]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/numa: Initialise numa_next_scan properly
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
6e5fb223 821 * numa task sample period in ms
cbee9f88 822 */
6e5fb223 823unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
826
827/* Portion of address space to scan in MB */
828unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 829
4b96a29b
PZ
830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
cbee9f88
PZ
833static void task_numa_placement(struct task_struct *p)
834{
2832bc19 835 int seq;
cbee9f88 836
2832bc19
HD
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845}
846
847/*
848 * Got a PROT_NONE fault for a page on @node.
849 */
b8593bfd 850void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
851{
852 struct task_struct *p = current;
853
10e84b97 854 if (!numabalancing_enabled)
1a687c2e
MG
855 return;
856
cbee9f88
PZ
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
fb003b80 859 /*
b8593bfd
MG
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
fb003b80 862 */
b8593bfd
MG
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 866
cbee9f88
PZ
867 task_numa_placement(p);
868}
869
6e5fb223
PZ
870static void reset_ptenuma_scan(struct task_struct *p)
871{
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874}
875
cbee9f88
PZ
876/*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880void task_numa_work(struct callback_head *work)
881{
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
6e5fb223 885 struct vm_area_struct *vma;
9f40604c
MG
886 unsigned long start, end;
887 long pages;
cbee9f88
PZ
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
7e8d16b6
MG
903 if (!mm->numa_next_reset || !mm->numa_next_scan) {
904 mm->numa_next_scan = now +
905 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
906 mm->numa_next_reset = now +
907 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
908 }
909
b8593bfd
MG
910 /*
911 * Reset the scan period if enough time has gone by. Objective is that
912 * scanning will be reduced if pages are properly placed. As tasks
913 * can enter different phases this needs to be re-examined. Lacking
914 * proper tracking of reference behaviour, this blunt hammer is used.
915 */
916 migrate = mm->numa_next_reset;
917 if (time_after(now, migrate)) {
918 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
919 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
920 xchg(&mm->numa_next_reset, next_scan);
921 }
922
cbee9f88
PZ
923 /*
924 * Enforce maximal scan/migration frequency..
925 */
926 migrate = mm->numa_next_scan;
927 if (time_before(now, migrate))
928 return;
929
930 if (p->numa_scan_period == 0)
931 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
932
fb003b80 933 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
934 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
935 return;
936
19a78d11
PZ
937 /*
938 * Delay this task enough that another task of this mm will likely win
939 * the next time around.
940 */
941 p->node_stamp += 2 * TICK_NSEC;
942
9f40604c
MG
943 start = mm->numa_scan_offset;
944 pages = sysctl_numa_balancing_scan_size;
945 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
946 if (!pages)
947 return;
cbee9f88 948
6e5fb223 949 down_read(&mm->mmap_sem);
9f40604c 950 vma = find_vma(mm, start);
6e5fb223
PZ
951 if (!vma) {
952 reset_ptenuma_scan(p);
9f40604c 953 start = 0;
6e5fb223
PZ
954 vma = mm->mmap;
955 }
9f40604c 956 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
957 if (!vma_migratable(vma))
958 continue;
959
960 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 961 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
962 continue;
963
9f40604c
MG
964 do {
965 start = max(start, vma->vm_start);
966 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
967 end = min(end, vma->vm_end);
968 pages -= change_prot_numa(vma, start, end);
6e5fb223 969
9f40604c
MG
970 start = end;
971 if (pages <= 0)
972 goto out;
973 } while (end != vma->vm_end);
cbee9f88 974 }
6e5fb223 975
9f40604c 976out:
6e5fb223 977 /*
c69307d5
PZ
978 * It is possible to reach the end of the VMA list but the last few
979 * VMAs are not guaranteed to the vma_migratable. If they are not, we
980 * would find the !migratable VMA on the next scan but not reset the
981 * scanner to the start so check it now.
6e5fb223
PZ
982 */
983 if (vma)
9f40604c 984 mm->numa_scan_offset = start;
6e5fb223
PZ
985 else
986 reset_ptenuma_scan(p);
987 up_read(&mm->mmap_sem);
cbee9f88
PZ
988}
989
990/*
991 * Drive the periodic memory faults..
992 */
993void task_tick_numa(struct rq *rq, struct task_struct *curr)
994{
995 struct callback_head *work = &curr->numa_work;
996 u64 period, now;
997
998 /*
999 * We don't care about NUMA placement if we don't have memory.
1000 */
1001 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1002 return;
1003
1004 /*
1005 * Using runtime rather than walltime has the dual advantage that
1006 * we (mostly) drive the selection from busy threads and that the
1007 * task needs to have done some actual work before we bother with
1008 * NUMA placement.
1009 */
1010 now = curr->se.sum_exec_runtime;
1011 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1012
1013 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1014 if (!curr->node_stamp)
1015 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
19a78d11 1016 curr->node_stamp += period;
cbee9f88
PZ
1017
1018 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1019 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1020 task_work_add(curr, work, true);
1021 }
1022 }
1023}
1024#else
1025static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1026{
1027}
1028#endif /* CONFIG_NUMA_BALANCING */
1029
30cfdcfc
DA
1030static void
1031account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1032{
1033 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1034 if (!parent_entity(se))
029632fb 1035 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1036#ifdef CONFIG_SMP
1037 if (entity_is_task(se))
eb95308e 1038 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1039#endif
30cfdcfc 1040 cfs_rq->nr_running++;
30cfdcfc
DA
1041}
1042
1043static void
1044account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045{
1046 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1047 if (!parent_entity(se))
029632fb 1048 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1049 if (entity_is_task(se))
b87f1724 1050 list_del_init(&se->group_node);
30cfdcfc 1051 cfs_rq->nr_running--;
30cfdcfc
DA
1052}
1053
3ff6dcac
YZ
1054#ifdef CONFIG_FAIR_GROUP_SCHED
1055# ifdef CONFIG_SMP
cf5f0acf
PZ
1056static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1057{
1058 long tg_weight;
1059
1060 /*
1061 * Use this CPU's actual weight instead of the last load_contribution
1062 * to gain a more accurate current total weight. See
1063 * update_cfs_rq_load_contribution().
1064 */
bf5b986e 1065 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1066 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1067 tg_weight += cfs_rq->load.weight;
1068
1069 return tg_weight;
1070}
1071
6d5ab293 1072static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1073{
cf5f0acf 1074 long tg_weight, load, shares;
3ff6dcac 1075
cf5f0acf 1076 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1077 load = cfs_rq->load.weight;
3ff6dcac 1078
3ff6dcac 1079 shares = (tg->shares * load);
cf5f0acf
PZ
1080 if (tg_weight)
1081 shares /= tg_weight;
3ff6dcac
YZ
1082
1083 if (shares < MIN_SHARES)
1084 shares = MIN_SHARES;
1085 if (shares > tg->shares)
1086 shares = tg->shares;
1087
1088 return shares;
1089}
3ff6dcac 1090# else /* CONFIG_SMP */
6d5ab293 1091static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1092{
1093 return tg->shares;
1094}
3ff6dcac 1095# endif /* CONFIG_SMP */
2069dd75
PZ
1096static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1097 unsigned long weight)
1098{
19e5eebb
PT
1099 if (se->on_rq) {
1100 /* commit outstanding execution time */
1101 if (cfs_rq->curr == se)
1102 update_curr(cfs_rq);
2069dd75 1103 account_entity_dequeue(cfs_rq, se);
19e5eebb 1104 }
2069dd75
PZ
1105
1106 update_load_set(&se->load, weight);
1107
1108 if (se->on_rq)
1109 account_entity_enqueue(cfs_rq, se);
1110}
1111
82958366
PT
1112static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1113
6d5ab293 1114static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1115{
1116 struct task_group *tg;
1117 struct sched_entity *se;
3ff6dcac 1118 long shares;
2069dd75 1119
2069dd75
PZ
1120 tg = cfs_rq->tg;
1121 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1122 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1123 return;
3ff6dcac
YZ
1124#ifndef CONFIG_SMP
1125 if (likely(se->load.weight == tg->shares))
1126 return;
1127#endif
6d5ab293 1128 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1129
1130 reweight_entity(cfs_rq_of(se), se, shares);
1131}
1132#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1133static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1134{
1135}
1136#endif /* CONFIG_FAIR_GROUP_SCHED */
1137
141965c7 1138#ifdef CONFIG_SMP
5b51f2f8
PT
1139/*
1140 * We choose a half-life close to 1 scheduling period.
1141 * Note: The tables below are dependent on this value.
1142 */
1143#define LOAD_AVG_PERIOD 32
1144#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1145#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1146
1147/* Precomputed fixed inverse multiplies for multiplication by y^n */
1148static const u32 runnable_avg_yN_inv[] = {
1149 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1150 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1151 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1152 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1153 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1154 0x85aac367, 0x82cd8698,
1155};
1156
1157/*
1158 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1159 * over-estimates when re-combining.
1160 */
1161static const u32 runnable_avg_yN_sum[] = {
1162 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1163 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1164 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1165};
1166
9d85f21c
PT
1167/*
1168 * Approximate:
1169 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1170 */
1171static __always_inline u64 decay_load(u64 val, u64 n)
1172{
5b51f2f8
PT
1173 unsigned int local_n;
1174
1175 if (!n)
1176 return val;
1177 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1178 return 0;
1179
1180 /* after bounds checking we can collapse to 32-bit */
1181 local_n = n;
1182
1183 /*
1184 * As y^PERIOD = 1/2, we can combine
1185 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1186 * With a look-up table which covers k^n (n<PERIOD)
1187 *
1188 * To achieve constant time decay_load.
1189 */
1190 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1191 val >>= local_n / LOAD_AVG_PERIOD;
1192 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1193 }
1194
5b51f2f8
PT
1195 val *= runnable_avg_yN_inv[local_n];
1196 /* We don't use SRR here since we always want to round down. */
1197 return val >> 32;
1198}
1199
1200/*
1201 * For updates fully spanning n periods, the contribution to runnable
1202 * average will be: \Sum 1024*y^n
1203 *
1204 * We can compute this reasonably efficiently by combining:
1205 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1206 */
1207static u32 __compute_runnable_contrib(u64 n)
1208{
1209 u32 contrib = 0;
1210
1211 if (likely(n <= LOAD_AVG_PERIOD))
1212 return runnable_avg_yN_sum[n];
1213 else if (unlikely(n >= LOAD_AVG_MAX_N))
1214 return LOAD_AVG_MAX;
1215
1216 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1217 do {
1218 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1219 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1220
1221 n -= LOAD_AVG_PERIOD;
1222 } while (n > LOAD_AVG_PERIOD);
1223
1224 contrib = decay_load(contrib, n);
1225 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1226}
1227
1228/*
1229 * We can represent the historical contribution to runnable average as the
1230 * coefficients of a geometric series. To do this we sub-divide our runnable
1231 * history into segments of approximately 1ms (1024us); label the segment that
1232 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1233 *
1234 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1235 * p0 p1 p2
1236 * (now) (~1ms ago) (~2ms ago)
1237 *
1238 * Let u_i denote the fraction of p_i that the entity was runnable.
1239 *
1240 * We then designate the fractions u_i as our co-efficients, yielding the
1241 * following representation of historical load:
1242 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1243 *
1244 * We choose y based on the with of a reasonably scheduling period, fixing:
1245 * y^32 = 0.5
1246 *
1247 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1248 * approximately half as much as the contribution to load within the last ms
1249 * (u_0).
1250 *
1251 * When a period "rolls over" and we have new u_0`, multiplying the previous
1252 * sum again by y is sufficient to update:
1253 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1254 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1255 */
1256static __always_inline int __update_entity_runnable_avg(u64 now,
1257 struct sched_avg *sa,
1258 int runnable)
1259{
5b51f2f8
PT
1260 u64 delta, periods;
1261 u32 runnable_contrib;
9d85f21c
PT
1262 int delta_w, decayed = 0;
1263
1264 delta = now - sa->last_runnable_update;
1265 /*
1266 * This should only happen when time goes backwards, which it
1267 * unfortunately does during sched clock init when we swap over to TSC.
1268 */
1269 if ((s64)delta < 0) {
1270 sa->last_runnable_update = now;
1271 return 0;
1272 }
1273
1274 /*
1275 * Use 1024ns as the unit of measurement since it's a reasonable
1276 * approximation of 1us and fast to compute.
1277 */
1278 delta >>= 10;
1279 if (!delta)
1280 return 0;
1281 sa->last_runnable_update = now;
1282
1283 /* delta_w is the amount already accumulated against our next period */
1284 delta_w = sa->runnable_avg_period % 1024;
1285 if (delta + delta_w >= 1024) {
1286 /* period roll-over */
1287 decayed = 1;
1288
1289 /*
1290 * Now that we know we're crossing a period boundary, figure
1291 * out how much from delta we need to complete the current
1292 * period and accrue it.
1293 */
1294 delta_w = 1024 - delta_w;
5b51f2f8
PT
1295 if (runnable)
1296 sa->runnable_avg_sum += delta_w;
1297 sa->runnable_avg_period += delta_w;
1298
1299 delta -= delta_w;
1300
1301 /* Figure out how many additional periods this update spans */
1302 periods = delta / 1024;
1303 delta %= 1024;
1304
1305 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1306 periods + 1);
1307 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1308 periods + 1);
1309
1310 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1311 runnable_contrib = __compute_runnable_contrib(periods);
1312 if (runnable)
1313 sa->runnable_avg_sum += runnable_contrib;
1314 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1315 }
1316
1317 /* Remainder of delta accrued against u_0` */
1318 if (runnable)
1319 sa->runnable_avg_sum += delta;
1320 sa->runnable_avg_period += delta;
1321
1322 return decayed;
1323}
1324
9ee474f5 1325/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1326static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1327{
1328 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1329 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1330
1331 decays -= se->avg.decay_count;
1332 if (!decays)
aff3e498 1333 return 0;
9ee474f5
PT
1334
1335 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1336 se->avg.decay_count = 0;
aff3e498
PT
1337
1338 return decays;
9ee474f5
PT
1339}
1340
c566e8e9
PT
1341#ifdef CONFIG_FAIR_GROUP_SCHED
1342static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1343 int force_update)
1344{
1345 struct task_group *tg = cfs_rq->tg;
bf5b986e 1346 long tg_contrib;
c566e8e9
PT
1347
1348 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1349 tg_contrib -= cfs_rq->tg_load_contrib;
1350
bf5b986e
AS
1351 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1352 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1353 cfs_rq->tg_load_contrib += tg_contrib;
1354 }
1355}
8165e145 1356
bb17f655
PT
1357/*
1358 * Aggregate cfs_rq runnable averages into an equivalent task_group
1359 * representation for computing load contributions.
1360 */
1361static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1362 struct cfs_rq *cfs_rq)
1363{
1364 struct task_group *tg = cfs_rq->tg;
1365 long contrib;
1366
1367 /* The fraction of a cpu used by this cfs_rq */
1368 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1369 sa->runnable_avg_period + 1);
1370 contrib -= cfs_rq->tg_runnable_contrib;
1371
1372 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1373 atomic_add(contrib, &tg->runnable_avg);
1374 cfs_rq->tg_runnable_contrib += contrib;
1375 }
1376}
1377
8165e145
PT
1378static inline void __update_group_entity_contrib(struct sched_entity *se)
1379{
1380 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1381 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1382 int runnable_avg;
1383
8165e145
PT
1384 u64 contrib;
1385
1386 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1387 se->avg.load_avg_contrib = div_u64(contrib,
1388 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1389
1390 /*
1391 * For group entities we need to compute a correction term in the case
1392 * that they are consuming <1 cpu so that we would contribute the same
1393 * load as a task of equal weight.
1394 *
1395 * Explicitly co-ordinating this measurement would be expensive, but
1396 * fortunately the sum of each cpus contribution forms a usable
1397 * lower-bound on the true value.
1398 *
1399 * Consider the aggregate of 2 contributions. Either they are disjoint
1400 * (and the sum represents true value) or they are disjoint and we are
1401 * understating by the aggregate of their overlap.
1402 *
1403 * Extending this to N cpus, for a given overlap, the maximum amount we
1404 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1405 * cpus that overlap for this interval and w_i is the interval width.
1406 *
1407 * On a small machine; the first term is well-bounded which bounds the
1408 * total error since w_i is a subset of the period. Whereas on a
1409 * larger machine, while this first term can be larger, if w_i is the
1410 * of consequential size guaranteed to see n_i*w_i quickly converge to
1411 * our upper bound of 1-cpu.
1412 */
1413 runnable_avg = atomic_read(&tg->runnable_avg);
1414 if (runnable_avg < NICE_0_LOAD) {
1415 se->avg.load_avg_contrib *= runnable_avg;
1416 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1417 }
8165e145 1418}
c566e8e9
PT
1419#else
1420static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1421 int force_update) {}
bb17f655
PT
1422static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1423 struct cfs_rq *cfs_rq) {}
8165e145 1424static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1425#endif
1426
8165e145
PT
1427static inline void __update_task_entity_contrib(struct sched_entity *se)
1428{
1429 u32 contrib;
1430
1431 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1432 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1433 contrib /= (se->avg.runnable_avg_period + 1);
1434 se->avg.load_avg_contrib = scale_load(contrib);
1435}
1436
2dac754e
PT
1437/* Compute the current contribution to load_avg by se, return any delta */
1438static long __update_entity_load_avg_contrib(struct sched_entity *se)
1439{
1440 long old_contrib = se->avg.load_avg_contrib;
1441
8165e145
PT
1442 if (entity_is_task(se)) {
1443 __update_task_entity_contrib(se);
1444 } else {
bb17f655 1445 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1446 __update_group_entity_contrib(se);
1447 }
2dac754e
PT
1448
1449 return se->avg.load_avg_contrib - old_contrib;
1450}
1451
9ee474f5
PT
1452static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1453 long load_contrib)
1454{
1455 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1456 cfs_rq->blocked_load_avg -= load_contrib;
1457 else
1458 cfs_rq->blocked_load_avg = 0;
1459}
1460
f1b17280
PT
1461static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1462
9d85f21c 1463/* Update a sched_entity's runnable average */
9ee474f5
PT
1464static inline void update_entity_load_avg(struct sched_entity *se,
1465 int update_cfs_rq)
9d85f21c 1466{
2dac754e
PT
1467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1468 long contrib_delta;
f1b17280 1469 u64 now;
2dac754e 1470
f1b17280
PT
1471 /*
1472 * For a group entity we need to use their owned cfs_rq_clock_task() in
1473 * case they are the parent of a throttled hierarchy.
1474 */
1475 if (entity_is_task(se))
1476 now = cfs_rq_clock_task(cfs_rq);
1477 else
1478 now = cfs_rq_clock_task(group_cfs_rq(se));
1479
1480 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1481 return;
1482
1483 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1484
1485 if (!update_cfs_rq)
1486 return;
1487
2dac754e
PT
1488 if (se->on_rq)
1489 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1490 else
1491 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1492}
1493
1494/*
1495 * Decay the load contributed by all blocked children and account this so that
1496 * their contribution may appropriately discounted when they wake up.
1497 */
aff3e498 1498static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1499{
f1b17280 1500 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1501 u64 decays;
1502
1503 decays = now - cfs_rq->last_decay;
aff3e498 1504 if (!decays && !force_update)
9ee474f5
PT
1505 return;
1506
2509940f
AS
1507 if (atomic_long_read(&cfs_rq->removed_load)) {
1508 unsigned long removed_load;
1509 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1510 subtract_blocked_load_contrib(cfs_rq, removed_load);
1511 }
9ee474f5 1512
aff3e498
PT
1513 if (decays) {
1514 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1515 decays);
1516 atomic64_add(decays, &cfs_rq->decay_counter);
1517 cfs_rq->last_decay = now;
1518 }
c566e8e9
PT
1519
1520 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1521}
18bf2805
BS
1522
1523static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1524{
78becc27 1525 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1526 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1527}
2dac754e
PT
1528
1529/* Add the load generated by se into cfs_rq's child load-average */
1530static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1531 struct sched_entity *se,
1532 int wakeup)
2dac754e 1533{
aff3e498
PT
1534 /*
1535 * We track migrations using entity decay_count <= 0, on a wake-up
1536 * migration we use a negative decay count to track the remote decays
1537 * accumulated while sleeping.
a75cdaa9
AS
1538 *
1539 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1540 * are seen by enqueue_entity_load_avg() as a migration with an already
1541 * constructed load_avg_contrib.
aff3e498
PT
1542 */
1543 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1544 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1545 if (se->avg.decay_count) {
1546 /*
1547 * In a wake-up migration we have to approximate the
1548 * time sleeping. This is because we can't synchronize
1549 * clock_task between the two cpus, and it is not
1550 * guaranteed to be read-safe. Instead, we can
1551 * approximate this using our carried decays, which are
1552 * explicitly atomically readable.
1553 */
1554 se->avg.last_runnable_update -= (-se->avg.decay_count)
1555 << 20;
1556 update_entity_load_avg(se, 0);
1557 /* Indicate that we're now synchronized and on-rq */
1558 se->avg.decay_count = 0;
1559 }
9ee474f5
PT
1560 wakeup = 0;
1561 } else {
282cf499
AS
1562 /*
1563 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1564 * would have made count negative); we must be careful to avoid
1565 * double-accounting blocked time after synchronizing decays.
1566 */
1567 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1568 << 20;
9ee474f5
PT
1569 }
1570
aff3e498
PT
1571 /* migrated tasks did not contribute to our blocked load */
1572 if (wakeup) {
9ee474f5 1573 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1574 update_entity_load_avg(se, 0);
1575 }
9ee474f5 1576
2dac754e 1577 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1578 /* we force update consideration on load-balancer moves */
1579 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1580}
1581
9ee474f5
PT
1582/*
1583 * Remove se's load from this cfs_rq child load-average, if the entity is
1584 * transitioning to a blocked state we track its projected decay using
1585 * blocked_load_avg.
1586 */
2dac754e 1587static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1588 struct sched_entity *se,
1589 int sleep)
2dac754e 1590{
9ee474f5 1591 update_entity_load_avg(se, 1);
aff3e498
PT
1592 /* we force update consideration on load-balancer moves */
1593 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1594
2dac754e 1595 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1596 if (sleep) {
1597 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1598 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1599 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1600}
642dbc39
VG
1601
1602/*
1603 * Update the rq's load with the elapsed running time before entering
1604 * idle. if the last scheduled task is not a CFS task, idle_enter will
1605 * be the only way to update the runnable statistic.
1606 */
1607void idle_enter_fair(struct rq *this_rq)
1608{
1609 update_rq_runnable_avg(this_rq, 1);
1610}
1611
1612/*
1613 * Update the rq's load with the elapsed idle time before a task is
1614 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1615 * be the only way to update the runnable statistic.
1616 */
1617void idle_exit_fair(struct rq *this_rq)
1618{
1619 update_rq_runnable_avg(this_rq, 0);
1620}
1621
9d85f21c 1622#else
9ee474f5
PT
1623static inline void update_entity_load_avg(struct sched_entity *se,
1624 int update_cfs_rq) {}
18bf2805 1625static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1626static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1627 struct sched_entity *se,
1628 int wakeup) {}
2dac754e 1629static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1630 struct sched_entity *se,
1631 int sleep) {}
aff3e498
PT
1632static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1633 int force_update) {}
9d85f21c
PT
1634#endif
1635
2396af69 1636static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1637{
bf0f6f24 1638#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1639 struct task_struct *tsk = NULL;
1640
1641 if (entity_is_task(se))
1642 tsk = task_of(se);
1643
41acab88 1644 if (se->statistics.sleep_start) {
78becc27 1645 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1646
1647 if ((s64)delta < 0)
1648 delta = 0;
1649
41acab88
LDM
1650 if (unlikely(delta > se->statistics.sleep_max))
1651 se->statistics.sleep_max = delta;
bf0f6f24 1652
8c79a045 1653 se->statistics.sleep_start = 0;
41acab88 1654 se->statistics.sum_sleep_runtime += delta;
9745512c 1655
768d0c27 1656 if (tsk) {
e414314c 1657 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1658 trace_sched_stat_sleep(tsk, delta);
1659 }
bf0f6f24 1660 }
41acab88 1661 if (se->statistics.block_start) {
78becc27 1662 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1663
1664 if ((s64)delta < 0)
1665 delta = 0;
1666
41acab88
LDM
1667 if (unlikely(delta > se->statistics.block_max))
1668 se->statistics.block_max = delta;
bf0f6f24 1669
8c79a045 1670 se->statistics.block_start = 0;
41acab88 1671 se->statistics.sum_sleep_runtime += delta;
30084fbd 1672
e414314c 1673 if (tsk) {
8f0dfc34 1674 if (tsk->in_iowait) {
41acab88
LDM
1675 se->statistics.iowait_sum += delta;
1676 se->statistics.iowait_count++;
768d0c27 1677 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1678 }
1679
b781a602
AV
1680 trace_sched_stat_blocked(tsk, delta);
1681
e414314c
PZ
1682 /*
1683 * Blocking time is in units of nanosecs, so shift by
1684 * 20 to get a milliseconds-range estimation of the
1685 * amount of time that the task spent sleeping:
1686 */
1687 if (unlikely(prof_on == SLEEP_PROFILING)) {
1688 profile_hits(SLEEP_PROFILING,
1689 (void *)get_wchan(tsk),
1690 delta >> 20);
1691 }
1692 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1693 }
bf0f6f24
IM
1694 }
1695#endif
1696}
1697
ddc97297
PZ
1698static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1699{
1700#ifdef CONFIG_SCHED_DEBUG
1701 s64 d = se->vruntime - cfs_rq->min_vruntime;
1702
1703 if (d < 0)
1704 d = -d;
1705
1706 if (d > 3*sysctl_sched_latency)
1707 schedstat_inc(cfs_rq, nr_spread_over);
1708#endif
1709}
1710
aeb73b04
PZ
1711static void
1712place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1713{
1af5f730 1714 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1715
2cb8600e
PZ
1716 /*
1717 * The 'current' period is already promised to the current tasks,
1718 * however the extra weight of the new task will slow them down a
1719 * little, place the new task so that it fits in the slot that
1720 * stays open at the end.
1721 */
94dfb5e7 1722 if (initial && sched_feat(START_DEBIT))
f9c0b095 1723 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1724
a2e7a7eb 1725 /* sleeps up to a single latency don't count. */
5ca9880c 1726 if (!initial) {
a2e7a7eb 1727 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1728
a2e7a7eb
MG
1729 /*
1730 * Halve their sleep time's effect, to allow
1731 * for a gentler effect of sleepers:
1732 */
1733 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1734 thresh >>= 1;
51e0304c 1735
a2e7a7eb 1736 vruntime -= thresh;
aeb73b04
PZ
1737 }
1738
b5d9d734 1739 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1740 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1741}
1742
d3d9dc33
PT
1743static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1744
bf0f6f24 1745static void
88ec22d3 1746enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1747{
88ec22d3
PZ
1748 /*
1749 * Update the normalized vruntime before updating min_vruntime
0fc576d5 1750 * through calling update_curr().
88ec22d3 1751 */
371fd7e7 1752 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1753 se->vruntime += cfs_rq->min_vruntime;
1754
bf0f6f24 1755 /*
a2a2d680 1756 * Update run-time statistics of the 'current'.
bf0f6f24 1757 */
b7cc0896 1758 update_curr(cfs_rq);
f269ae04 1759 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1760 account_entity_enqueue(cfs_rq, se);
1761 update_cfs_shares(cfs_rq);
bf0f6f24 1762
88ec22d3 1763 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1764 place_entity(cfs_rq, se, 0);
2396af69 1765 enqueue_sleeper(cfs_rq, se);
e9acbff6 1766 }
bf0f6f24 1767
d2417e5a 1768 update_stats_enqueue(cfs_rq, se);
ddc97297 1769 check_spread(cfs_rq, se);
83b699ed
SV
1770 if (se != cfs_rq->curr)
1771 __enqueue_entity(cfs_rq, se);
2069dd75 1772 se->on_rq = 1;
3d4b47b4 1773
d3d9dc33 1774 if (cfs_rq->nr_running == 1) {
3d4b47b4 1775 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1776 check_enqueue_throttle(cfs_rq);
1777 }
bf0f6f24
IM
1778}
1779
2c13c919 1780static void __clear_buddies_last(struct sched_entity *se)
2002c695 1781{
2c13c919
RR
1782 for_each_sched_entity(se) {
1783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1784 if (cfs_rq->last == se)
1785 cfs_rq->last = NULL;
1786 else
1787 break;
1788 }
1789}
2002c695 1790
2c13c919
RR
1791static void __clear_buddies_next(struct sched_entity *se)
1792{
1793 for_each_sched_entity(se) {
1794 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1795 if (cfs_rq->next == se)
1796 cfs_rq->next = NULL;
1797 else
1798 break;
1799 }
2002c695
PZ
1800}
1801
ac53db59
RR
1802static void __clear_buddies_skip(struct sched_entity *se)
1803{
1804 for_each_sched_entity(se) {
1805 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1806 if (cfs_rq->skip == se)
1807 cfs_rq->skip = NULL;
1808 else
1809 break;
1810 }
1811}
1812
a571bbea
PZ
1813static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1814{
2c13c919
RR
1815 if (cfs_rq->last == se)
1816 __clear_buddies_last(se);
1817
1818 if (cfs_rq->next == se)
1819 __clear_buddies_next(se);
ac53db59
RR
1820
1821 if (cfs_rq->skip == se)
1822 __clear_buddies_skip(se);
a571bbea
PZ
1823}
1824
6c16a6dc 1825static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1826
bf0f6f24 1827static void
371fd7e7 1828dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1829{
a2a2d680
DA
1830 /*
1831 * Update run-time statistics of the 'current'.
1832 */
1833 update_curr(cfs_rq);
17bc14b7 1834 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1835
19b6a2e3 1836 update_stats_dequeue(cfs_rq, se);
371fd7e7 1837 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1838#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1839 if (entity_is_task(se)) {
1840 struct task_struct *tsk = task_of(se);
1841
1842 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1843 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1844 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1845 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1846 }
db36cc7d 1847#endif
67e9fb2a
PZ
1848 }
1849
2002c695 1850 clear_buddies(cfs_rq, se);
4793241b 1851
83b699ed 1852 if (se != cfs_rq->curr)
30cfdcfc 1853 __dequeue_entity(cfs_rq, se);
17bc14b7 1854 se->on_rq = 0;
30cfdcfc 1855 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1856
1857 /*
1858 * Normalize the entity after updating the min_vruntime because the
1859 * update can refer to the ->curr item and we need to reflect this
1860 * movement in our normalized position.
1861 */
371fd7e7 1862 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1863 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1864
d8b4986d
PT
1865 /* return excess runtime on last dequeue */
1866 return_cfs_rq_runtime(cfs_rq);
1867
1e876231 1868 update_min_vruntime(cfs_rq);
17bc14b7 1869 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1870}
1871
1872/*
1873 * Preempt the current task with a newly woken task if needed:
1874 */
7c92e54f 1875static void
2e09bf55 1876check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1877{
11697830 1878 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1879 struct sched_entity *se;
1880 s64 delta;
11697830 1881
6d0f0ebd 1882 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1883 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1884 if (delta_exec > ideal_runtime) {
bf0f6f24 1885 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1886 /*
1887 * The current task ran long enough, ensure it doesn't get
1888 * re-elected due to buddy favours.
1889 */
1890 clear_buddies(cfs_rq, curr);
f685ceac
MG
1891 return;
1892 }
1893
1894 /*
1895 * Ensure that a task that missed wakeup preemption by a
1896 * narrow margin doesn't have to wait for a full slice.
1897 * This also mitigates buddy induced latencies under load.
1898 */
f685ceac
MG
1899 if (delta_exec < sysctl_sched_min_granularity)
1900 return;
1901
f4cfb33e
WX
1902 se = __pick_first_entity(cfs_rq);
1903 delta = curr->vruntime - se->vruntime;
f685ceac 1904
f4cfb33e
WX
1905 if (delta < 0)
1906 return;
d7d82944 1907
f4cfb33e
WX
1908 if (delta > ideal_runtime)
1909 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1910}
1911
83b699ed 1912static void
8494f412 1913set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1914{
83b699ed
SV
1915 /* 'current' is not kept within the tree. */
1916 if (se->on_rq) {
1917 /*
1918 * Any task has to be enqueued before it get to execute on
1919 * a CPU. So account for the time it spent waiting on the
1920 * runqueue.
1921 */
1922 update_stats_wait_end(cfs_rq, se);
1923 __dequeue_entity(cfs_rq, se);
1924 }
1925
79303e9e 1926 update_stats_curr_start(cfs_rq, se);
429d43bc 1927 cfs_rq->curr = se;
eba1ed4b
IM
1928#ifdef CONFIG_SCHEDSTATS
1929 /*
1930 * Track our maximum slice length, if the CPU's load is at
1931 * least twice that of our own weight (i.e. dont track it
1932 * when there are only lesser-weight tasks around):
1933 */
495eca49 1934 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1935 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1936 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1937 }
1938#endif
4a55b450 1939 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1940}
1941
3f3a4904
PZ
1942static int
1943wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1944
ac53db59
RR
1945/*
1946 * Pick the next process, keeping these things in mind, in this order:
1947 * 1) keep things fair between processes/task groups
1948 * 2) pick the "next" process, since someone really wants that to run
1949 * 3) pick the "last" process, for cache locality
1950 * 4) do not run the "skip" process, if something else is available
1951 */
f4b6755f 1952static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1953{
ac53db59 1954 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1955 struct sched_entity *left = se;
f4b6755f 1956
ac53db59
RR
1957 /*
1958 * Avoid running the skip buddy, if running something else can
1959 * be done without getting too unfair.
1960 */
1961 if (cfs_rq->skip == se) {
1962 struct sched_entity *second = __pick_next_entity(se);
1963 if (second && wakeup_preempt_entity(second, left) < 1)
1964 se = second;
1965 }
aa2ac252 1966
f685ceac
MG
1967 /*
1968 * Prefer last buddy, try to return the CPU to a preempted task.
1969 */
1970 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1971 se = cfs_rq->last;
1972
ac53db59
RR
1973 /*
1974 * Someone really wants this to run. If it's not unfair, run it.
1975 */
1976 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1977 se = cfs_rq->next;
1978
f685ceac 1979 clear_buddies(cfs_rq, se);
4793241b
PZ
1980
1981 return se;
aa2ac252
PZ
1982}
1983
d3d9dc33
PT
1984static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1985
ab6cde26 1986static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1987{
1988 /*
1989 * If still on the runqueue then deactivate_task()
1990 * was not called and update_curr() has to be done:
1991 */
1992 if (prev->on_rq)
b7cc0896 1993 update_curr(cfs_rq);
bf0f6f24 1994
d3d9dc33
PT
1995 /* throttle cfs_rqs exceeding runtime */
1996 check_cfs_rq_runtime(cfs_rq);
1997
ddc97297 1998 check_spread(cfs_rq, prev);
30cfdcfc 1999 if (prev->on_rq) {
5870db5b 2000 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2001 /* Put 'current' back into the tree. */
2002 __enqueue_entity(cfs_rq, prev);
9d85f21c 2003 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2004 update_entity_load_avg(prev, 1);
30cfdcfc 2005 }
429d43bc 2006 cfs_rq->curr = NULL;
bf0f6f24
IM
2007}
2008
8f4d37ec
PZ
2009static void
2010entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2011{
bf0f6f24 2012 /*
30cfdcfc 2013 * Update run-time statistics of the 'current'.
bf0f6f24 2014 */
30cfdcfc 2015 update_curr(cfs_rq);
bf0f6f24 2016
9d85f21c
PT
2017 /*
2018 * Ensure that runnable average is periodically updated.
2019 */
9ee474f5 2020 update_entity_load_avg(curr, 1);
aff3e498 2021 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2022 update_cfs_shares(cfs_rq);
9d85f21c 2023
8f4d37ec
PZ
2024#ifdef CONFIG_SCHED_HRTICK
2025 /*
2026 * queued ticks are scheduled to match the slice, so don't bother
2027 * validating it and just reschedule.
2028 */
983ed7a6
HH
2029 if (queued) {
2030 resched_task(rq_of(cfs_rq)->curr);
2031 return;
2032 }
8f4d37ec
PZ
2033 /*
2034 * don't let the period tick interfere with the hrtick preemption
2035 */
2036 if (!sched_feat(DOUBLE_TICK) &&
2037 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2038 return;
2039#endif
2040
2c2efaed 2041 if (cfs_rq->nr_running > 1)
2e09bf55 2042 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2043}
2044
ab84d31e
PT
2045
2046/**************************************************
2047 * CFS bandwidth control machinery
2048 */
2049
2050#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2051
2052#ifdef HAVE_JUMP_LABEL
c5905afb 2053static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2054
2055static inline bool cfs_bandwidth_used(void)
2056{
c5905afb 2057 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2058}
2059
2060void account_cfs_bandwidth_used(int enabled, int was_enabled)
2061{
2062 /* only need to count groups transitioning between enabled/!enabled */
2063 if (enabled && !was_enabled)
c5905afb 2064 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2065 else if (!enabled && was_enabled)
c5905afb 2066 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2067}
2068#else /* HAVE_JUMP_LABEL */
2069static bool cfs_bandwidth_used(void)
2070{
2071 return true;
2072}
2073
2074void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2075#endif /* HAVE_JUMP_LABEL */
2076
ab84d31e
PT
2077/*
2078 * default period for cfs group bandwidth.
2079 * default: 0.1s, units: nanoseconds
2080 */
2081static inline u64 default_cfs_period(void)
2082{
2083 return 100000000ULL;
2084}
ec12cb7f
PT
2085
2086static inline u64 sched_cfs_bandwidth_slice(void)
2087{
2088 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2089}
2090
a9cf55b2
PT
2091/*
2092 * Replenish runtime according to assigned quota and update expiration time.
2093 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2094 * additional synchronization around rq->lock.
2095 *
2096 * requires cfs_b->lock
2097 */
029632fb 2098void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2099{
2100 u64 now;
2101
2102 if (cfs_b->quota == RUNTIME_INF)
2103 return;
2104
2105 now = sched_clock_cpu(smp_processor_id());
2106 cfs_b->runtime = cfs_b->quota;
2107 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2108}
2109
029632fb
PZ
2110static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2111{
2112 return &tg->cfs_bandwidth;
2113}
2114
f1b17280
PT
2115/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2116static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2117{
2118 if (unlikely(cfs_rq->throttle_count))
2119 return cfs_rq->throttled_clock_task;
2120
78becc27 2121 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2122}
2123
85dac906
PT
2124/* returns 0 on failure to allocate runtime */
2125static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2126{
2127 struct task_group *tg = cfs_rq->tg;
2128 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2129 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2130
2131 /* note: this is a positive sum as runtime_remaining <= 0 */
2132 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2133
2134 raw_spin_lock(&cfs_b->lock);
2135 if (cfs_b->quota == RUNTIME_INF)
2136 amount = min_amount;
58088ad0 2137 else {
a9cf55b2
PT
2138 /*
2139 * If the bandwidth pool has become inactive, then at least one
2140 * period must have elapsed since the last consumption.
2141 * Refresh the global state and ensure bandwidth timer becomes
2142 * active.
2143 */
2144 if (!cfs_b->timer_active) {
2145 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2146 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2147 }
58088ad0
PT
2148
2149 if (cfs_b->runtime > 0) {
2150 amount = min(cfs_b->runtime, min_amount);
2151 cfs_b->runtime -= amount;
2152 cfs_b->idle = 0;
2153 }
ec12cb7f 2154 }
a9cf55b2 2155 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2156 raw_spin_unlock(&cfs_b->lock);
2157
2158 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2159 /*
2160 * we may have advanced our local expiration to account for allowed
2161 * spread between our sched_clock and the one on which runtime was
2162 * issued.
2163 */
2164 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2165 cfs_rq->runtime_expires = expires;
85dac906
PT
2166
2167 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2168}
2169
a9cf55b2
PT
2170/*
2171 * Note: This depends on the synchronization provided by sched_clock and the
2172 * fact that rq->clock snapshots this value.
2173 */
2174static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2175{
a9cf55b2 2176 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2177
2178 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2179 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2180 return;
2181
a9cf55b2
PT
2182 if (cfs_rq->runtime_remaining < 0)
2183 return;
2184
2185 /*
2186 * If the local deadline has passed we have to consider the
2187 * possibility that our sched_clock is 'fast' and the global deadline
2188 * has not truly expired.
2189 *
2190 * Fortunately we can check determine whether this the case by checking
2191 * whether the global deadline has advanced.
2192 */
2193
2194 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2195 /* extend local deadline, drift is bounded above by 2 ticks */
2196 cfs_rq->runtime_expires += TICK_NSEC;
2197 } else {
2198 /* global deadline is ahead, expiration has passed */
2199 cfs_rq->runtime_remaining = 0;
2200 }
2201}
2202
2203static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2204 unsigned long delta_exec)
2205{
2206 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2207 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2208 expire_cfs_rq_runtime(cfs_rq);
2209
2210 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2211 return;
2212
85dac906
PT
2213 /*
2214 * if we're unable to extend our runtime we resched so that the active
2215 * hierarchy can be throttled
2216 */
2217 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2218 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2219}
2220
6c16a6dc
PZ
2221static __always_inline
2222void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2223{
56f570e5 2224 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2225 return;
2226
2227 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2228}
2229
85dac906
PT
2230static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2231{
56f570e5 2232 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2233}
2234
64660c86
PT
2235/* check whether cfs_rq, or any parent, is throttled */
2236static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2237{
56f570e5 2238 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2239}
2240
2241/*
2242 * Ensure that neither of the group entities corresponding to src_cpu or
2243 * dest_cpu are members of a throttled hierarchy when performing group
2244 * load-balance operations.
2245 */
2246static inline int throttled_lb_pair(struct task_group *tg,
2247 int src_cpu, int dest_cpu)
2248{
2249 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2250
2251 src_cfs_rq = tg->cfs_rq[src_cpu];
2252 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2253
2254 return throttled_hierarchy(src_cfs_rq) ||
2255 throttled_hierarchy(dest_cfs_rq);
2256}
2257
2258/* updated child weight may affect parent so we have to do this bottom up */
2259static int tg_unthrottle_up(struct task_group *tg, void *data)
2260{
2261 struct rq *rq = data;
2262 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2263
2264 cfs_rq->throttle_count--;
2265#ifdef CONFIG_SMP
2266 if (!cfs_rq->throttle_count) {
f1b17280 2267 /* adjust cfs_rq_clock_task() */
78becc27 2268 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2269 cfs_rq->throttled_clock_task;
64660c86
PT
2270 }
2271#endif
2272
2273 return 0;
2274}
2275
2276static int tg_throttle_down(struct task_group *tg, void *data)
2277{
2278 struct rq *rq = data;
2279 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2280
82958366
PT
2281 /* group is entering throttled state, stop time */
2282 if (!cfs_rq->throttle_count)
78becc27 2283 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2284 cfs_rq->throttle_count++;
2285
2286 return 0;
2287}
2288
d3d9dc33 2289static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2290{
2291 struct rq *rq = rq_of(cfs_rq);
2292 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2293 struct sched_entity *se;
2294 long task_delta, dequeue = 1;
2295
2296 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2297
f1b17280 2298 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2299 rcu_read_lock();
2300 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2301 rcu_read_unlock();
85dac906
PT
2302
2303 task_delta = cfs_rq->h_nr_running;
2304 for_each_sched_entity(se) {
2305 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2306 /* throttled entity or throttle-on-deactivate */
2307 if (!se->on_rq)
2308 break;
2309
2310 if (dequeue)
2311 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2312 qcfs_rq->h_nr_running -= task_delta;
2313
2314 if (qcfs_rq->load.weight)
2315 dequeue = 0;
2316 }
2317
2318 if (!se)
2319 rq->nr_running -= task_delta;
2320
2321 cfs_rq->throttled = 1;
78becc27 2322 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2323 raw_spin_lock(&cfs_b->lock);
2324 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2325 raw_spin_unlock(&cfs_b->lock);
2326}
2327
029632fb 2328void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2329{
2330 struct rq *rq = rq_of(cfs_rq);
2331 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2332 struct sched_entity *se;
2333 int enqueue = 1;
2334 long task_delta;
2335
22b958d8 2336 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2337
2338 cfs_rq->throttled = 0;
1a55af2e
FW
2339
2340 update_rq_clock(rq);
2341
671fd9da 2342 raw_spin_lock(&cfs_b->lock);
78becc27 2343 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2344 list_del_rcu(&cfs_rq->throttled_list);
2345 raw_spin_unlock(&cfs_b->lock);
2346
64660c86
PT
2347 /* update hierarchical throttle state */
2348 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2349
671fd9da
PT
2350 if (!cfs_rq->load.weight)
2351 return;
2352
2353 task_delta = cfs_rq->h_nr_running;
2354 for_each_sched_entity(se) {
2355 if (se->on_rq)
2356 enqueue = 0;
2357
2358 cfs_rq = cfs_rq_of(se);
2359 if (enqueue)
2360 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2361 cfs_rq->h_nr_running += task_delta;
2362
2363 if (cfs_rq_throttled(cfs_rq))
2364 break;
2365 }
2366
2367 if (!se)
2368 rq->nr_running += task_delta;
2369
2370 /* determine whether we need to wake up potentially idle cpu */
2371 if (rq->curr == rq->idle && rq->cfs.nr_running)
2372 resched_task(rq->curr);
2373}
2374
2375static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2376 u64 remaining, u64 expires)
2377{
2378 struct cfs_rq *cfs_rq;
2379 u64 runtime = remaining;
2380
2381 rcu_read_lock();
2382 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2383 throttled_list) {
2384 struct rq *rq = rq_of(cfs_rq);
2385
2386 raw_spin_lock(&rq->lock);
2387 if (!cfs_rq_throttled(cfs_rq))
2388 goto next;
2389
2390 runtime = -cfs_rq->runtime_remaining + 1;
2391 if (runtime > remaining)
2392 runtime = remaining;
2393 remaining -= runtime;
2394
2395 cfs_rq->runtime_remaining += runtime;
2396 cfs_rq->runtime_expires = expires;
2397
2398 /* we check whether we're throttled above */
2399 if (cfs_rq->runtime_remaining > 0)
2400 unthrottle_cfs_rq(cfs_rq);
2401
2402next:
2403 raw_spin_unlock(&rq->lock);
2404
2405 if (!remaining)
2406 break;
2407 }
2408 rcu_read_unlock();
2409
2410 return remaining;
2411}
2412
58088ad0
PT
2413/*
2414 * Responsible for refilling a task_group's bandwidth and unthrottling its
2415 * cfs_rqs as appropriate. If there has been no activity within the last
2416 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2417 * used to track this state.
2418 */
2419static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2420{
671fd9da
PT
2421 u64 runtime, runtime_expires;
2422 int idle = 1, throttled;
58088ad0
PT
2423
2424 raw_spin_lock(&cfs_b->lock);
2425 /* no need to continue the timer with no bandwidth constraint */
2426 if (cfs_b->quota == RUNTIME_INF)
2427 goto out_unlock;
2428
671fd9da
PT
2429 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2430 /* idle depends on !throttled (for the case of a large deficit) */
2431 idle = cfs_b->idle && !throttled;
e8da1b18 2432 cfs_b->nr_periods += overrun;
671fd9da 2433
a9cf55b2
PT
2434 /* if we're going inactive then everything else can be deferred */
2435 if (idle)
2436 goto out_unlock;
2437
2438 __refill_cfs_bandwidth_runtime(cfs_b);
2439
671fd9da
PT
2440 if (!throttled) {
2441 /* mark as potentially idle for the upcoming period */
2442 cfs_b->idle = 1;
2443 goto out_unlock;
2444 }
2445
e8da1b18
NR
2446 /* account preceding periods in which throttling occurred */
2447 cfs_b->nr_throttled += overrun;
2448
671fd9da
PT
2449 /*
2450 * There are throttled entities so we must first use the new bandwidth
2451 * to unthrottle them before making it generally available. This
2452 * ensures that all existing debts will be paid before a new cfs_rq is
2453 * allowed to run.
2454 */
2455 runtime = cfs_b->runtime;
2456 runtime_expires = cfs_b->runtime_expires;
2457 cfs_b->runtime = 0;
2458
2459 /*
2460 * This check is repeated as we are holding onto the new bandwidth
2461 * while we unthrottle. This can potentially race with an unthrottled
2462 * group trying to acquire new bandwidth from the global pool.
2463 */
2464 while (throttled && runtime > 0) {
2465 raw_spin_unlock(&cfs_b->lock);
2466 /* we can't nest cfs_b->lock while distributing bandwidth */
2467 runtime = distribute_cfs_runtime(cfs_b, runtime,
2468 runtime_expires);
2469 raw_spin_lock(&cfs_b->lock);
2470
2471 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2472 }
58088ad0 2473
671fd9da
PT
2474 /* return (any) remaining runtime */
2475 cfs_b->runtime = runtime;
2476 /*
2477 * While we are ensured activity in the period following an
2478 * unthrottle, this also covers the case in which the new bandwidth is
2479 * insufficient to cover the existing bandwidth deficit. (Forcing the
2480 * timer to remain active while there are any throttled entities.)
2481 */
2482 cfs_b->idle = 0;
58088ad0
PT
2483out_unlock:
2484 if (idle)
2485 cfs_b->timer_active = 0;
2486 raw_spin_unlock(&cfs_b->lock);
2487
2488 return idle;
2489}
d3d9dc33 2490
d8b4986d
PT
2491/* a cfs_rq won't donate quota below this amount */
2492static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2493/* minimum remaining period time to redistribute slack quota */
2494static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2495/* how long we wait to gather additional slack before distributing */
2496static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2497
2498/* are we near the end of the current quota period? */
2499static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2500{
2501 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2502 u64 remaining;
2503
2504 /* if the call-back is running a quota refresh is already occurring */
2505 if (hrtimer_callback_running(refresh_timer))
2506 return 1;
2507
2508 /* is a quota refresh about to occur? */
2509 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2510 if (remaining < min_expire)
2511 return 1;
2512
2513 return 0;
2514}
2515
2516static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2517{
2518 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2519
2520 /* if there's a quota refresh soon don't bother with slack */
2521 if (runtime_refresh_within(cfs_b, min_left))
2522 return;
2523
2524 start_bandwidth_timer(&cfs_b->slack_timer,
2525 ns_to_ktime(cfs_bandwidth_slack_period));
2526}
2527
2528/* we know any runtime found here is valid as update_curr() precedes return */
2529static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2530{
2531 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2532 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2533
2534 if (slack_runtime <= 0)
2535 return;
2536
2537 raw_spin_lock(&cfs_b->lock);
2538 if (cfs_b->quota != RUNTIME_INF &&
2539 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2540 cfs_b->runtime += slack_runtime;
2541
2542 /* we are under rq->lock, defer unthrottling using a timer */
2543 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2544 !list_empty(&cfs_b->throttled_cfs_rq))
2545 start_cfs_slack_bandwidth(cfs_b);
2546 }
2547 raw_spin_unlock(&cfs_b->lock);
2548
2549 /* even if it's not valid for return we don't want to try again */
2550 cfs_rq->runtime_remaining -= slack_runtime;
2551}
2552
2553static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2554{
56f570e5
PT
2555 if (!cfs_bandwidth_used())
2556 return;
2557
fccfdc6f 2558 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2559 return;
2560
2561 __return_cfs_rq_runtime(cfs_rq);
2562}
2563
2564/*
2565 * This is done with a timer (instead of inline with bandwidth return) since
2566 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2567 */
2568static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2569{
2570 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2571 u64 expires;
2572
2573 /* confirm we're still not at a refresh boundary */
2574 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2575 return;
2576
2577 raw_spin_lock(&cfs_b->lock);
2578 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2579 runtime = cfs_b->runtime;
2580 cfs_b->runtime = 0;
2581 }
2582 expires = cfs_b->runtime_expires;
2583 raw_spin_unlock(&cfs_b->lock);
2584
2585 if (!runtime)
2586 return;
2587
2588 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2589
2590 raw_spin_lock(&cfs_b->lock);
2591 if (expires == cfs_b->runtime_expires)
2592 cfs_b->runtime = runtime;
2593 raw_spin_unlock(&cfs_b->lock);
2594}
2595
d3d9dc33
PT
2596/*
2597 * When a group wakes up we want to make sure that its quota is not already
2598 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2599 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2600 */
2601static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2602{
56f570e5
PT
2603 if (!cfs_bandwidth_used())
2604 return;
2605
d3d9dc33
PT
2606 /* an active group must be handled by the update_curr()->put() path */
2607 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2608 return;
2609
2610 /* ensure the group is not already throttled */
2611 if (cfs_rq_throttled(cfs_rq))
2612 return;
2613
2614 /* update runtime allocation */
2615 account_cfs_rq_runtime(cfs_rq, 0);
2616 if (cfs_rq->runtime_remaining <= 0)
2617 throttle_cfs_rq(cfs_rq);
2618}
2619
2620/* conditionally throttle active cfs_rq's from put_prev_entity() */
2621static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2622{
56f570e5
PT
2623 if (!cfs_bandwidth_used())
2624 return;
2625
d3d9dc33
PT
2626 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2627 return;
2628
2629 /*
2630 * it's possible for a throttled entity to be forced into a running
2631 * state (e.g. set_curr_task), in this case we're finished.
2632 */
2633 if (cfs_rq_throttled(cfs_rq))
2634 return;
2635
2636 throttle_cfs_rq(cfs_rq);
2637}
029632fb 2638
029632fb
PZ
2639static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2640{
2641 struct cfs_bandwidth *cfs_b =
2642 container_of(timer, struct cfs_bandwidth, slack_timer);
2643 do_sched_cfs_slack_timer(cfs_b);
2644
2645 return HRTIMER_NORESTART;
2646}
2647
2648static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2649{
2650 struct cfs_bandwidth *cfs_b =
2651 container_of(timer, struct cfs_bandwidth, period_timer);
2652 ktime_t now;
2653 int overrun;
2654 int idle = 0;
2655
2656 for (;;) {
2657 now = hrtimer_cb_get_time(timer);
2658 overrun = hrtimer_forward(timer, now, cfs_b->period);
2659
2660 if (!overrun)
2661 break;
2662
2663 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2664 }
2665
2666 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2667}
2668
2669void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2670{
2671 raw_spin_lock_init(&cfs_b->lock);
2672 cfs_b->runtime = 0;
2673 cfs_b->quota = RUNTIME_INF;
2674 cfs_b->period = ns_to_ktime(default_cfs_period());
2675
2676 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2677 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2678 cfs_b->period_timer.function = sched_cfs_period_timer;
2679 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2680 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2681}
2682
2683static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2684{
2685 cfs_rq->runtime_enabled = 0;
2686 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2687}
2688
2689/* requires cfs_b->lock, may release to reprogram timer */
2690void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2691{
2692 /*
2693 * The timer may be active because we're trying to set a new bandwidth
2694 * period or because we're racing with the tear-down path
2695 * (timer_active==0 becomes visible before the hrtimer call-back
2696 * terminates). In either case we ensure that it's re-programmed
2697 */
2698 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2699 raw_spin_unlock(&cfs_b->lock);
2700 /* ensure cfs_b->lock is available while we wait */
2701 hrtimer_cancel(&cfs_b->period_timer);
2702
2703 raw_spin_lock(&cfs_b->lock);
2704 /* if someone else restarted the timer then we're done */
2705 if (cfs_b->timer_active)
2706 return;
2707 }
2708
2709 cfs_b->timer_active = 1;
2710 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2711}
2712
2713static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2714{
2715 hrtimer_cancel(&cfs_b->period_timer);
2716 hrtimer_cancel(&cfs_b->slack_timer);
2717}
2718
38dc3348 2719static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2720{
2721 struct cfs_rq *cfs_rq;
2722
2723 for_each_leaf_cfs_rq(rq, cfs_rq) {
2724 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2725
2726 if (!cfs_rq->runtime_enabled)
2727 continue;
2728
2729 /*
2730 * clock_task is not advancing so we just need to make sure
2731 * there's some valid quota amount
2732 */
2733 cfs_rq->runtime_remaining = cfs_b->quota;
2734 if (cfs_rq_throttled(cfs_rq))
2735 unthrottle_cfs_rq(cfs_rq);
2736 }
2737}
2738
2739#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2740static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2741{
78becc27 2742 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2743}
2744
2745static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2746 unsigned long delta_exec) {}
d3d9dc33
PT
2747static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2748static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2749static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2750
2751static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2752{
2753 return 0;
2754}
64660c86
PT
2755
2756static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2757{
2758 return 0;
2759}
2760
2761static inline int throttled_lb_pair(struct task_group *tg,
2762 int src_cpu, int dest_cpu)
2763{
2764 return 0;
2765}
029632fb
PZ
2766
2767void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2768
2769#ifdef CONFIG_FAIR_GROUP_SCHED
2770static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2771#endif
2772
029632fb
PZ
2773static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2774{
2775 return NULL;
2776}
2777static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2778static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2779
2780#endif /* CONFIG_CFS_BANDWIDTH */
2781
bf0f6f24
IM
2782/**************************************************
2783 * CFS operations on tasks:
2784 */
2785
8f4d37ec
PZ
2786#ifdef CONFIG_SCHED_HRTICK
2787static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2788{
8f4d37ec
PZ
2789 struct sched_entity *se = &p->se;
2790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2791
2792 WARN_ON(task_rq(p) != rq);
2793
b39e66ea 2794 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2795 u64 slice = sched_slice(cfs_rq, se);
2796 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2797 s64 delta = slice - ran;
2798
2799 if (delta < 0) {
2800 if (rq->curr == p)
2801 resched_task(p);
2802 return;
2803 }
2804
2805 /*
2806 * Don't schedule slices shorter than 10000ns, that just
2807 * doesn't make sense. Rely on vruntime for fairness.
2808 */
31656519 2809 if (rq->curr != p)
157124c1 2810 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2811
31656519 2812 hrtick_start(rq, delta);
8f4d37ec
PZ
2813 }
2814}
a4c2f00f
PZ
2815
2816/*
2817 * called from enqueue/dequeue and updates the hrtick when the
2818 * current task is from our class and nr_running is low enough
2819 * to matter.
2820 */
2821static void hrtick_update(struct rq *rq)
2822{
2823 struct task_struct *curr = rq->curr;
2824
b39e66ea 2825 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2826 return;
2827
2828 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2829 hrtick_start_fair(rq, curr);
2830}
55e12e5e 2831#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2832static inline void
2833hrtick_start_fair(struct rq *rq, struct task_struct *p)
2834{
2835}
a4c2f00f
PZ
2836
2837static inline void hrtick_update(struct rq *rq)
2838{
2839}
8f4d37ec
PZ
2840#endif
2841
bf0f6f24
IM
2842/*
2843 * The enqueue_task method is called before nr_running is
2844 * increased. Here we update the fair scheduling stats and
2845 * then put the task into the rbtree:
2846 */
ea87bb78 2847static void
371fd7e7 2848enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2849{
2850 struct cfs_rq *cfs_rq;
62fb1851 2851 struct sched_entity *se = &p->se;
bf0f6f24
IM
2852
2853 for_each_sched_entity(se) {
62fb1851 2854 if (se->on_rq)
bf0f6f24
IM
2855 break;
2856 cfs_rq = cfs_rq_of(se);
88ec22d3 2857 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2858
2859 /*
2860 * end evaluation on encountering a throttled cfs_rq
2861 *
2862 * note: in the case of encountering a throttled cfs_rq we will
2863 * post the final h_nr_running increment below.
2864 */
2865 if (cfs_rq_throttled(cfs_rq))
2866 break;
953bfcd1 2867 cfs_rq->h_nr_running++;
85dac906 2868
88ec22d3 2869 flags = ENQUEUE_WAKEUP;
bf0f6f24 2870 }
8f4d37ec 2871
2069dd75 2872 for_each_sched_entity(se) {
0f317143 2873 cfs_rq = cfs_rq_of(se);
953bfcd1 2874 cfs_rq->h_nr_running++;
2069dd75 2875
85dac906
PT
2876 if (cfs_rq_throttled(cfs_rq))
2877 break;
2878
17bc14b7 2879 update_cfs_shares(cfs_rq);
9ee474f5 2880 update_entity_load_avg(se, 1);
2069dd75
PZ
2881 }
2882
18bf2805
BS
2883 if (!se) {
2884 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2885 inc_nr_running(rq);
18bf2805 2886 }
a4c2f00f 2887 hrtick_update(rq);
bf0f6f24
IM
2888}
2889
2f36825b
VP
2890static void set_next_buddy(struct sched_entity *se);
2891
bf0f6f24
IM
2892/*
2893 * The dequeue_task method is called before nr_running is
2894 * decreased. We remove the task from the rbtree and
2895 * update the fair scheduling stats:
2896 */
371fd7e7 2897static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2898{
2899 struct cfs_rq *cfs_rq;
62fb1851 2900 struct sched_entity *se = &p->se;
2f36825b 2901 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2902
2903 for_each_sched_entity(se) {
2904 cfs_rq = cfs_rq_of(se);
371fd7e7 2905 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2906
2907 /*
2908 * end evaluation on encountering a throttled cfs_rq
2909 *
2910 * note: in the case of encountering a throttled cfs_rq we will
2911 * post the final h_nr_running decrement below.
2912 */
2913 if (cfs_rq_throttled(cfs_rq))
2914 break;
953bfcd1 2915 cfs_rq->h_nr_running--;
2069dd75 2916
bf0f6f24 2917 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2918 if (cfs_rq->load.weight) {
2919 /*
2920 * Bias pick_next to pick a task from this cfs_rq, as
2921 * p is sleeping when it is within its sched_slice.
2922 */
2923 if (task_sleep && parent_entity(se))
2924 set_next_buddy(parent_entity(se));
9598c82d
PT
2925
2926 /* avoid re-evaluating load for this entity */
2927 se = parent_entity(se);
bf0f6f24 2928 break;
2f36825b 2929 }
371fd7e7 2930 flags |= DEQUEUE_SLEEP;
bf0f6f24 2931 }
8f4d37ec 2932
2069dd75 2933 for_each_sched_entity(se) {
0f317143 2934 cfs_rq = cfs_rq_of(se);
953bfcd1 2935 cfs_rq->h_nr_running--;
2069dd75 2936
85dac906
PT
2937 if (cfs_rq_throttled(cfs_rq))
2938 break;
2939
17bc14b7 2940 update_cfs_shares(cfs_rq);
9ee474f5 2941 update_entity_load_avg(se, 1);
2069dd75
PZ
2942 }
2943
18bf2805 2944 if (!se) {
85dac906 2945 dec_nr_running(rq);
18bf2805
BS
2946 update_rq_runnable_avg(rq, 1);
2947 }
a4c2f00f 2948 hrtick_update(rq);
bf0f6f24
IM
2949}
2950
e7693a36 2951#ifdef CONFIG_SMP
029632fb
PZ
2952/* Used instead of source_load when we know the type == 0 */
2953static unsigned long weighted_cpuload(const int cpu)
2954{
b92486cb 2955 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
2956}
2957
2958/*
2959 * Return a low guess at the load of a migration-source cpu weighted
2960 * according to the scheduling class and "nice" value.
2961 *
2962 * We want to under-estimate the load of migration sources, to
2963 * balance conservatively.
2964 */
2965static unsigned long source_load(int cpu, int type)
2966{
2967 struct rq *rq = cpu_rq(cpu);
2968 unsigned long total = weighted_cpuload(cpu);
2969
2970 if (type == 0 || !sched_feat(LB_BIAS))
2971 return total;
2972
2973 return min(rq->cpu_load[type-1], total);
2974}
2975
2976/*
2977 * Return a high guess at the load of a migration-target cpu weighted
2978 * according to the scheduling class and "nice" value.
2979 */
2980static unsigned long target_load(int cpu, int type)
2981{
2982 struct rq *rq = cpu_rq(cpu);
2983 unsigned long total = weighted_cpuload(cpu);
2984
2985 if (type == 0 || !sched_feat(LB_BIAS))
2986 return total;
2987
2988 return max(rq->cpu_load[type-1], total);
2989}
2990
2991static unsigned long power_of(int cpu)
2992{
2993 return cpu_rq(cpu)->cpu_power;
2994}
2995
2996static unsigned long cpu_avg_load_per_task(int cpu)
2997{
2998 struct rq *rq = cpu_rq(cpu);
2999 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3000 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3001
3002 if (nr_running)
b92486cb 3003 return load_avg / nr_running;
029632fb
PZ
3004
3005 return 0;
3006}
3007
62470419
MW
3008static void record_wakee(struct task_struct *p)
3009{
3010 /*
3011 * Rough decay (wiping) for cost saving, don't worry
3012 * about the boundary, really active task won't care
3013 * about the loss.
3014 */
3015 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3016 current->wakee_flips = 0;
3017 current->wakee_flip_decay_ts = jiffies;
3018 }
3019
3020 if (current->last_wakee != p) {
3021 current->last_wakee = p;
3022 current->wakee_flips++;
3023 }
3024}
098fb9db 3025
74f8e4b2 3026static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3027{
3028 struct sched_entity *se = &p->se;
3029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3030 u64 min_vruntime;
3031
3032#ifndef CONFIG_64BIT
3033 u64 min_vruntime_copy;
88ec22d3 3034
3fe1698b
PZ
3035 do {
3036 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3037 smp_rmb();
3038 min_vruntime = cfs_rq->min_vruntime;
3039 } while (min_vruntime != min_vruntime_copy);
3040#else
3041 min_vruntime = cfs_rq->min_vruntime;
3042#endif
88ec22d3 3043
3fe1698b 3044 se->vruntime -= min_vruntime;
62470419 3045 record_wakee(p);
88ec22d3
PZ
3046}
3047
bb3469ac 3048#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3049/*
3050 * effective_load() calculates the load change as seen from the root_task_group
3051 *
3052 * Adding load to a group doesn't make a group heavier, but can cause movement
3053 * of group shares between cpus. Assuming the shares were perfectly aligned one
3054 * can calculate the shift in shares.
cf5f0acf
PZ
3055 *
3056 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3057 * on this @cpu and results in a total addition (subtraction) of @wg to the
3058 * total group weight.
3059 *
3060 * Given a runqueue weight distribution (rw_i) we can compute a shares
3061 * distribution (s_i) using:
3062 *
3063 * s_i = rw_i / \Sum rw_j (1)
3064 *
3065 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3066 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3067 * shares distribution (s_i):
3068 *
3069 * rw_i = { 2, 4, 1, 0 }
3070 * s_i = { 2/7, 4/7, 1/7, 0 }
3071 *
3072 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3073 * task used to run on and the CPU the waker is running on), we need to
3074 * compute the effect of waking a task on either CPU and, in case of a sync
3075 * wakeup, compute the effect of the current task going to sleep.
3076 *
3077 * So for a change of @wl to the local @cpu with an overall group weight change
3078 * of @wl we can compute the new shares distribution (s'_i) using:
3079 *
3080 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3081 *
3082 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3083 * differences in waking a task to CPU 0. The additional task changes the
3084 * weight and shares distributions like:
3085 *
3086 * rw'_i = { 3, 4, 1, 0 }
3087 * s'_i = { 3/8, 4/8, 1/8, 0 }
3088 *
3089 * We can then compute the difference in effective weight by using:
3090 *
3091 * dw_i = S * (s'_i - s_i) (3)
3092 *
3093 * Where 'S' is the group weight as seen by its parent.
3094 *
3095 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3096 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3097 * 4/7) times the weight of the group.
f5bfb7d9 3098 */
2069dd75 3099static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3100{
4be9daaa 3101 struct sched_entity *se = tg->se[cpu];
f1d239f7 3102
cf5f0acf 3103 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3104 return wl;
3105
4be9daaa 3106 for_each_sched_entity(se) {
cf5f0acf 3107 long w, W;
4be9daaa 3108
977dda7c 3109 tg = se->my_q->tg;
bb3469ac 3110
cf5f0acf
PZ
3111 /*
3112 * W = @wg + \Sum rw_j
3113 */
3114 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3115
cf5f0acf
PZ
3116 /*
3117 * w = rw_i + @wl
3118 */
3119 w = se->my_q->load.weight + wl;
940959e9 3120
cf5f0acf
PZ
3121 /*
3122 * wl = S * s'_i; see (2)
3123 */
3124 if (W > 0 && w < W)
3125 wl = (w * tg->shares) / W;
977dda7c
PT
3126 else
3127 wl = tg->shares;
940959e9 3128
cf5f0acf
PZ
3129 /*
3130 * Per the above, wl is the new se->load.weight value; since
3131 * those are clipped to [MIN_SHARES, ...) do so now. See
3132 * calc_cfs_shares().
3133 */
977dda7c
PT
3134 if (wl < MIN_SHARES)
3135 wl = MIN_SHARES;
cf5f0acf
PZ
3136
3137 /*
3138 * wl = dw_i = S * (s'_i - s_i); see (3)
3139 */
977dda7c 3140 wl -= se->load.weight;
cf5f0acf
PZ
3141
3142 /*
3143 * Recursively apply this logic to all parent groups to compute
3144 * the final effective load change on the root group. Since
3145 * only the @tg group gets extra weight, all parent groups can
3146 * only redistribute existing shares. @wl is the shift in shares
3147 * resulting from this level per the above.
3148 */
4be9daaa 3149 wg = 0;
4be9daaa 3150 }
bb3469ac 3151
4be9daaa 3152 return wl;
bb3469ac
PZ
3153}
3154#else
4be9daaa 3155
83378269
PZ
3156static inline unsigned long effective_load(struct task_group *tg, int cpu,
3157 unsigned long wl, unsigned long wg)
4be9daaa 3158{
83378269 3159 return wl;
bb3469ac 3160}
4be9daaa 3161
bb3469ac
PZ
3162#endif
3163
62470419
MW
3164static int wake_wide(struct task_struct *p)
3165{
7d9ffa89 3166 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3167
3168 /*
3169 * Yeah, it's the switching-frequency, could means many wakee or
3170 * rapidly switch, use factor here will just help to automatically
3171 * adjust the loose-degree, so bigger node will lead to more pull.
3172 */
3173 if (p->wakee_flips > factor) {
3174 /*
3175 * wakee is somewhat hot, it needs certain amount of cpu
3176 * resource, so if waker is far more hot, prefer to leave
3177 * it alone.
3178 */
3179 if (current->wakee_flips > (factor * p->wakee_flips))
3180 return 1;
3181 }
3182
3183 return 0;
3184}
3185
c88d5910 3186static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3187{
e37b6a7b 3188 s64 this_load, load;
c88d5910 3189 int idx, this_cpu, prev_cpu;
098fb9db 3190 unsigned long tl_per_task;
c88d5910 3191 struct task_group *tg;
83378269 3192 unsigned long weight;
b3137bc8 3193 int balanced;
098fb9db 3194
62470419
MW
3195 /*
3196 * If we wake multiple tasks be careful to not bounce
3197 * ourselves around too much.
3198 */
3199 if (wake_wide(p))
3200 return 0;
3201
c88d5910
PZ
3202 idx = sd->wake_idx;
3203 this_cpu = smp_processor_id();
3204 prev_cpu = task_cpu(p);
3205 load = source_load(prev_cpu, idx);
3206 this_load = target_load(this_cpu, idx);
098fb9db 3207
b3137bc8
MG
3208 /*
3209 * If sync wakeup then subtract the (maximum possible)
3210 * effect of the currently running task from the load
3211 * of the current CPU:
3212 */
83378269
PZ
3213 if (sync) {
3214 tg = task_group(current);
3215 weight = current->se.load.weight;
3216
c88d5910 3217 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3218 load += effective_load(tg, prev_cpu, 0, -weight);
3219 }
b3137bc8 3220
83378269
PZ
3221 tg = task_group(p);
3222 weight = p->se.load.weight;
b3137bc8 3223
71a29aa7
PZ
3224 /*
3225 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3226 * due to the sync cause above having dropped this_load to 0, we'll
3227 * always have an imbalance, but there's really nothing you can do
3228 * about that, so that's good too.
71a29aa7
PZ
3229 *
3230 * Otherwise check if either cpus are near enough in load to allow this
3231 * task to be woken on this_cpu.
3232 */
e37b6a7b
PT
3233 if (this_load > 0) {
3234 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3235
3236 this_eff_load = 100;
3237 this_eff_load *= power_of(prev_cpu);
3238 this_eff_load *= this_load +
3239 effective_load(tg, this_cpu, weight, weight);
3240
3241 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3242 prev_eff_load *= power_of(this_cpu);
3243 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3244
3245 balanced = this_eff_load <= prev_eff_load;
3246 } else
3247 balanced = true;
b3137bc8 3248
098fb9db 3249 /*
4ae7d5ce
IM
3250 * If the currently running task will sleep within
3251 * a reasonable amount of time then attract this newly
3252 * woken task:
098fb9db 3253 */
2fb7635c
PZ
3254 if (sync && balanced)
3255 return 1;
098fb9db 3256
41acab88 3257 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3258 tl_per_task = cpu_avg_load_per_task(this_cpu);
3259
c88d5910
PZ
3260 if (balanced ||
3261 (this_load <= load &&
3262 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3263 /*
3264 * This domain has SD_WAKE_AFFINE and
3265 * p is cache cold in this domain, and
3266 * there is no bad imbalance.
3267 */
c88d5910 3268 schedstat_inc(sd, ttwu_move_affine);
41acab88 3269 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3270
3271 return 1;
3272 }
3273 return 0;
3274}
3275
aaee1203
PZ
3276/*
3277 * find_idlest_group finds and returns the least busy CPU group within the
3278 * domain.
3279 */
3280static struct sched_group *
78e7ed53 3281find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3282 int this_cpu, int load_idx)
e7693a36 3283{
b3bd3de6 3284 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3285 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3286 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3287
aaee1203
PZ
3288 do {
3289 unsigned long load, avg_load;
3290 int local_group;
3291 int i;
e7693a36 3292
aaee1203
PZ
3293 /* Skip over this group if it has no CPUs allowed */
3294 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3295 tsk_cpus_allowed(p)))
aaee1203
PZ
3296 continue;
3297
3298 local_group = cpumask_test_cpu(this_cpu,
3299 sched_group_cpus(group));
3300
3301 /* Tally up the load of all CPUs in the group */
3302 avg_load = 0;
3303
3304 for_each_cpu(i, sched_group_cpus(group)) {
3305 /* Bias balancing toward cpus of our domain */
3306 if (local_group)
3307 load = source_load(i, load_idx);
3308 else
3309 load = target_load(i, load_idx);
3310
3311 avg_load += load;
3312 }
3313
3314 /* Adjust by relative CPU power of the group */
9c3f75cb 3315 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3316
3317 if (local_group) {
3318 this_load = avg_load;
aaee1203
PZ
3319 } else if (avg_load < min_load) {
3320 min_load = avg_load;
3321 idlest = group;
3322 }
3323 } while (group = group->next, group != sd->groups);
3324
3325 if (!idlest || 100*this_load < imbalance*min_load)
3326 return NULL;
3327 return idlest;
3328}
3329
3330/*
3331 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3332 */
3333static int
3334find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3335{
3336 unsigned long load, min_load = ULONG_MAX;
3337 int idlest = -1;
3338 int i;
3339
3340 /* Traverse only the allowed CPUs */
fa17b507 3341 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3342 load = weighted_cpuload(i);
3343
3344 if (load < min_load || (load == min_load && i == this_cpu)) {
3345 min_load = load;
3346 idlest = i;
e7693a36
GH
3347 }
3348 }
3349
aaee1203
PZ
3350 return idlest;
3351}
e7693a36 3352
a50bde51
PZ
3353/*
3354 * Try and locate an idle CPU in the sched_domain.
3355 */
99bd5e2f 3356static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3357{
99bd5e2f 3358 struct sched_domain *sd;
37407ea7 3359 struct sched_group *sg;
e0a79f52 3360 int i = task_cpu(p);
a50bde51 3361
e0a79f52
MG
3362 if (idle_cpu(target))
3363 return target;
99bd5e2f
SS
3364
3365 /*
e0a79f52 3366 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3367 */
e0a79f52
MG
3368 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3369 return i;
a50bde51
PZ
3370
3371 /*
37407ea7 3372 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3373 */
518cd623 3374 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3375 for_each_lower_domain(sd) {
37407ea7
LT
3376 sg = sd->groups;
3377 do {
3378 if (!cpumask_intersects(sched_group_cpus(sg),
3379 tsk_cpus_allowed(p)))
3380 goto next;
3381
3382 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3383 if (i == target || !idle_cpu(i))
37407ea7
LT
3384 goto next;
3385 }
970e1789 3386
37407ea7
LT
3387 target = cpumask_first_and(sched_group_cpus(sg),
3388 tsk_cpus_allowed(p));
3389 goto done;
3390next:
3391 sg = sg->next;
3392 } while (sg != sd->groups);
3393 }
3394done:
a50bde51
PZ
3395 return target;
3396}
3397
aaee1203
PZ
3398/*
3399 * sched_balance_self: balance the current task (running on cpu) in domains
3400 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3401 * SD_BALANCE_EXEC.
3402 *
3403 * Balance, ie. select the least loaded group.
3404 *
3405 * Returns the target CPU number, or the same CPU if no balancing is needed.
3406 *
3407 * preempt must be disabled.
3408 */
0017d735 3409static int
7608dec2 3410select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3411{
29cd8bae 3412 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3413 int cpu = smp_processor_id();
3414 int prev_cpu = task_cpu(p);
3415 int new_cpu = cpu;
99bd5e2f 3416 int want_affine = 0;
5158f4e4 3417 int sync = wake_flags & WF_SYNC;
c88d5910 3418
29baa747 3419 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3420 return prev_cpu;
3421
0763a660 3422 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3423 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3424 want_affine = 1;
3425 new_cpu = prev_cpu;
3426 }
aaee1203 3427
dce840a0 3428 rcu_read_lock();
aaee1203 3429 for_each_domain(cpu, tmp) {
e4f42888
PZ
3430 if (!(tmp->flags & SD_LOAD_BALANCE))
3431 continue;
3432
fe3bcfe1 3433 /*
99bd5e2f
SS
3434 * If both cpu and prev_cpu are part of this domain,
3435 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3436 */
99bd5e2f
SS
3437 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3438 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3439 affine_sd = tmp;
29cd8bae 3440 break;
f03542a7 3441 }
29cd8bae 3442
f03542a7 3443 if (tmp->flags & sd_flag)
29cd8bae
PZ
3444 sd = tmp;
3445 }
3446
8b911acd 3447 if (affine_sd) {
f03542a7 3448 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3449 prev_cpu = cpu;
3450
3451 new_cpu = select_idle_sibling(p, prev_cpu);
3452 goto unlock;
8b911acd 3453 }
e7693a36 3454
aaee1203 3455 while (sd) {
5158f4e4 3456 int load_idx = sd->forkexec_idx;
aaee1203 3457 struct sched_group *group;
c88d5910 3458 int weight;
098fb9db 3459
0763a660 3460 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3461 sd = sd->child;
3462 continue;
3463 }
098fb9db 3464
5158f4e4
PZ
3465 if (sd_flag & SD_BALANCE_WAKE)
3466 load_idx = sd->wake_idx;
098fb9db 3467
5158f4e4 3468 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3469 if (!group) {
3470 sd = sd->child;
3471 continue;
3472 }
4ae7d5ce 3473
d7c33c49 3474 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3475 if (new_cpu == -1 || new_cpu == cpu) {
3476 /* Now try balancing at a lower domain level of cpu */
3477 sd = sd->child;
3478 continue;
e7693a36 3479 }
aaee1203
PZ
3480
3481 /* Now try balancing at a lower domain level of new_cpu */
3482 cpu = new_cpu;
669c55e9 3483 weight = sd->span_weight;
aaee1203
PZ
3484 sd = NULL;
3485 for_each_domain(cpu, tmp) {
669c55e9 3486 if (weight <= tmp->span_weight)
aaee1203 3487 break;
0763a660 3488 if (tmp->flags & sd_flag)
aaee1203
PZ
3489 sd = tmp;
3490 }
3491 /* while loop will break here if sd == NULL */
e7693a36 3492 }
dce840a0
PZ
3493unlock:
3494 rcu_read_unlock();
e7693a36 3495
c88d5910 3496 return new_cpu;
e7693a36 3497}
0a74bef8
PT
3498
3499/*
3500 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3501 * cfs_rq_of(p) references at time of call are still valid and identify the
3502 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3503 * other assumptions, including the state of rq->lock, should be made.
3504 */
3505static void
3506migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3507{
aff3e498
PT
3508 struct sched_entity *se = &p->se;
3509 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3510
3511 /*
3512 * Load tracking: accumulate removed load so that it can be processed
3513 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3514 * to blocked load iff they have a positive decay-count. It can never
3515 * be negative here since on-rq tasks have decay-count == 0.
3516 */
3517 if (se->avg.decay_count) {
3518 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3519 atomic_long_add(se->avg.load_avg_contrib,
3520 &cfs_rq->removed_load);
aff3e498 3521 }
0a74bef8 3522}
e7693a36
GH
3523#endif /* CONFIG_SMP */
3524
e52fb7c0
PZ
3525static unsigned long
3526wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3527{
3528 unsigned long gran = sysctl_sched_wakeup_granularity;
3529
3530 /*
e52fb7c0
PZ
3531 * Since its curr running now, convert the gran from real-time
3532 * to virtual-time in his units.
13814d42
MG
3533 *
3534 * By using 'se' instead of 'curr' we penalize light tasks, so
3535 * they get preempted easier. That is, if 'se' < 'curr' then
3536 * the resulting gran will be larger, therefore penalizing the
3537 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3538 * be smaller, again penalizing the lighter task.
3539 *
3540 * This is especially important for buddies when the leftmost
3541 * task is higher priority than the buddy.
0bbd3336 3542 */
f4ad9bd2 3543 return calc_delta_fair(gran, se);
0bbd3336
PZ
3544}
3545
464b7527
PZ
3546/*
3547 * Should 'se' preempt 'curr'.
3548 *
3549 * |s1
3550 * |s2
3551 * |s3
3552 * g
3553 * |<--->|c
3554 *
3555 * w(c, s1) = -1
3556 * w(c, s2) = 0
3557 * w(c, s3) = 1
3558 *
3559 */
3560static int
3561wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3562{
3563 s64 gran, vdiff = curr->vruntime - se->vruntime;
3564
3565 if (vdiff <= 0)
3566 return -1;
3567
e52fb7c0 3568 gran = wakeup_gran(curr, se);
464b7527
PZ
3569 if (vdiff > gran)
3570 return 1;
3571
3572 return 0;
3573}
3574
02479099
PZ
3575static void set_last_buddy(struct sched_entity *se)
3576{
69c80f3e
VP
3577 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3578 return;
3579
3580 for_each_sched_entity(se)
3581 cfs_rq_of(se)->last = se;
02479099
PZ
3582}
3583
3584static void set_next_buddy(struct sched_entity *se)
3585{
69c80f3e
VP
3586 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3587 return;
3588
3589 for_each_sched_entity(se)
3590 cfs_rq_of(se)->next = se;
02479099
PZ
3591}
3592
ac53db59
RR
3593static void set_skip_buddy(struct sched_entity *se)
3594{
69c80f3e
VP
3595 for_each_sched_entity(se)
3596 cfs_rq_of(se)->skip = se;
ac53db59
RR
3597}
3598
bf0f6f24
IM
3599/*
3600 * Preempt the current task with a newly woken task if needed:
3601 */
5a9b86f6 3602static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3603{
3604 struct task_struct *curr = rq->curr;
8651a86c 3605 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3606 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3607 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3608 int next_buddy_marked = 0;
bf0f6f24 3609
4ae7d5ce
IM
3610 if (unlikely(se == pse))
3611 return;
3612
5238cdd3 3613 /*
ddcdf6e7 3614 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3615 * unconditionally check_prempt_curr() after an enqueue (which may have
3616 * lead to a throttle). This both saves work and prevents false
3617 * next-buddy nomination below.
3618 */
3619 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3620 return;
3621
2f36825b 3622 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3623 set_next_buddy(pse);
2f36825b
VP
3624 next_buddy_marked = 1;
3625 }
57fdc26d 3626
aec0a514
BR
3627 /*
3628 * We can come here with TIF_NEED_RESCHED already set from new task
3629 * wake up path.
5238cdd3
PT
3630 *
3631 * Note: this also catches the edge-case of curr being in a throttled
3632 * group (e.g. via set_curr_task), since update_curr() (in the
3633 * enqueue of curr) will have resulted in resched being set. This
3634 * prevents us from potentially nominating it as a false LAST_BUDDY
3635 * below.
aec0a514
BR
3636 */
3637 if (test_tsk_need_resched(curr))
3638 return;
3639
a2f5c9ab
DH
3640 /* Idle tasks are by definition preempted by non-idle tasks. */
3641 if (unlikely(curr->policy == SCHED_IDLE) &&
3642 likely(p->policy != SCHED_IDLE))
3643 goto preempt;
3644
91c234b4 3645 /*
a2f5c9ab
DH
3646 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3647 * is driven by the tick):
91c234b4 3648 */
8ed92e51 3649 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3650 return;
bf0f6f24 3651
464b7527 3652 find_matching_se(&se, &pse);
9bbd7374 3653 update_curr(cfs_rq_of(se));
002f128b 3654 BUG_ON(!pse);
2f36825b
VP
3655 if (wakeup_preempt_entity(se, pse) == 1) {
3656 /*
3657 * Bias pick_next to pick the sched entity that is
3658 * triggering this preemption.
3659 */
3660 if (!next_buddy_marked)
3661 set_next_buddy(pse);
3a7e73a2 3662 goto preempt;
2f36825b 3663 }
464b7527 3664
3a7e73a2 3665 return;
a65ac745 3666
3a7e73a2
PZ
3667preempt:
3668 resched_task(curr);
3669 /*
3670 * Only set the backward buddy when the current task is still
3671 * on the rq. This can happen when a wakeup gets interleaved
3672 * with schedule on the ->pre_schedule() or idle_balance()
3673 * point, either of which can * drop the rq lock.
3674 *
3675 * Also, during early boot the idle thread is in the fair class,
3676 * for obvious reasons its a bad idea to schedule back to it.
3677 */
3678 if (unlikely(!se->on_rq || curr == rq->idle))
3679 return;
3680
3681 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3682 set_last_buddy(se);
bf0f6f24
IM
3683}
3684
fb8d4724 3685static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3686{
8f4d37ec 3687 struct task_struct *p;
bf0f6f24
IM
3688 struct cfs_rq *cfs_rq = &rq->cfs;
3689 struct sched_entity *se;
3690
36ace27e 3691 if (!cfs_rq->nr_running)
bf0f6f24
IM
3692 return NULL;
3693
3694 do {
9948f4b2 3695 se = pick_next_entity(cfs_rq);
f4b6755f 3696 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3697 cfs_rq = group_cfs_rq(se);
3698 } while (cfs_rq);
3699
8f4d37ec 3700 p = task_of(se);
b39e66ea
MG
3701 if (hrtick_enabled(rq))
3702 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3703
3704 return p;
bf0f6f24
IM
3705}
3706
3707/*
3708 * Account for a descheduled task:
3709 */
31ee529c 3710static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3711{
3712 struct sched_entity *se = &prev->se;
3713 struct cfs_rq *cfs_rq;
3714
3715 for_each_sched_entity(se) {
3716 cfs_rq = cfs_rq_of(se);
ab6cde26 3717 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3718 }
3719}
3720
ac53db59
RR
3721/*
3722 * sched_yield() is very simple
3723 *
3724 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3725 */
3726static void yield_task_fair(struct rq *rq)
3727{
3728 struct task_struct *curr = rq->curr;
3729 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3730 struct sched_entity *se = &curr->se;
3731
3732 /*
3733 * Are we the only task in the tree?
3734 */
3735 if (unlikely(rq->nr_running == 1))
3736 return;
3737
3738 clear_buddies(cfs_rq, se);
3739
3740 if (curr->policy != SCHED_BATCH) {
3741 update_rq_clock(rq);
3742 /*
3743 * Update run-time statistics of the 'current'.
3744 */
3745 update_curr(cfs_rq);
916671c0
MG
3746 /*
3747 * Tell update_rq_clock() that we've just updated,
3748 * so we don't do microscopic update in schedule()
3749 * and double the fastpath cost.
3750 */
3751 rq->skip_clock_update = 1;
ac53db59
RR
3752 }
3753
3754 set_skip_buddy(se);
3755}
3756
d95f4122
MG
3757static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3758{
3759 struct sched_entity *se = &p->se;
3760
5238cdd3
PT
3761 /* throttled hierarchies are not runnable */
3762 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3763 return false;
3764
3765 /* Tell the scheduler that we'd really like pse to run next. */
3766 set_next_buddy(se);
3767
d95f4122
MG
3768 yield_task_fair(rq);
3769
3770 return true;
3771}
3772
681f3e68 3773#ifdef CONFIG_SMP
bf0f6f24 3774/**************************************************
e9c84cb8
PZ
3775 * Fair scheduling class load-balancing methods.
3776 *
3777 * BASICS
3778 *
3779 * The purpose of load-balancing is to achieve the same basic fairness the
3780 * per-cpu scheduler provides, namely provide a proportional amount of compute
3781 * time to each task. This is expressed in the following equation:
3782 *
3783 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3784 *
3785 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3786 * W_i,0 is defined as:
3787 *
3788 * W_i,0 = \Sum_j w_i,j (2)
3789 *
3790 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3791 * is derived from the nice value as per prio_to_weight[].
3792 *
3793 * The weight average is an exponential decay average of the instantaneous
3794 * weight:
3795 *
3796 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3797 *
3798 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3799 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3800 * can also include other factors [XXX].
3801 *
3802 * To achieve this balance we define a measure of imbalance which follows
3803 * directly from (1):
3804 *
3805 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3806 *
3807 * We them move tasks around to minimize the imbalance. In the continuous
3808 * function space it is obvious this converges, in the discrete case we get
3809 * a few fun cases generally called infeasible weight scenarios.
3810 *
3811 * [XXX expand on:
3812 * - infeasible weights;
3813 * - local vs global optima in the discrete case. ]
3814 *
3815 *
3816 * SCHED DOMAINS
3817 *
3818 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3819 * for all i,j solution, we create a tree of cpus that follows the hardware
3820 * topology where each level pairs two lower groups (or better). This results
3821 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3822 * tree to only the first of the previous level and we decrease the frequency
3823 * of load-balance at each level inv. proportional to the number of cpus in
3824 * the groups.
3825 *
3826 * This yields:
3827 *
3828 * log_2 n 1 n
3829 * \Sum { --- * --- * 2^i } = O(n) (5)
3830 * i = 0 2^i 2^i
3831 * `- size of each group
3832 * | | `- number of cpus doing load-balance
3833 * | `- freq
3834 * `- sum over all levels
3835 *
3836 * Coupled with a limit on how many tasks we can migrate every balance pass,
3837 * this makes (5) the runtime complexity of the balancer.
3838 *
3839 * An important property here is that each CPU is still (indirectly) connected
3840 * to every other cpu in at most O(log n) steps:
3841 *
3842 * The adjacency matrix of the resulting graph is given by:
3843 *
3844 * log_2 n
3845 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3846 * k = 0
3847 *
3848 * And you'll find that:
3849 *
3850 * A^(log_2 n)_i,j != 0 for all i,j (7)
3851 *
3852 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3853 * The task movement gives a factor of O(m), giving a convergence complexity
3854 * of:
3855 *
3856 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3857 *
3858 *
3859 * WORK CONSERVING
3860 *
3861 * In order to avoid CPUs going idle while there's still work to do, new idle
3862 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3863 * tree itself instead of relying on other CPUs to bring it work.
3864 *
3865 * This adds some complexity to both (5) and (8) but it reduces the total idle
3866 * time.
3867 *
3868 * [XXX more?]
3869 *
3870 *
3871 * CGROUPS
3872 *
3873 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3874 *
3875 * s_k,i
3876 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3877 * S_k
3878 *
3879 * Where
3880 *
3881 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3882 *
3883 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3884 *
3885 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3886 * property.
3887 *
3888 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3889 * rewrite all of this once again.]
3890 */
bf0f6f24 3891
ed387b78
HS
3892static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3893
ddcdf6e7 3894#define LBF_ALL_PINNED 0x01
367456c7 3895#define LBF_NEED_BREAK 0x02
6263322c
PZ
3896#define LBF_DST_PINNED 0x04
3897#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
3898
3899struct lb_env {
3900 struct sched_domain *sd;
3901
ddcdf6e7 3902 struct rq *src_rq;
85c1e7da 3903 int src_cpu;
ddcdf6e7
PZ
3904
3905 int dst_cpu;
3906 struct rq *dst_rq;
3907
88b8dac0
SV
3908 struct cpumask *dst_grpmask;
3909 int new_dst_cpu;
ddcdf6e7 3910 enum cpu_idle_type idle;
bd939f45 3911 long imbalance;
b9403130
MW
3912 /* The set of CPUs under consideration for load-balancing */
3913 struct cpumask *cpus;
3914
ddcdf6e7 3915 unsigned int flags;
367456c7
PZ
3916
3917 unsigned int loop;
3918 unsigned int loop_break;
3919 unsigned int loop_max;
ddcdf6e7
PZ
3920};
3921
1e3c88bd 3922/*
ddcdf6e7 3923 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3924 * Both runqueues must be locked.
3925 */
ddcdf6e7 3926static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3927{
ddcdf6e7
PZ
3928 deactivate_task(env->src_rq, p, 0);
3929 set_task_cpu(p, env->dst_cpu);
3930 activate_task(env->dst_rq, p, 0);
3931 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3932}
3933
029632fb
PZ
3934/*
3935 * Is this task likely cache-hot:
3936 */
3937static int
3938task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3939{
3940 s64 delta;
3941
3942 if (p->sched_class != &fair_sched_class)
3943 return 0;
3944
3945 if (unlikely(p->policy == SCHED_IDLE))
3946 return 0;
3947
3948 /*
3949 * Buddy candidates are cache hot:
3950 */
3951 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3952 (&p->se == cfs_rq_of(&p->se)->next ||
3953 &p->se == cfs_rq_of(&p->se)->last))
3954 return 1;
3955
3956 if (sysctl_sched_migration_cost == -1)
3957 return 1;
3958 if (sysctl_sched_migration_cost == 0)
3959 return 0;
3960
3961 delta = now - p->se.exec_start;
3962
3963 return delta < (s64)sysctl_sched_migration_cost;
3964}
3965
1e3c88bd
PZ
3966/*
3967 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3968 */
3969static
8e45cb54 3970int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3971{
3972 int tsk_cache_hot = 0;
3973 /*
3974 * We do not migrate tasks that are:
d3198084 3975 * 1) throttled_lb_pair, or
1e3c88bd 3976 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3977 * 3) running (obviously), or
3978 * 4) are cache-hot on their current CPU.
1e3c88bd 3979 */
d3198084
JK
3980 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3981 return 0;
3982
ddcdf6e7 3983 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3984 int cpu;
88b8dac0 3985
41acab88 3986 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 3987
6263322c
PZ
3988 env->flags |= LBF_SOME_PINNED;
3989
88b8dac0
SV
3990 /*
3991 * Remember if this task can be migrated to any other cpu in
3992 * our sched_group. We may want to revisit it if we couldn't
3993 * meet load balance goals by pulling other tasks on src_cpu.
3994 *
3995 * Also avoid computing new_dst_cpu if we have already computed
3996 * one in current iteration.
3997 */
6263322c 3998 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
3999 return 0;
4000
e02e60c1
JK
4001 /* Prevent to re-select dst_cpu via env's cpus */
4002 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4003 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4004 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4005 env->new_dst_cpu = cpu;
4006 break;
4007 }
88b8dac0 4008 }
e02e60c1 4009
1e3c88bd
PZ
4010 return 0;
4011 }
88b8dac0
SV
4012
4013 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4014 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4015
ddcdf6e7 4016 if (task_running(env->src_rq, p)) {
41acab88 4017 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4018 return 0;
4019 }
4020
4021 /*
4022 * Aggressive migration if:
4023 * 1) task is cache cold, or
4024 * 2) too many balance attempts have failed.
4025 */
4026
78becc27 4027 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 4028 if (!tsk_cache_hot ||
8e45cb54 4029 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4030
1e3c88bd 4031 if (tsk_cache_hot) {
8e45cb54 4032 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4033 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4034 }
4e2dcb73 4035
1e3c88bd
PZ
4036 return 1;
4037 }
4038
4e2dcb73
ZH
4039 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4040 return 0;
1e3c88bd
PZ
4041}
4042
897c395f
PZ
4043/*
4044 * move_one_task tries to move exactly one task from busiest to this_rq, as
4045 * part of active balancing operations within "domain".
4046 * Returns 1 if successful and 0 otherwise.
4047 *
4048 * Called with both runqueues locked.
4049 */
8e45cb54 4050static int move_one_task(struct lb_env *env)
897c395f
PZ
4051{
4052 struct task_struct *p, *n;
897c395f 4053
367456c7 4054 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4055 if (!can_migrate_task(p, env))
4056 continue;
897c395f 4057
367456c7
PZ
4058 move_task(p, env);
4059 /*
4060 * Right now, this is only the second place move_task()
4061 * is called, so we can safely collect move_task()
4062 * stats here rather than inside move_task().
4063 */
4064 schedstat_inc(env->sd, lb_gained[env->idle]);
4065 return 1;
897c395f 4066 }
897c395f
PZ
4067 return 0;
4068}
4069
367456c7
PZ
4070static unsigned long task_h_load(struct task_struct *p);
4071
eb95308e
PZ
4072static const unsigned int sched_nr_migrate_break = 32;
4073
5d6523eb 4074/*
bd939f45 4075 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4076 * this_rq, as part of a balancing operation within domain "sd".
4077 * Returns 1 if successful and 0 otherwise.
4078 *
4079 * Called with both runqueues locked.
4080 */
4081static int move_tasks(struct lb_env *env)
1e3c88bd 4082{
5d6523eb
PZ
4083 struct list_head *tasks = &env->src_rq->cfs_tasks;
4084 struct task_struct *p;
367456c7
PZ
4085 unsigned long load;
4086 int pulled = 0;
1e3c88bd 4087
bd939f45 4088 if (env->imbalance <= 0)
5d6523eb 4089 return 0;
1e3c88bd 4090
5d6523eb
PZ
4091 while (!list_empty(tasks)) {
4092 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4093
367456c7
PZ
4094 env->loop++;
4095 /* We've more or less seen every task there is, call it quits */
5d6523eb 4096 if (env->loop > env->loop_max)
367456c7 4097 break;
5d6523eb
PZ
4098
4099 /* take a breather every nr_migrate tasks */
367456c7 4100 if (env->loop > env->loop_break) {
eb95308e 4101 env->loop_break += sched_nr_migrate_break;
8e45cb54 4102 env->flags |= LBF_NEED_BREAK;
ee00e66f 4103 break;
a195f004 4104 }
1e3c88bd 4105
d3198084 4106 if (!can_migrate_task(p, env))
367456c7
PZ
4107 goto next;
4108
4109 load = task_h_load(p);
5d6523eb 4110
eb95308e 4111 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4112 goto next;
4113
bd939f45 4114 if ((load / 2) > env->imbalance)
367456c7 4115 goto next;
1e3c88bd 4116
ddcdf6e7 4117 move_task(p, env);
ee00e66f 4118 pulled++;
bd939f45 4119 env->imbalance -= load;
1e3c88bd
PZ
4120
4121#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4122 /*
4123 * NEWIDLE balancing is a source of latency, so preemptible
4124 * kernels will stop after the first task is pulled to minimize
4125 * the critical section.
4126 */
5d6523eb 4127 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4128 break;
1e3c88bd
PZ
4129#endif
4130
ee00e66f
PZ
4131 /*
4132 * We only want to steal up to the prescribed amount of
4133 * weighted load.
4134 */
bd939f45 4135 if (env->imbalance <= 0)
ee00e66f 4136 break;
367456c7
PZ
4137
4138 continue;
4139next:
5d6523eb 4140 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4141 }
5d6523eb 4142
1e3c88bd 4143 /*
ddcdf6e7
PZ
4144 * Right now, this is one of only two places move_task() is called,
4145 * so we can safely collect move_task() stats here rather than
4146 * inside move_task().
1e3c88bd 4147 */
8e45cb54 4148 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4149
5d6523eb 4150 return pulled;
1e3c88bd
PZ
4151}
4152
230059de 4153#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4154/*
4155 * update tg->load_weight by folding this cpu's load_avg
4156 */
48a16753 4157static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4158{
48a16753
PT
4159 struct sched_entity *se = tg->se[cpu];
4160 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4161
48a16753
PT
4162 /* throttled entities do not contribute to load */
4163 if (throttled_hierarchy(cfs_rq))
4164 return;
9e3081ca 4165
aff3e498 4166 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4167
82958366
PT
4168 if (se) {
4169 update_entity_load_avg(se, 1);
4170 /*
4171 * We pivot on our runnable average having decayed to zero for
4172 * list removal. This generally implies that all our children
4173 * have also been removed (modulo rounding error or bandwidth
4174 * control); however, such cases are rare and we can fix these
4175 * at enqueue.
4176 *
4177 * TODO: fix up out-of-order children on enqueue.
4178 */
4179 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4180 list_del_leaf_cfs_rq(cfs_rq);
4181 } else {
48a16753 4182 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4183 update_rq_runnable_avg(rq, rq->nr_running);
4184 }
9e3081ca
PZ
4185}
4186
48a16753 4187static void update_blocked_averages(int cpu)
9e3081ca 4188{
9e3081ca 4189 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4190 struct cfs_rq *cfs_rq;
4191 unsigned long flags;
9e3081ca 4192
48a16753
PT
4193 raw_spin_lock_irqsave(&rq->lock, flags);
4194 update_rq_clock(rq);
9763b67f
PZ
4195 /*
4196 * Iterates the task_group tree in a bottom up fashion, see
4197 * list_add_leaf_cfs_rq() for details.
4198 */
64660c86 4199 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4200 /*
4201 * Note: We may want to consider periodically releasing
4202 * rq->lock about these updates so that creating many task
4203 * groups does not result in continually extending hold time.
4204 */
4205 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4206 }
48a16753
PT
4207
4208 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4209}
4210
9763b67f 4211/*
68520796 4212 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4213 * This needs to be done in a top-down fashion because the load of a child
4214 * group is a fraction of its parents load.
4215 */
68520796 4216static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4217{
68520796
VD
4218 struct rq *rq = rq_of(cfs_rq);
4219 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4220 unsigned long now = jiffies;
68520796 4221 unsigned long load;
a35b6466 4222
68520796 4223 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4224 return;
4225
68520796
VD
4226 cfs_rq->h_load_next = NULL;
4227 for_each_sched_entity(se) {
4228 cfs_rq = cfs_rq_of(se);
4229 cfs_rq->h_load_next = se;
4230 if (cfs_rq->last_h_load_update == now)
4231 break;
4232 }
a35b6466 4233
68520796 4234 if (!se) {
7e3115ef 4235 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4236 cfs_rq->last_h_load_update = now;
4237 }
4238
4239 while ((se = cfs_rq->h_load_next) != NULL) {
4240 load = cfs_rq->h_load;
4241 load = div64_ul(load * se->avg.load_avg_contrib,
4242 cfs_rq->runnable_load_avg + 1);
4243 cfs_rq = group_cfs_rq(se);
4244 cfs_rq->h_load = load;
4245 cfs_rq->last_h_load_update = now;
4246 }
9763b67f
PZ
4247}
4248
367456c7 4249static unsigned long task_h_load(struct task_struct *p)
230059de 4250{
367456c7 4251 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4252
68520796 4253 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4254 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4255 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4256}
4257#else
48a16753 4258static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4259{
4260}
4261
367456c7 4262static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4263{
a003a25b 4264 return p->se.avg.load_avg_contrib;
1e3c88bd 4265}
230059de 4266#endif
1e3c88bd 4267
1e3c88bd 4268/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4269/*
4270 * sg_lb_stats - stats of a sched_group required for load_balancing
4271 */
4272struct sg_lb_stats {
4273 unsigned long avg_load; /*Avg load across the CPUs of the group */
4274 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4275 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4276 unsigned long load_per_task;
3ae11c90 4277 unsigned long group_power;
147c5fc2
PZ
4278 unsigned int sum_nr_running; /* Nr tasks running in the group */
4279 unsigned int group_capacity;
4280 unsigned int idle_cpus;
4281 unsigned int group_weight;
1e3c88bd 4282 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4283 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4284};
4285
56cf515b
JK
4286/*
4287 * sd_lb_stats - Structure to store the statistics of a sched_domain
4288 * during load balancing.
4289 */
4290struct sd_lb_stats {
4291 struct sched_group *busiest; /* Busiest group in this sd */
4292 struct sched_group *local; /* Local group in this sd */
4293 unsigned long total_load; /* Total load of all groups in sd */
4294 unsigned long total_pwr; /* Total power of all groups in sd */
4295 unsigned long avg_load; /* Average load across all groups in sd */
4296
56cf515b 4297 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4298 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4299};
4300
147c5fc2
PZ
4301static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4302{
4303 /*
4304 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4305 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4306 * We must however clear busiest_stat::avg_load because
4307 * update_sd_pick_busiest() reads this before assignment.
4308 */
4309 *sds = (struct sd_lb_stats){
4310 .busiest = NULL,
4311 .local = NULL,
4312 .total_load = 0UL,
4313 .total_pwr = 0UL,
4314 .busiest_stat = {
4315 .avg_load = 0UL,
4316 },
4317 };
4318}
4319
1e3c88bd
PZ
4320/**
4321 * get_sd_load_idx - Obtain the load index for a given sched domain.
4322 * @sd: The sched_domain whose load_idx is to be obtained.
4323 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4324 *
4325 * Return: The load index.
1e3c88bd
PZ
4326 */
4327static inline int get_sd_load_idx(struct sched_domain *sd,
4328 enum cpu_idle_type idle)
4329{
4330 int load_idx;
4331
4332 switch (idle) {
4333 case CPU_NOT_IDLE:
4334 load_idx = sd->busy_idx;
4335 break;
4336
4337 case CPU_NEWLY_IDLE:
4338 load_idx = sd->newidle_idx;
4339 break;
4340 default:
4341 load_idx = sd->idle_idx;
4342 break;
4343 }
4344
4345 return load_idx;
4346}
4347
15f803c9 4348static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4349{
1399fa78 4350 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4351}
4352
4353unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4354{
4355 return default_scale_freq_power(sd, cpu);
4356}
4357
15f803c9 4358static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4359{
669c55e9 4360 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4361 unsigned long smt_gain = sd->smt_gain;
4362
4363 smt_gain /= weight;
4364
4365 return smt_gain;
4366}
4367
4368unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4369{
4370 return default_scale_smt_power(sd, cpu);
4371}
4372
15f803c9 4373static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4374{
4375 struct rq *rq = cpu_rq(cpu);
b654f7de 4376 u64 total, available, age_stamp, avg;
1e3c88bd 4377
b654f7de
PZ
4378 /*
4379 * Since we're reading these variables without serialization make sure
4380 * we read them once before doing sanity checks on them.
4381 */
4382 age_stamp = ACCESS_ONCE(rq->age_stamp);
4383 avg = ACCESS_ONCE(rq->rt_avg);
4384
78becc27 4385 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4386
b654f7de 4387 if (unlikely(total < avg)) {
aa483808
VP
4388 /* Ensures that power won't end up being negative */
4389 available = 0;
4390 } else {
b654f7de 4391 available = total - avg;
aa483808 4392 }
1e3c88bd 4393
1399fa78
NR
4394 if (unlikely((s64)total < SCHED_POWER_SCALE))
4395 total = SCHED_POWER_SCALE;
1e3c88bd 4396
1399fa78 4397 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4398
4399 return div_u64(available, total);
4400}
4401
4402static void update_cpu_power(struct sched_domain *sd, int cpu)
4403{
669c55e9 4404 unsigned long weight = sd->span_weight;
1399fa78 4405 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4406 struct sched_group *sdg = sd->groups;
4407
1e3c88bd
PZ
4408 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4409 if (sched_feat(ARCH_POWER))
4410 power *= arch_scale_smt_power(sd, cpu);
4411 else
4412 power *= default_scale_smt_power(sd, cpu);
4413
1399fa78 4414 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4415 }
4416
9c3f75cb 4417 sdg->sgp->power_orig = power;
9d5efe05
SV
4418
4419 if (sched_feat(ARCH_POWER))
4420 power *= arch_scale_freq_power(sd, cpu);
4421 else
4422 power *= default_scale_freq_power(sd, cpu);
4423
1399fa78 4424 power >>= SCHED_POWER_SHIFT;
9d5efe05 4425
1e3c88bd 4426 power *= scale_rt_power(cpu);
1399fa78 4427 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4428
4429 if (!power)
4430 power = 1;
4431
e51fd5e2 4432 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4433 sdg->sgp->power = power;
1e3c88bd
PZ
4434}
4435
029632fb 4436void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4437{
4438 struct sched_domain *child = sd->child;
4439 struct sched_group *group, *sdg = sd->groups;
863bffc8 4440 unsigned long power, power_orig;
4ec4412e
VG
4441 unsigned long interval;
4442
4443 interval = msecs_to_jiffies(sd->balance_interval);
4444 interval = clamp(interval, 1UL, max_load_balance_interval);
4445 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4446
4447 if (!child) {
4448 update_cpu_power(sd, cpu);
4449 return;
4450 }
4451
863bffc8 4452 power_orig = power = 0;
1e3c88bd 4453
74a5ce20
PZ
4454 if (child->flags & SD_OVERLAP) {
4455 /*
4456 * SD_OVERLAP domains cannot assume that child groups
4457 * span the current group.
4458 */
4459
863bffc8
PZ
4460 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4461 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4462
4463 power_orig += sg->sgp->power_orig;
4464 power += sg->sgp->power;
4465 }
74a5ce20
PZ
4466 } else {
4467 /*
4468 * !SD_OVERLAP domains can assume that child groups
4469 * span the current group.
4470 */
4471
4472 group = child->groups;
4473 do {
863bffc8 4474 power_orig += group->sgp->power_orig;
74a5ce20
PZ
4475 power += group->sgp->power;
4476 group = group->next;
4477 } while (group != child->groups);
4478 }
1e3c88bd 4479
863bffc8
PZ
4480 sdg->sgp->power_orig = power_orig;
4481 sdg->sgp->power = power;
1e3c88bd
PZ
4482}
4483
9d5efe05
SV
4484/*
4485 * Try and fix up capacity for tiny siblings, this is needed when
4486 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4487 * which on its own isn't powerful enough.
4488 *
4489 * See update_sd_pick_busiest() and check_asym_packing().
4490 */
4491static inline int
4492fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4493{
4494 /*
1399fa78 4495 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4496 */
a6c75f2f 4497 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4498 return 0;
4499
4500 /*
4501 * If ~90% of the cpu_power is still there, we're good.
4502 */
9c3f75cb 4503 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4504 return 1;
4505
4506 return 0;
4507}
4508
30ce5dab
PZ
4509/*
4510 * Group imbalance indicates (and tries to solve) the problem where balancing
4511 * groups is inadequate due to tsk_cpus_allowed() constraints.
4512 *
4513 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4514 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4515 * Something like:
4516 *
4517 * { 0 1 2 3 } { 4 5 6 7 }
4518 * * * * *
4519 *
4520 * If we were to balance group-wise we'd place two tasks in the first group and
4521 * two tasks in the second group. Clearly this is undesired as it will overload
4522 * cpu 3 and leave one of the cpus in the second group unused.
4523 *
4524 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
4525 * by noticing the lower domain failed to reach balance and had difficulty
4526 * moving tasks due to affinity constraints.
30ce5dab
PZ
4527 *
4528 * When this is so detected; this group becomes a candidate for busiest; see
4529 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 4530 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
4531 * to create an effective group imbalance.
4532 *
4533 * This is a somewhat tricky proposition since the next run might not find the
4534 * group imbalance and decide the groups need to be balanced again. A most
4535 * subtle and fragile situation.
4536 */
4537
6263322c 4538static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 4539{
6263322c 4540 return group->sgp->imbalance;
30ce5dab
PZ
4541}
4542
b37d9316
PZ
4543/*
4544 * Compute the group capacity.
4545 *
c61037e9
PZ
4546 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4547 * first dividing out the smt factor and computing the actual number of cores
4548 * and limit power unit capacity with that.
b37d9316
PZ
4549 */
4550static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4551{
c61037e9
PZ
4552 unsigned int capacity, smt, cpus;
4553 unsigned int power, power_orig;
4554
4555 power = group->sgp->power;
4556 power_orig = group->sgp->power_orig;
4557 cpus = group->group_weight;
b37d9316 4558
c61037e9
PZ
4559 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4560 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4561 capacity = cpus / smt; /* cores */
b37d9316 4562
c61037e9 4563 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
4564 if (!capacity)
4565 capacity = fix_small_capacity(env->sd, group);
4566
4567 return capacity;
4568}
4569
1e3c88bd
PZ
4570/**
4571 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4572 * @env: The load balancing environment.
1e3c88bd 4573 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4574 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4575 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4576 * @sgs: variable to hold the statistics for this group.
4577 */
bd939f45
PZ
4578static inline void update_sg_lb_stats(struct lb_env *env,
4579 struct sched_group *group, int load_idx,
23f0d209 4580 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 4581{
30ce5dab
PZ
4582 unsigned long nr_running;
4583 unsigned long load;
bd939f45 4584 int i;
1e3c88bd 4585
b72ff13c
PZ
4586 memset(sgs, 0, sizeof(*sgs));
4587
b9403130 4588 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4589 struct rq *rq = cpu_rq(i);
4590
e44bc5c5
PZ
4591 nr_running = rq->nr_running;
4592
1e3c88bd 4593 /* Bias balancing toward cpus of our domain */
6263322c 4594 if (local_group)
04f733b4 4595 load = target_load(i, load_idx);
6263322c 4596 else
1e3c88bd 4597 load = source_load(i, load_idx);
1e3c88bd
PZ
4598
4599 sgs->group_load += load;
e44bc5c5 4600 sgs->sum_nr_running += nr_running;
1e3c88bd 4601 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4602 if (idle_cpu(i))
4603 sgs->idle_cpus++;
1e3c88bd
PZ
4604 }
4605
1e3c88bd 4606 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
4607 sgs->group_power = group->sgp->power;
4608 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 4609
dd5feea1 4610 if (sgs->sum_nr_running)
38d0f770 4611 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4612
aae6d3dd 4613 sgs->group_weight = group->group_weight;
fab47622 4614
b37d9316
PZ
4615 sgs->group_imb = sg_imbalanced(group);
4616 sgs->group_capacity = sg_capacity(env, group);
4617
fab47622
NR
4618 if (sgs->group_capacity > sgs->sum_nr_running)
4619 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4620}
4621
532cb4c4
MN
4622/**
4623 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4624 * @env: The load balancing environment.
532cb4c4
MN
4625 * @sds: sched_domain statistics
4626 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4627 * @sgs: sched_group statistics
532cb4c4
MN
4628 *
4629 * Determine if @sg is a busier group than the previously selected
4630 * busiest group.
e69f6186
YB
4631 *
4632 * Return: %true if @sg is a busier group than the previously selected
4633 * busiest group. %false otherwise.
532cb4c4 4634 */
bd939f45 4635static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4636 struct sd_lb_stats *sds,
4637 struct sched_group *sg,
bd939f45 4638 struct sg_lb_stats *sgs)
532cb4c4 4639{
56cf515b 4640 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
4641 return false;
4642
4643 if (sgs->sum_nr_running > sgs->group_capacity)
4644 return true;
4645
4646 if (sgs->group_imb)
4647 return true;
4648
4649 /*
4650 * ASYM_PACKING needs to move all the work to the lowest
4651 * numbered CPUs in the group, therefore mark all groups
4652 * higher than ourself as busy.
4653 */
bd939f45
PZ
4654 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4655 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4656 if (!sds->busiest)
4657 return true;
4658
4659 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4660 return true;
4661 }
4662
4663 return false;
4664}
4665
1e3c88bd 4666/**
461819ac 4667 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4668 * @env: The load balancing environment.
1e3c88bd
PZ
4669 * @balance: Should we balance.
4670 * @sds: variable to hold the statistics for this sched_domain.
4671 */
bd939f45 4672static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 4673 struct sd_lb_stats *sds)
1e3c88bd 4674{
bd939f45
PZ
4675 struct sched_domain *child = env->sd->child;
4676 struct sched_group *sg = env->sd->groups;
56cf515b 4677 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
4678 int load_idx, prefer_sibling = 0;
4679
4680 if (child && child->flags & SD_PREFER_SIBLING)
4681 prefer_sibling = 1;
4682
bd939f45 4683 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4684
4685 do {
56cf515b 4686 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
4687 int local_group;
4688
bd939f45 4689 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
4690 if (local_group) {
4691 sds->local = sg;
4692 sgs = &sds->local_stat;
b72ff13c
PZ
4693
4694 if (env->idle != CPU_NEWLY_IDLE ||
4695 time_after_eq(jiffies, sg->sgp->next_update))
4696 update_group_power(env->sd, env->dst_cpu);
56cf515b 4697 }
1e3c88bd 4698
56cf515b 4699 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 4700
b72ff13c
PZ
4701 if (local_group)
4702 goto next_group;
4703
1e3c88bd
PZ
4704 /*
4705 * In case the child domain prefers tasks go to siblings
532cb4c4 4706 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4707 * and move all the excess tasks away. We lower the capacity
4708 * of a group only if the local group has the capacity to fit
4709 * these excess tasks, i.e. nr_running < group_capacity. The
4710 * extra check prevents the case where you always pull from the
4711 * heaviest group when it is already under-utilized (possible
4712 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4713 */
b72ff13c
PZ
4714 if (prefer_sibling && sds->local &&
4715 sds->local_stat.group_has_capacity)
147c5fc2 4716 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 4717
b72ff13c 4718 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 4719 sds->busiest = sg;
56cf515b 4720 sds->busiest_stat = *sgs;
1e3c88bd
PZ
4721 }
4722
b72ff13c
PZ
4723next_group:
4724 /* Now, start updating sd_lb_stats */
4725 sds->total_load += sgs->group_load;
4726 sds->total_pwr += sgs->group_power;
4727
532cb4c4 4728 sg = sg->next;
bd939f45 4729 } while (sg != env->sd->groups);
532cb4c4
MN
4730}
4731
532cb4c4
MN
4732/**
4733 * check_asym_packing - Check to see if the group is packed into the
4734 * sched doman.
4735 *
4736 * This is primarily intended to used at the sibling level. Some
4737 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4738 * case of POWER7, it can move to lower SMT modes only when higher
4739 * threads are idle. When in lower SMT modes, the threads will
4740 * perform better since they share less core resources. Hence when we
4741 * have idle threads, we want them to be the higher ones.
4742 *
4743 * This packing function is run on idle threads. It checks to see if
4744 * the busiest CPU in this domain (core in the P7 case) has a higher
4745 * CPU number than the packing function is being run on. Here we are
4746 * assuming lower CPU number will be equivalent to lower a SMT thread
4747 * number.
4748 *
e69f6186 4749 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
4750 * this CPU. The amount of the imbalance is returned in *imbalance.
4751 *
cd96891d 4752 * @env: The load balancing environment.
532cb4c4 4753 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4754 */
bd939f45 4755static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4756{
4757 int busiest_cpu;
4758
bd939f45 4759 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4760 return 0;
4761
4762 if (!sds->busiest)
4763 return 0;
4764
4765 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4766 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4767 return 0;
4768
bd939f45 4769 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
4770 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
4771 SCHED_POWER_SCALE);
bd939f45 4772
532cb4c4 4773 return 1;
1e3c88bd
PZ
4774}
4775
4776/**
4777 * fix_small_imbalance - Calculate the minor imbalance that exists
4778 * amongst the groups of a sched_domain, during
4779 * load balancing.
cd96891d 4780 * @env: The load balancing environment.
1e3c88bd 4781 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4782 */
bd939f45
PZ
4783static inline
4784void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4785{
4786 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4787 unsigned int imbn = 2;
dd5feea1 4788 unsigned long scaled_busy_load_per_task;
56cf515b 4789 struct sg_lb_stats *local, *busiest;
1e3c88bd 4790
56cf515b
JK
4791 local = &sds->local_stat;
4792 busiest = &sds->busiest_stat;
1e3c88bd 4793
56cf515b
JK
4794 if (!local->sum_nr_running)
4795 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
4796 else if (busiest->load_per_task > local->load_per_task)
4797 imbn = 1;
dd5feea1 4798
56cf515b
JK
4799 scaled_busy_load_per_task =
4800 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4801 busiest->group_power;
56cf515b 4802
3029ede3
VD
4803 if (busiest->avg_load + scaled_busy_load_per_task >=
4804 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 4805 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4806 return;
4807 }
4808
4809 /*
4810 * OK, we don't have enough imbalance to justify moving tasks,
4811 * however we may be able to increase total CPU power used by
4812 * moving them.
4813 */
4814
3ae11c90 4815 pwr_now += busiest->group_power *
56cf515b 4816 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 4817 pwr_now += local->group_power *
56cf515b 4818 min(local->load_per_task, local->avg_load);
1399fa78 4819 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4820
4821 /* Amount of load we'd subtract */
56cf515b 4822 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4823 busiest->group_power;
56cf515b 4824 if (busiest->avg_load > tmp) {
3ae11c90 4825 pwr_move += busiest->group_power *
56cf515b
JK
4826 min(busiest->load_per_task,
4827 busiest->avg_load - tmp);
4828 }
1e3c88bd
PZ
4829
4830 /* Amount of load we'd add */
3ae11c90 4831 if (busiest->avg_load * busiest->group_power <
56cf515b 4832 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
4833 tmp = (busiest->avg_load * busiest->group_power) /
4834 local->group_power;
56cf515b
JK
4835 } else {
4836 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4837 local->group_power;
56cf515b 4838 }
3ae11c90
PZ
4839 pwr_move += local->group_power *
4840 min(local->load_per_task, local->avg_load + tmp);
1399fa78 4841 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4842
4843 /* Move if we gain throughput */
4844 if (pwr_move > pwr_now)
56cf515b 4845 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4846}
4847
4848/**
4849 * calculate_imbalance - Calculate the amount of imbalance present within the
4850 * groups of a given sched_domain during load balance.
bd939f45 4851 * @env: load balance environment
1e3c88bd 4852 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4853 */
bd939f45 4854static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4855{
dd5feea1 4856 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
4857 struct sg_lb_stats *local, *busiest;
4858
4859 local = &sds->local_stat;
56cf515b 4860 busiest = &sds->busiest_stat;
dd5feea1 4861
56cf515b 4862 if (busiest->group_imb) {
30ce5dab
PZ
4863 /*
4864 * In the group_imb case we cannot rely on group-wide averages
4865 * to ensure cpu-load equilibrium, look at wider averages. XXX
4866 */
56cf515b
JK
4867 busiest->load_per_task =
4868 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
4869 }
4870
1e3c88bd
PZ
4871 /*
4872 * In the presence of smp nice balancing, certain scenarios can have
4873 * max load less than avg load(as we skip the groups at or below
4874 * its cpu_power, while calculating max_load..)
4875 */
b1885550
VD
4876 if (busiest->avg_load <= sds->avg_load ||
4877 local->avg_load >= sds->avg_load) {
bd939f45
PZ
4878 env->imbalance = 0;
4879 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4880 }
4881
56cf515b 4882 if (!busiest->group_imb) {
dd5feea1
SS
4883 /*
4884 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
4885 * Except of course for the group_imb case, since then we might
4886 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 4887 */
56cf515b
JK
4888 load_above_capacity =
4889 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 4890
1399fa78 4891 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 4892 load_above_capacity /= busiest->group_power;
dd5feea1
SS
4893 }
4894
4895 /*
4896 * We're trying to get all the cpus to the average_load, so we don't
4897 * want to push ourselves above the average load, nor do we wish to
4898 * reduce the max loaded cpu below the average load. At the same time,
4899 * we also don't want to reduce the group load below the group capacity
4900 * (so that we can implement power-savings policies etc). Thus we look
4901 * for the minimum possible imbalance.
dd5feea1 4902 */
30ce5dab 4903 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4904
4905 /* How much load to actually move to equalise the imbalance */
56cf515b 4906 env->imbalance = min(
3ae11c90
PZ
4907 max_pull * busiest->group_power,
4908 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 4909 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
4910
4911 /*
4912 * if *imbalance is less than the average load per runnable task
25985edc 4913 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4914 * a think about bumping its value to force at least one task to be
4915 * moved
4916 */
56cf515b 4917 if (env->imbalance < busiest->load_per_task)
bd939f45 4918 return fix_small_imbalance(env, sds);
1e3c88bd 4919}
fab47622 4920
1e3c88bd
PZ
4921/******* find_busiest_group() helpers end here *********************/
4922
4923/**
4924 * find_busiest_group - Returns the busiest group within the sched_domain
4925 * if there is an imbalance. If there isn't an imbalance, and
4926 * the user has opted for power-savings, it returns a group whose
4927 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4928 * such a group exists.
4929 *
4930 * Also calculates the amount of weighted load which should be moved
4931 * to restore balance.
4932 *
cd96891d 4933 * @env: The load balancing environment.
1e3c88bd 4934 *
e69f6186 4935 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
4936 * - If no imbalance and user has opted for power-savings balance,
4937 * return the least loaded group whose CPUs can be
4938 * put to idle by rebalancing its tasks onto our group.
4939 */
56cf515b 4940static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 4941{
56cf515b 4942 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
4943 struct sd_lb_stats sds;
4944
147c5fc2 4945 init_sd_lb_stats(&sds);
1e3c88bd
PZ
4946
4947 /*
4948 * Compute the various statistics relavent for load balancing at
4949 * this level.
4950 */
23f0d209 4951 update_sd_lb_stats(env, &sds);
56cf515b
JK
4952 local = &sds.local_stat;
4953 busiest = &sds.busiest_stat;
1e3c88bd 4954
bd939f45
PZ
4955 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4956 check_asym_packing(env, &sds))
532cb4c4
MN
4957 return sds.busiest;
4958
cc57aa8f 4959 /* There is no busy sibling group to pull tasks from */
56cf515b 4960 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
4961 goto out_balanced;
4962
1399fa78 4963 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4964
866ab43e
PZ
4965 /*
4966 * If the busiest group is imbalanced the below checks don't
30ce5dab 4967 * work because they assume all things are equal, which typically
866ab43e
PZ
4968 * isn't true due to cpus_allowed constraints and the like.
4969 */
56cf515b 4970 if (busiest->group_imb)
866ab43e
PZ
4971 goto force_balance;
4972
cc57aa8f 4973 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
4974 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
4975 !busiest->group_has_capacity)
fab47622
NR
4976 goto force_balance;
4977
cc57aa8f
PZ
4978 /*
4979 * If the local group is more busy than the selected busiest group
4980 * don't try and pull any tasks.
4981 */
56cf515b 4982 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
4983 goto out_balanced;
4984
cc57aa8f
PZ
4985 /*
4986 * Don't pull any tasks if this group is already above the domain
4987 * average load.
4988 */
56cf515b 4989 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
4990 goto out_balanced;
4991
bd939f45 4992 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4993 /*
4994 * This cpu is idle. If the busiest group load doesn't
4995 * have more tasks than the number of available cpu's and
4996 * there is no imbalance between this and busiest group
4997 * wrt to idle cpu's, it is balanced.
4998 */
56cf515b
JK
4999 if ((local->idle_cpus < busiest->idle_cpus) &&
5000 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5001 goto out_balanced;
c186fafe
PZ
5002 } else {
5003 /*
5004 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5005 * imbalance_pct to be conservative.
5006 */
56cf515b
JK
5007 if (100 * busiest->avg_load <=
5008 env->sd->imbalance_pct * local->avg_load)
c186fafe 5009 goto out_balanced;
aae6d3dd 5010 }
1e3c88bd 5011
fab47622 5012force_balance:
1e3c88bd 5013 /* Looks like there is an imbalance. Compute it */
bd939f45 5014 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5015 return sds.busiest;
5016
5017out_balanced:
bd939f45 5018 env->imbalance = 0;
1e3c88bd
PZ
5019 return NULL;
5020}
5021
5022/*
5023 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5024 */
bd939f45 5025static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5026 struct sched_group *group)
1e3c88bd
PZ
5027{
5028 struct rq *busiest = NULL, *rq;
95a79b80 5029 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5030 int i;
5031
6906a408 5032 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5033 unsigned long power = power_of(i);
1399fa78
NR
5034 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5035 SCHED_POWER_SCALE);
1e3c88bd
PZ
5036 unsigned long wl;
5037
9d5efe05 5038 if (!capacity)
bd939f45 5039 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5040
1e3c88bd 5041 rq = cpu_rq(i);
6e40f5bb 5042 wl = weighted_cpuload(i);
1e3c88bd 5043
6e40f5bb
TG
5044 /*
5045 * When comparing with imbalance, use weighted_cpuload()
5046 * which is not scaled with the cpu power.
5047 */
bd939f45 5048 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5049 continue;
5050
6e40f5bb
TG
5051 /*
5052 * For the load comparisons with the other cpu's, consider
5053 * the weighted_cpuload() scaled with the cpu power, so that
5054 * the load can be moved away from the cpu that is potentially
5055 * running at a lower capacity.
95a79b80
JK
5056 *
5057 * Thus we're looking for max(wl_i / power_i), crosswise
5058 * multiplication to rid ourselves of the division works out
5059 * to: wl_i * power_j > wl_j * power_i; where j is our
5060 * previous maximum.
6e40f5bb 5061 */
95a79b80
JK
5062 if (wl * busiest_power > busiest_load * power) {
5063 busiest_load = wl;
5064 busiest_power = power;
1e3c88bd
PZ
5065 busiest = rq;
5066 }
5067 }
5068
5069 return busiest;
5070}
5071
5072/*
5073 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5074 * so long as it is large enough.
5075 */
5076#define MAX_PINNED_INTERVAL 512
5077
5078/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5079DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5080
bd939f45 5081static int need_active_balance(struct lb_env *env)
1af3ed3d 5082{
bd939f45
PZ
5083 struct sched_domain *sd = env->sd;
5084
5085 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5086
5087 /*
5088 * ASYM_PACKING needs to force migrate tasks from busy but
5089 * higher numbered CPUs in order to pack all tasks in the
5090 * lowest numbered CPUs.
5091 */
bd939f45 5092 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5093 return 1;
1af3ed3d
PZ
5094 }
5095
5096 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5097}
5098
969c7921
TH
5099static int active_load_balance_cpu_stop(void *data);
5100
23f0d209
JK
5101static int should_we_balance(struct lb_env *env)
5102{
5103 struct sched_group *sg = env->sd->groups;
5104 struct cpumask *sg_cpus, *sg_mask;
5105 int cpu, balance_cpu = -1;
5106
5107 /*
5108 * In the newly idle case, we will allow all the cpu's
5109 * to do the newly idle load balance.
5110 */
5111 if (env->idle == CPU_NEWLY_IDLE)
5112 return 1;
5113
5114 sg_cpus = sched_group_cpus(sg);
5115 sg_mask = sched_group_mask(sg);
5116 /* Try to find first idle cpu */
5117 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5118 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5119 continue;
5120
5121 balance_cpu = cpu;
5122 break;
5123 }
5124
5125 if (balance_cpu == -1)
5126 balance_cpu = group_balance_cpu(sg);
5127
5128 /*
5129 * First idle cpu or the first cpu(busiest) in this sched group
5130 * is eligible for doing load balancing at this and above domains.
5131 */
b0cff9d8 5132 return balance_cpu == env->dst_cpu;
23f0d209
JK
5133}
5134
1e3c88bd
PZ
5135/*
5136 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5137 * tasks if there is an imbalance.
5138 */
5139static int load_balance(int this_cpu, struct rq *this_rq,
5140 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5141 int *continue_balancing)
1e3c88bd 5142{
88b8dac0 5143 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5144 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5145 struct sched_group *group;
1e3c88bd
PZ
5146 struct rq *busiest;
5147 unsigned long flags;
e6252c3e 5148 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5149
8e45cb54
PZ
5150 struct lb_env env = {
5151 .sd = sd,
ddcdf6e7
PZ
5152 .dst_cpu = this_cpu,
5153 .dst_rq = this_rq,
88b8dac0 5154 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5155 .idle = idle,
eb95308e 5156 .loop_break = sched_nr_migrate_break,
b9403130 5157 .cpus = cpus,
8e45cb54
PZ
5158 };
5159
cfc03118
JK
5160 /*
5161 * For NEWLY_IDLE load_balancing, we don't need to consider
5162 * other cpus in our group
5163 */
e02e60c1 5164 if (idle == CPU_NEWLY_IDLE)
cfc03118 5165 env.dst_grpmask = NULL;
cfc03118 5166
1e3c88bd
PZ
5167 cpumask_copy(cpus, cpu_active_mask);
5168
1e3c88bd
PZ
5169 schedstat_inc(sd, lb_count[idle]);
5170
5171redo:
23f0d209
JK
5172 if (!should_we_balance(&env)) {
5173 *continue_balancing = 0;
1e3c88bd 5174 goto out_balanced;
23f0d209 5175 }
1e3c88bd 5176
23f0d209 5177 group = find_busiest_group(&env);
1e3c88bd
PZ
5178 if (!group) {
5179 schedstat_inc(sd, lb_nobusyg[idle]);
5180 goto out_balanced;
5181 }
5182
b9403130 5183 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5184 if (!busiest) {
5185 schedstat_inc(sd, lb_nobusyq[idle]);
5186 goto out_balanced;
5187 }
5188
78feefc5 5189 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5190
bd939f45 5191 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5192
5193 ld_moved = 0;
5194 if (busiest->nr_running > 1) {
5195 /*
5196 * Attempt to move tasks. If find_busiest_group has found
5197 * an imbalance but busiest->nr_running <= 1, the group is
5198 * still unbalanced. ld_moved simply stays zero, so it is
5199 * correctly treated as an imbalance.
5200 */
8e45cb54 5201 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5202 env.src_cpu = busiest->cpu;
5203 env.src_rq = busiest;
5204 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5205
5d6523eb 5206more_balance:
1e3c88bd 5207 local_irq_save(flags);
78feefc5 5208 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5209
5210 /*
5211 * cur_ld_moved - load moved in current iteration
5212 * ld_moved - cumulative load moved across iterations
5213 */
5214 cur_ld_moved = move_tasks(&env);
5215 ld_moved += cur_ld_moved;
78feefc5 5216 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5217 local_irq_restore(flags);
5218
5219 /*
5220 * some other cpu did the load balance for us.
5221 */
88b8dac0
SV
5222 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5223 resched_cpu(env.dst_cpu);
5224
f1cd0858
JK
5225 if (env.flags & LBF_NEED_BREAK) {
5226 env.flags &= ~LBF_NEED_BREAK;
5227 goto more_balance;
5228 }
5229
88b8dac0
SV
5230 /*
5231 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5232 * us and move them to an alternate dst_cpu in our sched_group
5233 * where they can run. The upper limit on how many times we
5234 * iterate on same src_cpu is dependent on number of cpus in our
5235 * sched_group.
5236 *
5237 * This changes load balance semantics a bit on who can move
5238 * load to a given_cpu. In addition to the given_cpu itself
5239 * (or a ilb_cpu acting on its behalf where given_cpu is
5240 * nohz-idle), we now have balance_cpu in a position to move
5241 * load to given_cpu. In rare situations, this may cause
5242 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5243 * _independently_ and at _same_ time to move some load to
5244 * given_cpu) causing exceess load to be moved to given_cpu.
5245 * This however should not happen so much in practice and
5246 * moreover subsequent load balance cycles should correct the
5247 * excess load moved.
5248 */
6263322c 5249 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5250
7aff2e3a
VD
5251 /* Prevent to re-select dst_cpu via env's cpus */
5252 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5253
78feefc5 5254 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5255 env.dst_cpu = env.new_dst_cpu;
6263322c 5256 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5257 env.loop = 0;
5258 env.loop_break = sched_nr_migrate_break;
e02e60c1 5259
88b8dac0
SV
5260 /*
5261 * Go back to "more_balance" rather than "redo" since we
5262 * need to continue with same src_cpu.
5263 */
5264 goto more_balance;
5265 }
1e3c88bd 5266
6263322c
PZ
5267 /*
5268 * We failed to reach balance because of affinity.
5269 */
5270 if (sd_parent) {
5271 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5272
5273 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5274 *group_imbalance = 1;
5275 } else if (*group_imbalance)
5276 *group_imbalance = 0;
5277 }
5278
1e3c88bd 5279 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5280 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5281 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5282 if (!cpumask_empty(cpus)) {
5283 env.loop = 0;
5284 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5285 goto redo;
bbf18b19 5286 }
1e3c88bd
PZ
5287 goto out_balanced;
5288 }
5289 }
5290
5291 if (!ld_moved) {
5292 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5293 /*
5294 * Increment the failure counter only on periodic balance.
5295 * We do not want newidle balance, which can be very
5296 * frequent, pollute the failure counter causing
5297 * excessive cache_hot migrations and active balances.
5298 */
5299 if (idle != CPU_NEWLY_IDLE)
5300 sd->nr_balance_failed++;
1e3c88bd 5301
bd939f45 5302 if (need_active_balance(&env)) {
1e3c88bd
PZ
5303 raw_spin_lock_irqsave(&busiest->lock, flags);
5304
969c7921
TH
5305 /* don't kick the active_load_balance_cpu_stop,
5306 * if the curr task on busiest cpu can't be
5307 * moved to this_cpu
1e3c88bd
PZ
5308 */
5309 if (!cpumask_test_cpu(this_cpu,
fa17b507 5310 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5311 raw_spin_unlock_irqrestore(&busiest->lock,
5312 flags);
8e45cb54 5313 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5314 goto out_one_pinned;
5315 }
5316
969c7921
TH
5317 /*
5318 * ->active_balance synchronizes accesses to
5319 * ->active_balance_work. Once set, it's cleared
5320 * only after active load balance is finished.
5321 */
1e3c88bd
PZ
5322 if (!busiest->active_balance) {
5323 busiest->active_balance = 1;
5324 busiest->push_cpu = this_cpu;
5325 active_balance = 1;
5326 }
5327 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5328
bd939f45 5329 if (active_balance) {
969c7921
TH
5330 stop_one_cpu_nowait(cpu_of(busiest),
5331 active_load_balance_cpu_stop, busiest,
5332 &busiest->active_balance_work);
bd939f45 5333 }
1e3c88bd
PZ
5334
5335 /*
5336 * We've kicked active balancing, reset the failure
5337 * counter.
5338 */
5339 sd->nr_balance_failed = sd->cache_nice_tries+1;
5340 }
5341 } else
5342 sd->nr_balance_failed = 0;
5343
5344 if (likely(!active_balance)) {
5345 /* We were unbalanced, so reset the balancing interval */
5346 sd->balance_interval = sd->min_interval;
5347 } else {
5348 /*
5349 * If we've begun active balancing, start to back off. This
5350 * case may not be covered by the all_pinned logic if there
5351 * is only 1 task on the busy runqueue (because we don't call
5352 * move_tasks).
5353 */
5354 if (sd->balance_interval < sd->max_interval)
5355 sd->balance_interval *= 2;
5356 }
5357
1e3c88bd
PZ
5358 goto out;
5359
5360out_balanced:
5361 schedstat_inc(sd, lb_balanced[idle]);
5362
5363 sd->nr_balance_failed = 0;
5364
5365out_one_pinned:
5366 /* tune up the balancing interval */
8e45cb54 5367 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5368 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5369 (sd->balance_interval < sd->max_interval))
5370 sd->balance_interval *= 2;
5371
46e49b38 5372 ld_moved = 0;
1e3c88bd 5373out:
1e3c88bd
PZ
5374 return ld_moved;
5375}
5376
1e3c88bd
PZ
5377/*
5378 * idle_balance is called by schedule() if this_cpu is about to become
5379 * idle. Attempts to pull tasks from other CPUs.
5380 */
029632fb 5381void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5382{
5383 struct sched_domain *sd;
5384 int pulled_task = 0;
5385 unsigned long next_balance = jiffies + HZ;
9bd721c5 5386 u64 curr_cost = 0;
1e3c88bd 5387
78becc27 5388 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5389
5390 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5391 return;
5392
f492e12e
PZ
5393 /*
5394 * Drop the rq->lock, but keep IRQ/preempt disabled.
5395 */
5396 raw_spin_unlock(&this_rq->lock);
5397
48a16753 5398 update_blocked_averages(this_cpu);
dce840a0 5399 rcu_read_lock();
1e3c88bd
PZ
5400 for_each_domain(this_cpu, sd) {
5401 unsigned long interval;
23f0d209 5402 int continue_balancing = 1;
9bd721c5 5403 u64 t0, domain_cost;
1e3c88bd
PZ
5404
5405 if (!(sd->flags & SD_LOAD_BALANCE))
5406 continue;
5407
9bd721c5
JL
5408 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5409 break;
5410
f492e12e 5411 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
5412 t0 = sched_clock_cpu(this_cpu);
5413
1e3c88bd 5414 /* If we've pulled tasks over stop searching: */
f492e12e 5415 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5416 sd, CPU_NEWLY_IDLE,
5417 &continue_balancing);
9bd721c5
JL
5418
5419 domain_cost = sched_clock_cpu(this_cpu) - t0;
5420 if (domain_cost > sd->max_newidle_lb_cost)
5421 sd->max_newidle_lb_cost = domain_cost;
5422
5423 curr_cost += domain_cost;
f492e12e 5424 }
1e3c88bd
PZ
5425
5426 interval = msecs_to_jiffies(sd->balance_interval);
5427 if (time_after(next_balance, sd->last_balance + interval))
5428 next_balance = sd->last_balance + interval;
d5ad140b
NR
5429 if (pulled_task) {
5430 this_rq->idle_stamp = 0;
1e3c88bd 5431 break;
d5ad140b 5432 }
1e3c88bd 5433 }
dce840a0 5434 rcu_read_unlock();
f492e12e
PZ
5435
5436 raw_spin_lock(&this_rq->lock);
5437
1e3c88bd
PZ
5438 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5439 /*
5440 * We are going idle. next_balance may be set based on
5441 * a busy processor. So reset next_balance.
5442 */
5443 this_rq->next_balance = next_balance;
5444 }
9bd721c5
JL
5445
5446 if (curr_cost > this_rq->max_idle_balance_cost)
5447 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
5448}
5449
5450/*
969c7921
TH
5451 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5452 * running tasks off the busiest CPU onto idle CPUs. It requires at
5453 * least 1 task to be running on each physical CPU where possible, and
5454 * avoids physical / logical imbalances.
1e3c88bd 5455 */
969c7921 5456static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5457{
969c7921
TH
5458 struct rq *busiest_rq = data;
5459 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5460 int target_cpu = busiest_rq->push_cpu;
969c7921 5461 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5462 struct sched_domain *sd;
969c7921
TH
5463
5464 raw_spin_lock_irq(&busiest_rq->lock);
5465
5466 /* make sure the requested cpu hasn't gone down in the meantime */
5467 if (unlikely(busiest_cpu != smp_processor_id() ||
5468 !busiest_rq->active_balance))
5469 goto out_unlock;
1e3c88bd
PZ
5470
5471 /* Is there any task to move? */
5472 if (busiest_rq->nr_running <= 1)
969c7921 5473 goto out_unlock;
1e3c88bd
PZ
5474
5475 /*
5476 * This condition is "impossible", if it occurs
5477 * we need to fix it. Originally reported by
5478 * Bjorn Helgaas on a 128-cpu setup.
5479 */
5480 BUG_ON(busiest_rq == target_rq);
5481
5482 /* move a task from busiest_rq to target_rq */
5483 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5484
5485 /* Search for an sd spanning us and the target CPU. */
dce840a0 5486 rcu_read_lock();
1e3c88bd
PZ
5487 for_each_domain(target_cpu, sd) {
5488 if ((sd->flags & SD_LOAD_BALANCE) &&
5489 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5490 break;
5491 }
5492
5493 if (likely(sd)) {
8e45cb54
PZ
5494 struct lb_env env = {
5495 .sd = sd,
ddcdf6e7
PZ
5496 .dst_cpu = target_cpu,
5497 .dst_rq = target_rq,
5498 .src_cpu = busiest_rq->cpu,
5499 .src_rq = busiest_rq,
8e45cb54
PZ
5500 .idle = CPU_IDLE,
5501 };
5502
1e3c88bd
PZ
5503 schedstat_inc(sd, alb_count);
5504
8e45cb54 5505 if (move_one_task(&env))
1e3c88bd
PZ
5506 schedstat_inc(sd, alb_pushed);
5507 else
5508 schedstat_inc(sd, alb_failed);
5509 }
dce840a0 5510 rcu_read_unlock();
1e3c88bd 5511 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5512out_unlock:
5513 busiest_rq->active_balance = 0;
5514 raw_spin_unlock_irq(&busiest_rq->lock);
5515 return 0;
1e3c88bd
PZ
5516}
5517
3451d024 5518#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5519/*
5520 * idle load balancing details
83cd4fe2
VP
5521 * - When one of the busy CPUs notice that there may be an idle rebalancing
5522 * needed, they will kick the idle load balancer, which then does idle
5523 * load balancing for all the idle CPUs.
5524 */
1e3c88bd 5525static struct {
83cd4fe2 5526 cpumask_var_t idle_cpus_mask;
0b005cf5 5527 atomic_t nr_cpus;
83cd4fe2
VP
5528 unsigned long next_balance; /* in jiffy units */
5529} nohz ____cacheline_aligned;
1e3c88bd 5530
8e7fbcbc 5531static inline int find_new_ilb(int call_cpu)
1e3c88bd 5532{
0b005cf5 5533 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5534
786d6dc7
SS
5535 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5536 return ilb;
5537
5538 return nr_cpu_ids;
1e3c88bd 5539}
1e3c88bd 5540
83cd4fe2
VP
5541/*
5542 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5543 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5544 * CPU (if there is one).
5545 */
5546static void nohz_balancer_kick(int cpu)
5547{
5548 int ilb_cpu;
5549
5550 nohz.next_balance++;
5551
0b005cf5 5552 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5553
0b005cf5
SS
5554 if (ilb_cpu >= nr_cpu_ids)
5555 return;
83cd4fe2 5556
cd490c5b 5557 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5558 return;
5559 /*
5560 * Use smp_send_reschedule() instead of resched_cpu().
5561 * This way we generate a sched IPI on the target cpu which
5562 * is idle. And the softirq performing nohz idle load balance
5563 * will be run before returning from the IPI.
5564 */
5565 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5566 return;
5567}
5568
c1cc017c 5569static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5570{
5571 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5572 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5573 atomic_dec(&nohz.nr_cpus);
5574 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5575 }
5576}
5577
69e1e811
SS
5578static inline void set_cpu_sd_state_busy(void)
5579{
5580 struct sched_domain *sd;
69e1e811 5581
69e1e811 5582 rcu_read_lock();
424c93fe 5583 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5584
5585 if (!sd || !sd->nohz_idle)
5586 goto unlock;
5587 sd->nohz_idle = 0;
5588
5589 for (; sd; sd = sd->parent)
69e1e811 5590 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5591unlock:
69e1e811
SS
5592 rcu_read_unlock();
5593}
5594
5595void set_cpu_sd_state_idle(void)
5596{
5597 struct sched_domain *sd;
69e1e811 5598
69e1e811 5599 rcu_read_lock();
424c93fe 5600 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5601
5602 if (!sd || sd->nohz_idle)
5603 goto unlock;
5604 sd->nohz_idle = 1;
5605
5606 for (; sd; sd = sd->parent)
69e1e811 5607 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5608unlock:
69e1e811
SS
5609 rcu_read_unlock();
5610}
5611
1e3c88bd 5612/*
c1cc017c 5613 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5614 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5615 */
c1cc017c 5616void nohz_balance_enter_idle(int cpu)
1e3c88bd 5617{
71325960
SS
5618 /*
5619 * If this cpu is going down, then nothing needs to be done.
5620 */
5621 if (!cpu_active(cpu))
5622 return;
5623
c1cc017c
AS
5624 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5625 return;
1e3c88bd 5626
c1cc017c
AS
5627 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5628 atomic_inc(&nohz.nr_cpus);
5629 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5630}
71325960 5631
0db0628d 5632static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
5633 unsigned long action, void *hcpu)
5634{
5635 switch (action & ~CPU_TASKS_FROZEN) {
5636 case CPU_DYING:
c1cc017c 5637 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5638 return NOTIFY_OK;
5639 default:
5640 return NOTIFY_DONE;
5641 }
5642}
1e3c88bd
PZ
5643#endif
5644
5645static DEFINE_SPINLOCK(balancing);
5646
49c022e6
PZ
5647/*
5648 * Scale the max load_balance interval with the number of CPUs in the system.
5649 * This trades load-balance latency on larger machines for less cross talk.
5650 */
029632fb 5651void update_max_interval(void)
49c022e6
PZ
5652{
5653 max_load_balance_interval = HZ*num_online_cpus()/10;
5654}
5655
1e3c88bd
PZ
5656/*
5657 * It checks each scheduling domain to see if it is due to be balanced,
5658 * and initiates a balancing operation if so.
5659 *
b9b0853a 5660 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5661 */
5662static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5663{
23f0d209 5664 int continue_balancing = 1;
1e3c88bd
PZ
5665 struct rq *rq = cpu_rq(cpu);
5666 unsigned long interval;
04f733b4 5667 struct sched_domain *sd;
1e3c88bd
PZ
5668 /* Earliest time when we have to do rebalance again */
5669 unsigned long next_balance = jiffies + 60*HZ;
5670 int update_next_balance = 0;
f48627e6
JL
5671 int need_serialize, need_decay = 0;
5672 u64 max_cost = 0;
1e3c88bd 5673
48a16753 5674 update_blocked_averages(cpu);
2069dd75 5675
dce840a0 5676 rcu_read_lock();
1e3c88bd 5677 for_each_domain(cpu, sd) {
f48627e6
JL
5678 /*
5679 * Decay the newidle max times here because this is a regular
5680 * visit to all the domains. Decay ~1% per second.
5681 */
5682 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
5683 sd->max_newidle_lb_cost =
5684 (sd->max_newidle_lb_cost * 253) / 256;
5685 sd->next_decay_max_lb_cost = jiffies + HZ;
5686 need_decay = 1;
5687 }
5688 max_cost += sd->max_newidle_lb_cost;
5689
1e3c88bd
PZ
5690 if (!(sd->flags & SD_LOAD_BALANCE))
5691 continue;
5692
f48627e6
JL
5693 /*
5694 * Stop the load balance at this level. There is another
5695 * CPU in our sched group which is doing load balancing more
5696 * actively.
5697 */
5698 if (!continue_balancing) {
5699 if (need_decay)
5700 continue;
5701 break;
5702 }
5703
1e3c88bd
PZ
5704 interval = sd->balance_interval;
5705 if (idle != CPU_IDLE)
5706 interval *= sd->busy_factor;
5707
5708 /* scale ms to jiffies */
5709 interval = msecs_to_jiffies(interval);
49c022e6 5710 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5711
5712 need_serialize = sd->flags & SD_SERIALIZE;
5713
5714 if (need_serialize) {
5715 if (!spin_trylock(&balancing))
5716 goto out;
5717 }
5718
5719 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 5720 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 5721 /*
6263322c 5722 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
5723 * env->dst_cpu, so we can't know our idle
5724 * state even if we migrated tasks. Update it.
1e3c88bd 5725 */
de5eb2dd 5726 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5727 }
5728 sd->last_balance = jiffies;
5729 }
5730 if (need_serialize)
5731 spin_unlock(&balancing);
5732out:
5733 if (time_after(next_balance, sd->last_balance + interval)) {
5734 next_balance = sd->last_balance + interval;
5735 update_next_balance = 1;
5736 }
f48627e6
JL
5737 }
5738 if (need_decay) {
1e3c88bd 5739 /*
f48627e6
JL
5740 * Ensure the rq-wide value also decays but keep it at a
5741 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 5742 */
f48627e6
JL
5743 rq->max_idle_balance_cost =
5744 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 5745 }
dce840a0 5746 rcu_read_unlock();
1e3c88bd
PZ
5747
5748 /*
5749 * next_balance will be updated only when there is a need.
5750 * When the cpu is attached to null domain for ex, it will not be
5751 * updated.
5752 */
5753 if (likely(update_next_balance))
5754 rq->next_balance = next_balance;
5755}
5756
3451d024 5757#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5758/*
3451d024 5759 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5760 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5761 */
83cd4fe2
VP
5762static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5763{
5764 struct rq *this_rq = cpu_rq(this_cpu);
5765 struct rq *rq;
5766 int balance_cpu;
5767
1c792db7
SS
5768 if (idle != CPU_IDLE ||
5769 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5770 goto end;
83cd4fe2
VP
5771
5772 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5773 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5774 continue;
5775
5776 /*
5777 * If this cpu gets work to do, stop the load balancing
5778 * work being done for other cpus. Next load
5779 * balancing owner will pick it up.
5780 */
1c792db7 5781 if (need_resched())
83cd4fe2 5782 break;
83cd4fe2 5783
5ed4f1d9
VG
5784 rq = cpu_rq(balance_cpu);
5785
5786 raw_spin_lock_irq(&rq->lock);
5787 update_rq_clock(rq);
5788 update_idle_cpu_load(rq);
5789 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5790
5791 rebalance_domains(balance_cpu, CPU_IDLE);
5792
83cd4fe2
VP
5793 if (time_after(this_rq->next_balance, rq->next_balance))
5794 this_rq->next_balance = rq->next_balance;
5795 }
5796 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5797end:
5798 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5799}
5800
5801/*
0b005cf5
SS
5802 * Current heuristic for kicking the idle load balancer in the presence
5803 * of an idle cpu is the system.
5804 * - This rq has more than one task.
5805 * - At any scheduler domain level, this cpu's scheduler group has multiple
5806 * busy cpu's exceeding the group's power.
5807 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5808 * domain span are idle.
83cd4fe2
VP
5809 */
5810static inline int nohz_kick_needed(struct rq *rq, int cpu)
5811{
5812 unsigned long now = jiffies;
0b005cf5 5813 struct sched_domain *sd;
83cd4fe2 5814
1c792db7 5815 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5816 return 0;
5817
1c792db7
SS
5818 /*
5819 * We may be recently in ticked or tickless idle mode. At the first
5820 * busy tick after returning from idle, we will update the busy stats.
5821 */
69e1e811 5822 set_cpu_sd_state_busy();
c1cc017c 5823 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5824
5825 /*
5826 * None are in tickless mode and hence no need for NOHZ idle load
5827 * balancing.
5828 */
5829 if (likely(!atomic_read(&nohz.nr_cpus)))
5830 return 0;
1c792db7
SS
5831
5832 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5833 return 0;
5834
0b005cf5
SS
5835 if (rq->nr_running >= 2)
5836 goto need_kick;
83cd4fe2 5837
067491b7 5838 rcu_read_lock();
0b005cf5
SS
5839 for_each_domain(cpu, sd) {
5840 struct sched_group *sg = sd->groups;
5841 struct sched_group_power *sgp = sg->sgp;
5842 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5843
0b005cf5 5844 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5845 goto need_kick_unlock;
0b005cf5
SS
5846
5847 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5848 && (cpumask_first_and(nohz.idle_cpus_mask,
5849 sched_domain_span(sd)) < cpu))
067491b7 5850 goto need_kick_unlock;
0b005cf5
SS
5851
5852 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5853 break;
83cd4fe2 5854 }
067491b7 5855 rcu_read_unlock();
83cd4fe2 5856 return 0;
067491b7
PZ
5857
5858need_kick_unlock:
5859 rcu_read_unlock();
0b005cf5
SS
5860need_kick:
5861 return 1;
83cd4fe2
VP
5862}
5863#else
5864static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5865#endif
5866
5867/*
5868 * run_rebalance_domains is triggered when needed from the scheduler tick.
5869 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5870 */
1e3c88bd
PZ
5871static void run_rebalance_domains(struct softirq_action *h)
5872{
5873 int this_cpu = smp_processor_id();
5874 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5875 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5876 CPU_IDLE : CPU_NOT_IDLE;
5877
5878 rebalance_domains(this_cpu, idle);
5879
1e3c88bd 5880 /*
83cd4fe2 5881 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5882 * balancing on behalf of the other idle cpus whose ticks are
5883 * stopped.
5884 */
83cd4fe2 5885 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5886}
5887
5888static inline int on_null_domain(int cpu)
5889{
90a6501f 5890 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5891}
5892
5893/*
5894 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5895 */
029632fb 5896void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5897{
1e3c88bd
PZ
5898 /* Don't need to rebalance while attached to NULL domain */
5899 if (time_after_eq(jiffies, rq->next_balance) &&
5900 likely(!on_null_domain(cpu)))
5901 raise_softirq(SCHED_SOFTIRQ);
3451d024 5902#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5903 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5904 nohz_balancer_kick(cpu);
5905#endif
1e3c88bd
PZ
5906}
5907
0bcdcf28
CE
5908static void rq_online_fair(struct rq *rq)
5909{
5910 update_sysctl();
5911}
5912
5913static void rq_offline_fair(struct rq *rq)
5914{
5915 update_sysctl();
a4c96ae3
PB
5916
5917 /* Ensure any throttled groups are reachable by pick_next_task */
5918 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5919}
5920
55e12e5e 5921#endif /* CONFIG_SMP */
e1d1484f 5922
bf0f6f24
IM
5923/*
5924 * scheduler tick hitting a task of our scheduling class:
5925 */
8f4d37ec 5926static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5927{
5928 struct cfs_rq *cfs_rq;
5929 struct sched_entity *se = &curr->se;
5930
5931 for_each_sched_entity(se) {
5932 cfs_rq = cfs_rq_of(se);
8f4d37ec 5933 entity_tick(cfs_rq, se, queued);
bf0f6f24 5934 }
18bf2805 5935
10e84b97 5936 if (numabalancing_enabled)
cbee9f88 5937 task_tick_numa(rq, curr);
3d59eebc 5938
18bf2805 5939 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5940}
5941
5942/*
cd29fe6f
PZ
5943 * called on fork with the child task as argument from the parent's context
5944 * - child not yet on the tasklist
5945 * - preemption disabled
bf0f6f24 5946 */
cd29fe6f 5947static void task_fork_fair(struct task_struct *p)
bf0f6f24 5948{
4fc420c9
DN
5949 struct cfs_rq *cfs_rq;
5950 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5951 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5952 struct rq *rq = this_rq();
5953 unsigned long flags;
5954
05fa785c 5955 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5956
861d034e
PZ
5957 update_rq_clock(rq);
5958
4fc420c9
DN
5959 cfs_rq = task_cfs_rq(current);
5960 curr = cfs_rq->curr;
5961
6c9a27f5
DN
5962 /*
5963 * Not only the cpu but also the task_group of the parent might have
5964 * been changed after parent->se.parent,cfs_rq were copied to
5965 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
5966 * of child point to valid ones.
5967 */
5968 rcu_read_lock();
5969 __set_task_cpu(p, this_cpu);
5970 rcu_read_unlock();
bf0f6f24 5971
7109c442 5972 update_curr(cfs_rq);
cd29fe6f 5973
b5d9d734
MG
5974 if (curr)
5975 se->vruntime = curr->vruntime;
aeb73b04 5976 place_entity(cfs_rq, se, 1);
4d78e7b6 5977
cd29fe6f 5978 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5979 /*
edcb60a3
IM
5980 * Upon rescheduling, sched_class::put_prev_task() will place
5981 * 'current' within the tree based on its new key value.
5982 */
4d78e7b6 5983 swap(curr->vruntime, se->vruntime);
aec0a514 5984 resched_task(rq->curr);
4d78e7b6 5985 }
bf0f6f24 5986
88ec22d3
PZ
5987 se->vruntime -= cfs_rq->min_vruntime;
5988
05fa785c 5989 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5990}
5991
cb469845
SR
5992/*
5993 * Priority of the task has changed. Check to see if we preempt
5994 * the current task.
5995 */
da7a735e
PZ
5996static void
5997prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5998{
da7a735e
PZ
5999 if (!p->se.on_rq)
6000 return;
6001
cb469845
SR
6002 /*
6003 * Reschedule if we are currently running on this runqueue and
6004 * our priority decreased, or if we are not currently running on
6005 * this runqueue and our priority is higher than the current's
6006 */
da7a735e 6007 if (rq->curr == p) {
cb469845
SR
6008 if (p->prio > oldprio)
6009 resched_task(rq->curr);
6010 } else
15afe09b 6011 check_preempt_curr(rq, p, 0);
cb469845
SR
6012}
6013
da7a735e
PZ
6014static void switched_from_fair(struct rq *rq, struct task_struct *p)
6015{
6016 struct sched_entity *se = &p->se;
6017 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6018
6019 /*
6020 * Ensure the task's vruntime is normalized, so that when its
6021 * switched back to the fair class the enqueue_entity(.flags=0) will
6022 * do the right thing.
6023 *
6024 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6025 * have normalized the vruntime, if it was !on_rq, then only when
6026 * the task is sleeping will it still have non-normalized vruntime.
6027 */
6028 if (!se->on_rq && p->state != TASK_RUNNING) {
6029 /*
6030 * Fix up our vruntime so that the current sleep doesn't
6031 * cause 'unlimited' sleep bonus.
6032 */
6033 place_entity(cfs_rq, se, 0);
6034 se->vruntime -= cfs_rq->min_vruntime;
6035 }
9ee474f5 6036
141965c7 6037#ifdef CONFIG_SMP
9ee474f5
PT
6038 /*
6039 * Remove our load from contribution when we leave sched_fair
6040 * and ensure we don't carry in an old decay_count if we
6041 * switch back.
6042 */
87e3c8ae
KT
6043 if (se->avg.decay_count) {
6044 __synchronize_entity_decay(se);
6045 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6046 }
6047#endif
da7a735e
PZ
6048}
6049
cb469845
SR
6050/*
6051 * We switched to the sched_fair class.
6052 */
da7a735e 6053static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6054{
da7a735e
PZ
6055 if (!p->se.on_rq)
6056 return;
6057
cb469845
SR
6058 /*
6059 * We were most likely switched from sched_rt, so
6060 * kick off the schedule if running, otherwise just see
6061 * if we can still preempt the current task.
6062 */
da7a735e 6063 if (rq->curr == p)
cb469845
SR
6064 resched_task(rq->curr);
6065 else
15afe09b 6066 check_preempt_curr(rq, p, 0);
cb469845
SR
6067}
6068
83b699ed
SV
6069/* Account for a task changing its policy or group.
6070 *
6071 * This routine is mostly called to set cfs_rq->curr field when a task
6072 * migrates between groups/classes.
6073 */
6074static void set_curr_task_fair(struct rq *rq)
6075{
6076 struct sched_entity *se = &rq->curr->se;
6077
ec12cb7f
PT
6078 for_each_sched_entity(se) {
6079 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6080
6081 set_next_entity(cfs_rq, se);
6082 /* ensure bandwidth has been allocated on our new cfs_rq */
6083 account_cfs_rq_runtime(cfs_rq, 0);
6084 }
83b699ed
SV
6085}
6086
029632fb
PZ
6087void init_cfs_rq(struct cfs_rq *cfs_rq)
6088{
6089 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6090 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6091#ifndef CONFIG_64BIT
6092 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6093#endif
141965c7 6094#ifdef CONFIG_SMP
9ee474f5 6095 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6096 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6097#endif
029632fb
PZ
6098}
6099
810b3817 6100#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6101static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6102{
aff3e498 6103 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6104 /*
6105 * If the task was not on the rq at the time of this cgroup movement
6106 * it must have been asleep, sleeping tasks keep their ->vruntime
6107 * absolute on their old rq until wakeup (needed for the fair sleeper
6108 * bonus in place_entity()).
6109 *
6110 * If it was on the rq, we've just 'preempted' it, which does convert
6111 * ->vruntime to a relative base.
6112 *
6113 * Make sure both cases convert their relative position when migrating
6114 * to another cgroup's rq. This does somewhat interfere with the
6115 * fair sleeper stuff for the first placement, but who cares.
6116 */
7ceff013
DN
6117 /*
6118 * When !on_rq, vruntime of the task has usually NOT been normalized.
6119 * But there are some cases where it has already been normalized:
6120 *
6121 * - Moving a forked child which is waiting for being woken up by
6122 * wake_up_new_task().
62af3783
DN
6123 * - Moving a task which has been woken up by try_to_wake_up() and
6124 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6125 *
6126 * To prevent boost or penalty in the new cfs_rq caused by delta
6127 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6128 */
62af3783 6129 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6130 on_rq = 1;
6131
b2b5ce02
PZ
6132 if (!on_rq)
6133 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6134 set_task_rq(p, task_cpu(p));
aff3e498
PT
6135 if (!on_rq) {
6136 cfs_rq = cfs_rq_of(&p->se);
6137 p->se.vruntime += cfs_rq->min_vruntime;
6138#ifdef CONFIG_SMP
6139 /*
6140 * migrate_task_rq_fair() will have removed our previous
6141 * contribution, but we must synchronize for ongoing future
6142 * decay.
6143 */
6144 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6145 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6146#endif
6147 }
810b3817 6148}
029632fb
PZ
6149
6150void free_fair_sched_group(struct task_group *tg)
6151{
6152 int i;
6153
6154 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6155
6156 for_each_possible_cpu(i) {
6157 if (tg->cfs_rq)
6158 kfree(tg->cfs_rq[i]);
6159 if (tg->se)
6160 kfree(tg->se[i]);
6161 }
6162
6163 kfree(tg->cfs_rq);
6164 kfree(tg->se);
6165}
6166
6167int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6168{
6169 struct cfs_rq *cfs_rq;
6170 struct sched_entity *se;
6171 int i;
6172
6173 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6174 if (!tg->cfs_rq)
6175 goto err;
6176 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6177 if (!tg->se)
6178 goto err;
6179
6180 tg->shares = NICE_0_LOAD;
6181
6182 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6183
6184 for_each_possible_cpu(i) {
6185 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6186 GFP_KERNEL, cpu_to_node(i));
6187 if (!cfs_rq)
6188 goto err;
6189
6190 se = kzalloc_node(sizeof(struct sched_entity),
6191 GFP_KERNEL, cpu_to_node(i));
6192 if (!se)
6193 goto err_free_rq;
6194
6195 init_cfs_rq(cfs_rq);
6196 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6197 }
6198
6199 return 1;
6200
6201err_free_rq:
6202 kfree(cfs_rq);
6203err:
6204 return 0;
6205}
6206
6207void unregister_fair_sched_group(struct task_group *tg, int cpu)
6208{
6209 struct rq *rq = cpu_rq(cpu);
6210 unsigned long flags;
6211
6212 /*
6213 * Only empty task groups can be destroyed; so we can speculatively
6214 * check on_list without danger of it being re-added.
6215 */
6216 if (!tg->cfs_rq[cpu]->on_list)
6217 return;
6218
6219 raw_spin_lock_irqsave(&rq->lock, flags);
6220 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6221 raw_spin_unlock_irqrestore(&rq->lock, flags);
6222}
6223
6224void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6225 struct sched_entity *se, int cpu,
6226 struct sched_entity *parent)
6227{
6228 struct rq *rq = cpu_rq(cpu);
6229
6230 cfs_rq->tg = tg;
6231 cfs_rq->rq = rq;
029632fb
PZ
6232 init_cfs_rq_runtime(cfs_rq);
6233
6234 tg->cfs_rq[cpu] = cfs_rq;
6235 tg->se[cpu] = se;
6236
6237 /* se could be NULL for root_task_group */
6238 if (!se)
6239 return;
6240
6241 if (!parent)
6242 se->cfs_rq = &rq->cfs;
6243 else
6244 se->cfs_rq = parent->my_q;
6245
6246 se->my_q = cfs_rq;
6247 update_load_set(&se->load, 0);
6248 se->parent = parent;
6249}
6250
6251static DEFINE_MUTEX(shares_mutex);
6252
6253int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6254{
6255 int i;
6256 unsigned long flags;
6257
6258 /*
6259 * We can't change the weight of the root cgroup.
6260 */
6261 if (!tg->se[0])
6262 return -EINVAL;
6263
6264 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6265
6266 mutex_lock(&shares_mutex);
6267 if (tg->shares == shares)
6268 goto done;
6269
6270 tg->shares = shares;
6271 for_each_possible_cpu(i) {
6272 struct rq *rq = cpu_rq(i);
6273 struct sched_entity *se;
6274
6275 se = tg->se[i];
6276 /* Propagate contribution to hierarchy */
6277 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6278
6279 /* Possible calls to update_curr() need rq clock */
6280 update_rq_clock(rq);
17bc14b7 6281 for_each_sched_entity(se)
029632fb
PZ
6282 update_cfs_shares(group_cfs_rq(se));
6283 raw_spin_unlock_irqrestore(&rq->lock, flags);
6284 }
6285
6286done:
6287 mutex_unlock(&shares_mutex);
6288 return 0;
6289}
6290#else /* CONFIG_FAIR_GROUP_SCHED */
6291
6292void free_fair_sched_group(struct task_group *tg) { }
6293
6294int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6295{
6296 return 1;
6297}
6298
6299void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6300
6301#endif /* CONFIG_FAIR_GROUP_SCHED */
6302
810b3817 6303
6d686f45 6304static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6305{
6306 struct sched_entity *se = &task->se;
0d721cea
PW
6307 unsigned int rr_interval = 0;
6308
6309 /*
6310 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6311 * idle runqueue:
6312 */
0d721cea 6313 if (rq->cfs.load.weight)
a59f4e07 6314 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6315
6316 return rr_interval;
6317}
6318
bf0f6f24
IM
6319/*
6320 * All the scheduling class methods:
6321 */
029632fb 6322const struct sched_class fair_sched_class = {
5522d5d5 6323 .next = &idle_sched_class,
bf0f6f24
IM
6324 .enqueue_task = enqueue_task_fair,
6325 .dequeue_task = dequeue_task_fair,
6326 .yield_task = yield_task_fair,
d95f4122 6327 .yield_to_task = yield_to_task_fair,
bf0f6f24 6328
2e09bf55 6329 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6330
6331 .pick_next_task = pick_next_task_fair,
6332 .put_prev_task = put_prev_task_fair,
6333
681f3e68 6334#ifdef CONFIG_SMP
4ce72a2c 6335 .select_task_rq = select_task_rq_fair,
0a74bef8 6336 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6337
0bcdcf28
CE
6338 .rq_online = rq_online_fair,
6339 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6340
6341 .task_waking = task_waking_fair,
681f3e68 6342#endif
bf0f6f24 6343
83b699ed 6344 .set_curr_task = set_curr_task_fair,
bf0f6f24 6345 .task_tick = task_tick_fair,
cd29fe6f 6346 .task_fork = task_fork_fair,
cb469845
SR
6347
6348 .prio_changed = prio_changed_fair,
da7a735e 6349 .switched_from = switched_from_fair,
cb469845 6350 .switched_to = switched_to_fair,
810b3817 6351
0d721cea
PW
6352 .get_rr_interval = get_rr_interval_fair,
6353
810b3817 6354#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6355 .task_move_group = task_move_group_fair,
810b3817 6356#endif
bf0f6f24
IM
6357};
6358
6359#ifdef CONFIG_SCHED_DEBUG
029632fb 6360void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6361{
bf0f6f24
IM
6362 struct cfs_rq *cfs_rq;
6363
5973e5b9 6364 rcu_read_lock();
c3b64f1e 6365 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6366 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6367 rcu_read_unlock();
bf0f6f24
IM
6368}
6369#endif
029632fb
PZ
6370
6371__init void init_sched_fair_class(void)
6372{
6373#ifdef CONFIG_SMP
6374 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6375
3451d024 6376#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6377 nohz.next_balance = jiffies;
029632fb 6378 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6379 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6380#endif
6381#endif /* SMP */
6382
6383}