]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
mm: numa: Change page last {nid,pid} into {cpu,pid}
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
ac8e895b
MG
891static inline int task_faults_idx(int nid, int priv)
892{
893 return 2 * nid + priv;
894}
895
896static inline unsigned long task_faults(struct task_struct *p, int nid)
897{
898 if (!p->numa_faults)
899 return 0;
900
901 return p->numa_faults[task_faults_idx(nid, 0)] +
902 p->numa_faults[task_faults_idx(nid, 1)];
903}
904
e6628d5b 905static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
906static unsigned long source_load(int cpu, int type);
907static unsigned long target_load(int cpu, int type);
908static unsigned long power_of(int cpu);
909static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
910
fb13c7ee 911/* Cached statistics for all CPUs within a node */
58d081b5 912struct numa_stats {
fb13c7ee 913 unsigned long nr_running;
58d081b5 914 unsigned long load;
fb13c7ee
MG
915
916 /* Total compute capacity of CPUs on a node */
917 unsigned long power;
918
919 /* Approximate capacity in terms of runnable tasks on a node */
920 unsigned long capacity;
921 int has_capacity;
58d081b5 922};
e6628d5b 923
fb13c7ee
MG
924/*
925 * XXX borrowed from update_sg_lb_stats
926 */
927static void update_numa_stats(struct numa_stats *ns, int nid)
928{
929 int cpu;
930
931 memset(ns, 0, sizeof(*ns));
932 for_each_cpu(cpu, cpumask_of_node(nid)) {
933 struct rq *rq = cpu_rq(cpu);
934
935 ns->nr_running += rq->nr_running;
936 ns->load += weighted_cpuload(cpu);
937 ns->power += power_of(cpu);
938 }
939
940 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
941 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
942 ns->has_capacity = (ns->nr_running < ns->capacity);
943}
944
58d081b5
MG
945struct task_numa_env {
946 struct task_struct *p;
e6628d5b 947
58d081b5
MG
948 int src_cpu, src_nid;
949 int dst_cpu, dst_nid;
e6628d5b 950
58d081b5 951 struct numa_stats src_stats, dst_stats;
e6628d5b 952
fb13c7ee
MG
953 int imbalance_pct, idx;
954
955 struct task_struct *best_task;
956 long best_imp;
58d081b5
MG
957 int best_cpu;
958};
959
fb13c7ee
MG
960static void task_numa_assign(struct task_numa_env *env,
961 struct task_struct *p, long imp)
962{
963 if (env->best_task)
964 put_task_struct(env->best_task);
965 if (p)
966 get_task_struct(p);
967
968 env->best_task = p;
969 env->best_imp = imp;
970 env->best_cpu = env->dst_cpu;
971}
972
973/*
974 * This checks if the overall compute and NUMA accesses of the system would
975 * be improved if the source tasks was migrated to the target dst_cpu taking
976 * into account that it might be best if task running on the dst_cpu should
977 * be exchanged with the source task
978 */
979static void task_numa_compare(struct task_numa_env *env, long imp)
980{
981 struct rq *src_rq = cpu_rq(env->src_cpu);
982 struct rq *dst_rq = cpu_rq(env->dst_cpu);
983 struct task_struct *cur;
984 long dst_load, src_load;
985 long load;
986
987 rcu_read_lock();
988 cur = ACCESS_ONCE(dst_rq->curr);
989 if (cur->pid == 0) /* idle */
990 cur = NULL;
991
992 /*
993 * "imp" is the fault differential for the source task between the
994 * source and destination node. Calculate the total differential for
995 * the source task and potential destination task. The more negative
996 * the value is, the more rmeote accesses that would be expected to
997 * be incurred if the tasks were swapped.
998 */
999 if (cur) {
1000 /* Skip this swap candidate if cannot move to the source cpu */
1001 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1002 goto unlock;
1003
1004 imp += task_faults(cur, env->src_nid) -
1005 task_faults(cur, env->dst_nid);
1006 }
1007
1008 if (imp < env->best_imp)
1009 goto unlock;
1010
1011 if (!cur) {
1012 /* Is there capacity at our destination? */
1013 if (env->src_stats.has_capacity &&
1014 !env->dst_stats.has_capacity)
1015 goto unlock;
1016
1017 goto balance;
1018 }
1019
1020 /* Balance doesn't matter much if we're running a task per cpu */
1021 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1022 goto assign;
1023
1024 /*
1025 * In the overloaded case, try and keep the load balanced.
1026 */
1027balance:
1028 dst_load = env->dst_stats.load;
1029 src_load = env->src_stats.load;
1030
1031 /* XXX missing power terms */
1032 load = task_h_load(env->p);
1033 dst_load += load;
1034 src_load -= load;
1035
1036 if (cur) {
1037 load = task_h_load(cur);
1038 dst_load -= load;
1039 src_load += load;
1040 }
1041
1042 /* make src_load the smaller */
1043 if (dst_load < src_load)
1044 swap(dst_load, src_load);
1045
1046 if (src_load * env->imbalance_pct < dst_load * 100)
1047 goto unlock;
1048
1049assign:
1050 task_numa_assign(env, cur, imp);
1051unlock:
1052 rcu_read_unlock();
1053}
1054
2c8a50aa
MG
1055static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1056{
1057 int cpu;
1058
1059 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1060 /* Skip this CPU if the source task cannot migrate */
1061 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1062 continue;
1063
1064 env->dst_cpu = cpu;
1065 task_numa_compare(env, imp);
1066 }
1067}
1068
58d081b5
MG
1069static int task_numa_migrate(struct task_struct *p)
1070{
58d081b5
MG
1071 struct task_numa_env env = {
1072 .p = p,
fb13c7ee 1073
58d081b5
MG
1074 .src_cpu = task_cpu(p),
1075 .src_nid = cpu_to_node(task_cpu(p)),
fb13c7ee
MG
1076
1077 .imbalance_pct = 112,
1078
1079 .best_task = NULL,
1080 .best_imp = 0,
1081 .best_cpu = -1
58d081b5
MG
1082 };
1083 struct sched_domain *sd;
fb13c7ee 1084 unsigned long faults;
2c8a50aa
MG
1085 int nid, ret;
1086 long imp;
e6628d5b 1087
58d081b5 1088 /*
fb13c7ee
MG
1089 * Pick the lowest SD_NUMA domain, as that would have the smallest
1090 * imbalance and would be the first to start moving tasks about.
1091 *
1092 * And we want to avoid any moving of tasks about, as that would create
1093 * random movement of tasks -- counter the numa conditions we're trying
1094 * to satisfy here.
58d081b5
MG
1095 */
1096 rcu_read_lock();
fb13c7ee
MG
1097 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1098 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1099 rcu_read_unlock();
1100
fb13c7ee
MG
1101 faults = task_faults(p, env.src_nid);
1102 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa
MG
1103 env.dst_nid = p->numa_preferred_nid;
1104 imp = task_faults(env.p, env.dst_nid) - faults;
1105 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1106
e1dda8a7
RR
1107 /* If the preferred nid has capacity, try to use it. */
1108 if (env.dst_stats.has_capacity)
2c8a50aa 1109 task_numa_find_cpu(&env, imp);
e1dda8a7
RR
1110
1111 /* No space available on the preferred nid. Look elsewhere. */
1112 if (env.best_cpu == -1) {
2c8a50aa
MG
1113 for_each_online_node(nid) {
1114 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1115 continue;
58d081b5 1116
2c8a50aa
MG
1117 /* Only consider nodes that recorded more faults */
1118 imp = task_faults(env.p, nid) - faults;
1119 if (imp < 0)
fb13c7ee
MG
1120 continue;
1121
2c8a50aa
MG
1122 env.dst_nid = nid;
1123 update_numa_stats(&env.dst_stats, env.dst_nid);
1124 task_numa_find_cpu(&env, imp);
58d081b5
MG
1125 }
1126 }
1127
fb13c7ee
MG
1128 /* No better CPU than the current one was found. */
1129 if (env.best_cpu == -1)
1130 return -EAGAIN;
1131
1132 if (env.best_task == NULL) {
1133 int ret = migrate_task_to(p, env.best_cpu);
1134 return ret;
1135 }
1136
1137 ret = migrate_swap(p, env.best_task);
1138 put_task_struct(env.best_task);
1139 return ret;
e6628d5b
MG
1140}
1141
6b9a7460
MG
1142/* Attempt to migrate a task to a CPU on the preferred node. */
1143static void numa_migrate_preferred(struct task_struct *p)
1144{
1145 /* Success if task is already running on preferred CPU */
1146 p->numa_migrate_retry = 0;
06ea5e03
RR
1147 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1148 /*
1149 * If migration is temporarily disabled due to a task migration
1150 * then re-enable it now as the task is running on its
1151 * preferred node and memory should migrate locally
1152 */
1153 if (!p->numa_migrate_seq)
1154 p->numa_migrate_seq++;
6b9a7460 1155 return;
06ea5e03 1156 }
6b9a7460
MG
1157
1158 /* This task has no NUMA fault statistics yet */
1159 if (unlikely(p->numa_preferred_nid == -1))
1160 return;
1161
1162 /* Otherwise, try migrate to a CPU on the preferred node */
1163 if (task_numa_migrate(p) != 0)
1164 p->numa_migrate_retry = jiffies + HZ*5;
1165}
1166
cbee9f88
PZ
1167static void task_numa_placement(struct task_struct *p)
1168{
688b7585
MG
1169 int seq, nid, max_nid = -1;
1170 unsigned long max_faults = 0;
cbee9f88 1171
2832bc19 1172 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1173 if (p->numa_scan_seq == seq)
1174 return;
1175 p->numa_scan_seq = seq;
3a7053b3 1176 p->numa_migrate_seq++;
598f0ec0 1177 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1178
688b7585
MG
1179 /* Find the node with the highest number of faults */
1180 for_each_online_node(nid) {
fb13c7ee 1181 unsigned long faults = 0;
ac8e895b 1182 int priv, i;
745d6147 1183
ac8e895b
MG
1184 for (priv = 0; priv < 2; priv++) {
1185 i = task_faults_idx(nid, priv);
745d6147 1186
ac8e895b
MG
1187 /* Decay existing window, copy faults since last scan */
1188 p->numa_faults[i] >>= 1;
1189 p->numa_faults[i] += p->numa_faults_buffer[i];
1190 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1191
1192 faults += p->numa_faults[i];
ac8e895b
MG
1193 }
1194
688b7585
MG
1195 if (faults > max_faults) {
1196 max_faults = faults;
1197 max_nid = nid;
1198 }
1199 }
1200
6b9a7460 1201 /* Preferred node as the node with the most faults */
3a7053b3 1202 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1203 /* Update the preferred nid and migrate task if possible */
688b7585 1204 p->numa_preferred_nid = max_nid;
6fe6b2d6 1205 p->numa_migrate_seq = 1;
6b9a7460 1206 numa_migrate_preferred(p);
3a7053b3 1207 }
cbee9f88
PZ
1208}
1209
1210/*
1211 * Got a PROT_NONE fault for a page on @node.
1212 */
90572890 1213void task_numa_fault(int last_cpupid, int node, int pages, bool migrated)
cbee9f88
PZ
1214{
1215 struct task_struct *p = current;
ac8e895b 1216 int priv;
cbee9f88 1217
10e84b97 1218 if (!numabalancing_enabled)
1a687c2e
MG
1219 return;
1220
9ff1d9ff
MG
1221 /* for example, ksmd faulting in a user's mm */
1222 if (!p->mm)
1223 return;
1224
b795854b
MG
1225 /*
1226 * First accesses are treated as private, otherwise consider accesses
1227 * to be private if the accessing pid has not changed
1228 */
90572890
PZ
1229 if (!cpupid_pid_unset(last_cpupid))
1230 priv = ((p->pid & LAST__PID_MASK) == cpupid_to_pid(last_cpupid));
b795854b
MG
1231 else
1232 priv = 1;
ac8e895b 1233
f809ca9a
MG
1234 /* Allocate buffer to track faults on a per-node basis */
1235 if (unlikely(!p->numa_faults)) {
ac8e895b 1236 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1237
745d6147
MG
1238 /* numa_faults and numa_faults_buffer share the allocation */
1239 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1240 if (!p->numa_faults)
1241 return;
745d6147
MG
1242
1243 BUG_ON(p->numa_faults_buffer);
ac8e895b 1244 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
f809ca9a 1245 }
cbee9f88 1246
fb003b80 1247 /*
b8593bfd
MG
1248 * If pages are properly placed (did not migrate) then scan slower.
1249 * This is reset periodically in case of phase changes
fb003b80 1250 */
598f0ec0
MG
1251 if (!migrated) {
1252 /* Initialise if necessary */
1253 if (!p->numa_scan_period_max)
1254 p->numa_scan_period_max = task_scan_max(p);
1255
1256 p->numa_scan_period = min(p->numa_scan_period_max,
1257 p->numa_scan_period + 10);
1258 }
fb003b80 1259
cbee9f88 1260 task_numa_placement(p);
f809ca9a 1261
6b9a7460
MG
1262 /* Retry task to preferred node migration if it previously failed */
1263 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1264 numa_migrate_preferred(p);
1265
ac8e895b 1266 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1267}
1268
6e5fb223
PZ
1269static void reset_ptenuma_scan(struct task_struct *p)
1270{
1271 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1272 p->mm->numa_scan_offset = 0;
1273}
1274
cbee9f88
PZ
1275/*
1276 * The expensive part of numa migration is done from task_work context.
1277 * Triggered from task_tick_numa().
1278 */
1279void task_numa_work(struct callback_head *work)
1280{
1281 unsigned long migrate, next_scan, now = jiffies;
1282 struct task_struct *p = current;
1283 struct mm_struct *mm = p->mm;
6e5fb223 1284 struct vm_area_struct *vma;
9f40604c 1285 unsigned long start, end;
598f0ec0 1286 unsigned long nr_pte_updates = 0;
9f40604c 1287 long pages;
cbee9f88
PZ
1288
1289 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1290
1291 work->next = work; /* protect against double add */
1292 /*
1293 * Who cares about NUMA placement when they're dying.
1294 *
1295 * NOTE: make sure not to dereference p->mm before this check,
1296 * exit_task_work() happens _after_ exit_mm() so we could be called
1297 * without p->mm even though we still had it when we enqueued this
1298 * work.
1299 */
1300 if (p->flags & PF_EXITING)
1301 return;
1302
7e8d16b6
MG
1303 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1304 mm->numa_next_scan = now +
1305 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1306 mm->numa_next_reset = now +
1307 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1308 }
1309
b8593bfd
MG
1310 /*
1311 * Reset the scan period if enough time has gone by. Objective is that
1312 * scanning will be reduced if pages are properly placed. As tasks
1313 * can enter different phases this needs to be re-examined. Lacking
1314 * proper tracking of reference behaviour, this blunt hammer is used.
1315 */
1316 migrate = mm->numa_next_reset;
1317 if (time_after(now, migrate)) {
598f0ec0 1318 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1319 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1320 xchg(&mm->numa_next_reset, next_scan);
1321 }
1322
cbee9f88
PZ
1323 /*
1324 * Enforce maximal scan/migration frequency..
1325 */
1326 migrate = mm->numa_next_scan;
1327 if (time_before(now, migrate))
1328 return;
1329
598f0ec0
MG
1330 if (p->numa_scan_period == 0) {
1331 p->numa_scan_period_max = task_scan_max(p);
1332 p->numa_scan_period = task_scan_min(p);
1333 }
cbee9f88 1334
fb003b80 1335 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1336 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1337 return;
1338
19a78d11
PZ
1339 /*
1340 * Delay this task enough that another task of this mm will likely win
1341 * the next time around.
1342 */
1343 p->node_stamp += 2 * TICK_NSEC;
1344
9f40604c
MG
1345 start = mm->numa_scan_offset;
1346 pages = sysctl_numa_balancing_scan_size;
1347 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1348 if (!pages)
1349 return;
cbee9f88 1350
6e5fb223 1351 down_read(&mm->mmap_sem);
9f40604c 1352 vma = find_vma(mm, start);
6e5fb223
PZ
1353 if (!vma) {
1354 reset_ptenuma_scan(p);
9f40604c 1355 start = 0;
6e5fb223
PZ
1356 vma = mm->mmap;
1357 }
9f40604c 1358 for (; vma; vma = vma->vm_next) {
fc314724 1359 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1360 continue;
1361
4591ce4f
MG
1362 /*
1363 * Shared library pages mapped by multiple processes are not
1364 * migrated as it is expected they are cache replicated. Avoid
1365 * hinting faults in read-only file-backed mappings or the vdso
1366 * as migrating the pages will be of marginal benefit.
1367 */
1368 if (!vma->vm_mm ||
1369 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1370 continue;
1371
9f40604c
MG
1372 do {
1373 start = max(start, vma->vm_start);
1374 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1375 end = min(end, vma->vm_end);
598f0ec0
MG
1376 nr_pte_updates += change_prot_numa(vma, start, end);
1377
1378 /*
1379 * Scan sysctl_numa_balancing_scan_size but ensure that
1380 * at least one PTE is updated so that unused virtual
1381 * address space is quickly skipped.
1382 */
1383 if (nr_pte_updates)
1384 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1385
9f40604c
MG
1386 start = end;
1387 if (pages <= 0)
1388 goto out;
1389 } while (end != vma->vm_end);
cbee9f88 1390 }
6e5fb223 1391
9f40604c 1392out:
f307cd1a
MG
1393 /*
1394 * If the whole process was scanned without updates then no NUMA
1395 * hinting faults are being recorded and scan rate should be lower.
1396 */
1397 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1398 p->numa_scan_period = min(p->numa_scan_period_max,
1399 p->numa_scan_period << 1);
1400
1401 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1402 mm->numa_next_scan = next_scan;
1403 }
1404
6e5fb223 1405 /*
c69307d5
PZ
1406 * It is possible to reach the end of the VMA list but the last few
1407 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1408 * would find the !migratable VMA on the next scan but not reset the
1409 * scanner to the start so check it now.
6e5fb223
PZ
1410 */
1411 if (vma)
9f40604c 1412 mm->numa_scan_offset = start;
6e5fb223
PZ
1413 else
1414 reset_ptenuma_scan(p);
1415 up_read(&mm->mmap_sem);
cbee9f88
PZ
1416}
1417
1418/*
1419 * Drive the periodic memory faults..
1420 */
1421void task_tick_numa(struct rq *rq, struct task_struct *curr)
1422{
1423 struct callback_head *work = &curr->numa_work;
1424 u64 period, now;
1425
1426 /*
1427 * We don't care about NUMA placement if we don't have memory.
1428 */
1429 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1430 return;
1431
1432 /*
1433 * Using runtime rather than walltime has the dual advantage that
1434 * we (mostly) drive the selection from busy threads and that the
1435 * task needs to have done some actual work before we bother with
1436 * NUMA placement.
1437 */
1438 now = curr->se.sum_exec_runtime;
1439 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1440
1441 if (now - curr->node_stamp > period) {
4b96a29b 1442 if (!curr->node_stamp)
598f0ec0 1443 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1444 curr->node_stamp += period;
cbee9f88
PZ
1445
1446 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1447 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1448 task_work_add(curr, work, true);
1449 }
1450 }
1451}
1452#else
1453static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1454{
1455}
1456#endif /* CONFIG_NUMA_BALANCING */
1457
30cfdcfc
DA
1458static void
1459account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1460{
1461 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1462 if (!parent_entity(se))
029632fb 1463 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1464#ifdef CONFIG_SMP
1465 if (entity_is_task(se))
eb95308e 1466 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1467#endif
30cfdcfc 1468 cfs_rq->nr_running++;
30cfdcfc
DA
1469}
1470
1471static void
1472account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1473{
1474 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1475 if (!parent_entity(se))
029632fb 1476 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1477 if (entity_is_task(se))
b87f1724 1478 list_del_init(&se->group_node);
30cfdcfc 1479 cfs_rq->nr_running--;
30cfdcfc
DA
1480}
1481
3ff6dcac
YZ
1482#ifdef CONFIG_FAIR_GROUP_SCHED
1483# ifdef CONFIG_SMP
cf5f0acf
PZ
1484static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1485{
1486 long tg_weight;
1487
1488 /*
1489 * Use this CPU's actual weight instead of the last load_contribution
1490 * to gain a more accurate current total weight. See
1491 * update_cfs_rq_load_contribution().
1492 */
bf5b986e 1493 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1494 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1495 tg_weight += cfs_rq->load.weight;
1496
1497 return tg_weight;
1498}
1499
6d5ab293 1500static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1501{
cf5f0acf 1502 long tg_weight, load, shares;
3ff6dcac 1503
cf5f0acf 1504 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1505 load = cfs_rq->load.weight;
3ff6dcac 1506
3ff6dcac 1507 shares = (tg->shares * load);
cf5f0acf
PZ
1508 if (tg_weight)
1509 shares /= tg_weight;
3ff6dcac
YZ
1510
1511 if (shares < MIN_SHARES)
1512 shares = MIN_SHARES;
1513 if (shares > tg->shares)
1514 shares = tg->shares;
1515
1516 return shares;
1517}
3ff6dcac 1518# else /* CONFIG_SMP */
6d5ab293 1519static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1520{
1521 return tg->shares;
1522}
3ff6dcac 1523# endif /* CONFIG_SMP */
2069dd75
PZ
1524static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1525 unsigned long weight)
1526{
19e5eebb
PT
1527 if (se->on_rq) {
1528 /* commit outstanding execution time */
1529 if (cfs_rq->curr == se)
1530 update_curr(cfs_rq);
2069dd75 1531 account_entity_dequeue(cfs_rq, se);
19e5eebb 1532 }
2069dd75
PZ
1533
1534 update_load_set(&se->load, weight);
1535
1536 if (se->on_rq)
1537 account_entity_enqueue(cfs_rq, se);
1538}
1539
82958366
PT
1540static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1541
6d5ab293 1542static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1543{
1544 struct task_group *tg;
1545 struct sched_entity *se;
3ff6dcac 1546 long shares;
2069dd75 1547
2069dd75
PZ
1548 tg = cfs_rq->tg;
1549 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1550 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1551 return;
3ff6dcac
YZ
1552#ifndef CONFIG_SMP
1553 if (likely(se->load.weight == tg->shares))
1554 return;
1555#endif
6d5ab293 1556 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1557
1558 reweight_entity(cfs_rq_of(se), se, shares);
1559}
1560#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1561static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1562{
1563}
1564#endif /* CONFIG_FAIR_GROUP_SCHED */
1565
141965c7 1566#ifdef CONFIG_SMP
5b51f2f8
PT
1567/*
1568 * We choose a half-life close to 1 scheduling period.
1569 * Note: The tables below are dependent on this value.
1570 */
1571#define LOAD_AVG_PERIOD 32
1572#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1573#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1574
1575/* Precomputed fixed inverse multiplies for multiplication by y^n */
1576static const u32 runnable_avg_yN_inv[] = {
1577 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1578 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1579 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1580 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1581 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1582 0x85aac367, 0x82cd8698,
1583};
1584
1585/*
1586 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1587 * over-estimates when re-combining.
1588 */
1589static const u32 runnable_avg_yN_sum[] = {
1590 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1591 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1592 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1593};
1594
9d85f21c
PT
1595/*
1596 * Approximate:
1597 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1598 */
1599static __always_inline u64 decay_load(u64 val, u64 n)
1600{
5b51f2f8
PT
1601 unsigned int local_n;
1602
1603 if (!n)
1604 return val;
1605 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1606 return 0;
1607
1608 /* after bounds checking we can collapse to 32-bit */
1609 local_n = n;
1610
1611 /*
1612 * As y^PERIOD = 1/2, we can combine
1613 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1614 * With a look-up table which covers k^n (n<PERIOD)
1615 *
1616 * To achieve constant time decay_load.
1617 */
1618 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1619 val >>= local_n / LOAD_AVG_PERIOD;
1620 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1621 }
1622
5b51f2f8
PT
1623 val *= runnable_avg_yN_inv[local_n];
1624 /* We don't use SRR here since we always want to round down. */
1625 return val >> 32;
1626}
1627
1628/*
1629 * For updates fully spanning n periods, the contribution to runnable
1630 * average will be: \Sum 1024*y^n
1631 *
1632 * We can compute this reasonably efficiently by combining:
1633 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1634 */
1635static u32 __compute_runnable_contrib(u64 n)
1636{
1637 u32 contrib = 0;
1638
1639 if (likely(n <= LOAD_AVG_PERIOD))
1640 return runnable_avg_yN_sum[n];
1641 else if (unlikely(n >= LOAD_AVG_MAX_N))
1642 return LOAD_AVG_MAX;
1643
1644 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1645 do {
1646 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1647 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1648
1649 n -= LOAD_AVG_PERIOD;
1650 } while (n > LOAD_AVG_PERIOD);
1651
1652 contrib = decay_load(contrib, n);
1653 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1654}
1655
1656/*
1657 * We can represent the historical contribution to runnable average as the
1658 * coefficients of a geometric series. To do this we sub-divide our runnable
1659 * history into segments of approximately 1ms (1024us); label the segment that
1660 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1661 *
1662 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1663 * p0 p1 p2
1664 * (now) (~1ms ago) (~2ms ago)
1665 *
1666 * Let u_i denote the fraction of p_i that the entity was runnable.
1667 *
1668 * We then designate the fractions u_i as our co-efficients, yielding the
1669 * following representation of historical load:
1670 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1671 *
1672 * We choose y based on the with of a reasonably scheduling period, fixing:
1673 * y^32 = 0.5
1674 *
1675 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1676 * approximately half as much as the contribution to load within the last ms
1677 * (u_0).
1678 *
1679 * When a period "rolls over" and we have new u_0`, multiplying the previous
1680 * sum again by y is sufficient to update:
1681 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1682 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1683 */
1684static __always_inline int __update_entity_runnable_avg(u64 now,
1685 struct sched_avg *sa,
1686 int runnable)
1687{
5b51f2f8
PT
1688 u64 delta, periods;
1689 u32 runnable_contrib;
9d85f21c
PT
1690 int delta_w, decayed = 0;
1691
1692 delta = now - sa->last_runnable_update;
1693 /*
1694 * This should only happen when time goes backwards, which it
1695 * unfortunately does during sched clock init when we swap over to TSC.
1696 */
1697 if ((s64)delta < 0) {
1698 sa->last_runnable_update = now;
1699 return 0;
1700 }
1701
1702 /*
1703 * Use 1024ns as the unit of measurement since it's a reasonable
1704 * approximation of 1us and fast to compute.
1705 */
1706 delta >>= 10;
1707 if (!delta)
1708 return 0;
1709 sa->last_runnable_update = now;
1710
1711 /* delta_w is the amount already accumulated against our next period */
1712 delta_w = sa->runnable_avg_period % 1024;
1713 if (delta + delta_w >= 1024) {
1714 /* period roll-over */
1715 decayed = 1;
1716
1717 /*
1718 * Now that we know we're crossing a period boundary, figure
1719 * out how much from delta we need to complete the current
1720 * period and accrue it.
1721 */
1722 delta_w = 1024 - delta_w;
5b51f2f8
PT
1723 if (runnable)
1724 sa->runnable_avg_sum += delta_w;
1725 sa->runnable_avg_period += delta_w;
1726
1727 delta -= delta_w;
1728
1729 /* Figure out how many additional periods this update spans */
1730 periods = delta / 1024;
1731 delta %= 1024;
1732
1733 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1734 periods + 1);
1735 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1736 periods + 1);
1737
1738 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1739 runnable_contrib = __compute_runnable_contrib(periods);
1740 if (runnable)
1741 sa->runnable_avg_sum += runnable_contrib;
1742 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1743 }
1744
1745 /* Remainder of delta accrued against u_0` */
1746 if (runnable)
1747 sa->runnable_avg_sum += delta;
1748 sa->runnable_avg_period += delta;
1749
1750 return decayed;
1751}
1752
9ee474f5 1753/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1754static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1755{
1756 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1757 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1758
1759 decays -= se->avg.decay_count;
1760 if (!decays)
aff3e498 1761 return 0;
9ee474f5
PT
1762
1763 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1764 se->avg.decay_count = 0;
aff3e498
PT
1765
1766 return decays;
9ee474f5
PT
1767}
1768
c566e8e9
PT
1769#ifdef CONFIG_FAIR_GROUP_SCHED
1770static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1771 int force_update)
1772{
1773 struct task_group *tg = cfs_rq->tg;
bf5b986e 1774 long tg_contrib;
c566e8e9
PT
1775
1776 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1777 tg_contrib -= cfs_rq->tg_load_contrib;
1778
bf5b986e
AS
1779 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1780 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1781 cfs_rq->tg_load_contrib += tg_contrib;
1782 }
1783}
8165e145 1784
bb17f655
PT
1785/*
1786 * Aggregate cfs_rq runnable averages into an equivalent task_group
1787 * representation for computing load contributions.
1788 */
1789static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1790 struct cfs_rq *cfs_rq)
1791{
1792 struct task_group *tg = cfs_rq->tg;
1793 long contrib;
1794
1795 /* The fraction of a cpu used by this cfs_rq */
1796 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1797 sa->runnable_avg_period + 1);
1798 contrib -= cfs_rq->tg_runnable_contrib;
1799
1800 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1801 atomic_add(contrib, &tg->runnable_avg);
1802 cfs_rq->tg_runnable_contrib += contrib;
1803 }
1804}
1805
8165e145
PT
1806static inline void __update_group_entity_contrib(struct sched_entity *se)
1807{
1808 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1809 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1810 int runnable_avg;
1811
8165e145
PT
1812 u64 contrib;
1813
1814 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1815 se->avg.load_avg_contrib = div_u64(contrib,
1816 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1817
1818 /*
1819 * For group entities we need to compute a correction term in the case
1820 * that they are consuming <1 cpu so that we would contribute the same
1821 * load as a task of equal weight.
1822 *
1823 * Explicitly co-ordinating this measurement would be expensive, but
1824 * fortunately the sum of each cpus contribution forms a usable
1825 * lower-bound on the true value.
1826 *
1827 * Consider the aggregate of 2 contributions. Either they are disjoint
1828 * (and the sum represents true value) or they are disjoint and we are
1829 * understating by the aggregate of their overlap.
1830 *
1831 * Extending this to N cpus, for a given overlap, the maximum amount we
1832 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1833 * cpus that overlap for this interval and w_i is the interval width.
1834 *
1835 * On a small machine; the first term is well-bounded which bounds the
1836 * total error since w_i is a subset of the period. Whereas on a
1837 * larger machine, while this first term can be larger, if w_i is the
1838 * of consequential size guaranteed to see n_i*w_i quickly converge to
1839 * our upper bound of 1-cpu.
1840 */
1841 runnable_avg = atomic_read(&tg->runnable_avg);
1842 if (runnable_avg < NICE_0_LOAD) {
1843 se->avg.load_avg_contrib *= runnable_avg;
1844 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1845 }
8165e145 1846}
c566e8e9
PT
1847#else
1848static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1849 int force_update) {}
bb17f655
PT
1850static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1851 struct cfs_rq *cfs_rq) {}
8165e145 1852static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1853#endif
1854
8165e145
PT
1855static inline void __update_task_entity_contrib(struct sched_entity *se)
1856{
1857 u32 contrib;
1858
1859 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1860 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1861 contrib /= (se->avg.runnable_avg_period + 1);
1862 se->avg.load_avg_contrib = scale_load(contrib);
1863}
1864
2dac754e
PT
1865/* Compute the current contribution to load_avg by se, return any delta */
1866static long __update_entity_load_avg_contrib(struct sched_entity *se)
1867{
1868 long old_contrib = se->avg.load_avg_contrib;
1869
8165e145
PT
1870 if (entity_is_task(se)) {
1871 __update_task_entity_contrib(se);
1872 } else {
bb17f655 1873 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1874 __update_group_entity_contrib(se);
1875 }
2dac754e
PT
1876
1877 return se->avg.load_avg_contrib - old_contrib;
1878}
1879
9ee474f5
PT
1880static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1881 long load_contrib)
1882{
1883 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1884 cfs_rq->blocked_load_avg -= load_contrib;
1885 else
1886 cfs_rq->blocked_load_avg = 0;
1887}
1888
f1b17280
PT
1889static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1890
9d85f21c 1891/* Update a sched_entity's runnable average */
9ee474f5
PT
1892static inline void update_entity_load_avg(struct sched_entity *se,
1893 int update_cfs_rq)
9d85f21c 1894{
2dac754e
PT
1895 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1896 long contrib_delta;
f1b17280 1897 u64 now;
2dac754e 1898
f1b17280
PT
1899 /*
1900 * For a group entity we need to use their owned cfs_rq_clock_task() in
1901 * case they are the parent of a throttled hierarchy.
1902 */
1903 if (entity_is_task(se))
1904 now = cfs_rq_clock_task(cfs_rq);
1905 else
1906 now = cfs_rq_clock_task(group_cfs_rq(se));
1907
1908 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1909 return;
1910
1911 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1912
1913 if (!update_cfs_rq)
1914 return;
1915
2dac754e
PT
1916 if (se->on_rq)
1917 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1918 else
1919 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1920}
1921
1922/*
1923 * Decay the load contributed by all blocked children and account this so that
1924 * their contribution may appropriately discounted when they wake up.
1925 */
aff3e498 1926static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1927{
f1b17280 1928 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1929 u64 decays;
1930
1931 decays = now - cfs_rq->last_decay;
aff3e498 1932 if (!decays && !force_update)
9ee474f5
PT
1933 return;
1934
2509940f
AS
1935 if (atomic_long_read(&cfs_rq->removed_load)) {
1936 unsigned long removed_load;
1937 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1938 subtract_blocked_load_contrib(cfs_rq, removed_load);
1939 }
9ee474f5 1940
aff3e498
PT
1941 if (decays) {
1942 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1943 decays);
1944 atomic64_add(decays, &cfs_rq->decay_counter);
1945 cfs_rq->last_decay = now;
1946 }
c566e8e9
PT
1947
1948 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1949}
18bf2805
BS
1950
1951static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1952{
78becc27 1953 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1954 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1955}
2dac754e
PT
1956
1957/* Add the load generated by se into cfs_rq's child load-average */
1958static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1959 struct sched_entity *se,
1960 int wakeup)
2dac754e 1961{
aff3e498
PT
1962 /*
1963 * We track migrations using entity decay_count <= 0, on a wake-up
1964 * migration we use a negative decay count to track the remote decays
1965 * accumulated while sleeping.
a75cdaa9
AS
1966 *
1967 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1968 * are seen by enqueue_entity_load_avg() as a migration with an already
1969 * constructed load_avg_contrib.
aff3e498
PT
1970 */
1971 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1972 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1973 if (se->avg.decay_count) {
1974 /*
1975 * In a wake-up migration we have to approximate the
1976 * time sleeping. This is because we can't synchronize
1977 * clock_task between the two cpus, and it is not
1978 * guaranteed to be read-safe. Instead, we can
1979 * approximate this using our carried decays, which are
1980 * explicitly atomically readable.
1981 */
1982 se->avg.last_runnable_update -= (-se->avg.decay_count)
1983 << 20;
1984 update_entity_load_avg(se, 0);
1985 /* Indicate that we're now synchronized and on-rq */
1986 se->avg.decay_count = 0;
1987 }
9ee474f5
PT
1988 wakeup = 0;
1989 } else {
282cf499
AS
1990 /*
1991 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1992 * would have made count negative); we must be careful to avoid
1993 * double-accounting blocked time after synchronizing decays.
1994 */
1995 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1996 << 20;
9ee474f5
PT
1997 }
1998
aff3e498
PT
1999 /* migrated tasks did not contribute to our blocked load */
2000 if (wakeup) {
9ee474f5 2001 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2002 update_entity_load_avg(se, 0);
2003 }
9ee474f5 2004
2dac754e 2005 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2006 /* we force update consideration on load-balancer moves */
2007 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2008}
2009
9ee474f5
PT
2010/*
2011 * Remove se's load from this cfs_rq child load-average, if the entity is
2012 * transitioning to a blocked state we track its projected decay using
2013 * blocked_load_avg.
2014 */
2dac754e 2015static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2016 struct sched_entity *se,
2017 int sleep)
2dac754e 2018{
9ee474f5 2019 update_entity_load_avg(se, 1);
aff3e498
PT
2020 /* we force update consideration on load-balancer moves */
2021 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2022
2dac754e 2023 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2024 if (sleep) {
2025 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2026 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2027 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2028}
642dbc39
VG
2029
2030/*
2031 * Update the rq's load with the elapsed running time before entering
2032 * idle. if the last scheduled task is not a CFS task, idle_enter will
2033 * be the only way to update the runnable statistic.
2034 */
2035void idle_enter_fair(struct rq *this_rq)
2036{
2037 update_rq_runnable_avg(this_rq, 1);
2038}
2039
2040/*
2041 * Update the rq's load with the elapsed idle time before a task is
2042 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2043 * be the only way to update the runnable statistic.
2044 */
2045void idle_exit_fair(struct rq *this_rq)
2046{
2047 update_rq_runnable_avg(this_rq, 0);
2048}
2049
9d85f21c 2050#else
9ee474f5
PT
2051static inline void update_entity_load_avg(struct sched_entity *se,
2052 int update_cfs_rq) {}
18bf2805 2053static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2054static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2055 struct sched_entity *se,
2056 int wakeup) {}
2dac754e 2057static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2058 struct sched_entity *se,
2059 int sleep) {}
aff3e498
PT
2060static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2061 int force_update) {}
9d85f21c
PT
2062#endif
2063
2396af69 2064static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2065{
bf0f6f24 2066#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2067 struct task_struct *tsk = NULL;
2068
2069 if (entity_is_task(se))
2070 tsk = task_of(se);
2071
41acab88 2072 if (se->statistics.sleep_start) {
78becc27 2073 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2074
2075 if ((s64)delta < 0)
2076 delta = 0;
2077
41acab88
LDM
2078 if (unlikely(delta > se->statistics.sleep_max))
2079 se->statistics.sleep_max = delta;
bf0f6f24 2080
8c79a045 2081 se->statistics.sleep_start = 0;
41acab88 2082 se->statistics.sum_sleep_runtime += delta;
9745512c 2083
768d0c27 2084 if (tsk) {
e414314c 2085 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2086 trace_sched_stat_sleep(tsk, delta);
2087 }
bf0f6f24 2088 }
41acab88 2089 if (se->statistics.block_start) {
78becc27 2090 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2091
2092 if ((s64)delta < 0)
2093 delta = 0;
2094
41acab88
LDM
2095 if (unlikely(delta > se->statistics.block_max))
2096 se->statistics.block_max = delta;
bf0f6f24 2097
8c79a045 2098 se->statistics.block_start = 0;
41acab88 2099 se->statistics.sum_sleep_runtime += delta;
30084fbd 2100
e414314c 2101 if (tsk) {
8f0dfc34 2102 if (tsk->in_iowait) {
41acab88
LDM
2103 se->statistics.iowait_sum += delta;
2104 se->statistics.iowait_count++;
768d0c27 2105 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2106 }
2107
b781a602
AV
2108 trace_sched_stat_blocked(tsk, delta);
2109
e414314c
PZ
2110 /*
2111 * Blocking time is in units of nanosecs, so shift by
2112 * 20 to get a milliseconds-range estimation of the
2113 * amount of time that the task spent sleeping:
2114 */
2115 if (unlikely(prof_on == SLEEP_PROFILING)) {
2116 profile_hits(SLEEP_PROFILING,
2117 (void *)get_wchan(tsk),
2118 delta >> 20);
2119 }
2120 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2121 }
bf0f6f24
IM
2122 }
2123#endif
2124}
2125
ddc97297
PZ
2126static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2127{
2128#ifdef CONFIG_SCHED_DEBUG
2129 s64 d = se->vruntime - cfs_rq->min_vruntime;
2130
2131 if (d < 0)
2132 d = -d;
2133
2134 if (d > 3*sysctl_sched_latency)
2135 schedstat_inc(cfs_rq, nr_spread_over);
2136#endif
2137}
2138
aeb73b04
PZ
2139static void
2140place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2141{
1af5f730 2142 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2143
2cb8600e
PZ
2144 /*
2145 * The 'current' period is already promised to the current tasks,
2146 * however the extra weight of the new task will slow them down a
2147 * little, place the new task so that it fits in the slot that
2148 * stays open at the end.
2149 */
94dfb5e7 2150 if (initial && sched_feat(START_DEBIT))
f9c0b095 2151 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2152
a2e7a7eb 2153 /* sleeps up to a single latency don't count. */
5ca9880c 2154 if (!initial) {
a2e7a7eb 2155 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2156
a2e7a7eb
MG
2157 /*
2158 * Halve their sleep time's effect, to allow
2159 * for a gentler effect of sleepers:
2160 */
2161 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2162 thresh >>= 1;
51e0304c 2163
a2e7a7eb 2164 vruntime -= thresh;
aeb73b04
PZ
2165 }
2166
b5d9d734 2167 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2168 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2169}
2170
d3d9dc33
PT
2171static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2172
bf0f6f24 2173static void
88ec22d3 2174enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2175{
88ec22d3
PZ
2176 /*
2177 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2178 * through calling update_curr().
88ec22d3 2179 */
371fd7e7 2180 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2181 se->vruntime += cfs_rq->min_vruntime;
2182
bf0f6f24 2183 /*
a2a2d680 2184 * Update run-time statistics of the 'current'.
bf0f6f24 2185 */
b7cc0896 2186 update_curr(cfs_rq);
f269ae04 2187 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2188 account_entity_enqueue(cfs_rq, se);
2189 update_cfs_shares(cfs_rq);
bf0f6f24 2190
88ec22d3 2191 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2192 place_entity(cfs_rq, se, 0);
2396af69 2193 enqueue_sleeper(cfs_rq, se);
e9acbff6 2194 }
bf0f6f24 2195
d2417e5a 2196 update_stats_enqueue(cfs_rq, se);
ddc97297 2197 check_spread(cfs_rq, se);
83b699ed
SV
2198 if (se != cfs_rq->curr)
2199 __enqueue_entity(cfs_rq, se);
2069dd75 2200 se->on_rq = 1;
3d4b47b4 2201
d3d9dc33 2202 if (cfs_rq->nr_running == 1) {
3d4b47b4 2203 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2204 check_enqueue_throttle(cfs_rq);
2205 }
bf0f6f24
IM
2206}
2207
2c13c919 2208static void __clear_buddies_last(struct sched_entity *se)
2002c695 2209{
2c13c919
RR
2210 for_each_sched_entity(se) {
2211 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2212 if (cfs_rq->last == se)
2213 cfs_rq->last = NULL;
2214 else
2215 break;
2216 }
2217}
2002c695 2218
2c13c919
RR
2219static void __clear_buddies_next(struct sched_entity *se)
2220{
2221 for_each_sched_entity(se) {
2222 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2223 if (cfs_rq->next == se)
2224 cfs_rq->next = NULL;
2225 else
2226 break;
2227 }
2002c695
PZ
2228}
2229
ac53db59
RR
2230static void __clear_buddies_skip(struct sched_entity *se)
2231{
2232 for_each_sched_entity(se) {
2233 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2234 if (cfs_rq->skip == se)
2235 cfs_rq->skip = NULL;
2236 else
2237 break;
2238 }
2239}
2240
a571bbea
PZ
2241static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2242{
2c13c919
RR
2243 if (cfs_rq->last == se)
2244 __clear_buddies_last(se);
2245
2246 if (cfs_rq->next == se)
2247 __clear_buddies_next(se);
ac53db59
RR
2248
2249 if (cfs_rq->skip == se)
2250 __clear_buddies_skip(se);
a571bbea
PZ
2251}
2252
6c16a6dc 2253static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2254
bf0f6f24 2255static void
371fd7e7 2256dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2257{
a2a2d680
DA
2258 /*
2259 * Update run-time statistics of the 'current'.
2260 */
2261 update_curr(cfs_rq);
17bc14b7 2262 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2263
19b6a2e3 2264 update_stats_dequeue(cfs_rq, se);
371fd7e7 2265 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2266#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2267 if (entity_is_task(se)) {
2268 struct task_struct *tsk = task_of(se);
2269
2270 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2271 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2272 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2273 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2274 }
db36cc7d 2275#endif
67e9fb2a
PZ
2276 }
2277
2002c695 2278 clear_buddies(cfs_rq, se);
4793241b 2279
83b699ed 2280 if (se != cfs_rq->curr)
30cfdcfc 2281 __dequeue_entity(cfs_rq, se);
17bc14b7 2282 se->on_rq = 0;
30cfdcfc 2283 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2284
2285 /*
2286 * Normalize the entity after updating the min_vruntime because the
2287 * update can refer to the ->curr item and we need to reflect this
2288 * movement in our normalized position.
2289 */
371fd7e7 2290 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2291 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2292
d8b4986d
PT
2293 /* return excess runtime on last dequeue */
2294 return_cfs_rq_runtime(cfs_rq);
2295
1e876231 2296 update_min_vruntime(cfs_rq);
17bc14b7 2297 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2298}
2299
2300/*
2301 * Preempt the current task with a newly woken task if needed:
2302 */
7c92e54f 2303static void
2e09bf55 2304check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2305{
11697830 2306 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2307 struct sched_entity *se;
2308 s64 delta;
11697830 2309
6d0f0ebd 2310 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2311 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2312 if (delta_exec > ideal_runtime) {
bf0f6f24 2313 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2314 /*
2315 * The current task ran long enough, ensure it doesn't get
2316 * re-elected due to buddy favours.
2317 */
2318 clear_buddies(cfs_rq, curr);
f685ceac
MG
2319 return;
2320 }
2321
2322 /*
2323 * Ensure that a task that missed wakeup preemption by a
2324 * narrow margin doesn't have to wait for a full slice.
2325 * This also mitigates buddy induced latencies under load.
2326 */
f685ceac
MG
2327 if (delta_exec < sysctl_sched_min_granularity)
2328 return;
2329
f4cfb33e
WX
2330 se = __pick_first_entity(cfs_rq);
2331 delta = curr->vruntime - se->vruntime;
f685ceac 2332
f4cfb33e
WX
2333 if (delta < 0)
2334 return;
d7d82944 2335
f4cfb33e
WX
2336 if (delta > ideal_runtime)
2337 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2338}
2339
83b699ed 2340static void
8494f412 2341set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2342{
83b699ed
SV
2343 /* 'current' is not kept within the tree. */
2344 if (se->on_rq) {
2345 /*
2346 * Any task has to be enqueued before it get to execute on
2347 * a CPU. So account for the time it spent waiting on the
2348 * runqueue.
2349 */
2350 update_stats_wait_end(cfs_rq, se);
2351 __dequeue_entity(cfs_rq, se);
2352 }
2353
79303e9e 2354 update_stats_curr_start(cfs_rq, se);
429d43bc 2355 cfs_rq->curr = se;
eba1ed4b
IM
2356#ifdef CONFIG_SCHEDSTATS
2357 /*
2358 * Track our maximum slice length, if the CPU's load is at
2359 * least twice that of our own weight (i.e. dont track it
2360 * when there are only lesser-weight tasks around):
2361 */
495eca49 2362 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2363 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2364 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2365 }
2366#endif
4a55b450 2367 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2368}
2369
3f3a4904
PZ
2370static int
2371wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2372
ac53db59
RR
2373/*
2374 * Pick the next process, keeping these things in mind, in this order:
2375 * 1) keep things fair between processes/task groups
2376 * 2) pick the "next" process, since someone really wants that to run
2377 * 3) pick the "last" process, for cache locality
2378 * 4) do not run the "skip" process, if something else is available
2379 */
f4b6755f 2380static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2381{
ac53db59 2382 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2383 struct sched_entity *left = se;
f4b6755f 2384
ac53db59
RR
2385 /*
2386 * Avoid running the skip buddy, if running something else can
2387 * be done without getting too unfair.
2388 */
2389 if (cfs_rq->skip == se) {
2390 struct sched_entity *second = __pick_next_entity(se);
2391 if (second && wakeup_preempt_entity(second, left) < 1)
2392 se = second;
2393 }
aa2ac252 2394
f685ceac
MG
2395 /*
2396 * Prefer last buddy, try to return the CPU to a preempted task.
2397 */
2398 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2399 se = cfs_rq->last;
2400
ac53db59
RR
2401 /*
2402 * Someone really wants this to run. If it's not unfair, run it.
2403 */
2404 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2405 se = cfs_rq->next;
2406
f685ceac 2407 clear_buddies(cfs_rq, se);
4793241b
PZ
2408
2409 return se;
aa2ac252
PZ
2410}
2411
d3d9dc33
PT
2412static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2413
ab6cde26 2414static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2415{
2416 /*
2417 * If still on the runqueue then deactivate_task()
2418 * was not called and update_curr() has to be done:
2419 */
2420 if (prev->on_rq)
b7cc0896 2421 update_curr(cfs_rq);
bf0f6f24 2422
d3d9dc33
PT
2423 /* throttle cfs_rqs exceeding runtime */
2424 check_cfs_rq_runtime(cfs_rq);
2425
ddc97297 2426 check_spread(cfs_rq, prev);
30cfdcfc 2427 if (prev->on_rq) {
5870db5b 2428 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2429 /* Put 'current' back into the tree. */
2430 __enqueue_entity(cfs_rq, prev);
9d85f21c 2431 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2432 update_entity_load_avg(prev, 1);
30cfdcfc 2433 }
429d43bc 2434 cfs_rq->curr = NULL;
bf0f6f24
IM
2435}
2436
8f4d37ec
PZ
2437static void
2438entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2439{
bf0f6f24 2440 /*
30cfdcfc 2441 * Update run-time statistics of the 'current'.
bf0f6f24 2442 */
30cfdcfc 2443 update_curr(cfs_rq);
bf0f6f24 2444
9d85f21c
PT
2445 /*
2446 * Ensure that runnable average is periodically updated.
2447 */
9ee474f5 2448 update_entity_load_avg(curr, 1);
aff3e498 2449 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2450 update_cfs_shares(cfs_rq);
9d85f21c 2451
8f4d37ec
PZ
2452#ifdef CONFIG_SCHED_HRTICK
2453 /*
2454 * queued ticks are scheduled to match the slice, so don't bother
2455 * validating it and just reschedule.
2456 */
983ed7a6
HH
2457 if (queued) {
2458 resched_task(rq_of(cfs_rq)->curr);
2459 return;
2460 }
8f4d37ec
PZ
2461 /*
2462 * don't let the period tick interfere with the hrtick preemption
2463 */
2464 if (!sched_feat(DOUBLE_TICK) &&
2465 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2466 return;
2467#endif
2468
2c2efaed 2469 if (cfs_rq->nr_running > 1)
2e09bf55 2470 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2471}
2472
ab84d31e
PT
2473
2474/**************************************************
2475 * CFS bandwidth control machinery
2476 */
2477
2478#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2479
2480#ifdef HAVE_JUMP_LABEL
c5905afb 2481static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2482
2483static inline bool cfs_bandwidth_used(void)
2484{
c5905afb 2485 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2486}
2487
2488void account_cfs_bandwidth_used(int enabled, int was_enabled)
2489{
2490 /* only need to count groups transitioning between enabled/!enabled */
2491 if (enabled && !was_enabled)
c5905afb 2492 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2493 else if (!enabled && was_enabled)
c5905afb 2494 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2495}
2496#else /* HAVE_JUMP_LABEL */
2497static bool cfs_bandwidth_used(void)
2498{
2499 return true;
2500}
2501
2502void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2503#endif /* HAVE_JUMP_LABEL */
2504
ab84d31e
PT
2505/*
2506 * default period for cfs group bandwidth.
2507 * default: 0.1s, units: nanoseconds
2508 */
2509static inline u64 default_cfs_period(void)
2510{
2511 return 100000000ULL;
2512}
ec12cb7f
PT
2513
2514static inline u64 sched_cfs_bandwidth_slice(void)
2515{
2516 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2517}
2518
a9cf55b2
PT
2519/*
2520 * Replenish runtime according to assigned quota and update expiration time.
2521 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2522 * additional synchronization around rq->lock.
2523 *
2524 * requires cfs_b->lock
2525 */
029632fb 2526void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2527{
2528 u64 now;
2529
2530 if (cfs_b->quota == RUNTIME_INF)
2531 return;
2532
2533 now = sched_clock_cpu(smp_processor_id());
2534 cfs_b->runtime = cfs_b->quota;
2535 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2536}
2537
029632fb
PZ
2538static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2539{
2540 return &tg->cfs_bandwidth;
2541}
2542
f1b17280
PT
2543/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2544static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2545{
2546 if (unlikely(cfs_rq->throttle_count))
2547 return cfs_rq->throttled_clock_task;
2548
78becc27 2549 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2550}
2551
85dac906
PT
2552/* returns 0 on failure to allocate runtime */
2553static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2554{
2555 struct task_group *tg = cfs_rq->tg;
2556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2557 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2558
2559 /* note: this is a positive sum as runtime_remaining <= 0 */
2560 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2561
2562 raw_spin_lock(&cfs_b->lock);
2563 if (cfs_b->quota == RUNTIME_INF)
2564 amount = min_amount;
58088ad0 2565 else {
a9cf55b2
PT
2566 /*
2567 * If the bandwidth pool has become inactive, then at least one
2568 * period must have elapsed since the last consumption.
2569 * Refresh the global state and ensure bandwidth timer becomes
2570 * active.
2571 */
2572 if (!cfs_b->timer_active) {
2573 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2574 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2575 }
58088ad0
PT
2576
2577 if (cfs_b->runtime > 0) {
2578 amount = min(cfs_b->runtime, min_amount);
2579 cfs_b->runtime -= amount;
2580 cfs_b->idle = 0;
2581 }
ec12cb7f 2582 }
a9cf55b2 2583 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2584 raw_spin_unlock(&cfs_b->lock);
2585
2586 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2587 /*
2588 * we may have advanced our local expiration to account for allowed
2589 * spread between our sched_clock and the one on which runtime was
2590 * issued.
2591 */
2592 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2593 cfs_rq->runtime_expires = expires;
85dac906
PT
2594
2595 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2596}
2597
a9cf55b2
PT
2598/*
2599 * Note: This depends on the synchronization provided by sched_clock and the
2600 * fact that rq->clock snapshots this value.
2601 */
2602static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2603{
a9cf55b2 2604 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2605
2606 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2607 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2608 return;
2609
a9cf55b2
PT
2610 if (cfs_rq->runtime_remaining < 0)
2611 return;
2612
2613 /*
2614 * If the local deadline has passed we have to consider the
2615 * possibility that our sched_clock is 'fast' and the global deadline
2616 * has not truly expired.
2617 *
2618 * Fortunately we can check determine whether this the case by checking
2619 * whether the global deadline has advanced.
2620 */
2621
2622 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2623 /* extend local deadline, drift is bounded above by 2 ticks */
2624 cfs_rq->runtime_expires += TICK_NSEC;
2625 } else {
2626 /* global deadline is ahead, expiration has passed */
2627 cfs_rq->runtime_remaining = 0;
2628 }
2629}
2630
2631static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2632 unsigned long delta_exec)
2633{
2634 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2635 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2636 expire_cfs_rq_runtime(cfs_rq);
2637
2638 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2639 return;
2640
85dac906
PT
2641 /*
2642 * if we're unable to extend our runtime we resched so that the active
2643 * hierarchy can be throttled
2644 */
2645 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2646 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2647}
2648
6c16a6dc
PZ
2649static __always_inline
2650void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2651{
56f570e5 2652 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2653 return;
2654
2655 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2656}
2657
85dac906
PT
2658static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2659{
56f570e5 2660 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2661}
2662
64660c86
PT
2663/* check whether cfs_rq, or any parent, is throttled */
2664static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2665{
56f570e5 2666 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2667}
2668
2669/*
2670 * Ensure that neither of the group entities corresponding to src_cpu or
2671 * dest_cpu are members of a throttled hierarchy when performing group
2672 * load-balance operations.
2673 */
2674static inline int throttled_lb_pair(struct task_group *tg,
2675 int src_cpu, int dest_cpu)
2676{
2677 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2678
2679 src_cfs_rq = tg->cfs_rq[src_cpu];
2680 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2681
2682 return throttled_hierarchy(src_cfs_rq) ||
2683 throttled_hierarchy(dest_cfs_rq);
2684}
2685
2686/* updated child weight may affect parent so we have to do this bottom up */
2687static int tg_unthrottle_up(struct task_group *tg, void *data)
2688{
2689 struct rq *rq = data;
2690 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2691
2692 cfs_rq->throttle_count--;
2693#ifdef CONFIG_SMP
2694 if (!cfs_rq->throttle_count) {
f1b17280 2695 /* adjust cfs_rq_clock_task() */
78becc27 2696 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2697 cfs_rq->throttled_clock_task;
64660c86
PT
2698 }
2699#endif
2700
2701 return 0;
2702}
2703
2704static int tg_throttle_down(struct task_group *tg, void *data)
2705{
2706 struct rq *rq = data;
2707 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2708
82958366
PT
2709 /* group is entering throttled state, stop time */
2710 if (!cfs_rq->throttle_count)
78becc27 2711 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2712 cfs_rq->throttle_count++;
2713
2714 return 0;
2715}
2716
d3d9dc33 2717static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2718{
2719 struct rq *rq = rq_of(cfs_rq);
2720 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2721 struct sched_entity *se;
2722 long task_delta, dequeue = 1;
2723
2724 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2725
f1b17280 2726 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2727 rcu_read_lock();
2728 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2729 rcu_read_unlock();
85dac906
PT
2730
2731 task_delta = cfs_rq->h_nr_running;
2732 for_each_sched_entity(se) {
2733 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2734 /* throttled entity or throttle-on-deactivate */
2735 if (!se->on_rq)
2736 break;
2737
2738 if (dequeue)
2739 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2740 qcfs_rq->h_nr_running -= task_delta;
2741
2742 if (qcfs_rq->load.weight)
2743 dequeue = 0;
2744 }
2745
2746 if (!se)
2747 rq->nr_running -= task_delta;
2748
2749 cfs_rq->throttled = 1;
78becc27 2750 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2751 raw_spin_lock(&cfs_b->lock);
2752 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2753 raw_spin_unlock(&cfs_b->lock);
2754}
2755
029632fb 2756void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2757{
2758 struct rq *rq = rq_of(cfs_rq);
2759 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2760 struct sched_entity *se;
2761 int enqueue = 1;
2762 long task_delta;
2763
22b958d8 2764 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2765
2766 cfs_rq->throttled = 0;
1a55af2e
FW
2767
2768 update_rq_clock(rq);
2769
671fd9da 2770 raw_spin_lock(&cfs_b->lock);
78becc27 2771 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2772 list_del_rcu(&cfs_rq->throttled_list);
2773 raw_spin_unlock(&cfs_b->lock);
2774
64660c86
PT
2775 /* update hierarchical throttle state */
2776 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2777
671fd9da
PT
2778 if (!cfs_rq->load.weight)
2779 return;
2780
2781 task_delta = cfs_rq->h_nr_running;
2782 for_each_sched_entity(se) {
2783 if (se->on_rq)
2784 enqueue = 0;
2785
2786 cfs_rq = cfs_rq_of(se);
2787 if (enqueue)
2788 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2789 cfs_rq->h_nr_running += task_delta;
2790
2791 if (cfs_rq_throttled(cfs_rq))
2792 break;
2793 }
2794
2795 if (!se)
2796 rq->nr_running += task_delta;
2797
2798 /* determine whether we need to wake up potentially idle cpu */
2799 if (rq->curr == rq->idle && rq->cfs.nr_running)
2800 resched_task(rq->curr);
2801}
2802
2803static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2804 u64 remaining, u64 expires)
2805{
2806 struct cfs_rq *cfs_rq;
2807 u64 runtime = remaining;
2808
2809 rcu_read_lock();
2810 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2811 throttled_list) {
2812 struct rq *rq = rq_of(cfs_rq);
2813
2814 raw_spin_lock(&rq->lock);
2815 if (!cfs_rq_throttled(cfs_rq))
2816 goto next;
2817
2818 runtime = -cfs_rq->runtime_remaining + 1;
2819 if (runtime > remaining)
2820 runtime = remaining;
2821 remaining -= runtime;
2822
2823 cfs_rq->runtime_remaining += runtime;
2824 cfs_rq->runtime_expires = expires;
2825
2826 /* we check whether we're throttled above */
2827 if (cfs_rq->runtime_remaining > 0)
2828 unthrottle_cfs_rq(cfs_rq);
2829
2830next:
2831 raw_spin_unlock(&rq->lock);
2832
2833 if (!remaining)
2834 break;
2835 }
2836 rcu_read_unlock();
2837
2838 return remaining;
2839}
2840
58088ad0
PT
2841/*
2842 * Responsible for refilling a task_group's bandwidth and unthrottling its
2843 * cfs_rqs as appropriate. If there has been no activity within the last
2844 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2845 * used to track this state.
2846 */
2847static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2848{
671fd9da
PT
2849 u64 runtime, runtime_expires;
2850 int idle = 1, throttled;
58088ad0
PT
2851
2852 raw_spin_lock(&cfs_b->lock);
2853 /* no need to continue the timer with no bandwidth constraint */
2854 if (cfs_b->quota == RUNTIME_INF)
2855 goto out_unlock;
2856
671fd9da
PT
2857 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2858 /* idle depends on !throttled (for the case of a large deficit) */
2859 idle = cfs_b->idle && !throttled;
e8da1b18 2860 cfs_b->nr_periods += overrun;
671fd9da 2861
a9cf55b2
PT
2862 /* if we're going inactive then everything else can be deferred */
2863 if (idle)
2864 goto out_unlock;
2865
2866 __refill_cfs_bandwidth_runtime(cfs_b);
2867
671fd9da
PT
2868 if (!throttled) {
2869 /* mark as potentially idle for the upcoming period */
2870 cfs_b->idle = 1;
2871 goto out_unlock;
2872 }
2873
e8da1b18
NR
2874 /* account preceding periods in which throttling occurred */
2875 cfs_b->nr_throttled += overrun;
2876
671fd9da
PT
2877 /*
2878 * There are throttled entities so we must first use the new bandwidth
2879 * to unthrottle them before making it generally available. This
2880 * ensures that all existing debts will be paid before a new cfs_rq is
2881 * allowed to run.
2882 */
2883 runtime = cfs_b->runtime;
2884 runtime_expires = cfs_b->runtime_expires;
2885 cfs_b->runtime = 0;
2886
2887 /*
2888 * This check is repeated as we are holding onto the new bandwidth
2889 * while we unthrottle. This can potentially race with an unthrottled
2890 * group trying to acquire new bandwidth from the global pool.
2891 */
2892 while (throttled && runtime > 0) {
2893 raw_spin_unlock(&cfs_b->lock);
2894 /* we can't nest cfs_b->lock while distributing bandwidth */
2895 runtime = distribute_cfs_runtime(cfs_b, runtime,
2896 runtime_expires);
2897 raw_spin_lock(&cfs_b->lock);
2898
2899 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2900 }
58088ad0 2901
671fd9da
PT
2902 /* return (any) remaining runtime */
2903 cfs_b->runtime = runtime;
2904 /*
2905 * While we are ensured activity in the period following an
2906 * unthrottle, this also covers the case in which the new bandwidth is
2907 * insufficient to cover the existing bandwidth deficit. (Forcing the
2908 * timer to remain active while there are any throttled entities.)
2909 */
2910 cfs_b->idle = 0;
58088ad0
PT
2911out_unlock:
2912 if (idle)
2913 cfs_b->timer_active = 0;
2914 raw_spin_unlock(&cfs_b->lock);
2915
2916 return idle;
2917}
d3d9dc33 2918
d8b4986d
PT
2919/* a cfs_rq won't donate quota below this amount */
2920static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2921/* minimum remaining period time to redistribute slack quota */
2922static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2923/* how long we wait to gather additional slack before distributing */
2924static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2925
2926/* are we near the end of the current quota period? */
2927static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2928{
2929 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2930 u64 remaining;
2931
2932 /* if the call-back is running a quota refresh is already occurring */
2933 if (hrtimer_callback_running(refresh_timer))
2934 return 1;
2935
2936 /* is a quota refresh about to occur? */
2937 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2938 if (remaining < min_expire)
2939 return 1;
2940
2941 return 0;
2942}
2943
2944static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2945{
2946 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2947
2948 /* if there's a quota refresh soon don't bother with slack */
2949 if (runtime_refresh_within(cfs_b, min_left))
2950 return;
2951
2952 start_bandwidth_timer(&cfs_b->slack_timer,
2953 ns_to_ktime(cfs_bandwidth_slack_period));
2954}
2955
2956/* we know any runtime found here is valid as update_curr() precedes return */
2957static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2958{
2959 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2960 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2961
2962 if (slack_runtime <= 0)
2963 return;
2964
2965 raw_spin_lock(&cfs_b->lock);
2966 if (cfs_b->quota != RUNTIME_INF &&
2967 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2968 cfs_b->runtime += slack_runtime;
2969
2970 /* we are under rq->lock, defer unthrottling using a timer */
2971 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2972 !list_empty(&cfs_b->throttled_cfs_rq))
2973 start_cfs_slack_bandwidth(cfs_b);
2974 }
2975 raw_spin_unlock(&cfs_b->lock);
2976
2977 /* even if it's not valid for return we don't want to try again */
2978 cfs_rq->runtime_remaining -= slack_runtime;
2979}
2980
2981static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2982{
56f570e5
PT
2983 if (!cfs_bandwidth_used())
2984 return;
2985
fccfdc6f 2986 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2987 return;
2988
2989 __return_cfs_rq_runtime(cfs_rq);
2990}
2991
2992/*
2993 * This is done with a timer (instead of inline with bandwidth return) since
2994 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2995 */
2996static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2997{
2998 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2999 u64 expires;
3000
3001 /* confirm we're still not at a refresh boundary */
3002 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3003 return;
3004
3005 raw_spin_lock(&cfs_b->lock);
3006 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3007 runtime = cfs_b->runtime;
3008 cfs_b->runtime = 0;
3009 }
3010 expires = cfs_b->runtime_expires;
3011 raw_spin_unlock(&cfs_b->lock);
3012
3013 if (!runtime)
3014 return;
3015
3016 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3017
3018 raw_spin_lock(&cfs_b->lock);
3019 if (expires == cfs_b->runtime_expires)
3020 cfs_b->runtime = runtime;
3021 raw_spin_unlock(&cfs_b->lock);
3022}
3023
d3d9dc33
PT
3024/*
3025 * When a group wakes up we want to make sure that its quota is not already
3026 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3027 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3028 */
3029static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3030{
56f570e5
PT
3031 if (!cfs_bandwidth_used())
3032 return;
3033
d3d9dc33
PT
3034 /* an active group must be handled by the update_curr()->put() path */
3035 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3036 return;
3037
3038 /* ensure the group is not already throttled */
3039 if (cfs_rq_throttled(cfs_rq))
3040 return;
3041
3042 /* update runtime allocation */
3043 account_cfs_rq_runtime(cfs_rq, 0);
3044 if (cfs_rq->runtime_remaining <= 0)
3045 throttle_cfs_rq(cfs_rq);
3046}
3047
3048/* conditionally throttle active cfs_rq's from put_prev_entity() */
3049static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3050{
56f570e5
PT
3051 if (!cfs_bandwidth_used())
3052 return;
3053
d3d9dc33
PT
3054 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3055 return;
3056
3057 /*
3058 * it's possible for a throttled entity to be forced into a running
3059 * state (e.g. set_curr_task), in this case we're finished.
3060 */
3061 if (cfs_rq_throttled(cfs_rq))
3062 return;
3063
3064 throttle_cfs_rq(cfs_rq);
3065}
029632fb 3066
029632fb
PZ
3067static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3068{
3069 struct cfs_bandwidth *cfs_b =
3070 container_of(timer, struct cfs_bandwidth, slack_timer);
3071 do_sched_cfs_slack_timer(cfs_b);
3072
3073 return HRTIMER_NORESTART;
3074}
3075
3076static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3077{
3078 struct cfs_bandwidth *cfs_b =
3079 container_of(timer, struct cfs_bandwidth, period_timer);
3080 ktime_t now;
3081 int overrun;
3082 int idle = 0;
3083
3084 for (;;) {
3085 now = hrtimer_cb_get_time(timer);
3086 overrun = hrtimer_forward(timer, now, cfs_b->period);
3087
3088 if (!overrun)
3089 break;
3090
3091 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3092 }
3093
3094 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3095}
3096
3097void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3098{
3099 raw_spin_lock_init(&cfs_b->lock);
3100 cfs_b->runtime = 0;
3101 cfs_b->quota = RUNTIME_INF;
3102 cfs_b->period = ns_to_ktime(default_cfs_period());
3103
3104 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3105 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3106 cfs_b->period_timer.function = sched_cfs_period_timer;
3107 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3108 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3109}
3110
3111static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3112{
3113 cfs_rq->runtime_enabled = 0;
3114 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3115}
3116
3117/* requires cfs_b->lock, may release to reprogram timer */
3118void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3119{
3120 /*
3121 * The timer may be active because we're trying to set a new bandwidth
3122 * period or because we're racing with the tear-down path
3123 * (timer_active==0 becomes visible before the hrtimer call-back
3124 * terminates). In either case we ensure that it's re-programmed
3125 */
3126 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3127 raw_spin_unlock(&cfs_b->lock);
3128 /* ensure cfs_b->lock is available while we wait */
3129 hrtimer_cancel(&cfs_b->period_timer);
3130
3131 raw_spin_lock(&cfs_b->lock);
3132 /* if someone else restarted the timer then we're done */
3133 if (cfs_b->timer_active)
3134 return;
3135 }
3136
3137 cfs_b->timer_active = 1;
3138 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3139}
3140
3141static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3142{
3143 hrtimer_cancel(&cfs_b->period_timer);
3144 hrtimer_cancel(&cfs_b->slack_timer);
3145}
3146
38dc3348 3147static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3148{
3149 struct cfs_rq *cfs_rq;
3150
3151 for_each_leaf_cfs_rq(rq, cfs_rq) {
3152 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3153
3154 if (!cfs_rq->runtime_enabled)
3155 continue;
3156
3157 /*
3158 * clock_task is not advancing so we just need to make sure
3159 * there's some valid quota amount
3160 */
3161 cfs_rq->runtime_remaining = cfs_b->quota;
3162 if (cfs_rq_throttled(cfs_rq))
3163 unthrottle_cfs_rq(cfs_rq);
3164 }
3165}
3166
3167#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3168static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3169{
78becc27 3170 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3171}
3172
3173static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3174 unsigned long delta_exec) {}
d3d9dc33
PT
3175static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3176static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3177static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3178
3179static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3180{
3181 return 0;
3182}
64660c86
PT
3183
3184static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3185{
3186 return 0;
3187}
3188
3189static inline int throttled_lb_pair(struct task_group *tg,
3190 int src_cpu, int dest_cpu)
3191{
3192 return 0;
3193}
029632fb
PZ
3194
3195void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3196
3197#ifdef CONFIG_FAIR_GROUP_SCHED
3198static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3199#endif
3200
029632fb
PZ
3201static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3202{
3203 return NULL;
3204}
3205static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3206static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3207
3208#endif /* CONFIG_CFS_BANDWIDTH */
3209
bf0f6f24
IM
3210/**************************************************
3211 * CFS operations on tasks:
3212 */
3213
8f4d37ec
PZ
3214#ifdef CONFIG_SCHED_HRTICK
3215static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3216{
8f4d37ec
PZ
3217 struct sched_entity *se = &p->se;
3218 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3219
3220 WARN_ON(task_rq(p) != rq);
3221
b39e66ea 3222 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3223 u64 slice = sched_slice(cfs_rq, se);
3224 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3225 s64 delta = slice - ran;
3226
3227 if (delta < 0) {
3228 if (rq->curr == p)
3229 resched_task(p);
3230 return;
3231 }
3232
3233 /*
3234 * Don't schedule slices shorter than 10000ns, that just
3235 * doesn't make sense. Rely on vruntime for fairness.
3236 */
31656519 3237 if (rq->curr != p)
157124c1 3238 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3239
31656519 3240 hrtick_start(rq, delta);
8f4d37ec
PZ
3241 }
3242}
a4c2f00f
PZ
3243
3244/*
3245 * called from enqueue/dequeue and updates the hrtick when the
3246 * current task is from our class and nr_running is low enough
3247 * to matter.
3248 */
3249static void hrtick_update(struct rq *rq)
3250{
3251 struct task_struct *curr = rq->curr;
3252
b39e66ea 3253 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3254 return;
3255
3256 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3257 hrtick_start_fair(rq, curr);
3258}
55e12e5e 3259#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3260static inline void
3261hrtick_start_fair(struct rq *rq, struct task_struct *p)
3262{
3263}
a4c2f00f
PZ
3264
3265static inline void hrtick_update(struct rq *rq)
3266{
3267}
8f4d37ec
PZ
3268#endif
3269
bf0f6f24
IM
3270/*
3271 * The enqueue_task method is called before nr_running is
3272 * increased. Here we update the fair scheduling stats and
3273 * then put the task into the rbtree:
3274 */
ea87bb78 3275static void
371fd7e7 3276enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3277{
3278 struct cfs_rq *cfs_rq;
62fb1851 3279 struct sched_entity *se = &p->se;
bf0f6f24
IM
3280
3281 for_each_sched_entity(se) {
62fb1851 3282 if (se->on_rq)
bf0f6f24
IM
3283 break;
3284 cfs_rq = cfs_rq_of(se);
88ec22d3 3285 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3286
3287 /*
3288 * end evaluation on encountering a throttled cfs_rq
3289 *
3290 * note: in the case of encountering a throttled cfs_rq we will
3291 * post the final h_nr_running increment below.
3292 */
3293 if (cfs_rq_throttled(cfs_rq))
3294 break;
953bfcd1 3295 cfs_rq->h_nr_running++;
85dac906 3296
88ec22d3 3297 flags = ENQUEUE_WAKEUP;
bf0f6f24 3298 }
8f4d37ec 3299
2069dd75 3300 for_each_sched_entity(se) {
0f317143 3301 cfs_rq = cfs_rq_of(se);
953bfcd1 3302 cfs_rq->h_nr_running++;
2069dd75 3303
85dac906
PT
3304 if (cfs_rq_throttled(cfs_rq))
3305 break;
3306
17bc14b7 3307 update_cfs_shares(cfs_rq);
9ee474f5 3308 update_entity_load_avg(se, 1);
2069dd75
PZ
3309 }
3310
18bf2805
BS
3311 if (!se) {
3312 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3313 inc_nr_running(rq);
18bf2805 3314 }
a4c2f00f 3315 hrtick_update(rq);
bf0f6f24
IM
3316}
3317
2f36825b
VP
3318static void set_next_buddy(struct sched_entity *se);
3319
bf0f6f24
IM
3320/*
3321 * The dequeue_task method is called before nr_running is
3322 * decreased. We remove the task from the rbtree and
3323 * update the fair scheduling stats:
3324 */
371fd7e7 3325static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3326{
3327 struct cfs_rq *cfs_rq;
62fb1851 3328 struct sched_entity *se = &p->se;
2f36825b 3329 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3330
3331 for_each_sched_entity(se) {
3332 cfs_rq = cfs_rq_of(se);
371fd7e7 3333 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3334
3335 /*
3336 * end evaluation on encountering a throttled cfs_rq
3337 *
3338 * note: in the case of encountering a throttled cfs_rq we will
3339 * post the final h_nr_running decrement below.
3340 */
3341 if (cfs_rq_throttled(cfs_rq))
3342 break;
953bfcd1 3343 cfs_rq->h_nr_running--;
2069dd75 3344
bf0f6f24 3345 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3346 if (cfs_rq->load.weight) {
3347 /*
3348 * Bias pick_next to pick a task from this cfs_rq, as
3349 * p is sleeping when it is within its sched_slice.
3350 */
3351 if (task_sleep && parent_entity(se))
3352 set_next_buddy(parent_entity(se));
9598c82d
PT
3353
3354 /* avoid re-evaluating load for this entity */
3355 se = parent_entity(se);
bf0f6f24 3356 break;
2f36825b 3357 }
371fd7e7 3358 flags |= DEQUEUE_SLEEP;
bf0f6f24 3359 }
8f4d37ec 3360
2069dd75 3361 for_each_sched_entity(se) {
0f317143 3362 cfs_rq = cfs_rq_of(se);
953bfcd1 3363 cfs_rq->h_nr_running--;
2069dd75 3364
85dac906
PT
3365 if (cfs_rq_throttled(cfs_rq))
3366 break;
3367
17bc14b7 3368 update_cfs_shares(cfs_rq);
9ee474f5 3369 update_entity_load_avg(se, 1);
2069dd75
PZ
3370 }
3371
18bf2805 3372 if (!se) {
85dac906 3373 dec_nr_running(rq);
18bf2805
BS
3374 update_rq_runnable_avg(rq, 1);
3375 }
a4c2f00f 3376 hrtick_update(rq);
bf0f6f24
IM
3377}
3378
e7693a36 3379#ifdef CONFIG_SMP
029632fb
PZ
3380/* Used instead of source_load when we know the type == 0 */
3381static unsigned long weighted_cpuload(const int cpu)
3382{
b92486cb 3383 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3384}
3385
3386/*
3387 * Return a low guess at the load of a migration-source cpu weighted
3388 * according to the scheduling class and "nice" value.
3389 *
3390 * We want to under-estimate the load of migration sources, to
3391 * balance conservatively.
3392 */
3393static unsigned long source_load(int cpu, int type)
3394{
3395 struct rq *rq = cpu_rq(cpu);
3396 unsigned long total = weighted_cpuload(cpu);
3397
3398 if (type == 0 || !sched_feat(LB_BIAS))
3399 return total;
3400
3401 return min(rq->cpu_load[type-1], total);
3402}
3403
3404/*
3405 * Return a high guess at the load of a migration-target cpu weighted
3406 * according to the scheduling class and "nice" value.
3407 */
3408static unsigned long target_load(int cpu, int type)
3409{
3410 struct rq *rq = cpu_rq(cpu);
3411 unsigned long total = weighted_cpuload(cpu);
3412
3413 if (type == 0 || !sched_feat(LB_BIAS))
3414 return total;
3415
3416 return max(rq->cpu_load[type-1], total);
3417}
3418
3419static unsigned long power_of(int cpu)
3420{
3421 return cpu_rq(cpu)->cpu_power;
3422}
3423
3424static unsigned long cpu_avg_load_per_task(int cpu)
3425{
3426 struct rq *rq = cpu_rq(cpu);
3427 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3428 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3429
3430 if (nr_running)
b92486cb 3431 return load_avg / nr_running;
029632fb
PZ
3432
3433 return 0;
3434}
3435
62470419
MW
3436static void record_wakee(struct task_struct *p)
3437{
3438 /*
3439 * Rough decay (wiping) for cost saving, don't worry
3440 * about the boundary, really active task won't care
3441 * about the loss.
3442 */
3443 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3444 current->wakee_flips = 0;
3445 current->wakee_flip_decay_ts = jiffies;
3446 }
3447
3448 if (current->last_wakee != p) {
3449 current->last_wakee = p;
3450 current->wakee_flips++;
3451 }
3452}
098fb9db 3453
74f8e4b2 3454static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3455{
3456 struct sched_entity *se = &p->se;
3457 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3458 u64 min_vruntime;
3459
3460#ifndef CONFIG_64BIT
3461 u64 min_vruntime_copy;
88ec22d3 3462
3fe1698b
PZ
3463 do {
3464 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3465 smp_rmb();
3466 min_vruntime = cfs_rq->min_vruntime;
3467 } while (min_vruntime != min_vruntime_copy);
3468#else
3469 min_vruntime = cfs_rq->min_vruntime;
3470#endif
88ec22d3 3471
3fe1698b 3472 se->vruntime -= min_vruntime;
62470419 3473 record_wakee(p);
88ec22d3
PZ
3474}
3475
bb3469ac 3476#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3477/*
3478 * effective_load() calculates the load change as seen from the root_task_group
3479 *
3480 * Adding load to a group doesn't make a group heavier, but can cause movement
3481 * of group shares between cpus. Assuming the shares were perfectly aligned one
3482 * can calculate the shift in shares.
cf5f0acf
PZ
3483 *
3484 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3485 * on this @cpu and results in a total addition (subtraction) of @wg to the
3486 * total group weight.
3487 *
3488 * Given a runqueue weight distribution (rw_i) we can compute a shares
3489 * distribution (s_i) using:
3490 *
3491 * s_i = rw_i / \Sum rw_j (1)
3492 *
3493 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3494 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3495 * shares distribution (s_i):
3496 *
3497 * rw_i = { 2, 4, 1, 0 }
3498 * s_i = { 2/7, 4/7, 1/7, 0 }
3499 *
3500 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3501 * task used to run on and the CPU the waker is running on), we need to
3502 * compute the effect of waking a task on either CPU and, in case of a sync
3503 * wakeup, compute the effect of the current task going to sleep.
3504 *
3505 * So for a change of @wl to the local @cpu with an overall group weight change
3506 * of @wl we can compute the new shares distribution (s'_i) using:
3507 *
3508 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3509 *
3510 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3511 * differences in waking a task to CPU 0. The additional task changes the
3512 * weight and shares distributions like:
3513 *
3514 * rw'_i = { 3, 4, 1, 0 }
3515 * s'_i = { 3/8, 4/8, 1/8, 0 }
3516 *
3517 * We can then compute the difference in effective weight by using:
3518 *
3519 * dw_i = S * (s'_i - s_i) (3)
3520 *
3521 * Where 'S' is the group weight as seen by its parent.
3522 *
3523 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3524 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3525 * 4/7) times the weight of the group.
f5bfb7d9 3526 */
2069dd75 3527static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3528{
4be9daaa 3529 struct sched_entity *se = tg->se[cpu];
f1d239f7 3530
58d081b5 3531 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3532 return wl;
3533
4be9daaa 3534 for_each_sched_entity(se) {
cf5f0acf 3535 long w, W;
4be9daaa 3536
977dda7c 3537 tg = se->my_q->tg;
bb3469ac 3538
cf5f0acf
PZ
3539 /*
3540 * W = @wg + \Sum rw_j
3541 */
3542 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3543
cf5f0acf
PZ
3544 /*
3545 * w = rw_i + @wl
3546 */
3547 w = se->my_q->load.weight + wl;
940959e9 3548
cf5f0acf
PZ
3549 /*
3550 * wl = S * s'_i; see (2)
3551 */
3552 if (W > 0 && w < W)
3553 wl = (w * tg->shares) / W;
977dda7c
PT
3554 else
3555 wl = tg->shares;
940959e9 3556
cf5f0acf
PZ
3557 /*
3558 * Per the above, wl is the new se->load.weight value; since
3559 * those are clipped to [MIN_SHARES, ...) do so now. See
3560 * calc_cfs_shares().
3561 */
977dda7c
PT
3562 if (wl < MIN_SHARES)
3563 wl = MIN_SHARES;
cf5f0acf
PZ
3564
3565 /*
3566 * wl = dw_i = S * (s'_i - s_i); see (3)
3567 */
977dda7c 3568 wl -= se->load.weight;
cf5f0acf
PZ
3569
3570 /*
3571 * Recursively apply this logic to all parent groups to compute
3572 * the final effective load change on the root group. Since
3573 * only the @tg group gets extra weight, all parent groups can
3574 * only redistribute existing shares. @wl is the shift in shares
3575 * resulting from this level per the above.
3576 */
4be9daaa 3577 wg = 0;
4be9daaa 3578 }
bb3469ac 3579
4be9daaa 3580 return wl;
bb3469ac
PZ
3581}
3582#else
4be9daaa 3583
58d081b5 3584static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3585{
83378269 3586 return wl;
bb3469ac 3587}
4be9daaa 3588
bb3469ac
PZ
3589#endif
3590
62470419
MW
3591static int wake_wide(struct task_struct *p)
3592{
7d9ffa89 3593 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3594
3595 /*
3596 * Yeah, it's the switching-frequency, could means many wakee or
3597 * rapidly switch, use factor here will just help to automatically
3598 * adjust the loose-degree, so bigger node will lead to more pull.
3599 */
3600 if (p->wakee_flips > factor) {
3601 /*
3602 * wakee is somewhat hot, it needs certain amount of cpu
3603 * resource, so if waker is far more hot, prefer to leave
3604 * it alone.
3605 */
3606 if (current->wakee_flips > (factor * p->wakee_flips))
3607 return 1;
3608 }
3609
3610 return 0;
3611}
3612
c88d5910 3613static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3614{
e37b6a7b 3615 s64 this_load, load;
c88d5910 3616 int idx, this_cpu, prev_cpu;
098fb9db 3617 unsigned long tl_per_task;
c88d5910 3618 struct task_group *tg;
83378269 3619 unsigned long weight;
b3137bc8 3620 int balanced;
098fb9db 3621
62470419
MW
3622 /*
3623 * If we wake multiple tasks be careful to not bounce
3624 * ourselves around too much.
3625 */
3626 if (wake_wide(p))
3627 return 0;
3628
c88d5910
PZ
3629 idx = sd->wake_idx;
3630 this_cpu = smp_processor_id();
3631 prev_cpu = task_cpu(p);
3632 load = source_load(prev_cpu, idx);
3633 this_load = target_load(this_cpu, idx);
098fb9db 3634
b3137bc8
MG
3635 /*
3636 * If sync wakeup then subtract the (maximum possible)
3637 * effect of the currently running task from the load
3638 * of the current CPU:
3639 */
83378269
PZ
3640 if (sync) {
3641 tg = task_group(current);
3642 weight = current->se.load.weight;
3643
c88d5910 3644 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3645 load += effective_load(tg, prev_cpu, 0, -weight);
3646 }
b3137bc8 3647
83378269
PZ
3648 tg = task_group(p);
3649 weight = p->se.load.weight;
b3137bc8 3650
71a29aa7
PZ
3651 /*
3652 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3653 * due to the sync cause above having dropped this_load to 0, we'll
3654 * always have an imbalance, but there's really nothing you can do
3655 * about that, so that's good too.
71a29aa7
PZ
3656 *
3657 * Otherwise check if either cpus are near enough in load to allow this
3658 * task to be woken on this_cpu.
3659 */
e37b6a7b
PT
3660 if (this_load > 0) {
3661 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3662
3663 this_eff_load = 100;
3664 this_eff_load *= power_of(prev_cpu);
3665 this_eff_load *= this_load +
3666 effective_load(tg, this_cpu, weight, weight);
3667
3668 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3669 prev_eff_load *= power_of(this_cpu);
3670 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3671
3672 balanced = this_eff_load <= prev_eff_load;
3673 } else
3674 balanced = true;
b3137bc8 3675
098fb9db 3676 /*
4ae7d5ce
IM
3677 * If the currently running task will sleep within
3678 * a reasonable amount of time then attract this newly
3679 * woken task:
098fb9db 3680 */
2fb7635c
PZ
3681 if (sync && balanced)
3682 return 1;
098fb9db 3683
41acab88 3684 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3685 tl_per_task = cpu_avg_load_per_task(this_cpu);
3686
c88d5910
PZ
3687 if (balanced ||
3688 (this_load <= load &&
3689 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3690 /*
3691 * This domain has SD_WAKE_AFFINE and
3692 * p is cache cold in this domain, and
3693 * there is no bad imbalance.
3694 */
c88d5910 3695 schedstat_inc(sd, ttwu_move_affine);
41acab88 3696 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3697
3698 return 1;
3699 }
3700 return 0;
3701}
3702
aaee1203
PZ
3703/*
3704 * find_idlest_group finds and returns the least busy CPU group within the
3705 * domain.
3706 */
3707static struct sched_group *
78e7ed53 3708find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3709 int this_cpu, int load_idx)
e7693a36 3710{
b3bd3de6 3711 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3712 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3713 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3714
aaee1203
PZ
3715 do {
3716 unsigned long load, avg_load;
3717 int local_group;
3718 int i;
e7693a36 3719
aaee1203
PZ
3720 /* Skip over this group if it has no CPUs allowed */
3721 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3722 tsk_cpus_allowed(p)))
aaee1203
PZ
3723 continue;
3724
3725 local_group = cpumask_test_cpu(this_cpu,
3726 sched_group_cpus(group));
3727
3728 /* Tally up the load of all CPUs in the group */
3729 avg_load = 0;
3730
3731 for_each_cpu(i, sched_group_cpus(group)) {
3732 /* Bias balancing toward cpus of our domain */
3733 if (local_group)
3734 load = source_load(i, load_idx);
3735 else
3736 load = target_load(i, load_idx);
3737
3738 avg_load += load;
3739 }
3740
3741 /* Adjust by relative CPU power of the group */
9c3f75cb 3742 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3743
3744 if (local_group) {
3745 this_load = avg_load;
aaee1203
PZ
3746 } else if (avg_load < min_load) {
3747 min_load = avg_load;
3748 idlest = group;
3749 }
3750 } while (group = group->next, group != sd->groups);
3751
3752 if (!idlest || 100*this_load < imbalance*min_load)
3753 return NULL;
3754 return idlest;
3755}
3756
3757/*
3758 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3759 */
3760static int
3761find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3762{
3763 unsigned long load, min_load = ULONG_MAX;
3764 int idlest = -1;
3765 int i;
3766
3767 /* Traverse only the allowed CPUs */
fa17b507 3768 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3769 load = weighted_cpuload(i);
3770
3771 if (load < min_load || (load == min_load && i == this_cpu)) {
3772 min_load = load;
3773 idlest = i;
e7693a36
GH
3774 }
3775 }
3776
aaee1203
PZ
3777 return idlest;
3778}
e7693a36 3779
a50bde51
PZ
3780/*
3781 * Try and locate an idle CPU in the sched_domain.
3782 */
99bd5e2f 3783static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3784{
99bd5e2f 3785 struct sched_domain *sd;
37407ea7 3786 struct sched_group *sg;
e0a79f52 3787 int i = task_cpu(p);
a50bde51 3788
e0a79f52
MG
3789 if (idle_cpu(target))
3790 return target;
99bd5e2f
SS
3791
3792 /*
e0a79f52 3793 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3794 */
e0a79f52
MG
3795 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3796 return i;
a50bde51
PZ
3797
3798 /*
37407ea7 3799 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3800 */
518cd623 3801 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3802 for_each_lower_domain(sd) {
37407ea7
LT
3803 sg = sd->groups;
3804 do {
3805 if (!cpumask_intersects(sched_group_cpus(sg),
3806 tsk_cpus_allowed(p)))
3807 goto next;
3808
3809 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3810 if (i == target || !idle_cpu(i))
37407ea7
LT
3811 goto next;
3812 }
970e1789 3813
37407ea7
LT
3814 target = cpumask_first_and(sched_group_cpus(sg),
3815 tsk_cpus_allowed(p));
3816 goto done;
3817next:
3818 sg = sg->next;
3819 } while (sg != sd->groups);
3820 }
3821done:
a50bde51
PZ
3822 return target;
3823}
3824
aaee1203
PZ
3825/*
3826 * sched_balance_self: balance the current task (running on cpu) in domains
3827 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3828 * SD_BALANCE_EXEC.
3829 *
3830 * Balance, ie. select the least loaded group.
3831 *
3832 * Returns the target CPU number, or the same CPU if no balancing is needed.
3833 *
3834 * preempt must be disabled.
3835 */
0017d735 3836static int
ac66f547 3837select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 3838{
29cd8bae 3839 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 3840 int cpu = smp_processor_id();
c88d5910 3841 int new_cpu = cpu;
99bd5e2f 3842 int want_affine = 0;
5158f4e4 3843 int sync = wake_flags & WF_SYNC;
c88d5910 3844
29baa747 3845 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3846 return prev_cpu;
3847
0763a660 3848 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3849 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3850 want_affine = 1;
3851 new_cpu = prev_cpu;
3852 }
aaee1203 3853
dce840a0 3854 rcu_read_lock();
aaee1203 3855 for_each_domain(cpu, tmp) {
e4f42888
PZ
3856 if (!(tmp->flags & SD_LOAD_BALANCE))
3857 continue;
3858
fe3bcfe1 3859 /*
99bd5e2f
SS
3860 * If both cpu and prev_cpu are part of this domain,
3861 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3862 */
99bd5e2f
SS
3863 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3864 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3865 affine_sd = tmp;
29cd8bae 3866 break;
f03542a7 3867 }
29cd8bae 3868
f03542a7 3869 if (tmp->flags & sd_flag)
29cd8bae
PZ
3870 sd = tmp;
3871 }
3872
8b911acd 3873 if (affine_sd) {
f03542a7 3874 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3875 prev_cpu = cpu;
3876
3877 new_cpu = select_idle_sibling(p, prev_cpu);
3878 goto unlock;
8b911acd 3879 }
e7693a36 3880
aaee1203 3881 while (sd) {
5158f4e4 3882 int load_idx = sd->forkexec_idx;
aaee1203 3883 struct sched_group *group;
c88d5910 3884 int weight;
098fb9db 3885
0763a660 3886 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3887 sd = sd->child;
3888 continue;
3889 }
098fb9db 3890
5158f4e4
PZ
3891 if (sd_flag & SD_BALANCE_WAKE)
3892 load_idx = sd->wake_idx;
098fb9db 3893
5158f4e4 3894 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3895 if (!group) {
3896 sd = sd->child;
3897 continue;
3898 }
4ae7d5ce 3899
d7c33c49 3900 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3901 if (new_cpu == -1 || new_cpu == cpu) {
3902 /* Now try balancing at a lower domain level of cpu */
3903 sd = sd->child;
3904 continue;
e7693a36 3905 }
aaee1203
PZ
3906
3907 /* Now try balancing at a lower domain level of new_cpu */
3908 cpu = new_cpu;
669c55e9 3909 weight = sd->span_weight;
aaee1203
PZ
3910 sd = NULL;
3911 for_each_domain(cpu, tmp) {
669c55e9 3912 if (weight <= tmp->span_weight)
aaee1203 3913 break;
0763a660 3914 if (tmp->flags & sd_flag)
aaee1203
PZ
3915 sd = tmp;
3916 }
3917 /* while loop will break here if sd == NULL */
e7693a36 3918 }
dce840a0
PZ
3919unlock:
3920 rcu_read_unlock();
e7693a36 3921
c88d5910 3922 return new_cpu;
e7693a36 3923}
0a74bef8
PT
3924
3925/*
3926 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3927 * cfs_rq_of(p) references at time of call are still valid and identify the
3928 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3929 * other assumptions, including the state of rq->lock, should be made.
3930 */
3931static void
3932migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3933{
aff3e498
PT
3934 struct sched_entity *se = &p->se;
3935 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3936
3937 /*
3938 * Load tracking: accumulate removed load so that it can be processed
3939 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3940 * to blocked load iff they have a positive decay-count. It can never
3941 * be negative here since on-rq tasks have decay-count == 0.
3942 */
3943 if (se->avg.decay_count) {
3944 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3945 atomic_long_add(se->avg.load_avg_contrib,
3946 &cfs_rq->removed_load);
aff3e498 3947 }
0a74bef8 3948}
e7693a36
GH
3949#endif /* CONFIG_SMP */
3950
e52fb7c0
PZ
3951static unsigned long
3952wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3953{
3954 unsigned long gran = sysctl_sched_wakeup_granularity;
3955
3956 /*
e52fb7c0
PZ
3957 * Since its curr running now, convert the gran from real-time
3958 * to virtual-time in his units.
13814d42
MG
3959 *
3960 * By using 'se' instead of 'curr' we penalize light tasks, so
3961 * they get preempted easier. That is, if 'se' < 'curr' then
3962 * the resulting gran will be larger, therefore penalizing the
3963 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3964 * be smaller, again penalizing the lighter task.
3965 *
3966 * This is especially important for buddies when the leftmost
3967 * task is higher priority than the buddy.
0bbd3336 3968 */
f4ad9bd2 3969 return calc_delta_fair(gran, se);
0bbd3336
PZ
3970}
3971
464b7527
PZ
3972/*
3973 * Should 'se' preempt 'curr'.
3974 *
3975 * |s1
3976 * |s2
3977 * |s3
3978 * g
3979 * |<--->|c
3980 *
3981 * w(c, s1) = -1
3982 * w(c, s2) = 0
3983 * w(c, s3) = 1
3984 *
3985 */
3986static int
3987wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3988{
3989 s64 gran, vdiff = curr->vruntime - se->vruntime;
3990
3991 if (vdiff <= 0)
3992 return -1;
3993
e52fb7c0 3994 gran = wakeup_gran(curr, se);
464b7527
PZ
3995 if (vdiff > gran)
3996 return 1;
3997
3998 return 0;
3999}
4000
02479099
PZ
4001static void set_last_buddy(struct sched_entity *se)
4002{
69c80f3e
VP
4003 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4004 return;
4005
4006 for_each_sched_entity(se)
4007 cfs_rq_of(se)->last = se;
02479099
PZ
4008}
4009
4010static void set_next_buddy(struct sched_entity *se)
4011{
69c80f3e
VP
4012 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4013 return;
4014
4015 for_each_sched_entity(se)
4016 cfs_rq_of(se)->next = se;
02479099
PZ
4017}
4018
ac53db59
RR
4019static void set_skip_buddy(struct sched_entity *se)
4020{
69c80f3e
VP
4021 for_each_sched_entity(se)
4022 cfs_rq_of(se)->skip = se;
ac53db59
RR
4023}
4024
bf0f6f24
IM
4025/*
4026 * Preempt the current task with a newly woken task if needed:
4027 */
5a9b86f6 4028static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4029{
4030 struct task_struct *curr = rq->curr;
8651a86c 4031 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4032 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4033 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4034 int next_buddy_marked = 0;
bf0f6f24 4035
4ae7d5ce
IM
4036 if (unlikely(se == pse))
4037 return;
4038
5238cdd3 4039 /*
ddcdf6e7 4040 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4041 * unconditionally check_prempt_curr() after an enqueue (which may have
4042 * lead to a throttle). This both saves work and prevents false
4043 * next-buddy nomination below.
4044 */
4045 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4046 return;
4047
2f36825b 4048 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4049 set_next_buddy(pse);
2f36825b
VP
4050 next_buddy_marked = 1;
4051 }
57fdc26d 4052
aec0a514
BR
4053 /*
4054 * We can come here with TIF_NEED_RESCHED already set from new task
4055 * wake up path.
5238cdd3
PT
4056 *
4057 * Note: this also catches the edge-case of curr being in a throttled
4058 * group (e.g. via set_curr_task), since update_curr() (in the
4059 * enqueue of curr) will have resulted in resched being set. This
4060 * prevents us from potentially nominating it as a false LAST_BUDDY
4061 * below.
aec0a514
BR
4062 */
4063 if (test_tsk_need_resched(curr))
4064 return;
4065
a2f5c9ab
DH
4066 /* Idle tasks are by definition preempted by non-idle tasks. */
4067 if (unlikely(curr->policy == SCHED_IDLE) &&
4068 likely(p->policy != SCHED_IDLE))
4069 goto preempt;
4070
91c234b4 4071 /*
a2f5c9ab
DH
4072 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4073 * is driven by the tick):
91c234b4 4074 */
8ed92e51 4075 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4076 return;
bf0f6f24 4077
464b7527 4078 find_matching_se(&se, &pse);
9bbd7374 4079 update_curr(cfs_rq_of(se));
002f128b 4080 BUG_ON(!pse);
2f36825b
VP
4081 if (wakeup_preempt_entity(se, pse) == 1) {
4082 /*
4083 * Bias pick_next to pick the sched entity that is
4084 * triggering this preemption.
4085 */
4086 if (!next_buddy_marked)
4087 set_next_buddy(pse);
3a7e73a2 4088 goto preempt;
2f36825b 4089 }
464b7527 4090
3a7e73a2 4091 return;
a65ac745 4092
3a7e73a2
PZ
4093preempt:
4094 resched_task(curr);
4095 /*
4096 * Only set the backward buddy when the current task is still
4097 * on the rq. This can happen when a wakeup gets interleaved
4098 * with schedule on the ->pre_schedule() or idle_balance()
4099 * point, either of which can * drop the rq lock.
4100 *
4101 * Also, during early boot the idle thread is in the fair class,
4102 * for obvious reasons its a bad idea to schedule back to it.
4103 */
4104 if (unlikely(!se->on_rq || curr == rq->idle))
4105 return;
4106
4107 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4108 set_last_buddy(se);
bf0f6f24
IM
4109}
4110
fb8d4724 4111static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4112{
8f4d37ec 4113 struct task_struct *p;
bf0f6f24
IM
4114 struct cfs_rq *cfs_rq = &rq->cfs;
4115 struct sched_entity *se;
4116
36ace27e 4117 if (!cfs_rq->nr_running)
bf0f6f24
IM
4118 return NULL;
4119
4120 do {
9948f4b2 4121 se = pick_next_entity(cfs_rq);
f4b6755f 4122 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4123 cfs_rq = group_cfs_rq(se);
4124 } while (cfs_rq);
4125
8f4d37ec 4126 p = task_of(se);
b39e66ea
MG
4127 if (hrtick_enabled(rq))
4128 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4129
4130 return p;
bf0f6f24
IM
4131}
4132
4133/*
4134 * Account for a descheduled task:
4135 */
31ee529c 4136static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4137{
4138 struct sched_entity *se = &prev->se;
4139 struct cfs_rq *cfs_rq;
4140
4141 for_each_sched_entity(se) {
4142 cfs_rq = cfs_rq_of(se);
ab6cde26 4143 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4144 }
4145}
4146
ac53db59
RR
4147/*
4148 * sched_yield() is very simple
4149 *
4150 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4151 */
4152static void yield_task_fair(struct rq *rq)
4153{
4154 struct task_struct *curr = rq->curr;
4155 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4156 struct sched_entity *se = &curr->se;
4157
4158 /*
4159 * Are we the only task in the tree?
4160 */
4161 if (unlikely(rq->nr_running == 1))
4162 return;
4163
4164 clear_buddies(cfs_rq, se);
4165
4166 if (curr->policy != SCHED_BATCH) {
4167 update_rq_clock(rq);
4168 /*
4169 * Update run-time statistics of the 'current'.
4170 */
4171 update_curr(cfs_rq);
916671c0
MG
4172 /*
4173 * Tell update_rq_clock() that we've just updated,
4174 * so we don't do microscopic update in schedule()
4175 * and double the fastpath cost.
4176 */
4177 rq->skip_clock_update = 1;
ac53db59
RR
4178 }
4179
4180 set_skip_buddy(se);
4181}
4182
d95f4122
MG
4183static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4184{
4185 struct sched_entity *se = &p->se;
4186
5238cdd3
PT
4187 /* throttled hierarchies are not runnable */
4188 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4189 return false;
4190
4191 /* Tell the scheduler that we'd really like pse to run next. */
4192 set_next_buddy(se);
4193
d95f4122
MG
4194 yield_task_fair(rq);
4195
4196 return true;
4197}
4198
681f3e68 4199#ifdef CONFIG_SMP
bf0f6f24 4200/**************************************************
e9c84cb8
PZ
4201 * Fair scheduling class load-balancing methods.
4202 *
4203 * BASICS
4204 *
4205 * The purpose of load-balancing is to achieve the same basic fairness the
4206 * per-cpu scheduler provides, namely provide a proportional amount of compute
4207 * time to each task. This is expressed in the following equation:
4208 *
4209 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4210 *
4211 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4212 * W_i,0 is defined as:
4213 *
4214 * W_i,0 = \Sum_j w_i,j (2)
4215 *
4216 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4217 * is derived from the nice value as per prio_to_weight[].
4218 *
4219 * The weight average is an exponential decay average of the instantaneous
4220 * weight:
4221 *
4222 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4223 *
4224 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4225 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4226 * can also include other factors [XXX].
4227 *
4228 * To achieve this balance we define a measure of imbalance which follows
4229 * directly from (1):
4230 *
4231 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4232 *
4233 * We them move tasks around to minimize the imbalance. In the continuous
4234 * function space it is obvious this converges, in the discrete case we get
4235 * a few fun cases generally called infeasible weight scenarios.
4236 *
4237 * [XXX expand on:
4238 * - infeasible weights;
4239 * - local vs global optima in the discrete case. ]
4240 *
4241 *
4242 * SCHED DOMAINS
4243 *
4244 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4245 * for all i,j solution, we create a tree of cpus that follows the hardware
4246 * topology where each level pairs two lower groups (or better). This results
4247 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4248 * tree to only the first of the previous level and we decrease the frequency
4249 * of load-balance at each level inv. proportional to the number of cpus in
4250 * the groups.
4251 *
4252 * This yields:
4253 *
4254 * log_2 n 1 n
4255 * \Sum { --- * --- * 2^i } = O(n) (5)
4256 * i = 0 2^i 2^i
4257 * `- size of each group
4258 * | | `- number of cpus doing load-balance
4259 * | `- freq
4260 * `- sum over all levels
4261 *
4262 * Coupled with a limit on how many tasks we can migrate every balance pass,
4263 * this makes (5) the runtime complexity of the balancer.
4264 *
4265 * An important property here is that each CPU is still (indirectly) connected
4266 * to every other cpu in at most O(log n) steps:
4267 *
4268 * The adjacency matrix of the resulting graph is given by:
4269 *
4270 * log_2 n
4271 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4272 * k = 0
4273 *
4274 * And you'll find that:
4275 *
4276 * A^(log_2 n)_i,j != 0 for all i,j (7)
4277 *
4278 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4279 * The task movement gives a factor of O(m), giving a convergence complexity
4280 * of:
4281 *
4282 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4283 *
4284 *
4285 * WORK CONSERVING
4286 *
4287 * In order to avoid CPUs going idle while there's still work to do, new idle
4288 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4289 * tree itself instead of relying on other CPUs to bring it work.
4290 *
4291 * This adds some complexity to both (5) and (8) but it reduces the total idle
4292 * time.
4293 *
4294 * [XXX more?]
4295 *
4296 *
4297 * CGROUPS
4298 *
4299 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4300 *
4301 * s_k,i
4302 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4303 * S_k
4304 *
4305 * Where
4306 *
4307 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4308 *
4309 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4310 *
4311 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4312 * property.
4313 *
4314 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4315 * rewrite all of this once again.]
4316 */
bf0f6f24 4317
ed387b78
HS
4318static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4319
ddcdf6e7 4320#define LBF_ALL_PINNED 0x01
367456c7 4321#define LBF_NEED_BREAK 0x02
6263322c
PZ
4322#define LBF_DST_PINNED 0x04
4323#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4324
4325struct lb_env {
4326 struct sched_domain *sd;
4327
ddcdf6e7 4328 struct rq *src_rq;
85c1e7da 4329 int src_cpu;
ddcdf6e7
PZ
4330
4331 int dst_cpu;
4332 struct rq *dst_rq;
4333
88b8dac0
SV
4334 struct cpumask *dst_grpmask;
4335 int new_dst_cpu;
ddcdf6e7 4336 enum cpu_idle_type idle;
bd939f45 4337 long imbalance;
b9403130
MW
4338 /* The set of CPUs under consideration for load-balancing */
4339 struct cpumask *cpus;
4340
ddcdf6e7 4341 unsigned int flags;
367456c7
PZ
4342
4343 unsigned int loop;
4344 unsigned int loop_break;
4345 unsigned int loop_max;
ddcdf6e7
PZ
4346};
4347
1e3c88bd 4348/*
ddcdf6e7 4349 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4350 * Both runqueues must be locked.
4351 */
ddcdf6e7 4352static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4353{
ddcdf6e7
PZ
4354 deactivate_task(env->src_rq, p, 0);
4355 set_task_cpu(p, env->dst_cpu);
4356 activate_task(env->dst_rq, p, 0);
4357 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4358#ifdef CONFIG_NUMA_BALANCING
4359 if (p->numa_preferred_nid != -1) {
4360 int src_nid = cpu_to_node(env->src_cpu);
4361 int dst_nid = cpu_to_node(env->dst_cpu);
4362
4363 /*
4364 * If the load balancer has moved the task then limit
4365 * migrations from taking place in the short term in
4366 * case this is a short-lived migration.
4367 */
4368 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4369 p->numa_migrate_seq = 0;
4370 }
4371#endif
1e3c88bd
PZ
4372}
4373
029632fb
PZ
4374/*
4375 * Is this task likely cache-hot:
4376 */
4377static int
4378task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4379{
4380 s64 delta;
4381
4382 if (p->sched_class != &fair_sched_class)
4383 return 0;
4384
4385 if (unlikely(p->policy == SCHED_IDLE))
4386 return 0;
4387
4388 /*
4389 * Buddy candidates are cache hot:
4390 */
4391 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4392 (&p->se == cfs_rq_of(&p->se)->next ||
4393 &p->se == cfs_rq_of(&p->se)->last))
4394 return 1;
4395
4396 if (sysctl_sched_migration_cost == -1)
4397 return 1;
4398 if (sysctl_sched_migration_cost == 0)
4399 return 0;
4400
4401 delta = now - p->se.exec_start;
4402
4403 return delta < (s64)sysctl_sched_migration_cost;
4404}
4405
3a7053b3
MG
4406#ifdef CONFIG_NUMA_BALANCING
4407/* Returns true if the destination node has incurred more faults */
4408static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4409{
4410 int src_nid, dst_nid;
4411
4412 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4413 !(env->sd->flags & SD_NUMA)) {
4414 return false;
4415 }
4416
4417 src_nid = cpu_to_node(env->src_cpu);
4418 dst_nid = cpu_to_node(env->dst_cpu);
4419
4420 if (src_nid == dst_nid ||
4421 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4422 return false;
4423
4424 if (dst_nid == p->numa_preferred_nid ||
ac8e895b 4425 task_faults(p, dst_nid) > task_faults(p, src_nid))
3a7053b3
MG
4426 return true;
4427
4428 return false;
4429}
7a0f3083
MG
4430
4431
4432static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4433{
4434 int src_nid, dst_nid;
4435
4436 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4437 return false;
4438
4439 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4440 return false;
4441
4442 src_nid = cpu_to_node(env->src_cpu);
4443 dst_nid = cpu_to_node(env->dst_cpu);
4444
4445 if (src_nid == dst_nid ||
4446 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4447 return false;
4448
ac8e895b 4449 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
7a0f3083
MG
4450 return true;
4451
4452 return false;
4453}
4454
3a7053b3
MG
4455#else
4456static inline bool migrate_improves_locality(struct task_struct *p,
4457 struct lb_env *env)
4458{
4459 return false;
4460}
7a0f3083
MG
4461
4462static inline bool migrate_degrades_locality(struct task_struct *p,
4463 struct lb_env *env)
4464{
4465 return false;
4466}
3a7053b3
MG
4467#endif
4468
1e3c88bd
PZ
4469/*
4470 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4471 */
4472static
8e45cb54 4473int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4474{
4475 int tsk_cache_hot = 0;
4476 /*
4477 * We do not migrate tasks that are:
d3198084 4478 * 1) throttled_lb_pair, or
1e3c88bd 4479 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4480 * 3) running (obviously), or
4481 * 4) are cache-hot on their current CPU.
1e3c88bd 4482 */
d3198084
JK
4483 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4484 return 0;
4485
ddcdf6e7 4486 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4487 int cpu;
88b8dac0 4488
41acab88 4489 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4490
6263322c
PZ
4491 env->flags |= LBF_SOME_PINNED;
4492
88b8dac0
SV
4493 /*
4494 * Remember if this task can be migrated to any other cpu in
4495 * our sched_group. We may want to revisit it if we couldn't
4496 * meet load balance goals by pulling other tasks on src_cpu.
4497 *
4498 * Also avoid computing new_dst_cpu if we have already computed
4499 * one in current iteration.
4500 */
6263322c 4501 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4502 return 0;
4503
e02e60c1
JK
4504 /* Prevent to re-select dst_cpu via env's cpus */
4505 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4506 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4507 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4508 env->new_dst_cpu = cpu;
4509 break;
4510 }
88b8dac0 4511 }
e02e60c1 4512
1e3c88bd
PZ
4513 return 0;
4514 }
88b8dac0
SV
4515
4516 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4517 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4518
ddcdf6e7 4519 if (task_running(env->src_rq, p)) {
41acab88 4520 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4521 return 0;
4522 }
4523
4524 /*
4525 * Aggressive migration if:
3a7053b3
MG
4526 * 1) destination numa is preferred
4527 * 2) task is cache cold, or
4528 * 3) too many balance attempts have failed.
1e3c88bd 4529 */
78becc27 4530 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4531 if (!tsk_cache_hot)
4532 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4533
4534 if (migrate_improves_locality(p, env)) {
4535#ifdef CONFIG_SCHEDSTATS
4536 if (tsk_cache_hot) {
4537 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4538 schedstat_inc(p, se.statistics.nr_forced_migrations);
4539 }
4540#endif
4541 return 1;
4542 }
4543
1e3c88bd 4544 if (!tsk_cache_hot ||
8e45cb54 4545 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4546
1e3c88bd 4547 if (tsk_cache_hot) {
8e45cb54 4548 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4549 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4550 }
4e2dcb73 4551
1e3c88bd
PZ
4552 return 1;
4553 }
4554
4e2dcb73
ZH
4555 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4556 return 0;
1e3c88bd
PZ
4557}
4558
897c395f
PZ
4559/*
4560 * move_one_task tries to move exactly one task from busiest to this_rq, as
4561 * part of active balancing operations within "domain".
4562 * Returns 1 if successful and 0 otherwise.
4563 *
4564 * Called with both runqueues locked.
4565 */
8e45cb54 4566static int move_one_task(struct lb_env *env)
897c395f
PZ
4567{
4568 struct task_struct *p, *n;
897c395f 4569
367456c7 4570 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4571 if (!can_migrate_task(p, env))
4572 continue;
897c395f 4573
367456c7
PZ
4574 move_task(p, env);
4575 /*
4576 * Right now, this is only the second place move_task()
4577 * is called, so we can safely collect move_task()
4578 * stats here rather than inside move_task().
4579 */
4580 schedstat_inc(env->sd, lb_gained[env->idle]);
4581 return 1;
897c395f 4582 }
897c395f
PZ
4583 return 0;
4584}
4585
eb95308e
PZ
4586static const unsigned int sched_nr_migrate_break = 32;
4587
5d6523eb 4588/*
bd939f45 4589 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4590 * this_rq, as part of a balancing operation within domain "sd".
4591 * Returns 1 if successful and 0 otherwise.
4592 *
4593 * Called with both runqueues locked.
4594 */
4595static int move_tasks(struct lb_env *env)
1e3c88bd 4596{
5d6523eb
PZ
4597 struct list_head *tasks = &env->src_rq->cfs_tasks;
4598 struct task_struct *p;
367456c7
PZ
4599 unsigned long load;
4600 int pulled = 0;
1e3c88bd 4601
bd939f45 4602 if (env->imbalance <= 0)
5d6523eb 4603 return 0;
1e3c88bd 4604
5d6523eb
PZ
4605 while (!list_empty(tasks)) {
4606 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4607
367456c7
PZ
4608 env->loop++;
4609 /* We've more or less seen every task there is, call it quits */
5d6523eb 4610 if (env->loop > env->loop_max)
367456c7 4611 break;
5d6523eb
PZ
4612
4613 /* take a breather every nr_migrate tasks */
367456c7 4614 if (env->loop > env->loop_break) {
eb95308e 4615 env->loop_break += sched_nr_migrate_break;
8e45cb54 4616 env->flags |= LBF_NEED_BREAK;
ee00e66f 4617 break;
a195f004 4618 }
1e3c88bd 4619
d3198084 4620 if (!can_migrate_task(p, env))
367456c7
PZ
4621 goto next;
4622
4623 load = task_h_load(p);
5d6523eb 4624
eb95308e 4625 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4626 goto next;
4627
bd939f45 4628 if ((load / 2) > env->imbalance)
367456c7 4629 goto next;
1e3c88bd 4630
ddcdf6e7 4631 move_task(p, env);
ee00e66f 4632 pulled++;
bd939f45 4633 env->imbalance -= load;
1e3c88bd
PZ
4634
4635#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4636 /*
4637 * NEWIDLE balancing is a source of latency, so preemptible
4638 * kernels will stop after the first task is pulled to minimize
4639 * the critical section.
4640 */
5d6523eb 4641 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4642 break;
1e3c88bd
PZ
4643#endif
4644
ee00e66f
PZ
4645 /*
4646 * We only want to steal up to the prescribed amount of
4647 * weighted load.
4648 */
bd939f45 4649 if (env->imbalance <= 0)
ee00e66f 4650 break;
367456c7
PZ
4651
4652 continue;
4653next:
5d6523eb 4654 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4655 }
5d6523eb 4656
1e3c88bd 4657 /*
ddcdf6e7
PZ
4658 * Right now, this is one of only two places move_task() is called,
4659 * so we can safely collect move_task() stats here rather than
4660 * inside move_task().
1e3c88bd 4661 */
8e45cb54 4662 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4663
5d6523eb 4664 return pulled;
1e3c88bd
PZ
4665}
4666
230059de 4667#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4668/*
4669 * update tg->load_weight by folding this cpu's load_avg
4670 */
48a16753 4671static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4672{
48a16753
PT
4673 struct sched_entity *se = tg->se[cpu];
4674 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4675
48a16753
PT
4676 /* throttled entities do not contribute to load */
4677 if (throttled_hierarchy(cfs_rq))
4678 return;
9e3081ca 4679
aff3e498 4680 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4681
82958366
PT
4682 if (se) {
4683 update_entity_load_avg(se, 1);
4684 /*
4685 * We pivot on our runnable average having decayed to zero for
4686 * list removal. This generally implies that all our children
4687 * have also been removed (modulo rounding error or bandwidth
4688 * control); however, such cases are rare and we can fix these
4689 * at enqueue.
4690 *
4691 * TODO: fix up out-of-order children on enqueue.
4692 */
4693 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4694 list_del_leaf_cfs_rq(cfs_rq);
4695 } else {
48a16753 4696 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4697 update_rq_runnable_avg(rq, rq->nr_running);
4698 }
9e3081ca
PZ
4699}
4700
48a16753 4701static void update_blocked_averages(int cpu)
9e3081ca 4702{
9e3081ca 4703 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4704 struct cfs_rq *cfs_rq;
4705 unsigned long flags;
9e3081ca 4706
48a16753
PT
4707 raw_spin_lock_irqsave(&rq->lock, flags);
4708 update_rq_clock(rq);
9763b67f
PZ
4709 /*
4710 * Iterates the task_group tree in a bottom up fashion, see
4711 * list_add_leaf_cfs_rq() for details.
4712 */
64660c86 4713 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4714 /*
4715 * Note: We may want to consider periodically releasing
4716 * rq->lock about these updates so that creating many task
4717 * groups does not result in continually extending hold time.
4718 */
4719 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4720 }
48a16753
PT
4721
4722 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4723}
4724
9763b67f 4725/*
68520796 4726 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4727 * This needs to be done in a top-down fashion because the load of a child
4728 * group is a fraction of its parents load.
4729 */
68520796 4730static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4731{
68520796
VD
4732 struct rq *rq = rq_of(cfs_rq);
4733 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4734 unsigned long now = jiffies;
68520796 4735 unsigned long load;
a35b6466 4736
68520796 4737 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4738 return;
4739
68520796
VD
4740 cfs_rq->h_load_next = NULL;
4741 for_each_sched_entity(se) {
4742 cfs_rq = cfs_rq_of(se);
4743 cfs_rq->h_load_next = se;
4744 if (cfs_rq->last_h_load_update == now)
4745 break;
4746 }
a35b6466 4747
68520796 4748 if (!se) {
7e3115ef 4749 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4750 cfs_rq->last_h_load_update = now;
4751 }
4752
4753 while ((se = cfs_rq->h_load_next) != NULL) {
4754 load = cfs_rq->h_load;
4755 load = div64_ul(load * se->avg.load_avg_contrib,
4756 cfs_rq->runnable_load_avg + 1);
4757 cfs_rq = group_cfs_rq(se);
4758 cfs_rq->h_load = load;
4759 cfs_rq->last_h_load_update = now;
4760 }
9763b67f
PZ
4761}
4762
367456c7 4763static unsigned long task_h_load(struct task_struct *p)
230059de 4764{
367456c7 4765 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4766
68520796 4767 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4768 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4769 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4770}
4771#else
48a16753 4772static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4773{
4774}
4775
367456c7 4776static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4777{
a003a25b 4778 return p->se.avg.load_avg_contrib;
1e3c88bd 4779}
230059de 4780#endif
1e3c88bd 4781
1e3c88bd 4782/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4783/*
4784 * sg_lb_stats - stats of a sched_group required for load_balancing
4785 */
4786struct sg_lb_stats {
4787 unsigned long avg_load; /*Avg load across the CPUs of the group */
4788 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4789 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4790 unsigned long load_per_task;
3ae11c90 4791 unsigned long group_power;
147c5fc2
PZ
4792 unsigned int sum_nr_running; /* Nr tasks running in the group */
4793 unsigned int group_capacity;
4794 unsigned int idle_cpus;
4795 unsigned int group_weight;
1e3c88bd 4796 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4797 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4798};
4799
56cf515b
JK
4800/*
4801 * sd_lb_stats - Structure to store the statistics of a sched_domain
4802 * during load balancing.
4803 */
4804struct sd_lb_stats {
4805 struct sched_group *busiest; /* Busiest group in this sd */
4806 struct sched_group *local; /* Local group in this sd */
4807 unsigned long total_load; /* Total load of all groups in sd */
4808 unsigned long total_pwr; /* Total power of all groups in sd */
4809 unsigned long avg_load; /* Average load across all groups in sd */
4810
56cf515b 4811 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4812 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4813};
4814
147c5fc2
PZ
4815static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4816{
4817 /*
4818 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4819 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4820 * We must however clear busiest_stat::avg_load because
4821 * update_sd_pick_busiest() reads this before assignment.
4822 */
4823 *sds = (struct sd_lb_stats){
4824 .busiest = NULL,
4825 .local = NULL,
4826 .total_load = 0UL,
4827 .total_pwr = 0UL,
4828 .busiest_stat = {
4829 .avg_load = 0UL,
4830 },
4831 };
4832}
4833
1e3c88bd
PZ
4834/**
4835 * get_sd_load_idx - Obtain the load index for a given sched domain.
4836 * @sd: The sched_domain whose load_idx is to be obtained.
4837 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4838 *
4839 * Return: The load index.
1e3c88bd
PZ
4840 */
4841static inline int get_sd_load_idx(struct sched_domain *sd,
4842 enum cpu_idle_type idle)
4843{
4844 int load_idx;
4845
4846 switch (idle) {
4847 case CPU_NOT_IDLE:
4848 load_idx = sd->busy_idx;
4849 break;
4850
4851 case CPU_NEWLY_IDLE:
4852 load_idx = sd->newidle_idx;
4853 break;
4854 default:
4855 load_idx = sd->idle_idx;
4856 break;
4857 }
4858
4859 return load_idx;
4860}
4861
15f803c9 4862static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4863{
1399fa78 4864 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4865}
4866
4867unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4868{
4869 return default_scale_freq_power(sd, cpu);
4870}
4871
15f803c9 4872static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4873{
669c55e9 4874 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4875 unsigned long smt_gain = sd->smt_gain;
4876
4877 smt_gain /= weight;
4878
4879 return smt_gain;
4880}
4881
4882unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4883{
4884 return default_scale_smt_power(sd, cpu);
4885}
4886
15f803c9 4887static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4888{
4889 struct rq *rq = cpu_rq(cpu);
b654f7de 4890 u64 total, available, age_stamp, avg;
1e3c88bd 4891
b654f7de
PZ
4892 /*
4893 * Since we're reading these variables without serialization make sure
4894 * we read them once before doing sanity checks on them.
4895 */
4896 age_stamp = ACCESS_ONCE(rq->age_stamp);
4897 avg = ACCESS_ONCE(rq->rt_avg);
4898
78becc27 4899 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4900
b654f7de 4901 if (unlikely(total < avg)) {
aa483808
VP
4902 /* Ensures that power won't end up being negative */
4903 available = 0;
4904 } else {
b654f7de 4905 available = total - avg;
aa483808 4906 }
1e3c88bd 4907
1399fa78
NR
4908 if (unlikely((s64)total < SCHED_POWER_SCALE))
4909 total = SCHED_POWER_SCALE;
1e3c88bd 4910
1399fa78 4911 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4912
4913 return div_u64(available, total);
4914}
4915
4916static void update_cpu_power(struct sched_domain *sd, int cpu)
4917{
669c55e9 4918 unsigned long weight = sd->span_weight;
1399fa78 4919 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4920 struct sched_group *sdg = sd->groups;
4921
1e3c88bd
PZ
4922 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4923 if (sched_feat(ARCH_POWER))
4924 power *= arch_scale_smt_power(sd, cpu);
4925 else
4926 power *= default_scale_smt_power(sd, cpu);
4927
1399fa78 4928 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4929 }
4930
9c3f75cb 4931 sdg->sgp->power_orig = power;
9d5efe05
SV
4932
4933 if (sched_feat(ARCH_POWER))
4934 power *= arch_scale_freq_power(sd, cpu);
4935 else
4936 power *= default_scale_freq_power(sd, cpu);
4937
1399fa78 4938 power >>= SCHED_POWER_SHIFT;
9d5efe05 4939
1e3c88bd 4940 power *= scale_rt_power(cpu);
1399fa78 4941 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4942
4943 if (!power)
4944 power = 1;
4945
e51fd5e2 4946 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4947 sdg->sgp->power = power;
1e3c88bd
PZ
4948}
4949
029632fb 4950void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4951{
4952 struct sched_domain *child = sd->child;
4953 struct sched_group *group, *sdg = sd->groups;
863bffc8 4954 unsigned long power, power_orig;
4ec4412e
VG
4955 unsigned long interval;
4956
4957 interval = msecs_to_jiffies(sd->balance_interval);
4958 interval = clamp(interval, 1UL, max_load_balance_interval);
4959 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4960
4961 if (!child) {
4962 update_cpu_power(sd, cpu);
4963 return;
4964 }
4965
863bffc8 4966 power_orig = power = 0;
1e3c88bd 4967
74a5ce20
PZ
4968 if (child->flags & SD_OVERLAP) {
4969 /*
4970 * SD_OVERLAP domains cannot assume that child groups
4971 * span the current group.
4972 */
4973
863bffc8
PZ
4974 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4975 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4976
4977 power_orig += sg->sgp->power_orig;
4978 power += sg->sgp->power;
4979 }
74a5ce20
PZ
4980 } else {
4981 /*
4982 * !SD_OVERLAP domains can assume that child groups
4983 * span the current group.
4984 */
4985
4986 group = child->groups;
4987 do {
863bffc8 4988 power_orig += group->sgp->power_orig;
74a5ce20
PZ
4989 power += group->sgp->power;
4990 group = group->next;
4991 } while (group != child->groups);
4992 }
1e3c88bd 4993
863bffc8
PZ
4994 sdg->sgp->power_orig = power_orig;
4995 sdg->sgp->power = power;
1e3c88bd
PZ
4996}
4997
9d5efe05
SV
4998/*
4999 * Try and fix up capacity for tiny siblings, this is needed when
5000 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5001 * which on its own isn't powerful enough.
5002 *
5003 * See update_sd_pick_busiest() and check_asym_packing().
5004 */
5005static inline int
5006fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5007{
5008 /*
1399fa78 5009 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5010 */
a6c75f2f 5011 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5012 return 0;
5013
5014 /*
5015 * If ~90% of the cpu_power is still there, we're good.
5016 */
9c3f75cb 5017 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5018 return 1;
5019
5020 return 0;
5021}
5022
30ce5dab
PZ
5023/*
5024 * Group imbalance indicates (and tries to solve) the problem where balancing
5025 * groups is inadequate due to tsk_cpus_allowed() constraints.
5026 *
5027 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5028 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5029 * Something like:
5030 *
5031 * { 0 1 2 3 } { 4 5 6 7 }
5032 * * * * *
5033 *
5034 * If we were to balance group-wise we'd place two tasks in the first group and
5035 * two tasks in the second group. Clearly this is undesired as it will overload
5036 * cpu 3 and leave one of the cpus in the second group unused.
5037 *
5038 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5039 * by noticing the lower domain failed to reach balance and had difficulty
5040 * moving tasks due to affinity constraints.
30ce5dab
PZ
5041 *
5042 * When this is so detected; this group becomes a candidate for busiest; see
5043 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5044 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5045 * to create an effective group imbalance.
5046 *
5047 * This is a somewhat tricky proposition since the next run might not find the
5048 * group imbalance and decide the groups need to be balanced again. A most
5049 * subtle and fragile situation.
5050 */
5051
6263322c 5052static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5053{
6263322c 5054 return group->sgp->imbalance;
30ce5dab
PZ
5055}
5056
b37d9316
PZ
5057/*
5058 * Compute the group capacity.
5059 *
c61037e9
PZ
5060 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5061 * first dividing out the smt factor and computing the actual number of cores
5062 * and limit power unit capacity with that.
b37d9316
PZ
5063 */
5064static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5065{
c61037e9
PZ
5066 unsigned int capacity, smt, cpus;
5067 unsigned int power, power_orig;
5068
5069 power = group->sgp->power;
5070 power_orig = group->sgp->power_orig;
5071 cpus = group->group_weight;
b37d9316 5072
c61037e9
PZ
5073 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5074 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5075 capacity = cpus / smt; /* cores */
b37d9316 5076
c61037e9 5077 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5078 if (!capacity)
5079 capacity = fix_small_capacity(env->sd, group);
5080
5081 return capacity;
5082}
5083
1e3c88bd
PZ
5084/**
5085 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5086 * @env: The load balancing environment.
1e3c88bd 5087 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5088 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5089 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5090 * @sgs: variable to hold the statistics for this group.
5091 */
bd939f45
PZ
5092static inline void update_sg_lb_stats(struct lb_env *env,
5093 struct sched_group *group, int load_idx,
23f0d209 5094 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5095{
30ce5dab
PZ
5096 unsigned long nr_running;
5097 unsigned long load;
bd939f45 5098 int i;
1e3c88bd 5099
b72ff13c
PZ
5100 memset(sgs, 0, sizeof(*sgs));
5101
b9403130 5102 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5103 struct rq *rq = cpu_rq(i);
5104
e44bc5c5
PZ
5105 nr_running = rq->nr_running;
5106
1e3c88bd 5107 /* Bias balancing toward cpus of our domain */
6263322c 5108 if (local_group)
04f733b4 5109 load = target_load(i, load_idx);
6263322c 5110 else
1e3c88bd 5111 load = source_load(i, load_idx);
1e3c88bd
PZ
5112
5113 sgs->group_load += load;
e44bc5c5 5114 sgs->sum_nr_running += nr_running;
1e3c88bd 5115 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5116 if (idle_cpu(i))
5117 sgs->idle_cpus++;
1e3c88bd
PZ
5118 }
5119
1e3c88bd 5120 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5121 sgs->group_power = group->sgp->power;
5122 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5123
dd5feea1 5124 if (sgs->sum_nr_running)
38d0f770 5125 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5126
aae6d3dd 5127 sgs->group_weight = group->group_weight;
fab47622 5128
b37d9316
PZ
5129 sgs->group_imb = sg_imbalanced(group);
5130 sgs->group_capacity = sg_capacity(env, group);
5131
fab47622
NR
5132 if (sgs->group_capacity > sgs->sum_nr_running)
5133 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5134}
5135
532cb4c4
MN
5136/**
5137 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5138 * @env: The load balancing environment.
532cb4c4
MN
5139 * @sds: sched_domain statistics
5140 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5141 * @sgs: sched_group statistics
532cb4c4
MN
5142 *
5143 * Determine if @sg is a busier group than the previously selected
5144 * busiest group.
e69f6186
YB
5145 *
5146 * Return: %true if @sg is a busier group than the previously selected
5147 * busiest group. %false otherwise.
532cb4c4 5148 */
bd939f45 5149static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5150 struct sd_lb_stats *sds,
5151 struct sched_group *sg,
bd939f45 5152 struct sg_lb_stats *sgs)
532cb4c4 5153{
56cf515b 5154 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5155 return false;
5156
5157 if (sgs->sum_nr_running > sgs->group_capacity)
5158 return true;
5159
5160 if (sgs->group_imb)
5161 return true;
5162
5163 /*
5164 * ASYM_PACKING needs to move all the work to the lowest
5165 * numbered CPUs in the group, therefore mark all groups
5166 * higher than ourself as busy.
5167 */
bd939f45
PZ
5168 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5169 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5170 if (!sds->busiest)
5171 return true;
5172
5173 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5174 return true;
5175 }
5176
5177 return false;
5178}
5179
1e3c88bd 5180/**
461819ac 5181 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5182 * @env: The load balancing environment.
1e3c88bd
PZ
5183 * @balance: Should we balance.
5184 * @sds: variable to hold the statistics for this sched_domain.
5185 */
bd939f45 5186static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5187 struct sd_lb_stats *sds)
1e3c88bd 5188{
bd939f45
PZ
5189 struct sched_domain *child = env->sd->child;
5190 struct sched_group *sg = env->sd->groups;
56cf515b 5191 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5192 int load_idx, prefer_sibling = 0;
5193
5194 if (child && child->flags & SD_PREFER_SIBLING)
5195 prefer_sibling = 1;
5196
bd939f45 5197 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5198
5199 do {
56cf515b 5200 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5201 int local_group;
5202
bd939f45 5203 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5204 if (local_group) {
5205 sds->local = sg;
5206 sgs = &sds->local_stat;
b72ff13c
PZ
5207
5208 if (env->idle != CPU_NEWLY_IDLE ||
5209 time_after_eq(jiffies, sg->sgp->next_update))
5210 update_group_power(env->sd, env->dst_cpu);
56cf515b 5211 }
1e3c88bd 5212
56cf515b 5213 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5214
b72ff13c
PZ
5215 if (local_group)
5216 goto next_group;
5217
1e3c88bd
PZ
5218 /*
5219 * In case the child domain prefers tasks go to siblings
532cb4c4 5220 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5221 * and move all the excess tasks away. We lower the capacity
5222 * of a group only if the local group has the capacity to fit
5223 * these excess tasks, i.e. nr_running < group_capacity. The
5224 * extra check prevents the case where you always pull from the
5225 * heaviest group when it is already under-utilized (possible
5226 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5227 */
b72ff13c
PZ
5228 if (prefer_sibling && sds->local &&
5229 sds->local_stat.group_has_capacity)
147c5fc2 5230 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5231
b72ff13c 5232 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5233 sds->busiest = sg;
56cf515b 5234 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5235 }
5236
b72ff13c
PZ
5237next_group:
5238 /* Now, start updating sd_lb_stats */
5239 sds->total_load += sgs->group_load;
5240 sds->total_pwr += sgs->group_power;
5241
532cb4c4 5242 sg = sg->next;
bd939f45 5243 } while (sg != env->sd->groups);
532cb4c4
MN
5244}
5245
532cb4c4
MN
5246/**
5247 * check_asym_packing - Check to see if the group is packed into the
5248 * sched doman.
5249 *
5250 * This is primarily intended to used at the sibling level. Some
5251 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5252 * case of POWER7, it can move to lower SMT modes only when higher
5253 * threads are idle. When in lower SMT modes, the threads will
5254 * perform better since they share less core resources. Hence when we
5255 * have idle threads, we want them to be the higher ones.
5256 *
5257 * This packing function is run on idle threads. It checks to see if
5258 * the busiest CPU in this domain (core in the P7 case) has a higher
5259 * CPU number than the packing function is being run on. Here we are
5260 * assuming lower CPU number will be equivalent to lower a SMT thread
5261 * number.
5262 *
e69f6186 5263 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5264 * this CPU. The amount of the imbalance is returned in *imbalance.
5265 *
cd96891d 5266 * @env: The load balancing environment.
532cb4c4 5267 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5268 */
bd939f45 5269static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5270{
5271 int busiest_cpu;
5272
bd939f45 5273 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5274 return 0;
5275
5276 if (!sds->busiest)
5277 return 0;
5278
5279 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5280 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5281 return 0;
5282
bd939f45 5283 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5284 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5285 SCHED_POWER_SCALE);
bd939f45 5286
532cb4c4 5287 return 1;
1e3c88bd
PZ
5288}
5289
5290/**
5291 * fix_small_imbalance - Calculate the minor imbalance that exists
5292 * amongst the groups of a sched_domain, during
5293 * load balancing.
cd96891d 5294 * @env: The load balancing environment.
1e3c88bd 5295 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5296 */
bd939f45
PZ
5297static inline
5298void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5299{
5300 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5301 unsigned int imbn = 2;
dd5feea1 5302 unsigned long scaled_busy_load_per_task;
56cf515b 5303 struct sg_lb_stats *local, *busiest;
1e3c88bd 5304
56cf515b
JK
5305 local = &sds->local_stat;
5306 busiest = &sds->busiest_stat;
1e3c88bd 5307
56cf515b
JK
5308 if (!local->sum_nr_running)
5309 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5310 else if (busiest->load_per_task > local->load_per_task)
5311 imbn = 1;
dd5feea1 5312
56cf515b
JK
5313 scaled_busy_load_per_task =
5314 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5315 busiest->group_power;
56cf515b 5316
3029ede3
VD
5317 if (busiest->avg_load + scaled_busy_load_per_task >=
5318 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5319 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5320 return;
5321 }
5322
5323 /*
5324 * OK, we don't have enough imbalance to justify moving tasks,
5325 * however we may be able to increase total CPU power used by
5326 * moving them.
5327 */
5328
3ae11c90 5329 pwr_now += busiest->group_power *
56cf515b 5330 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5331 pwr_now += local->group_power *
56cf515b 5332 min(local->load_per_task, local->avg_load);
1399fa78 5333 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5334
5335 /* Amount of load we'd subtract */
56cf515b 5336 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5337 busiest->group_power;
56cf515b 5338 if (busiest->avg_load > tmp) {
3ae11c90 5339 pwr_move += busiest->group_power *
56cf515b
JK
5340 min(busiest->load_per_task,
5341 busiest->avg_load - tmp);
5342 }
1e3c88bd
PZ
5343
5344 /* Amount of load we'd add */
3ae11c90 5345 if (busiest->avg_load * busiest->group_power <
56cf515b 5346 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5347 tmp = (busiest->avg_load * busiest->group_power) /
5348 local->group_power;
56cf515b
JK
5349 } else {
5350 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5351 local->group_power;
56cf515b 5352 }
3ae11c90
PZ
5353 pwr_move += local->group_power *
5354 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5355 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5356
5357 /* Move if we gain throughput */
5358 if (pwr_move > pwr_now)
56cf515b 5359 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5360}
5361
5362/**
5363 * calculate_imbalance - Calculate the amount of imbalance present within the
5364 * groups of a given sched_domain during load balance.
bd939f45 5365 * @env: load balance environment
1e3c88bd 5366 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5367 */
bd939f45 5368static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5369{
dd5feea1 5370 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5371 struct sg_lb_stats *local, *busiest;
5372
5373 local = &sds->local_stat;
56cf515b 5374 busiest = &sds->busiest_stat;
dd5feea1 5375
56cf515b 5376 if (busiest->group_imb) {
30ce5dab
PZ
5377 /*
5378 * In the group_imb case we cannot rely on group-wide averages
5379 * to ensure cpu-load equilibrium, look at wider averages. XXX
5380 */
56cf515b
JK
5381 busiest->load_per_task =
5382 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5383 }
5384
1e3c88bd
PZ
5385 /*
5386 * In the presence of smp nice balancing, certain scenarios can have
5387 * max load less than avg load(as we skip the groups at or below
5388 * its cpu_power, while calculating max_load..)
5389 */
b1885550
VD
5390 if (busiest->avg_load <= sds->avg_load ||
5391 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5392 env->imbalance = 0;
5393 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5394 }
5395
56cf515b 5396 if (!busiest->group_imb) {
dd5feea1
SS
5397 /*
5398 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5399 * Except of course for the group_imb case, since then we might
5400 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5401 */
56cf515b
JK
5402 load_above_capacity =
5403 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5404
1399fa78 5405 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5406 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5407 }
5408
5409 /*
5410 * We're trying to get all the cpus to the average_load, so we don't
5411 * want to push ourselves above the average load, nor do we wish to
5412 * reduce the max loaded cpu below the average load. At the same time,
5413 * we also don't want to reduce the group load below the group capacity
5414 * (so that we can implement power-savings policies etc). Thus we look
5415 * for the minimum possible imbalance.
dd5feea1 5416 */
30ce5dab 5417 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5418
5419 /* How much load to actually move to equalise the imbalance */
56cf515b 5420 env->imbalance = min(
3ae11c90
PZ
5421 max_pull * busiest->group_power,
5422 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5423 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5424
5425 /*
5426 * if *imbalance is less than the average load per runnable task
25985edc 5427 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5428 * a think about bumping its value to force at least one task to be
5429 * moved
5430 */
56cf515b 5431 if (env->imbalance < busiest->load_per_task)
bd939f45 5432 return fix_small_imbalance(env, sds);
1e3c88bd 5433}
fab47622 5434
1e3c88bd
PZ
5435/******* find_busiest_group() helpers end here *********************/
5436
5437/**
5438 * find_busiest_group - Returns the busiest group within the sched_domain
5439 * if there is an imbalance. If there isn't an imbalance, and
5440 * the user has opted for power-savings, it returns a group whose
5441 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5442 * such a group exists.
5443 *
5444 * Also calculates the amount of weighted load which should be moved
5445 * to restore balance.
5446 *
cd96891d 5447 * @env: The load balancing environment.
1e3c88bd 5448 *
e69f6186 5449 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5450 * - If no imbalance and user has opted for power-savings balance,
5451 * return the least loaded group whose CPUs can be
5452 * put to idle by rebalancing its tasks onto our group.
5453 */
56cf515b 5454static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5455{
56cf515b 5456 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5457 struct sd_lb_stats sds;
5458
147c5fc2 5459 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5460
5461 /*
5462 * Compute the various statistics relavent for load balancing at
5463 * this level.
5464 */
23f0d209 5465 update_sd_lb_stats(env, &sds);
56cf515b
JK
5466 local = &sds.local_stat;
5467 busiest = &sds.busiest_stat;
1e3c88bd 5468
bd939f45
PZ
5469 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5470 check_asym_packing(env, &sds))
532cb4c4
MN
5471 return sds.busiest;
5472
cc57aa8f 5473 /* There is no busy sibling group to pull tasks from */
56cf515b 5474 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5475 goto out_balanced;
5476
1399fa78 5477 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5478
866ab43e
PZ
5479 /*
5480 * If the busiest group is imbalanced the below checks don't
30ce5dab 5481 * work because they assume all things are equal, which typically
866ab43e
PZ
5482 * isn't true due to cpus_allowed constraints and the like.
5483 */
56cf515b 5484 if (busiest->group_imb)
866ab43e
PZ
5485 goto force_balance;
5486
cc57aa8f 5487 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5488 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5489 !busiest->group_has_capacity)
fab47622
NR
5490 goto force_balance;
5491
cc57aa8f
PZ
5492 /*
5493 * If the local group is more busy than the selected busiest group
5494 * don't try and pull any tasks.
5495 */
56cf515b 5496 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5497 goto out_balanced;
5498
cc57aa8f
PZ
5499 /*
5500 * Don't pull any tasks if this group is already above the domain
5501 * average load.
5502 */
56cf515b 5503 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5504 goto out_balanced;
5505
bd939f45 5506 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5507 /*
5508 * This cpu is idle. If the busiest group load doesn't
5509 * have more tasks than the number of available cpu's and
5510 * there is no imbalance between this and busiest group
5511 * wrt to idle cpu's, it is balanced.
5512 */
56cf515b
JK
5513 if ((local->idle_cpus < busiest->idle_cpus) &&
5514 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5515 goto out_balanced;
c186fafe
PZ
5516 } else {
5517 /*
5518 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5519 * imbalance_pct to be conservative.
5520 */
56cf515b
JK
5521 if (100 * busiest->avg_load <=
5522 env->sd->imbalance_pct * local->avg_load)
c186fafe 5523 goto out_balanced;
aae6d3dd 5524 }
1e3c88bd 5525
fab47622 5526force_balance:
1e3c88bd 5527 /* Looks like there is an imbalance. Compute it */
bd939f45 5528 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5529 return sds.busiest;
5530
5531out_balanced:
bd939f45 5532 env->imbalance = 0;
1e3c88bd
PZ
5533 return NULL;
5534}
5535
5536/*
5537 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5538 */
bd939f45 5539static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5540 struct sched_group *group)
1e3c88bd
PZ
5541{
5542 struct rq *busiest = NULL, *rq;
95a79b80 5543 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5544 int i;
5545
6906a408 5546 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5547 unsigned long power = power_of(i);
1399fa78
NR
5548 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5549 SCHED_POWER_SCALE);
1e3c88bd
PZ
5550 unsigned long wl;
5551
9d5efe05 5552 if (!capacity)
bd939f45 5553 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5554
1e3c88bd 5555 rq = cpu_rq(i);
6e40f5bb 5556 wl = weighted_cpuload(i);
1e3c88bd 5557
6e40f5bb
TG
5558 /*
5559 * When comparing with imbalance, use weighted_cpuload()
5560 * which is not scaled with the cpu power.
5561 */
bd939f45 5562 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5563 continue;
5564
6e40f5bb
TG
5565 /*
5566 * For the load comparisons with the other cpu's, consider
5567 * the weighted_cpuload() scaled with the cpu power, so that
5568 * the load can be moved away from the cpu that is potentially
5569 * running at a lower capacity.
95a79b80
JK
5570 *
5571 * Thus we're looking for max(wl_i / power_i), crosswise
5572 * multiplication to rid ourselves of the division works out
5573 * to: wl_i * power_j > wl_j * power_i; where j is our
5574 * previous maximum.
6e40f5bb 5575 */
95a79b80
JK
5576 if (wl * busiest_power > busiest_load * power) {
5577 busiest_load = wl;
5578 busiest_power = power;
1e3c88bd
PZ
5579 busiest = rq;
5580 }
5581 }
5582
5583 return busiest;
5584}
5585
5586/*
5587 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5588 * so long as it is large enough.
5589 */
5590#define MAX_PINNED_INTERVAL 512
5591
5592/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5593DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5594
bd939f45 5595static int need_active_balance(struct lb_env *env)
1af3ed3d 5596{
bd939f45
PZ
5597 struct sched_domain *sd = env->sd;
5598
5599 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5600
5601 /*
5602 * ASYM_PACKING needs to force migrate tasks from busy but
5603 * higher numbered CPUs in order to pack all tasks in the
5604 * lowest numbered CPUs.
5605 */
bd939f45 5606 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5607 return 1;
1af3ed3d
PZ
5608 }
5609
5610 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5611}
5612
969c7921
TH
5613static int active_load_balance_cpu_stop(void *data);
5614
23f0d209
JK
5615static int should_we_balance(struct lb_env *env)
5616{
5617 struct sched_group *sg = env->sd->groups;
5618 struct cpumask *sg_cpus, *sg_mask;
5619 int cpu, balance_cpu = -1;
5620
5621 /*
5622 * In the newly idle case, we will allow all the cpu's
5623 * to do the newly idle load balance.
5624 */
5625 if (env->idle == CPU_NEWLY_IDLE)
5626 return 1;
5627
5628 sg_cpus = sched_group_cpus(sg);
5629 sg_mask = sched_group_mask(sg);
5630 /* Try to find first idle cpu */
5631 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5632 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5633 continue;
5634
5635 balance_cpu = cpu;
5636 break;
5637 }
5638
5639 if (balance_cpu == -1)
5640 balance_cpu = group_balance_cpu(sg);
5641
5642 /*
5643 * First idle cpu or the first cpu(busiest) in this sched group
5644 * is eligible for doing load balancing at this and above domains.
5645 */
b0cff9d8 5646 return balance_cpu == env->dst_cpu;
23f0d209
JK
5647}
5648
1e3c88bd
PZ
5649/*
5650 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5651 * tasks if there is an imbalance.
5652 */
5653static int load_balance(int this_cpu, struct rq *this_rq,
5654 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5655 int *continue_balancing)
1e3c88bd 5656{
88b8dac0 5657 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5658 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5659 struct sched_group *group;
1e3c88bd
PZ
5660 struct rq *busiest;
5661 unsigned long flags;
e6252c3e 5662 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5663
8e45cb54
PZ
5664 struct lb_env env = {
5665 .sd = sd,
ddcdf6e7
PZ
5666 .dst_cpu = this_cpu,
5667 .dst_rq = this_rq,
88b8dac0 5668 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5669 .idle = idle,
eb95308e 5670 .loop_break = sched_nr_migrate_break,
b9403130 5671 .cpus = cpus,
8e45cb54
PZ
5672 };
5673
cfc03118
JK
5674 /*
5675 * For NEWLY_IDLE load_balancing, we don't need to consider
5676 * other cpus in our group
5677 */
e02e60c1 5678 if (idle == CPU_NEWLY_IDLE)
cfc03118 5679 env.dst_grpmask = NULL;
cfc03118 5680
1e3c88bd
PZ
5681 cpumask_copy(cpus, cpu_active_mask);
5682
1e3c88bd
PZ
5683 schedstat_inc(sd, lb_count[idle]);
5684
5685redo:
23f0d209
JK
5686 if (!should_we_balance(&env)) {
5687 *continue_balancing = 0;
1e3c88bd 5688 goto out_balanced;
23f0d209 5689 }
1e3c88bd 5690
23f0d209 5691 group = find_busiest_group(&env);
1e3c88bd
PZ
5692 if (!group) {
5693 schedstat_inc(sd, lb_nobusyg[idle]);
5694 goto out_balanced;
5695 }
5696
b9403130 5697 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5698 if (!busiest) {
5699 schedstat_inc(sd, lb_nobusyq[idle]);
5700 goto out_balanced;
5701 }
5702
78feefc5 5703 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5704
bd939f45 5705 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5706
5707 ld_moved = 0;
5708 if (busiest->nr_running > 1) {
5709 /*
5710 * Attempt to move tasks. If find_busiest_group has found
5711 * an imbalance but busiest->nr_running <= 1, the group is
5712 * still unbalanced. ld_moved simply stays zero, so it is
5713 * correctly treated as an imbalance.
5714 */
8e45cb54 5715 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5716 env.src_cpu = busiest->cpu;
5717 env.src_rq = busiest;
5718 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5719
5d6523eb 5720more_balance:
1e3c88bd 5721 local_irq_save(flags);
78feefc5 5722 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5723
5724 /*
5725 * cur_ld_moved - load moved in current iteration
5726 * ld_moved - cumulative load moved across iterations
5727 */
5728 cur_ld_moved = move_tasks(&env);
5729 ld_moved += cur_ld_moved;
78feefc5 5730 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5731 local_irq_restore(flags);
5732
5733 /*
5734 * some other cpu did the load balance for us.
5735 */
88b8dac0
SV
5736 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5737 resched_cpu(env.dst_cpu);
5738
f1cd0858
JK
5739 if (env.flags & LBF_NEED_BREAK) {
5740 env.flags &= ~LBF_NEED_BREAK;
5741 goto more_balance;
5742 }
5743
88b8dac0
SV
5744 /*
5745 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5746 * us and move them to an alternate dst_cpu in our sched_group
5747 * where they can run. The upper limit on how many times we
5748 * iterate on same src_cpu is dependent on number of cpus in our
5749 * sched_group.
5750 *
5751 * This changes load balance semantics a bit on who can move
5752 * load to a given_cpu. In addition to the given_cpu itself
5753 * (or a ilb_cpu acting on its behalf where given_cpu is
5754 * nohz-idle), we now have balance_cpu in a position to move
5755 * load to given_cpu. In rare situations, this may cause
5756 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5757 * _independently_ and at _same_ time to move some load to
5758 * given_cpu) causing exceess load to be moved to given_cpu.
5759 * This however should not happen so much in practice and
5760 * moreover subsequent load balance cycles should correct the
5761 * excess load moved.
5762 */
6263322c 5763 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5764
7aff2e3a
VD
5765 /* Prevent to re-select dst_cpu via env's cpus */
5766 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5767
78feefc5 5768 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5769 env.dst_cpu = env.new_dst_cpu;
6263322c 5770 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5771 env.loop = 0;
5772 env.loop_break = sched_nr_migrate_break;
e02e60c1 5773
88b8dac0
SV
5774 /*
5775 * Go back to "more_balance" rather than "redo" since we
5776 * need to continue with same src_cpu.
5777 */
5778 goto more_balance;
5779 }
1e3c88bd 5780
6263322c
PZ
5781 /*
5782 * We failed to reach balance because of affinity.
5783 */
5784 if (sd_parent) {
5785 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5786
5787 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5788 *group_imbalance = 1;
5789 } else if (*group_imbalance)
5790 *group_imbalance = 0;
5791 }
5792
1e3c88bd 5793 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5794 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5795 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5796 if (!cpumask_empty(cpus)) {
5797 env.loop = 0;
5798 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5799 goto redo;
bbf18b19 5800 }
1e3c88bd
PZ
5801 goto out_balanced;
5802 }
5803 }
5804
5805 if (!ld_moved) {
5806 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5807 /*
5808 * Increment the failure counter only on periodic balance.
5809 * We do not want newidle balance, which can be very
5810 * frequent, pollute the failure counter causing
5811 * excessive cache_hot migrations and active balances.
5812 */
5813 if (idle != CPU_NEWLY_IDLE)
5814 sd->nr_balance_failed++;
1e3c88bd 5815
bd939f45 5816 if (need_active_balance(&env)) {
1e3c88bd
PZ
5817 raw_spin_lock_irqsave(&busiest->lock, flags);
5818
969c7921
TH
5819 /* don't kick the active_load_balance_cpu_stop,
5820 * if the curr task on busiest cpu can't be
5821 * moved to this_cpu
1e3c88bd
PZ
5822 */
5823 if (!cpumask_test_cpu(this_cpu,
fa17b507 5824 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5825 raw_spin_unlock_irqrestore(&busiest->lock,
5826 flags);
8e45cb54 5827 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5828 goto out_one_pinned;
5829 }
5830
969c7921
TH
5831 /*
5832 * ->active_balance synchronizes accesses to
5833 * ->active_balance_work. Once set, it's cleared
5834 * only after active load balance is finished.
5835 */
1e3c88bd
PZ
5836 if (!busiest->active_balance) {
5837 busiest->active_balance = 1;
5838 busiest->push_cpu = this_cpu;
5839 active_balance = 1;
5840 }
5841 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5842
bd939f45 5843 if (active_balance) {
969c7921
TH
5844 stop_one_cpu_nowait(cpu_of(busiest),
5845 active_load_balance_cpu_stop, busiest,
5846 &busiest->active_balance_work);
bd939f45 5847 }
1e3c88bd
PZ
5848
5849 /*
5850 * We've kicked active balancing, reset the failure
5851 * counter.
5852 */
5853 sd->nr_balance_failed = sd->cache_nice_tries+1;
5854 }
5855 } else
5856 sd->nr_balance_failed = 0;
5857
5858 if (likely(!active_balance)) {
5859 /* We were unbalanced, so reset the balancing interval */
5860 sd->balance_interval = sd->min_interval;
5861 } else {
5862 /*
5863 * If we've begun active balancing, start to back off. This
5864 * case may not be covered by the all_pinned logic if there
5865 * is only 1 task on the busy runqueue (because we don't call
5866 * move_tasks).
5867 */
5868 if (sd->balance_interval < sd->max_interval)
5869 sd->balance_interval *= 2;
5870 }
5871
1e3c88bd
PZ
5872 goto out;
5873
5874out_balanced:
5875 schedstat_inc(sd, lb_balanced[idle]);
5876
5877 sd->nr_balance_failed = 0;
5878
5879out_one_pinned:
5880 /* tune up the balancing interval */
8e45cb54 5881 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5882 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5883 (sd->balance_interval < sd->max_interval))
5884 sd->balance_interval *= 2;
5885
46e49b38 5886 ld_moved = 0;
1e3c88bd 5887out:
1e3c88bd
PZ
5888 return ld_moved;
5889}
5890
1e3c88bd
PZ
5891/*
5892 * idle_balance is called by schedule() if this_cpu is about to become
5893 * idle. Attempts to pull tasks from other CPUs.
5894 */
029632fb 5895void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5896{
5897 struct sched_domain *sd;
5898 int pulled_task = 0;
5899 unsigned long next_balance = jiffies + HZ;
9bd721c5 5900 u64 curr_cost = 0;
1e3c88bd 5901
78becc27 5902 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5903
5904 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5905 return;
5906
f492e12e
PZ
5907 /*
5908 * Drop the rq->lock, but keep IRQ/preempt disabled.
5909 */
5910 raw_spin_unlock(&this_rq->lock);
5911
48a16753 5912 update_blocked_averages(this_cpu);
dce840a0 5913 rcu_read_lock();
1e3c88bd
PZ
5914 for_each_domain(this_cpu, sd) {
5915 unsigned long interval;
23f0d209 5916 int continue_balancing = 1;
9bd721c5 5917 u64 t0, domain_cost;
1e3c88bd
PZ
5918
5919 if (!(sd->flags & SD_LOAD_BALANCE))
5920 continue;
5921
9bd721c5
JL
5922 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5923 break;
5924
f492e12e 5925 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
5926 t0 = sched_clock_cpu(this_cpu);
5927
1e3c88bd 5928 /* If we've pulled tasks over stop searching: */
f492e12e 5929 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5930 sd, CPU_NEWLY_IDLE,
5931 &continue_balancing);
9bd721c5
JL
5932
5933 domain_cost = sched_clock_cpu(this_cpu) - t0;
5934 if (domain_cost > sd->max_newidle_lb_cost)
5935 sd->max_newidle_lb_cost = domain_cost;
5936
5937 curr_cost += domain_cost;
f492e12e 5938 }
1e3c88bd
PZ
5939
5940 interval = msecs_to_jiffies(sd->balance_interval);
5941 if (time_after(next_balance, sd->last_balance + interval))
5942 next_balance = sd->last_balance + interval;
d5ad140b
NR
5943 if (pulled_task) {
5944 this_rq->idle_stamp = 0;
1e3c88bd 5945 break;
d5ad140b 5946 }
1e3c88bd 5947 }
dce840a0 5948 rcu_read_unlock();
f492e12e
PZ
5949
5950 raw_spin_lock(&this_rq->lock);
5951
1e3c88bd
PZ
5952 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5953 /*
5954 * We are going idle. next_balance may be set based on
5955 * a busy processor. So reset next_balance.
5956 */
5957 this_rq->next_balance = next_balance;
5958 }
9bd721c5
JL
5959
5960 if (curr_cost > this_rq->max_idle_balance_cost)
5961 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
5962}
5963
5964/*
969c7921
TH
5965 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5966 * running tasks off the busiest CPU onto idle CPUs. It requires at
5967 * least 1 task to be running on each physical CPU where possible, and
5968 * avoids physical / logical imbalances.
1e3c88bd 5969 */
969c7921 5970static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5971{
969c7921
TH
5972 struct rq *busiest_rq = data;
5973 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5974 int target_cpu = busiest_rq->push_cpu;
969c7921 5975 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5976 struct sched_domain *sd;
969c7921
TH
5977
5978 raw_spin_lock_irq(&busiest_rq->lock);
5979
5980 /* make sure the requested cpu hasn't gone down in the meantime */
5981 if (unlikely(busiest_cpu != smp_processor_id() ||
5982 !busiest_rq->active_balance))
5983 goto out_unlock;
1e3c88bd
PZ
5984
5985 /* Is there any task to move? */
5986 if (busiest_rq->nr_running <= 1)
969c7921 5987 goto out_unlock;
1e3c88bd
PZ
5988
5989 /*
5990 * This condition is "impossible", if it occurs
5991 * we need to fix it. Originally reported by
5992 * Bjorn Helgaas on a 128-cpu setup.
5993 */
5994 BUG_ON(busiest_rq == target_rq);
5995
5996 /* move a task from busiest_rq to target_rq */
5997 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5998
5999 /* Search for an sd spanning us and the target CPU. */
dce840a0 6000 rcu_read_lock();
1e3c88bd
PZ
6001 for_each_domain(target_cpu, sd) {
6002 if ((sd->flags & SD_LOAD_BALANCE) &&
6003 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6004 break;
6005 }
6006
6007 if (likely(sd)) {
8e45cb54
PZ
6008 struct lb_env env = {
6009 .sd = sd,
ddcdf6e7
PZ
6010 .dst_cpu = target_cpu,
6011 .dst_rq = target_rq,
6012 .src_cpu = busiest_rq->cpu,
6013 .src_rq = busiest_rq,
8e45cb54
PZ
6014 .idle = CPU_IDLE,
6015 };
6016
1e3c88bd
PZ
6017 schedstat_inc(sd, alb_count);
6018
8e45cb54 6019 if (move_one_task(&env))
1e3c88bd
PZ
6020 schedstat_inc(sd, alb_pushed);
6021 else
6022 schedstat_inc(sd, alb_failed);
6023 }
dce840a0 6024 rcu_read_unlock();
1e3c88bd 6025 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6026out_unlock:
6027 busiest_rq->active_balance = 0;
6028 raw_spin_unlock_irq(&busiest_rq->lock);
6029 return 0;
1e3c88bd
PZ
6030}
6031
3451d024 6032#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6033/*
6034 * idle load balancing details
83cd4fe2
VP
6035 * - When one of the busy CPUs notice that there may be an idle rebalancing
6036 * needed, they will kick the idle load balancer, which then does idle
6037 * load balancing for all the idle CPUs.
6038 */
1e3c88bd 6039static struct {
83cd4fe2 6040 cpumask_var_t idle_cpus_mask;
0b005cf5 6041 atomic_t nr_cpus;
83cd4fe2
VP
6042 unsigned long next_balance; /* in jiffy units */
6043} nohz ____cacheline_aligned;
1e3c88bd 6044
8e7fbcbc 6045static inline int find_new_ilb(int call_cpu)
1e3c88bd 6046{
0b005cf5 6047 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6048
786d6dc7
SS
6049 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6050 return ilb;
6051
6052 return nr_cpu_ids;
1e3c88bd 6053}
1e3c88bd 6054
83cd4fe2
VP
6055/*
6056 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6057 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6058 * CPU (if there is one).
6059 */
6060static void nohz_balancer_kick(int cpu)
6061{
6062 int ilb_cpu;
6063
6064 nohz.next_balance++;
6065
0b005cf5 6066 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6067
0b005cf5
SS
6068 if (ilb_cpu >= nr_cpu_ids)
6069 return;
83cd4fe2 6070
cd490c5b 6071 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6072 return;
6073 /*
6074 * Use smp_send_reschedule() instead of resched_cpu().
6075 * This way we generate a sched IPI on the target cpu which
6076 * is idle. And the softirq performing nohz idle load balance
6077 * will be run before returning from the IPI.
6078 */
6079 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6080 return;
6081}
6082
c1cc017c 6083static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6084{
6085 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6086 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6087 atomic_dec(&nohz.nr_cpus);
6088 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6089 }
6090}
6091
69e1e811
SS
6092static inline void set_cpu_sd_state_busy(void)
6093{
6094 struct sched_domain *sd;
69e1e811 6095
69e1e811 6096 rcu_read_lock();
424c93fe 6097 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6098
6099 if (!sd || !sd->nohz_idle)
6100 goto unlock;
6101 sd->nohz_idle = 0;
6102
6103 for (; sd; sd = sd->parent)
69e1e811 6104 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6105unlock:
69e1e811
SS
6106 rcu_read_unlock();
6107}
6108
6109void set_cpu_sd_state_idle(void)
6110{
6111 struct sched_domain *sd;
69e1e811 6112
69e1e811 6113 rcu_read_lock();
424c93fe 6114 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6115
6116 if (!sd || sd->nohz_idle)
6117 goto unlock;
6118 sd->nohz_idle = 1;
6119
6120 for (; sd; sd = sd->parent)
69e1e811 6121 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6122unlock:
69e1e811
SS
6123 rcu_read_unlock();
6124}
6125
1e3c88bd 6126/*
c1cc017c 6127 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6128 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6129 */
c1cc017c 6130void nohz_balance_enter_idle(int cpu)
1e3c88bd 6131{
71325960
SS
6132 /*
6133 * If this cpu is going down, then nothing needs to be done.
6134 */
6135 if (!cpu_active(cpu))
6136 return;
6137
c1cc017c
AS
6138 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6139 return;
1e3c88bd 6140
c1cc017c
AS
6141 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6142 atomic_inc(&nohz.nr_cpus);
6143 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6144}
71325960 6145
0db0628d 6146static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6147 unsigned long action, void *hcpu)
6148{
6149 switch (action & ~CPU_TASKS_FROZEN) {
6150 case CPU_DYING:
c1cc017c 6151 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6152 return NOTIFY_OK;
6153 default:
6154 return NOTIFY_DONE;
6155 }
6156}
1e3c88bd
PZ
6157#endif
6158
6159static DEFINE_SPINLOCK(balancing);
6160
49c022e6
PZ
6161/*
6162 * Scale the max load_balance interval with the number of CPUs in the system.
6163 * This trades load-balance latency on larger machines for less cross talk.
6164 */
029632fb 6165void update_max_interval(void)
49c022e6
PZ
6166{
6167 max_load_balance_interval = HZ*num_online_cpus()/10;
6168}
6169
1e3c88bd
PZ
6170/*
6171 * It checks each scheduling domain to see if it is due to be balanced,
6172 * and initiates a balancing operation if so.
6173 *
b9b0853a 6174 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6175 */
6176static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6177{
23f0d209 6178 int continue_balancing = 1;
1e3c88bd
PZ
6179 struct rq *rq = cpu_rq(cpu);
6180 unsigned long interval;
04f733b4 6181 struct sched_domain *sd;
1e3c88bd
PZ
6182 /* Earliest time when we have to do rebalance again */
6183 unsigned long next_balance = jiffies + 60*HZ;
6184 int update_next_balance = 0;
f48627e6
JL
6185 int need_serialize, need_decay = 0;
6186 u64 max_cost = 0;
1e3c88bd 6187
48a16753 6188 update_blocked_averages(cpu);
2069dd75 6189
dce840a0 6190 rcu_read_lock();
1e3c88bd 6191 for_each_domain(cpu, sd) {
f48627e6
JL
6192 /*
6193 * Decay the newidle max times here because this is a regular
6194 * visit to all the domains. Decay ~1% per second.
6195 */
6196 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6197 sd->max_newidle_lb_cost =
6198 (sd->max_newidle_lb_cost * 253) / 256;
6199 sd->next_decay_max_lb_cost = jiffies + HZ;
6200 need_decay = 1;
6201 }
6202 max_cost += sd->max_newidle_lb_cost;
6203
1e3c88bd
PZ
6204 if (!(sd->flags & SD_LOAD_BALANCE))
6205 continue;
6206
f48627e6
JL
6207 /*
6208 * Stop the load balance at this level. There is another
6209 * CPU in our sched group which is doing load balancing more
6210 * actively.
6211 */
6212 if (!continue_balancing) {
6213 if (need_decay)
6214 continue;
6215 break;
6216 }
6217
1e3c88bd
PZ
6218 interval = sd->balance_interval;
6219 if (idle != CPU_IDLE)
6220 interval *= sd->busy_factor;
6221
6222 /* scale ms to jiffies */
6223 interval = msecs_to_jiffies(interval);
49c022e6 6224 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6225
6226 need_serialize = sd->flags & SD_SERIALIZE;
6227
6228 if (need_serialize) {
6229 if (!spin_trylock(&balancing))
6230 goto out;
6231 }
6232
6233 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6234 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6235 /*
6263322c 6236 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6237 * env->dst_cpu, so we can't know our idle
6238 * state even if we migrated tasks. Update it.
1e3c88bd 6239 */
de5eb2dd 6240 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6241 }
6242 sd->last_balance = jiffies;
6243 }
6244 if (need_serialize)
6245 spin_unlock(&balancing);
6246out:
6247 if (time_after(next_balance, sd->last_balance + interval)) {
6248 next_balance = sd->last_balance + interval;
6249 update_next_balance = 1;
6250 }
f48627e6
JL
6251 }
6252 if (need_decay) {
1e3c88bd 6253 /*
f48627e6
JL
6254 * Ensure the rq-wide value also decays but keep it at a
6255 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6256 */
f48627e6
JL
6257 rq->max_idle_balance_cost =
6258 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6259 }
dce840a0 6260 rcu_read_unlock();
1e3c88bd
PZ
6261
6262 /*
6263 * next_balance will be updated only when there is a need.
6264 * When the cpu is attached to null domain for ex, it will not be
6265 * updated.
6266 */
6267 if (likely(update_next_balance))
6268 rq->next_balance = next_balance;
6269}
6270
3451d024 6271#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6272/*
3451d024 6273 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6274 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6275 */
83cd4fe2
VP
6276static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6277{
6278 struct rq *this_rq = cpu_rq(this_cpu);
6279 struct rq *rq;
6280 int balance_cpu;
6281
1c792db7
SS
6282 if (idle != CPU_IDLE ||
6283 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6284 goto end;
83cd4fe2
VP
6285
6286 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6287 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6288 continue;
6289
6290 /*
6291 * If this cpu gets work to do, stop the load balancing
6292 * work being done for other cpus. Next load
6293 * balancing owner will pick it up.
6294 */
1c792db7 6295 if (need_resched())
83cd4fe2 6296 break;
83cd4fe2 6297
5ed4f1d9
VG
6298 rq = cpu_rq(balance_cpu);
6299
6300 raw_spin_lock_irq(&rq->lock);
6301 update_rq_clock(rq);
6302 update_idle_cpu_load(rq);
6303 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6304
6305 rebalance_domains(balance_cpu, CPU_IDLE);
6306
83cd4fe2
VP
6307 if (time_after(this_rq->next_balance, rq->next_balance))
6308 this_rq->next_balance = rq->next_balance;
6309 }
6310 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6311end:
6312 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6313}
6314
6315/*
0b005cf5
SS
6316 * Current heuristic for kicking the idle load balancer in the presence
6317 * of an idle cpu is the system.
6318 * - This rq has more than one task.
6319 * - At any scheduler domain level, this cpu's scheduler group has multiple
6320 * busy cpu's exceeding the group's power.
6321 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6322 * domain span are idle.
83cd4fe2
VP
6323 */
6324static inline int nohz_kick_needed(struct rq *rq, int cpu)
6325{
6326 unsigned long now = jiffies;
0b005cf5 6327 struct sched_domain *sd;
83cd4fe2 6328
1c792db7 6329 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6330 return 0;
6331
1c792db7
SS
6332 /*
6333 * We may be recently in ticked or tickless idle mode. At the first
6334 * busy tick after returning from idle, we will update the busy stats.
6335 */
69e1e811 6336 set_cpu_sd_state_busy();
c1cc017c 6337 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6338
6339 /*
6340 * None are in tickless mode and hence no need for NOHZ idle load
6341 * balancing.
6342 */
6343 if (likely(!atomic_read(&nohz.nr_cpus)))
6344 return 0;
1c792db7
SS
6345
6346 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6347 return 0;
6348
0b005cf5
SS
6349 if (rq->nr_running >= 2)
6350 goto need_kick;
83cd4fe2 6351
067491b7 6352 rcu_read_lock();
0b005cf5
SS
6353 for_each_domain(cpu, sd) {
6354 struct sched_group *sg = sd->groups;
6355 struct sched_group_power *sgp = sg->sgp;
6356 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6357
0b005cf5 6358 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6359 goto need_kick_unlock;
0b005cf5
SS
6360
6361 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6362 && (cpumask_first_and(nohz.idle_cpus_mask,
6363 sched_domain_span(sd)) < cpu))
067491b7 6364 goto need_kick_unlock;
0b005cf5
SS
6365
6366 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6367 break;
83cd4fe2 6368 }
067491b7 6369 rcu_read_unlock();
83cd4fe2 6370 return 0;
067491b7
PZ
6371
6372need_kick_unlock:
6373 rcu_read_unlock();
0b005cf5
SS
6374need_kick:
6375 return 1;
83cd4fe2
VP
6376}
6377#else
6378static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6379#endif
6380
6381/*
6382 * run_rebalance_domains is triggered when needed from the scheduler tick.
6383 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6384 */
1e3c88bd
PZ
6385static void run_rebalance_domains(struct softirq_action *h)
6386{
6387 int this_cpu = smp_processor_id();
6388 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6389 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6390 CPU_IDLE : CPU_NOT_IDLE;
6391
6392 rebalance_domains(this_cpu, idle);
6393
1e3c88bd 6394 /*
83cd4fe2 6395 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6396 * balancing on behalf of the other idle cpus whose ticks are
6397 * stopped.
6398 */
83cd4fe2 6399 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6400}
6401
6402static inline int on_null_domain(int cpu)
6403{
90a6501f 6404 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6405}
6406
6407/*
6408 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6409 */
029632fb 6410void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6411{
1e3c88bd
PZ
6412 /* Don't need to rebalance while attached to NULL domain */
6413 if (time_after_eq(jiffies, rq->next_balance) &&
6414 likely(!on_null_domain(cpu)))
6415 raise_softirq(SCHED_SOFTIRQ);
3451d024 6416#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6417 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6418 nohz_balancer_kick(cpu);
6419#endif
1e3c88bd
PZ
6420}
6421
0bcdcf28
CE
6422static void rq_online_fair(struct rq *rq)
6423{
6424 update_sysctl();
6425}
6426
6427static void rq_offline_fair(struct rq *rq)
6428{
6429 update_sysctl();
a4c96ae3
PB
6430
6431 /* Ensure any throttled groups are reachable by pick_next_task */
6432 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6433}
6434
55e12e5e 6435#endif /* CONFIG_SMP */
e1d1484f 6436
bf0f6f24
IM
6437/*
6438 * scheduler tick hitting a task of our scheduling class:
6439 */
8f4d37ec 6440static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6441{
6442 struct cfs_rq *cfs_rq;
6443 struct sched_entity *se = &curr->se;
6444
6445 for_each_sched_entity(se) {
6446 cfs_rq = cfs_rq_of(se);
8f4d37ec 6447 entity_tick(cfs_rq, se, queued);
bf0f6f24 6448 }
18bf2805 6449
10e84b97 6450 if (numabalancing_enabled)
cbee9f88 6451 task_tick_numa(rq, curr);
3d59eebc 6452
18bf2805 6453 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6454}
6455
6456/*
cd29fe6f
PZ
6457 * called on fork with the child task as argument from the parent's context
6458 * - child not yet on the tasklist
6459 * - preemption disabled
bf0f6f24 6460 */
cd29fe6f 6461static void task_fork_fair(struct task_struct *p)
bf0f6f24 6462{
4fc420c9
DN
6463 struct cfs_rq *cfs_rq;
6464 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6465 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6466 struct rq *rq = this_rq();
6467 unsigned long flags;
6468
05fa785c 6469 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6470
861d034e
PZ
6471 update_rq_clock(rq);
6472
4fc420c9
DN
6473 cfs_rq = task_cfs_rq(current);
6474 curr = cfs_rq->curr;
6475
6c9a27f5
DN
6476 /*
6477 * Not only the cpu but also the task_group of the parent might have
6478 * been changed after parent->se.parent,cfs_rq were copied to
6479 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6480 * of child point to valid ones.
6481 */
6482 rcu_read_lock();
6483 __set_task_cpu(p, this_cpu);
6484 rcu_read_unlock();
bf0f6f24 6485
7109c442 6486 update_curr(cfs_rq);
cd29fe6f 6487
b5d9d734
MG
6488 if (curr)
6489 se->vruntime = curr->vruntime;
aeb73b04 6490 place_entity(cfs_rq, se, 1);
4d78e7b6 6491
cd29fe6f 6492 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6493 /*
edcb60a3
IM
6494 * Upon rescheduling, sched_class::put_prev_task() will place
6495 * 'current' within the tree based on its new key value.
6496 */
4d78e7b6 6497 swap(curr->vruntime, se->vruntime);
aec0a514 6498 resched_task(rq->curr);
4d78e7b6 6499 }
bf0f6f24 6500
88ec22d3
PZ
6501 se->vruntime -= cfs_rq->min_vruntime;
6502
05fa785c 6503 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6504}
6505
cb469845
SR
6506/*
6507 * Priority of the task has changed. Check to see if we preempt
6508 * the current task.
6509 */
da7a735e
PZ
6510static void
6511prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6512{
da7a735e
PZ
6513 if (!p->se.on_rq)
6514 return;
6515
cb469845
SR
6516 /*
6517 * Reschedule if we are currently running on this runqueue and
6518 * our priority decreased, or if we are not currently running on
6519 * this runqueue and our priority is higher than the current's
6520 */
da7a735e 6521 if (rq->curr == p) {
cb469845
SR
6522 if (p->prio > oldprio)
6523 resched_task(rq->curr);
6524 } else
15afe09b 6525 check_preempt_curr(rq, p, 0);
cb469845
SR
6526}
6527
da7a735e
PZ
6528static void switched_from_fair(struct rq *rq, struct task_struct *p)
6529{
6530 struct sched_entity *se = &p->se;
6531 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6532
6533 /*
6534 * Ensure the task's vruntime is normalized, so that when its
6535 * switched back to the fair class the enqueue_entity(.flags=0) will
6536 * do the right thing.
6537 *
6538 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6539 * have normalized the vruntime, if it was !on_rq, then only when
6540 * the task is sleeping will it still have non-normalized vruntime.
6541 */
6542 if (!se->on_rq && p->state != TASK_RUNNING) {
6543 /*
6544 * Fix up our vruntime so that the current sleep doesn't
6545 * cause 'unlimited' sleep bonus.
6546 */
6547 place_entity(cfs_rq, se, 0);
6548 se->vruntime -= cfs_rq->min_vruntime;
6549 }
9ee474f5 6550
141965c7 6551#ifdef CONFIG_SMP
9ee474f5
PT
6552 /*
6553 * Remove our load from contribution when we leave sched_fair
6554 * and ensure we don't carry in an old decay_count if we
6555 * switch back.
6556 */
87e3c8ae
KT
6557 if (se->avg.decay_count) {
6558 __synchronize_entity_decay(se);
6559 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6560 }
6561#endif
da7a735e
PZ
6562}
6563
cb469845
SR
6564/*
6565 * We switched to the sched_fair class.
6566 */
da7a735e 6567static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6568{
da7a735e
PZ
6569 if (!p->se.on_rq)
6570 return;
6571
cb469845
SR
6572 /*
6573 * We were most likely switched from sched_rt, so
6574 * kick off the schedule if running, otherwise just see
6575 * if we can still preempt the current task.
6576 */
da7a735e 6577 if (rq->curr == p)
cb469845
SR
6578 resched_task(rq->curr);
6579 else
15afe09b 6580 check_preempt_curr(rq, p, 0);
cb469845
SR
6581}
6582
83b699ed
SV
6583/* Account for a task changing its policy or group.
6584 *
6585 * This routine is mostly called to set cfs_rq->curr field when a task
6586 * migrates between groups/classes.
6587 */
6588static void set_curr_task_fair(struct rq *rq)
6589{
6590 struct sched_entity *se = &rq->curr->se;
6591
ec12cb7f
PT
6592 for_each_sched_entity(se) {
6593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6594
6595 set_next_entity(cfs_rq, se);
6596 /* ensure bandwidth has been allocated on our new cfs_rq */
6597 account_cfs_rq_runtime(cfs_rq, 0);
6598 }
83b699ed
SV
6599}
6600
029632fb
PZ
6601void init_cfs_rq(struct cfs_rq *cfs_rq)
6602{
6603 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6604 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6605#ifndef CONFIG_64BIT
6606 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6607#endif
141965c7 6608#ifdef CONFIG_SMP
9ee474f5 6609 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6610 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6611#endif
029632fb
PZ
6612}
6613
810b3817 6614#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6615static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6616{
aff3e498 6617 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6618 /*
6619 * If the task was not on the rq at the time of this cgroup movement
6620 * it must have been asleep, sleeping tasks keep their ->vruntime
6621 * absolute on their old rq until wakeup (needed for the fair sleeper
6622 * bonus in place_entity()).
6623 *
6624 * If it was on the rq, we've just 'preempted' it, which does convert
6625 * ->vruntime to a relative base.
6626 *
6627 * Make sure both cases convert their relative position when migrating
6628 * to another cgroup's rq. This does somewhat interfere with the
6629 * fair sleeper stuff for the first placement, but who cares.
6630 */
7ceff013
DN
6631 /*
6632 * When !on_rq, vruntime of the task has usually NOT been normalized.
6633 * But there are some cases where it has already been normalized:
6634 *
6635 * - Moving a forked child which is waiting for being woken up by
6636 * wake_up_new_task().
62af3783
DN
6637 * - Moving a task which has been woken up by try_to_wake_up() and
6638 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6639 *
6640 * To prevent boost or penalty in the new cfs_rq caused by delta
6641 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6642 */
62af3783 6643 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6644 on_rq = 1;
6645
b2b5ce02
PZ
6646 if (!on_rq)
6647 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6648 set_task_rq(p, task_cpu(p));
aff3e498
PT
6649 if (!on_rq) {
6650 cfs_rq = cfs_rq_of(&p->se);
6651 p->se.vruntime += cfs_rq->min_vruntime;
6652#ifdef CONFIG_SMP
6653 /*
6654 * migrate_task_rq_fair() will have removed our previous
6655 * contribution, but we must synchronize for ongoing future
6656 * decay.
6657 */
6658 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6659 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6660#endif
6661 }
810b3817 6662}
029632fb
PZ
6663
6664void free_fair_sched_group(struct task_group *tg)
6665{
6666 int i;
6667
6668 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6669
6670 for_each_possible_cpu(i) {
6671 if (tg->cfs_rq)
6672 kfree(tg->cfs_rq[i]);
6673 if (tg->se)
6674 kfree(tg->se[i]);
6675 }
6676
6677 kfree(tg->cfs_rq);
6678 kfree(tg->se);
6679}
6680
6681int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6682{
6683 struct cfs_rq *cfs_rq;
6684 struct sched_entity *se;
6685 int i;
6686
6687 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6688 if (!tg->cfs_rq)
6689 goto err;
6690 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6691 if (!tg->se)
6692 goto err;
6693
6694 tg->shares = NICE_0_LOAD;
6695
6696 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6697
6698 for_each_possible_cpu(i) {
6699 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6700 GFP_KERNEL, cpu_to_node(i));
6701 if (!cfs_rq)
6702 goto err;
6703
6704 se = kzalloc_node(sizeof(struct sched_entity),
6705 GFP_KERNEL, cpu_to_node(i));
6706 if (!se)
6707 goto err_free_rq;
6708
6709 init_cfs_rq(cfs_rq);
6710 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6711 }
6712
6713 return 1;
6714
6715err_free_rq:
6716 kfree(cfs_rq);
6717err:
6718 return 0;
6719}
6720
6721void unregister_fair_sched_group(struct task_group *tg, int cpu)
6722{
6723 struct rq *rq = cpu_rq(cpu);
6724 unsigned long flags;
6725
6726 /*
6727 * Only empty task groups can be destroyed; so we can speculatively
6728 * check on_list without danger of it being re-added.
6729 */
6730 if (!tg->cfs_rq[cpu]->on_list)
6731 return;
6732
6733 raw_spin_lock_irqsave(&rq->lock, flags);
6734 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6735 raw_spin_unlock_irqrestore(&rq->lock, flags);
6736}
6737
6738void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6739 struct sched_entity *se, int cpu,
6740 struct sched_entity *parent)
6741{
6742 struct rq *rq = cpu_rq(cpu);
6743
6744 cfs_rq->tg = tg;
6745 cfs_rq->rq = rq;
029632fb
PZ
6746 init_cfs_rq_runtime(cfs_rq);
6747
6748 tg->cfs_rq[cpu] = cfs_rq;
6749 tg->se[cpu] = se;
6750
6751 /* se could be NULL for root_task_group */
6752 if (!se)
6753 return;
6754
6755 if (!parent)
6756 se->cfs_rq = &rq->cfs;
6757 else
6758 se->cfs_rq = parent->my_q;
6759
6760 se->my_q = cfs_rq;
6761 update_load_set(&se->load, 0);
6762 se->parent = parent;
6763}
6764
6765static DEFINE_MUTEX(shares_mutex);
6766
6767int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6768{
6769 int i;
6770 unsigned long flags;
6771
6772 /*
6773 * We can't change the weight of the root cgroup.
6774 */
6775 if (!tg->se[0])
6776 return -EINVAL;
6777
6778 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6779
6780 mutex_lock(&shares_mutex);
6781 if (tg->shares == shares)
6782 goto done;
6783
6784 tg->shares = shares;
6785 for_each_possible_cpu(i) {
6786 struct rq *rq = cpu_rq(i);
6787 struct sched_entity *se;
6788
6789 se = tg->se[i];
6790 /* Propagate contribution to hierarchy */
6791 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6792
6793 /* Possible calls to update_curr() need rq clock */
6794 update_rq_clock(rq);
17bc14b7 6795 for_each_sched_entity(se)
029632fb
PZ
6796 update_cfs_shares(group_cfs_rq(se));
6797 raw_spin_unlock_irqrestore(&rq->lock, flags);
6798 }
6799
6800done:
6801 mutex_unlock(&shares_mutex);
6802 return 0;
6803}
6804#else /* CONFIG_FAIR_GROUP_SCHED */
6805
6806void free_fair_sched_group(struct task_group *tg) { }
6807
6808int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6809{
6810 return 1;
6811}
6812
6813void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6814
6815#endif /* CONFIG_FAIR_GROUP_SCHED */
6816
810b3817 6817
6d686f45 6818static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6819{
6820 struct sched_entity *se = &task->se;
0d721cea
PW
6821 unsigned int rr_interval = 0;
6822
6823 /*
6824 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6825 * idle runqueue:
6826 */
0d721cea 6827 if (rq->cfs.load.weight)
a59f4e07 6828 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6829
6830 return rr_interval;
6831}
6832
bf0f6f24
IM
6833/*
6834 * All the scheduling class methods:
6835 */
029632fb 6836const struct sched_class fair_sched_class = {
5522d5d5 6837 .next = &idle_sched_class,
bf0f6f24
IM
6838 .enqueue_task = enqueue_task_fair,
6839 .dequeue_task = dequeue_task_fair,
6840 .yield_task = yield_task_fair,
d95f4122 6841 .yield_to_task = yield_to_task_fair,
bf0f6f24 6842
2e09bf55 6843 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6844
6845 .pick_next_task = pick_next_task_fair,
6846 .put_prev_task = put_prev_task_fair,
6847
681f3e68 6848#ifdef CONFIG_SMP
4ce72a2c 6849 .select_task_rq = select_task_rq_fair,
0a74bef8 6850 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6851
0bcdcf28
CE
6852 .rq_online = rq_online_fair,
6853 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6854
6855 .task_waking = task_waking_fair,
681f3e68 6856#endif
bf0f6f24 6857
83b699ed 6858 .set_curr_task = set_curr_task_fair,
bf0f6f24 6859 .task_tick = task_tick_fair,
cd29fe6f 6860 .task_fork = task_fork_fair,
cb469845
SR
6861
6862 .prio_changed = prio_changed_fair,
da7a735e 6863 .switched_from = switched_from_fair,
cb469845 6864 .switched_to = switched_to_fair,
810b3817 6865
0d721cea
PW
6866 .get_rr_interval = get_rr_interval_fair,
6867
810b3817 6868#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6869 .task_move_group = task_move_group_fair,
810b3817 6870#endif
bf0f6f24
IM
6871};
6872
6873#ifdef CONFIG_SCHED_DEBUG
029632fb 6874void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6875{
bf0f6f24
IM
6876 struct cfs_rq *cfs_rq;
6877
5973e5b9 6878 rcu_read_lock();
c3b64f1e 6879 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6880 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6881 rcu_read_unlock();
bf0f6f24
IM
6882}
6883#endif
029632fb
PZ
6884
6885__init void init_sched_fair_class(void)
6886{
6887#ifdef CONFIG_SMP
6888 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6889
3451d024 6890#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6891 nohz.next_balance = jiffies;
029632fb 6892 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6893 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6894#endif
6895#endif /* SMP */
6896
6897}