]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
rseq, ptrace: Add PTRACE_GET_RSEQ_CONFIGURATION request
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
2b4d5b25 52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
afe06efd
TC
116#endif
117
ec12cb7f
PT
118#ifdef CONFIG_CFS_BANDWIDTH
119/*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
2b4d5b25
IM
127 * (default: 5 msec, units: microseconds)
128 */
129unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
130#endif
131
8527632d
PG
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
029632fb
PZ
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
58ac93e4 159static unsigned int get_update_sysctl_factor(void)
029632fb 160{
58ac93e4 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
f38f12d1 192void __init sched_init_granularity(void)
029632fb
PZ
193{
194 update_sysctl();
195}
196
9dbdb155 197#define WMULT_CONST (~0U)
029632fb
PZ
198#define WMULT_SHIFT 32
199
9dbdb155
PZ
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
029632fb
PZ
216
217/*
9dbdb155
PZ
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
1c3de5e1 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 228 */
9dbdb155 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 230{
9dbdb155 231 u64 fact = scale_load_down(weight);
1e17fb8e 232 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 233 int shift = WMULT_SHIFT;
1e17fb8e 234 int fs;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
1e17fb8e
CC
238 if (unlikely(fact_hi)) {
239 fs = fls(fact_hi);
240 shift -= fs;
241 fact >>= fs;
029632fb
PZ
242 }
243
2eeb01a2 244 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 245
1e17fb8e
CC
246 fact_hi = (u32)(fact >> 32);
247 if (fact_hi) {
248 fs = fls(fact_hi);
249 shift -= fs;
250 fact >>= fs;
9dbdb155 251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
264static inline struct task_struct *task_of(struct sched_entity *se)
265{
9148a3a1 266 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
267 return container_of(se, struct task_struct, se);
268}
269
b758149c
PZ
270/* Walk up scheduling entities hierarchy */
271#define for_each_sched_entity(se) \
272 for (; se; se = se->parent)
273
274static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
275{
276 return p->se.cfs_rq;
277}
278
279/* runqueue on which this entity is (to be) queued */
280static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
281{
282 return se->cfs_rq;
283}
284
285/* runqueue "owned" by this group */
286static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
287{
288 return grp->my_q;
289}
290
3c93a0c0
QY
291static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
292{
293 if (!path)
294 return;
295
296 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
297 autogroup_path(cfs_rq->tg, path, len);
298 else if (cfs_rq && cfs_rq->tg->css.cgroup)
299 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
300 else
301 strlcpy(path, "(null)", len);
302}
303
f6783319 304static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 305{
5d299eab
PZ
306 struct rq *rq = rq_of(cfs_rq);
307 int cpu = cpu_of(rq);
308
309 if (cfs_rq->on_list)
f6783319 310 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
311
312 cfs_rq->on_list = 1;
313
314 /*
315 * Ensure we either appear before our parent (if already
316 * enqueued) or force our parent to appear after us when it is
317 * enqueued. The fact that we always enqueue bottom-up
318 * reduces this to two cases and a special case for the root
319 * cfs_rq. Furthermore, it also means that we will always reset
320 * tmp_alone_branch either when the branch is connected
321 * to a tree or when we reach the top of the tree
322 */
323 if (cfs_rq->tg->parent &&
324 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 325 /*
5d299eab
PZ
326 * If parent is already on the list, we add the child
327 * just before. Thanks to circular linked property of
328 * the list, this means to put the child at the tail
329 * of the list that starts by parent.
67e86250 330 */
5d299eab
PZ
331 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
332 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
333 /*
334 * The branch is now connected to its tree so we can
335 * reset tmp_alone_branch to the beginning of the
336 * list.
337 */
338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 339 return true;
5d299eab 340 }
3d4b47b4 341
5d299eab
PZ
342 if (!cfs_rq->tg->parent) {
343 /*
344 * cfs rq without parent should be put
345 * at the tail of the list.
346 */
347 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
348 &rq->leaf_cfs_rq_list);
349 /*
350 * We have reach the top of a tree so we can reset
351 * tmp_alone_branch to the beginning of the list.
352 */
353 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 354 return true;
3d4b47b4 355 }
5d299eab
PZ
356
357 /*
358 * The parent has not already been added so we want to
359 * make sure that it will be put after us.
360 * tmp_alone_branch points to the begin of the branch
361 * where we will add parent.
362 */
363 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
364 /*
365 * update tmp_alone_branch to points to the new begin
366 * of the branch
367 */
368 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 369 return false;
3d4b47b4
PZ
370}
371
372static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
373{
374 if (cfs_rq->on_list) {
31bc6aea
VG
375 struct rq *rq = rq_of(cfs_rq);
376
377 /*
378 * With cfs_rq being unthrottled/throttled during an enqueue,
379 * it can happen the tmp_alone_branch points the a leaf that
380 * we finally want to del. In this case, tmp_alone_branch moves
381 * to the prev element but it will point to rq->leaf_cfs_rq_list
382 * at the end of the enqueue.
383 */
384 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
385 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
386
3d4b47b4
PZ
387 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
388 cfs_rq->on_list = 0;
389 }
390}
391
5d299eab
PZ
392static inline void assert_list_leaf_cfs_rq(struct rq *rq)
393{
394 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
395}
396
039ae8bc
VG
397/* Iterate thr' all leaf cfs_rq's on a runqueue */
398#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
399 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
400 leaf_cfs_rq_list)
b758149c
PZ
401
402/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 403static inline struct cfs_rq *
b758149c
PZ
404is_same_group(struct sched_entity *se, struct sched_entity *pse)
405{
406 if (se->cfs_rq == pse->cfs_rq)
fed14d45 407 return se->cfs_rq;
b758149c 408
fed14d45 409 return NULL;
b758149c
PZ
410}
411
412static inline struct sched_entity *parent_entity(struct sched_entity *se)
413{
414 return se->parent;
415}
416
464b7527
PZ
417static void
418find_matching_se(struct sched_entity **se, struct sched_entity **pse)
419{
420 int se_depth, pse_depth;
421
422 /*
423 * preemption test can be made between sibling entities who are in the
424 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
425 * both tasks until we find their ancestors who are siblings of common
426 * parent.
427 */
428
429 /* First walk up until both entities are at same depth */
fed14d45
PZ
430 se_depth = (*se)->depth;
431 pse_depth = (*pse)->depth;
464b7527
PZ
432
433 while (se_depth > pse_depth) {
434 se_depth--;
435 *se = parent_entity(*se);
436 }
437
438 while (pse_depth > se_depth) {
439 pse_depth--;
440 *pse = parent_entity(*pse);
441 }
442
443 while (!is_same_group(*se, *pse)) {
444 *se = parent_entity(*se);
445 *pse = parent_entity(*pse);
446 }
447}
448
8f48894f
PZ
449#else /* !CONFIG_FAIR_GROUP_SCHED */
450
451static inline struct task_struct *task_of(struct sched_entity *se)
452{
453 return container_of(se, struct task_struct, se);
454}
bf0f6f24 455
b758149c
PZ
456#define for_each_sched_entity(se) \
457 for (; se; se = NULL)
bf0f6f24 458
b758149c 459static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 460{
b758149c 461 return &task_rq(p)->cfs;
bf0f6f24
IM
462}
463
b758149c
PZ
464static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
465{
466 struct task_struct *p = task_of(se);
467 struct rq *rq = task_rq(p);
468
469 return &rq->cfs;
470}
471
472/* runqueue "owned" by this group */
473static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
474{
475 return NULL;
476}
477
3c93a0c0
QY
478static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
479{
480 if (path)
481 strlcpy(path, "(null)", len);
482}
483
f6783319 484static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 485{
f6783319 486 return true;
3d4b47b4
PZ
487}
488
489static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
490{
491}
492
5d299eab
PZ
493static inline void assert_list_leaf_cfs_rq(struct rq *rq)
494{
495}
496
039ae8bc
VG
497#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
498 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 499
b758149c
PZ
500static inline struct sched_entity *parent_entity(struct sched_entity *se)
501{
502 return NULL;
503}
504
464b7527
PZ
505static inline void
506find_matching_se(struct sched_entity **se, struct sched_entity **pse)
507{
508}
509
b758149c
PZ
510#endif /* CONFIG_FAIR_GROUP_SCHED */
511
6c16a6dc 512static __always_inline
9dbdb155 513void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
514
515/**************************************************************
516 * Scheduling class tree data structure manipulation methods:
517 */
518
1bf08230 519static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 520{
1bf08230 521 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 522 if (delta > 0)
1bf08230 523 max_vruntime = vruntime;
02e0431a 524
1bf08230 525 return max_vruntime;
02e0431a
PZ
526}
527
0702e3eb 528static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
529{
530 s64 delta = (s64)(vruntime - min_vruntime);
531 if (delta < 0)
532 min_vruntime = vruntime;
533
534 return min_vruntime;
535}
536
bf9be9a1 537static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
538 struct sched_entity *b)
539{
540 return (s64)(a->vruntime - b->vruntime) < 0;
541}
542
bf9be9a1
PZ
543#define __node_2_se(node) \
544 rb_entry((node), struct sched_entity, run_node)
545
1af5f730
PZ
546static void update_min_vruntime(struct cfs_rq *cfs_rq)
547{
b60205c7 548 struct sched_entity *curr = cfs_rq->curr;
bfb06889 549 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 550
1af5f730
PZ
551 u64 vruntime = cfs_rq->min_vruntime;
552
b60205c7
PZ
553 if (curr) {
554 if (curr->on_rq)
555 vruntime = curr->vruntime;
556 else
557 curr = NULL;
558 }
1af5f730 559
bfb06889 560 if (leftmost) { /* non-empty tree */
bf9be9a1 561 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 562
b60205c7 563 if (!curr)
1af5f730
PZ
564 vruntime = se->vruntime;
565 else
566 vruntime = min_vruntime(vruntime, se->vruntime);
567 }
568
1bf08230 569 /* ensure we never gain time by being placed backwards. */
1af5f730 570 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
571#ifndef CONFIG_64BIT
572 smp_wmb();
573 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
574#endif
1af5f730
PZ
575}
576
bf9be9a1
PZ
577static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
578{
579 return entity_before(__node_2_se(a), __node_2_se(b));
580}
581
bf0f6f24
IM
582/*
583 * Enqueue an entity into the rb-tree:
584 */
0702e3eb 585static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 586{
bf9be9a1 587 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
588}
589
0702e3eb 590static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 591{
bfb06889 592 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
593}
594
029632fb 595struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 596{
bfb06889 597 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
598
599 if (!left)
600 return NULL;
601
bf9be9a1 602 return __node_2_se(left);
bf0f6f24
IM
603}
604
ac53db59
RR
605static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606{
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
bf9be9a1 612 return __node_2_se(next);
ac53db59
RR
613}
614
615#ifdef CONFIG_SCHED_DEBUG
029632fb 616struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 617{
bfb06889 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 619
70eee74b
BS
620 if (!last)
621 return NULL;
7eee3e67 622
bf9be9a1 623 return __node_2_se(last);
aeb73b04
PZ
624}
625
bf0f6f24
IM
626/**************************************************************
627 * Scheduling class statistics methods:
628 */
629
acb4a848 630int sched_proc_update_handler(struct ctl_table *table, int write,
32927393 631 void *buffer, size_t *lenp, loff_t *ppos)
b2be5e96 632{
8d65af78 633 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 634 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
635
636 if (ret || !write)
637 return ret;
638
639 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
640 sysctl_sched_min_granularity);
641
acb4a848
CE
642#define WRT_SYSCTL(name) \
643 (normalized_sysctl_##name = sysctl_##name / (factor))
644 WRT_SYSCTL(sched_min_granularity);
645 WRT_SYSCTL(sched_latency);
646 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
647#undef WRT_SYSCTL
648
b2be5e96
PZ
649 return 0;
650}
651#endif
647e7cac 652
a7be37ac 653/*
f9c0b095 654 * delta /= w
a7be37ac 655 */
9dbdb155 656static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 657{
f9c0b095 658 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 659 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
660
661 return delta;
662}
663
647e7cac
IM
664/*
665 * The idea is to set a period in which each task runs once.
666 *
532b1858 667 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
668 * this period because otherwise the slices get too small.
669 *
670 * p = (nr <= nl) ? l : l*nr/nl
671 */
4d78e7b6
PZ
672static u64 __sched_period(unsigned long nr_running)
673{
8e2b0bf3
BF
674 if (unlikely(nr_running > sched_nr_latency))
675 return nr_running * sysctl_sched_min_granularity;
676 else
677 return sysctl_sched_latency;
4d78e7b6
PZ
678}
679
647e7cac
IM
680/*
681 * We calculate the wall-time slice from the period by taking a part
682 * proportional to the weight.
683 *
f9c0b095 684 * s = p*P[w/rw]
647e7cac 685 */
6d0f0ebd 686static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 687{
0a582440 688 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 689
0a582440 690 for_each_sched_entity(se) {
6272d68c 691 struct load_weight *load;
3104bf03 692 struct load_weight lw;
6272d68c
LM
693
694 cfs_rq = cfs_rq_of(se);
695 load = &cfs_rq->load;
f9c0b095 696
0a582440 697 if (unlikely(!se->on_rq)) {
3104bf03 698 lw = cfs_rq->load;
0a582440
MG
699
700 update_load_add(&lw, se->load.weight);
701 load = &lw;
702 }
9dbdb155 703 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
704 }
705 return slice;
bf0f6f24
IM
706}
707
647e7cac 708/*
660cc00f 709 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 710 *
f9c0b095 711 * vs = s/w
647e7cac 712 */
f9c0b095 713static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 714{
f9c0b095 715 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
716}
717
c0796298 718#include "pelt.h"
23127296 719#ifdef CONFIG_SMP
283e2ed3 720
772bd008 721static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 722static unsigned long task_h_load(struct task_struct *p);
3b1baa64 723static unsigned long capacity_of(int cpu);
fb13c7ee 724
540247fb
YD
725/* Give new sched_entity start runnable values to heavy its load in infant time */
726void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 727{
540247fb 728 struct sched_avg *sa = &se->avg;
a75cdaa9 729
f207934f
PZ
730 memset(sa, 0, sizeof(*sa));
731
b5a9b340 732 /*
dfcb245e 733 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 734 * they get a chance to stabilize to their real load level.
dfcb245e 735 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
736 * nothing has been attached to the task group yet.
737 */
738 if (entity_is_task(se))
0dacee1b 739 sa->load_avg = scale_load_down(se->load.weight);
f207934f 740
9d89c257 741 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 742}
7ea241af 743
df217913 744static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 745
2b8c41da
YD
746/*
747 * With new tasks being created, their initial util_avgs are extrapolated
748 * based on the cfs_rq's current util_avg:
749 *
750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751 *
752 * However, in many cases, the above util_avg does not give a desired
753 * value. Moreover, the sum of the util_avgs may be divergent, such
754 * as when the series is a harmonic series.
755 *
756 * To solve this problem, we also cap the util_avg of successive tasks to
757 * only 1/2 of the left utilization budget:
758 *
8fe5c5a9 759 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 760 *
8fe5c5a9 761 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 762 *
8fe5c5a9
QP
763 * For example, for a CPU with 1024 of capacity, a simplest series from
764 * the beginning would be like:
2b8c41da
YD
765 *
766 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
767 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
768 *
769 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
770 * if util_avg > util_avg_cap.
771 */
d0fe0b9c 772void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 773{
d0fe0b9c 774 struct sched_entity *se = &p->se;
2b8c41da
YD
775 struct cfs_rq *cfs_rq = cfs_rq_of(se);
776 struct sched_avg *sa = &se->avg;
8ec59c0f 777 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 778 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
779
780 if (cap > 0) {
781 if (cfs_rq->avg.util_avg != 0) {
782 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
783 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
784
785 if (sa->util_avg > cap)
786 sa->util_avg = cap;
787 } else {
788 sa->util_avg = cap;
789 }
2b8c41da 790 }
7dc603c9 791
e21cf434 792 sa->runnable_avg = sa->util_avg;
9f683953 793
d0fe0b9c
DE
794 if (p->sched_class != &fair_sched_class) {
795 /*
796 * For !fair tasks do:
797 *
798 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 799 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
800 switched_from_fair(rq, p);
801 *
802 * such that the next switched_to_fair() has the
803 * expected state.
804 */
805 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
806 return;
7dc603c9
PZ
807 }
808
df217913 809 attach_entity_cfs_rq(se);
2b8c41da
YD
810}
811
7dc603c9 812#else /* !CONFIG_SMP */
540247fb 813void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
814{
815}
d0fe0b9c 816void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
817{
818}
fe749158 819static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
820{
821}
7dc603c9 822#endif /* CONFIG_SMP */
a75cdaa9 823
bf0f6f24 824/*
9dbdb155 825 * Update the current task's runtime statistics.
bf0f6f24 826 */
b7cc0896 827static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 828{
429d43bc 829 struct sched_entity *curr = cfs_rq->curr;
78becc27 830 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 831 u64 delta_exec;
bf0f6f24
IM
832
833 if (unlikely(!curr))
834 return;
835
9dbdb155
PZ
836 delta_exec = now - curr->exec_start;
837 if (unlikely((s64)delta_exec <= 0))
34f28ecd 838 return;
bf0f6f24 839
8ebc91d9 840 curr->exec_start = now;
d842de87 841
9dbdb155
PZ
842 schedstat_set(curr->statistics.exec_max,
843 max(delta_exec, curr->statistics.exec_max));
844
845 curr->sum_exec_runtime += delta_exec;
ae92882e 846 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
847
848 curr->vruntime += calc_delta_fair(delta_exec, curr);
849 update_min_vruntime(cfs_rq);
850
d842de87
SV
851 if (entity_is_task(curr)) {
852 struct task_struct *curtask = task_of(curr);
853
f977bb49 854 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 855 cgroup_account_cputime(curtask, delta_exec);
f06febc9 856 account_group_exec_runtime(curtask, delta_exec);
d842de87 857 }
ec12cb7f
PT
858
859 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
860}
861
6e998916
SG
862static void update_curr_fair(struct rq *rq)
863{
864 update_curr(cfs_rq_of(&rq->curr->se));
865}
866
bf0f6f24 867static inline void
5870db5b 868update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 869{
4fa8d299
JP
870 u64 wait_start, prev_wait_start;
871
872 if (!schedstat_enabled())
873 return;
874
875 wait_start = rq_clock(rq_of(cfs_rq));
876 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
877
878 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
879 likely(wait_start > prev_wait_start))
880 wait_start -= prev_wait_start;
3ea94de1 881
2ed41a55 882 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
883}
884
4fa8d299 885static inline void
3ea94de1
JP
886update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
887{
888 struct task_struct *p;
cb251765
MG
889 u64 delta;
890
4fa8d299
JP
891 if (!schedstat_enabled())
892 return;
893
b9c88f75 894 /*
895 * When the sched_schedstat changes from 0 to 1, some sched se
896 * maybe already in the runqueue, the se->statistics.wait_start
897 * will be 0.So it will let the delta wrong. We need to avoid this
898 * scenario.
899 */
900 if (unlikely(!schedstat_val(se->statistics.wait_start)))
901 return;
902
4fa8d299 903 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
904
905 if (entity_is_task(se)) {
906 p = task_of(se);
907 if (task_on_rq_migrating(p)) {
908 /*
909 * Preserve migrating task's wait time so wait_start
910 * time stamp can be adjusted to accumulate wait time
911 * prior to migration.
912 */
2ed41a55 913 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
914 return;
915 }
916 trace_sched_stat_wait(p, delta);
917 }
918
2ed41a55 919 __schedstat_set(se->statistics.wait_max,
4fa8d299 920 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
921 __schedstat_inc(se->statistics.wait_count);
922 __schedstat_add(se->statistics.wait_sum, delta);
923 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 924}
3ea94de1 925
4fa8d299 926static inline void
1a3d027c
JP
927update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
928{
929 struct task_struct *tsk = NULL;
4fa8d299
JP
930 u64 sleep_start, block_start;
931
932 if (!schedstat_enabled())
933 return;
934
935 sleep_start = schedstat_val(se->statistics.sleep_start);
936 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
937
938 if (entity_is_task(se))
939 tsk = task_of(se);
940
4fa8d299
JP
941 if (sleep_start) {
942 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
943
944 if ((s64)delta < 0)
945 delta = 0;
946
4fa8d299 947 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 948 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 949
2ed41a55
PZ
950 __schedstat_set(se->statistics.sleep_start, 0);
951 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
952
953 if (tsk) {
954 account_scheduler_latency(tsk, delta >> 10, 1);
955 trace_sched_stat_sleep(tsk, delta);
956 }
957 }
4fa8d299
JP
958 if (block_start) {
959 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
960
961 if ((s64)delta < 0)
962 delta = 0;
963
4fa8d299 964 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 965 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 966
2ed41a55
PZ
967 __schedstat_set(se->statistics.block_start, 0);
968 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
969
970 if (tsk) {
971 if (tsk->in_iowait) {
2ed41a55
PZ
972 __schedstat_add(se->statistics.iowait_sum, delta);
973 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
974 trace_sched_stat_iowait(tsk, delta);
975 }
976
977 trace_sched_stat_blocked(tsk, delta);
978
979 /*
980 * Blocking time is in units of nanosecs, so shift by
981 * 20 to get a milliseconds-range estimation of the
982 * amount of time that the task spent sleeping:
983 */
984 if (unlikely(prof_on == SLEEP_PROFILING)) {
985 profile_hits(SLEEP_PROFILING,
986 (void *)get_wchan(tsk),
987 delta >> 20);
988 }
989 account_scheduler_latency(tsk, delta >> 10, 0);
990 }
991 }
3ea94de1 992}
3ea94de1 993
bf0f6f24
IM
994/*
995 * Task is being enqueued - update stats:
996 */
cb251765 997static inline void
1a3d027c 998update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 999{
4fa8d299
JP
1000 if (!schedstat_enabled())
1001 return;
1002
bf0f6f24
IM
1003 /*
1004 * Are we enqueueing a waiting task? (for current tasks
1005 * a dequeue/enqueue event is a NOP)
1006 */
429d43bc 1007 if (se != cfs_rq->curr)
5870db5b 1008 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1009
1010 if (flags & ENQUEUE_WAKEUP)
1011 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1012}
1013
bf0f6f24 1014static inline void
cb251765 1015update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1016{
4fa8d299
JP
1017
1018 if (!schedstat_enabled())
1019 return;
1020
bf0f6f24
IM
1021 /*
1022 * Mark the end of the wait period if dequeueing a
1023 * waiting task:
1024 */
429d43bc 1025 if (se != cfs_rq->curr)
9ef0a961 1026 update_stats_wait_end(cfs_rq, se);
cb251765 1027
4fa8d299
JP
1028 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1029 struct task_struct *tsk = task_of(se);
cb251765 1030
4fa8d299 1031 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1032 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1033 rq_clock(rq_of(cfs_rq)));
1034 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1035 __schedstat_set(se->statistics.block_start,
4fa8d299 1036 rq_clock(rq_of(cfs_rq)));
cb251765 1037 }
cb251765
MG
1038}
1039
bf0f6f24
IM
1040/*
1041 * We are picking a new current task - update its stats:
1042 */
1043static inline void
79303e9e 1044update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1045{
1046 /*
1047 * We are starting a new run period:
1048 */
78becc27 1049 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1050}
1051
bf0f6f24
IM
1052/**************************************************
1053 * Scheduling class queueing methods:
1054 */
1055
cbee9f88
PZ
1056#ifdef CONFIG_NUMA_BALANCING
1057/*
598f0ec0
MG
1058 * Approximate time to scan a full NUMA task in ms. The task scan period is
1059 * calculated based on the tasks virtual memory size and
1060 * numa_balancing_scan_size.
cbee9f88 1061 */
598f0ec0
MG
1062unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1063unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1064
1065/* Portion of address space to scan in MB */
1066unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1067
4b96a29b
PZ
1068/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1069unsigned int sysctl_numa_balancing_scan_delay = 1000;
1070
b5dd77c8 1071struct numa_group {
c45a7795 1072 refcount_t refcount;
b5dd77c8
RR
1073
1074 spinlock_t lock; /* nr_tasks, tasks */
1075 int nr_tasks;
1076 pid_t gid;
1077 int active_nodes;
1078
1079 struct rcu_head rcu;
1080 unsigned long total_faults;
1081 unsigned long max_faults_cpu;
1082 /*
1083 * Faults_cpu is used to decide whether memory should move
1084 * towards the CPU. As a consequence, these stats are weighted
1085 * more by CPU use than by memory faults.
1086 */
1087 unsigned long *faults_cpu;
04f5c362 1088 unsigned long faults[];
b5dd77c8
RR
1089};
1090
cb361d8c
JH
1091/*
1092 * For functions that can be called in multiple contexts that permit reading
1093 * ->numa_group (see struct task_struct for locking rules).
1094 */
1095static struct numa_group *deref_task_numa_group(struct task_struct *p)
1096{
1097 return rcu_dereference_check(p->numa_group, p == current ||
1098 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1099}
1100
1101static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1102{
1103 return rcu_dereference_protected(p->numa_group, p == current);
1104}
1105
b5dd77c8
RR
1106static inline unsigned long group_faults_priv(struct numa_group *ng);
1107static inline unsigned long group_faults_shared(struct numa_group *ng);
1108
598f0ec0
MG
1109static unsigned int task_nr_scan_windows(struct task_struct *p)
1110{
1111 unsigned long rss = 0;
1112 unsigned long nr_scan_pages;
1113
1114 /*
1115 * Calculations based on RSS as non-present and empty pages are skipped
1116 * by the PTE scanner and NUMA hinting faults should be trapped based
1117 * on resident pages
1118 */
1119 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1120 rss = get_mm_rss(p->mm);
1121 if (!rss)
1122 rss = nr_scan_pages;
1123
1124 rss = round_up(rss, nr_scan_pages);
1125 return rss / nr_scan_pages;
1126}
1127
1128/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1129#define MAX_SCAN_WINDOW 2560
1130
1131static unsigned int task_scan_min(struct task_struct *p)
1132{
316c1608 1133 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1134 unsigned int scan, floor;
1135 unsigned int windows = 1;
1136
64192658
KT
1137 if (scan_size < MAX_SCAN_WINDOW)
1138 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1139 floor = 1000 / windows;
1140
1141 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1142 return max_t(unsigned int, floor, scan);
1143}
1144
b5dd77c8
RR
1145static unsigned int task_scan_start(struct task_struct *p)
1146{
1147 unsigned long smin = task_scan_min(p);
1148 unsigned long period = smin;
cb361d8c 1149 struct numa_group *ng;
b5dd77c8
RR
1150
1151 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1152 rcu_read_lock();
1153 ng = rcu_dereference(p->numa_group);
1154 if (ng) {
b5dd77c8
RR
1155 unsigned long shared = group_faults_shared(ng);
1156 unsigned long private = group_faults_priv(ng);
1157
c45a7795 1158 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1159 period *= shared + 1;
1160 period /= private + shared + 1;
1161 }
cb361d8c 1162 rcu_read_unlock();
b5dd77c8
RR
1163
1164 return max(smin, period);
1165}
1166
598f0ec0
MG
1167static unsigned int task_scan_max(struct task_struct *p)
1168{
b5dd77c8
RR
1169 unsigned long smin = task_scan_min(p);
1170 unsigned long smax;
cb361d8c 1171 struct numa_group *ng;
598f0ec0
MG
1172
1173 /* Watch for min being lower than max due to floor calculations */
1174 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1175
1176 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1177 ng = deref_curr_numa_group(p);
1178 if (ng) {
b5dd77c8
RR
1179 unsigned long shared = group_faults_shared(ng);
1180 unsigned long private = group_faults_priv(ng);
1181 unsigned long period = smax;
1182
c45a7795 1183 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1184 period *= shared + 1;
1185 period /= private + shared + 1;
1186
1187 smax = max(smax, period);
1188 }
1189
598f0ec0
MG
1190 return max(smin, smax);
1191}
1192
0ec8aa00
PZ
1193static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1194{
98fa15f3 1195 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1196 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1197}
1198
1199static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1200{
98fa15f3 1201 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1202 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1203}
1204
be1e4e76
RR
1205/* Shared or private faults. */
1206#define NR_NUMA_HINT_FAULT_TYPES 2
1207
1208/* Memory and CPU locality */
1209#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1210
1211/* Averaged statistics, and temporary buffers. */
1212#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1213
e29cf08b
MG
1214pid_t task_numa_group_id(struct task_struct *p)
1215{
cb361d8c
JH
1216 struct numa_group *ng;
1217 pid_t gid = 0;
1218
1219 rcu_read_lock();
1220 ng = rcu_dereference(p->numa_group);
1221 if (ng)
1222 gid = ng->gid;
1223 rcu_read_unlock();
1224
1225 return gid;
e29cf08b
MG
1226}
1227
44dba3d5 1228/*
97fb7a0a 1229 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1230 * occupy the first half of the array. The second half of the
1231 * array is for current counters, which are averaged into the
1232 * first set by task_numa_placement.
1233 */
1234static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1235{
44dba3d5 1236 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1237}
1238
1239static inline unsigned long task_faults(struct task_struct *p, int nid)
1240{
44dba3d5 1241 if (!p->numa_faults)
ac8e895b
MG
1242 return 0;
1243
44dba3d5
IM
1244 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1245 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1246}
1247
83e1d2cd
MG
1248static inline unsigned long group_faults(struct task_struct *p, int nid)
1249{
cb361d8c
JH
1250 struct numa_group *ng = deref_task_numa_group(p);
1251
1252 if (!ng)
83e1d2cd
MG
1253 return 0;
1254
cb361d8c
JH
1255 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1256 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1257}
1258
20e07dea
RR
1259static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1260{
44dba3d5
IM
1261 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1263}
1264
b5dd77c8
RR
1265static inline unsigned long group_faults_priv(struct numa_group *ng)
1266{
1267 unsigned long faults = 0;
1268 int node;
1269
1270 for_each_online_node(node) {
1271 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1272 }
1273
1274 return faults;
1275}
1276
1277static inline unsigned long group_faults_shared(struct numa_group *ng)
1278{
1279 unsigned long faults = 0;
1280 int node;
1281
1282 for_each_online_node(node) {
1283 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1284 }
1285
1286 return faults;
1287}
1288
4142c3eb
RR
1289/*
1290 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1291 * considered part of a numa group's pseudo-interleaving set. Migrations
1292 * between these nodes are slowed down, to allow things to settle down.
1293 */
1294#define ACTIVE_NODE_FRACTION 3
1295
1296static bool numa_is_active_node(int nid, struct numa_group *ng)
1297{
1298 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1299}
1300
6c6b1193
RR
1301/* Handle placement on systems where not all nodes are directly connected. */
1302static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1303 int maxdist, bool task)
1304{
1305 unsigned long score = 0;
1306 int node;
1307
1308 /*
1309 * All nodes are directly connected, and the same distance
1310 * from each other. No need for fancy placement algorithms.
1311 */
1312 if (sched_numa_topology_type == NUMA_DIRECT)
1313 return 0;
1314
1315 /*
1316 * This code is called for each node, introducing N^2 complexity,
1317 * which should be ok given the number of nodes rarely exceeds 8.
1318 */
1319 for_each_online_node(node) {
1320 unsigned long faults;
1321 int dist = node_distance(nid, node);
1322
1323 /*
1324 * The furthest away nodes in the system are not interesting
1325 * for placement; nid was already counted.
1326 */
1327 if (dist == sched_max_numa_distance || node == nid)
1328 continue;
1329
1330 /*
1331 * On systems with a backplane NUMA topology, compare groups
1332 * of nodes, and move tasks towards the group with the most
1333 * memory accesses. When comparing two nodes at distance
1334 * "hoplimit", only nodes closer by than "hoplimit" are part
1335 * of each group. Skip other nodes.
1336 */
1337 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1338 dist >= maxdist)
6c6b1193
RR
1339 continue;
1340
1341 /* Add up the faults from nearby nodes. */
1342 if (task)
1343 faults = task_faults(p, node);
1344 else
1345 faults = group_faults(p, node);
1346
1347 /*
1348 * On systems with a glueless mesh NUMA topology, there are
1349 * no fixed "groups of nodes". Instead, nodes that are not
1350 * directly connected bounce traffic through intermediate
1351 * nodes; a numa_group can occupy any set of nodes.
1352 * The further away a node is, the less the faults count.
1353 * This seems to result in good task placement.
1354 */
1355 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1356 faults *= (sched_max_numa_distance - dist);
1357 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1358 }
1359
1360 score += faults;
1361 }
1362
1363 return score;
1364}
1365
83e1d2cd
MG
1366/*
1367 * These return the fraction of accesses done by a particular task, or
1368 * task group, on a particular numa node. The group weight is given a
1369 * larger multiplier, in order to group tasks together that are almost
1370 * evenly spread out between numa nodes.
1371 */
7bd95320
RR
1372static inline unsigned long task_weight(struct task_struct *p, int nid,
1373 int dist)
83e1d2cd 1374{
7bd95320 1375 unsigned long faults, total_faults;
83e1d2cd 1376
44dba3d5 1377 if (!p->numa_faults)
83e1d2cd
MG
1378 return 0;
1379
1380 total_faults = p->total_numa_faults;
1381
1382 if (!total_faults)
1383 return 0;
1384
7bd95320 1385 faults = task_faults(p, nid);
6c6b1193
RR
1386 faults += score_nearby_nodes(p, nid, dist, true);
1387
7bd95320 1388 return 1000 * faults / total_faults;
83e1d2cd
MG
1389}
1390
7bd95320
RR
1391static inline unsigned long group_weight(struct task_struct *p, int nid,
1392 int dist)
83e1d2cd 1393{
cb361d8c 1394 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1395 unsigned long faults, total_faults;
1396
cb361d8c 1397 if (!ng)
7bd95320
RR
1398 return 0;
1399
cb361d8c 1400 total_faults = ng->total_faults;
7bd95320
RR
1401
1402 if (!total_faults)
83e1d2cd
MG
1403 return 0;
1404
7bd95320 1405 faults = group_faults(p, nid);
6c6b1193
RR
1406 faults += score_nearby_nodes(p, nid, dist, false);
1407
7bd95320 1408 return 1000 * faults / total_faults;
83e1d2cd
MG
1409}
1410
10f39042
RR
1411bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1412 int src_nid, int dst_cpu)
1413{
cb361d8c 1414 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1415 int dst_nid = cpu_to_node(dst_cpu);
1416 int last_cpupid, this_cpupid;
1417
1418 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1419 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1420
1421 /*
1422 * Allow first faults or private faults to migrate immediately early in
1423 * the lifetime of a task. The magic number 4 is based on waiting for
1424 * two full passes of the "multi-stage node selection" test that is
1425 * executed below.
1426 */
98fa15f3 1427 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1428 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1429 return true;
10f39042
RR
1430
1431 /*
1432 * Multi-stage node selection is used in conjunction with a periodic
1433 * migration fault to build a temporal task<->page relation. By using
1434 * a two-stage filter we remove short/unlikely relations.
1435 *
1436 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1437 * a task's usage of a particular page (n_p) per total usage of this
1438 * page (n_t) (in a given time-span) to a probability.
1439 *
1440 * Our periodic faults will sample this probability and getting the
1441 * same result twice in a row, given these samples are fully
1442 * independent, is then given by P(n)^2, provided our sample period
1443 * is sufficiently short compared to the usage pattern.
1444 *
1445 * This quadric squishes small probabilities, making it less likely we
1446 * act on an unlikely task<->page relation.
1447 */
10f39042
RR
1448 if (!cpupid_pid_unset(last_cpupid) &&
1449 cpupid_to_nid(last_cpupid) != dst_nid)
1450 return false;
1451
1452 /* Always allow migrate on private faults */
1453 if (cpupid_match_pid(p, last_cpupid))
1454 return true;
1455
1456 /* A shared fault, but p->numa_group has not been set up yet. */
1457 if (!ng)
1458 return true;
1459
1460 /*
4142c3eb
RR
1461 * Destination node is much more heavily used than the source
1462 * node? Allow migration.
10f39042 1463 */
4142c3eb
RR
1464 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1465 ACTIVE_NODE_FRACTION)
10f39042
RR
1466 return true;
1467
1468 /*
4142c3eb
RR
1469 * Distribute memory according to CPU & memory use on each node,
1470 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1471 *
1472 * faults_cpu(dst) 3 faults_cpu(src)
1473 * --------------- * - > ---------------
1474 * faults_mem(dst) 4 faults_mem(src)
10f39042 1475 */
4142c3eb
RR
1476 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1477 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1478}
1479
6499b1b2
VG
1480/*
1481 * 'numa_type' describes the node at the moment of load balancing.
1482 */
1483enum numa_type {
1484 /* The node has spare capacity that can be used to run more tasks. */
1485 node_has_spare = 0,
1486 /*
1487 * The node is fully used and the tasks don't compete for more CPU
1488 * cycles. Nevertheless, some tasks might wait before running.
1489 */
1490 node_fully_busy,
1491 /*
1492 * The node is overloaded and can't provide expected CPU cycles to all
1493 * tasks.
1494 */
1495 node_overloaded
1496};
58d081b5 1497
fb13c7ee 1498/* Cached statistics for all CPUs within a node */
58d081b5
MG
1499struct numa_stats {
1500 unsigned long load;
8e0e0eda 1501 unsigned long runnable;
6499b1b2 1502 unsigned long util;
fb13c7ee 1503 /* Total compute capacity of CPUs on a node */
5ef20ca1 1504 unsigned long compute_capacity;
6499b1b2
VG
1505 unsigned int nr_running;
1506 unsigned int weight;
1507 enum numa_type node_type;
ff7db0bf 1508 int idle_cpu;
58d081b5 1509};
e6628d5b 1510
ff7db0bf
MG
1511static inline bool is_core_idle(int cpu)
1512{
1513#ifdef CONFIG_SCHED_SMT
1514 int sibling;
1515
1516 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1517 if (cpu == sibling)
1518 continue;
1519
1520 if (!idle_cpu(cpu))
1521 return false;
1522 }
1523#endif
1524
1525 return true;
1526}
1527
58d081b5
MG
1528struct task_numa_env {
1529 struct task_struct *p;
e6628d5b 1530
58d081b5
MG
1531 int src_cpu, src_nid;
1532 int dst_cpu, dst_nid;
e6628d5b 1533
58d081b5 1534 struct numa_stats src_stats, dst_stats;
e6628d5b 1535
40ea2b42 1536 int imbalance_pct;
7bd95320 1537 int dist;
fb13c7ee
MG
1538
1539 struct task_struct *best_task;
1540 long best_imp;
58d081b5
MG
1541 int best_cpu;
1542};
1543
6499b1b2 1544static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1545static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1546static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1547static inline long adjust_numa_imbalance(int imbalance,
1548 int dst_running, int dst_weight);
6499b1b2
VG
1549
1550static inline enum
1551numa_type numa_classify(unsigned int imbalance_pct,
1552 struct numa_stats *ns)
1553{
1554 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1555 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1556 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1557 return node_overloaded;
1558
1559 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1560 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1561 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1562 return node_has_spare;
1563
1564 return node_fully_busy;
1565}
1566
76c389ab
VS
1567#ifdef CONFIG_SCHED_SMT
1568/* Forward declarations of select_idle_sibling helpers */
1569static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1570static inline int numa_idle_core(int idle_core, int cpu)
1571{
ff7db0bf
MG
1572 if (!static_branch_likely(&sched_smt_present) ||
1573 idle_core >= 0 || !test_idle_cores(cpu, false))
1574 return idle_core;
1575
1576 /*
1577 * Prefer cores instead of packing HT siblings
1578 * and triggering future load balancing.
1579 */
1580 if (is_core_idle(cpu))
1581 idle_core = cpu;
ff7db0bf
MG
1582
1583 return idle_core;
1584}
76c389ab
VS
1585#else
1586static inline int numa_idle_core(int idle_core, int cpu)
1587{
1588 return idle_core;
1589}
1590#endif
ff7db0bf 1591
6499b1b2 1592/*
ff7db0bf
MG
1593 * Gather all necessary information to make NUMA balancing placement
1594 * decisions that are compatible with standard load balancer. This
1595 * borrows code and logic from update_sg_lb_stats but sharing a
1596 * common implementation is impractical.
6499b1b2
VG
1597 */
1598static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1599 struct numa_stats *ns, int nid,
1600 bool find_idle)
6499b1b2 1601{
ff7db0bf 1602 int cpu, idle_core = -1;
6499b1b2
VG
1603
1604 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1605 ns->idle_cpu = -1;
1606
0621df31 1607 rcu_read_lock();
6499b1b2
VG
1608 for_each_cpu(cpu, cpumask_of_node(nid)) {
1609 struct rq *rq = cpu_rq(cpu);
1610
1611 ns->load += cpu_load(rq);
8e0e0eda 1612 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1613 ns->util += cpu_util(cpu);
1614 ns->nr_running += rq->cfs.h_nr_running;
1615 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1616
1617 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1618 if (READ_ONCE(rq->numa_migrate_on) ||
1619 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1620 continue;
1621
1622 if (ns->idle_cpu == -1)
1623 ns->idle_cpu = cpu;
1624
1625 idle_core = numa_idle_core(idle_core, cpu);
1626 }
6499b1b2 1627 }
0621df31 1628 rcu_read_unlock();
6499b1b2
VG
1629
1630 ns->weight = cpumask_weight(cpumask_of_node(nid));
1631
1632 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1633
1634 if (idle_core >= 0)
1635 ns->idle_cpu = idle_core;
6499b1b2
VG
1636}
1637
fb13c7ee
MG
1638static void task_numa_assign(struct task_numa_env *env,
1639 struct task_struct *p, long imp)
1640{
a4739eca
SD
1641 struct rq *rq = cpu_rq(env->dst_cpu);
1642
5fb52dd9
MG
1643 /* Check if run-queue part of active NUMA balance. */
1644 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1645 int cpu;
1646 int start = env->dst_cpu;
1647
1648 /* Find alternative idle CPU. */
1649 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1650 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1651 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1652 continue;
1653 }
1654
1655 env->dst_cpu = cpu;
1656 rq = cpu_rq(env->dst_cpu);
1657 if (!xchg(&rq->numa_migrate_on, 1))
1658 goto assign;
1659 }
1660
1661 /* Failed to find an alternative idle CPU */
a4739eca 1662 return;
5fb52dd9 1663 }
a4739eca 1664
5fb52dd9 1665assign:
a4739eca
SD
1666 /*
1667 * Clear previous best_cpu/rq numa-migrate flag, since task now
1668 * found a better CPU to move/swap.
1669 */
5fb52dd9 1670 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1671 rq = cpu_rq(env->best_cpu);
1672 WRITE_ONCE(rq->numa_migrate_on, 0);
1673 }
1674
fb13c7ee
MG
1675 if (env->best_task)
1676 put_task_struct(env->best_task);
bac78573
ON
1677 if (p)
1678 get_task_struct(p);
fb13c7ee
MG
1679
1680 env->best_task = p;
1681 env->best_imp = imp;
1682 env->best_cpu = env->dst_cpu;
1683}
1684
28a21745 1685static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1686 struct task_numa_env *env)
1687{
e4991b24
RR
1688 long imb, old_imb;
1689 long orig_src_load, orig_dst_load;
28a21745
RR
1690 long src_capacity, dst_capacity;
1691
1692 /*
1693 * The load is corrected for the CPU capacity available on each node.
1694 *
1695 * src_load dst_load
1696 * ------------ vs ---------
1697 * src_capacity dst_capacity
1698 */
1699 src_capacity = env->src_stats.compute_capacity;
1700 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1701
5f95ba7a 1702 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1703
28a21745 1704 orig_src_load = env->src_stats.load;
e4991b24 1705 orig_dst_load = env->dst_stats.load;
28a21745 1706
5f95ba7a 1707 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1708
1709 /* Would this change make things worse? */
1710 return (imb > old_imb);
e63da036
RR
1711}
1712
6fd98e77
SD
1713/*
1714 * Maximum NUMA importance can be 1998 (2*999);
1715 * SMALLIMP @ 30 would be close to 1998/64.
1716 * Used to deter task migration.
1717 */
1718#define SMALLIMP 30
1719
fb13c7ee
MG
1720/*
1721 * This checks if the overall compute and NUMA accesses of the system would
1722 * be improved if the source tasks was migrated to the target dst_cpu taking
1723 * into account that it might be best if task running on the dst_cpu should
1724 * be exchanged with the source task
1725 */
a0f03b61 1726static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1727 long taskimp, long groupimp, bool maymove)
fb13c7ee 1728{
cb361d8c 1729 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1730 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1731 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1732 struct task_struct *cur;
28a21745 1733 long src_load, dst_load;
7bd95320 1734 int dist = env->dist;
cb361d8c
JH
1735 long moveimp = imp;
1736 long load;
a0f03b61 1737 bool stopsearch = false;
fb13c7ee 1738
a4739eca 1739 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1740 return false;
a4739eca 1741
fb13c7ee 1742 rcu_read_lock();
154abafc 1743 cur = rcu_dereference(dst_rq->curr);
bac78573 1744 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1745 cur = NULL;
1746
7af68335
PZ
1747 /*
1748 * Because we have preemption enabled we can get migrated around and
1749 * end try selecting ourselves (current == env->p) as a swap candidate.
1750 */
a0f03b61
MG
1751 if (cur == env->p) {
1752 stopsearch = true;
7af68335 1753 goto unlock;
a0f03b61 1754 }
7af68335 1755
305c1fac 1756 if (!cur) {
6fd98e77 1757 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1758 goto assign;
1759 else
1760 goto unlock;
1761 }
1762
88cca72c
MG
1763 /* Skip this swap candidate if cannot move to the source cpu. */
1764 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1765 goto unlock;
1766
1767 /*
1768 * Skip this swap candidate if it is not moving to its preferred
1769 * node and the best task is.
1770 */
1771 if (env->best_task &&
1772 env->best_task->numa_preferred_nid == env->src_nid &&
1773 cur->numa_preferred_nid != env->src_nid) {
1774 goto unlock;
1775 }
1776
fb13c7ee
MG
1777 /*
1778 * "imp" is the fault differential for the source task between the
1779 * source and destination node. Calculate the total differential for
1780 * the source task and potential destination task. The more negative
305c1fac 1781 * the value is, the more remote accesses that would be expected to
fb13c7ee 1782 * be incurred if the tasks were swapped.
88cca72c 1783 *
305c1fac
SD
1784 * If dst and source tasks are in the same NUMA group, or not
1785 * in any group then look only at task weights.
1786 */
cb361d8c
JH
1787 cur_ng = rcu_dereference(cur->numa_group);
1788 if (cur_ng == p_ng) {
305c1fac
SD
1789 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1790 task_weight(cur, env->dst_nid, dist);
887c290e 1791 /*
305c1fac
SD
1792 * Add some hysteresis to prevent swapping the
1793 * tasks within a group over tiny differences.
887c290e 1794 */
cb361d8c 1795 if (cur_ng)
305c1fac
SD
1796 imp -= imp / 16;
1797 } else {
1798 /*
1799 * Compare the group weights. If a task is all by itself
1800 * (not part of a group), use the task weight instead.
1801 */
cb361d8c 1802 if (cur_ng && p_ng)
305c1fac
SD
1803 imp += group_weight(cur, env->src_nid, dist) -
1804 group_weight(cur, env->dst_nid, dist);
1805 else
1806 imp += task_weight(cur, env->src_nid, dist) -
1807 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1808 }
1809
88cca72c
MG
1810 /* Discourage picking a task already on its preferred node */
1811 if (cur->numa_preferred_nid == env->dst_nid)
1812 imp -= imp / 16;
1813
1814 /*
1815 * Encourage picking a task that moves to its preferred node.
1816 * This potentially makes imp larger than it's maximum of
1817 * 1998 (see SMALLIMP and task_weight for why) but in this
1818 * case, it does not matter.
1819 */
1820 if (cur->numa_preferred_nid == env->src_nid)
1821 imp += imp / 8;
1822
305c1fac 1823 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1824 imp = moveimp;
305c1fac 1825 cur = NULL;
fb13c7ee 1826 goto assign;
305c1fac 1827 }
fb13c7ee 1828
88cca72c
MG
1829 /*
1830 * Prefer swapping with a task moving to its preferred node over a
1831 * task that is not.
1832 */
1833 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1834 env->best_task->numa_preferred_nid != env->src_nid) {
1835 goto assign;
1836 }
1837
6fd98e77
SD
1838 /*
1839 * If the NUMA importance is less than SMALLIMP,
1840 * task migration might only result in ping pong
1841 * of tasks and also hurt performance due to cache
1842 * misses.
1843 */
1844 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1845 goto unlock;
1846
fb13c7ee
MG
1847 /*
1848 * In the overloaded case, try and keep the load balanced.
1849 */
305c1fac
SD
1850 load = task_h_load(env->p) - task_h_load(cur);
1851 if (!load)
1852 goto assign;
1853
e720fff6
PZ
1854 dst_load = env->dst_stats.load + load;
1855 src_load = env->src_stats.load - load;
fb13c7ee 1856
28a21745 1857 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1858 goto unlock;
1859
305c1fac 1860assign:
ff7db0bf 1861 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1862 if (!cur) {
ff7db0bf
MG
1863 int cpu = env->dst_stats.idle_cpu;
1864
1865 /* Nothing cached so current CPU went idle since the search. */
1866 if (cpu < 0)
1867 cpu = env->dst_cpu;
1868
10e2f1ac 1869 /*
ff7db0bf
MG
1870 * If the CPU is no longer truly idle and the previous best CPU
1871 * is, keep using it.
10e2f1ac 1872 */
ff7db0bf
MG
1873 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1874 idle_cpu(env->best_cpu)) {
1875 cpu = env->best_cpu;
1876 }
1877
ff7db0bf 1878 env->dst_cpu = cpu;
10e2f1ac 1879 }
ba7e5a27 1880
fb13c7ee 1881 task_numa_assign(env, cur, imp);
a0f03b61
MG
1882
1883 /*
1884 * If a move to idle is allowed because there is capacity or load
1885 * balance improves then stop the search. While a better swap
1886 * candidate may exist, a search is not free.
1887 */
1888 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1889 stopsearch = true;
1890
1891 /*
1892 * If a swap candidate must be identified and the current best task
1893 * moves its preferred node then stop the search.
1894 */
1895 if (!maymove && env->best_task &&
1896 env->best_task->numa_preferred_nid == env->src_nid) {
1897 stopsearch = true;
1898 }
fb13c7ee
MG
1899unlock:
1900 rcu_read_unlock();
a0f03b61
MG
1901
1902 return stopsearch;
fb13c7ee
MG
1903}
1904
887c290e
RR
1905static void task_numa_find_cpu(struct task_numa_env *env,
1906 long taskimp, long groupimp)
2c8a50aa 1907{
305c1fac 1908 bool maymove = false;
2c8a50aa
MG
1909 int cpu;
1910
305c1fac 1911 /*
fb86f5b2
MG
1912 * If dst node has spare capacity, then check if there is an
1913 * imbalance that would be overruled by the load balancer.
305c1fac 1914 */
fb86f5b2
MG
1915 if (env->dst_stats.node_type == node_has_spare) {
1916 unsigned int imbalance;
1917 int src_running, dst_running;
1918
1919 /*
1920 * Would movement cause an imbalance? Note that if src has
1921 * more running tasks that the imbalance is ignored as the
1922 * move improves the imbalance from the perspective of the
1923 * CPU load balancer.
1924 * */
1925 src_running = env->src_stats.nr_running - 1;
1926 dst_running = env->dst_stats.nr_running + 1;
1927 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1928 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1929 env->dst_stats.weight);
fb86f5b2
MG
1930
1931 /* Use idle CPU if there is no imbalance */
ff7db0bf 1932 if (!imbalance) {
fb86f5b2 1933 maymove = true;
ff7db0bf
MG
1934 if (env->dst_stats.idle_cpu >= 0) {
1935 env->dst_cpu = env->dst_stats.idle_cpu;
1936 task_numa_assign(env, NULL, 0);
1937 return;
1938 }
1939 }
fb86f5b2
MG
1940 } else {
1941 long src_load, dst_load, load;
1942 /*
1943 * If the improvement from just moving env->p direction is better
1944 * than swapping tasks around, check if a move is possible.
1945 */
1946 load = task_h_load(env->p);
1947 dst_load = env->dst_stats.load + load;
1948 src_load = env->src_stats.load - load;
1949 maymove = !load_too_imbalanced(src_load, dst_load, env);
1950 }
305c1fac 1951
2c8a50aa
MG
1952 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1953 /* Skip this CPU if the source task cannot migrate */
3bd37062 1954 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1955 continue;
1956
1957 env->dst_cpu = cpu;
a0f03b61
MG
1958 if (task_numa_compare(env, taskimp, groupimp, maymove))
1959 break;
2c8a50aa
MG
1960 }
1961}
1962
58d081b5
MG
1963static int task_numa_migrate(struct task_struct *p)
1964{
58d081b5
MG
1965 struct task_numa_env env = {
1966 .p = p,
fb13c7ee 1967
58d081b5 1968 .src_cpu = task_cpu(p),
b32e86b4 1969 .src_nid = task_node(p),
fb13c7ee
MG
1970
1971 .imbalance_pct = 112,
1972
1973 .best_task = NULL,
1974 .best_imp = 0,
4142c3eb 1975 .best_cpu = -1,
58d081b5 1976 };
cb361d8c 1977 unsigned long taskweight, groupweight;
58d081b5 1978 struct sched_domain *sd;
cb361d8c
JH
1979 long taskimp, groupimp;
1980 struct numa_group *ng;
a4739eca 1981 struct rq *best_rq;
7bd95320 1982 int nid, ret, dist;
e6628d5b 1983
58d081b5 1984 /*
fb13c7ee
MG
1985 * Pick the lowest SD_NUMA domain, as that would have the smallest
1986 * imbalance and would be the first to start moving tasks about.
1987 *
1988 * And we want to avoid any moving of tasks about, as that would create
1989 * random movement of tasks -- counter the numa conditions we're trying
1990 * to satisfy here.
58d081b5
MG
1991 */
1992 rcu_read_lock();
fb13c7ee 1993 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1994 if (sd)
1995 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1996 rcu_read_unlock();
1997
46a73e8a
RR
1998 /*
1999 * Cpusets can break the scheduler domain tree into smaller
2000 * balance domains, some of which do not cross NUMA boundaries.
2001 * Tasks that are "trapped" in such domains cannot be migrated
2002 * elsewhere, so there is no point in (re)trying.
2003 */
2004 if (unlikely(!sd)) {
8cd45eee 2005 sched_setnuma(p, task_node(p));
46a73e8a
RR
2006 return -EINVAL;
2007 }
2008
2c8a50aa 2009 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2010 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2011 taskweight = task_weight(p, env.src_nid, dist);
2012 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2013 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2014 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2015 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2016 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2017
a43455a1 2018 /* Try to find a spot on the preferred nid. */
2d4056fa 2019 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2020
9de05d48
RR
2021 /*
2022 * Look at other nodes in these cases:
2023 * - there is no space available on the preferred_nid
2024 * - the task is part of a numa_group that is interleaved across
2025 * multiple NUMA nodes; in order to better consolidate the group,
2026 * we need to check other locations.
2027 */
cb361d8c
JH
2028 ng = deref_curr_numa_group(p);
2029 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2030 for_each_online_node(nid) {
2031 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2032 continue;
58d081b5 2033
7bd95320 2034 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2035 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2036 dist != env.dist) {
2037 taskweight = task_weight(p, env.src_nid, dist);
2038 groupweight = group_weight(p, env.src_nid, dist);
2039 }
7bd95320 2040
83e1d2cd 2041 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2042 taskimp = task_weight(p, nid, dist) - taskweight;
2043 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2044 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2045 continue;
2046
7bd95320 2047 env.dist = dist;
2c8a50aa 2048 env.dst_nid = nid;
ff7db0bf 2049 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2050 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2051 }
2052 }
2053
68d1b02a
RR
2054 /*
2055 * If the task is part of a workload that spans multiple NUMA nodes,
2056 * and is migrating into one of the workload's active nodes, remember
2057 * this node as the task's preferred numa node, so the workload can
2058 * settle down.
2059 * A task that migrated to a second choice node will be better off
2060 * trying for a better one later. Do not set the preferred node here.
2061 */
cb361d8c 2062 if (ng) {
db015dae
RR
2063 if (env.best_cpu == -1)
2064 nid = env.src_nid;
2065 else
8cd45eee 2066 nid = cpu_to_node(env.best_cpu);
db015dae 2067
8cd45eee
SD
2068 if (nid != p->numa_preferred_nid)
2069 sched_setnuma(p, nid);
db015dae
RR
2070 }
2071
2072 /* No better CPU than the current one was found. */
f22aef4a 2073 if (env.best_cpu == -1) {
b2b2042b 2074 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2075 return -EAGAIN;
f22aef4a 2076 }
0ec8aa00 2077
a4739eca 2078 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2079 if (env.best_task == NULL) {
286549dc 2080 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2081 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2082 if (ret != 0)
b2b2042b 2083 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2084 return ret;
2085 }
2086
0ad4e3df 2087 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2088 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2089
286549dc 2090 if (ret != 0)
b2b2042b 2091 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2092 put_task_struct(env.best_task);
2093 return ret;
e6628d5b
MG
2094}
2095
6b9a7460
MG
2096/* Attempt to migrate a task to a CPU on the preferred node. */
2097static void numa_migrate_preferred(struct task_struct *p)
2098{
5085e2a3
RR
2099 unsigned long interval = HZ;
2100
2739d3ee 2101 /* This task has no NUMA fault statistics yet */
98fa15f3 2102 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2103 return;
2104
2739d3ee 2105 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2106 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2107 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2108
2109 /* Success if task is already running on preferred CPU */
de1b301a 2110 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2111 return;
2112
2113 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2114 task_numa_migrate(p);
6b9a7460
MG
2115}
2116
20e07dea 2117/*
4142c3eb 2118 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2119 * tracking the nodes from which NUMA hinting faults are triggered. This can
2120 * be different from the set of nodes where the workload's memory is currently
2121 * located.
20e07dea 2122 */
4142c3eb 2123static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2124{
2125 unsigned long faults, max_faults = 0;
4142c3eb 2126 int nid, active_nodes = 0;
20e07dea
RR
2127
2128 for_each_online_node(nid) {
2129 faults = group_faults_cpu(numa_group, nid);
2130 if (faults > max_faults)
2131 max_faults = faults;
2132 }
2133
2134 for_each_online_node(nid) {
2135 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2136 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2137 active_nodes++;
20e07dea 2138 }
4142c3eb
RR
2139
2140 numa_group->max_faults_cpu = max_faults;
2141 numa_group->active_nodes = active_nodes;
20e07dea
RR
2142}
2143
04bb2f94
RR
2144/*
2145 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2146 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2147 * period will be for the next scan window. If local/(local+remote) ratio is
2148 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2149 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2150 */
2151#define NUMA_PERIOD_SLOTS 10
a22b4b01 2152#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2153
2154/*
2155 * Increase the scan period (slow down scanning) if the majority of
2156 * our memory is already on our local node, or if the majority of
2157 * the page accesses are shared with other processes.
2158 * Otherwise, decrease the scan period.
2159 */
2160static void update_task_scan_period(struct task_struct *p,
2161 unsigned long shared, unsigned long private)
2162{
2163 unsigned int period_slot;
37ec97de 2164 int lr_ratio, ps_ratio;
04bb2f94
RR
2165 int diff;
2166
2167 unsigned long remote = p->numa_faults_locality[0];
2168 unsigned long local = p->numa_faults_locality[1];
2169
2170 /*
2171 * If there were no record hinting faults then either the task is
2172 * completely idle or all activity is areas that are not of interest
074c2381
MG
2173 * to automatic numa balancing. Related to that, if there were failed
2174 * migration then it implies we are migrating too quickly or the local
2175 * node is overloaded. In either case, scan slower
04bb2f94 2176 */
074c2381 2177 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2178 p->numa_scan_period = min(p->numa_scan_period_max,
2179 p->numa_scan_period << 1);
2180
2181 p->mm->numa_next_scan = jiffies +
2182 msecs_to_jiffies(p->numa_scan_period);
2183
2184 return;
2185 }
2186
2187 /*
2188 * Prepare to scale scan period relative to the current period.
2189 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2190 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2191 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2192 */
2193 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2194 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2195 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2196
2197 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2198 /*
2199 * Most memory accesses are local. There is no need to
2200 * do fast NUMA scanning, since memory is already local.
2201 */
2202 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2203 if (!slot)
2204 slot = 1;
2205 diff = slot * period_slot;
2206 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2207 /*
2208 * Most memory accesses are shared with other tasks.
2209 * There is no point in continuing fast NUMA scanning,
2210 * since other tasks may just move the memory elsewhere.
2211 */
2212 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2213 if (!slot)
2214 slot = 1;
2215 diff = slot * period_slot;
2216 } else {
04bb2f94 2217 /*
37ec97de
RR
2218 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2219 * yet they are not on the local NUMA node. Speed up
2220 * NUMA scanning to get the memory moved over.
04bb2f94 2221 */
37ec97de
RR
2222 int ratio = max(lr_ratio, ps_ratio);
2223 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2224 }
2225
2226 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2227 task_scan_min(p), task_scan_max(p));
2228 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2229}
2230
7e2703e6
RR
2231/*
2232 * Get the fraction of time the task has been running since the last
2233 * NUMA placement cycle. The scheduler keeps similar statistics, but
2234 * decays those on a 32ms period, which is orders of magnitude off
2235 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2236 * stats only if the task is so new there are no NUMA statistics yet.
2237 */
2238static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2239{
2240 u64 runtime, delta, now;
2241 /* Use the start of this time slice to avoid calculations. */
2242 now = p->se.exec_start;
2243 runtime = p->se.sum_exec_runtime;
2244
2245 if (p->last_task_numa_placement) {
2246 delta = runtime - p->last_sum_exec_runtime;
2247 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2248
2249 /* Avoid time going backwards, prevent potential divide error: */
2250 if (unlikely((s64)*period < 0))
2251 *period = 0;
7e2703e6 2252 } else {
c7b50216 2253 delta = p->se.avg.load_sum;
9d89c257 2254 *period = LOAD_AVG_MAX;
7e2703e6
RR
2255 }
2256
2257 p->last_sum_exec_runtime = runtime;
2258 p->last_task_numa_placement = now;
2259
2260 return delta;
2261}
2262
54009416
RR
2263/*
2264 * Determine the preferred nid for a task in a numa_group. This needs to
2265 * be done in a way that produces consistent results with group_weight,
2266 * otherwise workloads might not converge.
2267 */
2268static int preferred_group_nid(struct task_struct *p, int nid)
2269{
2270 nodemask_t nodes;
2271 int dist;
2272
2273 /* Direct connections between all NUMA nodes. */
2274 if (sched_numa_topology_type == NUMA_DIRECT)
2275 return nid;
2276
2277 /*
2278 * On a system with glueless mesh NUMA topology, group_weight
2279 * scores nodes according to the number of NUMA hinting faults on
2280 * both the node itself, and on nearby nodes.
2281 */
2282 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2283 unsigned long score, max_score = 0;
2284 int node, max_node = nid;
2285
2286 dist = sched_max_numa_distance;
2287
2288 for_each_online_node(node) {
2289 score = group_weight(p, node, dist);
2290 if (score > max_score) {
2291 max_score = score;
2292 max_node = node;
2293 }
2294 }
2295 return max_node;
2296 }
2297
2298 /*
2299 * Finding the preferred nid in a system with NUMA backplane
2300 * interconnect topology is more involved. The goal is to locate
2301 * tasks from numa_groups near each other in the system, and
2302 * untangle workloads from different sides of the system. This requires
2303 * searching down the hierarchy of node groups, recursively searching
2304 * inside the highest scoring group of nodes. The nodemask tricks
2305 * keep the complexity of the search down.
2306 */
2307 nodes = node_online_map;
2308 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2309 unsigned long max_faults = 0;
81907478 2310 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2311 int a, b;
2312
2313 /* Are there nodes at this distance from each other? */
2314 if (!find_numa_distance(dist))
2315 continue;
2316
2317 for_each_node_mask(a, nodes) {
2318 unsigned long faults = 0;
2319 nodemask_t this_group;
2320 nodes_clear(this_group);
2321
2322 /* Sum group's NUMA faults; includes a==b case. */
2323 for_each_node_mask(b, nodes) {
2324 if (node_distance(a, b) < dist) {
2325 faults += group_faults(p, b);
2326 node_set(b, this_group);
2327 node_clear(b, nodes);
2328 }
2329 }
2330
2331 /* Remember the top group. */
2332 if (faults > max_faults) {
2333 max_faults = faults;
2334 max_group = this_group;
2335 /*
2336 * subtle: at the smallest distance there is
2337 * just one node left in each "group", the
2338 * winner is the preferred nid.
2339 */
2340 nid = a;
2341 }
2342 }
2343 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2344 if (!max_faults)
2345 break;
54009416
RR
2346 nodes = max_group;
2347 }
2348 return nid;
2349}
2350
cbee9f88
PZ
2351static void task_numa_placement(struct task_struct *p)
2352{
98fa15f3 2353 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2354 unsigned long max_faults = 0;
04bb2f94 2355 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2356 unsigned long total_faults;
2357 u64 runtime, period;
7dbd13ed 2358 spinlock_t *group_lock = NULL;
cb361d8c 2359 struct numa_group *ng;
cbee9f88 2360
7e5a2c17
JL
2361 /*
2362 * The p->mm->numa_scan_seq field gets updated without
2363 * exclusive access. Use READ_ONCE() here to ensure
2364 * that the field is read in a single access:
2365 */
316c1608 2366 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2367 if (p->numa_scan_seq == seq)
2368 return;
2369 p->numa_scan_seq = seq;
598f0ec0 2370 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2371
7e2703e6
RR
2372 total_faults = p->numa_faults_locality[0] +
2373 p->numa_faults_locality[1];
2374 runtime = numa_get_avg_runtime(p, &period);
2375
7dbd13ed 2376 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2377 ng = deref_curr_numa_group(p);
2378 if (ng) {
2379 group_lock = &ng->lock;
60e69eed 2380 spin_lock_irq(group_lock);
7dbd13ed
MG
2381 }
2382
688b7585
MG
2383 /* Find the node with the highest number of faults */
2384 for_each_online_node(nid) {
44dba3d5
IM
2385 /* Keep track of the offsets in numa_faults array */
2386 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2387 unsigned long faults = 0, group_faults = 0;
44dba3d5 2388 int priv;
745d6147 2389
be1e4e76 2390 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2391 long diff, f_diff, f_weight;
8c8a743c 2392
44dba3d5
IM
2393 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2394 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2395 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2396 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2397
ac8e895b 2398 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2399 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2400 fault_types[priv] += p->numa_faults[membuf_idx];
2401 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2402
7e2703e6
RR
2403 /*
2404 * Normalize the faults_from, so all tasks in a group
2405 * count according to CPU use, instead of by the raw
2406 * number of faults. Tasks with little runtime have
2407 * little over-all impact on throughput, and thus their
2408 * faults are less important.
2409 */
2410 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2411 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2412 (total_faults + 1);
44dba3d5
IM
2413 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2414 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2415
44dba3d5
IM
2416 p->numa_faults[mem_idx] += diff;
2417 p->numa_faults[cpu_idx] += f_diff;
2418 faults += p->numa_faults[mem_idx];
83e1d2cd 2419 p->total_numa_faults += diff;
cb361d8c 2420 if (ng) {
44dba3d5
IM
2421 /*
2422 * safe because we can only change our own group
2423 *
2424 * mem_idx represents the offset for a given
2425 * nid and priv in a specific region because it
2426 * is at the beginning of the numa_faults array.
2427 */
cb361d8c
JH
2428 ng->faults[mem_idx] += diff;
2429 ng->faults_cpu[mem_idx] += f_diff;
2430 ng->total_faults += diff;
2431 group_faults += ng->faults[mem_idx];
8c8a743c 2432 }
ac8e895b
MG
2433 }
2434
cb361d8c 2435 if (!ng) {
f03bb676
SD
2436 if (faults > max_faults) {
2437 max_faults = faults;
2438 max_nid = nid;
2439 }
2440 } else if (group_faults > max_faults) {
2441 max_faults = group_faults;
688b7585
MG
2442 max_nid = nid;
2443 }
83e1d2cd
MG
2444 }
2445
cb361d8c
JH
2446 if (ng) {
2447 numa_group_count_active_nodes(ng);
60e69eed 2448 spin_unlock_irq(group_lock);
f03bb676 2449 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2450 }
2451
bb97fc31
RR
2452 if (max_faults) {
2453 /* Set the new preferred node */
2454 if (max_nid != p->numa_preferred_nid)
2455 sched_setnuma(p, max_nid);
3a7053b3 2456 }
30619c89
SD
2457
2458 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2459}
2460
8c8a743c
PZ
2461static inline int get_numa_group(struct numa_group *grp)
2462{
c45a7795 2463 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2464}
2465
2466static inline void put_numa_group(struct numa_group *grp)
2467{
c45a7795 2468 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2469 kfree_rcu(grp, rcu);
2470}
2471
3e6a9418
MG
2472static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2473 int *priv)
8c8a743c
PZ
2474{
2475 struct numa_group *grp, *my_grp;
2476 struct task_struct *tsk;
2477 bool join = false;
2478 int cpu = cpupid_to_cpu(cpupid);
2479 int i;
2480
cb361d8c 2481 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2482 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2483 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2484
2485 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2486 if (!grp)
2487 return;
2488
c45a7795 2489 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2490 grp->active_nodes = 1;
2491 grp->max_faults_cpu = 0;
8c8a743c 2492 spin_lock_init(&grp->lock);
e29cf08b 2493 grp->gid = p->pid;
50ec8a40 2494 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2495 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2496 nr_node_ids;
8c8a743c 2497
be1e4e76 2498 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2499 grp->faults[i] = p->numa_faults[i];
8c8a743c 2500
989348b5 2501 grp->total_faults = p->total_numa_faults;
83e1d2cd 2502
8c8a743c
PZ
2503 grp->nr_tasks++;
2504 rcu_assign_pointer(p->numa_group, grp);
2505 }
2506
2507 rcu_read_lock();
316c1608 2508 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2509
2510 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2511 goto no_join;
8c8a743c
PZ
2512
2513 grp = rcu_dereference(tsk->numa_group);
2514 if (!grp)
3354781a 2515 goto no_join;
8c8a743c 2516
cb361d8c 2517 my_grp = deref_curr_numa_group(p);
8c8a743c 2518 if (grp == my_grp)
3354781a 2519 goto no_join;
8c8a743c
PZ
2520
2521 /*
2522 * Only join the other group if its bigger; if we're the bigger group,
2523 * the other task will join us.
2524 */
2525 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2526 goto no_join;
8c8a743c
PZ
2527
2528 /*
2529 * Tie-break on the grp address.
2530 */
2531 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2532 goto no_join;
8c8a743c 2533
dabe1d99
RR
2534 /* Always join threads in the same process. */
2535 if (tsk->mm == current->mm)
2536 join = true;
2537
2538 /* Simple filter to avoid false positives due to PID collisions */
2539 if (flags & TNF_SHARED)
2540 join = true;
8c8a743c 2541
3e6a9418
MG
2542 /* Update priv based on whether false sharing was detected */
2543 *priv = !join;
2544
dabe1d99 2545 if (join && !get_numa_group(grp))
3354781a 2546 goto no_join;
8c8a743c 2547
8c8a743c
PZ
2548 rcu_read_unlock();
2549
2550 if (!join)
2551 return;
2552
60e69eed
MG
2553 BUG_ON(irqs_disabled());
2554 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2555
be1e4e76 2556 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2557 my_grp->faults[i] -= p->numa_faults[i];
2558 grp->faults[i] += p->numa_faults[i];
8c8a743c 2559 }
989348b5
MG
2560 my_grp->total_faults -= p->total_numa_faults;
2561 grp->total_faults += p->total_numa_faults;
8c8a743c 2562
8c8a743c
PZ
2563 my_grp->nr_tasks--;
2564 grp->nr_tasks++;
2565
2566 spin_unlock(&my_grp->lock);
60e69eed 2567 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2568
2569 rcu_assign_pointer(p->numa_group, grp);
2570
2571 put_numa_group(my_grp);
3354781a
PZ
2572 return;
2573
2574no_join:
2575 rcu_read_unlock();
2576 return;
8c8a743c
PZ
2577}
2578
16d51a59
JH
2579/*
2580 * Get rid of NUMA staticstics associated with a task (either current or dead).
2581 * If @final is set, the task is dead and has reached refcount zero, so we can
2582 * safely free all relevant data structures. Otherwise, there might be
2583 * concurrent reads from places like load balancing and procfs, and we should
2584 * reset the data back to default state without freeing ->numa_faults.
2585 */
2586void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2587{
cb361d8c
JH
2588 /* safe: p either is current or is being freed by current */
2589 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2590 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2591 unsigned long flags;
2592 int i;
8c8a743c 2593
16d51a59
JH
2594 if (!numa_faults)
2595 return;
2596
8c8a743c 2597 if (grp) {
e9dd685c 2598 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2599 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2600 grp->faults[i] -= p->numa_faults[i];
989348b5 2601 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2602
8c8a743c 2603 grp->nr_tasks--;
e9dd685c 2604 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2605 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2606 put_numa_group(grp);
2607 }
2608
16d51a59
JH
2609 if (final) {
2610 p->numa_faults = NULL;
2611 kfree(numa_faults);
2612 } else {
2613 p->total_numa_faults = 0;
2614 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2615 numa_faults[i] = 0;
2616 }
8c8a743c
PZ
2617}
2618
cbee9f88
PZ
2619/*
2620 * Got a PROT_NONE fault for a page on @node.
2621 */
58b46da3 2622void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2623{
2624 struct task_struct *p = current;
6688cc05 2625 bool migrated = flags & TNF_MIGRATED;
58b46da3 2626 int cpu_node = task_node(current);
792568ec 2627 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2628 struct numa_group *ng;
ac8e895b 2629 int priv;
cbee9f88 2630
2a595721 2631 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2632 return;
2633
9ff1d9ff
MG
2634 /* for example, ksmd faulting in a user's mm */
2635 if (!p->mm)
2636 return;
2637
f809ca9a 2638 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2639 if (unlikely(!p->numa_faults)) {
2640 int size = sizeof(*p->numa_faults) *
be1e4e76 2641 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2642
44dba3d5
IM
2643 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2644 if (!p->numa_faults)
f809ca9a 2645 return;
745d6147 2646
83e1d2cd 2647 p->total_numa_faults = 0;
04bb2f94 2648 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2649 }
cbee9f88 2650
8c8a743c
PZ
2651 /*
2652 * First accesses are treated as private, otherwise consider accesses
2653 * to be private if the accessing pid has not changed
2654 */
2655 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2656 priv = 1;
2657 } else {
2658 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2659 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2660 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2661 }
2662
792568ec
RR
2663 /*
2664 * If a workload spans multiple NUMA nodes, a shared fault that
2665 * occurs wholly within the set of nodes that the workload is
2666 * actively using should be counted as local. This allows the
2667 * scan rate to slow down when a workload has settled down.
2668 */
cb361d8c 2669 ng = deref_curr_numa_group(p);
4142c3eb
RR
2670 if (!priv && !local && ng && ng->active_nodes > 1 &&
2671 numa_is_active_node(cpu_node, ng) &&
2672 numa_is_active_node(mem_node, ng))
792568ec
RR
2673 local = 1;
2674
2739d3ee 2675 /*
e1ff516a
YW
2676 * Retry to migrate task to preferred node periodically, in case it
2677 * previously failed, or the scheduler moved us.
2739d3ee 2678 */
b6a60cf3
SD
2679 if (time_after(jiffies, p->numa_migrate_retry)) {
2680 task_numa_placement(p);
6b9a7460 2681 numa_migrate_preferred(p);
b6a60cf3 2682 }
6b9a7460 2683
b32e86b4
IM
2684 if (migrated)
2685 p->numa_pages_migrated += pages;
074c2381
MG
2686 if (flags & TNF_MIGRATE_FAIL)
2687 p->numa_faults_locality[2] += pages;
b32e86b4 2688
44dba3d5
IM
2689 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2690 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2691 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2692}
2693
6e5fb223
PZ
2694static void reset_ptenuma_scan(struct task_struct *p)
2695{
7e5a2c17
JL
2696 /*
2697 * We only did a read acquisition of the mmap sem, so
2698 * p->mm->numa_scan_seq is written to without exclusive access
2699 * and the update is not guaranteed to be atomic. That's not
2700 * much of an issue though, since this is just used for
2701 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2702 * expensive, to avoid any form of compiler optimizations:
2703 */
316c1608 2704 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2705 p->mm->numa_scan_offset = 0;
2706}
2707
cbee9f88
PZ
2708/*
2709 * The expensive part of numa migration is done from task_work context.
2710 * Triggered from task_tick_numa().
2711 */
9434f9f5 2712static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2713{
2714 unsigned long migrate, next_scan, now = jiffies;
2715 struct task_struct *p = current;
2716 struct mm_struct *mm = p->mm;
51170840 2717 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2718 struct vm_area_struct *vma;
9f40604c 2719 unsigned long start, end;
598f0ec0 2720 unsigned long nr_pte_updates = 0;
4620f8c1 2721 long pages, virtpages;
cbee9f88 2722
9148a3a1 2723 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2724
b34920d4 2725 work->next = work;
cbee9f88
PZ
2726 /*
2727 * Who cares about NUMA placement when they're dying.
2728 *
2729 * NOTE: make sure not to dereference p->mm before this check,
2730 * exit_task_work() happens _after_ exit_mm() so we could be called
2731 * without p->mm even though we still had it when we enqueued this
2732 * work.
2733 */
2734 if (p->flags & PF_EXITING)
2735 return;
2736
930aa174 2737 if (!mm->numa_next_scan) {
7e8d16b6
MG
2738 mm->numa_next_scan = now +
2739 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2740 }
2741
cbee9f88
PZ
2742 /*
2743 * Enforce maximal scan/migration frequency..
2744 */
2745 migrate = mm->numa_next_scan;
2746 if (time_before(now, migrate))
2747 return;
2748
598f0ec0
MG
2749 if (p->numa_scan_period == 0) {
2750 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2751 p->numa_scan_period = task_scan_start(p);
598f0ec0 2752 }
cbee9f88 2753
fb003b80 2754 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2755 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2756 return;
2757
19a78d11
PZ
2758 /*
2759 * Delay this task enough that another task of this mm will likely win
2760 * the next time around.
2761 */
2762 p->node_stamp += 2 * TICK_NSEC;
2763
9f40604c
MG
2764 start = mm->numa_scan_offset;
2765 pages = sysctl_numa_balancing_scan_size;
2766 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2767 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2768 if (!pages)
2769 return;
cbee9f88 2770
4620f8c1 2771
d8ed45c5 2772 if (!mmap_read_trylock(mm))
8655d549 2773 return;
9f40604c 2774 vma = find_vma(mm, start);
6e5fb223
PZ
2775 if (!vma) {
2776 reset_ptenuma_scan(p);
9f40604c 2777 start = 0;
6e5fb223
PZ
2778 vma = mm->mmap;
2779 }
9f40604c 2780 for (; vma; vma = vma->vm_next) {
6b79c57b 2781 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2782 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2783 continue;
6b79c57b 2784 }
6e5fb223 2785
4591ce4f
MG
2786 /*
2787 * Shared library pages mapped by multiple processes are not
2788 * migrated as it is expected they are cache replicated. Avoid
2789 * hinting faults in read-only file-backed mappings or the vdso
2790 * as migrating the pages will be of marginal benefit.
2791 */
2792 if (!vma->vm_mm ||
2793 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2794 continue;
2795
3c67f474
MG
2796 /*
2797 * Skip inaccessible VMAs to avoid any confusion between
2798 * PROT_NONE and NUMA hinting ptes
2799 */
3122e80e 2800 if (!vma_is_accessible(vma))
3c67f474 2801 continue;
4591ce4f 2802
9f40604c
MG
2803 do {
2804 start = max(start, vma->vm_start);
2805 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2806 end = min(end, vma->vm_end);
4620f8c1 2807 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2808
2809 /*
4620f8c1
RR
2810 * Try to scan sysctl_numa_balancing_size worth of
2811 * hpages that have at least one present PTE that
2812 * is not already pte-numa. If the VMA contains
2813 * areas that are unused or already full of prot_numa
2814 * PTEs, scan up to virtpages, to skip through those
2815 * areas faster.
598f0ec0
MG
2816 */
2817 if (nr_pte_updates)
2818 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2819 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2820
9f40604c 2821 start = end;
4620f8c1 2822 if (pages <= 0 || virtpages <= 0)
9f40604c 2823 goto out;
3cf1962c
RR
2824
2825 cond_resched();
9f40604c 2826 } while (end != vma->vm_end);
cbee9f88 2827 }
6e5fb223 2828
9f40604c 2829out:
6e5fb223 2830 /*
c69307d5
PZ
2831 * It is possible to reach the end of the VMA list but the last few
2832 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2833 * would find the !migratable VMA on the next scan but not reset the
2834 * scanner to the start so check it now.
6e5fb223
PZ
2835 */
2836 if (vma)
9f40604c 2837 mm->numa_scan_offset = start;
6e5fb223
PZ
2838 else
2839 reset_ptenuma_scan(p);
d8ed45c5 2840 mmap_read_unlock(mm);
51170840
RR
2841
2842 /*
2843 * Make sure tasks use at least 32x as much time to run other code
2844 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2845 * Usually update_task_scan_period slows down scanning enough; on an
2846 * overloaded system we need to limit overhead on a per task basis.
2847 */
2848 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2849 u64 diff = p->se.sum_exec_runtime - runtime;
2850 p->node_stamp += 32 * diff;
2851 }
cbee9f88
PZ
2852}
2853
d35927a1
VS
2854void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2855{
2856 int mm_users = 0;
2857 struct mm_struct *mm = p->mm;
2858
2859 if (mm) {
2860 mm_users = atomic_read(&mm->mm_users);
2861 if (mm_users == 1) {
2862 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2863 mm->numa_scan_seq = 0;
2864 }
2865 }
2866 p->node_stamp = 0;
2867 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2868 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2869 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2870 p->numa_work.next = &p->numa_work;
2871 p->numa_faults = NULL;
2872 RCU_INIT_POINTER(p->numa_group, NULL);
2873 p->last_task_numa_placement = 0;
2874 p->last_sum_exec_runtime = 0;
2875
b34920d4
VS
2876 init_task_work(&p->numa_work, task_numa_work);
2877
d35927a1
VS
2878 /* New address space, reset the preferred nid */
2879 if (!(clone_flags & CLONE_VM)) {
2880 p->numa_preferred_nid = NUMA_NO_NODE;
2881 return;
2882 }
2883
2884 /*
2885 * New thread, keep existing numa_preferred_nid which should be copied
2886 * already by arch_dup_task_struct but stagger when scans start.
2887 */
2888 if (mm) {
2889 unsigned int delay;
2890
2891 delay = min_t(unsigned int, task_scan_max(current),
2892 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2893 delay += 2 * TICK_NSEC;
2894 p->node_stamp = delay;
2895 }
2896}
2897
cbee9f88
PZ
2898/*
2899 * Drive the periodic memory faults..
2900 */
b1546edc 2901static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2902{
2903 struct callback_head *work = &curr->numa_work;
2904 u64 period, now;
2905
2906 /*
2907 * We don't care about NUMA placement if we don't have memory.
2908 */
18f855e5 2909 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2910 return;
2911
2912 /*
2913 * Using runtime rather than walltime has the dual advantage that
2914 * we (mostly) drive the selection from busy threads and that the
2915 * task needs to have done some actual work before we bother with
2916 * NUMA placement.
2917 */
2918 now = curr->se.sum_exec_runtime;
2919 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2920
25b3e5a3 2921 if (now > curr->node_stamp + period) {
4b96a29b 2922 if (!curr->node_stamp)
b5dd77c8 2923 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2924 curr->node_stamp += period;
cbee9f88 2925
b34920d4 2926 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2927 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2928 }
2929}
3fed382b 2930
3f9672ba
SD
2931static void update_scan_period(struct task_struct *p, int new_cpu)
2932{
2933 int src_nid = cpu_to_node(task_cpu(p));
2934 int dst_nid = cpu_to_node(new_cpu);
2935
05cbdf4f
MG
2936 if (!static_branch_likely(&sched_numa_balancing))
2937 return;
2938
3f9672ba
SD
2939 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2940 return;
2941
05cbdf4f
MG
2942 if (src_nid == dst_nid)
2943 return;
2944
2945 /*
2946 * Allow resets if faults have been trapped before one scan
2947 * has completed. This is most likely due to a new task that
2948 * is pulled cross-node due to wakeups or load balancing.
2949 */
2950 if (p->numa_scan_seq) {
2951 /*
2952 * Avoid scan adjustments if moving to the preferred
2953 * node or if the task was not previously running on
2954 * the preferred node.
2955 */
2956 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2957 (p->numa_preferred_nid != NUMA_NO_NODE &&
2958 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2959 return;
2960 }
2961
2962 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2963}
2964
cbee9f88
PZ
2965#else
2966static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2967{
2968}
0ec8aa00
PZ
2969
2970static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2971{
2972}
2973
2974static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2975{
2976}
3fed382b 2977
3f9672ba
SD
2978static inline void update_scan_period(struct task_struct *p, int new_cpu)
2979{
2980}
2981
cbee9f88
PZ
2982#endif /* CONFIG_NUMA_BALANCING */
2983
30cfdcfc
DA
2984static void
2985account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2986{
2987 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2988#ifdef CONFIG_SMP
0ec8aa00
PZ
2989 if (entity_is_task(se)) {
2990 struct rq *rq = rq_of(cfs_rq);
2991
2992 account_numa_enqueue(rq, task_of(se));
2993 list_add(&se->group_node, &rq->cfs_tasks);
2994 }
367456c7 2995#endif
30cfdcfc 2996 cfs_rq->nr_running++;
30cfdcfc
DA
2997}
2998
2999static void
3000account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3001{
3002 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3003#ifdef CONFIG_SMP
0ec8aa00
PZ
3004 if (entity_is_task(se)) {
3005 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3006 list_del_init(&se->group_node);
0ec8aa00 3007 }
bfdb198c 3008#endif
30cfdcfc 3009 cfs_rq->nr_running--;
30cfdcfc
DA
3010}
3011
8d5b9025
PZ
3012/*
3013 * Signed add and clamp on underflow.
3014 *
3015 * Explicitly do a load-store to ensure the intermediate value never hits
3016 * memory. This allows lockless observations without ever seeing the negative
3017 * values.
3018 */
3019#define add_positive(_ptr, _val) do { \
3020 typeof(_ptr) ptr = (_ptr); \
3021 typeof(_val) val = (_val); \
3022 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3023 \
3024 res = var + val; \
3025 \
3026 if (val < 0 && res > var) \
3027 res = 0; \
3028 \
3029 WRITE_ONCE(*ptr, res); \
3030} while (0)
3031
3032/*
3033 * Unsigned subtract and clamp on underflow.
3034 *
3035 * Explicitly do a load-store to ensure the intermediate value never hits
3036 * memory. This allows lockless observations without ever seeing the negative
3037 * values.
3038 */
3039#define sub_positive(_ptr, _val) do { \
3040 typeof(_ptr) ptr = (_ptr); \
3041 typeof(*ptr) val = (_val); \
3042 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3043 res = var - val; \
3044 if (res > var) \
3045 res = 0; \
3046 WRITE_ONCE(*ptr, res); \
3047} while (0)
3048
b5c0ce7b
PB
3049/*
3050 * Remove and clamp on negative, from a local variable.
3051 *
3052 * A variant of sub_positive(), which does not use explicit load-store
3053 * and is thus optimized for local variable updates.
3054 */
3055#define lsub_positive(_ptr, _val) do { \
3056 typeof(_ptr) ptr = (_ptr); \
3057 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3058} while (0)
3059
8d5b9025 3060#ifdef CONFIG_SMP
8d5b9025
PZ
3061static inline void
3062enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3063{
3064 cfs_rq->avg.load_avg += se->avg.load_avg;
3065 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3066}
3067
3068static inline void
3069dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3070{
3071 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3072 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3073}
3074#else
3075static inline void
8d5b9025
PZ
3076enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3077static inline void
3078dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3079#endif
3080
9059393e 3081static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3082 unsigned long weight)
9059393e
VG
3083{
3084 if (se->on_rq) {
3085 /* commit outstanding execution time */
3086 if (cfs_rq->curr == se)
3087 update_curr(cfs_rq);
1724b95b 3088 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3089 }
3090 dequeue_load_avg(cfs_rq, se);
3091
3092 update_load_set(&se->load, weight);
3093
3094#ifdef CONFIG_SMP
1ea6c46a 3095 do {
87e867b4 3096 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3097
3098 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3099 } while (0);
9059393e
VG
3100#endif
3101
3102 enqueue_load_avg(cfs_rq, se);
0dacee1b 3103 if (se->on_rq)
1724b95b 3104 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3105
9059393e
VG
3106}
3107
3108void reweight_task(struct task_struct *p, int prio)
3109{
3110 struct sched_entity *se = &p->se;
3111 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3112 struct load_weight *load = &se->load;
3113 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3114
0dacee1b 3115 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3116 load->inv_weight = sched_prio_to_wmult[prio];
3117}
3118
3ff6dcac 3119#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3120#ifdef CONFIG_SMP
cef27403
PZ
3121/*
3122 * All this does is approximate the hierarchical proportion which includes that
3123 * global sum we all love to hate.
3124 *
3125 * That is, the weight of a group entity, is the proportional share of the
3126 * group weight based on the group runqueue weights. That is:
3127 *
3128 * tg->weight * grq->load.weight
3129 * ge->load.weight = ----------------------------- (1)
3130 * \Sum grq->load.weight
3131 *
3132 * Now, because computing that sum is prohibitively expensive to compute (been
3133 * there, done that) we approximate it with this average stuff. The average
3134 * moves slower and therefore the approximation is cheaper and more stable.
3135 *
3136 * So instead of the above, we substitute:
3137 *
3138 * grq->load.weight -> grq->avg.load_avg (2)
3139 *
3140 * which yields the following:
3141 *
3142 * tg->weight * grq->avg.load_avg
3143 * ge->load.weight = ------------------------------ (3)
3144 * tg->load_avg
3145 *
3146 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3147 *
3148 * That is shares_avg, and it is right (given the approximation (2)).
3149 *
3150 * The problem with it is that because the average is slow -- it was designed
3151 * to be exactly that of course -- this leads to transients in boundary
3152 * conditions. In specific, the case where the group was idle and we start the
3153 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3154 * yielding bad latency etc..
3155 *
3156 * Now, in that special case (1) reduces to:
3157 *
3158 * tg->weight * grq->load.weight
17de4ee0 3159 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3160 * grp->load.weight
3161 *
3162 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3163 *
3164 * So what we do is modify our approximation (3) to approach (4) in the (near)
3165 * UP case, like:
3166 *
3167 * ge->load.weight =
3168 *
3169 * tg->weight * grq->load.weight
3170 * --------------------------------------------------- (5)
3171 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3172 *
17de4ee0
PZ
3173 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3174 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3175 *
3176 *
3177 * tg->weight * grq->load.weight
3178 * ge->load.weight = ----------------------------- (6)
3179 * tg_load_avg'
3180 *
3181 * Where:
3182 *
3183 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3184 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3185 *
3186 * And that is shares_weight and is icky. In the (near) UP case it approaches
3187 * (4) while in the normal case it approaches (3). It consistently
3188 * overestimates the ge->load.weight and therefore:
3189 *
3190 * \Sum ge->load.weight >= tg->weight
3191 *
3192 * hence icky!
3193 */
2c8e4dce 3194static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3195{
7c80cfc9
PZ
3196 long tg_weight, tg_shares, load, shares;
3197 struct task_group *tg = cfs_rq->tg;
3198
3199 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3200
3d4b60d3 3201 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3202
ea1dc6fc 3203 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3204
ea1dc6fc
PZ
3205 /* Ensure tg_weight >= load */
3206 tg_weight -= cfs_rq->tg_load_avg_contrib;
3207 tg_weight += load;
3ff6dcac 3208
7c80cfc9 3209 shares = (tg_shares * load);
cf5f0acf
PZ
3210 if (tg_weight)
3211 shares /= tg_weight;
3ff6dcac 3212
b8fd8423
DE
3213 /*
3214 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3215 * of a group with small tg->shares value. It is a floor value which is
3216 * assigned as a minimum load.weight to the sched_entity representing
3217 * the group on a CPU.
3218 *
3219 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3220 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3221 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3222 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3223 * instead of 0.
3224 */
7c80cfc9 3225 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3226}
387f77cc 3227#endif /* CONFIG_SMP */
ea1dc6fc 3228
82958366
PT
3229static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3230
1ea6c46a
PZ
3231/*
3232 * Recomputes the group entity based on the current state of its group
3233 * runqueue.
3234 */
3235static void update_cfs_group(struct sched_entity *se)
2069dd75 3236{
1ea6c46a 3237 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3238 long shares;
2069dd75 3239
1ea6c46a 3240 if (!gcfs_rq)
89ee048f
VG
3241 return;
3242
1ea6c46a 3243 if (throttled_hierarchy(gcfs_rq))
2069dd75 3244 return;
89ee048f 3245
3ff6dcac 3246#ifndef CONFIG_SMP
0dacee1b 3247 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3248
3249 if (likely(se->load.weight == shares))
3ff6dcac 3250 return;
7c80cfc9 3251#else
2c8e4dce 3252 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3253#endif
2069dd75 3254
0dacee1b 3255 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3256}
89ee048f 3257
2069dd75 3258#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3259static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3260{
3261}
3262#endif /* CONFIG_FAIR_GROUP_SCHED */
3263
ea14b57e 3264static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3265{
43964409
LT
3266 struct rq *rq = rq_of(cfs_rq);
3267
a4f9a0e5 3268 if (&rq->cfs == cfs_rq) {
a030d738
VK
3269 /*
3270 * There are a few boundary cases this might miss but it should
3271 * get called often enough that that should (hopefully) not be
9783be2c 3272 * a real problem.
a030d738
VK
3273 *
3274 * It will not get called when we go idle, because the idle
3275 * thread is a different class (!fair), nor will the utilization
3276 * number include things like RT tasks.
3277 *
3278 * As is, the util number is not freq-invariant (we'd have to
3279 * implement arch_scale_freq_capacity() for that).
3280 *
3281 * See cpu_util().
3282 */
ea14b57e 3283 cpufreq_update_util(rq, flags);
a030d738
VK
3284 }
3285}
3286
141965c7 3287#ifdef CONFIG_SMP
c566e8e9 3288#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3289/**
3290 * update_tg_load_avg - update the tg's load avg
3291 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3292 *
3293 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3294 * However, because tg->load_avg is a global value there are performance
3295 * considerations.
3296 *
3297 * In order to avoid having to look at the other cfs_rq's, we use a
3298 * differential update where we store the last value we propagated. This in
3299 * turn allows skipping updates if the differential is 'small'.
3300 *
815abf5a 3301 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3302 */
fe749158 3303static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3304{
9d89c257 3305 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3306
aa0b7ae0
WL
3307 /*
3308 * No need to update load_avg for root_task_group as it is not used.
3309 */
3310 if (cfs_rq->tg == &root_task_group)
3311 return;
3312
fe749158 3313 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3314 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3315 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3316 }
8165e145 3317}
f5f9739d 3318
ad936d86 3319/*
97fb7a0a 3320 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3321 * caller only guarantees p->pi_lock is held; no other assumptions,
3322 * including the state of rq->lock, should be made.
3323 */
3324void set_task_rq_fair(struct sched_entity *se,
3325 struct cfs_rq *prev, struct cfs_rq *next)
3326{
0ccb977f
PZ
3327 u64 p_last_update_time;
3328 u64 n_last_update_time;
3329
ad936d86
BP
3330 if (!sched_feat(ATTACH_AGE_LOAD))
3331 return;
3332
3333 /*
3334 * We are supposed to update the task to "current" time, then its up to
3335 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3336 * getting what current time is, so simply throw away the out-of-date
3337 * time. This will result in the wakee task is less decayed, but giving
3338 * the wakee more load sounds not bad.
3339 */
0ccb977f
PZ
3340 if (!(se->avg.last_update_time && prev))
3341 return;
ad936d86
BP
3342
3343#ifndef CONFIG_64BIT
0ccb977f 3344 {
ad936d86
BP
3345 u64 p_last_update_time_copy;
3346 u64 n_last_update_time_copy;
3347
3348 do {
3349 p_last_update_time_copy = prev->load_last_update_time_copy;
3350 n_last_update_time_copy = next->load_last_update_time_copy;
3351
3352 smp_rmb();
3353
3354 p_last_update_time = prev->avg.last_update_time;
3355 n_last_update_time = next->avg.last_update_time;
3356
3357 } while (p_last_update_time != p_last_update_time_copy ||
3358 n_last_update_time != n_last_update_time_copy);
0ccb977f 3359 }
ad936d86 3360#else
0ccb977f
PZ
3361 p_last_update_time = prev->avg.last_update_time;
3362 n_last_update_time = next->avg.last_update_time;
ad936d86 3363#endif
23127296 3364 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3365 se->avg.last_update_time = n_last_update_time;
ad936d86 3366}
09a43ace 3367
0e2d2aaa
PZ
3368
3369/*
3370 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3371 * propagate its contribution. The key to this propagation is the invariant
3372 * that for each group:
3373 *
3374 * ge->avg == grq->avg (1)
3375 *
3376 * _IFF_ we look at the pure running and runnable sums. Because they
3377 * represent the very same entity, just at different points in the hierarchy.
3378 *
9f683953
VG
3379 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3380 * and simply copies the running/runnable sum over (but still wrong, because
3381 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3382 *
0dacee1b 3383 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3384 *
3385 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3386 *
3387 * And since, like util, the runnable part should be directly transferable,
3388 * the following would _appear_ to be the straight forward approach:
3389 *
a4c3c049 3390 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3391 *
3392 * And per (1) we have:
3393 *
a4c3c049 3394 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3395 *
3396 * Which gives:
3397 *
3398 * ge->load.weight * grq->avg.load_avg
3399 * ge->avg.load_avg = ----------------------------------- (4)
3400 * grq->load.weight
3401 *
3402 * Except that is wrong!
3403 *
3404 * Because while for entities historical weight is not important and we
3405 * really only care about our future and therefore can consider a pure
3406 * runnable sum, runqueues can NOT do this.
3407 *
3408 * We specifically want runqueues to have a load_avg that includes
3409 * historical weights. Those represent the blocked load, the load we expect
3410 * to (shortly) return to us. This only works by keeping the weights as
3411 * integral part of the sum. We therefore cannot decompose as per (3).
3412 *
a4c3c049
VG
3413 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3414 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3415 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3416 * runnable section of these tasks overlap (or not). If they were to perfectly
3417 * align the rq as a whole would be runnable 2/3 of the time. If however we
3418 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3419 *
a4c3c049 3420 * So we'll have to approximate.. :/
0e2d2aaa 3421 *
a4c3c049 3422 * Given the constraint:
0e2d2aaa 3423 *
a4c3c049 3424 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3425 *
a4c3c049
VG
3426 * We can construct a rule that adds runnable to a rq by assuming minimal
3427 * overlap.
0e2d2aaa 3428 *
a4c3c049 3429 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3430 *
a4c3c049 3431 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3432 *
a4c3c049 3433 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3434 *
0e2d2aaa
PZ
3435 */
3436
09a43ace 3437static inline void
0e2d2aaa 3438update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3439{
09a43ace 3440 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3441 u32 divider;
09a43ace
VG
3442
3443 /* Nothing to update */
3444 if (!delta)
3445 return;
3446
87e867b4
VG
3447 /*
3448 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3449 * See ___update_load_avg() for details.
3450 */
3451 divider = get_pelt_divider(&cfs_rq->avg);
3452
09a43ace
VG
3453 /* Set new sched_entity's utilization */
3454 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3455 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3456
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3460}
3461
9f683953
VG
3462static inline void
3463update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464{
3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3466 u32 divider;
9f683953
VG
3467
3468 /* Nothing to update */
3469 if (!delta)
3470 return;
3471
87e867b4
VG
3472 /*
3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 * See ___update_load_avg() for details.
3475 */
3476 divider = get_pelt_divider(&cfs_rq->avg);
3477
9f683953
VG
3478 /* Set new sched_entity's runnable */
3479 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3480 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3481
3482 /* Update parent cfs_rq runnable */
3483 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3484 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3485}
3486
09a43ace 3487static inline void
0dacee1b 3488update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3489{
a4c3c049 3490 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3491 unsigned long load_avg;
3492 u64 load_sum = 0;
a4c3c049 3493 s64 delta_sum;
95d68593 3494 u32 divider;
09a43ace 3495
0e2d2aaa
PZ
3496 if (!runnable_sum)
3497 return;
09a43ace 3498
0e2d2aaa 3499 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3500
95d68593
VG
3501 /*
3502 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3503 * See ___update_load_avg() for details.
3504 */
87e867b4 3505 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3506
a4c3c049
VG
3507 if (runnable_sum >= 0) {
3508 /*
3509 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3510 * the CPU is saturated running == runnable.
3511 */
3512 runnable_sum += se->avg.load_sum;
95d68593 3513 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3514 } else {
3515 /*
3516 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3517 * assuming all tasks are equally runnable.
3518 */
3519 if (scale_load_down(gcfs_rq->load.weight)) {
3520 load_sum = div_s64(gcfs_rq->avg.load_sum,
3521 scale_load_down(gcfs_rq->load.weight));
3522 }
3523
3524 /* But make sure to not inflate se's runnable */
3525 runnable_sum = min(se->avg.load_sum, load_sum);
3526 }
3527
3528 /*
3529 * runnable_sum can't be lower than running_sum
23127296
VG
3530 * Rescale running sum to be in the same range as runnable sum
3531 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3532 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3533 */
23127296 3534 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3535 runnable_sum = max(runnable_sum, running_sum);
3536
0e2d2aaa 3537 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3538 load_avg = div_s64(load_sum, divider);
09a43ace 3539
a4c3c049
VG
3540 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3541 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3542
a4c3c049
VG
3543 se->avg.load_sum = runnable_sum;
3544 se->avg.load_avg = load_avg;
3545 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3546 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3547}
3548
0e2d2aaa 3549static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3550{
0e2d2aaa
PZ
3551 cfs_rq->propagate = 1;
3552 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3553}
3554
3555/* Update task and its cfs_rq load average */
3556static inline int propagate_entity_load_avg(struct sched_entity *se)
3557{
0e2d2aaa 3558 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3559
3560 if (entity_is_task(se))
3561 return 0;
3562
0e2d2aaa
PZ
3563 gcfs_rq = group_cfs_rq(se);
3564 if (!gcfs_rq->propagate)
09a43ace
VG
3565 return 0;
3566
0e2d2aaa
PZ
3567 gcfs_rq->propagate = 0;
3568
09a43ace
VG
3569 cfs_rq = cfs_rq_of(se);
3570
0e2d2aaa 3571 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3572
0e2d2aaa 3573 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3574 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3575 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3576
ba19f51f 3577 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3578 trace_pelt_se_tp(se);
ba19f51f 3579
09a43ace
VG
3580 return 1;
3581}
3582
bc427898
VG
3583/*
3584 * Check if we need to update the load and the utilization of a blocked
3585 * group_entity:
3586 */
3587static inline bool skip_blocked_update(struct sched_entity *se)
3588{
3589 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3590
3591 /*
3592 * If sched_entity still have not zero load or utilization, we have to
3593 * decay it:
3594 */
3595 if (se->avg.load_avg || se->avg.util_avg)
3596 return false;
3597
3598 /*
3599 * If there is a pending propagation, we have to update the load and
3600 * the utilization of the sched_entity:
3601 */
0e2d2aaa 3602 if (gcfs_rq->propagate)
bc427898
VG
3603 return false;
3604
3605 /*
3606 * Otherwise, the load and the utilization of the sched_entity is
3607 * already zero and there is no pending propagation, so it will be a
3608 * waste of time to try to decay it:
3609 */
3610 return true;
3611}
3612
6e83125c 3613#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3614
fe749158 3615static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3616
3617static inline int propagate_entity_load_avg(struct sched_entity *se)
3618{
3619 return 0;
3620}
3621
0e2d2aaa 3622static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3623
6e83125c 3624#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3625
3d30544f
PZ
3626/**
3627 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3628 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3629 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3630 *
3631 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3632 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3633 * post_init_entity_util_avg().
3634 *
3635 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3636 *
7c3edd2c
PZ
3637 * Returns true if the load decayed or we removed load.
3638 *
3639 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3640 * call update_tg_load_avg() when this function returns true.
3d30544f 3641 */
a2c6c91f 3642static inline int
3a123bbb 3643update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3644{
9f683953 3645 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3646 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3647 int decayed = 0;
2dac754e 3648
2a2f5d4e
PZ
3649 if (cfs_rq->removed.nr) {
3650 unsigned long r;
87e867b4 3651 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3652
3653 raw_spin_lock(&cfs_rq->removed.lock);
3654 swap(cfs_rq->removed.util_avg, removed_util);
3655 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3656 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3657 cfs_rq->removed.nr = 0;
3658 raw_spin_unlock(&cfs_rq->removed.lock);
3659
2a2f5d4e 3660 r = removed_load;
89741892 3661 sub_positive(&sa->load_avg, r);
9a2dd585 3662 sub_positive(&sa->load_sum, r * divider);
2dac754e 3663
2a2f5d4e 3664 r = removed_util;
89741892 3665 sub_positive(&sa->util_avg, r);
9a2dd585 3666 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3667
9f683953
VG
3668 r = removed_runnable;
3669 sub_positive(&sa->runnable_avg, r);
3670 sub_positive(&sa->runnable_sum, r * divider);
3671
3672 /*
3673 * removed_runnable is the unweighted version of removed_load so we
3674 * can use it to estimate removed_load_sum.
3675 */
3676 add_tg_cfs_propagate(cfs_rq,
3677 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3678
3679 decayed = 1;
9d89c257 3680 }
36ee28e4 3681
23127296 3682 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3683
9d89c257
YD
3684#ifndef CONFIG_64BIT
3685 smp_wmb();
3686 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3687#endif
36ee28e4 3688
2a2f5d4e 3689 return decayed;
21e96f88
SM
3690}
3691
3d30544f
PZ
3692/**
3693 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3694 * @cfs_rq: cfs_rq to attach to
3695 * @se: sched_entity to attach
3696 *
3697 * Must call update_cfs_rq_load_avg() before this, since we rely on
3698 * cfs_rq->avg.last_update_time being current.
3699 */
a4f9a0e5 3700static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3701{
95d68593
VG
3702 /*
3703 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3704 * See ___update_load_avg() for details.
3705 */
87e867b4 3706 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3707
3708 /*
3709 * When we attach the @se to the @cfs_rq, we must align the decay
3710 * window because without that, really weird and wonderful things can
3711 * happen.
3712 *
3713 * XXX illustrate
3714 */
a05e8c51 3715 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3716 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3717
3718 /*
3719 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3720 * period_contrib. This isn't strictly correct, but since we're
3721 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3722 * _sum a little.
3723 */
3724 se->avg.util_sum = se->avg.util_avg * divider;
3725
9f683953
VG
3726 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3727
f207934f
PZ
3728 se->avg.load_sum = divider;
3729 if (se_weight(se)) {
3730 se->avg.load_sum =
3731 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3732 }
3733
8d5b9025 3734 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3735 cfs_rq->avg.util_avg += se->avg.util_avg;
3736 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3737 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3738 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3739
3740 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3741
a4f9a0e5 3742 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3743
3744 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3745}
3746
3d30544f
PZ
3747/**
3748 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3749 * @cfs_rq: cfs_rq to detach from
3750 * @se: sched_entity to detach
3751 *
3752 * Must call update_cfs_rq_load_avg() before this, since we rely on
3753 * cfs_rq->avg.last_update_time being current.
3754 */
a05e8c51
BP
3755static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756{
8d5b9025 3757 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3758 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3759 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3760 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3761 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3762
3763 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3764
ea14b57e 3765 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3766
3767 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3768}
3769
b382a531
PZ
3770/*
3771 * Optional action to be done while updating the load average
3772 */
3773#define UPDATE_TG 0x1
3774#define SKIP_AGE_LOAD 0x2
3775#define DO_ATTACH 0x4
3776
3777/* Update task and its cfs_rq load average */
3778static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3779{
23127296 3780 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3781 int decayed;
3782
3783 /*
3784 * Track task load average for carrying it to new CPU after migrated, and
3785 * track group sched_entity load average for task_h_load calc in migration
3786 */
3787 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3788 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3789
3790 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3791 decayed |= propagate_entity_load_avg(se);
3792
3793 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3794
ea14b57e
PZ
3795 /*
3796 * DO_ATTACH means we're here from enqueue_entity().
3797 * !last_update_time means we've passed through
3798 * migrate_task_rq_fair() indicating we migrated.
3799 *
3800 * IOW we're enqueueing a task on a new CPU.
3801 */
a4f9a0e5 3802 attach_entity_load_avg(cfs_rq, se);
fe749158 3803 update_tg_load_avg(cfs_rq);
b382a531 3804
bef69dd8
VG
3805 } else if (decayed) {
3806 cfs_rq_util_change(cfs_rq, 0);
3807
3808 if (flags & UPDATE_TG)
fe749158 3809 update_tg_load_avg(cfs_rq);
bef69dd8 3810 }
b382a531
PZ
3811}
3812
9d89c257 3813#ifndef CONFIG_64BIT
0905f04e
YD
3814static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3815{
9d89c257 3816 u64 last_update_time_copy;
0905f04e 3817 u64 last_update_time;
9ee474f5 3818
9d89c257
YD
3819 do {
3820 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3821 smp_rmb();
3822 last_update_time = cfs_rq->avg.last_update_time;
3823 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3824
3825 return last_update_time;
3826}
9d89c257 3827#else
0905f04e
YD
3828static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3829{
3830 return cfs_rq->avg.last_update_time;
3831}
9d89c257
YD
3832#endif
3833
104cb16d
MR
3834/*
3835 * Synchronize entity load avg of dequeued entity without locking
3836 * the previous rq.
3837 */
71b47eaf 3838static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3839{
3840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3841 u64 last_update_time;
3842
3843 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3844 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3845}
3846
0905f04e
YD
3847/*
3848 * Task first catches up with cfs_rq, and then subtract
3849 * itself from the cfs_rq (task must be off the queue now).
3850 */
71b47eaf 3851static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3852{
3853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3854 unsigned long flags;
0905f04e
YD
3855
3856 /*
7dc603c9
PZ
3857 * tasks cannot exit without having gone through wake_up_new_task() ->
3858 * post_init_entity_util_avg() which will have added things to the
3859 * cfs_rq, so we can remove unconditionally.
0905f04e 3860 */
0905f04e 3861
104cb16d 3862 sync_entity_load_avg(se);
2a2f5d4e
PZ
3863
3864 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3865 ++cfs_rq->removed.nr;
3866 cfs_rq->removed.util_avg += se->avg.util_avg;
3867 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3868 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3869 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3870}
642dbc39 3871
9f683953
VG
3872static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3873{
3874 return cfs_rq->avg.runnable_avg;
3875}
3876
7ea241af
YD
3877static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3878{
3879 return cfs_rq->avg.load_avg;
3880}
3881
d91cecc1
CY
3882static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3883
7f65ea42
PB
3884static inline unsigned long task_util(struct task_struct *p)
3885{
3886 return READ_ONCE(p->se.avg.util_avg);
3887}
3888
3889static inline unsigned long _task_util_est(struct task_struct *p)
3890{
3891 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3892
92a801e5 3893 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3894}
3895
3896static inline unsigned long task_util_est(struct task_struct *p)
3897{
3898 return max(task_util(p), _task_util_est(p));
3899}
3900
a7008c07
VS
3901#ifdef CONFIG_UCLAMP_TASK
3902static inline unsigned long uclamp_task_util(struct task_struct *p)
3903{
3904 return clamp(task_util_est(p),
3905 uclamp_eff_value(p, UCLAMP_MIN),
3906 uclamp_eff_value(p, UCLAMP_MAX));
3907}
3908#else
3909static inline unsigned long uclamp_task_util(struct task_struct *p)
3910{
3911 return task_util_est(p);
3912}
3913#endif
3914
7f65ea42
PB
3915static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3916 struct task_struct *p)
3917{
3918 unsigned int enqueued;
3919
3920 if (!sched_feat(UTIL_EST))
3921 return;
3922
3923 /* Update root cfs_rq's estimated utilization */
3924 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3925 enqueued += _task_util_est(p);
7f65ea42 3926 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3927
3928 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3929}
3930
8c1f560c
XY
3931static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3932 struct task_struct *p)
3933{
3934 unsigned int enqueued;
3935
3936 if (!sched_feat(UTIL_EST))
3937 return;
3938
3939 /* Update root cfs_rq's estimated utilization */
3940 enqueued = cfs_rq->avg.util_est.enqueued;
3941 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3942 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3943
3944 trace_sched_util_est_cfs_tp(cfs_rq);
3945}
3946
b89997aa
VD
3947#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3948
7f65ea42
PB
3949/*
3950 * Check if a (signed) value is within a specified (unsigned) margin,
3951 * based on the observation that:
3952 *
3953 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3954 *
3955 * NOTE: this only works when value + maring < INT_MAX.
3956 */
3957static inline bool within_margin(int value, int margin)
3958{
3959 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3960}
3961
8c1f560c
XY
3962static inline void util_est_update(struct cfs_rq *cfs_rq,
3963 struct task_struct *p,
3964 bool task_sleep)
7f65ea42 3965{
b89997aa 3966 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
3967 struct util_est ue;
3968
3969 if (!sched_feat(UTIL_EST))
3970 return;
3971
7f65ea42
PB
3972 /*
3973 * Skip update of task's estimated utilization when the task has not
3974 * yet completed an activation, e.g. being migrated.
3975 */
3976 if (!task_sleep)
3977 return;
3978
d519329f
PB
3979 /*
3980 * If the PELT values haven't changed since enqueue time,
3981 * skip the util_est update.
3982 */
3983 ue = p->se.avg.util_est;
3984 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3985 return;
3986
b89997aa
VD
3987 last_enqueued_diff = ue.enqueued;
3988
b8c96361
PB
3989 /*
3990 * Reset EWMA on utilization increases, the moving average is used only
3991 * to smooth utilization decreases.
3992 */
3993 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3994 if (sched_feat(UTIL_EST_FASTUP)) {
3995 if (ue.ewma < ue.enqueued) {
3996 ue.ewma = ue.enqueued;
3997 goto done;
3998 }
3999 }
4000
7f65ea42 4001 /*
b89997aa 4002 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4003 * already ~1% close to its last activation value.
4004 */
7f65ea42 4005 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4006 last_enqueued_diff -= ue.enqueued;
4007 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4008 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4009 goto done;
4010
7f65ea42 4011 return;
b89997aa 4012 }
7f65ea42 4013
10a35e68
VG
4014 /*
4015 * To avoid overestimation of actual task utilization, skip updates if
4016 * we cannot grant there is idle time in this CPU.
4017 */
8c1f560c 4018 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4019 return;
4020
7f65ea42
PB
4021 /*
4022 * Update Task's estimated utilization
4023 *
4024 * When *p completes an activation we can consolidate another sample
4025 * of the task size. This is done by storing the current PELT value
4026 * as ue.enqueued and by using this value to update the Exponential
4027 * Weighted Moving Average (EWMA):
4028 *
4029 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4030 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4031 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4032 * = w * ( last_ewma_diff ) + ewma(t-1)
4033 * = w * (last_ewma_diff + ewma(t-1) / w)
4034 *
4035 * Where 'w' is the weight of new samples, which is configured to be
4036 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4037 */
4038 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4039 ue.ewma += last_ewma_diff;
4040 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4041done:
7f65ea42 4042 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4043
4044 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4045}
4046
3b1baa64
MR
4047static inline int task_fits_capacity(struct task_struct *p, long capacity)
4048{
a7008c07 4049 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4050}
4051
4052static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4053{
4054 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4055 return;
4056
0ae78eec 4057 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4058 rq->misfit_task_load = 0;
4059 return;
4060 }
4061
4062 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4063 rq->misfit_task_load = 0;
4064 return;
4065 }
4066
01cfcde9
VG
4067 /*
4068 * Make sure that misfit_task_load will not be null even if
4069 * task_h_load() returns 0.
4070 */
4071 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4072}
4073
38033c37
PZ
4074#else /* CONFIG_SMP */
4075
d31b1a66
VG
4076#define UPDATE_TG 0x0
4077#define SKIP_AGE_LOAD 0x0
b382a531 4078#define DO_ATTACH 0x0
d31b1a66 4079
88c0616e 4080static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4081{
ea14b57e 4082 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4083}
4084
9d89c257 4085static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4086
a05e8c51 4087static inline void
a4f9a0e5 4088attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4089static inline void
4090detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4091
d91cecc1 4092static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4093{
4094 return 0;
4095}
4096
7f65ea42
PB
4097static inline void
4098util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4099
4100static inline void
8c1f560c
XY
4101util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4102
4103static inline void
4104util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4105 bool task_sleep) {}
3b1baa64 4106static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4107
38033c37 4108#endif /* CONFIG_SMP */
9d85f21c 4109
ddc97297
PZ
4110static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4111{
4112#ifdef CONFIG_SCHED_DEBUG
4113 s64 d = se->vruntime - cfs_rq->min_vruntime;
4114
4115 if (d < 0)
4116 d = -d;
4117
4118 if (d > 3*sysctl_sched_latency)
ae92882e 4119 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4120#endif
4121}
4122
aeb73b04
PZ
4123static void
4124place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4125{
1af5f730 4126 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4127
2cb8600e
PZ
4128 /*
4129 * The 'current' period is already promised to the current tasks,
4130 * however the extra weight of the new task will slow them down a
4131 * little, place the new task so that it fits in the slot that
4132 * stays open at the end.
4133 */
94dfb5e7 4134 if (initial && sched_feat(START_DEBIT))
f9c0b095 4135 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4136
a2e7a7eb 4137 /* sleeps up to a single latency don't count. */
5ca9880c 4138 if (!initial) {
a2e7a7eb 4139 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4140
a2e7a7eb
MG
4141 /*
4142 * Halve their sleep time's effect, to allow
4143 * for a gentler effect of sleepers:
4144 */
4145 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4146 thresh >>= 1;
51e0304c 4147
a2e7a7eb 4148 vruntime -= thresh;
aeb73b04
PZ
4149 }
4150
b5d9d734 4151 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4152 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4153}
4154
d3d9dc33
PT
4155static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4156
cb251765
MG
4157static inline void check_schedstat_required(void)
4158{
4159#ifdef CONFIG_SCHEDSTATS
4160 if (schedstat_enabled())
4161 return;
4162
4163 /* Force schedstat enabled if a dependent tracepoint is active */
4164 if (trace_sched_stat_wait_enabled() ||
4165 trace_sched_stat_sleep_enabled() ||
4166 trace_sched_stat_iowait_enabled() ||
4167 trace_sched_stat_blocked_enabled() ||
4168 trace_sched_stat_runtime_enabled()) {
eda8dca5 4169 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4170 "stat_blocked and stat_runtime require the "
f67abed5 4171 "kernel parameter schedstats=enable or "
cb251765
MG
4172 "kernel.sched_schedstats=1\n");
4173 }
4174#endif
4175}
4176
fe61468b 4177static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4178
4179/*
4180 * MIGRATION
4181 *
4182 * dequeue
4183 * update_curr()
4184 * update_min_vruntime()
4185 * vruntime -= min_vruntime
4186 *
4187 * enqueue
4188 * update_curr()
4189 * update_min_vruntime()
4190 * vruntime += min_vruntime
4191 *
4192 * this way the vruntime transition between RQs is done when both
4193 * min_vruntime are up-to-date.
4194 *
4195 * WAKEUP (remote)
4196 *
59efa0ba 4197 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4198 * vruntime -= min_vruntime
4199 *
4200 * enqueue
4201 * update_curr()
4202 * update_min_vruntime()
4203 * vruntime += min_vruntime
4204 *
4205 * this way we don't have the most up-to-date min_vruntime on the originating
4206 * CPU and an up-to-date min_vruntime on the destination CPU.
4207 */
4208
bf0f6f24 4209static void
88ec22d3 4210enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4211{
2f950354
PZ
4212 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4213 bool curr = cfs_rq->curr == se;
4214
88ec22d3 4215 /*
2f950354
PZ
4216 * If we're the current task, we must renormalise before calling
4217 * update_curr().
88ec22d3 4218 */
2f950354 4219 if (renorm && curr)
88ec22d3
PZ
4220 se->vruntime += cfs_rq->min_vruntime;
4221
2f950354
PZ
4222 update_curr(cfs_rq);
4223
bf0f6f24 4224 /*
2f950354
PZ
4225 * Otherwise, renormalise after, such that we're placed at the current
4226 * moment in time, instead of some random moment in the past. Being
4227 * placed in the past could significantly boost this task to the
4228 * fairness detriment of existing tasks.
bf0f6f24 4229 */
2f950354
PZ
4230 if (renorm && !curr)
4231 se->vruntime += cfs_rq->min_vruntime;
4232
89ee048f
VG
4233 /*
4234 * When enqueuing a sched_entity, we must:
4235 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4236 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4237 * - For group_entity, update its weight to reflect the new share of
4238 * its group cfs_rq
4239 * - Add its new weight to cfs_rq->load.weight
4240 */
b382a531 4241 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4242 se_update_runnable(se);
1ea6c46a 4243 update_cfs_group(se);
17bc14b7 4244 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4245
1a3d027c 4246 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4247 place_entity(cfs_rq, se, 0);
bf0f6f24 4248
cb251765 4249 check_schedstat_required();
4fa8d299
JP
4250 update_stats_enqueue(cfs_rq, se, flags);
4251 check_spread(cfs_rq, se);
2f950354 4252 if (!curr)
83b699ed 4253 __enqueue_entity(cfs_rq, se);
2069dd75 4254 se->on_rq = 1;
3d4b47b4 4255
fe61468b
VG
4256 /*
4257 * When bandwidth control is enabled, cfs might have been removed
4258 * because of a parent been throttled but cfs->nr_running > 1. Try to
4259 * add it unconditionnally.
4260 */
4261 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4262 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4263
4264 if (cfs_rq->nr_running == 1)
d3d9dc33 4265 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4266}
4267
2c13c919 4268static void __clear_buddies_last(struct sched_entity *se)
2002c695 4269{
2c13c919
RR
4270 for_each_sched_entity(se) {
4271 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4272 if (cfs_rq->last != se)
2c13c919 4273 break;
f1044799
PZ
4274
4275 cfs_rq->last = NULL;
2c13c919
RR
4276 }
4277}
2002c695 4278
2c13c919
RR
4279static void __clear_buddies_next(struct sched_entity *se)
4280{
4281 for_each_sched_entity(se) {
4282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4283 if (cfs_rq->next != se)
2c13c919 4284 break;
f1044799
PZ
4285
4286 cfs_rq->next = NULL;
2c13c919 4287 }
2002c695
PZ
4288}
4289
ac53db59
RR
4290static void __clear_buddies_skip(struct sched_entity *se)
4291{
4292 for_each_sched_entity(se) {
4293 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4294 if (cfs_rq->skip != se)
ac53db59 4295 break;
f1044799
PZ
4296
4297 cfs_rq->skip = NULL;
ac53db59
RR
4298 }
4299}
4300
a571bbea
PZ
4301static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4302{
2c13c919
RR
4303 if (cfs_rq->last == se)
4304 __clear_buddies_last(se);
4305
4306 if (cfs_rq->next == se)
4307 __clear_buddies_next(se);
ac53db59
RR
4308
4309 if (cfs_rq->skip == se)
4310 __clear_buddies_skip(se);
a571bbea
PZ
4311}
4312
6c16a6dc 4313static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4314
bf0f6f24 4315static void
371fd7e7 4316dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4317{
a2a2d680
DA
4318 /*
4319 * Update run-time statistics of the 'current'.
4320 */
4321 update_curr(cfs_rq);
89ee048f
VG
4322
4323 /*
4324 * When dequeuing a sched_entity, we must:
4325 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4326 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4327 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4328 * - For group entity, update its weight to reflect the new share
4329 * of its group cfs_rq.
4330 */
88c0616e 4331 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4332 se_update_runnable(se);
a2a2d680 4333
4fa8d299 4334 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4335
2002c695 4336 clear_buddies(cfs_rq, se);
4793241b 4337
83b699ed 4338 if (se != cfs_rq->curr)
30cfdcfc 4339 __dequeue_entity(cfs_rq, se);
17bc14b7 4340 se->on_rq = 0;
30cfdcfc 4341 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4342
4343 /*
b60205c7
PZ
4344 * Normalize after update_curr(); which will also have moved
4345 * min_vruntime if @se is the one holding it back. But before doing
4346 * update_min_vruntime() again, which will discount @se's position and
4347 * can move min_vruntime forward still more.
88ec22d3 4348 */
371fd7e7 4349 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4350 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4351
d8b4986d
PT
4352 /* return excess runtime on last dequeue */
4353 return_cfs_rq_runtime(cfs_rq);
4354
1ea6c46a 4355 update_cfs_group(se);
b60205c7
PZ
4356
4357 /*
4358 * Now advance min_vruntime if @se was the entity holding it back,
4359 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4360 * put back on, and if we advance min_vruntime, we'll be placed back
4361 * further than we started -- ie. we'll be penalized.
4362 */
9845c49c 4363 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4364 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4365}
4366
4367/*
4368 * Preempt the current task with a newly woken task if needed:
4369 */
7c92e54f 4370static void
2e09bf55 4371check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4372{
11697830 4373 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4374 struct sched_entity *se;
4375 s64 delta;
11697830 4376
6d0f0ebd 4377 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4378 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4379 if (delta_exec > ideal_runtime) {
8875125e 4380 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4381 /*
4382 * The current task ran long enough, ensure it doesn't get
4383 * re-elected due to buddy favours.
4384 */
4385 clear_buddies(cfs_rq, curr);
f685ceac
MG
4386 return;
4387 }
4388
4389 /*
4390 * Ensure that a task that missed wakeup preemption by a
4391 * narrow margin doesn't have to wait for a full slice.
4392 * This also mitigates buddy induced latencies under load.
4393 */
f685ceac
MG
4394 if (delta_exec < sysctl_sched_min_granularity)
4395 return;
4396
f4cfb33e
WX
4397 se = __pick_first_entity(cfs_rq);
4398 delta = curr->vruntime - se->vruntime;
f685ceac 4399
f4cfb33e
WX
4400 if (delta < 0)
4401 return;
d7d82944 4402
f4cfb33e 4403 if (delta > ideal_runtime)
8875125e 4404 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4405}
4406
83b699ed 4407static void
8494f412 4408set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4409{
83b699ed
SV
4410 /* 'current' is not kept within the tree. */
4411 if (se->on_rq) {
4412 /*
4413 * Any task has to be enqueued before it get to execute on
4414 * a CPU. So account for the time it spent waiting on the
4415 * runqueue.
4416 */
4fa8d299 4417 update_stats_wait_end(cfs_rq, se);
83b699ed 4418 __dequeue_entity(cfs_rq, se);
88c0616e 4419 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4420 }
4421
79303e9e 4422 update_stats_curr_start(cfs_rq, se);
429d43bc 4423 cfs_rq->curr = se;
4fa8d299 4424
eba1ed4b
IM
4425 /*
4426 * Track our maximum slice length, if the CPU's load is at
4427 * least twice that of our own weight (i.e. dont track it
4428 * when there are only lesser-weight tasks around):
4429 */
f2bedc47
DE
4430 if (schedstat_enabled() &&
4431 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4432 schedstat_set(se->statistics.slice_max,
4433 max((u64)schedstat_val(se->statistics.slice_max),
4434 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4435 }
4fa8d299 4436
4a55b450 4437 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4438}
4439
3f3a4904
PZ
4440static int
4441wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4442
ac53db59
RR
4443/*
4444 * Pick the next process, keeping these things in mind, in this order:
4445 * 1) keep things fair between processes/task groups
4446 * 2) pick the "next" process, since someone really wants that to run
4447 * 3) pick the "last" process, for cache locality
4448 * 4) do not run the "skip" process, if something else is available
4449 */
678d5718
PZ
4450static struct sched_entity *
4451pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4452{
678d5718
PZ
4453 struct sched_entity *left = __pick_first_entity(cfs_rq);
4454 struct sched_entity *se;
4455
4456 /*
4457 * If curr is set we have to see if its left of the leftmost entity
4458 * still in the tree, provided there was anything in the tree at all.
4459 */
4460 if (!left || (curr && entity_before(curr, left)))
4461 left = curr;
4462
4463 se = left; /* ideally we run the leftmost entity */
f4b6755f 4464
ac53db59
RR
4465 /*
4466 * Avoid running the skip buddy, if running something else can
4467 * be done without getting too unfair.
4468 */
4469 if (cfs_rq->skip == se) {
678d5718
PZ
4470 struct sched_entity *second;
4471
4472 if (se == curr) {
4473 second = __pick_first_entity(cfs_rq);
4474 } else {
4475 second = __pick_next_entity(se);
4476 if (!second || (curr && entity_before(curr, second)))
4477 second = curr;
4478 }
4479
ac53db59
RR
4480 if (second && wakeup_preempt_entity(second, left) < 1)
4481 se = second;
4482 }
aa2ac252 4483
9abb8973
PO
4484 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4485 /*
4486 * Someone really wants this to run. If it's not unfair, run it.
4487 */
ac53db59 4488 se = cfs_rq->next;
9abb8973
PO
4489 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4490 /*
4491 * Prefer last buddy, try to return the CPU to a preempted task.
4492 */
4493 se = cfs_rq->last;
4494 }
ac53db59 4495
f685ceac 4496 clear_buddies(cfs_rq, se);
4793241b
PZ
4497
4498 return se;
aa2ac252
PZ
4499}
4500
678d5718 4501static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4502
ab6cde26 4503static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4504{
4505 /*
4506 * If still on the runqueue then deactivate_task()
4507 * was not called and update_curr() has to be done:
4508 */
4509 if (prev->on_rq)
b7cc0896 4510 update_curr(cfs_rq);
bf0f6f24 4511
d3d9dc33
PT
4512 /* throttle cfs_rqs exceeding runtime */
4513 check_cfs_rq_runtime(cfs_rq);
4514
4fa8d299 4515 check_spread(cfs_rq, prev);
cb251765 4516
30cfdcfc 4517 if (prev->on_rq) {
4fa8d299 4518 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4519 /* Put 'current' back into the tree. */
4520 __enqueue_entity(cfs_rq, prev);
9d85f21c 4521 /* in !on_rq case, update occurred at dequeue */
88c0616e 4522 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4523 }
429d43bc 4524 cfs_rq->curr = NULL;
bf0f6f24
IM
4525}
4526
8f4d37ec
PZ
4527static void
4528entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4529{
bf0f6f24 4530 /*
30cfdcfc 4531 * Update run-time statistics of the 'current'.
bf0f6f24 4532 */
30cfdcfc 4533 update_curr(cfs_rq);
bf0f6f24 4534
9d85f21c
PT
4535 /*
4536 * Ensure that runnable average is periodically updated.
4537 */
88c0616e 4538 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4539 update_cfs_group(curr);
9d85f21c 4540
8f4d37ec
PZ
4541#ifdef CONFIG_SCHED_HRTICK
4542 /*
4543 * queued ticks are scheduled to match the slice, so don't bother
4544 * validating it and just reschedule.
4545 */
983ed7a6 4546 if (queued) {
8875125e 4547 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4548 return;
4549 }
8f4d37ec
PZ
4550 /*
4551 * don't let the period tick interfere with the hrtick preemption
4552 */
4553 if (!sched_feat(DOUBLE_TICK) &&
4554 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4555 return;
4556#endif
4557
2c2efaed 4558 if (cfs_rq->nr_running > 1)
2e09bf55 4559 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4560}
4561
ab84d31e
PT
4562
4563/**************************************************
4564 * CFS bandwidth control machinery
4565 */
4566
4567#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4568
e9666d10 4569#ifdef CONFIG_JUMP_LABEL
c5905afb 4570static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4571
4572static inline bool cfs_bandwidth_used(void)
4573{
c5905afb 4574 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4575}
4576
1ee14e6c 4577void cfs_bandwidth_usage_inc(void)
029632fb 4578{
ce48c146 4579 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4580}
4581
4582void cfs_bandwidth_usage_dec(void)
4583{
ce48c146 4584 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4585}
e9666d10 4586#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4587static bool cfs_bandwidth_used(void)
4588{
4589 return true;
4590}
4591
1ee14e6c
BS
4592void cfs_bandwidth_usage_inc(void) {}
4593void cfs_bandwidth_usage_dec(void) {}
e9666d10 4594#endif /* CONFIG_JUMP_LABEL */
029632fb 4595
ab84d31e
PT
4596/*
4597 * default period for cfs group bandwidth.
4598 * default: 0.1s, units: nanoseconds
4599 */
4600static inline u64 default_cfs_period(void)
4601{
4602 return 100000000ULL;
4603}
ec12cb7f
PT
4604
4605static inline u64 sched_cfs_bandwidth_slice(void)
4606{
4607 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4608}
4609
a9cf55b2 4610/*
763a9ec0
QC
4611 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4612 * directly instead of rq->clock to avoid adding additional synchronization
4613 * around rq->lock.
a9cf55b2
PT
4614 *
4615 * requires cfs_b->lock
4616 */
029632fb 4617void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4618{
763a9ec0
QC
4619 if (cfs_b->quota != RUNTIME_INF)
4620 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4621}
4622
029632fb
PZ
4623static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4624{
4625 return &tg->cfs_bandwidth;
4626}
4627
85dac906 4628/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4629static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4630 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4631{
e98fa02c
PT
4632 u64 min_amount, amount = 0;
4633
4634 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4635
4636 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4637 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4638
ec12cb7f
PT
4639 if (cfs_b->quota == RUNTIME_INF)
4640 amount = min_amount;
58088ad0 4641 else {
77a4d1a1 4642 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4643
4644 if (cfs_b->runtime > 0) {
4645 amount = min(cfs_b->runtime, min_amount);
4646 cfs_b->runtime -= amount;
4647 cfs_b->idle = 0;
4648 }
ec12cb7f 4649 }
ec12cb7f
PT
4650
4651 cfs_rq->runtime_remaining += amount;
85dac906
PT
4652
4653 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4654}
4655
e98fa02c
PT
4656/* returns 0 on failure to allocate runtime */
4657static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4658{
4659 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4660 int ret;
4661
4662 raw_spin_lock(&cfs_b->lock);
4663 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4664 raw_spin_unlock(&cfs_b->lock);
4665
4666 return ret;
4667}
4668
9dbdb155 4669static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4670{
4671 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4672 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4673
4674 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4675 return;
4676
5e2d2cc2
L
4677 if (cfs_rq->throttled)
4678 return;
85dac906
PT
4679 /*
4680 * if we're unable to extend our runtime we resched so that the active
4681 * hierarchy can be throttled
4682 */
4683 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4684 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4685}
4686
6c16a6dc 4687static __always_inline
9dbdb155 4688void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4689{
56f570e5 4690 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4691 return;
4692
4693 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4694}
4695
85dac906
PT
4696static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4697{
56f570e5 4698 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4699}
4700
64660c86
PT
4701/* check whether cfs_rq, or any parent, is throttled */
4702static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4703{
56f570e5 4704 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4705}
4706
4707/*
4708 * Ensure that neither of the group entities corresponding to src_cpu or
4709 * dest_cpu are members of a throttled hierarchy when performing group
4710 * load-balance operations.
4711 */
4712static inline int throttled_lb_pair(struct task_group *tg,
4713 int src_cpu, int dest_cpu)
4714{
4715 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4716
4717 src_cfs_rq = tg->cfs_rq[src_cpu];
4718 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4719
4720 return throttled_hierarchy(src_cfs_rq) ||
4721 throttled_hierarchy(dest_cfs_rq);
4722}
4723
64660c86
PT
4724static int tg_unthrottle_up(struct task_group *tg, void *data)
4725{
4726 struct rq *rq = data;
4727 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4728
4729 cfs_rq->throttle_count--;
64660c86 4730 if (!cfs_rq->throttle_count) {
78becc27 4731 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4732 cfs_rq->throttled_clock_task;
31bc6aea
VG
4733
4734 /* Add cfs_rq with already running entity in the list */
4735 if (cfs_rq->nr_running >= 1)
4736 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4737 }
64660c86
PT
4738
4739 return 0;
4740}
4741
4742static int tg_throttle_down(struct task_group *tg, void *data)
4743{
4744 struct rq *rq = data;
4745 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4746
82958366 4747 /* group is entering throttled state, stop time */
31bc6aea 4748 if (!cfs_rq->throttle_count) {
78becc27 4749 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4750 list_del_leaf_cfs_rq(cfs_rq);
4751 }
64660c86
PT
4752 cfs_rq->throttle_count++;
4753
4754 return 0;
4755}
4756
e98fa02c 4757static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4758{
4759 struct rq *rq = rq_of(cfs_rq);
4760 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4761 struct sched_entity *se;
43e9f7f2 4762 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4763
4764 raw_spin_lock(&cfs_b->lock);
4765 /* This will start the period timer if necessary */
4766 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4767 /*
4768 * We have raced with bandwidth becoming available, and if we
4769 * actually throttled the timer might not unthrottle us for an
4770 * entire period. We additionally needed to make sure that any
4771 * subsequent check_cfs_rq_runtime calls agree not to throttle
4772 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4773 * for 1ns of runtime rather than just check cfs_b.
4774 */
4775 dequeue = 0;
4776 } else {
4777 list_add_tail_rcu(&cfs_rq->throttled_list,
4778 &cfs_b->throttled_cfs_rq);
4779 }
4780 raw_spin_unlock(&cfs_b->lock);
4781
4782 if (!dequeue)
4783 return false; /* Throttle no longer required. */
85dac906
PT
4784
4785 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4786
f1b17280 4787 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4788 rcu_read_lock();
4789 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4790 rcu_read_unlock();
85dac906
PT
4791
4792 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4793 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4794 for_each_sched_entity(se) {
4795 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4796 /* throttled entity or throttle-on-deactivate */
4797 if (!se->on_rq)
b6d37a76 4798 goto done;
85dac906 4799
b6d37a76 4800 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4801
85dac906 4802 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4803 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4804
b6d37a76
PW
4805 if (qcfs_rq->load.weight) {
4806 /* Avoid re-evaluating load for this entity: */
4807 se = parent_entity(se);
4808 break;
4809 }
4810 }
4811
4812 for_each_sched_entity(se) {
4813 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4814 /* throttled entity or throttle-on-deactivate */
4815 if (!se->on_rq)
4816 goto done;
4817
4818 update_load_avg(qcfs_rq, se, 0);
4819 se_update_runnable(se);
4820
4821 qcfs_rq->h_nr_running -= task_delta;
4822 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4823 }
4824
b6d37a76
PW
4825 /* At this point se is NULL and we are at root level*/
4826 sub_nr_running(rq, task_delta);
85dac906 4827
b6d37a76 4828done:
c06f04c7 4829 /*
e98fa02c
PT
4830 * Note: distribution will already see us throttled via the
4831 * throttled-list. rq->lock protects completion.
c06f04c7 4832 */
e98fa02c
PT
4833 cfs_rq->throttled = 1;
4834 cfs_rq->throttled_clock = rq_clock(rq);
4835 return true;
85dac906
PT
4836}
4837
029632fb 4838void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4839{
4840 struct rq *rq = rq_of(cfs_rq);
4841 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4842 struct sched_entity *se;
43e9f7f2 4843 long task_delta, idle_task_delta;
671fd9da 4844
22b958d8 4845 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4846
4847 cfs_rq->throttled = 0;
1a55af2e
FW
4848
4849 update_rq_clock(rq);
4850
671fd9da 4851 raw_spin_lock(&cfs_b->lock);
78becc27 4852 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4853 list_del_rcu(&cfs_rq->throttled_list);
4854 raw_spin_unlock(&cfs_b->lock);
4855
64660c86
PT
4856 /* update hierarchical throttle state */
4857 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4858
671fd9da
PT
4859 if (!cfs_rq->load.weight)
4860 return;
4861
4862 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4863 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4864 for_each_sched_entity(se) {
4865 if (se->on_rq)
39f23ce0
VG
4866 break;
4867 cfs_rq = cfs_rq_of(se);
4868 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4869
4870 cfs_rq->h_nr_running += task_delta;
4871 cfs_rq->idle_h_nr_running += idle_task_delta;
4872
4873 /* end evaluation on encountering a throttled cfs_rq */
4874 if (cfs_rq_throttled(cfs_rq))
4875 goto unthrottle_throttle;
4876 }
671fd9da 4877
39f23ce0 4878 for_each_sched_entity(se) {
671fd9da 4879 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4880
4881 update_load_avg(cfs_rq, se, UPDATE_TG);
4882 se_update_runnable(se);
6212437f 4883
671fd9da 4884 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4885 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4886
39f23ce0
VG
4887
4888 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4889 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4890 goto unthrottle_throttle;
4891
4892 /*
4893 * One parent has been throttled and cfs_rq removed from the
4894 * list. Add it back to not break the leaf list.
4895 */
4896 if (throttled_hierarchy(cfs_rq))
4897 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4898 }
4899
39f23ce0
VG
4900 /* At this point se is NULL and we are at root level*/
4901 add_nr_running(rq, task_delta);
671fd9da 4902
39f23ce0 4903unthrottle_throttle:
fe61468b
VG
4904 /*
4905 * The cfs_rq_throttled() breaks in the above iteration can result in
4906 * incomplete leaf list maintenance, resulting in triggering the
4907 * assertion below.
4908 */
4909 for_each_sched_entity(se) {
4910 cfs_rq = cfs_rq_of(se);
4911
39f23ce0
VG
4912 if (list_add_leaf_cfs_rq(cfs_rq))
4913 break;
fe61468b
VG
4914 }
4915
4916 assert_list_leaf_cfs_rq(rq);
4917
97fb7a0a 4918 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4919 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4920 resched_curr(rq);
671fd9da
PT
4921}
4922
26a8b127 4923static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4924{
4925 struct cfs_rq *cfs_rq;
26a8b127 4926 u64 runtime, remaining = 1;
671fd9da
PT
4927
4928 rcu_read_lock();
4929 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4930 throttled_list) {
4931 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4932 struct rq_flags rf;
671fd9da 4933
c0ad4aa4 4934 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4935 if (!cfs_rq_throttled(cfs_rq))
4936 goto next;
4937
5e2d2cc2
L
4938 /* By the above check, this should never be true */
4939 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4940
26a8b127 4941 raw_spin_lock(&cfs_b->lock);
671fd9da 4942 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4943 if (runtime > cfs_b->runtime)
4944 runtime = cfs_b->runtime;
4945 cfs_b->runtime -= runtime;
4946 remaining = cfs_b->runtime;
4947 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4948
4949 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4950
4951 /* we check whether we're throttled above */
4952 if (cfs_rq->runtime_remaining > 0)
4953 unthrottle_cfs_rq(cfs_rq);
4954
4955next:
c0ad4aa4 4956 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4957
4958 if (!remaining)
4959 break;
4960 }
4961 rcu_read_unlock();
671fd9da
PT
4962}
4963
58088ad0
PT
4964/*
4965 * Responsible for refilling a task_group's bandwidth and unthrottling its
4966 * cfs_rqs as appropriate. If there has been no activity within the last
4967 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4968 * used to track this state.
4969 */
c0ad4aa4 4970static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4971{
51f2176d 4972 int throttled;
58088ad0 4973
58088ad0
PT
4974 /* no need to continue the timer with no bandwidth constraint */
4975 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4976 goto out_deactivate;
58088ad0 4977
671fd9da 4978 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4979 cfs_b->nr_periods += overrun;
671fd9da 4980
51f2176d
BS
4981 /*
4982 * idle depends on !throttled (for the case of a large deficit), and if
4983 * we're going inactive then everything else can be deferred
4984 */
4985 if (cfs_b->idle && !throttled)
4986 goto out_deactivate;
a9cf55b2
PT
4987
4988 __refill_cfs_bandwidth_runtime(cfs_b);
4989
671fd9da
PT
4990 if (!throttled) {
4991 /* mark as potentially idle for the upcoming period */
4992 cfs_b->idle = 1;
51f2176d 4993 return 0;
671fd9da
PT
4994 }
4995
e8da1b18
NR
4996 /* account preceding periods in which throttling occurred */
4997 cfs_b->nr_throttled += overrun;
4998
671fd9da 4999 /*
26a8b127 5000 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5001 */
ab93a4bc 5002 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5003 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5004 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5005 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5006 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5007
5008 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5009 }
58088ad0 5010
671fd9da
PT
5011 /*
5012 * While we are ensured activity in the period following an
5013 * unthrottle, this also covers the case in which the new bandwidth is
5014 * insufficient to cover the existing bandwidth deficit. (Forcing the
5015 * timer to remain active while there are any throttled entities.)
5016 */
5017 cfs_b->idle = 0;
58088ad0 5018
51f2176d
BS
5019 return 0;
5020
5021out_deactivate:
51f2176d 5022 return 1;
58088ad0 5023}
d3d9dc33 5024
d8b4986d
PT
5025/* a cfs_rq won't donate quota below this amount */
5026static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5027/* minimum remaining period time to redistribute slack quota */
5028static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5029/* how long we wait to gather additional slack before distributing */
5030static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5031
db06e78c
BS
5032/*
5033 * Are we near the end of the current quota period?
5034 *
5035 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5036 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5037 * migrate_hrtimers, base is never cleared, so we are fine.
5038 */
d8b4986d
PT
5039static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5040{
5041 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5042 u64 remaining;
5043
5044 /* if the call-back is running a quota refresh is already occurring */
5045 if (hrtimer_callback_running(refresh_timer))
5046 return 1;
5047
5048 /* is a quota refresh about to occur? */
5049 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5050 if (remaining < min_expire)
5051 return 1;
5052
5053 return 0;
5054}
5055
5056static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5057{
5058 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5059
5060 /* if there's a quota refresh soon don't bother with slack */
5061 if (runtime_refresh_within(cfs_b, min_left))
5062 return;
5063
66567fcb 5064 /* don't push forwards an existing deferred unthrottle */
5065 if (cfs_b->slack_started)
5066 return;
5067 cfs_b->slack_started = true;
5068
4cfafd30
PZ
5069 hrtimer_start(&cfs_b->slack_timer,
5070 ns_to_ktime(cfs_bandwidth_slack_period),
5071 HRTIMER_MODE_REL);
d8b4986d
PT
5072}
5073
5074/* we know any runtime found here is valid as update_curr() precedes return */
5075static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5076{
5077 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5078 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5079
5080 if (slack_runtime <= 0)
5081 return;
5082
5083 raw_spin_lock(&cfs_b->lock);
de53fd7a 5084 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5085 cfs_b->runtime += slack_runtime;
5086
5087 /* we are under rq->lock, defer unthrottling using a timer */
5088 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5089 !list_empty(&cfs_b->throttled_cfs_rq))
5090 start_cfs_slack_bandwidth(cfs_b);
5091 }
5092 raw_spin_unlock(&cfs_b->lock);
5093
5094 /* even if it's not valid for return we don't want to try again */
5095 cfs_rq->runtime_remaining -= slack_runtime;
5096}
5097
5098static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5099{
56f570e5
PT
5100 if (!cfs_bandwidth_used())
5101 return;
5102
fccfdc6f 5103 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5104 return;
5105
5106 __return_cfs_rq_runtime(cfs_rq);
5107}
5108
5109/*
5110 * This is done with a timer (instead of inline with bandwidth return) since
5111 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5112 */
5113static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5114{
5115 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5116 unsigned long flags;
d8b4986d
PT
5117
5118 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5119 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5120 cfs_b->slack_started = false;
baa9be4f 5121
db06e78c 5122 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5123 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5124 return;
db06e78c 5125 }
d8b4986d 5126
c06f04c7 5127 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5128 runtime = cfs_b->runtime;
c06f04c7 5129
c0ad4aa4 5130 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5131
5132 if (!runtime)
5133 return;
5134
26a8b127 5135 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5136}
5137
d3d9dc33
PT
5138/*
5139 * When a group wakes up we want to make sure that its quota is not already
5140 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5141 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5142 */
5143static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5144{
56f570e5
PT
5145 if (!cfs_bandwidth_used())
5146 return;
5147
d3d9dc33
PT
5148 /* an active group must be handled by the update_curr()->put() path */
5149 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5150 return;
5151
5152 /* ensure the group is not already throttled */
5153 if (cfs_rq_throttled(cfs_rq))
5154 return;
5155
5156 /* update runtime allocation */
5157 account_cfs_rq_runtime(cfs_rq, 0);
5158 if (cfs_rq->runtime_remaining <= 0)
5159 throttle_cfs_rq(cfs_rq);
5160}
5161
55e16d30
PZ
5162static void sync_throttle(struct task_group *tg, int cpu)
5163{
5164 struct cfs_rq *pcfs_rq, *cfs_rq;
5165
5166 if (!cfs_bandwidth_used())
5167 return;
5168
5169 if (!tg->parent)
5170 return;
5171
5172 cfs_rq = tg->cfs_rq[cpu];
5173 pcfs_rq = tg->parent->cfs_rq[cpu];
5174
5175 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5176 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5177}
5178
d3d9dc33 5179/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5180static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5181{
56f570e5 5182 if (!cfs_bandwidth_used())
678d5718 5183 return false;
56f570e5 5184
d3d9dc33 5185 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5186 return false;
d3d9dc33
PT
5187
5188 /*
5189 * it's possible for a throttled entity to be forced into a running
5190 * state (e.g. set_curr_task), in this case we're finished.
5191 */
5192 if (cfs_rq_throttled(cfs_rq))
678d5718 5193 return true;
d3d9dc33 5194
e98fa02c 5195 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5196}
029632fb 5197
029632fb
PZ
5198static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5199{
5200 struct cfs_bandwidth *cfs_b =
5201 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5202
029632fb
PZ
5203 do_sched_cfs_slack_timer(cfs_b);
5204
5205 return HRTIMER_NORESTART;
5206}
5207
2e8e1922
PA
5208extern const u64 max_cfs_quota_period;
5209
029632fb
PZ
5210static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5211{
5212 struct cfs_bandwidth *cfs_b =
5213 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5214 unsigned long flags;
029632fb
PZ
5215 int overrun;
5216 int idle = 0;
2e8e1922 5217 int count = 0;
029632fb 5218
c0ad4aa4 5219 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5220 for (;;) {
77a4d1a1 5221 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5222 if (!overrun)
5223 break;
5224
5a6d6a6c
HC
5225 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5226
2e8e1922
PA
5227 if (++count > 3) {
5228 u64 new, old = ktime_to_ns(cfs_b->period);
5229
4929a4e6
XZ
5230 /*
5231 * Grow period by a factor of 2 to avoid losing precision.
5232 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5233 * to fail.
5234 */
5235 new = old * 2;
5236 if (new < max_cfs_quota_period) {
5237 cfs_b->period = ns_to_ktime(new);
5238 cfs_b->quota *= 2;
5239
5240 pr_warn_ratelimited(
5241 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5242 smp_processor_id(),
5243 div_u64(new, NSEC_PER_USEC),
5244 div_u64(cfs_b->quota, NSEC_PER_USEC));
5245 } else {
5246 pr_warn_ratelimited(
5247 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5248 smp_processor_id(),
5249 div_u64(old, NSEC_PER_USEC),
5250 div_u64(cfs_b->quota, NSEC_PER_USEC));
5251 }
2e8e1922
PA
5252
5253 /* reset count so we don't come right back in here */
5254 count = 0;
5255 }
029632fb 5256 }
4cfafd30
PZ
5257 if (idle)
5258 cfs_b->period_active = 0;
c0ad4aa4 5259 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5260
5261 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5262}
5263
5264void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5265{
5266 raw_spin_lock_init(&cfs_b->lock);
5267 cfs_b->runtime = 0;
5268 cfs_b->quota = RUNTIME_INF;
5269 cfs_b->period = ns_to_ktime(default_cfs_period());
5270
5271 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5272 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5273 cfs_b->period_timer.function = sched_cfs_period_timer;
5274 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5275 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5276 cfs_b->slack_started = false;
029632fb
PZ
5277}
5278
5279static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5280{
5281 cfs_rq->runtime_enabled = 0;
5282 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5283}
5284
77a4d1a1 5285void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5286{
4cfafd30 5287 lockdep_assert_held(&cfs_b->lock);
029632fb 5288
f1d1be8a
XP
5289 if (cfs_b->period_active)
5290 return;
5291
5292 cfs_b->period_active = 1;
763a9ec0 5293 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5294 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5295}
5296
5297static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5298{
7f1a169b
TH
5299 /* init_cfs_bandwidth() was not called */
5300 if (!cfs_b->throttled_cfs_rq.next)
5301 return;
5302
029632fb
PZ
5303 hrtimer_cancel(&cfs_b->period_timer);
5304 hrtimer_cancel(&cfs_b->slack_timer);
5305}
5306
502ce005 5307/*
97fb7a0a 5308 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5309 *
5310 * The race is harmless, since modifying bandwidth settings of unhooked group
5311 * bits doesn't do much.
5312 */
5313
5314/* cpu online calback */
0e59bdae
KT
5315static void __maybe_unused update_runtime_enabled(struct rq *rq)
5316{
502ce005 5317 struct task_group *tg;
0e59bdae 5318
502ce005
PZ
5319 lockdep_assert_held(&rq->lock);
5320
5321 rcu_read_lock();
5322 list_for_each_entry_rcu(tg, &task_groups, list) {
5323 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5324 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5325
5326 raw_spin_lock(&cfs_b->lock);
5327 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5328 raw_spin_unlock(&cfs_b->lock);
5329 }
502ce005 5330 rcu_read_unlock();
0e59bdae
KT
5331}
5332
502ce005 5333/* cpu offline callback */
38dc3348 5334static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5335{
502ce005
PZ
5336 struct task_group *tg;
5337
5338 lockdep_assert_held(&rq->lock);
5339
5340 rcu_read_lock();
5341 list_for_each_entry_rcu(tg, &task_groups, list) {
5342 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5343
029632fb
PZ
5344 if (!cfs_rq->runtime_enabled)
5345 continue;
5346
5347 /*
5348 * clock_task is not advancing so we just need to make sure
5349 * there's some valid quota amount
5350 */
51f2176d 5351 cfs_rq->runtime_remaining = 1;
0e59bdae 5352 /*
97fb7a0a 5353 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5354 * in take_cpu_down(), so we prevent new cfs throttling here.
5355 */
5356 cfs_rq->runtime_enabled = 0;
5357
029632fb
PZ
5358 if (cfs_rq_throttled(cfs_rq))
5359 unthrottle_cfs_rq(cfs_rq);
5360 }
502ce005 5361 rcu_read_unlock();
029632fb
PZ
5362}
5363
5364#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5365
5366static inline bool cfs_bandwidth_used(void)
5367{
5368 return false;
5369}
5370
9dbdb155 5371static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5372static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5373static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5374static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5375static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5376
5377static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5378{
5379 return 0;
5380}
64660c86
PT
5381
5382static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5383{
5384 return 0;
5385}
5386
5387static inline int throttled_lb_pair(struct task_group *tg,
5388 int src_cpu, int dest_cpu)
5389{
5390 return 0;
5391}
029632fb
PZ
5392
5393void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5394
5395#ifdef CONFIG_FAIR_GROUP_SCHED
5396static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5397#endif
5398
029632fb
PZ
5399static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5400{
5401 return NULL;
5402}
5403static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5404static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5405static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5406
5407#endif /* CONFIG_CFS_BANDWIDTH */
5408
bf0f6f24
IM
5409/**************************************************
5410 * CFS operations on tasks:
5411 */
5412
8f4d37ec
PZ
5413#ifdef CONFIG_SCHED_HRTICK
5414static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5415{
8f4d37ec
PZ
5416 struct sched_entity *se = &p->se;
5417 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5418
9148a3a1 5419 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5420
8bf46a39 5421 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5422 u64 slice = sched_slice(cfs_rq, se);
5423 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5424 s64 delta = slice - ran;
5425
5426 if (delta < 0) {
65bcf072 5427 if (task_current(rq, p))
8875125e 5428 resched_curr(rq);
8f4d37ec
PZ
5429 return;
5430 }
31656519 5431 hrtick_start(rq, delta);
8f4d37ec
PZ
5432 }
5433}
a4c2f00f
PZ
5434
5435/*
5436 * called from enqueue/dequeue and updates the hrtick when the
5437 * current task is from our class and nr_running is low enough
5438 * to matter.
5439 */
5440static void hrtick_update(struct rq *rq)
5441{
5442 struct task_struct *curr = rq->curr;
5443
e0ee463c 5444 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5445 return;
5446
5447 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5448 hrtick_start_fair(rq, curr);
5449}
55e12e5e 5450#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5451static inline void
5452hrtick_start_fair(struct rq *rq, struct task_struct *p)
5453{
5454}
a4c2f00f
PZ
5455
5456static inline void hrtick_update(struct rq *rq)
5457{
5458}
8f4d37ec
PZ
5459#endif
5460
2802bf3c
MR
5461#ifdef CONFIG_SMP
5462static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5463
5464static inline bool cpu_overutilized(int cpu)
5465{
60e17f5c 5466 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5467}
5468
5469static inline void update_overutilized_status(struct rq *rq)
5470{
f9f240f9 5471 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5472 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5473 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5474 }
2802bf3c
MR
5475}
5476#else
5477static inline void update_overutilized_status(struct rq *rq) { }
5478#endif
5479
323af6de
VK
5480/* Runqueue only has SCHED_IDLE tasks enqueued */
5481static int sched_idle_rq(struct rq *rq)
5482{
5483 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5484 rq->nr_running);
5485}
5486
afa70d94 5487#ifdef CONFIG_SMP
323af6de
VK
5488static int sched_idle_cpu(int cpu)
5489{
5490 return sched_idle_rq(cpu_rq(cpu));
5491}
afa70d94 5492#endif
323af6de 5493
bf0f6f24
IM
5494/*
5495 * The enqueue_task method is called before nr_running is
5496 * increased. Here we update the fair scheduling stats and
5497 * then put the task into the rbtree:
5498 */
ea87bb78 5499static void
371fd7e7 5500enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5501{
5502 struct cfs_rq *cfs_rq;
62fb1851 5503 struct sched_entity *se = &p->se;
43e9f7f2 5504 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5505 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5506
2539fc82
PB
5507 /*
5508 * The code below (indirectly) updates schedutil which looks at
5509 * the cfs_rq utilization to select a frequency.
5510 * Let's add the task's estimated utilization to the cfs_rq's
5511 * estimated utilization, before we update schedutil.
5512 */
5513 util_est_enqueue(&rq->cfs, p);
5514
8c34ab19
RW
5515 /*
5516 * If in_iowait is set, the code below may not trigger any cpufreq
5517 * utilization updates, so do it here explicitly with the IOWAIT flag
5518 * passed.
5519 */
5520 if (p->in_iowait)
674e7541 5521 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5522
bf0f6f24 5523 for_each_sched_entity(se) {
62fb1851 5524 if (se->on_rq)
bf0f6f24
IM
5525 break;
5526 cfs_rq = cfs_rq_of(se);
88ec22d3 5527 enqueue_entity(cfs_rq, se, flags);
85dac906 5528
953bfcd1 5529 cfs_rq->h_nr_running++;
43e9f7f2 5530 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5531
6d4d2246
VG
5532 /* end evaluation on encountering a throttled cfs_rq */
5533 if (cfs_rq_throttled(cfs_rq))
5534 goto enqueue_throttle;
5535
88ec22d3 5536 flags = ENQUEUE_WAKEUP;
bf0f6f24 5537 }
8f4d37ec 5538
2069dd75 5539 for_each_sched_entity(se) {
0f317143 5540 cfs_rq = cfs_rq_of(se);
2069dd75 5541
88c0616e 5542 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5543 se_update_runnable(se);
1ea6c46a 5544 update_cfs_group(se);
6d4d2246
VG
5545
5546 cfs_rq->h_nr_running++;
5547 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5548
5549 /* end evaluation on encountering a throttled cfs_rq */
5550 if (cfs_rq_throttled(cfs_rq))
5551 goto enqueue_throttle;
b34cb07d
PA
5552
5553 /*
5554 * One parent has been throttled and cfs_rq removed from the
5555 * list. Add it back to not break the leaf list.
5556 */
5557 if (throttled_hierarchy(cfs_rq))
5558 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5559 }
5560
7d148be6
VG
5561 /* At this point se is NULL and we are at root level*/
5562 add_nr_running(rq, 1);
2802bf3c 5563
7d148be6
VG
5564 /*
5565 * Since new tasks are assigned an initial util_avg equal to
5566 * half of the spare capacity of their CPU, tiny tasks have the
5567 * ability to cross the overutilized threshold, which will
5568 * result in the load balancer ruining all the task placement
5569 * done by EAS. As a way to mitigate that effect, do not account
5570 * for the first enqueue operation of new tasks during the
5571 * overutilized flag detection.
5572 *
5573 * A better way of solving this problem would be to wait for
5574 * the PELT signals of tasks to converge before taking them
5575 * into account, but that is not straightforward to implement,
5576 * and the following generally works well enough in practice.
5577 */
8e1ac429 5578 if (!task_new)
7d148be6 5579 update_overutilized_status(rq);
cd126afe 5580
7d148be6 5581enqueue_throttle:
f6783319
VG
5582 if (cfs_bandwidth_used()) {
5583 /*
5584 * When bandwidth control is enabled; the cfs_rq_throttled()
5585 * breaks in the above iteration can result in incomplete
5586 * leaf list maintenance, resulting in triggering the assertion
5587 * below.
5588 */
5589 for_each_sched_entity(se) {
5590 cfs_rq = cfs_rq_of(se);
5591
5592 if (list_add_leaf_cfs_rq(cfs_rq))
5593 break;
5594 }
5595 }
5596
5d299eab
PZ
5597 assert_list_leaf_cfs_rq(rq);
5598
a4c2f00f 5599 hrtick_update(rq);
bf0f6f24
IM
5600}
5601
2f36825b
VP
5602static void set_next_buddy(struct sched_entity *se);
5603
bf0f6f24
IM
5604/*
5605 * The dequeue_task method is called before nr_running is
5606 * decreased. We remove the task from the rbtree and
5607 * update the fair scheduling stats:
5608 */
371fd7e7 5609static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5610{
5611 struct cfs_rq *cfs_rq;
62fb1851 5612 struct sched_entity *se = &p->se;
2f36825b 5613 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5614 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5615 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5616
8c1f560c
XY
5617 util_est_dequeue(&rq->cfs, p);
5618
bf0f6f24
IM
5619 for_each_sched_entity(se) {
5620 cfs_rq = cfs_rq_of(se);
371fd7e7 5621 dequeue_entity(cfs_rq, se, flags);
85dac906 5622
953bfcd1 5623 cfs_rq->h_nr_running--;
43e9f7f2 5624 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5625
6d4d2246
VG
5626 /* end evaluation on encountering a throttled cfs_rq */
5627 if (cfs_rq_throttled(cfs_rq))
5628 goto dequeue_throttle;
5629
bf0f6f24 5630 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5631 if (cfs_rq->load.weight) {
754bd598
KK
5632 /* Avoid re-evaluating load for this entity: */
5633 se = parent_entity(se);
2f36825b
VP
5634 /*
5635 * Bias pick_next to pick a task from this cfs_rq, as
5636 * p is sleeping when it is within its sched_slice.
5637 */
754bd598
KK
5638 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5639 set_next_buddy(se);
bf0f6f24 5640 break;
2f36825b 5641 }
371fd7e7 5642 flags |= DEQUEUE_SLEEP;
bf0f6f24 5643 }
8f4d37ec 5644
2069dd75 5645 for_each_sched_entity(se) {
0f317143 5646 cfs_rq = cfs_rq_of(se);
2069dd75 5647
88c0616e 5648 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5649 se_update_runnable(se);
1ea6c46a 5650 update_cfs_group(se);
6d4d2246
VG
5651
5652 cfs_rq->h_nr_running--;
5653 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5654
5655 /* end evaluation on encountering a throttled cfs_rq */
5656 if (cfs_rq_throttled(cfs_rq))
5657 goto dequeue_throttle;
5658
2069dd75
PZ
5659 }
5660
423d02e1
PW
5661 /* At this point se is NULL and we are at root level*/
5662 sub_nr_running(rq, 1);
cd126afe 5663
323af6de
VK
5664 /* balance early to pull high priority tasks */
5665 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5666 rq->next_balance = jiffies;
5667
423d02e1 5668dequeue_throttle:
8c1f560c 5669 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5670 hrtick_update(rq);
bf0f6f24
IM
5671}
5672
e7693a36 5673#ifdef CONFIG_SMP
10e2f1ac
PZ
5674
5675/* Working cpumask for: load_balance, load_balance_newidle. */
5676DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5677DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5678
9fd81dd5 5679#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5680
5681static struct {
5682 cpumask_var_t idle_cpus_mask;
5683 atomic_t nr_cpus;
f643ea22 5684 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5685 unsigned long next_balance; /* in jiffy units */
f643ea22 5686 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5687} nohz ____cacheline_aligned;
5688
9fd81dd5 5689#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5690
b0fb1eb4
VG
5691static unsigned long cpu_load(struct rq *rq)
5692{
5693 return cfs_rq_load_avg(&rq->cfs);
5694}
5695
3318544b
VG
5696/*
5697 * cpu_load_without - compute CPU load without any contributions from *p
5698 * @cpu: the CPU which load is requested
5699 * @p: the task which load should be discounted
5700 *
5701 * The load of a CPU is defined by the load of tasks currently enqueued on that
5702 * CPU as well as tasks which are currently sleeping after an execution on that
5703 * CPU.
5704 *
5705 * This method returns the load of the specified CPU by discounting the load of
5706 * the specified task, whenever the task is currently contributing to the CPU
5707 * load.
5708 */
5709static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5710{
5711 struct cfs_rq *cfs_rq;
5712 unsigned int load;
5713
5714 /* Task has no contribution or is new */
5715 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5716 return cpu_load(rq);
5717
5718 cfs_rq = &rq->cfs;
5719 load = READ_ONCE(cfs_rq->avg.load_avg);
5720
5721 /* Discount task's util from CPU's util */
5722 lsub_positive(&load, task_h_load(p));
5723
5724 return load;
5725}
5726
9f683953
VG
5727static unsigned long cpu_runnable(struct rq *rq)
5728{
5729 return cfs_rq_runnable_avg(&rq->cfs);
5730}
5731
070f5e86
VG
5732static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5733{
5734 struct cfs_rq *cfs_rq;
5735 unsigned int runnable;
5736
5737 /* Task has no contribution or is new */
5738 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5739 return cpu_runnable(rq);
5740
5741 cfs_rq = &rq->cfs;
5742 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5743
5744 /* Discount task's runnable from CPU's runnable */
5745 lsub_positive(&runnable, p->se.avg.runnable_avg);
5746
5747 return runnable;
5748}
5749
ced549fa 5750static unsigned long capacity_of(int cpu)
029632fb 5751{
ced549fa 5752 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5753}
5754
c58d25f3
PZ
5755static void record_wakee(struct task_struct *p)
5756{
5757 /*
5758 * Only decay a single time; tasks that have less then 1 wakeup per
5759 * jiffy will not have built up many flips.
5760 */
5761 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5762 current->wakee_flips >>= 1;
5763 current->wakee_flip_decay_ts = jiffies;
5764 }
5765
5766 if (current->last_wakee != p) {
5767 current->last_wakee = p;
5768 current->wakee_flips++;
5769 }
5770}
5771
63b0e9ed
MG
5772/*
5773 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5774 *
63b0e9ed 5775 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5776 * at a frequency roughly N times higher than one of its wakees.
5777 *
5778 * In order to determine whether we should let the load spread vs consolidating
5779 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5780 * partner, and a factor of lls_size higher frequency in the other.
5781 *
5782 * With both conditions met, we can be relatively sure that the relationship is
5783 * non-monogamous, with partner count exceeding socket size.
5784 *
5785 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5786 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5787 * socket size.
63b0e9ed 5788 */
62470419
MW
5789static int wake_wide(struct task_struct *p)
5790{
63b0e9ed
MG
5791 unsigned int master = current->wakee_flips;
5792 unsigned int slave = p->wakee_flips;
17c891ab 5793 int factor = __this_cpu_read(sd_llc_size);
62470419 5794
63b0e9ed
MG
5795 if (master < slave)
5796 swap(master, slave);
5797 if (slave < factor || master < slave * factor)
5798 return 0;
5799 return 1;
62470419
MW
5800}
5801
90001d67 5802/*
d153b153
PZ
5803 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5804 * soonest. For the purpose of speed we only consider the waking and previous
5805 * CPU.
90001d67 5806 *
7332dec0
MG
5807 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5808 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5809 *
5810 * wake_affine_weight() - considers the weight to reflect the average
5811 * scheduling latency of the CPUs. This seems to work
5812 * for the overloaded case.
90001d67 5813 */
3b76c4a3 5814static int
89a55f56 5815wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5816{
7332dec0
MG
5817 /*
5818 * If this_cpu is idle, it implies the wakeup is from interrupt
5819 * context. Only allow the move if cache is shared. Otherwise an
5820 * interrupt intensive workload could force all tasks onto one
5821 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5822 *
5823 * If the prev_cpu is idle and cache affine then avoid a migration.
5824 * There is no guarantee that the cache hot data from an interrupt
5825 * is more important than cache hot data on the prev_cpu and from
5826 * a cpufreq perspective, it's better to have higher utilisation
5827 * on one CPU.
7332dec0 5828 */
943d355d
RJ
5829 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5830 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5831
d153b153 5832 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5833 return this_cpu;
90001d67 5834
d8fcb81f
JL
5835 if (available_idle_cpu(prev_cpu))
5836 return prev_cpu;
5837
3b76c4a3 5838 return nr_cpumask_bits;
90001d67
PZ
5839}
5840
3b76c4a3 5841static int
f2cdd9cc
PZ
5842wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5843 int this_cpu, int prev_cpu, int sync)
90001d67 5844{
90001d67
PZ
5845 s64 this_eff_load, prev_eff_load;
5846 unsigned long task_load;
5847
11f10e54 5848 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5849
90001d67
PZ
5850 if (sync) {
5851 unsigned long current_load = task_h_load(current);
5852
f2cdd9cc 5853 if (current_load > this_eff_load)
3b76c4a3 5854 return this_cpu;
90001d67 5855
f2cdd9cc 5856 this_eff_load -= current_load;
90001d67
PZ
5857 }
5858
90001d67
PZ
5859 task_load = task_h_load(p);
5860
f2cdd9cc
PZ
5861 this_eff_load += task_load;
5862 if (sched_feat(WA_BIAS))
5863 this_eff_load *= 100;
5864 this_eff_load *= capacity_of(prev_cpu);
90001d67 5865
11f10e54 5866 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5867 prev_eff_load -= task_load;
5868 if (sched_feat(WA_BIAS))
5869 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5870 prev_eff_load *= capacity_of(this_cpu);
90001d67 5871
082f764a
MG
5872 /*
5873 * If sync, adjust the weight of prev_eff_load such that if
5874 * prev_eff == this_eff that select_idle_sibling() will consider
5875 * stacking the wakee on top of the waker if no other CPU is
5876 * idle.
5877 */
5878 if (sync)
5879 prev_eff_load += 1;
5880
5881 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5882}
5883
772bd008 5884static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5885 int this_cpu, int prev_cpu, int sync)
098fb9db 5886{
3b76c4a3 5887 int target = nr_cpumask_bits;
098fb9db 5888
89a55f56 5889 if (sched_feat(WA_IDLE))
3b76c4a3 5890 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5891
3b76c4a3
MG
5892 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5893 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5894
ae92882e 5895 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5896 if (target == nr_cpumask_bits)
5897 return prev_cpu;
098fb9db 5898
3b76c4a3
MG
5899 schedstat_inc(sd->ttwu_move_affine);
5900 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5901 return target;
098fb9db
IM
5902}
5903
aaee1203 5904static struct sched_group *
45da2773 5905find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5906
5907/*
97fb7a0a 5908 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5909 */
5910static int
18bd1b4b 5911find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5912{
5913 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5914 unsigned int min_exit_latency = UINT_MAX;
5915 u64 latest_idle_timestamp = 0;
5916 int least_loaded_cpu = this_cpu;
17346452 5917 int shallowest_idle_cpu = -1;
aaee1203
PZ
5918 int i;
5919
eaecf41f
MR
5920 /* Check if we have any choice: */
5921 if (group->group_weight == 1)
ae4df9d6 5922 return cpumask_first(sched_group_span(group));
eaecf41f 5923
aaee1203 5924 /* Traverse only the allowed CPUs */
3bd37062 5925 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5926 if (sched_idle_cpu(i))
5927 return i;
5928
943d355d 5929 if (available_idle_cpu(i)) {
83a0a96a
NP
5930 struct rq *rq = cpu_rq(i);
5931 struct cpuidle_state *idle = idle_get_state(rq);
5932 if (idle && idle->exit_latency < min_exit_latency) {
5933 /*
5934 * We give priority to a CPU whose idle state
5935 * has the smallest exit latency irrespective
5936 * of any idle timestamp.
5937 */
5938 min_exit_latency = idle->exit_latency;
5939 latest_idle_timestamp = rq->idle_stamp;
5940 shallowest_idle_cpu = i;
5941 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5942 rq->idle_stamp > latest_idle_timestamp) {
5943 /*
5944 * If equal or no active idle state, then
5945 * the most recently idled CPU might have
5946 * a warmer cache.
5947 */
5948 latest_idle_timestamp = rq->idle_stamp;
5949 shallowest_idle_cpu = i;
5950 }
17346452 5951 } else if (shallowest_idle_cpu == -1) {
11f10e54 5952 load = cpu_load(cpu_rq(i));
18cec7e0 5953 if (load < min_load) {
83a0a96a
NP
5954 min_load = load;
5955 least_loaded_cpu = i;
5956 }
e7693a36
GH
5957 }
5958 }
5959
17346452 5960 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5961}
e7693a36 5962
18bd1b4b
BJ
5963static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5964 int cpu, int prev_cpu, int sd_flag)
5965{
93f50f90 5966 int new_cpu = cpu;
18bd1b4b 5967
3bd37062 5968 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5969 return prev_cpu;
5970
c976a862 5971 /*
57abff06 5972 * We need task's util for cpu_util_without, sync it up to
c469933e 5973 * prev_cpu's last_update_time.
c976a862
VK
5974 */
5975 if (!(sd_flag & SD_BALANCE_FORK))
5976 sync_entity_load_avg(&p->se);
5977
18bd1b4b
BJ
5978 while (sd) {
5979 struct sched_group *group;
5980 struct sched_domain *tmp;
5981 int weight;
5982
5983 if (!(sd->flags & sd_flag)) {
5984 sd = sd->child;
5985 continue;
5986 }
5987
45da2773 5988 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5989 if (!group) {
5990 sd = sd->child;
5991 continue;
5992 }
5993
5994 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5995 if (new_cpu == cpu) {
97fb7a0a 5996 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5997 sd = sd->child;
5998 continue;
5999 }
6000
97fb7a0a 6001 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6002 cpu = new_cpu;
6003 weight = sd->span_weight;
6004 sd = NULL;
6005 for_each_domain(cpu, tmp) {
6006 if (weight <= tmp->span_weight)
6007 break;
6008 if (tmp->flags & sd_flag)
6009 sd = tmp;
6010 }
18bd1b4b
BJ
6011 }
6012
6013 return new_cpu;
6014}
6015
9fe1f127
MG
6016static inline int __select_idle_cpu(int cpu)
6017{
6018 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6019 return cpu;
6020
6021 return -1;
6022}
6023
10e2f1ac 6024#ifdef CONFIG_SCHED_SMT
ba2591a5 6025DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6026EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6027
6028static inline void set_idle_cores(int cpu, int val)
6029{
6030 struct sched_domain_shared *sds;
6031
6032 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6033 if (sds)
6034 WRITE_ONCE(sds->has_idle_cores, val);
6035}
6036
6037static inline bool test_idle_cores(int cpu, bool def)
6038{
6039 struct sched_domain_shared *sds;
6040
6041 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6042 if (sds)
6043 return READ_ONCE(sds->has_idle_cores);
6044
6045 return def;
6046}
6047
6048/*
6049 * Scans the local SMT mask to see if the entire core is idle, and records this
6050 * information in sd_llc_shared->has_idle_cores.
6051 *
6052 * Since SMT siblings share all cache levels, inspecting this limited remote
6053 * state should be fairly cheap.
6054 */
1b568f0a 6055void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6056{
6057 int core = cpu_of(rq);
6058 int cpu;
6059
6060 rcu_read_lock();
6061 if (test_idle_cores(core, true))
6062 goto unlock;
6063
6064 for_each_cpu(cpu, cpu_smt_mask(core)) {
6065 if (cpu == core)
6066 continue;
6067
943d355d 6068 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6069 goto unlock;
6070 }
6071
6072 set_idle_cores(core, 1);
6073unlock:
6074 rcu_read_unlock();
6075}
6076
6077/*
6078 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6079 * there are no idle cores left in the system; tracked through
6080 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6081 */
9fe1f127 6082static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6083{
9fe1f127
MG
6084 bool idle = true;
6085 int cpu;
10e2f1ac 6086
1b568f0a 6087 if (!static_branch_likely(&sched_smt_present))
9fe1f127 6088 return __select_idle_cpu(core);
10e2f1ac 6089
9fe1f127
MG
6090 for_each_cpu(cpu, cpu_smt_mask(core)) {
6091 if (!available_idle_cpu(cpu)) {
6092 idle = false;
6093 if (*idle_cpu == -1) {
6094 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6095 *idle_cpu = cpu;
6096 break;
6097 }
6098 continue;
bec2860a 6099 }
9fe1f127 6100 break;
10e2f1ac 6101 }
9fe1f127
MG
6102 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6103 *idle_cpu = cpu;
10e2f1ac
PZ
6104 }
6105
9fe1f127
MG
6106 if (idle)
6107 return core;
10e2f1ac 6108
9fe1f127 6109 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6110 return -1;
6111}
6112
10e2f1ac
PZ
6113#else /* CONFIG_SCHED_SMT */
6114
9fe1f127 6115static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6116{
9fe1f127
MG
6117}
6118
6119static inline bool test_idle_cores(int cpu, bool def)
6120{
6121 return def;
6122}
6123
6124static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6125{
6126 return __select_idle_cpu(core);
10e2f1ac
PZ
6127}
6128
10e2f1ac
PZ
6129#endif /* CONFIG_SCHED_SMT */
6130
6131/*
6132 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6133 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6134 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6135 */
10e2f1ac
PZ
6136static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6137{
60588bfa 6138 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9fe1f127
MG
6139 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6140 bool smt = test_idle_cores(target, false);
6141 int this = smp_processor_id();
9cfb38a7 6142 struct sched_domain *this_sd;
d76343c6 6143 u64 time;
10e2f1ac 6144
9cfb38a7
WL
6145 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6146 if (!this_sd)
6147 return -1;
6148
bae4ec13
MG
6149 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6150
9fe1f127 6151 if (sched_feat(SIS_PROP) && !smt) {
e6e0dc2d 6152 u64 avg_cost, avg_idle, span_avg;
1ad3aaf3 6153
e6e0dc2d
MG
6154 /*
6155 * Due to large variance we need a large fuzz factor;
6156 * hackbench in particularly is sensitive here.
6157 */
6158 avg_idle = this_rq()->avg_idle / 512;
6159 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6160
e6e0dc2d 6161 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6162 if (span_avg > 4*avg_cost)
6163 nr = div_u64(span_avg, avg_cost);
6164 else
6165 nr = 4;
10e2f1ac 6166
bae4ec13
MG
6167 time = cpu_clock(this);
6168 }
60588bfa
CJ
6169
6170 for_each_cpu_wrap(cpu, cpus, target) {
9fe1f127
MG
6171 if (smt) {
6172 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6173 if ((unsigned int)i < nr_cpumask_bits)
6174 return i;
6175
6176 } else {
6177 if (!--nr)
6178 return -1;
6179 idle_cpu = __select_idle_cpu(cpu);
6180 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6181 break;
6182 }
10e2f1ac
PZ
6183 }
6184
9fe1f127
MG
6185 if (smt)
6186 set_idle_cores(this, false);
6187
6188 if (sched_feat(SIS_PROP) && !smt) {
bae4ec13
MG
6189 time = cpu_clock(this) - time;
6190 update_avg(&this_sd->avg_scan_cost, time);
6191 }
10e2f1ac 6192
9fe1f127 6193 return idle_cpu;
10e2f1ac
PZ
6194}
6195
b7a33161
MR
6196/*
6197 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6198 * the task fits. If no CPU is big enough, but there are idle ones, try to
6199 * maximize capacity.
6200 */
6201static int
6202select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6203{
b4c9c9f1 6204 unsigned long task_util, best_cap = 0;
b7a33161
MR
6205 int cpu, best_cpu = -1;
6206 struct cpumask *cpus;
6207
b7a33161
MR
6208 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6209 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6210
b4c9c9f1
VG
6211 task_util = uclamp_task_util(p);
6212
b7a33161
MR
6213 for_each_cpu_wrap(cpu, cpus, target) {
6214 unsigned long cpu_cap = capacity_of(cpu);
6215
6216 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6217 continue;
b4c9c9f1 6218 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6219 return cpu;
6220
6221 if (cpu_cap > best_cap) {
6222 best_cap = cpu_cap;
6223 best_cpu = cpu;
6224 }
6225 }
6226
6227 return best_cpu;
6228}
6229
b4c9c9f1
VG
6230static inline bool asym_fits_capacity(int task_util, int cpu)
6231{
6232 if (static_branch_unlikely(&sched_asym_cpucapacity))
6233 return fits_capacity(task_util, capacity_of(cpu));
6234
6235 return true;
6236}
6237
10e2f1ac
PZ
6238/*
6239 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6240 */
772bd008 6241static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6242{
99bd5e2f 6243 struct sched_domain *sd;
b4c9c9f1 6244 unsigned long task_util;
32e839dd 6245 int i, recent_used_cpu;
a50bde51 6246
b7a33161 6247 /*
b4c9c9f1
VG
6248 * On asymmetric system, update task utilization because we will check
6249 * that the task fits with cpu's capacity.
b7a33161
MR
6250 */
6251 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6252 sync_entity_load_avg(&p->se);
6253 task_util = uclamp_task_util(p);
b7a33161
MR
6254 }
6255
b4c9c9f1
VG
6256 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6257 asym_fits_capacity(task_util, target))
e0a79f52 6258 return target;
99bd5e2f
SS
6259
6260 /*
97fb7a0a 6261 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6262 */
3c29e651 6263 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6264 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6265 asym_fits_capacity(task_util, prev))
772bd008 6266 return prev;
a50bde51 6267
52262ee5
MG
6268 /*
6269 * Allow a per-cpu kthread to stack with the wakee if the
6270 * kworker thread and the tasks previous CPUs are the same.
6271 * The assumption is that the wakee queued work for the
6272 * per-cpu kthread that is now complete and the wakeup is
6273 * essentially a sync wakeup. An obvious example of this
6274 * pattern is IO completions.
6275 */
6276 if (is_per_cpu_kthread(current) &&
6277 prev == smp_processor_id() &&
6278 this_rq()->nr_running <= 1) {
6279 return prev;
6280 }
6281
97fb7a0a 6282 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6283 recent_used_cpu = p->recent_used_cpu;
6284 if (recent_used_cpu != prev &&
6285 recent_used_cpu != target &&
6286 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6287 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6288 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6289 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6290 /*
6291 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6292 * candidate for the next wake:
32e839dd
MG
6293 */
6294 p->recent_used_cpu = prev;
6295 return recent_used_cpu;
6296 }
6297
b4c9c9f1
VG
6298 /*
6299 * For asymmetric CPU capacity systems, our domain of interest is
6300 * sd_asym_cpucapacity rather than sd_llc.
6301 */
6302 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6303 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6304 /*
6305 * On an asymmetric CPU capacity system where an exclusive
6306 * cpuset defines a symmetric island (i.e. one unique
6307 * capacity_orig value through the cpuset), the key will be set
6308 * but the CPUs within that cpuset will not have a domain with
6309 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6310 * capacity path.
6311 */
6312 if (sd) {
6313 i = select_idle_capacity(p, sd, target);
6314 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6315 }
6316 }
6317
518cd623 6318 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6319 if (!sd)
6320 return target;
772bd008 6321
10e2f1ac
PZ
6322 i = select_idle_cpu(p, sd, target);
6323 if ((unsigned)i < nr_cpumask_bits)
6324 return i;
6325
a50bde51
PZ
6326 return target;
6327}
231678b7 6328
f9be3e59 6329/**
59a74b15 6330 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6331 * @cpu: the CPU to get the utilization of
6332 *
6333 * The unit of the return value must be the one of capacity so we can compare
6334 * the utilization with the capacity of the CPU that is available for CFS task
6335 * (ie cpu_capacity).
231678b7
DE
6336 *
6337 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6338 * recent utilization of currently non-runnable tasks on a CPU. It represents
6339 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6340 * capacity_orig is the cpu_capacity available at the highest frequency
6341 * (arch_scale_freq_capacity()).
6342 * The utilization of a CPU converges towards a sum equal to or less than the
6343 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6344 * the running time on this CPU scaled by capacity_curr.
6345 *
f9be3e59
PB
6346 * The estimated utilization of a CPU is defined to be the maximum between its
6347 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6348 * currently RUNNABLE on that CPU.
6349 * This allows to properly represent the expected utilization of a CPU which
6350 * has just got a big task running since a long sleep period. At the same time
6351 * however it preserves the benefits of the "blocked utilization" in
6352 * describing the potential for other tasks waking up on the same CPU.
6353 *
231678b7
DE
6354 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6355 * higher than capacity_orig because of unfortunate rounding in
6356 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6357 * the average stabilizes with the new running time. We need to check that the
6358 * utilization stays within the range of [0..capacity_orig] and cap it if
6359 * necessary. Without utilization capping, a group could be seen as overloaded
6360 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6361 * available capacity. We allow utilization to overshoot capacity_curr (but not
6362 * capacity_orig) as it useful for predicting the capacity required after task
6363 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6364 *
6365 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6366 */
f9be3e59 6367static inline unsigned long cpu_util(int cpu)
8bb5b00c 6368{
f9be3e59
PB
6369 struct cfs_rq *cfs_rq;
6370 unsigned int util;
6371
6372 cfs_rq = &cpu_rq(cpu)->cfs;
6373 util = READ_ONCE(cfs_rq->avg.util_avg);
6374
6375 if (sched_feat(UTIL_EST))
6376 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6377
f9be3e59 6378 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6379}
a50bde51 6380
104cb16d 6381/*
c469933e
PB
6382 * cpu_util_without: compute cpu utilization without any contributions from *p
6383 * @cpu: the CPU which utilization is requested
6384 * @p: the task which utilization should be discounted
6385 *
6386 * The utilization of a CPU is defined by the utilization of tasks currently
6387 * enqueued on that CPU as well as tasks which are currently sleeping after an
6388 * execution on that CPU.
6389 *
6390 * This method returns the utilization of the specified CPU by discounting the
6391 * utilization of the specified task, whenever the task is currently
6392 * contributing to the CPU utilization.
104cb16d 6393 */
c469933e 6394static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6395{
f9be3e59
PB
6396 struct cfs_rq *cfs_rq;
6397 unsigned int util;
104cb16d
MR
6398
6399 /* Task has no contribution or is new */
f9be3e59 6400 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6401 return cpu_util(cpu);
6402
f9be3e59
PB
6403 cfs_rq = &cpu_rq(cpu)->cfs;
6404 util = READ_ONCE(cfs_rq->avg.util_avg);
6405
c469933e 6406 /* Discount task's util from CPU's util */
b5c0ce7b 6407 lsub_positive(&util, task_util(p));
104cb16d 6408
f9be3e59
PB
6409 /*
6410 * Covered cases:
6411 *
6412 * a) if *p is the only task sleeping on this CPU, then:
6413 * cpu_util (== task_util) > util_est (== 0)
6414 * and thus we return:
c469933e 6415 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6416 *
6417 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6418 * IDLE, then:
6419 * cpu_util >= task_util
6420 * cpu_util > util_est (== 0)
6421 * and thus we discount *p's blocked utilization to return:
c469933e 6422 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6423 *
6424 * c) if other tasks are RUNNABLE on that CPU and
6425 * util_est > cpu_util
6426 * then we use util_est since it returns a more restrictive
6427 * estimation of the spare capacity on that CPU, by just
6428 * considering the expected utilization of tasks already
6429 * runnable on that CPU.
6430 *
6431 * Cases a) and b) are covered by the above code, while case c) is
6432 * covered by the following code when estimated utilization is
6433 * enabled.
6434 */
c469933e
PB
6435 if (sched_feat(UTIL_EST)) {
6436 unsigned int estimated =
6437 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6438
6439 /*
6440 * Despite the following checks we still have a small window
6441 * for a possible race, when an execl's select_task_rq_fair()
6442 * races with LB's detach_task():
6443 *
6444 * detach_task()
6445 * p->on_rq = TASK_ON_RQ_MIGRATING;
6446 * ---------------------------------- A
6447 * deactivate_task() \
6448 * dequeue_task() + RaceTime
6449 * util_est_dequeue() /
6450 * ---------------------------------- B
6451 *
6452 * The additional check on "current == p" it's required to
6453 * properly fix the execl regression and it helps in further
6454 * reducing the chances for the above race.
6455 */
b5c0ce7b
PB
6456 if (unlikely(task_on_rq_queued(p) || current == p))
6457 lsub_positive(&estimated, _task_util_est(p));
6458
c469933e
PB
6459 util = max(util, estimated);
6460 }
f9be3e59
PB
6461
6462 /*
6463 * Utilization (estimated) can exceed the CPU capacity, thus let's
6464 * clamp to the maximum CPU capacity to ensure consistency with
6465 * the cpu_util call.
6466 */
6467 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6468}
6469
390031e4
QP
6470/*
6471 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6472 * to @dst_cpu.
6473 */
6474static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6475{
6476 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6477 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6478
6479 /*
6480 * If @p migrates from @cpu to another, remove its contribution. Or,
6481 * if @p migrates from another CPU to @cpu, add its contribution. In
6482 * the other cases, @cpu is not impacted by the migration, so the
6483 * util_avg should already be correct.
6484 */
6485 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6486 lsub_positive(&util, task_util(p));
390031e4
QP
6487 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6488 util += task_util(p);
6489
6490 if (sched_feat(UTIL_EST)) {
6491 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6492
6493 /*
6494 * During wake-up, the task isn't enqueued yet and doesn't
6495 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6496 * so just add it (if needed) to "simulate" what will be
6497 * cpu_util() after the task has been enqueued.
6498 */
6499 if (dst_cpu == cpu)
6500 util_est += _task_util_est(p);
6501
6502 util = max(util, util_est);
6503 }
6504
6505 return min(util, capacity_orig_of(cpu));
6506}
6507
6508/*
eb92692b 6509 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6510 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6511 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6512 * to compute what would be the energy if we decided to actually migrate that
6513 * task.
6514 */
6515static long
6516compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6517{
eb92692b
QP
6518 struct cpumask *pd_mask = perf_domain_span(pd);
6519 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6520 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6521 int cpu;
6522
eb92692b
QP
6523 /*
6524 * The capacity state of CPUs of the current rd can be driven by CPUs
6525 * of another rd if they belong to the same pd. So, account for the
6526 * utilization of these CPUs too by masking pd with cpu_online_mask
6527 * instead of the rd span.
6528 *
6529 * If an entire pd is outside of the current rd, it will not appear in
6530 * its pd list and will not be accounted by compute_energy().
6531 */
6532 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
0372e1cf
VD
6533 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6534 unsigned long cpu_util, util_running = util_freq;
6535 struct task_struct *tsk = NULL;
6536
6537 /*
6538 * When @p is placed on @cpu:
6539 *
6540 * util_running = max(cpu_util, cpu_util_est) +
6541 * max(task_util, _task_util_est)
6542 *
6543 * while cpu_util_next is: max(cpu_util + task_util,
6544 * cpu_util_est + _task_util_est)
6545 */
6546 if (cpu == dst_cpu) {
6547 tsk = p;
6548 util_running =
6549 cpu_util_next(cpu, p, -1) + task_util_est(p);
6550 }
af24bde8
PB
6551
6552 /*
eb92692b
QP
6553 * Busy time computation: utilization clamping is not
6554 * required since the ratio (sum_util / cpu_capacity)
6555 * is already enough to scale the EM reported power
6556 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6557 */
0372e1cf 6558 sum_util += effective_cpu_util(cpu, util_running, cpu_cap,
eb92692b 6559 ENERGY_UTIL, NULL);
af24bde8 6560
390031e4 6561 /*
eb92692b
QP
6562 * Performance domain frequency: utilization clamping
6563 * must be considered since it affects the selection
6564 * of the performance domain frequency.
6565 * NOTE: in case RT tasks are running, by default the
6566 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6567 */
0372e1cf 6568 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
eb92692b
QP
6569 FREQUENCY_UTIL, tsk);
6570 max_util = max(max_util, cpu_util);
390031e4
QP
6571 }
6572
f0b56947 6573 return em_cpu_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6574}
6575
732cd75b
QP
6576/*
6577 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6578 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6579 * spare capacity in each performance domain and uses it as a potential
6580 * candidate to execute the task. Then, it uses the Energy Model to figure
6581 * out which of the CPU candidates is the most energy-efficient.
6582 *
6583 * The rationale for this heuristic is as follows. In a performance domain,
6584 * all the most energy efficient CPU candidates (according to the Energy
6585 * Model) are those for which we'll request a low frequency. When there are
6586 * several CPUs for which the frequency request will be the same, we don't
6587 * have enough data to break the tie between them, because the Energy Model
6588 * only includes active power costs. With this model, if we assume that
6589 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6590 * the maximum spare capacity in a performance domain is guaranteed to be among
6591 * the best candidates of the performance domain.
6592 *
6593 * In practice, it could be preferable from an energy standpoint to pack
6594 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6595 * but that could also hurt our chances to go cluster idle, and we have no
6596 * ways to tell with the current Energy Model if this is actually a good
6597 * idea or not. So, find_energy_efficient_cpu() basically favors
6598 * cluster-packing, and spreading inside a cluster. That should at least be
6599 * a good thing for latency, and this is consistent with the idea that most
6600 * of the energy savings of EAS come from the asymmetry of the system, and
6601 * not so much from breaking the tie between identical CPUs. That's also the
6602 * reason why EAS is enabled in the topology code only for systems where
6603 * SD_ASYM_CPUCAPACITY is set.
6604 *
6605 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6606 * they don't have any useful utilization data yet and it's not possible to
6607 * forecast their impact on energy consumption. Consequently, they will be
6608 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6609 * to be energy-inefficient in some use-cases. The alternative would be to
6610 * bias new tasks towards specific types of CPUs first, or to try to infer
6611 * their util_avg from the parent task, but those heuristics could hurt
6612 * other use-cases too. So, until someone finds a better way to solve this,
6613 * let's keep things simple by re-using the existing slow path.
6614 */
732cd75b
QP
6615static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6616{
eb92692b 6617 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6618 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6619 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6620 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6621 struct sched_domain *sd;
eb92692b 6622 struct perf_domain *pd;
732cd75b
QP
6623
6624 rcu_read_lock();
6625 pd = rcu_dereference(rd->pd);
6626 if (!pd || READ_ONCE(rd->overutilized))
6627 goto fail;
732cd75b
QP
6628
6629 /*
6630 * Energy-aware wake-up happens on the lowest sched_domain starting
6631 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6632 */
6633 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6634 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6635 sd = sd->parent;
6636 if (!sd)
6637 goto fail;
6638
6639 sync_entity_load_avg(&p->se);
6640 if (!task_util_est(p))
6641 goto unlock;
6642
6643 for (; pd; pd = pd->next) {
eb92692b
QP
6644 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6645 unsigned long base_energy_pd;
732cd75b
QP
6646 int max_spare_cap_cpu = -1;
6647
eb92692b
QP
6648 /* Compute the 'base' energy of the pd, without @p */
6649 base_energy_pd = compute_energy(p, -1, pd);
6650 base_energy += base_energy_pd;
6651
732cd75b 6652 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6653 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6654 continue;
6655
732cd75b
QP
6656 util = cpu_util_next(cpu, p, cpu);
6657 cpu_cap = capacity_of(cpu);
da0777d3
LL
6658 spare_cap = cpu_cap;
6659 lsub_positive(&spare_cap, util);
1d42509e
VS
6660
6661 /*
6662 * Skip CPUs that cannot satisfy the capacity request.
6663 * IOW, placing the task there would make the CPU
6664 * overutilized. Take uclamp into account to see how
6665 * much capacity we can get out of the CPU; this is
a5418be9 6666 * aligned with sched_cpu_util().
1d42509e
VS
6667 */
6668 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6669 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6670 continue;
6671
6672 /* Always use prev_cpu as a candidate. */
6673 if (cpu == prev_cpu) {
eb92692b
QP
6674 prev_delta = compute_energy(p, prev_cpu, pd);
6675 prev_delta -= base_energy_pd;
6676 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6677 }
6678
6679 /*
6680 * Find the CPU with the maximum spare capacity in
6681 * the performance domain
6682 */
732cd75b
QP
6683 if (spare_cap > max_spare_cap) {
6684 max_spare_cap = spare_cap;
6685 max_spare_cap_cpu = cpu;
6686 }
6687 }
6688
6689 /* Evaluate the energy impact of using this CPU. */
4892f51a 6690 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6691 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6692 cur_delta -= base_energy_pd;
6693 if (cur_delta < best_delta) {
6694 best_delta = cur_delta;
732cd75b
QP
6695 best_energy_cpu = max_spare_cap_cpu;
6696 }
6697 }
6698 }
6699unlock:
6700 rcu_read_unlock();
6701
6702 /*
6703 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6704 * least 6% of the energy used by prev_cpu.
6705 */
eb92692b 6706 if (prev_delta == ULONG_MAX)
732cd75b
QP
6707 return best_energy_cpu;
6708
eb92692b 6709 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6710 return best_energy_cpu;
6711
6712 return prev_cpu;
6713
6714fail:
6715 rcu_read_unlock();
6716
6717 return -1;
6718}
6719
aaee1203 6720/*
de91b9cb 6721 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6722 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6723 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6724 *
97fb7a0a
IM
6725 * Balances load by selecting the idlest CPU in the idlest group, or under
6726 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6727 *
97fb7a0a 6728 * Returns the target CPU number.
aaee1203
PZ
6729 *
6730 * preempt must be disabled.
6731 */
0017d735 6732static int
3aef1551 6733select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6734{
3aef1551 6735 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6736 struct sched_domain *tmp, *sd = NULL;
c88d5910 6737 int cpu = smp_processor_id();
63b0e9ed 6738 int new_cpu = prev_cpu;
99bd5e2f 6739 int want_affine = 0;
3aef1551
VS
6740 /* SD_flags and WF_flags share the first nibble */
6741 int sd_flag = wake_flags & 0xF;
c88d5910 6742
dc824eb8 6743 if (wake_flags & WF_TTWU) {
c58d25f3 6744 record_wakee(p);
732cd75b 6745
f8a696f2 6746 if (sched_energy_enabled()) {
732cd75b
QP
6747 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6748 if (new_cpu >= 0)
6749 return new_cpu;
6750 new_cpu = prev_cpu;
6751 }
6752
00061968 6753 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6754 }
aaee1203 6755
dce840a0 6756 rcu_read_lock();
aaee1203 6757 for_each_domain(cpu, tmp) {
fe3bcfe1 6758 /*
97fb7a0a 6759 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6760 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6761 */
99bd5e2f
SS
6762 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6763 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6764 if (cpu != prev_cpu)
6765 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6766
6767 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6768 break;
f03542a7 6769 }
29cd8bae 6770
f03542a7 6771 if (tmp->flags & sd_flag)
29cd8bae 6772 sd = tmp;
63b0e9ed
MG
6773 else if (!want_affine)
6774 break;
29cd8bae
PZ
6775 }
6776
f1d88b44
VK
6777 if (unlikely(sd)) {
6778 /* Slow path */
18bd1b4b 6779 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6780 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6781 /* Fast path */
f1d88b44
VK
6782 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6783
6784 if (want_affine)
6785 current->recent_used_cpu = cpu;
e7693a36 6786 }
dce840a0 6787 rcu_read_unlock();
e7693a36 6788
c88d5910 6789 return new_cpu;
e7693a36 6790}
0a74bef8 6791
144d8487
PZ
6792static void detach_entity_cfs_rq(struct sched_entity *se);
6793
0a74bef8 6794/*
97fb7a0a 6795 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6796 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6797 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6798 */
3f9672ba 6799static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6800{
59efa0ba
PZ
6801 /*
6802 * As blocked tasks retain absolute vruntime the migration needs to
6803 * deal with this by subtracting the old and adding the new
6804 * min_vruntime -- the latter is done by enqueue_entity() when placing
6805 * the task on the new runqueue.
6806 */
6807 if (p->state == TASK_WAKING) {
6808 struct sched_entity *se = &p->se;
6809 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6810 u64 min_vruntime;
6811
6812#ifndef CONFIG_64BIT
6813 u64 min_vruntime_copy;
6814
6815 do {
6816 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6817 smp_rmb();
6818 min_vruntime = cfs_rq->min_vruntime;
6819 } while (min_vruntime != min_vruntime_copy);
6820#else
6821 min_vruntime = cfs_rq->min_vruntime;
6822#endif
6823
6824 se->vruntime -= min_vruntime;
6825 }
6826
144d8487
PZ
6827 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6828 /*
6829 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6830 * rq->lock and can modify state directly.
6831 */
6832 lockdep_assert_held(&task_rq(p)->lock);
6833 detach_entity_cfs_rq(&p->se);
6834
6835 } else {
6836 /*
6837 * We are supposed to update the task to "current" time, then
6838 * its up to date and ready to go to new CPU/cfs_rq. But we
6839 * have difficulty in getting what current time is, so simply
6840 * throw away the out-of-date time. This will result in the
6841 * wakee task is less decayed, but giving the wakee more load
6842 * sounds not bad.
6843 */
6844 remove_entity_load_avg(&p->se);
6845 }
9d89c257
YD
6846
6847 /* Tell new CPU we are migrated */
6848 p->se.avg.last_update_time = 0;
3944a927
BS
6849
6850 /* We have migrated, no longer consider this task hot */
9d89c257 6851 p->se.exec_start = 0;
3f9672ba
SD
6852
6853 update_scan_period(p, new_cpu);
0a74bef8 6854}
12695578
YD
6855
6856static void task_dead_fair(struct task_struct *p)
6857{
6858 remove_entity_load_avg(&p->se);
6859}
6e2df058
PZ
6860
6861static int
6862balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6863{
6864 if (rq->nr_running)
6865 return 1;
6866
6867 return newidle_balance(rq, rf) != 0;
6868}
e7693a36
GH
6869#endif /* CONFIG_SMP */
6870
a555e9d8 6871static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6872{
6873 unsigned long gran = sysctl_sched_wakeup_granularity;
6874
6875 /*
e52fb7c0
PZ
6876 * Since its curr running now, convert the gran from real-time
6877 * to virtual-time in his units.
13814d42
MG
6878 *
6879 * By using 'se' instead of 'curr' we penalize light tasks, so
6880 * they get preempted easier. That is, if 'se' < 'curr' then
6881 * the resulting gran will be larger, therefore penalizing the
6882 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6883 * be smaller, again penalizing the lighter task.
6884 *
6885 * This is especially important for buddies when the leftmost
6886 * task is higher priority than the buddy.
0bbd3336 6887 */
f4ad9bd2 6888 return calc_delta_fair(gran, se);
0bbd3336
PZ
6889}
6890
464b7527
PZ
6891/*
6892 * Should 'se' preempt 'curr'.
6893 *
6894 * |s1
6895 * |s2
6896 * |s3
6897 * g
6898 * |<--->|c
6899 *
6900 * w(c, s1) = -1
6901 * w(c, s2) = 0
6902 * w(c, s3) = 1
6903 *
6904 */
6905static int
6906wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6907{
6908 s64 gran, vdiff = curr->vruntime - se->vruntime;
6909
6910 if (vdiff <= 0)
6911 return -1;
6912
a555e9d8 6913 gran = wakeup_gran(se);
464b7527
PZ
6914 if (vdiff > gran)
6915 return 1;
6916
6917 return 0;
6918}
6919
02479099
PZ
6920static void set_last_buddy(struct sched_entity *se)
6921{
1da1843f 6922 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6923 return;
6924
c5ae366e
DA
6925 for_each_sched_entity(se) {
6926 if (SCHED_WARN_ON(!se->on_rq))
6927 return;
69c80f3e 6928 cfs_rq_of(se)->last = se;
c5ae366e 6929 }
02479099
PZ
6930}
6931
6932static void set_next_buddy(struct sched_entity *se)
6933{
1da1843f 6934 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6935 return;
6936
c5ae366e
DA
6937 for_each_sched_entity(se) {
6938 if (SCHED_WARN_ON(!se->on_rq))
6939 return;
69c80f3e 6940 cfs_rq_of(se)->next = se;
c5ae366e 6941 }
02479099
PZ
6942}
6943
ac53db59
RR
6944static void set_skip_buddy(struct sched_entity *se)
6945{
69c80f3e
VP
6946 for_each_sched_entity(se)
6947 cfs_rq_of(se)->skip = se;
ac53db59
RR
6948}
6949
bf0f6f24
IM
6950/*
6951 * Preempt the current task with a newly woken task if needed:
6952 */
5a9b86f6 6953static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6954{
6955 struct task_struct *curr = rq->curr;
8651a86c 6956 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6957 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6958 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6959 int next_buddy_marked = 0;
bf0f6f24 6960
4ae7d5ce
IM
6961 if (unlikely(se == pse))
6962 return;
6963
5238cdd3 6964 /*
163122b7 6965 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6966 * unconditionally check_prempt_curr() after an enqueue (which may have
6967 * lead to a throttle). This both saves work and prevents false
6968 * next-buddy nomination below.
6969 */
6970 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6971 return;
6972
2f36825b 6973 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6974 set_next_buddy(pse);
2f36825b
VP
6975 next_buddy_marked = 1;
6976 }
57fdc26d 6977
aec0a514
BR
6978 /*
6979 * We can come here with TIF_NEED_RESCHED already set from new task
6980 * wake up path.
5238cdd3
PT
6981 *
6982 * Note: this also catches the edge-case of curr being in a throttled
6983 * group (e.g. via set_curr_task), since update_curr() (in the
6984 * enqueue of curr) will have resulted in resched being set. This
6985 * prevents us from potentially nominating it as a false LAST_BUDDY
6986 * below.
aec0a514
BR
6987 */
6988 if (test_tsk_need_resched(curr))
6989 return;
6990
a2f5c9ab 6991 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6992 if (unlikely(task_has_idle_policy(curr)) &&
6993 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6994 goto preempt;
6995
91c234b4 6996 /*
a2f5c9ab
DH
6997 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6998 * is driven by the tick):
91c234b4 6999 */
8ed92e51 7000 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7001 return;
bf0f6f24 7002
464b7527 7003 find_matching_se(&se, &pse);
9bbd7374 7004 update_curr(cfs_rq_of(se));
002f128b 7005 BUG_ON(!pse);
2f36825b
VP
7006 if (wakeup_preempt_entity(se, pse) == 1) {
7007 /*
7008 * Bias pick_next to pick the sched entity that is
7009 * triggering this preemption.
7010 */
7011 if (!next_buddy_marked)
7012 set_next_buddy(pse);
3a7e73a2 7013 goto preempt;
2f36825b 7014 }
464b7527 7015
3a7e73a2 7016 return;
a65ac745 7017
3a7e73a2 7018preempt:
8875125e 7019 resched_curr(rq);
3a7e73a2
PZ
7020 /*
7021 * Only set the backward buddy when the current task is still
7022 * on the rq. This can happen when a wakeup gets interleaved
7023 * with schedule on the ->pre_schedule() or idle_balance()
7024 * point, either of which can * drop the rq lock.
7025 *
7026 * Also, during early boot the idle thread is in the fair class,
7027 * for obvious reasons its a bad idea to schedule back to it.
7028 */
7029 if (unlikely(!se->on_rq || curr == rq->idle))
7030 return;
7031
7032 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7033 set_last_buddy(se);
bf0f6f24
IM
7034}
7035
5d7d6056 7036struct task_struct *
d8ac8971 7037pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7038{
7039 struct cfs_rq *cfs_rq = &rq->cfs;
7040 struct sched_entity *se;
678d5718 7041 struct task_struct *p;
37e117c0 7042 int new_tasks;
678d5718 7043
6e83125c 7044again:
6e2df058 7045 if (!sched_fair_runnable(rq))
38033c37 7046 goto idle;
678d5718 7047
9674f5ca 7048#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7049 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7050 goto simple;
7051
7052 /*
7053 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7054 * likely that a next task is from the same cgroup as the current.
7055 *
7056 * Therefore attempt to avoid putting and setting the entire cgroup
7057 * hierarchy, only change the part that actually changes.
7058 */
7059
7060 do {
7061 struct sched_entity *curr = cfs_rq->curr;
7062
7063 /*
7064 * Since we got here without doing put_prev_entity() we also
7065 * have to consider cfs_rq->curr. If it is still a runnable
7066 * entity, update_curr() will update its vruntime, otherwise
7067 * forget we've ever seen it.
7068 */
54d27365
BS
7069 if (curr) {
7070 if (curr->on_rq)
7071 update_curr(cfs_rq);
7072 else
7073 curr = NULL;
678d5718 7074
54d27365
BS
7075 /*
7076 * This call to check_cfs_rq_runtime() will do the
7077 * throttle and dequeue its entity in the parent(s).
9674f5ca 7078 * Therefore the nr_running test will indeed
54d27365
BS
7079 * be correct.
7080 */
9674f5ca
VK
7081 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7082 cfs_rq = &rq->cfs;
7083
7084 if (!cfs_rq->nr_running)
7085 goto idle;
7086
54d27365 7087 goto simple;
9674f5ca 7088 }
54d27365 7089 }
678d5718
PZ
7090
7091 se = pick_next_entity(cfs_rq, curr);
7092 cfs_rq = group_cfs_rq(se);
7093 } while (cfs_rq);
7094
7095 p = task_of(se);
7096
7097 /*
7098 * Since we haven't yet done put_prev_entity and if the selected task
7099 * is a different task than we started out with, try and touch the
7100 * least amount of cfs_rqs.
7101 */
7102 if (prev != p) {
7103 struct sched_entity *pse = &prev->se;
7104
7105 while (!(cfs_rq = is_same_group(se, pse))) {
7106 int se_depth = se->depth;
7107 int pse_depth = pse->depth;
7108
7109 if (se_depth <= pse_depth) {
7110 put_prev_entity(cfs_rq_of(pse), pse);
7111 pse = parent_entity(pse);
7112 }
7113 if (se_depth >= pse_depth) {
7114 set_next_entity(cfs_rq_of(se), se);
7115 se = parent_entity(se);
7116 }
7117 }
7118
7119 put_prev_entity(cfs_rq, pse);
7120 set_next_entity(cfs_rq, se);
7121 }
7122
93824900 7123 goto done;
678d5718 7124simple:
678d5718 7125#endif
67692435
PZ
7126 if (prev)
7127 put_prev_task(rq, prev);
606dba2e 7128
bf0f6f24 7129 do {
678d5718 7130 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7131 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7132 cfs_rq = group_cfs_rq(se);
7133 } while (cfs_rq);
7134
8f4d37ec 7135 p = task_of(se);
678d5718 7136
13a453c2 7137done: __maybe_unused;
93824900
UR
7138#ifdef CONFIG_SMP
7139 /*
7140 * Move the next running task to the front of
7141 * the list, so our cfs_tasks list becomes MRU
7142 * one.
7143 */
7144 list_move(&p->se.group_node, &rq->cfs_tasks);
7145#endif
7146
e0ee463c 7147 if (hrtick_enabled_fair(rq))
b39e66ea 7148 hrtick_start_fair(rq, p);
8f4d37ec 7149
3b1baa64
MR
7150 update_misfit_status(p, rq);
7151
8f4d37ec 7152 return p;
38033c37
PZ
7153
7154idle:
67692435
PZ
7155 if (!rf)
7156 return NULL;
7157
5ba553ef 7158 new_tasks = newidle_balance(rq, rf);
46f69fa3 7159
37e117c0 7160 /*
5ba553ef 7161 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7162 * possible for any higher priority task to appear. In that case we
7163 * must re-start the pick_next_entity() loop.
7164 */
e4aa358b 7165 if (new_tasks < 0)
37e117c0
PZ
7166 return RETRY_TASK;
7167
e4aa358b 7168 if (new_tasks > 0)
38033c37 7169 goto again;
38033c37 7170
23127296
VG
7171 /*
7172 * rq is about to be idle, check if we need to update the
7173 * lost_idle_time of clock_pelt
7174 */
7175 update_idle_rq_clock_pelt(rq);
7176
38033c37 7177 return NULL;
bf0f6f24
IM
7178}
7179
98c2f700
PZ
7180static struct task_struct *__pick_next_task_fair(struct rq *rq)
7181{
7182 return pick_next_task_fair(rq, NULL, NULL);
7183}
7184
bf0f6f24
IM
7185/*
7186 * Account for a descheduled task:
7187 */
6e2df058 7188static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7189{
7190 struct sched_entity *se = &prev->se;
7191 struct cfs_rq *cfs_rq;
7192
7193 for_each_sched_entity(se) {
7194 cfs_rq = cfs_rq_of(se);
ab6cde26 7195 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7196 }
7197}
7198
ac53db59
RR
7199/*
7200 * sched_yield() is very simple
7201 *
7202 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7203 */
7204static void yield_task_fair(struct rq *rq)
7205{
7206 struct task_struct *curr = rq->curr;
7207 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7208 struct sched_entity *se = &curr->se;
7209
7210 /*
7211 * Are we the only task in the tree?
7212 */
7213 if (unlikely(rq->nr_running == 1))
7214 return;
7215
7216 clear_buddies(cfs_rq, se);
7217
7218 if (curr->policy != SCHED_BATCH) {
7219 update_rq_clock(rq);
7220 /*
7221 * Update run-time statistics of the 'current'.
7222 */
7223 update_curr(cfs_rq);
916671c0
MG
7224 /*
7225 * Tell update_rq_clock() that we've just updated,
7226 * so we don't do microscopic update in schedule()
7227 * and double the fastpath cost.
7228 */
adcc8da8 7229 rq_clock_skip_update(rq);
ac53db59
RR
7230 }
7231
7232 set_skip_buddy(se);
7233}
7234
0900acf2 7235static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7236{
7237 struct sched_entity *se = &p->se;
7238
5238cdd3
PT
7239 /* throttled hierarchies are not runnable */
7240 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7241 return false;
7242
7243 /* Tell the scheduler that we'd really like pse to run next. */
7244 set_next_buddy(se);
7245
d95f4122
MG
7246 yield_task_fair(rq);
7247
7248 return true;
7249}
7250
681f3e68 7251#ifdef CONFIG_SMP
bf0f6f24 7252/**************************************************
e9c84cb8
PZ
7253 * Fair scheduling class load-balancing methods.
7254 *
7255 * BASICS
7256 *
7257 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7258 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7259 * time to each task. This is expressed in the following equation:
7260 *
7261 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7262 *
97fb7a0a 7263 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7264 * W_i,0 is defined as:
7265 *
7266 * W_i,0 = \Sum_j w_i,j (2)
7267 *
97fb7a0a 7268 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7269 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7270 *
7271 * The weight average is an exponential decay average of the instantaneous
7272 * weight:
7273 *
7274 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7275 *
97fb7a0a 7276 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7277 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7278 * can also include other factors [XXX].
7279 *
7280 * To achieve this balance we define a measure of imbalance which follows
7281 * directly from (1):
7282 *
ced549fa 7283 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7284 *
7285 * We them move tasks around to minimize the imbalance. In the continuous
7286 * function space it is obvious this converges, in the discrete case we get
7287 * a few fun cases generally called infeasible weight scenarios.
7288 *
7289 * [XXX expand on:
7290 * - infeasible weights;
7291 * - local vs global optima in the discrete case. ]
7292 *
7293 *
7294 * SCHED DOMAINS
7295 *
7296 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7297 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7298 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7299 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7300 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7301 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7302 * the groups.
7303 *
7304 * This yields:
7305 *
7306 * log_2 n 1 n
7307 * \Sum { --- * --- * 2^i } = O(n) (5)
7308 * i = 0 2^i 2^i
7309 * `- size of each group
97fb7a0a 7310 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7311 * | `- freq
7312 * `- sum over all levels
7313 *
7314 * Coupled with a limit on how many tasks we can migrate every balance pass,
7315 * this makes (5) the runtime complexity of the balancer.
7316 *
7317 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7318 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7319 *
7320 * The adjacency matrix of the resulting graph is given by:
7321 *
97a7142f 7322 * log_2 n
e9c84cb8
PZ
7323 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7324 * k = 0
7325 *
7326 * And you'll find that:
7327 *
7328 * A^(log_2 n)_i,j != 0 for all i,j (7)
7329 *
97fb7a0a 7330 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7331 * The task movement gives a factor of O(m), giving a convergence complexity
7332 * of:
7333 *
7334 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7335 *
7336 *
7337 * WORK CONSERVING
7338 *
7339 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7340 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7341 * tree itself instead of relying on other CPUs to bring it work.
7342 *
7343 * This adds some complexity to both (5) and (8) but it reduces the total idle
7344 * time.
7345 *
7346 * [XXX more?]
7347 *
7348 *
7349 * CGROUPS
7350 *
7351 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7352 *
7353 * s_k,i
7354 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7355 * S_k
7356 *
7357 * Where
7358 *
7359 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7360 *
97fb7a0a 7361 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7362 *
7363 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7364 * property.
7365 *
7366 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7367 * rewrite all of this once again.]
97a7142f 7368 */
bf0f6f24 7369
ed387b78
HS
7370static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7371
0ec8aa00
PZ
7372enum fbq_type { regular, remote, all };
7373
0b0695f2 7374/*
a9723389
VG
7375 * 'group_type' describes the group of CPUs at the moment of load balancing.
7376 *
0b0695f2 7377 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7378 * first so the group_type can simply be compared when selecting the busiest
7379 * group. See update_sd_pick_busiest().
0b0695f2 7380 */
3b1baa64 7381enum group_type {
a9723389 7382 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7383 group_has_spare = 0,
a9723389
VG
7384 /*
7385 * The group is fully used and the tasks don't compete for more CPU
7386 * cycles. Nevertheless, some tasks might wait before running.
7387 */
0b0695f2 7388 group_fully_busy,
a9723389
VG
7389 /*
7390 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7391 * and must be migrated to a more powerful CPU.
7392 */
3b1baa64 7393 group_misfit_task,
a9723389
VG
7394 /*
7395 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7396 * and the task should be migrated to it instead of running on the
7397 * current CPU.
7398 */
0b0695f2 7399 group_asym_packing,
a9723389
VG
7400 /*
7401 * The tasks' affinity constraints previously prevented the scheduler
7402 * from balancing the load across the system.
7403 */
3b1baa64 7404 group_imbalanced,
a9723389
VG
7405 /*
7406 * The CPU is overloaded and can't provide expected CPU cycles to all
7407 * tasks.
7408 */
0b0695f2
VG
7409 group_overloaded
7410};
7411
7412enum migration_type {
7413 migrate_load = 0,
7414 migrate_util,
7415 migrate_task,
7416 migrate_misfit
3b1baa64
MR
7417};
7418
ddcdf6e7 7419#define LBF_ALL_PINNED 0x01
367456c7 7420#define LBF_NEED_BREAK 0x02
6263322c
PZ
7421#define LBF_DST_PINNED 0x04
7422#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
7423
7424struct lb_env {
7425 struct sched_domain *sd;
7426
ddcdf6e7 7427 struct rq *src_rq;
85c1e7da 7428 int src_cpu;
ddcdf6e7
PZ
7429
7430 int dst_cpu;
7431 struct rq *dst_rq;
7432
88b8dac0
SV
7433 struct cpumask *dst_grpmask;
7434 int new_dst_cpu;
ddcdf6e7 7435 enum cpu_idle_type idle;
bd939f45 7436 long imbalance;
b9403130
MW
7437 /* The set of CPUs under consideration for load-balancing */
7438 struct cpumask *cpus;
7439
ddcdf6e7 7440 unsigned int flags;
367456c7
PZ
7441
7442 unsigned int loop;
7443 unsigned int loop_break;
7444 unsigned int loop_max;
0ec8aa00
PZ
7445
7446 enum fbq_type fbq_type;
0b0695f2 7447 enum migration_type migration_type;
163122b7 7448 struct list_head tasks;
ddcdf6e7
PZ
7449};
7450
029632fb
PZ
7451/*
7452 * Is this task likely cache-hot:
7453 */
5d5e2b1b 7454static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7455{
7456 s64 delta;
7457
e5673f28
KT
7458 lockdep_assert_held(&env->src_rq->lock);
7459
029632fb
PZ
7460 if (p->sched_class != &fair_sched_class)
7461 return 0;
7462
1da1843f 7463 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7464 return 0;
7465
ec73240b
JD
7466 /* SMT siblings share cache */
7467 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7468 return 0;
7469
029632fb
PZ
7470 /*
7471 * Buddy candidates are cache hot:
7472 */
5d5e2b1b 7473 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7474 (&p->se == cfs_rq_of(&p->se)->next ||
7475 &p->se == cfs_rq_of(&p->se)->last))
7476 return 1;
7477
7478 if (sysctl_sched_migration_cost == -1)
7479 return 1;
7480 if (sysctl_sched_migration_cost == 0)
7481 return 0;
7482
5d5e2b1b 7483 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7484
7485 return delta < (s64)sysctl_sched_migration_cost;
7486}
7487
3a7053b3 7488#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7489/*
2a1ed24c
SD
7490 * Returns 1, if task migration degrades locality
7491 * Returns 0, if task migration improves locality i.e migration preferred.
7492 * Returns -1, if task migration is not affected by locality.
c1ceac62 7493 */
2a1ed24c 7494static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7495{
b1ad065e 7496 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7497 unsigned long src_weight, dst_weight;
7498 int src_nid, dst_nid, dist;
3a7053b3 7499
2a595721 7500 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7501 return -1;
7502
c3b9bc5b 7503 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7504 return -1;
7a0f3083
MG
7505
7506 src_nid = cpu_to_node(env->src_cpu);
7507 dst_nid = cpu_to_node(env->dst_cpu);
7508
83e1d2cd 7509 if (src_nid == dst_nid)
2a1ed24c 7510 return -1;
7a0f3083 7511
2a1ed24c
SD
7512 /* Migrating away from the preferred node is always bad. */
7513 if (src_nid == p->numa_preferred_nid) {
7514 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7515 return 1;
7516 else
7517 return -1;
7518 }
b1ad065e 7519
c1ceac62
RR
7520 /* Encourage migration to the preferred node. */
7521 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7522 return 0;
b1ad065e 7523
739294fb 7524 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7525 if (env->idle == CPU_IDLE)
739294fb
RR
7526 return -1;
7527
f35678b6 7528 dist = node_distance(src_nid, dst_nid);
c1ceac62 7529 if (numa_group) {
f35678b6
SD
7530 src_weight = group_weight(p, src_nid, dist);
7531 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7532 } else {
f35678b6
SD
7533 src_weight = task_weight(p, src_nid, dist);
7534 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7535 }
7536
f35678b6 7537 return dst_weight < src_weight;
7a0f3083
MG
7538}
7539
3a7053b3 7540#else
2a1ed24c 7541static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7542 struct lb_env *env)
7543{
2a1ed24c 7544 return -1;
7a0f3083 7545}
3a7053b3
MG
7546#endif
7547
1e3c88bd
PZ
7548/*
7549 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7550 */
7551static
8e45cb54 7552int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7553{
2a1ed24c 7554 int tsk_cache_hot;
e5673f28
KT
7555
7556 lockdep_assert_held(&env->src_rq->lock);
7557
1e3c88bd
PZ
7558 /*
7559 * We do not migrate tasks that are:
d3198084 7560 * 1) throttled_lb_pair, or
3bd37062 7561 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7562 * 3) running (obviously), or
7563 * 4) are cache-hot on their current CPU.
1e3c88bd 7564 */
d3198084
JK
7565 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7566 return 0;
7567
3bd37062 7568 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7569 int cpu;
88b8dac0 7570
ae92882e 7571 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7572
6263322c
PZ
7573 env->flags |= LBF_SOME_PINNED;
7574
88b8dac0 7575 /*
97fb7a0a 7576 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7577 * our sched_group. We may want to revisit it if we couldn't
7578 * meet load balance goals by pulling other tasks on src_cpu.
7579 *
65a4433a
JH
7580 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7581 * already computed one in current iteration.
88b8dac0 7582 */
65a4433a 7583 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7584 return 0;
7585
97fb7a0a 7586 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7587 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7588 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7589 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7590 env->new_dst_cpu = cpu;
7591 break;
7592 }
88b8dac0 7593 }
e02e60c1 7594
1e3c88bd
PZ
7595 return 0;
7596 }
88b8dac0
SV
7597
7598 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7599 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7600
ddcdf6e7 7601 if (task_running(env->src_rq, p)) {
ae92882e 7602 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7603 return 0;
7604 }
7605
7606 /*
7607 * Aggressive migration if:
3a7053b3
MG
7608 * 1) destination numa is preferred
7609 * 2) task is cache cold, or
7610 * 3) too many balance attempts have failed.
1e3c88bd 7611 */
2a1ed24c
SD
7612 tsk_cache_hot = migrate_degrades_locality(p, env);
7613 if (tsk_cache_hot == -1)
7614 tsk_cache_hot = task_hot(p, env);
3a7053b3 7615
2a1ed24c 7616 if (tsk_cache_hot <= 0 ||
7a96c231 7617 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7618 if (tsk_cache_hot == 1) {
ae92882e
JP
7619 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7620 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7621 }
1e3c88bd
PZ
7622 return 1;
7623 }
7624
ae92882e 7625 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7626 return 0;
1e3c88bd
PZ
7627}
7628
897c395f 7629/*
163122b7
KT
7630 * detach_task() -- detach the task for the migration specified in env
7631 */
7632static void detach_task(struct task_struct *p, struct lb_env *env)
7633{
7634 lockdep_assert_held(&env->src_rq->lock);
7635
5704ac0a 7636 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7637 set_task_cpu(p, env->dst_cpu);
7638}
7639
897c395f 7640/*
e5673f28 7641 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7642 * part of active balancing operations within "domain".
897c395f 7643 *
e5673f28 7644 * Returns a task if successful and NULL otherwise.
897c395f 7645 */
e5673f28 7646static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7647{
93824900 7648 struct task_struct *p;
897c395f 7649
e5673f28
KT
7650 lockdep_assert_held(&env->src_rq->lock);
7651
93824900
UR
7652 list_for_each_entry_reverse(p,
7653 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7654 if (!can_migrate_task(p, env))
7655 continue;
897c395f 7656
163122b7 7657 detach_task(p, env);
e5673f28 7658
367456c7 7659 /*
e5673f28 7660 * Right now, this is only the second place where
163122b7 7661 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7662 * so we can safely collect stats here rather than
163122b7 7663 * inside detach_tasks().
367456c7 7664 */
ae92882e 7665 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7666 return p;
897c395f 7667 }
e5673f28 7668 return NULL;
897c395f
PZ
7669}
7670
eb95308e
PZ
7671static const unsigned int sched_nr_migrate_break = 32;
7672
5d6523eb 7673/*
0b0695f2 7674 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7675 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7676 *
163122b7 7677 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7678 */
163122b7 7679static int detach_tasks(struct lb_env *env)
1e3c88bd 7680{
5d6523eb 7681 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7682 unsigned long util, load;
5d6523eb 7683 struct task_struct *p;
163122b7
KT
7684 int detached = 0;
7685
7686 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7687
bd939f45 7688 if (env->imbalance <= 0)
5d6523eb 7689 return 0;
1e3c88bd 7690
5d6523eb 7691 while (!list_empty(tasks)) {
985d3a4c
YD
7692 /*
7693 * We don't want to steal all, otherwise we may be treated likewise,
7694 * which could at worst lead to a livelock crash.
7695 */
7696 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7697 break;
7698
93824900 7699 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7700
367456c7
PZ
7701 env->loop++;
7702 /* We've more or less seen every task there is, call it quits */
5d6523eb 7703 if (env->loop > env->loop_max)
367456c7 7704 break;
5d6523eb
PZ
7705
7706 /* take a breather every nr_migrate tasks */
367456c7 7707 if (env->loop > env->loop_break) {
eb95308e 7708 env->loop_break += sched_nr_migrate_break;
8e45cb54 7709 env->flags |= LBF_NEED_BREAK;
ee00e66f 7710 break;
a195f004 7711 }
1e3c88bd 7712
d3198084 7713 if (!can_migrate_task(p, env))
367456c7
PZ
7714 goto next;
7715
0b0695f2
VG
7716 switch (env->migration_type) {
7717 case migrate_load:
01cfcde9
VG
7718 /*
7719 * Depending of the number of CPUs and tasks and the
7720 * cgroup hierarchy, task_h_load() can return a null
7721 * value. Make sure that env->imbalance decreases
7722 * otherwise detach_tasks() will stop only after
7723 * detaching up to loop_max tasks.
7724 */
7725 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7726
0b0695f2
VG
7727 if (sched_feat(LB_MIN) &&
7728 load < 16 && !env->sd->nr_balance_failed)
7729 goto next;
367456c7 7730
6cf82d55
VG
7731 /*
7732 * Make sure that we don't migrate too much load.
7733 * Nevertheless, let relax the constraint if
7734 * scheduler fails to find a good waiting task to
7735 * migrate.
7736 */
39a2a6eb 7737 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7738 goto next;
7739
7740 env->imbalance -= load;
7741 break;
7742
7743 case migrate_util:
7744 util = task_util_est(p);
7745
7746 if (util > env->imbalance)
7747 goto next;
7748
7749 env->imbalance -= util;
7750 break;
7751
7752 case migrate_task:
7753 env->imbalance--;
7754 break;
7755
7756 case migrate_misfit:
c63be7be
VG
7757 /* This is not a misfit task */
7758 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7759 goto next;
7760
7761 env->imbalance = 0;
7762 break;
7763 }
1e3c88bd 7764
163122b7
KT
7765 detach_task(p, env);
7766 list_add(&p->se.group_node, &env->tasks);
7767
7768 detached++;
1e3c88bd 7769
c1a280b6 7770#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7771 /*
7772 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7773 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7774 * the critical section.
7775 */
5d6523eb 7776 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7777 break;
1e3c88bd
PZ
7778#endif
7779
ee00e66f
PZ
7780 /*
7781 * We only want to steal up to the prescribed amount of
0b0695f2 7782 * load/util/tasks.
ee00e66f 7783 */
bd939f45 7784 if (env->imbalance <= 0)
ee00e66f 7785 break;
367456c7
PZ
7786
7787 continue;
7788next:
93824900 7789 list_move(&p->se.group_node, tasks);
1e3c88bd 7790 }
5d6523eb 7791
1e3c88bd 7792 /*
163122b7
KT
7793 * Right now, this is one of only two places we collect this stat
7794 * so we can safely collect detach_one_task() stats here rather
7795 * than inside detach_one_task().
1e3c88bd 7796 */
ae92882e 7797 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7798
163122b7
KT
7799 return detached;
7800}
7801
7802/*
7803 * attach_task() -- attach the task detached by detach_task() to its new rq.
7804 */
7805static void attach_task(struct rq *rq, struct task_struct *p)
7806{
7807 lockdep_assert_held(&rq->lock);
7808
7809 BUG_ON(task_rq(p) != rq);
5704ac0a 7810 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7811 check_preempt_curr(rq, p, 0);
7812}
7813
7814/*
7815 * attach_one_task() -- attaches the task returned from detach_one_task() to
7816 * its new rq.
7817 */
7818static void attach_one_task(struct rq *rq, struct task_struct *p)
7819{
8a8c69c3
PZ
7820 struct rq_flags rf;
7821
7822 rq_lock(rq, &rf);
5704ac0a 7823 update_rq_clock(rq);
163122b7 7824 attach_task(rq, p);
8a8c69c3 7825 rq_unlock(rq, &rf);
163122b7
KT
7826}
7827
7828/*
7829 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7830 * new rq.
7831 */
7832static void attach_tasks(struct lb_env *env)
7833{
7834 struct list_head *tasks = &env->tasks;
7835 struct task_struct *p;
8a8c69c3 7836 struct rq_flags rf;
163122b7 7837
8a8c69c3 7838 rq_lock(env->dst_rq, &rf);
5704ac0a 7839 update_rq_clock(env->dst_rq);
163122b7
KT
7840
7841 while (!list_empty(tasks)) {
7842 p = list_first_entry(tasks, struct task_struct, se.group_node);
7843 list_del_init(&p->se.group_node);
1e3c88bd 7844
163122b7
KT
7845 attach_task(env->dst_rq, p);
7846 }
7847
8a8c69c3 7848 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7849}
7850
b0c79224 7851#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7852static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7853{
7854 if (cfs_rq->avg.load_avg)
7855 return true;
7856
7857 if (cfs_rq->avg.util_avg)
7858 return true;
7859
7860 return false;
7861}
7862
91c27493 7863static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7864{
7865 if (READ_ONCE(rq->avg_rt.util_avg))
7866 return true;
7867
3727e0e1
VG
7868 if (READ_ONCE(rq->avg_dl.util_avg))
7869 return true;
7870
b4eccf5f
TG
7871 if (thermal_load_avg(rq))
7872 return true;
7873
11d4afd4 7874#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7875 if (READ_ONCE(rq->avg_irq.util_avg))
7876 return true;
7877#endif
7878
371bf427
VG
7879 return false;
7880}
7881
39b6a429 7882static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 7883{
39b6a429
VG
7884 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
7885}
b0c79224 7886
39b6a429
VG
7887static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7888{
b0c79224
VS
7889 if (!has_blocked)
7890 rq->has_blocked_load = 0;
7891}
7892#else
7893static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7894static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 7895static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
7896static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7897#endif
7898
bef69dd8
VG
7899static bool __update_blocked_others(struct rq *rq, bool *done)
7900{
7901 const struct sched_class *curr_class;
7902 u64 now = rq_clock_pelt(rq);
b4eccf5f 7903 unsigned long thermal_pressure;
bef69dd8
VG
7904 bool decayed;
7905
7906 /*
7907 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7908 * DL and IRQ signals have been updated before updating CFS.
7909 */
7910 curr_class = rq->curr->sched_class;
7911
b4eccf5f
TG
7912 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7913
bef69dd8
VG
7914 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7915 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7916 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7917 update_irq_load_avg(rq, 0);
7918
7919 if (others_have_blocked(rq))
7920 *done = false;
7921
7922 return decayed;
7923}
7924
1936c53c
VG
7925#ifdef CONFIG_FAIR_GROUP_SCHED
7926
039ae8bc
VG
7927static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7928{
7929 if (cfs_rq->load.weight)
7930 return false;
7931
7932 if (cfs_rq->avg.load_sum)
7933 return false;
7934
7935 if (cfs_rq->avg.util_sum)
7936 return false;
7937
9f683953
VG
7938 if (cfs_rq->avg.runnable_sum)
7939 return false;
7940
039ae8bc
VG
7941 return true;
7942}
7943
bef69dd8 7944static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7945{
039ae8bc 7946 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7947 bool decayed = false;
7948 int cpu = cpu_of(rq);
b90f7c9d 7949
9763b67f
PZ
7950 /*
7951 * Iterates the task_group tree in a bottom up fashion, see
7952 * list_add_leaf_cfs_rq() for details.
7953 */
039ae8bc 7954 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7955 struct sched_entity *se;
7956
bef69dd8 7957 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 7958 update_tg_load_avg(cfs_rq);
4e516076 7959
bef69dd8
VG
7960 if (cfs_rq == &rq->cfs)
7961 decayed = true;
7962 }
7963
bc427898
VG
7964 /* Propagate pending load changes to the parent, if any: */
7965 se = cfs_rq->tg->se[cpu];
7966 if (se && !skip_blocked_update(se))
88c0616e 7967 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7968
039ae8bc
VG
7969 /*
7970 * There can be a lot of idle CPU cgroups. Don't let fully
7971 * decayed cfs_rqs linger on the list.
7972 */
7973 if (cfs_rq_is_decayed(cfs_rq))
7974 list_del_leaf_cfs_rq(cfs_rq);
7975
1936c53c
VG
7976 /* Don't need periodic decay once load/util_avg are null */
7977 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7978 *done = false;
9d89c257 7979 }
12b04875 7980
bef69dd8 7981 return decayed;
9e3081ca
PZ
7982}
7983
9763b67f 7984/*
68520796 7985 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7986 * This needs to be done in a top-down fashion because the load of a child
7987 * group is a fraction of its parents load.
7988 */
68520796 7989static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7990{
68520796
VD
7991 struct rq *rq = rq_of(cfs_rq);
7992 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7993 unsigned long now = jiffies;
68520796 7994 unsigned long load;
a35b6466 7995
68520796 7996 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7997 return;
7998
0e9f0245 7999 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8000 for_each_sched_entity(se) {
8001 cfs_rq = cfs_rq_of(se);
0e9f0245 8002 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8003 if (cfs_rq->last_h_load_update == now)
8004 break;
8005 }
a35b6466 8006
68520796 8007 if (!se) {
7ea241af 8008 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8009 cfs_rq->last_h_load_update = now;
8010 }
8011
0e9f0245 8012 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8013 load = cfs_rq->h_load;
7ea241af
YD
8014 load = div64_ul(load * se->avg.load_avg,
8015 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8016 cfs_rq = group_cfs_rq(se);
8017 cfs_rq->h_load = load;
8018 cfs_rq->last_h_load_update = now;
8019 }
9763b67f
PZ
8020}
8021
367456c7 8022static unsigned long task_h_load(struct task_struct *p)
230059de 8023{
367456c7 8024 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8025
68520796 8026 update_cfs_rq_h_load(cfs_rq);
9d89c257 8027 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8028 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8029}
8030#else
bef69dd8 8031static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8032{
6c1d47c0 8033 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8034 bool decayed;
b90f7c9d 8035
bef69dd8
VG
8036 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8037 if (cfs_rq_has_blocked(cfs_rq))
8038 *done = false;
b90f7c9d 8039
bef69dd8 8040 return decayed;
9e3081ca
PZ
8041}
8042
367456c7 8043static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8044{
9d89c257 8045 return p->se.avg.load_avg;
1e3c88bd 8046}
230059de 8047#endif
1e3c88bd 8048
bef69dd8
VG
8049static void update_blocked_averages(int cpu)
8050{
8051 bool decayed = false, done = true;
8052 struct rq *rq = cpu_rq(cpu);
8053 struct rq_flags rf;
8054
8055 rq_lock_irqsave(rq, &rf);
39b6a429 8056 update_blocked_load_tick(rq);
bef69dd8
VG
8057 update_rq_clock(rq);
8058
8059 decayed |= __update_blocked_others(rq, &done);
8060 decayed |= __update_blocked_fair(rq, &done);
8061
8062 update_blocked_load_status(rq, !done);
8063 if (decayed)
8064 cpufreq_update_util(rq, 0);
8065 rq_unlock_irqrestore(rq, &rf);
8066}
8067
1e3c88bd 8068/********** Helpers for find_busiest_group ************************/
caeb178c 8069
1e3c88bd
PZ
8070/*
8071 * sg_lb_stats - stats of a sched_group required for load_balancing
8072 */
8073struct sg_lb_stats {
8074 unsigned long avg_load; /*Avg load across the CPUs of the group */
8075 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8076 unsigned long group_capacity;
070f5e86
VG
8077 unsigned long group_util; /* Total utilization over the CPUs of the group */
8078 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8079 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8080 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8081 unsigned int idle_cpus;
8082 unsigned int group_weight;
caeb178c 8083 enum group_type group_type;
490ba971 8084 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8085 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8086#ifdef CONFIG_NUMA_BALANCING
8087 unsigned int nr_numa_running;
8088 unsigned int nr_preferred_running;
8089#endif
1e3c88bd
PZ
8090};
8091
56cf515b
JK
8092/*
8093 * sd_lb_stats - Structure to store the statistics of a sched_domain
8094 * during load balancing.
8095 */
8096struct sd_lb_stats {
8097 struct sched_group *busiest; /* Busiest group in this sd */
8098 struct sched_group *local; /* Local group in this sd */
8099 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8100 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8101 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8102 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8103
56cf515b 8104 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8105 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8106};
8107
147c5fc2
PZ
8108static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8109{
8110 /*
8111 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8112 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8113 * We must however set busiest_stat::group_type and
8114 * busiest_stat::idle_cpus to the worst busiest group because
8115 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8116 */
8117 *sds = (struct sd_lb_stats){
8118 .busiest = NULL,
8119 .local = NULL,
8120 .total_load = 0UL,
63b2ca30 8121 .total_capacity = 0UL,
147c5fc2 8122 .busiest_stat = {
0b0695f2
VG
8123 .idle_cpus = UINT_MAX,
8124 .group_type = group_has_spare,
147c5fc2
PZ
8125 },
8126 };
8127}
8128
1ca2034e 8129static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8130{
8131 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8132 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8133 unsigned long used, free;
523e979d 8134 unsigned long irq;
b654f7de 8135
2e62c474 8136 irq = cpu_util_irq(rq);
cadefd3d 8137
523e979d
VG
8138 if (unlikely(irq >= max))
8139 return 1;
aa483808 8140
467b7d01
TG
8141 /*
8142 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8143 * (running and not running) with weights 0 and 1024 respectively.
8144 * avg_thermal.load_avg tracks thermal pressure and the weighted
8145 * average uses the actual delta max capacity(load).
8146 */
523e979d
VG
8147 used = READ_ONCE(rq->avg_rt.util_avg);
8148 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8149 used += thermal_load_avg(rq);
1e3c88bd 8150
523e979d
VG
8151 if (unlikely(used >= max))
8152 return 1;
1e3c88bd 8153
523e979d 8154 free = max - used;
2e62c474
VG
8155
8156 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8157}
8158
ced549fa 8159static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8160{
1ca2034e 8161 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8162 struct sched_group *sdg = sd->groups;
8163
8ec59c0f 8164 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8165
ced549fa
NP
8166 if (!capacity)
8167 capacity = 1;
1e3c88bd 8168
ced549fa 8169 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8170 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8171
ced549fa 8172 sdg->sgc->capacity = capacity;
bf475ce0 8173 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8174 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8175}
8176
63b2ca30 8177void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8178{
8179 struct sched_domain *child = sd->child;
8180 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8181 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8182 unsigned long interval;
8183
8184 interval = msecs_to_jiffies(sd->balance_interval);
8185 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8186 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8187
8188 if (!child) {
ced549fa 8189 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8190 return;
8191 }
8192
dc7ff76e 8193 capacity = 0;
bf475ce0 8194 min_capacity = ULONG_MAX;
e3d6d0cb 8195 max_capacity = 0;
1e3c88bd 8196
74a5ce20
PZ
8197 if (child->flags & SD_OVERLAP) {
8198 /*
8199 * SD_OVERLAP domains cannot assume that child groups
8200 * span the current group.
8201 */
8202
ae4df9d6 8203 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8204 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8205
4c58f57f
PL
8206 capacity += cpu_cap;
8207 min_capacity = min(cpu_cap, min_capacity);
8208 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8209 }
74a5ce20
PZ
8210 } else {
8211 /*
8212 * !SD_OVERLAP domains can assume that child groups
8213 * span the current group.
97a7142f 8214 */
74a5ce20
PZ
8215
8216 group = child->groups;
8217 do {
bf475ce0
MR
8218 struct sched_group_capacity *sgc = group->sgc;
8219
8220 capacity += sgc->capacity;
8221 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8222 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8223 group = group->next;
8224 } while (group != child->groups);
8225 }
1e3c88bd 8226
63b2ca30 8227 sdg->sgc->capacity = capacity;
bf475ce0 8228 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8229 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8230}
8231
9d5efe05 8232/*
ea67821b
VG
8233 * Check whether the capacity of the rq has been noticeably reduced by side
8234 * activity. The imbalance_pct is used for the threshold.
8235 * Return true is the capacity is reduced
9d5efe05
SV
8236 */
8237static inline int
ea67821b 8238check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8239{
ea67821b
VG
8240 return ((rq->cpu_capacity * sd->imbalance_pct) <
8241 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8242}
8243
a0fe2cf0
VS
8244/*
8245 * Check whether a rq has a misfit task and if it looks like we can actually
8246 * help that task: we can migrate the task to a CPU of higher capacity, or
8247 * the task's current CPU is heavily pressured.
8248 */
8249static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8250{
8251 return rq->misfit_task_load &&
8252 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8253 check_cpu_capacity(rq, sd));
8254}
8255
30ce5dab
PZ
8256/*
8257 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8258 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8259 *
97fb7a0a
IM
8260 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8261 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8262 * Something like:
8263 *
2b4d5b25
IM
8264 * { 0 1 2 3 } { 4 5 6 7 }
8265 * * * * *
30ce5dab
PZ
8266 *
8267 * If we were to balance group-wise we'd place two tasks in the first group and
8268 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8269 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8270 *
8271 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8272 * by noticing the lower domain failed to reach balance and had difficulty
8273 * moving tasks due to affinity constraints.
30ce5dab
PZ
8274 *
8275 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8276 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8277 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8278 * to create an effective group imbalance.
8279 *
8280 * This is a somewhat tricky proposition since the next run might not find the
8281 * group imbalance and decide the groups need to be balanced again. A most
8282 * subtle and fragile situation.
8283 */
8284
6263322c 8285static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8286{
63b2ca30 8287 return group->sgc->imbalance;
30ce5dab
PZ
8288}
8289
b37d9316 8290/*
ea67821b
VG
8291 * group_has_capacity returns true if the group has spare capacity that could
8292 * be used by some tasks.
8293 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8294 * smaller than the number of CPUs or if the utilization is lower than the
8295 * available capacity for CFS tasks.
ea67821b
VG
8296 * For the latter, we use a threshold to stabilize the state, to take into
8297 * account the variance of the tasks' load and to return true if the available
8298 * capacity in meaningful for the load balancer.
8299 * As an example, an available capacity of 1% can appear but it doesn't make
8300 * any benefit for the load balance.
b37d9316 8301 */
ea67821b 8302static inline bool
57abff06 8303group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8304{
5e23e474 8305 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8306 return true;
c61037e9 8307
070f5e86
VG
8308 if ((sgs->group_capacity * imbalance_pct) <
8309 (sgs->group_runnable * 100))
8310 return false;
8311
ea67821b 8312 if ((sgs->group_capacity * 100) >
57abff06 8313 (sgs->group_util * imbalance_pct))
ea67821b 8314 return true;
b37d9316 8315
ea67821b
VG
8316 return false;
8317}
8318
8319/*
8320 * group_is_overloaded returns true if the group has more tasks than it can
8321 * handle.
8322 * group_is_overloaded is not equals to !group_has_capacity because a group
8323 * with the exact right number of tasks, has no more spare capacity but is not
8324 * overloaded so both group_has_capacity and group_is_overloaded return
8325 * false.
8326 */
8327static inline bool
57abff06 8328group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8329{
5e23e474 8330 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8331 return false;
b37d9316 8332
ea67821b 8333 if ((sgs->group_capacity * 100) <
57abff06 8334 (sgs->group_util * imbalance_pct))
ea67821b 8335 return true;
b37d9316 8336
070f5e86
VG
8337 if ((sgs->group_capacity * imbalance_pct) <
8338 (sgs->group_runnable * 100))
8339 return true;
8340
ea67821b 8341 return false;
b37d9316
PZ
8342}
8343
9e0994c0 8344/*
e3d6d0cb 8345 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8346 * per-CPU capacity than sched_group ref.
8347 */
8348static inline bool
e3d6d0cb 8349group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8350{
60e17f5c 8351 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8352}
8353
e3d6d0cb
MR
8354/*
8355 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8356 * per-CPU capacity_orig than sched_group ref.
8357 */
8358static inline bool
8359group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8360{
60e17f5c 8361 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8362}
8363
79a89f92 8364static inline enum
57abff06 8365group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8366 struct sched_group *group,
79a89f92 8367 struct sg_lb_stats *sgs)
caeb178c 8368{
57abff06 8369 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8370 return group_overloaded;
8371
8372 if (sg_imbalanced(group))
8373 return group_imbalanced;
8374
0b0695f2
VG
8375 if (sgs->group_asym_packing)
8376 return group_asym_packing;
8377
3b1baa64
MR
8378 if (sgs->group_misfit_task_load)
8379 return group_misfit_task;
8380
57abff06 8381 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8382 return group_fully_busy;
8383
8384 return group_has_spare;
caeb178c
RR
8385}
8386
64f84f27 8387static bool update_nohz_stats(struct rq *rq)
e022e0d3
PZ
8388{
8389#ifdef CONFIG_NO_HZ_COMMON
8390 unsigned int cpu = rq->cpu;
8391
f643ea22
VG
8392 if (!rq->has_blocked_load)
8393 return false;
8394
e022e0d3 8395 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8396 return false;
e022e0d3 8397
39b6a429 8398 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
f643ea22 8399 return true;
e022e0d3
PZ
8400
8401 update_blocked_averages(cpu);
f643ea22
VG
8402
8403 return rq->has_blocked_load;
8404#else
8405 return false;
e022e0d3
PZ
8406#endif
8407}
8408
1e3c88bd
PZ
8409/**
8410 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8411 * @env: The load balancing environment.
1e3c88bd 8412 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8413 * @sgs: variable to hold the statistics for this group.
630246a0 8414 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8415 */
bd939f45 8416static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8417 struct sched_group *group,
8418 struct sg_lb_stats *sgs,
8419 int *sg_status)
1e3c88bd 8420{
0b0695f2 8421 int i, nr_running, local_group;
1e3c88bd 8422
b72ff13c
PZ
8423 memset(sgs, 0, sizeof(*sgs));
8424
0b0695f2
VG
8425 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8426
ae4df9d6 8427 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8428 struct rq *rq = cpu_rq(i);
8429
b0fb1eb4 8430 sgs->group_load += cpu_load(rq);
9e91d61d 8431 sgs->group_util += cpu_util(i);
070f5e86 8432 sgs->group_runnable += cpu_runnable(rq);
a3498347 8433 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8434
a426f99c 8435 nr_running = rq->nr_running;
5e23e474
VG
8436 sgs->sum_nr_running += nr_running;
8437
a426f99c 8438 if (nr_running > 1)
630246a0 8439 *sg_status |= SG_OVERLOAD;
4486edd1 8440
2802bf3c
MR
8441 if (cpu_overutilized(i))
8442 *sg_status |= SG_OVERUTILIZED;
4486edd1 8443
0ec8aa00
PZ
8444#ifdef CONFIG_NUMA_BALANCING
8445 sgs->nr_numa_running += rq->nr_numa_running;
8446 sgs->nr_preferred_running += rq->nr_preferred_running;
8447#endif
a426f99c
WL
8448 /*
8449 * No need to call idle_cpu() if nr_running is not 0
8450 */
0b0695f2 8451 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8452 sgs->idle_cpus++;
0b0695f2
VG
8453 /* Idle cpu can't have misfit task */
8454 continue;
8455 }
8456
8457 if (local_group)
8458 continue;
3b1baa64 8459
0b0695f2 8460 /* Check for a misfit task on the cpu */
3b1baa64 8461 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8462 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8463 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8464 *sg_status |= SG_OVERLOAD;
757ffdd7 8465 }
1e3c88bd
PZ
8466 }
8467
0b0695f2
VG
8468 /* Check if dst CPU is idle and preferred to this group */
8469 if (env->sd->flags & SD_ASYM_PACKING &&
8470 env->idle != CPU_NOT_IDLE &&
8471 sgs->sum_h_nr_running &&
8472 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8473 sgs->group_asym_packing = 1;
8474 }
8475
63b2ca30 8476 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8477
aae6d3dd 8478 sgs->group_weight = group->group_weight;
b37d9316 8479
57abff06 8480 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8481
8482 /* Computing avg_load makes sense only when group is overloaded */
8483 if (sgs->group_type == group_overloaded)
8484 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8485 sgs->group_capacity;
1e3c88bd
PZ
8486}
8487
532cb4c4
MN
8488/**
8489 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8490 * @env: The load balancing environment.
532cb4c4
MN
8491 * @sds: sched_domain statistics
8492 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8493 * @sgs: sched_group statistics
532cb4c4
MN
8494 *
8495 * Determine if @sg is a busier group than the previously selected
8496 * busiest group.
e69f6186
YB
8497 *
8498 * Return: %true if @sg is a busier group than the previously selected
8499 * busiest group. %false otherwise.
532cb4c4 8500 */
bd939f45 8501static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8502 struct sd_lb_stats *sds,
8503 struct sched_group *sg,
bd939f45 8504 struct sg_lb_stats *sgs)
532cb4c4 8505{
caeb178c 8506 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8507
0b0695f2
VG
8508 /* Make sure that there is at least one task to pull */
8509 if (!sgs->sum_h_nr_running)
8510 return false;
8511
cad68e55
MR
8512 /*
8513 * Don't try to pull misfit tasks we can't help.
8514 * We can use max_capacity here as reduction in capacity on some
8515 * CPUs in the group should either be possible to resolve
8516 * internally or be covered by avg_load imbalance (eventually).
8517 */
8518 if (sgs->group_type == group_misfit_task &&
8519 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8520 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8521 return false;
8522
caeb178c 8523 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8524 return true;
8525
caeb178c
RR
8526 if (sgs->group_type < busiest->group_type)
8527 return false;
8528
9e0994c0 8529 /*
0b0695f2
VG
8530 * The candidate and the current busiest group are the same type of
8531 * group. Let check which one is the busiest according to the type.
9e0994c0 8532 */
9e0994c0 8533
0b0695f2
VG
8534 switch (sgs->group_type) {
8535 case group_overloaded:
8536 /* Select the overloaded group with highest avg_load. */
8537 if (sgs->avg_load <= busiest->avg_load)
8538 return false;
8539 break;
8540
8541 case group_imbalanced:
8542 /*
8543 * Select the 1st imbalanced group as we don't have any way to
8544 * choose one more than another.
8545 */
9e0994c0
MR
8546 return false;
8547
0b0695f2
VG
8548 case group_asym_packing:
8549 /* Prefer to move from lowest priority CPU's work */
8550 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8551 return false;
8552 break;
532cb4c4 8553
0b0695f2
VG
8554 case group_misfit_task:
8555 /*
8556 * If we have more than one misfit sg go with the biggest
8557 * misfit.
8558 */
8559 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8560 return false;
8561 break;
532cb4c4 8562
0b0695f2
VG
8563 case group_fully_busy:
8564 /*
8565 * Select the fully busy group with highest avg_load. In
8566 * theory, there is no need to pull task from such kind of
8567 * group because tasks have all compute capacity that they need
8568 * but we can still improve the overall throughput by reducing
8569 * contention when accessing shared HW resources.
8570 *
8571 * XXX for now avg_load is not computed and always 0 so we
8572 * select the 1st one.
8573 */
8574 if (sgs->avg_load <= busiest->avg_load)
8575 return false;
8576 break;
8577
8578 case group_has_spare:
8579 /*
5f68eb19
VG
8580 * Select not overloaded group with lowest number of idle cpus
8581 * and highest number of running tasks. We could also compare
8582 * the spare capacity which is more stable but it can end up
8583 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8584 * CPUs which means less opportunity to pull tasks.
8585 */
5f68eb19 8586 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8587 return false;
5f68eb19
VG
8588 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8589 (sgs->sum_nr_running <= busiest->sum_nr_running))
8590 return false;
8591
0b0695f2 8592 break;
532cb4c4
MN
8593 }
8594
0b0695f2
VG
8595 /*
8596 * Candidate sg has no more than one task per CPU and has higher
8597 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8598 * throughput. Maximize throughput, power/energy consequences are not
8599 * considered.
8600 */
8601 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8602 (sgs->group_type <= group_fully_busy) &&
8603 (group_smaller_min_cpu_capacity(sds->local, sg)))
8604 return false;
8605
8606 return true;
532cb4c4
MN
8607}
8608
0ec8aa00
PZ
8609#ifdef CONFIG_NUMA_BALANCING
8610static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8611{
a3498347 8612 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8613 return regular;
a3498347 8614 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8615 return remote;
8616 return all;
8617}
8618
8619static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8620{
8621 if (rq->nr_running > rq->nr_numa_running)
8622 return regular;
8623 if (rq->nr_running > rq->nr_preferred_running)
8624 return remote;
8625 return all;
8626}
8627#else
8628static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8629{
8630 return all;
8631}
8632
8633static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8634{
8635 return regular;
8636}
8637#endif /* CONFIG_NUMA_BALANCING */
8638
57abff06
VG
8639
8640struct sg_lb_stats;
8641
3318544b
VG
8642/*
8643 * task_running_on_cpu - return 1 if @p is running on @cpu.
8644 */
8645
8646static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8647{
8648 /* Task has no contribution or is new */
8649 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8650 return 0;
8651
8652 if (task_on_rq_queued(p))
8653 return 1;
8654
8655 return 0;
8656}
8657
8658/**
8659 * idle_cpu_without - would a given CPU be idle without p ?
8660 * @cpu: the processor on which idleness is tested.
8661 * @p: task which should be ignored.
8662 *
8663 * Return: 1 if the CPU would be idle. 0 otherwise.
8664 */
8665static int idle_cpu_without(int cpu, struct task_struct *p)
8666{
8667 struct rq *rq = cpu_rq(cpu);
8668
8669 if (rq->curr != rq->idle && rq->curr != p)
8670 return 0;
8671
8672 /*
8673 * rq->nr_running can't be used but an updated version without the
8674 * impact of p on cpu must be used instead. The updated nr_running
8675 * be computed and tested before calling idle_cpu_without().
8676 */
8677
8678#ifdef CONFIG_SMP
126c2092 8679 if (rq->ttwu_pending)
3318544b
VG
8680 return 0;
8681#endif
8682
8683 return 1;
8684}
8685
57abff06
VG
8686/*
8687 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8688 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8689 * @group: sched_group whose statistics are to be updated.
8690 * @sgs: variable to hold the statistics for this group.
3318544b 8691 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8692 */
8693static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8694 struct sched_group *group,
8695 struct sg_lb_stats *sgs,
8696 struct task_struct *p)
8697{
8698 int i, nr_running;
8699
8700 memset(sgs, 0, sizeof(*sgs));
8701
8702 for_each_cpu(i, sched_group_span(group)) {
8703 struct rq *rq = cpu_rq(i);
3318544b 8704 unsigned int local;
57abff06 8705
3318544b 8706 sgs->group_load += cpu_load_without(rq, p);
57abff06 8707 sgs->group_util += cpu_util_without(i, p);
070f5e86 8708 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8709 local = task_running_on_cpu(i, p);
8710 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8711
3318544b 8712 nr_running = rq->nr_running - local;
57abff06
VG
8713 sgs->sum_nr_running += nr_running;
8714
8715 /*
3318544b 8716 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8717 */
3318544b 8718 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8719 sgs->idle_cpus++;
8720
57abff06
VG
8721 }
8722
8723 /* Check if task fits in the group */
8724 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8725 !task_fits_capacity(p, group->sgc->max_capacity)) {
8726 sgs->group_misfit_task_load = 1;
8727 }
8728
8729 sgs->group_capacity = group->sgc->capacity;
8730
289de359
VG
8731 sgs->group_weight = group->group_weight;
8732
57abff06
VG
8733 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8734
8735 /*
8736 * Computing avg_load makes sense only when group is fully busy or
8737 * overloaded
8738 */
6c8116c9
TZ
8739 if (sgs->group_type == group_fully_busy ||
8740 sgs->group_type == group_overloaded)
57abff06
VG
8741 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8742 sgs->group_capacity;
8743}
8744
8745static bool update_pick_idlest(struct sched_group *idlest,
8746 struct sg_lb_stats *idlest_sgs,
8747 struct sched_group *group,
8748 struct sg_lb_stats *sgs)
8749{
8750 if (sgs->group_type < idlest_sgs->group_type)
8751 return true;
8752
8753 if (sgs->group_type > idlest_sgs->group_type)
8754 return false;
8755
8756 /*
8757 * The candidate and the current idlest group are the same type of
8758 * group. Let check which one is the idlest according to the type.
8759 */
8760
8761 switch (sgs->group_type) {
8762 case group_overloaded:
8763 case group_fully_busy:
8764 /* Select the group with lowest avg_load. */
8765 if (idlest_sgs->avg_load <= sgs->avg_load)
8766 return false;
8767 break;
8768
8769 case group_imbalanced:
8770 case group_asym_packing:
8771 /* Those types are not used in the slow wakeup path */
8772 return false;
8773
8774 case group_misfit_task:
8775 /* Select group with the highest max capacity */
8776 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8777 return false;
8778 break;
8779
8780 case group_has_spare:
8781 /* Select group with most idle CPUs */
3edecfef 8782 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8783 return false;
3edecfef
PP
8784
8785 /* Select group with lowest group_util */
8786 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8787 idlest_sgs->group_util <= sgs->group_util)
8788 return false;
8789
57abff06
VG
8790 break;
8791 }
8792
8793 return true;
8794}
8795
23e6082a
MG
8796/*
8797 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8798 * This is an approximation as the number of running tasks may not be
8799 * related to the number of busy CPUs due to sched_setaffinity.
8800 */
8801static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8802{
8803 return (dst_running < (dst_weight >> 2));
8804}
8805
57abff06
VG
8806/*
8807 * find_idlest_group() finds and returns the least busy CPU group within the
8808 * domain.
8809 *
8810 * Assumes p is allowed on at least one CPU in sd.
8811 */
8812static struct sched_group *
45da2773 8813find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8814{
8815 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8816 struct sg_lb_stats local_sgs, tmp_sgs;
8817 struct sg_lb_stats *sgs;
8818 unsigned long imbalance;
8819 struct sg_lb_stats idlest_sgs = {
8820 .avg_load = UINT_MAX,
8821 .group_type = group_overloaded,
8822 };
8823
57abff06
VG
8824 do {
8825 int local_group;
8826
8827 /* Skip over this group if it has no CPUs allowed */
8828 if (!cpumask_intersects(sched_group_span(group),
8829 p->cpus_ptr))
8830 continue;
8831
8832 local_group = cpumask_test_cpu(this_cpu,
8833 sched_group_span(group));
8834
8835 if (local_group) {
8836 sgs = &local_sgs;
8837 local = group;
8838 } else {
8839 sgs = &tmp_sgs;
8840 }
8841
8842 update_sg_wakeup_stats(sd, group, sgs, p);
8843
8844 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8845 idlest = group;
8846 idlest_sgs = *sgs;
8847 }
8848
8849 } while (group = group->next, group != sd->groups);
8850
8851
8852 /* There is no idlest group to push tasks to */
8853 if (!idlest)
8854 return NULL;
8855
7ed735c3
VG
8856 /* The local group has been skipped because of CPU affinity */
8857 if (!local)
8858 return idlest;
8859
57abff06
VG
8860 /*
8861 * If the local group is idler than the selected idlest group
8862 * don't try and push the task.
8863 */
8864 if (local_sgs.group_type < idlest_sgs.group_type)
8865 return NULL;
8866
8867 /*
8868 * If the local group is busier than the selected idlest group
8869 * try and push the task.
8870 */
8871 if (local_sgs.group_type > idlest_sgs.group_type)
8872 return idlest;
8873
8874 switch (local_sgs.group_type) {
8875 case group_overloaded:
8876 case group_fully_busy:
5c339005
MG
8877
8878 /* Calculate allowed imbalance based on load */
8879 imbalance = scale_load_down(NICE_0_LOAD) *
8880 (sd->imbalance_pct-100) / 100;
8881
57abff06
VG
8882 /*
8883 * When comparing groups across NUMA domains, it's possible for
8884 * the local domain to be very lightly loaded relative to the
8885 * remote domains but "imbalance" skews the comparison making
8886 * remote CPUs look much more favourable. When considering
8887 * cross-domain, add imbalance to the load on the remote node
8888 * and consider staying local.
8889 */
8890
8891 if ((sd->flags & SD_NUMA) &&
8892 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8893 return NULL;
8894
8895 /*
8896 * If the local group is less loaded than the selected
8897 * idlest group don't try and push any tasks.
8898 */
8899 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8900 return NULL;
8901
8902 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8903 return NULL;
8904 break;
8905
8906 case group_imbalanced:
8907 case group_asym_packing:
8908 /* Those type are not used in the slow wakeup path */
8909 return NULL;
8910
8911 case group_misfit_task:
8912 /* Select group with the highest max capacity */
8913 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8914 return NULL;
8915 break;
8916
8917 case group_has_spare:
8918 if (sd->flags & SD_NUMA) {
8919#ifdef CONFIG_NUMA_BALANCING
8920 int idlest_cpu;
8921 /*
8922 * If there is spare capacity at NUMA, try to select
8923 * the preferred node
8924 */
8925 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8926 return NULL;
8927
8928 idlest_cpu = cpumask_first(sched_group_span(idlest));
8929 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8930 return idlest;
8931#endif
8932 /*
8933 * Otherwise, keep the task on this node to stay close
8934 * its wakeup source and improve locality. If there is
8935 * a real need of migration, periodic load balance will
8936 * take care of it.
8937 */
23e6082a 8938 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
8939 return NULL;
8940 }
8941
8942 /*
8943 * Select group with highest number of idle CPUs. We could also
8944 * compare the utilization which is more stable but it can end
8945 * up that the group has less spare capacity but finally more
8946 * idle CPUs which means more opportunity to run task.
8947 */
8948 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8949 return NULL;
8950 break;
8951 }
8952
8953 return idlest;
8954}
8955
1e3c88bd 8956/**
461819ac 8957 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8958 * @env: The load balancing environment.
1e3c88bd
PZ
8959 * @sds: variable to hold the statistics for this sched_domain.
8960 */
0b0695f2 8961
0ec8aa00 8962static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8963{
bd939f45
PZ
8964 struct sched_domain *child = env->sd->child;
8965 struct sched_group *sg = env->sd->groups;
05b40e05 8966 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8967 struct sg_lb_stats tmp_sgs;
630246a0 8968 int sg_status = 0;
1e3c88bd 8969
1e3c88bd 8970 do {
56cf515b 8971 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8972 int local_group;
8973
ae4df9d6 8974 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8975 if (local_group) {
8976 sds->local = sg;
05b40e05 8977 sgs = local;
b72ff13c
PZ
8978
8979 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8980 time_after_eq(jiffies, sg->sgc->next_update))
8981 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8982 }
1e3c88bd 8983
630246a0 8984 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8985
b72ff13c
PZ
8986 if (local_group)
8987 goto next_group;
8988
1e3c88bd 8989
b72ff13c 8990 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8991 sds->busiest = sg;
56cf515b 8992 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8993 }
8994
b72ff13c
PZ
8995next_group:
8996 /* Now, start updating sd_lb_stats */
8997 sds->total_load += sgs->group_load;
63b2ca30 8998 sds->total_capacity += sgs->group_capacity;
b72ff13c 8999
532cb4c4 9000 sg = sg->next;
bd939f45 9001 } while (sg != env->sd->groups);
0ec8aa00 9002
0b0695f2
VG
9003 /* Tag domain that child domain prefers tasks go to siblings first */
9004 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9005
f643ea22 9006
0ec8aa00
PZ
9007 if (env->sd->flags & SD_NUMA)
9008 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9009
9010 if (!env->sd->parent) {
2802bf3c
MR
9011 struct root_domain *rd = env->dst_rq->rd;
9012
4486edd1 9013 /* update overload indicator if we are at root domain */
2802bf3c
MR
9014 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9015
9016 /* Update over-utilization (tipping point, U >= 0) indicator */
9017 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9018 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9019 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9020 struct root_domain *rd = env->dst_rq->rd;
9021
9022 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9023 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9024 }
532cb4c4
MN
9025}
9026
abeae76a
MG
9027#define NUMA_IMBALANCE_MIN 2
9028
7d2b5dd0
MG
9029static inline long adjust_numa_imbalance(int imbalance,
9030 int dst_running, int dst_weight)
fb86f5b2 9031{
23e6082a
MG
9032 if (!allow_numa_imbalance(dst_running, dst_weight))
9033 return imbalance;
9034
fb86f5b2
MG
9035 /*
9036 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9037 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9038 */
23e6082a 9039 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9040 return 0;
9041
9042 return imbalance;
9043}
9044
1e3c88bd
PZ
9045/**
9046 * calculate_imbalance - Calculate the amount of imbalance present within the
9047 * groups of a given sched_domain during load balance.
bd939f45 9048 * @env: load balance environment
1e3c88bd 9049 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9050 */
bd939f45 9051static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9052{
56cf515b
JK
9053 struct sg_lb_stats *local, *busiest;
9054
9055 local = &sds->local_stat;
56cf515b 9056 busiest = &sds->busiest_stat;
dd5feea1 9057
0b0695f2
VG
9058 if (busiest->group_type == group_misfit_task) {
9059 /* Set imbalance to allow misfit tasks to be balanced. */
9060 env->migration_type = migrate_misfit;
c63be7be 9061 env->imbalance = 1;
0b0695f2
VG
9062 return;
9063 }
9064
9065 if (busiest->group_type == group_asym_packing) {
9066 /*
9067 * In case of asym capacity, we will try to migrate all load to
9068 * the preferred CPU.
9069 */
9070 env->migration_type = migrate_task;
9071 env->imbalance = busiest->sum_h_nr_running;
9072 return;
9073 }
9074
9075 if (busiest->group_type == group_imbalanced) {
9076 /*
9077 * In the group_imb case we cannot rely on group-wide averages
9078 * to ensure CPU-load equilibrium, try to move any task to fix
9079 * the imbalance. The next load balance will take care of
9080 * balancing back the system.
9081 */
9082 env->migration_type = migrate_task;
9083 env->imbalance = 1;
490ba971
VG
9084 return;
9085 }
9086
1e3c88bd 9087 /*
0b0695f2 9088 * Try to use spare capacity of local group without overloading it or
a9723389 9089 * emptying busiest.
1e3c88bd 9090 */
0b0695f2 9091 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9092 if ((busiest->group_type > group_fully_busy) &&
9093 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9094 /*
9095 * If busiest is overloaded, try to fill spare
9096 * capacity. This might end up creating spare capacity
9097 * in busiest or busiest still being overloaded but
9098 * there is no simple way to directly compute the
9099 * amount of load to migrate in order to balance the
9100 * system.
9101 */
9102 env->migration_type = migrate_util;
9103 env->imbalance = max(local->group_capacity, local->group_util) -
9104 local->group_util;
9105
9106 /*
9107 * In some cases, the group's utilization is max or even
9108 * higher than capacity because of migrations but the
9109 * local CPU is (newly) idle. There is at least one
9110 * waiting task in this overloaded busiest group. Let's
9111 * try to pull it.
9112 */
9113 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9114 env->migration_type = migrate_task;
9115 env->imbalance = 1;
9116 }
9117
9118 return;
9119 }
9120
9121 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9122 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9123 /*
9124 * When prefer sibling, evenly spread running tasks on
9125 * groups.
9126 */
9127 env->migration_type = migrate_task;
5e23e474 9128 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9129 env->imbalance = nr_diff >> 1;
b396f523 9130 } else {
0b0695f2 9131
b396f523
MG
9132 /*
9133 * If there is no overload, we just want to even the number of
9134 * idle cpus.
9135 */
9136 env->migration_type = migrate_task;
9137 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9138 busiest->idle_cpus) >> 1);
b396f523
MG
9139 }
9140
9141 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9142 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9143 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9144 busiest->sum_nr_running, busiest->group_weight);
9145 }
b396f523 9146
fcf0553d 9147 return;
1e3c88bd
PZ
9148 }
9149
9a5d9ba6 9150 /*
0b0695f2
VG
9151 * Local is fully busy but has to take more load to relieve the
9152 * busiest group
9a5d9ba6 9153 */
0b0695f2
VG
9154 if (local->group_type < group_overloaded) {
9155 /*
9156 * Local will become overloaded so the avg_load metrics are
9157 * finally needed.
9158 */
9159
9160 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9161 local->group_capacity;
9162
9163 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9164 sds->total_capacity;
111688ca
AL
9165 /*
9166 * If the local group is more loaded than the selected
9167 * busiest group don't try to pull any tasks.
9168 */
9169 if (local->avg_load >= busiest->avg_load) {
9170 env->imbalance = 0;
9171 return;
9172 }
dd5feea1
SS
9173 }
9174
9175 /*
0b0695f2
VG
9176 * Both group are or will become overloaded and we're trying to get all
9177 * the CPUs to the average_load, so we don't want to push ourselves
9178 * above the average load, nor do we wish to reduce the max loaded CPU
9179 * below the average load. At the same time, we also don't want to
9180 * reduce the group load below the group capacity. Thus we look for
9181 * the minimum possible imbalance.
dd5feea1 9182 */
0b0695f2 9183 env->migration_type = migrate_load;
56cf515b 9184 env->imbalance = min(
0b0695f2 9185 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9186 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9187 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9188}
fab47622 9189
1e3c88bd
PZ
9190/******* find_busiest_group() helpers end here *********************/
9191
0b0695f2
VG
9192/*
9193 * Decision matrix according to the local and busiest group type:
9194 *
9195 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9196 * has_spare nr_idle balanced N/A N/A balanced balanced
9197 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9198 * misfit_task force N/A N/A N/A force force
9199 * asym_packing force force N/A N/A force force
9200 * imbalanced force force N/A N/A force force
9201 * overloaded force force N/A N/A force avg_load
9202 *
9203 * N/A : Not Applicable because already filtered while updating
9204 * statistics.
9205 * balanced : The system is balanced for these 2 groups.
9206 * force : Calculate the imbalance as load migration is probably needed.
9207 * avg_load : Only if imbalance is significant enough.
9208 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9209 * different in groups.
9210 */
9211
1e3c88bd
PZ
9212/**
9213 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9214 * if there is an imbalance.
1e3c88bd 9215 *
a3df0679 9216 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9217 * to restore balance.
9218 *
cd96891d 9219 * @env: The load balancing environment.
1e3c88bd 9220 *
e69f6186 9221 * Return: - The busiest group if imbalance exists.
1e3c88bd 9222 */
56cf515b 9223static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9224{
56cf515b 9225 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9226 struct sd_lb_stats sds;
9227
147c5fc2 9228 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9229
9230 /*
b0fb1eb4 9231 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9232 * this level.
9233 */
23f0d209 9234 update_sd_lb_stats(env, &sds);
2802bf3c 9235
f8a696f2 9236 if (sched_energy_enabled()) {
2802bf3c
MR
9237 struct root_domain *rd = env->dst_rq->rd;
9238
9239 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9240 goto out_balanced;
9241 }
9242
56cf515b
JK
9243 local = &sds.local_stat;
9244 busiest = &sds.busiest_stat;
1e3c88bd 9245
cc57aa8f 9246 /* There is no busy sibling group to pull tasks from */
0b0695f2 9247 if (!sds.busiest)
1e3c88bd
PZ
9248 goto out_balanced;
9249
0b0695f2
VG
9250 /* Misfit tasks should be dealt with regardless of the avg load */
9251 if (busiest->group_type == group_misfit_task)
9252 goto force_balance;
9253
9254 /* ASYM feature bypasses nice load balance check */
9255 if (busiest->group_type == group_asym_packing)
9256 goto force_balance;
b0432d8f 9257
866ab43e
PZ
9258 /*
9259 * If the busiest group is imbalanced the below checks don't
30ce5dab 9260 * work because they assume all things are equal, which typically
3bd37062 9261 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9262 */
caeb178c 9263 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9264 goto force_balance;
9265
cc57aa8f 9266 /*
9c58c79a 9267 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9268 * don't try and pull any tasks.
9269 */
0b0695f2 9270 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9271 goto out_balanced;
9272
cc57aa8f 9273 /*
0b0695f2
VG
9274 * When groups are overloaded, use the avg_load to ensure fairness
9275 * between tasks.
cc57aa8f 9276 */
0b0695f2
VG
9277 if (local->group_type == group_overloaded) {
9278 /*
9279 * If the local group is more loaded than the selected
9280 * busiest group don't try to pull any tasks.
9281 */
9282 if (local->avg_load >= busiest->avg_load)
9283 goto out_balanced;
9284
9285 /* XXX broken for overlapping NUMA groups */
9286 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9287 sds.total_capacity;
1e3c88bd 9288
aae6d3dd 9289 /*
0b0695f2
VG
9290 * Don't pull any tasks if this group is already above the
9291 * domain average load.
aae6d3dd 9292 */
0b0695f2 9293 if (local->avg_load >= sds.avg_load)
aae6d3dd 9294 goto out_balanced;
0b0695f2 9295
c186fafe 9296 /*
0b0695f2
VG
9297 * If the busiest group is more loaded, use imbalance_pct to be
9298 * conservative.
c186fafe 9299 */
56cf515b
JK
9300 if (100 * busiest->avg_load <=
9301 env->sd->imbalance_pct * local->avg_load)
c186fafe 9302 goto out_balanced;
aae6d3dd 9303 }
1e3c88bd 9304
0b0695f2
VG
9305 /* Try to move all excess tasks to child's sibling domain */
9306 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9307 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9308 goto force_balance;
9309
2ab4092f
VG
9310 if (busiest->group_type != group_overloaded) {
9311 if (env->idle == CPU_NOT_IDLE)
9312 /*
9313 * If the busiest group is not overloaded (and as a
9314 * result the local one too) but this CPU is already
9315 * busy, let another idle CPU try to pull task.
9316 */
9317 goto out_balanced;
9318
9319 if (busiest->group_weight > 1 &&
9320 local->idle_cpus <= (busiest->idle_cpus + 1))
9321 /*
9322 * If the busiest group is not overloaded
9323 * and there is no imbalance between this and busiest
9324 * group wrt idle CPUs, it is balanced. The imbalance
9325 * becomes significant if the diff is greater than 1
9326 * otherwise we might end up to just move the imbalance
9327 * on another group. Of course this applies only if
9328 * there is more than 1 CPU per group.
9329 */
9330 goto out_balanced;
9331
9332 if (busiest->sum_h_nr_running == 1)
9333 /*
9334 * busiest doesn't have any tasks waiting to run
9335 */
9336 goto out_balanced;
9337 }
0b0695f2 9338
fab47622 9339force_balance:
1e3c88bd 9340 /* Looks like there is an imbalance. Compute it */
bd939f45 9341 calculate_imbalance(env, &sds);
bb3485c8 9342 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9343
9344out_balanced:
bd939f45 9345 env->imbalance = 0;
1e3c88bd
PZ
9346 return NULL;
9347}
9348
9349/*
97fb7a0a 9350 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9351 */
bd939f45 9352static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9353 struct sched_group *group)
1e3c88bd
PZ
9354{
9355 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9356 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9357 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9358 int i;
9359
ae4df9d6 9360 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9361 unsigned long capacity, load, util;
9362 unsigned int nr_running;
0ec8aa00
PZ
9363 enum fbq_type rt;
9364
9365 rq = cpu_rq(i);
9366 rt = fbq_classify_rq(rq);
1e3c88bd 9367
0ec8aa00
PZ
9368 /*
9369 * We classify groups/runqueues into three groups:
9370 * - regular: there are !numa tasks
9371 * - remote: there are numa tasks that run on the 'wrong' node
9372 * - all: there is no distinction
9373 *
9374 * In order to avoid migrating ideally placed numa tasks,
9375 * ignore those when there's better options.
9376 *
9377 * If we ignore the actual busiest queue to migrate another
9378 * task, the next balance pass can still reduce the busiest
9379 * queue by moving tasks around inside the node.
9380 *
9381 * If we cannot move enough load due to this classification
9382 * the next pass will adjust the group classification and
9383 * allow migration of more tasks.
9384 *
9385 * Both cases only affect the total convergence complexity.
9386 */
9387 if (rt > env->fbq_type)
9388 continue;
9389
0b0695f2 9390 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9391 if (!nr_running)
9392 continue;
9393
9394 capacity = capacity_of(i);
9d5efe05 9395
4ad3831a
CR
9396 /*
9397 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9398 * eventually lead to active_balancing high->low capacity.
9399 * Higher per-CPU capacity is considered better than balancing
9400 * average load.
9401 */
9402 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9403 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9404 nr_running == 1)
4ad3831a
CR
9405 continue;
9406
0b0695f2
VG
9407 switch (env->migration_type) {
9408 case migrate_load:
9409 /*
b0fb1eb4
VG
9410 * When comparing with load imbalance, use cpu_load()
9411 * which is not scaled with the CPU capacity.
0b0695f2 9412 */
b0fb1eb4 9413 load = cpu_load(rq);
1e3c88bd 9414
0b0695f2
VG
9415 if (nr_running == 1 && load > env->imbalance &&
9416 !check_cpu_capacity(rq, env->sd))
9417 break;
ea67821b 9418
0b0695f2
VG
9419 /*
9420 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9421 * consider the cpu_load() scaled with the CPU
9422 * capacity, so that the load can be moved away
9423 * from the CPU that is potentially running at a
9424 * lower capacity.
0b0695f2
VG
9425 *
9426 * Thus we're looking for max(load_i / capacity_i),
9427 * crosswise multiplication to rid ourselves of the
9428 * division works out to:
9429 * load_i * capacity_j > load_j * capacity_i;
9430 * where j is our previous maximum.
9431 */
9432 if (load * busiest_capacity > busiest_load * capacity) {
9433 busiest_load = load;
9434 busiest_capacity = capacity;
9435 busiest = rq;
9436 }
9437 break;
9438
9439 case migrate_util:
9440 util = cpu_util(cpu_of(rq));
9441
c32b4308
VG
9442 /*
9443 * Don't try to pull utilization from a CPU with one
9444 * running task. Whatever its utilization, we will fail
9445 * detach the task.
9446 */
9447 if (nr_running <= 1)
9448 continue;
9449
0b0695f2
VG
9450 if (busiest_util < util) {
9451 busiest_util = util;
9452 busiest = rq;
9453 }
9454 break;
9455
9456 case migrate_task:
9457 if (busiest_nr < nr_running) {
9458 busiest_nr = nr_running;
9459 busiest = rq;
9460 }
9461 break;
9462
9463 case migrate_misfit:
9464 /*
9465 * For ASYM_CPUCAPACITY domains with misfit tasks we
9466 * simply seek the "biggest" misfit task.
9467 */
9468 if (rq->misfit_task_load > busiest_load) {
9469 busiest_load = rq->misfit_task_load;
9470 busiest = rq;
9471 }
9472
9473 break;
1e3c88bd 9474
1e3c88bd
PZ
9475 }
9476 }
9477
9478 return busiest;
9479}
9480
9481/*
9482 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9483 * so long as it is large enough.
9484 */
9485#define MAX_PINNED_INTERVAL 512
9486
46a745d9
VG
9487static inline bool
9488asym_active_balance(struct lb_env *env)
1af3ed3d 9489{
46a745d9
VG
9490 /*
9491 * ASYM_PACKING needs to force migrate tasks from busy but
9492 * lower priority CPUs in order to pack all tasks in the
9493 * highest priority CPUs.
9494 */
9495 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9496 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9497}
bd939f45 9498
46a745d9 9499static inline bool
e9b9734b
VG
9500imbalanced_active_balance(struct lb_env *env)
9501{
9502 struct sched_domain *sd = env->sd;
9503
9504 /*
9505 * The imbalanced case includes the case of pinned tasks preventing a fair
9506 * distribution of the load on the system but also the even distribution of the
9507 * threads on a system with spare capacity
9508 */
9509 if ((env->migration_type == migrate_task) &&
9510 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9511 return 1;
9512
9513 return 0;
9514}
9515
9516static int need_active_balance(struct lb_env *env)
46a745d9
VG
9517{
9518 struct sched_domain *sd = env->sd;
532cb4c4 9519
46a745d9
VG
9520 if (asym_active_balance(env))
9521 return 1;
1af3ed3d 9522
e9b9734b
VG
9523 if (imbalanced_active_balance(env))
9524 return 1;
9525
1aaf90a4
VG
9526 /*
9527 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9528 * It's worth migrating the task if the src_cpu's capacity is reduced
9529 * because of other sched_class or IRQs if more capacity stays
9530 * available on dst_cpu.
9531 */
9532 if ((env->idle != CPU_NOT_IDLE) &&
9533 (env->src_rq->cfs.h_nr_running == 1)) {
9534 if ((check_cpu_capacity(env->src_rq, sd)) &&
9535 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9536 return 1;
9537 }
9538
0b0695f2 9539 if (env->migration_type == migrate_misfit)
cad68e55
MR
9540 return 1;
9541
46a745d9
VG
9542 return 0;
9543}
9544
969c7921
TH
9545static int active_load_balance_cpu_stop(void *data);
9546
23f0d209
JK
9547static int should_we_balance(struct lb_env *env)
9548{
9549 struct sched_group *sg = env->sd->groups;
64297f2b 9550 int cpu;
23f0d209 9551
024c9d2f
PZ
9552 /*
9553 * Ensure the balancing environment is consistent; can happen
9554 * when the softirq triggers 'during' hotplug.
9555 */
9556 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9557 return 0;
9558
23f0d209 9559 /*
97fb7a0a 9560 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9561 * to do the newly idle load balance.
9562 */
9563 if (env->idle == CPU_NEWLY_IDLE)
9564 return 1;
9565
97fb7a0a 9566 /* Try to find first idle CPU */
e5c14b1f 9567 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9568 if (!idle_cpu(cpu))
23f0d209
JK
9569 continue;
9570
64297f2b
PW
9571 /* Are we the first idle CPU? */
9572 return cpu == env->dst_cpu;
23f0d209
JK
9573 }
9574
64297f2b
PW
9575 /* Are we the first CPU of this group ? */
9576 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9577}
9578
1e3c88bd
PZ
9579/*
9580 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9581 * tasks if there is an imbalance.
9582 */
9583static int load_balance(int this_cpu, struct rq *this_rq,
9584 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9585 int *continue_balancing)
1e3c88bd 9586{
88b8dac0 9587 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9588 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9589 struct sched_group *group;
1e3c88bd 9590 struct rq *busiest;
8a8c69c3 9591 struct rq_flags rf;
4ba29684 9592 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9593
8e45cb54
PZ
9594 struct lb_env env = {
9595 .sd = sd,
ddcdf6e7
PZ
9596 .dst_cpu = this_cpu,
9597 .dst_rq = this_rq,
ae4df9d6 9598 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9599 .idle = idle,
eb95308e 9600 .loop_break = sched_nr_migrate_break,
b9403130 9601 .cpus = cpus,
0ec8aa00 9602 .fbq_type = all,
163122b7 9603 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9604 };
9605
65a4433a 9606 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9607
ae92882e 9608 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9609
9610redo:
23f0d209
JK
9611 if (!should_we_balance(&env)) {
9612 *continue_balancing = 0;
1e3c88bd 9613 goto out_balanced;
23f0d209 9614 }
1e3c88bd 9615
23f0d209 9616 group = find_busiest_group(&env);
1e3c88bd 9617 if (!group) {
ae92882e 9618 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9619 goto out_balanced;
9620 }
9621
b9403130 9622 busiest = find_busiest_queue(&env, group);
1e3c88bd 9623 if (!busiest) {
ae92882e 9624 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9625 goto out_balanced;
9626 }
9627
78feefc5 9628 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9629
ae92882e 9630 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9631
1aaf90a4
VG
9632 env.src_cpu = busiest->cpu;
9633 env.src_rq = busiest;
9634
1e3c88bd 9635 ld_moved = 0;
8a41dfcd
VG
9636 /* Clear this flag as soon as we find a pullable task */
9637 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9638 if (busiest->nr_running > 1) {
9639 /*
9640 * Attempt to move tasks. If find_busiest_group has found
9641 * an imbalance but busiest->nr_running <= 1, the group is
9642 * still unbalanced. ld_moved simply stays zero, so it is
9643 * correctly treated as an imbalance.
9644 */
c82513e5 9645 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9646
5d6523eb 9647more_balance:
8a8c69c3 9648 rq_lock_irqsave(busiest, &rf);
3bed5e21 9649 update_rq_clock(busiest);
88b8dac0
SV
9650
9651 /*
9652 * cur_ld_moved - load moved in current iteration
9653 * ld_moved - cumulative load moved across iterations
9654 */
163122b7 9655 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9656
9657 /*
163122b7
KT
9658 * We've detached some tasks from busiest_rq. Every
9659 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9660 * unlock busiest->lock, and we are able to be sure
9661 * that nobody can manipulate the tasks in parallel.
9662 * See task_rq_lock() family for the details.
1e3c88bd 9663 */
163122b7 9664
8a8c69c3 9665 rq_unlock(busiest, &rf);
163122b7
KT
9666
9667 if (cur_ld_moved) {
9668 attach_tasks(&env);
9669 ld_moved += cur_ld_moved;
9670 }
9671
8a8c69c3 9672 local_irq_restore(rf.flags);
88b8dac0 9673
f1cd0858
JK
9674 if (env.flags & LBF_NEED_BREAK) {
9675 env.flags &= ~LBF_NEED_BREAK;
9676 goto more_balance;
9677 }
9678
88b8dac0
SV
9679 /*
9680 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9681 * us and move them to an alternate dst_cpu in our sched_group
9682 * where they can run. The upper limit on how many times we
97fb7a0a 9683 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9684 * sched_group.
9685 *
9686 * This changes load balance semantics a bit on who can move
9687 * load to a given_cpu. In addition to the given_cpu itself
9688 * (or a ilb_cpu acting on its behalf where given_cpu is
9689 * nohz-idle), we now have balance_cpu in a position to move
9690 * load to given_cpu. In rare situations, this may cause
9691 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9692 * _independently_ and at _same_ time to move some load to
9693 * given_cpu) causing exceess load to be moved to given_cpu.
9694 * This however should not happen so much in practice and
9695 * moreover subsequent load balance cycles should correct the
9696 * excess load moved.
9697 */
6263322c 9698 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9699
97fb7a0a 9700 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9701 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9702
78feefc5 9703 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9704 env.dst_cpu = env.new_dst_cpu;
6263322c 9705 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9706 env.loop = 0;
9707 env.loop_break = sched_nr_migrate_break;
e02e60c1 9708
88b8dac0
SV
9709 /*
9710 * Go back to "more_balance" rather than "redo" since we
9711 * need to continue with same src_cpu.
9712 */
9713 goto more_balance;
9714 }
1e3c88bd 9715
6263322c
PZ
9716 /*
9717 * We failed to reach balance because of affinity.
9718 */
9719 if (sd_parent) {
63b2ca30 9720 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9721
afdeee05 9722 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9723 *group_imbalance = 1;
6263322c
PZ
9724 }
9725
1e3c88bd 9726 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9727 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9728 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9729 /*
9730 * Attempting to continue load balancing at the current
9731 * sched_domain level only makes sense if there are
9732 * active CPUs remaining as possible busiest CPUs to
9733 * pull load from which are not contained within the
9734 * destination group that is receiving any migrated
9735 * load.
9736 */
9737 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9738 env.loop = 0;
9739 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9740 goto redo;
bbf18b19 9741 }
afdeee05 9742 goto out_all_pinned;
1e3c88bd
PZ
9743 }
9744 }
9745
9746 if (!ld_moved) {
ae92882e 9747 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9748 /*
9749 * Increment the failure counter only on periodic balance.
9750 * We do not want newidle balance, which can be very
9751 * frequent, pollute the failure counter causing
9752 * excessive cache_hot migrations and active balances.
9753 */
9754 if (idle != CPU_NEWLY_IDLE)
9755 sd->nr_balance_failed++;
1e3c88bd 9756
bd939f45 9757 if (need_active_balance(&env)) {
8a8c69c3
PZ
9758 unsigned long flags;
9759
1e3c88bd
PZ
9760 raw_spin_lock_irqsave(&busiest->lock, flags);
9761
97fb7a0a
IM
9762 /*
9763 * Don't kick the active_load_balance_cpu_stop,
9764 * if the curr task on busiest CPU can't be
9765 * moved to this_cpu:
1e3c88bd 9766 */
3bd37062 9767 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9768 raw_spin_unlock_irqrestore(&busiest->lock,
9769 flags);
1e3c88bd
PZ
9770 goto out_one_pinned;
9771 }
9772
8a41dfcd
VG
9773 /* Record that we found at least one task that could run on this_cpu */
9774 env.flags &= ~LBF_ALL_PINNED;
9775
969c7921
TH
9776 /*
9777 * ->active_balance synchronizes accesses to
9778 * ->active_balance_work. Once set, it's cleared
9779 * only after active load balance is finished.
9780 */
1e3c88bd
PZ
9781 if (!busiest->active_balance) {
9782 busiest->active_balance = 1;
9783 busiest->push_cpu = this_cpu;
9784 active_balance = 1;
9785 }
9786 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9787
bd939f45 9788 if (active_balance) {
969c7921
TH
9789 stop_one_cpu_nowait(cpu_of(busiest),
9790 active_load_balance_cpu_stop, busiest,
9791 &busiest->active_balance_work);
bd939f45 9792 }
1e3c88bd 9793
d02c0711 9794 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9795 sd->nr_balance_failed = sd->cache_nice_tries+1;
9796 }
e9b9734b 9797 } else {
1e3c88bd 9798 sd->nr_balance_failed = 0;
e9b9734b 9799 }
1e3c88bd 9800
e9b9734b 9801 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
9802 /* We were unbalanced, so reset the balancing interval */
9803 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
9804 }
9805
1e3c88bd
PZ
9806 goto out;
9807
9808out_balanced:
afdeee05
VG
9809 /*
9810 * We reach balance although we may have faced some affinity
f6cad8df
VG
9811 * constraints. Clear the imbalance flag only if other tasks got
9812 * a chance to move and fix the imbalance.
afdeee05 9813 */
f6cad8df 9814 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9815 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9816
9817 if (*group_imbalance)
9818 *group_imbalance = 0;
9819 }
9820
9821out_all_pinned:
9822 /*
9823 * We reach balance because all tasks are pinned at this level so
9824 * we can't migrate them. Let the imbalance flag set so parent level
9825 * can try to migrate them.
9826 */
ae92882e 9827 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9828
9829 sd->nr_balance_failed = 0;
9830
9831out_one_pinned:
3f130a37
VS
9832 ld_moved = 0;
9833
9834 /*
5ba553ef
PZ
9835 * newidle_balance() disregards balance intervals, so we could
9836 * repeatedly reach this code, which would lead to balance_interval
9837 * skyrocketting in a short amount of time. Skip the balance_interval
9838 * increase logic to avoid that.
3f130a37
VS
9839 */
9840 if (env.idle == CPU_NEWLY_IDLE)
9841 goto out;
9842
1e3c88bd 9843 /* tune up the balancing interval */
47b7aee1
VS
9844 if ((env.flags & LBF_ALL_PINNED &&
9845 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9846 sd->balance_interval < sd->max_interval)
1e3c88bd 9847 sd->balance_interval *= 2;
1e3c88bd 9848out:
1e3c88bd
PZ
9849 return ld_moved;
9850}
9851
52a08ef1
JL
9852static inline unsigned long
9853get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9854{
9855 unsigned long interval = sd->balance_interval;
9856
9857 if (cpu_busy)
9858 interval *= sd->busy_factor;
9859
9860 /* scale ms to jiffies */
9861 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9862
9863 /*
9864 * Reduce likelihood of busy balancing at higher domains racing with
9865 * balancing at lower domains by preventing their balancing periods
9866 * from being multiples of each other.
9867 */
9868 if (cpu_busy)
9869 interval -= 1;
9870
52a08ef1
JL
9871 interval = clamp(interval, 1UL, max_load_balance_interval);
9872
9873 return interval;
9874}
9875
9876static inline void
31851a98 9877update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9878{
9879 unsigned long interval, next;
9880
31851a98
LY
9881 /* used by idle balance, so cpu_busy = 0 */
9882 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9883 next = sd->last_balance + interval;
9884
9885 if (time_after(*next_balance, next))
9886 *next_balance = next;
9887}
9888
1e3c88bd 9889/*
97fb7a0a 9890 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9891 * running tasks off the busiest CPU onto idle CPUs. It requires at
9892 * least 1 task to be running on each physical CPU where possible, and
9893 * avoids physical / logical imbalances.
1e3c88bd 9894 */
969c7921 9895static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9896{
969c7921
TH
9897 struct rq *busiest_rq = data;
9898 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9899 int target_cpu = busiest_rq->push_cpu;
969c7921 9900 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9901 struct sched_domain *sd;
e5673f28 9902 struct task_struct *p = NULL;
8a8c69c3 9903 struct rq_flags rf;
969c7921 9904
8a8c69c3 9905 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9906 /*
9907 * Between queueing the stop-work and running it is a hole in which
9908 * CPUs can become inactive. We should not move tasks from or to
9909 * inactive CPUs.
9910 */
9911 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9912 goto out_unlock;
969c7921 9913
97fb7a0a 9914 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9915 if (unlikely(busiest_cpu != smp_processor_id() ||
9916 !busiest_rq->active_balance))
9917 goto out_unlock;
1e3c88bd
PZ
9918
9919 /* Is there any task to move? */
9920 if (busiest_rq->nr_running <= 1)
969c7921 9921 goto out_unlock;
1e3c88bd
PZ
9922
9923 /*
9924 * This condition is "impossible", if it occurs
9925 * we need to fix it. Originally reported by
97fb7a0a 9926 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9927 */
9928 BUG_ON(busiest_rq == target_rq);
9929
1e3c88bd 9930 /* Search for an sd spanning us and the target CPU. */
dce840a0 9931 rcu_read_lock();
1e3c88bd 9932 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9933 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9934 break;
1e3c88bd
PZ
9935 }
9936
9937 if (likely(sd)) {
8e45cb54
PZ
9938 struct lb_env env = {
9939 .sd = sd,
ddcdf6e7
PZ
9940 .dst_cpu = target_cpu,
9941 .dst_rq = target_rq,
9942 .src_cpu = busiest_rq->cpu,
9943 .src_rq = busiest_rq,
8e45cb54 9944 .idle = CPU_IDLE,
65a4433a
JH
9945 /*
9946 * can_migrate_task() doesn't need to compute new_dst_cpu
9947 * for active balancing. Since we have CPU_IDLE, but no
9948 * @dst_grpmask we need to make that test go away with lying
9949 * about DST_PINNED.
9950 */
9951 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9952 };
9953
ae92882e 9954 schedstat_inc(sd->alb_count);
3bed5e21 9955 update_rq_clock(busiest_rq);
1e3c88bd 9956
e5673f28 9957 p = detach_one_task(&env);
d02c0711 9958 if (p) {
ae92882e 9959 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9960 /* Active balancing done, reset the failure counter. */
9961 sd->nr_balance_failed = 0;
9962 } else {
ae92882e 9963 schedstat_inc(sd->alb_failed);
d02c0711 9964 }
1e3c88bd 9965 }
dce840a0 9966 rcu_read_unlock();
969c7921
TH
9967out_unlock:
9968 busiest_rq->active_balance = 0;
8a8c69c3 9969 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9970
9971 if (p)
9972 attach_one_task(target_rq, p);
9973
9974 local_irq_enable();
9975
969c7921 9976 return 0;
1e3c88bd
PZ
9977}
9978
af3fe03c
PZ
9979static DEFINE_SPINLOCK(balancing);
9980
9981/*
9982 * Scale the max load_balance interval with the number of CPUs in the system.
9983 * This trades load-balance latency on larger machines for less cross talk.
9984 */
9985void update_max_interval(void)
9986{
9987 max_load_balance_interval = HZ*num_online_cpus()/10;
9988}
9989
9990/*
9991 * It checks each scheduling domain to see if it is due to be balanced,
9992 * and initiates a balancing operation if so.
9993 *
9994 * Balancing parameters are set up in init_sched_domains.
9995 */
9996static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9997{
9998 int continue_balancing = 1;
9999 int cpu = rq->cpu;
323af6de 10000 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10001 unsigned long interval;
10002 struct sched_domain *sd;
10003 /* Earliest time when we have to do rebalance again */
10004 unsigned long next_balance = jiffies + 60*HZ;
10005 int update_next_balance = 0;
10006 int need_serialize, need_decay = 0;
10007 u64 max_cost = 0;
10008
10009 rcu_read_lock();
10010 for_each_domain(cpu, sd) {
10011 /*
10012 * Decay the newidle max times here because this is a regular
10013 * visit to all the domains. Decay ~1% per second.
10014 */
10015 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10016 sd->max_newidle_lb_cost =
10017 (sd->max_newidle_lb_cost * 253) / 256;
10018 sd->next_decay_max_lb_cost = jiffies + HZ;
10019 need_decay = 1;
10020 }
10021 max_cost += sd->max_newidle_lb_cost;
10022
af3fe03c
PZ
10023 /*
10024 * Stop the load balance at this level. There is another
10025 * CPU in our sched group which is doing load balancing more
10026 * actively.
10027 */
10028 if (!continue_balancing) {
10029 if (need_decay)
10030 continue;
10031 break;
10032 }
10033
323af6de 10034 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10035
10036 need_serialize = sd->flags & SD_SERIALIZE;
10037 if (need_serialize) {
10038 if (!spin_trylock(&balancing))
10039 goto out;
10040 }
10041
10042 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10043 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10044 /*
10045 * The LBF_DST_PINNED logic could have changed
10046 * env->dst_cpu, so we can't know our idle
10047 * state even if we migrated tasks. Update it.
10048 */
10049 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10050 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10051 }
10052 sd->last_balance = jiffies;
323af6de 10053 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10054 }
10055 if (need_serialize)
10056 spin_unlock(&balancing);
10057out:
10058 if (time_after(next_balance, sd->last_balance + interval)) {
10059 next_balance = sd->last_balance + interval;
10060 update_next_balance = 1;
10061 }
10062 }
10063 if (need_decay) {
10064 /*
10065 * Ensure the rq-wide value also decays but keep it at a
10066 * reasonable floor to avoid funnies with rq->avg_idle.
10067 */
10068 rq->max_idle_balance_cost =
10069 max((u64)sysctl_sched_migration_cost, max_cost);
10070 }
10071 rcu_read_unlock();
10072
10073 /*
10074 * next_balance will be updated only when there is a need.
10075 * When the cpu is attached to null domain for ex, it will not be
10076 * updated.
10077 */
7a82e5f5 10078 if (likely(update_next_balance))
af3fe03c
PZ
10079 rq->next_balance = next_balance;
10080
af3fe03c
PZ
10081}
10082
d987fc7f
MG
10083static inline int on_null_domain(struct rq *rq)
10084{
10085 return unlikely(!rcu_dereference_sched(rq->sd));
10086}
10087
3451d024 10088#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10089/*
10090 * idle load balancing details
83cd4fe2
VP
10091 * - When one of the busy CPUs notice that there may be an idle rebalancing
10092 * needed, they will kick the idle load balancer, which then does idle
10093 * load balancing for all the idle CPUs.
9b019acb
NP
10094 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10095 * anywhere yet.
83cd4fe2 10096 */
1e3c88bd 10097
3dd0337d 10098static inline int find_new_ilb(void)
1e3c88bd 10099{
9b019acb 10100 int ilb;
1e3c88bd 10101
9b019acb
NP
10102 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10103 housekeeping_cpumask(HK_FLAG_MISC)) {
45da7a2b
PZ
10104
10105 if (ilb == smp_processor_id())
10106 continue;
10107
9b019acb
NP
10108 if (idle_cpu(ilb))
10109 return ilb;
10110 }
786d6dc7
SS
10111
10112 return nr_cpu_ids;
1e3c88bd 10113}
1e3c88bd 10114
83cd4fe2 10115/*
9b019acb
NP
10116 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10117 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10118 */
a4064fb6 10119static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10120{
10121 int ilb_cpu;
10122
3ea2f097
VG
10123 /*
10124 * Increase nohz.next_balance only when if full ilb is triggered but
10125 * not if we only update stats.
10126 */
10127 if (flags & NOHZ_BALANCE_KICK)
10128 nohz.next_balance = jiffies+1;
83cd4fe2 10129
3dd0337d 10130 ilb_cpu = find_new_ilb();
83cd4fe2 10131
0b005cf5
SS
10132 if (ilb_cpu >= nr_cpu_ids)
10133 return;
83cd4fe2 10134
19a1f5ec
PZ
10135 /*
10136 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10137 * the first flag owns it; cleared by nohz_csd_func().
10138 */
a4064fb6 10139 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10140 if (flags & NOHZ_KICK_MASK)
1c792db7 10141 return;
4550487a 10142
1c792db7 10143 /*
90b5363a 10144 * This way we generate an IPI on the target CPU which
1c792db7
SS
10145 * is idle. And the softirq performing nohz idle load balance
10146 * will be run before returning from the IPI.
10147 */
90b5363a 10148 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10149}
10150
10151/*
9f132742
VS
10152 * Current decision point for kicking the idle load balancer in the presence
10153 * of idle CPUs in the system.
4550487a
PZ
10154 */
10155static void nohz_balancer_kick(struct rq *rq)
10156{
10157 unsigned long now = jiffies;
10158 struct sched_domain_shared *sds;
10159 struct sched_domain *sd;
10160 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10161 unsigned int flags = 0;
4550487a
PZ
10162
10163 if (unlikely(rq->idle_balance))
10164 return;
10165
10166 /*
10167 * We may be recently in ticked or tickless idle mode. At the first
10168 * busy tick after returning from idle, we will update the busy stats.
10169 */
00357f5e 10170 nohz_balance_exit_idle(rq);
4550487a
PZ
10171
10172 /*
10173 * None are in tickless mode and hence no need for NOHZ idle load
10174 * balancing.
10175 */
10176 if (likely(!atomic_read(&nohz.nr_cpus)))
10177 return;
10178
f643ea22
VG
10179 if (READ_ONCE(nohz.has_blocked) &&
10180 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10181 flags = NOHZ_STATS_KICK;
10182
4550487a 10183 if (time_before(now, nohz.next_balance))
a4064fb6 10184 goto out;
4550487a 10185
a0fe2cf0 10186 if (rq->nr_running >= 2) {
a4064fb6 10187 flags = NOHZ_KICK_MASK;
4550487a
PZ
10188 goto out;
10189 }
10190
10191 rcu_read_lock();
4550487a
PZ
10192
10193 sd = rcu_dereference(rq->sd);
10194 if (sd) {
e25a7a94
VS
10195 /*
10196 * If there's a CFS task and the current CPU has reduced
10197 * capacity; kick the ILB to see if there's a better CPU to run
10198 * on.
10199 */
10200 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10201 flags = NOHZ_KICK_MASK;
4550487a
PZ
10202 goto unlock;
10203 }
10204 }
10205
011b27bb 10206 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10207 if (sd) {
b9a7b883
VS
10208 /*
10209 * When ASYM_PACKING; see if there's a more preferred CPU
10210 * currently idle; in which case, kick the ILB to move tasks
10211 * around.
10212 */
7edab78d 10213 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10214 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10215 flags = NOHZ_KICK_MASK;
4550487a
PZ
10216 goto unlock;
10217 }
10218 }
10219 }
b9a7b883 10220
a0fe2cf0
VS
10221 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10222 if (sd) {
10223 /*
10224 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10225 * to run the misfit task on.
10226 */
10227 if (check_misfit_status(rq, sd)) {
10228 flags = NOHZ_KICK_MASK;
10229 goto unlock;
10230 }
b9a7b883
VS
10231
10232 /*
10233 * For asymmetric systems, we do not want to nicely balance
10234 * cache use, instead we want to embrace asymmetry and only
10235 * ensure tasks have enough CPU capacity.
10236 *
10237 * Skip the LLC logic because it's not relevant in that case.
10238 */
10239 goto unlock;
a0fe2cf0
VS
10240 }
10241
b9a7b883
VS
10242 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10243 if (sds) {
e25a7a94 10244 /*
b9a7b883
VS
10245 * If there is an imbalance between LLC domains (IOW we could
10246 * increase the overall cache use), we need some less-loaded LLC
10247 * domain to pull some load. Likewise, we may need to spread
10248 * load within the current LLC domain (e.g. packed SMT cores but
10249 * other CPUs are idle). We can't really know from here how busy
10250 * the others are - so just get a nohz balance going if it looks
10251 * like this LLC domain has tasks we could move.
e25a7a94 10252 */
b9a7b883
VS
10253 nr_busy = atomic_read(&sds->nr_busy_cpus);
10254 if (nr_busy > 1) {
10255 flags = NOHZ_KICK_MASK;
10256 goto unlock;
4550487a
PZ
10257 }
10258 }
10259unlock:
10260 rcu_read_unlock();
10261out:
a4064fb6
PZ
10262 if (flags)
10263 kick_ilb(flags);
83cd4fe2
VP
10264}
10265
00357f5e 10266static void set_cpu_sd_state_busy(int cpu)
71325960 10267{
00357f5e 10268 struct sched_domain *sd;
a22e47a4 10269
00357f5e
PZ
10270 rcu_read_lock();
10271 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10272
00357f5e
PZ
10273 if (!sd || !sd->nohz_idle)
10274 goto unlock;
10275 sd->nohz_idle = 0;
10276
10277 atomic_inc(&sd->shared->nr_busy_cpus);
10278unlock:
10279 rcu_read_unlock();
71325960
SS
10280}
10281
00357f5e
PZ
10282void nohz_balance_exit_idle(struct rq *rq)
10283{
10284 SCHED_WARN_ON(rq != this_rq());
10285
10286 if (likely(!rq->nohz_tick_stopped))
10287 return;
10288
10289 rq->nohz_tick_stopped = 0;
10290 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10291 atomic_dec(&nohz.nr_cpus);
10292
10293 set_cpu_sd_state_busy(rq->cpu);
10294}
10295
10296static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10297{
10298 struct sched_domain *sd;
69e1e811 10299
69e1e811 10300 rcu_read_lock();
0e369d75 10301 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10302
10303 if (!sd || sd->nohz_idle)
10304 goto unlock;
10305 sd->nohz_idle = 1;
10306
0e369d75 10307 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10308unlock:
69e1e811
SS
10309 rcu_read_unlock();
10310}
10311
1e3c88bd 10312/*
97fb7a0a 10313 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10314 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10315 */
c1cc017c 10316void nohz_balance_enter_idle(int cpu)
1e3c88bd 10317{
00357f5e
PZ
10318 struct rq *rq = cpu_rq(cpu);
10319
10320 SCHED_WARN_ON(cpu != smp_processor_id());
10321
97fb7a0a 10322 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10323 if (!cpu_active(cpu))
10324 return;
10325
387bc8b5 10326 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10327 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10328 return;
10329
f643ea22
VG
10330 /*
10331 * Can be set safely without rq->lock held
10332 * If a clear happens, it will have evaluated last additions because
10333 * rq->lock is held during the check and the clear
10334 */
10335 rq->has_blocked_load = 1;
10336
10337 /*
10338 * The tick is still stopped but load could have been added in the
10339 * meantime. We set the nohz.has_blocked flag to trig a check of the
10340 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10341 * of nohz.has_blocked can only happen after checking the new load
10342 */
00357f5e 10343 if (rq->nohz_tick_stopped)
f643ea22 10344 goto out;
1e3c88bd 10345
97fb7a0a 10346 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10347 if (on_null_domain(rq))
d987fc7f
MG
10348 return;
10349
00357f5e
PZ
10350 rq->nohz_tick_stopped = 1;
10351
c1cc017c
AS
10352 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10353 atomic_inc(&nohz.nr_cpus);
00357f5e 10354
f643ea22
VG
10355 /*
10356 * Ensures that if nohz_idle_balance() fails to observe our
10357 * @idle_cpus_mask store, it must observe the @has_blocked
10358 * store.
10359 */
10360 smp_mb__after_atomic();
10361
00357f5e 10362 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10363
10364out:
10365 /*
10366 * Each time a cpu enter idle, we assume that it has blocked load and
10367 * enable the periodic update of the load of idle cpus
10368 */
10369 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10370}
1e3c88bd 10371
1e3c88bd 10372/*
31e77c93
VG
10373 * Internal function that runs load balance for all idle cpus. The load balance
10374 * can be a simple update of blocked load or a complete load balance with
10375 * tasks movement depending of flags.
1e3c88bd 10376 */
ab2dde5e 10377static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
31e77c93 10378 enum cpu_idle_type idle)
83cd4fe2 10379{
c5afb6a8 10380 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10381 unsigned long now = jiffies;
10382 unsigned long next_balance = now + 60*HZ;
f643ea22 10383 bool has_blocked_load = false;
c5afb6a8 10384 int update_next_balance = 0;
b7031a02 10385 int this_cpu = this_rq->cpu;
b7031a02
PZ
10386 int balance_cpu;
10387 struct rq *rq;
83cd4fe2 10388
b7031a02 10389 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10390
f643ea22
VG
10391 /*
10392 * We assume there will be no idle load after this update and clear
10393 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10394 * set the has_blocked flag and trig another update of idle load.
10395 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10396 * setting the flag, we are sure to not clear the state and not
10397 * check the load of an idle cpu.
10398 */
10399 WRITE_ONCE(nohz.has_blocked, 0);
10400
10401 /*
10402 * Ensures that if we miss the CPU, we must see the has_blocked
10403 * store from nohz_balance_enter_idle().
10404 */
10405 smp_mb();
10406
7a82e5f5
VG
10407 /*
10408 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10409 * chance for other idle cpu to pull load.
10410 */
10411 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10412 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10413 continue;
10414
10415 /*
97fb7a0a
IM
10416 * If this CPU gets work to do, stop the load balancing
10417 * work being done for other CPUs. Next load
83cd4fe2
VP
10418 * balancing owner will pick it up.
10419 */
f643ea22
VG
10420 if (need_resched()) {
10421 has_blocked_load = true;
10422 goto abort;
10423 }
83cd4fe2 10424
5ed4f1d9
VG
10425 rq = cpu_rq(balance_cpu);
10426
64f84f27 10427 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10428
ed61bbc6
TC
10429 /*
10430 * If time for next balance is due,
10431 * do the balance.
10432 */
10433 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10434 struct rq_flags rf;
10435
31e77c93 10436 rq_lock_irqsave(rq, &rf);
ed61bbc6 10437 update_rq_clock(rq);
31e77c93 10438 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10439
b7031a02
PZ
10440 if (flags & NOHZ_BALANCE_KICK)
10441 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10442 }
83cd4fe2 10443
c5afb6a8
VG
10444 if (time_after(next_balance, rq->next_balance)) {
10445 next_balance = rq->next_balance;
10446 update_next_balance = 1;
10447 }
83cd4fe2 10448 }
c5afb6a8 10449
3ea2f097
VG
10450 /*
10451 * next_balance will be updated only when there is a need.
10452 * When the CPU is attached to null domain for ex, it will not be
10453 * updated.
10454 */
10455 if (likely(update_next_balance))
10456 nohz.next_balance = next_balance;
10457
f643ea22
VG
10458 WRITE_ONCE(nohz.next_blocked,
10459 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10460
10461abort:
10462 /* There is still blocked load, enable periodic update */
10463 if (has_blocked_load)
10464 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
10465}
10466
10467/*
10468 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10469 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10470 */
10471static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10472{
19a1f5ec 10473 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10474
19a1f5ec 10475 if (!flags)
31e77c93
VG
10476 return false;
10477
19a1f5ec 10478 this_rq->nohz_idle_balance = 0;
31e77c93 10479
19a1f5ec 10480 if (idle != CPU_IDLE)
31e77c93
VG
10481 return false;
10482
10483 _nohz_idle_balance(this_rq, flags, idle);
10484
b7031a02 10485 return true;
83cd4fe2 10486}
31e77c93 10487
c6f88654
VG
10488/*
10489 * Check if we need to run the ILB for updating blocked load before entering
10490 * idle state.
10491 */
10492void nohz_run_idle_balance(int cpu)
10493{
10494 unsigned int flags;
10495
10496 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10497
10498 /*
10499 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10500 * (ie NOHZ_STATS_KICK set) and will do the same.
10501 */
10502 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10503 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10504}
10505
31e77c93
VG
10506static void nohz_newidle_balance(struct rq *this_rq)
10507{
10508 int this_cpu = this_rq->cpu;
10509
10510 /*
10511 * This CPU doesn't want to be disturbed by scheduler
10512 * housekeeping
10513 */
10514 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10515 return;
10516
10517 /* Will wake up very soon. No time for doing anything else*/
10518 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10519 return;
10520
10521 /* Don't need to update blocked load of idle CPUs*/
10522 if (!READ_ONCE(nohz.has_blocked) ||
10523 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10524 return;
10525
31e77c93 10526 /*
c6f88654
VG
10527 * Set the need to trigger ILB in order to update blocked load
10528 * before entering idle state.
31e77c93 10529 */
c6f88654 10530 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
10531}
10532
dd707247
PZ
10533#else /* !CONFIG_NO_HZ_COMMON */
10534static inline void nohz_balancer_kick(struct rq *rq) { }
10535
31e77c93 10536static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10537{
10538 return false;
10539}
31e77c93
VG
10540
10541static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10542#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10543
47ea5412 10544/*
5b78f2dc 10545 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10546 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10547 *
10548 * Returns:
10549 * < 0 - we released the lock and there are !fair tasks present
10550 * 0 - failed, no new tasks
10551 * > 0 - success, new (fair) tasks present
47ea5412 10552 */
d91cecc1 10553static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10554{
10555 unsigned long next_balance = jiffies + HZ;
10556 int this_cpu = this_rq->cpu;
10557 struct sched_domain *sd;
10558 int pulled_task = 0;
10559 u64 curr_cost = 0;
10560
5ba553ef 10561 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10562 /*
10563 * We must set idle_stamp _before_ calling idle_balance(), such that we
10564 * measure the duration of idle_balance() as idle time.
10565 */
10566 this_rq->idle_stamp = rq_clock(this_rq);
10567
10568 /*
10569 * Do not pull tasks towards !active CPUs...
10570 */
10571 if (!cpu_active(this_cpu))
10572 return 0;
10573
10574 /*
10575 * This is OK, because current is on_cpu, which avoids it being picked
10576 * for load-balance and preemption/IRQs are still disabled avoiding
10577 * further scheduler activity on it and we're being very careful to
10578 * re-start the picking loop.
10579 */
10580 rq_unpin_lock(this_rq, rf);
10581
10582 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10583 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10584
47ea5412
PZ
10585 rcu_read_lock();
10586 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10587 if (sd)
10588 update_next_balance(sd, &next_balance);
10589 rcu_read_unlock();
10590
10591 goto out;
10592 }
10593
10594 raw_spin_unlock(&this_rq->lock);
10595
10596 update_blocked_averages(this_cpu);
10597 rcu_read_lock();
10598 for_each_domain(this_cpu, sd) {
10599 int continue_balancing = 1;
10600 u64 t0, domain_cost;
10601
47ea5412
PZ
10602 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10603 update_next_balance(sd, &next_balance);
10604 break;
10605 }
10606
10607 if (sd->flags & SD_BALANCE_NEWIDLE) {
10608 t0 = sched_clock_cpu(this_cpu);
10609
10610 pulled_task = load_balance(this_cpu, this_rq,
10611 sd, CPU_NEWLY_IDLE,
10612 &continue_balancing);
10613
10614 domain_cost = sched_clock_cpu(this_cpu) - t0;
10615 if (domain_cost > sd->max_newidle_lb_cost)
10616 sd->max_newidle_lb_cost = domain_cost;
10617
10618 curr_cost += domain_cost;
10619 }
10620
10621 update_next_balance(sd, &next_balance);
10622
10623 /*
10624 * Stop searching for tasks to pull if there are
10625 * now runnable tasks on this rq.
10626 */
10627 if (pulled_task || this_rq->nr_running > 0)
10628 break;
10629 }
10630 rcu_read_unlock();
10631
10632 raw_spin_lock(&this_rq->lock);
10633
10634 if (curr_cost > this_rq->max_idle_balance_cost)
10635 this_rq->max_idle_balance_cost = curr_cost;
10636
10637 /*
10638 * While browsing the domains, we released the rq lock, a task could
10639 * have been enqueued in the meantime. Since we're not going idle,
10640 * pretend we pulled a task.
10641 */
10642 if (this_rq->cfs.h_nr_running && !pulled_task)
10643 pulled_task = 1;
10644
47ea5412
PZ
10645 /* Is there a task of a high priority class? */
10646 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10647 pulled_task = -1;
10648
6553fc18
VG
10649out:
10650 /* Move the next balance forward */
10651 if (time_after(this_rq->next_balance, next_balance))
10652 this_rq->next_balance = next_balance;
10653
47ea5412
PZ
10654 if (pulled_task)
10655 this_rq->idle_stamp = 0;
0826530d
VG
10656 else
10657 nohz_newidle_balance(this_rq);
47ea5412
PZ
10658
10659 rq_repin_lock(this_rq, rf);
10660
10661 return pulled_task;
10662}
10663
83cd4fe2
VP
10664/*
10665 * run_rebalance_domains is triggered when needed from the scheduler tick.
10666 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10667 */
0766f788 10668static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10669{
208cb16b 10670 struct rq *this_rq = this_rq();
6eb57e0d 10671 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10672 CPU_IDLE : CPU_NOT_IDLE;
10673
1e3c88bd 10674 /*
97fb7a0a
IM
10675 * If this CPU has a pending nohz_balance_kick, then do the
10676 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10677 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10678 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10679 * load balance only within the local sched_domain hierarchy
10680 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10681 */
b7031a02
PZ
10682 if (nohz_idle_balance(this_rq, idle))
10683 return;
10684
10685 /* normal load balance */
10686 update_blocked_averages(this_rq->cpu);
d4573c3e 10687 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10688}
10689
1e3c88bd
PZ
10690/*
10691 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10692 */
7caff66f 10693void trigger_load_balance(struct rq *rq)
1e3c88bd 10694{
e0b257c3
AMB
10695 /*
10696 * Don't need to rebalance while attached to NULL domain or
10697 * runqueue CPU is not active
10698 */
10699 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10700 return;
10701
10702 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10703 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10704
10705 nohz_balancer_kick(rq);
1e3c88bd
PZ
10706}
10707
0bcdcf28
CE
10708static void rq_online_fair(struct rq *rq)
10709{
10710 update_sysctl();
0e59bdae
KT
10711
10712 update_runtime_enabled(rq);
0bcdcf28
CE
10713}
10714
10715static void rq_offline_fair(struct rq *rq)
10716{
10717 update_sysctl();
a4c96ae3
PB
10718
10719 /* Ensure any throttled groups are reachable by pick_next_task */
10720 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10721}
10722
55e12e5e 10723#endif /* CONFIG_SMP */
e1d1484f 10724
bf0f6f24 10725/*
d84b3131
FW
10726 * scheduler tick hitting a task of our scheduling class.
10727 *
10728 * NOTE: This function can be called remotely by the tick offload that
10729 * goes along full dynticks. Therefore no local assumption can be made
10730 * and everything must be accessed through the @rq and @curr passed in
10731 * parameters.
bf0f6f24 10732 */
8f4d37ec 10733static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10734{
10735 struct cfs_rq *cfs_rq;
10736 struct sched_entity *se = &curr->se;
10737
10738 for_each_sched_entity(se) {
10739 cfs_rq = cfs_rq_of(se);
8f4d37ec 10740 entity_tick(cfs_rq, se, queued);
bf0f6f24 10741 }
18bf2805 10742
b52da86e 10743 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10744 task_tick_numa(rq, curr);
3b1baa64
MR
10745
10746 update_misfit_status(curr, rq);
2802bf3c 10747 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10748}
10749
10750/*
cd29fe6f
PZ
10751 * called on fork with the child task as argument from the parent's context
10752 * - child not yet on the tasklist
10753 * - preemption disabled
bf0f6f24 10754 */
cd29fe6f 10755static void task_fork_fair(struct task_struct *p)
bf0f6f24 10756{
4fc420c9
DN
10757 struct cfs_rq *cfs_rq;
10758 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10759 struct rq *rq = this_rq();
8a8c69c3 10760 struct rq_flags rf;
bf0f6f24 10761
8a8c69c3 10762 rq_lock(rq, &rf);
861d034e
PZ
10763 update_rq_clock(rq);
10764
4fc420c9
DN
10765 cfs_rq = task_cfs_rq(current);
10766 curr = cfs_rq->curr;
e210bffd
PZ
10767 if (curr) {
10768 update_curr(cfs_rq);
b5d9d734 10769 se->vruntime = curr->vruntime;
e210bffd 10770 }
aeb73b04 10771 place_entity(cfs_rq, se, 1);
4d78e7b6 10772
cd29fe6f 10773 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10774 /*
edcb60a3
IM
10775 * Upon rescheduling, sched_class::put_prev_task() will place
10776 * 'current' within the tree based on its new key value.
10777 */
4d78e7b6 10778 swap(curr->vruntime, se->vruntime);
8875125e 10779 resched_curr(rq);
4d78e7b6 10780 }
bf0f6f24 10781
88ec22d3 10782 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10783 rq_unlock(rq, &rf);
bf0f6f24
IM
10784}
10785
cb469845
SR
10786/*
10787 * Priority of the task has changed. Check to see if we preempt
10788 * the current task.
10789 */
da7a735e
PZ
10790static void
10791prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10792{
da0c1e65 10793 if (!task_on_rq_queued(p))
da7a735e
PZ
10794 return;
10795
7c2e8bbd
FW
10796 if (rq->cfs.nr_running == 1)
10797 return;
10798
cb469845
SR
10799 /*
10800 * Reschedule if we are currently running on this runqueue and
10801 * our priority decreased, or if we are not currently running on
10802 * this runqueue and our priority is higher than the current's
10803 */
65bcf072 10804 if (task_current(rq, p)) {
cb469845 10805 if (p->prio > oldprio)
8875125e 10806 resched_curr(rq);
cb469845 10807 } else
15afe09b 10808 check_preempt_curr(rq, p, 0);
cb469845
SR
10809}
10810
daa59407 10811static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10812{
10813 struct sched_entity *se = &p->se;
da7a735e
PZ
10814
10815 /*
daa59407
BP
10816 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10817 * the dequeue_entity(.flags=0) will already have normalized the
10818 * vruntime.
10819 */
10820 if (p->on_rq)
10821 return true;
10822
10823 /*
10824 * When !on_rq, vruntime of the task has usually NOT been normalized.
10825 * But there are some cases where it has already been normalized:
da7a735e 10826 *
daa59407
BP
10827 * - A forked child which is waiting for being woken up by
10828 * wake_up_new_task().
10829 * - A task which has been woken up by try_to_wake_up() and
10830 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10831 */
d0cdb3ce
SM
10832 if (!se->sum_exec_runtime ||
10833 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10834 return true;
10835
10836 return false;
10837}
10838
09a43ace
VG
10839#ifdef CONFIG_FAIR_GROUP_SCHED
10840/*
10841 * Propagate the changes of the sched_entity across the tg tree to make it
10842 * visible to the root
10843 */
10844static void propagate_entity_cfs_rq(struct sched_entity *se)
10845{
10846 struct cfs_rq *cfs_rq;
10847
10848 /* Start to propagate at parent */
10849 se = se->parent;
10850
10851 for_each_sched_entity(se) {
10852 cfs_rq = cfs_rq_of(se);
10853
10854 if (cfs_rq_throttled(cfs_rq))
10855 break;
10856
88c0616e 10857 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10858 }
10859}
10860#else
10861static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10862#endif
10863
df217913 10864static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10865{
daa59407
BP
10866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10867
9d89c257 10868 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10869 update_load_avg(cfs_rq, se, 0);
a05e8c51 10870 detach_entity_load_avg(cfs_rq, se);
fe749158 10871 update_tg_load_avg(cfs_rq);
09a43ace 10872 propagate_entity_cfs_rq(se);
da7a735e
PZ
10873}
10874
df217913 10875static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10876{
daa59407 10877 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10878
10879#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10880 /*
10881 * Since the real-depth could have been changed (only FAIR
10882 * class maintain depth value), reset depth properly.
10883 */
10884 se->depth = se->parent ? se->parent->depth + 1 : 0;
10885#endif
7855a35a 10886
df217913 10887 /* Synchronize entity with its cfs_rq */
88c0616e 10888 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10889 attach_entity_load_avg(cfs_rq, se);
fe749158 10890 update_tg_load_avg(cfs_rq);
09a43ace 10891 propagate_entity_cfs_rq(se);
df217913
VG
10892}
10893
10894static void detach_task_cfs_rq(struct task_struct *p)
10895{
10896 struct sched_entity *se = &p->se;
10897 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10898
10899 if (!vruntime_normalized(p)) {
10900 /*
10901 * Fix up our vruntime so that the current sleep doesn't
10902 * cause 'unlimited' sleep bonus.
10903 */
10904 place_entity(cfs_rq, se, 0);
10905 se->vruntime -= cfs_rq->min_vruntime;
10906 }
10907
10908 detach_entity_cfs_rq(se);
10909}
10910
10911static void attach_task_cfs_rq(struct task_struct *p)
10912{
10913 struct sched_entity *se = &p->se;
10914 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10915
10916 attach_entity_cfs_rq(se);
daa59407
BP
10917
10918 if (!vruntime_normalized(p))
10919 se->vruntime += cfs_rq->min_vruntime;
10920}
6efdb105 10921
daa59407
BP
10922static void switched_from_fair(struct rq *rq, struct task_struct *p)
10923{
10924 detach_task_cfs_rq(p);
10925}
10926
10927static void switched_to_fair(struct rq *rq, struct task_struct *p)
10928{
10929 attach_task_cfs_rq(p);
7855a35a 10930
daa59407 10931 if (task_on_rq_queued(p)) {
7855a35a 10932 /*
daa59407
BP
10933 * We were most likely switched from sched_rt, so
10934 * kick off the schedule if running, otherwise just see
10935 * if we can still preempt the current task.
7855a35a 10936 */
65bcf072 10937 if (task_current(rq, p))
daa59407
BP
10938 resched_curr(rq);
10939 else
10940 check_preempt_curr(rq, p, 0);
7855a35a 10941 }
cb469845
SR
10942}
10943
83b699ed
SV
10944/* Account for a task changing its policy or group.
10945 *
10946 * This routine is mostly called to set cfs_rq->curr field when a task
10947 * migrates between groups/classes.
10948 */
a0e813f2 10949static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10950{
03b7fad1
PZ
10951 struct sched_entity *se = &p->se;
10952
10953#ifdef CONFIG_SMP
10954 if (task_on_rq_queued(p)) {
10955 /*
10956 * Move the next running task to the front of the list, so our
10957 * cfs_tasks list becomes MRU one.
10958 */
10959 list_move(&se->group_node, &rq->cfs_tasks);
10960 }
10961#endif
83b699ed 10962
ec12cb7f
PT
10963 for_each_sched_entity(se) {
10964 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10965
10966 set_next_entity(cfs_rq, se);
10967 /* ensure bandwidth has been allocated on our new cfs_rq */
10968 account_cfs_rq_runtime(cfs_rq, 0);
10969 }
83b699ed
SV
10970}
10971
029632fb
PZ
10972void init_cfs_rq(struct cfs_rq *cfs_rq)
10973{
bfb06889 10974 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10975 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10976#ifndef CONFIG_64BIT
10977 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10978#endif
141965c7 10979#ifdef CONFIG_SMP
2a2f5d4e 10980 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10981#endif
029632fb
PZ
10982}
10983
810b3817 10984#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10985static void task_set_group_fair(struct task_struct *p)
10986{
10987 struct sched_entity *se = &p->se;
10988
10989 set_task_rq(p, task_cpu(p));
10990 se->depth = se->parent ? se->parent->depth + 1 : 0;
10991}
10992
bc54da21 10993static void task_move_group_fair(struct task_struct *p)
810b3817 10994{
daa59407 10995 detach_task_cfs_rq(p);
b2b5ce02 10996 set_task_rq(p, task_cpu(p));
6efdb105
BP
10997
10998#ifdef CONFIG_SMP
10999 /* Tell se's cfs_rq has been changed -- migrated */
11000 p->se.avg.last_update_time = 0;
11001#endif
daa59407 11002 attach_task_cfs_rq(p);
810b3817 11003}
029632fb 11004
ea86cb4b
VG
11005static void task_change_group_fair(struct task_struct *p, int type)
11006{
11007 switch (type) {
11008 case TASK_SET_GROUP:
11009 task_set_group_fair(p);
11010 break;
11011
11012 case TASK_MOVE_GROUP:
11013 task_move_group_fair(p);
11014 break;
11015 }
11016}
11017
029632fb
PZ
11018void free_fair_sched_group(struct task_group *tg)
11019{
11020 int i;
11021
11022 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11023
11024 for_each_possible_cpu(i) {
11025 if (tg->cfs_rq)
11026 kfree(tg->cfs_rq[i]);
6fe1f348 11027 if (tg->se)
029632fb
PZ
11028 kfree(tg->se[i]);
11029 }
11030
11031 kfree(tg->cfs_rq);
11032 kfree(tg->se);
11033}
11034
11035int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11036{
029632fb 11037 struct sched_entity *se;
b7fa30c9 11038 struct cfs_rq *cfs_rq;
029632fb
PZ
11039 int i;
11040
6396bb22 11041 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11042 if (!tg->cfs_rq)
11043 goto err;
6396bb22 11044 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11045 if (!tg->se)
11046 goto err;
11047
11048 tg->shares = NICE_0_LOAD;
11049
11050 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11051
11052 for_each_possible_cpu(i) {
11053 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11054 GFP_KERNEL, cpu_to_node(i));
11055 if (!cfs_rq)
11056 goto err;
11057
11058 se = kzalloc_node(sizeof(struct sched_entity),
11059 GFP_KERNEL, cpu_to_node(i));
11060 if (!se)
11061 goto err_free_rq;
11062
11063 init_cfs_rq(cfs_rq);
11064 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11065 init_entity_runnable_average(se);
029632fb
PZ
11066 }
11067
11068 return 1;
11069
11070err_free_rq:
11071 kfree(cfs_rq);
11072err:
11073 return 0;
11074}
11075
8663e24d
PZ
11076void online_fair_sched_group(struct task_group *tg)
11077{
11078 struct sched_entity *se;
a46d14ec 11079 struct rq_flags rf;
8663e24d
PZ
11080 struct rq *rq;
11081 int i;
11082
11083 for_each_possible_cpu(i) {
11084 rq = cpu_rq(i);
11085 se = tg->se[i];
a46d14ec 11086 rq_lock_irq(rq, &rf);
4126bad6 11087 update_rq_clock(rq);
d0326691 11088 attach_entity_cfs_rq(se);
55e16d30 11089 sync_throttle(tg, i);
a46d14ec 11090 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11091 }
11092}
11093
6fe1f348 11094void unregister_fair_sched_group(struct task_group *tg)
029632fb 11095{
029632fb 11096 unsigned long flags;
6fe1f348
PZ
11097 struct rq *rq;
11098 int cpu;
029632fb 11099
6fe1f348
PZ
11100 for_each_possible_cpu(cpu) {
11101 if (tg->se[cpu])
11102 remove_entity_load_avg(tg->se[cpu]);
029632fb 11103
6fe1f348
PZ
11104 /*
11105 * Only empty task groups can be destroyed; so we can speculatively
11106 * check on_list without danger of it being re-added.
11107 */
11108 if (!tg->cfs_rq[cpu]->on_list)
11109 continue;
11110
11111 rq = cpu_rq(cpu);
11112
11113 raw_spin_lock_irqsave(&rq->lock, flags);
11114 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11115 raw_spin_unlock_irqrestore(&rq->lock, flags);
11116 }
029632fb
PZ
11117}
11118
11119void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11120 struct sched_entity *se, int cpu,
11121 struct sched_entity *parent)
11122{
11123 struct rq *rq = cpu_rq(cpu);
11124
11125 cfs_rq->tg = tg;
11126 cfs_rq->rq = rq;
029632fb
PZ
11127 init_cfs_rq_runtime(cfs_rq);
11128
11129 tg->cfs_rq[cpu] = cfs_rq;
11130 tg->se[cpu] = se;
11131
11132 /* se could be NULL for root_task_group */
11133 if (!se)
11134 return;
11135
fed14d45 11136 if (!parent) {
029632fb 11137 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11138 se->depth = 0;
11139 } else {
029632fb 11140 se->cfs_rq = parent->my_q;
fed14d45
PZ
11141 se->depth = parent->depth + 1;
11142 }
029632fb
PZ
11143
11144 se->my_q = cfs_rq;
0ac9b1c2
PT
11145 /* guarantee group entities always have weight */
11146 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11147 se->parent = parent;
11148}
11149
11150static DEFINE_MUTEX(shares_mutex);
11151
11152int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11153{
11154 int i;
029632fb
PZ
11155
11156 /*
11157 * We can't change the weight of the root cgroup.
11158 */
11159 if (!tg->se[0])
11160 return -EINVAL;
11161
11162 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11163
11164 mutex_lock(&shares_mutex);
11165 if (tg->shares == shares)
11166 goto done;
11167
11168 tg->shares = shares;
11169 for_each_possible_cpu(i) {
11170 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11171 struct sched_entity *se = tg->se[i];
11172 struct rq_flags rf;
029632fb 11173
029632fb 11174 /* Propagate contribution to hierarchy */
8a8c69c3 11175 rq_lock_irqsave(rq, &rf);
71b1da46 11176 update_rq_clock(rq);
89ee048f 11177 for_each_sched_entity(se) {
88c0616e 11178 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11179 update_cfs_group(se);
89ee048f 11180 }
8a8c69c3 11181 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11182 }
11183
11184done:
11185 mutex_unlock(&shares_mutex);
11186 return 0;
11187}
11188#else /* CONFIG_FAIR_GROUP_SCHED */
11189
11190void free_fair_sched_group(struct task_group *tg) { }
11191
11192int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11193{
11194 return 1;
11195}
11196
8663e24d
PZ
11197void online_fair_sched_group(struct task_group *tg) { }
11198
6fe1f348 11199void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11200
11201#endif /* CONFIG_FAIR_GROUP_SCHED */
11202
810b3817 11203
6d686f45 11204static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11205{
11206 struct sched_entity *se = &task->se;
0d721cea
PW
11207 unsigned int rr_interval = 0;
11208
11209 /*
11210 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11211 * idle runqueue:
11212 */
0d721cea 11213 if (rq->cfs.load.weight)
a59f4e07 11214 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11215
11216 return rr_interval;
11217}
11218
bf0f6f24
IM
11219/*
11220 * All the scheduling class methods:
11221 */
43c31ac0
PZ
11222DEFINE_SCHED_CLASS(fair) = {
11223
bf0f6f24
IM
11224 .enqueue_task = enqueue_task_fair,
11225 .dequeue_task = dequeue_task_fair,
11226 .yield_task = yield_task_fair,
d95f4122 11227 .yield_to_task = yield_to_task_fair,
bf0f6f24 11228
2e09bf55 11229 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11230
98c2f700 11231 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11232 .put_prev_task = put_prev_task_fair,
03b7fad1 11233 .set_next_task = set_next_task_fair,
bf0f6f24 11234
681f3e68 11235#ifdef CONFIG_SMP
6e2df058 11236 .balance = balance_fair,
4ce72a2c 11237 .select_task_rq = select_task_rq_fair,
0a74bef8 11238 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11239
0bcdcf28
CE
11240 .rq_online = rq_online_fair,
11241 .rq_offline = rq_offline_fair,
88ec22d3 11242
12695578 11243 .task_dead = task_dead_fair,
c5b28038 11244 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11245#endif
bf0f6f24 11246
bf0f6f24 11247 .task_tick = task_tick_fair,
cd29fe6f 11248 .task_fork = task_fork_fair,
cb469845
SR
11249
11250 .prio_changed = prio_changed_fair,
da7a735e 11251 .switched_from = switched_from_fair,
cb469845 11252 .switched_to = switched_to_fair,
810b3817 11253
0d721cea
PW
11254 .get_rr_interval = get_rr_interval_fair,
11255
6e998916
SG
11256 .update_curr = update_curr_fair,
11257
810b3817 11258#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11259 .task_change_group = task_change_group_fair,
810b3817 11260#endif
982d9cdc
PB
11261
11262#ifdef CONFIG_UCLAMP_TASK
11263 .uclamp_enabled = 1,
11264#endif
bf0f6f24
IM
11265};
11266
11267#ifdef CONFIG_SCHED_DEBUG
029632fb 11268void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11269{
039ae8bc 11270 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11271
5973e5b9 11272 rcu_read_lock();
039ae8bc 11273 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11274 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11275 rcu_read_unlock();
bf0f6f24 11276}
397f2378
SD
11277
11278#ifdef CONFIG_NUMA_BALANCING
11279void show_numa_stats(struct task_struct *p, struct seq_file *m)
11280{
11281 int node;
11282 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11283 struct numa_group *ng;
397f2378 11284
cb361d8c
JH
11285 rcu_read_lock();
11286 ng = rcu_dereference(p->numa_group);
397f2378
SD
11287 for_each_online_node(node) {
11288 if (p->numa_faults) {
11289 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11290 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11291 }
cb361d8c
JH
11292 if (ng) {
11293 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11294 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11295 }
11296 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11297 }
cb361d8c 11298 rcu_read_unlock();
397f2378
SD
11299}
11300#endif /* CONFIG_NUMA_BALANCING */
11301#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11302
11303__init void init_sched_fair_class(void)
11304{
11305#ifdef CONFIG_SMP
11306 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11307
3451d024 11308#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11309 nohz.next_balance = jiffies;
f643ea22 11310 nohz.next_blocked = jiffies;
029632fb 11311 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11312#endif
11313#endif /* SMP */
11314
11315}
3c93a0c0
QY
11316
11317/*
11318 * Helper functions to facilitate extracting info from tracepoints.
11319 */
11320
11321const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11322{
11323#ifdef CONFIG_SMP
11324 return cfs_rq ? &cfs_rq->avg : NULL;
11325#else
11326 return NULL;
11327#endif
11328}
11329EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11330
11331char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11332{
11333 if (!cfs_rq) {
11334 if (str)
11335 strlcpy(str, "(null)", len);
11336 else
11337 return NULL;
11338 }
11339
11340 cfs_rq_tg_path(cfs_rq, str, len);
11341 return str;
11342}
11343EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11344
11345int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11346{
11347 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11348}
11349EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11350
11351const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11352{
11353#ifdef CONFIG_SMP
11354 return rq ? &rq->avg_rt : NULL;
11355#else
11356 return NULL;
11357#endif
11358}
11359EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11360
11361const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11362{
11363#ifdef CONFIG_SMP
11364 return rq ? &rq->avg_dl : NULL;
11365#else
11366 return NULL;
11367#endif
11368}
11369EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11370
11371const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11372{
11373#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11374 return rq ? &rq->avg_irq : NULL;
11375#else
11376 return NULL;
11377#endif
11378}
11379EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11380
11381int sched_trace_rq_cpu(struct rq *rq)
11382{
11383 return rq ? cpu_of(rq) : -1;
11384}
11385EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11386
51cf18c9
VD
11387int sched_trace_rq_cpu_capacity(struct rq *rq)
11388{
11389 return rq ?
11390#ifdef CONFIG_SMP
11391 rq->cpu_capacity
11392#else
11393 SCHED_CAPACITY_SCALE
11394#endif
11395 : -1;
11396}
11397EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11398
3c93a0c0
QY
11399const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11400{
11401#ifdef CONFIG_SMP
11402 return rd ? rd->span : NULL;
11403#else
11404 return NULL;
11405#endif
11406}
11407EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11408
11409int sched_trace_rq_nr_running(struct rq *rq)
11410{
11411 return rq ? rq->nr_running : -1;
11412}
11413EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);