.
5529 *
5530 * Also, during early boot the idle thread is in the fair class,
5531 * for obvious reasons its a bad idea to schedule back to it.
5532 */
5533 if (unlikely(!se->on_rq || curr == rq->idle))
5534 return;
5535
5536 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5537 set_last_buddy(se);
bf0f6f24
IM
5538}
5539
606dba2e 5540static struct task_struct *
e7904a28 5541pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5542{
5543 struct cfs_rq *cfs_rq = &rq->cfs;
5544 struct sched_entity *se;
678d5718 5545 struct task_struct *p;
37e117c0 5546 int new_tasks;
678d5718 5547
6e83125c 5548again:
678d5718
PZ
5549#ifdef CONFIG_FAIR_GROUP_SCHED
5550 if (!cfs_rq->nr_running)
38033c37 5551 goto idle;
678d5718 5552
3f1d2a31 5553 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5554 goto simple;
5555
5556 /*
5557 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5558 * likely that a next task is from the same cgroup as the current.
5559 *
5560 * Therefore attempt to avoid putting and setting the entire cgroup
5561 * hierarchy, only change the part that actually changes.
5562 */
5563
5564 do {
5565 struct sched_entity *curr = cfs_rq->curr;
5566
5567 /*
5568 * Since we got here without doing put_prev_entity() we also
5569 * have to consider cfs_rq->curr. If it is still a runnable
5570 * entity, update_curr() will update its vruntime, otherwise
5571 * forget we've ever seen it.
5572 */
54d27365
BS
5573 if (curr) {
5574 if (curr->on_rq)
5575 update_curr(cfs_rq);
5576 else
5577 curr = NULL;
678d5718 5578
54d27365
BS
5579 /*
5580 * This call to check_cfs_rq_runtime() will do the
5581 * throttle and dequeue its entity in the parent(s).
5582 * Therefore the 'simple' nr_running test will indeed
5583 * be correct.
5584 */
5585 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5586 goto simple;
5587 }
678d5718
PZ
5588
5589 se = pick_next_entity(cfs_rq, curr);
5590 cfs_rq = group_cfs_rq(se);
5591 } while (cfs_rq);
5592
5593 p = task_of(se);
5594
5595 /*
5596 * Since we haven't yet done put_prev_entity and if the selected task
5597 * is a different task than we started out with, try and touch the
5598 * least amount of cfs_rqs.
5599 */
5600 if (prev != p) {
5601 struct sched_entity *pse = &prev->se;
5602
5603 while (!(cfs_rq = is_same_group(se, pse))) {
5604 int se_depth = se->depth;
5605 int pse_depth = pse->depth;
5606
5607 if (se_depth <= pse_depth) {
5608 put_prev_entity(cfs_rq_of(pse), pse);
5609 pse = parent_entity(pse);
5610 }
5611 if (se_depth >= pse_depth) {
5612 set_next_entity(cfs_rq_of(se), se);
5613 se = parent_entity(se);
5614 }
5615 }
5616
5617 put_prev_entity(cfs_rq, pse);
5618 set_next_entity(cfs_rq, se);
5619 }
5620
5621 if (hrtick_enabled(rq))
5622 hrtick_start_fair(rq, p);
5623
5624 return p;
5625simple:
5626 cfs_rq = &rq->cfs;
5627#endif
bf0f6f24 5628
36ace27e 5629 if (!cfs_rq->nr_running)
38033c37 5630 goto idle;
bf0f6f24 5631
3f1d2a31 5632 put_prev_task(rq, prev);
606dba2e 5633
bf0f6f24 5634 do {
678d5718 5635 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5636 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5637 cfs_rq = group_cfs_rq(se);
5638 } while (cfs_rq);
5639
8f4d37ec 5640 p = task_of(se);
678d5718 5641
b39e66ea
MG
5642 if (hrtick_enabled(rq))
5643 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5644
5645 return p;
38033c37
PZ
5646
5647idle:
cbce1a68
PZ
5648 /*
5649 * This is OK, because current is on_cpu, which avoids it being picked
5650 * for load-balance and preemption/IRQs are still disabled avoiding
5651 * further scheduler activity on it and we're being very careful to
5652 * re-start the picking loop.
5653 */
e7904a28 5654 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5655 new_tasks = idle_balance(rq);
e7904a28 5656 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5657 /*
5658 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5659 * possible for any higher priority task to appear. In that case we
5660 * must re-start the pick_next_entity() loop.
5661 */
e4aa358b 5662 if (new_tasks < 0)
37e117c0
PZ
5663 return RETRY_TASK;
5664
e4aa358b 5665 if (new_tasks > 0)
38033c37 5666 goto again;
38033c37
PZ
5667
5668 return NULL;
bf0f6f24
IM
5669}
5670
5671/*
5672 * Account for a descheduled task:
5673 */
31ee529c 5674static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5675{
5676 struct sched_entity *se = &prev->se;
5677 struct cfs_rq *cfs_rq;
5678
5679 for_each_sched_entity(se) {
5680 cfs_rq = cfs_rq_of(se);
ab6cde26 5681 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5682 }
5683}
5684
ac53db59
RR
5685/*
5686 * sched_yield() is very simple
5687 *
5688 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5689 */
5690static void yield_task_fair(struct rq *rq)
5691{
5692 struct task_struct *curr = rq->curr;
5693 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5694 struct sched_entity *se = &curr->se;
5695
5696 /*
5697 * Are we the only task in the tree?
5698 */
5699 if (unlikely(rq->nr_running == 1))
5700 return;
5701
5702 clear_buddies(cfs_rq, se);
5703
5704 if (curr->policy != SCHED_BATCH) {
5705 update_rq_clock(rq);
5706 /*
5707 * Update run-time statistics of the 'current'.
5708 */
5709 update_curr(cfs_rq);
916671c0
MG
5710 /*
5711 * Tell update_rq_clock() that we've just updated,
5712 * so we don't do microscopic update in schedule()
5713 * and double the fastpath cost.
5714 */
9edfbfed 5715 rq_clock_skip_update(rq, true);
ac53db59
RR
5716 }
5717
5718 set_skip_buddy(se);
5719}
5720
d95f4122
MG
5721static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5722{
5723 struct sched_entity *se = &p->se;
5724
5238cdd3
PT
5725 /* throttled hierarchies are not runnable */
5726 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5727 return false;
5728
5729 /* Tell the scheduler that we'd really like pse to run next. */
5730 set_next_buddy(se);
5731
d95f4122
MG
5732 yield_task_fair(rq);
5733
5734 return true;
5735}
5736
681f3e68 5737#ifdef CONFIG_SMP
bf0f6f24 5738/**************************************************
e9c84cb8
PZ
5739 * Fair scheduling class load-balancing methods.
5740 *
5741 * BASICS
5742 *
5743 * The purpose of load-balancing is to achieve the same basic fairness the
5744 * per-cpu scheduler provides, namely provide a proportional amount of compute
5745 * time to each task. This is expressed in the following equation:
5746 *
5747 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5748 *
5749 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5750 * W_i,0 is defined as:
5751 *
5752 * W_i,0 = \Sum_j w_i,j (2)
5753 *
5754 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5755 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5756 *
5757 * The weight average is an exponential decay average of the instantaneous
5758 * weight:
5759 *
5760 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5761 *
ced549fa 5762 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5763 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5764 * can also include other factors [XXX].
5765 *
5766 * To achieve this balance we define a measure of imbalance which follows
5767 * directly from (1):
5768 *
ced549fa 5769 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5770 *
5771 * We them move tasks around to minimize the imbalance. In the continuous
5772 * function space it is obvious this converges, in the discrete case we get
5773 * a few fun cases generally called infeasible weight scenarios.
5774 *
5775 * [XXX expand on:
5776 * - infeasible weights;
5777 * - local vs global optima in the discrete case. ]
5778 *
5779 *
5780 * SCHED DOMAINS
5781 *
5782 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5783 * for all i,j solution, we create a tree of cpus that follows the hardware
5784 * topology where each level pairs two lower groups (or better). This results
5785 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5786 * tree to only the first of the previous level and we decrease the frequency
5787 * of load-balance at each level inv. proportional to the number of cpus in
5788 * the groups.
5789 *
5790 * This yields:
5791 *
5792 * log_2 n 1 n
5793 * \Sum { --- * --- * 2^i } = O(n) (5)
5794 * i = 0 2^i 2^i
5795 * `- size of each group
5796 * | | `- number of cpus doing load-balance
5797 * | `- freq
5798 * `- sum over all levels
5799 *
5800 * Coupled with a limit on how many tasks we can migrate every balance pass,
5801 * this makes (5) the runtime complexity of the balancer.
5802 *
5803 * An important property here is that each CPU is still (indirectly) connected
5804 * to every other cpu in at most O(log n) steps:
5805 *
5806 * The adjacency matrix of the resulting graph is given by:
5807 *
5808 * log_2 n
5809 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5810 * k = 0
5811 *
5812 * And you'll find that:
5813 *
5814 * A^(log_2 n)_i,j != 0 for all i,j (7)
5815 *
5816 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5817 * The task movement gives a factor of O(m), giving a convergence complexity
5818 * of:
5819 *
5820 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5821 *
5822 *
5823 * WORK CONSERVING
5824 *
5825 * In order to avoid CPUs going idle while there's still work to do, new idle
5826 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5827 * tree itself instead of relying on other CPUs to bring it work.
5828 *
5829 * This adds some complexity to both (5) and (8) but it reduces the total idle
5830 * time.
5831 *
5832 * [XXX more?]
5833 *
5834 *
5835 * CGROUPS
5836 *
5837 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5838 *
5839 * s_k,i
5840 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5841 * S_k
5842 *
5843 * Where
5844 *
5845 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5846 *
5847 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5848 *
5849 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5850 * property.
5851 *
5852 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5853 * rewrite all of this once again.]
5854 */
bf0f6f24 5855
ed387b78
HS
5856static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5857
0ec8aa00
PZ
5858enum fbq_type { regular, remote, all };
5859
ddcdf6e7 5860#define LBF_ALL_PINNED 0x01
367456c7 5861#define LBF_NEED_BREAK 0x02
6263322c
PZ
5862#define LBF_DST_PINNED 0x04
5863#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5864
5865struct lb_env {
5866 struct sched_domain *sd;
5867
ddcdf6e7 5868 struct rq *src_rq;
85c1e7da 5869 int src_cpu;
ddcdf6e7
PZ
5870
5871 int dst_cpu;
5872 struct rq *dst_rq;
5873
88b8dac0
SV
5874 struct cpumask *dst_grpmask;
5875 int new_dst_cpu;
ddcdf6e7 5876 enum cpu_idle_type idle;
bd939f45 5877 long imbalance;
b9403130
MW
5878 /* The set of CPUs under consideration for load-balancing */
5879 struct cpumask *cpus;
5880
ddcdf6e7 5881 unsigned int flags;
367456c7
PZ
5882
5883 unsigned int loop;
5884 unsigned int loop_break;
5885 unsigned int loop_max;
0ec8aa00
PZ
5886
5887 enum fbq_type fbq_type;
163122b7 5888 struct list_head tasks;
ddcdf6e7
PZ
5889};
5890
029632fb
PZ
5891/*
5892 * Is this task likely cache-hot:
5893 */
5d5e2b1b 5894static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5895{
5896 s64 delta;
5897
e5673f28
KT
5898 lockdep_assert_held(&env->src_rq->lock);
5899
029632fb
PZ
5900 if (p->sched_class != &fair_sched_class)
5901 return 0;
5902
5903 if (unlikely(p->policy == SCHED_IDLE))
5904 return 0;
5905
5906 /*
5907 * Buddy candidates are cache hot:
5908 */
5d5e2b1b 5909 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5910 (&p->se == cfs_rq_of(&p->se)->next ||
5911 &p->se == cfs_rq_of(&p->se)->last))
5912 return 1;
5913
5914 if (sysctl_sched_migration_cost == -1)
5915 return 1;
5916 if (sysctl_sched_migration_cost == 0)
5917 return 0;
5918
5d5e2b1b 5919 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5920
5921 return delta < (s64)sysctl_sched_migration_cost;
5922}
5923
3a7053b3 5924#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5925/*
2a1ed24c
SD
5926 * Returns 1, if task migration degrades locality
5927 * Returns 0, if task migration improves locality i.e migration preferred.
5928 * Returns -1, if task migration is not affected by locality.
c1ceac62 5929 */
2a1ed24c 5930static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5931{
b1ad065e 5932 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5933 unsigned long src_faults, dst_faults;
3a7053b3
MG
5934 int src_nid, dst_nid;
5935
2a595721 5936 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5937 return -1;
5938
c3b9bc5b 5939 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5940 return -1;
7a0f3083
MG
5941
5942 src_nid = cpu_to_node(env->src_cpu);
5943 dst_nid = cpu_to_node(env->dst_cpu);
5944
83e1d2cd 5945 if (src_nid == dst_nid)
2a1ed24c 5946 return -1;
7a0f3083 5947
2a1ed24c
SD
5948 /* Migrating away from the preferred node is always bad. */
5949 if (src_nid == p->numa_preferred_nid) {
5950 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5951 return 1;
5952 else
5953 return -1;
5954 }
b1ad065e 5955
c1ceac62
RR
5956 /* Encourage migration to the preferred node. */
5957 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5958 return 0;
b1ad065e 5959
c1ceac62
RR
5960 if (numa_group) {
5961 src_faults = group_faults(p, src_nid);
5962 dst_faults = group_faults(p, dst_nid);
5963 } else {
5964 src_faults = task_faults(p, src_nid);
5965 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5966 }
5967
c1ceac62 5968 return dst_faults < src_faults;
7a0f3083
MG
5969}
5970
3a7053b3 5971#else
2a1ed24c 5972static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5973 struct lb_env *env)
5974{
2a1ed24c 5975 return -1;
7a0f3083 5976}
3a7053b3
MG
5977#endif
5978
1e3c88bd
PZ
5979/*
5980 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5981 */
5982static
8e45cb54 5983int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5984{
2a1ed24c 5985 int tsk_cache_hot;
e5673f28
KT
5986
5987 lockdep_assert_held(&env->src_rq->lock);
5988
1e3c88bd
PZ
5989 /*
5990 * We do not migrate tasks that are:
d3198084 5991 * 1) throttled_lb_pair, or
1e3c88bd 5992 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5993 * 3) running (obviously), or
5994 * 4) are cache-hot on their current CPU.
1e3c88bd 5995 */
d3198084
JK
5996 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5997 return 0;
5998
ddcdf6e7 5999 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6000 int cpu;
88b8dac0 6001
41acab88 6002 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6003
6263322c
PZ
6004 env->flags |= LBF_SOME_PINNED;
6005
88b8dac0
SV
6006 /*
6007 * Remember if this task can be migrated to any other cpu in
6008 * our sched_group. We may want to revisit it if we couldn't
6009 * meet load balance goals by pulling other tasks on src_cpu.
6010 *
6011 * Also avoid computing new_dst_cpu if we have already computed
6012 * one in current iteration.
6013 */
6263322c 6014 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6015 return 0;
6016
e02e60c1
JK
6017 /* Prevent to re-select dst_cpu via env's cpus */
6018 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6019 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6020 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6021 env->new_dst_cpu = cpu;
6022 break;
6023 }
88b8dac0 6024 }
e02e60c1 6025
1e3c88bd
PZ
6026 return 0;
6027 }
88b8dac0
SV
6028
6029 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6030 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6031
ddcdf6e7 6032 if (task_running(env->src_rq, p)) {
41acab88 6033 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6034 return 0;
6035 }
6036
6037 /*
6038 * Aggressive migration if:
3a7053b3
MG
6039 * 1) destination numa is preferred
6040 * 2) task is cache cold, or
6041 * 3) too many balance attempts have failed.
1e3c88bd 6042 */
2a1ed24c
SD
6043 tsk_cache_hot = migrate_degrades_locality(p, env);
6044 if (tsk_cache_hot == -1)
6045 tsk_cache_hot = task_hot(p, env);
3a7053b3 6046
2a1ed24c 6047 if (tsk_cache_hot <= 0 ||
7a96c231 6048 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6049 if (tsk_cache_hot == 1) {
3a7053b3
MG
6050 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6051 schedstat_inc(p, se.statistics.nr_forced_migrations);
6052 }
1e3c88bd
PZ
6053 return 1;
6054 }
6055
4e2dcb73
ZH
6056 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6057 return 0;
1e3c88bd
PZ
6058}
6059
897c395f 6060/*
163122b7
KT
6061 * detach_task() -- detach the task for the migration specified in env
6062 */
6063static void detach_task(struct task_struct *p, struct lb_env *env)
6064{
6065 lockdep_assert_held(&env->src_rq->lock);
6066
163122b7 6067 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6068 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6069 set_task_cpu(p, env->dst_cpu);
6070}
6071
897c395f 6072/*
e5673f28 6073 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6074 * part of active balancing operations within "domain".
897c395f 6075 *
e5673f28 6076 * Returns a task if successful and NULL otherwise.
897c395f 6077 */
e5673f28 6078static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6079{
6080 struct task_struct *p, *n;
897c395f 6081
e5673f28
KT
6082 lockdep_assert_held(&env->src_rq->lock);
6083
367456c7 6084 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6085 if (!can_migrate_task(p, env))
6086 continue;
897c395f 6087
163122b7 6088 detach_task(p, env);
e5673f28 6089
367456c7 6090 /*
e5673f28 6091 * Right now, this is only the second place where
163122b7 6092 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6093 * so we can safely collect stats here rather than
163122b7 6094 * inside detach_tasks().
367456c7
PZ
6095 */
6096 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6097 return p;
897c395f 6098 }
e5673f28 6099 return NULL;
897c395f
PZ
6100}
6101
eb95308e
PZ
6102static const unsigned int sched_nr_migrate_break = 32;
6103
5d6523eb 6104/*
163122b7
KT
6105 * detach_tasks() -- tries to detach up to imbalance weighted load from
6106 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6107 *
163122b7 6108 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6109 */
163122b7 6110static int detach_tasks(struct lb_env *env)
1e3c88bd 6111{
5d6523eb
PZ
6112 struct list_head *tasks = &env->src_rq->cfs_tasks;
6113 struct task_struct *p;
367456c7 6114 unsigned long load;
163122b7
KT
6115 int detached = 0;
6116
6117 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6118
bd939f45 6119 if (env->imbalance <= 0)
5d6523eb 6120 return 0;
1e3c88bd 6121
5d6523eb 6122 while (!list_empty(tasks)) {
985d3a4c
YD
6123 /*
6124 * We don't want to steal all, otherwise we may be treated likewise,
6125 * which could at worst lead to a livelock crash.
6126 */
6127 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6128 break;
6129
5d6523eb 6130 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6131
367456c7
PZ
6132 env->loop++;
6133 /* We've more or less seen every task there is, call it quits */
5d6523eb 6134 if (env->loop > env->loop_max)
367456c7 6135 break;
5d6523eb
PZ
6136
6137 /* take a breather every nr_migrate tasks */
367456c7 6138 if (env->loop > env->loop_break) {
eb95308e 6139 env->loop_break += sched_nr_migrate_break;
8e45cb54 6140 env->flags |= LBF_NEED_BREAK;
ee00e66f 6141 break;
a195f004 6142 }
1e3c88bd 6143
d3198084 6144 if (!can_migrate_task(p, env))
367456c7
PZ
6145 goto next;
6146
6147 load = task_h_load(p);
5d6523eb 6148
eb95308e 6149 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6150 goto next;
6151
bd939f45 6152 if ((load / 2) > env->imbalance)
367456c7 6153 goto next;
1e3c88bd 6154
163122b7
KT
6155 detach_task(p, env);
6156 list_add(&p->se.group_node, &env->tasks);
6157
6158 detached++;
bd939f45 6159 env->imbalance -= load;
1e3c88bd
PZ
6160
6161#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6162 /*
6163 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6164 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6165 * the critical section.
6166 */
5d6523eb 6167 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6168 break;
1e3c88bd
PZ
6169#endif
6170
ee00e66f
PZ
6171 /*
6172 * We only want to steal up to the prescribed amount of
6173 * weighted load.
6174 */
bd939f45 6175 if (env->imbalance <= 0)
ee00e66f 6176 break;
367456c7
PZ
6177
6178 continue;
6179next:
5d6523eb 6180 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6181 }
5d6523eb 6182
1e3c88bd 6183 /*
163122b7
KT
6184 * Right now, this is one of only two places we collect this stat
6185 * so we can safely collect detach_one_task() stats here rather
6186 * than inside detach_one_task().
1e3c88bd 6187 */
163122b7 6188 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6189
163122b7
KT
6190 return detached;
6191}
6192
6193/*
6194 * attach_task() -- attach the task detached by detach_task() to its new rq.
6195 */
6196static void attach_task(struct rq *rq, struct task_struct *p)
6197{
6198 lockdep_assert_held(&rq->lock);
6199
6200 BUG_ON(task_rq(p) != rq);
163122b7 6201 activate_task(rq, p, 0);
3ea94de1 6202 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6203 check_preempt_curr(rq, p, 0);
6204}
6205
6206/*
6207 * attach_one_task() -- attaches the task returned from detach_one_task() to
6208 * its new rq.
6209 */
6210static void attach_one_task(struct rq *rq, struct task_struct *p)
6211{
6212 raw_spin_lock(&rq->lock);
6213 attach_task(rq, p);
6214 raw_spin_unlock(&rq->lock);
6215}
6216
6217/*
6218 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6219 * new rq.
6220 */
6221static void attach_tasks(struct lb_env *env)
6222{
6223 struct list_head *tasks = &env->tasks;
6224 struct task_struct *p;
6225
6226 raw_spin_lock(&env->dst_rq->lock);
6227
6228 while (!list_empty(tasks)) {
6229 p = list_first_entry(tasks, struct task_struct, se.group_node);
6230 list_del_init(&p->se.group_node);
1e3c88bd 6231
163122b7
KT
6232 attach_task(env->dst_rq, p);
6233 }
6234
6235 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6236}
6237
230059de 6238#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6239static void update_blocked_averages(int cpu)
9e3081ca 6240{
9e3081ca 6241 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6242 struct cfs_rq *cfs_rq;
6243 unsigned long flags;
9e3081ca 6244
48a16753
PT
6245 raw_spin_lock_irqsave(&rq->lock, flags);
6246 update_rq_clock(rq);
9d89c257 6247
9763b67f
PZ
6248 /*
6249 * Iterates the task_group tree in a bottom up fashion, see
6250 * list_add_leaf_cfs_rq() for details.
6251 */
64660c86 6252 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6253 /* throttled entities do not contribute to load */
6254 if (throttled_hierarchy(cfs_rq))
6255 continue;
48a16753 6256
a2c6c91f 6257 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6258 update_tg_load_avg(cfs_rq, 0);
6259 }
48a16753 6260 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6261}
6262
9763b67f 6263/*
68520796 6264 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6265 * This needs to be done in a top-down fashion because the load of a child
6266 * group is a fraction of its parents load.
6267 */
68520796 6268static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6269{
68520796
VD
6270 struct rq *rq = rq_of(cfs_rq);
6271 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6272 unsigned long now = jiffies;
68520796 6273 unsigned long load;
a35b6466 6274
68520796 6275 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6276 return;
6277
68520796
VD
6278 cfs_rq->h_load_next = NULL;
6279 for_each_sched_entity(se) {
6280 cfs_rq = cfs_rq_of(se);
6281 cfs_rq->h_load_next = se;
6282 if (cfs_rq->last_h_load_update == now)
6283 break;
6284 }
a35b6466 6285
68520796 6286 if (!se) {
7ea241af 6287 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6288 cfs_rq->last_h_load_update = now;
6289 }
6290
6291 while ((se = cfs_rq->h_load_next) != NULL) {
6292 load = cfs_rq->h_load;
7ea241af
YD
6293 load = div64_ul(load * se->avg.load_avg,
6294 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6295 cfs_rq = group_cfs_rq(se);
6296 cfs_rq->h_load = load;
6297 cfs_rq->last_h_load_update = now;
6298 }
9763b67f
PZ
6299}
6300
367456c7 6301static unsigned long task_h_load(struct task_struct *p)
230059de 6302{
367456c7 6303 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6304
68520796 6305 update_cfs_rq_h_load(cfs_rq);
9d89c257 6306 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6307 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6308}
6309#else
48a16753 6310static inline void update_blocked_averages(int cpu)
9e3081ca 6311{
6c1d47c0
VG
6312 struct rq *rq = cpu_rq(cpu);
6313 struct cfs_rq *cfs_rq = &rq->cfs;
6314 unsigned long flags;
6315
6316 raw_spin_lock_irqsave(&rq->lock, flags);
6317 update_rq_clock(rq);
a2c6c91f 6318 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6319 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6320}
6321
367456c7 6322static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6323{
9d89c257 6324 return p->se.avg.load_avg;
1e3c88bd 6325}
230059de 6326#endif
1e3c88bd 6327
1e3c88bd 6328/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6329
6330enum group_type {
6331 group_other = 0,
6332 group_imbalanced,
6333 group_overloaded,
6334};
6335
1e3c88bd
PZ
6336/*
6337 * sg_lb_stats - stats of a sched_group required for load_balancing
6338 */
6339struct sg_lb_stats {
6340 unsigned long avg_load; /*Avg load across the CPUs of the group */
6341 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6342 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6343 unsigned long load_per_task;
63b2ca30 6344 unsigned long group_capacity;
9e91d61d 6345 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6346 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6347 unsigned int idle_cpus;
6348 unsigned int group_weight;
caeb178c 6349 enum group_type group_type;
ea67821b 6350 int group_no_capacity;
0ec8aa00
PZ
6351#ifdef CONFIG_NUMA_BALANCING
6352 unsigned int nr_numa_running;
6353 unsigned int nr_preferred_running;
6354#endif
1e3c88bd
PZ
6355};
6356
56cf515b
JK
6357/*
6358 * sd_lb_stats - Structure to store the statistics of a sched_domain
6359 * during load balancing.
6360 */
6361struct sd_lb_stats {
6362 struct sched_group *busiest; /* Busiest group in this sd */
6363 struct sched_group *local; /* Local group in this sd */
6364 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6365 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6366 unsigned long avg_load; /* Average load across all groups in sd */
6367
56cf515b 6368 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6369 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6370};
6371
147c5fc2
PZ
6372static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6373{
6374 /*
6375 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6376 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6377 * We must however clear busiest_stat::avg_load because
6378 * update_sd_pick_busiest() reads this before assignment.
6379 */
6380 *sds = (struct sd_lb_stats){
6381 .busiest = NULL,
6382 .local = NULL,
6383 .total_load = 0UL,
63b2ca30 6384 .total_capacity = 0UL,
147c5fc2
PZ
6385 .busiest_stat = {
6386 .avg_load = 0UL,
caeb178c
RR
6387 .sum_nr_running = 0,
6388 .group_type = group_other,
147c5fc2
PZ
6389 },
6390 };
6391}
6392
1e3c88bd
PZ
6393/**
6394 * get_sd_load_idx - Obtain the load index for a given sched domain.
6395 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6396 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6397 *
6398 * Return: The load index.
1e3c88bd
PZ
6399 */
6400static inline int get_sd_load_idx(struct sched_domain *sd,
6401 enum cpu_idle_type idle)
6402{
6403 int load_idx;
6404
6405 switch (idle) {
6406 case CPU_NOT_IDLE:
6407 load_idx = sd->busy_idx;
6408 break;
6409
6410 case CPU_NEWLY_IDLE:
6411 load_idx = sd->newidle_idx;
6412 break;
6413 default:
6414 load_idx = sd->idle_idx;
6415 break;
6416 }
6417
6418 return load_idx;
6419}
6420
ced549fa 6421static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6422{
6423 struct rq *rq = cpu_rq(cpu);
b5b4860d 6424 u64 total, used, age_stamp, avg;
cadefd3d 6425 s64 delta;
1e3c88bd 6426
b654f7de
PZ
6427 /*
6428 * Since we're reading these variables without serialization make sure
6429 * we read them once before doing sanity checks on them.
6430 */
316c1608
JL
6431 age_stamp = READ_ONCE(rq->age_stamp);
6432 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6433 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6434
cadefd3d
PZ
6435 if (unlikely(delta < 0))
6436 delta = 0;
6437
6438 total = sched_avg_period() + delta;
aa483808 6439
b5b4860d 6440 used = div_u64(avg, total);
1e3c88bd 6441
b5b4860d
VG
6442 if (likely(used < SCHED_CAPACITY_SCALE))
6443 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6444
b5b4860d 6445 return 1;
1e3c88bd
PZ
6446}
6447
ced549fa 6448static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6449{
8cd5601c 6450 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6451 struct sched_group *sdg = sd->groups;
6452
ca6d75e6 6453 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6454
ced549fa 6455 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6456 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6457
ced549fa
NP
6458 if (!capacity)
6459 capacity = 1;
1e3c88bd 6460
ced549fa
NP
6461 cpu_rq(cpu)->cpu_capacity = capacity;
6462 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6463}
6464
63b2ca30 6465void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6466{
6467 struct sched_domain *child = sd->child;
6468 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6469 unsigned long capacity;
4ec4412e
VG
6470 unsigned long interval;
6471
6472 interval = msecs_to_jiffies(sd->balance_interval);
6473 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6474 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6475
6476 if (!child) {
ced549fa 6477 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6478 return;
6479 }
6480
dc7ff76e 6481 capacity = 0;
1e3c88bd 6482
74a5ce20
PZ
6483 if (child->flags & SD_OVERLAP) {
6484 /*
6485 * SD_OVERLAP domains cannot assume that child groups
6486 * span the current group.
6487 */
6488
863bffc8 6489 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6490 struct sched_group_capacity *sgc;
9abf24d4 6491 struct rq *rq = cpu_rq(cpu);
863bffc8 6492
9abf24d4 6493 /*
63b2ca30 6494 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6495 * gets here before we've attached the domains to the
6496 * runqueues.
6497 *
ced549fa
NP
6498 * Use capacity_of(), which is set irrespective of domains
6499 * in update_cpu_capacity().
9abf24d4 6500 *
dc7ff76e 6501 * This avoids capacity from being 0 and
9abf24d4 6502 * causing divide-by-zero issues on boot.
9abf24d4
SD
6503 */
6504 if (unlikely(!rq->sd)) {
ced549fa 6505 capacity += capacity_of(cpu);
9abf24d4
SD
6506 continue;
6507 }
863bffc8 6508
63b2ca30 6509 sgc = rq->sd->groups->sgc;
63b2ca30 6510 capacity += sgc->capacity;
863bffc8 6511 }
74a5ce20
PZ
6512 } else {
6513 /*
6514 * !SD_OVERLAP domains can assume that child groups
6515 * span the current group.
6516 */
6517
6518 group = child->groups;
6519 do {
63b2ca30 6520 capacity += group->sgc->capacity;
74a5ce20
PZ
6521 group = group->next;
6522 } while (group != child->groups);
6523 }
1e3c88bd 6524
63b2ca30 6525 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6526}
6527
9d5efe05 6528/*
ea67821b
VG
6529 * Check whether the capacity of the rq has been noticeably reduced by side
6530 * activity. The imbalance_pct is used for the threshold.
6531 * Return true is the capacity is reduced
9d5efe05
SV
6532 */
6533static inline int
ea67821b 6534check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6535{
ea67821b
VG
6536 return ((rq->cpu_capacity * sd->imbalance_pct) <
6537 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6538}
6539
30ce5dab
PZ
6540/*
6541 * Group imbalance indicates (and tries to solve) the problem where balancing
6542 * groups is inadequate due to tsk_cpus_allowed() constraints.
6543 *
6544 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6545 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6546 * Something like:
6547 *
6548 * { 0 1 2 3 } { 4 5 6 7 }
6549 * * * * *
6550 *
6551 * If we were to balance group-wise we'd place two tasks in the first group and
6552 * two tasks in the second group. Clearly this is undesired as it will overload
6553 * cpu 3 and leave one of the cpus in the second group unused.
6554 *
6555 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6556 * by noticing the lower domain failed to reach balance and had difficulty
6557 * moving tasks due to affinity constraints.
30ce5dab
PZ
6558 *
6559 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6560 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6561 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6562 * to create an effective group imbalance.
6563 *
6564 * This is a somewhat tricky proposition since the next run might not find the
6565 * group imbalance and decide the groups need to be balanced again. A most
6566 * subtle and fragile situation.
6567 */
6568
6263322c 6569static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6570{
63b2ca30 6571 return group->sgc->imbalance;
30ce5dab
PZ
6572}
6573
b37d9316 6574/*
ea67821b
VG
6575 * group_has_capacity returns true if the group has spare capacity that could
6576 * be used by some tasks.
6577 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6578 * smaller than the number of CPUs or if the utilization is lower than the
6579 * available capacity for CFS tasks.
ea67821b
VG
6580 * For the latter, we use a threshold to stabilize the state, to take into
6581 * account the variance of the tasks' load and to return true if the available
6582 * capacity in meaningful for the load balancer.
6583 * As an example, an available capacity of 1% can appear but it doesn't make
6584 * any benefit for the load balance.
b37d9316 6585 */
ea67821b
VG
6586static inline bool
6587group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6588{
ea67821b
VG
6589 if (sgs->sum_nr_running < sgs->group_weight)
6590 return true;
c61037e9 6591
ea67821b 6592 if ((sgs->group_capacity * 100) >
9e91d61d 6593 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6594 return true;
b37d9316 6595
ea67821b
VG
6596 return false;
6597}
6598
6599/*
6600 * group_is_overloaded returns true if the group has more tasks than it can
6601 * handle.
6602 * group_is_overloaded is not equals to !group_has_capacity because a group
6603 * with the exact right number of tasks, has no more spare capacity but is not
6604 * overloaded so both group_has_capacity and group_is_overloaded return
6605 * false.
6606 */
6607static inline bool
6608group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6609{
6610 if (sgs->sum_nr_running <= sgs->group_weight)
6611 return false;
b37d9316 6612
ea67821b 6613 if ((sgs->group_capacity * 100) <
9e91d61d 6614 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6615 return true;
b37d9316 6616
ea67821b 6617 return false;
b37d9316
PZ
6618}
6619
79a89f92
LY
6620static inline enum
6621group_type group_classify(struct sched_group *group,
6622 struct sg_lb_stats *sgs)
caeb178c 6623{
ea67821b 6624 if (sgs->group_no_capacity)
caeb178c
RR
6625 return group_overloaded;
6626
6627 if (sg_imbalanced(group))
6628 return group_imbalanced;
6629
6630 return group_other;
6631}
6632
1e3c88bd
PZ
6633/**
6634 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6635 * @env: The load balancing environment.
1e3c88bd 6636 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6637 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6638 * @local_group: Does group contain this_cpu.
1e3c88bd 6639 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6640 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6641 */
bd939f45
PZ
6642static inline void update_sg_lb_stats(struct lb_env *env,
6643 struct sched_group *group, int load_idx,
4486edd1
TC
6644 int local_group, struct sg_lb_stats *sgs,
6645 bool *overload)
1e3c88bd 6646{
30ce5dab 6647 unsigned long load;
a426f99c 6648 int i, nr_running;
1e3c88bd 6649
b72ff13c
PZ
6650 memset(sgs, 0, sizeof(*sgs));
6651
b9403130 6652 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6653 struct rq *rq = cpu_rq(i);
6654
1e3c88bd 6655 /* Bias balancing toward cpus of our domain */
6263322c 6656 if (local_group)
04f733b4 6657 load = target_load(i, load_idx);
6263322c 6658 else
1e3c88bd 6659 load = source_load(i, load_idx);
1e3c88bd
PZ
6660
6661 sgs->group_load += load;
9e91d61d 6662 sgs->group_util += cpu_util(i);
65fdac08 6663 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6664
a426f99c
WL
6665 nr_running = rq->nr_running;
6666 if (nr_running > 1)
4486edd1
TC
6667 *overload = true;
6668
0ec8aa00
PZ
6669#ifdef CONFIG_NUMA_BALANCING
6670 sgs->nr_numa_running += rq->nr_numa_running;
6671 sgs->nr_preferred_running += rq->nr_preferred_running;
6672#endif
1e3c88bd 6673 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6674 /*
6675 * No need to call idle_cpu() if nr_running is not 0
6676 */
6677 if (!nr_running && idle_cpu(i))
aae6d3dd 6678 sgs->idle_cpus++;
1e3c88bd
PZ
6679 }
6680
63b2ca30
NP
6681 /* Adjust by relative CPU capacity of the group */
6682 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6683 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6684
dd5feea1 6685 if (sgs->sum_nr_running)
38d0f770 6686 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6687
aae6d3dd 6688 sgs->group_weight = group->group_weight;
b37d9316 6689
ea67821b 6690 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6691 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6692}
6693
532cb4c4
MN
6694/**
6695 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6696 * @env: The load balancing environment.
532cb4c4
MN
6697 * @sds: sched_domain statistics
6698 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6699 * @sgs: sched_group statistics
532cb4c4
MN
6700 *
6701 * Determine if @sg is a busier group than the previously selected
6702 * busiest group.
e69f6186
YB
6703 *
6704 * Return: %true if @sg is a busier group than the previously selected
6705 * busiest group. %false otherwise.
532cb4c4 6706 */
bd939f45 6707static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6708 struct sd_lb_stats *sds,
6709 struct sched_group *sg,
bd939f45 6710 struct sg_lb_stats *sgs)
532cb4c4 6711{
caeb178c 6712 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6713
caeb178c 6714 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6715 return true;
6716
caeb178c
RR
6717 if (sgs->group_type < busiest->group_type)
6718 return false;
6719
6720 if (sgs->avg_load <= busiest->avg_load)
6721 return false;
6722
6723 /* This is the busiest node in its class. */
6724 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6725 return true;
6726
1f621e02
SD
6727 /* No ASYM_PACKING if target cpu is already busy */
6728 if (env->idle == CPU_NOT_IDLE)
6729 return true;
532cb4c4
MN
6730 /*
6731 * ASYM_PACKING needs to move all the work to the lowest
6732 * numbered CPUs in the group, therefore mark all groups
6733 * higher than ourself as busy.
6734 */
caeb178c 6735 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6736 if (!sds->busiest)
6737 return true;
6738
1f621e02
SD
6739 /* Prefer to move from highest possible cpu's work */
6740 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6741 return true;
6742 }
6743
6744 return false;
6745}
6746
0ec8aa00
PZ
6747#ifdef CONFIG_NUMA_BALANCING
6748static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6749{
6750 if (sgs->sum_nr_running > sgs->nr_numa_running)
6751 return regular;
6752 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6753 return remote;
6754 return all;
6755}
6756
6757static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6758{
6759 if (rq->nr_running > rq->nr_numa_running)
6760 return regular;
6761 if (rq->nr_running > rq->nr_preferred_running)
6762 return remote;
6763 return all;
6764}
6765#else
6766static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6767{
6768 return all;
6769}
6770
6771static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6772{
6773 return regular;
6774}
6775#endif /* CONFIG_NUMA_BALANCING */
6776
1e3c88bd 6777/**
461819ac 6778 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6779 * @env: The load balancing environment.
1e3c88bd
PZ
6780 * @sds: variable to hold the statistics for this sched_domain.
6781 */
0ec8aa00 6782static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6783{
bd939f45
PZ
6784 struct sched_domain *child = env->sd->child;
6785 struct sched_group *sg = env->sd->groups;
56cf515b 6786 struct sg_lb_stats tmp_sgs;
1e3c88bd 6787 int load_idx, prefer_sibling = 0;
4486edd1 6788 bool overload = false;
1e3c88bd
PZ
6789
6790 if (child && child->flags & SD_PREFER_SIBLING)
6791 prefer_sibling = 1;
6792
bd939f45 6793 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6794
6795 do {
56cf515b 6796 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6797 int local_group;
6798
bd939f45 6799 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6800 if (local_group) {
6801 sds->local = sg;
6802 sgs = &sds->local_stat;
b72ff13c
PZ
6803
6804 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6805 time_after_eq(jiffies, sg->sgc->next_update))
6806 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6807 }
1e3c88bd 6808
4486edd1
TC
6809 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6810 &overload);
1e3c88bd 6811
b72ff13c
PZ
6812 if (local_group)
6813 goto next_group;
6814
1e3c88bd
PZ
6815 /*
6816 * In case the child domain prefers tasks go to siblings
ea67821b 6817 * first, lower the sg capacity so that we'll try
75dd321d
NR
6818 * and move all the excess tasks away. We lower the capacity
6819 * of a group only if the local group has the capacity to fit
ea67821b
VG
6820 * these excess tasks. The extra check prevents the case where
6821 * you always pull from the heaviest group when it is already
6822 * under-utilized (possible with a large weight task outweighs
6823 * the tasks on the system).
1e3c88bd 6824 */
b72ff13c 6825 if (prefer_sibling && sds->local &&
ea67821b
VG
6826 group_has_capacity(env, &sds->local_stat) &&
6827 (sgs->sum_nr_running > 1)) {
6828 sgs->group_no_capacity = 1;
79a89f92 6829 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6830 }
1e3c88bd 6831
b72ff13c 6832 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6833 sds->busiest = sg;
56cf515b 6834 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6835 }
6836
b72ff13c
PZ
6837next_group:
6838 /* Now, start updating sd_lb_stats */
6839 sds->total_load += sgs->group_load;
63b2ca30 6840 sds->total_capacity += sgs->group_capacity;
b72ff13c 6841
532cb4c4 6842 sg = sg->next;
bd939f45 6843 } while (sg != env->sd->groups);
0ec8aa00
PZ
6844
6845 if (env->sd->flags & SD_NUMA)
6846 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6847
6848 if (!env->sd->parent) {
6849 /* update overload indicator if we are at root domain */
6850 if (env->dst_rq->rd->overload != overload)
6851 env->dst_rq->rd->overload = overload;
6852 }
6853
532cb4c4
MN
6854}
6855
532cb4c4
MN
6856/**
6857 * check_asym_packing - Check to see if the group is packed into the
6858 * sched doman.
6859 *
6860 * This is primarily intended to used at the sibling level. Some
6861 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6862 * case of POWER7, it can move to lower SMT modes only when higher
6863 * threads are idle. When in lower SMT modes, the threads will
6864 * perform better since they share less core resources. Hence when we
6865 * have idle threads, we want them to be the higher ones.
6866 *
6867 * This packing function is run on idle threads. It checks to see if
6868 * the busiest CPU in this domain (core in the P7 case) has a higher
6869 * CPU number than the packing function is being run on. Here we are
6870 * assuming lower CPU number will be equivalent to lower a SMT thread
6871 * number.
6872 *
e69f6186 6873 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6874 * this CPU. The amount of the imbalance is returned in *imbalance.
6875 *
cd96891d 6876 * @env: The load balancing environment.
532cb4c4 6877 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6878 */
bd939f45 6879static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6880{
6881 int busiest_cpu;
6882
bd939f45 6883 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6884 return 0;
6885
1f621e02
SD
6886 if (env->idle == CPU_NOT_IDLE)
6887 return 0;
6888
532cb4c4
MN
6889 if (!sds->busiest)
6890 return 0;
6891
6892 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6893 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6894 return 0;
6895
bd939f45 6896 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6897 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6898 SCHED_CAPACITY_SCALE);
bd939f45 6899
532cb4c4 6900 return 1;
1e3c88bd
PZ
6901}
6902
6903/**
6904 * fix_small_imbalance - Calculate the minor imbalance that exists
6905 * amongst the groups of a sched_domain, during
6906 * load balancing.
cd96891d 6907 * @env: The load balancing environment.
1e3c88bd 6908 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6909 */
bd939f45
PZ
6910static inline
6911void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6912{
63b2ca30 6913 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6914 unsigned int imbn = 2;
dd5feea1 6915 unsigned long scaled_busy_load_per_task;
56cf515b 6916 struct sg_lb_stats *local, *busiest;
1e3c88bd 6917
56cf515b
JK
6918 local = &sds->local_stat;
6919 busiest = &sds->busiest_stat;
1e3c88bd 6920
56cf515b
JK
6921 if (!local->sum_nr_running)
6922 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6923 else if (busiest->load_per_task > local->load_per_task)
6924 imbn = 1;
dd5feea1 6925
56cf515b 6926 scaled_busy_load_per_task =
ca8ce3d0 6927 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6928 busiest->group_capacity;
56cf515b 6929
3029ede3
VD
6930 if (busiest->avg_load + scaled_busy_load_per_task >=
6931 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6932 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6933 return;
6934 }
6935
6936 /*
6937 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6938 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6939 * moving them.
6940 */
6941
63b2ca30 6942 capa_now += busiest->group_capacity *
56cf515b 6943 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6944 capa_now += local->group_capacity *
56cf515b 6945 min(local->load_per_task, local->avg_load);
ca8ce3d0 6946 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6947
6948 /* Amount of load we'd subtract */
a2cd4260 6949 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6950 capa_move += busiest->group_capacity *
56cf515b 6951 min(busiest->load_per_task,
a2cd4260 6952 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6953 }
1e3c88bd
PZ
6954
6955 /* Amount of load we'd add */
63b2ca30 6956 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6957 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6958 tmp = (busiest->avg_load * busiest->group_capacity) /
6959 local->group_capacity;
56cf515b 6960 } else {
ca8ce3d0 6961 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6962 local->group_capacity;
56cf515b 6963 }
63b2ca30 6964 capa_move += local->group_capacity *
3ae11c90 6965 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6966 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6967
6968 /* Move if we gain throughput */
63b2ca30 6969 if (capa_move > capa_now)
56cf515b 6970 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6971}
6972
6973/**
6974 * calculate_imbalance - Calculate the amount of imbalance present within the
6975 * groups of a given sched_domain during load balance.
bd939f45 6976 * @env: load balance environment
1e3c88bd 6977 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6978 */
bd939f45 6979static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6980{
dd5feea1 6981 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6982 struct sg_lb_stats *local, *busiest;
6983
6984 local = &sds->local_stat;
56cf515b 6985 busiest = &sds->busiest_stat;
dd5feea1 6986
caeb178c 6987 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6988 /*
6989 * In the group_imb case we cannot rely on group-wide averages
6990 * to ensure cpu-load equilibrium, look at wider averages. XXX
6991 */
56cf515b
JK
6992 busiest->load_per_task =
6993 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6994 }
6995
1e3c88bd
PZ
6996 /*
6997 * In the presence of smp nice balancing, certain scenarios can have
6998 * max load less than avg load(as we skip the groups at or below
ced549fa 6999 * its cpu_capacity, while calculating max_load..)
1e3c88bd 7000 */
b1885550
VD
7001 if (busiest->avg_load <= sds->avg_load ||
7002 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7003 env->imbalance = 0;
7004 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7005 }
7006
9a5d9ba6
PZ
7007 /*
7008 * If there aren't any idle cpus, avoid creating some.
7009 */
7010 if (busiest->group_type == group_overloaded &&
7011 local->group_type == group_overloaded) {
ea67821b 7012 load_above_capacity = busiest->sum_nr_running *
172895e6 7013 scale_load_down(NICE_0_LOAD);
ea67821b
VG
7014 if (load_above_capacity > busiest->group_capacity)
7015 load_above_capacity -= busiest->group_capacity;
7016 else
7017 load_above_capacity = ~0UL;
dd5feea1
SS
7018 }
7019
7020 /*
7021 * We're trying to get all the cpus to the average_load, so we don't
7022 * want to push ourselves above the average load, nor do we wish to
7023 * reduce the max loaded cpu below the average load. At the same time,
7024 * we also don't want to reduce the group load below the group capacity
7025 * (so that we can implement power-savings policies etc). Thus we look
7026 * for the minimum possible imbalance.
dd5feea1 7027 */
30ce5dab 7028 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7029
7030 /* How much load to actually move to equalise the imbalance */
56cf515b 7031 env->imbalance = min(
63b2ca30
NP
7032 max_pull * busiest->group_capacity,
7033 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7034 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7035
7036 /*
7037 * if *imbalance is less than the average load per runnable task
25985edc 7038 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7039 * a think about bumping its value to force at least one task to be
7040 * moved
7041 */
56cf515b 7042 if (env->imbalance < busiest->load_per_task)
bd939f45 7043 return fix_small_imbalance(env, sds);
1e3c88bd 7044}
fab47622 7045
1e3c88bd
PZ
7046/******* find_busiest_group() helpers end here *********************/
7047
7048/**
7049 * find_busiest_group - Returns the busiest group within the sched_domain
7050 * if there is an imbalance. If there isn't an imbalance, and
7051 * the user has opted for power-savings, it returns a group whose
7052 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
7053 * such a group exists.
7054 *
7055 * Also calculates the amount of weighted load which should be moved
7056 * to restore balance.
7057 *
cd96891d 7058 * @env: The load balancing environment.
1e3c88bd 7059 *
e69f6186 7060 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
7061 * - If no imbalance and user has opted for power-savings balance,
7062 * return the least loaded group whose CPUs can be
7063 * put to idle by rebalancing its tasks onto our group.
7064 */
56cf515b 7065static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7066{
56cf515b 7067 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7068 struct sd_lb_stats sds;
7069
147c5fc2 7070 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7071
7072 /*
7073 * Compute the various statistics relavent for load balancing at
7074 * this level.
7075 */
23f0d209 7076 update_sd_lb_stats(env, &sds);
56cf515b
JK
7077 local = &sds.local_stat;
7078 busiest = &sds.busiest_stat;
1e3c88bd 7079
ea67821b 7080 /* ASYM feature bypasses nice load balance check */
1f621e02 7081 if (check_asym_packing(env, &sds))
532cb4c4
MN
7082 return sds.busiest;
7083
cc57aa8f 7084 /* There is no busy sibling group to pull tasks from */
56cf515b 7085 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7086 goto out_balanced;
7087
ca8ce3d0
NP
7088 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7089 / sds.total_capacity;
b0432d8f 7090
866ab43e
PZ
7091 /*
7092 * If the busiest group is imbalanced the below checks don't
30ce5dab 7093 * work because they assume all things are equal, which typically
866ab43e
PZ
7094 * isn't true due to cpus_allowed constraints and the like.
7095 */
caeb178c 7096 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7097 goto force_balance;
7098
cc57aa8f 7099 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7100 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7101 busiest->group_no_capacity)
fab47622
NR
7102 goto force_balance;
7103
cc57aa8f 7104 /*
9c58c79a 7105 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7106 * don't try and pull any tasks.
7107 */
56cf515b 7108 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7109 goto out_balanced;
7110
cc57aa8f
PZ
7111 /*
7112 * Don't pull any tasks if this group is already above the domain
7113 * average load.
7114 */
56cf515b 7115 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7116 goto out_balanced;
7117
bd939f45 7118 if (env->idle == CPU_IDLE) {
aae6d3dd 7119 /*
43f4d666
VG
7120 * This cpu is idle. If the busiest group is not overloaded
7121 * and there is no imbalance between this and busiest group
7122 * wrt idle cpus, it is balanced. The imbalance becomes
7123 * significant if the diff is greater than 1 otherwise we
7124 * might end up to just move the imbalance on another group
aae6d3dd 7125 */
43f4d666
VG
7126 if ((busiest->group_type != group_overloaded) &&
7127 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7128 goto out_balanced;
c186fafe
PZ
7129 } else {
7130 /*
7131 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7132 * imbalance_pct to be conservative.
7133 */
56cf515b
JK
7134 if (100 * busiest->avg_load <=
7135 env->sd->imbalance_pct * local->avg_load)
c186fafe 7136 goto out_balanced;
aae6d3dd 7137 }
1e3c88bd 7138
fab47622 7139force_balance:
1e3c88bd 7140 /* Looks like there is an imbalance. Compute it */
bd939f45 7141 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7142 return sds.busiest;
7143
7144out_balanced:
bd939f45 7145 env->imbalance = 0;
1e3c88bd
PZ
7146 return NULL;
7147}
7148
7149/*
7150 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7151 */
bd939f45 7152static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7153 struct sched_group *group)
1e3c88bd
PZ
7154{
7155 struct rq *busiest = NULL, *rq;
ced549fa 7156 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7157 int i;
7158
6906a408 7159 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7160 unsigned long capacity, wl;
0ec8aa00
PZ
7161 enum fbq_type rt;
7162
7163 rq = cpu_rq(i);
7164 rt = fbq_classify_rq(rq);
1e3c88bd 7165
0ec8aa00
PZ
7166 /*
7167 * We classify groups/runqueues into three groups:
7168 * - regular: there are !numa tasks
7169 * - remote: there are numa tasks that run on the 'wrong' node
7170 * - all: there is no distinction
7171 *
7172 * In order to avoid migrating ideally placed numa tasks,
7173 * ignore those when there's better options.
7174 *
7175 * If we ignore the actual busiest queue to migrate another
7176 * task, the next balance pass can still reduce the busiest
7177 * queue by moving tasks around inside the node.
7178 *
7179 * If we cannot move enough load due to this classification
7180 * the next pass will adjust the group classification and
7181 * allow migration of more tasks.
7182 *
7183 * Both cases only affect the total convergence complexity.
7184 */
7185 if (rt > env->fbq_type)
7186 continue;
7187
ced549fa 7188 capacity = capacity_of(i);
9d5efe05 7189
6e40f5bb 7190 wl = weighted_cpuload(i);
1e3c88bd 7191
6e40f5bb
TG
7192 /*
7193 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7194 * which is not scaled with the cpu capacity.
6e40f5bb 7195 */
ea67821b
VG
7196
7197 if (rq->nr_running == 1 && wl > env->imbalance &&
7198 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7199 continue;
7200
6e40f5bb
TG
7201 /*
7202 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7203 * the weighted_cpuload() scaled with the cpu capacity, so
7204 * that the load can be moved away from the cpu that is
7205 * potentially running at a lower capacity.
95a79b80 7206 *
ced549fa 7207 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7208 * multiplication to rid ourselves of the division works out
ced549fa
NP
7209 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7210 * our previous maximum.
6e40f5bb 7211 */
ced549fa 7212 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7213 busiest_load = wl;
ced549fa 7214 busiest_capacity = capacity;
1e3c88bd
PZ
7215 busiest = rq;
7216 }
7217 }
7218
7219 return busiest;
7220}
7221
7222/*
7223 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7224 * so long as it is large enough.
7225 */
7226#define MAX_PINNED_INTERVAL 512
7227
7228/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7229DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7230
bd939f45 7231static int need_active_balance(struct lb_env *env)
1af3ed3d 7232{
bd939f45
PZ
7233 struct sched_domain *sd = env->sd;
7234
7235 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7236
7237 /*
7238 * ASYM_PACKING needs to force migrate tasks from busy but
7239 * higher numbered CPUs in order to pack all tasks in the
7240 * lowest numbered CPUs.
7241 */
bd939f45 7242 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7243 return 1;
1af3ed3d
PZ
7244 }
7245
1aaf90a4
VG
7246 /*
7247 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7248 * It's worth migrating the task if the src_cpu's capacity is reduced
7249 * because of other sched_class or IRQs if more capacity stays
7250 * available on dst_cpu.
7251 */
7252 if ((env->idle != CPU_NOT_IDLE) &&
7253 (env->src_rq->cfs.h_nr_running == 1)) {
7254 if ((check_cpu_capacity(env->src_rq, sd)) &&
7255 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7256 return 1;
7257 }
7258
1af3ed3d
PZ
7259 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7260}
7261
969c7921
TH
7262static int active_load_balance_cpu_stop(void *data);
7263
23f0d209
JK
7264static int should_we_balance(struct lb_env *env)
7265{
7266 struct sched_group *sg = env->sd->groups;
7267 struct cpumask *sg_cpus, *sg_mask;
7268 int cpu, balance_cpu = -1;
7269
7270 /*
7271 * In the newly idle case, we will allow all the cpu's
7272 * to do the newly idle load balance.
7273 */
7274 if (env->idle == CPU_NEWLY_IDLE)
7275 return 1;
7276
7277 sg_cpus = sched_group_cpus(sg);
7278 sg_mask = sched_group_mask(sg);
7279 /* Try to find first idle cpu */
7280 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7281 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7282 continue;
7283
7284 balance_cpu = cpu;
7285 break;
7286 }
7287
7288 if (balance_cpu == -1)
7289 balance_cpu = group_balance_cpu(sg);
7290
7291 /*
7292 * First idle cpu or the first cpu(busiest) in this sched group
7293 * is eligible for doing load balancing at this and above domains.
7294 */
b0cff9d8 7295 return balance_cpu == env->dst_cpu;
23f0d209
JK
7296}
7297
1e3c88bd
PZ
7298/*
7299 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7300 * tasks if there is an imbalance.
7301 */
7302static int load_balance(int this_cpu, struct rq *this_rq,
7303 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7304 int *continue_balancing)
1e3c88bd 7305{
88b8dac0 7306 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7307 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7308 struct sched_group *group;
1e3c88bd
PZ
7309 struct rq *busiest;
7310 unsigned long flags;
4ba29684 7311 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7312
8e45cb54
PZ
7313 struct lb_env env = {
7314 .sd = sd,
ddcdf6e7
PZ
7315 .dst_cpu = this_cpu,
7316 .dst_rq = this_rq,
88b8dac0 7317 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7318 .idle = idle,
eb95308e 7319 .loop_break = sched_nr_migrate_break,
b9403130 7320 .cpus = cpus,
0ec8aa00 7321 .fbq_type = all,
163122b7 7322 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7323 };
7324
cfc03118
JK
7325 /*
7326 * For NEWLY_IDLE load_balancing, we don't need to consider
7327 * other cpus in our group
7328 */
e02e60c1 7329 if (idle == CPU_NEWLY_IDLE)
cfc03118 7330 env.dst_grpmask = NULL;
cfc03118 7331
1e3c88bd
PZ
7332 cpumask_copy(cpus, cpu_active_mask);
7333
1e3c88bd
PZ
7334 schedstat_inc(sd, lb_count[idle]);
7335
7336redo:
23f0d209
JK
7337 if (!should_we_balance(&env)) {
7338 *continue_balancing = 0;
1e3c88bd 7339 goto out_balanced;
23f0d209 7340 }
1e3c88bd 7341
23f0d209 7342 group = find_busiest_group(&env);
1e3c88bd
PZ
7343 if (!group) {
7344 schedstat_inc(sd, lb_nobusyg[idle]);
7345 goto out_balanced;
7346 }
7347
b9403130 7348 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7349 if (!busiest) {
7350 schedstat_inc(sd, lb_nobusyq[idle]);
7351 goto out_balanced;
7352 }
7353
78feefc5 7354 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7355
bd939f45 7356 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7357
1aaf90a4
VG
7358 env.src_cpu = busiest->cpu;
7359 env.src_rq = busiest;
7360
1e3c88bd
PZ
7361 ld_moved = 0;
7362 if (busiest->nr_running > 1) {
7363 /*
7364 * Attempt to move tasks. If find_busiest_group has found
7365 * an imbalance but busiest->nr_running <= 1, the group is
7366 * still unbalanced. ld_moved simply stays zero, so it is
7367 * correctly treated as an imbalance.
7368 */
8e45cb54 7369 env.flags |= LBF_ALL_PINNED;
c82513e5 7370 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7371
5d6523eb 7372more_balance:
163122b7 7373 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7374
7375 /*
7376 * cur_ld_moved - load moved in current iteration
7377 * ld_moved - cumulative load moved across iterations
7378 */
163122b7 7379 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7380
7381 /*
163122b7
KT
7382 * We've detached some tasks from busiest_rq. Every
7383 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7384 * unlock busiest->lock, and we are able to be sure
7385 * that nobody can manipulate the tasks in parallel.
7386 * See task_rq_lock() family for the details.
1e3c88bd 7387 */
163122b7
KT
7388
7389 raw_spin_unlock(&busiest->lock);
7390
7391 if (cur_ld_moved) {
7392 attach_tasks(&env);
7393 ld_moved += cur_ld_moved;
7394 }
7395
1e3c88bd 7396 local_irq_restore(flags);
88b8dac0 7397
f1cd0858
JK
7398 if (env.flags & LBF_NEED_BREAK) {
7399 env.flags &= ~LBF_NEED_BREAK;
7400 goto more_balance;
7401 }
7402
88b8dac0
SV
7403 /*
7404 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7405 * us and move them to an alternate dst_cpu in our sched_group
7406 * where they can run. The upper limit on how many times we
7407 * iterate on same src_cpu is dependent on number of cpus in our
7408 * sched_group.
7409 *
7410 * This changes load balance semantics a bit on who can move
7411 * load to a given_cpu. In addition to the given_cpu itself
7412 * (or a ilb_cpu acting on its behalf where given_cpu is
7413 * nohz-idle), we now have balance_cpu in a position to move
7414 * load to given_cpu. In rare situations, this may cause
7415 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7416 * _independently_ and at _same_ time to move some load to
7417 * given_cpu) causing exceess load to be moved to given_cpu.
7418 * This however should not happen so much in practice and
7419 * moreover subsequent load balance cycles should correct the
7420 * excess load moved.
7421 */
6263322c 7422 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7423
7aff2e3a
VD
7424 /* Prevent to re-select dst_cpu via env's cpus */
7425 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7426
78feefc5 7427 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7428 env.dst_cpu = env.new_dst_cpu;
6263322c 7429 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7430 env.loop = 0;
7431 env.loop_break = sched_nr_migrate_break;
e02e60c1 7432
88b8dac0
SV
7433 /*
7434 * Go back to "more_balance" rather than "redo" since we
7435 * need to continue with same src_cpu.
7436 */
7437 goto more_balance;
7438 }
1e3c88bd 7439
6263322c
PZ
7440 /*
7441 * We failed to reach balance because of affinity.
7442 */
7443 if (sd_parent) {
63b2ca30 7444 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7445
afdeee05 7446 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7447 *group_imbalance = 1;
6263322c
PZ
7448 }
7449
1e3c88bd 7450 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7451 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7452 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7453 if (!cpumask_empty(cpus)) {
7454 env.loop = 0;
7455 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7456 goto redo;
bbf18b19 7457 }
afdeee05 7458 goto out_all_pinned;
1e3c88bd
PZ
7459 }
7460 }
7461
7462 if (!ld_moved) {
7463 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7464 /*
7465 * Increment the failure counter only on periodic balance.
7466 * We do not want newidle balance, which can be very
7467 * frequent, pollute the failure counter causing
7468 * excessive cache_hot migrations and active balances.
7469 */
7470 if (idle != CPU_NEWLY_IDLE)
7471 sd->nr_balance_failed++;
1e3c88bd 7472
bd939f45 7473 if (need_active_balance(&env)) {
1e3c88bd
PZ
7474 raw_spin_lock_irqsave(&busiest->lock, flags);
7475
969c7921
TH
7476 /* don't kick the active_load_balance_cpu_stop,
7477 * if the curr task on busiest cpu can't be
7478 * moved to this_cpu
1e3c88bd
PZ
7479 */
7480 if (!cpumask_test_cpu(this_cpu,
fa17b507 7481 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7482 raw_spin_unlock_irqrestore(&busiest->lock,
7483 flags);
8e45cb54 7484 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7485 goto out_one_pinned;
7486 }
7487
969c7921
TH
7488 /*
7489 * ->active_balance synchronizes accesses to
7490 * ->active_balance_work. Once set, it's cleared
7491 * only after active load balance is finished.
7492 */
1e3c88bd
PZ
7493 if (!busiest->active_balance) {
7494 busiest->active_balance = 1;
7495 busiest->push_cpu = this_cpu;
7496 active_balance = 1;
7497 }
7498 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7499
bd939f45 7500 if (active_balance) {
969c7921
TH
7501 stop_one_cpu_nowait(cpu_of(busiest),
7502 active_load_balance_cpu_stop, busiest,
7503 &busiest->active_balance_work);
bd939f45 7504 }
1e3c88bd 7505
d02c0711 7506 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7507 sd->nr_balance_failed = sd->cache_nice_tries+1;
7508 }
7509 } else
7510 sd->nr_balance_failed = 0;
7511
7512 if (likely(!active_balance)) {
7513 /* We were unbalanced, so reset the balancing interval */
7514 sd->balance_interval = sd->min_interval;
7515 } else {
7516 /*
7517 * If we've begun active balancing, start to back off. This
7518 * case may not be covered by the all_pinned logic if there
7519 * is only 1 task on the busy runqueue (because we don't call
163122b7 7520 * detach_tasks).
1e3c88bd
PZ
7521 */
7522 if (sd->balance_interval < sd->max_interval)
7523 sd->balance_interval *= 2;
7524 }
7525
1e3c88bd
PZ
7526 goto out;
7527
7528out_balanced:
afdeee05
VG
7529 /*
7530 * We reach balance although we may have faced some affinity
7531 * constraints. Clear the imbalance flag if it was set.
7532 */
7533 if (sd_parent) {
7534 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7535
7536 if (*group_imbalance)
7537 *group_imbalance = 0;
7538 }
7539
7540out_all_pinned:
7541 /*
7542 * We reach balance because all tasks are pinned at this level so
7543 * we can't migrate them. Let the imbalance flag set so parent level
7544 * can try to migrate them.
7545 */
1e3c88bd
PZ
7546 schedstat_inc(sd, lb_balanced[idle]);
7547
7548 sd->nr_balance_failed = 0;
7549
7550out_one_pinned:
7551 /* tune up the balancing interval */
8e45cb54 7552 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7553 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7554 (sd->balance_interval < sd->max_interval))
7555 sd->balance_interval *= 2;
7556
46e49b38 7557 ld_moved = 0;
1e3c88bd 7558out:
1e3c88bd
PZ
7559 return ld_moved;
7560}
7561
52a08ef1
JL
7562static inline unsigned long
7563get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7564{
7565 unsigned long interval = sd->balance_interval;
7566
7567 if (cpu_busy)
7568 interval *= sd->busy_factor;
7569
7570 /* scale ms to jiffies */
7571 interval = msecs_to_jiffies(interval);
7572 interval = clamp(interval, 1UL, max_load_balance_interval);
7573
7574 return interval;
7575}
7576
7577static inline void
7578update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7579{
7580 unsigned long interval, next;
7581
7582 interval = get_sd_balance_interval(sd, cpu_busy);
7583 next = sd->last_balance + interval;
7584
7585 if (time_after(*next_balance, next))
7586 *next_balance = next;
7587}
7588
1e3c88bd
PZ
7589/*
7590 * idle_balance is called by schedule() if this_cpu is about to become
7591 * idle. Attempts to pull tasks from other CPUs.
7592 */
6e83125c 7593static int idle_balance(struct rq *this_rq)
1e3c88bd 7594{
52a08ef1
JL
7595 unsigned long next_balance = jiffies + HZ;
7596 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7597 struct sched_domain *sd;
7598 int pulled_task = 0;
9bd721c5 7599 u64 curr_cost = 0;
1e3c88bd 7600
6e83125c
PZ
7601 /*
7602 * We must set idle_stamp _before_ calling idle_balance(), such that we
7603 * measure the duration of idle_balance() as idle time.
7604 */
7605 this_rq->idle_stamp = rq_clock(this_rq);
7606
4486edd1
TC
7607 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7608 !this_rq->rd->overload) {
52a08ef1
JL
7609 rcu_read_lock();
7610 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7611 if (sd)
7612 update_next_balance(sd, 0, &next_balance);
7613 rcu_read_unlock();
7614
6e83125c 7615 goto out;
52a08ef1 7616 }
1e3c88bd 7617
f492e12e
PZ
7618 raw_spin_unlock(&this_rq->lock);
7619
48a16753 7620 update_blocked_averages(this_cpu);
dce840a0 7621 rcu_read_lock();
1e3c88bd 7622 for_each_domain(this_cpu, sd) {
23f0d209 7623 int continue_balancing = 1;
9bd721c5 7624 u64 t0, domain_cost;
1e3c88bd
PZ
7625
7626 if (!(sd->flags & SD_LOAD_BALANCE))
7627 continue;
7628
52a08ef1
JL
7629 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7630 update_next_balance(sd, 0, &next_balance);
9bd721c5 7631 break;
52a08ef1 7632 }
9bd721c5 7633
f492e12e 7634 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7635 t0 = sched_clock_cpu(this_cpu);
7636
f492e12e 7637 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7638 sd, CPU_NEWLY_IDLE,
7639 &continue_balancing);
9bd721c5
JL
7640
7641 domain_cost = sched_clock_cpu(this_cpu) - t0;
7642 if (domain_cost > sd->max_newidle_lb_cost)
7643 sd->max_newidle_lb_cost = domain_cost;
7644
7645 curr_cost += domain_cost;
f492e12e 7646 }
1e3c88bd 7647
52a08ef1 7648 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7649
7650 /*
7651 * Stop searching for tasks to pull if there are
7652 * now runnable tasks on this rq.
7653 */
7654 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7655 break;
1e3c88bd 7656 }
dce840a0 7657 rcu_read_unlock();
f492e12e
PZ
7658
7659 raw_spin_lock(&this_rq->lock);
7660
0e5b5337
JL
7661 if (curr_cost > this_rq->max_idle_balance_cost)
7662 this_rq->max_idle_balance_cost = curr_cost;
7663
e5fc6611 7664 /*
0e5b5337
JL
7665 * While browsing the domains, we released the rq lock, a task could
7666 * have been enqueued in the meantime. Since we're not going idle,
7667 * pretend we pulled a task.
e5fc6611 7668 */
0e5b5337 7669 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7670 pulled_task = 1;
e5fc6611 7671
52a08ef1
JL
7672out:
7673 /* Move the next balance forward */
7674 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7675 this_rq->next_balance = next_balance;
9bd721c5 7676
e4aa358b 7677 /* Is there a task of a high priority class? */
46383648 7678 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7679 pulled_task = -1;
7680
38c6ade2 7681 if (pulled_task)
6e83125c
PZ
7682 this_rq->idle_stamp = 0;
7683
3c4017c1 7684 return pulled_task;
1e3c88bd
PZ
7685}
7686
7687/*
969c7921
TH
7688 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7689 * running tasks off the busiest CPU onto idle CPUs. It requires at
7690 * least 1 task to be running on each physical CPU where possible, and
7691 * avoids physical / logical imbalances.
1e3c88bd 7692 */
969c7921 7693static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7694{
969c7921
TH
7695 struct rq *busiest_rq = data;
7696 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7697 int target_cpu = busiest_rq->push_cpu;
969c7921 7698 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7699 struct sched_domain *sd;
e5673f28 7700 struct task_struct *p = NULL;
969c7921
TH
7701
7702 raw_spin_lock_irq(&busiest_rq->lock);
7703
7704 /* make sure the requested cpu hasn't gone down in the meantime */
7705 if (unlikely(busiest_cpu != smp_processor_id() ||
7706 !busiest_rq->active_balance))
7707 goto out_unlock;
1e3c88bd
PZ
7708
7709 /* Is there any task to move? */
7710 if (busiest_rq->nr_running <= 1)
969c7921 7711 goto out_unlock;
1e3c88bd
PZ
7712
7713 /*
7714 * This condition is "impossible", if it occurs
7715 * we need to fix it. Originally reported by
7716 * Bjorn Helgaas on a 128-cpu setup.
7717 */
7718 BUG_ON(busiest_rq == target_rq);
7719
1e3c88bd 7720 /* Search for an sd spanning us and the target CPU. */
dce840a0 7721 rcu_read_lock();
1e3c88bd
PZ
7722 for_each_domain(target_cpu, sd) {
7723 if ((sd->flags & SD_LOAD_BALANCE) &&
7724 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7725 break;
7726 }
7727
7728 if (likely(sd)) {
8e45cb54
PZ
7729 struct lb_env env = {
7730 .sd = sd,
ddcdf6e7
PZ
7731 .dst_cpu = target_cpu,
7732 .dst_rq = target_rq,
7733 .src_cpu = busiest_rq->cpu,
7734 .src_rq = busiest_rq,
8e45cb54
PZ
7735 .idle = CPU_IDLE,
7736 };
7737
1e3c88bd
PZ
7738 schedstat_inc(sd, alb_count);
7739
e5673f28 7740 p = detach_one_task(&env);
d02c0711 7741 if (p) {
1e3c88bd 7742 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7743 /* Active balancing done, reset the failure counter. */
7744 sd->nr_balance_failed = 0;
7745 } else {
1e3c88bd 7746 schedstat_inc(sd, alb_failed);
d02c0711 7747 }
1e3c88bd 7748 }
dce840a0 7749 rcu_read_unlock();
969c7921
TH
7750out_unlock:
7751 busiest_rq->active_balance = 0;
e5673f28
KT
7752 raw_spin_unlock(&busiest_rq->lock);
7753
7754 if (p)
7755 attach_one_task(target_rq, p);
7756
7757 local_irq_enable();
7758
969c7921 7759 return 0;
1e3c88bd
PZ
7760}
7761
d987fc7f
MG
7762static inline int on_null_domain(struct rq *rq)
7763{
7764 return unlikely(!rcu_dereference_sched(rq->sd));
7765}
7766
3451d024 7767#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7768/*
7769 * idle load balancing details
83cd4fe2
VP
7770 * - When one of the busy CPUs notice that there may be an idle rebalancing
7771 * needed, they will kick the idle load balancer, which then does idle
7772 * load balancing for all the idle CPUs.
7773 */
1e3c88bd 7774static struct {
83cd4fe2 7775 cpumask_var_t idle_cpus_mask;
0b005cf5 7776 atomic_t nr_cpus;
83cd4fe2
VP
7777 unsigned long next_balance; /* in jiffy units */
7778} nohz ____cacheline_aligned;
1e3c88bd 7779
3dd0337d 7780static inline int find_new_ilb(void)
1e3c88bd 7781{
0b005cf5 7782 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7783
786d6dc7
SS
7784 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7785 return ilb;
7786
7787 return nr_cpu_ids;
1e3c88bd 7788}
1e3c88bd 7789
83cd4fe2
VP
7790/*
7791 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7792 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7793 * CPU (if there is one).
7794 */
0aeeeeba 7795static void nohz_balancer_kick(void)
83cd4fe2
VP
7796{
7797 int ilb_cpu;
7798
7799 nohz.next_balance++;
7800
3dd0337d 7801 ilb_cpu = find_new_ilb();
83cd4fe2 7802
0b005cf5
SS
7803 if (ilb_cpu >= nr_cpu_ids)
7804 return;
83cd4fe2 7805
cd490c5b 7806 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7807 return;
7808 /*
7809 * Use smp_send_reschedule() instead of resched_cpu().
7810 * This way we generate a sched IPI on the target cpu which
7811 * is idle. And the softirq performing nohz idle load balance
7812 * will be run before returning from the IPI.
7813 */
7814 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7815 return;
7816}
7817
c1cc017c 7818static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7819{
7820 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7821 /*
7822 * Completely isolated CPUs don't ever set, so we must test.
7823 */
7824 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7825 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7826 atomic_dec(&nohz.nr_cpus);
7827 }
71325960
SS
7828 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7829 }
7830}
7831
69e1e811
SS
7832static inline void set_cpu_sd_state_busy(void)
7833{
7834 struct sched_domain *sd;
37dc6b50 7835 int cpu = smp_processor_id();
69e1e811 7836
69e1e811 7837 rcu_read_lock();
37dc6b50 7838 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7839
7840 if (!sd || !sd->nohz_idle)
7841 goto unlock;
7842 sd->nohz_idle = 0;
7843
63b2ca30 7844 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7845unlock:
69e1e811
SS
7846 rcu_read_unlock();
7847}
7848
7849void set_cpu_sd_state_idle(void)
7850{
7851 struct sched_domain *sd;
37dc6b50 7852 int cpu = smp_processor_id();
69e1e811 7853
69e1e811 7854 rcu_read_lock();
37dc6b50 7855 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7856
7857 if (!sd || sd->nohz_idle)
7858 goto unlock;
7859 sd->nohz_idle = 1;
7860
63b2ca30 7861 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7862unlock:
69e1e811
SS
7863 rcu_read_unlock();
7864}
7865
1e3c88bd 7866/*
c1cc017c 7867 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7868 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7869 */
c1cc017c 7870void nohz_balance_enter_idle(int cpu)
1e3c88bd 7871{
71325960
SS
7872 /*
7873 * If this cpu is going down, then nothing needs to be done.
7874 */
7875 if (!cpu_active(cpu))
7876 return;
7877
c1cc017c
AS
7878 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7879 return;
1e3c88bd 7880
d987fc7f
MG
7881 /*
7882 * If we're a completely isolated CPU, we don't play.
7883 */
7884 if (on_null_domain(cpu_rq(cpu)))
7885 return;
7886
c1cc017c
AS
7887 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7888 atomic_inc(&nohz.nr_cpus);
7889 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7890}
71325960 7891
0db0628d 7892static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7893 unsigned long action, void *hcpu)
7894{
7895 switch (action & ~CPU_TASKS_FROZEN) {
7896 case CPU_DYING:
c1cc017c 7897 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7898 return NOTIFY_OK;
7899 default:
7900 return NOTIFY_DONE;
7901 }
7902}
1e3c88bd
PZ
7903#endif
7904
7905static DEFINE_SPINLOCK(balancing);
7906
49c022e6
PZ
7907/*
7908 * Scale the max load_balance interval with the number of CPUs in the system.
7909 * This trades load-balance latency on larger machines for less cross talk.
7910 */
029632fb 7911void update_max_interval(void)
49c022e6
PZ
7912{
7913 max_load_balance_interval = HZ*num_online_cpus()/10;
7914}
7915
1e3c88bd
PZ
7916/*
7917 * It checks each scheduling domain to see if it is due to be balanced,
7918 * and initiates a balancing operation if so.
7919 *
b9b0853a 7920 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7921 */
f7ed0a89 7922static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7923{
23f0d209 7924 int continue_balancing = 1;
f7ed0a89 7925 int cpu = rq->cpu;
1e3c88bd 7926 unsigned long interval;
04f733b4 7927 struct sched_domain *sd;
1e3c88bd
PZ
7928 /* Earliest time when we have to do rebalance again */
7929 unsigned long next_balance = jiffies + 60*HZ;
7930 int update_next_balance = 0;
f48627e6
JL
7931 int need_serialize, need_decay = 0;
7932 u64 max_cost = 0;
1e3c88bd 7933
48a16753 7934 update_blocked_averages(cpu);
2069dd75 7935
dce840a0 7936 rcu_read_lock();
1e3c88bd 7937 for_each_domain(cpu, sd) {
f48627e6
JL
7938 /*
7939 * Decay the newidle max times here because this is a regular
7940 * visit to all the domains. Decay ~1% per second.
7941 */
7942 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7943 sd->max_newidle_lb_cost =
7944 (sd->max_newidle_lb_cost * 253) / 256;
7945 sd->next_decay_max_lb_cost = jiffies + HZ;
7946 need_decay = 1;
7947 }
7948 max_cost += sd->max_newidle_lb_cost;
7949
1e3c88bd
PZ
7950 if (!(sd->flags & SD_LOAD_BALANCE))
7951 continue;
7952
f48627e6
JL
7953 /*
7954 * Stop the load balance at this level. There is another
7955 * CPU in our sched group which is doing load balancing more
7956 * actively.
7957 */
7958 if (!continue_balancing) {
7959 if (need_decay)
7960 continue;
7961 break;
7962 }
7963
52a08ef1 7964 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7965
7966 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7967 if (need_serialize) {
7968 if (!spin_trylock(&balancing))
7969 goto out;
7970 }
7971
7972 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7973 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7974 /*
6263322c 7975 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7976 * env->dst_cpu, so we can't know our idle
7977 * state even if we migrated tasks. Update it.
1e3c88bd 7978 */
de5eb2dd 7979 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7980 }
7981 sd->last_balance = jiffies;
52a08ef1 7982 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7983 }
7984 if (need_serialize)
7985 spin_unlock(&balancing);
7986out:
7987 if (time_after(next_balance, sd->last_balance + interval)) {
7988 next_balance = sd->last_balance + interval;
7989 update_next_balance = 1;
7990 }
f48627e6
JL
7991 }
7992 if (need_decay) {
1e3c88bd 7993 /*
f48627e6
JL
7994 * Ensure the rq-wide value also decays but keep it at a
7995 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7996 */
f48627e6
JL
7997 rq->max_idle_balance_cost =
7998 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7999 }
dce840a0 8000 rcu_read_unlock();
1e3c88bd
PZ
8001
8002 /*
8003 * next_balance will be updated only when there is a need.
8004 * When the cpu is attached to null domain for ex, it will not be
8005 * updated.
8006 */
c5afb6a8 8007 if (likely(update_next_balance)) {
1e3c88bd 8008 rq->next_balance = next_balance;
c5afb6a8
VG
8009
8010#ifdef CONFIG_NO_HZ_COMMON
8011 /*
8012 * If this CPU has been elected to perform the nohz idle
8013 * balance. Other idle CPUs have already rebalanced with
8014 * nohz_idle_balance() and nohz.next_balance has been
8015 * updated accordingly. This CPU is now running the idle load
8016 * balance for itself and we need to update the
8017 * nohz.next_balance accordingly.
8018 */
8019 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8020 nohz.next_balance = rq->next_balance;
8021#endif
8022 }
1e3c88bd
PZ
8023}
8024
3451d024 8025#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8026/*
3451d024 8027 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8028 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8029 */
208cb16b 8030static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8031{
208cb16b 8032 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8033 struct rq *rq;
8034 int balance_cpu;
c5afb6a8
VG
8035 /* Earliest time when we have to do rebalance again */
8036 unsigned long next_balance = jiffies + 60*HZ;
8037 int update_next_balance = 0;
83cd4fe2 8038
1c792db7
SS
8039 if (idle != CPU_IDLE ||
8040 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8041 goto end;
83cd4fe2
VP
8042
8043 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8044 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8045 continue;
8046
8047 /*
8048 * If this cpu gets work to do, stop the load balancing
8049 * work being done for other cpus. Next load
8050 * balancing owner will pick it up.
8051 */
1c792db7 8052 if (need_resched())
83cd4fe2 8053 break;
83cd4fe2 8054
5ed4f1d9
VG
8055 rq = cpu_rq(balance_cpu);
8056
ed61bbc6
TC
8057 /*
8058 * If time for next balance is due,
8059 * do the balance.
8060 */
8061 if (time_after_eq(jiffies, rq->next_balance)) {
8062 raw_spin_lock_irq(&rq->lock);
8063 update_rq_clock(rq);
cee1afce 8064 cpu_load_update_idle(rq);
ed61bbc6
TC
8065 raw_spin_unlock_irq(&rq->lock);
8066 rebalance_domains(rq, CPU_IDLE);
8067 }
83cd4fe2 8068
c5afb6a8
VG
8069 if (time_after(next_balance, rq->next_balance)) {
8070 next_balance = rq->next_balance;
8071 update_next_balance = 1;
8072 }
83cd4fe2 8073 }
c5afb6a8
VG
8074
8075 /*
8076 * next_balance will be updated only when there is a need.
8077 * When the CPU is attached to null domain for ex, it will not be
8078 * updated.
8079 */
8080 if (likely(update_next_balance))
8081 nohz.next_balance = next_balance;
1c792db7
SS
8082end:
8083 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8084}
8085
8086/*
0b005cf5 8087 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8088 * of an idle cpu in the system.
0b005cf5 8089 * - This rq has more than one task.
1aaf90a4
VG
8090 * - This rq has at least one CFS task and the capacity of the CPU is
8091 * significantly reduced because of RT tasks or IRQs.
8092 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8093 * multiple busy cpu.
0b005cf5
SS
8094 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8095 * domain span are idle.
83cd4fe2 8096 */
1aaf90a4 8097static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8098{
8099 unsigned long now = jiffies;
0b005cf5 8100 struct sched_domain *sd;
63b2ca30 8101 struct sched_group_capacity *sgc;
4a725627 8102 int nr_busy, cpu = rq->cpu;
1aaf90a4 8103 bool kick = false;
83cd4fe2 8104
4a725627 8105 if (unlikely(rq->idle_balance))
1aaf90a4 8106 return false;
83cd4fe2 8107
1c792db7
SS
8108 /*
8109 * We may be recently in ticked or tickless idle mode. At the first
8110 * busy tick after returning from idle, we will update the busy stats.
8111 */
69e1e811 8112 set_cpu_sd_state_busy();
c1cc017c 8113 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8114
8115 /*
8116 * None are in tickless mode and hence no need for NOHZ idle load
8117 * balancing.
8118 */
8119 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8120 return false;
1c792db7
SS
8121
8122 if (time_before(now, nohz.next_balance))
1aaf90a4 8123 return false;
83cd4fe2 8124
0b005cf5 8125 if (rq->nr_running >= 2)
1aaf90a4 8126 return true;
83cd4fe2 8127
067491b7 8128 rcu_read_lock();
37dc6b50 8129 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8130 if (sd) {
63b2ca30
NP
8131 sgc = sd->groups->sgc;
8132 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8133
1aaf90a4
VG
8134 if (nr_busy > 1) {
8135 kick = true;
8136 goto unlock;
8137 }
8138
83cd4fe2 8139 }
37dc6b50 8140
1aaf90a4
VG
8141 sd = rcu_dereference(rq->sd);
8142 if (sd) {
8143 if ((rq->cfs.h_nr_running >= 1) &&
8144 check_cpu_capacity(rq, sd)) {
8145 kick = true;
8146 goto unlock;
8147 }
8148 }
37dc6b50 8149
1aaf90a4 8150 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8151 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8152 sched_domain_span(sd)) < cpu)) {
8153 kick = true;
8154 goto unlock;
8155 }
067491b7 8156
1aaf90a4 8157unlock:
067491b7 8158 rcu_read_unlock();
1aaf90a4 8159 return kick;
83cd4fe2
VP
8160}
8161#else
208cb16b 8162static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8163#endif
8164
8165/*
8166 * run_rebalance_domains is triggered when needed from the scheduler tick.
8167 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8168 */
1e3c88bd
PZ
8169static void run_rebalance_domains(struct softirq_action *h)
8170{
208cb16b 8171 struct rq *this_rq = this_rq();
6eb57e0d 8172 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8173 CPU_IDLE : CPU_NOT_IDLE;
8174
1e3c88bd 8175 /*
83cd4fe2 8176 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8177 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8178 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8179 * give the idle cpus a chance to load balance. Else we may
8180 * load balance only within the local sched_domain hierarchy
8181 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8182 */
208cb16b 8183 nohz_idle_balance(this_rq, idle);
d4573c3e 8184 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8185}
8186
1e3c88bd
PZ
8187/*
8188 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8189 */
7caff66f 8190void trigger_load_balance(struct rq *rq)
1e3c88bd 8191{
1e3c88bd 8192 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8193 if (unlikely(on_null_domain(rq)))
8194 return;
8195
8196 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8197 raise_softirq(SCHED_SOFTIRQ);
3451d024 8198#ifdef CONFIG_NO_HZ_COMMON
c726099e 8199 if (nohz_kick_needed(rq))
0aeeeeba 8200 nohz_balancer_kick();
83cd4fe2 8201#endif
1e3c88bd
PZ
8202}
8203
0bcdcf28
CE
8204static void rq_online_fair(struct rq *rq)
8205{
8206 update_sysctl();
0e59bdae
KT
8207
8208 update_runtime_enabled(rq);
0bcdcf28
CE
8209}
8210
8211static void rq_offline_fair(struct rq *rq)
8212{
8213 update_sysctl();
a4c96ae3
PB
8214
8215 /* Ensure any throttled groups are reachable by pick_next_task */
8216 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8217}
8218
55e12e5e 8219#endif /* CONFIG_SMP */
e1d1484f 8220
bf0f6f24
IM
8221/*
8222 * scheduler tick hitting a task of our scheduling class:
8223 */
8f4d37ec 8224static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8225{
8226 struct cfs_rq *cfs_rq;
8227 struct sched_entity *se = &curr->se;
8228
8229 for_each_sched_entity(se) {
8230 cfs_rq = cfs_rq_of(se);
8f4d37ec 8231 entity_tick(cfs_rq, se, queued);
bf0f6f24 8232 }
18bf2805 8233
b52da86e 8234 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8235 task_tick_numa(rq, curr);
bf0f6f24
IM
8236}
8237
8238/*
cd29fe6f
PZ
8239 * called on fork with the child task as argument from the parent's context
8240 * - child not yet on the tasklist
8241 * - preemption disabled
bf0f6f24 8242 */
cd29fe6f 8243static void task_fork_fair(struct task_struct *p)
bf0f6f24 8244{
4fc420c9
DN
8245 struct cfs_rq *cfs_rq;
8246 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8247 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8248 struct rq *rq = this_rq();
8249 unsigned long flags;
8250
05fa785c 8251 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8252
861d034e
PZ
8253 update_rq_clock(rq);
8254
4fc420c9
DN
8255 cfs_rq = task_cfs_rq(current);
8256 curr = cfs_rq->curr;
8257
6c9a27f5
DN
8258 /*
8259 * Not only the cpu but also the task_group of the parent might have
8260 * been changed after parent->se.parent,cfs_rq were copied to
8261 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8262 * of child point to valid ones.
8263 */
8264 rcu_read_lock();
8265 __set_task_cpu(p, this_cpu);
8266 rcu_read_unlock();
bf0f6f24 8267
7109c442 8268 update_curr(cfs_rq);
cd29fe6f 8269
b5d9d734
MG
8270 if (curr)
8271 se->vruntime = curr->vruntime;
aeb73b04 8272 place_entity(cfs_rq, se, 1);
4d78e7b6 8273
cd29fe6f 8274 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8275 /*
edcb60a3
IM
8276 * Upon rescheduling, sched_class::put_prev_task() will place
8277 * 'current' within the tree based on its new key value.
8278 */
4d78e7b6 8279 swap(curr->vruntime, se->vruntime);
8875125e 8280 resched_curr(rq);
4d78e7b6 8281 }
bf0f6f24 8282
88ec22d3
PZ
8283 se->vruntime -= cfs_rq->min_vruntime;
8284
05fa785c 8285 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8286}
8287
cb469845
SR
8288/*
8289 * Priority of the task has changed. Check to see if we preempt
8290 * the current task.
8291 */
da7a735e
PZ
8292static void
8293prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8294{
da0c1e65 8295 if (!task_on_rq_queued(p))
da7a735e
PZ
8296 return;
8297
cb469845
SR
8298 /*
8299 * Reschedule if we are currently running on this runqueue and
8300 * our priority decreased, or if we are not currently running on
8301 * this runqueue and our priority is higher than the current's
8302 */
da7a735e 8303 if (rq->curr == p) {
cb469845 8304 if (p->prio > oldprio)
8875125e 8305 resched_curr(rq);
cb469845 8306 } else
15afe09b 8307 check_preempt_curr(rq, p, 0);
cb469845
SR
8308}
8309
daa59407 8310static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8311{
8312 struct sched_entity *se = &p->se;
da7a735e
PZ
8313
8314 /*
daa59407
BP
8315 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8316 * the dequeue_entity(.flags=0) will already have normalized the
8317 * vruntime.
8318 */
8319 if (p->on_rq)
8320 return true;
8321
8322 /*
8323 * When !on_rq, vruntime of the task has usually NOT been normalized.
8324 * But there are some cases where it has already been normalized:
da7a735e 8325 *
daa59407
BP
8326 * - A forked child which is waiting for being woken up by
8327 * wake_up_new_task().
8328 * - A task which has been woken up by try_to_wake_up() and
8329 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8330 */
daa59407
BP
8331 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8332 return true;
8333
8334 return false;
8335}
8336
8337static void detach_task_cfs_rq(struct task_struct *p)
8338{
8339 struct sched_entity *se = &p->se;
8340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8341
8342 if (!vruntime_normalized(p)) {
da7a735e
PZ
8343 /*
8344 * Fix up our vruntime so that the current sleep doesn't
8345 * cause 'unlimited' sleep bonus.
8346 */
8347 place_entity(cfs_rq, se, 0);
8348 se->vruntime -= cfs_rq->min_vruntime;
8349 }
9ee474f5 8350
9d89c257 8351 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8352 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8353}
8354
daa59407 8355static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8356{
f36c019c 8357 struct sched_entity *se = &p->se;
daa59407 8358 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8359
8360#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8361 /*
8362 * Since the real-depth could have been changed (only FAIR
8363 * class maintain depth value), reset depth properly.
8364 */
8365 se->depth = se->parent ? se->parent->depth + 1 : 0;
8366#endif
7855a35a 8367
6efdb105 8368 /* Synchronize task with its cfs_rq */
daa59407
BP
8369 attach_entity_load_avg(cfs_rq, se);
8370
8371 if (!vruntime_normalized(p))
8372 se->vruntime += cfs_rq->min_vruntime;
8373}
6efdb105 8374
daa59407
BP
8375static void switched_from_fair(struct rq *rq, struct task_struct *p)
8376{
8377 detach_task_cfs_rq(p);
8378}
8379
8380static void switched_to_fair(struct rq *rq, struct task_struct *p)
8381{
8382 attach_task_cfs_rq(p);
7855a35a 8383
daa59407 8384 if (task_on_rq_queued(p)) {
7855a35a 8385 /*
daa59407
BP
8386 * We were most likely switched from sched_rt, so
8387 * kick off the schedule if running, otherwise just see
8388 * if we can still preempt the current task.
7855a35a 8389 */
daa59407
BP
8390 if (rq->curr == p)
8391 resched_curr(rq);
8392 else
8393 check_preempt_curr(rq, p, 0);
7855a35a 8394 }
cb469845
SR
8395}
8396
83b699ed
SV
8397/* Account for a task changing its policy or group.
8398 *
8399 * This routine is mostly called to set cfs_rq->curr field when a task
8400 * migrates between groups/classes.
8401 */
8402static void set_curr_task_fair(struct rq *rq)
8403{
8404 struct sched_entity *se = &rq->curr->se;
8405
ec12cb7f
PT
8406 for_each_sched_entity(se) {
8407 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8408
8409 set_next_entity(cfs_rq, se);
8410 /* ensure bandwidth has been allocated on our new cfs_rq */
8411 account_cfs_rq_runtime(cfs_rq, 0);
8412 }
83b699ed
SV
8413}
8414
029632fb
PZ
8415void init_cfs_rq(struct cfs_rq *cfs_rq)
8416{
8417 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8418 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8419#ifndef CONFIG_64BIT
8420 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8421#endif
141965c7 8422#ifdef CONFIG_SMP
9d89c257
YD
8423 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8424 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8425#endif
029632fb
PZ
8426}
8427
810b3817 8428#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8429static void task_move_group_fair(struct task_struct *p)
810b3817 8430{
daa59407 8431 detach_task_cfs_rq(p);
b2b5ce02 8432 set_task_rq(p, task_cpu(p));
6efdb105
BP
8433
8434#ifdef CONFIG_SMP
8435 /* Tell se's cfs_rq has been changed -- migrated */
8436 p->se.avg.last_update_time = 0;
8437#endif
daa59407 8438 attach_task_cfs_rq(p);
810b3817 8439}
029632fb
PZ
8440
8441void free_fair_sched_group(struct task_group *tg)
8442{
8443 int i;
8444
8445 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8446
8447 for_each_possible_cpu(i) {
8448 if (tg->cfs_rq)
8449 kfree(tg->cfs_rq[i]);
6fe1f348 8450 if (tg->se)
029632fb
PZ
8451 kfree(tg->se[i]);
8452 }
8453
8454 kfree(tg->cfs_rq);
8455 kfree(tg->se);
8456}
8457
8458int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8459{
8460 struct cfs_rq *cfs_rq;
8461 struct sched_entity *se;
8462 int i;
8463
8464 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8465 if (!tg->cfs_rq)
8466 goto err;
8467 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8468 if (!tg->se)
8469 goto err;
8470
8471 tg->shares = NICE_0_LOAD;
8472
8473 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8474
8475 for_each_possible_cpu(i) {
8476 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8477 GFP_KERNEL, cpu_to_node(i));
8478 if (!cfs_rq)
8479 goto err;
8480
8481 se = kzalloc_node(sizeof(struct sched_entity),
8482 GFP_KERNEL, cpu_to_node(i));
8483 if (!se)
8484 goto err_free_rq;
8485
8486 init_cfs_rq(cfs_rq);
8487 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8488 init_entity_runnable_average(se);
2b8c41da 8489 post_init_entity_util_avg(se);
029632fb
PZ
8490 }
8491
8492 return 1;
8493
8494err_free_rq:
8495 kfree(cfs_rq);
8496err:
8497 return 0;
8498}
8499
6fe1f348 8500void unregister_fair_sched_group(struct task_group *tg)
029632fb 8501{
029632fb 8502 unsigned long flags;
6fe1f348
PZ
8503 struct rq *rq;
8504 int cpu;
029632fb 8505
6fe1f348
PZ
8506 for_each_possible_cpu(cpu) {
8507 if (tg->se[cpu])
8508 remove_entity_load_avg(tg->se[cpu]);
029632fb 8509
6fe1f348
PZ
8510 /*
8511 * Only empty task groups can be destroyed; so we can speculatively
8512 * check on_list without danger of it being re-added.
8513 */
8514 if (!tg->cfs_rq[cpu]->on_list)
8515 continue;
8516
8517 rq = cpu_rq(cpu);
8518
8519 raw_spin_lock_irqsave(&rq->lock, flags);
8520 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8521 raw_spin_unlock_irqrestore(&rq->lock, flags);
8522 }
029632fb
PZ
8523}
8524
8525void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8526 struct sched_entity *se, int cpu,
8527 struct sched_entity *parent)
8528{
8529 struct rq *rq = cpu_rq(cpu);
8530
8531 cfs_rq->tg = tg;
8532 cfs_rq->rq = rq;
029632fb
PZ
8533 init_cfs_rq_runtime(cfs_rq);
8534
8535 tg->cfs_rq[cpu] = cfs_rq;
8536 tg->se[cpu] = se;
8537
8538 /* se could be NULL for root_task_group */
8539 if (!se)
8540 return;
8541
fed14d45 8542 if (!parent) {
029632fb 8543 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8544 se->depth = 0;
8545 } else {
029632fb 8546 se->cfs_rq = parent->my_q;
fed14d45
PZ
8547 se->depth = parent->depth + 1;
8548 }
029632fb
PZ
8549
8550 se->my_q = cfs_rq;
0ac9b1c2
PT
8551 /* guarantee group entities always have weight */
8552 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8553 se->parent = parent;
8554}
8555
8556static DEFINE_MUTEX(shares_mutex);
8557
8558int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8559{
8560 int i;
8561 unsigned long flags;
8562
8563 /*
8564 * We can't change the weight of the root cgroup.
8565 */
8566 if (!tg->se[0])
8567 return -EINVAL;
8568
8569 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8570
8571 mutex_lock(&shares_mutex);
8572 if (tg->shares == shares)
8573 goto done;
8574
8575 tg->shares = shares;
8576 for_each_possible_cpu(i) {
8577 struct rq *rq = cpu_rq(i);
8578 struct sched_entity *se;
8579
8580 se = tg->se[i];
8581 /* Propagate contribution to hierarchy */
8582 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8583
8584 /* Possible calls to update_curr() need rq clock */
8585 update_rq_clock(rq);
17bc14b7 8586 for_each_sched_entity(se)
029632fb
PZ
8587 update_cfs_shares(group_cfs_rq(se));
8588 raw_spin_unlock_irqrestore(&rq->lock, flags);
8589 }
8590
8591done:
8592 mutex_unlock(&shares_mutex);
8593 return 0;
8594}
8595#else /* CONFIG_FAIR_GROUP_SCHED */
8596
8597void free_fair_sched_group(struct task_group *tg) { }
8598
8599int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8600{
8601 return 1;
8602}
8603
6fe1f348 8604void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8605
8606#endif /* CONFIG_FAIR_GROUP_SCHED */
8607
810b3817 8608
6d686f45 8609static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8610{
8611 struct sched_entity *se = &task->se;
0d721cea
PW
8612 unsigned int rr_interval = 0;
8613
8614 /*
8615 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8616 * idle runqueue:
8617 */
0d721cea 8618 if (rq->cfs.load.weight)
a59f4e07 8619 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8620
8621 return rr_interval;
8622}
8623
bf0f6f24
IM
8624/*
8625 * All the scheduling class methods:
8626 */
029632fb 8627const struct sched_class fair_sched_class = {
5522d5d5 8628 .next = &idle_sched_class,
bf0f6f24
IM
8629 .enqueue_task = enqueue_task_fair,
8630 .dequeue_task = dequeue_task_fair,
8631 .yield_task = yield_task_fair,
d95f4122 8632 .yield_to_task = yield_to_task_fair,
bf0f6f24 8633
2e09bf55 8634 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8635
8636 .pick_next_task = pick_next_task_fair,
8637 .put_prev_task = put_prev_task_fair,
8638
681f3e68 8639#ifdef CONFIG_SMP
4ce72a2c 8640 .select_task_rq = select_task_rq_fair,
0a74bef8 8641 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8642
0bcdcf28
CE
8643 .rq_online = rq_online_fair,
8644 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8645
8646 .task_waking = task_waking_fair,
12695578 8647 .task_dead = task_dead_fair,
c5b28038 8648 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8649#endif
bf0f6f24 8650
83b699ed 8651 .set_curr_task = set_curr_task_fair,
bf0f6f24 8652 .task_tick = task_tick_fair,
cd29fe6f 8653 .task_fork = task_fork_fair,
cb469845
SR
8654
8655 .prio_changed = prio_changed_fair,
da7a735e 8656 .switched_from = switched_from_fair,
cb469845 8657 .switched_to = switched_to_fair,
810b3817 8658
0d721cea
PW
8659 .get_rr_interval = get_rr_interval_fair,
8660
6e998916
SG
8661 .update_curr = update_curr_fair,
8662
810b3817 8663#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8664 .task_move_group = task_move_group_fair,
810b3817 8665#endif
bf0f6f24
IM
8666};
8667
8668#ifdef CONFIG_SCHED_DEBUG
029632fb 8669void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8670{
bf0f6f24
IM
8671 struct cfs_rq *cfs_rq;
8672
5973e5b9 8673 rcu_read_lock();
c3b64f1e 8674 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8675 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8676 rcu_read_unlock();
bf0f6f24 8677}
397f2378
SD
8678
8679#ifdef CONFIG_NUMA_BALANCING
8680void show_numa_stats(struct task_struct *p, struct seq_file *m)
8681{
8682 int node;
8683 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8684
8685 for_each_online_node(node) {
8686 if (p->numa_faults) {
8687 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8688 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8689 }
8690 if (p->numa_group) {
8691 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8692 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8693 }
8694 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8695 }
8696}
8697#endif /* CONFIG_NUMA_BALANCING */
8698#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8699
8700__init void init_sched_fair_class(void)
8701{
8702#ifdef CONFIG_SMP
8703 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8704
3451d024 8705#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8706 nohz.next_balance = jiffies;
029632fb 8707 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8708 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8709#endif
8710#endif /* SMP */
8711
8712}