]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/fair: Change update_load_avg() arguments
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7 515 struct sched_entity *curr = cfs_rq->curr;
bfb06889 516 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 517
1af5f730
PZ
518 u64 vruntime = cfs_rq->min_vruntime;
519
b60205c7
PZ
520 if (curr) {
521 if (curr->on_rq)
522 vruntime = curr->vruntime;
523 else
524 curr = NULL;
525 }
1af5f730 526
bfb06889
DB
527 if (leftmost) { /* non-empty tree */
528 struct sched_entity *se;
529 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 549{
bfb06889 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bfb06889 553 bool leftmost = true;
bf0f6f24
IM
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
bfb06889 569 leftmost = false;
bf0f6f24
IM
570 }
571 }
572
bf0f6f24 573 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
574 rb_insert_color_cached(&se->run_node,
575 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
576}
577
0702e3eb 578static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 579{
bfb06889 580 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
029632fb 583struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 584{
bfb06889 585 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
586
587 if (!left)
588 return NULL;
589
590 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
591}
592
ac53db59
RR
593static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594{
595 struct rb_node *next = rb_next(&se->run_node);
596
597 if (!next)
598 return NULL;
599
600 return rb_entry(next, struct sched_entity, run_node);
601}
602
603#ifdef CONFIG_SCHED_DEBUG
029632fb 604struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 605{
bfb06889 606 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 607
70eee74b
BS
608 if (!last)
609 return NULL;
7eee3e67
IM
610
611 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
612}
613
bf0f6f24
IM
614/**************************************************************
615 * Scheduling class statistics methods:
616 */
617
acb4a848 618int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 619 void __user *buffer, size_t *lenp,
b2be5e96
PZ
620 loff_t *ppos)
621{
8d65af78 622 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 623 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
624
625 if (ret || !write)
626 return ret;
627
628 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 sysctl_sched_min_granularity);
630
acb4a848
CE
631#define WRT_SYSCTL(name) \
632 (normalized_sysctl_##name = sysctl_##name / (factor))
633 WRT_SYSCTL(sched_min_granularity);
634 WRT_SYSCTL(sched_latency);
635 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
636#undef WRT_SYSCTL
637
b2be5e96
PZ
638 return 0;
639}
640#endif
647e7cac 641
a7be37ac 642/*
f9c0b095 643 * delta /= w
a7be37ac 644 */
9dbdb155 645static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 646{
f9c0b095 647 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 648 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
649
650 return delta;
651}
652
647e7cac
IM
653/*
654 * The idea is to set a period in which each task runs once.
655 *
532b1858 656 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
657 * this period because otherwise the slices get too small.
658 *
659 * p = (nr <= nl) ? l : l*nr/nl
660 */
4d78e7b6
PZ
661static u64 __sched_period(unsigned long nr_running)
662{
8e2b0bf3
BF
663 if (unlikely(nr_running > sched_nr_latency))
664 return nr_running * sysctl_sched_min_granularity;
665 else
666 return sysctl_sched_latency;
4d78e7b6
PZ
667}
668
647e7cac
IM
669/*
670 * We calculate the wall-time slice from the period by taking a part
671 * proportional to the weight.
672 *
f9c0b095 673 * s = p*P[w/rw]
647e7cac 674 */
6d0f0ebd 675static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 676{
0a582440 677 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 678
0a582440 679 for_each_sched_entity(se) {
6272d68c 680 struct load_weight *load;
3104bf03 681 struct load_weight lw;
6272d68c
LM
682
683 cfs_rq = cfs_rq_of(se);
684 load = &cfs_rq->load;
f9c0b095 685
0a582440 686 if (unlikely(!se->on_rq)) {
3104bf03 687 lw = cfs_rq->load;
0a582440
MG
688
689 update_load_add(&lw, se->load.weight);
690 load = &lw;
691 }
9dbdb155 692 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
693 }
694 return slice;
bf0f6f24
IM
695}
696
647e7cac 697/*
660cc00f 698 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 699 *
f9c0b095 700 * vs = s/w
647e7cac 701 */
f9c0b095 702static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 703{
f9c0b095 704 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
705}
706
a75cdaa9 707#ifdef CONFIG_SMP
283e2ed3
PZ
708
709#include "sched-pelt.h"
710
772bd008 711static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
712static unsigned long task_h_load(struct task_struct *p);
713
540247fb
YD
714/* Give new sched_entity start runnable values to heavy its load in infant time */
715void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 716{
540247fb 717 struct sched_avg *sa = &se->avg;
a75cdaa9 718
9d89c257
YD
719 sa->last_update_time = 0;
720 /*
721 * sched_avg's period_contrib should be strictly less then 1024, so
722 * we give it 1023 to make sure it is almost a period (1024us), and
723 * will definitely be update (after enqueue).
724 */
725 sa->period_contrib = 1023;
b5a9b340
VG
726 /*
727 * Tasks are intialized with full load to be seen as heavy tasks until
728 * they get a chance to stabilize to their real load level.
729 * Group entities are intialized with zero load to reflect the fact that
730 * nothing has been attached to the task group yet.
731 */
732 if (entity_is_task(se))
733 sa->load_avg = scale_load_down(se->load.weight);
c7b50216 734 sa->load_sum = LOAD_AVG_MAX;
2b8c41da
YD
735 /*
736 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 */
738 sa->util_avg = 0;
739 sa->util_sum = 0;
9d89c257 740 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 741}
7ea241af 742
7dc603c9 743static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 744static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 745
2b8c41da
YD
746/*
747 * With new tasks being created, their initial util_avgs are extrapolated
748 * based on the cfs_rq's current util_avg:
749 *
750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751 *
752 * However, in many cases, the above util_avg does not give a desired
753 * value. Moreover, the sum of the util_avgs may be divergent, such
754 * as when the series is a harmonic series.
755 *
756 * To solve this problem, we also cap the util_avg of successive tasks to
757 * only 1/2 of the left utilization budget:
758 *
759 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760 *
761 * where n denotes the nth task.
762 *
763 * For example, a simplest series from the beginning would be like:
764 *
765 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
766 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767 *
768 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769 * if util_avg > util_avg_cap.
770 */
771void post_init_entity_util_avg(struct sched_entity *se)
772{
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
172895e6 775 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
776
777 if (cap > 0) {
778 if (cfs_rq->avg.util_avg != 0) {
779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
780 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781
782 if (sa->util_avg > cap)
783 sa->util_avg = cap;
784 } else {
785 sa->util_avg = cap;
786 }
787 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 }
7dc603c9
PZ
789
790 if (entity_is_task(se)) {
791 struct task_struct *p = task_of(se);
792 if (p->sched_class != &fair_sched_class) {
793 /*
794 * For !fair tasks do:
795 *
3a123bbb 796 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
797 attach_entity_load_avg(cfs_rq, se);
798 switched_from_fair(rq, p);
799 *
800 * such that the next switched_to_fair() has the
801 * expected state.
802 */
df217913 803 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
804 return;
805 }
806 }
807
df217913 808 attach_entity_cfs_rq(se);
2b8c41da
YD
809}
810
7dc603c9 811#else /* !CONFIG_SMP */
540247fb 812void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
813{
814}
2b8c41da
YD
815void post_init_entity_util_avg(struct sched_entity *se)
816{
817}
3d30544f
PZ
818static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819{
820}
7dc603c9 821#endif /* CONFIG_SMP */
a75cdaa9 822
bf0f6f24 823/*
9dbdb155 824 * Update the current task's runtime statistics.
bf0f6f24 825 */
b7cc0896 826static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 827{
429d43bc 828 struct sched_entity *curr = cfs_rq->curr;
78becc27 829 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 830 u64 delta_exec;
bf0f6f24
IM
831
832 if (unlikely(!curr))
833 return;
834
9dbdb155
PZ
835 delta_exec = now - curr->exec_start;
836 if (unlikely((s64)delta_exec <= 0))
34f28ecd 837 return;
bf0f6f24 838
8ebc91d9 839 curr->exec_start = now;
d842de87 840
9dbdb155
PZ
841 schedstat_set(curr->statistics.exec_max,
842 max(delta_exec, curr->statistics.exec_max));
843
844 curr->sum_exec_runtime += delta_exec;
ae92882e 845 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
846
847 curr->vruntime += calc_delta_fair(delta_exec, curr);
848 update_min_vruntime(cfs_rq);
849
d842de87
SV
850 if (entity_is_task(curr)) {
851 struct task_struct *curtask = task_of(curr);
852
f977bb49 853 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 854 cpuacct_charge(curtask, delta_exec);
f06febc9 855 account_group_exec_runtime(curtask, delta_exec);
d842de87 856 }
ec12cb7f
PT
857
858 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
859}
860
6e998916
SG
861static void update_curr_fair(struct rq *rq)
862{
863 update_curr(cfs_rq_of(&rq->curr->se));
864}
865
bf0f6f24 866static inline void
5870db5b 867update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 868{
4fa8d299
JP
869 u64 wait_start, prev_wait_start;
870
871 if (!schedstat_enabled())
872 return;
873
874 wait_start = rq_clock(rq_of(cfs_rq));
875 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
876
877 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
878 likely(wait_start > prev_wait_start))
879 wait_start -= prev_wait_start;
3ea94de1 880
4fa8d299 881 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
882}
883
4fa8d299 884static inline void
3ea94de1
JP
885update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886{
887 struct task_struct *p;
cb251765
MG
888 u64 delta;
889
4fa8d299
JP
890 if (!schedstat_enabled())
891 return;
892
893 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se)) {
896 p = task_of(se);
897 if (task_on_rq_migrating(p)) {
898 /*
899 * Preserve migrating task's wait time so wait_start
900 * time stamp can be adjusted to accumulate wait time
901 * prior to migration.
902 */
4fa8d299 903 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
904 return;
905 }
906 trace_sched_stat_wait(p, delta);
907 }
908
4fa8d299
JP
909 schedstat_set(se->statistics.wait_max,
910 max(schedstat_val(se->statistics.wait_max), delta));
911 schedstat_inc(se->statistics.wait_count);
912 schedstat_add(se->statistics.wait_sum, delta);
913 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 914}
3ea94de1 915
4fa8d299 916static inline void
1a3d027c
JP
917update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918{
919 struct task_struct *tsk = NULL;
4fa8d299
JP
920 u64 sleep_start, block_start;
921
922 if (!schedstat_enabled())
923 return;
924
925 sleep_start = schedstat_val(se->statistics.sleep_start);
926 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
927
928 if (entity_is_task(se))
929 tsk = task_of(se);
930
4fa8d299
JP
931 if (sleep_start) {
932 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
933
934 if ((s64)delta < 0)
935 delta = 0;
936
4fa8d299
JP
937 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 939
4fa8d299
JP
940 schedstat_set(se->statistics.sleep_start, 0);
941 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
942
943 if (tsk) {
944 account_scheduler_latency(tsk, delta >> 10, 1);
945 trace_sched_stat_sleep(tsk, delta);
946 }
947 }
4fa8d299
JP
948 if (block_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 schedstat_set(se->statistics.block_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.block_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 if (tsk->in_iowait) {
4fa8d299
JP
962 schedstat_add(se->statistics.iowait_sum, delta);
963 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
964 trace_sched_stat_iowait(tsk, delta);
965 }
966
967 trace_sched_stat_blocked(tsk, delta);
968
969 /*
970 * Blocking time is in units of nanosecs, so shift by
971 * 20 to get a milliseconds-range estimation of the
972 * amount of time that the task spent sleeping:
973 */
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 profile_hits(SLEEP_PROFILING,
976 (void *)get_wchan(tsk),
977 delta >> 20);
978 }
979 account_scheduler_latency(tsk, delta >> 10, 0);
980 }
981 }
3ea94de1 982}
3ea94de1 983
bf0f6f24
IM
984/*
985 * Task is being enqueued - update stats:
986 */
cb251765 987static inline void
1a3d027c 988update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 989{
4fa8d299
JP
990 if (!schedstat_enabled())
991 return;
992
bf0f6f24
IM
993 /*
994 * Are we enqueueing a waiting task? (for current tasks
995 * a dequeue/enqueue event is a NOP)
996 */
429d43bc 997 if (se != cfs_rq->curr)
5870db5b 998 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
999
1000 if (flags & ENQUEUE_WAKEUP)
1001 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1002}
1003
bf0f6f24 1004static inline void
cb251765 1005update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Mark the end of the wait period if dequeueing a
1013 * waiting task:
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
9ef0a961 1016 update_stats_wait_end(cfs_rq, se);
cb251765 1017
4fa8d299
JP
1018 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 struct task_struct *tsk = task_of(se);
cb251765 1020
4fa8d299
JP
1021 if (tsk->state & TASK_INTERRUPTIBLE)
1022 schedstat_set(se->statistics.sleep_start,
1023 rq_clock(rq_of(cfs_rq)));
1024 if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 schedstat_set(se->statistics.block_start,
1026 rq_clock(rq_of(cfs_rq)));
cb251765 1027 }
cb251765
MG
1028}
1029
bf0f6f24
IM
1030/*
1031 * We are picking a new current task - update its stats:
1032 */
1033static inline void
79303e9e 1034update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1035{
1036 /*
1037 * We are starting a new run period:
1038 */
78becc27 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1040}
1041
bf0f6f24
IM
1042/**************************************************
1043 * Scheduling class queueing methods:
1044 */
1045
cbee9f88
PZ
1046#ifdef CONFIG_NUMA_BALANCING
1047/*
598f0ec0
MG
1048 * Approximate time to scan a full NUMA task in ms. The task scan period is
1049 * calculated based on the tasks virtual memory size and
1050 * numa_balancing_scan_size.
cbee9f88 1051 */
598f0ec0
MG
1052unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1054
1055/* Portion of address space to scan in MB */
1056unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1057
4b96a29b
PZ
1058/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060
b5dd77c8
RR
1061struct numa_group {
1062 atomic_t refcount;
1063
1064 spinlock_t lock; /* nr_tasks, tasks */
1065 int nr_tasks;
1066 pid_t gid;
1067 int active_nodes;
1068
1069 struct rcu_head rcu;
1070 unsigned long total_faults;
1071 unsigned long max_faults_cpu;
1072 /*
1073 * Faults_cpu is used to decide whether memory should move
1074 * towards the CPU. As a consequence, these stats are weighted
1075 * more by CPU use than by memory faults.
1076 */
1077 unsigned long *faults_cpu;
1078 unsigned long faults[0];
1079};
1080
1081static inline unsigned long group_faults_priv(struct numa_group *ng);
1082static inline unsigned long group_faults_shared(struct numa_group *ng);
1083
598f0ec0
MG
1084static unsigned int task_nr_scan_windows(struct task_struct *p)
1085{
1086 unsigned long rss = 0;
1087 unsigned long nr_scan_pages;
1088
1089 /*
1090 * Calculations based on RSS as non-present and empty pages are skipped
1091 * by the PTE scanner and NUMA hinting faults should be trapped based
1092 * on resident pages
1093 */
1094 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1095 rss = get_mm_rss(p->mm);
1096 if (!rss)
1097 rss = nr_scan_pages;
1098
1099 rss = round_up(rss, nr_scan_pages);
1100 return rss / nr_scan_pages;
1101}
1102
1103/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1104#define MAX_SCAN_WINDOW 2560
1105
1106static unsigned int task_scan_min(struct task_struct *p)
1107{
316c1608 1108 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1109 unsigned int scan, floor;
1110 unsigned int windows = 1;
1111
64192658
KT
1112 if (scan_size < MAX_SCAN_WINDOW)
1113 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1114 floor = 1000 / windows;
1115
1116 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1117 return max_t(unsigned int, floor, scan);
1118}
1119
b5dd77c8
RR
1120static unsigned int task_scan_start(struct task_struct *p)
1121{
1122 unsigned long smin = task_scan_min(p);
1123 unsigned long period = smin;
1124
1125 /* Scale the maximum scan period with the amount of shared memory. */
1126 if (p->numa_group) {
1127 struct numa_group *ng = p->numa_group;
1128 unsigned long shared = group_faults_shared(ng);
1129 unsigned long private = group_faults_priv(ng);
1130
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1134 }
1135
1136 return max(smin, period);
1137}
1138
598f0ec0
MG
1139static unsigned int task_scan_max(struct task_struct *p)
1140{
b5dd77c8
RR
1141 unsigned long smin = task_scan_min(p);
1142 unsigned long smax;
598f0ec0
MG
1143
1144 /* Watch for min being lower than max due to floor calculations */
1145 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1146
1147 /* Scale the maximum scan period with the amount of shared memory. */
1148 if (p->numa_group) {
1149 struct numa_group *ng = p->numa_group;
1150 unsigned long shared = group_faults_shared(ng);
1151 unsigned long private = group_faults_priv(ng);
1152 unsigned long period = smax;
1153
1154 period *= atomic_read(&ng->refcount);
1155 period *= shared + 1;
1156 period /= private + shared + 1;
1157
1158 smax = max(smax, period);
1159 }
1160
598f0ec0
MG
1161 return max(smin, smax);
1162}
1163
0ec8aa00
PZ
1164static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1165{
1166 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1167 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168}
1169
1170static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1171{
1172 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1173 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174}
1175
be1e4e76
RR
1176/* Shared or private faults. */
1177#define NR_NUMA_HINT_FAULT_TYPES 2
1178
1179/* Memory and CPU locality */
1180#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1181
1182/* Averaged statistics, and temporary buffers. */
1183#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1184
e29cf08b
MG
1185pid_t task_numa_group_id(struct task_struct *p)
1186{
1187 return p->numa_group ? p->numa_group->gid : 0;
1188}
1189
44dba3d5
IM
1190/*
1191 * The averaged statistics, shared & private, memory & cpu,
1192 * occupy the first half of the array. The second half of the
1193 * array is for current counters, which are averaged into the
1194 * first set by task_numa_placement.
1195 */
1196static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1197{
44dba3d5 1198 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1199}
1200
1201static inline unsigned long task_faults(struct task_struct *p, int nid)
1202{
44dba3d5 1203 if (!p->numa_faults)
ac8e895b
MG
1204 return 0;
1205
44dba3d5
IM
1206 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1208}
1209
83e1d2cd
MG
1210static inline unsigned long group_faults(struct task_struct *p, int nid)
1211{
1212 if (!p->numa_group)
1213 return 0;
1214
44dba3d5
IM
1215 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1216 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1217}
1218
20e07dea
RR
1219static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1220{
44dba3d5
IM
1221 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1222 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1223}
1224
b5dd77c8
RR
1225static inline unsigned long group_faults_priv(struct numa_group *ng)
1226{
1227 unsigned long faults = 0;
1228 int node;
1229
1230 for_each_online_node(node) {
1231 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1232 }
1233
1234 return faults;
1235}
1236
1237static inline unsigned long group_faults_shared(struct numa_group *ng)
1238{
1239 unsigned long faults = 0;
1240 int node;
1241
1242 for_each_online_node(node) {
1243 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1244 }
1245
1246 return faults;
1247}
1248
4142c3eb
RR
1249/*
1250 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1251 * considered part of a numa group's pseudo-interleaving set. Migrations
1252 * between these nodes are slowed down, to allow things to settle down.
1253 */
1254#define ACTIVE_NODE_FRACTION 3
1255
1256static bool numa_is_active_node(int nid, struct numa_group *ng)
1257{
1258 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1259}
1260
6c6b1193
RR
1261/* Handle placement on systems where not all nodes are directly connected. */
1262static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1263 int maxdist, bool task)
1264{
1265 unsigned long score = 0;
1266 int node;
1267
1268 /*
1269 * All nodes are directly connected, and the same distance
1270 * from each other. No need for fancy placement algorithms.
1271 */
1272 if (sched_numa_topology_type == NUMA_DIRECT)
1273 return 0;
1274
1275 /*
1276 * This code is called for each node, introducing N^2 complexity,
1277 * which should be ok given the number of nodes rarely exceeds 8.
1278 */
1279 for_each_online_node(node) {
1280 unsigned long faults;
1281 int dist = node_distance(nid, node);
1282
1283 /*
1284 * The furthest away nodes in the system are not interesting
1285 * for placement; nid was already counted.
1286 */
1287 if (dist == sched_max_numa_distance || node == nid)
1288 continue;
1289
1290 /*
1291 * On systems with a backplane NUMA topology, compare groups
1292 * of nodes, and move tasks towards the group with the most
1293 * memory accesses. When comparing two nodes at distance
1294 * "hoplimit", only nodes closer by than "hoplimit" are part
1295 * of each group. Skip other nodes.
1296 */
1297 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1298 dist > maxdist)
1299 continue;
1300
1301 /* Add up the faults from nearby nodes. */
1302 if (task)
1303 faults = task_faults(p, node);
1304 else
1305 faults = group_faults(p, node);
1306
1307 /*
1308 * On systems with a glueless mesh NUMA topology, there are
1309 * no fixed "groups of nodes". Instead, nodes that are not
1310 * directly connected bounce traffic through intermediate
1311 * nodes; a numa_group can occupy any set of nodes.
1312 * The further away a node is, the less the faults count.
1313 * This seems to result in good task placement.
1314 */
1315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1316 faults *= (sched_max_numa_distance - dist);
1317 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1318 }
1319
1320 score += faults;
1321 }
1322
1323 return score;
1324}
1325
83e1d2cd
MG
1326/*
1327 * These return the fraction of accesses done by a particular task, or
1328 * task group, on a particular numa node. The group weight is given a
1329 * larger multiplier, in order to group tasks together that are almost
1330 * evenly spread out between numa nodes.
1331 */
7bd95320
RR
1332static inline unsigned long task_weight(struct task_struct *p, int nid,
1333 int dist)
83e1d2cd 1334{
7bd95320 1335 unsigned long faults, total_faults;
83e1d2cd 1336
44dba3d5 1337 if (!p->numa_faults)
83e1d2cd
MG
1338 return 0;
1339
1340 total_faults = p->total_numa_faults;
1341
1342 if (!total_faults)
1343 return 0;
1344
7bd95320 1345 faults = task_faults(p, nid);
6c6b1193
RR
1346 faults += score_nearby_nodes(p, nid, dist, true);
1347
7bd95320 1348 return 1000 * faults / total_faults;
83e1d2cd
MG
1349}
1350
7bd95320
RR
1351static inline unsigned long group_weight(struct task_struct *p, int nid,
1352 int dist)
83e1d2cd 1353{
7bd95320
RR
1354 unsigned long faults, total_faults;
1355
1356 if (!p->numa_group)
1357 return 0;
1358
1359 total_faults = p->numa_group->total_faults;
1360
1361 if (!total_faults)
83e1d2cd
MG
1362 return 0;
1363
7bd95320 1364 faults = group_faults(p, nid);
6c6b1193
RR
1365 faults += score_nearby_nodes(p, nid, dist, false);
1366
7bd95320 1367 return 1000 * faults / total_faults;
83e1d2cd
MG
1368}
1369
10f39042
RR
1370bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 int src_nid, int dst_cpu)
1372{
1373 struct numa_group *ng = p->numa_group;
1374 int dst_nid = cpu_to_node(dst_cpu);
1375 int last_cpupid, this_cpupid;
1376
1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378
1379 /*
1380 * Multi-stage node selection is used in conjunction with a periodic
1381 * migration fault to build a temporal task<->page relation. By using
1382 * a two-stage filter we remove short/unlikely relations.
1383 *
1384 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1385 * a task's usage of a particular page (n_p) per total usage of this
1386 * page (n_t) (in a given time-span) to a probability.
1387 *
1388 * Our periodic faults will sample this probability and getting the
1389 * same result twice in a row, given these samples are fully
1390 * independent, is then given by P(n)^2, provided our sample period
1391 * is sufficiently short compared to the usage pattern.
1392 *
1393 * This quadric squishes small probabilities, making it less likely we
1394 * act on an unlikely task<->page relation.
1395 */
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 if (!cpupid_pid_unset(last_cpupid) &&
1398 cpupid_to_nid(last_cpupid) != dst_nid)
1399 return false;
1400
1401 /* Always allow migrate on private faults */
1402 if (cpupid_match_pid(p, last_cpupid))
1403 return true;
1404
1405 /* A shared fault, but p->numa_group has not been set up yet. */
1406 if (!ng)
1407 return true;
1408
1409 /*
4142c3eb
RR
1410 * Destination node is much more heavily used than the source
1411 * node? Allow migration.
10f39042 1412 */
4142c3eb
RR
1413 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1414 ACTIVE_NODE_FRACTION)
10f39042
RR
1415 return true;
1416
1417 /*
4142c3eb
RR
1418 * Distribute memory according to CPU & memory use on each node,
1419 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1420 *
1421 * faults_cpu(dst) 3 faults_cpu(src)
1422 * --------------- * - > ---------------
1423 * faults_mem(dst) 4 faults_mem(src)
10f39042 1424 */
4142c3eb
RR
1425 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1426 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1427}
1428
c7132dd6 1429static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1430static unsigned long source_load(int cpu, int type);
1431static unsigned long target_load(int cpu, int type);
ced549fa 1432static unsigned long capacity_of(int cpu);
58d081b5 1433
fb13c7ee 1434/* Cached statistics for all CPUs within a node */
58d081b5 1435struct numa_stats {
fb13c7ee 1436 unsigned long nr_running;
58d081b5 1437 unsigned long load;
fb13c7ee
MG
1438
1439 /* Total compute capacity of CPUs on a node */
5ef20ca1 1440 unsigned long compute_capacity;
fb13c7ee
MG
1441
1442 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1443 unsigned long task_capacity;
1b6a7495 1444 int has_free_capacity;
58d081b5 1445};
e6628d5b 1446
fb13c7ee
MG
1447/*
1448 * XXX borrowed from update_sg_lb_stats
1449 */
1450static void update_numa_stats(struct numa_stats *ns, int nid)
1451{
83d7f242
RR
1452 int smt, cpu, cpus = 0;
1453 unsigned long capacity;
fb13c7ee
MG
1454
1455 memset(ns, 0, sizeof(*ns));
1456 for_each_cpu(cpu, cpumask_of_node(nid)) {
1457 struct rq *rq = cpu_rq(cpu);
1458
1459 ns->nr_running += rq->nr_running;
c7132dd6 1460 ns->load += weighted_cpuload(rq);
ced549fa 1461 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1462
1463 cpus++;
fb13c7ee
MG
1464 }
1465
5eca82a9
PZ
1466 /*
1467 * If we raced with hotplug and there are no CPUs left in our mask
1468 * the @ns structure is NULL'ed and task_numa_compare() will
1469 * not find this node attractive.
1470 *
1b6a7495
NP
1471 * We'll either bail at !has_free_capacity, or we'll detect a huge
1472 * imbalance and bail there.
5eca82a9
PZ
1473 */
1474 if (!cpus)
1475 return;
1476
83d7f242
RR
1477 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1478 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1479 capacity = cpus / smt; /* cores */
1480
1481 ns->task_capacity = min_t(unsigned, capacity,
1482 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1483 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
fb13c7ee
MG
1502static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1504{
1505 if (env->best_task)
1506 put_task_struct(env->best_task);
bac78573
ON
1507 if (p)
1508 get_task_struct(p);
fb13c7ee
MG
1509
1510 env->best_task = p;
1511 env->best_imp = imp;
1512 env->best_cpu = env->dst_cpu;
1513}
1514
28a21745 1515static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1516 struct task_numa_env *env)
1517{
e4991b24
RR
1518 long imb, old_imb;
1519 long orig_src_load, orig_dst_load;
28a21745
RR
1520 long src_capacity, dst_capacity;
1521
1522 /*
1523 * The load is corrected for the CPU capacity available on each node.
1524 *
1525 * src_load dst_load
1526 * ------------ vs ---------
1527 * src_capacity dst_capacity
1528 */
1529 src_capacity = env->src_stats.compute_capacity;
1530 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1531
1532 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1533 if (dst_load < src_load)
1534 swap(dst_load, src_load);
e63da036
RR
1535
1536 /* Is the difference below the threshold? */
e4991b24
RR
1537 imb = dst_load * src_capacity * 100 -
1538 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1539 if (imb <= 0)
1540 return false;
1541
1542 /*
1543 * The imbalance is above the allowed threshold.
e4991b24 1544 * Compare it with the old imbalance.
e63da036 1545 */
28a21745 1546 orig_src_load = env->src_stats.load;
e4991b24 1547 orig_dst_load = env->dst_stats.load;
28a21745 1548
e4991b24
RR
1549 if (orig_dst_load < orig_src_load)
1550 swap(orig_dst_load, orig_src_load);
e63da036 1551
e4991b24
RR
1552 old_imb = orig_dst_load * src_capacity * 100 -
1553 orig_src_load * dst_capacity * env->imbalance_pct;
1554
1555 /* Would this change make things worse? */
1556 return (imb > old_imb);
e63da036
RR
1557}
1558
fb13c7ee
MG
1559/*
1560 * This checks if the overall compute and NUMA accesses of the system would
1561 * be improved if the source tasks was migrated to the target dst_cpu taking
1562 * into account that it might be best if task running on the dst_cpu should
1563 * be exchanged with the source task
1564 */
887c290e
RR
1565static void task_numa_compare(struct task_numa_env *env,
1566 long taskimp, long groupimp)
fb13c7ee
MG
1567{
1568 struct rq *src_rq = cpu_rq(env->src_cpu);
1569 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1570 struct task_struct *cur;
28a21745 1571 long src_load, dst_load;
fb13c7ee 1572 long load;
1c5d3eb3 1573 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1574 long moveimp = imp;
7bd95320 1575 int dist = env->dist;
fb13c7ee
MG
1576
1577 rcu_read_lock();
bac78573
ON
1578 cur = task_rcu_dereference(&dst_rq->curr);
1579 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1580 cur = NULL;
1581
7af68335
PZ
1582 /*
1583 * Because we have preemption enabled we can get migrated around and
1584 * end try selecting ourselves (current == env->p) as a swap candidate.
1585 */
1586 if (cur == env->p)
1587 goto unlock;
1588
fb13c7ee
MG
1589 /*
1590 * "imp" is the fault differential for the source task between the
1591 * source and destination node. Calculate the total differential for
1592 * the source task and potential destination task. The more negative
1593 * the value is, the more rmeote accesses that would be expected to
1594 * be incurred if the tasks were swapped.
1595 */
1596 if (cur) {
1597 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1598 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1599 goto unlock;
1600
887c290e
RR
1601 /*
1602 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1603 * in any group then look only at task weights.
887c290e 1604 */
ca28aa53 1605 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1606 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1607 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1608 /*
1609 * Add some hysteresis to prevent swapping the
1610 * tasks within a group over tiny differences.
1611 */
1612 if (cur->numa_group)
1613 imp -= imp/16;
887c290e 1614 } else {
ca28aa53
RR
1615 /*
1616 * Compare the group weights. If a task is all by
1617 * itself (not part of a group), use the task weight
1618 * instead.
1619 */
ca28aa53 1620 if (cur->numa_group)
7bd95320
RR
1621 imp += group_weight(cur, env->src_nid, dist) -
1622 group_weight(cur, env->dst_nid, dist);
ca28aa53 1623 else
7bd95320
RR
1624 imp += task_weight(cur, env->src_nid, dist) -
1625 task_weight(cur, env->dst_nid, dist);
887c290e 1626 }
fb13c7ee
MG
1627 }
1628
0132c3e1 1629 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1630 goto unlock;
1631
1632 if (!cur) {
1633 /* Is there capacity at our destination? */
b932c03c 1634 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1635 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1636 goto unlock;
1637
1638 goto balance;
1639 }
1640
1641 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1642 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1643 dst_rq->nr_running == 1)
fb13c7ee
MG
1644 goto assign;
1645
1646 /*
1647 * In the overloaded case, try and keep the load balanced.
1648 */
1649balance:
e720fff6
PZ
1650 load = task_h_load(env->p);
1651 dst_load = env->dst_stats.load + load;
1652 src_load = env->src_stats.load - load;
fb13c7ee 1653
0132c3e1
RR
1654 if (moveimp > imp && moveimp > env->best_imp) {
1655 /*
1656 * If the improvement from just moving env->p direction is
1657 * better than swapping tasks around, check if a move is
1658 * possible. Store a slightly smaller score than moveimp,
1659 * so an actually idle CPU will win.
1660 */
1661 if (!load_too_imbalanced(src_load, dst_load, env)) {
1662 imp = moveimp - 1;
1663 cur = NULL;
1664 goto assign;
1665 }
1666 }
1667
1668 if (imp <= env->best_imp)
1669 goto unlock;
1670
fb13c7ee 1671 if (cur) {
e720fff6
PZ
1672 load = task_h_load(cur);
1673 dst_load -= load;
1674 src_load += load;
fb13c7ee
MG
1675 }
1676
28a21745 1677 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1678 goto unlock;
1679
ba7e5a27
RR
1680 /*
1681 * One idle CPU per node is evaluated for a task numa move.
1682 * Call select_idle_sibling to maybe find a better one.
1683 */
10e2f1ac
PZ
1684 if (!cur) {
1685 /*
1686 * select_idle_siblings() uses an per-cpu cpumask that
1687 * can be used from IRQ context.
1688 */
1689 local_irq_disable();
772bd008
MR
1690 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1691 env->dst_cpu);
10e2f1ac
PZ
1692 local_irq_enable();
1693 }
ba7e5a27 1694
fb13c7ee
MG
1695assign:
1696 task_numa_assign(env, cur, imp);
1697unlock:
1698 rcu_read_unlock();
1699}
1700
887c290e
RR
1701static void task_numa_find_cpu(struct task_numa_env *env,
1702 long taskimp, long groupimp)
2c8a50aa
MG
1703{
1704 int cpu;
1705
1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 /* Skip this CPU if the source task cannot migrate */
0c98d344 1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1709 continue;
1710
1711 env->dst_cpu = cpu;
887c290e 1712 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1713 }
1714}
1715
6f9aad0b
RR
1716/* Only move tasks to a NUMA node less busy than the current node. */
1717static bool numa_has_capacity(struct task_numa_env *env)
1718{
1719 struct numa_stats *src = &env->src_stats;
1720 struct numa_stats *dst = &env->dst_stats;
1721
1722 if (src->has_free_capacity && !dst->has_free_capacity)
1723 return false;
1724
1725 /*
1726 * Only consider a task move if the source has a higher load
1727 * than the destination, corrected for CPU capacity on each node.
1728 *
1729 * src->load dst->load
1730 * --------------------- vs ---------------------
1731 * src->compute_capacity dst->compute_capacity
1732 */
44dcb04f
SD
1733 if (src->load * dst->compute_capacity * env->imbalance_pct >
1734
1735 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1736 return true;
1737
1738 return false;
1739}
1740
58d081b5
MG
1741static int task_numa_migrate(struct task_struct *p)
1742{
58d081b5
MG
1743 struct task_numa_env env = {
1744 .p = p,
fb13c7ee 1745
58d081b5 1746 .src_cpu = task_cpu(p),
b32e86b4 1747 .src_nid = task_node(p),
fb13c7ee
MG
1748
1749 .imbalance_pct = 112,
1750
1751 .best_task = NULL,
1752 .best_imp = 0,
4142c3eb 1753 .best_cpu = -1,
58d081b5
MG
1754 };
1755 struct sched_domain *sd;
887c290e 1756 unsigned long taskweight, groupweight;
7bd95320 1757 int nid, ret, dist;
887c290e 1758 long taskimp, groupimp;
e6628d5b 1759
58d081b5 1760 /*
fb13c7ee
MG
1761 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 * imbalance and would be the first to start moving tasks about.
1763 *
1764 * And we want to avoid any moving of tasks about, as that would create
1765 * random movement of tasks -- counter the numa conditions we're trying
1766 * to satisfy here.
58d081b5
MG
1767 */
1768 rcu_read_lock();
fb13c7ee 1769 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1770 if (sd)
1771 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1772 rcu_read_unlock();
1773
46a73e8a
RR
1774 /*
1775 * Cpusets can break the scheduler domain tree into smaller
1776 * balance domains, some of which do not cross NUMA boundaries.
1777 * Tasks that are "trapped" in such domains cannot be migrated
1778 * elsewhere, so there is no point in (re)trying.
1779 */
1780 if (unlikely(!sd)) {
de1b301a 1781 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1782 return -EINVAL;
1783 }
1784
2c8a50aa 1785 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1786 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 taskweight = task_weight(p, env.src_nid, dist);
1788 groupweight = group_weight(p, env.src_nid, dist);
1789 update_numa_stats(&env.src_stats, env.src_nid);
1790 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1792 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1793
a43455a1 1794 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1795 if (numa_has_capacity(&env))
1796 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1797
9de05d48
RR
1798 /*
1799 * Look at other nodes in these cases:
1800 * - there is no space available on the preferred_nid
1801 * - the task is part of a numa_group that is interleaved across
1802 * multiple NUMA nodes; in order to better consolidate the group,
1803 * we need to check other locations.
1804 */
4142c3eb 1805 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1806 for_each_online_node(nid) {
1807 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 continue;
58d081b5 1809
7bd95320 1810 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1811 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 dist != env.dist) {
1813 taskweight = task_weight(p, env.src_nid, dist);
1814 groupweight = group_weight(p, env.src_nid, dist);
1815 }
7bd95320 1816
83e1d2cd 1817 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1818 taskimp = task_weight(p, nid, dist) - taskweight;
1819 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1820 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1821 continue;
1822
7bd95320 1823 env.dist = dist;
2c8a50aa
MG
1824 env.dst_nid = nid;
1825 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1826 if (numa_has_capacity(&env))
1827 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1828 }
1829 }
1830
68d1b02a
RR
1831 /*
1832 * If the task is part of a workload that spans multiple NUMA nodes,
1833 * and is migrating into one of the workload's active nodes, remember
1834 * this node as the task's preferred numa node, so the workload can
1835 * settle down.
1836 * A task that migrated to a second choice node will be better off
1837 * trying for a better one later. Do not set the preferred node here.
1838 */
db015dae 1839 if (p->numa_group) {
4142c3eb
RR
1840 struct numa_group *ng = p->numa_group;
1841
db015dae
RR
1842 if (env.best_cpu == -1)
1843 nid = env.src_nid;
1844 else
1845 nid = env.dst_nid;
1846
4142c3eb 1847 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1848 sched_setnuma(p, env.dst_nid);
1849 }
1850
1851 /* No better CPU than the current one was found. */
1852 if (env.best_cpu == -1)
1853 return -EAGAIN;
0ec8aa00 1854
04bb2f94
RR
1855 /*
1856 * Reset the scan period if the task is being rescheduled on an
1857 * alternative node to recheck if the tasks is now properly placed.
1858 */
b5dd77c8 1859 p->numa_scan_period = task_scan_start(p);
04bb2f94 1860
fb13c7ee 1861 if (env.best_task == NULL) {
286549dc
MG
1862 ret = migrate_task_to(p, env.best_cpu);
1863 if (ret != 0)
1864 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1865 return ret;
1866 }
1867
1868 ret = migrate_swap(p, env.best_task);
286549dc
MG
1869 if (ret != 0)
1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1871 put_task_struct(env.best_task);
1872 return ret;
e6628d5b
MG
1873}
1874
6b9a7460
MG
1875/* Attempt to migrate a task to a CPU on the preferred node. */
1876static void numa_migrate_preferred(struct task_struct *p)
1877{
5085e2a3
RR
1878 unsigned long interval = HZ;
1879
2739d3ee 1880 /* This task has no NUMA fault statistics yet */
44dba3d5 1881 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1882 return;
1883
2739d3ee 1884 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1887
1888 /* Success if task is already running on preferred CPU */
de1b301a 1889 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1890 return;
1891
1892 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1893 task_numa_migrate(p);
6b9a7460
MG
1894}
1895
20e07dea 1896/*
4142c3eb 1897 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1898 * tracking the nodes from which NUMA hinting faults are triggered. This can
1899 * be different from the set of nodes where the workload's memory is currently
1900 * located.
20e07dea 1901 */
4142c3eb 1902static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1903{
1904 unsigned long faults, max_faults = 0;
4142c3eb 1905 int nid, active_nodes = 0;
20e07dea
RR
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
1909 if (faults > max_faults)
1910 max_faults = faults;
1911 }
1912
1913 for_each_online_node(nid) {
1914 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1915 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 active_nodes++;
20e07dea 1917 }
4142c3eb
RR
1918
1919 numa_group->max_faults_cpu = max_faults;
1920 numa_group->active_nodes = active_nodes;
20e07dea
RR
1921}
1922
04bb2f94
RR
1923/*
1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1926 * period will be for the next scan window. If local/(local+remote) ratio is
1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1929 */
1930#define NUMA_PERIOD_SLOTS 10
a22b4b01 1931#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1932
1933/*
1934 * Increase the scan period (slow down scanning) if the majority of
1935 * our memory is already on our local node, or if the majority of
1936 * the page accesses are shared with other processes.
1937 * Otherwise, decrease the scan period.
1938 */
1939static void update_task_scan_period(struct task_struct *p,
1940 unsigned long shared, unsigned long private)
1941{
1942 unsigned int period_slot;
37ec97de 1943 int lr_ratio, ps_ratio;
04bb2f94
RR
1944 int diff;
1945
1946 unsigned long remote = p->numa_faults_locality[0];
1947 unsigned long local = p->numa_faults_locality[1];
1948
1949 /*
1950 * If there were no record hinting faults then either the task is
1951 * completely idle or all activity is areas that are not of interest
074c2381
MG
1952 * to automatic numa balancing. Related to that, if there were failed
1953 * migration then it implies we are migrating too quickly or the local
1954 * node is overloaded. In either case, scan slower
04bb2f94 1955 */
074c2381 1956 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1957 p->numa_scan_period = min(p->numa_scan_period_max,
1958 p->numa_scan_period << 1);
1959
1960 p->mm->numa_next_scan = jiffies +
1961 msecs_to_jiffies(p->numa_scan_period);
1962
1963 return;
1964 }
1965
1966 /*
1967 * Prepare to scale scan period relative to the current period.
1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 */
1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975
1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 /*
1978 * Most memory accesses are local. There is no need to
1979 * do fast NUMA scanning, since memory is already local.
1980 */
1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 if (!slot)
1983 slot = 1;
1984 diff = slot * period_slot;
1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 /*
1987 * Most memory accesses are shared with other tasks.
1988 * There is no point in continuing fast NUMA scanning,
1989 * since other tasks may just move the memory elsewhere.
1990 */
1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1992 if (!slot)
1993 slot = 1;
1994 diff = slot * period_slot;
1995 } else {
04bb2f94 1996 /*
37ec97de
RR
1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 * yet they are not on the local NUMA node. Speed up
1999 * NUMA scanning to get the memory moved over.
04bb2f94 2000 */
37ec97de
RR
2001 int ratio = max(lr_ratio, ps_ratio);
2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2003 }
2004
2005 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 task_scan_min(p), task_scan_max(p));
2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008}
2009
7e2703e6
RR
2010/*
2011 * Get the fraction of time the task has been running since the last
2012 * NUMA placement cycle. The scheduler keeps similar statistics, but
2013 * decays those on a 32ms period, which is orders of magnitude off
2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015 * stats only if the task is so new there are no NUMA statistics yet.
2016 */
2017static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018{
2019 u64 runtime, delta, now;
2020 /* Use the start of this time slice to avoid calculations. */
2021 now = p->se.exec_start;
2022 runtime = p->se.sum_exec_runtime;
2023
2024 if (p->last_task_numa_placement) {
2025 delta = runtime - p->last_sum_exec_runtime;
2026 *period = now - p->last_task_numa_placement;
2027 } else {
c7b50216 2028 delta = p->se.avg.load_sum;
9d89c257 2029 *period = LOAD_AVG_MAX;
7e2703e6
RR
2030 }
2031
2032 p->last_sum_exec_runtime = runtime;
2033 p->last_task_numa_placement = now;
2034
2035 return delta;
2036}
2037
54009416
RR
2038/*
2039 * Determine the preferred nid for a task in a numa_group. This needs to
2040 * be done in a way that produces consistent results with group_weight,
2041 * otherwise workloads might not converge.
2042 */
2043static int preferred_group_nid(struct task_struct *p, int nid)
2044{
2045 nodemask_t nodes;
2046 int dist;
2047
2048 /* Direct connections between all NUMA nodes. */
2049 if (sched_numa_topology_type == NUMA_DIRECT)
2050 return nid;
2051
2052 /*
2053 * On a system with glueless mesh NUMA topology, group_weight
2054 * scores nodes according to the number of NUMA hinting faults on
2055 * both the node itself, and on nearby nodes.
2056 */
2057 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2058 unsigned long score, max_score = 0;
2059 int node, max_node = nid;
2060
2061 dist = sched_max_numa_distance;
2062
2063 for_each_online_node(node) {
2064 score = group_weight(p, node, dist);
2065 if (score > max_score) {
2066 max_score = score;
2067 max_node = node;
2068 }
2069 }
2070 return max_node;
2071 }
2072
2073 /*
2074 * Finding the preferred nid in a system with NUMA backplane
2075 * interconnect topology is more involved. The goal is to locate
2076 * tasks from numa_groups near each other in the system, and
2077 * untangle workloads from different sides of the system. This requires
2078 * searching down the hierarchy of node groups, recursively searching
2079 * inside the highest scoring group of nodes. The nodemask tricks
2080 * keep the complexity of the search down.
2081 */
2082 nodes = node_online_map;
2083 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2084 unsigned long max_faults = 0;
81907478 2085 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2086 int a, b;
2087
2088 /* Are there nodes at this distance from each other? */
2089 if (!find_numa_distance(dist))
2090 continue;
2091
2092 for_each_node_mask(a, nodes) {
2093 unsigned long faults = 0;
2094 nodemask_t this_group;
2095 nodes_clear(this_group);
2096
2097 /* Sum group's NUMA faults; includes a==b case. */
2098 for_each_node_mask(b, nodes) {
2099 if (node_distance(a, b) < dist) {
2100 faults += group_faults(p, b);
2101 node_set(b, this_group);
2102 node_clear(b, nodes);
2103 }
2104 }
2105
2106 /* Remember the top group. */
2107 if (faults > max_faults) {
2108 max_faults = faults;
2109 max_group = this_group;
2110 /*
2111 * subtle: at the smallest distance there is
2112 * just one node left in each "group", the
2113 * winner is the preferred nid.
2114 */
2115 nid = a;
2116 }
2117 }
2118 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2119 if (!max_faults)
2120 break;
54009416
RR
2121 nodes = max_group;
2122 }
2123 return nid;
2124}
2125
cbee9f88
PZ
2126static void task_numa_placement(struct task_struct *p)
2127{
83e1d2cd
MG
2128 int seq, nid, max_nid = -1, max_group_nid = -1;
2129 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2130 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2131 unsigned long total_faults;
2132 u64 runtime, period;
7dbd13ed 2133 spinlock_t *group_lock = NULL;
cbee9f88 2134
7e5a2c17
JL
2135 /*
2136 * The p->mm->numa_scan_seq field gets updated without
2137 * exclusive access. Use READ_ONCE() here to ensure
2138 * that the field is read in a single access:
2139 */
316c1608 2140 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2141 if (p->numa_scan_seq == seq)
2142 return;
2143 p->numa_scan_seq = seq;
598f0ec0 2144 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2145
7e2703e6
RR
2146 total_faults = p->numa_faults_locality[0] +
2147 p->numa_faults_locality[1];
2148 runtime = numa_get_avg_runtime(p, &period);
2149
7dbd13ed
MG
2150 /* If the task is part of a group prevent parallel updates to group stats */
2151 if (p->numa_group) {
2152 group_lock = &p->numa_group->lock;
60e69eed 2153 spin_lock_irq(group_lock);
7dbd13ed
MG
2154 }
2155
688b7585
MG
2156 /* Find the node with the highest number of faults */
2157 for_each_online_node(nid) {
44dba3d5
IM
2158 /* Keep track of the offsets in numa_faults array */
2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2160 unsigned long faults = 0, group_faults = 0;
44dba3d5 2161 int priv;
745d6147 2162
be1e4e76 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2164 long diff, f_diff, f_weight;
8c8a743c 2165
44dba3d5
IM
2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2170
ac8e895b 2171 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 fault_types[priv] += p->numa_faults[membuf_idx];
2174 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2175
7e2703e6
RR
2176 /*
2177 * Normalize the faults_from, so all tasks in a group
2178 * count according to CPU use, instead of by the raw
2179 * number of faults. Tasks with little runtime have
2180 * little over-all impact on throughput, and thus their
2181 * faults are less important.
2182 */
2183 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2185 (total_faults + 1);
44dba3d5
IM
2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2188
44dba3d5
IM
2189 p->numa_faults[mem_idx] += diff;
2190 p->numa_faults[cpu_idx] += f_diff;
2191 faults += p->numa_faults[mem_idx];
83e1d2cd 2192 p->total_numa_faults += diff;
8c8a743c 2193 if (p->numa_group) {
44dba3d5
IM
2194 /*
2195 * safe because we can only change our own group
2196 *
2197 * mem_idx represents the offset for a given
2198 * nid and priv in a specific region because it
2199 * is at the beginning of the numa_faults array.
2200 */
2201 p->numa_group->faults[mem_idx] += diff;
2202 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2203 p->numa_group->total_faults += diff;
44dba3d5 2204 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2205 }
ac8e895b
MG
2206 }
2207
688b7585
MG
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
83e1d2cd
MG
2212
2213 if (group_faults > max_group_faults) {
2214 max_group_faults = group_faults;
2215 max_group_nid = nid;
2216 }
2217 }
2218
04bb2f94
RR
2219 update_task_scan_period(p, fault_types[0], fault_types[1]);
2220
7dbd13ed 2221 if (p->numa_group) {
4142c3eb 2222 numa_group_count_active_nodes(p->numa_group);
60e69eed 2223 spin_unlock_irq(group_lock);
54009416 2224 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2225 }
2226
bb97fc31
RR
2227 if (max_faults) {
2228 /* Set the new preferred node */
2229 if (max_nid != p->numa_preferred_nid)
2230 sched_setnuma(p, max_nid);
2231
2232 if (task_node(p) != p->numa_preferred_nid)
2233 numa_migrate_preferred(p);
3a7053b3 2234 }
cbee9f88
PZ
2235}
2236
8c8a743c
PZ
2237static inline int get_numa_group(struct numa_group *grp)
2238{
2239 return atomic_inc_not_zero(&grp->refcount);
2240}
2241
2242static inline void put_numa_group(struct numa_group *grp)
2243{
2244 if (atomic_dec_and_test(&grp->refcount))
2245 kfree_rcu(grp, rcu);
2246}
2247
3e6a9418
MG
2248static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 int *priv)
8c8a743c
PZ
2250{
2251 struct numa_group *grp, *my_grp;
2252 struct task_struct *tsk;
2253 bool join = false;
2254 int cpu = cpupid_to_cpu(cpupid);
2255 int i;
2256
2257 if (unlikely(!p->numa_group)) {
2258 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2259 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2260
2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 if (!grp)
2263 return;
2264
2265 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2266 grp->active_nodes = 1;
2267 grp->max_faults_cpu = 0;
8c8a743c 2268 spin_lock_init(&grp->lock);
e29cf08b 2269 grp->gid = p->pid;
50ec8a40 2270 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 nr_node_ids;
8c8a743c 2273
be1e4e76 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2275 grp->faults[i] = p->numa_faults[i];
8c8a743c 2276
989348b5 2277 grp->total_faults = p->total_numa_faults;
83e1d2cd 2278
8c8a743c
PZ
2279 grp->nr_tasks++;
2280 rcu_assign_pointer(p->numa_group, grp);
2281 }
2282
2283 rcu_read_lock();
316c1608 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2285
2286 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2287 goto no_join;
8c8a743c
PZ
2288
2289 grp = rcu_dereference(tsk->numa_group);
2290 if (!grp)
3354781a 2291 goto no_join;
8c8a743c
PZ
2292
2293 my_grp = p->numa_group;
2294 if (grp == my_grp)
3354781a 2295 goto no_join;
8c8a743c
PZ
2296
2297 /*
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2300 */
2301 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2302 goto no_join;
8c8a743c
PZ
2303
2304 /*
2305 * Tie-break on the grp address.
2306 */
2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2308 goto no_join;
8c8a743c 2309
dabe1d99
RR
2310 /* Always join threads in the same process. */
2311 if (tsk->mm == current->mm)
2312 join = true;
2313
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags & TNF_SHARED)
2316 join = true;
8c8a743c 2317
3e6a9418
MG
2318 /* Update priv based on whether false sharing was detected */
2319 *priv = !join;
2320
dabe1d99 2321 if (join && !get_numa_group(grp))
3354781a 2322 goto no_join;
8c8a743c 2323
8c8a743c
PZ
2324 rcu_read_unlock();
2325
2326 if (!join)
2327 return;
2328
60e69eed
MG
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2331
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2333 my_grp->faults[i] -= p->numa_faults[i];
2334 grp->faults[i] += p->numa_faults[i];
8c8a743c 2335 }
989348b5
MG
2336 my_grp->total_faults -= p->total_numa_faults;
2337 grp->total_faults += p->total_numa_faults;
8c8a743c 2338
8c8a743c
PZ
2339 my_grp->nr_tasks--;
2340 grp->nr_tasks++;
2341
2342 spin_unlock(&my_grp->lock);
60e69eed 2343 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2344
2345 rcu_assign_pointer(p->numa_group, grp);
2346
2347 put_numa_group(my_grp);
3354781a
PZ
2348 return;
2349
2350no_join:
2351 rcu_read_unlock();
2352 return;
8c8a743c
PZ
2353}
2354
2355void task_numa_free(struct task_struct *p)
2356{
2357 struct numa_group *grp = p->numa_group;
44dba3d5 2358 void *numa_faults = p->numa_faults;
e9dd685c
SR
2359 unsigned long flags;
2360 int i;
8c8a743c
PZ
2361
2362 if (grp) {
e9dd685c 2363 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2364 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2365 grp->faults[i] -= p->numa_faults[i];
989348b5 2366 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2367
8c8a743c 2368 grp->nr_tasks--;
e9dd685c 2369 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2370 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2371 put_numa_group(grp);
2372 }
2373
44dba3d5 2374 p->numa_faults = NULL;
82727018 2375 kfree(numa_faults);
8c8a743c
PZ
2376}
2377
cbee9f88
PZ
2378/*
2379 * Got a PROT_NONE fault for a page on @node.
2380 */
58b46da3 2381void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2382{
2383 struct task_struct *p = current;
6688cc05 2384 bool migrated = flags & TNF_MIGRATED;
58b46da3 2385 int cpu_node = task_node(current);
792568ec 2386 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2387 struct numa_group *ng;
ac8e895b 2388 int priv;
cbee9f88 2389
2a595721 2390 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2391 return;
2392
9ff1d9ff
MG
2393 /* for example, ksmd faulting in a user's mm */
2394 if (!p->mm)
2395 return;
2396
f809ca9a 2397 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2398 if (unlikely(!p->numa_faults)) {
2399 int size = sizeof(*p->numa_faults) *
be1e4e76 2400 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2401
44dba3d5
IM
2402 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2403 if (!p->numa_faults)
f809ca9a 2404 return;
745d6147 2405
83e1d2cd 2406 p->total_numa_faults = 0;
04bb2f94 2407 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2408 }
cbee9f88 2409
8c8a743c
PZ
2410 /*
2411 * First accesses are treated as private, otherwise consider accesses
2412 * to be private if the accessing pid has not changed
2413 */
2414 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2415 priv = 1;
2416 } else {
2417 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2418 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2419 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2420 }
2421
792568ec
RR
2422 /*
2423 * If a workload spans multiple NUMA nodes, a shared fault that
2424 * occurs wholly within the set of nodes that the workload is
2425 * actively using should be counted as local. This allows the
2426 * scan rate to slow down when a workload has settled down.
2427 */
4142c3eb
RR
2428 ng = p->numa_group;
2429 if (!priv && !local && ng && ng->active_nodes > 1 &&
2430 numa_is_active_node(cpu_node, ng) &&
2431 numa_is_active_node(mem_node, ng))
792568ec
RR
2432 local = 1;
2433
cbee9f88 2434 task_numa_placement(p);
f809ca9a 2435
2739d3ee
RR
2436 /*
2437 * Retry task to preferred node migration periodically, in case it
2438 * case it previously failed, or the scheduler moved us.
2439 */
2440 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2441 numa_migrate_preferred(p);
2442
b32e86b4
IM
2443 if (migrated)
2444 p->numa_pages_migrated += pages;
074c2381
MG
2445 if (flags & TNF_MIGRATE_FAIL)
2446 p->numa_faults_locality[2] += pages;
b32e86b4 2447
44dba3d5
IM
2448 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2449 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2450 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2451}
2452
6e5fb223
PZ
2453static void reset_ptenuma_scan(struct task_struct *p)
2454{
7e5a2c17
JL
2455 /*
2456 * We only did a read acquisition of the mmap sem, so
2457 * p->mm->numa_scan_seq is written to without exclusive access
2458 * and the update is not guaranteed to be atomic. That's not
2459 * much of an issue though, since this is just used for
2460 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2461 * expensive, to avoid any form of compiler optimizations:
2462 */
316c1608 2463 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2464 p->mm->numa_scan_offset = 0;
2465}
2466
cbee9f88
PZ
2467/*
2468 * The expensive part of numa migration is done from task_work context.
2469 * Triggered from task_tick_numa().
2470 */
2471void task_numa_work(struct callback_head *work)
2472{
2473 unsigned long migrate, next_scan, now = jiffies;
2474 struct task_struct *p = current;
2475 struct mm_struct *mm = p->mm;
51170840 2476 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2477 struct vm_area_struct *vma;
9f40604c 2478 unsigned long start, end;
598f0ec0 2479 unsigned long nr_pte_updates = 0;
4620f8c1 2480 long pages, virtpages;
cbee9f88 2481
9148a3a1 2482 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2483
2484 work->next = work; /* protect against double add */
2485 /*
2486 * Who cares about NUMA placement when they're dying.
2487 *
2488 * NOTE: make sure not to dereference p->mm before this check,
2489 * exit_task_work() happens _after_ exit_mm() so we could be called
2490 * without p->mm even though we still had it when we enqueued this
2491 * work.
2492 */
2493 if (p->flags & PF_EXITING)
2494 return;
2495
930aa174 2496 if (!mm->numa_next_scan) {
7e8d16b6
MG
2497 mm->numa_next_scan = now +
2498 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2499 }
2500
cbee9f88
PZ
2501 /*
2502 * Enforce maximal scan/migration frequency..
2503 */
2504 migrate = mm->numa_next_scan;
2505 if (time_before(now, migrate))
2506 return;
2507
598f0ec0
MG
2508 if (p->numa_scan_period == 0) {
2509 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2510 p->numa_scan_period = task_scan_start(p);
598f0ec0 2511 }
cbee9f88 2512
fb003b80 2513 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2514 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2515 return;
2516
19a78d11
PZ
2517 /*
2518 * Delay this task enough that another task of this mm will likely win
2519 * the next time around.
2520 */
2521 p->node_stamp += 2 * TICK_NSEC;
2522
9f40604c
MG
2523 start = mm->numa_scan_offset;
2524 pages = sysctl_numa_balancing_scan_size;
2525 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2526 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2527 if (!pages)
2528 return;
cbee9f88 2529
4620f8c1 2530
8655d549
VB
2531 if (!down_read_trylock(&mm->mmap_sem))
2532 return;
9f40604c 2533 vma = find_vma(mm, start);
6e5fb223
PZ
2534 if (!vma) {
2535 reset_ptenuma_scan(p);
9f40604c 2536 start = 0;
6e5fb223
PZ
2537 vma = mm->mmap;
2538 }
9f40604c 2539 for (; vma; vma = vma->vm_next) {
6b79c57b 2540 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2541 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2542 continue;
6b79c57b 2543 }
6e5fb223 2544
4591ce4f
MG
2545 /*
2546 * Shared library pages mapped by multiple processes are not
2547 * migrated as it is expected they are cache replicated. Avoid
2548 * hinting faults in read-only file-backed mappings or the vdso
2549 * as migrating the pages will be of marginal benefit.
2550 */
2551 if (!vma->vm_mm ||
2552 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2553 continue;
2554
3c67f474
MG
2555 /*
2556 * Skip inaccessible VMAs to avoid any confusion between
2557 * PROT_NONE and NUMA hinting ptes
2558 */
2559 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2560 continue;
4591ce4f 2561
9f40604c
MG
2562 do {
2563 start = max(start, vma->vm_start);
2564 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2565 end = min(end, vma->vm_end);
4620f8c1 2566 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2567
2568 /*
4620f8c1
RR
2569 * Try to scan sysctl_numa_balancing_size worth of
2570 * hpages that have at least one present PTE that
2571 * is not already pte-numa. If the VMA contains
2572 * areas that are unused or already full of prot_numa
2573 * PTEs, scan up to virtpages, to skip through those
2574 * areas faster.
598f0ec0
MG
2575 */
2576 if (nr_pte_updates)
2577 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2578 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2579
9f40604c 2580 start = end;
4620f8c1 2581 if (pages <= 0 || virtpages <= 0)
9f40604c 2582 goto out;
3cf1962c
RR
2583
2584 cond_resched();
9f40604c 2585 } while (end != vma->vm_end);
cbee9f88 2586 }
6e5fb223 2587
9f40604c 2588out:
6e5fb223 2589 /*
c69307d5
PZ
2590 * It is possible to reach the end of the VMA list but the last few
2591 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2592 * would find the !migratable VMA on the next scan but not reset the
2593 * scanner to the start so check it now.
6e5fb223
PZ
2594 */
2595 if (vma)
9f40604c 2596 mm->numa_scan_offset = start;
6e5fb223
PZ
2597 else
2598 reset_ptenuma_scan(p);
2599 up_read(&mm->mmap_sem);
51170840
RR
2600
2601 /*
2602 * Make sure tasks use at least 32x as much time to run other code
2603 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2604 * Usually update_task_scan_period slows down scanning enough; on an
2605 * overloaded system we need to limit overhead on a per task basis.
2606 */
2607 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2608 u64 diff = p->se.sum_exec_runtime - runtime;
2609 p->node_stamp += 32 * diff;
2610 }
cbee9f88
PZ
2611}
2612
2613/*
2614 * Drive the periodic memory faults..
2615 */
2616void task_tick_numa(struct rq *rq, struct task_struct *curr)
2617{
2618 struct callback_head *work = &curr->numa_work;
2619 u64 period, now;
2620
2621 /*
2622 * We don't care about NUMA placement if we don't have memory.
2623 */
2624 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2625 return;
2626
2627 /*
2628 * Using runtime rather than walltime has the dual advantage that
2629 * we (mostly) drive the selection from busy threads and that the
2630 * task needs to have done some actual work before we bother with
2631 * NUMA placement.
2632 */
2633 now = curr->se.sum_exec_runtime;
2634 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2635
25b3e5a3 2636 if (now > curr->node_stamp + period) {
4b96a29b 2637 if (!curr->node_stamp)
b5dd77c8 2638 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2639 curr->node_stamp += period;
cbee9f88
PZ
2640
2641 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2642 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2643 task_work_add(curr, work, true);
2644 }
2645 }
2646}
3fed382b 2647
cbee9f88
PZ
2648#else
2649static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650{
2651}
0ec8aa00
PZ
2652
2653static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654{
2655}
2656
2657static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658{
2659}
3fed382b 2660
cbee9f88
PZ
2661#endif /* CONFIG_NUMA_BALANCING */
2662
30cfdcfc
DA
2663static void
2664account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2667 if (!parent_entity(se))
029632fb 2668 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2669#ifdef CONFIG_SMP
0ec8aa00
PZ
2670 if (entity_is_task(se)) {
2671 struct rq *rq = rq_of(cfs_rq);
2672
2673 account_numa_enqueue(rq, task_of(se));
2674 list_add(&se->group_node, &rq->cfs_tasks);
2675 }
367456c7 2676#endif
30cfdcfc 2677 cfs_rq->nr_running++;
30cfdcfc
DA
2678}
2679
2680static void
2681account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682{
2683 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2684 if (!parent_entity(se))
029632fb 2685 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2686#ifdef CONFIG_SMP
0ec8aa00
PZ
2687 if (entity_is_task(se)) {
2688 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2689 list_del_init(&se->group_node);
0ec8aa00 2690 }
bfdb198c 2691#endif
30cfdcfc 2692 cfs_rq->nr_running--;
30cfdcfc
DA
2693}
2694
3ff6dcac
YZ
2695#ifdef CONFIG_FAIR_GROUP_SCHED
2696# ifdef CONFIG_SMP
cef27403
PZ
2697/*
2698 * All this does is approximate the hierarchical proportion which includes that
2699 * global sum we all love to hate.
2700 *
2701 * That is, the weight of a group entity, is the proportional share of the
2702 * group weight based on the group runqueue weights. That is:
2703 *
2704 * tg->weight * grq->load.weight
2705 * ge->load.weight = ----------------------------- (1)
2706 * \Sum grq->load.weight
2707 *
2708 * Now, because computing that sum is prohibitively expensive to compute (been
2709 * there, done that) we approximate it with this average stuff. The average
2710 * moves slower and therefore the approximation is cheaper and more stable.
2711 *
2712 * So instead of the above, we substitute:
2713 *
2714 * grq->load.weight -> grq->avg.load_avg (2)
2715 *
2716 * which yields the following:
2717 *
2718 * tg->weight * grq->avg.load_avg
2719 * ge->load.weight = ------------------------------ (3)
2720 * tg->load_avg
2721 *
2722 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2723 *
2724 * That is shares_avg, and it is right (given the approximation (2)).
2725 *
2726 * The problem with it is that because the average is slow -- it was designed
2727 * to be exactly that of course -- this leads to transients in boundary
2728 * conditions. In specific, the case where the group was idle and we start the
2729 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2730 * yielding bad latency etc..
2731 *
2732 * Now, in that special case (1) reduces to:
2733 *
2734 * tg->weight * grq->load.weight
2735 * ge->load.weight = ----------------------------- = tg>weight (4)
2736 * grp->load.weight
2737 *
2738 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2739 *
2740 * So what we do is modify our approximation (3) to approach (4) in the (near)
2741 * UP case, like:
2742 *
2743 * ge->load.weight =
2744 *
2745 * tg->weight * grq->load.weight
2746 * --------------------------------------------------- (5)
2747 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2748 *
2749 *
2750 * And that is shares_weight and is icky. In the (near) UP case it approaches
2751 * (4) while in the normal case it approaches (3). It consistently
2752 * overestimates the ge->load.weight and therefore:
2753 *
2754 * \Sum ge->load.weight >= tg->weight
2755 *
2756 * hence icky!
2757 */
7c80cfc9 2758static long calc_cfs_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2759{
7c80cfc9
PZ
2760 long tg_weight, tg_shares, load, shares;
2761 struct task_group *tg = cfs_rq->tg;
2762
2763 tg_shares = READ_ONCE(tg->shares);
cf5f0acf
PZ
2764
2765 /*
3d4b60d3
PZ
2766 * Because (5) drops to 0 when the cfs_rq is idle, we need to use (3)
2767 * as a lower bound.
cf5f0acf 2768 */
3d4b60d3 2769 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2770
ea1dc6fc 2771 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2772
ea1dc6fc
PZ
2773 /* Ensure tg_weight >= load */
2774 tg_weight -= cfs_rq->tg_load_avg_contrib;
2775 tg_weight += load;
3ff6dcac 2776
7c80cfc9 2777 shares = (tg_shares * load);
cf5f0acf
PZ
2778 if (tg_weight)
2779 shares /= tg_weight;
3ff6dcac 2780
b8fd8423
DE
2781 /*
2782 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2783 * of a group with small tg->shares value. It is a floor value which is
2784 * assigned as a minimum load.weight to the sched_entity representing
2785 * the group on a CPU.
2786 *
2787 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2788 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2789 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2790 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2791 * instead of 0.
2792 */
7c80cfc9 2793 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2794}
3ff6dcac 2795# endif /* CONFIG_SMP */
ea1dc6fc 2796
2069dd75
PZ
2797static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2798 unsigned long weight)
2799{
19e5eebb
PT
2800 if (se->on_rq) {
2801 /* commit outstanding execution time */
2802 if (cfs_rq->curr == se)
2803 update_curr(cfs_rq);
2069dd75 2804 account_entity_dequeue(cfs_rq, se);
19e5eebb 2805 }
2069dd75
PZ
2806
2807 update_load_set(&se->load, weight);
2808
2809 if (se->on_rq)
2810 account_entity_enqueue(cfs_rq, se);
2811}
2812
82958366
PT
2813static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2814
89ee048f 2815static void update_cfs_shares(struct sched_entity *se)
2069dd75 2816{
89ee048f 2817 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3ff6dcac 2818 long shares;
2069dd75 2819
89ee048f
VG
2820 if (!cfs_rq)
2821 return;
2822
2823 if (throttled_hierarchy(cfs_rq))
2069dd75 2824 return;
89ee048f 2825
3ff6dcac 2826#ifndef CONFIG_SMP
7c80cfc9
PZ
2827 shares = READ_ONCE(cfs_rq->tg->shares);
2828
2829 if (likely(se->load.weight == shares))
3ff6dcac 2830 return;
7c80cfc9
PZ
2831#else
2832 shares = calc_cfs_shares(cfs_rq);
3ff6dcac 2833#endif
2069dd75
PZ
2834
2835 reweight_entity(cfs_rq_of(se), se, shares);
2836}
89ee048f 2837
2069dd75 2838#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2839static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2840{
2841}
2842#endif /* CONFIG_FAIR_GROUP_SCHED */
2843
a030d738
VK
2844static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2845{
43964409
LT
2846 struct rq *rq = rq_of(cfs_rq);
2847
2848 if (&rq->cfs == cfs_rq) {
a030d738
VK
2849 /*
2850 * There are a few boundary cases this might miss but it should
2851 * get called often enough that that should (hopefully) not be
2852 * a real problem -- added to that it only calls on the local
2853 * CPU, so if we enqueue remotely we'll miss an update, but
2854 * the next tick/schedule should update.
2855 *
2856 * It will not get called when we go idle, because the idle
2857 * thread is a different class (!fair), nor will the utilization
2858 * number include things like RT tasks.
2859 *
2860 * As is, the util number is not freq-invariant (we'd have to
2861 * implement arch_scale_freq_capacity() for that).
2862 *
2863 * See cpu_util().
2864 */
43964409 2865 cpufreq_update_util(rq, 0);
a030d738
VK
2866 }
2867}
2868
141965c7 2869#ifdef CONFIG_SMP
9d85f21c
PT
2870/*
2871 * Approximate:
2872 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2873 */
a481db34 2874static u64 decay_load(u64 val, u64 n)
9d85f21c 2875{
5b51f2f8
PT
2876 unsigned int local_n;
2877
05296e75 2878 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2879 return 0;
2880
2881 /* after bounds checking we can collapse to 32-bit */
2882 local_n = n;
2883
2884 /*
2885 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2886 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2887 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2888 *
2889 * To achieve constant time decay_load.
2890 */
2891 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2892 val >>= local_n / LOAD_AVG_PERIOD;
2893 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2894 }
2895
9d89c257
YD
2896 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2897 return val;
5b51f2f8
PT
2898}
2899
05296e75 2900static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2901{
05296e75 2902 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2903
a481db34 2904 /*
3841cdc3 2905 * c1 = d1 y^p
a481db34 2906 */
05296e75 2907 c1 = decay_load((u64)d1, periods);
a481db34 2908
a481db34 2909 /*
3841cdc3 2910 * p-1
05296e75
PZ
2911 * c2 = 1024 \Sum y^n
2912 * n=1
a481db34 2913 *
05296e75
PZ
2914 * inf inf
2915 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2916 * n=0 n=p
a481db34 2917 */
05296e75 2918 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2919
2920 return c1 + c2 + c3;
9d85f21c
PT
2921}
2922
54a21385 2923#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2924
a481db34
YD
2925/*
2926 * Accumulate the three separate parts of the sum; d1 the remainder
2927 * of the last (incomplete) period, d2 the span of full periods and d3
2928 * the remainder of the (incomplete) current period.
2929 *
2930 * d1 d2 d3
2931 * ^ ^ ^
2932 * | | |
2933 * |<->|<----------------->|<--->|
2934 * ... |---x---|------| ... |------|-----x (now)
2935 *
3841cdc3
PZ
2936 * p-1
2937 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2938 * n=1
a481db34 2939 *
3841cdc3 2940 * = u y^p + (Step 1)
a481db34 2941 *
3841cdc3
PZ
2942 * p-1
2943 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2944 * n=1
a481db34
YD
2945 */
2946static __always_inline u32
2947accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2948 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2949{
2950 unsigned long scale_freq, scale_cpu;
05296e75 2951 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2952 u64 periods;
a481db34
YD
2953
2954 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2955 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2956
2957 delta += sa->period_contrib;
2958 periods = delta / 1024; /* A period is 1024us (~1ms) */
2959
2960 /*
2961 * Step 1: decay old *_sum if we crossed period boundaries.
2962 */
2963 if (periods) {
2964 sa->load_sum = decay_load(sa->load_sum, periods);
2965 if (cfs_rq) {
2966 cfs_rq->runnable_load_sum =
2967 decay_load(cfs_rq->runnable_load_sum, periods);
2968 }
2969 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2970
05296e75
PZ
2971 /*
2972 * Step 2
2973 */
2974 delta %= 1024;
2975 contrib = __accumulate_pelt_segments(periods,
2976 1024 - sa->period_contrib, delta);
2977 }
a481db34
YD
2978 sa->period_contrib = delta;
2979
2980 contrib = cap_scale(contrib, scale_freq);
2981 if (weight) {
2982 sa->load_sum += weight * contrib;
2983 if (cfs_rq)
2984 cfs_rq->runnable_load_sum += weight * contrib;
2985 }
2986 if (running)
2987 sa->util_sum += contrib * scale_cpu;
2988
2989 return periods;
2990}
2991
9d85f21c
PT
2992/*
2993 * We can represent the historical contribution to runnable average as the
2994 * coefficients of a geometric series. To do this we sub-divide our runnable
2995 * history into segments of approximately 1ms (1024us); label the segment that
2996 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2997 *
2998 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2999 * p0 p1 p2
3000 * (now) (~1ms ago) (~2ms ago)
3001 *
3002 * Let u_i denote the fraction of p_i that the entity was runnable.
3003 *
3004 * We then designate the fractions u_i as our co-efficients, yielding the
3005 * following representation of historical load:
3006 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3007 *
3008 * We choose y based on the with of a reasonably scheduling period, fixing:
3009 * y^32 = 0.5
3010 *
3011 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3012 * approximately half as much as the contribution to load within the last ms
3013 * (u_0).
3014 *
3015 * When a period "rolls over" and we have new u_0`, multiplying the previous
3016 * sum again by y is sufficient to update:
3017 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3018 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3019 */
9d89c257 3020static __always_inline int
c7b50216
PZ
3021___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3022 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 3023{
a481db34 3024 u64 delta;
9d85f21c 3025
9d89c257 3026 delta = now - sa->last_update_time;
9d85f21c
PT
3027 /*
3028 * This should only happen when time goes backwards, which it
3029 * unfortunately does during sched clock init when we swap over to TSC.
3030 */
3031 if ((s64)delta < 0) {
9d89c257 3032 sa->last_update_time = now;
9d85f21c
PT
3033 return 0;
3034 }
3035
3036 /*
3037 * Use 1024ns as the unit of measurement since it's a reasonable
3038 * approximation of 1us and fast to compute.
3039 */
3040 delta >>= 10;
3041 if (!delta)
3042 return 0;
bb0bd044
PZ
3043
3044 sa->last_update_time += delta << 10;
9d85f21c 3045
f235a54f
VG
3046 /*
3047 * running is a subset of runnable (weight) so running can't be set if
3048 * runnable is clear. But there are some corner cases where the current
3049 * se has been already dequeued but cfs_rq->curr still points to it.
3050 * This means that weight will be 0 but not running for a sched_entity
3051 * but also for a cfs_rq if the latter becomes idle. As an example,
3052 * this happens during idle_balance() which calls
3053 * update_blocked_averages()
3054 */
3055 if (!weight)
3056 running = 0;
3057
a481db34
YD
3058 /*
3059 * Now we know we crossed measurement unit boundaries. The *_avg
3060 * accrues by two steps:
3061 *
3062 * Step 1: accumulate *_sum since last_update_time. If we haven't
3063 * crossed period boundaries, finish.
3064 */
3065 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3066 return 0;
9ee474f5 3067
c7b50216
PZ
3068 return 1;
3069}
3070
3071static __always_inline void
3072___update_load_avg(struct sched_avg *sa, unsigned long weight, struct cfs_rq *cfs_rq)
3073{
3074 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3075
a481db34
YD
3076 /*
3077 * Step 2: update *_avg.
3078 */
c7b50216 3079 sa->load_avg = div_u64(weight * sa->load_sum, divider);
a481db34
YD
3080 if (cfs_rq) {
3081 cfs_rq->runnable_load_avg =
c7b50216 3082 div_u64(cfs_rq->runnable_load_sum, divider);
9d89c257 3083 }
c7b50216
PZ
3084 sa->util_avg = sa->util_sum / divider;
3085}
aff3e498 3086
c7b50216
PZ
3087/*
3088 * XXX we want to get rid of this helper and use the full load resolution.
3089 */
3090static inline long se_weight(struct sched_entity *se)
3091{
3092 return scale_load_down(se->load.weight);
9ee474f5
PT
3093}
3094
c7b50216
PZ
3095/*
3096 * sched_entity:
3097 *
3098 * load_sum := runnable_sum
3099 * load_avg = se_weight(se) * runnable_avg
3100 *
3101 * cfq_rs:
3102 *
3103 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3104 * load_avg = \Sum se->avg.load_avg
3105 */
3106
0ccb977f
PZ
3107static int
3108__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3109{
c7b50216
PZ
3110 if (___update_load_sum(now, cpu, &se->avg, 0, 0, NULL)) {
3111 ___update_load_avg(&se->avg, se_weight(se), NULL);
3112 return 1;
3113 }
3114
3115 return 0;
0ccb977f
PZ
3116}
3117
3118static int
3119__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3120{
c7b50216
PZ
3121 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq,
3122 cfs_rq->curr == se, NULL)) {
3123
3124 ___update_load_avg(&se->avg, se_weight(se), NULL);
3125 return 1;
3126 }
3127
3128 return 0;
0ccb977f
PZ
3129}
3130
3131static int
3132__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3133{
c7b50216
PZ
3134 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3135 scale_load_down(cfs_rq->load.weight),
3136 cfs_rq->curr != NULL, cfs_rq)) {
3137 ___update_load_avg(&cfs_rq->avg, 1, cfs_rq);
3138 return 1;
3139 }
3140
3141 return 0;
0ccb977f
PZ
3142}
3143
09a43ace
VG
3144/*
3145 * Signed add and clamp on underflow.
3146 *
3147 * Explicitly do a load-store to ensure the intermediate value never hits
3148 * memory. This allows lockless observations without ever seeing the negative
3149 * values.
3150 */
3151#define add_positive(_ptr, _val) do { \
3152 typeof(_ptr) ptr = (_ptr); \
3153 typeof(_val) val = (_val); \
3154 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3155 \
3156 res = var + val; \
3157 \
3158 if (val < 0 && res > var) \
3159 res = 0; \
3160 \
3161 WRITE_ONCE(*ptr, res); \
3162} while (0)
3163
c566e8e9 3164#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3165/**
3166 * update_tg_load_avg - update the tg's load avg
3167 * @cfs_rq: the cfs_rq whose avg changed
3168 * @force: update regardless of how small the difference
3169 *
3170 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3171 * However, because tg->load_avg is a global value there are performance
3172 * considerations.
3173 *
3174 * In order to avoid having to look at the other cfs_rq's, we use a
3175 * differential update where we store the last value we propagated. This in
3176 * turn allows skipping updates if the differential is 'small'.
3177 *
815abf5a 3178 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3179 */
9d89c257 3180static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3181{
9d89c257 3182 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3183
aa0b7ae0
WL
3184 /*
3185 * No need to update load_avg for root_task_group as it is not used.
3186 */
3187 if (cfs_rq->tg == &root_task_group)
3188 return;
3189
9d89c257
YD
3190 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3191 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3192 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3193 }
8165e145 3194}
f5f9739d 3195
ad936d86
BP
3196/*
3197 * Called within set_task_rq() right before setting a task's cpu. The
3198 * caller only guarantees p->pi_lock is held; no other assumptions,
3199 * including the state of rq->lock, should be made.
3200 */
3201void set_task_rq_fair(struct sched_entity *se,
3202 struct cfs_rq *prev, struct cfs_rq *next)
3203{
0ccb977f
PZ
3204 u64 p_last_update_time;
3205 u64 n_last_update_time;
3206
ad936d86
BP
3207 if (!sched_feat(ATTACH_AGE_LOAD))
3208 return;
3209
3210 /*
3211 * We are supposed to update the task to "current" time, then its up to
3212 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3213 * getting what current time is, so simply throw away the out-of-date
3214 * time. This will result in the wakee task is less decayed, but giving
3215 * the wakee more load sounds not bad.
3216 */
0ccb977f
PZ
3217 if (!(se->avg.last_update_time && prev))
3218 return;
ad936d86
BP
3219
3220#ifndef CONFIG_64BIT
0ccb977f 3221 {
ad936d86
BP
3222 u64 p_last_update_time_copy;
3223 u64 n_last_update_time_copy;
3224
3225 do {
3226 p_last_update_time_copy = prev->load_last_update_time_copy;
3227 n_last_update_time_copy = next->load_last_update_time_copy;
3228
3229 smp_rmb();
3230
3231 p_last_update_time = prev->avg.last_update_time;
3232 n_last_update_time = next->avg.last_update_time;
3233
3234 } while (p_last_update_time != p_last_update_time_copy ||
3235 n_last_update_time != n_last_update_time_copy);
0ccb977f 3236 }
ad936d86 3237#else
0ccb977f
PZ
3238 p_last_update_time = prev->avg.last_update_time;
3239 n_last_update_time = next->avg.last_update_time;
ad936d86 3240#endif
0ccb977f
PZ
3241 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3242 se->avg.last_update_time = n_last_update_time;
ad936d86 3243}
09a43ace
VG
3244
3245/* Take into account change of utilization of a child task group */
3246static inline void
3247update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3248{
3249 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3250 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3251
3252 /* Nothing to update */
3253 if (!delta)
3254 return;
3255
3256 /* Set new sched_entity's utilization */
3257 se->avg.util_avg = gcfs_rq->avg.util_avg;
3258 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3259
3260 /* Update parent cfs_rq utilization */
3261 add_positive(&cfs_rq->avg.util_avg, delta);
3262 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3263}
3264
3265/* Take into account change of load of a child task group */
3266static inline void
3267update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3268{
3269 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3270 long delta, load = gcfs_rq->avg.load_avg;
3271
3272 /*
3273 * If the load of group cfs_rq is null, the load of the
3274 * sched_entity will also be null so we can skip the formula
3275 */
3276 if (load) {
3277 long tg_load;
3278
3279 /* Get tg's load and ensure tg_load > 0 */
3280 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3281
3282 /* Ensure tg_load >= load and updated with current load*/
3283 tg_load -= gcfs_rq->tg_load_avg_contrib;
3284 tg_load += load;
3285
3286 /*
3287 * We need to compute a correction term in the case that the
3288 * task group is consuming more CPU than a task of equal
3289 * weight. A task with a weight equals to tg->shares will have
3290 * a load less or equal to scale_load_down(tg->shares).
3291 * Similarly, the sched_entities that represent the task group
3292 * at parent level, can't have a load higher than
3293 * scale_load_down(tg->shares). And the Sum of sched_entities'
3294 * load must be <= scale_load_down(tg->shares).
3295 */
3296 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3297 /* scale gcfs_rq's load into tg's shares*/
3298 load *= scale_load_down(gcfs_rq->tg->shares);
3299 load /= tg_load;
3300 }
3301 }
3302
3303 delta = load - se->avg.load_avg;
3304
3305 /* Nothing to update */
3306 if (!delta)
3307 return;
3308
3309 /* Set new sched_entity's load */
3310 se->avg.load_avg = load;
c7b50216 3311 se->avg.load_sum = LOAD_AVG_MAX;
09a43ace
VG
3312
3313 /* Update parent cfs_rq load */
3314 add_positive(&cfs_rq->avg.load_avg, delta);
3315 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3316
3317 /*
3318 * If the sched_entity is already enqueued, we also have to update the
3319 * runnable load avg.
3320 */
3321 if (se->on_rq) {
3322 /* Update parent cfs_rq runnable_load_avg */
3323 add_positive(&cfs_rq->runnable_load_avg, delta);
3324 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3325 }
3326}
3327
3328static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3329{
3330 cfs_rq->propagate_avg = 1;
3331}
3332
3333static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3334{
3335 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3336
3337 if (!cfs_rq->propagate_avg)
3338 return 0;
3339
3340 cfs_rq->propagate_avg = 0;
3341 return 1;
3342}
3343
3344/* Update task and its cfs_rq load average */
3345static inline int propagate_entity_load_avg(struct sched_entity *se)
3346{
3347 struct cfs_rq *cfs_rq;
3348
3349 if (entity_is_task(se))
3350 return 0;
3351
3352 if (!test_and_clear_tg_cfs_propagate(se))
3353 return 0;
3354
3355 cfs_rq = cfs_rq_of(se);
3356
3357 set_tg_cfs_propagate(cfs_rq);
3358
3359 update_tg_cfs_util(cfs_rq, se);
3360 update_tg_cfs_load(cfs_rq, se);
3361
3362 return 1;
3363}
3364
bc427898
VG
3365/*
3366 * Check if we need to update the load and the utilization of a blocked
3367 * group_entity:
3368 */
3369static inline bool skip_blocked_update(struct sched_entity *se)
3370{
3371 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3372
3373 /*
3374 * If sched_entity still have not zero load or utilization, we have to
3375 * decay it:
3376 */
3377 if (se->avg.load_avg || se->avg.util_avg)
3378 return false;
3379
3380 /*
3381 * If there is a pending propagation, we have to update the load and
3382 * the utilization of the sched_entity:
3383 */
3384 if (gcfs_rq->propagate_avg)
3385 return false;
3386
3387 /*
3388 * Otherwise, the load and the utilization of the sched_entity is
3389 * already zero and there is no pending propagation, so it will be a
3390 * waste of time to try to decay it:
3391 */
3392 return true;
3393}
3394
6e83125c 3395#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3396
9d89c257 3397static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3398
3399static inline int propagate_entity_load_avg(struct sched_entity *se)
3400{
3401 return 0;
3402}
3403
3404static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3405
6e83125c 3406#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3407
89741892
PZ
3408/*
3409 * Unsigned subtract and clamp on underflow.
3410 *
3411 * Explicitly do a load-store to ensure the intermediate value never hits
3412 * memory. This allows lockless observations without ever seeing the negative
3413 * values.
3414 */
3415#define sub_positive(_ptr, _val) do { \
3416 typeof(_ptr) ptr = (_ptr); \
3417 typeof(*ptr) val = (_val); \
3418 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3419 res = var - val; \
3420 if (res > var) \
3421 res = 0; \
3422 WRITE_ONCE(*ptr, res); \
3423} while (0)
3424
3d30544f
PZ
3425/**
3426 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3427 * @now: current time, as per cfs_rq_clock_task()
3428 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3429 *
3430 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3431 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3432 * post_init_entity_util_avg().
3433 *
3434 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3435 *
7c3edd2c
PZ
3436 * Returns true if the load decayed or we removed load.
3437 *
3438 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3439 * call update_tg_load_avg() when this function returns true.
3d30544f 3440 */
a2c6c91f 3441static inline int
3a123bbb 3442update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3443{
9d89c257 3444 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3445 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3446
9d89c257 3447 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3448 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3449 sub_positive(&sa->load_avg, r);
3450 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3451 removed_load = 1;
4e516076 3452 set_tg_cfs_propagate(cfs_rq);
8165e145 3453 }
2dac754e 3454
9d89c257
YD
3455 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3456 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3457 sub_positive(&sa->util_avg, r);
3458 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3459 removed_util = 1;
4e516076 3460 set_tg_cfs_propagate(cfs_rq);
9d89c257 3461 }
36ee28e4 3462
0ccb977f 3463 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3464
9d89c257
YD
3465#ifndef CONFIG_64BIT
3466 smp_wmb();
3467 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3468#endif
36ee28e4 3469
3a123bbb 3470 if (decayed || removed_util)
a2c6c91f 3471 cfs_rq_util_change(cfs_rq);
21e96f88 3472
41e0d37f 3473 return decayed || removed_load;
21e96f88
SM
3474}
3475
d31b1a66
VG
3476/*
3477 * Optional action to be done while updating the load average
3478 */
3479#define UPDATE_TG 0x1
3480#define SKIP_AGE_LOAD 0x2
3481
21e96f88 3482/* Update task and its cfs_rq load average */
88c0616e 3483static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
21e96f88 3484{
21e96f88
SM
3485 u64 now = cfs_rq_clock_task(cfs_rq);
3486 struct rq *rq = rq_of(cfs_rq);
3487 int cpu = cpu_of(rq);
09a43ace 3488 int decayed;
21e96f88
SM
3489
3490 /*
3491 * Track task load average for carrying it to new CPU after migrated, and
3492 * track group sched_entity load average for task_h_load calc in migration
3493 */
0ccb977f
PZ
3494 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3495 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3496
3a123bbb 3497 decayed = update_cfs_rq_load_avg(now, cfs_rq);
09a43ace
VG
3498 decayed |= propagate_entity_load_avg(se);
3499
3500 if (decayed && (flags & UPDATE_TG))
21e96f88 3501 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3502}
3503
3d30544f
PZ
3504/**
3505 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3506 * @cfs_rq: cfs_rq to attach to
3507 * @se: sched_entity to attach
3508 *
3509 * Must call update_cfs_rq_load_avg() before this, since we rely on
3510 * cfs_rq->avg.last_update_time being current.
3511 */
a05e8c51
BP
3512static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3513{
3514 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3515 cfs_rq->avg.load_avg += se->avg.load_avg;
c7b50216 3516 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
a05e8c51
BP
3517 cfs_rq->avg.util_avg += se->avg.util_avg;
3518 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3519 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3520
3521 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3522}
3523
3d30544f
PZ
3524/**
3525 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3526 * @cfs_rq: cfs_rq to detach from
3527 * @se: sched_entity to detach
3528 *
3529 * Must call update_cfs_rq_load_avg() before this, since we rely on
3530 * cfs_rq->avg.last_update_time being current.
3531 */
a05e8c51
BP
3532static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3533{
a05e8c51 3534
89741892 3535 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
c7b50216 3536 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
89741892
PZ
3537 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3538 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3539 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3540
3541 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3542}
3543
9d89c257
YD
3544/* Add the load generated by se into cfs_rq's load average */
3545static inline void
3546enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3547{
c7b50216
PZ
3548 cfs_rq->runnable_load_avg += se->avg.load_avg;
3549 cfs_rq->runnable_load_sum += se_weight(se) * se->avg.load_sum;
13962234 3550
c7b50216 3551 if (!se->avg.last_update_time) {
a05e8c51 3552 attach_entity_load_avg(cfs_rq, se);
9d89c257 3553 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3554 }
2dac754e
PT
3555}
3556
13962234
YD
3557/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3558static inline void
3559dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3560{
c7b50216
PZ
3561 sub_positive(&cfs_rq->runnable_load_avg, se->avg.load_avg);
3562 sub_positive(&cfs_rq->runnable_load_sum, se_weight(se) * se->avg.load_sum);
13962234
YD
3563}
3564
9d89c257 3565#ifndef CONFIG_64BIT
0905f04e
YD
3566static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3567{
9d89c257 3568 u64 last_update_time_copy;
0905f04e 3569 u64 last_update_time;
9ee474f5 3570
9d89c257
YD
3571 do {
3572 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3573 smp_rmb();
3574 last_update_time = cfs_rq->avg.last_update_time;
3575 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3576
3577 return last_update_time;
3578}
9d89c257 3579#else
0905f04e
YD
3580static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3581{
3582 return cfs_rq->avg.last_update_time;
3583}
9d89c257
YD
3584#endif
3585
104cb16d
MR
3586/*
3587 * Synchronize entity load avg of dequeued entity without locking
3588 * the previous rq.
3589 */
3590void sync_entity_load_avg(struct sched_entity *se)
3591{
3592 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3593 u64 last_update_time;
3594
3595 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3596 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3597}
3598
0905f04e
YD
3599/*
3600 * Task first catches up with cfs_rq, and then subtract
3601 * itself from the cfs_rq (task must be off the queue now).
3602 */
3603void remove_entity_load_avg(struct sched_entity *se)
3604{
3605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3606
3607 /*
7dc603c9
PZ
3608 * tasks cannot exit without having gone through wake_up_new_task() ->
3609 * post_init_entity_util_avg() which will have added things to the
3610 * cfs_rq, so we can remove unconditionally.
3611 *
3612 * Similarly for groups, they will have passed through
3613 * post_init_entity_util_avg() before unregister_sched_fair_group()
3614 * calls this.
0905f04e 3615 */
0905f04e 3616
104cb16d 3617 sync_entity_load_avg(se);
9d89c257
YD
3618 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3619 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3620}
642dbc39 3621
7ea241af
YD
3622static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3623{
3624 return cfs_rq->runnable_load_avg;
3625}
3626
3627static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3628{
3629 return cfs_rq->avg.load_avg;
3630}
3631
46f69fa3 3632static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3633
38033c37
PZ
3634#else /* CONFIG_SMP */
3635
01011473 3636static inline int
3a123bbb 3637update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3638{
3639 return 0;
3640}
3641
d31b1a66
VG
3642#define UPDATE_TG 0x0
3643#define SKIP_AGE_LOAD 0x0
3644
88c0616e 3645static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3646{
88c0616e 3647 cfs_rq_util_change(cfs_rq);
536bd00c
RW
3648}
3649
9d89c257
YD
3650static inline void
3651enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3652static inline void
3653dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3654static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3655
a05e8c51
BP
3656static inline void
3657attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3658static inline void
3659detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3660
46f69fa3 3661static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3662{
3663 return 0;
3664}
3665
38033c37 3666#endif /* CONFIG_SMP */
9d85f21c 3667
ddc97297
PZ
3668static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3669{
3670#ifdef CONFIG_SCHED_DEBUG
3671 s64 d = se->vruntime - cfs_rq->min_vruntime;
3672
3673 if (d < 0)
3674 d = -d;
3675
3676 if (d > 3*sysctl_sched_latency)
ae92882e 3677 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3678#endif
3679}
3680
aeb73b04
PZ
3681static void
3682place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3683{
1af5f730 3684 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3685
2cb8600e
PZ
3686 /*
3687 * The 'current' period is already promised to the current tasks,
3688 * however the extra weight of the new task will slow them down a
3689 * little, place the new task so that it fits in the slot that
3690 * stays open at the end.
3691 */
94dfb5e7 3692 if (initial && sched_feat(START_DEBIT))
f9c0b095 3693 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3694
a2e7a7eb 3695 /* sleeps up to a single latency don't count. */
5ca9880c 3696 if (!initial) {
a2e7a7eb 3697 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3698
a2e7a7eb
MG
3699 /*
3700 * Halve their sleep time's effect, to allow
3701 * for a gentler effect of sleepers:
3702 */
3703 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3704 thresh >>= 1;
51e0304c 3705
a2e7a7eb 3706 vruntime -= thresh;
aeb73b04
PZ
3707 }
3708
b5d9d734 3709 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3710 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3711}
3712
d3d9dc33
PT
3713static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3714
cb251765
MG
3715static inline void check_schedstat_required(void)
3716{
3717#ifdef CONFIG_SCHEDSTATS
3718 if (schedstat_enabled())
3719 return;
3720
3721 /* Force schedstat enabled if a dependent tracepoint is active */
3722 if (trace_sched_stat_wait_enabled() ||
3723 trace_sched_stat_sleep_enabled() ||
3724 trace_sched_stat_iowait_enabled() ||
3725 trace_sched_stat_blocked_enabled() ||
3726 trace_sched_stat_runtime_enabled()) {
eda8dca5 3727 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3728 "stat_blocked and stat_runtime require the "
f67abed5 3729 "kernel parameter schedstats=enable or "
cb251765
MG
3730 "kernel.sched_schedstats=1\n");
3731 }
3732#endif
3733}
3734
b5179ac7
PZ
3735
3736/*
3737 * MIGRATION
3738 *
3739 * dequeue
3740 * update_curr()
3741 * update_min_vruntime()
3742 * vruntime -= min_vruntime
3743 *
3744 * enqueue
3745 * update_curr()
3746 * update_min_vruntime()
3747 * vruntime += min_vruntime
3748 *
3749 * this way the vruntime transition between RQs is done when both
3750 * min_vruntime are up-to-date.
3751 *
3752 * WAKEUP (remote)
3753 *
59efa0ba 3754 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3755 * vruntime -= min_vruntime
3756 *
3757 * enqueue
3758 * update_curr()
3759 * update_min_vruntime()
3760 * vruntime += min_vruntime
3761 *
3762 * this way we don't have the most up-to-date min_vruntime on the originating
3763 * CPU and an up-to-date min_vruntime on the destination CPU.
3764 */
3765
bf0f6f24 3766static void
88ec22d3 3767enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3768{
2f950354
PZ
3769 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3770 bool curr = cfs_rq->curr == se;
3771
88ec22d3 3772 /*
2f950354
PZ
3773 * If we're the current task, we must renormalise before calling
3774 * update_curr().
88ec22d3 3775 */
2f950354 3776 if (renorm && curr)
88ec22d3
PZ
3777 se->vruntime += cfs_rq->min_vruntime;
3778
2f950354
PZ
3779 update_curr(cfs_rq);
3780
bf0f6f24 3781 /*
2f950354
PZ
3782 * Otherwise, renormalise after, such that we're placed at the current
3783 * moment in time, instead of some random moment in the past. Being
3784 * placed in the past could significantly boost this task to the
3785 * fairness detriment of existing tasks.
bf0f6f24 3786 */
2f950354
PZ
3787 if (renorm && !curr)
3788 se->vruntime += cfs_rq->min_vruntime;
3789
89ee048f
VG
3790 /*
3791 * When enqueuing a sched_entity, we must:
3792 * - Update loads to have both entity and cfs_rq synced with now.
3793 * - Add its load to cfs_rq->runnable_avg
3794 * - For group_entity, update its weight to reflect the new share of
3795 * its group cfs_rq
3796 * - Add its new weight to cfs_rq->load.weight
3797 */
88c0616e 3798 update_load_avg(cfs_rq, se, UPDATE_TG);
9d89c257 3799 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3800 update_cfs_shares(se);
17bc14b7 3801 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3802
1a3d027c 3803 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3804 place_entity(cfs_rq, se, 0);
bf0f6f24 3805
cb251765 3806 check_schedstat_required();
4fa8d299
JP
3807 update_stats_enqueue(cfs_rq, se, flags);
3808 check_spread(cfs_rq, se);
2f950354 3809 if (!curr)
83b699ed 3810 __enqueue_entity(cfs_rq, se);
2069dd75 3811 se->on_rq = 1;
3d4b47b4 3812
d3d9dc33 3813 if (cfs_rq->nr_running == 1) {
3d4b47b4 3814 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3815 check_enqueue_throttle(cfs_rq);
3816 }
bf0f6f24
IM
3817}
3818
2c13c919 3819static void __clear_buddies_last(struct sched_entity *se)
2002c695 3820{
2c13c919
RR
3821 for_each_sched_entity(se) {
3822 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3823 if (cfs_rq->last != se)
2c13c919 3824 break;
f1044799
PZ
3825
3826 cfs_rq->last = NULL;
2c13c919
RR
3827 }
3828}
2002c695 3829
2c13c919
RR
3830static void __clear_buddies_next(struct sched_entity *se)
3831{
3832 for_each_sched_entity(se) {
3833 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3834 if (cfs_rq->next != se)
2c13c919 3835 break;
f1044799
PZ
3836
3837 cfs_rq->next = NULL;
2c13c919 3838 }
2002c695
PZ
3839}
3840
ac53db59
RR
3841static void __clear_buddies_skip(struct sched_entity *se)
3842{
3843 for_each_sched_entity(se) {
3844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3845 if (cfs_rq->skip != se)
ac53db59 3846 break;
f1044799
PZ
3847
3848 cfs_rq->skip = NULL;
ac53db59
RR
3849 }
3850}
3851
a571bbea
PZ
3852static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3853{
2c13c919
RR
3854 if (cfs_rq->last == se)
3855 __clear_buddies_last(se);
3856
3857 if (cfs_rq->next == se)
3858 __clear_buddies_next(se);
ac53db59
RR
3859
3860 if (cfs_rq->skip == se)
3861 __clear_buddies_skip(se);
a571bbea
PZ
3862}
3863
6c16a6dc 3864static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3865
bf0f6f24 3866static void
371fd7e7 3867dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3868{
a2a2d680
DA
3869 /*
3870 * Update run-time statistics of the 'current'.
3871 */
3872 update_curr(cfs_rq);
89ee048f
VG
3873
3874 /*
3875 * When dequeuing a sched_entity, we must:
3876 * - Update loads to have both entity and cfs_rq synced with now.
3877 * - Substract its load from the cfs_rq->runnable_avg.
3878 * - Substract its previous weight from cfs_rq->load.weight.
3879 * - For group entity, update its weight to reflect the new share
3880 * of its group cfs_rq.
3881 */
88c0616e 3882 update_load_avg(cfs_rq, se, UPDATE_TG);
13962234 3883 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3884
4fa8d299 3885 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3886
2002c695 3887 clear_buddies(cfs_rq, se);
4793241b 3888
83b699ed 3889 if (se != cfs_rq->curr)
30cfdcfc 3890 __dequeue_entity(cfs_rq, se);
17bc14b7 3891 se->on_rq = 0;
30cfdcfc 3892 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3893
3894 /*
b60205c7
PZ
3895 * Normalize after update_curr(); which will also have moved
3896 * min_vruntime if @se is the one holding it back. But before doing
3897 * update_min_vruntime() again, which will discount @se's position and
3898 * can move min_vruntime forward still more.
88ec22d3 3899 */
371fd7e7 3900 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3901 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3902
d8b4986d
PT
3903 /* return excess runtime on last dequeue */
3904 return_cfs_rq_runtime(cfs_rq);
3905
89ee048f 3906 update_cfs_shares(se);
b60205c7
PZ
3907
3908 /*
3909 * Now advance min_vruntime if @se was the entity holding it back,
3910 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3911 * put back on, and if we advance min_vruntime, we'll be placed back
3912 * further than we started -- ie. we'll be penalized.
3913 */
3914 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3915 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3916}
3917
3918/*
3919 * Preempt the current task with a newly woken task if needed:
3920 */
7c92e54f 3921static void
2e09bf55 3922check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3923{
11697830 3924 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3925 struct sched_entity *se;
3926 s64 delta;
11697830 3927
6d0f0ebd 3928 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3929 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3930 if (delta_exec > ideal_runtime) {
8875125e 3931 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3932 /*
3933 * The current task ran long enough, ensure it doesn't get
3934 * re-elected due to buddy favours.
3935 */
3936 clear_buddies(cfs_rq, curr);
f685ceac
MG
3937 return;
3938 }
3939
3940 /*
3941 * Ensure that a task that missed wakeup preemption by a
3942 * narrow margin doesn't have to wait for a full slice.
3943 * This also mitigates buddy induced latencies under load.
3944 */
f685ceac
MG
3945 if (delta_exec < sysctl_sched_min_granularity)
3946 return;
3947
f4cfb33e
WX
3948 se = __pick_first_entity(cfs_rq);
3949 delta = curr->vruntime - se->vruntime;
f685ceac 3950
f4cfb33e
WX
3951 if (delta < 0)
3952 return;
d7d82944 3953
f4cfb33e 3954 if (delta > ideal_runtime)
8875125e 3955 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3956}
3957
83b699ed 3958static void
8494f412 3959set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3960{
83b699ed
SV
3961 /* 'current' is not kept within the tree. */
3962 if (se->on_rq) {
3963 /*
3964 * Any task has to be enqueued before it get to execute on
3965 * a CPU. So account for the time it spent waiting on the
3966 * runqueue.
3967 */
4fa8d299 3968 update_stats_wait_end(cfs_rq, se);
83b699ed 3969 __dequeue_entity(cfs_rq, se);
88c0616e 3970 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
3971 }
3972
79303e9e 3973 update_stats_curr_start(cfs_rq, se);
429d43bc 3974 cfs_rq->curr = se;
4fa8d299 3975
eba1ed4b
IM
3976 /*
3977 * Track our maximum slice length, if the CPU's load is at
3978 * least twice that of our own weight (i.e. dont track it
3979 * when there are only lesser-weight tasks around):
3980 */
cb251765 3981 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3982 schedstat_set(se->statistics.slice_max,
3983 max((u64)schedstat_val(se->statistics.slice_max),
3984 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3985 }
4fa8d299 3986
4a55b450 3987 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3988}
3989
3f3a4904
PZ
3990static int
3991wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3992
ac53db59
RR
3993/*
3994 * Pick the next process, keeping these things in mind, in this order:
3995 * 1) keep things fair between processes/task groups
3996 * 2) pick the "next" process, since someone really wants that to run
3997 * 3) pick the "last" process, for cache locality
3998 * 4) do not run the "skip" process, if something else is available
3999 */
678d5718
PZ
4000static struct sched_entity *
4001pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4002{
678d5718
PZ
4003 struct sched_entity *left = __pick_first_entity(cfs_rq);
4004 struct sched_entity *se;
4005
4006 /*
4007 * If curr is set we have to see if its left of the leftmost entity
4008 * still in the tree, provided there was anything in the tree at all.
4009 */
4010 if (!left || (curr && entity_before(curr, left)))
4011 left = curr;
4012
4013 se = left; /* ideally we run the leftmost entity */
f4b6755f 4014
ac53db59
RR
4015 /*
4016 * Avoid running the skip buddy, if running something else can
4017 * be done without getting too unfair.
4018 */
4019 if (cfs_rq->skip == se) {
678d5718
PZ
4020 struct sched_entity *second;
4021
4022 if (se == curr) {
4023 second = __pick_first_entity(cfs_rq);
4024 } else {
4025 second = __pick_next_entity(se);
4026 if (!second || (curr && entity_before(curr, second)))
4027 second = curr;
4028 }
4029
ac53db59
RR
4030 if (second && wakeup_preempt_entity(second, left) < 1)
4031 se = second;
4032 }
aa2ac252 4033
f685ceac
MG
4034 /*
4035 * Prefer last buddy, try to return the CPU to a preempted task.
4036 */
4037 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4038 se = cfs_rq->last;
4039
ac53db59
RR
4040 /*
4041 * Someone really wants this to run. If it's not unfair, run it.
4042 */
4043 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4044 se = cfs_rq->next;
4045
f685ceac 4046 clear_buddies(cfs_rq, se);
4793241b
PZ
4047
4048 return se;
aa2ac252
PZ
4049}
4050
678d5718 4051static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4052
ab6cde26 4053static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4054{
4055 /*
4056 * If still on the runqueue then deactivate_task()
4057 * was not called and update_curr() has to be done:
4058 */
4059 if (prev->on_rq)
b7cc0896 4060 update_curr(cfs_rq);
bf0f6f24 4061
d3d9dc33
PT
4062 /* throttle cfs_rqs exceeding runtime */
4063 check_cfs_rq_runtime(cfs_rq);
4064
4fa8d299 4065 check_spread(cfs_rq, prev);
cb251765 4066
30cfdcfc 4067 if (prev->on_rq) {
4fa8d299 4068 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4069 /* Put 'current' back into the tree. */
4070 __enqueue_entity(cfs_rq, prev);
9d85f21c 4071 /* in !on_rq case, update occurred at dequeue */
88c0616e 4072 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4073 }
429d43bc 4074 cfs_rq->curr = NULL;
bf0f6f24
IM
4075}
4076
8f4d37ec
PZ
4077static void
4078entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4079{
bf0f6f24 4080 /*
30cfdcfc 4081 * Update run-time statistics of the 'current'.
bf0f6f24 4082 */
30cfdcfc 4083 update_curr(cfs_rq);
bf0f6f24 4084
9d85f21c
PT
4085 /*
4086 * Ensure that runnable average is periodically updated.
4087 */
88c0616e 4088 update_load_avg(cfs_rq, curr, UPDATE_TG);
89ee048f 4089 update_cfs_shares(curr);
9d85f21c 4090
8f4d37ec
PZ
4091#ifdef CONFIG_SCHED_HRTICK
4092 /*
4093 * queued ticks are scheduled to match the slice, so don't bother
4094 * validating it and just reschedule.
4095 */
983ed7a6 4096 if (queued) {
8875125e 4097 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4098 return;
4099 }
8f4d37ec
PZ
4100 /*
4101 * don't let the period tick interfere with the hrtick preemption
4102 */
4103 if (!sched_feat(DOUBLE_TICK) &&
4104 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4105 return;
4106#endif
4107
2c2efaed 4108 if (cfs_rq->nr_running > 1)
2e09bf55 4109 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4110}
4111
ab84d31e
PT
4112
4113/**************************************************
4114 * CFS bandwidth control machinery
4115 */
4116
4117#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4118
4119#ifdef HAVE_JUMP_LABEL
c5905afb 4120static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4121
4122static inline bool cfs_bandwidth_used(void)
4123{
c5905afb 4124 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4125}
4126
1ee14e6c 4127void cfs_bandwidth_usage_inc(void)
029632fb 4128{
1ee14e6c
BS
4129 static_key_slow_inc(&__cfs_bandwidth_used);
4130}
4131
4132void cfs_bandwidth_usage_dec(void)
4133{
4134 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4135}
4136#else /* HAVE_JUMP_LABEL */
4137static bool cfs_bandwidth_used(void)
4138{
4139 return true;
4140}
4141
1ee14e6c
BS
4142void cfs_bandwidth_usage_inc(void) {}
4143void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4144#endif /* HAVE_JUMP_LABEL */
4145
ab84d31e
PT
4146/*
4147 * default period for cfs group bandwidth.
4148 * default: 0.1s, units: nanoseconds
4149 */
4150static inline u64 default_cfs_period(void)
4151{
4152 return 100000000ULL;
4153}
ec12cb7f
PT
4154
4155static inline u64 sched_cfs_bandwidth_slice(void)
4156{
4157 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4158}
4159
a9cf55b2
PT
4160/*
4161 * Replenish runtime according to assigned quota and update expiration time.
4162 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4163 * additional synchronization around rq->lock.
4164 *
4165 * requires cfs_b->lock
4166 */
029632fb 4167void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4168{
4169 u64 now;
4170
4171 if (cfs_b->quota == RUNTIME_INF)
4172 return;
4173
4174 now = sched_clock_cpu(smp_processor_id());
4175 cfs_b->runtime = cfs_b->quota;
4176 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4177}
4178
029632fb
PZ
4179static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4180{
4181 return &tg->cfs_bandwidth;
4182}
4183
f1b17280
PT
4184/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4185static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4186{
4187 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4188 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4189
78becc27 4190 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4191}
4192
85dac906
PT
4193/* returns 0 on failure to allocate runtime */
4194static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4195{
4196 struct task_group *tg = cfs_rq->tg;
4197 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4198 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4199
4200 /* note: this is a positive sum as runtime_remaining <= 0 */
4201 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4202
4203 raw_spin_lock(&cfs_b->lock);
4204 if (cfs_b->quota == RUNTIME_INF)
4205 amount = min_amount;
58088ad0 4206 else {
77a4d1a1 4207 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4208
4209 if (cfs_b->runtime > 0) {
4210 amount = min(cfs_b->runtime, min_amount);
4211 cfs_b->runtime -= amount;
4212 cfs_b->idle = 0;
4213 }
ec12cb7f 4214 }
a9cf55b2 4215 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4216 raw_spin_unlock(&cfs_b->lock);
4217
4218 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4219 /*
4220 * we may have advanced our local expiration to account for allowed
4221 * spread between our sched_clock and the one on which runtime was
4222 * issued.
4223 */
4224 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4225 cfs_rq->runtime_expires = expires;
85dac906
PT
4226
4227 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4228}
4229
a9cf55b2
PT
4230/*
4231 * Note: This depends on the synchronization provided by sched_clock and the
4232 * fact that rq->clock snapshots this value.
4233 */
4234static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4235{
a9cf55b2 4236 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4237
4238 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4239 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4240 return;
4241
a9cf55b2
PT
4242 if (cfs_rq->runtime_remaining < 0)
4243 return;
4244
4245 /*
4246 * If the local deadline has passed we have to consider the
4247 * possibility that our sched_clock is 'fast' and the global deadline
4248 * has not truly expired.
4249 *
4250 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4251 * whether the global deadline has advanced. It is valid to compare
4252 * cfs_b->runtime_expires without any locks since we only care about
4253 * exact equality, so a partial write will still work.
a9cf55b2
PT
4254 */
4255
51f2176d 4256 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4257 /* extend local deadline, drift is bounded above by 2 ticks */
4258 cfs_rq->runtime_expires += TICK_NSEC;
4259 } else {
4260 /* global deadline is ahead, expiration has passed */
4261 cfs_rq->runtime_remaining = 0;
4262 }
4263}
4264
9dbdb155 4265static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4266{
4267 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4268 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4269 expire_cfs_rq_runtime(cfs_rq);
4270
4271 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4272 return;
4273
85dac906
PT
4274 /*
4275 * if we're unable to extend our runtime we resched so that the active
4276 * hierarchy can be throttled
4277 */
4278 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4279 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4280}
4281
6c16a6dc 4282static __always_inline
9dbdb155 4283void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4284{
56f570e5 4285 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4286 return;
4287
4288 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4289}
4290
85dac906
PT
4291static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4292{
56f570e5 4293 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4294}
4295
64660c86
PT
4296/* check whether cfs_rq, or any parent, is throttled */
4297static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4298{
56f570e5 4299 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4300}
4301
4302/*
4303 * Ensure that neither of the group entities corresponding to src_cpu or
4304 * dest_cpu are members of a throttled hierarchy when performing group
4305 * load-balance operations.
4306 */
4307static inline int throttled_lb_pair(struct task_group *tg,
4308 int src_cpu, int dest_cpu)
4309{
4310 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4311
4312 src_cfs_rq = tg->cfs_rq[src_cpu];
4313 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4314
4315 return throttled_hierarchy(src_cfs_rq) ||
4316 throttled_hierarchy(dest_cfs_rq);
4317}
4318
4319/* updated child weight may affect parent so we have to do this bottom up */
4320static int tg_unthrottle_up(struct task_group *tg, void *data)
4321{
4322 struct rq *rq = data;
4323 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4324
4325 cfs_rq->throttle_count--;
64660c86 4326 if (!cfs_rq->throttle_count) {
f1b17280 4327 /* adjust cfs_rq_clock_task() */
78becc27 4328 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4329 cfs_rq->throttled_clock_task;
64660c86 4330 }
64660c86
PT
4331
4332 return 0;
4333}
4334
4335static int tg_throttle_down(struct task_group *tg, void *data)
4336{
4337 struct rq *rq = data;
4338 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4339
82958366
PT
4340 /* group is entering throttled state, stop time */
4341 if (!cfs_rq->throttle_count)
78becc27 4342 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4343 cfs_rq->throttle_count++;
4344
4345 return 0;
4346}
4347
d3d9dc33 4348static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4349{
4350 struct rq *rq = rq_of(cfs_rq);
4351 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4352 struct sched_entity *se;
4353 long task_delta, dequeue = 1;
77a4d1a1 4354 bool empty;
85dac906
PT
4355
4356 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4357
f1b17280 4358 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4359 rcu_read_lock();
4360 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4361 rcu_read_unlock();
85dac906
PT
4362
4363 task_delta = cfs_rq->h_nr_running;
4364 for_each_sched_entity(se) {
4365 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4366 /* throttled entity or throttle-on-deactivate */
4367 if (!se->on_rq)
4368 break;
4369
4370 if (dequeue)
4371 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4372 qcfs_rq->h_nr_running -= task_delta;
4373
4374 if (qcfs_rq->load.weight)
4375 dequeue = 0;
4376 }
4377
4378 if (!se)
72465447 4379 sub_nr_running(rq, task_delta);
85dac906
PT
4380
4381 cfs_rq->throttled = 1;
78becc27 4382 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4383 raw_spin_lock(&cfs_b->lock);
d49db342 4384 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4385
c06f04c7
BS
4386 /*
4387 * Add to the _head_ of the list, so that an already-started
4388 * distribute_cfs_runtime will not see us
4389 */
4390 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4391
4392 /*
4393 * If we're the first throttled task, make sure the bandwidth
4394 * timer is running.
4395 */
4396 if (empty)
4397 start_cfs_bandwidth(cfs_b);
4398
85dac906
PT
4399 raw_spin_unlock(&cfs_b->lock);
4400}
4401
029632fb 4402void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4403{
4404 struct rq *rq = rq_of(cfs_rq);
4405 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4406 struct sched_entity *se;
4407 int enqueue = 1;
4408 long task_delta;
4409
22b958d8 4410 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4411
4412 cfs_rq->throttled = 0;
1a55af2e
FW
4413
4414 update_rq_clock(rq);
4415
671fd9da 4416 raw_spin_lock(&cfs_b->lock);
78becc27 4417 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4418 list_del_rcu(&cfs_rq->throttled_list);
4419 raw_spin_unlock(&cfs_b->lock);
4420
64660c86
PT
4421 /* update hierarchical throttle state */
4422 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4423
671fd9da
PT
4424 if (!cfs_rq->load.weight)
4425 return;
4426
4427 task_delta = cfs_rq->h_nr_running;
4428 for_each_sched_entity(se) {
4429 if (se->on_rq)
4430 enqueue = 0;
4431
4432 cfs_rq = cfs_rq_of(se);
4433 if (enqueue)
4434 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4435 cfs_rq->h_nr_running += task_delta;
4436
4437 if (cfs_rq_throttled(cfs_rq))
4438 break;
4439 }
4440
4441 if (!se)
72465447 4442 add_nr_running(rq, task_delta);
671fd9da
PT
4443
4444 /* determine whether we need to wake up potentially idle cpu */
4445 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4446 resched_curr(rq);
671fd9da
PT
4447}
4448
4449static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4450 u64 remaining, u64 expires)
4451{
4452 struct cfs_rq *cfs_rq;
c06f04c7
BS
4453 u64 runtime;
4454 u64 starting_runtime = remaining;
671fd9da
PT
4455
4456 rcu_read_lock();
4457 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4458 throttled_list) {
4459 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4460 struct rq_flags rf;
671fd9da 4461
8a8c69c3 4462 rq_lock(rq, &rf);
671fd9da
PT
4463 if (!cfs_rq_throttled(cfs_rq))
4464 goto next;
4465
4466 runtime = -cfs_rq->runtime_remaining + 1;
4467 if (runtime > remaining)
4468 runtime = remaining;
4469 remaining -= runtime;
4470
4471 cfs_rq->runtime_remaining += runtime;
4472 cfs_rq->runtime_expires = expires;
4473
4474 /* we check whether we're throttled above */
4475 if (cfs_rq->runtime_remaining > 0)
4476 unthrottle_cfs_rq(cfs_rq);
4477
4478next:
8a8c69c3 4479 rq_unlock(rq, &rf);
671fd9da
PT
4480
4481 if (!remaining)
4482 break;
4483 }
4484 rcu_read_unlock();
4485
c06f04c7 4486 return starting_runtime - remaining;
671fd9da
PT
4487}
4488
58088ad0
PT
4489/*
4490 * Responsible for refilling a task_group's bandwidth and unthrottling its
4491 * cfs_rqs as appropriate. If there has been no activity within the last
4492 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4493 * used to track this state.
4494 */
4495static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4496{
671fd9da 4497 u64 runtime, runtime_expires;
51f2176d 4498 int throttled;
58088ad0 4499
58088ad0
PT
4500 /* no need to continue the timer with no bandwidth constraint */
4501 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4502 goto out_deactivate;
58088ad0 4503
671fd9da 4504 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4505 cfs_b->nr_periods += overrun;
671fd9da 4506
51f2176d
BS
4507 /*
4508 * idle depends on !throttled (for the case of a large deficit), and if
4509 * we're going inactive then everything else can be deferred
4510 */
4511 if (cfs_b->idle && !throttled)
4512 goto out_deactivate;
a9cf55b2
PT
4513
4514 __refill_cfs_bandwidth_runtime(cfs_b);
4515
671fd9da
PT
4516 if (!throttled) {
4517 /* mark as potentially idle for the upcoming period */
4518 cfs_b->idle = 1;
51f2176d 4519 return 0;
671fd9da
PT
4520 }
4521
e8da1b18
NR
4522 /* account preceding periods in which throttling occurred */
4523 cfs_b->nr_throttled += overrun;
4524
671fd9da 4525 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4526
4527 /*
c06f04c7
BS
4528 * This check is repeated as we are holding onto the new bandwidth while
4529 * we unthrottle. This can potentially race with an unthrottled group
4530 * trying to acquire new bandwidth from the global pool. This can result
4531 * in us over-using our runtime if it is all used during this loop, but
4532 * only by limited amounts in that extreme case.
671fd9da 4533 */
c06f04c7
BS
4534 while (throttled && cfs_b->runtime > 0) {
4535 runtime = cfs_b->runtime;
671fd9da
PT
4536 raw_spin_unlock(&cfs_b->lock);
4537 /* we can't nest cfs_b->lock while distributing bandwidth */
4538 runtime = distribute_cfs_runtime(cfs_b, runtime,
4539 runtime_expires);
4540 raw_spin_lock(&cfs_b->lock);
4541
4542 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4543
4544 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4545 }
58088ad0 4546
671fd9da
PT
4547 /*
4548 * While we are ensured activity in the period following an
4549 * unthrottle, this also covers the case in which the new bandwidth is
4550 * insufficient to cover the existing bandwidth deficit. (Forcing the
4551 * timer to remain active while there are any throttled entities.)
4552 */
4553 cfs_b->idle = 0;
58088ad0 4554
51f2176d
BS
4555 return 0;
4556
4557out_deactivate:
51f2176d 4558 return 1;
58088ad0 4559}
d3d9dc33 4560
d8b4986d
PT
4561/* a cfs_rq won't donate quota below this amount */
4562static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4563/* minimum remaining period time to redistribute slack quota */
4564static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4565/* how long we wait to gather additional slack before distributing */
4566static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4567
db06e78c
BS
4568/*
4569 * Are we near the end of the current quota period?
4570 *
4571 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4572 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4573 * migrate_hrtimers, base is never cleared, so we are fine.
4574 */
d8b4986d
PT
4575static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4576{
4577 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4578 u64 remaining;
4579
4580 /* if the call-back is running a quota refresh is already occurring */
4581 if (hrtimer_callback_running(refresh_timer))
4582 return 1;
4583
4584 /* is a quota refresh about to occur? */
4585 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4586 if (remaining < min_expire)
4587 return 1;
4588
4589 return 0;
4590}
4591
4592static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4593{
4594 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4595
4596 /* if there's a quota refresh soon don't bother with slack */
4597 if (runtime_refresh_within(cfs_b, min_left))
4598 return;
4599
4cfafd30
PZ
4600 hrtimer_start(&cfs_b->slack_timer,
4601 ns_to_ktime(cfs_bandwidth_slack_period),
4602 HRTIMER_MODE_REL);
d8b4986d
PT
4603}
4604
4605/* we know any runtime found here is valid as update_curr() precedes return */
4606static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4607{
4608 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4609 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4610
4611 if (slack_runtime <= 0)
4612 return;
4613
4614 raw_spin_lock(&cfs_b->lock);
4615 if (cfs_b->quota != RUNTIME_INF &&
4616 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4617 cfs_b->runtime += slack_runtime;
4618
4619 /* we are under rq->lock, defer unthrottling using a timer */
4620 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4621 !list_empty(&cfs_b->throttled_cfs_rq))
4622 start_cfs_slack_bandwidth(cfs_b);
4623 }
4624 raw_spin_unlock(&cfs_b->lock);
4625
4626 /* even if it's not valid for return we don't want to try again */
4627 cfs_rq->runtime_remaining -= slack_runtime;
4628}
4629
4630static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4631{
56f570e5
PT
4632 if (!cfs_bandwidth_used())
4633 return;
4634
fccfdc6f 4635 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4636 return;
4637
4638 __return_cfs_rq_runtime(cfs_rq);
4639}
4640
4641/*
4642 * This is done with a timer (instead of inline with bandwidth return) since
4643 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4644 */
4645static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4646{
4647 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4648 u64 expires;
4649
4650 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4651 raw_spin_lock(&cfs_b->lock);
4652 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4653 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4654 return;
db06e78c 4655 }
d8b4986d 4656
c06f04c7 4657 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4658 runtime = cfs_b->runtime;
c06f04c7 4659
d8b4986d
PT
4660 expires = cfs_b->runtime_expires;
4661 raw_spin_unlock(&cfs_b->lock);
4662
4663 if (!runtime)
4664 return;
4665
4666 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4667
4668 raw_spin_lock(&cfs_b->lock);
4669 if (expires == cfs_b->runtime_expires)
c06f04c7 4670 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4671 raw_spin_unlock(&cfs_b->lock);
4672}
4673
d3d9dc33
PT
4674/*
4675 * When a group wakes up we want to make sure that its quota is not already
4676 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4677 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4678 */
4679static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4680{
56f570e5
PT
4681 if (!cfs_bandwidth_used())
4682 return;
4683
d3d9dc33
PT
4684 /* an active group must be handled by the update_curr()->put() path */
4685 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4686 return;
4687
4688 /* ensure the group is not already throttled */
4689 if (cfs_rq_throttled(cfs_rq))
4690 return;
4691
4692 /* update runtime allocation */
4693 account_cfs_rq_runtime(cfs_rq, 0);
4694 if (cfs_rq->runtime_remaining <= 0)
4695 throttle_cfs_rq(cfs_rq);
4696}
4697
55e16d30
PZ
4698static void sync_throttle(struct task_group *tg, int cpu)
4699{
4700 struct cfs_rq *pcfs_rq, *cfs_rq;
4701
4702 if (!cfs_bandwidth_used())
4703 return;
4704
4705 if (!tg->parent)
4706 return;
4707
4708 cfs_rq = tg->cfs_rq[cpu];
4709 pcfs_rq = tg->parent->cfs_rq[cpu];
4710
4711 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4712 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4713}
4714
d3d9dc33 4715/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4716static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4717{
56f570e5 4718 if (!cfs_bandwidth_used())
678d5718 4719 return false;
56f570e5 4720
d3d9dc33 4721 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4722 return false;
d3d9dc33
PT
4723
4724 /*
4725 * it's possible for a throttled entity to be forced into a running
4726 * state (e.g. set_curr_task), in this case we're finished.
4727 */
4728 if (cfs_rq_throttled(cfs_rq))
678d5718 4729 return true;
d3d9dc33
PT
4730
4731 throttle_cfs_rq(cfs_rq);
678d5718 4732 return true;
d3d9dc33 4733}
029632fb 4734
029632fb
PZ
4735static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4736{
4737 struct cfs_bandwidth *cfs_b =
4738 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4739
029632fb
PZ
4740 do_sched_cfs_slack_timer(cfs_b);
4741
4742 return HRTIMER_NORESTART;
4743}
4744
4745static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4746{
4747 struct cfs_bandwidth *cfs_b =
4748 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4749 int overrun;
4750 int idle = 0;
4751
51f2176d 4752 raw_spin_lock(&cfs_b->lock);
029632fb 4753 for (;;) {
77a4d1a1 4754 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4755 if (!overrun)
4756 break;
4757
4758 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4759 }
4cfafd30
PZ
4760 if (idle)
4761 cfs_b->period_active = 0;
51f2176d 4762 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4763
4764 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4765}
4766
4767void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4768{
4769 raw_spin_lock_init(&cfs_b->lock);
4770 cfs_b->runtime = 0;
4771 cfs_b->quota = RUNTIME_INF;
4772 cfs_b->period = ns_to_ktime(default_cfs_period());
4773
4774 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4775 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4776 cfs_b->period_timer.function = sched_cfs_period_timer;
4777 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4778 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4779}
4780
4781static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4782{
4783 cfs_rq->runtime_enabled = 0;
4784 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4785}
4786
77a4d1a1 4787void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4788{
4cfafd30 4789 lockdep_assert_held(&cfs_b->lock);
029632fb 4790
4cfafd30
PZ
4791 if (!cfs_b->period_active) {
4792 cfs_b->period_active = 1;
4793 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4794 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4795 }
029632fb
PZ
4796}
4797
4798static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4799{
7f1a169b
TH
4800 /* init_cfs_bandwidth() was not called */
4801 if (!cfs_b->throttled_cfs_rq.next)
4802 return;
4803
029632fb
PZ
4804 hrtimer_cancel(&cfs_b->period_timer);
4805 hrtimer_cancel(&cfs_b->slack_timer);
4806}
4807
502ce005
PZ
4808/*
4809 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4810 *
4811 * The race is harmless, since modifying bandwidth settings of unhooked group
4812 * bits doesn't do much.
4813 */
4814
4815/* cpu online calback */
0e59bdae
KT
4816static void __maybe_unused update_runtime_enabled(struct rq *rq)
4817{
502ce005 4818 struct task_group *tg;
0e59bdae 4819
502ce005
PZ
4820 lockdep_assert_held(&rq->lock);
4821
4822 rcu_read_lock();
4823 list_for_each_entry_rcu(tg, &task_groups, list) {
4824 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4825 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4826
4827 raw_spin_lock(&cfs_b->lock);
4828 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4829 raw_spin_unlock(&cfs_b->lock);
4830 }
502ce005 4831 rcu_read_unlock();
0e59bdae
KT
4832}
4833
502ce005 4834/* cpu offline callback */
38dc3348 4835static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4836{
502ce005
PZ
4837 struct task_group *tg;
4838
4839 lockdep_assert_held(&rq->lock);
4840
4841 rcu_read_lock();
4842 list_for_each_entry_rcu(tg, &task_groups, list) {
4843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4844
029632fb
PZ
4845 if (!cfs_rq->runtime_enabled)
4846 continue;
4847
4848 /*
4849 * clock_task is not advancing so we just need to make sure
4850 * there's some valid quota amount
4851 */
51f2176d 4852 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4853 /*
4854 * Offline rq is schedulable till cpu is completely disabled
4855 * in take_cpu_down(), so we prevent new cfs throttling here.
4856 */
4857 cfs_rq->runtime_enabled = 0;
4858
029632fb
PZ
4859 if (cfs_rq_throttled(cfs_rq))
4860 unthrottle_cfs_rq(cfs_rq);
4861 }
502ce005 4862 rcu_read_unlock();
029632fb
PZ
4863}
4864
4865#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4866static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4867{
78becc27 4868 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4869}
4870
9dbdb155 4871static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4872static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4873static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4874static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4875static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4876
4877static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4878{
4879 return 0;
4880}
64660c86
PT
4881
4882static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4883{
4884 return 0;
4885}
4886
4887static inline int throttled_lb_pair(struct task_group *tg,
4888 int src_cpu, int dest_cpu)
4889{
4890 return 0;
4891}
029632fb
PZ
4892
4893void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4894
4895#ifdef CONFIG_FAIR_GROUP_SCHED
4896static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4897#endif
4898
029632fb
PZ
4899static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4900{
4901 return NULL;
4902}
4903static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4904static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4905static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4906
4907#endif /* CONFIG_CFS_BANDWIDTH */
4908
bf0f6f24
IM
4909/**************************************************
4910 * CFS operations on tasks:
4911 */
4912
8f4d37ec
PZ
4913#ifdef CONFIG_SCHED_HRTICK
4914static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4915{
8f4d37ec
PZ
4916 struct sched_entity *se = &p->se;
4917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4918
9148a3a1 4919 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4920
8bf46a39 4921 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4922 u64 slice = sched_slice(cfs_rq, se);
4923 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4924 s64 delta = slice - ran;
4925
4926 if (delta < 0) {
4927 if (rq->curr == p)
8875125e 4928 resched_curr(rq);
8f4d37ec
PZ
4929 return;
4930 }
31656519 4931 hrtick_start(rq, delta);
8f4d37ec
PZ
4932 }
4933}
a4c2f00f
PZ
4934
4935/*
4936 * called from enqueue/dequeue and updates the hrtick when the
4937 * current task is from our class and nr_running is low enough
4938 * to matter.
4939 */
4940static void hrtick_update(struct rq *rq)
4941{
4942 struct task_struct *curr = rq->curr;
4943
b39e66ea 4944 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4945 return;
4946
4947 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4948 hrtick_start_fair(rq, curr);
4949}
55e12e5e 4950#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4951static inline void
4952hrtick_start_fair(struct rq *rq, struct task_struct *p)
4953{
4954}
a4c2f00f
PZ
4955
4956static inline void hrtick_update(struct rq *rq)
4957{
4958}
8f4d37ec
PZ
4959#endif
4960
bf0f6f24
IM
4961/*
4962 * The enqueue_task method is called before nr_running is
4963 * increased. Here we update the fair scheduling stats and
4964 * then put the task into the rbtree:
4965 */
ea87bb78 4966static void
371fd7e7 4967enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4968{
4969 struct cfs_rq *cfs_rq;
62fb1851 4970 struct sched_entity *se = &p->se;
bf0f6f24 4971
8c34ab19
RW
4972 /*
4973 * If in_iowait is set, the code below may not trigger any cpufreq
4974 * utilization updates, so do it here explicitly with the IOWAIT flag
4975 * passed.
4976 */
4977 if (p->in_iowait)
674e7541 4978 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 4979
bf0f6f24 4980 for_each_sched_entity(se) {
62fb1851 4981 if (se->on_rq)
bf0f6f24
IM
4982 break;
4983 cfs_rq = cfs_rq_of(se);
88ec22d3 4984 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4985
4986 /*
4987 * end evaluation on encountering a throttled cfs_rq
4988 *
4989 * note: in the case of encountering a throttled cfs_rq we will
4990 * post the final h_nr_running increment below.
e210bffd 4991 */
85dac906
PT
4992 if (cfs_rq_throttled(cfs_rq))
4993 break;
953bfcd1 4994 cfs_rq->h_nr_running++;
85dac906 4995
88ec22d3 4996 flags = ENQUEUE_WAKEUP;
bf0f6f24 4997 }
8f4d37ec 4998
2069dd75 4999 for_each_sched_entity(se) {
0f317143 5000 cfs_rq = cfs_rq_of(se);
953bfcd1 5001 cfs_rq->h_nr_running++;
2069dd75 5002
85dac906
PT
5003 if (cfs_rq_throttled(cfs_rq))
5004 break;
5005
88c0616e 5006 update_load_avg(cfs_rq, se, UPDATE_TG);
89ee048f 5007 update_cfs_shares(se);
2069dd75
PZ
5008 }
5009
cd126afe 5010 if (!se)
72465447 5011 add_nr_running(rq, 1);
cd126afe 5012
a4c2f00f 5013 hrtick_update(rq);
bf0f6f24
IM
5014}
5015
2f36825b
VP
5016static void set_next_buddy(struct sched_entity *se);
5017
bf0f6f24
IM
5018/*
5019 * The dequeue_task method is called before nr_running is
5020 * decreased. We remove the task from the rbtree and
5021 * update the fair scheduling stats:
5022 */
371fd7e7 5023static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5024{
5025 struct cfs_rq *cfs_rq;
62fb1851 5026 struct sched_entity *se = &p->se;
2f36825b 5027 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5028
5029 for_each_sched_entity(se) {
5030 cfs_rq = cfs_rq_of(se);
371fd7e7 5031 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5032
5033 /*
5034 * end evaluation on encountering a throttled cfs_rq
5035 *
5036 * note: in the case of encountering a throttled cfs_rq we will
5037 * post the final h_nr_running decrement below.
5038 */
5039 if (cfs_rq_throttled(cfs_rq))
5040 break;
953bfcd1 5041 cfs_rq->h_nr_running--;
2069dd75 5042
bf0f6f24 5043 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5044 if (cfs_rq->load.weight) {
754bd598
KK
5045 /* Avoid re-evaluating load for this entity: */
5046 se = parent_entity(se);
2f36825b
VP
5047 /*
5048 * Bias pick_next to pick a task from this cfs_rq, as
5049 * p is sleeping when it is within its sched_slice.
5050 */
754bd598
KK
5051 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5052 set_next_buddy(se);
bf0f6f24 5053 break;
2f36825b 5054 }
371fd7e7 5055 flags |= DEQUEUE_SLEEP;
bf0f6f24 5056 }
8f4d37ec 5057
2069dd75 5058 for_each_sched_entity(se) {
0f317143 5059 cfs_rq = cfs_rq_of(se);
953bfcd1 5060 cfs_rq->h_nr_running--;
2069dd75 5061
85dac906
PT
5062 if (cfs_rq_throttled(cfs_rq))
5063 break;
5064
88c0616e 5065 update_load_avg(cfs_rq, se, UPDATE_TG);
89ee048f 5066 update_cfs_shares(se);
2069dd75
PZ
5067 }
5068
cd126afe 5069 if (!se)
72465447 5070 sub_nr_running(rq, 1);
cd126afe 5071
a4c2f00f 5072 hrtick_update(rq);
bf0f6f24
IM
5073}
5074
e7693a36 5075#ifdef CONFIG_SMP
10e2f1ac
PZ
5076
5077/* Working cpumask for: load_balance, load_balance_newidle. */
5078DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5079DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5080
9fd81dd5 5081#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5082/*
5083 * per rq 'load' arrray crap; XXX kill this.
5084 */
5085
5086/*
d937cdc5 5087 * The exact cpuload calculated at every tick would be:
3289bdb4 5088 *
d937cdc5
PZ
5089 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5090 *
5091 * If a cpu misses updates for n ticks (as it was idle) and update gets
5092 * called on the n+1-th tick when cpu may be busy, then we have:
5093 *
5094 * load_n = (1 - 1/2^i)^n * load_0
5095 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5096 *
5097 * decay_load_missed() below does efficient calculation of
3289bdb4 5098 *
d937cdc5
PZ
5099 * load' = (1 - 1/2^i)^n * load
5100 *
5101 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5102 * This allows us to precompute the above in said factors, thereby allowing the
5103 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5104 * fixed_power_int())
3289bdb4 5105 *
d937cdc5 5106 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5107 */
5108#define DEGRADE_SHIFT 7
d937cdc5
PZ
5109
5110static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5111static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5112 { 0, 0, 0, 0, 0, 0, 0, 0 },
5113 { 64, 32, 8, 0, 0, 0, 0, 0 },
5114 { 96, 72, 40, 12, 1, 0, 0, 0 },
5115 { 112, 98, 75, 43, 15, 1, 0, 0 },
5116 { 120, 112, 98, 76, 45, 16, 2, 0 }
5117};
3289bdb4
PZ
5118
5119/*
5120 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5121 * would be when CPU is idle and so we just decay the old load without
5122 * adding any new load.
5123 */
5124static unsigned long
5125decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5126{
5127 int j = 0;
5128
5129 if (!missed_updates)
5130 return load;
5131
5132 if (missed_updates >= degrade_zero_ticks[idx])
5133 return 0;
5134
5135 if (idx == 1)
5136 return load >> missed_updates;
5137
5138 while (missed_updates) {
5139 if (missed_updates % 2)
5140 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5141
5142 missed_updates >>= 1;
5143 j++;
5144 }
5145 return load;
5146}
9fd81dd5 5147#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5148
59543275 5149/**
cee1afce 5150 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5151 * @this_rq: The rq to update statistics for
5152 * @this_load: The current load
5153 * @pending_updates: The number of missed updates
59543275 5154 *
3289bdb4 5155 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5156 * scheduler tick (TICK_NSEC).
5157 *
5158 * This function computes a decaying average:
5159 *
5160 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5161 *
5162 * Because of NOHZ it might not get called on every tick which gives need for
5163 * the @pending_updates argument.
5164 *
5165 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5166 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5167 * = A * (A * load[i]_n-2 + B) + B
5168 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5169 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5170 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5171 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5172 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5173 *
5174 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5175 * any change in load would have resulted in the tick being turned back on.
5176 *
5177 * For regular NOHZ, this reduces to:
5178 *
5179 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5180 *
5181 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5182 * term.
3289bdb4 5183 */
1f41906a
FW
5184static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5185 unsigned long pending_updates)
3289bdb4 5186{
9fd81dd5 5187 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5188 int i, scale;
5189
5190 this_rq->nr_load_updates++;
5191
5192 /* Update our load: */
5193 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5194 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5195 unsigned long old_load, new_load;
5196
5197 /* scale is effectively 1 << i now, and >> i divides by scale */
5198
7400d3bb 5199 old_load = this_rq->cpu_load[i];
9fd81dd5 5200#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5201 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5202 if (tickless_load) {
5203 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5204 /*
5205 * old_load can never be a negative value because a
5206 * decayed tickless_load cannot be greater than the
5207 * original tickless_load.
5208 */
5209 old_load += tickless_load;
5210 }
9fd81dd5 5211#endif
3289bdb4
PZ
5212 new_load = this_load;
5213 /*
5214 * Round up the averaging division if load is increasing. This
5215 * prevents us from getting stuck on 9 if the load is 10, for
5216 * example.
5217 */
5218 if (new_load > old_load)
5219 new_load += scale - 1;
5220
5221 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5222 }
5223
5224 sched_avg_update(this_rq);
5225}
5226
7ea241af 5227/* Used instead of source_load when we know the type == 0 */
c7132dd6 5228static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5229{
c7132dd6 5230 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5231}
5232
3289bdb4 5233#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5234/*
5235 * There is no sane way to deal with nohz on smp when using jiffies because the
5236 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5237 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5238 *
5239 * Therefore we need to avoid the delta approach from the regular tick when
5240 * possible since that would seriously skew the load calculation. This is why we
5241 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5242 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5243 * loop exit, nohz_idle_balance, nohz full exit...)
5244 *
5245 * This means we might still be one tick off for nohz periods.
5246 */
5247
5248static void cpu_load_update_nohz(struct rq *this_rq,
5249 unsigned long curr_jiffies,
5250 unsigned long load)
be68a682
FW
5251{
5252 unsigned long pending_updates;
5253
5254 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5255 if (pending_updates) {
5256 this_rq->last_load_update_tick = curr_jiffies;
5257 /*
5258 * In the regular NOHZ case, we were idle, this means load 0.
5259 * In the NOHZ_FULL case, we were non-idle, we should consider
5260 * its weighted load.
5261 */
1f41906a 5262 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5263 }
5264}
5265
3289bdb4
PZ
5266/*
5267 * Called from nohz_idle_balance() to update the load ratings before doing the
5268 * idle balance.
5269 */
cee1afce 5270static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5271{
3289bdb4
PZ
5272 /*
5273 * bail if there's load or we're actually up-to-date.
5274 */
c7132dd6 5275 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5276 return;
5277
1f41906a 5278 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5279}
5280
5281/*
1f41906a
FW
5282 * Record CPU load on nohz entry so we know the tickless load to account
5283 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5284 * than other cpu_load[idx] but it should be fine as cpu_load readers
5285 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5286 */
1f41906a 5287void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5288{
5289 struct rq *this_rq = this_rq();
1f41906a
FW
5290
5291 /*
5292 * This is all lockless but should be fine. If weighted_cpuload changes
5293 * concurrently we'll exit nohz. And cpu_load write can race with
5294 * cpu_load_update_idle() but both updater would be writing the same.
5295 */
c7132dd6 5296 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5297}
5298
5299/*
5300 * Account the tickless load in the end of a nohz frame.
5301 */
5302void cpu_load_update_nohz_stop(void)
5303{
316c1608 5304 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5305 struct rq *this_rq = this_rq();
5306 unsigned long load;
8a8c69c3 5307 struct rq_flags rf;
3289bdb4
PZ
5308
5309 if (curr_jiffies == this_rq->last_load_update_tick)
5310 return;
5311
c7132dd6 5312 load = weighted_cpuload(this_rq);
8a8c69c3 5313 rq_lock(this_rq, &rf);
b52fad2d 5314 update_rq_clock(this_rq);
1f41906a 5315 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5316 rq_unlock(this_rq, &rf);
3289bdb4 5317}
1f41906a
FW
5318#else /* !CONFIG_NO_HZ_COMMON */
5319static inline void cpu_load_update_nohz(struct rq *this_rq,
5320 unsigned long curr_jiffies,
5321 unsigned long load) { }
5322#endif /* CONFIG_NO_HZ_COMMON */
5323
5324static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5325{
9fd81dd5 5326#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5327 /* See the mess around cpu_load_update_nohz(). */
5328 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5329#endif
1f41906a
FW
5330 cpu_load_update(this_rq, load, 1);
5331}
3289bdb4
PZ
5332
5333/*
5334 * Called from scheduler_tick()
5335 */
cee1afce 5336void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5337{
c7132dd6 5338 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5339
5340 if (tick_nohz_tick_stopped())
5341 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5342 else
5343 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5344}
5345
029632fb
PZ
5346/*
5347 * Return a low guess at the load of a migration-source cpu weighted
5348 * according to the scheduling class and "nice" value.
5349 *
5350 * We want to under-estimate the load of migration sources, to
5351 * balance conservatively.
5352 */
5353static unsigned long source_load(int cpu, int type)
5354{
5355 struct rq *rq = cpu_rq(cpu);
c7132dd6 5356 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5357
5358 if (type == 0 || !sched_feat(LB_BIAS))
5359 return total;
5360
5361 return min(rq->cpu_load[type-1], total);
5362}
5363
5364/*
5365 * Return a high guess at the load of a migration-target cpu weighted
5366 * according to the scheduling class and "nice" value.
5367 */
5368static unsigned long target_load(int cpu, int type)
5369{
5370 struct rq *rq = cpu_rq(cpu);
c7132dd6 5371 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5372
5373 if (type == 0 || !sched_feat(LB_BIAS))
5374 return total;
5375
5376 return max(rq->cpu_load[type-1], total);
5377}
5378
ced549fa 5379static unsigned long capacity_of(int cpu)
029632fb 5380{
ced549fa 5381 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5382}
5383
ca6d75e6
VG
5384static unsigned long capacity_orig_of(int cpu)
5385{
5386 return cpu_rq(cpu)->cpu_capacity_orig;
5387}
5388
029632fb
PZ
5389static unsigned long cpu_avg_load_per_task(int cpu)
5390{
5391 struct rq *rq = cpu_rq(cpu);
316c1608 5392 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5393 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5394
5395 if (nr_running)
b92486cb 5396 return load_avg / nr_running;
029632fb
PZ
5397
5398 return 0;
5399}
5400
c58d25f3
PZ
5401static void record_wakee(struct task_struct *p)
5402{
5403 /*
5404 * Only decay a single time; tasks that have less then 1 wakeup per
5405 * jiffy will not have built up many flips.
5406 */
5407 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5408 current->wakee_flips >>= 1;
5409 current->wakee_flip_decay_ts = jiffies;
5410 }
5411
5412 if (current->last_wakee != p) {
5413 current->last_wakee = p;
5414 current->wakee_flips++;
5415 }
5416}
5417
63b0e9ed
MG
5418/*
5419 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5420 *
63b0e9ed 5421 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5422 * at a frequency roughly N times higher than one of its wakees.
5423 *
5424 * In order to determine whether we should let the load spread vs consolidating
5425 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5426 * partner, and a factor of lls_size higher frequency in the other.
5427 *
5428 * With both conditions met, we can be relatively sure that the relationship is
5429 * non-monogamous, with partner count exceeding socket size.
5430 *
5431 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5432 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5433 * socket size.
63b0e9ed 5434 */
62470419
MW
5435static int wake_wide(struct task_struct *p)
5436{
63b0e9ed
MG
5437 unsigned int master = current->wakee_flips;
5438 unsigned int slave = p->wakee_flips;
7d9ffa89 5439 int factor = this_cpu_read(sd_llc_size);
62470419 5440
63b0e9ed
MG
5441 if (master < slave)
5442 swap(master, slave);
5443 if (slave < factor || master < slave * factor)
5444 return 0;
5445 return 1;
62470419
MW
5446}
5447
90001d67
PZ
5448struct llc_stats {
5449 unsigned long nr_running;
5450 unsigned long load;
5451 unsigned long capacity;
5452 int has_capacity;
5453};
5454
5455static bool get_llc_stats(struct llc_stats *stats, int cpu)
5456{
5457 struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5458
5459 if (!sds)
5460 return false;
5461
5462 stats->nr_running = READ_ONCE(sds->nr_running);
5463 stats->load = READ_ONCE(sds->load);
5464 stats->capacity = READ_ONCE(sds->capacity);
5465 stats->has_capacity = stats->nr_running < per_cpu(sd_llc_size, cpu);
5466
5467 return true;
5468}
5469
5470/*
5471 * Can a task be moved from prev_cpu to this_cpu without causing a load
5472 * imbalance that would trigger the load balancer?
5473 *
5474 * Since we're running on 'stale' values, we might in fact create an imbalance
5475 * but recomputing these values is expensive, as that'd mean iteration 2 cache
5476 * domains worth of CPUs.
5477 */
5478static bool
5479wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5480 int this_cpu, int prev_cpu, int sync)
5481{
5482 struct llc_stats prev_stats, this_stats;
5483 s64 this_eff_load, prev_eff_load;
5484 unsigned long task_load;
5485
5486 if (!get_llc_stats(&prev_stats, prev_cpu) ||
5487 !get_llc_stats(&this_stats, this_cpu))
5488 return false;
5489
5490 /*
5491 * If sync wakeup then subtract the (maximum possible)
5492 * effect of the currently running task from the load
5493 * of the current LLC.
5494 */
5495 if (sync) {
5496 unsigned long current_load = task_h_load(current);
5497
5498 /* in this case load hits 0 and this LLC is considered 'idle' */
5499 if (current_load > this_stats.load)
5500 return true;
5501
5502 this_stats.load -= current_load;
5503 }
5504
5505 /*
5506 * The has_capacity stuff is not SMT aware, but by trying to balance
5507 * the nr_running on both ends we try and fill the domain at equal
5508 * rates, thereby first consuming cores before siblings.
5509 */
5510
5511 /* if the old cache has capacity, stay there */
5512 if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5513 return false;
5514
5515 /* if this cache has capacity, come here */
a731ebe6 5516 if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
90001d67
PZ
5517 return true;
5518
5519 /*
5520 * Check to see if we can move the load without causing too much
5521 * imbalance.
5522 */
5523 task_load = task_h_load(p);
5524
5525 this_eff_load = 100;
5526 this_eff_load *= prev_stats.capacity;
5527
5528 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5529 prev_eff_load *= this_stats.capacity;
5530
5531 this_eff_load *= this_stats.load + task_load;
5532 prev_eff_load *= prev_stats.load - task_load;
5533
5534 return this_eff_load <= prev_eff_load;
5535}
5536
772bd008
MR
5537static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5538 int prev_cpu, int sync)
098fb9db 5539{
3fed382b 5540 int this_cpu = smp_processor_id();
90001d67 5541 bool affine;
098fb9db 5542
7d894e6e 5543 /*
90001d67
PZ
5544 * Default to no affine wakeups; wake_affine() should not effect a task
5545 * placement the load-balancer feels inclined to undo. The conservative
5546 * option is therefore to not move tasks when they wake up.
7d894e6e 5547 */
90001d67
PZ
5548 affine = false;
5549
5550 /*
5551 * If the wakeup is across cache domains, try to evaluate if movement
5552 * makes sense, otherwise rely on select_idle_siblings() to do
5553 * placement inside the cache domain.
5554 */
5555 if (!cpus_share_cache(prev_cpu, this_cpu))
5556 affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5557
ae92882e 5558 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5559 if (affine) {
5560 schedstat_inc(sd->ttwu_move_affine);
5561 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5562 }
098fb9db 5563
3fed382b 5564 return affine;
098fb9db
IM
5565}
5566
6a0b19c0
MR
5567static inline int task_util(struct task_struct *p);
5568static int cpu_util_wake(int cpu, struct task_struct *p);
5569
5570static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5571{
5572 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5573}
5574
aaee1203
PZ
5575/*
5576 * find_idlest_group finds and returns the least busy CPU group within the
5577 * domain.
5578 */
5579static struct sched_group *
78e7ed53 5580find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5581 int this_cpu, int sd_flag)
e7693a36 5582{
b3bd3de6 5583 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5584 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5585 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5586 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5587 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5588 int load_idx = sd->forkexec_idx;
6b94780e
VG
5589 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5590 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5591 (sd->imbalance_pct-100) / 100;
e7693a36 5592
c44f2a02
VG
5593 if (sd_flag & SD_BALANCE_WAKE)
5594 load_idx = sd->wake_idx;
5595
aaee1203 5596 do {
6b94780e
VG
5597 unsigned long load, avg_load, runnable_load;
5598 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5599 int local_group;
5600 int i;
e7693a36 5601
aaee1203 5602 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5603 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5604 &p->cpus_allowed))
aaee1203
PZ
5605 continue;
5606
5607 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5608 sched_group_span(group));
aaee1203 5609
6a0b19c0
MR
5610 /*
5611 * Tally up the load of all CPUs in the group and find
5612 * the group containing the CPU with most spare capacity.
5613 */
aaee1203 5614 avg_load = 0;
6b94780e 5615 runnable_load = 0;
6a0b19c0 5616 max_spare_cap = 0;
aaee1203 5617
ae4df9d6 5618 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5619 /* Bias balancing toward cpus of our domain */
5620 if (local_group)
5621 load = source_load(i, load_idx);
5622 else
5623 load = target_load(i, load_idx);
5624
6b94780e
VG
5625 runnable_load += load;
5626
5627 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5628
5629 spare_cap = capacity_spare_wake(i, p);
5630
5631 if (spare_cap > max_spare_cap)
5632 max_spare_cap = spare_cap;
aaee1203
PZ
5633 }
5634
63b2ca30 5635 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5636 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5637 group->sgc->capacity;
5638 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5639 group->sgc->capacity;
aaee1203
PZ
5640
5641 if (local_group) {
6b94780e
VG
5642 this_runnable_load = runnable_load;
5643 this_avg_load = avg_load;
6a0b19c0
MR
5644 this_spare = max_spare_cap;
5645 } else {
6b94780e
VG
5646 if (min_runnable_load > (runnable_load + imbalance)) {
5647 /*
5648 * The runnable load is significantly smaller
5649 * so we can pick this new cpu
5650 */
5651 min_runnable_load = runnable_load;
5652 min_avg_load = avg_load;
5653 idlest = group;
5654 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5655 (100*min_avg_load > imbalance_scale*avg_load)) {
5656 /*
5657 * The runnable loads are close so take the
5658 * blocked load into account through avg_load.
5659 */
5660 min_avg_load = avg_load;
6a0b19c0
MR
5661 idlest = group;
5662 }
5663
5664 if (most_spare < max_spare_cap) {
5665 most_spare = max_spare_cap;
5666 most_spare_sg = group;
5667 }
aaee1203
PZ
5668 }
5669 } while (group = group->next, group != sd->groups);
5670
6a0b19c0
MR
5671 /*
5672 * The cross-over point between using spare capacity or least load
5673 * is too conservative for high utilization tasks on partially
5674 * utilized systems if we require spare_capacity > task_util(p),
5675 * so we allow for some task stuffing by using
5676 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5677 *
5678 * Spare capacity can't be used for fork because the utilization has
5679 * not been set yet, we must first select a rq to compute the initial
5680 * utilization.
6a0b19c0 5681 */
f519a3f1
VG
5682 if (sd_flag & SD_BALANCE_FORK)
5683 goto skip_spare;
5684
6a0b19c0 5685 if (this_spare > task_util(p) / 2 &&
6b94780e 5686 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5687 return NULL;
6b94780e
VG
5688
5689 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5690 return most_spare_sg;
5691
f519a3f1 5692skip_spare:
6b94780e
VG
5693 if (!idlest)
5694 return NULL;
5695
5696 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5697 return NULL;
6b94780e
VG
5698
5699 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5700 (100*this_avg_load < imbalance_scale*min_avg_load))
5701 return NULL;
5702
aaee1203
PZ
5703 return idlest;
5704}
5705
5706/*
5707 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5708 */
5709static int
5710find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5711{
5712 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5713 unsigned int min_exit_latency = UINT_MAX;
5714 u64 latest_idle_timestamp = 0;
5715 int least_loaded_cpu = this_cpu;
5716 int shallowest_idle_cpu = -1;
aaee1203
PZ
5717 int i;
5718
eaecf41f
MR
5719 /* Check if we have any choice: */
5720 if (group->group_weight == 1)
ae4df9d6 5721 return cpumask_first(sched_group_span(group));
eaecf41f 5722
aaee1203 5723 /* Traverse only the allowed CPUs */
ae4df9d6 5724 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5725 if (idle_cpu(i)) {
5726 struct rq *rq = cpu_rq(i);
5727 struct cpuidle_state *idle = idle_get_state(rq);
5728 if (idle && idle->exit_latency < min_exit_latency) {
5729 /*
5730 * We give priority to a CPU whose idle state
5731 * has the smallest exit latency irrespective
5732 * of any idle timestamp.
5733 */
5734 min_exit_latency = idle->exit_latency;
5735 latest_idle_timestamp = rq->idle_stamp;
5736 shallowest_idle_cpu = i;
5737 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5738 rq->idle_stamp > latest_idle_timestamp) {
5739 /*
5740 * If equal or no active idle state, then
5741 * the most recently idled CPU might have
5742 * a warmer cache.
5743 */
5744 latest_idle_timestamp = rq->idle_stamp;
5745 shallowest_idle_cpu = i;
5746 }
9f96742a 5747 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5748 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5749 if (load < min_load || (load == min_load && i == this_cpu)) {
5750 min_load = load;
5751 least_loaded_cpu = i;
5752 }
e7693a36
GH
5753 }
5754 }
5755
83a0a96a 5756 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5757}
e7693a36 5758
10e2f1ac
PZ
5759#ifdef CONFIG_SCHED_SMT
5760
5761static inline void set_idle_cores(int cpu, int val)
5762{
5763 struct sched_domain_shared *sds;
5764
5765 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5766 if (sds)
5767 WRITE_ONCE(sds->has_idle_cores, val);
5768}
5769
5770static inline bool test_idle_cores(int cpu, bool def)
5771{
5772 struct sched_domain_shared *sds;
5773
5774 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5775 if (sds)
5776 return READ_ONCE(sds->has_idle_cores);
5777
5778 return def;
5779}
5780
5781/*
5782 * Scans the local SMT mask to see if the entire core is idle, and records this
5783 * information in sd_llc_shared->has_idle_cores.
5784 *
5785 * Since SMT siblings share all cache levels, inspecting this limited remote
5786 * state should be fairly cheap.
5787 */
1b568f0a 5788void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5789{
5790 int core = cpu_of(rq);
5791 int cpu;
5792
5793 rcu_read_lock();
5794 if (test_idle_cores(core, true))
5795 goto unlock;
5796
5797 for_each_cpu(cpu, cpu_smt_mask(core)) {
5798 if (cpu == core)
5799 continue;
5800
5801 if (!idle_cpu(cpu))
5802 goto unlock;
5803 }
5804
5805 set_idle_cores(core, 1);
5806unlock:
5807 rcu_read_unlock();
5808}
5809
5810/*
5811 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5812 * there are no idle cores left in the system; tracked through
5813 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5814 */
5815static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5816{
5817 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5818 int core, cpu;
10e2f1ac 5819
1b568f0a
PZ
5820 if (!static_branch_likely(&sched_smt_present))
5821 return -1;
5822
10e2f1ac
PZ
5823 if (!test_idle_cores(target, false))
5824 return -1;
5825
0c98d344 5826 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5827
c743f0a5 5828 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5829 bool idle = true;
5830
5831 for_each_cpu(cpu, cpu_smt_mask(core)) {
5832 cpumask_clear_cpu(cpu, cpus);
5833 if (!idle_cpu(cpu))
5834 idle = false;
5835 }
5836
5837 if (idle)
5838 return core;
5839 }
5840
5841 /*
5842 * Failed to find an idle core; stop looking for one.
5843 */
5844 set_idle_cores(target, 0);
5845
5846 return -1;
5847}
5848
5849/*
5850 * Scan the local SMT mask for idle CPUs.
5851 */
5852static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5853{
5854 int cpu;
5855
1b568f0a
PZ
5856 if (!static_branch_likely(&sched_smt_present))
5857 return -1;
5858
10e2f1ac 5859 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5860 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5861 continue;
5862 if (idle_cpu(cpu))
5863 return cpu;
5864 }
5865
5866 return -1;
5867}
5868
5869#else /* CONFIG_SCHED_SMT */
5870
5871static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5872{
5873 return -1;
5874}
5875
5876static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5877{
5878 return -1;
5879}
5880
5881#endif /* CONFIG_SCHED_SMT */
5882
5883/*
5884 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5885 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5886 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5887 */
10e2f1ac
PZ
5888static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5889{
9cfb38a7 5890 struct sched_domain *this_sd;
1ad3aaf3 5891 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5892 u64 time, cost;
5893 s64 delta;
1ad3aaf3 5894 int cpu, nr = INT_MAX;
10e2f1ac 5895
9cfb38a7
WL
5896 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5897 if (!this_sd)
5898 return -1;
5899
10e2f1ac
PZ
5900 /*
5901 * Due to large variance we need a large fuzz factor; hackbench in
5902 * particularly is sensitive here.
5903 */
1ad3aaf3
PZ
5904 avg_idle = this_rq()->avg_idle / 512;
5905 avg_cost = this_sd->avg_scan_cost + 1;
5906
5907 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5908 return -1;
5909
1ad3aaf3
PZ
5910 if (sched_feat(SIS_PROP)) {
5911 u64 span_avg = sd->span_weight * avg_idle;
5912 if (span_avg > 4*avg_cost)
5913 nr = div_u64(span_avg, avg_cost);
5914 else
5915 nr = 4;
5916 }
5917
10e2f1ac
PZ
5918 time = local_clock();
5919
c743f0a5 5920 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5921 if (!--nr)
5922 return -1;
0c98d344 5923 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5924 continue;
5925 if (idle_cpu(cpu))
5926 break;
5927 }
5928
5929 time = local_clock() - time;
5930 cost = this_sd->avg_scan_cost;
5931 delta = (s64)(time - cost) / 8;
5932 this_sd->avg_scan_cost += delta;
5933
5934 return cpu;
5935}
5936
5937/*
5938 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5939 */
772bd008 5940static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5941{
99bd5e2f 5942 struct sched_domain *sd;
10e2f1ac 5943 int i;
a50bde51 5944
e0a79f52
MG
5945 if (idle_cpu(target))
5946 return target;
99bd5e2f
SS
5947
5948 /*
10e2f1ac 5949 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5950 */
772bd008
MR
5951 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5952 return prev;
a50bde51 5953
518cd623 5954 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5955 if (!sd)
5956 return target;
772bd008 5957
10e2f1ac
PZ
5958 i = select_idle_core(p, sd, target);
5959 if ((unsigned)i < nr_cpumask_bits)
5960 return i;
37407ea7 5961
10e2f1ac
PZ
5962 i = select_idle_cpu(p, sd, target);
5963 if ((unsigned)i < nr_cpumask_bits)
5964 return i;
5965
5966 i = select_idle_smt(p, sd, target);
5967 if ((unsigned)i < nr_cpumask_bits)
5968 return i;
970e1789 5969
a50bde51
PZ
5970 return target;
5971}
231678b7 5972
8bb5b00c 5973/*
9e91d61d 5974 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5975 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5976 * compare the utilization with the capacity of the CPU that is available for
5977 * CFS task (ie cpu_capacity).
231678b7
DE
5978 *
5979 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5980 * recent utilization of currently non-runnable tasks on a CPU. It represents
5981 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5982 * capacity_orig is the cpu_capacity available at the highest frequency
5983 * (arch_scale_freq_capacity()).
5984 * The utilization of a CPU converges towards a sum equal to or less than the
5985 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5986 * the running time on this CPU scaled by capacity_curr.
5987 *
5988 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5989 * higher than capacity_orig because of unfortunate rounding in
5990 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5991 * the average stabilizes with the new running time. We need to check that the
5992 * utilization stays within the range of [0..capacity_orig] and cap it if
5993 * necessary. Without utilization capping, a group could be seen as overloaded
5994 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5995 * available capacity. We allow utilization to overshoot capacity_curr (but not
5996 * capacity_orig) as it useful for predicting the capacity required after task
5997 * migrations (scheduler-driven DVFS).
8bb5b00c 5998 */
9e91d61d 5999static int cpu_util(int cpu)
8bb5b00c 6000{
9e91d61d 6001 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
6002 unsigned long capacity = capacity_orig_of(cpu);
6003
231678b7 6004 return (util >= capacity) ? capacity : util;
8bb5b00c 6005}
a50bde51 6006
3273163c
MR
6007static inline int task_util(struct task_struct *p)
6008{
6009 return p->se.avg.util_avg;
6010}
6011
104cb16d
MR
6012/*
6013 * cpu_util_wake: Compute cpu utilization with any contributions from
6014 * the waking task p removed.
6015 */
6016static int cpu_util_wake(int cpu, struct task_struct *p)
6017{
6018 unsigned long util, capacity;
6019
6020 /* Task has no contribution or is new */
6021 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6022 return cpu_util(cpu);
6023
6024 capacity = capacity_orig_of(cpu);
6025 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6026
6027 return (util >= capacity) ? capacity : util;
6028}
6029
3273163c
MR
6030/*
6031 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6032 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6033 *
6034 * In that case WAKE_AFFINE doesn't make sense and we'll let
6035 * BALANCE_WAKE sort things out.
6036 */
6037static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6038{
6039 long min_cap, max_cap;
6040
6041 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6042 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6043
6044 /* Minimum capacity is close to max, no need to abort wake_affine */
6045 if (max_cap - min_cap < max_cap >> 3)
6046 return 0;
6047
104cb16d
MR
6048 /* Bring task utilization in sync with prev_cpu */
6049 sync_entity_load_avg(&p->se);
6050
3273163c
MR
6051 return min_cap * 1024 < task_util(p) * capacity_margin;
6052}
6053
aaee1203 6054/*
de91b9cb
MR
6055 * select_task_rq_fair: Select target runqueue for the waking task in domains
6056 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6057 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6058 *
de91b9cb
MR
6059 * Balances load by selecting the idlest cpu in the idlest group, or under
6060 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 6061 *
de91b9cb 6062 * Returns the target cpu number.
aaee1203
PZ
6063 *
6064 * preempt must be disabled.
6065 */
0017d735 6066static int
ac66f547 6067select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6068{
29cd8bae 6069 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 6070 int cpu = smp_processor_id();
63b0e9ed 6071 int new_cpu = prev_cpu;
99bd5e2f 6072 int want_affine = 0;
5158f4e4 6073 int sync = wake_flags & WF_SYNC;
c88d5910 6074
c58d25f3
PZ
6075 if (sd_flag & SD_BALANCE_WAKE) {
6076 record_wakee(p);
3273163c 6077 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6078 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6079 }
aaee1203 6080
dce840a0 6081 rcu_read_lock();
aaee1203 6082 for_each_domain(cpu, tmp) {
e4f42888 6083 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6084 break;
e4f42888 6085
fe3bcfe1 6086 /*
99bd5e2f
SS
6087 * If both cpu and prev_cpu are part of this domain,
6088 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6089 */
99bd5e2f
SS
6090 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6091 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6092 affine_sd = tmp;
29cd8bae 6093 break;
f03542a7 6094 }
29cd8bae 6095
f03542a7 6096 if (tmp->flags & sd_flag)
29cd8bae 6097 sd = tmp;
63b0e9ed
MG
6098 else if (!want_affine)
6099 break;
29cd8bae
PZ
6100 }
6101
63b0e9ed
MG
6102 if (affine_sd) {
6103 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
6104 if (cpu == prev_cpu)
6105 goto pick_cpu;
6106
6107 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6108 new_cpu = cpu;
8b911acd 6109 }
e7693a36 6110
63b0e9ed 6111 if (!sd) {
7d894e6e 6112 pick_cpu:
63b0e9ed 6113 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6114 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6115
6116 } else while (sd) {
aaee1203 6117 struct sched_group *group;
c88d5910 6118 int weight;
098fb9db 6119
0763a660 6120 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6121 sd = sd->child;
6122 continue;
6123 }
098fb9db 6124
c44f2a02 6125 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6126 if (!group) {
6127 sd = sd->child;
6128 continue;
6129 }
4ae7d5ce 6130
d7c33c49 6131 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6132 if (new_cpu == -1 || new_cpu == cpu) {
6133 /* Now try balancing at a lower domain level of cpu */
6134 sd = sd->child;
6135 continue;
e7693a36 6136 }
aaee1203
PZ
6137
6138 /* Now try balancing at a lower domain level of new_cpu */
6139 cpu = new_cpu;
669c55e9 6140 weight = sd->span_weight;
aaee1203
PZ
6141 sd = NULL;
6142 for_each_domain(cpu, tmp) {
669c55e9 6143 if (weight <= tmp->span_weight)
aaee1203 6144 break;
0763a660 6145 if (tmp->flags & sd_flag)
aaee1203
PZ
6146 sd = tmp;
6147 }
6148 /* while loop will break here if sd == NULL */
e7693a36 6149 }
dce840a0 6150 rcu_read_unlock();
e7693a36 6151
c88d5910 6152 return new_cpu;
e7693a36 6153}
0a74bef8
PT
6154
6155/*
6156 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6157 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6158 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6159 */
5a4fd036 6160static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6161{
59efa0ba
PZ
6162 /*
6163 * As blocked tasks retain absolute vruntime the migration needs to
6164 * deal with this by subtracting the old and adding the new
6165 * min_vruntime -- the latter is done by enqueue_entity() when placing
6166 * the task on the new runqueue.
6167 */
6168 if (p->state == TASK_WAKING) {
6169 struct sched_entity *se = &p->se;
6170 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6171 u64 min_vruntime;
6172
6173#ifndef CONFIG_64BIT
6174 u64 min_vruntime_copy;
6175
6176 do {
6177 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6178 smp_rmb();
6179 min_vruntime = cfs_rq->min_vruntime;
6180 } while (min_vruntime != min_vruntime_copy);
6181#else
6182 min_vruntime = cfs_rq->min_vruntime;
6183#endif
6184
6185 se->vruntime -= min_vruntime;
6186 }
6187
aff3e498 6188 /*
9d89c257
YD
6189 * We are supposed to update the task to "current" time, then its up to date
6190 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6191 * what current time is, so simply throw away the out-of-date time. This
6192 * will result in the wakee task is less decayed, but giving the wakee more
6193 * load sounds not bad.
aff3e498 6194 */
9d89c257
YD
6195 remove_entity_load_avg(&p->se);
6196
6197 /* Tell new CPU we are migrated */
6198 p->se.avg.last_update_time = 0;
3944a927
BS
6199
6200 /* We have migrated, no longer consider this task hot */
9d89c257 6201 p->se.exec_start = 0;
0a74bef8 6202}
12695578
YD
6203
6204static void task_dead_fair(struct task_struct *p)
6205{
6206 remove_entity_load_avg(&p->se);
6207}
e7693a36
GH
6208#endif /* CONFIG_SMP */
6209
e52fb7c0
PZ
6210static unsigned long
6211wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6212{
6213 unsigned long gran = sysctl_sched_wakeup_granularity;
6214
6215 /*
e52fb7c0
PZ
6216 * Since its curr running now, convert the gran from real-time
6217 * to virtual-time in his units.
13814d42
MG
6218 *
6219 * By using 'se' instead of 'curr' we penalize light tasks, so
6220 * they get preempted easier. That is, if 'se' < 'curr' then
6221 * the resulting gran will be larger, therefore penalizing the
6222 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6223 * be smaller, again penalizing the lighter task.
6224 *
6225 * This is especially important for buddies when the leftmost
6226 * task is higher priority than the buddy.
0bbd3336 6227 */
f4ad9bd2 6228 return calc_delta_fair(gran, se);
0bbd3336
PZ
6229}
6230
464b7527
PZ
6231/*
6232 * Should 'se' preempt 'curr'.
6233 *
6234 * |s1
6235 * |s2
6236 * |s3
6237 * g
6238 * |<--->|c
6239 *
6240 * w(c, s1) = -1
6241 * w(c, s2) = 0
6242 * w(c, s3) = 1
6243 *
6244 */
6245static int
6246wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6247{
6248 s64 gran, vdiff = curr->vruntime - se->vruntime;
6249
6250 if (vdiff <= 0)
6251 return -1;
6252
e52fb7c0 6253 gran = wakeup_gran(curr, se);
464b7527
PZ
6254 if (vdiff > gran)
6255 return 1;
6256
6257 return 0;
6258}
6259
02479099
PZ
6260static void set_last_buddy(struct sched_entity *se)
6261{
69c80f3e
VP
6262 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6263 return;
6264
c5ae366e
DA
6265 for_each_sched_entity(se) {
6266 if (SCHED_WARN_ON(!se->on_rq))
6267 return;
69c80f3e 6268 cfs_rq_of(se)->last = se;
c5ae366e 6269 }
02479099
PZ
6270}
6271
6272static void set_next_buddy(struct sched_entity *se)
6273{
69c80f3e
VP
6274 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6275 return;
6276
c5ae366e
DA
6277 for_each_sched_entity(se) {
6278 if (SCHED_WARN_ON(!se->on_rq))
6279 return;
69c80f3e 6280 cfs_rq_of(se)->next = se;
c5ae366e 6281 }
02479099
PZ
6282}
6283
ac53db59
RR
6284static void set_skip_buddy(struct sched_entity *se)
6285{
69c80f3e
VP
6286 for_each_sched_entity(se)
6287 cfs_rq_of(se)->skip = se;
ac53db59
RR
6288}
6289
bf0f6f24
IM
6290/*
6291 * Preempt the current task with a newly woken task if needed:
6292 */
5a9b86f6 6293static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6294{
6295 struct task_struct *curr = rq->curr;
8651a86c 6296 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6297 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6298 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6299 int next_buddy_marked = 0;
bf0f6f24 6300
4ae7d5ce
IM
6301 if (unlikely(se == pse))
6302 return;
6303
5238cdd3 6304 /*
163122b7 6305 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6306 * unconditionally check_prempt_curr() after an enqueue (which may have
6307 * lead to a throttle). This both saves work and prevents false
6308 * next-buddy nomination below.
6309 */
6310 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6311 return;
6312
2f36825b 6313 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6314 set_next_buddy(pse);
2f36825b
VP
6315 next_buddy_marked = 1;
6316 }
57fdc26d 6317
aec0a514
BR
6318 /*
6319 * We can come here with TIF_NEED_RESCHED already set from new task
6320 * wake up path.
5238cdd3
PT
6321 *
6322 * Note: this also catches the edge-case of curr being in a throttled
6323 * group (e.g. via set_curr_task), since update_curr() (in the
6324 * enqueue of curr) will have resulted in resched being set. This
6325 * prevents us from potentially nominating it as a false LAST_BUDDY
6326 * below.
aec0a514
BR
6327 */
6328 if (test_tsk_need_resched(curr))
6329 return;
6330
a2f5c9ab
DH
6331 /* Idle tasks are by definition preempted by non-idle tasks. */
6332 if (unlikely(curr->policy == SCHED_IDLE) &&
6333 likely(p->policy != SCHED_IDLE))
6334 goto preempt;
6335
91c234b4 6336 /*
a2f5c9ab
DH
6337 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6338 * is driven by the tick):
91c234b4 6339 */
8ed92e51 6340 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6341 return;
bf0f6f24 6342
464b7527 6343 find_matching_se(&se, &pse);
9bbd7374 6344 update_curr(cfs_rq_of(se));
002f128b 6345 BUG_ON(!pse);
2f36825b
VP
6346 if (wakeup_preempt_entity(se, pse) == 1) {
6347 /*
6348 * Bias pick_next to pick the sched entity that is
6349 * triggering this preemption.
6350 */
6351 if (!next_buddy_marked)
6352 set_next_buddy(pse);
3a7e73a2 6353 goto preempt;
2f36825b 6354 }
464b7527 6355
3a7e73a2 6356 return;
a65ac745 6357
3a7e73a2 6358preempt:
8875125e 6359 resched_curr(rq);
3a7e73a2
PZ
6360 /*
6361 * Only set the backward buddy when the current task is still
6362 * on the rq. This can happen when a wakeup gets interleaved
6363 * with schedule on the ->pre_schedule() or idle_balance()
6364 * point, either of which can * drop the rq lock.
6365 *
6366 * Also, during early boot the idle thread is in the fair class,
6367 * for obvious reasons its a bad idea to schedule back to it.
6368 */
6369 if (unlikely(!se->on_rq || curr == rq->idle))
6370 return;
6371
6372 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6373 set_last_buddy(se);
bf0f6f24
IM
6374}
6375
606dba2e 6376static struct task_struct *
d8ac8971 6377pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6378{
6379 struct cfs_rq *cfs_rq = &rq->cfs;
6380 struct sched_entity *se;
678d5718 6381 struct task_struct *p;
37e117c0 6382 int new_tasks;
678d5718 6383
6e83125c 6384again:
678d5718 6385 if (!cfs_rq->nr_running)
38033c37 6386 goto idle;
678d5718 6387
9674f5ca 6388#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6389 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6390 goto simple;
6391
6392 /*
6393 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6394 * likely that a next task is from the same cgroup as the current.
6395 *
6396 * Therefore attempt to avoid putting and setting the entire cgroup
6397 * hierarchy, only change the part that actually changes.
6398 */
6399
6400 do {
6401 struct sched_entity *curr = cfs_rq->curr;
6402
6403 /*
6404 * Since we got here without doing put_prev_entity() we also
6405 * have to consider cfs_rq->curr. If it is still a runnable
6406 * entity, update_curr() will update its vruntime, otherwise
6407 * forget we've ever seen it.
6408 */
54d27365
BS
6409 if (curr) {
6410 if (curr->on_rq)
6411 update_curr(cfs_rq);
6412 else
6413 curr = NULL;
678d5718 6414
54d27365
BS
6415 /*
6416 * This call to check_cfs_rq_runtime() will do the
6417 * throttle and dequeue its entity in the parent(s).
9674f5ca 6418 * Therefore the nr_running test will indeed
54d27365
BS
6419 * be correct.
6420 */
9674f5ca
VK
6421 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6422 cfs_rq = &rq->cfs;
6423
6424 if (!cfs_rq->nr_running)
6425 goto idle;
6426
54d27365 6427 goto simple;
9674f5ca 6428 }
54d27365 6429 }
678d5718
PZ
6430
6431 se = pick_next_entity(cfs_rq, curr);
6432 cfs_rq = group_cfs_rq(se);
6433 } while (cfs_rq);
6434
6435 p = task_of(se);
6436
6437 /*
6438 * Since we haven't yet done put_prev_entity and if the selected task
6439 * is a different task than we started out with, try and touch the
6440 * least amount of cfs_rqs.
6441 */
6442 if (prev != p) {
6443 struct sched_entity *pse = &prev->se;
6444
6445 while (!(cfs_rq = is_same_group(se, pse))) {
6446 int se_depth = se->depth;
6447 int pse_depth = pse->depth;
6448
6449 if (se_depth <= pse_depth) {
6450 put_prev_entity(cfs_rq_of(pse), pse);
6451 pse = parent_entity(pse);
6452 }
6453 if (se_depth >= pse_depth) {
6454 set_next_entity(cfs_rq_of(se), se);
6455 se = parent_entity(se);
6456 }
6457 }
6458
6459 put_prev_entity(cfs_rq, pse);
6460 set_next_entity(cfs_rq, se);
6461 }
6462
6463 if (hrtick_enabled(rq))
6464 hrtick_start_fair(rq, p);
6465
6466 return p;
6467simple:
678d5718 6468#endif
bf0f6f24 6469
3f1d2a31 6470 put_prev_task(rq, prev);
606dba2e 6471
bf0f6f24 6472 do {
678d5718 6473 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6474 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6475 cfs_rq = group_cfs_rq(se);
6476 } while (cfs_rq);
6477
8f4d37ec 6478 p = task_of(se);
678d5718 6479
b39e66ea
MG
6480 if (hrtick_enabled(rq))
6481 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6482
6483 return p;
38033c37
PZ
6484
6485idle:
46f69fa3
MF
6486 new_tasks = idle_balance(rq, rf);
6487
37e117c0
PZ
6488 /*
6489 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6490 * possible for any higher priority task to appear. In that case we
6491 * must re-start the pick_next_entity() loop.
6492 */
e4aa358b 6493 if (new_tasks < 0)
37e117c0
PZ
6494 return RETRY_TASK;
6495
e4aa358b 6496 if (new_tasks > 0)
38033c37 6497 goto again;
38033c37
PZ
6498
6499 return NULL;
bf0f6f24
IM
6500}
6501
6502/*
6503 * Account for a descheduled task:
6504 */
31ee529c 6505static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6506{
6507 struct sched_entity *se = &prev->se;
6508 struct cfs_rq *cfs_rq;
6509
6510 for_each_sched_entity(se) {
6511 cfs_rq = cfs_rq_of(se);
ab6cde26 6512 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6513 }
6514}
6515
ac53db59
RR
6516/*
6517 * sched_yield() is very simple
6518 *
6519 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6520 */
6521static void yield_task_fair(struct rq *rq)
6522{
6523 struct task_struct *curr = rq->curr;
6524 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6525 struct sched_entity *se = &curr->se;
6526
6527 /*
6528 * Are we the only task in the tree?
6529 */
6530 if (unlikely(rq->nr_running == 1))
6531 return;
6532
6533 clear_buddies(cfs_rq, se);
6534
6535 if (curr->policy != SCHED_BATCH) {
6536 update_rq_clock(rq);
6537 /*
6538 * Update run-time statistics of the 'current'.
6539 */
6540 update_curr(cfs_rq);
916671c0
MG
6541 /*
6542 * Tell update_rq_clock() that we've just updated,
6543 * so we don't do microscopic update in schedule()
6544 * and double the fastpath cost.
6545 */
9edfbfed 6546 rq_clock_skip_update(rq, true);
ac53db59
RR
6547 }
6548
6549 set_skip_buddy(se);
6550}
6551
d95f4122
MG
6552static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6553{
6554 struct sched_entity *se = &p->se;
6555
5238cdd3
PT
6556 /* throttled hierarchies are not runnable */
6557 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6558 return false;
6559
6560 /* Tell the scheduler that we'd really like pse to run next. */
6561 set_next_buddy(se);
6562
d95f4122
MG
6563 yield_task_fair(rq);
6564
6565 return true;
6566}
6567
681f3e68 6568#ifdef CONFIG_SMP
bf0f6f24 6569/**************************************************
e9c84cb8
PZ
6570 * Fair scheduling class load-balancing methods.
6571 *
6572 * BASICS
6573 *
6574 * The purpose of load-balancing is to achieve the same basic fairness the
6575 * per-cpu scheduler provides, namely provide a proportional amount of compute
6576 * time to each task. This is expressed in the following equation:
6577 *
6578 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6579 *
6580 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6581 * W_i,0 is defined as:
6582 *
6583 * W_i,0 = \Sum_j w_i,j (2)
6584 *
6585 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6586 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6587 *
6588 * The weight average is an exponential decay average of the instantaneous
6589 * weight:
6590 *
6591 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6592 *
ced549fa 6593 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6594 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6595 * can also include other factors [XXX].
6596 *
6597 * To achieve this balance we define a measure of imbalance which follows
6598 * directly from (1):
6599 *
ced549fa 6600 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6601 *
6602 * We them move tasks around to minimize the imbalance. In the continuous
6603 * function space it is obvious this converges, in the discrete case we get
6604 * a few fun cases generally called infeasible weight scenarios.
6605 *
6606 * [XXX expand on:
6607 * - infeasible weights;
6608 * - local vs global optima in the discrete case. ]
6609 *
6610 *
6611 * SCHED DOMAINS
6612 *
6613 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6614 * for all i,j solution, we create a tree of cpus that follows the hardware
6615 * topology where each level pairs two lower groups (or better). This results
6616 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6617 * tree to only the first of the previous level and we decrease the frequency
6618 * of load-balance at each level inv. proportional to the number of cpus in
6619 * the groups.
6620 *
6621 * This yields:
6622 *
6623 * log_2 n 1 n
6624 * \Sum { --- * --- * 2^i } = O(n) (5)
6625 * i = 0 2^i 2^i
6626 * `- size of each group
6627 * | | `- number of cpus doing load-balance
6628 * | `- freq
6629 * `- sum over all levels
6630 *
6631 * Coupled with a limit on how many tasks we can migrate every balance pass,
6632 * this makes (5) the runtime complexity of the balancer.
6633 *
6634 * An important property here is that each CPU is still (indirectly) connected
6635 * to every other cpu in at most O(log n) steps:
6636 *
6637 * The adjacency matrix of the resulting graph is given by:
6638 *
97a7142f 6639 * log_2 n
e9c84cb8
PZ
6640 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6641 * k = 0
6642 *
6643 * And you'll find that:
6644 *
6645 * A^(log_2 n)_i,j != 0 for all i,j (7)
6646 *
6647 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6648 * The task movement gives a factor of O(m), giving a convergence complexity
6649 * of:
6650 *
6651 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6652 *
6653 *
6654 * WORK CONSERVING
6655 *
6656 * In order to avoid CPUs going idle while there's still work to do, new idle
6657 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6658 * tree itself instead of relying on other CPUs to bring it work.
6659 *
6660 * This adds some complexity to both (5) and (8) but it reduces the total idle
6661 * time.
6662 *
6663 * [XXX more?]
6664 *
6665 *
6666 * CGROUPS
6667 *
6668 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6669 *
6670 * s_k,i
6671 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6672 * S_k
6673 *
6674 * Where
6675 *
6676 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6677 *
6678 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6679 *
6680 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6681 * property.
6682 *
6683 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6684 * rewrite all of this once again.]
97a7142f 6685 */
bf0f6f24 6686
ed387b78
HS
6687static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6688
0ec8aa00
PZ
6689enum fbq_type { regular, remote, all };
6690
ddcdf6e7 6691#define LBF_ALL_PINNED 0x01
367456c7 6692#define LBF_NEED_BREAK 0x02
6263322c
PZ
6693#define LBF_DST_PINNED 0x04
6694#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6695
6696struct lb_env {
6697 struct sched_domain *sd;
6698
ddcdf6e7 6699 struct rq *src_rq;
85c1e7da 6700 int src_cpu;
ddcdf6e7
PZ
6701
6702 int dst_cpu;
6703 struct rq *dst_rq;
6704
88b8dac0
SV
6705 struct cpumask *dst_grpmask;
6706 int new_dst_cpu;
ddcdf6e7 6707 enum cpu_idle_type idle;
bd939f45 6708 long imbalance;
b9403130
MW
6709 /* The set of CPUs under consideration for load-balancing */
6710 struct cpumask *cpus;
6711
ddcdf6e7 6712 unsigned int flags;
367456c7
PZ
6713
6714 unsigned int loop;
6715 unsigned int loop_break;
6716 unsigned int loop_max;
0ec8aa00
PZ
6717
6718 enum fbq_type fbq_type;
163122b7 6719 struct list_head tasks;
ddcdf6e7
PZ
6720};
6721
029632fb
PZ
6722/*
6723 * Is this task likely cache-hot:
6724 */
5d5e2b1b 6725static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6726{
6727 s64 delta;
6728
e5673f28
KT
6729 lockdep_assert_held(&env->src_rq->lock);
6730
029632fb
PZ
6731 if (p->sched_class != &fair_sched_class)
6732 return 0;
6733
6734 if (unlikely(p->policy == SCHED_IDLE))
6735 return 0;
6736
6737 /*
6738 * Buddy candidates are cache hot:
6739 */
5d5e2b1b 6740 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6741 (&p->se == cfs_rq_of(&p->se)->next ||
6742 &p->se == cfs_rq_of(&p->se)->last))
6743 return 1;
6744
6745 if (sysctl_sched_migration_cost == -1)
6746 return 1;
6747 if (sysctl_sched_migration_cost == 0)
6748 return 0;
6749
5d5e2b1b 6750 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6751
6752 return delta < (s64)sysctl_sched_migration_cost;
6753}
6754
3a7053b3 6755#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6756/*
2a1ed24c
SD
6757 * Returns 1, if task migration degrades locality
6758 * Returns 0, if task migration improves locality i.e migration preferred.
6759 * Returns -1, if task migration is not affected by locality.
c1ceac62 6760 */
2a1ed24c 6761static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6762{
b1ad065e 6763 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6764 unsigned long src_faults, dst_faults;
3a7053b3
MG
6765 int src_nid, dst_nid;
6766
2a595721 6767 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6768 return -1;
6769
c3b9bc5b 6770 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6771 return -1;
7a0f3083
MG
6772
6773 src_nid = cpu_to_node(env->src_cpu);
6774 dst_nid = cpu_to_node(env->dst_cpu);
6775
83e1d2cd 6776 if (src_nid == dst_nid)
2a1ed24c 6777 return -1;
7a0f3083 6778
2a1ed24c
SD
6779 /* Migrating away from the preferred node is always bad. */
6780 if (src_nid == p->numa_preferred_nid) {
6781 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6782 return 1;
6783 else
6784 return -1;
6785 }
b1ad065e 6786
c1ceac62
RR
6787 /* Encourage migration to the preferred node. */
6788 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6789 return 0;
b1ad065e 6790
739294fb
RR
6791 /* Leaving a core idle is often worse than degrading locality. */
6792 if (env->idle != CPU_NOT_IDLE)
6793 return -1;
6794
c1ceac62
RR
6795 if (numa_group) {
6796 src_faults = group_faults(p, src_nid);
6797 dst_faults = group_faults(p, dst_nid);
6798 } else {
6799 src_faults = task_faults(p, src_nid);
6800 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6801 }
6802
c1ceac62 6803 return dst_faults < src_faults;
7a0f3083
MG
6804}
6805
3a7053b3 6806#else
2a1ed24c 6807static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6808 struct lb_env *env)
6809{
2a1ed24c 6810 return -1;
7a0f3083 6811}
3a7053b3
MG
6812#endif
6813
1e3c88bd
PZ
6814/*
6815 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6816 */
6817static
8e45cb54 6818int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6819{
2a1ed24c 6820 int tsk_cache_hot;
e5673f28
KT
6821
6822 lockdep_assert_held(&env->src_rq->lock);
6823
1e3c88bd
PZ
6824 /*
6825 * We do not migrate tasks that are:
d3198084 6826 * 1) throttled_lb_pair, or
1e3c88bd 6827 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6828 * 3) running (obviously), or
6829 * 4) are cache-hot on their current CPU.
1e3c88bd 6830 */
d3198084
JK
6831 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6832 return 0;
6833
0c98d344 6834 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6835 int cpu;
88b8dac0 6836
ae92882e 6837 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6838
6263322c
PZ
6839 env->flags |= LBF_SOME_PINNED;
6840
88b8dac0
SV
6841 /*
6842 * Remember if this task can be migrated to any other cpu in
6843 * our sched_group. We may want to revisit it if we couldn't
6844 * meet load balance goals by pulling other tasks on src_cpu.
6845 *
65a4433a
JH
6846 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6847 * already computed one in current iteration.
88b8dac0 6848 */
65a4433a 6849 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6850 return 0;
6851
e02e60c1
JK
6852 /* Prevent to re-select dst_cpu via env's cpus */
6853 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6854 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6855 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6856 env->new_dst_cpu = cpu;
6857 break;
6858 }
88b8dac0 6859 }
e02e60c1 6860
1e3c88bd
PZ
6861 return 0;
6862 }
88b8dac0
SV
6863
6864 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6865 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6866
ddcdf6e7 6867 if (task_running(env->src_rq, p)) {
ae92882e 6868 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6869 return 0;
6870 }
6871
6872 /*
6873 * Aggressive migration if:
3a7053b3
MG
6874 * 1) destination numa is preferred
6875 * 2) task is cache cold, or
6876 * 3) too many balance attempts have failed.
1e3c88bd 6877 */
2a1ed24c
SD
6878 tsk_cache_hot = migrate_degrades_locality(p, env);
6879 if (tsk_cache_hot == -1)
6880 tsk_cache_hot = task_hot(p, env);
3a7053b3 6881
2a1ed24c 6882 if (tsk_cache_hot <= 0 ||
7a96c231 6883 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6884 if (tsk_cache_hot == 1) {
ae92882e
JP
6885 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6886 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6887 }
1e3c88bd
PZ
6888 return 1;
6889 }
6890
ae92882e 6891 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6892 return 0;
1e3c88bd
PZ
6893}
6894
897c395f 6895/*
163122b7
KT
6896 * detach_task() -- detach the task for the migration specified in env
6897 */
6898static void detach_task(struct task_struct *p, struct lb_env *env)
6899{
6900 lockdep_assert_held(&env->src_rq->lock);
6901
163122b7 6902 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6903 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6904 set_task_cpu(p, env->dst_cpu);
6905}
6906
897c395f 6907/*
e5673f28 6908 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6909 * part of active balancing operations within "domain".
897c395f 6910 *
e5673f28 6911 * Returns a task if successful and NULL otherwise.
897c395f 6912 */
e5673f28 6913static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6914{
6915 struct task_struct *p, *n;
897c395f 6916
e5673f28
KT
6917 lockdep_assert_held(&env->src_rq->lock);
6918
367456c7 6919 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6920 if (!can_migrate_task(p, env))
6921 continue;
897c395f 6922
163122b7 6923 detach_task(p, env);
e5673f28 6924
367456c7 6925 /*
e5673f28 6926 * Right now, this is only the second place where
163122b7 6927 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6928 * so we can safely collect stats here rather than
163122b7 6929 * inside detach_tasks().
367456c7 6930 */
ae92882e 6931 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6932 return p;
897c395f 6933 }
e5673f28 6934 return NULL;
897c395f
PZ
6935}
6936
eb95308e
PZ
6937static const unsigned int sched_nr_migrate_break = 32;
6938
5d6523eb 6939/*
163122b7
KT
6940 * detach_tasks() -- tries to detach up to imbalance weighted load from
6941 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6942 *
163122b7 6943 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6944 */
163122b7 6945static int detach_tasks(struct lb_env *env)
1e3c88bd 6946{
5d6523eb
PZ
6947 struct list_head *tasks = &env->src_rq->cfs_tasks;
6948 struct task_struct *p;
367456c7 6949 unsigned long load;
163122b7
KT
6950 int detached = 0;
6951
6952 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6953
bd939f45 6954 if (env->imbalance <= 0)
5d6523eb 6955 return 0;
1e3c88bd 6956
5d6523eb 6957 while (!list_empty(tasks)) {
985d3a4c
YD
6958 /*
6959 * We don't want to steal all, otherwise we may be treated likewise,
6960 * which could at worst lead to a livelock crash.
6961 */
6962 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6963 break;
6964
5d6523eb 6965 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6966
367456c7
PZ
6967 env->loop++;
6968 /* We've more or less seen every task there is, call it quits */
5d6523eb 6969 if (env->loop > env->loop_max)
367456c7 6970 break;
5d6523eb
PZ
6971
6972 /* take a breather every nr_migrate tasks */
367456c7 6973 if (env->loop > env->loop_break) {
eb95308e 6974 env->loop_break += sched_nr_migrate_break;
8e45cb54 6975 env->flags |= LBF_NEED_BREAK;
ee00e66f 6976 break;
a195f004 6977 }
1e3c88bd 6978
d3198084 6979 if (!can_migrate_task(p, env))
367456c7
PZ
6980 goto next;
6981
6982 load = task_h_load(p);
5d6523eb 6983
eb95308e 6984 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6985 goto next;
6986
bd939f45 6987 if ((load / 2) > env->imbalance)
367456c7 6988 goto next;
1e3c88bd 6989
163122b7
KT
6990 detach_task(p, env);
6991 list_add(&p->se.group_node, &env->tasks);
6992
6993 detached++;
bd939f45 6994 env->imbalance -= load;
1e3c88bd
PZ
6995
6996#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6997 /*
6998 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6999 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7000 * the critical section.
7001 */
5d6523eb 7002 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7003 break;
1e3c88bd
PZ
7004#endif
7005
ee00e66f
PZ
7006 /*
7007 * We only want to steal up to the prescribed amount of
7008 * weighted load.
7009 */
bd939f45 7010 if (env->imbalance <= 0)
ee00e66f 7011 break;
367456c7
PZ
7012
7013 continue;
7014next:
5d6523eb 7015 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 7016 }
5d6523eb 7017
1e3c88bd 7018 /*
163122b7
KT
7019 * Right now, this is one of only two places we collect this stat
7020 * so we can safely collect detach_one_task() stats here rather
7021 * than inside detach_one_task().
1e3c88bd 7022 */
ae92882e 7023 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7024
163122b7
KT
7025 return detached;
7026}
7027
7028/*
7029 * attach_task() -- attach the task detached by detach_task() to its new rq.
7030 */
7031static void attach_task(struct rq *rq, struct task_struct *p)
7032{
7033 lockdep_assert_held(&rq->lock);
7034
7035 BUG_ON(task_rq(p) != rq);
5704ac0a 7036 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7037 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7038 check_preempt_curr(rq, p, 0);
7039}
7040
7041/*
7042 * attach_one_task() -- attaches the task returned from detach_one_task() to
7043 * its new rq.
7044 */
7045static void attach_one_task(struct rq *rq, struct task_struct *p)
7046{
8a8c69c3
PZ
7047 struct rq_flags rf;
7048
7049 rq_lock(rq, &rf);
5704ac0a 7050 update_rq_clock(rq);
163122b7 7051 attach_task(rq, p);
8a8c69c3 7052 rq_unlock(rq, &rf);
163122b7
KT
7053}
7054
7055/*
7056 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7057 * new rq.
7058 */
7059static void attach_tasks(struct lb_env *env)
7060{
7061 struct list_head *tasks = &env->tasks;
7062 struct task_struct *p;
8a8c69c3 7063 struct rq_flags rf;
163122b7 7064
8a8c69c3 7065 rq_lock(env->dst_rq, &rf);
5704ac0a 7066 update_rq_clock(env->dst_rq);
163122b7
KT
7067
7068 while (!list_empty(tasks)) {
7069 p = list_first_entry(tasks, struct task_struct, se.group_node);
7070 list_del_init(&p->se.group_node);
1e3c88bd 7071
163122b7
KT
7072 attach_task(env->dst_rq, p);
7073 }
7074
8a8c69c3 7075 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7076}
7077
230059de 7078#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
7079
7080static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7081{
7082 if (cfs_rq->load.weight)
7083 return false;
7084
7085 if (cfs_rq->avg.load_sum)
7086 return false;
7087
7088 if (cfs_rq->avg.util_sum)
7089 return false;
7090
7091 if (cfs_rq->runnable_load_sum)
7092 return false;
7093
7094 return true;
7095}
7096
48a16753 7097static void update_blocked_averages(int cpu)
9e3081ca 7098{
9e3081ca 7099 struct rq *rq = cpu_rq(cpu);
a9e7f654 7100 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7101 struct rq_flags rf;
9e3081ca 7102
8a8c69c3 7103 rq_lock_irqsave(rq, &rf);
48a16753 7104 update_rq_clock(rq);
9d89c257 7105
9763b67f
PZ
7106 /*
7107 * Iterates the task_group tree in a bottom up fashion, see
7108 * list_add_leaf_cfs_rq() for details.
7109 */
a9e7f654 7110 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7111 struct sched_entity *se;
7112
9d89c257
YD
7113 /* throttled entities do not contribute to load */
7114 if (throttled_hierarchy(cfs_rq))
7115 continue;
48a16753 7116
3a123bbb 7117 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7118 update_tg_load_avg(cfs_rq, 0);
4e516076 7119
bc427898
VG
7120 /* Propagate pending load changes to the parent, if any: */
7121 se = cfs_rq->tg->se[cpu];
7122 if (se && !skip_blocked_update(se))
88c0616e 7123 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7124
7125 /*
7126 * There can be a lot of idle CPU cgroups. Don't let fully
7127 * decayed cfs_rqs linger on the list.
7128 */
7129 if (cfs_rq_is_decayed(cfs_rq))
7130 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7131 }
8a8c69c3 7132 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7133}
7134
9763b67f 7135/*
68520796 7136 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7137 * This needs to be done in a top-down fashion because the load of a child
7138 * group is a fraction of its parents load.
7139 */
68520796 7140static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7141{
68520796
VD
7142 struct rq *rq = rq_of(cfs_rq);
7143 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7144 unsigned long now = jiffies;
68520796 7145 unsigned long load;
a35b6466 7146
68520796 7147 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7148 return;
7149
68520796
VD
7150 cfs_rq->h_load_next = NULL;
7151 for_each_sched_entity(se) {
7152 cfs_rq = cfs_rq_of(se);
7153 cfs_rq->h_load_next = se;
7154 if (cfs_rq->last_h_load_update == now)
7155 break;
7156 }
a35b6466 7157
68520796 7158 if (!se) {
7ea241af 7159 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7160 cfs_rq->last_h_load_update = now;
7161 }
7162
7163 while ((se = cfs_rq->h_load_next) != NULL) {
7164 load = cfs_rq->h_load;
7ea241af
YD
7165 load = div64_ul(load * se->avg.load_avg,
7166 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7167 cfs_rq = group_cfs_rq(se);
7168 cfs_rq->h_load = load;
7169 cfs_rq->last_h_load_update = now;
7170 }
9763b67f
PZ
7171}
7172
367456c7 7173static unsigned long task_h_load(struct task_struct *p)
230059de 7174{
367456c7 7175 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7176
68520796 7177 update_cfs_rq_h_load(cfs_rq);
9d89c257 7178 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7179 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7180}
7181#else
48a16753 7182static inline void update_blocked_averages(int cpu)
9e3081ca 7183{
6c1d47c0
VG
7184 struct rq *rq = cpu_rq(cpu);
7185 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7186 struct rq_flags rf;
6c1d47c0 7187
8a8c69c3 7188 rq_lock_irqsave(rq, &rf);
6c1d47c0 7189 update_rq_clock(rq);
3a123bbb 7190 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7191 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7192}
7193
367456c7 7194static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7195{
9d89c257 7196 return p->se.avg.load_avg;
1e3c88bd 7197}
230059de 7198#endif
1e3c88bd 7199
1e3c88bd 7200/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7201
7202enum group_type {
7203 group_other = 0,
7204 group_imbalanced,
7205 group_overloaded,
7206};
7207
1e3c88bd
PZ
7208/*
7209 * sg_lb_stats - stats of a sched_group required for load_balancing
7210 */
7211struct sg_lb_stats {
7212 unsigned long avg_load; /*Avg load across the CPUs of the group */
7213 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7214 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7215 unsigned long load_per_task;
63b2ca30 7216 unsigned long group_capacity;
9e91d61d 7217 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7218 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7219 unsigned int idle_cpus;
7220 unsigned int group_weight;
caeb178c 7221 enum group_type group_type;
ea67821b 7222 int group_no_capacity;
0ec8aa00
PZ
7223#ifdef CONFIG_NUMA_BALANCING
7224 unsigned int nr_numa_running;
7225 unsigned int nr_preferred_running;
7226#endif
1e3c88bd
PZ
7227};
7228
56cf515b
JK
7229/*
7230 * sd_lb_stats - Structure to store the statistics of a sched_domain
7231 * during load balancing.
7232 */
7233struct sd_lb_stats {
7234 struct sched_group *busiest; /* Busiest group in this sd */
7235 struct sched_group *local; /* Local group in this sd */
90001d67 7236 unsigned long total_running;
56cf515b 7237 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7238 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7239 unsigned long avg_load; /* Average load across all groups in sd */
7240
56cf515b 7241 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7242 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7243};
7244
147c5fc2
PZ
7245static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7246{
7247 /*
7248 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7249 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7250 * We must however clear busiest_stat::avg_load because
7251 * update_sd_pick_busiest() reads this before assignment.
7252 */
7253 *sds = (struct sd_lb_stats){
7254 .busiest = NULL,
7255 .local = NULL,
90001d67 7256 .total_running = 0UL,
147c5fc2 7257 .total_load = 0UL,
63b2ca30 7258 .total_capacity = 0UL,
147c5fc2
PZ
7259 .busiest_stat = {
7260 .avg_load = 0UL,
caeb178c
RR
7261 .sum_nr_running = 0,
7262 .group_type = group_other,
147c5fc2
PZ
7263 },
7264 };
7265}
7266
1e3c88bd
PZ
7267/**
7268 * get_sd_load_idx - Obtain the load index for a given sched domain.
7269 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7270 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7271 *
7272 * Return: The load index.
1e3c88bd
PZ
7273 */
7274static inline int get_sd_load_idx(struct sched_domain *sd,
7275 enum cpu_idle_type idle)
7276{
7277 int load_idx;
7278
7279 switch (idle) {
7280 case CPU_NOT_IDLE:
7281 load_idx = sd->busy_idx;
7282 break;
7283
7284 case CPU_NEWLY_IDLE:
7285 load_idx = sd->newidle_idx;
7286 break;
7287 default:
7288 load_idx = sd->idle_idx;
7289 break;
7290 }
7291
7292 return load_idx;
7293}
7294
ced549fa 7295static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7296{
7297 struct rq *rq = cpu_rq(cpu);
b5b4860d 7298 u64 total, used, age_stamp, avg;
cadefd3d 7299 s64 delta;
1e3c88bd 7300
b654f7de
PZ
7301 /*
7302 * Since we're reading these variables without serialization make sure
7303 * we read them once before doing sanity checks on them.
7304 */
316c1608
JL
7305 age_stamp = READ_ONCE(rq->age_stamp);
7306 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7307 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7308
cadefd3d
PZ
7309 if (unlikely(delta < 0))
7310 delta = 0;
7311
7312 total = sched_avg_period() + delta;
aa483808 7313
b5b4860d 7314 used = div_u64(avg, total);
1e3c88bd 7315
b5b4860d
VG
7316 if (likely(used < SCHED_CAPACITY_SCALE))
7317 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7318
b5b4860d 7319 return 1;
1e3c88bd
PZ
7320}
7321
ced549fa 7322static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7323{
8cd5601c 7324 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7325 struct sched_group *sdg = sd->groups;
7326
ca6d75e6 7327 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7328
ced549fa 7329 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7330 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7331
ced549fa
NP
7332 if (!capacity)
7333 capacity = 1;
1e3c88bd 7334
ced549fa
NP
7335 cpu_rq(cpu)->cpu_capacity = capacity;
7336 sdg->sgc->capacity = capacity;
bf475ce0 7337 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7338}
7339
63b2ca30 7340void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7341{
7342 struct sched_domain *child = sd->child;
7343 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7344 unsigned long capacity, min_capacity;
4ec4412e
VG
7345 unsigned long interval;
7346
7347 interval = msecs_to_jiffies(sd->balance_interval);
7348 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7349 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7350
7351 if (!child) {
ced549fa 7352 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7353 return;
7354 }
7355
dc7ff76e 7356 capacity = 0;
bf475ce0 7357 min_capacity = ULONG_MAX;
1e3c88bd 7358
74a5ce20
PZ
7359 if (child->flags & SD_OVERLAP) {
7360 /*
7361 * SD_OVERLAP domains cannot assume that child groups
7362 * span the current group.
7363 */
7364
ae4df9d6 7365 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7366 struct sched_group_capacity *sgc;
9abf24d4 7367 struct rq *rq = cpu_rq(cpu);
863bffc8 7368
9abf24d4 7369 /*
63b2ca30 7370 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7371 * gets here before we've attached the domains to the
7372 * runqueues.
7373 *
ced549fa
NP
7374 * Use capacity_of(), which is set irrespective of domains
7375 * in update_cpu_capacity().
9abf24d4 7376 *
dc7ff76e 7377 * This avoids capacity from being 0 and
9abf24d4 7378 * causing divide-by-zero issues on boot.
9abf24d4
SD
7379 */
7380 if (unlikely(!rq->sd)) {
ced549fa 7381 capacity += capacity_of(cpu);
bf475ce0
MR
7382 } else {
7383 sgc = rq->sd->groups->sgc;
7384 capacity += sgc->capacity;
9abf24d4 7385 }
863bffc8 7386
bf475ce0 7387 min_capacity = min(capacity, min_capacity);
863bffc8 7388 }
74a5ce20
PZ
7389 } else {
7390 /*
7391 * !SD_OVERLAP domains can assume that child groups
7392 * span the current group.
97a7142f 7393 */
74a5ce20
PZ
7394
7395 group = child->groups;
7396 do {
bf475ce0
MR
7397 struct sched_group_capacity *sgc = group->sgc;
7398
7399 capacity += sgc->capacity;
7400 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7401 group = group->next;
7402 } while (group != child->groups);
7403 }
1e3c88bd 7404
63b2ca30 7405 sdg->sgc->capacity = capacity;
bf475ce0 7406 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7407}
7408
9d5efe05 7409/*
ea67821b
VG
7410 * Check whether the capacity of the rq has been noticeably reduced by side
7411 * activity. The imbalance_pct is used for the threshold.
7412 * Return true is the capacity is reduced
9d5efe05
SV
7413 */
7414static inline int
ea67821b 7415check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7416{
ea67821b
VG
7417 return ((rq->cpu_capacity * sd->imbalance_pct) <
7418 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7419}
7420
30ce5dab
PZ
7421/*
7422 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7423 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7424 *
7425 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7426 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7427 * Something like:
7428 *
2b4d5b25
IM
7429 * { 0 1 2 3 } { 4 5 6 7 }
7430 * * * * *
30ce5dab
PZ
7431 *
7432 * If we were to balance group-wise we'd place two tasks in the first group and
7433 * two tasks in the second group. Clearly this is undesired as it will overload
7434 * cpu 3 and leave one of the cpus in the second group unused.
7435 *
7436 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7437 * by noticing the lower domain failed to reach balance and had difficulty
7438 * moving tasks due to affinity constraints.
30ce5dab
PZ
7439 *
7440 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7441 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7442 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7443 * to create an effective group imbalance.
7444 *
7445 * This is a somewhat tricky proposition since the next run might not find the
7446 * group imbalance and decide the groups need to be balanced again. A most
7447 * subtle and fragile situation.
7448 */
7449
6263322c 7450static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7451{
63b2ca30 7452 return group->sgc->imbalance;
30ce5dab
PZ
7453}
7454
b37d9316 7455/*
ea67821b
VG
7456 * group_has_capacity returns true if the group has spare capacity that could
7457 * be used by some tasks.
7458 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7459 * smaller than the number of CPUs or if the utilization is lower than the
7460 * available capacity for CFS tasks.
ea67821b
VG
7461 * For the latter, we use a threshold to stabilize the state, to take into
7462 * account the variance of the tasks' load and to return true if the available
7463 * capacity in meaningful for the load balancer.
7464 * As an example, an available capacity of 1% can appear but it doesn't make
7465 * any benefit for the load balance.
b37d9316 7466 */
ea67821b
VG
7467static inline bool
7468group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7469{
ea67821b
VG
7470 if (sgs->sum_nr_running < sgs->group_weight)
7471 return true;
c61037e9 7472
ea67821b 7473 if ((sgs->group_capacity * 100) >
9e91d61d 7474 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7475 return true;
b37d9316 7476
ea67821b
VG
7477 return false;
7478}
7479
7480/*
7481 * group_is_overloaded returns true if the group has more tasks than it can
7482 * handle.
7483 * group_is_overloaded is not equals to !group_has_capacity because a group
7484 * with the exact right number of tasks, has no more spare capacity but is not
7485 * overloaded so both group_has_capacity and group_is_overloaded return
7486 * false.
7487 */
7488static inline bool
7489group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7490{
7491 if (sgs->sum_nr_running <= sgs->group_weight)
7492 return false;
b37d9316 7493
ea67821b 7494 if ((sgs->group_capacity * 100) <
9e91d61d 7495 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7496 return true;
b37d9316 7497
ea67821b 7498 return false;
b37d9316
PZ
7499}
7500
9e0994c0
MR
7501/*
7502 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7503 * per-CPU capacity than sched_group ref.
7504 */
7505static inline bool
7506group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7507{
7508 return sg->sgc->min_capacity * capacity_margin <
7509 ref->sgc->min_capacity * 1024;
7510}
7511
79a89f92
LY
7512static inline enum
7513group_type group_classify(struct sched_group *group,
7514 struct sg_lb_stats *sgs)
caeb178c 7515{
ea67821b 7516 if (sgs->group_no_capacity)
caeb178c
RR
7517 return group_overloaded;
7518
7519 if (sg_imbalanced(group))
7520 return group_imbalanced;
7521
7522 return group_other;
7523}
7524
1e3c88bd
PZ
7525/**
7526 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7527 * @env: The load balancing environment.
1e3c88bd 7528 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7529 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7530 * @local_group: Does group contain this_cpu.
1e3c88bd 7531 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7532 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7533 */
bd939f45
PZ
7534static inline void update_sg_lb_stats(struct lb_env *env,
7535 struct sched_group *group, int load_idx,
4486edd1
TC
7536 int local_group, struct sg_lb_stats *sgs,
7537 bool *overload)
1e3c88bd 7538{
30ce5dab 7539 unsigned long load;
a426f99c 7540 int i, nr_running;
1e3c88bd 7541
b72ff13c
PZ
7542 memset(sgs, 0, sizeof(*sgs));
7543
ae4df9d6 7544 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7545 struct rq *rq = cpu_rq(i);
7546
1e3c88bd 7547 /* Bias balancing toward cpus of our domain */
6263322c 7548 if (local_group)
04f733b4 7549 load = target_load(i, load_idx);
6263322c 7550 else
1e3c88bd 7551 load = source_load(i, load_idx);
1e3c88bd
PZ
7552
7553 sgs->group_load += load;
9e91d61d 7554 sgs->group_util += cpu_util(i);
65fdac08 7555 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7556
a426f99c
WL
7557 nr_running = rq->nr_running;
7558 if (nr_running > 1)
4486edd1
TC
7559 *overload = true;
7560
0ec8aa00
PZ
7561#ifdef CONFIG_NUMA_BALANCING
7562 sgs->nr_numa_running += rq->nr_numa_running;
7563 sgs->nr_preferred_running += rq->nr_preferred_running;
7564#endif
c7132dd6 7565 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7566 /*
7567 * No need to call idle_cpu() if nr_running is not 0
7568 */
7569 if (!nr_running && idle_cpu(i))
aae6d3dd 7570 sgs->idle_cpus++;
1e3c88bd
PZ
7571 }
7572
63b2ca30
NP
7573 /* Adjust by relative CPU capacity of the group */
7574 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7575 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7576
dd5feea1 7577 if (sgs->sum_nr_running)
38d0f770 7578 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7579
aae6d3dd 7580 sgs->group_weight = group->group_weight;
b37d9316 7581
ea67821b 7582 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7583 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7584}
7585
532cb4c4
MN
7586/**
7587 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7588 * @env: The load balancing environment.
532cb4c4
MN
7589 * @sds: sched_domain statistics
7590 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7591 * @sgs: sched_group statistics
532cb4c4
MN
7592 *
7593 * Determine if @sg is a busier group than the previously selected
7594 * busiest group.
e69f6186
YB
7595 *
7596 * Return: %true if @sg is a busier group than the previously selected
7597 * busiest group. %false otherwise.
532cb4c4 7598 */
bd939f45 7599static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7600 struct sd_lb_stats *sds,
7601 struct sched_group *sg,
bd939f45 7602 struct sg_lb_stats *sgs)
532cb4c4 7603{
caeb178c 7604 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7605
caeb178c 7606 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7607 return true;
7608
caeb178c
RR
7609 if (sgs->group_type < busiest->group_type)
7610 return false;
7611
7612 if (sgs->avg_load <= busiest->avg_load)
7613 return false;
7614
9e0994c0
MR
7615 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7616 goto asym_packing;
7617
7618 /*
7619 * Candidate sg has no more than one task per CPU and
7620 * has higher per-CPU capacity. Migrating tasks to less
7621 * capable CPUs may harm throughput. Maximize throughput,
7622 * power/energy consequences are not considered.
7623 */
7624 if (sgs->sum_nr_running <= sgs->group_weight &&
7625 group_smaller_cpu_capacity(sds->local, sg))
7626 return false;
7627
7628asym_packing:
caeb178c
RR
7629 /* This is the busiest node in its class. */
7630 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7631 return true;
7632
1f621e02
SD
7633 /* No ASYM_PACKING if target cpu is already busy */
7634 if (env->idle == CPU_NOT_IDLE)
7635 return true;
532cb4c4 7636 /*
afe06efd
TC
7637 * ASYM_PACKING needs to move all the work to the highest
7638 * prority CPUs in the group, therefore mark all groups
7639 * of lower priority than ourself as busy.
532cb4c4 7640 */
afe06efd
TC
7641 if (sgs->sum_nr_running &&
7642 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7643 if (!sds->busiest)
7644 return true;
7645
afe06efd
TC
7646 /* Prefer to move from lowest priority cpu's work */
7647 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7648 sg->asym_prefer_cpu))
532cb4c4
MN
7649 return true;
7650 }
7651
7652 return false;
7653}
7654
0ec8aa00
PZ
7655#ifdef CONFIG_NUMA_BALANCING
7656static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7657{
7658 if (sgs->sum_nr_running > sgs->nr_numa_running)
7659 return regular;
7660 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7661 return remote;
7662 return all;
7663}
7664
7665static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7666{
7667 if (rq->nr_running > rq->nr_numa_running)
7668 return regular;
7669 if (rq->nr_running > rq->nr_preferred_running)
7670 return remote;
7671 return all;
7672}
7673#else
7674static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7675{
7676 return all;
7677}
7678
7679static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7680{
7681 return regular;
7682}
7683#endif /* CONFIG_NUMA_BALANCING */
7684
1e3c88bd 7685/**
461819ac 7686 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7687 * @env: The load balancing environment.
1e3c88bd
PZ
7688 * @sds: variable to hold the statistics for this sched_domain.
7689 */
0ec8aa00 7690static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7691{
90001d67 7692 struct sched_domain_shared *shared = env->sd->shared;
bd939f45
PZ
7693 struct sched_domain *child = env->sd->child;
7694 struct sched_group *sg = env->sd->groups;
05b40e05 7695 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7696 struct sg_lb_stats tmp_sgs;
1e3c88bd 7697 int load_idx, prefer_sibling = 0;
4486edd1 7698 bool overload = false;
1e3c88bd
PZ
7699
7700 if (child && child->flags & SD_PREFER_SIBLING)
7701 prefer_sibling = 1;
7702
bd939f45 7703 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7704
7705 do {
56cf515b 7706 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7707 int local_group;
7708
ae4df9d6 7709 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7710 if (local_group) {
7711 sds->local = sg;
05b40e05 7712 sgs = local;
b72ff13c
PZ
7713
7714 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7715 time_after_eq(jiffies, sg->sgc->next_update))
7716 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7717 }
1e3c88bd 7718
4486edd1
TC
7719 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7720 &overload);
1e3c88bd 7721
b72ff13c
PZ
7722 if (local_group)
7723 goto next_group;
7724
1e3c88bd
PZ
7725 /*
7726 * In case the child domain prefers tasks go to siblings
ea67821b 7727 * first, lower the sg capacity so that we'll try
75dd321d
NR
7728 * and move all the excess tasks away. We lower the capacity
7729 * of a group only if the local group has the capacity to fit
ea67821b
VG
7730 * these excess tasks. The extra check prevents the case where
7731 * you always pull from the heaviest group when it is already
7732 * under-utilized (possible with a large weight task outweighs
7733 * the tasks on the system).
1e3c88bd 7734 */
b72ff13c 7735 if (prefer_sibling && sds->local &&
05b40e05
SD
7736 group_has_capacity(env, local) &&
7737 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7738 sgs->group_no_capacity = 1;
79a89f92 7739 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7740 }
1e3c88bd 7741
b72ff13c 7742 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7743 sds->busiest = sg;
56cf515b 7744 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7745 }
7746
b72ff13c
PZ
7747next_group:
7748 /* Now, start updating sd_lb_stats */
90001d67 7749 sds->total_running += sgs->sum_nr_running;
b72ff13c 7750 sds->total_load += sgs->group_load;
63b2ca30 7751 sds->total_capacity += sgs->group_capacity;
b72ff13c 7752
532cb4c4 7753 sg = sg->next;
bd939f45 7754 } while (sg != env->sd->groups);
0ec8aa00
PZ
7755
7756 if (env->sd->flags & SD_NUMA)
7757 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7758
7759 if (!env->sd->parent) {
7760 /* update overload indicator if we are at root domain */
7761 if (env->dst_rq->rd->overload != overload)
7762 env->dst_rq->rd->overload = overload;
7763 }
7764
90001d67
PZ
7765 if (!shared)
7766 return;
7767
7768 /*
7769 * Since these are sums over groups they can contain some CPUs
7770 * multiple times for the NUMA domains.
7771 *
7772 * Currently only wake_affine_llc() and find_busiest_group()
7773 * uses these numbers, only the last is affected by this problem.
7774 *
7775 * XXX fix that.
7776 */
7777 WRITE_ONCE(shared->nr_running, sds->total_running);
7778 WRITE_ONCE(shared->load, sds->total_load);
7779 WRITE_ONCE(shared->capacity, sds->total_capacity);
532cb4c4
MN
7780}
7781
532cb4c4
MN
7782/**
7783 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7784 * sched domain.
532cb4c4
MN
7785 *
7786 * This is primarily intended to used at the sibling level. Some
7787 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7788 * case of POWER7, it can move to lower SMT modes only when higher
7789 * threads are idle. When in lower SMT modes, the threads will
7790 * perform better since they share less core resources. Hence when we
7791 * have idle threads, we want them to be the higher ones.
7792 *
7793 * This packing function is run on idle threads. It checks to see if
7794 * the busiest CPU in this domain (core in the P7 case) has a higher
7795 * CPU number than the packing function is being run on. Here we are
7796 * assuming lower CPU number will be equivalent to lower a SMT thread
7797 * number.
7798 *
e69f6186 7799 * Return: 1 when packing is required and a task should be moved to
46123355 7800 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 7801 *
cd96891d 7802 * @env: The load balancing environment.
532cb4c4 7803 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7804 */
bd939f45 7805static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7806{
7807 int busiest_cpu;
7808
bd939f45 7809 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7810 return 0;
7811
1f621e02
SD
7812 if (env->idle == CPU_NOT_IDLE)
7813 return 0;
7814
532cb4c4
MN
7815 if (!sds->busiest)
7816 return 0;
7817
afe06efd
TC
7818 busiest_cpu = sds->busiest->asym_prefer_cpu;
7819 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7820 return 0;
7821
bd939f45 7822 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7823 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7824 SCHED_CAPACITY_SCALE);
bd939f45 7825
532cb4c4 7826 return 1;
1e3c88bd
PZ
7827}
7828
7829/**
7830 * fix_small_imbalance - Calculate the minor imbalance that exists
7831 * amongst the groups of a sched_domain, during
7832 * load balancing.
cd96891d 7833 * @env: The load balancing environment.
1e3c88bd 7834 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7835 */
bd939f45
PZ
7836static inline
7837void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7838{
63b2ca30 7839 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7840 unsigned int imbn = 2;
dd5feea1 7841 unsigned long scaled_busy_load_per_task;
56cf515b 7842 struct sg_lb_stats *local, *busiest;
1e3c88bd 7843
56cf515b
JK
7844 local = &sds->local_stat;
7845 busiest = &sds->busiest_stat;
1e3c88bd 7846
56cf515b
JK
7847 if (!local->sum_nr_running)
7848 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7849 else if (busiest->load_per_task > local->load_per_task)
7850 imbn = 1;
dd5feea1 7851
56cf515b 7852 scaled_busy_load_per_task =
ca8ce3d0 7853 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7854 busiest->group_capacity;
56cf515b 7855
3029ede3
VD
7856 if (busiest->avg_load + scaled_busy_load_per_task >=
7857 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7858 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7859 return;
7860 }
7861
7862 /*
7863 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7864 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7865 * moving them.
7866 */
7867
63b2ca30 7868 capa_now += busiest->group_capacity *
56cf515b 7869 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7870 capa_now += local->group_capacity *
56cf515b 7871 min(local->load_per_task, local->avg_load);
ca8ce3d0 7872 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7873
7874 /* Amount of load we'd subtract */
a2cd4260 7875 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7876 capa_move += busiest->group_capacity *
56cf515b 7877 min(busiest->load_per_task,
a2cd4260 7878 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7879 }
1e3c88bd
PZ
7880
7881 /* Amount of load we'd add */
63b2ca30 7882 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7883 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7884 tmp = (busiest->avg_load * busiest->group_capacity) /
7885 local->group_capacity;
56cf515b 7886 } else {
ca8ce3d0 7887 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7888 local->group_capacity;
56cf515b 7889 }
63b2ca30 7890 capa_move += local->group_capacity *
3ae11c90 7891 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7892 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7893
7894 /* Move if we gain throughput */
63b2ca30 7895 if (capa_move > capa_now)
56cf515b 7896 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7897}
7898
7899/**
7900 * calculate_imbalance - Calculate the amount of imbalance present within the
7901 * groups of a given sched_domain during load balance.
bd939f45 7902 * @env: load balance environment
1e3c88bd 7903 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7904 */
bd939f45 7905static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7906{
dd5feea1 7907 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7908 struct sg_lb_stats *local, *busiest;
7909
7910 local = &sds->local_stat;
56cf515b 7911 busiest = &sds->busiest_stat;
dd5feea1 7912
caeb178c 7913 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7914 /*
7915 * In the group_imb case we cannot rely on group-wide averages
7916 * to ensure cpu-load equilibrium, look at wider averages. XXX
7917 */
56cf515b
JK
7918 busiest->load_per_task =
7919 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7920 }
7921
1e3c88bd 7922 /*
885e542c
DE
7923 * Avg load of busiest sg can be less and avg load of local sg can
7924 * be greater than avg load across all sgs of sd because avg load
7925 * factors in sg capacity and sgs with smaller group_type are
7926 * skipped when updating the busiest sg:
1e3c88bd 7927 */
b1885550
VD
7928 if (busiest->avg_load <= sds->avg_load ||
7929 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7930 env->imbalance = 0;
7931 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7932 }
7933
9a5d9ba6
PZ
7934 /*
7935 * If there aren't any idle cpus, avoid creating some.
7936 */
7937 if (busiest->group_type == group_overloaded &&
7938 local->group_type == group_overloaded) {
1be0eb2a 7939 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7940 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7941 load_above_capacity -= busiest->group_capacity;
26656215 7942 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7943 load_above_capacity /= busiest->group_capacity;
7944 } else
ea67821b 7945 load_above_capacity = ~0UL;
dd5feea1
SS
7946 }
7947
7948 /*
7949 * We're trying to get all the cpus to the average_load, so we don't
7950 * want to push ourselves above the average load, nor do we wish to
7951 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7952 * we also don't want to reduce the group load below the group
7953 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7954 */
30ce5dab 7955 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7956
7957 /* How much load to actually move to equalise the imbalance */
56cf515b 7958 env->imbalance = min(
63b2ca30
NP
7959 max_pull * busiest->group_capacity,
7960 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7961 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7962
7963 /*
7964 * if *imbalance is less than the average load per runnable task
25985edc 7965 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7966 * a think about bumping its value to force at least one task to be
7967 * moved
7968 */
56cf515b 7969 if (env->imbalance < busiest->load_per_task)
bd939f45 7970 return fix_small_imbalance(env, sds);
1e3c88bd 7971}
fab47622 7972
1e3c88bd
PZ
7973/******* find_busiest_group() helpers end here *********************/
7974
7975/**
7976 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7977 * if there is an imbalance.
1e3c88bd
PZ
7978 *
7979 * Also calculates the amount of weighted load which should be moved
7980 * to restore balance.
7981 *
cd96891d 7982 * @env: The load balancing environment.
1e3c88bd 7983 *
e69f6186 7984 * Return: - The busiest group if imbalance exists.
1e3c88bd 7985 */
56cf515b 7986static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7987{
56cf515b 7988 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7989 struct sd_lb_stats sds;
7990
147c5fc2 7991 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7992
7993 /*
7994 * Compute the various statistics relavent for load balancing at
7995 * this level.
7996 */
23f0d209 7997 update_sd_lb_stats(env, &sds);
56cf515b
JK
7998 local = &sds.local_stat;
7999 busiest = &sds.busiest_stat;
1e3c88bd 8000
ea67821b 8001 /* ASYM feature bypasses nice load balance check */
1f621e02 8002 if (check_asym_packing(env, &sds))
532cb4c4
MN
8003 return sds.busiest;
8004
cc57aa8f 8005 /* There is no busy sibling group to pull tasks from */
56cf515b 8006 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8007 goto out_balanced;
8008
90001d67 8009 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8010 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8011 / sds.total_capacity;
b0432d8f 8012
866ab43e
PZ
8013 /*
8014 * If the busiest group is imbalanced the below checks don't
30ce5dab 8015 * work because they assume all things are equal, which typically
866ab43e
PZ
8016 * isn't true due to cpus_allowed constraints and the like.
8017 */
caeb178c 8018 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8019 goto force_balance;
8020
cc57aa8f 8021 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
8022 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
8023 busiest->group_no_capacity)
fab47622
NR
8024 goto force_balance;
8025
cc57aa8f 8026 /*
9c58c79a 8027 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8028 * don't try and pull any tasks.
8029 */
56cf515b 8030 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8031 goto out_balanced;
8032
cc57aa8f
PZ
8033 /*
8034 * Don't pull any tasks if this group is already above the domain
8035 * average load.
8036 */
56cf515b 8037 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8038 goto out_balanced;
8039
bd939f45 8040 if (env->idle == CPU_IDLE) {
aae6d3dd 8041 /*
43f4d666
VG
8042 * This cpu is idle. If the busiest group is not overloaded
8043 * and there is no imbalance between this and busiest group
8044 * wrt idle cpus, it is balanced. The imbalance becomes
8045 * significant if the diff is greater than 1 otherwise we
8046 * might end up to just move the imbalance on another group
aae6d3dd 8047 */
43f4d666
VG
8048 if ((busiest->group_type != group_overloaded) &&
8049 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8050 goto out_balanced;
c186fafe
PZ
8051 } else {
8052 /*
8053 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8054 * imbalance_pct to be conservative.
8055 */
56cf515b
JK
8056 if (100 * busiest->avg_load <=
8057 env->sd->imbalance_pct * local->avg_load)
c186fafe 8058 goto out_balanced;
aae6d3dd 8059 }
1e3c88bd 8060
fab47622 8061force_balance:
1e3c88bd 8062 /* Looks like there is an imbalance. Compute it */
bd939f45 8063 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8064 return sds.busiest;
8065
8066out_balanced:
bd939f45 8067 env->imbalance = 0;
1e3c88bd
PZ
8068 return NULL;
8069}
8070
8071/*
8072 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8073 */
bd939f45 8074static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8075 struct sched_group *group)
1e3c88bd
PZ
8076{
8077 struct rq *busiest = NULL, *rq;
ced549fa 8078 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8079 int i;
8080
ae4df9d6 8081 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8082 unsigned long capacity, wl;
0ec8aa00
PZ
8083 enum fbq_type rt;
8084
8085 rq = cpu_rq(i);
8086 rt = fbq_classify_rq(rq);
1e3c88bd 8087
0ec8aa00
PZ
8088 /*
8089 * We classify groups/runqueues into three groups:
8090 * - regular: there are !numa tasks
8091 * - remote: there are numa tasks that run on the 'wrong' node
8092 * - all: there is no distinction
8093 *
8094 * In order to avoid migrating ideally placed numa tasks,
8095 * ignore those when there's better options.
8096 *
8097 * If we ignore the actual busiest queue to migrate another
8098 * task, the next balance pass can still reduce the busiest
8099 * queue by moving tasks around inside the node.
8100 *
8101 * If we cannot move enough load due to this classification
8102 * the next pass will adjust the group classification and
8103 * allow migration of more tasks.
8104 *
8105 * Both cases only affect the total convergence complexity.
8106 */
8107 if (rt > env->fbq_type)
8108 continue;
8109
ced549fa 8110 capacity = capacity_of(i);
9d5efe05 8111
c7132dd6 8112 wl = weighted_cpuload(rq);
1e3c88bd 8113
6e40f5bb
TG
8114 /*
8115 * When comparing with imbalance, use weighted_cpuload()
ced549fa 8116 * which is not scaled with the cpu capacity.
6e40f5bb 8117 */
ea67821b
VG
8118
8119 if (rq->nr_running == 1 && wl > env->imbalance &&
8120 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8121 continue;
8122
6e40f5bb
TG
8123 /*
8124 * For the load comparisons with the other cpu's, consider
ced549fa
NP
8125 * the weighted_cpuload() scaled with the cpu capacity, so
8126 * that the load can be moved away from the cpu that is
8127 * potentially running at a lower capacity.
95a79b80 8128 *
ced549fa 8129 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8130 * multiplication to rid ourselves of the division works out
ced549fa
NP
8131 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8132 * our previous maximum.
6e40f5bb 8133 */
ced549fa 8134 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8135 busiest_load = wl;
ced549fa 8136 busiest_capacity = capacity;
1e3c88bd
PZ
8137 busiest = rq;
8138 }
8139 }
8140
8141 return busiest;
8142}
8143
8144/*
8145 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8146 * so long as it is large enough.
8147 */
8148#define MAX_PINNED_INTERVAL 512
8149
bd939f45 8150static int need_active_balance(struct lb_env *env)
1af3ed3d 8151{
bd939f45
PZ
8152 struct sched_domain *sd = env->sd;
8153
8154 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8155
8156 /*
8157 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8158 * lower priority CPUs in order to pack all tasks in the
8159 * highest priority CPUs.
532cb4c4 8160 */
afe06efd
TC
8161 if ((sd->flags & SD_ASYM_PACKING) &&
8162 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8163 return 1;
1af3ed3d
PZ
8164 }
8165
1aaf90a4
VG
8166 /*
8167 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8168 * It's worth migrating the task if the src_cpu's capacity is reduced
8169 * because of other sched_class or IRQs if more capacity stays
8170 * available on dst_cpu.
8171 */
8172 if ((env->idle != CPU_NOT_IDLE) &&
8173 (env->src_rq->cfs.h_nr_running == 1)) {
8174 if ((check_cpu_capacity(env->src_rq, sd)) &&
8175 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8176 return 1;
8177 }
8178
1af3ed3d
PZ
8179 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8180}
8181
969c7921
TH
8182static int active_load_balance_cpu_stop(void *data);
8183
23f0d209
JK
8184static int should_we_balance(struct lb_env *env)
8185{
8186 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8187 int cpu, balance_cpu = -1;
8188
8189 /*
8190 * In the newly idle case, we will allow all the cpu's
8191 * to do the newly idle load balance.
8192 */
8193 if (env->idle == CPU_NEWLY_IDLE)
8194 return 1;
8195
23f0d209 8196 /* Try to find first idle cpu */
e5c14b1f 8197 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8198 if (!idle_cpu(cpu))
23f0d209
JK
8199 continue;
8200
8201 balance_cpu = cpu;
8202 break;
8203 }
8204
8205 if (balance_cpu == -1)
8206 balance_cpu = group_balance_cpu(sg);
8207
8208 /*
8209 * First idle cpu or the first cpu(busiest) in this sched group
8210 * is eligible for doing load balancing at this and above domains.
8211 */
b0cff9d8 8212 return balance_cpu == env->dst_cpu;
23f0d209
JK
8213}
8214
1e3c88bd
PZ
8215/*
8216 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8217 * tasks if there is an imbalance.
8218 */
8219static int load_balance(int this_cpu, struct rq *this_rq,
8220 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8221 int *continue_balancing)
1e3c88bd 8222{
88b8dac0 8223 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8224 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8225 struct sched_group *group;
1e3c88bd 8226 struct rq *busiest;
8a8c69c3 8227 struct rq_flags rf;
4ba29684 8228 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8229
8e45cb54
PZ
8230 struct lb_env env = {
8231 .sd = sd,
ddcdf6e7
PZ
8232 .dst_cpu = this_cpu,
8233 .dst_rq = this_rq,
ae4df9d6 8234 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8235 .idle = idle,
eb95308e 8236 .loop_break = sched_nr_migrate_break,
b9403130 8237 .cpus = cpus,
0ec8aa00 8238 .fbq_type = all,
163122b7 8239 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8240 };
8241
65a4433a 8242 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8243
ae92882e 8244 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8245
8246redo:
23f0d209
JK
8247 if (!should_we_balance(&env)) {
8248 *continue_balancing = 0;
1e3c88bd 8249 goto out_balanced;
23f0d209 8250 }
1e3c88bd 8251
23f0d209 8252 group = find_busiest_group(&env);
1e3c88bd 8253 if (!group) {
ae92882e 8254 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8255 goto out_balanced;
8256 }
8257
b9403130 8258 busiest = find_busiest_queue(&env, group);
1e3c88bd 8259 if (!busiest) {
ae92882e 8260 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8261 goto out_balanced;
8262 }
8263
78feefc5 8264 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8265
ae92882e 8266 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8267
1aaf90a4
VG
8268 env.src_cpu = busiest->cpu;
8269 env.src_rq = busiest;
8270
1e3c88bd
PZ
8271 ld_moved = 0;
8272 if (busiest->nr_running > 1) {
8273 /*
8274 * Attempt to move tasks. If find_busiest_group has found
8275 * an imbalance but busiest->nr_running <= 1, the group is
8276 * still unbalanced. ld_moved simply stays zero, so it is
8277 * correctly treated as an imbalance.
8278 */
8e45cb54 8279 env.flags |= LBF_ALL_PINNED;
c82513e5 8280 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8281
5d6523eb 8282more_balance:
8a8c69c3 8283 rq_lock_irqsave(busiest, &rf);
3bed5e21 8284 update_rq_clock(busiest);
88b8dac0
SV
8285
8286 /*
8287 * cur_ld_moved - load moved in current iteration
8288 * ld_moved - cumulative load moved across iterations
8289 */
163122b7 8290 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8291
8292 /*
163122b7
KT
8293 * We've detached some tasks from busiest_rq. Every
8294 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8295 * unlock busiest->lock, and we are able to be sure
8296 * that nobody can manipulate the tasks in parallel.
8297 * See task_rq_lock() family for the details.
1e3c88bd 8298 */
163122b7 8299
8a8c69c3 8300 rq_unlock(busiest, &rf);
163122b7
KT
8301
8302 if (cur_ld_moved) {
8303 attach_tasks(&env);
8304 ld_moved += cur_ld_moved;
8305 }
8306
8a8c69c3 8307 local_irq_restore(rf.flags);
88b8dac0 8308
f1cd0858
JK
8309 if (env.flags & LBF_NEED_BREAK) {
8310 env.flags &= ~LBF_NEED_BREAK;
8311 goto more_balance;
8312 }
8313
88b8dac0
SV
8314 /*
8315 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8316 * us and move them to an alternate dst_cpu in our sched_group
8317 * where they can run. The upper limit on how many times we
8318 * iterate on same src_cpu is dependent on number of cpus in our
8319 * sched_group.
8320 *
8321 * This changes load balance semantics a bit on who can move
8322 * load to a given_cpu. In addition to the given_cpu itself
8323 * (or a ilb_cpu acting on its behalf where given_cpu is
8324 * nohz-idle), we now have balance_cpu in a position to move
8325 * load to given_cpu. In rare situations, this may cause
8326 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8327 * _independently_ and at _same_ time to move some load to
8328 * given_cpu) causing exceess load to be moved to given_cpu.
8329 * This however should not happen so much in practice and
8330 * moreover subsequent load balance cycles should correct the
8331 * excess load moved.
8332 */
6263322c 8333 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8334
7aff2e3a
VD
8335 /* Prevent to re-select dst_cpu via env's cpus */
8336 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8337
78feefc5 8338 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8339 env.dst_cpu = env.new_dst_cpu;
6263322c 8340 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8341 env.loop = 0;
8342 env.loop_break = sched_nr_migrate_break;
e02e60c1 8343
88b8dac0
SV
8344 /*
8345 * Go back to "more_balance" rather than "redo" since we
8346 * need to continue with same src_cpu.
8347 */
8348 goto more_balance;
8349 }
1e3c88bd 8350
6263322c
PZ
8351 /*
8352 * We failed to reach balance because of affinity.
8353 */
8354 if (sd_parent) {
63b2ca30 8355 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8356
afdeee05 8357 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8358 *group_imbalance = 1;
6263322c
PZ
8359 }
8360
1e3c88bd 8361 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8362 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8363 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8364 /*
8365 * Attempting to continue load balancing at the current
8366 * sched_domain level only makes sense if there are
8367 * active CPUs remaining as possible busiest CPUs to
8368 * pull load from which are not contained within the
8369 * destination group that is receiving any migrated
8370 * load.
8371 */
8372 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8373 env.loop = 0;
8374 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8375 goto redo;
bbf18b19 8376 }
afdeee05 8377 goto out_all_pinned;
1e3c88bd
PZ
8378 }
8379 }
8380
8381 if (!ld_moved) {
ae92882e 8382 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8383 /*
8384 * Increment the failure counter only on periodic balance.
8385 * We do not want newidle balance, which can be very
8386 * frequent, pollute the failure counter causing
8387 * excessive cache_hot migrations and active balances.
8388 */
8389 if (idle != CPU_NEWLY_IDLE)
8390 sd->nr_balance_failed++;
1e3c88bd 8391
bd939f45 8392 if (need_active_balance(&env)) {
8a8c69c3
PZ
8393 unsigned long flags;
8394
1e3c88bd
PZ
8395 raw_spin_lock_irqsave(&busiest->lock, flags);
8396
969c7921
TH
8397 /* don't kick the active_load_balance_cpu_stop,
8398 * if the curr task on busiest cpu can't be
8399 * moved to this_cpu
1e3c88bd 8400 */
0c98d344 8401 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8402 raw_spin_unlock_irqrestore(&busiest->lock,
8403 flags);
8e45cb54 8404 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8405 goto out_one_pinned;
8406 }
8407
969c7921
TH
8408 /*
8409 * ->active_balance synchronizes accesses to
8410 * ->active_balance_work. Once set, it's cleared
8411 * only after active load balance is finished.
8412 */
1e3c88bd
PZ
8413 if (!busiest->active_balance) {
8414 busiest->active_balance = 1;
8415 busiest->push_cpu = this_cpu;
8416 active_balance = 1;
8417 }
8418 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8419
bd939f45 8420 if (active_balance) {
969c7921
TH
8421 stop_one_cpu_nowait(cpu_of(busiest),
8422 active_load_balance_cpu_stop, busiest,
8423 &busiest->active_balance_work);
bd939f45 8424 }
1e3c88bd 8425
d02c0711 8426 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8427 sd->nr_balance_failed = sd->cache_nice_tries+1;
8428 }
8429 } else
8430 sd->nr_balance_failed = 0;
8431
8432 if (likely(!active_balance)) {
8433 /* We were unbalanced, so reset the balancing interval */
8434 sd->balance_interval = sd->min_interval;
8435 } else {
8436 /*
8437 * If we've begun active balancing, start to back off. This
8438 * case may not be covered by the all_pinned logic if there
8439 * is only 1 task on the busy runqueue (because we don't call
163122b7 8440 * detach_tasks).
1e3c88bd
PZ
8441 */
8442 if (sd->balance_interval < sd->max_interval)
8443 sd->balance_interval *= 2;
8444 }
8445
1e3c88bd
PZ
8446 goto out;
8447
8448out_balanced:
afdeee05
VG
8449 /*
8450 * We reach balance although we may have faced some affinity
8451 * constraints. Clear the imbalance flag if it was set.
8452 */
8453 if (sd_parent) {
8454 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8455
8456 if (*group_imbalance)
8457 *group_imbalance = 0;
8458 }
8459
8460out_all_pinned:
8461 /*
8462 * We reach balance because all tasks are pinned at this level so
8463 * we can't migrate them. Let the imbalance flag set so parent level
8464 * can try to migrate them.
8465 */
ae92882e 8466 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8467
8468 sd->nr_balance_failed = 0;
8469
8470out_one_pinned:
8471 /* tune up the balancing interval */
8e45cb54 8472 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8473 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8474 (sd->balance_interval < sd->max_interval))
8475 sd->balance_interval *= 2;
8476
46e49b38 8477 ld_moved = 0;
1e3c88bd 8478out:
1e3c88bd
PZ
8479 return ld_moved;
8480}
8481
52a08ef1
JL
8482static inline unsigned long
8483get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8484{
8485 unsigned long interval = sd->balance_interval;
8486
8487 if (cpu_busy)
8488 interval *= sd->busy_factor;
8489
8490 /* scale ms to jiffies */
8491 interval = msecs_to_jiffies(interval);
8492 interval = clamp(interval, 1UL, max_load_balance_interval);
8493
8494 return interval;
8495}
8496
8497static inline void
31851a98 8498update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8499{
8500 unsigned long interval, next;
8501
31851a98
LY
8502 /* used by idle balance, so cpu_busy = 0 */
8503 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8504 next = sd->last_balance + interval;
8505
8506 if (time_after(*next_balance, next))
8507 *next_balance = next;
8508}
8509
1e3c88bd
PZ
8510/*
8511 * idle_balance is called by schedule() if this_cpu is about to become
8512 * idle. Attempts to pull tasks from other CPUs.
8513 */
46f69fa3 8514static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8515{
52a08ef1
JL
8516 unsigned long next_balance = jiffies + HZ;
8517 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8518 struct sched_domain *sd;
8519 int pulled_task = 0;
9bd721c5 8520 u64 curr_cost = 0;
1e3c88bd 8521
6e83125c
PZ
8522 /*
8523 * We must set idle_stamp _before_ calling idle_balance(), such that we
8524 * measure the duration of idle_balance() as idle time.
8525 */
8526 this_rq->idle_stamp = rq_clock(this_rq);
8527
2800486e
PZ
8528 /*
8529 * Do not pull tasks towards !active CPUs...
8530 */
8531 if (!cpu_active(this_cpu))
8532 return 0;
8533
46f69fa3
MF
8534 /*
8535 * This is OK, because current is on_cpu, which avoids it being picked
8536 * for load-balance and preemption/IRQs are still disabled avoiding
8537 * further scheduler activity on it and we're being very careful to
8538 * re-start the picking loop.
8539 */
8540 rq_unpin_lock(this_rq, rf);
8541
4486edd1
TC
8542 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8543 !this_rq->rd->overload) {
52a08ef1
JL
8544 rcu_read_lock();
8545 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8546 if (sd)
31851a98 8547 update_next_balance(sd, &next_balance);
52a08ef1
JL
8548 rcu_read_unlock();
8549
6e83125c 8550 goto out;
52a08ef1 8551 }
1e3c88bd 8552
f492e12e
PZ
8553 raw_spin_unlock(&this_rq->lock);
8554
48a16753 8555 update_blocked_averages(this_cpu);
dce840a0 8556 rcu_read_lock();
1e3c88bd 8557 for_each_domain(this_cpu, sd) {
23f0d209 8558 int continue_balancing = 1;
9bd721c5 8559 u64 t0, domain_cost;
1e3c88bd
PZ
8560
8561 if (!(sd->flags & SD_LOAD_BALANCE))
8562 continue;
8563
52a08ef1 8564 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8565 update_next_balance(sd, &next_balance);
9bd721c5 8566 break;
52a08ef1 8567 }
9bd721c5 8568
f492e12e 8569 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8570 t0 = sched_clock_cpu(this_cpu);
8571
f492e12e 8572 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8573 sd, CPU_NEWLY_IDLE,
8574 &continue_balancing);
9bd721c5
JL
8575
8576 domain_cost = sched_clock_cpu(this_cpu) - t0;
8577 if (domain_cost > sd->max_newidle_lb_cost)
8578 sd->max_newidle_lb_cost = domain_cost;
8579
8580 curr_cost += domain_cost;
f492e12e 8581 }
1e3c88bd 8582
31851a98 8583 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8584
8585 /*
8586 * Stop searching for tasks to pull if there are
8587 * now runnable tasks on this rq.
8588 */
8589 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8590 break;
1e3c88bd 8591 }
dce840a0 8592 rcu_read_unlock();
f492e12e
PZ
8593
8594 raw_spin_lock(&this_rq->lock);
8595
0e5b5337
JL
8596 if (curr_cost > this_rq->max_idle_balance_cost)
8597 this_rq->max_idle_balance_cost = curr_cost;
8598
e5fc6611 8599 /*
0e5b5337
JL
8600 * While browsing the domains, we released the rq lock, a task could
8601 * have been enqueued in the meantime. Since we're not going idle,
8602 * pretend we pulled a task.
e5fc6611 8603 */
0e5b5337 8604 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8605 pulled_task = 1;
e5fc6611 8606
52a08ef1
JL
8607out:
8608 /* Move the next balance forward */
8609 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8610 this_rq->next_balance = next_balance;
9bd721c5 8611
e4aa358b 8612 /* Is there a task of a high priority class? */
46383648 8613 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8614 pulled_task = -1;
8615
38c6ade2 8616 if (pulled_task)
6e83125c
PZ
8617 this_rq->idle_stamp = 0;
8618
46f69fa3
MF
8619 rq_repin_lock(this_rq, rf);
8620
3c4017c1 8621 return pulled_task;
1e3c88bd
PZ
8622}
8623
8624/*
969c7921
TH
8625 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8626 * running tasks off the busiest CPU onto idle CPUs. It requires at
8627 * least 1 task to be running on each physical CPU where possible, and
8628 * avoids physical / logical imbalances.
1e3c88bd 8629 */
969c7921 8630static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8631{
969c7921
TH
8632 struct rq *busiest_rq = data;
8633 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8634 int target_cpu = busiest_rq->push_cpu;
969c7921 8635 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8636 struct sched_domain *sd;
e5673f28 8637 struct task_struct *p = NULL;
8a8c69c3 8638 struct rq_flags rf;
969c7921 8639
8a8c69c3 8640 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8641 /*
8642 * Between queueing the stop-work and running it is a hole in which
8643 * CPUs can become inactive. We should not move tasks from or to
8644 * inactive CPUs.
8645 */
8646 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8647 goto out_unlock;
969c7921
TH
8648
8649 /* make sure the requested cpu hasn't gone down in the meantime */
8650 if (unlikely(busiest_cpu != smp_processor_id() ||
8651 !busiest_rq->active_balance))
8652 goto out_unlock;
1e3c88bd
PZ
8653
8654 /* Is there any task to move? */
8655 if (busiest_rq->nr_running <= 1)
969c7921 8656 goto out_unlock;
1e3c88bd
PZ
8657
8658 /*
8659 * This condition is "impossible", if it occurs
8660 * we need to fix it. Originally reported by
8661 * Bjorn Helgaas on a 128-cpu setup.
8662 */
8663 BUG_ON(busiest_rq == target_rq);
8664
1e3c88bd 8665 /* Search for an sd spanning us and the target CPU. */
dce840a0 8666 rcu_read_lock();
1e3c88bd
PZ
8667 for_each_domain(target_cpu, sd) {
8668 if ((sd->flags & SD_LOAD_BALANCE) &&
8669 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8670 break;
8671 }
8672
8673 if (likely(sd)) {
8e45cb54
PZ
8674 struct lb_env env = {
8675 .sd = sd,
ddcdf6e7
PZ
8676 .dst_cpu = target_cpu,
8677 .dst_rq = target_rq,
8678 .src_cpu = busiest_rq->cpu,
8679 .src_rq = busiest_rq,
8e45cb54 8680 .idle = CPU_IDLE,
65a4433a
JH
8681 /*
8682 * can_migrate_task() doesn't need to compute new_dst_cpu
8683 * for active balancing. Since we have CPU_IDLE, but no
8684 * @dst_grpmask we need to make that test go away with lying
8685 * about DST_PINNED.
8686 */
8687 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8688 };
8689
ae92882e 8690 schedstat_inc(sd->alb_count);
3bed5e21 8691 update_rq_clock(busiest_rq);
1e3c88bd 8692
e5673f28 8693 p = detach_one_task(&env);
d02c0711 8694 if (p) {
ae92882e 8695 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8696 /* Active balancing done, reset the failure counter. */
8697 sd->nr_balance_failed = 0;
8698 } else {
ae92882e 8699 schedstat_inc(sd->alb_failed);
d02c0711 8700 }
1e3c88bd 8701 }
dce840a0 8702 rcu_read_unlock();
969c7921
TH
8703out_unlock:
8704 busiest_rq->active_balance = 0;
8a8c69c3 8705 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8706
8707 if (p)
8708 attach_one_task(target_rq, p);
8709
8710 local_irq_enable();
8711
969c7921 8712 return 0;
1e3c88bd
PZ
8713}
8714
d987fc7f
MG
8715static inline int on_null_domain(struct rq *rq)
8716{
8717 return unlikely(!rcu_dereference_sched(rq->sd));
8718}
8719
3451d024 8720#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8721/*
8722 * idle load balancing details
83cd4fe2
VP
8723 * - When one of the busy CPUs notice that there may be an idle rebalancing
8724 * needed, they will kick the idle load balancer, which then does idle
8725 * load balancing for all the idle CPUs.
8726 */
1e3c88bd 8727static struct {
83cd4fe2 8728 cpumask_var_t idle_cpus_mask;
0b005cf5 8729 atomic_t nr_cpus;
83cd4fe2
VP
8730 unsigned long next_balance; /* in jiffy units */
8731} nohz ____cacheline_aligned;
1e3c88bd 8732
3dd0337d 8733static inline int find_new_ilb(void)
1e3c88bd 8734{
0b005cf5 8735 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8736
786d6dc7
SS
8737 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8738 return ilb;
8739
8740 return nr_cpu_ids;
1e3c88bd 8741}
1e3c88bd 8742
83cd4fe2
VP
8743/*
8744 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8745 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8746 * CPU (if there is one).
8747 */
0aeeeeba 8748static void nohz_balancer_kick(void)
83cd4fe2
VP
8749{
8750 int ilb_cpu;
8751
8752 nohz.next_balance++;
8753
3dd0337d 8754 ilb_cpu = find_new_ilb();
83cd4fe2 8755
0b005cf5
SS
8756 if (ilb_cpu >= nr_cpu_ids)
8757 return;
83cd4fe2 8758
cd490c5b 8759 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8760 return;
8761 /*
8762 * Use smp_send_reschedule() instead of resched_cpu().
8763 * This way we generate a sched IPI on the target cpu which
8764 * is idle. And the softirq performing nohz idle load balance
8765 * will be run before returning from the IPI.
8766 */
8767 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8768 return;
8769}
8770
20a5c8cc 8771void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8772{
8773 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8774 /*
8775 * Completely isolated CPUs don't ever set, so we must test.
8776 */
8777 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8778 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8779 atomic_dec(&nohz.nr_cpus);
8780 }
71325960
SS
8781 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8782 }
8783}
8784
69e1e811
SS
8785static inline void set_cpu_sd_state_busy(void)
8786{
8787 struct sched_domain *sd;
37dc6b50 8788 int cpu = smp_processor_id();
69e1e811 8789
69e1e811 8790 rcu_read_lock();
0e369d75 8791 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8792
8793 if (!sd || !sd->nohz_idle)
8794 goto unlock;
8795 sd->nohz_idle = 0;
8796
0e369d75 8797 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8798unlock:
69e1e811
SS
8799 rcu_read_unlock();
8800}
8801
8802void set_cpu_sd_state_idle(void)
8803{
8804 struct sched_domain *sd;
37dc6b50 8805 int cpu = smp_processor_id();
69e1e811 8806
69e1e811 8807 rcu_read_lock();
0e369d75 8808 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8809
8810 if (!sd || sd->nohz_idle)
8811 goto unlock;
8812 sd->nohz_idle = 1;
8813
0e369d75 8814 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8815unlock:
69e1e811
SS
8816 rcu_read_unlock();
8817}
8818
1e3c88bd 8819/*
c1cc017c 8820 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8821 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8822 */
c1cc017c 8823void nohz_balance_enter_idle(int cpu)
1e3c88bd 8824{
71325960
SS
8825 /*
8826 * If this cpu is going down, then nothing needs to be done.
8827 */
8828 if (!cpu_active(cpu))
8829 return;
8830
387bc8b5
FW
8831 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8832 if (!is_housekeeping_cpu(cpu))
8833 return;
8834
c1cc017c
AS
8835 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8836 return;
1e3c88bd 8837
d987fc7f
MG
8838 /*
8839 * If we're a completely isolated CPU, we don't play.
8840 */
8841 if (on_null_domain(cpu_rq(cpu)))
8842 return;
8843
c1cc017c
AS
8844 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8845 atomic_inc(&nohz.nr_cpus);
8846 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8847}
8848#endif
8849
8850static DEFINE_SPINLOCK(balancing);
8851
49c022e6
PZ
8852/*
8853 * Scale the max load_balance interval with the number of CPUs in the system.
8854 * This trades load-balance latency on larger machines for less cross talk.
8855 */
029632fb 8856void update_max_interval(void)
49c022e6
PZ
8857{
8858 max_load_balance_interval = HZ*num_online_cpus()/10;
8859}
8860
1e3c88bd
PZ
8861/*
8862 * It checks each scheduling domain to see if it is due to be balanced,
8863 * and initiates a balancing operation if so.
8864 *
b9b0853a 8865 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8866 */
f7ed0a89 8867static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8868{
23f0d209 8869 int continue_balancing = 1;
f7ed0a89 8870 int cpu = rq->cpu;
1e3c88bd 8871 unsigned long interval;
04f733b4 8872 struct sched_domain *sd;
1e3c88bd
PZ
8873 /* Earliest time when we have to do rebalance again */
8874 unsigned long next_balance = jiffies + 60*HZ;
8875 int update_next_balance = 0;
f48627e6
JL
8876 int need_serialize, need_decay = 0;
8877 u64 max_cost = 0;
1e3c88bd 8878
48a16753 8879 update_blocked_averages(cpu);
2069dd75 8880
dce840a0 8881 rcu_read_lock();
1e3c88bd 8882 for_each_domain(cpu, sd) {
f48627e6
JL
8883 /*
8884 * Decay the newidle max times here because this is a regular
8885 * visit to all the domains. Decay ~1% per second.
8886 */
8887 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8888 sd->max_newidle_lb_cost =
8889 (sd->max_newidle_lb_cost * 253) / 256;
8890 sd->next_decay_max_lb_cost = jiffies + HZ;
8891 need_decay = 1;
8892 }
8893 max_cost += sd->max_newidle_lb_cost;
8894
1e3c88bd
PZ
8895 if (!(sd->flags & SD_LOAD_BALANCE))
8896 continue;
8897
f48627e6
JL
8898 /*
8899 * Stop the load balance at this level. There is another
8900 * CPU in our sched group which is doing load balancing more
8901 * actively.
8902 */
8903 if (!continue_balancing) {
8904 if (need_decay)
8905 continue;
8906 break;
8907 }
8908
52a08ef1 8909 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8910
8911 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8912 if (need_serialize) {
8913 if (!spin_trylock(&balancing))
8914 goto out;
8915 }
8916
8917 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8918 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8919 /*
6263322c 8920 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8921 * env->dst_cpu, so we can't know our idle
8922 * state even if we migrated tasks. Update it.
1e3c88bd 8923 */
de5eb2dd 8924 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8925 }
8926 sd->last_balance = jiffies;
52a08ef1 8927 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8928 }
8929 if (need_serialize)
8930 spin_unlock(&balancing);
8931out:
8932 if (time_after(next_balance, sd->last_balance + interval)) {
8933 next_balance = sd->last_balance + interval;
8934 update_next_balance = 1;
8935 }
f48627e6
JL
8936 }
8937 if (need_decay) {
1e3c88bd 8938 /*
f48627e6
JL
8939 * Ensure the rq-wide value also decays but keep it at a
8940 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8941 */
f48627e6
JL
8942 rq->max_idle_balance_cost =
8943 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8944 }
dce840a0 8945 rcu_read_unlock();
1e3c88bd
PZ
8946
8947 /*
8948 * next_balance will be updated only when there is a need.
8949 * When the cpu is attached to null domain for ex, it will not be
8950 * updated.
8951 */
c5afb6a8 8952 if (likely(update_next_balance)) {
1e3c88bd 8953 rq->next_balance = next_balance;
c5afb6a8
VG
8954
8955#ifdef CONFIG_NO_HZ_COMMON
8956 /*
8957 * If this CPU has been elected to perform the nohz idle
8958 * balance. Other idle CPUs have already rebalanced with
8959 * nohz_idle_balance() and nohz.next_balance has been
8960 * updated accordingly. This CPU is now running the idle load
8961 * balance for itself and we need to update the
8962 * nohz.next_balance accordingly.
8963 */
8964 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8965 nohz.next_balance = rq->next_balance;
8966#endif
8967 }
1e3c88bd
PZ
8968}
8969
3451d024 8970#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8971/*
3451d024 8972 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8973 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8974 */
208cb16b 8975static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8976{
208cb16b 8977 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8978 struct rq *rq;
8979 int balance_cpu;
c5afb6a8
VG
8980 /* Earliest time when we have to do rebalance again */
8981 unsigned long next_balance = jiffies + 60*HZ;
8982 int update_next_balance = 0;
83cd4fe2 8983
1c792db7
SS
8984 if (idle != CPU_IDLE ||
8985 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8986 goto end;
83cd4fe2
VP
8987
8988 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8989 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8990 continue;
8991
8992 /*
8993 * If this cpu gets work to do, stop the load balancing
8994 * work being done for other cpus. Next load
8995 * balancing owner will pick it up.
8996 */
1c792db7 8997 if (need_resched())
83cd4fe2 8998 break;
83cd4fe2 8999
5ed4f1d9
VG
9000 rq = cpu_rq(balance_cpu);
9001
ed61bbc6
TC
9002 /*
9003 * If time for next balance is due,
9004 * do the balance.
9005 */
9006 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9007 struct rq_flags rf;
9008
9009 rq_lock_irq(rq, &rf);
ed61bbc6 9010 update_rq_clock(rq);
cee1afce 9011 cpu_load_update_idle(rq);
8a8c69c3
PZ
9012 rq_unlock_irq(rq, &rf);
9013
ed61bbc6
TC
9014 rebalance_domains(rq, CPU_IDLE);
9015 }
83cd4fe2 9016
c5afb6a8
VG
9017 if (time_after(next_balance, rq->next_balance)) {
9018 next_balance = rq->next_balance;
9019 update_next_balance = 1;
9020 }
83cd4fe2 9021 }
c5afb6a8
VG
9022
9023 /*
9024 * next_balance will be updated only when there is a need.
9025 * When the CPU is attached to null domain for ex, it will not be
9026 * updated.
9027 */
9028 if (likely(update_next_balance))
9029 nohz.next_balance = next_balance;
1c792db7
SS
9030end:
9031 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
9032}
9033
9034/*
0b005cf5 9035 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 9036 * of an idle cpu in the system.
0b005cf5 9037 * - This rq has more than one task.
1aaf90a4
VG
9038 * - This rq has at least one CFS task and the capacity of the CPU is
9039 * significantly reduced because of RT tasks or IRQs.
9040 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9041 * multiple busy cpu.
0b005cf5
SS
9042 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9043 * domain span are idle.
83cd4fe2 9044 */
1aaf90a4 9045static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
9046{
9047 unsigned long now = jiffies;
0e369d75 9048 struct sched_domain_shared *sds;
0b005cf5 9049 struct sched_domain *sd;
afe06efd 9050 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 9051 bool kick = false;
83cd4fe2 9052
4a725627 9053 if (unlikely(rq->idle_balance))
1aaf90a4 9054 return false;
83cd4fe2 9055
1c792db7
SS
9056 /*
9057 * We may be recently in ticked or tickless idle mode. At the first
9058 * busy tick after returning from idle, we will update the busy stats.
9059 */
69e1e811 9060 set_cpu_sd_state_busy();
c1cc017c 9061 nohz_balance_exit_idle(cpu);
0b005cf5
SS
9062
9063 /*
9064 * None are in tickless mode and hence no need for NOHZ idle load
9065 * balancing.
9066 */
9067 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 9068 return false;
1c792db7
SS
9069
9070 if (time_before(now, nohz.next_balance))
1aaf90a4 9071 return false;
83cd4fe2 9072
0b005cf5 9073 if (rq->nr_running >= 2)
1aaf90a4 9074 return true;
83cd4fe2 9075
067491b7 9076 rcu_read_lock();
0e369d75
PZ
9077 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9078 if (sds) {
9079 /*
9080 * XXX: write a coherent comment on why we do this.
9081 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9082 */
9083 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
9084 if (nr_busy > 1) {
9085 kick = true;
9086 goto unlock;
9087 }
9088
83cd4fe2 9089 }
37dc6b50 9090
1aaf90a4
VG
9091 sd = rcu_dereference(rq->sd);
9092 if (sd) {
9093 if ((rq->cfs.h_nr_running >= 1) &&
9094 check_cpu_capacity(rq, sd)) {
9095 kick = true;
9096 goto unlock;
9097 }
9098 }
37dc6b50 9099
1aaf90a4 9100 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
9101 if (sd) {
9102 for_each_cpu(i, sched_domain_span(sd)) {
9103 if (i == cpu ||
9104 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9105 continue;
067491b7 9106
afe06efd
TC
9107 if (sched_asym_prefer(i, cpu)) {
9108 kick = true;
9109 goto unlock;
9110 }
9111 }
9112 }
1aaf90a4 9113unlock:
067491b7 9114 rcu_read_unlock();
1aaf90a4 9115 return kick;
83cd4fe2
VP
9116}
9117#else
208cb16b 9118static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
9119#endif
9120
9121/*
9122 * run_rebalance_domains is triggered when needed from the scheduler tick.
9123 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9124 */
0766f788 9125static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9126{
208cb16b 9127 struct rq *this_rq = this_rq();
6eb57e0d 9128 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9129 CPU_IDLE : CPU_NOT_IDLE;
9130
1e3c88bd 9131 /*
83cd4fe2 9132 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 9133 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
9134 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9135 * give the idle cpus a chance to load balance. Else we may
9136 * load balance only within the local sched_domain hierarchy
9137 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9138 */
208cb16b 9139 nohz_idle_balance(this_rq, idle);
d4573c3e 9140 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9141}
9142
1e3c88bd
PZ
9143/*
9144 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9145 */
7caff66f 9146void trigger_load_balance(struct rq *rq)
1e3c88bd 9147{
1e3c88bd 9148 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9149 if (unlikely(on_null_domain(rq)))
9150 return;
9151
9152 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9153 raise_softirq(SCHED_SOFTIRQ);
3451d024 9154#ifdef CONFIG_NO_HZ_COMMON
c726099e 9155 if (nohz_kick_needed(rq))
0aeeeeba 9156 nohz_balancer_kick();
83cd4fe2 9157#endif
1e3c88bd
PZ
9158}
9159
0bcdcf28
CE
9160static void rq_online_fair(struct rq *rq)
9161{
9162 update_sysctl();
0e59bdae
KT
9163
9164 update_runtime_enabled(rq);
0bcdcf28
CE
9165}
9166
9167static void rq_offline_fair(struct rq *rq)
9168{
9169 update_sysctl();
a4c96ae3
PB
9170
9171 /* Ensure any throttled groups are reachable by pick_next_task */
9172 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9173}
9174
55e12e5e 9175#endif /* CONFIG_SMP */
e1d1484f 9176
bf0f6f24
IM
9177/*
9178 * scheduler tick hitting a task of our scheduling class:
9179 */
8f4d37ec 9180static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9181{
9182 struct cfs_rq *cfs_rq;
9183 struct sched_entity *se = &curr->se;
9184
9185 for_each_sched_entity(se) {
9186 cfs_rq = cfs_rq_of(se);
8f4d37ec 9187 entity_tick(cfs_rq, se, queued);
bf0f6f24 9188 }
18bf2805 9189
b52da86e 9190 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9191 task_tick_numa(rq, curr);
bf0f6f24
IM
9192}
9193
9194/*
cd29fe6f
PZ
9195 * called on fork with the child task as argument from the parent's context
9196 * - child not yet on the tasklist
9197 * - preemption disabled
bf0f6f24 9198 */
cd29fe6f 9199static void task_fork_fair(struct task_struct *p)
bf0f6f24 9200{
4fc420c9
DN
9201 struct cfs_rq *cfs_rq;
9202 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9203 struct rq *rq = this_rq();
8a8c69c3 9204 struct rq_flags rf;
bf0f6f24 9205
8a8c69c3 9206 rq_lock(rq, &rf);
861d034e
PZ
9207 update_rq_clock(rq);
9208
4fc420c9
DN
9209 cfs_rq = task_cfs_rq(current);
9210 curr = cfs_rq->curr;
e210bffd
PZ
9211 if (curr) {
9212 update_curr(cfs_rq);
b5d9d734 9213 se->vruntime = curr->vruntime;
e210bffd 9214 }
aeb73b04 9215 place_entity(cfs_rq, se, 1);
4d78e7b6 9216
cd29fe6f 9217 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9218 /*
edcb60a3
IM
9219 * Upon rescheduling, sched_class::put_prev_task() will place
9220 * 'current' within the tree based on its new key value.
9221 */
4d78e7b6 9222 swap(curr->vruntime, se->vruntime);
8875125e 9223 resched_curr(rq);
4d78e7b6 9224 }
bf0f6f24 9225
88ec22d3 9226 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9227 rq_unlock(rq, &rf);
bf0f6f24
IM
9228}
9229
cb469845
SR
9230/*
9231 * Priority of the task has changed. Check to see if we preempt
9232 * the current task.
9233 */
da7a735e
PZ
9234static void
9235prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9236{
da0c1e65 9237 if (!task_on_rq_queued(p))
da7a735e
PZ
9238 return;
9239
cb469845
SR
9240 /*
9241 * Reschedule if we are currently running on this runqueue and
9242 * our priority decreased, or if we are not currently running on
9243 * this runqueue and our priority is higher than the current's
9244 */
da7a735e 9245 if (rq->curr == p) {
cb469845 9246 if (p->prio > oldprio)
8875125e 9247 resched_curr(rq);
cb469845 9248 } else
15afe09b 9249 check_preempt_curr(rq, p, 0);
cb469845
SR
9250}
9251
daa59407 9252static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9253{
9254 struct sched_entity *se = &p->se;
da7a735e
PZ
9255
9256 /*
daa59407
BP
9257 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9258 * the dequeue_entity(.flags=0) will already have normalized the
9259 * vruntime.
9260 */
9261 if (p->on_rq)
9262 return true;
9263
9264 /*
9265 * When !on_rq, vruntime of the task has usually NOT been normalized.
9266 * But there are some cases where it has already been normalized:
da7a735e 9267 *
daa59407
BP
9268 * - A forked child which is waiting for being woken up by
9269 * wake_up_new_task().
9270 * - A task which has been woken up by try_to_wake_up() and
9271 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9272 */
daa59407
BP
9273 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9274 return true;
9275
9276 return false;
9277}
9278
09a43ace
VG
9279#ifdef CONFIG_FAIR_GROUP_SCHED
9280/*
9281 * Propagate the changes of the sched_entity across the tg tree to make it
9282 * visible to the root
9283 */
9284static void propagate_entity_cfs_rq(struct sched_entity *se)
9285{
9286 struct cfs_rq *cfs_rq;
9287
9288 /* Start to propagate at parent */
9289 se = se->parent;
9290
9291 for_each_sched_entity(se) {
9292 cfs_rq = cfs_rq_of(se);
9293
9294 if (cfs_rq_throttled(cfs_rq))
9295 break;
9296
88c0616e 9297 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9298 }
9299}
9300#else
9301static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9302#endif
9303
df217913 9304static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9305{
daa59407
BP
9306 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9307
9d89c257 9308 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9309 update_load_avg(cfs_rq, se, 0);
a05e8c51 9310 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9311 update_tg_load_avg(cfs_rq, false);
09a43ace 9312 propagate_entity_cfs_rq(se);
da7a735e
PZ
9313}
9314
df217913 9315static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9316{
daa59407 9317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9318
9319#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9320 /*
9321 * Since the real-depth could have been changed (only FAIR
9322 * class maintain depth value), reset depth properly.
9323 */
9324 se->depth = se->parent ? se->parent->depth + 1 : 0;
9325#endif
7855a35a 9326
df217913 9327 /* Synchronize entity with its cfs_rq */
88c0616e 9328 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9329 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9330 update_tg_load_avg(cfs_rq, false);
09a43ace 9331 propagate_entity_cfs_rq(se);
df217913
VG
9332}
9333
9334static void detach_task_cfs_rq(struct task_struct *p)
9335{
9336 struct sched_entity *se = &p->se;
9337 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9338
9339 if (!vruntime_normalized(p)) {
9340 /*
9341 * Fix up our vruntime so that the current sleep doesn't
9342 * cause 'unlimited' sleep bonus.
9343 */
9344 place_entity(cfs_rq, se, 0);
9345 se->vruntime -= cfs_rq->min_vruntime;
9346 }
9347
9348 detach_entity_cfs_rq(se);
9349}
9350
9351static void attach_task_cfs_rq(struct task_struct *p)
9352{
9353 struct sched_entity *se = &p->se;
9354 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9355
9356 attach_entity_cfs_rq(se);
daa59407
BP
9357
9358 if (!vruntime_normalized(p))
9359 se->vruntime += cfs_rq->min_vruntime;
9360}
6efdb105 9361
daa59407
BP
9362static void switched_from_fair(struct rq *rq, struct task_struct *p)
9363{
9364 detach_task_cfs_rq(p);
9365}
9366
9367static void switched_to_fair(struct rq *rq, struct task_struct *p)
9368{
9369 attach_task_cfs_rq(p);
7855a35a 9370
daa59407 9371 if (task_on_rq_queued(p)) {
7855a35a 9372 /*
daa59407
BP
9373 * We were most likely switched from sched_rt, so
9374 * kick off the schedule if running, otherwise just see
9375 * if we can still preempt the current task.
7855a35a 9376 */
daa59407
BP
9377 if (rq->curr == p)
9378 resched_curr(rq);
9379 else
9380 check_preempt_curr(rq, p, 0);
7855a35a 9381 }
cb469845
SR
9382}
9383
83b699ed
SV
9384/* Account for a task changing its policy or group.
9385 *
9386 * This routine is mostly called to set cfs_rq->curr field when a task
9387 * migrates between groups/classes.
9388 */
9389static void set_curr_task_fair(struct rq *rq)
9390{
9391 struct sched_entity *se = &rq->curr->se;
9392
ec12cb7f
PT
9393 for_each_sched_entity(se) {
9394 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9395
9396 set_next_entity(cfs_rq, se);
9397 /* ensure bandwidth has been allocated on our new cfs_rq */
9398 account_cfs_rq_runtime(cfs_rq, 0);
9399 }
83b699ed
SV
9400}
9401
029632fb
PZ
9402void init_cfs_rq(struct cfs_rq *cfs_rq)
9403{
bfb06889 9404 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9405 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9406#ifndef CONFIG_64BIT
9407 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9408#endif
141965c7 9409#ifdef CONFIG_SMP
09a43ace
VG
9410#ifdef CONFIG_FAIR_GROUP_SCHED
9411 cfs_rq->propagate_avg = 0;
9412#endif
9d89c257
YD
9413 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9414 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9415#endif
029632fb
PZ
9416}
9417
810b3817 9418#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9419static void task_set_group_fair(struct task_struct *p)
9420{
9421 struct sched_entity *se = &p->se;
9422
9423 set_task_rq(p, task_cpu(p));
9424 se->depth = se->parent ? se->parent->depth + 1 : 0;
9425}
9426
bc54da21 9427static void task_move_group_fair(struct task_struct *p)
810b3817 9428{
daa59407 9429 detach_task_cfs_rq(p);
b2b5ce02 9430 set_task_rq(p, task_cpu(p));
6efdb105
BP
9431
9432#ifdef CONFIG_SMP
9433 /* Tell se's cfs_rq has been changed -- migrated */
9434 p->se.avg.last_update_time = 0;
9435#endif
daa59407 9436 attach_task_cfs_rq(p);
810b3817 9437}
029632fb 9438
ea86cb4b
VG
9439static void task_change_group_fair(struct task_struct *p, int type)
9440{
9441 switch (type) {
9442 case TASK_SET_GROUP:
9443 task_set_group_fair(p);
9444 break;
9445
9446 case TASK_MOVE_GROUP:
9447 task_move_group_fair(p);
9448 break;
9449 }
9450}
9451
029632fb
PZ
9452void free_fair_sched_group(struct task_group *tg)
9453{
9454 int i;
9455
9456 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9457
9458 for_each_possible_cpu(i) {
9459 if (tg->cfs_rq)
9460 kfree(tg->cfs_rq[i]);
6fe1f348 9461 if (tg->se)
029632fb
PZ
9462 kfree(tg->se[i]);
9463 }
9464
9465 kfree(tg->cfs_rq);
9466 kfree(tg->se);
9467}
9468
9469int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9470{
029632fb 9471 struct sched_entity *se;
b7fa30c9 9472 struct cfs_rq *cfs_rq;
029632fb
PZ
9473 int i;
9474
9475 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9476 if (!tg->cfs_rq)
9477 goto err;
9478 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9479 if (!tg->se)
9480 goto err;
9481
9482 tg->shares = NICE_0_LOAD;
9483
9484 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9485
9486 for_each_possible_cpu(i) {
9487 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9488 GFP_KERNEL, cpu_to_node(i));
9489 if (!cfs_rq)
9490 goto err;
9491
9492 se = kzalloc_node(sizeof(struct sched_entity),
9493 GFP_KERNEL, cpu_to_node(i));
9494 if (!se)
9495 goto err_free_rq;
9496
9497 init_cfs_rq(cfs_rq);
9498 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9499 init_entity_runnable_average(se);
029632fb
PZ
9500 }
9501
9502 return 1;
9503
9504err_free_rq:
9505 kfree(cfs_rq);
9506err:
9507 return 0;
9508}
9509
8663e24d
PZ
9510void online_fair_sched_group(struct task_group *tg)
9511{
9512 struct sched_entity *se;
9513 struct rq *rq;
9514 int i;
9515
9516 for_each_possible_cpu(i) {
9517 rq = cpu_rq(i);
9518 se = tg->se[i];
9519
9520 raw_spin_lock_irq(&rq->lock);
4126bad6 9521 update_rq_clock(rq);
d0326691 9522 attach_entity_cfs_rq(se);
55e16d30 9523 sync_throttle(tg, i);
8663e24d
PZ
9524 raw_spin_unlock_irq(&rq->lock);
9525 }
9526}
9527
6fe1f348 9528void unregister_fair_sched_group(struct task_group *tg)
029632fb 9529{
029632fb 9530 unsigned long flags;
6fe1f348
PZ
9531 struct rq *rq;
9532 int cpu;
029632fb 9533
6fe1f348
PZ
9534 for_each_possible_cpu(cpu) {
9535 if (tg->se[cpu])
9536 remove_entity_load_avg(tg->se[cpu]);
029632fb 9537
6fe1f348
PZ
9538 /*
9539 * Only empty task groups can be destroyed; so we can speculatively
9540 * check on_list without danger of it being re-added.
9541 */
9542 if (!tg->cfs_rq[cpu]->on_list)
9543 continue;
9544
9545 rq = cpu_rq(cpu);
9546
9547 raw_spin_lock_irqsave(&rq->lock, flags);
9548 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9549 raw_spin_unlock_irqrestore(&rq->lock, flags);
9550 }
029632fb
PZ
9551}
9552
9553void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9554 struct sched_entity *se, int cpu,
9555 struct sched_entity *parent)
9556{
9557 struct rq *rq = cpu_rq(cpu);
9558
9559 cfs_rq->tg = tg;
9560 cfs_rq->rq = rq;
029632fb
PZ
9561 init_cfs_rq_runtime(cfs_rq);
9562
9563 tg->cfs_rq[cpu] = cfs_rq;
9564 tg->se[cpu] = se;
9565
9566 /* se could be NULL for root_task_group */
9567 if (!se)
9568 return;
9569
fed14d45 9570 if (!parent) {
029632fb 9571 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9572 se->depth = 0;
9573 } else {
029632fb 9574 se->cfs_rq = parent->my_q;
fed14d45
PZ
9575 se->depth = parent->depth + 1;
9576 }
029632fb
PZ
9577
9578 se->my_q = cfs_rq;
0ac9b1c2
PT
9579 /* guarantee group entities always have weight */
9580 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9581 se->parent = parent;
9582}
9583
9584static DEFINE_MUTEX(shares_mutex);
9585
9586int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9587{
9588 int i;
029632fb
PZ
9589
9590 /*
9591 * We can't change the weight of the root cgroup.
9592 */
9593 if (!tg->se[0])
9594 return -EINVAL;
9595
9596 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9597
9598 mutex_lock(&shares_mutex);
9599 if (tg->shares == shares)
9600 goto done;
9601
9602 tg->shares = shares;
9603 for_each_possible_cpu(i) {
9604 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9605 struct sched_entity *se = tg->se[i];
9606 struct rq_flags rf;
029632fb 9607
029632fb 9608 /* Propagate contribution to hierarchy */
8a8c69c3 9609 rq_lock_irqsave(rq, &rf);
71b1da46 9610 update_rq_clock(rq);
89ee048f 9611 for_each_sched_entity(se) {
88c0616e 9612 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
89ee048f
VG
9613 update_cfs_shares(se);
9614 }
8a8c69c3 9615 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9616 }
9617
9618done:
9619 mutex_unlock(&shares_mutex);
9620 return 0;
9621}
9622#else /* CONFIG_FAIR_GROUP_SCHED */
9623
9624void free_fair_sched_group(struct task_group *tg) { }
9625
9626int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9627{
9628 return 1;
9629}
9630
8663e24d
PZ
9631void online_fair_sched_group(struct task_group *tg) { }
9632
6fe1f348 9633void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9634
9635#endif /* CONFIG_FAIR_GROUP_SCHED */
9636
810b3817 9637
6d686f45 9638static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9639{
9640 struct sched_entity *se = &task->se;
0d721cea
PW
9641 unsigned int rr_interval = 0;
9642
9643 /*
9644 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9645 * idle runqueue:
9646 */
0d721cea 9647 if (rq->cfs.load.weight)
a59f4e07 9648 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9649
9650 return rr_interval;
9651}
9652
bf0f6f24
IM
9653/*
9654 * All the scheduling class methods:
9655 */
029632fb 9656const struct sched_class fair_sched_class = {
5522d5d5 9657 .next = &idle_sched_class,
bf0f6f24
IM
9658 .enqueue_task = enqueue_task_fair,
9659 .dequeue_task = dequeue_task_fair,
9660 .yield_task = yield_task_fair,
d95f4122 9661 .yield_to_task = yield_to_task_fair,
bf0f6f24 9662
2e09bf55 9663 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9664
9665 .pick_next_task = pick_next_task_fair,
9666 .put_prev_task = put_prev_task_fair,
9667
681f3e68 9668#ifdef CONFIG_SMP
4ce72a2c 9669 .select_task_rq = select_task_rq_fair,
0a74bef8 9670 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9671
0bcdcf28
CE
9672 .rq_online = rq_online_fair,
9673 .rq_offline = rq_offline_fair,
88ec22d3 9674
12695578 9675 .task_dead = task_dead_fair,
c5b28038 9676 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9677#endif
bf0f6f24 9678
83b699ed 9679 .set_curr_task = set_curr_task_fair,
bf0f6f24 9680 .task_tick = task_tick_fair,
cd29fe6f 9681 .task_fork = task_fork_fair,
cb469845
SR
9682
9683 .prio_changed = prio_changed_fair,
da7a735e 9684 .switched_from = switched_from_fair,
cb469845 9685 .switched_to = switched_to_fair,
810b3817 9686
0d721cea
PW
9687 .get_rr_interval = get_rr_interval_fair,
9688
6e998916
SG
9689 .update_curr = update_curr_fair,
9690
810b3817 9691#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9692 .task_change_group = task_change_group_fair,
810b3817 9693#endif
bf0f6f24
IM
9694};
9695
9696#ifdef CONFIG_SCHED_DEBUG
029632fb 9697void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9698{
a9e7f654 9699 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9700
5973e5b9 9701 rcu_read_lock();
a9e7f654 9702 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9703 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9704 rcu_read_unlock();
bf0f6f24 9705}
397f2378
SD
9706
9707#ifdef CONFIG_NUMA_BALANCING
9708void show_numa_stats(struct task_struct *p, struct seq_file *m)
9709{
9710 int node;
9711 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9712
9713 for_each_online_node(node) {
9714 if (p->numa_faults) {
9715 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9716 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9717 }
9718 if (p->numa_group) {
9719 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9720 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9721 }
9722 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9723 }
9724}
9725#endif /* CONFIG_NUMA_BALANCING */
9726#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9727
9728__init void init_sched_fair_class(void)
9729{
9730#ifdef CONFIG_SMP
9731 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9732
3451d024 9733#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9734 nohz.next_balance = jiffies;
029632fb 9735 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9736#endif
9737#endif /* SMP */
9738
9739}