]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/idle: Drop !! while calculating 'broadcast'
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
ca8ce3d0 1065 ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity;
5ef20ca1 1066 ns->task_capacity =
ca8ce3d0 1067 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1068 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1069}
1070
58d081b5
MG
1071struct task_numa_env {
1072 struct task_struct *p;
e6628d5b 1073
58d081b5
MG
1074 int src_cpu, src_nid;
1075 int dst_cpu, dst_nid;
e6628d5b 1076
58d081b5 1077 struct numa_stats src_stats, dst_stats;
e6628d5b 1078
40ea2b42 1079 int imbalance_pct;
fb13c7ee
MG
1080
1081 struct task_struct *best_task;
1082 long best_imp;
58d081b5
MG
1083 int best_cpu;
1084};
1085
fb13c7ee
MG
1086static void task_numa_assign(struct task_numa_env *env,
1087 struct task_struct *p, long imp)
1088{
1089 if (env->best_task)
1090 put_task_struct(env->best_task);
1091 if (p)
1092 get_task_struct(p);
1093
1094 env->best_task = p;
1095 env->best_imp = imp;
1096 env->best_cpu = env->dst_cpu;
1097}
1098
e63da036
RR
1099static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1100 long src_load, long dst_load,
1101 struct task_numa_env *env)
1102{
1103 long imb, old_imb;
1104
1105 /* We care about the slope of the imbalance, not the direction. */
1106 if (dst_load < src_load)
1107 swap(dst_load, src_load);
1108
1109 /* Is the difference below the threshold? */
1110 imb = dst_load * 100 - src_load * env->imbalance_pct;
1111 if (imb <= 0)
1112 return false;
1113
1114 /*
1115 * The imbalance is above the allowed threshold.
1116 * Compare it with the old imbalance.
1117 */
1118 if (orig_dst_load < orig_src_load)
1119 swap(orig_dst_load, orig_src_load);
1120
1121 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1122
1123 /* Would this change make things worse? */
1662867a 1124 return (imb > old_imb);
e63da036
RR
1125}
1126
fb13c7ee
MG
1127/*
1128 * This checks if the overall compute and NUMA accesses of the system would
1129 * be improved if the source tasks was migrated to the target dst_cpu taking
1130 * into account that it might be best if task running on the dst_cpu should
1131 * be exchanged with the source task
1132 */
887c290e
RR
1133static void task_numa_compare(struct task_numa_env *env,
1134 long taskimp, long groupimp)
fb13c7ee
MG
1135{
1136 struct rq *src_rq = cpu_rq(env->src_cpu);
1137 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1138 struct task_struct *cur;
e63da036
RR
1139 long orig_src_load, src_load;
1140 long orig_dst_load, dst_load;
fb13c7ee 1141 long load;
887c290e 1142 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1143
1144 rcu_read_lock();
1145 cur = ACCESS_ONCE(dst_rq->curr);
1146 if (cur->pid == 0) /* idle */
1147 cur = NULL;
1148
1149 /*
1150 * "imp" is the fault differential for the source task between the
1151 * source and destination node. Calculate the total differential for
1152 * the source task and potential destination task. The more negative
1153 * the value is, the more rmeote accesses that would be expected to
1154 * be incurred if the tasks were swapped.
1155 */
1156 if (cur) {
1157 /* Skip this swap candidate if cannot move to the source cpu */
1158 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1159 goto unlock;
1160
887c290e
RR
1161 /*
1162 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1163 * in any group then look only at task weights.
887c290e 1164 */
ca28aa53 1165 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1166 imp = taskimp + task_weight(cur, env->src_nid) -
1167 task_weight(cur, env->dst_nid);
ca28aa53
RR
1168 /*
1169 * Add some hysteresis to prevent swapping the
1170 * tasks within a group over tiny differences.
1171 */
1172 if (cur->numa_group)
1173 imp -= imp/16;
887c290e 1174 } else {
ca28aa53
RR
1175 /*
1176 * Compare the group weights. If a task is all by
1177 * itself (not part of a group), use the task weight
1178 * instead.
1179 */
1180 if (env->p->numa_group)
1181 imp = groupimp;
1182 else
1183 imp = taskimp;
1184
1185 if (cur->numa_group)
1186 imp += group_weight(cur, env->src_nid) -
1187 group_weight(cur, env->dst_nid);
1188 else
1189 imp += task_weight(cur, env->src_nid) -
1190 task_weight(cur, env->dst_nid);
887c290e 1191 }
fb13c7ee
MG
1192 }
1193
1194 if (imp < env->best_imp)
1195 goto unlock;
1196
1197 if (!cur) {
1198 /* Is there capacity at our destination? */
1b6a7495
NP
1199 if (env->src_stats.has_free_capacity &&
1200 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1201 goto unlock;
1202
1203 goto balance;
1204 }
1205
1206 /* Balance doesn't matter much if we're running a task per cpu */
1207 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1208 goto assign;
1209
1210 /*
1211 * In the overloaded case, try and keep the load balanced.
1212 */
1213balance:
e63da036
RR
1214 orig_dst_load = env->dst_stats.load;
1215 orig_src_load = env->src_stats.load;
fb13c7ee 1216
ced549fa 1217 /* XXX missing capacity terms */
fb13c7ee 1218 load = task_h_load(env->p);
e63da036
RR
1219 dst_load = orig_dst_load + load;
1220 src_load = orig_src_load - load;
fb13c7ee
MG
1221
1222 if (cur) {
1223 load = task_h_load(cur);
1224 dst_load -= load;
1225 src_load += load;
1226 }
1227
e63da036
RR
1228 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1229 src_load, dst_load, env))
fb13c7ee
MG
1230 goto unlock;
1231
1232assign:
1233 task_numa_assign(env, cur, imp);
1234unlock:
1235 rcu_read_unlock();
1236}
1237
887c290e
RR
1238static void task_numa_find_cpu(struct task_numa_env *env,
1239 long taskimp, long groupimp)
2c8a50aa
MG
1240{
1241 int cpu;
1242
1243 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1244 /* Skip this CPU if the source task cannot migrate */
1245 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1246 continue;
1247
1248 env->dst_cpu = cpu;
887c290e 1249 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1250 }
1251}
1252
58d081b5
MG
1253static int task_numa_migrate(struct task_struct *p)
1254{
58d081b5
MG
1255 struct task_numa_env env = {
1256 .p = p,
fb13c7ee 1257
58d081b5 1258 .src_cpu = task_cpu(p),
b32e86b4 1259 .src_nid = task_node(p),
fb13c7ee
MG
1260
1261 .imbalance_pct = 112,
1262
1263 .best_task = NULL,
1264 .best_imp = 0,
1265 .best_cpu = -1
58d081b5
MG
1266 };
1267 struct sched_domain *sd;
887c290e 1268 unsigned long taskweight, groupweight;
2c8a50aa 1269 int nid, ret;
887c290e 1270 long taskimp, groupimp;
e6628d5b 1271
58d081b5 1272 /*
fb13c7ee
MG
1273 * Pick the lowest SD_NUMA domain, as that would have the smallest
1274 * imbalance and would be the first to start moving tasks about.
1275 *
1276 * And we want to avoid any moving of tasks about, as that would create
1277 * random movement of tasks -- counter the numa conditions we're trying
1278 * to satisfy here.
58d081b5
MG
1279 */
1280 rcu_read_lock();
fb13c7ee 1281 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1282 if (sd)
1283 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1284 rcu_read_unlock();
1285
46a73e8a
RR
1286 /*
1287 * Cpusets can break the scheduler domain tree into smaller
1288 * balance domains, some of which do not cross NUMA boundaries.
1289 * Tasks that are "trapped" in such domains cannot be migrated
1290 * elsewhere, so there is no point in (re)trying.
1291 */
1292 if (unlikely(!sd)) {
de1b301a 1293 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1294 return -EINVAL;
1295 }
1296
887c290e
RR
1297 taskweight = task_weight(p, env.src_nid);
1298 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1299 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1300 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1301 taskimp = task_weight(p, env.dst_nid) - taskweight;
1302 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1303 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1304
a43455a1
RR
1305 /* Try to find a spot on the preferred nid. */
1306 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1307
1308 /* No space available on the preferred nid. Look elsewhere. */
1309 if (env.best_cpu == -1) {
2c8a50aa
MG
1310 for_each_online_node(nid) {
1311 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1312 continue;
58d081b5 1313
83e1d2cd 1314 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1315 taskimp = task_weight(p, nid) - taskweight;
1316 groupimp = group_weight(p, nid) - groupweight;
1317 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1318 continue;
1319
2c8a50aa
MG
1320 env.dst_nid = nid;
1321 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1322 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1323 }
1324 }
1325
fb13c7ee
MG
1326 /* No better CPU than the current one was found. */
1327 if (env.best_cpu == -1)
1328 return -EAGAIN;
1329
68d1b02a
RR
1330 /*
1331 * If the task is part of a workload that spans multiple NUMA nodes,
1332 * and is migrating into one of the workload's active nodes, remember
1333 * this node as the task's preferred numa node, so the workload can
1334 * settle down.
1335 * A task that migrated to a second choice node will be better off
1336 * trying for a better one later. Do not set the preferred node here.
1337 */
1338 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1339 sched_setnuma(p, env.dst_nid);
0ec8aa00 1340
04bb2f94
RR
1341 /*
1342 * Reset the scan period if the task is being rescheduled on an
1343 * alternative node to recheck if the tasks is now properly placed.
1344 */
1345 p->numa_scan_period = task_scan_min(p);
1346
fb13c7ee 1347 if (env.best_task == NULL) {
286549dc
MG
1348 ret = migrate_task_to(p, env.best_cpu);
1349 if (ret != 0)
1350 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1351 return ret;
1352 }
1353
1354 ret = migrate_swap(p, env.best_task);
286549dc
MG
1355 if (ret != 0)
1356 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1357 put_task_struct(env.best_task);
1358 return ret;
e6628d5b
MG
1359}
1360
6b9a7460
MG
1361/* Attempt to migrate a task to a CPU on the preferred node. */
1362static void numa_migrate_preferred(struct task_struct *p)
1363{
5085e2a3
RR
1364 unsigned long interval = HZ;
1365
2739d3ee 1366 /* This task has no NUMA fault statistics yet */
ff1df896 1367 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1368 return;
1369
2739d3ee 1370 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1371 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1372 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1373
1374 /* Success if task is already running on preferred CPU */
de1b301a 1375 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1376 return;
1377
1378 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1379 task_numa_migrate(p);
6b9a7460
MG
1380}
1381
20e07dea
RR
1382/*
1383 * Find the nodes on which the workload is actively running. We do this by
1384 * tracking the nodes from which NUMA hinting faults are triggered. This can
1385 * be different from the set of nodes where the workload's memory is currently
1386 * located.
1387 *
1388 * The bitmask is used to make smarter decisions on when to do NUMA page
1389 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1390 * are added when they cause over 6/16 of the maximum number of faults, but
1391 * only removed when they drop below 3/16.
1392 */
1393static void update_numa_active_node_mask(struct numa_group *numa_group)
1394{
1395 unsigned long faults, max_faults = 0;
1396 int nid;
1397
1398 for_each_online_node(nid) {
1399 faults = group_faults_cpu(numa_group, nid);
1400 if (faults > max_faults)
1401 max_faults = faults;
1402 }
1403
1404 for_each_online_node(nid) {
1405 faults = group_faults_cpu(numa_group, nid);
1406 if (!node_isset(nid, numa_group->active_nodes)) {
1407 if (faults > max_faults * 6 / 16)
1408 node_set(nid, numa_group->active_nodes);
1409 } else if (faults < max_faults * 3 / 16)
1410 node_clear(nid, numa_group->active_nodes);
1411 }
1412}
1413
04bb2f94
RR
1414/*
1415 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1416 * increments. The more local the fault statistics are, the higher the scan
1417 * period will be for the next scan window. If local/remote ratio is below
1418 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1419 * scan period will decrease
1420 */
1421#define NUMA_PERIOD_SLOTS 10
1422#define NUMA_PERIOD_THRESHOLD 3
1423
1424/*
1425 * Increase the scan period (slow down scanning) if the majority of
1426 * our memory is already on our local node, or if the majority of
1427 * the page accesses are shared with other processes.
1428 * Otherwise, decrease the scan period.
1429 */
1430static void update_task_scan_period(struct task_struct *p,
1431 unsigned long shared, unsigned long private)
1432{
1433 unsigned int period_slot;
1434 int ratio;
1435 int diff;
1436
1437 unsigned long remote = p->numa_faults_locality[0];
1438 unsigned long local = p->numa_faults_locality[1];
1439
1440 /*
1441 * If there were no record hinting faults then either the task is
1442 * completely idle or all activity is areas that are not of interest
1443 * to automatic numa balancing. Scan slower
1444 */
1445 if (local + shared == 0) {
1446 p->numa_scan_period = min(p->numa_scan_period_max,
1447 p->numa_scan_period << 1);
1448
1449 p->mm->numa_next_scan = jiffies +
1450 msecs_to_jiffies(p->numa_scan_period);
1451
1452 return;
1453 }
1454
1455 /*
1456 * Prepare to scale scan period relative to the current period.
1457 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1458 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1459 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1460 */
1461 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1462 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1463 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1464 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1465 if (!slot)
1466 slot = 1;
1467 diff = slot * period_slot;
1468 } else {
1469 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1470
1471 /*
1472 * Scale scan rate increases based on sharing. There is an
1473 * inverse relationship between the degree of sharing and
1474 * the adjustment made to the scanning period. Broadly
1475 * speaking the intent is that there is little point
1476 * scanning faster if shared accesses dominate as it may
1477 * simply bounce migrations uselessly
1478 */
04bb2f94
RR
1479 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1480 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1481 }
1482
1483 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1484 task_scan_min(p), task_scan_max(p));
1485 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1486}
1487
7e2703e6
RR
1488/*
1489 * Get the fraction of time the task has been running since the last
1490 * NUMA placement cycle. The scheduler keeps similar statistics, but
1491 * decays those on a 32ms period, which is orders of magnitude off
1492 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1493 * stats only if the task is so new there are no NUMA statistics yet.
1494 */
1495static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1496{
1497 u64 runtime, delta, now;
1498 /* Use the start of this time slice to avoid calculations. */
1499 now = p->se.exec_start;
1500 runtime = p->se.sum_exec_runtime;
1501
1502 if (p->last_task_numa_placement) {
1503 delta = runtime - p->last_sum_exec_runtime;
1504 *period = now - p->last_task_numa_placement;
1505 } else {
1506 delta = p->se.avg.runnable_avg_sum;
1507 *period = p->se.avg.runnable_avg_period;
1508 }
1509
1510 p->last_sum_exec_runtime = runtime;
1511 p->last_task_numa_placement = now;
1512
1513 return delta;
1514}
1515
cbee9f88
PZ
1516static void task_numa_placement(struct task_struct *p)
1517{
83e1d2cd
MG
1518 int seq, nid, max_nid = -1, max_group_nid = -1;
1519 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1520 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1521 unsigned long total_faults;
1522 u64 runtime, period;
7dbd13ed 1523 spinlock_t *group_lock = NULL;
cbee9f88 1524
2832bc19 1525 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1526 if (p->numa_scan_seq == seq)
1527 return;
1528 p->numa_scan_seq = seq;
598f0ec0 1529 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1530
7e2703e6
RR
1531 total_faults = p->numa_faults_locality[0] +
1532 p->numa_faults_locality[1];
1533 runtime = numa_get_avg_runtime(p, &period);
1534
7dbd13ed
MG
1535 /* If the task is part of a group prevent parallel updates to group stats */
1536 if (p->numa_group) {
1537 group_lock = &p->numa_group->lock;
60e69eed 1538 spin_lock_irq(group_lock);
7dbd13ed
MG
1539 }
1540
688b7585
MG
1541 /* Find the node with the highest number of faults */
1542 for_each_online_node(nid) {
83e1d2cd 1543 unsigned long faults = 0, group_faults = 0;
ac8e895b 1544 int priv, i;
745d6147 1545
be1e4e76 1546 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1547 long diff, f_diff, f_weight;
8c8a743c 1548
ac8e895b 1549 i = task_faults_idx(nid, priv);
745d6147 1550
ac8e895b 1551 /* Decay existing window, copy faults since last scan */
35664fd4 1552 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1553 fault_types[priv] += p->numa_faults_buffer_memory[i];
1554 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1555
7e2703e6
RR
1556 /*
1557 * Normalize the faults_from, so all tasks in a group
1558 * count according to CPU use, instead of by the raw
1559 * number of faults. Tasks with little runtime have
1560 * little over-all impact on throughput, and thus their
1561 * faults are less important.
1562 */
1563 f_weight = div64_u64(runtime << 16, period + 1);
1564 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1565 (total_faults + 1);
35664fd4 1566 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1567 p->numa_faults_buffer_cpu[i] = 0;
1568
35664fd4
RR
1569 p->numa_faults_memory[i] += diff;
1570 p->numa_faults_cpu[i] += f_diff;
ff1df896 1571 faults += p->numa_faults_memory[i];
83e1d2cd 1572 p->total_numa_faults += diff;
8c8a743c
PZ
1573 if (p->numa_group) {
1574 /* safe because we can only change our own group */
989348b5 1575 p->numa_group->faults[i] += diff;
50ec8a40 1576 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1577 p->numa_group->total_faults += diff;
1578 group_faults += p->numa_group->faults[i];
8c8a743c 1579 }
ac8e895b
MG
1580 }
1581
688b7585
MG
1582 if (faults > max_faults) {
1583 max_faults = faults;
1584 max_nid = nid;
1585 }
83e1d2cd
MG
1586
1587 if (group_faults > max_group_faults) {
1588 max_group_faults = group_faults;
1589 max_group_nid = nid;
1590 }
1591 }
1592
04bb2f94
RR
1593 update_task_scan_period(p, fault_types[0], fault_types[1]);
1594
7dbd13ed 1595 if (p->numa_group) {
20e07dea 1596 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1597 /*
1598 * If the preferred task and group nids are different,
1599 * iterate over the nodes again to find the best place.
1600 */
1601 if (max_nid != max_group_nid) {
1602 unsigned long weight, max_weight = 0;
1603
1604 for_each_online_node(nid) {
1605 weight = task_weight(p, nid) + group_weight(p, nid);
1606 if (weight > max_weight) {
1607 max_weight = weight;
1608 max_nid = nid;
1609 }
83e1d2cd
MG
1610 }
1611 }
7dbd13ed 1612
60e69eed 1613 spin_unlock_irq(group_lock);
688b7585
MG
1614 }
1615
bb97fc31
RR
1616 if (max_faults) {
1617 /* Set the new preferred node */
1618 if (max_nid != p->numa_preferred_nid)
1619 sched_setnuma(p, max_nid);
1620
1621 if (task_node(p) != p->numa_preferred_nid)
1622 numa_migrate_preferred(p);
3a7053b3 1623 }
cbee9f88
PZ
1624}
1625
8c8a743c
PZ
1626static inline int get_numa_group(struct numa_group *grp)
1627{
1628 return atomic_inc_not_zero(&grp->refcount);
1629}
1630
1631static inline void put_numa_group(struct numa_group *grp)
1632{
1633 if (atomic_dec_and_test(&grp->refcount))
1634 kfree_rcu(grp, rcu);
1635}
1636
3e6a9418
MG
1637static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1638 int *priv)
8c8a743c
PZ
1639{
1640 struct numa_group *grp, *my_grp;
1641 struct task_struct *tsk;
1642 bool join = false;
1643 int cpu = cpupid_to_cpu(cpupid);
1644 int i;
1645
1646 if (unlikely(!p->numa_group)) {
1647 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1648 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1649
1650 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1651 if (!grp)
1652 return;
1653
1654 atomic_set(&grp->refcount, 1);
1655 spin_lock_init(&grp->lock);
1656 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1657 grp->gid = p->pid;
50ec8a40 1658 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1659 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1660 nr_node_ids;
8c8a743c 1661
20e07dea
RR
1662 node_set(task_node(current), grp->active_nodes);
1663
be1e4e76 1664 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1665 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1666
989348b5 1667 grp->total_faults = p->total_numa_faults;
83e1d2cd 1668
8c8a743c
PZ
1669 list_add(&p->numa_entry, &grp->task_list);
1670 grp->nr_tasks++;
1671 rcu_assign_pointer(p->numa_group, grp);
1672 }
1673
1674 rcu_read_lock();
1675 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1676
1677 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1678 goto no_join;
8c8a743c
PZ
1679
1680 grp = rcu_dereference(tsk->numa_group);
1681 if (!grp)
3354781a 1682 goto no_join;
8c8a743c
PZ
1683
1684 my_grp = p->numa_group;
1685 if (grp == my_grp)
3354781a 1686 goto no_join;
8c8a743c
PZ
1687
1688 /*
1689 * Only join the other group if its bigger; if we're the bigger group,
1690 * the other task will join us.
1691 */
1692 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1693 goto no_join;
8c8a743c
PZ
1694
1695 /*
1696 * Tie-break on the grp address.
1697 */
1698 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1699 goto no_join;
8c8a743c 1700
dabe1d99
RR
1701 /* Always join threads in the same process. */
1702 if (tsk->mm == current->mm)
1703 join = true;
1704
1705 /* Simple filter to avoid false positives due to PID collisions */
1706 if (flags & TNF_SHARED)
1707 join = true;
8c8a743c 1708
3e6a9418
MG
1709 /* Update priv based on whether false sharing was detected */
1710 *priv = !join;
1711
dabe1d99 1712 if (join && !get_numa_group(grp))
3354781a 1713 goto no_join;
8c8a743c 1714
8c8a743c
PZ
1715 rcu_read_unlock();
1716
1717 if (!join)
1718 return;
1719
60e69eed
MG
1720 BUG_ON(irqs_disabled());
1721 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1722
be1e4e76 1723 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1724 my_grp->faults[i] -= p->numa_faults_memory[i];
1725 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1726 }
989348b5
MG
1727 my_grp->total_faults -= p->total_numa_faults;
1728 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1729
1730 list_move(&p->numa_entry, &grp->task_list);
1731 my_grp->nr_tasks--;
1732 grp->nr_tasks++;
1733
1734 spin_unlock(&my_grp->lock);
60e69eed 1735 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1736
1737 rcu_assign_pointer(p->numa_group, grp);
1738
1739 put_numa_group(my_grp);
3354781a
PZ
1740 return;
1741
1742no_join:
1743 rcu_read_unlock();
1744 return;
8c8a743c
PZ
1745}
1746
1747void task_numa_free(struct task_struct *p)
1748{
1749 struct numa_group *grp = p->numa_group;
ff1df896 1750 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1751 unsigned long flags;
1752 int i;
8c8a743c
PZ
1753
1754 if (grp) {
e9dd685c 1755 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1756 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1757 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1758 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1759
8c8a743c
PZ
1760 list_del(&p->numa_entry);
1761 grp->nr_tasks--;
e9dd685c 1762 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1763 rcu_assign_pointer(p->numa_group, NULL);
1764 put_numa_group(grp);
1765 }
1766
ff1df896
RR
1767 p->numa_faults_memory = NULL;
1768 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1769 p->numa_faults_cpu= NULL;
1770 p->numa_faults_buffer_cpu = NULL;
82727018 1771 kfree(numa_faults);
8c8a743c
PZ
1772}
1773
cbee9f88
PZ
1774/*
1775 * Got a PROT_NONE fault for a page on @node.
1776 */
58b46da3 1777void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1778{
1779 struct task_struct *p = current;
6688cc05 1780 bool migrated = flags & TNF_MIGRATED;
58b46da3 1781 int cpu_node = task_node(current);
792568ec 1782 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1783 int priv;
cbee9f88 1784
10e84b97 1785 if (!numabalancing_enabled)
1a687c2e
MG
1786 return;
1787
9ff1d9ff
MG
1788 /* for example, ksmd faulting in a user's mm */
1789 if (!p->mm)
1790 return;
1791
82727018
RR
1792 /* Do not worry about placement if exiting */
1793 if (p->state == TASK_DEAD)
1794 return;
1795
f809ca9a 1796 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1797 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1798 int size = sizeof(*p->numa_faults_memory) *
1799 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1800
be1e4e76 1801 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1802 if (!p->numa_faults_memory)
f809ca9a 1803 return;
745d6147 1804
ff1df896 1805 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1806 /*
1807 * The averaged statistics, shared & private, memory & cpu,
1808 * occupy the first half of the array. The second half of the
1809 * array is for current counters, which are averaged into the
1810 * first set by task_numa_placement.
1811 */
50ec8a40
RR
1812 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1813 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1814 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1815 p->total_numa_faults = 0;
04bb2f94 1816 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1817 }
cbee9f88 1818
8c8a743c
PZ
1819 /*
1820 * First accesses are treated as private, otherwise consider accesses
1821 * to be private if the accessing pid has not changed
1822 */
1823 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1824 priv = 1;
1825 } else {
1826 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1827 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1828 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1829 }
1830
792568ec
RR
1831 /*
1832 * If a workload spans multiple NUMA nodes, a shared fault that
1833 * occurs wholly within the set of nodes that the workload is
1834 * actively using should be counted as local. This allows the
1835 * scan rate to slow down when a workload has settled down.
1836 */
1837 if (!priv && !local && p->numa_group &&
1838 node_isset(cpu_node, p->numa_group->active_nodes) &&
1839 node_isset(mem_node, p->numa_group->active_nodes))
1840 local = 1;
1841
cbee9f88 1842 task_numa_placement(p);
f809ca9a 1843
2739d3ee
RR
1844 /*
1845 * Retry task to preferred node migration periodically, in case it
1846 * case it previously failed, or the scheduler moved us.
1847 */
1848 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1849 numa_migrate_preferred(p);
1850
b32e86b4
IM
1851 if (migrated)
1852 p->numa_pages_migrated += pages;
1853
58b46da3
RR
1854 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1855 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1856 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1857}
1858
6e5fb223
PZ
1859static void reset_ptenuma_scan(struct task_struct *p)
1860{
1861 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1862 p->mm->numa_scan_offset = 0;
1863}
1864
cbee9f88
PZ
1865/*
1866 * The expensive part of numa migration is done from task_work context.
1867 * Triggered from task_tick_numa().
1868 */
1869void task_numa_work(struct callback_head *work)
1870{
1871 unsigned long migrate, next_scan, now = jiffies;
1872 struct task_struct *p = current;
1873 struct mm_struct *mm = p->mm;
6e5fb223 1874 struct vm_area_struct *vma;
9f40604c 1875 unsigned long start, end;
598f0ec0 1876 unsigned long nr_pte_updates = 0;
9f40604c 1877 long pages;
cbee9f88
PZ
1878
1879 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1880
1881 work->next = work; /* protect against double add */
1882 /*
1883 * Who cares about NUMA placement when they're dying.
1884 *
1885 * NOTE: make sure not to dereference p->mm before this check,
1886 * exit_task_work() happens _after_ exit_mm() so we could be called
1887 * without p->mm even though we still had it when we enqueued this
1888 * work.
1889 */
1890 if (p->flags & PF_EXITING)
1891 return;
1892
930aa174 1893 if (!mm->numa_next_scan) {
7e8d16b6
MG
1894 mm->numa_next_scan = now +
1895 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1896 }
1897
cbee9f88
PZ
1898 /*
1899 * Enforce maximal scan/migration frequency..
1900 */
1901 migrate = mm->numa_next_scan;
1902 if (time_before(now, migrate))
1903 return;
1904
598f0ec0
MG
1905 if (p->numa_scan_period == 0) {
1906 p->numa_scan_period_max = task_scan_max(p);
1907 p->numa_scan_period = task_scan_min(p);
1908 }
cbee9f88 1909
fb003b80 1910 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1911 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1912 return;
1913
19a78d11
PZ
1914 /*
1915 * Delay this task enough that another task of this mm will likely win
1916 * the next time around.
1917 */
1918 p->node_stamp += 2 * TICK_NSEC;
1919
9f40604c
MG
1920 start = mm->numa_scan_offset;
1921 pages = sysctl_numa_balancing_scan_size;
1922 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1923 if (!pages)
1924 return;
cbee9f88 1925
6e5fb223 1926 down_read(&mm->mmap_sem);
9f40604c 1927 vma = find_vma(mm, start);
6e5fb223
PZ
1928 if (!vma) {
1929 reset_ptenuma_scan(p);
9f40604c 1930 start = 0;
6e5fb223
PZ
1931 vma = mm->mmap;
1932 }
9f40604c 1933 for (; vma; vma = vma->vm_next) {
fc314724 1934 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1935 continue;
1936
4591ce4f
MG
1937 /*
1938 * Shared library pages mapped by multiple processes are not
1939 * migrated as it is expected they are cache replicated. Avoid
1940 * hinting faults in read-only file-backed mappings or the vdso
1941 * as migrating the pages will be of marginal benefit.
1942 */
1943 if (!vma->vm_mm ||
1944 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1945 continue;
1946
3c67f474
MG
1947 /*
1948 * Skip inaccessible VMAs to avoid any confusion between
1949 * PROT_NONE and NUMA hinting ptes
1950 */
1951 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1952 continue;
4591ce4f 1953
9f40604c
MG
1954 do {
1955 start = max(start, vma->vm_start);
1956 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1957 end = min(end, vma->vm_end);
598f0ec0
MG
1958 nr_pte_updates += change_prot_numa(vma, start, end);
1959
1960 /*
1961 * Scan sysctl_numa_balancing_scan_size but ensure that
1962 * at least one PTE is updated so that unused virtual
1963 * address space is quickly skipped.
1964 */
1965 if (nr_pte_updates)
1966 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1967
9f40604c
MG
1968 start = end;
1969 if (pages <= 0)
1970 goto out;
3cf1962c
RR
1971
1972 cond_resched();
9f40604c 1973 } while (end != vma->vm_end);
cbee9f88 1974 }
6e5fb223 1975
9f40604c 1976out:
6e5fb223 1977 /*
c69307d5
PZ
1978 * It is possible to reach the end of the VMA list but the last few
1979 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1980 * would find the !migratable VMA on the next scan but not reset the
1981 * scanner to the start so check it now.
6e5fb223
PZ
1982 */
1983 if (vma)
9f40604c 1984 mm->numa_scan_offset = start;
6e5fb223
PZ
1985 else
1986 reset_ptenuma_scan(p);
1987 up_read(&mm->mmap_sem);
cbee9f88
PZ
1988}
1989
1990/*
1991 * Drive the periodic memory faults..
1992 */
1993void task_tick_numa(struct rq *rq, struct task_struct *curr)
1994{
1995 struct callback_head *work = &curr->numa_work;
1996 u64 period, now;
1997
1998 /*
1999 * We don't care about NUMA placement if we don't have memory.
2000 */
2001 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2002 return;
2003
2004 /*
2005 * Using runtime rather than walltime has the dual advantage that
2006 * we (mostly) drive the selection from busy threads and that the
2007 * task needs to have done some actual work before we bother with
2008 * NUMA placement.
2009 */
2010 now = curr->se.sum_exec_runtime;
2011 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2012
2013 if (now - curr->node_stamp > period) {
4b96a29b 2014 if (!curr->node_stamp)
598f0ec0 2015 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2016 curr->node_stamp += period;
cbee9f88
PZ
2017
2018 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2019 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2020 task_work_add(curr, work, true);
2021 }
2022 }
2023}
2024#else
2025static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2026{
2027}
0ec8aa00
PZ
2028
2029static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2030{
2031}
2032
2033static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2034{
2035}
cbee9f88
PZ
2036#endif /* CONFIG_NUMA_BALANCING */
2037
30cfdcfc
DA
2038static void
2039account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2040{
2041 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2042 if (!parent_entity(se))
029632fb 2043 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2044#ifdef CONFIG_SMP
0ec8aa00
PZ
2045 if (entity_is_task(se)) {
2046 struct rq *rq = rq_of(cfs_rq);
2047
2048 account_numa_enqueue(rq, task_of(se));
2049 list_add(&se->group_node, &rq->cfs_tasks);
2050 }
367456c7 2051#endif
30cfdcfc 2052 cfs_rq->nr_running++;
30cfdcfc
DA
2053}
2054
2055static void
2056account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2057{
2058 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2059 if (!parent_entity(se))
029632fb 2060 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2061 if (entity_is_task(se)) {
2062 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2063 list_del_init(&se->group_node);
0ec8aa00 2064 }
30cfdcfc 2065 cfs_rq->nr_running--;
30cfdcfc
DA
2066}
2067
3ff6dcac
YZ
2068#ifdef CONFIG_FAIR_GROUP_SCHED
2069# ifdef CONFIG_SMP
cf5f0acf
PZ
2070static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2071{
2072 long tg_weight;
2073
2074 /*
2075 * Use this CPU's actual weight instead of the last load_contribution
2076 * to gain a more accurate current total weight. See
2077 * update_cfs_rq_load_contribution().
2078 */
bf5b986e 2079 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2080 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2081 tg_weight += cfs_rq->load.weight;
2082
2083 return tg_weight;
2084}
2085
6d5ab293 2086static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2087{
cf5f0acf 2088 long tg_weight, load, shares;
3ff6dcac 2089
cf5f0acf 2090 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2091 load = cfs_rq->load.weight;
3ff6dcac 2092
3ff6dcac 2093 shares = (tg->shares * load);
cf5f0acf
PZ
2094 if (tg_weight)
2095 shares /= tg_weight;
3ff6dcac
YZ
2096
2097 if (shares < MIN_SHARES)
2098 shares = MIN_SHARES;
2099 if (shares > tg->shares)
2100 shares = tg->shares;
2101
2102 return shares;
2103}
3ff6dcac 2104# else /* CONFIG_SMP */
6d5ab293 2105static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2106{
2107 return tg->shares;
2108}
3ff6dcac 2109# endif /* CONFIG_SMP */
2069dd75
PZ
2110static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2111 unsigned long weight)
2112{
19e5eebb
PT
2113 if (se->on_rq) {
2114 /* commit outstanding execution time */
2115 if (cfs_rq->curr == se)
2116 update_curr(cfs_rq);
2069dd75 2117 account_entity_dequeue(cfs_rq, se);
19e5eebb 2118 }
2069dd75
PZ
2119
2120 update_load_set(&se->load, weight);
2121
2122 if (se->on_rq)
2123 account_entity_enqueue(cfs_rq, se);
2124}
2125
82958366
PT
2126static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2127
6d5ab293 2128static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2129{
2130 struct task_group *tg;
2131 struct sched_entity *se;
3ff6dcac 2132 long shares;
2069dd75 2133
2069dd75
PZ
2134 tg = cfs_rq->tg;
2135 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2136 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2137 return;
3ff6dcac
YZ
2138#ifndef CONFIG_SMP
2139 if (likely(se->load.weight == tg->shares))
2140 return;
2141#endif
6d5ab293 2142 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2143
2144 reweight_entity(cfs_rq_of(se), se, shares);
2145}
2146#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2147static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2148{
2149}
2150#endif /* CONFIG_FAIR_GROUP_SCHED */
2151
141965c7 2152#ifdef CONFIG_SMP
5b51f2f8
PT
2153/*
2154 * We choose a half-life close to 1 scheduling period.
2155 * Note: The tables below are dependent on this value.
2156 */
2157#define LOAD_AVG_PERIOD 32
2158#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2159#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2160
2161/* Precomputed fixed inverse multiplies for multiplication by y^n */
2162static const u32 runnable_avg_yN_inv[] = {
2163 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2164 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2165 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2166 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2167 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2168 0x85aac367, 0x82cd8698,
2169};
2170
2171/*
2172 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2173 * over-estimates when re-combining.
2174 */
2175static const u32 runnable_avg_yN_sum[] = {
2176 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2177 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2178 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2179};
2180
9d85f21c
PT
2181/*
2182 * Approximate:
2183 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2184 */
2185static __always_inline u64 decay_load(u64 val, u64 n)
2186{
5b51f2f8
PT
2187 unsigned int local_n;
2188
2189 if (!n)
2190 return val;
2191 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2192 return 0;
2193
2194 /* after bounds checking we can collapse to 32-bit */
2195 local_n = n;
2196
2197 /*
2198 * As y^PERIOD = 1/2, we can combine
2199 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2200 * With a look-up table which covers k^n (n<PERIOD)
2201 *
2202 * To achieve constant time decay_load.
2203 */
2204 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2205 val >>= local_n / LOAD_AVG_PERIOD;
2206 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2207 }
2208
5b51f2f8
PT
2209 val *= runnable_avg_yN_inv[local_n];
2210 /* We don't use SRR here since we always want to round down. */
2211 return val >> 32;
2212}
2213
2214/*
2215 * For updates fully spanning n periods, the contribution to runnable
2216 * average will be: \Sum 1024*y^n
2217 *
2218 * We can compute this reasonably efficiently by combining:
2219 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2220 */
2221static u32 __compute_runnable_contrib(u64 n)
2222{
2223 u32 contrib = 0;
2224
2225 if (likely(n <= LOAD_AVG_PERIOD))
2226 return runnable_avg_yN_sum[n];
2227 else if (unlikely(n >= LOAD_AVG_MAX_N))
2228 return LOAD_AVG_MAX;
2229
2230 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2231 do {
2232 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2233 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2234
2235 n -= LOAD_AVG_PERIOD;
2236 } while (n > LOAD_AVG_PERIOD);
2237
2238 contrib = decay_load(contrib, n);
2239 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2240}
2241
2242/*
2243 * We can represent the historical contribution to runnable average as the
2244 * coefficients of a geometric series. To do this we sub-divide our runnable
2245 * history into segments of approximately 1ms (1024us); label the segment that
2246 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2247 *
2248 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2249 * p0 p1 p2
2250 * (now) (~1ms ago) (~2ms ago)
2251 *
2252 * Let u_i denote the fraction of p_i that the entity was runnable.
2253 *
2254 * We then designate the fractions u_i as our co-efficients, yielding the
2255 * following representation of historical load:
2256 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2257 *
2258 * We choose y based on the with of a reasonably scheduling period, fixing:
2259 * y^32 = 0.5
2260 *
2261 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2262 * approximately half as much as the contribution to load within the last ms
2263 * (u_0).
2264 *
2265 * When a period "rolls over" and we have new u_0`, multiplying the previous
2266 * sum again by y is sufficient to update:
2267 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2268 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2269 */
2270static __always_inline int __update_entity_runnable_avg(u64 now,
2271 struct sched_avg *sa,
2272 int runnable)
2273{
5b51f2f8
PT
2274 u64 delta, periods;
2275 u32 runnable_contrib;
9d85f21c
PT
2276 int delta_w, decayed = 0;
2277
2278 delta = now - sa->last_runnable_update;
2279 /*
2280 * This should only happen when time goes backwards, which it
2281 * unfortunately does during sched clock init when we swap over to TSC.
2282 */
2283 if ((s64)delta < 0) {
2284 sa->last_runnable_update = now;
2285 return 0;
2286 }
2287
2288 /*
2289 * Use 1024ns as the unit of measurement since it's a reasonable
2290 * approximation of 1us and fast to compute.
2291 */
2292 delta >>= 10;
2293 if (!delta)
2294 return 0;
2295 sa->last_runnable_update = now;
2296
2297 /* delta_w is the amount already accumulated against our next period */
2298 delta_w = sa->runnable_avg_period % 1024;
2299 if (delta + delta_w >= 1024) {
2300 /* period roll-over */
2301 decayed = 1;
2302
2303 /*
2304 * Now that we know we're crossing a period boundary, figure
2305 * out how much from delta we need to complete the current
2306 * period and accrue it.
2307 */
2308 delta_w = 1024 - delta_w;
5b51f2f8
PT
2309 if (runnable)
2310 sa->runnable_avg_sum += delta_w;
2311 sa->runnable_avg_period += delta_w;
2312
2313 delta -= delta_w;
2314
2315 /* Figure out how many additional periods this update spans */
2316 periods = delta / 1024;
2317 delta %= 1024;
2318
2319 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2320 periods + 1);
2321 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2322 periods + 1);
2323
2324 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2325 runnable_contrib = __compute_runnable_contrib(periods);
2326 if (runnable)
2327 sa->runnable_avg_sum += runnable_contrib;
2328 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2329 }
2330
2331 /* Remainder of delta accrued against u_0` */
2332 if (runnable)
2333 sa->runnable_avg_sum += delta;
2334 sa->runnable_avg_period += delta;
2335
2336 return decayed;
2337}
2338
9ee474f5 2339/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2340static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2341{
2342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2343 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2344
2345 decays -= se->avg.decay_count;
2346 if (!decays)
aff3e498 2347 return 0;
9ee474f5
PT
2348
2349 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2350 se->avg.decay_count = 0;
aff3e498
PT
2351
2352 return decays;
9ee474f5
PT
2353}
2354
c566e8e9
PT
2355#ifdef CONFIG_FAIR_GROUP_SCHED
2356static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2357 int force_update)
2358{
2359 struct task_group *tg = cfs_rq->tg;
bf5b986e 2360 long tg_contrib;
c566e8e9
PT
2361
2362 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2363 tg_contrib -= cfs_rq->tg_load_contrib;
2364
bf5b986e
AS
2365 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2366 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2367 cfs_rq->tg_load_contrib += tg_contrib;
2368 }
2369}
8165e145 2370
bb17f655
PT
2371/*
2372 * Aggregate cfs_rq runnable averages into an equivalent task_group
2373 * representation for computing load contributions.
2374 */
2375static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2376 struct cfs_rq *cfs_rq)
2377{
2378 struct task_group *tg = cfs_rq->tg;
2379 long contrib;
2380
2381 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2382 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2383 sa->runnable_avg_period + 1);
2384 contrib -= cfs_rq->tg_runnable_contrib;
2385
2386 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2387 atomic_add(contrib, &tg->runnable_avg);
2388 cfs_rq->tg_runnable_contrib += contrib;
2389 }
2390}
2391
8165e145
PT
2392static inline void __update_group_entity_contrib(struct sched_entity *se)
2393{
2394 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2395 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2396 int runnable_avg;
2397
8165e145
PT
2398 u64 contrib;
2399
2400 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2401 se->avg.load_avg_contrib = div_u64(contrib,
2402 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2403
2404 /*
2405 * For group entities we need to compute a correction term in the case
2406 * that they are consuming <1 cpu so that we would contribute the same
2407 * load as a task of equal weight.
2408 *
2409 * Explicitly co-ordinating this measurement would be expensive, but
2410 * fortunately the sum of each cpus contribution forms a usable
2411 * lower-bound on the true value.
2412 *
2413 * Consider the aggregate of 2 contributions. Either they are disjoint
2414 * (and the sum represents true value) or they are disjoint and we are
2415 * understating by the aggregate of their overlap.
2416 *
2417 * Extending this to N cpus, for a given overlap, the maximum amount we
2418 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2419 * cpus that overlap for this interval and w_i is the interval width.
2420 *
2421 * On a small machine; the first term is well-bounded which bounds the
2422 * total error since w_i is a subset of the period. Whereas on a
2423 * larger machine, while this first term can be larger, if w_i is the
2424 * of consequential size guaranteed to see n_i*w_i quickly converge to
2425 * our upper bound of 1-cpu.
2426 */
2427 runnable_avg = atomic_read(&tg->runnable_avg);
2428 if (runnable_avg < NICE_0_LOAD) {
2429 se->avg.load_avg_contrib *= runnable_avg;
2430 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2431 }
8165e145 2432}
f5f9739d
DE
2433
2434static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2435{
2436 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2437 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2438}
6e83125c 2439#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2440static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2441 int force_update) {}
bb17f655
PT
2442static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2443 struct cfs_rq *cfs_rq) {}
8165e145 2444static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2445static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2446#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2447
8165e145
PT
2448static inline void __update_task_entity_contrib(struct sched_entity *se)
2449{
2450 u32 contrib;
2451
2452 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2453 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2454 contrib /= (se->avg.runnable_avg_period + 1);
2455 se->avg.load_avg_contrib = scale_load(contrib);
2456}
2457
2dac754e
PT
2458/* Compute the current contribution to load_avg by se, return any delta */
2459static long __update_entity_load_avg_contrib(struct sched_entity *se)
2460{
2461 long old_contrib = se->avg.load_avg_contrib;
2462
8165e145
PT
2463 if (entity_is_task(se)) {
2464 __update_task_entity_contrib(se);
2465 } else {
bb17f655 2466 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2467 __update_group_entity_contrib(se);
2468 }
2dac754e
PT
2469
2470 return se->avg.load_avg_contrib - old_contrib;
2471}
2472
9ee474f5
PT
2473static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2474 long load_contrib)
2475{
2476 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2477 cfs_rq->blocked_load_avg -= load_contrib;
2478 else
2479 cfs_rq->blocked_load_avg = 0;
2480}
2481
f1b17280
PT
2482static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2483
9d85f21c 2484/* Update a sched_entity's runnable average */
9ee474f5
PT
2485static inline void update_entity_load_avg(struct sched_entity *se,
2486 int update_cfs_rq)
9d85f21c 2487{
2dac754e
PT
2488 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2489 long contrib_delta;
f1b17280 2490 u64 now;
2dac754e 2491
f1b17280
PT
2492 /*
2493 * For a group entity we need to use their owned cfs_rq_clock_task() in
2494 * case they are the parent of a throttled hierarchy.
2495 */
2496 if (entity_is_task(se))
2497 now = cfs_rq_clock_task(cfs_rq);
2498 else
2499 now = cfs_rq_clock_task(group_cfs_rq(se));
2500
2501 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2502 return;
2503
2504 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2505
2506 if (!update_cfs_rq)
2507 return;
2508
2dac754e
PT
2509 if (se->on_rq)
2510 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2511 else
2512 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2513}
2514
2515/*
2516 * Decay the load contributed by all blocked children and account this so that
2517 * their contribution may appropriately discounted when they wake up.
2518 */
aff3e498 2519static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2520{
f1b17280 2521 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2522 u64 decays;
2523
2524 decays = now - cfs_rq->last_decay;
aff3e498 2525 if (!decays && !force_update)
9ee474f5
PT
2526 return;
2527
2509940f
AS
2528 if (atomic_long_read(&cfs_rq->removed_load)) {
2529 unsigned long removed_load;
2530 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2531 subtract_blocked_load_contrib(cfs_rq, removed_load);
2532 }
9ee474f5 2533
aff3e498
PT
2534 if (decays) {
2535 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2536 decays);
2537 atomic64_add(decays, &cfs_rq->decay_counter);
2538 cfs_rq->last_decay = now;
2539 }
c566e8e9
PT
2540
2541 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2542}
18bf2805 2543
2dac754e
PT
2544/* Add the load generated by se into cfs_rq's child load-average */
2545static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2546 struct sched_entity *se,
2547 int wakeup)
2dac754e 2548{
aff3e498
PT
2549 /*
2550 * We track migrations using entity decay_count <= 0, on a wake-up
2551 * migration we use a negative decay count to track the remote decays
2552 * accumulated while sleeping.
a75cdaa9
AS
2553 *
2554 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2555 * are seen by enqueue_entity_load_avg() as a migration with an already
2556 * constructed load_avg_contrib.
aff3e498
PT
2557 */
2558 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2559 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2560 if (se->avg.decay_count) {
2561 /*
2562 * In a wake-up migration we have to approximate the
2563 * time sleeping. This is because we can't synchronize
2564 * clock_task between the two cpus, and it is not
2565 * guaranteed to be read-safe. Instead, we can
2566 * approximate this using our carried decays, which are
2567 * explicitly atomically readable.
2568 */
2569 se->avg.last_runnable_update -= (-se->avg.decay_count)
2570 << 20;
2571 update_entity_load_avg(se, 0);
2572 /* Indicate that we're now synchronized and on-rq */
2573 se->avg.decay_count = 0;
2574 }
9ee474f5
PT
2575 wakeup = 0;
2576 } else {
9390675a 2577 __synchronize_entity_decay(se);
9ee474f5
PT
2578 }
2579
aff3e498
PT
2580 /* migrated tasks did not contribute to our blocked load */
2581 if (wakeup) {
9ee474f5 2582 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2583 update_entity_load_avg(se, 0);
2584 }
9ee474f5 2585
2dac754e 2586 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2587 /* we force update consideration on load-balancer moves */
2588 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2589}
2590
9ee474f5
PT
2591/*
2592 * Remove se's load from this cfs_rq child load-average, if the entity is
2593 * transitioning to a blocked state we track its projected decay using
2594 * blocked_load_avg.
2595 */
2dac754e 2596static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2597 struct sched_entity *se,
2598 int sleep)
2dac754e 2599{
9ee474f5 2600 update_entity_load_avg(se, 1);
aff3e498
PT
2601 /* we force update consideration on load-balancer moves */
2602 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2603
2dac754e 2604 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2605 if (sleep) {
2606 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2607 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2608 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2609}
642dbc39
VG
2610
2611/*
2612 * Update the rq's load with the elapsed running time before entering
2613 * idle. if the last scheduled task is not a CFS task, idle_enter will
2614 * be the only way to update the runnable statistic.
2615 */
2616void idle_enter_fair(struct rq *this_rq)
2617{
2618 update_rq_runnable_avg(this_rq, 1);
2619}
2620
2621/*
2622 * Update the rq's load with the elapsed idle time before a task is
2623 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2624 * be the only way to update the runnable statistic.
2625 */
2626void idle_exit_fair(struct rq *this_rq)
2627{
2628 update_rq_runnable_avg(this_rq, 0);
2629}
2630
6e83125c
PZ
2631static int idle_balance(struct rq *this_rq);
2632
38033c37
PZ
2633#else /* CONFIG_SMP */
2634
9ee474f5
PT
2635static inline void update_entity_load_avg(struct sched_entity *se,
2636 int update_cfs_rq) {}
18bf2805 2637static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2638static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2639 struct sched_entity *se,
2640 int wakeup) {}
2dac754e 2641static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2642 struct sched_entity *se,
2643 int sleep) {}
aff3e498
PT
2644static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2645 int force_update) {}
6e83125c
PZ
2646
2647static inline int idle_balance(struct rq *rq)
2648{
2649 return 0;
2650}
2651
38033c37 2652#endif /* CONFIG_SMP */
9d85f21c 2653
2396af69 2654static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2655{
bf0f6f24 2656#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2657 struct task_struct *tsk = NULL;
2658
2659 if (entity_is_task(se))
2660 tsk = task_of(se);
2661
41acab88 2662 if (se->statistics.sleep_start) {
78becc27 2663 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2664
2665 if ((s64)delta < 0)
2666 delta = 0;
2667
41acab88
LDM
2668 if (unlikely(delta > se->statistics.sleep_max))
2669 se->statistics.sleep_max = delta;
bf0f6f24 2670
8c79a045 2671 se->statistics.sleep_start = 0;
41acab88 2672 se->statistics.sum_sleep_runtime += delta;
9745512c 2673
768d0c27 2674 if (tsk) {
e414314c 2675 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2676 trace_sched_stat_sleep(tsk, delta);
2677 }
bf0f6f24 2678 }
41acab88 2679 if (se->statistics.block_start) {
78becc27 2680 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2681
2682 if ((s64)delta < 0)
2683 delta = 0;
2684
41acab88
LDM
2685 if (unlikely(delta > se->statistics.block_max))
2686 se->statistics.block_max = delta;
bf0f6f24 2687
8c79a045 2688 se->statistics.block_start = 0;
41acab88 2689 se->statistics.sum_sleep_runtime += delta;
30084fbd 2690
e414314c 2691 if (tsk) {
8f0dfc34 2692 if (tsk->in_iowait) {
41acab88
LDM
2693 se->statistics.iowait_sum += delta;
2694 se->statistics.iowait_count++;
768d0c27 2695 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2696 }
2697
b781a602
AV
2698 trace_sched_stat_blocked(tsk, delta);
2699
e414314c
PZ
2700 /*
2701 * Blocking time is in units of nanosecs, so shift by
2702 * 20 to get a milliseconds-range estimation of the
2703 * amount of time that the task spent sleeping:
2704 */
2705 if (unlikely(prof_on == SLEEP_PROFILING)) {
2706 profile_hits(SLEEP_PROFILING,
2707 (void *)get_wchan(tsk),
2708 delta >> 20);
2709 }
2710 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2711 }
bf0f6f24
IM
2712 }
2713#endif
2714}
2715
ddc97297
PZ
2716static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2717{
2718#ifdef CONFIG_SCHED_DEBUG
2719 s64 d = se->vruntime - cfs_rq->min_vruntime;
2720
2721 if (d < 0)
2722 d = -d;
2723
2724 if (d > 3*sysctl_sched_latency)
2725 schedstat_inc(cfs_rq, nr_spread_over);
2726#endif
2727}
2728
aeb73b04
PZ
2729static void
2730place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2731{
1af5f730 2732 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2733
2cb8600e
PZ
2734 /*
2735 * The 'current' period is already promised to the current tasks,
2736 * however the extra weight of the new task will slow them down a
2737 * little, place the new task so that it fits in the slot that
2738 * stays open at the end.
2739 */
94dfb5e7 2740 if (initial && sched_feat(START_DEBIT))
f9c0b095 2741 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2742
a2e7a7eb 2743 /* sleeps up to a single latency don't count. */
5ca9880c 2744 if (!initial) {
a2e7a7eb 2745 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2746
a2e7a7eb
MG
2747 /*
2748 * Halve their sleep time's effect, to allow
2749 * for a gentler effect of sleepers:
2750 */
2751 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2752 thresh >>= 1;
51e0304c 2753
a2e7a7eb 2754 vruntime -= thresh;
aeb73b04
PZ
2755 }
2756
b5d9d734 2757 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2758 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2759}
2760
d3d9dc33
PT
2761static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2762
bf0f6f24 2763static void
88ec22d3 2764enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2765{
88ec22d3
PZ
2766 /*
2767 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2768 * through calling update_curr().
88ec22d3 2769 */
371fd7e7 2770 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2771 se->vruntime += cfs_rq->min_vruntime;
2772
bf0f6f24 2773 /*
a2a2d680 2774 * Update run-time statistics of the 'current'.
bf0f6f24 2775 */
b7cc0896 2776 update_curr(cfs_rq);
f269ae04 2777 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2778 account_entity_enqueue(cfs_rq, se);
2779 update_cfs_shares(cfs_rq);
bf0f6f24 2780
88ec22d3 2781 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2782 place_entity(cfs_rq, se, 0);
2396af69 2783 enqueue_sleeper(cfs_rq, se);
e9acbff6 2784 }
bf0f6f24 2785
d2417e5a 2786 update_stats_enqueue(cfs_rq, se);
ddc97297 2787 check_spread(cfs_rq, se);
83b699ed
SV
2788 if (se != cfs_rq->curr)
2789 __enqueue_entity(cfs_rq, se);
2069dd75 2790 se->on_rq = 1;
3d4b47b4 2791
d3d9dc33 2792 if (cfs_rq->nr_running == 1) {
3d4b47b4 2793 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2794 check_enqueue_throttle(cfs_rq);
2795 }
bf0f6f24
IM
2796}
2797
2c13c919 2798static void __clear_buddies_last(struct sched_entity *se)
2002c695 2799{
2c13c919
RR
2800 for_each_sched_entity(se) {
2801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2802 if (cfs_rq->last != se)
2c13c919 2803 break;
f1044799
PZ
2804
2805 cfs_rq->last = NULL;
2c13c919
RR
2806 }
2807}
2002c695 2808
2c13c919
RR
2809static void __clear_buddies_next(struct sched_entity *se)
2810{
2811 for_each_sched_entity(se) {
2812 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2813 if (cfs_rq->next != se)
2c13c919 2814 break;
f1044799
PZ
2815
2816 cfs_rq->next = NULL;
2c13c919 2817 }
2002c695
PZ
2818}
2819
ac53db59
RR
2820static void __clear_buddies_skip(struct sched_entity *se)
2821{
2822 for_each_sched_entity(se) {
2823 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2824 if (cfs_rq->skip != se)
ac53db59 2825 break;
f1044799
PZ
2826
2827 cfs_rq->skip = NULL;
ac53db59
RR
2828 }
2829}
2830
a571bbea
PZ
2831static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2832{
2c13c919
RR
2833 if (cfs_rq->last == se)
2834 __clear_buddies_last(se);
2835
2836 if (cfs_rq->next == se)
2837 __clear_buddies_next(se);
ac53db59
RR
2838
2839 if (cfs_rq->skip == se)
2840 __clear_buddies_skip(se);
a571bbea
PZ
2841}
2842
6c16a6dc 2843static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2844
bf0f6f24 2845static void
371fd7e7 2846dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2847{
a2a2d680
DA
2848 /*
2849 * Update run-time statistics of the 'current'.
2850 */
2851 update_curr(cfs_rq);
17bc14b7 2852 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2853
19b6a2e3 2854 update_stats_dequeue(cfs_rq, se);
371fd7e7 2855 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2856#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2857 if (entity_is_task(se)) {
2858 struct task_struct *tsk = task_of(se);
2859
2860 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2861 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2862 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2863 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2864 }
db36cc7d 2865#endif
67e9fb2a
PZ
2866 }
2867
2002c695 2868 clear_buddies(cfs_rq, se);
4793241b 2869
83b699ed 2870 if (se != cfs_rq->curr)
30cfdcfc 2871 __dequeue_entity(cfs_rq, se);
17bc14b7 2872 se->on_rq = 0;
30cfdcfc 2873 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2874
2875 /*
2876 * Normalize the entity after updating the min_vruntime because the
2877 * update can refer to the ->curr item and we need to reflect this
2878 * movement in our normalized position.
2879 */
371fd7e7 2880 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2881 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2882
d8b4986d
PT
2883 /* return excess runtime on last dequeue */
2884 return_cfs_rq_runtime(cfs_rq);
2885
1e876231 2886 update_min_vruntime(cfs_rq);
17bc14b7 2887 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2888}
2889
2890/*
2891 * Preempt the current task with a newly woken task if needed:
2892 */
7c92e54f 2893static void
2e09bf55 2894check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2895{
11697830 2896 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2897 struct sched_entity *se;
2898 s64 delta;
11697830 2899
6d0f0ebd 2900 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2901 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2902 if (delta_exec > ideal_runtime) {
bf0f6f24 2903 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2904 /*
2905 * The current task ran long enough, ensure it doesn't get
2906 * re-elected due to buddy favours.
2907 */
2908 clear_buddies(cfs_rq, curr);
f685ceac
MG
2909 return;
2910 }
2911
2912 /*
2913 * Ensure that a task that missed wakeup preemption by a
2914 * narrow margin doesn't have to wait for a full slice.
2915 * This also mitigates buddy induced latencies under load.
2916 */
f685ceac
MG
2917 if (delta_exec < sysctl_sched_min_granularity)
2918 return;
2919
f4cfb33e
WX
2920 se = __pick_first_entity(cfs_rq);
2921 delta = curr->vruntime - se->vruntime;
f685ceac 2922
f4cfb33e
WX
2923 if (delta < 0)
2924 return;
d7d82944 2925
f4cfb33e
WX
2926 if (delta > ideal_runtime)
2927 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2928}
2929
83b699ed 2930static void
8494f412 2931set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2932{
83b699ed
SV
2933 /* 'current' is not kept within the tree. */
2934 if (se->on_rq) {
2935 /*
2936 * Any task has to be enqueued before it get to execute on
2937 * a CPU. So account for the time it spent waiting on the
2938 * runqueue.
2939 */
2940 update_stats_wait_end(cfs_rq, se);
2941 __dequeue_entity(cfs_rq, se);
2942 }
2943
79303e9e 2944 update_stats_curr_start(cfs_rq, se);
429d43bc 2945 cfs_rq->curr = se;
eba1ed4b
IM
2946#ifdef CONFIG_SCHEDSTATS
2947 /*
2948 * Track our maximum slice length, if the CPU's load is at
2949 * least twice that of our own weight (i.e. dont track it
2950 * when there are only lesser-weight tasks around):
2951 */
495eca49 2952 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2953 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2954 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2955 }
2956#endif
4a55b450 2957 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2958}
2959
3f3a4904
PZ
2960static int
2961wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2962
ac53db59
RR
2963/*
2964 * Pick the next process, keeping these things in mind, in this order:
2965 * 1) keep things fair between processes/task groups
2966 * 2) pick the "next" process, since someone really wants that to run
2967 * 3) pick the "last" process, for cache locality
2968 * 4) do not run the "skip" process, if something else is available
2969 */
678d5718
PZ
2970static struct sched_entity *
2971pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2972{
678d5718
PZ
2973 struct sched_entity *left = __pick_first_entity(cfs_rq);
2974 struct sched_entity *se;
2975
2976 /*
2977 * If curr is set we have to see if its left of the leftmost entity
2978 * still in the tree, provided there was anything in the tree at all.
2979 */
2980 if (!left || (curr && entity_before(curr, left)))
2981 left = curr;
2982
2983 se = left; /* ideally we run the leftmost entity */
f4b6755f 2984
ac53db59
RR
2985 /*
2986 * Avoid running the skip buddy, if running something else can
2987 * be done without getting too unfair.
2988 */
2989 if (cfs_rq->skip == se) {
678d5718
PZ
2990 struct sched_entity *second;
2991
2992 if (se == curr) {
2993 second = __pick_first_entity(cfs_rq);
2994 } else {
2995 second = __pick_next_entity(se);
2996 if (!second || (curr && entity_before(curr, second)))
2997 second = curr;
2998 }
2999
ac53db59
RR
3000 if (second && wakeup_preempt_entity(second, left) < 1)
3001 se = second;
3002 }
aa2ac252 3003
f685ceac
MG
3004 /*
3005 * Prefer last buddy, try to return the CPU to a preempted task.
3006 */
3007 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3008 se = cfs_rq->last;
3009
ac53db59
RR
3010 /*
3011 * Someone really wants this to run. If it's not unfair, run it.
3012 */
3013 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3014 se = cfs_rq->next;
3015
f685ceac 3016 clear_buddies(cfs_rq, se);
4793241b
PZ
3017
3018 return se;
aa2ac252
PZ
3019}
3020
678d5718 3021static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3022
ab6cde26 3023static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3024{
3025 /*
3026 * If still on the runqueue then deactivate_task()
3027 * was not called and update_curr() has to be done:
3028 */
3029 if (prev->on_rq)
b7cc0896 3030 update_curr(cfs_rq);
bf0f6f24 3031
d3d9dc33
PT
3032 /* throttle cfs_rqs exceeding runtime */
3033 check_cfs_rq_runtime(cfs_rq);
3034
ddc97297 3035 check_spread(cfs_rq, prev);
30cfdcfc 3036 if (prev->on_rq) {
5870db5b 3037 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3038 /* Put 'current' back into the tree. */
3039 __enqueue_entity(cfs_rq, prev);
9d85f21c 3040 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3041 update_entity_load_avg(prev, 1);
30cfdcfc 3042 }
429d43bc 3043 cfs_rq->curr = NULL;
bf0f6f24
IM
3044}
3045
8f4d37ec
PZ
3046static void
3047entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3048{
bf0f6f24 3049 /*
30cfdcfc 3050 * Update run-time statistics of the 'current'.
bf0f6f24 3051 */
30cfdcfc 3052 update_curr(cfs_rq);
bf0f6f24 3053
9d85f21c
PT
3054 /*
3055 * Ensure that runnable average is periodically updated.
3056 */
9ee474f5 3057 update_entity_load_avg(curr, 1);
aff3e498 3058 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3059 update_cfs_shares(cfs_rq);
9d85f21c 3060
8f4d37ec
PZ
3061#ifdef CONFIG_SCHED_HRTICK
3062 /*
3063 * queued ticks are scheduled to match the slice, so don't bother
3064 * validating it and just reschedule.
3065 */
983ed7a6
HH
3066 if (queued) {
3067 resched_task(rq_of(cfs_rq)->curr);
3068 return;
3069 }
8f4d37ec
PZ
3070 /*
3071 * don't let the period tick interfere with the hrtick preemption
3072 */
3073 if (!sched_feat(DOUBLE_TICK) &&
3074 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3075 return;
3076#endif
3077
2c2efaed 3078 if (cfs_rq->nr_running > 1)
2e09bf55 3079 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3080}
3081
ab84d31e
PT
3082
3083/**************************************************
3084 * CFS bandwidth control machinery
3085 */
3086
3087#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3088
3089#ifdef HAVE_JUMP_LABEL
c5905afb 3090static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3091
3092static inline bool cfs_bandwidth_used(void)
3093{
c5905afb 3094 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3095}
3096
1ee14e6c 3097void cfs_bandwidth_usage_inc(void)
029632fb 3098{
1ee14e6c
BS
3099 static_key_slow_inc(&__cfs_bandwidth_used);
3100}
3101
3102void cfs_bandwidth_usage_dec(void)
3103{
3104 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3105}
3106#else /* HAVE_JUMP_LABEL */
3107static bool cfs_bandwidth_used(void)
3108{
3109 return true;
3110}
3111
1ee14e6c
BS
3112void cfs_bandwidth_usage_inc(void) {}
3113void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3114#endif /* HAVE_JUMP_LABEL */
3115
ab84d31e
PT
3116/*
3117 * default period for cfs group bandwidth.
3118 * default: 0.1s, units: nanoseconds
3119 */
3120static inline u64 default_cfs_period(void)
3121{
3122 return 100000000ULL;
3123}
ec12cb7f
PT
3124
3125static inline u64 sched_cfs_bandwidth_slice(void)
3126{
3127 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3128}
3129
a9cf55b2
PT
3130/*
3131 * Replenish runtime according to assigned quota and update expiration time.
3132 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3133 * additional synchronization around rq->lock.
3134 *
3135 * requires cfs_b->lock
3136 */
029632fb 3137void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3138{
3139 u64 now;
3140
3141 if (cfs_b->quota == RUNTIME_INF)
3142 return;
3143
3144 now = sched_clock_cpu(smp_processor_id());
3145 cfs_b->runtime = cfs_b->quota;
3146 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3147}
3148
029632fb
PZ
3149static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3150{
3151 return &tg->cfs_bandwidth;
3152}
3153
f1b17280
PT
3154/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3155static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3156{
3157 if (unlikely(cfs_rq->throttle_count))
3158 return cfs_rq->throttled_clock_task;
3159
78becc27 3160 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3161}
3162
85dac906
PT
3163/* returns 0 on failure to allocate runtime */
3164static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3165{
3166 struct task_group *tg = cfs_rq->tg;
3167 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3168 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3169
3170 /* note: this is a positive sum as runtime_remaining <= 0 */
3171 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3172
3173 raw_spin_lock(&cfs_b->lock);
3174 if (cfs_b->quota == RUNTIME_INF)
3175 amount = min_amount;
58088ad0 3176 else {
a9cf55b2
PT
3177 /*
3178 * If the bandwidth pool has become inactive, then at least one
3179 * period must have elapsed since the last consumption.
3180 * Refresh the global state and ensure bandwidth timer becomes
3181 * active.
3182 */
3183 if (!cfs_b->timer_active) {
3184 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3185 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3186 }
58088ad0
PT
3187
3188 if (cfs_b->runtime > 0) {
3189 amount = min(cfs_b->runtime, min_amount);
3190 cfs_b->runtime -= amount;
3191 cfs_b->idle = 0;
3192 }
ec12cb7f 3193 }
a9cf55b2 3194 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3195 raw_spin_unlock(&cfs_b->lock);
3196
3197 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3198 /*
3199 * we may have advanced our local expiration to account for allowed
3200 * spread between our sched_clock and the one on which runtime was
3201 * issued.
3202 */
3203 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3204 cfs_rq->runtime_expires = expires;
85dac906
PT
3205
3206 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3207}
3208
a9cf55b2
PT
3209/*
3210 * Note: This depends on the synchronization provided by sched_clock and the
3211 * fact that rq->clock snapshots this value.
3212 */
3213static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3214{
a9cf55b2 3215 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3216
3217 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3218 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3219 return;
3220
a9cf55b2
PT
3221 if (cfs_rq->runtime_remaining < 0)
3222 return;
3223
3224 /*
3225 * If the local deadline has passed we have to consider the
3226 * possibility that our sched_clock is 'fast' and the global deadline
3227 * has not truly expired.
3228 *
3229 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3230 * whether the global deadline has advanced. It is valid to compare
3231 * cfs_b->runtime_expires without any locks since we only care about
3232 * exact equality, so a partial write will still work.
a9cf55b2
PT
3233 */
3234
51f2176d 3235 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3236 /* extend local deadline, drift is bounded above by 2 ticks */
3237 cfs_rq->runtime_expires += TICK_NSEC;
3238 } else {
3239 /* global deadline is ahead, expiration has passed */
3240 cfs_rq->runtime_remaining = 0;
3241 }
3242}
3243
9dbdb155 3244static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3245{
3246 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3247 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3248 expire_cfs_rq_runtime(cfs_rq);
3249
3250 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3251 return;
3252
85dac906
PT
3253 /*
3254 * if we're unable to extend our runtime we resched so that the active
3255 * hierarchy can be throttled
3256 */
3257 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3258 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3259}
3260
6c16a6dc 3261static __always_inline
9dbdb155 3262void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3263{
56f570e5 3264 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3265 return;
3266
3267 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3268}
3269
85dac906
PT
3270static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3271{
56f570e5 3272 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3273}
3274
64660c86
PT
3275/* check whether cfs_rq, or any parent, is throttled */
3276static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3277{
56f570e5 3278 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3279}
3280
3281/*
3282 * Ensure that neither of the group entities corresponding to src_cpu or
3283 * dest_cpu are members of a throttled hierarchy when performing group
3284 * load-balance operations.
3285 */
3286static inline int throttled_lb_pair(struct task_group *tg,
3287 int src_cpu, int dest_cpu)
3288{
3289 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3290
3291 src_cfs_rq = tg->cfs_rq[src_cpu];
3292 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3293
3294 return throttled_hierarchy(src_cfs_rq) ||
3295 throttled_hierarchy(dest_cfs_rq);
3296}
3297
3298/* updated child weight may affect parent so we have to do this bottom up */
3299static int tg_unthrottle_up(struct task_group *tg, void *data)
3300{
3301 struct rq *rq = data;
3302 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3303
3304 cfs_rq->throttle_count--;
3305#ifdef CONFIG_SMP
3306 if (!cfs_rq->throttle_count) {
f1b17280 3307 /* adjust cfs_rq_clock_task() */
78becc27 3308 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3309 cfs_rq->throttled_clock_task;
64660c86
PT
3310 }
3311#endif
3312
3313 return 0;
3314}
3315
3316static int tg_throttle_down(struct task_group *tg, void *data)
3317{
3318 struct rq *rq = data;
3319 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3320
82958366
PT
3321 /* group is entering throttled state, stop time */
3322 if (!cfs_rq->throttle_count)
78becc27 3323 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3324 cfs_rq->throttle_count++;
3325
3326 return 0;
3327}
3328
d3d9dc33 3329static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3330{
3331 struct rq *rq = rq_of(cfs_rq);
3332 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3333 struct sched_entity *se;
3334 long task_delta, dequeue = 1;
3335
3336 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3337
f1b17280 3338 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3339 rcu_read_lock();
3340 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3341 rcu_read_unlock();
85dac906
PT
3342
3343 task_delta = cfs_rq->h_nr_running;
3344 for_each_sched_entity(se) {
3345 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3346 /* throttled entity or throttle-on-deactivate */
3347 if (!se->on_rq)
3348 break;
3349
3350 if (dequeue)
3351 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3352 qcfs_rq->h_nr_running -= task_delta;
3353
3354 if (qcfs_rq->load.weight)
3355 dequeue = 0;
3356 }
3357
3358 if (!se)
72465447 3359 sub_nr_running(rq, task_delta);
85dac906
PT
3360
3361 cfs_rq->throttled = 1;
78becc27 3362 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3363 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3364 /*
3365 * Add to the _head_ of the list, so that an already-started
3366 * distribute_cfs_runtime will not see us
3367 */
3368 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3369 if (!cfs_b->timer_active)
09dc4ab0 3370 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3371 raw_spin_unlock(&cfs_b->lock);
3372}
3373
029632fb 3374void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3375{
3376 struct rq *rq = rq_of(cfs_rq);
3377 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3378 struct sched_entity *se;
3379 int enqueue = 1;
3380 long task_delta;
3381
22b958d8 3382 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3383
3384 cfs_rq->throttled = 0;
1a55af2e
FW
3385
3386 update_rq_clock(rq);
3387
671fd9da 3388 raw_spin_lock(&cfs_b->lock);
78becc27 3389 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3390 list_del_rcu(&cfs_rq->throttled_list);
3391 raw_spin_unlock(&cfs_b->lock);
3392
64660c86
PT
3393 /* update hierarchical throttle state */
3394 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3395
671fd9da
PT
3396 if (!cfs_rq->load.weight)
3397 return;
3398
3399 task_delta = cfs_rq->h_nr_running;
3400 for_each_sched_entity(se) {
3401 if (se->on_rq)
3402 enqueue = 0;
3403
3404 cfs_rq = cfs_rq_of(se);
3405 if (enqueue)
3406 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3407 cfs_rq->h_nr_running += task_delta;
3408
3409 if (cfs_rq_throttled(cfs_rq))
3410 break;
3411 }
3412
3413 if (!se)
72465447 3414 add_nr_running(rq, task_delta);
671fd9da
PT
3415
3416 /* determine whether we need to wake up potentially idle cpu */
3417 if (rq->curr == rq->idle && rq->cfs.nr_running)
3418 resched_task(rq->curr);
3419}
3420
3421static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3422 u64 remaining, u64 expires)
3423{
3424 struct cfs_rq *cfs_rq;
c06f04c7
BS
3425 u64 runtime;
3426 u64 starting_runtime = remaining;
671fd9da
PT
3427
3428 rcu_read_lock();
3429 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3430 throttled_list) {
3431 struct rq *rq = rq_of(cfs_rq);
3432
3433 raw_spin_lock(&rq->lock);
3434 if (!cfs_rq_throttled(cfs_rq))
3435 goto next;
3436
3437 runtime = -cfs_rq->runtime_remaining + 1;
3438 if (runtime > remaining)
3439 runtime = remaining;
3440 remaining -= runtime;
3441
3442 cfs_rq->runtime_remaining += runtime;
3443 cfs_rq->runtime_expires = expires;
3444
3445 /* we check whether we're throttled above */
3446 if (cfs_rq->runtime_remaining > 0)
3447 unthrottle_cfs_rq(cfs_rq);
3448
3449next:
3450 raw_spin_unlock(&rq->lock);
3451
3452 if (!remaining)
3453 break;
3454 }
3455 rcu_read_unlock();
3456
c06f04c7 3457 return starting_runtime - remaining;
671fd9da
PT
3458}
3459
58088ad0
PT
3460/*
3461 * Responsible for refilling a task_group's bandwidth and unthrottling its
3462 * cfs_rqs as appropriate. If there has been no activity within the last
3463 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3464 * used to track this state.
3465 */
3466static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3467{
671fd9da 3468 u64 runtime, runtime_expires;
51f2176d 3469 int throttled;
58088ad0 3470
58088ad0
PT
3471 /* no need to continue the timer with no bandwidth constraint */
3472 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3473 goto out_deactivate;
58088ad0 3474
671fd9da 3475 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3476 cfs_b->nr_periods += overrun;
671fd9da 3477
51f2176d
BS
3478 /*
3479 * idle depends on !throttled (for the case of a large deficit), and if
3480 * we're going inactive then everything else can be deferred
3481 */
3482 if (cfs_b->idle && !throttled)
3483 goto out_deactivate;
a9cf55b2 3484
927b54fc
BS
3485 /*
3486 * if we have relooped after returning idle once, we need to update our
3487 * status as actually running, so that other cpus doing
3488 * __start_cfs_bandwidth will stop trying to cancel us.
3489 */
3490 cfs_b->timer_active = 1;
3491
a9cf55b2
PT
3492 __refill_cfs_bandwidth_runtime(cfs_b);
3493
671fd9da
PT
3494 if (!throttled) {
3495 /* mark as potentially idle for the upcoming period */
3496 cfs_b->idle = 1;
51f2176d 3497 return 0;
671fd9da
PT
3498 }
3499
e8da1b18
NR
3500 /* account preceding periods in which throttling occurred */
3501 cfs_b->nr_throttled += overrun;
3502
671fd9da 3503 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3504
3505 /*
c06f04c7
BS
3506 * This check is repeated as we are holding onto the new bandwidth while
3507 * we unthrottle. This can potentially race with an unthrottled group
3508 * trying to acquire new bandwidth from the global pool. This can result
3509 * in us over-using our runtime if it is all used during this loop, but
3510 * only by limited amounts in that extreme case.
671fd9da 3511 */
c06f04c7
BS
3512 while (throttled && cfs_b->runtime > 0) {
3513 runtime = cfs_b->runtime;
671fd9da
PT
3514 raw_spin_unlock(&cfs_b->lock);
3515 /* we can't nest cfs_b->lock while distributing bandwidth */
3516 runtime = distribute_cfs_runtime(cfs_b, runtime,
3517 runtime_expires);
3518 raw_spin_lock(&cfs_b->lock);
3519
3520 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3521
3522 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3523 }
58088ad0 3524
671fd9da
PT
3525 /*
3526 * While we are ensured activity in the period following an
3527 * unthrottle, this also covers the case in which the new bandwidth is
3528 * insufficient to cover the existing bandwidth deficit. (Forcing the
3529 * timer to remain active while there are any throttled entities.)
3530 */
3531 cfs_b->idle = 0;
58088ad0 3532
51f2176d
BS
3533 return 0;
3534
3535out_deactivate:
3536 cfs_b->timer_active = 0;
3537 return 1;
58088ad0 3538}
d3d9dc33 3539
d8b4986d
PT
3540/* a cfs_rq won't donate quota below this amount */
3541static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3542/* minimum remaining period time to redistribute slack quota */
3543static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3544/* how long we wait to gather additional slack before distributing */
3545static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3546
db06e78c
BS
3547/*
3548 * Are we near the end of the current quota period?
3549 *
3550 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3551 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3552 * migrate_hrtimers, base is never cleared, so we are fine.
3553 */
d8b4986d
PT
3554static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3555{
3556 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3557 u64 remaining;
3558
3559 /* if the call-back is running a quota refresh is already occurring */
3560 if (hrtimer_callback_running(refresh_timer))
3561 return 1;
3562
3563 /* is a quota refresh about to occur? */
3564 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3565 if (remaining < min_expire)
3566 return 1;
3567
3568 return 0;
3569}
3570
3571static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3572{
3573 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3574
3575 /* if there's a quota refresh soon don't bother with slack */
3576 if (runtime_refresh_within(cfs_b, min_left))
3577 return;
3578
3579 start_bandwidth_timer(&cfs_b->slack_timer,
3580 ns_to_ktime(cfs_bandwidth_slack_period));
3581}
3582
3583/* we know any runtime found here is valid as update_curr() precedes return */
3584static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3585{
3586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3587 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3588
3589 if (slack_runtime <= 0)
3590 return;
3591
3592 raw_spin_lock(&cfs_b->lock);
3593 if (cfs_b->quota != RUNTIME_INF &&
3594 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3595 cfs_b->runtime += slack_runtime;
3596
3597 /* we are under rq->lock, defer unthrottling using a timer */
3598 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3599 !list_empty(&cfs_b->throttled_cfs_rq))
3600 start_cfs_slack_bandwidth(cfs_b);
3601 }
3602 raw_spin_unlock(&cfs_b->lock);
3603
3604 /* even if it's not valid for return we don't want to try again */
3605 cfs_rq->runtime_remaining -= slack_runtime;
3606}
3607
3608static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3609{
56f570e5
PT
3610 if (!cfs_bandwidth_used())
3611 return;
3612
fccfdc6f 3613 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3614 return;
3615
3616 __return_cfs_rq_runtime(cfs_rq);
3617}
3618
3619/*
3620 * This is done with a timer (instead of inline with bandwidth return) since
3621 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3622 */
3623static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3624{
3625 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3626 u64 expires;
3627
3628 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3629 raw_spin_lock(&cfs_b->lock);
3630 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3631 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3632 return;
db06e78c 3633 }
d8b4986d 3634
c06f04c7 3635 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3636 runtime = cfs_b->runtime;
c06f04c7 3637
d8b4986d
PT
3638 expires = cfs_b->runtime_expires;
3639 raw_spin_unlock(&cfs_b->lock);
3640
3641 if (!runtime)
3642 return;
3643
3644 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3645
3646 raw_spin_lock(&cfs_b->lock);
3647 if (expires == cfs_b->runtime_expires)
c06f04c7 3648 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3649 raw_spin_unlock(&cfs_b->lock);
3650}
3651
d3d9dc33
PT
3652/*
3653 * When a group wakes up we want to make sure that its quota is not already
3654 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3655 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3656 */
3657static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3658{
56f570e5
PT
3659 if (!cfs_bandwidth_used())
3660 return;
3661
d3d9dc33
PT
3662 /* an active group must be handled by the update_curr()->put() path */
3663 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3664 return;
3665
3666 /* ensure the group is not already throttled */
3667 if (cfs_rq_throttled(cfs_rq))
3668 return;
3669
3670 /* update runtime allocation */
3671 account_cfs_rq_runtime(cfs_rq, 0);
3672 if (cfs_rq->runtime_remaining <= 0)
3673 throttle_cfs_rq(cfs_rq);
3674}
3675
3676/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3677static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3678{
56f570e5 3679 if (!cfs_bandwidth_used())
678d5718 3680 return false;
56f570e5 3681
d3d9dc33 3682 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3683 return false;
d3d9dc33
PT
3684
3685 /*
3686 * it's possible for a throttled entity to be forced into a running
3687 * state (e.g. set_curr_task), in this case we're finished.
3688 */
3689 if (cfs_rq_throttled(cfs_rq))
678d5718 3690 return true;
d3d9dc33
PT
3691
3692 throttle_cfs_rq(cfs_rq);
678d5718 3693 return true;
d3d9dc33 3694}
029632fb 3695
029632fb
PZ
3696static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3697{
3698 struct cfs_bandwidth *cfs_b =
3699 container_of(timer, struct cfs_bandwidth, slack_timer);
3700 do_sched_cfs_slack_timer(cfs_b);
3701
3702 return HRTIMER_NORESTART;
3703}
3704
3705static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3706{
3707 struct cfs_bandwidth *cfs_b =
3708 container_of(timer, struct cfs_bandwidth, period_timer);
3709 ktime_t now;
3710 int overrun;
3711 int idle = 0;
3712
51f2176d 3713 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3714 for (;;) {
3715 now = hrtimer_cb_get_time(timer);
3716 overrun = hrtimer_forward(timer, now, cfs_b->period);
3717
3718 if (!overrun)
3719 break;
3720
3721 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3722 }
51f2176d 3723 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3724
3725 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3726}
3727
3728void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3729{
3730 raw_spin_lock_init(&cfs_b->lock);
3731 cfs_b->runtime = 0;
3732 cfs_b->quota = RUNTIME_INF;
3733 cfs_b->period = ns_to_ktime(default_cfs_period());
3734
3735 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3736 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3737 cfs_b->period_timer.function = sched_cfs_period_timer;
3738 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3739 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3740}
3741
3742static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3743{
3744 cfs_rq->runtime_enabled = 0;
3745 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3746}
3747
3748/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3749void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3750{
3751 /*
3752 * The timer may be active because we're trying to set a new bandwidth
3753 * period or because we're racing with the tear-down path
3754 * (timer_active==0 becomes visible before the hrtimer call-back
3755 * terminates). In either case we ensure that it's re-programmed
3756 */
927b54fc
BS
3757 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3758 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3759 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3760 raw_spin_unlock(&cfs_b->lock);
927b54fc 3761 cpu_relax();
029632fb
PZ
3762 raw_spin_lock(&cfs_b->lock);
3763 /* if someone else restarted the timer then we're done */
09dc4ab0 3764 if (!force && cfs_b->timer_active)
029632fb
PZ
3765 return;
3766 }
3767
3768 cfs_b->timer_active = 1;
3769 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3770}
3771
3772static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3773{
3774 hrtimer_cancel(&cfs_b->period_timer);
3775 hrtimer_cancel(&cfs_b->slack_timer);
3776}
3777
38dc3348 3778static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3779{
3780 struct cfs_rq *cfs_rq;
3781
3782 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3783 if (!cfs_rq->runtime_enabled)
3784 continue;
3785
3786 /*
3787 * clock_task is not advancing so we just need to make sure
3788 * there's some valid quota amount
3789 */
51f2176d 3790 cfs_rq->runtime_remaining = 1;
029632fb
PZ
3791 if (cfs_rq_throttled(cfs_rq))
3792 unthrottle_cfs_rq(cfs_rq);
3793 }
3794}
3795
3796#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3797static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3798{
78becc27 3799 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3800}
3801
9dbdb155 3802static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3803static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3804static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3805static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3806
3807static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3808{
3809 return 0;
3810}
64660c86
PT
3811
3812static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3813{
3814 return 0;
3815}
3816
3817static inline int throttled_lb_pair(struct task_group *tg,
3818 int src_cpu, int dest_cpu)
3819{
3820 return 0;
3821}
029632fb
PZ
3822
3823void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3824
3825#ifdef CONFIG_FAIR_GROUP_SCHED
3826static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3827#endif
3828
029632fb
PZ
3829static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3830{
3831 return NULL;
3832}
3833static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3834static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3835
3836#endif /* CONFIG_CFS_BANDWIDTH */
3837
bf0f6f24
IM
3838/**************************************************
3839 * CFS operations on tasks:
3840 */
3841
8f4d37ec
PZ
3842#ifdef CONFIG_SCHED_HRTICK
3843static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3844{
8f4d37ec
PZ
3845 struct sched_entity *se = &p->se;
3846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3847
3848 WARN_ON(task_rq(p) != rq);
3849
b39e66ea 3850 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3851 u64 slice = sched_slice(cfs_rq, se);
3852 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3853 s64 delta = slice - ran;
3854
3855 if (delta < 0) {
3856 if (rq->curr == p)
3857 resched_task(p);
3858 return;
3859 }
3860
3861 /*
3862 * Don't schedule slices shorter than 10000ns, that just
3863 * doesn't make sense. Rely on vruntime for fairness.
3864 */
31656519 3865 if (rq->curr != p)
157124c1 3866 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3867
31656519 3868 hrtick_start(rq, delta);
8f4d37ec
PZ
3869 }
3870}
a4c2f00f
PZ
3871
3872/*
3873 * called from enqueue/dequeue and updates the hrtick when the
3874 * current task is from our class and nr_running is low enough
3875 * to matter.
3876 */
3877static void hrtick_update(struct rq *rq)
3878{
3879 struct task_struct *curr = rq->curr;
3880
b39e66ea 3881 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3882 return;
3883
3884 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3885 hrtick_start_fair(rq, curr);
3886}
55e12e5e 3887#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3888static inline void
3889hrtick_start_fair(struct rq *rq, struct task_struct *p)
3890{
3891}
a4c2f00f
PZ
3892
3893static inline void hrtick_update(struct rq *rq)
3894{
3895}
8f4d37ec
PZ
3896#endif
3897
bf0f6f24
IM
3898/*
3899 * The enqueue_task method is called before nr_running is
3900 * increased. Here we update the fair scheduling stats and
3901 * then put the task into the rbtree:
3902 */
ea87bb78 3903static void
371fd7e7 3904enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3905{
3906 struct cfs_rq *cfs_rq;
62fb1851 3907 struct sched_entity *se = &p->se;
bf0f6f24
IM
3908
3909 for_each_sched_entity(se) {
62fb1851 3910 if (se->on_rq)
bf0f6f24
IM
3911 break;
3912 cfs_rq = cfs_rq_of(se);
88ec22d3 3913 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3914
3915 /*
3916 * end evaluation on encountering a throttled cfs_rq
3917 *
3918 * note: in the case of encountering a throttled cfs_rq we will
3919 * post the final h_nr_running increment below.
3920 */
3921 if (cfs_rq_throttled(cfs_rq))
3922 break;
953bfcd1 3923 cfs_rq->h_nr_running++;
85dac906 3924
88ec22d3 3925 flags = ENQUEUE_WAKEUP;
bf0f6f24 3926 }
8f4d37ec 3927
2069dd75 3928 for_each_sched_entity(se) {
0f317143 3929 cfs_rq = cfs_rq_of(se);
953bfcd1 3930 cfs_rq->h_nr_running++;
2069dd75 3931
85dac906
PT
3932 if (cfs_rq_throttled(cfs_rq))
3933 break;
3934
17bc14b7 3935 update_cfs_shares(cfs_rq);
9ee474f5 3936 update_entity_load_avg(se, 1);
2069dd75
PZ
3937 }
3938
18bf2805
BS
3939 if (!se) {
3940 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3941 add_nr_running(rq, 1);
18bf2805 3942 }
a4c2f00f 3943 hrtick_update(rq);
bf0f6f24
IM
3944}
3945
2f36825b
VP
3946static void set_next_buddy(struct sched_entity *se);
3947
bf0f6f24
IM
3948/*
3949 * The dequeue_task method is called before nr_running is
3950 * decreased. We remove the task from the rbtree and
3951 * update the fair scheduling stats:
3952 */
371fd7e7 3953static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3954{
3955 struct cfs_rq *cfs_rq;
62fb1851 3956 struct sched_entity *se = &p->se;
2f36825b 3957 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3958
3959 for_each_sched_entity(se) {
3960 cfs_rq = cfs_rq_of(se);
371fd7e7 3961 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3962
3963 /*
3964 * end evaluation on encountering a throttled cfs_rq
3965 *
3966 * note: in the case of encountering a throttled cfs_rq we will
3967 * post the final h_nr_running decrement below.
3968 */
3969 if (cfs_rq_throttled(cfs_rq))
3970 break;
953bfcd1 3971 cfs_rq->h_nr_running--;
2069dd75 3972
bf0f6f24 3973 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3974 if (cfs_rq->load.weight) {
3975 /*
3976 * Bias pick_next to pick a task from this cfs_rq, as
3977 * p is sleeping when it is within its sched_slice.
3978 */
3979 if (task_sleep && parent_entity(se))
3980 set_next_buddy(parent_entity(se));
9598c82d
PT
3981
3982 /* avoid re-evaluating load for this entity */
3983 se = parent_entity(se);
bf0f6f24 3984 break;
2f36825b 3985 }
371fd7e7 3986 flags |= DEQUEUE_SLEEP;
bf0f6f24 3987 }
8f4d37ec 3988
2069dd75 3989 for_each_sched_entity(se) {
0f317143 3990 cfs_rq = cfs_rq_of(se);
953bfcd1 3991 cfs_rq->h_nr_running--;
2069dd75 3992
85dac906
PT
3993 if (cfs_rq_throttled(cfs_rq))
3994 break;
3995
17bc14b7 3996 update_cfs_shares(cfs_rq);
9ee474f5 3997 update_entity_load_avg(se, 1);
2069dd75
PZ
3998 }
3999
18bf2805 4000 if (!se) {
72465447 4001 sub_nr_running(rq, 1);
18bf2805
BS
4002 update_rq_runnable_avg(rq, 1);
4003 }
a4c2f00f 4004 hrtick_update(rq);
bf0f6f24
IM
4005}
4006
e7693a36 4007#ifdef CONFIG_SMP
029632fb
PZ
4008/* Used instead of source_load when we know the type == 0 */
4009static unsigned long weighted_cpuload(const int cpu)
4010{
b92486cb 4011 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4012}
4013
4014/*
4015 * Return a low guess at the load of a migration-source cpu weighted
4016 * according to the scheduling class and "nice" value.
4017 *
4018 * We want to under-estimate the load of migration sources, to
4019 * balance conservatively.
4020 */
4021static unsigned long source_load(int cpu, int type)
4022{
4023 struct rq *rq = cpu_rq(cpu);
4024 unsigned long total = weighted_cpuload(cpu);
4025
4026 if (type == 0 || !sched_feat(LB_BIAS))
4027 return total;
4028
4029 return min(rq->cpu_load[type-1], total);
4030}
4031
4032/*
4033 * Return a high guess at the load of a migration-target cpu weighted
4034 * according to the scheduling class and "nice" value.
4035 */
4036static unsigned long target_load(int cpu, int type)
4037{
4038 struct rq *rq = cpu_rq(cpu);
4039 unsigned long total = weighted_cpuload(cpu);
4040
4041 if (type == 0 || !sched_feat(LB_BIAS))
4042 return total;
4043
4044 return max(rq->cpu_load[type-1], total);
4045}
4046
ced549fa 4047static unsigned long capacity_of(int cpu)
029632fb 4048{
ced549fa 4049 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4050}
4051
4052static unsigned long cpu_avg_load_per_task(int cpu)
4053{
4054 struct rq *rq = cpu_rq(cpu);
4055 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4056 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4057
4058 if (nr_running)
b92486cb 4059 return load_avg / nr_running;
029632fb
PZ
4060
4061 return 0;
4062}
4063
62470419
MW
4064static void record_wakee(struct task_struct *p)
4065{
4066 /*
4067 * Rough decay (wiping) for cost saving, don't worry
4068 * about the boundary, really active task won't care
4069 * about the loss.
4070 */
2538d960 4071 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4072 current->wakee_flips >>= 1;
62470419
MW
4073 current->wakee_flip_decay_ts = jiffies;
4074 }
4075
4076 if (current->last_wakee != p) {
4077 current->last_wakee = p;
4078 current->wakee_flips++;
4079 }
4080}
098fb9db 4081
74f8e4b2 4082static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4083{
4084 struct sched_entity *se = &p->se;
4085 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4086 u64 min_vruntime;
4087
4088#ifndef CONFIG_64BIT
4089 u64 min_vruntime_copy;
88ec22d3 4090
3fe1698b
PZ
4091 do {
4092 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4093 smp_rmb();
4094 min_vruntime = cfs_rq->min_vruntime;
4095 } while (min_vruntime != min_vruntime_copy);
4096#else
4097 min_vruntime = cfs_rq->min_vruntime;
4098#endif
88ec22d3 4099
3fe1698b 4100 se->vruntime -= min_vruntime;
62470419 4101 record_wakee(p);
88ec22d3
PZ
4102}
4103
bb3469ac 4104#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4105/*
4106 * effective_load() calculates the load change as seen from the root_task_group
4107 *
4108 * Adding load to a group doesn't make a group heavier, but can cause movement
4109 * of group shares between cpus. Assuming the shares were perfectly aligned one
4110 * can calculate the shift in shares.
cf5f0acf
PZ
4111 *
4112 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4113 * on this @cpu and results in a total addition (subtraction) of @wg to the
4114 * total group weight.
4115 *
4116 * Given a runqueue weight distribution (rw_i) we can compute a shares
4117 * distribution (s_i) using:
4118 *
4119 * s_i = rw_i / \Sum rw_j (1)
4120 *
4121 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4122 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4123 * shares distribution (s_i):
4124 *
4125 * rw_i = { 2, 4, 1, 0 }
4126 * s_i = { 2/7, 4/7, 1/7, 0 }
4127 *
4128 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4129 * task used to run on and the CPU the waker is running on), we need to
4130 * compute the effect of waking a task on either CPU and, in case of a sync
4131 * wakeup, compute the effect of the current task going to sleep.
4132 *
4133 * So for a change of @wl to the local @cpu with an overall group weight change
4134 * of @wl we can compute the new shares distribution (s'_i) using:
4135 *
4136 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4137 *
4138 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4139 * differences in waking a task to CPU 0. The additional task changes the
4140 * weight and shares distributions like:
4141 *
4142 * rw'_i = { 3, 4, 1, 0 }
4143 * s'_i = { 3/8, 4/8, 1/8, 0 }
4144 *
4145 * We can then compute the difference in effective weight by using:
4146 *
4147 * dw_i = S * (s'_i - s_i) (3)
4148 *
4149 * Where 'S' is the group weight as seen by its parent.
4150 *
4151 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4152 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4153 * 4/7) times the weight of the group.
f5bfb7d9 4154 */
2069dd75 4155static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4156{
4be9daaa 4157 struct sched_entity *se = tg->se[cpu];
f1d239f7 4158
9722c2da 4159 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4160 return wl;
4161
4be9daaa 4162 for_each_sched_entity(se) {
cf5f0acf 4163 long w, W;
4be9daaa 4164
977dda7c 4165 tg = se->my_q->tg;
bb3469ac 4166
cf5f0acf
PZ
4167 /*
4168 * W = @wg + \Sum rw_j
4169 */
4170 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4171
cf5f0acf
PZ
4172 /*
4173 * w = rw_i + @wl
4174 */
4175 w = se->my_q->load.weight + wl;
940959e9 4176
cf5f0acf
PZ
4177 /*
4178 * wl = S * s'_i; see (2)
4179 */
4180 if (W > 0 && w < W)
4181 wl = (w * tg->shares) / W;
977dda7c
PT
4182 else
4183 wl = tg->shares;
940959e9 4184
cf5f0acf
PZ
4185 /*
4186 * Per the above, wl is the new se->load.weight value; since
4187 * those are clipped to [MIN_SHARES, ...) do so now. See
4188 * calc_cfs_shares().
4189 */
977dda7c
PT
4190 if (wl < MIN_SHARES)
4191 wl = MIN_SHARES;
cf5f0acf
PZ
4192
4193 /*
4194 * wl = dw_i = S * (s'_i - s_i); see (3)
4195 */
977dda7c 4196 wl -= se->load.weight;
cf5f0acf
PZ
4197
4198 /*
4199 * Recursively apply this logic to all parent groups to compute
4200 * the final effective load change on the root group. Since
4201 * only the @tg group gets extra weight, all parent groups can
4202 * only redistribute existing shares. @wl is the shift in shares
4203 * resulting from this level per the above.
4204 */
4be9daaa 4205 wg = 0;
4be9daaa 4206 }
bb3469ac 4207
4be9daaa 4208 return wl;
bb3469ac
PZ
4209}
4210#else
4be9daaa 4211
58d081b5 4212static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4213{
83378269 4214 return wl;
bb3469ac 4215}
4be9daaa 4216
bb3469ac
PZ
4217#endif
4218
62470419
MW
4219static int wake_wide(struct task_struct *p)
4220{
7d9ffa89 4221 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4222
4223 /*
4224 * Yeah, it's the switching-frequency, could means many wakee or
4225 * rapidly switch, use factor here will just help to automatically
4226 * adjust the loose-degree, so bigger node will lead to more pull.
4227 */
4228 if (p->wakee_flips > factor) {
4229 /*
4230 * wakee is somewhat hot, it needs certain amount of cpu
4231 * resource, so if waker is far more hot, prefer to leave
4232 * it alone.
4233 */
4234 if (current->wakee_flips > (factor * p->wakee_flips))
4235 return 1;
4236 }
4237
4238 return 0;
4239}
4240
c88d5910 4241static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4242{
e37b6a7b 4243 s64 this_load, load;
c88d5910 4244 int idx, this_cpu, prev_cpu;
098fb9db 4245 unsigned long tl_per_task;
c88d5910 4246 struct task_group *tg;
83378269 4247 unsigned long weight;
b3137bc8 4248 int balanced;
098fb9db 4249
62470419
MW
4250 /*
4251 * If we wake multiple tasks be careful to not bounce
4252 * ourselves around too much.
4253 */
4254 if (wake_wide(p))
4255 return 0;
4256
c88d5910
PZ
4257 idx = sd->wake_idx;
4258 this_cpu = smp_processor_id();
4259 prev_cpu = task_cpu(p);
4260 load = source_load(prev_cpu, idx);
4261 this_load = target_load(this_cpu, idx);
098fb9db 4262
b3137bc8
MG
4263 /*
4264 * If sync wakeup then subtract the (maximum possible)
4265 * effect of the currently running task from the load
4266 * of the current CPU:
4267 */
83378269
PZ
4268 if (sync) {
4269 tg = task_group(current);
4270 weight = current->se.load.weight;
4271
c88d5910 4272 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4273 load += effective_load(tg, prev_cpu, 0, -weight);
4274 }
b3137bc8 4275
83378269
PZ
4276 tg = task_group(p);
4277 weight = p->se.load.weight;
b3137bc8 4278
71a29aa7
PZ
4279 /*
4280 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4281 * due to the sync cause above having dropped this_load to 0, we'll
4282 * always have an imbalance, but there's really nothing you can do
4283 * about that, so that's good too.
71a29aa7
PZ
4284 *
4285 * Otherwise check if either cpus are near enough in load to allow this
4286 * task to be woken on this_cpu.
4287 */
e37b6a7b
PT
4288 if (this_load > 0) {
4289 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4290
4291 this_eff_load = 100;
ced549fa 4292 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4293 this_eff_load *= this_load +
4294 effective_load(tg, this_cpu, weight, weight);
4295
4296 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4297 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4298 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4299
4300 balanced = this_eff_load <= prev_eff_load;
4301 } else
4302 balanced = true;
b3137bc8 4303
098fb9db 4304 /*
4ae7d5ce
IM
4305 * If the currently running task will sleep within
4306 * a reasonable amount of time then attract this newly
4307 * woken task:
098fb9db 4308 */
2fb7635c
PZ
4309 if (sync && balanced)
4310 return 1;
098fb9db 4311
41acab88 4312 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4313 tl_per_task = cpu_avg_load_per_task(this_cpu);
4314
c88d5910
PZ
4315 if (balanced ||
4316 (this_load <= load &&
4317 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4318 /*
4319 * This domain has SD_WAKE_AFFINE and
4320 * p is cache cold in this domain, and
4321 * there is no bad imbalance.
4322 */
c88d5910 4323 schedstat_inc(sd, ttwu_move_affine);
41acab88 4324 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4325
4326 return 1;
4327 }
4328 return 0;
4329}
4330
aaee1203
PZ
4331/*
4332 * find_idlest_group finds and returns the least busy CPU group within the
4333 * domain.
4334 */
4335static struct sched_group *
78e7ed53 4336find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4337 int this_cpu, int sd_flag)
e7693a36 4338{
b3bd3de6 4339 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4340 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4341 int load_idx = sd->forkexec_idx;
aaee1203 4342 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4343
c44f2a02
VG
4344 if (sd_flag & SD_BALANCE_WAKE)
4345 load_idx = sd->wake_idx;
4346
aaee1203
PZ
4347 do {
4348 unsigned long load, avg_load;
4349 int local_group;
4350 int i;
e7693a36 4351
aaee1203
PZ
4352 /* Skip over this group if it has no CPUs allowed */
4353 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4354 tsk_cpus_allowed(p)))
aaee1203
PZ
4355 continue;
4356
4357 local_group = cpumask_test_cpu(this_cpu,
4358 sched_group_cpus(group));
4359
4360 /* Tally up the load of all CPUs in the group */
4361 avg_load = 0;
4362
4363 for_each_cpu(i, sched_group_cpus(group)) {
4364 /* Bias balancing toward cpus of our domain */
4365 if (local_group)
4366 load = source_load(i, load_idx);
4367 else
4368 load = target_load(i, load_idx);
4369
4370 avg_load += load;
4371 }
4372
63b2ca30 4373 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4374 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4375
4376 if (local_group) {
4377 this_load = avg_load;
aaee1203
PZ
4378 } else if (avg_load < min_load) {
4379 min_load = avg_load;
4380 idlest = group;
4381 }
4382 } while (group = group->next, group != sd->groups);
4383
4384 if (!idlest || 100*this_load < imbalance*min_load)
4385 return NULL;
4386 return idlest;
4387}
4388
4389/*
4390 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4391 */
4392static int
4393find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4394{
4395 unsigned long load, min_load = ULONG_MAX;
4396 int idlest = -1;
4397 int i;
4398
4399 /* Traverse only the allowed CPUs */
fa17b507 4400 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4401 load = weighted_cpuload(i);
4402
4403 if (load < min_load || (load == min_load && i == this_cpu)) {
4404 min_load = load;
4405 idlest = i;
e7693a36
GH
4406 }
4407 }
4408
aaee1203
PZ
4409 return idlest;
4410}
e7693a36 4411
a50bde51
PZ
4412/*
4413 * Try and locate an idle CPU in the sched_domain.
4414 */
99bd5e2f 4415static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4416{
99bd5e2f 4417 struct sched_domain *sd;
37407ea7 4418 struct sched_group *sg;
e0a79f52 4419 int i = task_cpu(p);
a50bde51 4420
e0a79f52
MG
4421 if (idle_cpu(target))
4422 return target;
99bd5e2f
SS
4423
4424 /*
e0a79f52 4425 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4426 */
e0a79f52
MG
4427 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4428 return i;
a50bde51
PZ
4429
4430 /*
37407ea7 4431 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4432 */
518cd623 4433 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4434 for_each_lower_domain(sd) {
37407ea7
LT
4435 sg = sd->groups;
4436 do {
4437 if (!cpumask_intersects(sched_group_cpus(sg),
4438 tsk_cpus_allowed(p)))
4439 goto next;
4440
4441 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4442 if (i == target || !idle_cpu(i))
37407ea7
LT
4443 goto next;
4444 }
970e1789 4445
37407ea7
LT
4446 target = cpumask_first_and(sched_group_cpus(sg),
4447 tsk_cpus_allowed(p));
4448 goto done;
4449next:
4450 sg = sg->next;
4451 } while (sg != sd->groups);
4452 }
4453done:
a50bde51
PZ
4454 return target;
4455}
4456
aaee1203 4457/*
de91b9cb
MR
4458 * select_task_rq_fair: Select target runqueue for the waking task in domains
4459 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4460 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4461 *
de91b9cb
MR
4462 * Balances load by selecting the idlest cpu in the idlest group, or under
4463 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4464 *
de91b9cb 4465 * Returns the target cpu number.
aaee1203
PZ
4466 *
4467 * preempt must be disabled.
4468 */
0017d735 4469static int
ac66f547 4470select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4471{
29cd8bae 4472 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4473 int cpu = smp_processor_id();
c88d5910 4474 int new_cpu = cpu;
99bd5e2f 4475 int want_affine = 0;
5158f4e4 4476 int sync = wake_flags & WF_SYNC;
c88d5910 4477
29baa747 4478 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4479 return prev_cpu;
4480
0763a660 4481 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4482 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4483 want_affine = 1;
4484 new_cpu = prev_cpu;
4485 }
aaee1203 4486
dce840a0 4487 rcu_read_lock();
aaee1203 4488 for_each_domain(cpu, tmp) {
e4f42888
PZ
4489 if (!(tmp->flags & SD_LOAD_BALANCE))
4490 continue;
4491
fe3bcfe1 4492 /*
99bd5e2f
SS
4493 * If both cpu and prev_cpu are part of this domain,
4494 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4495 */
99bd5e2f
SS
4496 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4497 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4498 affine_sd = tmp;
29cd8bae 4499 break;
f03542a7 4500 }
29cd8bae 4501
f03542a7 4502 if (tmp->flags & sd_flag)
29cd8bae
PZ
4503 sd = tmp;
4504 }
4505
8bf21433
RR
4506 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4507 prev_cpu = cpu;
dce840a0 4508
8bf21433 4509 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4510 new_cpu = select_idle_sibling(p, prev_cpu);
4511 goto unlock;
8b911acd 4512 }
e7693a36 4513
aaee1203
PZ
4514 while (sd) {
4515 struct sched_group *group;
c88d5910 4516 int weight;
098fb9db 4517
0763a660 4518 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4519 sd = sd->child;
4520 continue;
4521 }
098fb9db 4522
c44f2a02 4523 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4524 if (!group) {
4525 sd = sd->child;
4526 continue;
4527 }
4ae7d5ce 4528
d7c33c49 4529 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4530 if (new_cpu == -1 || new_cpu == cpu) {
4531 /* Now try balancing at a lower domain level of cpu */
4532 sd = sd->child;
4533 continue;
e7693a36 4534 }
aaee1203
PZ
4535
4536 /* Now try balancing at a lower domain level of new_cpu */
4537 cpu = new_cpu;
669c55e9 4538 weight = sd->span_weight;
aaee1203
PZ
4539 sd = NULL;
4540 for_each_domain(cpu, tmp) {
669c55e9 4541 if (weight <= tmp->span_weight)
aaee1203 4542 break;
0763a660 4543 if (tmp->flags & sd_flag)
aaee1203
PZ
4544 sd = tmp;
4545 }
4546 /* while loop will break here if sd == NULL */
e7693a36 4547 }
dce840a0
PZ
4548unlock:
4549 rcu_read_unlock();
e7693a36 4550
c88d5910 4551 return new_cpu;
e7693a36 4552}
0a74bef8
PT
4553
4554/*
4555 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4556 * cfs_rq_of(p) references at time of call are still valid and identify the
4557 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4558 * other assumptions, including the state of rq->lock, should be made.
4559 */
4560static void
4561migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4562{
aff3e498
PT
4563 struct sched_entity *se = &p->se;
4564 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4565
4566 /*
4567 * Load tracking: accumulate removed load so that it can be processed
4568 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4569 * to blocked load iff they have a positive decay-count. It can never
4570 * be negative here since on-rq tasks have decay-count == 0.
4571 */
4572 if (se->avg.decay_count) {
4573 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4574 atomic_long_add(se->avg.load_avg_contrib,
4575 &cfs_rq->removed_load);
aff3e498 4576 }
3944a927
BS
4577
4578 /* We have migrated, no longer consider this task hot */
4579 se->exec_start = 0;
0a74bef8 4580}
e7693a36
GH
4581#endif /* CONFIG_SMP */
4582
e52fb7c0
PZ
4583static unsigned long
4584wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4585{
4586 unsigned long gran = sysctl_sched_wakeup_granularity;
4587
4588 /*
e52fb7c0
PZ
4589 * Since its curr running now, convert the gran from real-time
4590 * to virtual-time in his units.
13814d42
MG
4591 *
4592 * By using 'se' instead of 'curr' we penalize light tasks, so
4593 * they get preempted easier. That is, if 'se' < 'curr' then
4594 * the resulting gran will be larger, therefore penalizing the
4595 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4596 * be smaller, again penalizing the lighter task.
4597 *
4598 * This is especially important for buddies when the leftmost
4599 * task is higher priority than the buddy.
0bbd3336 4600 */
f4ad9bd2 4601 return calc_delta_fair(gran, se);
0bbd3336
PZ
4602}
4603
464b7527
PZ
4604/*
4605 * Should 'se' preempt 'curr'.
4606 *
4607 * |s1
4608 * |s2
4609 * |s3
4610 * g
4611 * |<--->|c
4612 *
4613 * w(c, s1) = -1
4614 * w(c, s2) = 0
4615 * w(c, s3) = 1
4616 *
4617 */
4618static int
4619wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4620{
4621 s64 gran, vdiff = curr->vruntime - se->vruntime;
4622
4623 if (vdiff <= 0)
4624 return -1;
4625
e52fb7c0 4626 gran = wakeup_gran(curr, se);
464b7527
PZ
4627 if (vdiff > gran)
4628 return 1;
4629
4630 return 0;
4631}
4632
02479099
PZ
4633static void set_last_buddy(struct sched_entity *se)
4634{
69c80f3e
VP
4635 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4636 return;
4637
4638 for_each_sched_entity(se)
4639 cfs_rq_of(se)->last = se;
02479099
PZ
4640}
4641
4642static void set_next_buddy(struct sched_entity *se)
4643{
69c80f3e
VP
4644 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4645 return;
4646
4647 for_each_sched_entity(se)
4648 cfs_rq_of(se)->next = se;
02479099
PZ
4649}
4650
ac53db59
RR
4651static void set_skip_buddy(struct sched_entity *se)
4652{
69c80f3e
VP
4653 for_each_sched_entity(se)
4654 cfs_rq_of(se)->skip = se;
ac53db59
RR
4655}
4656
bf0f6f24
IM
4657/*
4658 * Preempt the current task with a newly woken task if needed:
4659 */
5a9b86f6 4660static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4661{
4662 struct task_struct *curr = rq->curr;
8651a86c 4663 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4664 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4665 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4666 int next_buddy_marked = 0;
bf0f6f24 4667
4ae7d5ce
IM
4668 if (unlikely(se == pse))
4669 return;
4670
5238cdd3 4671 /*
ddcdf6e7 4672 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4673 * unconditionally check_prempt_curr() after an enqueue (which may have
4674 * lead to a throttle). This both saves work and prevents false
4675 * next-buddy nomination below.
4676 */
4677 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4678 return;
4679
2f36825b 4680 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4681 set_next_buddy(pse);
2f36825b
VP
4682 next_buddy_marked = 1;
4683 }
57fdc26d 4684
aec0a514
BR
4685 /*
4686 * We can come here with TIF_NEED_RESCHED already set from new task
4687 * wake up path.
5238cdd3
PT
4688 *
4689 * Note: this also catches the edge-case of curr being in a throttled
4690 * group (e.g. via set_curr_task), since update_curr() (in the
4691 * enqueue of curr) will have resulted in resched being set. This
4692 * prevents us from potentially nominating it as a false LAST_BUDDY
4693 * below.
aec0a514
BR
4694 */
4695 if (test_tsk_need_resched(curr))
4696 return;
4697
a2f5c9ab
DH
4698 /* Idle tasks are by definition preempted by non-idle tasks. */
4699 if (unlikely(curr->policy == SCHED_IDLE) &&
4700 likely(p->policy != SCHED_IDLE))
4701 goto preempt;
4702
91c234b4 4703 /*
a2f5c9ab
DH
4704 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4705 * is driven by the tick):
91c234b4 4706 */
8ed92e51 4707 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4708 return;
bf0f6f24 4709
464b7527 4710 find_matching_se(&se, &pse);
9bbd7374 4711 update_curr(cfs_rq_of(se));
002f128b 4712 BUG_ON(!pse);
2f36825b
VP
4713 if (wakeup_preempt_entity(se, pse) == 1) {
4714 /*
4715 * Bias pick_next to pick the sched entity that is
4716 * triggering this preemption.
4717 */
4718 if (!next_buddy_marked)
4719 set_next_buddy(pse);
3a7e73a2 4720 goto preempt;
2f36825b 4721 }
464b7527 4722
3a7e73a2 4723 return;
a65ac745 4724
3a7e73a2
PZ
4725preempt:
4726 resched_task(curr);
4727 /*
4728 * Only set the backward buddy when the current task is still
4729 * on the rq. This can happen when a wakeup gets interleaved
4730 * with schedule on the ->pre_schedule() or idle_balance()
4731 * point, either of which can * drop the rq lock.
4732 *
4733 * Also, during early boot the idle thread is in the fair class,
4734 * for obvious reasons its a bad idea to schedule back to it.
4735 */
4736 if (unlikely(!se->on_rq || curr == rq->idle))
4737 return;
4738
4739 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4740 set_last_buddy(se);
bf0f6f24
IM
4741}
4742
606dba2e
PZ
4743static struct task_struct *
4744pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4745{
4746 struct cfs_rq *cfs_rq = &rq->cfs;
4747 struct sched_entity *se;
678d5718 4748 struct task_struct *p;
37e117c0 4749 int new_tasks;
678d5718 4750
6e83125c 4751again:
678d5718
PZ
4752#ifdef CONFIG_FAIR_GROUP_SCHED
4753 if (!cfs_rq->nr_running)
38033c37 4754 goto idle;
678d5718 4755
3f1d2a31 4756 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4757 goto simple;
4758
4759 /*
4760 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4761 * likely that a next task is from the same cgroup as the current.
4762 *
4763 * Therefore attempt to avoid putting and setting the entire cgroup
4764 * hierarchy, only change the part that actually changes.
4765 */
4766
4767 do {
4768 struct sched_entity *curr = cfs_rq->curr;
4769
4770 /*
4771 * Since we got here without doing put_prev_entity() we also
4772 * have to consider cfs_rq->curr. If it is still a runnable
4773 * entity, update_curr() will update its vruntime, otherwise
4774 * forget we've ever seen it.
4775 */
4776 if (curr && curr->on_rq)
4777 update_curr(cfs_rq);
4778 else
4779 curr = NULL;
4780
4781 /*
4782 * This call to check_cfs_rq_runtime() will do the throttle and
4783 * dequeue its entity in the parent(s). Therefore the 'simple'
4784 * nr_running test will indeed be correct.
4785 */
4786 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4787 goto simple;
4788
4789 se = pick_next_entity(cfs_rq, curr);
4790 cfs_rq = group_cfs_rq(se);
4791 } while (cfs_rq);
4792
4793 p = task_of(se);
4794
4795 /*
4796 * Since we haven't yet done put_prev_entity and if the selected task
4797 * is a different task than we started out with, try and touch the
4798 * least amount of cfs_rqs.
4799 */
4800 if (prev != p) {
4801 struct sched_entity *pse = &prev->se;
4802
4803 while (!(cfs_rq = is_same_group(se, pse))) {
4804 int se_depth = se->depth;
4805 int pse_depth = pse->depth;
4806
4807 if (se_depth <= pse_depth) {
4808 put_prev_entity(cfs_rq_of(pse), pse);
4809 pse = parent_entity(pse);
4810 }
4811 if (se_depth >= pse_depth) {
4812 set_next_entity(cfs_rq_of(se), se);
4813 se = parent_entity(se);
4814 }
4815 }
4816
4817 put_prev_entity(cfs_rq, pse);
4818 set_next_entity(cfs_rq, se);
4819 }
4820
4821 if (hrtick_enabled(rq))
4822 hrtick_start_fair(rq, p);
4823
4824 return p;
4825simple:
4826 cfs_rq = &rq->cfs;
4827#endif
bf0f6f24 4828
36ace27e 4829 if (!cfs_rq->nr_running)
38033c37 4830 goto idle;
bf0f6f24 4831
3f1d2a31 4832 put_prev_task(rq, prev);
606dba2e 4833
bf0f6f24 4834 do {
678d5718 4835 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4836 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4837 cfs_rq = group_cfs_rq(se);
4838 } while (cfs_rq);
4839
8f4d37ec 4840 p = task_of(se);
678d5718 4841
b39e66ea
MG
4842 if (hrtick_enabled(rq))
4843 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4844
4845 return p;
38033c37
PZ
4846
4847idle:
e4aa358b 4848 new_tasks = idle_balance(rq);
37e117c0
PZ
4849 /*
4850 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4851 * possible for any higher priority task to appear. In that case we
4852 * must re-start the pick_next_entity() loop.
4853 */
e4aa358b 4854 if (new_tasks < 0)
37e117c0
PZ
4855 return RETRY_TASK;
4856
e4aa358b 4857 if (new_tasks > 0)
38033c37 4858 goto again;
38033c37
PZ
4859
4860 return NULL;
bf0f6f24
IM
4861}
4862
4863/*
4864 * Account for a descheduled task:
4865 */
31ee529c 4866static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4867{
4868 struct sched_entity *se = &prev->se;
4869 struct cfs_rq *cfs_rq;
4870
4871 for_each_sched_entity(se) {
4872 cfs_rq = cfs_rq_of(se);
ab6cde26 4873 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4874 }
4875}
4876
ac53db59
RR
4877/*
4878 * sched_yield() is very simple
4879 *
4880 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4881 */
4882static void yield_task_fair(struct rq *rq)
4883{
4884 struct task_struct *curr = rq->curr;
4885 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4886 struct sched_entity *se = &curr->se;
4887
4888 /*
4889 * Are we the only task in the tree?
4890 */
4891 if (unlikely(rq->nr_running == 1))
4892 return;
4893
4894 clear_buddies(cfs_rq, se);
4895
4896 if (curr->policy != SCHED_BATCH) {
4897 update_rq_clock(rq);
4898 /*
4899 * Update run-time statistics of the 'current'.
4900 */
4901 update_curr(cfs_rq);
916671c0
MG
4902 /*
4903 * Tell update_rq_clock() that we've just updated,
4904 * so we don't do microscopic update in schedule()
4905 * and double the fastpath cost.
4906 */
4907 rq->skip_clock_update = 1;
ac53db59
RR
4908 }
4909
4910 set_skip_buddy(se);
4911}
4912
d95f4122
MG
4913static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4914{
4915 struct sched_entity *se = &p->se;
4916
5238cdd3
PT
4917 /* throttled hierarchies are not runnable */
4918 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4919 return false;
4920
4921 /* Tell the scheduler that we'd really like pse to run next. */
4922 set_next_buddy(se);
4923
d95f4122
MG
4924 yield_task_fair(rq);
4925
4926 return true;
4927}
4928
681f3e68 4929#ifdef CONFIG_SMP
bf0f6f24 4930/**************************************************
e9c84cb8
PZ
4931 * Fair scheduling class load-balancing methods.
4932 *
4933 * BASICS
4934 *
4935 * The purpose of load-balancing is to achieve the same basic fairness the
4936 * per-cpu scheduler provides, namely provide a proportional amount of compute
4937 * time to each task. This is expressed in the following equation:
4938 *
4939 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4940 *
4941 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4942 * W_i,0 is defined as:
4943 *
4944 * W_i,0 = \Sum_j w_i,j (2)
4945 *
4946 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4947 * is derived from the nice value as per prio_to_weight[].
4948 *
4949 * The weight average is an exponential decay average of the instantaneous
4950 * weight:
4951 *
4952 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4953 *
ced549fa 4954 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4955 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4956 * can also include other factors [XXX].
4957 *
4958 * To achieve this balance we define a measure of imbalance which follows
4959 * directly from (1):
4960 *
ced549fa 4961 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4962 *
4963 * We them move tasks around to minimize the imbalance. In the continuous
4964 * function space it is obvious this converges, in the discrete case we get
4965 * a few fun cases generally called infeasible weight scenarios.
4966 *
4967 * [XXX expand on:
4968 * - infeasible weights;
4969 * - local vs global optima in the discrete case. ]
4970 *
4971 *
4972 * SCHED DOMAINS
4973 *
4974 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4975 * for all i,j solution, we create a tree of cpus that follows the hardware
4976 * topology where each level pairs two lower groups (or better). This results
4977 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4978 * tree to only the first of the previous level and we decrease the frequency
4979 * of load-balance at each level inv. proportional to the number of cpus in
4980 * the groups.
4981 *
4982 * This yields:
4983 *
4984 * log_2 n 1 n
4985 * \Sum { --- * --- * 2^i } = O(n) (5)
4986 * i = 0 2^i 2^i
4987 * `- size of each group
4988 * | | `- number of cpus doing load-balance
4989 * | `- freq
4990 * `- sum over all levels
4991 *
4992 * Coupled with a limit on how many tasks we can migrate every balance pass,
4993 * this makes (5) the runtime complexity of the balancer.
4994 *
4995 * An important property here is that each CPU is still (indirectly) connected
4996 * to every other cpu in at most O(log n) steps:
4997 *
4998 * The adjacency matrix of the resulting graph is given by:
4999 *
5000 * log_2 n
5001 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5002 * k = 0
5003 *
5004 * And you'll find that:
5005 *
5006 * A^(log_2 n)_i,j != 0 for all i,j (7)
5007 *
5008 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5009 * The task movement gives a factor of O(m), giving a convergence complexity
5010 * of:
5011 *
5012 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5013 *
5014 *
5015 * WORK CONSERVING
5016 *
5017 * In order to avoid CPUs going idle while there's still work to do, new idle
5018 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5019 * tree itself instead of relying on other CPUs to bring it work.
5020 *
5021 * This adds some complexity to both (5) and (8) but it reduces the total idle
5022 * time.
5023 *
5024 * [XXX more?]
5025 *
5026 *
5027 * CGROUPS
5028 *
5029 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5030 *
5031 * s_k,i
5032 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5033 * S_k
5034 *
5035 * Where
5036 *
5037 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5038 *
5039 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5040 *
5041 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5042 * property.
5043 *
5044 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5045 * rewrite all of this once again.]
5046 */
bf0f6f24 5047
ed387b78
HS
5048static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5049
0ec8aa00
PZ
5050enum fbq_type { regular, remote, all };
5051
ddcdf6e7 5052#define LBF_ALL_PINNED 0x01
367456c7 5053#define LBF_NEED_BREAK 0x02
6263322c
PZ
5054#define LBF_DST_PINNED 0x04
5055#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5056
5057struct lb_env {
5058 struct sched_domain *sd;
5059
ddcdf6e7 5060 struct rq *src_rq;
85c1e7da 5061 int src_cpu;
ddcdf6e7
PZ
5062
5063 int dst_cpu;
5064 struct rq *dst_rq;
5065
88b8dac0
SV
5066 struct cpumask *dst_grpmask;
5067 int new_dst_cpu;
ddcdf6e7 5068 enum cpu_idle_type idle;
bd939f45 5069 long imbalance;
b9403130
MW
5070 /* The set of CPUs under consideration for load-balancing */
5071 struct cpumask *cpus;
5072
ddcdf6e7 5073 unsigned int flags;
367456c7
PZ
5074
5075 unsigned int loop;
5076 unsigned int loop_break;
5077 unsigned int loop_max;
0ec8aa00
PZ
5078
5079 enum fbq_type fbq_type;
ddcdf6e7
PZ
5080};
5081
1e3c88bd 5082/*
ddcdf6e7 5083 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5084 * Both runqueues must be locked.
5085 */
ddcdf6e7 5086static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5087{
ddcdf6e7
PZ
5088 deactivate_task(env->src_rq, p, 0);
5089 set_task_cpu(p, env->dst_cpu);
5090 activate_task(env->dst_rq, p, 0);
5091 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5092}
5093
029632fb
PZ
5094/*
5095 * Is this task likely cache-hot:
5096 */
5d5e2b1b 5097static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5098{
5099 s64 delta;
5100
5101 if (p->sched_class != &fair_sched_class)
5102 return 0;
5103
5104 if (unlikely(p->policy == SCHED_IDLE))
5105 return 0;
5106
5107 /*
5108 * Buddy candidates are cache hot:
5109 */
5d5e2b1b 5110 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5111 (&p->se == cfs_rq_of(&p->se)->next ||
5112 &p->se == cfs_rq_of(&p->se)->last))
5113 return 1;
5114
5115 if (sysctl_sched_migration_cost == -1)
5116 return 1;
5117 if (sysctl_sched_migration_cost == 0)
5118 return 0;
5119
5d5e2b1b 5120 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5121
5122 return delta < (s64)sysctl_sched_migration_cost;
5123}
5124
3a7053b3
MG
5125#ifdef CONFIG_NUMA_BALANCING
5126/* Returns true if the destination node has incurred more faults */
5127static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5128{
b1ad065e 5129 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5130 int src_nid, dst_nid;
5131
ff1df896 5132 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5133 !(env->sd->flags & SD_NUMA)) {
5134 return false;
5135 }
5136
5137 src_nid = cpu_to_node(env->src_cpu);
5138 dst_nid = cpu_to_node(env->dst_cpu);
5139
83e1d2cd 5140 if (src_nid == dst_nid)
3a7053b3
MG
5141 return false;
5142
b1ad065e
RR
5143 if (numa_group) {
5144 /* Task is already in the group's interleave set. */
5145 if (node_isset(src_nid, numa_group->active_nodes))
5146 return false;
83e1d2cd 5147
b1ad065e
RR
5148 /* Task is moving into the group's interleave set. */
5149 if (node_isset(dst_nid, numa_group->active_nodes))
5150 return true;
83e1d2cd 5151
b1ad065e
RR
5152 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5153 }
5154
5155 /* Encourage migration to the preferred node. */
5156 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5157 return true;
5158
b1ad065e 5159 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5160}
7a0f3083
MG
5161
5162
5163static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5164{
b1ad065e 5165 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5166 int src_nid, dst_nid;
5167
5168 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5169 return false;
5170
ff1df896 5171 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5172 return false;
5173
5174 src_nid = cpu_to_node(env->src_cpu);
5175 dst_nid = cpu_to_node(env->dst_cpu);
5176
83e1d2cd 5177 if (src_nid == dst_nid)
7a0f3083
MG
5178 return false;
5179
b1ad065e
RR
5180 if (numa_group) {
5181 /* Task is moving within/into the group's interleave set. */
5182 if (node_isset(dst_nid, numa_group->active_nodes))
5183 return false;
5184
5185 /* Task is moving out of the group's interleave set. */
5186 if (node_isset(src_nid, numa_group->active_nodes))
5187 return true;
5188
5189 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5190 }
5191
83e1d2cd
MG
5192 /* Migrating away from the preferred node is always bad. */
5193 if (src_nid == p->numa_preferred_nid)
5194 return true;
5195
b1ad065e 5196 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5197}
5198
3a7053b3
MG
5199#else
5200static inline bool migrate_improves_locality(struct task_struct *p,
5201 struct lb_env *env)
5202{
5203 return false;
5204}
7a0f3083
MG
5205
5206static inline bool migrate_degrades_locality(struct task_struct *p,
5207 struct lb_env *env)
5208{
5209 return false;
5210}
3a7053b3
MG
5211#endif
5212
1e3c88bd
PZ
5213/*
5214 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5215 */
5216static
8e45cb54 5217int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5218{
5219 int tsk_cache_hot = 0;
5220 /*
5221 * We do not migrate tasks that are:
d3198084 5222 * 1) throttled_lb_pair, or
1e3c88bd 5223 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5224 * 3) running (obviously), or
5225 * 4) are cache-hot on their current CPU.
1e3c88bd 5226 */
d3198084
JK
5227 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5228 return 0;
5229
ddcdf6e7 5230 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5231 int cpu;
88b8dac0 5232
41acab88 5233 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5234
6263322c
PZ
5235 env->flags |= LBF_SOME_PINNED;
5236
88b8dac0
SV
5237 /*
5238 * Remember if this task can be migrated to any other cpu in
5239 * our sched_group. We may want to revisit it if we couldn't
5240 * meet load balance goals by pulling other tasks on src_cpu.
5241 *
5242 * Also avoid computing new_dst_cpu if we have already computed
5243 * one in current iteration.
5244 */
6263322c 5245 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5246 return 0;
5247
e02e60c1
JK
5248 /* Prevent to re-select dst_cpu via env's cpus */
5249 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5250 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5251 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5252 env->new_dst_cpu = cpu;
5253 break;
5254 }
88b8dac0 5255 }
e02e60c1 5256
1e3c88bd
PZ
5257 return 0;
5258 }
88b8dac0
SV
5259
5260 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5261 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5262
ddcdf6e7 5263 if (task_running(env->src_rq, p)) {
41acab88 5264 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5265 return 0;
5266 }
5267
5268 /*
5269 * Aggressive migration if:
3a7053b3
MG
5270 * 1) destination numa is preferred
5271 * 2) task is cache cold, or
5272 * 3) too many balance attempts have failed.
1e3c88bd 5273 */
5d5e2b1b 5274 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5275 if (!tsk_cache_hot)
5276 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5277
5278 if (migrate_improves_locality(p, env)) {
5279#ifdef CONFIG_SCHEDSTATS
5280 if (tsk_cache_hot) {
5281 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5282 schedstat_inc(p, se.statistics.nr_forced_migrations);
5283 }
5284#endif
5285 return 1;
5286 }
5287
1e3c88bd 5288 if (!tsk_cache_hot ||
8e45cb54 5289 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5290
1e3c88bd 5291 if (tsk_cache_hot) {
8e45cb54 5292 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5293 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5294 }
4e2dcb73 5295
1e3c88bd
PZ
5296 return 1;
5297 }
5298
4e2dcb73
ZH
5299 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5300 return 0;
1e3c88bd
PZ
5301}
5302
897c395f
PZ
5303/*
5304 * move_one_task tries to move exactly one task from busiest to this_rq, as
5305 * part of active balancing operations within "domain".
5306 * Returns 1 if successful and 0 otherwise.
5307 *
5308 * Called with both runqueues locked.
5309 */
8e45cb54 5310static int move_one_task(struct lb_env *env)
897c395f
PZ
5311{
5312 struct task_struct *p, *n;
897c395f 5313
367456c7 5314 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5315 if (!can_migrate_task(p, env))
5316 continue;
897c395f 5317
367456c7
PZ
5318 move_task(p, env);
5319 /*
5320 * Right now, this is only the second place move_task()
5321 * is called, so we can safely collect move_task()
5322 * stats here rather than inside move_task().
5323 */
5324 schedstat_inc(env->sd, lb_gained[env->idle]);
5325 return 1;
897c395f 5326 }
897c395f
PZ
5327 return 0;
5328}
5329
eb95308e
PZ
5330static const unsigned int sched_nr_migrate_break = 32;
5331
5d6523eb 5332/*
bd939f45 5333 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5334 * this_rq, as part of a balancing operation within domain "sd".
5335 * Returns 1 if successful and 0 otherwise.
5336 *
5337 * Called with both runqueues locked.
5338 */
5339static int move_tasks(struct lb_env *env)
1e3c88bd 5340{
5d6523eb
PZ
5341 struct list_head *tasks = &env->src_rq->cfs_tasks;
5342 struct task_struct *p;
367456c7
PZ
5343 unsigned long load;
5344 int pulled = 0;
1e3c88bd 5345
bd939f45 5346 if (env->imbalance <= 0)
5d6523eb 5347 return 0;
1e3c88bd 5348
5d6523eb
PZ
5349 while (!list_empty(tasks)) {
5350 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5351
367456c7
PZ
5352 env->loop++;
5353 /* We've more or less seen every task there is, call it quits */
5d6523eb 5354 if (env->loop > env->loop_max)
367456c7 5355 break;
5d6523eb
PZ
5356
5357 /* take a breather every nr_migrate tasks */
367456c7 5358 if (env->loop > env->loop_break) {
eb95308e 5359 env->loop_break += sched_nr_migrate_break;
8e45cb54 5360 env->flags |= LBF_NEED_BREAK;
ee00e66f 5361 break;
a195f004 5362 }
1e3c88bd 5363
d3198084 5364 if (!can_migrate_task(p, env))
367456c7
PZ
5365 goto next;
5366
5367 load = task_h_load(p);
5d6523eb 5368
eb95308e 5369 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5370 goto next;
5371
bd939f45 5372 if ((load / 2) > env->imbalance)
367456c7 5373 goto next;
1e3c88bd 5374
ddcdf6e7 5375 move_task(p, env);
ee00e66f 5376 pulled++;
bd939f45 5377 env->imbalance -= load;
1e3c88bd
PZ
5378
5379#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5380 /*
5381 * NEWIDLE balancing is a source of latency, so preemptible
5382 * kernels will stop after the first task is pulled to minimize
5383 * the critical section.
5384 */
5d6523eb 5385 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5386 break;
1e3c88bd
PZ
5387#endif
5388
ee00e66f
PZ
5389 /*
5390 * We only want to steal up to the prescribed amount of
5391 * weighted load.
5392 */
bd939f45 5393 if (env->imbalance <= 0)
ee00e66f 5394 break;
367456c7
PZ
5395
5396 continue;
5397next:
5d6523eb 5398 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5399 }
5d6523eb 5400
1e3c88bd 5401 /*
ddcdf6e7
PZ
5402 * Right now, this is one of only two places move_task() is called,
5403 * so we can safely collect move_task() stats here rather than
5404 * inside move_task().
1e3c88bd 5405 */
8e45cb54 5406 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5407
5d6523eb 5408 return pulled;
1e3c88bd
PZ
5409}
5410
230059de 5411#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5412/*
5413 * update tg->load_weight by folding this cpu's load_avg
5414 */
48a16753 5415static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5416{
48a16753
PT
5417 struct sched_entity *se = tg->se[cpu];
5418 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5419
48a16753
PT
5420 /* throttled entities do not contribute to load */
5421 if (throttled_hierarchy(cfs_rq))
5422 return;
9e3081ca 5423
aff3e498 5424 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5425
82958366
PT
5426 if (se) {
5427 update_entity_load_avg(se, 1);
5428 /*
5429 * We pivot on our runnable average having decayed to zero for
5430 * list removal. This generally implies that all our children
5431 * have also been removed (modulo rounding error or bandwidth
5432 * control); however, such cases are rare and we can fix these
5433 * at enqueue.
5434 *
5435 * TODO: fix up out-of-order children on enqueue.
5436 */
5437 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5438 list_del_leaf_cfs_rq(cfs_rq);
5439 } else {
48a16753 5440 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5441 update_rq_runnable_avg(rq, rq->nr_running);
5442 }
9e3081ca
PZ
5443}
5444
48a16753 5445static void update_blocked_averages(int cpu)
9e3081ca 5446{
9e3081ca 5447 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5448 struct cfs_rq *cfs_rq;
5449 unsigned long flags;
9e3081ca 5450
48a16753
PT
5451 raw_spin_lock_irqsave(&rq->lock, flags);
5452 update_rq_clock(rq);
9763b67f
PZ
5453 /*
5454 * Iterates the task_group tree in a bottom up fashion, see
5455 * list_add_leaf_cfs_rq() for details.
5456 */
64660c86 5457 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5458 /*
5459 * Note: We may want to consider periodically releasing
5460 * rq->lock about these updates so that creating many task
5461 * groups does not result in continually extending hold time.
5462 */
5463 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5464 }
48a16753
PT
5465
5466 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5467}
5468
9763b67f 5469/*
68520796 5470 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5471 * This needs to be done in a top-down fashion because the load of a child
5472 * group is a fraction of its parents load.
5473 */
68520796 5474static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5475{
68520796
VD
5476 struct rq *rq = rq_of(cfs_rq);
5477 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5478 unsigned long now = jiffies;
68520796 5479 unsigned long load;
a35b6466 5480
68520796 5481 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5482 return;
5483
68520796
VD
5484 cfs_rq->h_load_next = NULL;
5485 for_each_sched_entity(se) {
5486 cfs_rq = cfs_rq_of(se);
5487 cfs_rq->h_load_next = se;
5488 if (cfs_rq->last_h_load_update == now)
5489 break;
5490 }
a35b6466 5491
68520796 5492 if (!se) {
7e3115ef 5493 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5494 cfs_rq->last_h_load_update = now;
5495 }
5496
5497 while ((se = cfs_rq->h_load_next) != NULL) {
5498 load = cfs_rq->h_load;
5499 load = div64_ul(load * se->avg.load_avg_contrib,
5500 cfs_rq->runnable_load_avg + 1);
5501 cfs_rq = group_cfs_rq(se);
5502 cfs_rq->h_load = load;
5503 cfs_rq->last_h_load_update = now;
5504 }
9763b67f
PZ
5505}
5506
367456c7 5507static unsigned long task_h_load(struct task_struct *p)
230059de 5508{
367456c7 5509 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5510
68520796 5511 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5512 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5513 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5514}
5515#else
48a16753 5516static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5517{
5518}
5519
367456c7 5520static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5521{
a003a25b 5522 return p->se.avg.load_avg_contrib;
1e3c88bd 5523}
230059de 5524#endif
1e3c88bd 5525
1e3c88bd 5526/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5527/*
5528 * sg_lb_stats - stats of a sched_group required for load_balancing
5529 */
5530struct sg_lb_stats {
5531 unsigned long avg_load; /*Avg load across the CPUs of the group */
5532 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5533 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5534 unsigned long load_per_task;
63b2ca30 5535 unsigned long group_capacity;
147c5fc2 5536 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5537 unsigned int group_capacity_factor;
147c5fc2
PZ
5538 unsigned int idle_cpus;
5539 unsigned int group_weight;
1e3c88bd 5540 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5541 int group_has_free_capacity;
0ec8aa00
PZ
5542#ifdef CONFIG_NUMA_BALANCING
5543 unsigned int nr_numa_running;
5544 unsigned int nr_preferred_running;
5545#endif
1e3c88bd
PZ
5546};
5547
56cf515b
JK
5548/*
5549 * sd_lb_stats - Structure to store the statistics of a sched_domain
5550 * during load balancing.
5551 */
5552struct sd_lb_stats {
5553 struct sched_group *busiest; /* Busiest group in this sd */
5554 struct sched_group *local; /* Local group in this sd */
5555 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5556 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5557 unsigned long avg_load; /* Average load across all groups in sd */
5558
56cf515b 5559 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5560 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5561};
5562
147c5fc2
PZ
5563static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5564{
5565 /*
5566 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5567 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5568 * We must however clear busiest_stat::avg_load because
5569 * update_sd_pick_busiest() reads this before assignment.
5570 */
5571 *sds = (struct sd_lb_stats){
5572 .busiest = NULL,
5573 .local = NULL,
5574 .total_load = 0UL,
63b2ca30 5575 .total_capacity = 0UL,
147c5fc2
PZ
5576 .busiest_stat = {
5577 .avg_load = 0UL,
5578 },
5579 };
5580}
5581
1e3c88bd
PZ
5582/**
5583 * get_sd_load_idx - Obtain the load index for a given sched domain.
5584 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5585 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5586 *
5587 * Return: The load index.
1e3c88bd
PZ
5588 */
5589static inline int get_sd_load_idx(struct sched_domain *sd,
5590 enum cpu_idle_type idle)
5591{
5592 int load_idx;
5593
5594 switch (idle) {
5595 case CPU_NOT_IDLE:
5596 load_idx = sd->busy_idx;
5597 break;
5598
5599 case CPU_NEWLY_IDLE:
5600 load_idx = sd->newidle_idx;
5601 break;
5602 default:
5603 load_idx = sd->idle_idx;
5604 break;
5605 }
5606
5607 return load_idx;
5608}
5609
ced549fa 5610static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5611{
ca8ce3d0 5612 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5613}
5614
ca8ce3d0 5615unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5616{
ced549fa 5617 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5618}
5619
ced549fa 5620static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5621{
669c55e9 5622 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5623 unsigned long smt_gain = sd->smt_gain;
5624
5625 smt_gain /= weight;
5626
5627 return smt_gain;
5628}
5629
ca8ce3d0 5630unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5631{
ced549fa 5632 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5633}
5634
ced549fa 5635static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5636{
5637 struct rq *rq = cpu_rq(cpu);
b654f7de 5638 u64 total, available, age_stamp, avg;
cadefd3d 5639 s64 delta;
1e3c88bd 5640
b654f7de
PZ
5641 /*
5642 * Since we're reading these variables without serialization make sure
5643 * we read them once before doing sanity checks on them.
5644 */
5645 age_stamp = ACCESS_ONCE(rq->age_stamp);
5646 avg = ACCESS_ONCE(rq->rt_avg);
5647
cadefd3d
PZ
5648 delta = rq_clock(rq) - age_stamp;
5649 if (unlikely(delta < 0))
5650 delta = 0;
5651
5652 total = sched_avg_period() + delta;
aa483808 5653
b654f7de 5654 if (unlikely(total < avg)) {
ced549fa 5655 /* Ensures that capacity won't end up being negative */
aa483808
VP
5656 available = 0;
5657 } else {
b654f7de 5658 available = total - avg;
aa483808 5659 }
1e3c88bd 5660
ca8ce3d0
NP
5661 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5662 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5663
ca8ce3d0 5664 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5665
5666 return div_u64(available, total);
5667}
5668
ced549fa 5669static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5670{
669c55e9 5671 unsigned long weight = sd->span_weight;
ca8ce3d0 5672 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5673 struct sched_group *sdg = sd->groups;
5674
5d4dfddd
NP
5675 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5676 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5677 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5678 else
ced549fa 5679 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5680
ca8ce3d0 5681 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5682 }
5683
ced549fa 5684 sdg->sgc->capacity_orig = capacity;
9d5efe05 5685
5d4dfddd 5686 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5687 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5688 else
ced549fa 5689 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5690
ca8ce3d0 5691 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5692
ced549fa 5693 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5694 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5695
ced549fa
NP
5696 if (!capacity)
5697 capacity = 1;
1e3c88bd 5698
ced549fa
NP
5699 cpu_rq(cpu)->cpu_capacity = capacity;
5700 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5701}
5702
63b2ca30 5703void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5704{
5705 struct sched_domain *child = sd->child;
5706 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5707 unsigned long capacity, capacity_orig;
4ec4412e
VG
5708 unsigned long interval;
5709
5710 interval = msecs_to_jiffies(sd->balance_interval);
5711 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5712 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5713
5714 if (!child) {
ced549fa 5715 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5716 return;
5717 }
5718
63b2ca30 5719 capacity_orig = capacity = 0;
1e3c88bd 5720
74a5ce20
PZ
5721 if (child->flags & SD_OVERLAP) {
5722 /*
5723 * SD_OVERLAP domains cannot assume that child groups
5724 * span the current group.
5725 */
5726
863bffc8 5727 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5728 struct sched_group_capacity *sgc;
9abf24d4 5729 struct rq *rq = cpu_rq(cpu);
863bffc8 5730
9abf24d4 5731 /*
63b2ca30 5732 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5733 * gets here before we've attached the domains to the
5734 * runqueues.
5735 *
ced549fa
NP
5736 * Use capacity_of(), which is set irrespective of domains
5737 * in update_cpu_capacity().
9abf24d4 5738 *
63b2ca30 5739 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5740 * causing divide-by-zero issues on boot.
5741 *
63b2ca30 5742 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5743 */
5744 if (unlikely(!rq->sd)) {
ced549fa
NP
5745 capacity_orig += capacity_of(cpu);
5746 capacity += capacity_of(cpu);
9abf24d4
SD
5747 continue;
5748 }
863bffc8 5749
63b2ca30
NP
5750 sgc = rq->sd->groups->sgc;
5751 capacity_orig += sgc->capacity_orig;
5752 capacity += sgc->capacity;
863bffc8 5753 }
74a5ce20
PZ
5754 } else {
5755 /*
5756 * !SD_OVERLAP domains can assume that child groups
5757 * span the current group.
5758 */
5759
5760 group = child->groups;
5761 do {
63b2ca30
NP
5762 capacity_orig += group->sgc->capacity_orig;
5763 capacity += group->sgc->capacity;
74a5ce20
PZ
5764 group = group->next;
5765 } while (group != child->groups);
5766 }
1e3c88bd 5767
63b2ca30
NP
5768 sdg->sgc->capacity_orig = capacity_orig;
5769 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5770}
5771
9d5efe05
SV
5772/*
5773 * Try and fix up capacity for tiny siblings, this is needed when
5774 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5775 * which on its own isn't powerful enough.
5776 *
5777 * See update_sd_pick_busiest() and check_asym_packing().
5778 */
5779static inline int
5780fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5781{
5782 /*
ca8ce3d0 5783 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5784 */
5d4dfddd 5785 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5786 return 0;
5787
5788 /*
63b2ca30 5789 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5790 */
63b2ca30 5791 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5792 return 1;
5793
5794 return 0;
5795}
5796
30ce5dab
PZ
5797/*
5798 * Group imbalance indicates (and tries to solve) the problem where balancing
5799 * groups is inadequate due to tsk_cpus_allowed() constraints.
5800 *
5801 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5802 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5803 * Something like:
5804 *
5805 * { 0 1 2 3 } { 4 5 6 7 }
5806 * * * * *
5807 *
5808 * If we were to balance group-wise we'd place two tasks in the first group and
5809 * two tasks in the second group. Clearly this is undesired as it will overload
5810 * cpu 3 and leave one of the cpus in the second group unused.
5811 *
5812 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5813 * by noticing the lower domain failed to reach balance and had difficulty
5814 * moving tasks due to affinity constraints.
30ce5dab
PZ
5815 *
5816 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5817 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5818 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5819 * to create an effective group imbalance.
5820 *
5821 * This is a somewhat tricky proposition since the next run might not find the
5822 * group imbalance and decide the groups need to be balanced again. A most
5823 * subtle and fragile situation.
5824 */
5825
6263322c 5826static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5827{
63b2ca30 5828 return group->sgc->imbalance;
30ce5dab
PZ
5829}
5830
b37d9316 5831/*
0fedc6c8 5832 * Compute the group capacity factor.
b37d9316 5833 *
ced549fa 5834 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5835 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5836 * and limit unit capacity with that.
b37d9316 5837 */
0fedc6c8 5838static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5839{
0fedc6c8 5840 unsigned int capacity_factor, smt, cpus;
63b2ca30 5841 unsigned int capacity, capacity_orig;
c61037e9 5842
63b2ca30
NP
5843 capacity = group->sgc->capacity;
5844 capacity_orig = group->sgc->capacity_orig;
c61037e9 5845 cpus = group->group_weight;
b37d9316 5846
63b2ca30 5847 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5848 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5849 capacity_factor = cpus / smt; /* cores */
b37d9316 5850
63b2ca30 5851 capacity_factor = min_t(unsigned,
ca8ce3d0 5852 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5853 if (!capacity_factor)
5854 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5855
0fedc6c8 5856 return capacity_factor;
b37d9316
PZ
5857}
5858
1e3c88bd
PZ
5859/**
5860 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5861 * @env: The load balancing environment.
1e3c88bd 5862 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5863 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5864 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5865 * @sgs: variable to hold the statistics for this group.
5866 */
bd939f45
PZ
5867static inline void update_sg_lb_stats(struct lb_env *env,
5868 struct sched_group *group, int load_idx,
23f0d209 5869 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5870{
30ce5dab 5871 unsigned long load;
bd939f45 5872 int i;
1e3c88bd 5873
b72ff13c
PZ
5874 memset(sgs, 0, sizeof(*sgs));
5875
b9403130 5876 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5877 struct rq *rq = cpu_rq(i);
5878
1e3c88bd 5879 /* Bias balancing toward cpus of our domain */
6263322c 5880 if (local_group)
04f733b4 5881 load = target_load(i, load_idx);
6263322c 5882 else
1e3c88bd 5883 load = source_load(i, load_idx);
1e3c88bd
PZ
5884
5885 sgs->group_load += load;
380c9077 5886 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5887#ifdef CONFIG_NUMA_BALANCING
5888 sgs->nr_numa_running += rq->nr_numa_running;
5889 sgs->nr_preferred_running += rq->nr_preferred_running;
5890#endif
1e3c88bd 5891 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5892 if (idle_cpu(i))
5893 sgs->idle_cpus++;
1e3c88bd
PZ
5894 }
5895
63b2ca30
NP
5896 /* Adjust by relative CPU capacity of the group */
5897 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5898 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5899
dd5feea1 5900 if (sgs->sum_nr_running)
38d0f770 5901 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5902
aae6d3dd 5903 sgs->group_weight = group->group_weight;
fab47622 5904
b37d9316 5905 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5906 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5907
0fedc6c8 5908 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5909 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5910}
5911
532cb4c4
MN
5912/**
5913 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5914 * @env: The load balancing environment.
532cb4c4
MN
5915 * @sds: sched_domain statistics
5916 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5917 * @sgs: sched_group statistics
532cb4c4
MN
5918 *
5919 * Determine if @sg is a busier group than the previously selected
5920 * busiest group.
e69f6186
YB
5921 *
5922 * Return: %true if @sg is a busier group than the previously selected
5923 * busiest group. %false otherwise.
532cb4c4 5924 */
bd939f45 5925static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5926 struct sd_lb_stats *sds,
5927 struct sched_group *sg,
bd939f45 5928 struct sg_lb_stats *sgs)
532cb4c4 5929{
56cf515b 5930 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5931 return false;
5932
0fedc6c8 5933 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5934 return true;
5935
5936 if (sgs->group_imb)
5937 return true;
5938
5939 /*
5940 * ASYM_PACKING needs to move all the work to the lowest
5941 * numbered CPUs in the group, therefore mark all groups
5942 * higher than ourself as busy.
5943 */
bd939f45
PZ
5944 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5945 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5946 if (!sds->busiest)
5947 return true;
5948
5949 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5950 return true;
5951 }
5952
5953 return false;
5954}
5955
0ec8aa00
PZ
5956#ifdef CONFIG_NUMA_BALANCING
5957static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5958{
5959 if (sgs->sum_nr_running > sgs->nr_numa_running)
5960 return regular;
5961 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5962 return remote;
5963 return all;
5964}
5965
5966static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5967{
5968 if (rq->nr_running > rq->nr_numa_running)
5969 return regular;
5970 if (rq->nr_running > rq->nr_preferred_running)
5971 return remote;
5972 return all;
5973}
5974#else
5975static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5976{
5977 return all;
5978}
5979
5980static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5981{
5982 return regular;
5983}
5984#endif /* CONFIG_NUMA_BALANCING */
5985
1e3c88bd 5986/**
461819ac 5987 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5988 * @env: The load balancing environment.
1e3c88bd
PZ
5989 * @sds: variable to hold the statistics for this sched_domain.
5990 */
0ec8aa00 5991static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5992{
bd939f45
PZ
5993 struct sched_domain *child = env->sd->child;
5994 struct sched_group *sg = env->sd->groups;
56cf515b 5995 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5996 int load_idx, prefer_sibling = 0;
5997
5998 if (child && child->flags & SD_PREFER_SIBLING)
5999 prefer_sibling = 1;
6000
bd939f45 6001 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6002
6003 do {
56cf515b 6004 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6005 int local_group;
6006
bd939f45 6007 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6008 if (local_group) {
6009 sds->local = sg;
6010 sgs = &sds->local_stat;
b72ff13c
PZ
6011
6012 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6013 time_after_eq(jiffies, sg->sgc->next_update))
6014 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6015 }
1e3c88bd 6016
56cf515b 6017 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 6018
b72ff13c
PZ
6019 if (local_group)
6020 goto next_group;
6021
1e3c88bd
PZ
6022 /*
6023 * In case the child domain prefers tasks go to siblings
0fedc6c8 6024 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6025 * and move all the excess tasks away. We lower the capacity
6026 * of a group only if the local group has the capacity to fit
0fedc6c8 6027 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6028 * extra check prevents the case where you always pull from the
6029 * heaviest group when it is already under-utilized (possible
6030 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6031 */
b72ff13c 6032 if (prefer_sibling && sds->local &&
1b6a7495 6033 sds->local_stat.group_has_free_capacity)
0fedc6c8 6034 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6035
b72ff13c 6036 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6037 sds->busiest = sg;
56cf515b 6038 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6039 }
6040
b72ff13c
PZ
6041next_group:
6042 /* Now, start updating sd_lb_stats */
6043 sds->total_load += sgs->group_load;
63b2ca30 6044 sds->total_capacity += sgs->group_capacity;
b72ff13c 6045
532cb4c4 6046 sg = sg->next;
bd939f45 6047 } while (sg != env->sd->groups);
0ec8aa00
PZ
6048
6049 if (env->sd->flags & SD_NUMA)
6050 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
6051}
6052
532cb4c4
MN
6053/**
6054 * check_asym_packing - Check to see if the group is packed into the
6055 * sched doman.
6056 *
6057 * This is primarily intended to used at the sibling level. Some
6058 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6059 * case of POWER7, it can move to lower SMT modes only when higher
6060 * threads are idle. When in lower SMT modes, the threads will
6061 * perform better since they share less core resources. Hence when we
6062 * have idle threads, we want them to be the higher ones.
6063 *
6064 * This packing function is run on idle threads. It checks to see if
6065 * the busiest CPU in this domain (core in the P7 case) has a higher
6066 * CPU number than the packing function is being run on. Here we are
6067 * assuming lower CPU number will be equivalent to lower a SMT thread
6068 * number.
6069 *
e69f6186 6070 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6071 * this CPU. The amount of the imbalance is returned in *imbalance.
6072 *
cd96891d 6073 * @env: The load balancing environment.
532cb4c4 6074 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6075 */
bd939f45 6076static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6077{
6078 int busiest_cpu;
6079
bd939f45 6080 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6081 return 0;
6082
6083 if (!sds->busiest)
6084 return 0;
6085
6086 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6087 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6088 return 0;
6089
bd939f45 6090 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6091 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6092 SCHED_CAPACITY_SCALE);
bd939f45 6093
532cb4c4 6094 return 1;
1e3c88bd
PZ
6095}
6096
6097/**
6098 * fix_small_imbalance - Calculate the minor imbalance that exists
6099 * amongst the groups of a sched_domain, during
6100 * load balancing.
cd96891d 6101 * @env: The load balancing environment.
1e3c88bd 6102 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6103 */
bd939f45
PZ
6104static inline
6105void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6106{
63b2ca30 6107 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6108 unsigned int imbn = 2;
dd5feea1 6109 unsigned long scaled_busy_load_per_task;
56cf515b 6110 struct sg_lb_stats *local, *busiest;
1e3c88bd 6111
56cf515b
JK
6112 local = &sds->local_stat;
6113 busiest = &sds->busiest_stat;
1e3c88bd 6114
56cf515b
JK
6115 if (!local->sum_nr_running)
6116 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6117 else if (busiest->load_per_task > local->load_per_task)
6118 imbn = 1;
dd5feea1 6119
56cf515b 6120 scaled_busy_load_per_task =
ca8ce3d0 6121 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6122 busiest->group_capacity;
56cf515b 6123
3029ede3
VD
6124 if (busiest->avg_load + scaled_busy_load_per_task >=
6125 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6126 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6127 return;
6128 }
6129
6130 /*
6131 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6132 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6133 * moving them.
6134 */
6135
63b2ca30 6136 capa_now += busiest->group_capacity *
56cf515b 6137 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6138 capa_now += local->group_capacity *
56cf515b 6139 min(local->load_per_task, local->avg_load);
ca8ce3d0 6140 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6141
6142 /* Amount of load we'd subtract */
a2cd4260 6143 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6144 capa_move += busiest->group_capacity *
56cf515b 6145 min(busiest->load_per_task,
a2cd4260 6146 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6147 }
1e3c88bd
PZ
6148
6149 /* Amount of load we'd add */
63b2ca30 6150 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6151 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6152 tmp = (busiest->avg_load * busiest->group_capacity) /
6153 local->group_capacity;
56cf515b 6154 } else {
ca8ce3d0 6155 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6156 local->group_capacity;
56cf515b 6157 }
63b2ca30 6158 capa_move += local->group_capacity *
3ae11c90 6159 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6160 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6161
6162 /* Move if we gain throughput */
63b2ca30 6163 if (capa_move > capa_now)
56cf515b 6164 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6165}
6166
6167/**
6168 * calculate_imbalance - Calculate the amount of imbalance present within the
6169 * groups of a given sched_domain during load balance.
bd939f45 6170 * @env: load balance environment
1e3c88bd 6171 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6172 */
bd939f45 6173static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6174{
dd5feea1 6175 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6176 struct sg_lb_stats *local, *busiest;
6177
6178 local = &sds->local_stat;
56cf515b 6179 busiest = &sds->busiest_stat;
dd5feea1 6180
56cf515b 6181 if (busiest->group_imb) {
30ce5dab
PZ
6182 /*
6183 * In the group_imb case we cannot rely on group-wide averages
6184 * to ensure cpu-load equilibrium, look at wider averages. XXX
6185 */
56cf515b
JK
6186 busiest->load_per_task =
6187 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6188 }
6189
1e3c88bd
PZ
6190 /*
6191 * In the presence of smp nice balancing, certain scenarios can have
6192 * max load less than avg load(as we skip the groups at or below
ced549fa 6193 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6194 */
b1885550
VD
6195 if (busiest->avg_load <= sds->avg_load ||
6196 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6197 env->imbalance = 0;
6198 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6199 }
6200
56cf515b 6201 if (!busiest->group_imb) {
dd5feea1
SS
6202 /*
6203 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6204 * Except of course for the group_imb case, since then we might
6205 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6206 */
56cf515b 6207 load_above_capacity =
0fedc6c8 6208 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6209
ca8ce3d0 6210 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6211 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6212 }
6213
6214 /*
6215 * We're trying to get all the cpus to the average_load, so we don't
6216 * want to push ourselves above the average load, nor do we wish to
6217 * reduce the max loaded cpu below the average load. At the same time,
6218 * we also don't want to reduce the group load below the group capacity
6219 * (so that we can implement power-savings policies etc). Thus we look
6220 * for the minimum possible imbalance.
dd5feea1 6221 */
30ce5dab 6222 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6223
6224 /* How much load to actually move to equalise the imbalance */
56cf515b 6225 env->imbalance = min(
63b2ca30
NP
6226 max_pull * busiest->group_capacity,
6227 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6228 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6229
6230 /*
6231 * if *imbalance is less than the average load per runnable task
25985edc 6232 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6233 * a think about bumping its value to force at least one task to be
6234 * moved
6235 */
56cf515b 6236 if (env->imbalance < busiest->load_per_task)
bd939f45 6237 return fix_small_imbalance(env, sds);
1e3c88bd 6238}
fab47622 6239
1e3c88bd
PZ
6240/******* find_busiest_group() helpers end here *********************/
6241
6242/**
6243 * find_busiest_group - Returns the busiest group within the sched_domain
6244 * if there is an imbalance. If there isn't an imbalance, and
6245 * the user has opted for power-savings, it returns a group whose
6246 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6247 * such a group exists.
6248 *
6249 * Also calculates the amount of weighted load which should be moved
6250 * to restore balance.
6251 *
cd96891d 6252 * @env: The load balancing environment.
1e3c88bd 6253 *
e69f6186 6254 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6255 * - If no imbalance and user has opted for power-savings balance,
6256 * return the least loaded group whose CPUs can be
6257 * put to idle by rebalancing its tasks onto our group.
6258 */
56cf515b 6259static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6260{
56cf515b 6261 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6262 struct sd_lb_stats sds;
6263
147c5fc2 6264 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6265
6266 /*
6267 * Compute the various statistics relavent for load balancing at
6268 * this level.
6269 */
23f0d209 6270 update_sd_lb_stats(env, &sds);
56cf515b
JK
6271 local = &sds.local_stat;
6272 busiest = &sds.busiest_stat;
1e3c88bd 6273
bd939f45
PZ
6274 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6275 check_asym_packing(env, &sds))
532cb4c4
MN
6276 return sds.busiest;
6277
cc57aa8f 6278 /* There is no busy sibling group to pull tasks from */
56cf515b 6279 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6280 goto out_balanced;
6281
ca8ce3d0
NP
6282 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6283 / sds.total_capacity;
b0432d8f 6284
866ab43e
PZ
6285 /*
6286 * If the busiest group is imbalanced the below checks don't
30ce5dab 6287 * work because they assume all things are equal, which typically
866ab43e
PZ
6288 * isn't true due to cpus_allowed constraints and the like.
6289 */
56cf515b 6290 if (busiest->group_imb)
866ab43e
PZ
6291 goto force_balance;
6292
cc57aa8f 6293 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6294 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6295 !busiest->group_has_free_capacity)
fab47622
NR
6296 goto force_balance;
6297
cc57aa8f
PZ
6298 /*
6299 * If the local group is more busy than the selected busiest group
6300 * don't try and pull any tasks.
6301 */
56cf515b 6302 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6303 goto out_balanced;
6304
cc57aa8f
PZ
6305 /*
6306 * Don't pull any tasks if this group is already above the domain
6307 * average load.
6308 */
56cf515b 6309 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6310 goto out_balanced;
6311
bd939f45 6312 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6313 /*
6314 * This cpu is idle. If the busiest group load doesn't
6315 * have more tasks than the number of available cpu's and
6316 * there is no imbalance between this and busiest group
6317 * wrt to idle cpu's, it is balanced.
6318 */
56cf515b
JK
6319 if ((local->idle_cpus < busiest->idle_cpus) &&
6320 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6321 goto out_balanced;
c186fafe
PZ
6322 } else {
6323 /*
6324 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6325 * imbalance_pct to be conservative.
6326 */
56cf515b
JK
6327 if (100 * busiest->avg_load <=
6328 env->sd->imbalance_pct * local->avg_load)
c186fafe 6329 goto out_balanced;
aae6d3dd 6330 }
1e3c88bd 6331
fab47622 6332force_balance:
1e3c88bd 6333 /* Looks like there is an imbalance. Compute it */
bd939f45 6334 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6335 return sds.busiest;
6336
6337out_balanced:
bd939f45 6338 env->imbalance = 0;
1e3c88bd
PZ
6339 return NULL;
6340}
6341
6342/*
6343 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6344 */
bd939f45 6345static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6346 struct sched_group *group)
1e3c88bd
PZ
6347{
6348 struct rq *busiest = NULL, *rq;
ced549fa 6349 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6350 int i;
6351
6906a408 6352 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6353 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6354 enum fbq_type rt;
6355
6356 rq = cpu_rq(i);
6357 rt = fbq_classify_rq(rq);
1e3c88bd 6358
0ec8aa00
PZ
6359 /*
6360 * We classify groups/runqueues into three groups:
6361 * - regular: there are !numa tasks
6362 * - remote: there are numa tasks that run on the 'wrong' node
6363 * - all: there is no distinction
6364 *
6365 * In order to avoid migrating ideally placed numa tasks,
6366 * ignore those when there's better options.
6367 *
6368 * If we ignore the actual busiest queue to migrate another
6369 * task, the next balance pass can still reduce the busiest
6370 * queue by moving tasks around inside the node.
6371 *
6372 * If we cannot move enough load due to this classification
6373 * the next pass will adjust the group classification and
6374 * allow migration of more tasks.
6375 *
6376 * Both cases only affect the total convergence complexity.
6377 */
6378 if (rt > env->fbq_type)
6379 continue;
6380
ced549fa 6381 capacity = capacity_of(i);
ca8ce3d0 6382 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6383 if (!capacity_factor)
6384 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6385
6e40f5bb 6386 wl = weighted_cpuload(i);
1e3c88bd 6387
6e40f5bb
TG
6388 /*
6389 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6390 * which is not scaled with the cpu capacity.
6e40f5bb 6391 */
0fedc6c8 6392 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6393 continue;
6394
6e40f5bb
TG
6395 /*
6396 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6397 * the weighted_cpuload() scaled with the cpu capacity, so
6398 * that the load can be moved away from the cpu that is
6399 * potentially running at a lower capacity.
95a79b80 6400 *
ced549fa 6401 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6402 * multiplication to rid ourselves of the division works out
ced549fa
NP
6403 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6404 * our previous maximum.
6e40f5bb 6405 */
ced549fa 6406 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6407 busiest_load = wl;
ced549fa 6408 busiest_capacity = capacity;
1e3c88bd
PZ
6409 busiest = rq;
6410 }
6411 }
6412
6413 return busiest;
6414}
6415
6416/*
6417 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6418 * so long as it is large enough.
6419 */
6420#define MAX_PINNED_INTERVAL 512
6421
6422/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6423DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6424
bd939f45 6425static int need_active_balance(struct lb_env *env)
1af3ed3d 6426{
bd939f45
PZ
6427 struct sched_domain *sd = env->sd;
6428
6429 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6430
6431 /*
6432 * ASYM_PACKING needs to force migrate tasks from busy but
6433 * higher numbered CPUs in order to pack all tasks in the
6434 * lowest numbered CPUs.
6435 */
bd939f45 6436 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6437 return 1;
1af3ed3d
PZ
6438 }
6439
6440 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6441}
6442
969c7921
TH
6443static int active_load_balance_cpu_stop(void *data);
6444
23f0d209
JK
6445static int should_we_balance(struct lb_env *env)
6446{
6447 struct sched_group *sg = env->sd->groups;
6448 struct cpumask *sg_cpus, *sg_mask;
6449 int cpu, balance_cpu = -1;
6450
6451 /*
6452 * In the newly idle case, we will allow all the cpu's
6453 * to do the newly idle load balance.
6454 */
6455 if (env->idle == CPU_NEWLY_IDLE)
6456 return 1;
6457
6458 sg_cpus = sched_group_cpus(sg);
6459 sg_mask = sched_group_mask(sg);
6460 /* Try to find first idle cpu */
6461 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6462 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6463 continue;
6464
6465 balance_cpu = cpu;
6466 break;
6467 }
6468
6469 if (balance_cpu == -1)
6470 balance_cpu = group_balance_cpu(sg);
6471
6472 /*
6473 * First idle cpu or the first cpu(busiest) in this sched group
6474 * is eligible for doing load balancing at this and above domains.
6475 */
b0cff9d8 6476 return balance_cpu == env->dst_cpu;
23f0d209
JK
6477}
6478
1e3c88bd
PZ
6479/*
6480 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6481 * tasks if there is an imbalance.
6482 */
6483static int load_balance(int this_cpu, struct rq *this_rq,
6484 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6485 int *continue_balancing)
1e3c88bd 6486{
88b8dac0 6487 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6488 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6489 struct sched_group *group;
1e3c88bd
PZ
6490 struct rq *busiest;
6491 unsigned long flags;
e6252c3e 6492 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6493
8e45cb54
PZ
6494 struct lb_env env = {
6495 .sd = sd,
ddcdf6e7
PZ
6496 .dst_cpu = this_cpu,
6497 .dst_rq = this_rq,
88b8dac0 6498 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6499 .idle = idle,
eb95308e 6500 .loop_break = sched_nr_migrate_break,
b9403130 6501 .cpus = cpus,
0ec8aa00 6502 .fbq_type = all,
8e45cb54
PZ
6503 };
6504
cfc03118
JK
6505 /*
6506 * For NEWLY_IDLE load_balancing, we don't need to consider
6507 * other cpus in our group
6508 */
e02e60c1 6509 if (idle == CPU_NEWLY_IDLE)
cfc03118 6510 env.dst_grpmask = NULL;
cfc03118 6511
1e3c88bd
PZ
6512 cpumask_copy(cpus, cpu_active_mask);
6513
1e3c88bd
PZ
6514 schedstat_inc(sd, lb_count[idle]);
6515
6516redo:
23f0d209
JK
6517 if (!should_we_balance(&env)) {
6518 *continue_balancing = 0;
1e3c88bd 6519 goto out_balanced;
23f0d209 6520 }
1e3c88bd 6521
23f0d209 6522 group = find_busiest_group(&env);
1e3c88bd
PZ
6523 if (!group) {
6524 schedstat_inc(sd, lb_nobusyg[idle]);
6525 goto out_balanced;
6526 }
6527
b9403130 6528 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6529 if (!busiest) {
6530 schedstat_inc(sd, lb_nobusyq[idle]);
6531 goto out_balanced;
6532 }
6533
78feefc5 6534 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6535
bd939f45 6536 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6537
6538 ld_moved = 0;
6539 if (busiest->nr_running > 1) {
6540 /*
6541 * Attempt to move tasks. If find_busiest_group has found
6542 * an imbalance but busiest->nr_running <= 1, the group is
6543 * still unbalanced. ld_moved simply stays zero, so it is
6544 * correctly treated as an imbalance.
6545 */
8e45cb54 6546 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6547 env.src_cpu = busiest->cpu;
6548 env.src_rq = busiest;
6549 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6550
5d6523eb 6551more_balance:
1e3c88bd 6552 local_irq_save(flags);
78feefc5 6553 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6554
6555 /*
6556 * cur_ld_moved - load moved in current iteration
6557 * ld_moved - cumulative load moved across iterations
6558 */
6559 cur_ld_moved = move_tasks(&env);
6560 ld_moved += cur_ld_moved;
78feefc5 6561 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6562 local_irq_restore(flags);
6563
6564 /*
6565 * some other cpu did the load balance for us.
6566 */
88b8dac0
SV
6567 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6568 resched_cpu(env.dst_cpu);
6569
f1cd0858
JK
6570 if (env.flags & LBF_NEED_BREAK) {
6571 env.flags &= ~LBF_NEED_BREAK;
6572 goto more_balance;
6573 }
6574
88b8dac0
SV
6575 /*
6576 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6577 * us and move them to an alternate dst_cpu in our sched_group
6578 * where they can run. The upper limit on how many times we
6579 * iterate on same src_cpu is dependent on number of cpus in our
6580 * sched_group.
6581 *
6582 * This changes load balance semantics a bit on who can move
6583 * load to a given_cpu. In addition to the given_cpu itself
6584 * (or a ilb_cpu acting on its behalf where given_cpu is
6585 * nohz-idle), we now have balance_cpu in a position to move
6586 * load to given_cpu. In rare situations, this may cause
6587 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6588 * _independently_ and at _same_ time to move some load to
6589 * given_cpu) causing exceess load to be moved to given_cpu.
6590 * This however should not happen so much in practice and
6591 * moreover subsequent load balance cycles should correct the
6592 * excess load moved.
6593 */
6263322c 6594 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6595
7aff2e3a
VD
6596 /* Prevent to re-select dst_cpu via env's cpus */
6597 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6598
78feefc5 6599 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6600 env.dst_cpu = env.new_dst_cpu;
6263322c 6601 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6602 env.loop = 0;
6603 env.loop_break = sched_nr_migrate_break;
e02e60c1 6604
88b8dac0
SV
6605 /*
6606 * Go back to "more_balance" rather than "redo" since we
6607 * need to continue with same src_cpu.
6608 */
6609 goto more_balance;
6610 }
1e3c88bd 6611
6263322c
PZ
6612 /*
6613 * We failed to reach balance because of affinity.
6614 */
6615 if (sd_parent) {
63b2ca30 6616 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6617
6618 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6619 *group_imbalance = 1;
6620 } else if (*group_imbalance)
6621 *group_imbalance = 0;
6622 }
6623
1e3c88bd 6624 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6625 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6626 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6627 if (!cpumask_empty(cpus)) {
6628 env.loop = 0;
6629 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6630 goto redo;
bbf18b19 6631 }
1e3c88bd
PZ
6632 goto out_balanced;
6633 }
6634 }
6635
6636 if (!ld_moved) {
6637 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6638 /*
6639 * Increment the failure counter only on periodic balance.
6640 * We do not want newidle balance, which can be very
6641 * frequent, pollute the failure counter causing
6642 * excessive cache_hot migrations and active balances.
6643 */
6644 if (idle != CPU_NEWLY_IDLE)
6645 sd->nr_balance_failed++;
1e3c88bd 6646
bd939f45 6647 if (need_active_balance(&env)) {
1e3c88bd
PZ
6648 raw_spin_lock_irqsave(&busiest->lock, flags);
6649
969c7921
TH
6650 /* don't kick the active_load_balance_cpu_stop,
6651 * if the curr task on busiest cpu can't be
6652 * moved to this_cpu
1e3c88bd
PZ
6653 */
6654 if (!cpumask_test_cpu(this_cpu,
fa17b507 6655 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6656 raw_spin_unlock_irqrestore(&busiest->lock,
6657 flags);
8e45cb54 6658 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6659 goto out_one_pinned;
6660 }
6661
969c7921
TH
6662 /*
6663 * ->active_balance synchronizes accesses to
6664 * ->active_balance_work. Once set, it's cleared
6665 * only after active load balance is finished.
6666 */
1e3c88bd
PZ
6667 if (!busiest->active_balance) {
6668 busiest->active_balance = 1;
6669 busiest->push_cpu = this_cpu;
6670 active_balance = 1;
6671 }
6672 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6673
bd939f45 6674 if (active_balance) {
969c7921
TH
6675 stop_one_cpu_nowait(cpu_of(busiest),
6676 active_load_balance_cpu_stop, busiest,
6677 &busiest->active_balance_work);
bd939f45 6678 }
1e3c88bd
PZ
6679
6680 /*
6681 * We've kicked active balancing, reset the failure
6682 * counter.
6683 */
6684 sd->nr_balance_failed = sd->cache_nice_tries+1;
6685 }
6686 } else
6687 sd->nr_balance_failed = 0;
6688
6689 if (likely(!active_balance)) {
6690 /* We were unbalanced, so reset the balancing interval */
6691 sd->balance_interval = sd->min_interval;
6692 } else {
6693 /*
6694 * If we've begun active balancing, start to back off. This
6695 * case may not be covered by the all_pinned logic if there
6696 * is only 1 task on the busy runqueue (because we don't call
6697 * move_tasks).
6698 */
6699 if (sd->balance_interval < sd->max_interval)
6700 sd->balance_interval *= 2;
6701 }
6702
1e3c88bd
PZ
6703 goto out;
6704
6705out_balanced:
6706 schedstat_inc(sd, lb_balanced[idle]);
6707
6708 sd->nr_balance_failed = 0;
6709
6710out_one_pinned:
6711 /* tune up the balancing interval */
8e45cb54 6712 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6713 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6714 (sd->balance_interval < sd->max_interval))
6715 sd->balance_interval *= 2;
6716
46e49b38 6717 ld_moved = 0;
1e3c88bd 6718out:
1e3c88bd
PZ
6719 return ld_moved;
6720}
6721
52a08ef1
JL
6722static inline unsigned long
6723get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6724{
6725 unsigned long interval = sd->balance_interval;
6726
6727 if (cpu_busy)
6728 interval *= sd->busy_factor;
6729
6730 /* scale ms to jiffies */
6731 interval = msecs_to_jiffies(interval);
6732 interval = clamp(interval, 1UL, max_load_balance_interval);
6733
6734 return interval;
6735}
6736
6737static inline void
6738update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6739{
6740 unsigned long interval, next;
6741
6742 interval = get_sd_balance_interval(sd, cpu_busy);
6743 next = sd->last_balance + interval;
6744
6745 if (time_after(*next_balance, next))
6746 *next_balance = next;
6747}
6748
1e3c88bd
PZ
6749/*
6750 * idle_balance is called by schedule() if this_cpu is about to become
6751 * idle. Attempts to pull tasks from other CPUs.
6752 */
6e83125c 6753static int idle_balance(struct rq *this_rq)
1e3c88bd 6754{
52a08ef1
JL
6755 unsigned long next_balance = jiffies + HZ;
6756 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6757 struct sched_domain *sd;
6758 int pulled_task = 0;
9bd721c5 6759 u64 curr_cost = 0;
1e3c88bd 6760
6e83125c 6761 idle_enter_fair(this_rq);
0e5b5337 6762
6e83125c
PZ
6763 /*
6764 * We must set idle_stamp _before_ calling idle_balance(), such that we
6765 * measure the duration of idle_balance() as idle time.
6766 */
6767 this_rq->idle_stamp = rq_clock(this_rq);
6768
52a08ef1
JL
6769 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6770 rcu_read_lock();
6771 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6772 if (sd)
6773 update_next_balance(sd, 0, &next_balance);
6774 rcu_read_unlock();
6775
6e83125c 6776 goto out;
52a08ef1 6777 }
1e3c88bd 6778
f492e12e
PZ
6779 /*
6780 * Drop the rq->lock, but keep IRQ/preempt disabled.
6781 */
6782 raw_spin_unlock(&this_rq->lock);
6783
48a16753 6784 update_blocked_averages(this_cpu);
dce840a0 6785 rcu_read_lock();
1e3c88bd 6786 for_each_domain(this_cpu, sd) {
23f0d209 6787 int continue_balancing = 1;
9bd721c5 6788 u64 t0, domain_cost;
1e3c88bd
PZ
6789
6790 if (!(sd->flags & SD_LOAD_BALANCE))
6791 continue;
6792
52a08ef1
JL
6793 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6794 update_next_balance(sd, 0, &next_balance);
9bd721c5 6795 break;
52a08ef1 6796 }
9bd721c5 6797
f492e12e 6798 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6799 t0 = sched_clock_cpu(this_cpu);
6800
f492e12e 6801 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6802 sd, CPU_NEWLY_IDLE,
6803 &continue_balancing);
9bd721c5
JL
6804
6805 domain_cost = sched_clock_cpu(this_cpu) - t0;
6806 if (domain_cost > sd->max_newidle_lb_cost)
6807 sd->max_newidle_lb_cost = domain_cost;
6808
6809 curr_cost += domain_cost;
f492e12e 6810 }
1e3c88bd 6811
52a08ef1 6812 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6813
6814 /*
6815 * Stop searching for tasks to pull if there are
6816 * now runnable tasks on this rq.
6817 */
6818 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6819 break;
1e3c88bd 6820 }
dce840a0 6821 rcu_read_unlock();
f492e12e
PZ
6822
6823 raw_spin_lock(&this_rq->lock);
6824
0e5b5337
JL
6825 if (curr_cost > this_rq->max_idle_balance_cost)
6826 this_rq->max_idle_balance_cost = curr_cost;
6827
e5fc6611 6828 /*
0e5b5337
JL
6829 * While browsing the domains, we released the rq lock, a task could
6830 * have been enqueued in the meantime. Since we're not going idle,
6831 * pretend we pulled a task.
e5fc6611 6832 */
0e5b5337 6833 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6834 pulled_task = 1;
e5fc6611 6835
52a08ef1
JL
6836out:
6837 /* Move the next balance forward */
6838 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6839 this_rq->next_balance = next_balance;
9bd721c5 6840
e4aa358b 6841 /* Is there a task of a high priority class? */
46383648 6842 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6843 pulled_task = -1;
6844
6845 if (pulled_task) {
6846 idle_exit_fair(this_rq);
6e83125c 6847 this_rq->idle_stamp = 0;
e4aa358b 6848 }
6e83125c 6849
3c4017c1 6850 return pulled_task;
1e3c88bd
PZ
6851}
6852
6853/*
969c7921
TH
6854 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6855 * running tasks off the busiest CPU onto idle CPUs. It requires at
6856 * least 1 task to be running on each physical CPU where possible, and
6857 * avoids physical / logical imbalances.
1e3c88bd 6858 */
969c7921 6859static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6860{
969c7921
TH
6861 struct rq *busiest_rq = data;
6862 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6863 int target_cpu = busiest_rq->push_cpu;
969c7921 6864 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6865 struct sched_domain *sd;
969c7921
TH
6866
6867 raw_spin_lock_irq(&busiest_rq->lock);
6868
6869 /* make sure the requested cpu hasn't gone down in the meantime */
6870 if (unlikely(busiest_cpu != smp_processor_id() ||
6871 !busiest_rq->active_balance))
6872 goto out_unlock;
1e3c88bd
PZ
6873
6874 /* Is there any task to move? */
6875 if (busiest_rq->nr_running <= 1)
969c7921 6876 goto out_unlock;
1e3c88bd
PZ
6877
6878 /*
6879 * This condition is "impossible", if it occurs
6880 * we need to fix it. Originally reported by
6881 * Bjorn Helgaas on a 128-cpu setup.
6882 */
6883 BUG_ON(busiest_rq == target_rq);
6884
6885 /* move a task from busiest_rq to target_rq */
6886 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6887
6888 /* Search for an sd spanning us and the target CPU. */
dce840a0 6889 rcu_read_lock();
1e3c88bd
PZ
6890 for_each_domain(target_cpu, sd) {
6891 if ((sd->flags & SD_LOAD_BALANCE) &&
6892 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6893 break;
6894 }
6895
6896 if (likely(sd)) {
8e45cb54
PZ
6897 struct lb_env env = {
6898 .sd = sd,
ddcdf6e7
PZ
6899 .dst_cpu = target_cpu,
6900 .dst_rq = target_rq,
6901 .src_cpu = busiest_rq->cpu,
6902 .src_rq = busiest_rq,
8e45cb54
PZ
6903 .idle = CPU_IDLE,
6904 };
6905
1e3c88bd
PZ
6906 schedstat_inc(sd, alb_count);
6907
8e45cb54 6908 if (move_one_task(&env))
1e3c88bd
PZ
6909 schedstat_inc(sd, alb_pushed);
6910 else
6911 schedstat_inc(sd, alb_failed);
6912 }
dce840a0 6913 rcu_read_unlock();
1e3c88bd 6914 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6915out_unlock:
6916 busiest_rq->active_balance = 0;
6917 raw_spin_unlock_irq(&busiest_rq->lock);
6918 return 0;
1e3c88bd
PZ
6919}
6920
d987fc7f
MG
6921static inline int on_null_domain(struct rq *rq)
6922{
6923 return unlikely(!rcu_dereference_sched(rq->sd));
6924}
6925
3451d024 6926#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6927/*
6928 * idle load balancing details
83cd4fe2
VP
6929 * - When one of the busy CPUs notice that there may be an idle rebalancing
6930 * needed, they will kick the idle load balancer, which then does idle
6931 * load balancing for all the idle CPUs.
6932 */
1e3c88bd 6933static struct {
83cd4fe2 6934 cpumask_var_t idle_cpus_mask;
0b005cf5 6935 atomic_t nr_cpus;
83cd4fe2
VP
6936 unsigned long next_balance; /* in jiffy units */
6937} nohz ____cacheline_aligned;
1e3c88bd 6938
3dd0337d 6939static inline int find_new_ilb(void)
1e3c88bd 6940{
0b005cf5 6941 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6942
786d6dc7
SS
6943 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6944 return ilb;
6945
6946 return nr_cpu_ids;
1e3c88bd 6947}
1e3c88bd 6948
83cd4fe2
VP
6949/*
6950 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6951 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6952 * CPU (if there is one).
6953 */
0aeeeeba 6954static void nohz_balancer_kick(void)
83cd4fe2
VP
6955{
6956 int ilb_cpu;
6957
6958 nohz.next_balance++;
6959
3dd0337d 6960 ilb_cpu = find_new_ilb();
83cd4fe2 6961
0b005cf5
SS
6962 if (ilb_cpu >= nr_cpu_ids)
6963 return;
83cd4fe2 6964
cd490c5b 6965 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6966 return;
6967 /*
6968 * Use smp_send_reschedule() instead of resched_cpu().
6969 * This way we generate a sched IPI on the target cpu which
6970 * is idle. And the softirq performing nohz idle load balance
6971 * will be run before returning from the IPI.
6972 */
6973 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6974 return;
6975}
6976
c1cc017c 6977static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6978{
6979 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6980 /*
6981 * Completely isolated CPUs don't ever set, so we must test.
6982 */
6983 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6984 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6985 atomic_dec(&nohz.nr_cpus);
6986 }
71325960
SS
6987 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6988 }
6989}
6990
69e1e811
SS
6991static inline void set_cpu_sd_state_busy(void)
6992{
6993 struct sched_domain *sd;
37dc6b50 6994 int cpu = smp_processor_id();
69e1e811 6995
69e1e811 6996 rcu_read_lock();
37dc6b50 6997 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6998
6999 if (!sd || !sd->nohz_idle)
7000 goto unlock;
7001 sd->nohz_idle = 0;
7002
63b2ca30 7003 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7004unlock:
69e1e811
SS
7005 rcu_read_unlock();
7006}
7007
7008void set_cpu_sd_state_idle(void)
7009{
7010 struct sched_domain *sd;
37dc6b50 7011 int cpu = smp_processor_id();
69e1e811 7012
69e1e811 7013 rcu_read_lock();
37dc6b50 7014 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7015
7016 if (!sd || sd->nohz_idle)
7017 goto unlock;
7018 sd->nohz_idle = 1;
7019
63b2ca30 7020 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7021unlock:
69e1e811
SS
7022 rcu_read_unlock();
7023}
7024
1e3c88bd 7025/*
c1cc017c 7026 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7027 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7028 */
c1cc017c 7029void nohz_balance_enter_idle(int cpu)
1e3c88bd 7030{
71325960
SS
7031 /*
7032 * If this cpu is going down, then nothing needs to be done.
7033 */
7034 if (!cpu_active(cpu))
7035 return;
7036
c1cc017c
AS
7037 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7038 return;
1e3c88bd 7039
d987fc7f
MG
7040 /*
7041 * If we're a completely isolated CPU, we don't play.
7042 */
7043 if (on_null_domain(cpu_rq(cpu)))
7044 return;
7045
c1cc017c
AS
7046 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7047 atomic_inc(&nohz.nr_cpus);
7048 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7049}
71325960 7050
0db0628d 7051static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7052 unsigned long action, void *hcpu)
7053{
7054 switch (action & ~CPU_TASKS_FROZEN) {
7055 case CPU_DYING:
c1cc017c 7056 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7057 return NOTIFY_OK;
7058 default:
7059 return NOTIFY_DONE;
7060 }
7061}
1e3c88bd
PZ
7062#endif
7063
7064static DEFINE_SPINLOCK(balancing);
7065
49c022e6
PZ
7066/*
7067 * Scale the max load_balance interval with the number of CPUs in the system.
7068 * This trades load-balance latency on larger machines for less cross talk.
7069 */
029632fb 7070void update_max_interval(void)
49c022e6
PZ
7071{
7072 max_load_balance_interval = HZ*num_online_cpus()/10;
7073}
7074
1e3c88bd
PZ
7075/*
7076 * It checks each scheduling domain to see if it is due to be balanced,
7077 * and initiates a balancing operation if so.
7078 *
b9b0853a 7079 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7080 */
f7ed0a89 7081static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7082{
23f0d209 7083 int continue_balancing = 1;
f7ed0a89 7084 int cpu = rq->cpu;
1e3c88bd 7085 unsigned long interval;
04f733b4 7086 struct sched_domain *sd;
1e3c88bd
PZ
7087 /* Earliest time when we have to do rebalance again */
7088 unsigned long next_balance = jiffies + 60*HZ;
7089 int update_next_balance = 0;
f48627e6
JL
7090 int need_serialize, need_decay = 0;
7091 u64 max_cost = 0;
1e3c88bd 7092
48a16753 7093 update_blocked_averages(cpu);
2069dd75 7094
dce840a0 7095 rcu_read_lock();
1e3c88bd 7096 for_each_domain(cpu, sd) {
f48627e6
JL
7097 /*
7098 * Decay the newidle max times here because this is a regular
7099 * visit to all the domains. Decay ~1% per second.
7100 */
7101 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7102 sd->max_newidle_lb_cost =
7103 (sd->max_newidle_lb_cost * 253) / 256;
7104 sd->next_decay_max_lb_cost = jiffies + HZ;
7105 need_decay = 1;
7106 }
7107 max_cost += sd->max_newidle_lb_cost;
7108
1e3c88bd
PZ
7109 if (!(sd->flags & SD_LOAD_BALANCE))
7110 continue;
7111
f48627e6
JL
7112 /*
7113 * Stop the load balance at this level. There is another
7114 * CPU in our sched group which is doing load balancing more
7115 * actively.
7116 */
7117 if (!continue_balancing) {
7118 if (need_decay)
7119 continue;
7120 break;
7121 }
7122
52a08ef1 7123 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7124
7125 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7126 if (need_serialize) {
7127 if (!spin_trylock(&balancing))
7128 goto out;
7129 }
7130
7131 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7132 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7133 /*
6263322c 7134 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7135 * env->dst_cpu, so we can't know our idle
7136 * state even if we migrated tasks. Update it.
1e3c88bd 7137 */
de5eb2dd 7138 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7139 }
7140 sd->last_balance = jiffies;
52a08ef1 7141 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7142 }
7143 if (need_serialize)
7144 spin_unlock(&balancing);
7145out:
7146 if (time_after(next_balance, sd->last_balance + interval)) {
7147 next_balance = sd->last_balance + interval;
7148 update_next_balance = 1;
7149 }
f48627e6
JL
7150 }
7151 if (need_decay) {
1e3c88bd 7152 /*
f48627e6
JL
7153 * Ensure the rq-wide value also decays but keep it at a
7154 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7155 */
f48627e6
JL
7156 rq->max_idle_balance_cost =
7157 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7158 }
dce840a0 7159 rcu_read_unlock();
1e3c88bd
PZ
7160
7161 /*
7162 * next_balance will be updated only when there is a need.
7163 * When the cpu is attached to null domain for ex, it will not be
7164 * updated.
7165 */
7166 if (likely(update_next_balance))
7167 rq->next_balance = next_balance;
7168}
7169
3451d024 7170#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7171/*
3451d024 7172 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7173 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7174 */
208cb16b 7175static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7176{
208cb16b 7177 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7178 struct rq *rq;
7179 int balance_cpu;
7180
1c792db7
SS
7181 if (idle != CPU_IDLE ||
7182 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7183 goto end;
83cd4fe2
VP
7184
7185 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7186 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7187 continue;
7188
7189 /*
7190 * If this cpu gets work to do, stop the load balancing
7191 * work being done for other cpus. Next load
7192 * balancing owner will pick it up.
7193 */
1c792db7 7194 if (need_resched())
83cd4fe2 7195 break;
83cd4fe2 7196
5ed4f1d9
VG
7197 rq = cpu_rq(balance_cpu);
7198
ed61bbc6
TC
7199 /*
7200 * If time for next balance is due,
7201 * do the balance.
7202 */
7203 if (time_after_eq(jiffies, rq->next_balance)) {
7204 raw_spin_lock_irq(&rq->lock);
7205 update_rq_clock(rq);
7206 update_idle_cpu_load(rq);
7207 raw_spin_unlock_irq(&rq->lock);
7208 rebalance_domains(rq, CPU_IDLE);
7209 }
83cd4fe2 7210
83cd4fe2
VP
7211 if (time_after(this_rq->next_balance, rq->next_balance))
7212 this_rq->next_balance = rq->next_balance;
7213 }
7214 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7215end:
7216 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7217}
7218
7219/*
0b005cf5
SS
7220 * Current heuristic for kicking the idle load balancer in the presence
7221 * of an idle cpu is the system.
7222 * - This rq has more than one task.
7223 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7224 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7225 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7226 * domain span are idle.
83cd4fe2 7227 */
4a725627 7228static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7229{
7230 unsigned long now = jiffies;
0b005cf5 7231 struct sched_domain *sd;
63b2ca30 7232 struct sched_group_capacity *sgc;
4a725627 7233 int nr_busy, cpu = rq->cpu;
83cd4fe2 7234
4a725627 7235 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7236 return 0;
7237
1c792db7
SS
7238 /*
7239 * We may be recently in ticked or tickless idle mode. At the first
7240 * busy tick after returning from idle, we will update the busy stats.
7241 */
69e1e811 7242 set_cpu_sd_state_busy();
c1cc017c 7243 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7244
7245 /*
7246 * None are in tickless mode and hence no need for NOHZ idle load
7247 * balancing.
7248 */
7249 if (likely(!atomic_read(&nohz.nr_cpus)))
7250 return 0;
1c792db7
SS
7251
7252 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7253 return 0;
7254
0b005cf5
SS
7255 if (rq->nr_running >= 2)
7256 goto need_kick;
83cd4fe2 7257
067491b7 7258 rcu_read_lock();
37dc6b50 7259 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7260
37dc6b50 7261 if (sd) {
63b2ca30
NP
7262 sgc = sd->groups->sgc;
7263 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7264
37dc6b50 7265 if (nr_busy > 1)
067491b7 7266 goto need_kick_unlock;
83cd4fe2 7267 }
37dc6b50
PM
7268
7269 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7270
7271 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7272 sched_domain_span(sd)) < cpu))
7273 goto need_kick_unlock;
7274
067491b7 7275 rcu_read_unlock();
83cd4fe2 7276 return 0;
067491b7
PZ
7277
7278need_kick_unlock:
7279 rcu_read_unlock();
0b005cf5
SS
7280need_kick:
7281 return 1;
83cd4fe2
VP
7282}
7283#else
208cb16b 7284static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7285#endif
7286
7287/*
7288 * run_rebalance_domains is triggered when needed from the scheduler tick.
7289 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7290 */
1e3c88bd
PZ
7291static void run_rebalance_domains(struct softirq_action *h)
7292{
208cb16b 7293 struct rq *this_rq = this_rq();
6eb57e0d 7294 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7295 CPU_IDLE : CPU_NOT_IDLE;
7296
f7ed0a89 7297 rebalance_domains(this_rq, idle);
1e3c88bd 7298
1e3c88bd 7299 /*
83cd4fe2 7300 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7301 * balancing on behalf of the other idle cpus whose ticks are
7302 * stopped.
7303 */
208cb16b 7304 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7305}
7306
1e3c88bd
PZ
7307/*
7308 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7309 */
7caff66f 7310void trigger_load_balance(struct rq *rq)
1e3c88bd 7311{
1e3c88bd 7312 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7313 if (unlikely(on_null_domain(rq)))
7314 return;
7315
7316 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7317 raise_softirq(SCHED_SOFTIRQ);
3451d024 7318#ifdef CONFIG_NO_HZ_COMMON
c726099e 7319 if (nohz_kick_needed(rq))
0aeeeeba 7320 nohz_balancer_kick();
83cd4fe2 7321#endif
1e3c88bd
PZ
7322}
7323
0bcdcf28
CE
7324static void rq_online_fair(struct rq *rq)
7325{
7326 update_sysctl();
7327}
7328
7329static void rq_offline_fair(struct rq *rq)
7330{
7331 update_sysctl();
a4c96ae3
PB
7332
7333 /* Ensure any throttled groups are reachable by pick_next_task */
7334 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7335}
7336
55e12e5e 7337#endif /* CONFIG_SMP */
e1d1484f 7338
bf0f6f24
IM
7339/*
7340 * scheduler tick hitting a task of our scheduling class:
7341 */
8f4d37ec 7342static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7343{
7344 struct cfs_rq *cfs_rq;
7345 struct sched_entity *se = &curr->se;
7346
7347 for_each_sched_entity(se) {
7348 cfs_rq = cfs_rq_of(se);
8f4d37ec 7349 entity_tick(cfs_rq, se, queued);
bf0f6f24 7350 }
18bf2805 7351
10e84b97 7352 if (numabalancing_enabled)
cbee9f88 7353 task_tick_numa(rq, curr);
3d59eebc 7354
18bf2805 7355 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7356}
7357
7358/*
cd29fe6f
PZ
7359 * called on fork with the child task as argument from the parent's context
7360 * - child not yet on the tasklist
7361 * - preemption disabled
bf0f6f24 7362 */
cd29fe6f 7363static void task_fork_fair(struct task_struct *p)
bf0f6f24 7364{
4fc420c9
DN
7365 struct cfs_rq *cfs_rq;
7366 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7367 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7368 struct rq *rq = this_rq();
7369 unsigned long flags;
7370
05fa785c 7371 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7372
861d034e
PZ
7373 update_rq_clock(rq);
7374
4fc420c9
DN
7375 cfs_rq = task_cfs_rq(current);
7376 curr = cfs_rq->curr;
7377
6c9a27f5
DN
7378 /*
7379 * Not only the cpu but also the task_group of the parent might have
7380 * been changed after parent->se.parent,cfs_rq were copied to
7381 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7382 * of child point to valid ones.
7383 */
7384 rcu_read_lock();
7385 __set_task_cpu(p, this_cpu);
7386 rcu_read_unlock();
bf0f6f24 7387
7109c442 7388 update_curr(cfs_rq);
cd29fe6f 7389
b5d9d734
MG
7390 if (curr)
7391 se->vruntime = curr->vruntime;
aeb73b04 7392 place_entity(cfs_rq, se, 1);
4d78e7b6 7393
cd29fe6f 7394 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7395 /*
edcb60a3
IM
7396 * Upon rescheduling, sched_class::put_prev_task() will place
7397 * 'current' within the tree based on its new key value.
7398 */
4d78e7b6 7399 swap(curr->vruntime, se->vruntime);
aec0a514 7400 resched_task(rq->curr);
4d78e7b6 7401 }
bf0f6f24 7402
88ec22d3
PZ
7403 se->vruntime -= cfs_rq->min_vruntime;
7404
05fa785c 7405 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7406}
7407
cb469845
SR
7408/*
7409 * Priority of the task has changed. Check to see if we preempt
7410 * the current task.
7411 */
da7a735e
PZ
7412static void
7413prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7414{
da7a735e
PZ
7415 if (!p->se.on_rq)
7416 return;
7417
cb469845
SR
7418 /*
7419 * Reschedule if we are currently running on this runqueue and
7420 * our priority decreased, or if we are not currently running on
7421 * this runqueue and our priority is higher than the current's
7422 */
da7a735e 7423 if (rq->curr == p) {
cb469845
SR
7424 if (p->prio > oldprio)
7425 resched_task(rq->curr);
7426 } else
15afe09b 7427 check_preempt_curr(rq, p, 0);
cb469845
SR
7428}
7429
da7a735e
PZ
7430static void switched_from_fair(struct rq *rq, struct task_struct *p)
7431{
7432 struct sched_entity *se = &p->se;
7433 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7434
7435 /*
791c9e02 7436 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7437 * switched back to the fair class the enqueue_entity(.flags=0) will
7438 * do the right thing.
7439 *
791c9e02
GM
7440 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7441 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7442 * the task is sleeping will it still have non-normalized vruntime.
7443 */
791c9e02 7444 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7445 /*
7446 * Fix up our vruntime so that the current sleep doesn't
7447 * cause 'unlimited' sleep bonus.
7448 */
7449 place_entity(cfs_rq, se, 0);
7450 se->vruntime -= cfs_rq->min_vruntime;
7451 }
9ee474f5 7452
141965c7 7453#ifdef CONFIG_SMP
9ee474f5
PT
7454 /*
7455 * Remove our load from contribution when we leave sched_fair
7456 * and ensure we don't carry in an old decay_count if we
7457 * switch back.
7458 */
87e3c8ae
KT
7459 if (se->avg.decay_count) {
7460 __synchronize_entity_decay(se);
7461 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7462 }
7463#endif
da7a735e
PZ
7464}
7465
cb469845
SR
7466/*
7467 * We switched to the sched_fair class.
7468 */
da7a735e 7469static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7470{
eb7a59b2
M
7471 struct sched_entity *se = &p->se;
7472#ifdef CONFIG_FAIR_GROUP_SCHED
7473 /*
7474 * Since the real-depth could have been changed (only FAIR
7475 * class maintain depth value), reset depth properly.
7476 */
7477 se->depth = se->parent ? se->parent->depth + 1 : 0;
7478#endif
7479 if (!se->on_rq)
da7a735e
PZ
7480 return;
7481
cb469845
SR
7482 /*
7483 * We were most likely switched from sched_rt, so
7484 * kick off the schedule if running, otherwise just see
7485 * if we can still preempt the current task.
7486 */
da7a735e 7487 if (rq->curr == p)
cb469845
SR
7488 resched_task(rq->curr);
7489 else
15afe09b 7490 check_preempt_curr(rq, p, 0);
cb469845
SR
7491}
7492
83b699ed
SV
7493/* Account for a task changing its policy or group.
7494 *
7495 * This routine is mostly called to set cfs_rq->curr field when a task
7496 * migrates between groups/classes.
7497 */
7498static void set_curr_task_fair(struct rq *rq)
7499{
7500 struct sched_entity *se = &rq->curr->se;
7501
ec12cb7f
PT
7502 for_each_sched_entity(se) {
7503 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7504
7505 set_next_entity(cfs_rq, se);
7506 /* ensure bandwidth has been allocated on our new cfs_rq */
7507 account_cfs_rq_runtime(cfs_rq, 0);
7508 }
83b699ed
SV
7509}
7510
029632fb
PZ
7511void init_cfs_rq(struct cfs_rq *cfs_rq)
7512{
7513 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7514 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7515#ifndef CONFIG_64BIT
7516 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7517#endif
141965c7 7518#ifdef CONFIG_SMP
9ee474f5 7519 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7520 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7521#endif
029632fb
PZ
7522}
7523
810b3817 7524#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7525static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7526{
fed14d45 7527 struct sched_entity *se = &p->se;
aff3e498 7528 struct cfs_rq *cfs_rq;
fed14d45 7529
b2b5ce02
PZ
7530 /*
7531 * If the task was not on the rq at the time of this cgroup movement
7532 * it must have been asleep, sleeping tasks keep their ->vruntime
7533 * absolute on their old rq until wakeup (needed for the fair sleeper
7534 * bonus in place_entity()).
7535 *
7536 * If it was on the rq, we've just 'preempted' it, which does convert
7537 * ->vruntime to a relative base.
7538 *
7539 * Make sure both cases convert their relative position when migrating
7540 * to another cgroup's rq. This does somewhat interfere with the
7541 * fair sleeper stuff for the first placement, but who cares.
7542 */
7ceff013
DN
7543 /*
7544 * When !on_rq, vruntime of the task has usually NOT been normalized.
7545 * But there are some cases where it has already been normalized:
7546 *
7547 * - Moving a forked child which is waiting for being woken up by
7548 * wake_up_new_task().
62af3783
DN
7549 * - Moving a task which has been woken up by try_to_wake_up() and
7550 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7551 *
7552 * To prevent boost or penalty in the new cfs_rq caused by delta
7553 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7554 */
fed14d45 7555 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7556 on_rq = 1;
7557
b2b5ce02 7558 if (!on_rq)
fed14d45 7559 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7560 set_task_rq(p, task_cpu(p));
fed14d45 7561 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7562 if (!on_rq) {
fed14d45
PZ
7563 cfs_rq = cfs_rq_of(se);
7564 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7565#ifdef CONFIG_SMP
7566 /*
7567 * migrate_task_rq_fair() will have removed our previous
7568 * contribution, but we must synchronize for ongoing future
7569 * decay.
7570 */
fed14d45
PZ
7571 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7572 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7573#endif
7574 }
810b3817 7575}
029632fb
PZ
7576
7577void free_fair_sched_group(struct task_group *tg)
7578{
7579 int i;
7580
7581 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7582
7583 for_each_possible_cpu(i) {
7584 if (tg->cfs_rq)
7585 kfree(tg->cfs_rq[i]);
7586 if (tg->se)
7587 kfree(tg->se[i]);
7588 }
7589
7590 kfree(tg->cfs_rq);
7591 kfree(tg->se);
7592}
7593
7594int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7595{
7596 struct cfs_rq *cfs_rq;
7597 struct sched_entity *se;
7598 int i;
7599
7600 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7601 if (!tg->cfs_rq)
7602 goto err;
7603 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7604 if (!tg->se)
7605 goto err;
7606
7607 tg->shares = NICE_0_LOAD;
7608
7609 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7610
7611 for_each_possible_cpu(i) {
7612 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7613 GFP_KERNEL, cpu_to_node(i));
7614 if (!cfs_rq)
7615 goto err;
7616
7617 se = kzalloc_node(sizeof(struct sched_entity),
7618 GFP_KERNEL, cpu_to_node(i));
7619 if (!se)
7620 goto err_free_rq;
7621
7622 init_cfs_rq(cfs_rq);
7623 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7624 }
7625
7626 return 1;
7627
7628err_free_rq:
7629 kfree(cfs_rq);
7630err:
7631 return 0;
7632}
7633
7634void unregister_fair_sched_group(struct task_group *tg, int cpu)
7635{
7636 struct rq *rq = cpu_rq(cpu);
7637 unsigned long flags;
7638
7639 /*
7640 * Only empty task groups can be destroyed; so we can speculatively
7641 * check on_list without danger of it being re-added.
7642 */
7643 if (!tg->cfs_rq[cpu]->on_list)
7644 return;
7645
7646 raw_spin_lock_irqsave(&rq->lock, flags);
7647 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7648 raw_spin_unlock_irqrestore(&rq->lock, flags);
7649}
7650
7651void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7652 struct sched_entity *se, int cpu,
7653 struct sched_entity *parent)
7654{
7655 struct rq *rq = cpu_rq(cpu);
7656
7657 cfs_rq->tg = tg;
7658 cfs_rq->rq = rq;
029632fb
PZ
7659 init_cfs_rq_runtime(cfs_rq);
7660
7661 tg->cfs_rq[cpu] = cfs_rq;
7662 tg->se[cpu] = se;
7663
7664 /* se could be NULL for root_task_group */
7665 if (!se)
7666 return;
7667
fed14d45 7668 if (!parent) {
029632fb 7669 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7670 se->depth = 0;
7671 } else {
029632fb 7672 se->cfs_rq = parent->my_q;
fed14d45
PZ
7673 se->depth = parent->depth + 1;
7674 }
029632fb
PZ
7675
7676 se->my_q = cfs_rq;
0ac9b1c2
PT
7677 /* guarantee group entities always have weight */
7678 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7679 se->parent = parent;
7680}
7681
7682static DEFINE_MUTEX(shares_mutex);
7683
7684int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7685{
7686 int i;
7687 unsigned long flags;
7688
7689 /*
7690 * We can't change the weight of the root cgroup.
7691 */
7692 if (!tg->se[0])
7693 return -EINVAL;
7694
7695 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7696
7697 mutex_lock(&shares_mutex);
7698 if (tg->shares == shares)
7699 goto done;
7700
7701 tg->shares = shares;
7702 for_each_possible_cpu(i) {
7703 struct rq *rq = cpu_rq(i);
7704 struct sched_entity *se;
7705
7706 se = tg->se[i];
7707 /* Propagate contribution to hierarchy */
7708 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7709
7710 /* Possible calls to update_curr() need rq clock */
7711 update_rq_clock(rq);
17bc14b7 7712 for_each_sched_entity(se)
029632fb
PZ
7713 update_cfs_shares(group_cfs_rq(se));
7714 raw_spin_unlock_irqrestore(&rq->lock, flags);
7715 }
7716
7717done:
7718 mutex_unlock(&shares_mutex);
7719 return 0;
7720}
7721#else /* CONFIG_FAIR_GROUP_SCHED */
7722
7723void free_fair_sched_group(struct task_group *tg) { }
7724
7725int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7726{
7727 return 1;
7728}
7729
7730void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7731
7732#endif /* CONFIG_FAIR_GROUP_SCHED */
7733
810b3817 7734
6d686f45 7735static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7736{
7737 struct sched_entity *se = &task->se;
0d721cea
PW
7738 unsigned int rr_interval = 0;
7739
7740 /*
7741 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7742 * idle runqueue:
7743 */
0d721cea 7744 if (rq->cfs.load.weight)
a59f4e07 7745 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7746
7747 return rr_interval;
7748}
7749
bf0f6f24
IM
7750/*
7751 * All the scheduling class methods:
7752 */
029632fb 7753const struct sched_class fair_sched_class = {
5522d5d5 7754 .next = &idle_sched_class,
bf0f6f24
IM
7755 .enqueue_task = enqueue_task_fair,
7756 .dequeue_task = dequeue_task_fair,
7757 .yield_task = yield_task_fair,
d95f4122 7758 .yield_to_task = yield_to_task_fair,
bf0f6f24 7759
2e09bf55 7760 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7761
7762 .pick_next_task = pick_next_task_fair,
7763 .put_prev_task = put_prev_task_fair,
7764
681f3e68 7765#ifdef CONFIG_SMP
4ce72a2c 7766 .select_task_rq = select_task_rq_fair,
0a74bef8 7767 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7768
0bcdcf28
CE
7769 .rq_online = rq_online_fair,
7770 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7771
7772 .task_waking = task_waking_fair,
681f3e68 7773#endif
bf0f6f24 7774
83b699ed 7775 .set_curr_task = set_curr_task_fair,
bf0f6f24 7776 .task_tick = task_tick_fair,
cd29fe6f 7777 .task_fork = task_fork_fair,
cb469845
SR
7778
7779 .prio_changed = prio_changed_fair,
da7a735e 7780 .switched_from = switched_from_fair,
cb469845 7781 .switched_to = switched_to_fair,
810b3817 7782
0d721cea
PW
7783 .get_rr_interval = get_rr_interval_fair,
7784
810b3817 7785#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7786 .task_move_group = task_move_group_fair,
810b3817 7787#endif
bf0f6f24
IM
7788};
7789
7790#ifdef CONFIG_SCHED_DEBUG
029632fb 7791void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7792{
bf0f6f24
IM
7793 struct cfs_rq *cfs_rq;
7794
5973e5b9 7795 rcu_read_lock();
c3b64f1e 7796 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7797 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7798 rcu_read_unlock();
bf0f6f24
IM
7799}
7800#endif
029632fb
PZ
7801
7802__init void init_sched_fair_class(void)
7803{
7804#ifdef CONFIG_SMP
7805 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7806
3451d024 7807#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7808 nohz.next_balance = jiffies;
029632fb 7809 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7810 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7811#endif
7812#endif /* SMP */
7813
7814}