]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/debug: Add SCHED_WARN_ON()
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
9148a3a1 265 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
266 return container_of(se, struct task_struct, se);
267}
268
b758149c
PZ
269/* Walk up scheduling entities hierarchy */
270#define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274{
275 return p->se.cfs_rq;
276}
277
278/* runqueue on which this entity is (to be) queued */
279static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280{
281 return se->cfs_rq;
282}
283
284/* runqueue "owned" by this group */
285static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286{
287 return grp->my_q;
288}
289
3d4b47b4
PZ
290static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292 if (!cfs_rq->on_list) {
67e86250
PT
293 /*
294 * Ensure we either appear before our parent (if already
295 * enqueued) or force our parent to appear after us when it is
296 * enqueued. The fact that we always enqueue bottom-up
297 * reduces this to two cases.
298 */
299 if (cfs_rq->tg->parent &&
300 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
301 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
302 &rq_of(cfs_rq)->leaf_cfs_rq_list);
303 } else {
304 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 305 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 306 }
3d4b47b4
PZ
307
308 cfs_rq->on_list = 1;
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
de58af87
PZ
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
1af5f730
PZ
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
de58af87
PZ
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
1af5f730
PZ
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 578 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
8e2b0bf3
BF
618 if (unlikely(nr_running > sched_nr_latency))
619 return nr_running * sysctl_sched_min_granularity;
620 else
621 return sysctl_sched_latency;
4d78e7b6
PZ
622}
623
647e7cac
IM
624/*
625 * We calculate the wall-time slice from the period by taking a part
626 * proportional to the weight.
627 *
f9c0b095 628 * s = p*P[w/rw]
647e7cac 629 */
6d0f0ebd 630static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 631{
0a582440 632 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 633
0a582440 634 for_each_sched_entity(se) {
6272d68c 635 struct load_weight *load;
3104bf03 636 struct load_weight lw;
6272d68c
LM
637
638 cfs_rq = cfs_rq_of(se);
639 load = &cfs_rq->load;
f9c0b095 640
0a582440 641 if (unlikely(!se->on_rq)) {
3104bf03 642 lw = cfs_rq->load;
0a582440
MG
643
644 update_load_add(&lw, se->load.weight);
645 load = &lw;
646 }
9dbdb155 647 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
648 }
649 return slice;
bf0f6f24
IM
650}
651
647e7cac 652/*
660cc00f 653 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 654 *
f9c0b095 655 * vs = s/w
647e7cac 656 */
f9c0b095 657static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 658{
f9c0b095 659 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
660}
661
a75cdaa9 662#ifdef CONFIG_SMP
772bd008 663static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
664static unsigned long task_h_load(struct task_struct *p);
665
9d89c257
YD
666/*
667 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
668 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
669 * dependent on this value.
9d89c257
YD
670 */
671#define LOAD_AVG_PERIOD 32
672#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 673#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 674
540247fb
YD
675/* Give new sched_entity start runnable values to heavy its load in infant time */
676void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 677{
540247fb 678 struct sched_avg *sa = &se->avg;
a75cdaa9 679
9d89c257
YD
680 sa->last_update_time = 0;
681 /*
682 * sched_avg's period_contrib should be strictly less then 1024, so
683 * we give it 1023 to make sure it is almost a period (1024us), and
684 * will definitely be update (after enqueue).
685 */
686 sa->period_contrib = 1023;
540247fb 687 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 688 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
689 /*
690 * At this point, util_avg won't be used in select_task_rq_fair anyway
691 */
692 sa->util_avg = 0;
693 sa->util_sum = 0;
9d89c257 694 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 695}
7ea241af 696
7dc603c9
PZ
697static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
698static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 699static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
700static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
701
2b8c41da
YD
702/*
703 * With new tasks being created, their initial util_avgs are extrapolated
704 * based on the cfs_rq's current util_avg:
705 *
706 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
707 *
708 * However, in many cases, the above util_avg does not give a desired
709 * value. Moreover, the sum of the util_avgs may be divergent, such
710 * as when the series is a harmonic series.
711 *
712 * To solve this problem, we also cap the util_avg of successive tasks to
713 * only 1/2 of the left utilization budget:
714 *
715 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
716 *
717 * where n denotes the nth task.
718 *
719 * For example, a simplest series from the beginning would be like:
720 *
721 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
722 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
723 *
724 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
725 * if util_avg > util_avg_cap.
726 */
727void post_init_entity_util_avg(struct sched_entity *se)
728{
729 struct cfs_rq *cfs_rq = cfs_rq_of(se);
730 struct sched_avg *sa = &se->avg;
172895e6 731 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 732 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
733
734 if (cap > 0) {
735 if (cfs_rq->avg.util_avg != 0) {
736 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
737 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
738
739 if (sa->util_avg > cap)
740 sa->util_avg = cap;
741 } else {
742 sa->util_avg = cap;
743 }
744 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
745 }
7dc603c9
PZ
746
747 if (entity_is_task(se)) {
748 struct task_struct *p = task_of(se);
749 if (p->sched_class != &fair_sched_class) {
750 /*
751 * For !fair tasks do:
752 *
753 update_cfs_rq_load_avg(now, cfs_rq, false);
754 attach_entity_load_avg(cfs_rq, se);
755 switched_from_fair(rq, p);
756 *
757 * such that the next switched_to_fair() has the
758 * expected state.
759 */
760 se->avg.last_update_time = now;
761 return;
762 }
763 }
764
7c3edd2c 765 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 766 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 767 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
768}
769
7dc603c9 770#else /* !CONFIG_SMP */
540247fb 771void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
772{
773}
2b8c41da
YD
774void post_init_entity_util_avg(struct sched_entity *se)
775{
776}
3d30544f
PZ
777static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
778{
779}
7dc603c9 780#endif /* CONFIG_SMP */
a75cdaa9 781
bf0f6f24 782/*
9dbdb155 783 * Update the current task's runtime statistics.
bf0f6f24 784 */
b7cc0896 785static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 786{
429d43bc 787 struct sched_entity *curr = cfs_rq->curr;
78becc27 788 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 789 u64 delta_exec;
bf0f6f24
IM
790
791 if (unlikely(!curr))
792 return;
793
9dbdb155
PZ
794 delta_exec = now - curr->exec_start;
795 if (unlikely((s64)delta_exec <= 0))
34f28ecd 796 return;
bf0f6f24 797
8ebc91d9 798 curr->exec_start = now;
d842de87 799
9dbdb155
PZ
800 schedstat_set(curr->statistics.exec_max,
801 max(delta_exec, curr->statistics.exec_max));
802
803 curr->sum_exec_runtime += delta_exec;
ae92882e 804 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
805
806 curr->vruntime += calc_delta_fair(delta_exec, curr);
807 update_min_vruntime(cfs_rq);
808
d842de87
SV
809 if (entity_is_task(curr)) {
810 struct task_struct *curtask = task_of(curr);
811
f977bb49 812 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 813 cpuacct_charge(curtask, delta_exec);
f06febc9 814 account_group_exec_runtime(curtask, delta_exec);
d842de87 815 }
ec12cb7f
PT
816
817 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
818}
819
6e998916
SG
820static void update_curr_fair(struct rq *rq)
821{
822 update_curr(cfs_rq_of(&rq->curr->se));
823}
824
bf0f6f24 825static inline void
5870db5b 826update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 827{
4fa8d299
JP
828 u64 wait_start, prev_wait_start;
829
830 if (!schedstat_enabled())
831 return;
832
833 wait_start = rq_clock(rq_of(cfs_rq));
834 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
835
836 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
837 likely(wait_start > prev_wait_start))
838 wait_start -= prev_wait_start;
3ea94de1 839
4fa8d299 840 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
841}
842
4fa8d299 843static inline void
3ea94de1
JP
844update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
845{
846 struct task_struct *p;
cb251765
MG
847 u64 delta;
848
4fa8d299
JP
849 if (!schedstat_enabled())
850 return;
851
852 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
853
854 if (entity_is_task(se)) {
855 p = task_of(se);
856 if (task_on_rq_migrating(p)) {
857 /*
858 * Preserve migrating task's wait time so wait_start
859 * time stamp can be adjusted to accumulate wait time
860 * prior to migration.
861 */
4fa8d299 862 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
863 return;
864 }
865 trace_sched_stat_wait(p, delta);
866 }
867
4fa8d299
JP
868 schedstat_set(se->statistics.wait_max,
869 max(schedstat_val(se->statistics.wait_max), delta));
870 schedstat_inc(se->statistics.wait_count);
871 schedstat_add(se->statistics.wait_sum, delta);
872 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 873}
3ea94de1 874
4fa8d299 875static inline void
1a3d027c
JP
876update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878 struct task_struct *tsk = NULL;
4fa8d299
JP
879 u64 sleep_start, block_start;
880
881 if (!schedstat_enabled())
882 return;
883
884 sleep_start = schedstat_val(se->statistics.sleep_start);
885 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
886
887 if (entity_is_task(se))
888 tsk = task_of(se);
889
4fa8d299
JP
890 if (sleep_start) {
891 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
892
893 if ((s64)delta < 0)
894 delta = 0;
895
4fa8d299
JP
896 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
897 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 898
4fa8d299
JP
899 schedstat_set(se->statistics.sleep_start, 0);
900 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
901
902 if (tsk) {
903 account_scheduler_latency(tsk, delta >> 10, 1);
904 trace_sched_stat_sleep(tsk, delta);
905 }
906 }
4fa8d299
JP
907 if (block_start) {
908 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
909
910 if ((s64)delta < 0)
911 delta = 0;
912
4fa8d299
JP
913 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
914 schedstat_set(se->statistics.block_max, delta);
1a3d027c 915
4fa8d299
JP
916 schedstat_set(se->statistics.block_start, 0);
917 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
918
919 if (tsk) {
920 if (tsk->in_iowait) {
4fa8d299
JP
921 schedstat_add(se->statistics.iowait_sum, delta);
922 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
923 trace_sched_stat_iowait(tsk, delta);
924 }
925
926 trace_sched_stat_blocked(tsk, delta);
927
928 /*
929 * Blocking time is in units of nanosecs, so shift by
930 * 20 to get a milliseconds-range estimation of the
931 * amount of time that the task spent sleeping:
932 */
933 if (unlikely(prof_on == SLEEP_PROFILING)) {
934 profile_hits(SLEEP_PROFILING,
935 (void *)get_wchan(tsk),
936 delta >> 20);
937 }
938 account_scheduler_latency(tsk, delta >> 10, 0);
939 }
940 }
941}
942
bf0f6f24
IM
943/*
944 * Task is being enqueued - update stats:
945 */
cb251765 946static inline void
1a3d027c 947update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 948{
4fa8d299
JP
949 if (!schedstat_enabled())
950 return;
951
bf0f6f24
IM
952 /*
953 * Are we enqueueing a waiting task? (for current tasks
954 * a dequeue/enqueue event is a NOP)
955 */
429d43bc 956 if (se != cfs_rq->curr)
5870db5b 957 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
958
959 if (flags & ENQUEUE_WAKEUP)
960 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
961}
962
bf0f6f24 963static inline void
cb251765 964update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 965{
4fa8d299
JP
966
967 if (!schedstat_enabled())
968 return;
969
bf0f6f24
IM
970 /*
971 * Mark the end of the wait period if dequeueing a
972 * waiting task:
973 */
429d43bc 974 if (se != cfs_rq->curr)
9ef0a961 975 update_stats_wait_end(cfs_rq, se);
cb251765 976
4fa8d299
JP
977 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
978 struct task_struct *tsk = task_of(se);
cb251765 979
4fa8d299
JP
980 if (tsk->state & TASK_INTERRUPTIBLE)
981 schedstat_set(se->statistics.sleep_start,
982 rq_clock(rq_of(cfs_rq)));
983 if (tsk->state & TASK_UNINTERRUPTIBLE)
984 schedstat_set(se->statistics.block_start,
985 rq_clock(rq_of(cfs_rq)));
cb251765 986 }
1a3d027c
JP
987}
988
bf0f6f24
IM
989/*
990 * We are picking a new current task - update its stats:
991 */
992static inline void
79303e9e 993update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
994{
995 /*
996 * We are starting a new run period:
997 */
78becc27 998 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
999}
1000
bf0f6f24
IM
1001/**************************************************
1002 * Scheduling class queueing methods:
1003 */
1004
cbee9f88
PZ
1005#ifdef CONFIG_NUMA_BALANCING
1006/*
598f0ec0
MG
1007 * Approximate time to scan a full NUMA task in ms. The task scan period is
1008 * calculated based on the tasks virtual memory size and
1009 * numa_balancing_scan_size.
cbee9f88 1010 */
598f0ec0
MG
1011unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1012unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1013
1014/* Portion of address space to scan in MB */
1015unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1016
4b96a29b
PZ
1017/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1018unsigned int sysctl_numa_balancing_scan_delay = 1000;
1019
598f0ec0
MG
1020static unsigned int task_nr_scan_windows(struct task_struct *p)
1021{
1022 unsigned long rss = 0;
1023 unsigned long nr_scan_pages;
1024
1025 /*
1026 * Calculations based on RSS as non-present and empty pages are skipped
1027 * by the PTE scanner and NUMA hinting faults should be trapped based
1028 * on resident pages
1029 */
1030 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1031 rss = get_mm_rss(p->mm);
1032 if (!rss)
1033 rss = nr_scan_pages;
1034
1035 rss = round_up(rss, nr_scan_pages);
1036 return rss / nr_scan_pages;
1037}
1038
1039/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1040#define MAX_SCAN_WINDOW 2560
1041
1042static unsigned int task_scan_min(struct task_struct *p)
1043{
316c1608 1044 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1045 unsigned int scan, floor;
1046 unsigned int windows = 1;
1047
64192658
KT
1048 if (scan_size < MAX_SCAN_WINDOW)
1049 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1050 floor = 1000 / windows;
1051
1052 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1053 return max_t(unsigned int, floor, scan);
1054}
1055
1056static unsigned int task_scan_max(struct task_struct *p)
1057{
1058 unsigned int smin = task_scan_min(p);
1059 unsigned int smax;
1060
1061 /* Watch for min being lower than max due to floor calculations */
1062 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1063 return max(smin, smax);
1064}
1065
0ec8aa00
PZ
1066static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1067{
1068 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1069 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1070}
1071
1072static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1073{
1074 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1075 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1076}
1077
8c8a743c
PZ
1078struct numa_group {
1079 atomic_t refcount;
1080
1081 spinlock_t lock; /* nr_tasks, tasks */
1082 int nr_tasks;
e29cf08b 1083 pid_t gid;
4142c3eb 1084 int active_nodes;
8c8a743c
PZ
1085
1086 struct rcu_head rcu;
989348b5 1087 unsigned long total_faults;
4142c3eb 1088 unsigned long max_faults_cpu;
7e2703e6
RR
1089 /*
1090 * Faults_cpu is used to decide whether memory should move
1091 * towards the CPU. As a consequence, these stats are weighted
1092 * more by CPU use than by memory faults.
1093 */
50ec8a40 1094 unsigned long *faults_cpu;
989348b5 1095 unsigned long faults[0];
8c8a743c
PZ
1096};
1097
be1e4e76
RR
1098/* Shared or private faults. */
1099#define NR_NUMA_HINT_FAULT_TYPES 2
1100
1101/* Memory and CPU locality */
1102#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1103
1104/* Averaged statistics, and temporary buffers. */
1105#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1106
e29cf08b
MG
1107pid_t task_numa_group_id(struct task_struct *p)
1108{
1109 return p->numa_group ? p->numa_group->gid : 0;
1110}
1111
44dba3d5
IM
1112/*
1113 * The averaged statistics, shared & private, memory & cpu,
1114 * occupy the first half of the array. The second half of the
1115 * array is for current counters, which are averaged into the
1116 * first set by task_numa_placement.
1117 */
1118static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1119{
44dba3d5 1120 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1121}
1122
1123static inline unsigned long task_faults(struct task_struct *p, int nid)
1124{
44dba3d5 1125 if (!p->numa_faults)
ac8e895b
MG
1126 return 0;
1127
44dba3d5
IM
1128 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1129 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1130}
1131
83e1d2cd
MG
1132static inline unsigned long group_faults(struct task_struct *p, int nid)
1133{
1134 if (!p->numa_group)
1135 return 0;
1136
44dba3d5
IM
1137 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1138 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1139}
1140
20e07dea
RR
1141static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1142{
44dba3d5
IM
1143 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1144 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1145}
1146
4142c3eb
RR
1147/*
1148 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1149 * considered part of a numa group's pseudo-interleaving set. Migrations
1150 * between these nodes are slowed down, to allow things to settle down.
1151 */
1152#define ACTIVE_NODE_FRACTION 3
1153
1154static bool numa_is_active_node(int nid, struct numa_group *ng)
1155{
1156 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1157}
1158
6c6b1193
RR
1159/* Handle placement on systems where not all nodes are directly connected. */
1160static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1161 int maxdist, bool task)
1162{
1163 unsigned long score = 0;
1164 int node;
1165
1166 /*
1167 * All nodes are directly connected, and the same distance
1168 * from each other. No need for fancy placement algorithms.
1169 */
1170 if (sched_numa_topology_type == NUMA_DIRECT)
1171 return 0;
1172
1173 /*
1174 * This code is called for each node, introducing N^2 complexity,
1175 * which should be ok given the number of nodes rarely exceeds 8.
1176 */
1177 for_each_online_node(node) {
1178 unsigned long faults;
1179 int dist = node_distance(nid, node);
1180
1181 /*
1182 * The furthest away nodes in the system are not interesting
1183 * for placement; nid was already counted.
1184 */
1185 if (dist == sched_max_numa_distance || node == nid)
1186 continue;
1187
1188 /*
1189 * On systems with a backplane NUMA topology, compare groups
1190 * of nodes, and move tasks towards the group with the most
1191 * memory accesses. When comparing two nodes at distance
1192 * "hoplimit", only nodes closer by than "hoplimit" are part
1193 * of each group. Skip other nodes.
1194 */
1195 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1196 dist > maxdist)
1197 continue;
1198
1199 /* Add up the faults from nearby nodes. */
1200 if (task)
1201 faults = task_faults(p, node);
1202 else
1203 faults = group_faults(p, node);
1204
1205 /*
1206 * On systems with a glueless mesh NUMA topology, there are
1207 * no fixed "groups of nodes". Instead, nodes that are not
1208 * directly connected bounce traffic through intermediate
1209 * nodes; a numa_group can occupy any set of nodes.
1210 * The further away a node is, the less the faults count.
1211 * This seems to result in good task placement.
1212 */
1213 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1214 faults *= (sched_max_numa_distance - dist);
1215 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1216 }
1217
1218 score += faults;
1219 }
1220
1221 return score;
1222}
1223
83e1d2cd
MG
1224/*
1225 * These return the fraction of accesses done by a particular task, or
1226 * task group, on a particular numa node. The group weight is given a
1227 * larger multiplier, in order to group tasks together that are almost
1228 * evenly spread out between numa nodes.
1229 */
7bd95320
RR
1230static inline unsigned long task_weight(struct task_struct *p, int nid,
1231 int dist)
83e1d2cd 1232{
7bd95320 1233 unsigned long faults, total_faults;
83e1d2cd 1234
44dba3d5 1235 if (!p->numa_faults)
83e1d2cd
MG
1236 return 0;
1237
1238 total_faults = p->total_numa_faults;
1239
1240 if (!total_faults)
1241 return 0;
1242
7bd95320 1243 faults = task_faults(p, nid);
6c6b1193
RR
1244 faults += score_nearby_nodes(p, nid, dist, true);
1245
7bd95320 1246 return 1000 * faults / total_faults;
83e1d2cd
MG
1247}
1248
7bd95320
RR
1249static inline unsigned long group_weight(struct task_struct *p, int nid,
1250 int dist)
83e1d2cd 1251{
7bd95320
RR
1252 unsigned long faults, total_faults;
1253
1254 if (!p->numa_group)
1255 return 0;
1256
1257 total_faults = p->numa_group->total_faults;
1258
1259 if (!total_faults)
83e1d2cd
MG
1260 return 0;
1261
7bd95320 1262 faults = group_faults(p, nid);
6c6b1193
RR
1263 faults += score_nearby_nodes(p, nid, dist, false);
1264
7bd95320 1265 return 1000 * faults / total_faults;
83e1d2cd
MG
1266}
1267
10f39042
RR
1268bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1269 int src_nid, int dst_cpu)
1270{
1271 struct numa_group *ng = p->numa_group;
1272 int dst_nid = cpu_to_node(dst_cpu);
1273 int last_cpupid, this_cpupid;
1274
1275 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1276
1277 /*
1278 * Multi-stage node selection is used in conjunction with a periodic
1279 * migration fault to build a temporal task<->page relation. By using
1280 * a two-stage filter we remove short/unlikely relations.
1281 *
1282 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1283 * a task's usage of a particular page (n_p) per total usage of this
1284 * page (n_t) (in a given time-span) to a probability.
1285 *
1286 * Our periodic faults will sample this probability and getting the
1287 * same result twice in a row, given these samples are fully
1288 * independent, is then given by P(n)^2, provided our sample period
1289 * is sufficiently short compared to the usage pattern.
1290 *
1291 * This quadric squishes small probabilities, making it less likely we
1292 * act on an unlikely task<->page relation.
1293 */
1294 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1295 if (!cpupid_pid_unset(last_cpupid) &&
1296 cpupid_to_nid(last_cpupid) != dst_nid)
1297 return false;
1298
1299 /* Always allow migrate on private faults */
1300 if (cpupid_match_pid(p, last_cpupid))
1301 return true;
1302
1303 /* A shared fault, but p->numa_group has not been set up yet. */
1304 if (!ng)
1305 return true;
1306
1307 /*
4142c3eb
RR
1308 * Destination node is much more heavily used than the source
1309 * node? Allow migration.
10f39042 1310 */
4142c3eb
RR
1311 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1312 ACTIVE_NODE_FRACTION)
10f39042
RR
1313 return true;
1314
1315 /*
4142c3eb
RR
1316 * Distribute memory according to CPU & memory use on each node,
1317 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1318 *
1319 * faults_cpu(dst) 3 faults_cpu(src)
1320 * --------------- * - > ---------------
1321 * faults_mem(dst) 4 faults_mem(src)
10f39042 1322 */
4142c3eb
RR
1323 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1324 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1325}
1326
e6628d5b 1327static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1328static unsigned long source_load(int cpu, int type);
1329static unsigned long target_load(int cpu, int type);
ced549fa 1330static unsigned long capacity_of(int cpu);
58d081b5
MG
1331static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1332
fb13c7ee 1333/* Cached statistics for all CPUs within a node */
58d081b5 1334struct numa_stats {
fb13c7ee 1335 unsigned long nr_running;
58d081b5 1336 unsigned long load;
fb13c7ee
MG
1337
1338 /* Total compute capacity of CPUs on a node */
5ef20ca1 1339 unsigned long compute_capacity;
fb13c7ee
MG
1340
1341 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1342 unsigned long task_capacity;
1b6a7495 1343 int has_free_capacity;
58d081b5 1344};
e6628d5b 1345
fb13c7ee
MG
1346/*
1347 * XXX borrowed from update_sg_lb_stats
1348 */
1349static void update_numa_stats(struct numa_stats *ns, int nid)
1350{
83d7f242
RR
1351 int smt, cpu, cpus = 0;
1352 unsigned long capacity;
fb13c7ee
MG
1353
1354 memset(ns, 0, sizeof(*ns));
1355 for_each_cpu(cpu, cpumask_of_node(nid)) {
1356 struct rq *rq = cpu_rq(cpu);
1357
1358 ns->nr_running += rq->nr_running;
1359 ns->load += weighted_cpuload(cpu);
ced549fa 1360 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1361
1362 cpus++;
fb13c7ee
MG
1363 }
1364
5eca82a9
PZ
1365 /*
1366 * If we raced with hotplug and there are no CPUs left in our mask
1367 * the @ns structure is NULL'ed and task_numa_compare() will
1368 * not find this node attractive.
1369 *
1b6a7495
NP
1370 * We'll either bail at !has_free_capacity, or we'll detect a huge
1371 * imbalance and bail there.
5eca82a9
PZ
1372 */
1373 if (!cpus)
1374 return;
1375
83d7f242
RR
1376 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1377 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1378 capacity = cpus / smt; /* cores */
1379
1380 ns->task_capacity = min_t(unsigned, capacity,
1381 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1382 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1383}
1384
58d081b5
MG
1385struct task_numa_env {
1386 struct task_struct *p;
e6628d5b 1387
58d081b5
MG
1388 int src_cpu, src_nid;
1389 int dst_cpu, dst_nid;
e6628d5b 1390
58d081b5 1391 struct numa_stats src_stats, dst_stats;
e6628d5b 1392
40ea2b42 1393 int imbalance_pct;
7bd95320 1394 int dist;
fb13c7ee
MG
1395
1396 struct task_struct *best_task;
1397 long best_imp;
58d081b5
MG
1398 int best_cpu;
1399};
1400
fb13c7ee
MG
1401static void task_numa_assign(struct task_numa_env *env,
1402 struct task_struct *p, long imp)
1403{
1404 if (env->best_task)
1405 put_task_struct(env->best_task);
bac78573
ON
1406 if (p)
1407 get_task_struct(p);
fb13c7ee
MG
1408
1409 env->best_task = p;
1410 env->best_imp = imp;
1411 env->best_cpu = env->dst_cpu;
1412}
1413
28a21745 1414static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1415 struct task_numa_env *env)
1416{
e4991b24
RR
1417 long imb, old_imb;
1418 long orig_src_load, orig_dst_load;
28a21745
RR
1419 long src_capacity, dst_capacity;
1420
1421 /*
1422 * The load is corrected for the CPU capacity available on each node.
1423 *
1424 * src_load dst_load
1425 * ------------ vs ---------
1426 * src_capacity dst_capacity
1427 */
1428 src_capacity = env->src_stats.compute_capacity;
1429 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1430
1431 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1432 if (dst_load < src_load)
1433 swap(dst_load, src_load);
e63da036
RR
1434
1435 /* Is the difference below the threshold? */
e4991b24
RR
1436 imb = dst_load * src_capacity * 100 -
1437 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1438 if (imb <= 0)
1439 return false;
1440
1441 /*
1442 * The imbalance is above the allowed threshold.
e4991b24 1443 * Compare it with the old imbalance.
e63da036 1444 */
28a21745 1445 orig_src_load = env->src_stats.load;
e4991b24 1446 orig_dst_load = env->dst_stats.load;
28a21745 1447
e4991b24
RR
1448 if (orig_dst_load < orig_src_load)
1449 swap(orig_dst_load, orig_src_load);
e63da036 1450
e4991b24
RR
1451 old_imb = orig_dst_load * src_capacity * 100 -
1452 orig_src_load * dst_capacity * env->imbalance_pct;
1453
1454 /* Would this change make things worse? */
1455 return (imb > old_imb);
e63da036
RR
1456}
1457
fb13c7ee
MG
1458/*
1459 * This checks if the overall compute and NUMA accesses of the system would
1460 * be improved if the source tasks was migrated to the target dst_cpu taking
1461 * into account that it might be best if task running on the dst_cpu should
1462 * be exchanged with the source task
1463 */
887c290e
RR
1464static void task_numa_compare(struct task_numa_env *env,
1465 long taskimp, long groupimp)
fb13c7ee
MG
1466{
1467 struct rq *src_rq = cpu_rq(env->src_cpu);
1468 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1469 struct task_struct *cur;
28a21745 1470 long src_load, dst_load;
fb13c7ee 1471 long load;
1c5d3eb3 1472 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1473 long moveimp = imp;
7bd95320 1474 int dist = env->dist;
fb13c7ee
MG
1475
1476 rcu_read_lock();
bac78573
ON
1477 cur = task_rcu_dereference(&dst_rq->curr);
1478 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1479 cur = NULL;
1480
7af68335
PZ
1481 /*
1482 * Because we have preemption enabled we can get migrated around and
1483 * end try selecting ourselves (current == env->p) as a swap candidate.
1484 */
1485 if (cur == env->p)
1486 goto unlock;
1487
fb13c7ee
MG
1488 /*
1489 * "imp" is the fault differential for the source task between the
1490 * source and destination node. Calculate the total differential for
1491 * the source task and potential destination task. The more negative
1492 * the value is, the more rmeote accesses that would be expected to
1493 * be incurred if the tasks were swapped.
1494 */
1495 if (cur) {
1496 /* Skip this swap candidate if cannot move to the source cpu */
1497 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1498 goto unlock;
1499
887c290e
RR
1500 /*
1501 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1502 * in any group then look only at task weights.
887c290e 1503 */
ca28aa53 1504 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1505 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1506 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1507 /*
1508 * Add some hysteresis to prevent swapping the
1509 * tasks within a group over tiny differences.
1510 */
1511 if (cur->numa_group)
1512 imp -= imp/16;
887c290e 1513 } else {
ca28aa53
RR
1514 /*
1515 * Compare the group weights. If a task is all by
1516 * itself (not part of a group), use the task weight
1517 * instead.
1518 */
ca28aa53 1519 if (cur->numa_group)
7bd95320
RR
1520 imp += group_weight(cur, env->src_nid, dist) -
1521 group_weight(cur, env->dst_nid, dist);
ca28aa53 1522 else
7bd95320
RR
1523 imp += task_weight(cur, env->src_nid, dist) -
1524 task_weight(cur, env->dst_nid, dist);
887c290e 1525 }
fb13c7ee
MG
1526 }
1527
0132c3e1 1528 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1529 goto unlock;
1530
1531 if (!cur) {
1532 /* Is there capacity at our destination? */
b932c03c 1533 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1534 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1535 goto unlock;
1536
1537 goto balance;
1538 }
1539
1540 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1541 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1542 dst_rq->nr_running == 1)
fb13c7ee
MG
1543 goto assign;
1544
1545 /*
1546 * In the overloaded case, try and keep the load balanced.
1547 */
1548balance:
e720fff6
PZ
1549 load = task_h_load(env->p);
1550 dst_load = env->dst_stats.load + load;
1551 src_load = env->src_stats.load - load;
fb13c7ee 1552
0132c3e1
RR
1553 if (moveimp > imp && moveimp > env->best_imp) {
1554 /*
1555 * If the improvement from just moving env->p direction is
1556 * better than swapping tasks around, check if a move is
1557 * possible. Store a slightly smaller score than moveimp,
1558 * so an actually idle CPU will win.
1559 */
1560 if (!load_too_imbalanced(src_load, dst_load, env)) {
1561 imp = moveimp - 1;
1562 cur = NULL;
1563 goto assign;
1564 }
1565 }
1566
1567 if (imp <= env->best_imp)
1568 goto unlock;
1569
fb13c7ee 1570 if (cur) {
e720fff6
PZ
1571 load = task_h_load(cur);
1572 dst_load -= load;
1573 src_load += load;
fb13c7ee
MG
1574 }
1575
28a21745 1576 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1577 goto unlock;
1578
ba7e5a27
RR
1579 /*
1580 * One idle CPU per node is evaluated for a task numa move.
1581 * Call select_idle_sibling to maybe find a better one.
1582 */
10e2f1ac
PZ
1583 if (!cur) {
1584 /*
1585 * select_idle_siblings() uses an per-cpu cpumask that
1586 * can be used from IRQ context.
1587 */
1588 local_irq_disable();
772bd008
MR
1589 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1590 env->dst_cpu);
10e2f1ac
PZ
1591 local_irq_enable();
1592 }
ba7e5a27 1593
fb13c7ee
MG
1594assign:
1595 task_numa_assign(env, cur, imp);
1596unlock:
1597 rcu_read_unlock();
1598}
1599
887c290e
RR
1600static void task_numa_find_cpu(struct task_numa_env *env,
1601 long taskimp, long groupimp)
2c8a50aa
MG
1602{
1603 int cpu;
1604
1605 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1606 /* Skip this CPU if the source task cannot migrate */
1607 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1608 continue;
1609
1610 env->dst_cpu = cpu;
887c290e 1611 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1612 }
1613}
1614
6f9aad0b
RR
1615/* Only move tasks to a NUMA node less busy than the current node. */
1616static bool numa_has_capacity(struct task_numa_env *env)
1617{
1618 struct numa_stats *src = &env->src_stats;
1619 struct numa_stats *dst = &env->dst_stats;
1620
1621 if (src->has_free_capacity && !dst->has_free_capacity)
1622 return false;
1623
1624 /*
1625 * Only consider a task move if the source has a higher load
1626 * than the destination, corrected for CPU capacity on each node.
1627 *
1628 * src->load dst->load
1629 * --------------------- vs ---------------------
1630 * src->compute_capacity dst->compute_capacity
1631 */
44dcb04f
SD
1632 if (src->load * dst->compute_capacity * env->imbalance_pct >
1633
1634 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1635 return true;
1636
1637 return false;
1638}
1639
58d081b5
MG
1640static int task_numa_migrate(struct task_struct *p)
1641{
58d081b5
MG
1642 struct task_numa_env env = {
1643 .p = p,
fb13c7ee 1644
58d081b5 1645 .src_cpu = task_cpu(p),
b32e86b4 1646 .src_nid = task_node(p),
fb13c7ee
MG
1647
1648 .imbalance_pct = 112,
1649
1650 .best_task = NULL,
1651 .best_imp = 0,
4142c3eb 1652 .best_cpu = -1,
58d081b5
MG
1653 };
1654 struct sched_domain *sd;
887c290e 1655 unsigned long taskweight, groupweight;
7bd95320 1656 int nid, ret, dist;
887c290e 1657 long taskimp, groupimp;
e6628d5b 1658
58d081b5 1659 /*
fb13c7ee
MG
1660 * Pick the lowest SD_NUMA domain, as that would have the smallest
1661 * imbalance and would be the first to start moving tasks about.
1662 *
1663 * And we want to avoid any moving of tasks about, as that would create
1664 * random movement of tasks -- counter the numa conditions we're trying
1665 * to satisfy here.
58d081b5
MG
1666 */
1667 rcu_read_lock();
fb13c7ee 1668 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1669 if (sd)
1670 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1671 rcu_read_unlock();
1672
46a73e8a
RR
1673 /*
1674 * Cpusets can break the scheduler domain tree into smaller
1675 * balance domains, some of which do not cross NUMA boundaries.
1676 * Tasks that are "trapped" in such domains cannot be migrated
1677 * elsewhere, so there is no point in (re)trying.
1678 */
1679 if (unlikely(!sd)) {
de1b301a 1680 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1681 return -EINVAL;
1682 }
1683
2c8a50aa 1684 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1685 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1686 taskweight = task_weight(p, env.src_nid, dist);
1687 groupweight = group_weight(p, env.src_nid, dist);
1688 update_numa_stats(&env.src_stats, env.src_nid);
1689 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1690 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1691 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1692
a43455a1 1693 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1694 if (numa_has_capacity(&env))
1695 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1696
9de05d48
RR
1697 /*
1698 * Look at other nodes in these cases:
1699 * - there is no space available on the preferred_nid
1700 * - the task is part of a numa_group that is interleaved across
1701 * multiple NUMA nodes; in order to better consolidate the group,
1702 * we need to check other locations.
1703 */
4142c3eb 1704 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1705 for_each_online_node(nid) {
1706 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1707 continue;
58d081b5 1708
7bd95320 1709 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1710 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1711 dist != env.dist) {
1712 taskweight = task_weight(p, env.src_nid, dist);
1713 groupweight = group_weight(p, env.src_nid, dist);
1714 }
7bd95320 1715
83e1d2cd 1716 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1717 taskimp = task_weight(p, nid, dist) - taskweight;
1718 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1719 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1720 continue;
1721
7bd95320 1722 env.dist = dist;
2c8a50aa
MG
1723 env.dst_nid = nid;
1724 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1725 if (numa_has_capacity(&env))
1726 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1727 }
1728 }
1729
68d1b02a
RR
1730 /*
1731 * If the task is part of a workload that spans multiple NUMA nodes,
1732 * and is migrating into one of the workload's active nodes, remember
1733 * this node as the task's preferred numa node, so the workload can
1734 * settle down.
1735 * A task that migrated to a second choice node will be better off
1736 * trying for a better one later. Do not set the preferred node here.
1737 */
db015dae 1738 if (p->numa_group) {
4142c3eb
RR
1739 struct numa_group *ng = p->numa_group;
1740
db015dae
RR
1741 if (env.best_cpu == -1)
1742 nid = env.src_nid;
1743 else
1744 nid = env.dst_nid;
1745
4142c3eb 1746 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1747 sched_setnuma(p, env.dst_nid);
1748 }
1749
1750 /* No better CPU than the current one was found. */
1751 if (env.best_cpu == -1)
1752 return -EAGAIN;
0ec8aa00 1753
04bb2f94
RR
1754 /*
1755 * Reset the scan period if the task is being rescheduled on an
1756 * alternative node to recheck if the tasks is now properly placed.
1757 */
1758 p->numa_scan_period = task_scan_min(p);
1759
fb13c7ee 1760 if (env.best_task == NULL) {
286549dc
MG
1761 ret = migrate_task_to(p, env.best_cpu);
1762 if (ret != 0)
1763 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1764 return ret;
1765 }
1766
1767 ret = migrate_swap(p, env.best_task);
286549dc
MG
1768 if (ret != 0)
1769 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1770 put_task_struct(env.best_task);
1771 return ret;
e6628d5b
MG
1772}
1773
6b9a7460
MG
1774/* Attempt to migrate a task to a CPU on the preferred node. */
1775static void numa_migrate_preferred(struct task_struct *p)
1776{
5085e2a3
RR
1777 unsigned long interval = HZ;
1778
2739d3ee 1779 /* This task has no NUMA fault statistics yet */
44dba3d5 1780 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1781 return;
1782
2739d3ee 1783 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1784 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1785 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1786
1787 /* Success if task is already running on preferred CPU */
de1b301a 1788 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1789 return;
1790
1791 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1792 task_numa_migrate(p);
6b9a7460
MG
1793}
1794
20e07dea 1795/*
4142c3eb 1796 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1797 * tracking the nodes from which NUMA hinting faults are triggered. This can
1798 * be different from the set of nodes where the workload's memory is currently
1799 * located.
20e07dea 1800 */
4142c3eb 1801static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1802{
1803 unsigned long faults, max_faults = 0;
4142c3eb 1804 int nid, active_nodes = 0;
20e07dea
RR
1805
1806 for_each_online_node(nid) {
1807 faults = group_faults_cpu(numa_group, nid);
1808 if (faults > max_faults)
1809 max_faults = faults;
1810 }
1811
1812 for_each_online_node(nid) {
1813 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1814 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1815 active_nodes++;
20e07dea 1816 }
4142c3eb
RR
1817
1818 numa_group->max_faults_cpu = max_faults;
1819 numa_group->active_nodes = active_nodes;
20e07dea
RR
1820}
1821
04bb2f94
RR
1822/*
1823 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1824 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1825 * period will be for the next scan window. If local/(local+remote) ratio is
1826 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1827 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1828 */
1829#define NUMA_PERIOD_SLOTS 10
a22b4b01 1830#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1831
1832/*
1833 * Increase the scan period (slow down scanning) if the majority of
1834 * our memory is already on our local node, or if the majority of
1835 * the page accesses are shared with other processes.
1836 * Otherwise, decrease the scan period.
1837 */
1838static void update_task_scan_period(struct task_struct *p,
1839 unsigned long shared, unsigned long private)
1840{
1841 unsigned int period_slot;
1842 int ratio;
1843 int diff;
1844
1845 unsigned long remote = p->numa_faults_locality[0];
1846 unsigned long local = p->numa_faults_locality[1];
1847
1848 /*
1849 * If there were no record hinting faults then either the task is
1850 * completely idle or all activity is areas that are not of interest
074c2381
MG
1851 * to automatic numa balancing. Related to that, if there were failed
1852 * migration then it implies we are migrating too quickly or the local
1853 * node is overloaded. In either case, scan slower
04bb2f94 1854 */
074c2381 1855 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1856 p->numa_scan_period = min(p->numa_scan_period_max,
1857 p->numa_scan_period << 1);
1858
1859 p->mm->numa_next_scan = jiffies +
1860 msecs_to_jiffies(p->numa_scan_period);
1861
1862 return;
1863 }
1864
1865 /*
1866 * Prepare to scale scan period relative to the current period.
1867 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1868 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1869 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1870 */
1871 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1872 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1873 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1874 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1875 if (!slot)
1876 slot = 1;
1877 diff = slot * period_slot;
1878 } else {
1879 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1880
1881 /*
1882 * Scale scan rate increases based on sharing. There is an
1883 * inverse relationship between the degree of sharing and
1884 * the adjustment made to the scanning period. Broadly
1885 * speaking the intent is that there is little point
1886 * scanning faster if shared accesses dominate as it may
1887 * simply bounce migrations uselessly
1888 */
2847c90e 1889 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1890 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1891 }
1892
1893 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1894 task_scan_min(p), task_scan_max(p));
1895 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1896}
1897
7e2703e6
RR
1898/*
1899 * Get the fraction of time the task has been running since the last
1900 * NUMA placement cycle. The scheduler keeps similar statistics, but
1901 * decays those on a 32ms period, which is orders of magnitude off
1902 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1903 * stats only if the task is so new there are no NUMA statistics yet.
1904 */
1905static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1906{
1907 u64 runtime, delta, now;
1908 /* Use the start of this time slice to avoid calculations. */
1909 now = p->se.exec_start;
1910 runtime = p->se.sum_exec_runtime;
1911
1912 if (p->last_task_numa_placement) {
1913 delta = runtime - p->last_sum_exec_runtime;
1914 *period = now - p->last_task_numa_placement;
1915 } else {
9d89c257
YD
1916 delta = p->se.avg.load_sum / p->se.load.weight;
1917 *period = LOAD_AVG_MAX;
7e2703e6
RR
1918 }
1919
1920 p->last_sum_exec_runtime = runtime;
1921 p->last_task_numa_placement = now;
1922
1923 return delta;
1924}
1925
54009416
RR
1926/*
1927 * Determine the preferred nid for a task in a numa_group. This needs to
1928 * be done in a way that produces consistent results with group_weight,
1929 * otherwise workloads might not converge.
1930 */
1931static int preferred_group_nid(struct task_struct *p, int nid)
1932{
1933 nodemask_t nodes;
1934 int dist;
1935
1936 /* Direct connections between all NUMA nodes. */
1937 if (sched_numa_topology_type == NUMA_DIRECT)
1938 return nid;
1939
1940 /*
1941 * On a system with glueless mesh NUMA topology, group_weight
1942 * scores nodes according to the number of NUMA hinting faults on
1943 * both the node itself, and on nearby nodes.
1944 */
1945 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1946 unsigned long score, max_score = 0;
1947 int node, max_node = nid;
1948
1949 dist = sched_max_numa_distance;
1950
1951 for_each_online_node(node) {
1952 score = group_weight(p, node, dist);
1953 if (score > max_score) {
1954 max_score = score;
1955 max_node = node;
1956 }
1957 }
1958 return max_node;
1959 }
1960
1961 /*
1962 * Finding the preferred nid in a system with NUMA backplane
1963 * interconnect topology is more involved. The goal is to locate
1964 * tasks from numa_groups near each other in the system, and
1965 * untangle workloads from different sides of the system. This requires
1966 * searching down the hierarchy of node groups, recursively searching
1967 * inside the highest scoring group of nodes. The nodemask tricks
1968 * keep the complexity of the search down.
1969 */
1970 nodes = node_online_map;
1971 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1972 unsigned long max_faults = 0;
81907478 1973 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1974 int a, b;
1975
1976 /* Are there nodes at this distance from each other? */
1977 if (!find_numa_distance(dist))
1978 continue;
1979
1980 for_each_node_mask(a, nodes) {
1981 unsigned long faults = 0;
1982 nodemask_t this_group;
1983 nodes_clear(this_group);
1984
1985 /* Sum group's NUMA faults; includes a==b case. */
1986 for_each_node_mask(b, nodes) {
1987 if (node_distance(a, b) < dist) {
1988 faults += group_faults(p, b);
1989 node_set(b, this_group);
1990 node_clear(b, nodes);
1991 }
1992 }
1993
1994 /* Remember the top group. */
1995 if (faults > max_faults) {
1996 max_faults = faults;
1997 max_group = this_group;
1998 /*
1999 * subtle: at the smallest distance there is
2000 * just one node left in each "group", the
2001 * winner is the preferred nid.
2002 */
2003 nid = a;
2004 }
2005 }
2006 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2007 if (!max_faults)
2008 break;
54009416
RR
2009 nodes = max_group;
2010 }
2011 return nid;
2012}
2013
cbee9f88
PZ
2014static void task_numa_placement(struct task_struct *p)
2015{
83e1d2cd
MG
2016 int seq, nid, max_nid = -1, max_group_nid = -1;
2017 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2018 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2019 unsigned long total_faults;
2020 u64 runtime, period;
7dbd13ed 2021 spinlock_t *group_lock = NULL;
cbee9f88 2022
7e5a2c17
JL
2023 /*
2024 * The p->mm->numa_scan_seq field gets updated without
2025 * exclusive access. Use READ_ONCE() here to ensure
2026 * that the field is read in a single access:
2027 */
316c1608 2028 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2029 if (p->numa_scan_seq == seq)
2030 return;
2031 p->numa_scan_seq = seq;
598f0ec0 2032 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2033
7e2703e6
RR
2034 total_faults = p->numa_faults_locality[0] +
2035 p->numa_faults_locality[1];
2036 runtime = numa_get_avg_runtime(p, &period);
2037
7dbd13ed
MG
2038 /* If the task is part of a group prevent parallel updates to group stats */
2039 if (p->numa_group) {
2040 group_lock = &p->numa_group->lock;
60e69eed 2041 spin_lock_irq(group_lock);
7dbd13ed
MG
2042 }
2043
688b7585
MG
2044 /* Find the node with the highest number of faults */
2045 for_each_online_node(nid) {
44dba3d5
IM
2046 /* Keep track of the offsets in numa_faults array */
2047 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2048 unsigned long faults = 0, group_faults = 0;
44dba3d5 2049 int priv;
745d6147 2050
be1e4e76 2051 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2052 long diff, f_diff, f_weight;
8c8a743c 2053
44dba3d5
IM
2054 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2055 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2056 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2057 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2058
ac8e895b 2059 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2060 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2061 fault_types[priv] += p->numa_faults[membuf_idx];
2062 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2063
7e2703e6
RR
2064 /*
2065 * Normalize the faults_from, so all tasks in a group
2066 * count according to CPU use, instead of by the raw
2067 * number of faults. Tasks with little runtime have
2068 * little over-all impact on throughput, and thus their
2069 * faults are less important.
2070 */
2071 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2072 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2073 (total_faults + 1);
44dba3d5
IM
2074 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2075 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2076
44dba3d5
IM
2077 p->numa_faults[mem_idx] += diff;
2078 p->numa_faults[cpu_idx] += f_diff;
2079 faults += p->numa_faults[mem_idx];
83e1d2cd 2080 p->total_numa_faults += diff;
8c8a743c 2081 if (p->numa_group) {
44dba3d5
IM
2082 /*
2083 * safe because we can only change our own group
2084 *
2085 * mem_idx represents the offset for a given
2086 * nid and priv in a specific region because it
2087 * is at the beginning of the numa_faults array.
2088 */
2089 p->numa_group->faults[mem_idx] += diff;
2090 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2091 p->numa_group->total_faults += diff;
44dba3d5 2092 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2093 }
ac8e895b
MG
2094 }
2095
688b7585
MG
2096 if (faults > max_faults) {
2097 max_faults = faults;
2098 max_nid = nid;
2099 }
83e1d2cd
MG
2100
2101 if (group_faults > max_group_faults) {
2102 max_group_faults = group_faults;
2103 max_group_nid = nid;
2104 }
2105 }
2106
04bb2f94
RR
2107 update_task_scan_period(p, fault_types[0], fault_types[1]);
2108
7dbd13ed 2109 if (p->numa_group) {
4142c3eb 2110 numa_group_count_active_nodes(p->numa_group);
60e69eed 2111 spin_unlock_irq(group_lock);
54009416 2112 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2113 }
2114
bb97fc31
RR
2115 if (max_faults) {
2116 /* Set the new preferred node */
2117 if (max_nid != p->numa_preferred_nid)
2118 sched_setnuma(p, max_nid);
2119
2120 if (task_node(p) != p->numa_preferred_nid)
2121 numa_migrate_preferred(p);
3a7053b3 2122 }
cbee9f88
PZ
2123}
2124
8c8a743c
PZ
2125static inline int get_numa_group(struct numa_group *grp)
2126{
2127 return atomic_inc_not_zero(&grp->refcount);
2128}
2129
2130static inline void put_numa_group(struct numa_group *grp)
2131{
2132 if (atomic_dec_and_test(&grp->refcount))
2133 kfree_rcu(grp, rcu);
2134}
2135
3e6a9418
MG
2136static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2137 int *priv)
8c8a743c
PZ
2138{
2139 struct numa_group *grp, *my_grp;
2140 struct task_struct *tsk;
2141 bool join = false;
2142 int cpu = cpupid_to_cpu(cpupid);
2143 int i;
2144
2145 if (unlikely(!p->numa_group)) {
2146 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2147 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2148
2149 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2150 if (!grp)
2151 return;
2152
2153 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2154 grp->active_nodes = 1;
2155 grp->max_faults_cpu = 0;
8c8a743c 2156 spin_lock_init(&grp->lock);
e29cf08b 2157 grp->gid = p->pid;
50ec8a40 2158 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2159 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2160 nr_node_ids;
8c8a743c 2161
be1e4e76 2162 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2163 grp->faults[i] = p->numa_faults[i];
8c8a743c 2164
989348b5 2165 grp->total_faults = p->total_numa_faults;
83e1d2cd 2166
8c8a743c
PZ
2167 grp->nr_tasks++;
2168 rcu_assign_pointer(p->numa_group, grp);
2169 }
2170
2171 rcu_read_lock();
316c1608 2172 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2173
2174 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2175 goto no_join;
8c8a743c
PZ
2176
2177 grp = rcu_dereference(tsk->numa_group);
2178 if (!grp)
3354781a 2179 goto no_join;
8c8a743c
PZ
2180
2181 my_grp = p->numa_group;
2182 if (grp == my_grp)
3354781a 2183 goto no_join;
8c8a743c
PZ
2184
2185 /*
2186 * Only join the other group if its bigger; if we're the bigger group,
2187 * the other task will join us.
2188 */
2189 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2190 goto no_join;
8c8a743c
PZ
2191
2192 /*
2193 * Tie-break on the grp address.
2194 */
2195 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2196 goto no_join;
8c8a743c 2197
dabe1d99
RR
2198 /* Always join threads in the same process. */
2199 if (tsk->mm == current->mm)
2200 join = true;
2201
2202 /* Simple filter to avoid false positives due to PID collisions */
2203 if (flags & TNF_SHARED)
2204 join = true;
8c8a743c 2205
3e6a9418
MG
2206 /* Update priv based on whether false sharing was detected */
2207 *priv = !join;
2208
dabe1d99 2209 if (join && !get_numa_group(grp))
3354781a 2210 goto no_join;
8c8a743c 2211
8c8a743c
PZ
2212 rcu_read_unlock();
2213
2214 if (!join)
2215 return;
2216
60e69eed
MG
2217 BUG_ON(irqs_disabled());
2218 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2219
be1e4e76 2220 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2221 my_grp->faults[i] -= p->numa_faults[i];
2222 grp->faults[i] += p->numa_faults[i];
8c8a743c 2223 }
989348b5
MG
2224 my_grp->total_faults -= p->total_numa_faults;
2225 grp->total_faults += p->total_numa_faults;
8c8a743c 2226
8c8a743c
PZ
2227 my_grp->nr_tasks--;
2228 grp->nr_tasks++;
2229
2230 spin_unlock(&my_grp->lock);
60e69eed 2231 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2232
2233 rcu_assign_pointer(p->numa_group, grp);
2234
2235 put_numa_group(my_grp);
3354781a
PZ
2236 return;
2237
2238no_join:
2239 rcu_read_unlock();
2240 return;
8c8a743c
PZ
2241}
2242
2243void task_numa_free(struct task_struct *p)
2244{
2245 struct numa_group *grp = p->numa_group;
44dba3d5 2246 void *numa_faults = p->numa_faults;
e9dd685c
SR
2247 unsigned long flags;
2248 int i;
8c8a743c
PZ
2249
2250 if (grp) {
e9dd685c 2251 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2252 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2253 grp->faults[i] -= p->numa_faults[i];
989348b5 2254 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2255
8c8a743c 2256 grp->nr_tasks--;
e9dd685c 2257 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2258 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2259 put_numa_group(grp);
2260 }
2261
44dba3d5 2262 p->numa_faults = NULL;
82727018 2263 kfree(numa_faults);
8c8a743c
PZ
2264}
2265
cbee9f88
PZ
2266/*
2267 * Got a PROT_NONE fault for a page on @node.
2268 */
58b46da3 2269void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2270{
2271 struct task_struct *p = current;
6688cc05 2272 bool migrated = flags & TNF_MIGRATED;
58b46da3 2273 int cpu_node = task_node(current);
792568ec 2274 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2275 struct numa_group *ng;
ac8e895b 2276 int priv;
cbee9f88 2277
2a595721 2278 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2279 return;
2280
9ff1d9ff
MG
2281 /* for example, ksmd faulting in a user's mm */
2282 if (!p->mm)
2283 return;
2284
f809ca9a 2285 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2286 if (unlikely(!p->numa_faults)) {
2287 int size = sizeof(*p->numa_faults) *
be1e4e76 2288 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2289
44dba3d5
IM
2290 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2291 if (!p->numa_faults)
f809ca9a 2292 return;
745d6147 2293
83e1d2cd 2294 p->total_numa_faults = 0;
04bb2f94 2295 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2296 }
cbee9f88 2297
8c8a743c
PZ
2298 /*
2299 * First accesses are treated as private, otherwise consider accesses
2300 * to be private if the accessing pid has not changed
2301 */
2302 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2303 priv = 1;
2304 } else {
2305 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2306 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2307 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2308 }
2309
792568ec
RR
2310 /*
2311 * If a workload spans multiple NUMA nodes, a shared fault that
2312 * occurs wholly within the set of nodes that the workload is
2313 * actively using should be counted as local. This allows the
2314 * scan rate to slow down when a workload has settled down.
2315 */
4142c3eb
RR
2316 ng = p->numa_group;
2317 if (!priv && !local && ng && ng->active_nodes > 1 &&
2318 numa_is_active_node(cpu_node, ng) &&
2319 numa_is_active_node(mem_node, ng))
792568ec
RR
2320 local = 1;
2321
cbee9f88 2322 task_numa_placement(p);
f809ca9a 2323
2739d3ee
RR
2324 /*
2325 * Retry task to preferred node migration periodically, in case it
2326 * case it previously failed, or the scheduler moved us.
2327 */
2328 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2329 numa_migrate_preferred(p);
2330
b32e86b4
IM
2331 if (migrated)
2332 p->numa_pages_migrated += pages;
074c2381
MG
2333 if (flags & TNF_MIGRATE_FAIL)
2334 p->numa_faults_locality[2] += pages;
b32e86b4 2335
44dba3d5
IM
2336 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2337 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2338 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2339}
2340
6e5fb223
PZ
2341static void reset_ptenuma_scan(struct task_struct *p)
2342{
7e5a2c17
JL
2343 /*
2344 * We only did a read acquisition of the mmap sem, so
2345 * p->mm->numa_scan_seq is written to without exclusive access
2346 * and the update is not guaranteed to be atomic. That's not
2347 * much of an issue though, since this is just used for
2348 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2349 * expensive, to avoid any form of compiler optimizations:
2350 */
316c1608 2351 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2352 p->mm->numa_scan_offset = 0;
2353}
2354
cbee9f88
PZ
2355/*
2356 * The expensive part of numa migration is done from task_work context.
2357 * Triggered from task_tick_numa().
2358 */
2359void task_numa_work(struct callback_head *work)
2360{
2361 unsigned long migrate, next_scan, now = jiffies;
2362 struct task_struct *p = current;
2363 struct mm_struct *mm = p->mm;
51170840 2364 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2365 struct vm_area_struct *vma;
9f40604c 2366 unsigned long start, end;
598f0ec0 2367 unsigned long nr_pte_updates = 0;
4620f8c1 2368 long pages, virtpages;
cbee9f88 2369
9148a3a1 2370 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2371
2372 work->next = work; /* protect against double add */
2373 /*
2374 * Who cares about NUMA placement when they're dying.
2375 *
2376 * NOTE: make sure not to dereference p->mm before this check,
2377 * exit_task_work() happens _after_ exit_mm() so we could be called
2378 * without p->mm even though we still had it when we enqueued this
2379 * work.
2380 */
2381 if (p->flags & PF_EXITING)
2382 return;
2383
930aa174 2384 if (!mm->numa_next_scan) {
7e8d16b6
MG
2385 mm->numa_next_scan = now +
2386 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2387 }
2388
cbee9f88
PZ
2389 /*
2390 * Enforce maximal scan/migration frequency..
2391 */
2392 migrate = mm->numa_next_scan;
2393 if (time_before(now, migrate))
2394 return;
2395
598f0ec0
MG
2396 if (p->numa_scan_period == 0) {
2397 p->numa_scan_period_max = task_scan_max(p);
2398 p->numa_scan_period = task_scan_min(p);
2399 }
cbee9f88 2400
fb003b80 2401 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2402 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2403 return;
2404
19a78d11
PZ
2405 /*
2406 * Delay this task enough that another task of this mm will likely win
2407 * the next time around.
2408 */
2409 p->node_stamp += 2 * TICK_NSEC;
2410
9f40604c
MG
2411 start = mm->numa_scan_offset;
2412 pages = sysctl_numa_balancing_scan_size;
2413 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2414 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2415 if (!pages)
2416 return;
cbee9f88 2417
4620f8c1 2418
6e5fb223 2419 down_read(&mm->mmap_sem);
9f40604c 2420 vma = find_vma(mm, start);
6e5fb223
PZ
2421 if (!vma) {
2422 reset_ptenuma_scan(p);
9f40604c 2423 start = 0;
6e5fb223
PZ
2424 vma = mm->mmap;
2425 }
9f40604c 2426 for (; vma; vma = vma->vm_next) {
6b79c57b 2427 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2428 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2429 continue;
6b79c57b 2430 }
6e5fb223 2431
4591ce4f
MG
2432 /*
2433 * Shared library pages mapped by multiple processes are not
2434 * migrated as it is expected they are cache replicated. Avoid
2435 * hinting faults in read-only file-backed mappings or the vdso
2436 * as migrating the pages will be of marginal benefit.
2437 */
2438 if (!vma->vm_mm ||
2439 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2440 continue;
2441
3c67f474
MG
2442 /*
2443 * Skip inaccessible VMAs to avoid any confusion between
2444 * PROT_NONE and NUMA hinting ptes
2445 */
2446 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2447 continue;
4591ce4f 2448
9f40604c
MG
2449 do {
2450 start = max(start, vma->vm_start);
2451 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2452 end = min(end, vma->vm_end);
4620f8c1 2453 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2454
2455 /*
4620f8c1
RR
2456 * Try to scan sysctl_numa_balancing_size worth of
2457 * hpages that have at least one present PTE that
2458 * is not already pte-numa. If the VMA contains
2459 * areas that are unused or already full of prot_numa
2460 * PTEs, scan up to virtpages, to skip through those
2461 * areas faster.
598f0ec0
MG
2462 */
2463 if (nr_pte_updates)
2464 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2465 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2466
9f40604c 2467 start = end;
4620f8c1 2468 if (pages <= 0 || virtpages <= 0)
9f40604c 2469 goto out;
3cf1962c
RR
2470
2471 cond_resched();
9f40604c 2472 } while (end != vma->vm_end);
cbee9f88 2473 }
6e5fb223 2474
9f40604c 2475out:
6e5fb223 2476 /*
c69307d5
PZ
2477 * It is possible to reach the end of the VMA list but the last few
2478 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2479 * would find the !migratable VMA on the next scan but not reset the
2480 * scanner to the start so check it now.
6e5fb223
PZ
2481 */
2482 if (vma)
9f40604c 2483 mm->numa_scan_offset = start;
6e5fb223
PZ
2484 else
2485 reset_ptenuma_scan(p);
2486 up_read(&mm->mmap_sem);
51170840
RR
2487
2488 /*
2489 * Make sure tasks use at least 32x as much time to run other code
2490 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2491 * Usually update_task_scan_period slows down scanning enough; on an
2492 * overloaded system we need to limit overhead on a per task basis.
2493 */
2494 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2495 u64 diff = p->se.sum_exec_runtime - runtime;
2496 p->node_stamp += 32 * diff;
2497 }
cbee9f88
PZ
2498}
2499
2500/*
2501 * Drive the periodic memory faults..
2502 */
2503void task_tick_numa(struct rq *rq, struct task_struct *curr)
2504{
2505 struct callback_head *work = &curr->numa_work;
2506 u64 period, now;
2507
2508 /*
2509 * We don't care about NUMA placement if we don't have memory.
2510 */
2511 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2512 return;
2513
2514 /*
2515 * Using runtime rather than walltime has the dual advantage that
2516 * we (mostly) drive the selection from busy threads and that the
2517 * task needs to have done some actual work before we bother with
2518 * NUMA placement.
2519 */
2520 now = curr->se.sum_exec_runtime;
2521 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2522
25b3e5a3 2523 if (now > curr->node_stamp + period) {
4b96a29b 2524 if (!curr->node_stamp)
598f0ec0 2525 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2526 curr->node_stamp += period;
cbee9f88
PZ
2527
2528 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2529 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2530 task_work_add(curr, work, true);
2531 }
2532 }
2533}
2534#else
2535static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2536{
2537}
0ec8aa00
PZ
2538
2539static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2540{
2541}
2542
2543static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2544{
2545}
cbee9f88
PZ
2546#endif /* CONFIG_NUMA_BALANCING */
2547
30cfdcfc
DA
2548static void
2549account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2550{
2551 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2552 if (!parent_entity(se))
029632fb 2553 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2554#ifdef CONFIG_SMP
0ec8aa00
PZ
2555 if (entity_is_task(se)) {
2556 struct rq *rq = rq_of(cfs_rq);
2557
2558 account_numa_enqueue(rq, task_of(se));
2559 list_add(&se->group_node, &rq->cfs_tasks);
2560 }
367456c7 2561#endif
30cfdcfc 2562 cfs_rq->nr_running++;
30cfdcfc
DA
2563}
2564
2565static void
2566account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2567{
2568 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2569 if (!parent_entity(se))
029632fb 2570 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2571#ifdef CONFIG_SMP
0ec8aa00
PZ
2572 if (entity_is_task(se)) {
2573 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2574 list_del_init(&se->group_node);
0ec8aa00 2575 }
bfdb198c 2576#endif
30cfdcfc 2577 cfs_rq->nr_running--;
30cfdcfc
DA
2578}
2579
3ff6dcac
YZ
2580#ifdef CONFIG_FAIR_GROUP_SCHED
2581# ifdef CONFIG_SMP
ea1dc6fc 2582static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2583{
ea1dc6fc 2584 long tg_weight, load, shares;
cf5f0acf
PZ
2585
2586 /*
ea1dc6fc
PZ
2587 * This really should be: cfs_rq->avg.load_avg, but instead we use
2588 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2589 * the shares for small weight interactive tasks.
cf5f0acf 2590 */
ea1dc6fc 2591 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2592
ea1dc6fc 2593 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2594
ea1dc6fc
PZ
2595 /* Ensure tg_weight >= load */
2596 tg_weight -= cfs_rq->tg_load_avg_contrib;
2597 tg_weight += load;
3ff6dcac 2598
3ff6dcac 2599 shares = (tg->shares * load);
cf5f0acf
PZ
2600 if (tg_weight)
2601 shares /= tg_weight;
3ff6dcac
YZ
2602
2603 if (shares < MIN_SHARES)
2604 shares = MIN_SHARES;
2605 if (shares > tg->shares)
2606 shares = tg->shares;
2607
2608 return shares;
2609}
3ff6dcac 2610# else /* CONFIG_SMP */
6d5ab293 2611static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2612{
2613 return tg->shares;
2614}
3ff6dcac 2615# endif /* CONFIG_SMP */
ea1dc6fc 2616
2069dd75
PZ
2617static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2618 unsigned long weight)
2619{
19e5eebb
PT
2620 if (se->on_rq) {
2621 /* commit outstanding execution time */
2622 if (cfs_rq->curr == se)
2623 update_curr(cfs_rq);
2069dd75 2624 account_entity_dequeue(cfs_rq, se);
19e5eebb 2625 }
2069dd75
PZ
2626
2627 update_load_set(&se->load, weight);
2628
2629 if (se->on_rq)
2630 account_entity_enqueue(cfs_rq, se);
2631}
2632
82958366
PT
2633static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2634
6d5ab293 2635static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2636{
2637 struct task_group *tg;
2638 struct sched_entity *se;
3ff6dcac 2639 long shares;
2069dd75 2640
2069dd75
PZ
2641 tg = cfs_rq->tg;
2642 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2643 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2644 return;
3ff6dcac
YZ
2645#ifndef CONFIG_SMP
2646 if (likely(se->load.weight == tg->shares))
2647 return;
2648#endif
6d5ab293 2649 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2650
2651 reweight_entity(cfs_rq_of(se), se, shares);
2652}
2653#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2654static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2655{
2656}
2657#endif /* CONFIG_FAIR_GROUP_SCHED */
2658
141965c7 2659#ifdef CONFIG_SMP
5b51f2f8
PT
2660/* Precomputed fixed inverse multiplies for multiplication by y^n */
2661static const u32 runnable_avg_yN_inv[] = {
2662 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2663 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2664 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2665 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2666 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2667 0x85aac367, 0x82cd8698,
2668};
2669
2670/*
2671 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2672 * over-estimates when re-combining.
2673 */
2674static const u32 runnable_avg_yN_sum[] = {
2675 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2676 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2677 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2678};
2679
7b20b916
YD
2680/*
2681 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2682 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2683 * were generated:
2684 */
2685static const u32 __accumulated_sum_N32[] = {
2686 0, 23371, 35056, 40899, 43820, 45281,
2687 46011, 46376, 46559, 46650, 46696, 46719,
2688};
2689
9d85f21c
PT
2690/*
2691 * Approximate:
2692 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2693 */
2694static __always_inline u64 decay_load(u64 val, u64 n)
2695{
5b51f2f8
PT
2696 unsigned int local_n;
2697
2698 if (!n)
2699 return val;
2700 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2701 return 0;
2702
2703 /* after bounds checking we can collapse to 32-bit */
2704 local_n = n;
2705
2706 /*
2707 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2708 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2709 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2710 *
2711 * To achieve constant time decay_load.
2712 */
2713 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2714 val >>= local_n / LOAD_AVG_PERIOD;
2715 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2716 }
2717
9d89c257
YD
2718 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2719 return val;
5b51f2f8
PT
2720}
2721
2722/*
2723 * For updates fully spanning n periods, the contribution to runnable
2724 * average will be: \Sum 1024*y^n
2725 *
2726 * We can compute this reasonably efficiently by combining:
2727 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2728 */
2729static u32 __compute_runnable_contrib(u64 n)
2730{
2731 u32 contrib = 0;
2732
2733 if (likely(n <= LOAD_AVG_PERIOD))
2734 return runnable_avg_yN_sum[n];
2735 else if (unlikely(n >= LOAD_AVG_MAX_N))
2736 return LOAD_AVG_MAX;
2737
7b20b916
YD
2738 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2739 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2740 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2741 contrib = decay_load(contrib, n);
2742 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2743}
2744
54a21385 2745#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2746
9d85f21c
PT
2747/*
2748 * We can represent the historical contribution to runnable average as the
2749 * coefficients of a geometric series. To do this we sub-divide our runnable
2750 * history into segments of approximately 1ms (1024us); label the segment that
2751 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2752 *
2753 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2754 * p0 p1 p2
2755 * (now) (~1ms ago) (~2ms ago)
2756 *
2757 * Let u_i denote the fraction of p_i that the entity was runnable.
2758 *
2759 * We then designate the fractions u_i as our co-efficients, yielding the
2760 * following representation of historical load:
2761 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2762 *
2763 * We choose y based on the with of a reasonably scheduling period, fixing:
2764 * y^32 = 0.5
2765 *
2766 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2767 * approximately half as much as the contribution to load within the last ms
2768 * (u_0).
2769 *
2770 * When a period "rolls over" and we have new u_0`, multiplying the previous
2771 * sum again by y is sufficient to update:
2772 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2773 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2774 */
9d89c257
YD
2775static __always_inline int
2776__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2777 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2778{
e0f5f3af 2779 u64 delta, scaled_delta, periods;
9d89c257 2780 u32 contrib;
6115c793 2781 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2782 unsigned long scale_freq, scale_cpu;
9d85f21c 2783
9d89c257 2784 delta = now - sa->last_update_time;
9d85f21c
PT
2785 /*
2786 * This should only happen when time goes backwards, which it
2787 * unfortunately does during sched clock init when we swap over to TSC.
2788 */
2789 if ((s64)delta < 0) {
9d89c257 2790 sa->last_update_time = now;
9d85f21c
PT
2791 return 0;
2792 }
2793
2794 /*
2795 * Use 1024ns as the unit of measurement since it's a reasonable
2796 * approximation of 1us and fast to compute.
2797 */
2798 delta >>= 10;
2799 if (!delta)
2800 return 0;
9d89c257 2801 sa->last_update_time = now;
9d85f21c 2802
6f2b0452
DE
2803 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2804 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2805
9d85f21c 2806 /* delta_w is the amount already accumulated against our next period */
9d89c257 2807 delta_w = sa->period_contrib;
9d85f21c 2808 if (delta + delta_w >= 1024) {
9d85f21c
PT
2809 decayed = 1;
2810
9d89c257
YD
2811 /* how much left for next period will start over, we don't know yet */
2812 sa->period_contrib = 0;
2813
9d85f21c
PT
2814 /*
2815 * Now that we know we're crossing a period boundary, figure
2816 * out how much from delta we need to complete the current
2817 * period and accrue it.
2818 */
2819 delta_w = 1024 - delta_w;
54a21385 2820 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2821 if (weight) {
e0f5f3af
DE
2822 sa->load_sum += weight * scaled_delta_w;
2823 if (cfs_rq) {
2824 cfs_rq->runnable_load_sum +=
2825 weight * scaled_delta_w;
2826 }
13962234 2827 }
36ee28e4 2828 if (running)
006cdf02 2829 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2830
2831 delta -= delta_w;
2832
2833 /* Figure out how many additional periods this update spans */
2834 periods = delta / 1024;
2835 delta %= 1024;
2836
9d89c257 2837 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2838 if (cfs_rq) {
2839 cfs_rq->runnable_load_sum =
2840 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2841 }
9d89c257 2842 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2843
2844 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2845 contrib = __compute_runnable_contrib(periods);
54a21385 2846 contrib = cap_scale(contrib, scale_freq);
13962234 2847 if (weight) {
9d89c257 2848 sa->load_sum += weight * contrib;
13962234
YD
2849 if (cfs_rq)
2850 cfs_rq->runnable_load_sum += weight * contrib;
2851 }
36ee28e4 2852 if (running)
006cdf02 2853 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2854 }
2855
2856 /* Remainder of delta accrued against u_0` */
54a21385 2857 scaled_delta = cap_scale(delta, scale_freq);
13962234 2858 if (weight) {
e0f5f3af 2859 sa->load_sum += weight * scaled_delta;
13962234 2860 if (cfs_rq)
e0f5f3af 2861 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2862 }
36ee28e4 2863 if (running)
006cdf02 2864 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2865
9d89c257 2866 sa->period_contrib += delta;
9ee474f5 2867
9d89c257
YD
2868 if (decayed) {
2869 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2870 if (cfs_rq) {
2871 cfs_rq->runnable_load_avg =
2872 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2873 }
006cdf02 2874 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2875 }
aff3e498 2876
9d89c257 2877 return decayed;
9ee474f5
PT
2878}
2879
c566e8e9 2880#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2881/**
2882 * update_tg_load_avg - update the tg's load avg
2883 * @cfs_rq: the cfs_rq whose avg changed
2884 * @force: update regardless of how small the difference
2885 *
2886 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2887 * However, because tg->load_avg is a global value there are performance
2888 * considerations.
2889 *
2890 * In order to avoid having to look at the other cfs_rq's, we use a
2891 * differential update where we store the last value we propagated. This in
2892 * turn allows skipping updates if the differential is 'small'.
2893 *
2894 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2895 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2896 */
9d89c257 2897static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2898{
9d89c257 2899 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2900
aa0b7ae0
WL
2901 /*
2902 * No need to update load_avg for root_task_group as it is not used.
2903 */
2904 if (cfs_rq->tg == &root_task_group)
2905 return;
2906
9d89c257
YD
2907 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2908 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2909 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2910 }
8165e145 2911}
f5f9739d 2912
ad936d86
BP
2913/*
2914 * Called within set_task_rq() right before setting a task's cpu. The
2915 * caller only guarantees p->pi_lock is held; no other assumptions,
2916 * including the state of rq->lock, should be made.
2917 */
2918void set_task_rq_fair(struct sched_entity *se,
2919 struct cfs_rq *prev, struct cfs_rq *next)
2920{
2921 if (!sched_feat(ATTACH_AGE_LOAD))
2922 return;
2923
2924 /*
2925 * We are supposed to update the task to "current" time, then its up to
2926 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2927 * getting what current time is, so simply throw away the out-of-date
2928 * time. This will result in the wakee task is less decayed, but giving
2929 * the wakee more load sounds not bad.
2930 */
2931 if (se->avg.last_update_time && prev) {
2932 u64 p_last_update_time;
2933 u64 n_last_update_time;
2934
2935#ifndef CONFIG_64BIT
2936 u64 p_last_update_time_copy;
2937 u64 n_last_update_time_copy;
2938
2939 do {
2940 p_last_update_time_copy = prev->load_last_update_time_copy;
2941 n_last_update_time_copy = next->load_last_update_time_copy;
2942
2943 smp_rmb();
2944
2945 p_last_update_time = prev->avg.last_update_time;
2946 n_last_update_time = next->avg.last_update_time;
2947
2948 } while (p_last_update_time != p_last_update_time_copy ||
2949 n_last_update_time != n_last_update_time_copy);
2950#else
2951 p_last_update_time = prev->avg.last_update_time;
2952 n_last_update_time = next->avg.last_update_time;
2953#endif
2954 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2955 &se->avg, 0, 0, NULL);
2956 se->avg.last_update_time = n_last_update_time;
2957 }
2958}
6e83125c 2959#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2960static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2961#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2962
a2c6c91f
SM
2963static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2964{
2965 struct rq *rq = rq_of(cfs_rq);
2966 int cpu = cpu_of(rq);
2967
2968 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2969 unsigned long max = rq->cpu_capacity_orig;
2970
2971 /*
2972 * There are a few boundary cases this might miss but it should
2973 * get called often enough that that should (hopefully) not be
2974 * a real problem -- added to that it only calls on the local
2975 * CPU, so if we enqueue remotely we'll miss an update, but
2976 * the next tick/schedule should update.
2977 *
2978 * It will not get called when we go idle, because the idle
2979 * thread is a different class (!fair), nor will the utilization
2980 * number include things like RT tasks.
2981 *
2982 * As is, the util number is not freq-invariant (we'd have to
2983 * implement arch_scale_freq_capacity() for that).
2984 *
2985 * See cpu_util().
2986 */
2987 cpufreq_update_util(rq_clock(rq),
2988 min(cfs_rq->avg.util_avg, max), max);
2989 }
2990}
2991
89741892
PZ
2992/*
2993 * Unsigned subtract and clamp on underflow.
2994 *
2995 * Explicitly do a load-store to ensure the intermediate value never hits
2996 * memory. This allows lockless observations without ever seeing the negative
2997 * values.
2998 */
2999#define sub_positive(_ptr, _val) do { \
3000 typeof(_ptr) ptr = (_ptr); \
3001 typeof(*ptr) val = (_val); \
3002 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3003 res = var - val; \
3004 if (res > var) \
3005 res = 0; \
3006 WRITE_ONCE(*ptr, res); \
3007} while (0)
3008
3d30544f
PZ
3009/**
3010 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3011 * @now: current time, as per cfs_rq_clock_task()
3012 * @cfs_rq: cfs_rq to update
3013 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3014 *
3015 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3016 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3017 * post_init_entity_util_avg().
3018 *
3019 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3020 *
7c3edd2c
PZ
3021 * Returns true if the load decayed or we removed load.
3022 *
3023 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3024 * call update_tg_load_avg() when this function returns true.
3d30544f 3025 */
a2c6c91f
SM
3026static inline int
3027update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3028{
9d89c257 3029 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3030 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3031
9d89c257 3032 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3033 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3034 sub_positive(&sa->load_avg, r);
3035 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3036 removed_load = 1;
8165e145 3037 }
2dac754e 3038
9d89c257
YD
3039 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3040 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3041 sub_positive(&sa->util_avg, r);
3042 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3043 removed_util = 1;
9d89c257 3044 }
36ee28e4 3045
a2c6c91f 3046 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3047 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3048
9d89c257
YD
3049#ifndef CONFIG_64BIT
3050 smp_wmb();
3051 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3052#endif
36ee28e4 3053
a2c6c91f
SM
3054 if (update_freq && (decayed || removed_util))
3055 cfs_rq_util_change(cfs_rq);
21e96f88 3056
41e0d37f 3057 return decayed || removed_load;
21e96f88
SM
3058}
3059
3060/* Update task and its cfs_rq load average */
3061static inline void update_load_avg(struct sched_entity *se, int update_tg)
3062{
3063 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3064 u64 now = cfs_rq_clock_task(cfs_rq);
3065 struct rq *rq = rq_of(cfs_rq);
3066 int cpu = cpu_of(rq);
3067
3068 /*
3069 * Track task load average for carrying it to new CPU after migrated, and
3070 * track group sched_entity load average for task_h_load calc in migration
3071 */
3072 __update_load_avg(now, cpu, &se->avg,
3073 se->on_rq * scale_load_down(se->load.weight),
3074 cfs_rq->curr == se, NULL);
3075
a2c6c91f 3076 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3077 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3078}
3079
3d30544f
PZ
3080/**
3081 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3082 * @cfs_rq: cfs_rq to attach to
3083 * @se: sched_entity to attach
3084 *
3085 * Must call update_cfs_rq_load_avg() before this, since we rely on
3086 * cfs_rq->avg.last_update_time being current.
3087 */
a05e8c51
BP
3088static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3089{
a9280514
PZ
3090 if (!sched_feat(ATTACH_AGE_LOAD))
3091 goto skip_aging;
3092
6efdb105
BP
3093 /*
3094 * If we got migrated (either between CPUs or between cgroups) we'll
3095 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3096 *
3097 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3098 */
3099 if (se->avg.last_update_time) {
3100 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3101 &se->avg, 0, 0, NULL);
3102
3103 /*
3104 * XXX: we could have just aged the entire load away if we've been
3105 * absent from the fair class for too long.
3106 */
3107 }
3108
a9280514 3109skip_aging:
a05e8c51
BP
3110 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3111 cfs_rq->avg.load_avg += se->avg.load_avg;
3112 cfs_rq->avg.load_sum += se->avg.load_sum;
3113 cfs_rq->avg.util_avg += se->avg.util_avg;
3114 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3115
3116 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3117}
3118
3d30544f
PZ
3119/**
3120 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3121 * @cfs_rq: cfs_rq to detach from
3122 * @se: sched_entity to detach
3123 *
3124 * Must call update_cfs_rq_load_avg() before this, since we rely on
3125 * cfs_rq->avg.last_update_time being current.
3126 */
a05e8c51
BP
3127static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3128{
3129 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3130 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3131 cfs_rq->curr == se, NULL);
3132
89741892
PZ
3133 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3134 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3135 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3136 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3137
3138 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3139}
3140
9d89c257
YD
3141/* Add the load generated by se into cfs_rq's load average */
3142static inline void
3143enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3144{
9d89c257
YD
3145 struct sched_avg *sa = &se->avg;
3146 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3147 int migrated, decayed;
9ee474f5 3148
a05e8c51
BP
3149 migrated = !sa->last_update_time;
3150 if (!migrated) {
9d89c257 3151 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3152 se->on_rq * scale_load_down(se->load.weight),
3153 cfs_rq->curr == se, NULL);
aff3e498 3154 }
c566e8e9 3155
a2c6c91f 3156 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3157
13962234
YD
3158 cfs_rq->runnable_load_avg += sa->load_avg;
3159 cfs_rq->runnable_load_sum += sa->load_sum;
3160
a05e8c51
BP
3161 if (migrated)
3162 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3163
9d89c257
YD
3164 if (decayed || migrated)
3165 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3166}
3167
13962234
YD
3168/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3169static inline void
3170dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3171{
3172 update_load_avg(se, 1);
3173
3174 cfs_rq->runnable_load_avg =
3175 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3176 cfs_rq->runnable_load_sum =
a05e8c51 3177 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3178}
3179
9d89c257 3180#ifndef CONFIG_64BIT
0905f04e
YD
3181static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3182{
9d89c257 3183 u64 last_update_time_copy;
0905f04e 3184 u64 last_update_time;
9ee474f5 3185
9d89c257
YD
3186 do {
3187 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3188 smp_rmb();
3189 last_update_time = cfs_rq->avg.last_update_time;
3190 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3191
3192 return last_update_time;
3193}
9d89c257 3194#else
0905f04e
YD
3195static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3196{
3197 return cfs_rq->avg.last_update_time;
3198}
9d89c257
YD
3199#endif
3200
0905f04e
YD
3201/*
3202 * Task first catches up with cfs_rq, and then subtract
3203 * itself from the cfs_rq (task must be off the queue now).
3204 */
3205void remove_entity_load_avg(struct sched_entity *se)
3206{
3207 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3208 u64 last_update_time;
3209
3210 /*
7dc603c9
PZ
3211 * tasks cannot exit without having gone through wake_up_new_task() ->
3212 * post_init_entity_util_avg() which will have added things to the
3213 * cfs_rq, so we can remove unconditionally.
3214 *
3215 * Similarly for groups, they will have passed through
3216 * post_init_entity_util_avg() before unregister_sched_fair_group()
3217 * calls this.
0905f04e 3218 */
0905f04e
YD
3219
3220 last_update_time = cfs_rq_last_update_time(cfs_rq);
3221
13962234 3222 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3223 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3224 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3225}
642dbc39 3226
7ea241af
YD
3227static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3228{
3229 return cfs_rq->runnable_load_avg;
3230}
3231
3232static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3233{
3234 return cfs_rq->avg.load_avg;
3235}
3236
6e83125c
PZ
3237static int idle_balance(struct rq *this_rq);
3238
38033c37
PZ
3239#else /* CONFIG_SMP */
3240
01011473
PZ
3241static inline int
3242update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3243{
3244 return 0;
3245}
3246
536bd00c
RW
3247static inline void update_load_avg(struct sched_entity *se, int not_used)
3248{
3249 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3250 struct rq *rq = rq_of(cfs_rq);
3251
3252 cpufreq_trigger_update(rq_clock(rq));
3253}
3254
9d89c257
YD
3255static inline void
3256enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3257static inline void
3258dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3259static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3260
a05e8c51
BP
3261static inline void
3262attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3263static inline void
3264detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3265
6e83125c
PZ
3266static inline int idle_balance(struct rq *rq)
3267{
3268 return 0;
3269}
3270
38033c37 3271#endif /* CONFIG_SMP */
9d85f21c 3272
ddc97297
PZ
3273static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3274{
3275#ifdef CONFIG_SCHED_DEBUG
3276 s64 d = se->vruntime - cfs_rq->min_vruntime;
3277
3278 if (d < 0)
3279 d = -d;
3280
3281 if (d > 3*sysctl_sched_latency)
ae92882e 3282 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3283#endif
3284}
3285
aeb73b04
PZ
3286static void
3287place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3288{
1af5f730 3289 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3290
2cb8600e
PZ
3291 /*
3292 * The 'current' period is already promised to the current tasks,
3293 * however the extra weight of the new task will slow them down a
3294 * little, place the new task so that it fits in the slot that
3295 * stays open at the end.
3296 */
94dfb5e7 3297 if (initial && sched_feat(START_DEBIT))
f9c0b095 3298 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3299
a2e7a7eb 3300 /* sleeps up to a single latency don't count. */
5ca9880c 3301 if (!initial) {
a2e7a7eb 3302 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3303
a2e7a7eb
MG
3304 /*
3305 * Halve their sleep time's effect, to allow
3306 * for a gentler effect of sleepers:
3307 */
3308 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3309 thresh >>= 1;
51e0304c 3310
a2e7a7eb 3311 vruntime -= thresh;
aeb73b04
PZ
3312 }
3313
b5d9d734 3314 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3315 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3316}
3317
d3d9dc33
PT
3318static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3319
cb251765
MG
3320static inline void check_schedstat_required(void)
3321{
3322#ifdef CONFIG_SCHEDSTATS
3323 if (schedstat_enabled())
3324 return;
3325
3326 /* Force schedstat enabled if a dependent tracepoint is active */
3327 if (trace_sched_stat_wait_enabled() ||
3328 trace_sched_stat_sleep_enabled() ||
3329 trace_sched_stat_iowait_enabled() ||
3330 trace_sched_stat_blocked_enabled() ||
3331 trace_sched_stat_runtime_enabled()) {
eda8dca5 3332 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3333 "stat_blocked and stat_runtime require the "
3334 "kernel parameter schedstats=enabled or "
3335 "kernel.sched_schedstats=1\n");
3336 }
3337#endif
3338}
3339
b5179ac7
PZ
3340
3341/*
3342 * MIGRATION
3343 *
3344 * dequeue
3345 * update_curr()
3346 * update_min_vruntime()
3347 * vruntime -= min_vruntime
3348 *
3349 * enqueue
3350 * update_curr()
3351 * update_min_vruntime()
3352 * vruntime += min_vruntime
3353 *
3354 * this way the vruntime transition between RQs is done when both
3355 * min_vruntime are up-to-date.
3356 *
3357 * WAKEUP (remote)
3358 *
59efa0ba 3359 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3360 * vruntime -= min_vruntime
3361 *
3362 * enqueue
3363 * update_curr()
3364 * update_min_vruntime()
3365 * vruntime += min_vruntime
3366 *
3367 * this way we don't have the most up-to-date min_vruntime on the originating
3368 * CPU and an up-to-date min_vruntime on the destination CPU.
3369 */
3370
bf0f6f24 3371static void
88ec22d3 3372enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3373{
2f950354
PZ
3374 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3375 bool curr = cfs_rq->curr == se;
3376
88ec22d3 3377 /*
2f950354
PZ
3378 * If we're the current task, we must renormalise before calling
3379 * update_curr().
88ec22d3 3380 */
2f950354 3381 if (renorm && curr)
88ec22d3
PZ
3382 se->vruntime += cfs_rq->min_vruntime;
3383
2f950354
PZ
3384 update_curr(cfs_rq);
3385
bf0f6f24 3386 /*
2f950354
PZ
3387 * Otherwise, renormalise after, such that we're placed at the current
3388 * moment in time, instead of some random moment in the past. Being
3389 * placed in the past could significantly boost this task to the
3390 * fairness detriment of existing tasks.
bf0f6f24 3391 */
2f950354
PZ
3392 if (renorm && !curr)
3393 se->vruntime += cfs_rq->min_vruntime;
3394
9d89c257 3395 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3396 account_entity_enqueue(cfs_rq, se);
3397 update_cfs_shares(cfs_rq);
bf0f6f24 3398
1a3d027c 3399 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3400 place_entity(cfs_rq, se, 0);
bf0f6f24 3401
cb251765 3402 check_schedstat_required();
4fa8d299
JP
3403 update_stats_enqueue(cfs_rq, se, flags);
3404 check_spread(cfs_rq, se);
2f950354 3405 if (!curr)
83b699ed 3406 __enqueue_entity(cfs_rq, se);
2069dd75 3407 se->on_rq = 1;
3d4b47b4 3408
d3d9dc33 3409 if (cfs_rq->nr_running == 1) {
3d4b47b4 3410 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3411 check_enqueue_throttle(cfs_rq);
3412 }
bf0f6f24
IM
3413}
3414
2c13c919 3415static void __clear_buddies_last(struct sched_entity *se)
2002c695 3416{
2c13c919
RR
3417 for_each_sched_entity(se) {
3418 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3419 if (cfs_rq->last != se)
2c13c919 3420 break;
f1044799
PZ
3421
3422 cfs_rq->last = NULL;
2c13c919
RR
3423 }
3424}
2002c695 3425
2c13c919
RR
3426static void __clear_buddies_next(struct sched_entity *se)
3427{
3428 for_each_sched_entity(se) {
3429 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3430 if (cfs_rq->next != se)
2c13c919 3431 break;
f1044799
PZ
3432
3433 cfs_rq->next = NULL;
2c13c919 3434 }
2002c695
PZ
3435}
3436
ac53db59
RR
3437static void __clear_buddies_skip(struct sched_entity *se)
3438{
3439 for_each_sched_entity(se) {
3440 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3441 if (cfs_rq->skip != se)
ac53db59 3442 break;
f1044799
PZ
3443
3444 cfs_rq->skip = NULL;
ac53db59
RR
3445 }
3446}
3447
a571bbea
PZ
3448static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3449{
2c13c919
RR
3450 if (cfs_rq->last == se)
3451 __clear_buddies_last(se);
3452
3453 if (cfs_rq->next == se)
3454 __clear_buddies_next(se);
ac53db59
RR
3455
3456 if (cfs_rq->skip == se)
3457 __clear_buddies_skip(se);
a571bbea
PZ
3458}
3459
6c16a6dc 3460static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3461
bf0f6f24 3462static void
371fd7e7 3463dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3464{
a2a2d680
DA
3465 /*
3466 * Update run-time statistics of the 'current'.
3467 */
3468 update_curr(cfs_rq);
13962234 3469 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3470
4fa8d299 3471 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3472
2002c695 3473 clear_buddies(cfs_rq, se);
4793241b 3474
83b699ed 3475 if (se != cfs_rq->curr)
30cfdcfc 3476 __dequeue_entity(cfs_rq, se);
17bc14b7 3477 se->on_rq = 0;
30cfdcfc 3478 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3479
3480 /*
3481 * Normalize the entity after updating the min_vruntime because the
3482 * update can refer to the ->curr item and we need to reflect this
3483 * movement in our normalized position.
3484 */
371fd7e7 3485 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3486 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3487
d8b4986d
PT
3488 /* return excess runtime on last dequeue */
3489 return_cfs_rq_runtime(cfs_rq);
3490
1e876231 3491 update_min_vruntime(cfs_rq);
17bc14b7 3492 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3493}
3494
3495/*
3496 * Preempt the current task with a newly woken task if needed:
3497 */
7c92e54f 3498static void
2e09bf55 3499check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3500{
11697830 3501 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3502 struct sched_entity *se;
3503 s64 delta;
11697830 3504
6d0f0ebd 3505 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3506 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3507 if (delta_exec > ideal_runtime) {
8875125e 3508 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3509 /*
3510 * The current task ran long enough, ensure it doesn't get
3511 * re-elected due to buddy favours.
3512 */
3513 clear_buddies(cfs_rq, curr);
f685ceac
MG
3514 return;
3515 }
3516
3517 /*
3518 * Ensure that a task that missed wakeup preemption by a
3519 * narrow margin doesn't have to wait for a full slice.
3520 * This also mitigates buddy induced latencies under load.
3521 */
f685ceac
MG
3522 if (delta_exec < sysctl_sched_min_granularity)
3523 return;
3524
f4cfb33e
WX
3525 se = __pick_first_entity(cfs_rq);
3526 delta = curr->vruntime - se->vruntime;
f685ceac 3527
f4cfb33e
WX
3528 if (delta < 0)
3529 return;
d7d82944 3530
f4cfb33e 3531 if (delta > ideal_runtime)
8875125e 3532 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3533}
3534
83b699ed 3535static void
8494f412 3536set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3537{
83b699ed
SV
3538 /* 'current' is not kept within the tree. */
3539 if (se->on_rq) {
3540 /*
3541 * Any task has to be enqueued before it get to execute on
3542 * a CPU. So account for the time it spent waiting on the
3543 * runqueue.
3544 */
4fa8d299 3545 update_stats_wait_end(cfs_rq, se);
83b699ed 3546 __dequeue_entity(cfs_rq, se);
9d89c257 3547 update_load_avg(se, 1);
83b699ed
SV
3548 }
3549
79303e9e 3550 update_stats_curr_start(cfs_rq, se);
429d43bc 3551 cfs_rq->curr = se;
4fa8d299 3552
eba1ed4b
IM
3553 /*
3554 * Track our maximum slice length, if the CPU's load is at
3555 * least twice that of our own weight (i.e. dont track it
3556 * when there are only lesser-weight tasks around):
3557 */
cb251765 3558 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3559 schedstat_set(se->statistics.slice_max,
3560 max((u64)schedstat_val(se->statistics.slice_max),
3561 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3562 }
4fa8d299 3563
4a55b450 3564 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3565}
3566
3f3a4904
PZ
3567static int
3568wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3569
ac53db59
RR
3570/*
3571 * Pick the next process, keeping these things in mind, in this order:
3572 * 1) keep things fair between processes/task groups
3573 * 2) pick the "next" process, since someone really wants that to run
3574 * 3) pick the "last" process, for cache locality
3575 * 4) do not run the "skip" process, if something else is available
3576 */
678d5718
PZ
3577static struct sched_entity *
3578pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3579{
678d5718
PZ
3580 struct sched_entity *left = __pick_first_entity(cfs_rq);
3581 struct sched_entity *se;
3582
3583 /*
3584 * If curr is set we have to see if its left of the leftmost entity
3585 * still in the tree, provided there was anything in the tree at all.
3586 */
3587 if (!left || (curr && entity_before(curr, left)))
3588 left = curr;
3589
3590 se = left; /* ideally we run the leftmost entity */
f4b6755f 3591
ac53db59
RR
3592 /*
3593 * Avoid running the skip buddy, if running something else can
3594 * be done without getting too unfair.
3595 */
3596 if (cfs_rq->skip == se) {
678d5718
PZ
3597 struct sched_entity *second;
3598
3599 if (se == curr) {
3600 second = __pick_first_entity(cfs_rq);
3601 } else {
3602 second = __pick_next_entity(se);
3603 if (!second || (curr && entity_before(curr, second)))
3604 second = curr;
3605 }
3606
ac53db59
RR
3607 if (second && wakeup_preempt_entity(second, left) < 1)
3608 se = second;
3609 }
aa2ac252 3610
f685ceac
MG
3611 /*
3612 * Prefer last buddy, try to return the CPU to a preempted task.
3613 */
3614 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3615 se = cfs_rq->last;
3616
ac53db59
RR
3617 /*
3618 * Someone really wants this to run. If it's not unfair, run it.
3619 */
3620 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3621 se = cfs_rq->next;
3622
f685ceac 3623 clear_buddies(cfs_rq, se);
4793241b
PZ
3624
3625 return se;
aa2ac252
PZ
3626}
3627
678d5718 3628static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3629
ab6cde26 3630static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3631{
3632 /*
3633 * If still on the runqueue then deactivate_task()
3634 * was not called and update_curr() has to be done:
3635 */
3636 if (prev->on_rq)
b7cc0896 3637 update_curr(cfs_rq);
bf0f6f24 3638
d3d9dc33
PT
3639 /* throttle cfs_rqs exceeding runtime */
3640 check_cfs_rq_runtime(cfs_rq);
3641
4fa8d299 3642 check_spread(cfs_rq, prev);
cb251765 3643
30cfdcfc 3644 if (prev->on_rq) {
4fa8d299 3645 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3646 /* Put 'current' back into the tree. */
3647 __enqueue_entity(cfs_rq, prev);
9d85f21c 3648 /* in !on_rq case, update occurred at dequeue */
9d89c257 3649 update_load_avg(prev, 0);
30cfdcfc 3650 }
429d43bc 3651 cfs_rq->curr = NULL;
bf0f6f24
IM
3652}
3653
8f4d37ec
PZ
3654static void
3655entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3656{
bf0f6f24 3657 /*
30cfdcfc 3658 * Update run-time statistics of the 'current'.
bf0f6f24 3659 */
30cfdcfc 3660 update_curr(cfs_rq);
bf0f6f24 3661
9d85f21c
PT
3662 /*
3663 * Ensure that runnable average is periodically updated.
3664 */
9d89c257 3665 update_load_avg(curr, 1);
bf0bd948 3666 update_cfs_shares(cfs_rq);
9d85f21c 3667
8f4d37ec
PZ
3668#ifdef CONFIG_SCHED_HRTICK
3669 /*
3670 * queued ticks are scheduled to match the slice, so don't bother
3671 * validating it and just reschedule.
3672 */
983ed7a6 3673 if (queued) {
8875125e 3674 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3675 return;
3676 }
8f4d37ec
PZ
3677 /*
3678 * don't let the period tick interfere with the hrtick preemption
3679 */
3680 if (!sched_feat(DOUBLE_TICK) &&
3681 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3682 return;
3683#endif
3684
2c2efaed 3685 if (cfs_rq->nr_running > 1)
2e09bf55 3686 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3687}
3688
ab84d31e
PT
3689
3690/**************************************************
3691 * CFS bandwidth control machinery
3692 */
3693
3694#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3695
3696#ifdef HAVE_JUMP_LABEL
c5905afb 3697static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3698
3699static inline bool cfs_bandwidth_used(void)
3700{
c5905afb 3701 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3702}
3703
1ee14e6c 3704void cfs_bandwidth_usage_inc(void)
029632fb 3705{
1ee14e6c
BS
3706 static_key_slow_inc(&__cfs_bandwidth_used);
3707}
3708
3709void cfs_bandwidth_usage_dec(void)
3710{
3711 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3712}
3713#else /* HAVE_JUMP_LABEL */
3714static bool cfs_bandwidth_used(void)
3715{
3716 return true;
3717}
3718
1ee14e6c
BS
3719void cfs_bandwidth_usage_inc(void) {}
3720void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3721#endif /* HAVE_JUMP_LABEL */
3722
ab84d31e
PT
3723/*
3724 * default period for cfs group bandwidth.
3725 * default: 0.1s, units: nanoseconds
3726 */
3727static inline u64 default_cfs_period(void)
3728{
3729 return 100000000ULL;
3730}
ec12cb7f
PT
3731
3732static inline u64 sched_cfs_bandwidth_slice(void)
3733{
3734 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3735}
3736
a9cf55b2
PT
3737/*
3738 * Replenish runtime according to assigned quota and update expiration time.
3739 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3740 * additional synchronization around rq->lock.
3741 *
3742 * requires cfs_b->lock
3743 */
029632fb 3744void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3745{
3746 u64 now;
3747
3748 if (cfs_b->quota == RUNTIME_INF)
3749 return;
3750
3751 now = sched_clock_cpu(smp_processor_id());
3752 cfs_b->runtime = cfs_b->quota;
3753 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3754}
3755
029632fb
PZ
3756static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3757{
3758 return &tg->cfs_bandwidth;
3759}
3760
f1b17280
PT
3761/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3762static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3763{
3764 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3765 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3766
78becc27 3767 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3768}
3769
85dac906
PT
3770/* returns 0 on failure to allocate runtime */
3771static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3772{
3773 struct task_group *tg = cfs_rq->tg;
3774 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3775 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3776
3777 /* note: this is a positive sum as runtime_remaining <= 0 */
3778 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3779
3780 raw_spin_lock(&cfs_b->lock);
3781 if (cfs_b->quota == RUNTIME_INF)
3782 amount = min_amount;
58088ad0 3783 else {
77a4d1a1 3784 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3785
3786 if (cfs_b->runtime > 0) {
3787 amount = min(cfs_b->runtime, min_amount);
3788 cfs_b->runtime -= amount;
3789 cfs_b->idle = 0;
3790 }
ec12cb7f 3791 }
a9cf55b2 3792 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3793 raw_spin_unlock(&cfs_b->lock);
3794
3795 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3796 /*
3797 * we may have advanced our local expiration to account for allowed
3798 * spread between our sched_clock and the one on which runtime was
3799 * issued.
3800 */
3801 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3802 cfs_rq->runtime_expires = expires;
85dac906
PT
3803
3804 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3805}
3806
a9cf55b2
PT
3807/*
3808 * Note: This depends on the synchronization provided by sched_clock and the
3809 * fact that rq->clock snapshots this value.
3810 */
3811static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3812{
a9cf55b2 3813 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3814
3815 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3816 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3817 return;
3818
a9cf55b2
PT
3819 if (cfs_rq->runtime_remaining < 0)
3820 return;
3821
3822 /*
3823 * If the local deadline has passed we have to consider the
3824 * possibility that our sched_clock is 'fast' and the global deadline
3825 * has not truly expired.
3826 *
3827 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3828 * whether the global deadline has advanced. It is valid to compare
3829 * cfs_b->runtime_expires without any locks since we only care about
3830 * exact equality, so a partial write will still work.
a9cf55b2
PT
3831 */
3832
51f2176d 3833 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3834 /* extend local deadline, drift is bounded above by 2 ticks */
3835 cfs_rq->runtime_expires += TICK_NSEC;
3836 } else {
3837 /* global deadline is ahead, expiration has passed */
3838 cfs_rq->runtime_remaining = 0;
3839 }
3840}
3841
9dbdb155 3842static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3843{
3844 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3845 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3846 expire_cfs_rq_runtime(cfs_rq);
3847
3848 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3849 return;
3850
85dac906
PT
3851 /*
3852 * if we're unable to extend our runtime we resched so that the active
3853 * hierarchy can be throttled
3854 */
3855 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3856 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3857}
3858
6c16a6dc 3859static __always_inline
9dbdb155 3860void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3861{
56f570e5 3862 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3863 return;
3864
3865 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3866}
3867
85dac906
PT
3868static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3869{
56f570e5 3870 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3871}
3872
64660c86
PT
3873/* check whether cfs_rq, or any parent, is throttled */
3874static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3875{
56f570e5 3876 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3877}
3878
3879/*
3880 * Ensure that neither of the group entities corresponding to src_cpu or
3881 * dest_cpu are members of a throttled hierarchy when performing group
3882 * load-balance operations.
3883 */
3884static inline int throttled_lb_pair(struct task_group *tg,
3885 int src_cpu, int dest_cpu)
3886{
3887 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3888
3889 src_cfs_rq = tg->cfs_rq[src_cpu];
3890 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3891
3892 return throttled_hierarchy(src_cfs_rq) ||
3893 throttled_hierarchy(dest_cfs_rq);
3894}
3895
3896/* updated child weight may affect parent so we have to do this bottom up */
3897static int tg_unthrottle_up(struct task_group *tg, void *data)
3898{
3899 struct rq *rq = data;
3900 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3901
3902 cfs_rq->throttle_count--;
64660c86 3903 if (!cfs_rq->throttle_count) {
f1b17280 3904 /* adjust cfs_rq_clock_task() */
78becc27 3905 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3906 cfs_rq->throttled_clock_task;
64660c86 3907 }
64660c86
PT
3908
3909 return 0;
3910}
3911
3912static int tg_throttle_down(struct task_group *tg, void *data)
3913{
3914 struct rq *rq = data;
3915 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3916
82958366
PT
3917 /* group is entering throttled state, stop time */
3918 if (!cfs_rq->throttle_count)
78becc27 3919 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3920 cfs_rq->throttle_count++;
3921
3922 return 0;
3923}
3924
d3d9dc33 3925static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3926{
3927 struct rq *rq = rq_of(cfs_rq);
3928 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3929 struct sched_entity *se;
3930 long task_delta, dequeue = 1;
77a4d1a1 3931 bool empty;
85dac906
PT
3932
3933 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3934
f1b17280 3935 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3936 rcu_read_lock();
3937 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3938 rcu_read_unlock();
85dac906
PT
3939
3940 task_delta = cfs_rq->h_nr_running;
3941 for_each_sched_entity(se) {
3942 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3943 /* throttled entity or throttle-on-deactivate */
3944 if (!se->on_rq)
3945 break;
3946
3947 if (dequeue)
3948 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3949 qcfs_rq->h_nr_running -= task_delta;
3950
3951 if (qcfs_rq->load.weight)
3952 dequeue = 0;
3953 }
3954
3955 if (!se)
72465447 3956 sub_nr_running(rq, task_delta);
85dac906
PT
3957
3958 cfs_rq->throttled = 1;
78becc27 3959 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3960 raw_spin_lock(&cfs_b->lock);
d49db342 3961 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3962
c06f04c7
BS
3963 /*
3964 * Add to the _head_ of the list, so that an already-started
3965 * distribute_cfs_runtime will not see us
3966 */
3967 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3968
3969 /*
3970 * If we're the first throttled task, make sure the bandwidth
3971 * timer is running.
3972 */
3973 if (empty)
3974 start_cfs_bandwidth(cfs_b);
3975
85dac906
PT
3976 raw_spin_unlock(&cfs_b->lock);
3977}
3978
029632fb 3979void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3980{
3981 struct rq *rq = rq_of(cfs_rq);
3982 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3983 struct sched_entity *se;
3984 int enqueue = 1;
3985 long task_delta;
3986
22b958d8 3987 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3988
3989 cfs_rq->throttled = 0;
1a55af2e
FW
3990
3991 update_rq_clock(rq);
3992
671fd9da 3993 raw_spin_lock(&cfs_b->lock);
78becc27 3994 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3995 list_del_rcu(&cfs_rq->throttled_list);
3996 raw_spin_unlock(&cfs_b->lock);
3997
64660c86
PT
3998 /* update hierarchical throttle state */
3999 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4000
671fd9da
PT
4001 if (!cfs_rq->load.weight)
4002 return;
4003
4004 task_delta = cfs_rq->h_nr_running;
4005 for_each_sched_entity(se) {
4006 if (se->on_rq)
4007 enqueue = 0;
4008
4009 cfs_rq = cfs_rq_of(se);
4010 if (enqueue)
4011 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4012 cfs_rq->h_nr_running += task_delta;
4013
4014 if (cfs_rq_throttled(cfs_rq))
4015 break;
4016 }
4017
4018 if (!se)
72465447 4019 add_nr_running(rq, task_delta);
671fd9da
PT
4020
4021 /* determine whether we need to wake up potentially idle cpu */
4022 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4023 resched_curr(rq);
671fd9da
PT
4024}
4025
4026static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4027 u64 remaining, u64 expires)
4028{
4029 struct cfs_rq *cfs_rq;
c06f04c7
BS
4030 u64 runtime;
4031 u64 starting_runtime = remaining;
671fd9da
PT
4032
4033 rcu_read_lock();
4034 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4035 throttled_list) {
4036 struct rq *rq = rq_of(cfs_rq);
4037
4038 raw_spin_lock(&rq->lock);
4039 if (!cfs_rq_throttled(cfs_rq))
4040 goto next;
4041
4042 runtime = -cfs_rq->runtime_remaining + 1;
4043 if (runtime > remaining)
4044 runtime = remaining;
4045 remaining -= runtime;
4046
4047 cfs_rq->runtime_remaining += runtime;
4048 cfs_rq->runtime_expires = expires;
4049
4050 /* we check whether we're throttled above */
4051 if (cfs_rq->runtime_remaining > 0)
4052 unthrottle_cfs_rq(cfs_rq);
4053
4054next:
4055 raw_spin_unlock(&rq->lock);
4056
4057 if (!remaining)
4058 break;
4059 }
4060 rcu_read_unlock();
4061
c06f04c7 4062 return starting_runtime - remaining;
671fd9da
PT
4063}
4064
58088ad0
PT
4065/*
4066 * Responsible for refilling a task_group's bandwidth and unthrottling its
4067 * cfs_rqs as appropriate. If there has been no activity within the last
4068 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4069 * used to track this state.
4070 */
4071static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4072{
671fd9da 4073 u64 runtime, runtime_expires;
51f2176d 4074 int throttled;
58088ad0 4075
58088ad0
PT
4076 /* no need to continue the timer with no bandwidth constraint */
4077 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4078 goto out_deactivate;
58088ad0 4079
671fd9da 4080 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4081 cfs_b->nr_periods += overrun;
671fd9da 4082
51f2176d
BS
4083 /*
4084 * idle depends on !throttled (for the case of a large deficit), and if
4085 * we're going inactive then everything else can be deferred
4086 */
4087 if (cfs_b->idle && !throttled)
4088 goto out_deactivate;
a9cf55b2
PT
4089
4090 __refill_cfs_bandwidth_runtime(cfs_b);
4091
671fd9da
PT
4092 if (!throttled) {
4093 /* mark as potentially idle for the upcoming period */
4094 cfs_b->idle = 1;
51f2176d 4095 return 0;
671fd9da
PT
4096 }
4097
e8da1b18
NR
4098 /* account preceding periods in which throttling occurred */
4099 cfs_b->nr_throttled += overrun;
4100
671fd9da 4101 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4102
4103 /*
c06f04c7
BS
4104 * This check is repeated as we are holding onto the new bandwidth while
4105 * we unthrottle. This can potentially race with an unthrottled group
4106 * trying to acquire new bandwidth from the global pool. This can result
4107 * in us over-using our runtime if it is all used during this loop, but
4108 * only by limited amounts in that extreme case.
671fd9da 4109 */
c06f04c7
BS
4110 while (throttled && cfs_b->runtime > 0) {
4111 runtime = cfs_b->runtime;
671fd9da
PT
4112 raw_spin_unlock(&cfs_b->lock);
4113 /* we can't nest cfs_b->lock while distributing bandwidth */
4114 runtime = distribute_cfs_runtime(cfs_b, runtime,
4115 runtime_expires);
4116 raw_spin_lock(&cfs_b->lock);
4117
4118 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4119
4120 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4121 }
58088ad0 4122
671fd9da
PT
4123 /*
4124 * While we are ensured activity in the period following an
4125 * unthrottle, this also covers the case in which the new bandwidth is
4126 * insufficient to cover the existing bandwidth deficit. (Forcing the
4127 * timer to remain active while there are any throttled entities.)
4128 */
4129 cfs_b->idle = 0;
58088ad0 4130
51f2176d
BS
4131 return 0;
4132
4133out_deactivate:
51f2176d 4134 return 1;
58088ad0 4135}
d3d9dc33 4136
d8b4986d
PT
4137/* a cfs_rq won't donate quota below this amount */
4138static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4139/* minimum remaining period time to redistribute slack quota */
4140static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4141/* how long we wait to gather additional slack before distributing */
4142static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4143
db06e78c
BS
4144/*
4145 * Are we near the end of the current quota period?
4146 *
4147 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4148 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4149 * migrate_hrtimers, base is never cleared, so we are fine.
4150 */
d8b4986d
PT
4151static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4152{
4153 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4154 u64 remaining;
4155
4156 /* if the call-back is running a quota refresh is already occurring */
4157 if (hrtimer_callback_running(refresh_timer))
4158 return 1;
4159
4160 /* is a quota refresh about to occur? */
4161 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4162 if (remaining < min_expire)
4163 return 1;
4164
4165 return 0;
4166}
4167
4168static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4169{
4170 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4171
4172 /* if there's a quota refresh soon don't bother with slack */
4173 if (runtime_refresh_within(cfs_b, min_left))
4174 return;
4175
4cfafd30
PZ
4176 hrtimer_start(&cfs_b->slack_timer,
4177 ns_to_ktime(cfs_bandwidth_slack_period),
4178 HRTIMER_MODE_REL);
d8b4986d
PT
4179}
4180
4181/* we know any runtime found here is valid as update_curr() precedes return */
4182static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4183{
4184 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4185 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4186
4187 if (slack_runtime <= 0)
4188 return;
4189
4190 raw_spin_lock(&cfs_b->lock);
4191 if (cfs_b->quota != RUNTIME_INF &&
4192 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4193 cfs_b->runtime += slack_runtime;
4194
4195 /* we are under rq->lock, defer unthrottling using a timer */
4196 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4197 !list_empty(&cfs_b->throttled_cfs_rq))
4198 start_cfs_slack_bandwidth(cfs_b);
4199 }
4200 raw_spin_unlock(&cfs_b->lock);
4201
4202 /* even if it's not valid for return we don't want to try again */
4203 cfs_rq->runtime_remaining -= slack_runtime;
4204}
4205
4206static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4207{
56f570e5
PT
4208 if (!cfs_bandwidth_used())
4209 return;
4210
fccfdc6f 4211 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4212 return;
4213
4214 __return_cfs_rq_runtime(cfs_rq);
4215}
4216
4217/*
4218 * This is done with a timer (instead of inline with bandwidth return) since
4219 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4220 */
4221static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4222{
4223 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4224 u64 expires;
4225
4226 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4227 raw_spin_lock(&cfs_b->lock);
4228 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4229 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4230 return;
db06e78c 4231 }
d8b4986d 4232
c06f04c7 4233 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4234 runtime = cfs_b->runtime;
c06f04c7 4235
d8b4986d
PT
4236 expires = cfs_b->runtime_expires;
4237 raw_spin_unlock(&cfs_b->lock);
4238
4239 if (!runtime)
4240 return;
4241
4242 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4243
4244 raw_spin_lock(&cfs_b->lock);
4245 if (expires == cfs_b->runtime_expires)
c06f04c7 4246 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4247 raw_spin_unlock(&cfs_b->lock);
4248}
4249
d3d9dc33
PT
4250/*
4251 * When a group wakes up we want to make sure that its quota is not already
4252 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4253 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4254 */
4255static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4256{
56f570e5
PT
4257 if (!cfs_bandwidth_used())
4258 return;
4259
d3d9dc33
PT
4260 /* an active group must be handled by the update_curr()->put() path */
4261 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4262 return;
4263
4264 /* ensure the group is not already throttled */
4265 if (cfs_rq_throttled(cfs_rq))
4266 return;
4267
4268 /* update runtime allocation */
4269 account_cfs_rq_runtime(cfs_rq, 0);
4270 if (cfs_rq->runtime_remaining <= 0)
4271 throttle_cfs_rq(cfs_rq);
4272}
4273
55e16d30
PZ
4274static void sync_throttle(struct task_group *tg, int cpu)
4275{
4276 struct cfs_rq *pcfs_rq, *cfs_rq;
4277
4278 if (!cfs_bandwidth_used())
4279 return;
4280
4281 if (!tg->parent)
4282 return;
4283
4284 cfs_rq = tg->cfs_rq[cpu];
4285 pcfs_rq = tg->parent->cfs_rq[cpu];
4286
4287 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4288 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4289}
4290
d3d9dc33 4291/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4292static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4293{
56f570e5 4294 if (!cfs_bandwidth_used())
678d5718 4295 return false;
56f570e5 4296
d3d9dc33 4297 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4298 return false;
d3d9dc33
PT
4299
4300 /*
4301 * it's possible for a throttled entity to be forced into a running
4302 * state (e.g. set_curr_task), in this case we're finished.
4303 */
4304 if (cfs_rq_throttled(cfs_rq))
678d5718 4305 return true;
d3d9dc33
PT
4306
4307 throttle_cfs_rq(cfs_rq);
678d5718 4308 return true;
d3d9dc33 4309}
029632fb 4310
029632fb
PZ
4311static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4312{
4313 struct cfs_bandwidth *cfs_b =
4314 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4315
029632fb
PZ
4316 do_sched_cfs_slack_timer(cfs_b);
4317
4318 return HRTIMER_NORESTART;
4319}
4320
4321static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4322{
4323 struct cfs_bandwidth *cfs_b =
4324 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4325 int overrun;
4326 int idle = 0;
4327
51f2176d 4328 raw_spin_lock(&cfs_b->lock);
029632fb 4329 for (;;) {
77a4d1a1 4330 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4331 if (!overrun)
4332 break;
4333
4334 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4335 }
4cfafd30
PZ
4336 if (idle)
4337 cfs_b->period_active = 0;
51f2176d 4338 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4339
4340 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4341}
4342
4343void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4344{
4345 raw_spin_lock_init(&cfs_b->lock);
4346 cfs_b->runtime = 0;
4347 cfs_b->quota = RUNTIME_INF;
4348 cfs_b->period = ns_to_ktime(default_cfs_period());
4349
4350 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4351 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4352 cfs_b->period_timer.function = sched_cfs_period_timer;
4353 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4354 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4355}
4356
4357static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4358{
4359 cfs_rq->runtime_enabled = 0;
4360 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4361}
4362
77a4d1a1 4363void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4364{
4cfafd30 4365 lockdep_assert_held(&cfs_b->lock);
029632fb 4366
4cfafd30
PZ
4367 if (!cfs_b->period_active) {
4368 cfs_b->period_active = 1;
4369 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4370 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4371 }
029632fb
PZ
4372}
4373
4374static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4375{
7f1a169b
TH
4376 /* init_cfs_bandwidth() was not called */
4377 if (!cfs_b->throttled_cfs_rq.next)
4378 return;
4379
029632fb
PZ
4380 hrtimer_cancel(&cfs_b->period_timer);
4381 hrtimer_cancel(&cfs_b->slack_timer);
4382}
4383
0e59bdae
KT
4384static void __maybe_unused update_runtime_enabled(struct rq *rq)
4385{
4386 struct cfs_rq *cfs_rq;
4387
4388 for_each_leaf_cfs_rq(rq, cfs_rq) {
4389 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4390
4391 raw_spin_lock(&cfs_b->lock);
4392 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4393 raw_spin_unlock(&cfs_b->lock);
4394 }
4395}
4396
38dc3348 4397static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4398{
4399 struct cfs_rq *cfs_rq;
4400
4401 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4402 if (!cfs_rq->runtime_enabled)
4403 continue;
4404
4405 /*
4406 * clock_task is not advancing so we just need to make sure
4407 * there's some valid quota amount
4408 */
51f2176d 4409 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4410 /*
4411 * Offline rq is schedulable till cpu is completely disabled
4412 * in take_cpu_down(), so we prevent new cfs throttling here.
4413 */
4414 cfs_rq->runtime_enabled = 0;
4415
029632fb
PZ
4416 if (cfs_rq_throttled(cfs_rq))
4417 unthrottle_cfs_rq(cfs_rq);
4418 }
4419}
4420
4421#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4422static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4423{
78becc27 4424 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4425}
4426
9dbdb155 4427static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4428static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4429static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4430static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4431static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4432
4433static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4434{
4435 return 0;
4436}
64660c86
PT
4437
4438static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4439{
4440 return 0;
4441}
4442
4443static inline int throttled_lb_pair(struct task_group *tg,
4444 int src_cpu, int dest_cpu)
4445{
4446 return 0;
4447}
029632fb
PZ
4448
4449void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4450
4451#ifdef CONFIG_FAIR_GROUP_SCHED
4452static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4453#endif
4454
029632fb
PZ
4455static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4456{
4457 return NULL;
4458}
4459static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4460static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4461static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4462
4463#endif /* CONFIG_CFS_BANDWIDTH */
4464
bf0f6f24
IM
4465/**************************************************
4466 * CFS operations on tasks:
4467 */
4468
8f4d37ec
PZ
4469#ifdef CONFIG_SCHED_HRTICK
4470static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4471{
8f4d37ec
PZ
4472 struct sched_entity *se = &p->se;
4473 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4474
9148a3a1 4475 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4476
8bf46a39 4477 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4478 u64 slice = sched_slice(cfs_rq, se);
4479 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4480 s64 delta = slice - ran;
4481
4482 if (delta < 0) {
4483 if (rq->curr == p)
8875125e 4484 resched_curr(rq);
8f4d37ec
PZ
4485 return;
4486 }
31656519 4487 hrtick_start(rq, delta);
8f4d37ec
PZ
4488 }
4489}
a4c2f00f
PZ
4490
4491/*
4492 * called from enqueue/dequeue and updates the hrtick when the
4493 * current task is from our class and nr_running is low enough
4494 * to matter.
4495 */
4496static void hrtick_update(struct rq *rq)
4497{
4498 struct task_struct *curr = rq->curr;
4499
b39e66ea 4500 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4501 return;
4502
4503 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4504 hrtick_start_fair(rq, curr);
4505}
55e12e5e 4506#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4507static inline void
4508hrtick_start_fair(struct rq *rq, struct task_struct *p)
4509{
4510}
a4c2f00f
PZ
4511
4512static inline void hrtick_update(struct rq *rq)
4513{
4514}
8f4d37ec
PZ
4515#endif
4516
bf0f6f24
IM
4517/*
4518 * The enqueue_task method is called before nr_running is
4519 * increased. Here we update the fair scheduling stats and
4520 * then put the task into the rbtree:
4521 */
ea87bb78 4522static void
371fd7e7 4523enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4524{
4525 struct cfs_rq *cfs_rq;
62fb1851 4526 struct sched_entity *se = &p->se;
bf0f6f24
IM
4527
4528 for_each_sched_entity(se) {
62fb1851 4529 if (se->on_rq)
bf0f6f24
IM
4530 break;
4531 cfs_rq = cfs_rq_of(se);
88ec22d3 4532 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4533
4534 /*
4535 * end evaluation on encountering a throttled cfs_rq
4536 *
4537 * note: in the case of encountering a throttled cfs_rq we will
4538 * post the final h_nr_running increment below.
e210bffd 4539 */
85dac906
PT
4540 if (cfs_rq_throttled(cfs_rq))
4541 break;
953bfcd1 4542 cfs_rq->h_nr_running++;
85dac906 4543
88ec22d3 4544 flags = ENQUEUE_WAKEUP;
bf0f6f24 4545 }
8f4d37ec 4546
2069dd75 4547 for_each_sched_entity(se) {
0f317143 4548 cfs_rq = cfs_rq_of(se);
953bfcd1 4549 cfs_rq->h_nr_running++;
2069dd75 4550
85dac906
PT
4551 if (cfs_rq_throttled(cfs_rq))
4552 break;
4553
9d89c257 4554 update_load_avg(se, 1);
17bc14b7 4555 update_cfs_shares(cfs_rq);
2069dd75
PZ
4556 }
4557
cd126afe 4558 if (!se)
72465447 4559 add_nr_running(rq, 1);
cd126afe 4560
a4c2f00f 4561 hrtick_update(rq);
bf0f6f24
IM
4562}
4563
2f36825b
VP
4564static void set_next_buddy(struct sched_entity *se);
4565
bf0f6f24
IM
4566/*
4567 * The dequeue_task method is called before nr_running is
4568 * decreased. We remove the task from the rbtree and
4569 * update the fair scheduling stats:
4570 */
371fd7e7 4571static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4572{
4573 struct cfs_rq *cfs_rq;
62fb1851 4574 struct sched_entity *se = &p->se;
2f36825b 4575 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4576
4577 for_each_sched_entity(se) {
4578 cfs_rq = cfs_rq_of(se);
371fd7e7 4579 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4580
4581 /*
4582 * end evaluation on encountering a throttled cfs_rq
4583 *
4584 * note: in the case of encountering a throttled cfs_rq we will
4585 * post the final h_nr_running decrement below.
4586 */
4587 if (cfs_rq_throttled(cfs_rq))
4588 break;
953bfcd1 4589 cfs_rq->h_nr_running--;
2069dd75 4590
bf0f6f24 4591 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4592 if (cfs_rq->load.weight) {
754bd598
KK
4593 /* Avoid re-evaluating load for this entity: */
4594 se = parent_entity(se);
2f36825b
VP
4595 /*
4596 * Bias pick_next to pick a task from this cfs_rq, as
4597 * p is sleeping when it is within its sched_slice.
4598 */
754bd598
KK
4599 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4600 set_next_buddy(se);
bf0f6f24 4601 break;
2f36825b 4602 }
371fd7e7 4603 flags |= DEQUEUE_SLEEP;
bf0f6f24 4604 }
8f4d37ec 4605
2069dd75 4606 for_each_sched_entity(se) {
0f317143 4607 cfs_rq = cfs_rq_of(se);
953bfcd1 4608 cfs_rq->h_nr_running--;
2069dd75 4609
85dac906
PT
4610 if (cfs_rq_throttled(cfs_rq))
4611 break;
4612
9d89c257 4613 update_load_avg(se, 1);
17bc14b7 4614 update_cfs_shares(cfs_rq);
2069dd75
PZ
4615 }
4616
cd126afe 4617 if (!se)
72465447 4618 sub_nr_running(rq, 1);
cd126afe 4619
a4c2f00f 4620 hrtick_update(rq);
bf0f6f24
IM
4621}
4622
e7693a36 4623#ifdef CONFIG_SMP
10e2f1ac
PZ
4624
4625/* Working cpumask for: load_balance, load_balance_newidle. */
4626DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4627DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4628
9fd81dd5 4629#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4630/*
4631 * per rq 'load' arrray crap; XXX kill this.
4632 */
4633
4634/*
d937cdc5 4635 * The exact cpuload calculated at every tick would be:
3289bdb4 4636 *
d937cdc5
PZ
4637 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4638 *
4639 * If a cpu misses updates for n ticks (as it was idle) and update gets
4640 * called on the n+1-th tick when cpu may be busy, then we have:
4641 *
4642 * load_n = (1 - 1/2^i)^n * load_0
4643 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4644 *
4645 * decay_load_missed() below does efficient calculation of
3289bdb4 4646 *
d937cdc5
PZ
4647 * load' = (1 - 1/2^i)^n * load
4648 *
4649 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4650 * This allows us to precompute the above in said factors, thereby allowing the
4651 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4652 * fixed_power_int())
3289bdb4 4653 *
d937cdc5 4654 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4655 */
4656#define DEGRADE_SHIFT 7
d937cdc5
PZ
4657
4658static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4659static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4660 { 0, 0, 0, 0, 0, 0, 0, 0 },
4661 { 64, 32, 8, 0, 0, 0, 0, 0 },
4662 { 96, 72, 40, 12, 1, 0, 0, 0 },
4663 { 112, 98, 75, 43, 15, 1, 0, 0 },
4664 { 120, 112, 98, 76, 45, 16, 2, 0 }
4665};
3289bdb4
PZ
4666
4667/*
4668 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4669 * would be when CPU is idle and so we just decay the old load without
4670 * adding any new load.
4671 */
4672static unsigned long
4673decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4674{
4675 int j = 0;
4676
4677 if (!missed_updates)
4678 return load;
4679
4680 if (missed_updates >= degrade_zero_ticks[idx])
4681 return 0;
4682
4683 if (idx == 1)
4684 return load >> missed_updates;
4685
4686 while (missed_updates) {
4687 if (missed_updates % 2)
4688 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4689
4690 missed_updates >>= 1;
4691 j++;
4692 }
4693 return load;
4694}
9fd81dd5 4695#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4696
59543275 4697/**
cee1afce 4698 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4699 * @this_rq: The rq to update statistics for
4700 * @this_load: The current load
4701 * @pending_updates: The number of missed updates
59543275 4702 *
3289bdb4 4703 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4704 * scheduler tick (TICK_NSEC).
4705 *
4706 * This function computes a decaying average:
4707 *
4708 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4709 *
4710 * Because of NOHZ it might not get called on every tick which gives need for
4711 * the @pending_updates argument.
4712 *
4713 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4714 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4715 * = A * (A * load[i]_n-2 + B) + B
4716 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4717 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4718 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4719 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4720 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4721 *
4722 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4723 * any change in load would have resulted in the tick being turned back on.
4724 *
4725 * For regular NOHZ, this reduces to:
4726 *
4727 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4728 *
4729 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4730 * term.
3289bdb4 4731 */
1f41906a
FW
4732static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4733 unsigned long pending_updates)
3289bdb4 4734{
9fd81dd5 4735 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4736 int i, scale;
4737
4738 this_rq->nr_load_updates++;
4739
4740 /* Update our load: */
4741 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4742 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4743 unsigned long old_load, new_load;
4744
4745 /* scale is effectively 1 << i now, and >> i divides by scale */
4746
7400d3bb 4747 old_load = this_rq->cpu_load[i];
9fd81dd5 4748#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4749 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4750 if (tickless_load) {
4751 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4752 /*
4753 * old_load can never be a negative value because a
4754 * decayed tickless_load cannot be greater than the
4755 * original tickless_load.
4756 */
4757 old_load += tickless_load;
4758 }
9fd81dd5 4759#endif
3289bdb4
PZ
4760 new_load = this_load;
4761 /*
4762 * Round up the averaging division if load is increasing. This
4763 * prevents us from getting stuck on 9 if the load is 10, for
4764 * example.
4765 */
4766 if (new_load > old_load)
4767 new_load += scale - 1;
4768
4769 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4770 }
4771
4772 sched_avg_update(this_rq);
4773}
4774
7ea241af
YD
4775/* Used instead of source_load when we know the type == 0 */
4776static unsigned long weighted_cpuload(const int cpu)
4777{
4778 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4779}
4780
3289bdb4 4781#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4782/*
4783 * There is no sane way to deal with nohz on smp when using jiffies because the
4784 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4785 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4786 *
4787 * Therefore we need to avoid the delta approach from the regular tick when
4788 * possible since that would seriously skew the load calculation. This is why we
4789 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4790 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4791 * loop exit, nohz_idle_balance, nohz full exit...)
4792 *
4793 * This means we might still be one tick off for nohz periods.
4794 */
4795
4796static void cpu_load_update_nohz(struct rq *this_rq,
4797 unsigned long curr_jiffies,
4798 unsigned long load)
be68a682
FW
4799{
4800 unsigned long pending_updates;
4801
4802 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4803 if (pending_updates) {
4804 this_rq->last_load_update_tick = curr_jiffies;
4805 /*
4806 * In the regular NOHZ case, we were idle, this means load 0.
4807 * In the NOHZ_FULL case, we were non-idle, we should consider
4808 * its weighted load.
4809 */
1f41906a 4810 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4811 }
4812}
4813
3289bdb4
PZ
4814/*
4815 * Called from nohz_idle_balance() to update the load ratings before doing the
4816 * idle balance.
4817 */
cee1afce 4818static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4819{
3289bdb4
PZ
4820 /*
4821 * bail if there's load or we're actually up-to-date.
4822 */
be68a682 4823 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4824 return;
4825
1f41906a 4826 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4827}
4828
4829/*
1f41906a
FW
4830 * Record CPU load on nohz entry so we know the tickless load to account
4831 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4832 * than other cpu_load[idx] but it should be fine as cpu_load readers
4833 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4834 */
1f41906a 4835void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4836{
4837 struct rq *this_rq = this_rq();
1f41906a
FW
4838
4839 /*
4840 * This is all lockless but should be fine. If weighted_cpuload changes
4841 * concurrently we'll exit nohz. And cpu_load write can race with
4842 * cpu_load_update_idle() but both updater would be writing the same.
4843 */
4844 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4845}
4846
4847/*
4848 * Account the tickless load in the end of a nohz frame.
4849 */
4850void cpu_load_update_nohz_stop(void)
4851{
316c1608 4852 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4853 struct rq *this_rq = this_rq();
4854 unsigned long load;
3289bdb4
PZ
4855
4856 if (curr_jiffies == this_rq->last_load_update_tick)
4857 return;
4858
1f41906a 4859 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4860 raw_spin_lock(&this_rq->lock);
b52fad2d 4861 update_rq_clock(this_rq);
1f41906a 4862 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4863 raw_spin_unlock(&this_rq->lock);
4864}
1f41906a
FW
4865#else /* !CONFIG_NO_HZ_COMMON */
4866static inline void cpu_load_update_nohz(struct rq *this_rq,
4867 unsigned long curr_jiffies,
4868 unsigned long load) { }
4869#endif /* CONFIG_NO_HZ_COMMON */
4870
4871static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4872{
9fd81dd5 4873#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4874 /* See the mess around cpu_load_update_nohz(). */
4875 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4876#endif
1f41906a
FW
4877 cpu_load_update(this_rq, load, 1);
4878}
3289bdb4
PZ
4879
4880/*
4881 * Called from scheduler_tick()
4882 */
cee1afce 4883void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4884{
7ea241af 4885 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4886
4887 if (tick_nohz_tick_stopped())
4888 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4889 else
4890 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4891}
4892
029632fb
PZ
4893/*
4894 * Return a low guess at the load of a migration-source cpu weighted
4895 * according to the scheduling class and "nice" value.
4896 *
4897 * We want to under-estimate the load of migration sources, to
4898 * balance conservatively.
4899 */
4900static unsigned long source_load(int cpu, int type)
4901{
4902 struct rq *rq = cpu_rq(cpu);
4903 unsigned long total = weighted_cpuload(cpu);
4904
4905 if (type == 0 || !sched_feat(LB_BIAS))
4906 return total;
4907
4908 return min(rq->cpu_load[type-1], total);
4909}
4910
4911/*
4912 * Return a high guess at the load of a migration-target cpu weighted
4913 * according to the scheduling class and "nice" value.
4914 */
4915static unsigned long target_load(int cpu, int type)
4916{
4917 struct rq *rq = cpu_rq(cpu);
4918 unsigned long total = weighted_cpuload(cpu);
4919
4920 if (type == 0 || !sched_feat(LB_BIAS))
4921 return total;
4922
4923 return max(rq->cpu_load[type-1], total);
4924}
4925
ced549fa 4926static unsigned long capacity_of(int cpu)
029632fb 4927{
ced549fa 4928 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4929}
4930
ca6d75e6
VG
4931static unsigned long capacity_orig_of(int cpu)
4932{
4933 return cpu_rq(cpu)->cpu_capacity_orig;
4934}
4935
029632fb
PZ
4936static unsigned long cpu_avg_load_per_task(int cpu)
4937{
4938 struct rq *rq = cpu_rq(cpu);
316c1608 4939 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4940 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4941
4942 if (nr_running)
b92486cb 4943 return load_avg / nr_running;
029632fb
PZ
4944
4945 return 0;
4946}
4947
bb3469ac 4948#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4949/*
4950 * effective_load() calculates the load change as seen from the root_task_group
4951 *
4952 * Adding load to a group doesn't make a group heavier, but can cause movement
4953 * of group shares between cpus. Assuming the shares were perfectly aligned one
4954 * can calculate the shift in shares.
cf5f0acf
PZ
4955 *
4956 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4957 * on this @cpu and results in a total addition (subtraction) of @wg to the
4958 * total group weight.
4959 *
4960 * Given a runqueue weight distribution (rw_i) we can compute a shares
4961 * distribution (s_i) using:
4962 *
4963 * s_i = rw_i / \Sum rw_j (1)
4964 *
4965 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4966 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4967 * shares distribution (s_i):
4968 *
4969 * rw_i = { 2, 4, 1, 0 }
4970 * s_i = { 2/7, 4/7, 1/7, 0 }
4971 *
4972 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4973 * task used to run on and the CPU the waker is running on), we need to
4974 * compute the effect of waking a task on either CPU and, in case of a sync
4975 * wakeup, compute the effect of the current task going to sleep.
4976 *
4977 * So for a change of @wl to the local @cpu with an overall group weight change
4978 * of @wl we can compute the new shares distribution (s'_i) using:
4979 *
4980 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4981 *
4982 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4983 * differences in waking a task to CPU 0. The additional task changes the
4984 * weight and shares distributions like:
4985 *
4986 * rw'_i = { 3, 4, 1, 0 }
4987 * s'_i = { 3/8, 4/8, 1/8, 0 }
4988 *
4989 * We can then compute the difference in effective weight by using:
4990 *
4991 * dw_i = S * (s'_i - s_i) (3)
4992 *
4993 * Where 'S' is the group weight as seen by its parent.
4994 *
4995 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4996 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4997 * 4/7) times the weight of the group.
f5bfb7d9 4998 */
2069dd75 4999static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5000{
4be9daaa 5001 struct sched_entity *se = tg->se[cpu];
f1d239f7 5002
9722c2da 5003 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5004 return wl;
5005
4be9daaa 5006 for_each_sched_entity(se) {
7dd49125
PZ
5007 struct cfs_rq *cfs_rq = se->my_q;
5008 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5009
7dd49125 5010 tg = cfs_rq->tg;
bb3469ac 5011
cf5f0acf
PZ
5012 /*
5013 * W = @wg + \Sum rw_j
5014 */
7dd49125
PZ
5015 W = wg + atomic_long_read(&tg->load_avg);
5016
5017 /* Ensure \Sum rw_j >= rw_i */
5018 W -= cfs_rq->tg_load_avg_contrib;
5019 W += w;
4be9daaa 5020
cf5f0acf
PZ
5021 /*
5022 * w = rw_i + @wl
5023 */
7dd49125 5024 w += wl;
940959e9 5025
cf5f0acf
PZ
5026 /*
5027 * wl = S * s'_i; see (2)
5028 */
5029 if (W > 0 && w < W)
ab522e33 5030 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5031 else
ab522e33 5032 wl = scale_load_down(tg->shares);
940959e9 5033
cf5f0acf
PZ
5034 /*
5035 * Per the above, wl is the new se->load.weight value; since
5036 * those are clipped to [MIN_SHARES, ...) do so now. See
5037 * calc_cfs_shares().
5038 */
977dda7c
PT
5039 if (wl < MIN_SHARES)
5040 wl = MIN_SHARES;
cf5f0acf
PZ
5041
5042 /*
5043 * wl = dw_i = S * (s'_i - s_i); see (3)
5044 */
9d89c257 5045 wl -= se->avg.load_avg;
cf5f0acf
PZ
5046
5047 /*
5048 * Recursively apply this logic to all parent groups to compute
5049 * the final effective load change on the root group. Since
5050 * only the @tg group gets extra weight, all parent groups can
5051 * only redistribute existing shares. @wl is the shift in shares
5052 * resulting from this level per the above.
5053 */
4be9daaa 5054 wg = 0;
4be9daaa 5055 }
bb3469ac 5056
4be9daaa 5057 return wl;
bb3469ac
PZ
5058}
5059#else
4be9daaa 5060
58d081b5 5061static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5062{
83378269 5063 return wl;
bb3469ac 5064}
4be9daaa 5065
bb3469ac
PZ
5066#endif
5067
c58d25f3
PZ
5068static void record_wakee(struct task_struct *p)
5069{
5070 /*
5071 * Only decay a single time; tasks that have less then 1 wakeup per
5072 * jiffy will not have built up many flips.
5073 */
5074 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5075 current->wakee_flips >>= 1;
5076 current->wakee_flip_decay_ts = jiffies;
5077 }
5078
5079 if (current->last_wakee != p) {
5080 current->last_wakee = p;
5081 current->wakee_flips++;
5082 }
5083}
5084
63b0e9ed
MG
5085/*
5086 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5087 *
63b0e9ed 5088 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5089 * at a frequency roughly N times higher than one of its wakees.
5090 *
5091 * In order to determine whether we should let the load spread vs consolidating
5092 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5093 * partner, and a factor of lls_size higher frequency in the other.
5094 *
5095 * With both conditions met, we can be relatively sure that the relationship is
5096 * non-monogamous, with partner count exceeding socket size.
5097 *
5098 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5099 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5100 * socket size.
63b0e9ed 5101 */
62470419
MW
5102static int wake_wide(struct task_struct *p)
5103{
63b0e9ed
MG
5104 unsigned int master = current->wakee_flips;
5105 unsigned int slave = p->wakee_flips;
7d9ffa89 5106 int factor = this_cpu_read(sd_llc_size);
62470419 5107
63b0e9ed
MG
5108 if (master < slave)
5109 swap(master, slave);
5110 if (slave < factor || master < slave * factor)
5111 return 0;
5112 return 1;
62470419
MW
5113}
5114
772bd008
MR
5115static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5116 int prev_cpu, int sync)
098fb9db 5117{
e37b6a7b 5118 s64 this_load, load;
bd61c98f 5119 s64 this_eff_load, prev_eff_load;
772bd008 5120 int idx, this_cpu;
c88d5910 5121 struct task_group *tg;
83378269 5122 unsigned long weight;
b3137bc8 5123 int balanced;
098fb9db 5124
c88d5910
PZ
5125 idx = sd->wake_idx;
5126 this_cpu = smp_processor_id();
c88d5910
PZ
5127 load = source_load(prev_cpu, idx);
5128 this_load = target_load(this_cpu, idx);
098fb9db 5129
b3137bc8
MG
5130 /*
5131 * If sync wakeup then subtract the (maximum possible)
5132 * effect of the currently running task from the load
5133 * of the current CPU:
5134 */
83378269
PZ
5135 if (sync) {
5136 tg = task_group(current);
9d89c257 5137 weight = current->se.avg.load_avg;
83378269 5138
c88d5910 5139 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5140 load += effective_load(tg, prev_cpu, 0, -weight);
5141 }
b3137bc8 5142
83378269 5143 tg = task_group(p);
9d89c257 5144 weight = p->se.avg.load_avg;
b3137bc8 5145
71a29aa7
PZ
5146 /*
5147 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5148 * due to the sync cause above having dropped this_load to 0, we'll
5149 * always have an imbalance, but there's really nothing you can do
5150 * about that, so that's good too.
71a29aa7
PZ
5151 *
5152 * Otherwise check if either cpus are near enough in load to allow this
5153 * task to be woken on this_cpu.
5154 */
bd61c98f
VG
5155 this_eff_load = 100;
5156 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5157
bd61c98f
VG
5158 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5159 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5160
bd61c98f 5161 if (this_load > 0) {
e51fd5e2
PZ
5162 this_eff_load *= this_load +
5163 effective_load(tg, this_cpu, weight, weight);
5164
e51fd5e2 5165 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5166 }
e51fd5e2 5167
bd61c98f 5168 balanced = this_eff_load <= prev_eff_load;
098fb9db 5169
ae92882e 5170 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5171
05bfb65f
VG
5172 if (!balanced)
5173 return 0;
098fb9db 5174
ae92882e
JP
5175 schedstat_inc(sd->ttwu_move_affine);
5176 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5177
5178 return 1;
098fb9db
IM
5179}
5180
aaee1203
PZ
5181/*
5182 * find_idlest_group finds and returns the least busy CPU group within the
5183 * domain.
5184 */
5185static struct sched_group *
78e7ed53 5186find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5187 int this_cpu, int sd_flag)
e7693a36 5188{
b3bd3de6 5189 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5190 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5191 int load_idx = sd->forkexec_idx;
aaee1203 5192 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5193
c44f2a02
VG
5194 if (sd_flag & SD_BALANCE_WAKE)
5195 load_idx = sd->wake_idx;
5196
aaee1203
PZ
5197 do {
5198 unsigned long load, avg_load;
5199 int local_group;
5200 int i;
e7693a36 5201
aaee1203
PZ
5202 /* Skip over this group if it has no CPUs allowed */
5203 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5204 tsk_cpus_allowed(p)))
aaee1203
PZ
5205 continue;
5206
5207 local_group = cpumask_test_cpu(this_cpu,
5208 sched_group_cpus(group));
5209
5210 /* Tally up the load of all CPUs in the group */
5211 avg_load = 0;
5212
5213 for_each_cpu(i, sched_group_cpus(group)) {
5214 /* Bias balancing toward cpus of our domain */
5215 if (local_group)
5216 load = source_load(i, load_idx);
5217 else
5218 load = target_load(i, load_idx);
5219
5220 avg_load += load;
5221 }
5222
63b2ca30 5223 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5224 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5225
5226 if (local_group) {
5227 this_load = avg_load;
aaee1203
PZ
5228 } else if (avg_load < min_load) {
5229 min_load = avg_load;
5230 idlest = group;
5231 }
5232 } while (group = group->next, group != sd->groups);
5233
5234 if (!idlest || 100*this_load < imbalance*min_load)
5235 return NULL;
5236 return idlest;
5237}
5238
5239/*
5240 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5241 */
5242static int
5243find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5244{
5245 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5246 unsigned int min_exit_latency = UINT_MAX;
5247 u64 latest_idle_timestamp = 0;
5248 int least_loaded_cpu = this_cpu;
5249 int shallowest_idle_cpu = -1;
aaee1203
PZ
5250 int i;
5251
eaecf41f
MR
5252 /* Check if we have any choice: */
5253 if (group->group_weight == 1)
5254 return cpumask_first(sched_group_cpus(group));
5255
aaee1203 5256 /* Traverse only the allowed CPUs */
fa17b507 5257 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5258 if (idle_cpu(i)) {
5259 struct rq *rq = cpu_rq(i);
5260 struct cpuidle_state *idle = idle_get_state(rq);
5261 if (idle && idle->exit_latency < min_exit_latency) {
5262 /*
5263 * We give priority to a CPU whose idle state
5264 * has the smallest exit latency irrespective
5265 * of any idle timestamp.
5266 */
5267 min_exit_latency = idle->exit_latency;
5268 latest_idle_timestamp = rq->idle_stamp;
5269 shallowest_idle_cpu = i;
5270 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5271 rq->idle_stamp > latest_idle_timestamp) {
5272 /*
5273 * If equal or no active idle state, then
5274 * the most recently idled CPU might have
5275 * a warmer cache.
5276 */
5277 latest_idle_timestamp = rq->idle_stamp;
5278 shallowest_idle_cpu = i;
5279 }
9f96742a 5280 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5281 load = weighted_cpuload(i);
5282 if (load < min_load || (load == min_load && i == this_cpu)) {
5283 min_load = load;
5284 least_loaded_cpu = i;
5285 }
e7693a36
GH
5286 }
5287 }
5288
83a0a96a 5289 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5290}
e7693a36 5291
a50bde51 5292/*
10e2f1ac
PZ
5293 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5294 * (@start), and wraps around.
5295 *
5296 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5297 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5298 * through the LLC domain.
5299 *
5300 * Especially tbench is found sensitive to this.
5301 */
5302
5303static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5304{
5305 int next;
5306
5307again:
5308 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5309
5310 if (*wrapped) {
5311 if (next >= start)
5312 return nr_cpumask_bits;
5313 } else {
5314 if (next >= nr_cpumask_bits) {
5315 *wrapped = 1;
5316 n = -1;
5317 goto again;
5318 }
5319 }
5320
5321 return next;
5322}
5323
5324#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5325 for ((wrap) = 0, (cpu) = (start)-1; \
5326 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5327 (cpu) < nr_cpumask_bits; )
5328
5329#ifdef CONFIG_SCHED_SMT
5330
5331static inline void set_idle_cores(int cpu, int val)
5332{
5333 struct sched_domain_shared *sds;
5334
5335 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5336 if (sds)
5337 WRITE_ONCE(sds->has_idle_cores, val);
5338}
5339
5340static inline bool test_idle_cores(int cpu, bool def)
5341{
5342 struct sched_domain_shared *sds;
5343
5344 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5345 if (sds)
5346 return READ_ONCE(sds->has_idle_cores);
5347
5348 return def;
5349}
5350
5351/*
5352 * Scans the local SMT mask to see if the entire core is idle, and records this
5353 * information in sd_llc_shared->has_idle_cores.
5354 *
5355 * Since SMT siblings share all cache levels, inspecting this limited remote
5356 * state should be fairly cheap.
5357 */
1b568f0a 5358void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5359{
5360 int core = cpu_of(rq);
5361 int cpu;
5362
5363 rcu_read_lock();
5364 if (test_idle_cores(core, true))
5365 goto unlock;
5366
5367 for_each_cpu(cpu, cpu_smt_mask(core)) {
5368 if (cpu == core)
5369 continue;
5370
5371 if (!idle_cpu(cpu))
5372 goto unlock;
5373 }
5374
5375 set_idle_cores(core, 1);
5376unlock:
5377 rcu_read_unlock();
5378}
5379
5380/*
5381 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5382 * there are no idle cores left in the system; tracked through
5383 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5384 */
5385static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5386{
5387 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5388 int core, cpu, wrap;
5389
1b568f0a
PZ
5390 if (!static_branch_likely(&sched_smt_present))
5391 return -1;
5392
10e2f1ac
PZ
5393 if (!test_idle_cores(target, false))
5394 return -1;
5395
5396 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5397
5398 for_each_cpu_wrap(core, cpus, target, wrap) {
5399 bool idle = true;
5400
5401 for_each_cpu(cpu, cpu_smt_mask(core)) {
5402 cpumask_clear_cpu(cpu, cpus);
5403 if (!idle_cpu(cpu))
5404 idle = false;
5405 }
5406
5407 if (idle)
5408 return core;
5409 }
5410
5411 /*
5412 * Failed to find an idle core; stop looking for one.
5413 */
5414 set_idle_cores(target, 0);
5415
5416 return -1;
5417}
5418
5419/*
5420 * Scan the local SMT mask for idle CPUs.
5421 */
5422static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5423{
5424 int cpu;
5425
1b568f0a
PZ
5426 if (!static_branch_likely(&sched_smt_present))
5427 return -1;
5428
10e2f1ac
PZ
5429 for_each_cpu(cpu, cpu_smt_mask(target)) {
5430 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5431 continue;
5432 if (idle_cpu(cpu))
5433 return cpu;
5434 }
5435
5436 return -1;
5437}
5438
5439#else /* CONFIG_SCHED_SMT */
5440
5441static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5442{
5443 return -1;
5444}
5445
5446static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5447{
5448 return -1;
5449}
5450
5451#endif /* CONFIG_SCHED_SMT */
5452
5453/*
5454 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5455 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5456 * average idle time for this rq (as found in rq->avg_idle).
5457 */
5458static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5459{
5460 struct sched_domain *this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5461 u64 avg_idle = this_rq()->avg_idle;
5462 u64 avg_cost = this_sd->avg_scan_cost;
5463 u64 time, cost;
5464 s64 delta;
5465 int cpu, wrap;
5466
5467 /*
5468 * Due to large variance we need a large fuzz factor; hackbench in
5469 * particularly is sensitive here.
5470 */
5471 if ((avg_idle / 512) < avg_cost)
5472 return -1;
5473
5474 time = local_clock();
5475
5476 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5477 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5478 continue;
5479 if (idle_cpu(cpu))
5480 break;
5481 }
5482
5483 time = local_clock() - time;
5484 cost = this_sd->avg_scan_cost;
5485 delta = (s64)(time - cost) / 8;
5486 this_sd->avg_scan_cost += delta;
5487
5488 return cpu;
5489}
5490
5491/*
5492 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5493 */
772bd008 5494static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5495{
99bd5e2f 5496 struct sched_domain *sd;
10e2f1ac 5497 int i;
a50bde51 5498
e0a79f52
MG
5499 if (idle_cpu(target))
5500 return target;
99bd5e2f
SS
5501
5502 /*
10e2f1ac 5503 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5504 */
772bd008
MR
5505 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5506 return prev;
a50bde51 5507
518cd623 5508 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5509 if (!sd)
5510 return target;
772bd008 5511
10e2f1ac
PZ
5512 i = select_idle_core(p, sd, target);
5513 if ((unsigned)i < nr_cpumask_bits)
5514 return i;
37407ea7 5515
10e2f1ac
PZ
5516 i = select_idle_cpu(p, sd, target);
5517 if ((unsigned)i < nr_cpumask_bits)
5518 return i;
5519
5520 i = select_idle_smt(p, sd, target);
5521 if ((unsigned)i < nr_cpumask_bits)
5522 return i;
970e1789 5523
a50bde51
PZ
5524 return target;
5525}
231678b7 5526
8bb5b00c 5527/*
9e91d61d 5528 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5529 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5530 * compare the utilization with the capacity of the CPU that is available for
5531 * CFS task (ie cpu_capacity).
231678b7
DE
5532 *
5533 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5534 * recent utilization of currently non-runnable tasks on a CPU. It represents
5535 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5536 * capacity_orig is the cpu_capacity available at the highest frequency
5537 * (arch_scale_freq_capacity()).
5538 * The utilization of a CPU converges towards a sum equal to or less than the
5539 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5540 * the running time on this CPU scaled by capacity_curr.
5541 *
5542 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5543 * higher than capacity_orig because of unfortunate rounding in
5544 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5545 * the average stabilizes with the new running time. We need to check that the
5546 * utilization stays within the range of [0..capacity_orig] and cap it if
5547 * necessary. Without utilization capping, a group could be seen as overloaded
5548 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5549 * available capacity. We allow utilization to overshoot capacity_curr (but not
5550 * capacity_orig) as it useful for predicting the capacity required after task
5551 * migrations (scheduler-driven DVFS).
8bb5b00c 5552 */
9e91d61d 5553static int cpu_util(int cpu)
8bb5b00c 5554{
9e91d61d 5555 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5556 unsigned long capacity = capacity_orig_of(cpu);
5557
231678b7 5558 return (util >= capacity) ? capacity : util;
8bb5b00c 5559}
a50bde51 5560
3273163c
MR
5561static inline int task_util(struct task_struct *p)
5562{
5563 return p->se.avg.util_avg;
5564}
5565
5566/*
5567 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5568 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5569 *
5570 * In that case WAKE_AFFINE doesn't make sense and we'll let
5571 * BALANCE_WAKE sort things out.
5572 */
5573static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5574{
5575 long min_cap, max_cap;
5576
5577 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5578 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5579
5580 /* Minimum capacity is close to max, no need to abort wake_affine */
5581 if (max_cap - min_cap < max_cap >> 3)
5582 return 0;
5583
5584 return min_cap * 1024 < task_util(p) * capacity_margin;
5585}
5586
aaee1203 5587/*
de91b9cb
MR
5588 * select_task_rq_fair: Select target runqueue for the waking task in domains
5589 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5590 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5591 *
de91b9cb
MR
5592 * Balances load by selecting the idlest cpu in the idlest group, or under
5593 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5594 *
de91b9cb 5595 * Returns the target cpu number.
aaee1203
PZ
5596 *
5597 * preempt must be disabled.
5598 */
0017d735 5599static int
ac66f547 5600select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5601{
29cd8bae 5602 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5603 int cpu = smp_processor_id();
63b0e9ed 5604 int new_cpu = prev_cpu;
99bd5e2f 5605 int want_affine = 0;
5158f4e4 5606 int sync = wake_flags & WF_SYNC;
c88d5910 5607
c58d25f3
PZ
5608 if (sd_flag & SD_BALANCE_WAKE) {
5609 record_wakee(p);
3273163c
MR
5610 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5611 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5612 }
aaee1203 5613
dce840a0 5614 rcu_read_lock();
aaee1203 5615 for_each_domain(cpu, tmp) {
e4f42888 5616 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5617 break;
e4f42888 5618
fe3bcfe1 5619 /*
99bd5e2f
SS
5620 * If both cpu and prev_cpu are part of this domain,
5621 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5622 */
99bd5e2f
SS
5623 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5624 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5625 affine_sd = tmp;
29cd8bae 5626 break;
f03542a7 5627 }
29cd8bae 5628
f03542a7 5629 if (tmp->flags & sd_flag)
29cd8bae 5630 sd = tmp;
63b0e9ed
MG
5631 else if (!want_affine)
5632 break;
29cd8bae
PZ
5633 }
5634
63b0e9ed
MG
5635 if (affine_sd) {
5636 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5637 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5638 new_cpu = cpu;
8b911acd 5639 }
e7693a36 5640
63b0e9ed
MG
5641 if (!sd) {
5642 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5643 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5644
5645 } else while (sd) {
aaee1203 5646 struct sched_group *group;
c88d5910 5647 int weight;
098fb9db 5648
0763a660 5649 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5650 sd = sd->child;
5651 continue;
5652 }
098fb9db 5653
c44f2a02 5654 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5655 if (!group) {
5656 sd = sd->child;
5657 continue;
5658 }
4ae7d5ce 5659
d7c33c49 5660 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5661 if (new_cpu == -1 || new_cpu == cpu) {
5662 /* Now try balancing at a lower domain level of cpu */
5663 sd = sd->child;
5664 continue;
e7693a36 5665 }
aaee1203
PZ
5666
5667 /* Now try balancing at a lower domain level of new_cpu */
5668 cpu = new_cpu;
669c55e9 5669 weight = sd->span_weight;
aaee1203
PZ
5670 sd = NULL;
5671 for_each_domain(cpu, tmp) {
669c55e9 5672 if (weight <= tmp->span_weight)
aaee1203 5673 break;
0763a660 5674 if (tmp->flags & sd_flag)
aaee1203
PZ
5675 sd = tmp;
5676 }
5677 /* while loop will break here if sd == NULL */
e7693a36 5678 }
dce840a0 5679 rcu_read_unlock();
e7693a36 5680
c88d5910 5681 return new_cpu;
e7693a36 5682}
0a74bef8
PT
5683
5684/*
5685 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5686 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5687 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5688 */
5a4fd036 5689static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5690{
59efa0ba
PZ
5691 /*
5692 * As blocked tasks retain absolute vruntime the migration needs to
5693 * deal with this by subtracting the old and adding the new
5694 * min_vruntime -- the latter is done by enqueue_entity() when placing
5695 * the task on the new runqueue.
5696 */
5697 if (p->state == TASK_WAKING) {
5698 struct sched_entity *se = &p->se;
5699 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5700 u64 min_vruntime;
5701
5702#ifndef CONFIG_64BIT
5703 u64 min_vruntime_copy;
5704
5705 do {
5706 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5707 smp_rmb();
5708 min_vruntime = cfs_rq->min_vruntime;
5709 } while (min_vruntime != min_vruntime_copy);
5710#else
5711 min_vruntime = cfs_rq->min_vruntime;
5712#endif
5713
5714 se->vruntime -= min_vruntime;
5715 }
5716
aff3e498 5717 /*
9d89c257
YD
5718 * We are supposed to update the task to "current" time, then its up to date
5719 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5720 * what current time is, so simply throw away the out-of-date time. This
5721 * will result in the wakee task is less decayed, but giving the wakee more
5722 * load sounds not bad.
aff3e498 5723 */
9d89c257
YD
5724 remove_entity_load_avg(&p->se);
5725
5726 /* Tell new CPU we are migrated */
5727 p->se.avg.last_update_time = 0;
3944a927
BS
5728
5729 /* We have migrated, no longer consider this task hot */
9d89c257 5730 p->se.exec_start = 0;
0a74bef8 5731}
12695578
YD
5732
5733static void task_dead_fair(struct task_struct *p)
5734{
5735 remove_entity_load_avg(&p->se);
5736}
e7693a36
GH
5737#endif /* CONFIG_SMP */
5738
e52fb7c0
PZ
5739static unsigned long
5740wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5741{
5742 unsigned long gran = sysctl_sched_wakeup_granularity;
5743
5744 /*
e52fb7c0
PZ
5745 * Since its curr running now, convert the gran from real-time
5746 * to virtual-time in his units.
13814d42
MG
5747 *
5748 * By using 'se' instead of 'curr' we penalize light tasks, so
5749 * they get preempted easier. That is, if 'se' < 'curr' then
5750 * the resulting gran will be larger, therefore penalizing the
5751 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5752 * be smaller, again penalizing the lighter task.
5753 *
5754 * This is especially important for buddies when the leftmost
5755 * task is higher priority than the buddy.
0bbd3336 5756 */
f4ad9bd2 5757 return calc_delta_fair(gran, se);
0bbd3336
PZ
5758}
5759
464b7527
PZ
5760/*
5761 * Should 'se' preempt 'curr'.
5762 *
5763 * |s1
5764 * |s2
5765 * |s3
5766 * g
5767 * |<--->|c
5768 *
5769 * w(c, s1) = -1
5770 * w(c, s2) = 0
5771 * w(c, s3) = 1
5772 *
5773 */
5774static int
5775wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5776{
5777 s64 gran, vdiff = curr->vruntime - se->vruntime;
5778
5779 if (vdiff <= 0)
5780 return -1;
5781
e52fb7c0 5782 gran = wakeup_gran(curr, se);
464b7527
PZ
5783 if (vdiff > gran)
5784 return 1;
5785
5786 return 0;
5787}
5788
02479099
PZ
5789static void set_last_buddy(struct sched_entity *se)
5790{
69c80f3e
VP
5791 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5792 return;
5793
5794 for_each_sched_entity(se)
5795 cfs_rq_of(se)->last = se;
02479099
PZ
5796}
5797
5798static void set_next_buddy(struct sched_entity *se)
5799{
69c80f3e
VP
5800 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5801 return;
5802
5803 for_each_sched_entity(se)
5804 cfs_rq_of(se)->next = se;
02479099
PZ
5805}
5806
ac53db59
RR
5807static void set_skip_buddy(struct sched_entity *se)
5808{
69c80f3e
VP
5809 for_each_sched_entity(se)
5810 cfs_rq_of(se)->skip = se;
ac53db59
RR
5811}
5812
bf0f6f24
IM
5813/*
5814 * Preempt the current task with a newly woken task if needed:
5815 */
5a9b86f6 5816static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5817{
5818 struct task_struct *curr = rq->curr;
8651a86c 5819 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5820 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5821 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5822 int next_buddy_marked = 0;
bf0f6f24 5823
4ae7d5ce
IM
5824 if (unlikely(se == pse))
5825 return;
5826
5238cdd3 5827 /*
163122b7 5828 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5829 * unconditionally check_prempt_curr() after an enqueue (which may have
5830 * lead to a throttle). This both saves work and prevents false
5831 * next-buddy nomination below.
5832 */
5833 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5834 return;
5835
2f36825b 5836 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5837 set_next_buddy(pse);
2f36825b
VP
5838 next_buddy_marked = 1;
5839 }
57fdc26d 5840
aec0a514
BR
5841 /*
5842 * We can come here with TIF_NEED_RESCHED already set from new task
5843 * wake up path.
5238cdd3
PT
5844 *
5845 * Note: this also catches the edge-case of curr being in a throttled
5846 * group (e.g. via set_curr_task), since update_curr() (in the
5847 * enqueue of curr) will have resulted in resched being set. This
5848 * prevents us from potentially nominating it as a false LAST_BUDDY
5849 * below.
aec0a514
BR
5850 */
5851 if (test_tsk_need_resched(curr))
5852 return;
5853
a2f5c9ab
DH
5854 /* Idle tasks are by definition preempted by non-idle tasks. */
5855 if (unlikely(curr->policy == SCHED_IDLE) &&
5856 likely(p->policy != SCHED_IDLE))
5857 goto preempt;
5858
91c234b4 5859 /*
a2f5c9ab
DH
5860 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5861 * is driven by the tick):
91c234b4 5862 */
8ed92e51 5863 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5864 return;
bf0f6f24 5865
464b7527 5866 find_matching_se(&se, &pse);
9bbd7374 5867 update_curr(cfs_rq_of(se));
002f128b 5868 BUG_ON(!pse);
2f36825b
VP
5869 if (wakeup_preempt_entity(se, pse) == 1) {
5870 /*
5871 * Bias pick_next to pick the sched entity that is
5872 * triggering this preemption.
5873 */
5874 if (!next_buddy_marked)
5875 set_next_buddy(pse);
3a7e73a2 5876 goto preempt;
2f36825b 5877 }
464b7527 5878
3a7e73a2 5879 return;
a65ac745 5880
3a7e73a2 5881preempt:
8875125e 5882 resched_curr(rq);
3a7e73a2
PZ
5883 /*
5884 * Only set the backward buddy when the current task is still
5885 * on the rq. This can happen when a wakeup gets interleaved
5886 * with schedule on the ->pre_schedule() or idle_balance()
5887 * point, either of which can * drop the rq lock.
5888 *
5889 * Also, during early boot the idle thread is in the fair class,
5890 * for obvious reasons its a bad idea to schedule back to it.
5891 */
5892 if (unlikely(!se->on_rq || curr == rq->idle))
5893 return;
5894
5895 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5896 set_last_buddy(se);
bf0f6f24
IM
5897}
5898
606dba2e 5899static struct task_struct *
e7904a28 5900pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5901{
5902 struct cfs_rq *cfs_rq = &rq->cfs;
5903 struct sched_entity *se;
678d5718 5904 struct task_struct *p;
37e117c0 5905 int new_tasks;
678d5718 5906
6e83125c 5907again:
678d5718
PZ
5908#ifdef CONFIG_FAIR_GROUP_SCHED
5909 if (!cfs_rq->nr_running)
38033c37 5910 goto idle;
678d5718 5911
3f1d2a31 5912 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5913 goto simple;
5914
5915 /*
5916 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5917 * likely that a next task is from the same cgroup as the current.
5918 *
5919 * Therefore attempt to avoid putting and setting the entire cgroup
5920 * hierarchy, only change the part that actually changes.
5921 */
5922
5923 do {
5924 struct sched_entity *curr = cfs_rq->curr;
5925
5926 /*
5927 * Since we got here without doing put_prev_entity() we also
5928 * have to consider cfs_rq->curr. If it is still a runnable
5929 * entity, update_curr() will update its vruntime, otherwise
5930 * forget we've ever seen it.
5931 */
54d27365
BS
5932 if (curr) {
5933 if (curr->on_rq)
5934 update_curr(cfs_rq);
5935 else
5936 curr = NULL;
678d5718 5937
54d27365
BS
5938 /*
5939 * This call to check_cfs_rq_runtime() will do the
5940 * throttle and dequeue its entity in the parent(s).
5941 * Therefore the 'simple' nr_running test will indeed
5942 * be correct.
5943 */
5944 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5945 goto simple;
5946 }
678d5718
PZ
5947
5948 se = pick_next_entity(cfs_rq, curr);
5949 cfs_rq = group_cfs_rq(se);
5950 } while (cfs_rq);
5951
5952 p = task_of(se);
5953
5954 /*
5955 * Since we haven't yet done put_prev_entity and if the selected task
5956 * is a different task than we started out with, try and touch the
5957 * least amount of cfs_rqs.
5958 */
5959 if (prev != p) {
5960 struct sched_entity *pse = &prev->se;
5961
5962 while (!(cfs_rq = is_same_group(se, pse))) {
5963 int se_depth = se->depth;
5964 int pse_depth = pse->depth;
5965
5966 if (se_depth <= pse_depth) {
5967 put_prev_entity(cfs_rq_of(pse), pse);
5968 pse = parent_entity(pse);
5969 }
5970 if (se_depth >= pse_depth) {
5971 set_next_entity(cfs_rq_of(se), se);
5972 se = parent_entity(se);
5973 }
5974 }
5975
5976 put_prev_entity(cfs_rq, pse);
5977 set_next_entity(cfs_rq, se);
5978 }
5979
5980 if (hrtick_enabled(rq))
5981 hrtick_start_fair(rq, p);
5982
5983 return p;
5984simple:
5985 cfs_rq = &rq->cfs;
5986#endif
bf0f6f24 5987
36ace27e 5988 if (!cfs_rq->nr_running)
38033c37 5989 goto idle;
bf0f6f24 5990
3f1d2a31 5991 put_prev_task(rq, prev);
606dba2e 5992
bf0f6f24 5993 do {
678d5718 5994 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5995 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5996 cfs_rq = group_cfs_rq(se);
5997 } while (cfs_rq);
5998
8f4d37ec 5999 p = task_of(se);
678d5718 6000
b39e66ea
MG
6001 if (hrtick_enabled(rq))
6002 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6003
6004 return p;
38033c37
PZ
6005
6006idle:
cbce1a68
PZ
6007 /*
6008 * This is OK, because current is on_cpu, which avoids it being picked
6009 * for load-balance and preemption/IRQs are still disabled avoiding
6010 * further scheduler activity on it and we're being very careful to
6011 * re-start the picking loop.
6012 */
e7904a28 6013 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 6014 new_tasks = idle_balance(rq);
e7904a28 6015 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
6016 /*
6017 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6018 * possible for any higher priority task to appear. In that case we
6019 * must re-start the pick_next_entity() loop.
6020 */
e4aa358b 6021 if (new_tasks < 0)
37e117c0
PZ
6022 return RETRY_TASK;
6023
e4aa358b 6024 if (new_tasks > 0)
38033c37 6025 goto again;
38033c37
PZ
6026
6027 return NULL;
bf0f6f24
IM
6028}
6029
6030/*
6031 * Account for a descheduled task:
6032 */
31ee529c 6033static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6034{
6035 struct sched_entity *se = &prev->se;
6036 struct cfs_rq *cfs_rq;
6037
6038 for_each_sched_entity(se) {
6039 cfs_rq = cfs_rq_of(se);
ab6cde26 6040 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6041 }
6042}
6043
ac53db59
RR
6044/*
6045 * sched_yield() is very simple
6046 *
6047 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6048 */
6049static void yield_task_fair(struct rq *rq)
6050{
6051 struct task_struct *curr = rq->curr;
6052 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6053 struct sched_entity *se = &curr->se;
6054
6055 /*
6056 * Are we the only task in the tree?
6057 */
6058 if (unlikely(rq->nr_running == 1))
6059 return;
6060
6061 clear_buddies(cfs_rq, se);
6062
6063 if (curr->policy != SCHED_BATCH) {
6064 update_rq_clock(rq);
6065 /*
6066 * Update run-time statistics of the 'current'.
6067 */
6068 update_curr(cfs_rq);
916671c0
MG
6069 /*
6070 * Tell update_rq_clock() that we've just updated,
6071 * so we don't do microscopic update in schedule()
6072 * and double the fastpath cost.
6073 */
9edfbfed 6074 rq_clock_skip_update(rq, true);
ac53db59
RR
6075 }
6076
6077 set_skip_buddy(se);
6078}
6079
d95f4122
MG
6080static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6081{
6082 struct sched_entity *se = &p->se;
6083
5238cdd3
PT
6084 /* throttled hierarchies are not runnable */
6085 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6086 return false;
6087
6088 /* Tell the scheduler that we'd really like pse to run next. */
6089 set_next_buddy(se);
6090
d95f4122
MG
6091 yield_task_fair(rq);
6092
6093 return true;
6094}
6095
681f3e68 6096#ifdef CONFIG_SMP
bf0f6f24 6097/**************************************************
e9c84cb8
PZ
6098 * Fair scheduling class load-balancing methods.
6099 *
6100 * BASICS
6101 *
6102 * The purpose of load-balancing is to achieve the same basic fairness the
6103 * per-cpu scheduler provides, namely provide a proportional amount of compute
6104 * time to each task. This is expressed in the following equation:
6105 *
6106 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6107 *
6108 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6109 * W_i,0 is defined as:
6110 *
6111 * W_i,0 = \Sum_j w_i,j (2)
6112 *
6113 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6114 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6115 *
6116 * The weight average is an exponential decay average of the instantaneous
6117 * weight:
6118 *
6119 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6120 *
ced549fa 6121 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6122 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6123 * can also include other factors [XXX].
6124 *
6125 * To achieve this balance we define a measure of imbalance which follows
6126 * directly from (1):
6127 *
ced549fa 6128 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6129 *
6130 * We them move tasks around to minimize the imbalance. In the continuous
6131 * function space it is obvious this converges, in the discrete case we get
6132 * a few fun cases generally called infeasible weight scenarios.
6133 *
6134 * [XXX expand on:
6135 * - infeasible weights;
6136 * - local vs global optima in the discrete case. ]
6137 *
6138 *
6139 * SCHED DOMAINS
6140 *
6141 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6142 * for all i,j solution, we create a tree of cpus that follows the hardware
6143 * topology where each level pairs two lower groups (or better). This results
6144 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6145 * tree to only the first of the previous level and we decrease the frequency
6146 * of load-balance at each level inv. proportional to the number of cpus in
6147 * the groups.
6148 *
6149 * This yields:
6150 *
6151 * log_2 n 1 n
6152 * \Sum { --- * --- * 2^i } = O(n) (5)
6153 * i = 0 2^i 2^i
6154 * `- size of each group
6155 * | | `- number of cpus doing load-balance
6156 * | `- freq
6157 * `- sum over all levels
6158 *
6159 * Coupled with a limit on how many tasks we can migrate every balance pass,
6160 * this makes (5) the runtime complexity of the balancer.
6161 *
6162 * An important property here is that each CPU is still (indirectly) connected
6163 * to every other cpu in at most O(log n) steps:
6164 *
6165 * The adjacency matrix of the resulting graph is given by:
6166 *
97a7142f 6167 * log_2 n
e9c84cb8
PZ
6168 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6169 * k = 0
6170 *
6171 * And you'll find that:
6172 *
6173 * A^(log_2 n)_i,j != 0 for all i,j (7)
6174 *
6175 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6176 * The task movement gives a factor of O(m), giving a convergence complexity
6177 * of:
6178 *
6179 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6180 *
6181 *
6182 * WORK CONSERVING
6183 *
6184 * In order to avoid CPUs going idle while there's still work to do, new idle
6185 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6186 * tree itself instead of relying on other CPUs to bring it work.
6187 *
6188 * This adds some complexity to both (5) and (8) but it reduces the total idle
6189 * time.
6190 *
6191 * [XXX more?]
6192 *
6193 *
6194 * CGROUPS
6195 *
6196 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6197 *
6198 * s_k,i
6199 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6200 * S_k
6201 *
6202 * Where
6203 *
6204 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6205 *
6206 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6207 *
6208 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6209 * property.
6210 *
6211 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6212 * rewrite all of this once again.]
97a7142f 6213 */
bf0f6f24 6214
ed387b78
HS
6215static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6216
0ec8aa00
PZ
6217enum fbq_type { regular, remote, all };
6218
ddcdf6e7 6219#define LBF_ALL_PINNED 0x01
367456c7 6220#define LBF_NEED_BREAK 0x02
6263322c
PZ
6221#define LBF_DST_PINNED 0x04
6222#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6223
6224struct lb_env {
6225 struct sched_domain *sd;
6226
ddcdf6e7 6227 struct rq *src_rq;
85c1e7da 6228 int src_cpu;
ddcdf6e7
PZ
6229
6230 int dst_cpu;
6231 struct rq *dst_rq;
6232
88b8dac0
SV
6233 struct cpumask *dst_grpmask;
6234 int new_dst_cpu;
ddcdf6e7 6235 enum cpu_idle_type idle;
bd939f45 6236 long imbalance;
b9403130
MW
6237 /* The set of CPUs under consideration for load-balancing */
6238 struct cpumask *cpus;
6239
ddcdf6e7 6240 unsigned int flags;
367456c7
PZ
6241
6242 unsigned int loop;
6243 unsigned int loop_break;
6244 unsigned int loop_max;
0ec8aa00
PZ
6245
6246 enum fbq_type fbq_type;
163122b7 6247 struct list_head tasks;
ddcdf6e7
PZ
6248};
6249
029632fb
PZ
6250/*
6251 * Is this task likely cache-hot:
6252 */
5d5e2b1b 6253static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6254{
6255 s64 delta;
6256
e5673f28
KT
6257 lockdep_assert_held(&env->src_rq->lock);
6258
029632fb
PZ
6259 if (p->sched_class != &fair_sched_class)
6260 return 0;
6261
6262 if (unlikely(p->policy == SCHED_IDLE))
6263 return 0;
6264
6265 /*
6266 * Buddy candidates are cache hot:
6267 */
5d5e2b1b 6268 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6269 (&p->se == cfs_rq_of(&p->se)->next ||
6270 &p->se == cfs_rq_of(&p->se)->last))
6271 return 1;
6272
6273 if (sysctl_sched_migration_cost == -1)
6274 return 1;
6275 if (sysctl_sched_migration_cost == 0)
6276 return 0;
6277
5d5e2b1b 6278 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6279
6280 return delta < (s64)sysctl_sched_migration_cost;
6281}
6282
3a7053b3 6283#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6284/*
2a1ed24c
SD
6285 * Returns 1, if task migration degrades locality
6286 * Returns 0, if task migration improves locality i.e migration preferred.
6287 * Returns -1, if task migration is not affected by locality.
c1ceac62 6288 */
2a1ed24c 6289static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6290{
b1ad065e 6291 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6292 unsigned long src_faults, dst_faults;
3a7053b3
MG
6293 int src_nid, dst_nid;
6294
2a595721 6295 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6296 return -1;
6297
c3b9bc5b 6298 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6299 return -1;
7a0f3083
MG
6300
6301 src_nid = cpu_to_node(env->src_cpu);
6302 dst_nid = cpu_to_node(env->dst_cpu);
6303
83e1d2cd 6304 if (src_nid == dst_nid)
2a1ed24c 6305 return -1;
7a0f3083 6306
2a1ed24c
SD
6307 /* Migrating away from the preferred node is always bad. */
6308 if (src_nid == p->numa_preferred_nid) {
6309 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6310 return 1;
6311 else
6312 return -1;
6313 }
b1ad065e 6314
c1ceac62
RR
6315 /* Encourage migration to the preferred node. */
6316 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6317 return 0;
b1ad065e 6318
c1ceac62
RR
6319 if (numa_group) {
6320 src_faults = group_faults(p, src_nid);
6321 dst_faults = group_faults(p, dst_nid);
6322 } else {
6323 src_faults = task_faults(p, src_nid);
6324 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6325 }
6326
c1ceac62 6327 return dst_faults < src_faults;
7a0f3083
MG
6328}
6329
3a7053b3 6330#else
2a1ed24c 6331static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6332 struct lb_env *env)
6333{
2a1ed24c 6334 return -1;
7a0f3083 6335}
3a7053b3
MG
6336#endif
6337
1e3c88bd
PZ
6338/*
6339 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6340 */
6341static
8e45cb54 6342int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6343{
2a1ed24c 6344 int tsk_cache_hot;
e5673f28
KT
6345
6346 lockdep_assert_held(&env->src_rq->lock);
6347
1e3c88bd
PZ
6348 /*
6349 * We do not migrate tasks that are:
d3198084 6350 * 1) throttled_lb_pair, or
1e3c88bd 6351 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6352 * 3) running (obviously), or
6353 * 4) are cache-hot on their current CPU.
1e3c88bd 6354 */
d3198084
JK
6355 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6356 return 0;
6357
ddcdf6e7 6358 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6359 int cpu;
88b8dac0 6360
ae92882e 6361 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6362
6263322c
PZ
6363 env->flags |= LBF_SOME_PINNED;
6364
88b8dac0
SV
6365 /*
6366 * Remember if this task can be migrated to any other cpu in
6367 * our sched_group. We may want to revisit it if we couldn't
6368 * meet load balance goals by pulling other tasks on src_cpu.
6369 *
6370 * Also avoid computing new_dst_cpu if we have already computed
6371 * one in current iteration.
6372 */
6263322c 6373 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6374 return 0;
6375
e02e60c1
JK
6376 /* Prevent to re-select dst_cpu via env's cpus */
6377 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6378 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6379 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6380 env->new_dst_cpu = cpu;
6381 break;
6382 }
88b8dac0 6383 }
e02e60c1 6384
1e3c88bd
PZ
6385 return 0;
6386 }
88b8dac0
SV
6387
6388 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6389 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6390
ddcdf6e7 6391 if (task_running(env->src_rq, p)) {
ae92882e 6392 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6393 return 0;
6394 }
6395
6396 /*
6397 * Aggressive migration if:
3a7053b3
MG
6398 * 1) destination numa is preferred
6399 * 2) task is cache cold, or
6400 * 3) too many balance attempts have failed.
1e3c88bd 6401 */
2a1ed24c
SD
6402 tsk_cache_hot = migrate_degrades_locality(p, env);
6403 if (tsk_cache_hot == -1)
6404 tsk_cache_hot = task_hot(p, env);
3a7053b3 6405
2a1ed24c 6406 if (tsk_cache_hot <= 0 ||
7a96c231 6407 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6408 if (tsk_cache_hot == 1) {
ae92882e
JP
6409 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6410 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6411 }
1e3c88bd
PZ
6412 return 1;
6413 }
6414
ae92882e 6415 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6416 return 0;
1e3c88bd
PZ
6417}
6418
897c395f 6419/*
163122b7
KT
6420 * detach_task() -- detach the task for the migration specified in env
6421 */
6422static void detach_task(struct task_struct *p, struct lb_env *env)
6423{
6424 lockdep_assert_held(&env->src_rq->lock);
6425
163122b7 6426 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6427 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6428 set_task_cpu(p, env->dst_cpu);
6429}
6430
897c395f 6431/*
e5673f28 6432 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6433 * part of active balancing operations within "domain".
897c395f 6434 *
e5673f28 6435 * Returns a task if successful and NULL otherwise.
897c395f 6436 */
e5673f28 6437static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6438{
6439 struct task_struct *p, *n;
897c395f 6440
e5673f28
KT
6441 lockdep_assert_held(&env->src_rq->lock);
6442
367456c7 6443 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6444 if (!can_migrate_task(p, env))
6445 continue;
897c395f 6446
163122b7 6447 detach_task(p, env);
e5673f28 6448
367456c7 6449 /*
e5673f28 6450 * Right now, this is only the second place where
163122b7 6451 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6452 * so we can safely collect stats here rather than
163122b7 6453 * inside detach_tasks().
367456c7 6454 */
ae92882e 6455 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6456 return p;
897c395f 6457 }
e5673f28 6458 return NULL;
897c395f
PZ
6459}
6460
eb95308e
PZ
6461static const unsigned int sched_nr_migrate_break = 32;
6462
5d6523eb 6463/*
163122b7
KT
6464 * detach_tasks() -- tries to detach up to imbalance weighted load from
6465 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6466 *
163122b7 6467 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6468 */
163122b7 6469static int detach_tasks(struct lb_env *env)
1e3c88bd 6470{
5d6523eb
PZ
6471 struct list_head *tasks = &env->src_rq->cfs_tasks;
6472 struct task_struct *p;
367456c7 6473 unsigned long load;
163122b7
KT
6474 int detached = 0;
6475
6476 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6477
bd939f45 6478 if (env->imbalance <= 0)
5d6523eb 6479 return 0;
1e3c88bd 6480
5d6523eb 6481 while (!list_empty(tasks)) {
985d3a4c
YD
6482 /*
6483 * We don't want to steal all, otherwise we may be treated likewise,
6484 * which could at worst lead to a livelock crash.
6485 */
6486 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6487 break;
6488
5d6523eb 6489 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6490
367456c7
PZ
6491 env->loop++;
6492 /* We've more or less seen every task there is, call it quits */
5d6523eb 6493 if (env->loop > env->loop_max)
367456c7 6494 break;
5d6523eb
PZ
6495
6496 /* take a breather every nr_migrate tasks */
367456c7 6497 if (env->loop > env->loop_break) {
eb95308e 6498 env->loop_break += sched_nr_migrate_break;
8e45cb54 6499 env->flags |= LBF_NEED_BREAK;
ee00e66f 6500 break;
a195f004 6501 }
1e3c88bd 6502
d3198084 6503 if (!can_migrate_task(p, env))
367456c7
PZ
6504 goto next;
6505
6506 load = task_h_load(p);
5d6523eb 6507
eb95308e 6508 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6509 goto next;
6510
bd939f45 6511 if ((load / 2) > env->imbalance)
367456c7 6512 goto next;
1e3c88bd 6513
163122b7
KT
6514 detach_task(p, env);
6515 list_add(&p->se.group_node, &env->tasks);
6516
6517 detached++;
bd939f45 6518 env->imbalance -= load;
1e3c88bd
PZ
6519
6520#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6521 /*
6522 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6523 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6524 * the critical section.
6525 */
5d6523eb 6526 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6527 break;
1e3c88bd
PZ
6528#endif
6529
ee00e66f
PZ
6530 /*
6531 * We only want to steal up to the prescribed amount of
6532 * weighted load.
6533 */
bd939f45 6534 if (env->imbalance <= 0)
ee00e66f 6535 break;
367456c7
PZ
6536
6537 continue;
6538next:
5d6523eb 6539 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6540 }
5d6523eb 6541
1e3c88bd 6542 /*
163122b7
KT
6543 * Right now, this is one of only two places we collect this stat
6544 * so we can safely collect detach_one_task() stats here rather
6545 * than inside detach_one_task().
1e3c88bd 6546 */
ae92882e 6547 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6548
163122b7
KT
6549 return detached;
6550}
6551
6552/*
6553 * attach_task() -- attach the task detached by detach_task() to its new rq.
6554 */
6555static void attach_task(struct rq *rq, struct task_struct *p)
6556{
6557 lockdep_assert_held(&rq->lock);
6558
6559 BUG_ON(task_rq(p) != rq);
163122b7 6560 activate_task(rq, p, 0);
3ea94de1 6561 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6562 check_preempt_curr(rq, p, 0);
6563}
6564
6565/*
6566 * attach_one_task() -- attaches the task returned from detach_one_task() to
6567 * its new rq.
6568 */
6569static void attach_one_task(struct rq *rq, struct task_struct *p)
6570{
6571 raw_spin_lock(&rq->lock);
6572 attach_task(rq, p);
6573 raw_spin_unlock(&rq->lock);
6574}
6575
6576/*
6577 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6578 * new rq.
6579 */
6580static void attach_tasks(struct lb_env *env)
6581{
6582 struct list_head *tasks = &env->tasks;
6583 struct task_struct *p;
6584
6585 raw_spin_lock(&env->dst_rq->lock);
6586
6587 while (!list_empty(tasks)) {
6588 p = list_first_entry(tasks, struct task_struct, se.group_node);
6589 list_del_init(&p->se.group_node);
1e3c88bd 6590
163122b7
KT
6591 attach_task(env->dst_rq, p);
6592 }
6593
6594 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6595}
6596
230059de 6597#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6598static void update_blocked_averages(int cpu)
9e3081ca 6599{
9e3081ca 6600 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6601 struct cfs_rq *cfs_rq;
6602 unsigned long flags;
9e3081ca 6603
48a16753
PT
6604 raw_spin_lock_irqsave(&rq->lock, flags);
6605 update_rq_clock(rq);
9d89c257 6606
9763b67f
PZ
6607 /*
6608 * Iterates the task_group tree in a bottom up fashion, see
6609 * list_add_leaf_cfs_rq() for details.
6610 */
64660c86 6611 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6612 /* throttled entities do not contribute to load */
6613 if (throttled_hierarchy(cfs_rq))
6614 continue;
48a16753 6615
a2c6c91f 6616 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6617 update_tg_load_avg(cfs_rq, 0);
6618 }
48a16753 6619 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6620}
6621
9763b67f 6622/*
68520796 6623 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6624 * This needs to be done in a top-down fashion because the load of a child
6625 * group is a fraction of its parents load.
6626 */
68520796 6627static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6628{
68520796
VD
6629 struct rq *rq = rq_of(cfs_rq);
6630 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6631 unsigned long now = jiffies;
68520796 6632 unsigned long load;
a35b6466 6633
68520796 6634 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6635 return;
6636
68520796
VD
6637 cfs_rq->h_load_next = NULL;
6638 for_each_sched_entity(se) {
6639 cfs_rq = cfs_rq_of(se);
6640 cfs_rq->h_load_next = se;
6641 if (cfs_rq->last_h_load_update == now)
6642 break;
6643 }
a35b6466 6644
68520796 6645 if (!se) {
7ea241af 6646 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6647 cfs_rq->last_h_load_update = now;
6648 }
6649
6650 while ((se = cfs_rq->h_load_next) != NULL) {
6651 load = cfs_rq->h_load;
7ea241af
YD
6652 load = div64_ul(load * se->avg.load_avg,
6653 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6654 cfs_rq = group_cfs_rq(se);
6655 cfs_rq->h_load = load;
6656 cfs_rq->last_h_load_update = now;
6657 }
9763b67f
PZ
6658}
6659
367456c7 6660static unsigned long task_h_load(struct task_struct *p)
230059de 6661{
367456c7 6662 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6663
68520796 6664 update_cfs_rq_h_load(cfs_rq);
9d89c257 6665 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6666 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6667}
6668#else
48a16753 6669static inline void update_blocked_averages(int cpu)
9e3081ca 6670{
6c1d47c0
VG
6671 struct rq *rq = cpu_rq(cpu);
6672 struct cfs_rq *cfs_rq = &rq->cfs;
6673 unsigned long flags;
6674
6675 raw_spin_lock_irqsave(&rq->lock, flags);
6676 update_rq_clock(rq);
a2c6c91f 6677 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6678 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6679}
6680
367456c7 6681static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6682{
9d89c257 6683 return p->se.avg.load_avg;
1e3c88bd 6684}
230059de 6685#endif
1e3c88bd 6686
1e3c88bd 6687/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6688
6689enum group_type {
6690 group_other = 0,
6691 group_imbalanced,
6692 group_overloaded,
6693};
6694
1e3c88bd
PZ
6695/*
6696 * sg_lb_stats - stats of a sched_group required for load_balancing
6697 */
6698struct sg_lb_stats {
6699 unsigned long avg_load; /*Avg load across the CPUs of the group */
6700 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6701 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6702 unsigned long load_per_task;
63b2ca30 6703 unsigned long group_capacity;
9e91d61d 6704 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6705 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6706 unsigned int idle_cpus;
6707 unsigned int group_weight;
caeb178c 6708 enum group_type group_type;
ea67821b 6709 int group_no_capacity;
0ec8aa00
PZ
6710#ifdef CONFIG_NUMA_BALANCING
6711 unsigned int nr_numa_running;
6712 unsigned int nr_preferred_running;
6713#endif
1e3c88bd
PZ
6714};
6715
56cf515b
JK
6716/*
6717 * sd_lb_stats - Structure to store the statistics of a sched_domain
6718 * during load balancing.
6719 */
6720struct sd_lb_stats {
6721 struct sched_group *busiest; /* Busiest group in this sd */
6722 struct sched_group *local; /* Local group in this sd */
6723 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6724 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6725 unsigned long avg_load; /* Average load across all groups in sd */
6726
56cf515b 6727 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6728 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6729};
6730
147c5fc2
PZ
6731static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6732{
6733 /*
6734 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6735 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6736 * We must however clear busiest_stat::avg_load because
6737 * update_sd_pick_busiest() reads this before assignment.
6738 */
6739 *sds = (struct sd_lb_stats){
6740 .busiest = NULL,
6741 .local = NULL,
6742 .total_load = 0UL,
63b2ca30 6743 .total_capacity = 0UL,
147c5fc2
PZ
6744 .busiest_stat = {
6745 .avg_load = 0UL,
caeb178c
RR
6746 .sum_nr_running = 0,
6747 .group_type = group_other,
147c5fc2
PZ
6748 },
6749 };
6750}
6751
1e3c88bd
PZ
6752/**
6753 * get_sd_load_idx - Obtain the load index for a given sched domain.
6754 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6755 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6756 *
6757 * Return: The load index.
1e3c88bd
PZ
6758 */
6759static inline int get_sd_load_idx(struct sched_domain *sd,
6760 enum cpu_idle_type idle)
6761{
6762 int load_idx;
6763
6764 switch (idle) {
6765 case CPU_NOT_IDLE:
6766 load_idx = sd->busy_idx;
6767 break;
6768
6769 case CPU_NEWLY_IDLE:
6770 load_idx = sd->newidle_idx;
6771 break;
6772 default:
6773 load_idx = sd->idle_idx;
6774 break;
6775 }
6776
6777 return load_idx;
6778}
6779
ced549fa 6780static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6781{
6782 struct rq *rq = cpu_rq(cpu);
b5b4860d 6783 u64 total, used, age_stamp, avg;
cadefd3d 6784 s64 delta;
1e3c88bd 6785
b654f7de
PZ
6786 /*
6787 * Since we're reading these variables without serialization make sure
6788 * we read them once before doing sanity checks on them.
6789 */
316c1608
JL
6790 age_stamp = READ_ONCE(rq->age_stamp);
6791 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6792 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6793
cadefd3d
PZ
6794 if (unlikely(delta < 0))
6795 delta = 0;
6796
6797 total = sched_avg_period() + delta;
aa483808 6798
b5b4860d 6799 used = div_u64(avg, total);
1e3c88bd 6800
b5b4860d
VG
6801 if (likely(used < SCHED_CAPACITY_SCALE))
6802 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6803
b5b4860d 6804 return 1;
1e3c88bd
PZ
6805}
6806
ced549fa 6807static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6808{
8cd5601c 6809 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6810 struct sched_group *sdg = sd->groups;
6811
ca6d75e6 6812 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6813
ced549fa 6814 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6815 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6816
ced549fa
NP
6817 if (!capacity)
6818 capacity = 1;
1e3c88bd 6819
ced549fa
NP
6820 cpu_rq(cpu)->cpu_capacity = capacity;
6821 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6822}
6823
63b2ca30 6824void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6825{
6826 struct sched_domain *child = sd->child;
6827 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6828 unsigned long capacity;
4ec4412e
VG
6829 unsigned long interval;
6830
6831 interval = msecs_to_jiffies(sd->balance_interval);
6832 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6833 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6834
6835 if (!child) {
ced549fa 6836 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6837 return;
6838 }
6839
dc7ff76e 6840 capacity = 0;
1e3c88bd 6841
74a5ce20
PZ
6842 if (child->flags & SD_OVERLAP) {
6843 /*
6844 * SD_OVERLAP domains cannot assume that child groups
6845 * span the current group.
6846 */
6847
863bffc8 6848 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6849 struct sched_group_capacity *sgc;
9abf24d4 6850 struct rq *rq = cpu_rq(cpu);
863bffc8 6851
9abf24d4 6852 /*
63b2ca30 6853 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6854 * gets here before we've attached the domains to the
6855 * runqueues.
6856 *
ced549fa
NP
6857 * Use capacity_of(), which is set irrespective of domains
6858 * in update_cpu_capacity().
9abf24d4 6859 *
dc7ff76e 6860 * This avoids capacity from being 0 and
9abf24d4 6861 * causing divide-by-zero issues on boot.
9abf24d4
SD
6862 */
6863 if (unlikely(!rq->sd)) {
ced549fa 6864 capacity += capacity_of(cpu);
9abf24d4
SD
6865 continue;
6866 }
863bffc8 6867
63b2ca30 6868 sgc = rq->sd->groups->sgc;
63b2ca30 6869 capacity += sgc->capacity;
863bffc8 6870 }
74a5ce20
PZ
6871 } else {
6872 /*
6873 * !SD_OVERLAP domains can assume that child groups
6874 * span the current group.
97a7142f 6875 */
74a5ce20
PZ
6876
6877 group = child->groups;
6878 do {
63b2ca30 6879 capacity += group->sgc->capacity;
74a5ce20
PZ
6880 group = group->next;
6881 } while (group != child->groups);
6882 }
1e3c88bd 6883
63b2ca30 6884 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6885}
6886
9d5efe05 6887/*
ea67821b
VG
6888 * Check whether the capacity of the rq has been noticeably reduced by side
6889 * activity. The imbalance_pct is used for the threshold.
6890 * Return true is the capacity is reduced
9d5efe05
SV
6891 */
6892static inline int
ea67821b 6893check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6894{
ea67821b
VG
6895 return ((rq->cpu_capacity * sd->imbalance_pct) <
6896 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6897}
6898
30ce5dab
PZ
6899/*
6900 * Group imbalance indicates (and tries to solve) the problem where balancing
6901 * groups is inadequate due to tsk_cpus_allowed() constraints.
6902 *
6903 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6904 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6905 * Something like:
6906 *
6907 * { 0 1 2 3 } { 4 5 6 7 }
6908 * * * * *
6909 *
6910 * If we were to balance group-wise we'd place two tasks in the first group and
6911 * two tasks in the second group. Clearly this is undesired as it will overload
6912 * cpu 3 and leave one of the cpus in the second group unused.
6913 *
6914 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6915 * by noticing the lower domain failed to reach balance and had difficulty
6916 * moving tasks due to affinity constraints.
30ce5dab
PZ
6917 *
6918 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6919 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6920 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6921 * to create an effective group imbalance.
6922 *
6923 * This is a somewhat tricky proposition since the next run might not find the
6924 * group imbalance and decide the groups need to be balanced again. A most
6925 * subtle and fragile situation.
6926 */
6927
6263322c 6928static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6929{
63b2ca30 6930 return group->sgc->imbalance;
30ce5dab
PZ
6931}
6932
b37d9316 6933/*
ea67821b
VG
6934 * group_has_capacity returns true if the group has spare capacity that could
6935 * be used by some tasks.
6936 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6937 * smaller than the number of CPUs or if the utilization is lower than the
6938 * available capacity for CFS tasks.
ea67821b
VG
6939 * For the latter, we use a threshold to stabilize the state, to take into
6940 * account the variance of the tasks' load and to return true if the available
6941 * capacity in meaningful for the load balancer.
6942 * As an example, an available capacity of 1% can appear but it doesn't make
6943 * any benefit for the load balance.
b37d9316 6944 */
ea67821b
VG
6945static inline bool
6946group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6947{
ea67821b
VG
6948 if (sgs->sum_nr_running < sgs->group_weight)
6949 return true;
c61037e9 6950
ea67821b 6951 if ((sgs->group_capacity * 100) >
9e91d61d 6952 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6953 return true;
b37d9316 6954
ea67821b
VG
6955 return false;
6956}
6957
6958/*
6959 * group_is_overloaded returns true if the group has more tasks than it can
6960 * handle.
6961 * group_is_overloaded is not equals to !group_has_capacity because a group
6962 * with the exact right number of tasks, has no more spare capacity but is not
6963 * overloaded so both group_has_capacity and group_is_overloaded return
6964 * false.
6965 */
6966static inline bool
6967group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6968{
6969 if (sgs->sum_nr_running <= sgs->group_weight)
6970 return false;
b37d9316 6971
ea67821b 6972 if ((sgs->group_capacity * 100) <
9e91d61d 6973 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6974 return true;
b37d9316 6975
ea67821b 6976 return false;
b37d9316
PZ
6977}
6978
79a89f92
LY
6979static inline enum
6980group_type group_classify(struct sched_group *group,
6981 struct sg_lb_stats *sgs)
caeb178c 6982{
ea67821b 6983 if (sgs->group_no_capacity)
caeb178c
RR
6984 return group_overloaded;
6985
6986 if (sg_imbalanced(group))
6987 return group_imbalanced;
6988
6989 return group_other;
6990}
6991
1e3c88bd
PZ
6992/**
6993 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6994 * @env: The load balancing environment.
1e3c88bd 6995 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6996 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6997 * @local_group: Does group contain this_cpu.
1e3c88bd 6998 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6999 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7000 */
bd939f45
PZ
7001static inline void update_sg_lb_stats(struct lb_env *env,
7002 struct sched_group *group, int load_idx,
4486edd1
TC
7003 int local_group, struct sg_lb_stats *sgs,
7004 bool *overload)
1e3c88bd 7005{
30ce5dab 7006 unsigned long load;
a426f99c 7007 int i, nr_running;
1e3c88bd 7008
b72ff13c
PZ
7009 memset(sgs, 0, sizeof(*sgs));
7010
b9403130 7011 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7012 struct rq *rq = cpu_rq(i);
7013
1e3c88bd 7014 /* Bias balancing toward cpus of our domain */
6263322c 7015 if (local_group)
04f733b4 7016 load = target_load(i, load_idx);
6263322c 7017 else
1e3c88bd 7018 load = source_load(i, load_idx);
1e3c88bd
PZ
7019
7020 sgs->group_load += load;
9e91d61d 7021 sgs->group_util += cpu_util(i);
65fdac08 7022 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7023
a426f99c
WL
7024 nr_running = rq->nr_running;
7025 if (nr_running > 1)
4486edd1
TC
7026 *overload = true;
7027
0ec8aa00
PZ
7028#ifdef CONFIG_NUMA_BALANCING
7029 sgs->nr_numa_running += rq->nr_numa_running;
7030 sgs->nr_preferred_running += rq->nr_preferred_running;
7031#endif
1e3c88bd 7032 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7033 /*
7034 * No need to call idle_cpu() if nr_running is not 0
7035 */
7036 if (!nr_running && idle_cpu(i))
aae6d3dd 7037 sgs->idle_cpus++;
1e3c88bd
PZ
7038 }
7039
63b2ca30
NP
7040 /* Adjust by relative CPU capacity of the group */
7041 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7042 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7043
dd5feea1 7044 if (sgs->sum_nr_running)
38d0f770 7045 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7046
aae6d3dd 7047 sgs->group_weight = group->group_weight;
b37d9316 7048
ea67821b 7049 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7050 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7051}
7052
532cb4c4
MN
7053/**
7054 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7055 * @env: The load balancing environment.
532cb4c4
MN
7056 * @sds: sched_domain statistics
7057 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7058 * @sgs: sched_group statistics
532cb4c4
MN
7059 *
7060 * Determine if @sg is a busier group than the previously selected
7061 * busiest group.
e69f6186
YB
7062 *
7063 * Return: %true if @sg is a busier group than the previously selected
7064 * busiest group. %false otherwise.
532cb4c4 7065 */
bd939f45 7066static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7067 struct sd_lb_stats *sds,
7068 struct sched_group *sg,
bd939f45 7069 struct sg_lb_stats *sgs)
532cb4c4 7070{
caeb178c 7071 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7072
caeb178c 7073 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7074 return true;
7075
caeb178c
RR
7076 if (sgs->group_type < busiest->group_type)
7077 return false;
7078
7079 if (sgs->avg_load <= busiest->avg_load)
7080 return false;
7081
7082 /* This is the busiest node in its class. */
7083 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7084 return true;
7085
1f621e02
SD
7086 /* No ASYM_PACKING if target cpu is already busy */
7087 if (env->idle == CPU_NOT_IDLE)
7088 return true;
532cb4c4
MN
7089 /*
7090 * ASYM_PACKING needs to move all the work to the lowest
7091 * numbered CPUs in the group, therefore mark all groups
7092 * higher than ourself as busy.
7093 */
caeb178c 7094 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
7095 if (!sds->busiest)
7096 return true;
7097
1f621e02
SD
7098 /* Prefer to move from highest possible cpu's work */
7099 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
7100 return true;
7101 }
7102
7103 return false;
7104}
7105
0ec8aa00
PZ
7106#ifdef CONFIG_NUMA_BALANCING
7107static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7108{
7109 if (sgs->sum_nr_running > sgs->nr_numa_running)
7110 return regular;
7111 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7112 return remote;
7113 return all;
7114}
7115
7116static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7117{
7118 if (rq->nr_running > rq->nr_numa_running)
7119 return regular;
7120 if (rq->nr_running > rq->nr_preferred_running)
7121 return remote;
7122 return all;
7123}
7124#else
7125static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7126{
7127 return all;
7128}
7129
7130static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7131{
7132 return regular;
7133}
7134#endif /* CONFIG_NUMA_BALANCING */
7135
1e3c88bd 7136/**
461819ac 7137 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7138 * @env: The load balancing environment.
1e3c88bd
PZ
7139 * @sds: variable to hold the statistics for this sched_domain.
7140 */
0ec8aa00 7141static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7142{
bd939f45
PZ
7143 struct sched_domain *child = env->sd->child;
7144 struct sched_group *sg = env->sd->groups;
56cf515b 7145 struct sg_lb_stats tmp_sgs;
1e3c88bd 7146 int load_idx, prefer_sibling = 0;
4486edd1 7147 bool overload = false;
1e3c88bd
PZ
7148
7149 if (child && child->flags & SD_PREFER_SIBLING)
7150 prefer_sibling = 1;
7151
bd939f45 7152 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7153
7154 do {
56cf515b 7155 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7156 int local_group;
7157
bd939f45 7158 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7159 if (local_group) {
7160 sds->local = sg;
7161 sgs = &sds->local_stat;
b72ff13c
PZ
7162
7163 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7164 time_after_eq(jiffies, sg->sgc->next_update))
7165 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7166 }
1e3c88bd 7167
4486edd1
TC
7168 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7169 &overload);
1e3c88bd 7170
b72ff13c
PZ
7171 if (local_group)
7172 goto next_group;
7173
1e3c88bd
PZ
7174 /*
7175 * In case the child domain prefers tasks go to siblings
ea67821b 7176 * first, lower the sg capacity so that we'll try
75dd321d
NR
7177 * and move all the excess tasks away. We lower the capacity
7178 * of a group only if the local group has the capacity to fit
ea67821b
VG
7179 * these excess tasks. The extra check prevents the case where
7180 * you always pull from the heaviest group when it is already
7181 * under-utilized (possible with a large weight task outweighs
7182 * the tasks on the system).
1e3c88bd 7183 */
b72ff13c 7184 if (prefer_sibling && sds->local &&
ea67821b
VG
7185 group_has_capacity(env, &sds->local_stat) &&
7186 (sgs->sum_nr_running > 1)) {
7187 sgs->group_no_capacity = 1;
79a89f92 7188 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7189 }
1e3c88bd 7190
b72ff13c 7191 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7192 sds->busiest = sg;
56cf515b 7193 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7194 }
7195
b72ff13c
PZ
7196next_group:
7197 /* Now, start updating sd_lb_stats */
7198 sds->total_load += sgs->group_load;
63b2ca30 7199 sds->total_capacity += sgs->group_capacity;
b72ff13c 7200
532cb4c4 7201 sg = sg->next;
bd939f45 7202 } while (sg != env->sd->groups);
0ec8aa00
PZ
7203
7204 if (env->sd->flags & SD_NUMA)
7205 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7206
7207 if (!env->sd->parent) {
7208 /* update overload indicator if we are at root domain */
7209 if (env->dst_rq->rd->overload != overload)
7210 env->dst_rq->rd->overload = overload;
7211 }
7212
532cb4c4
MN
7213}
7214
532cb4c4
MN
7215/**
7216 * check_asym_packing - Check to see if the group is packed into the
7217 * sched doman.
7218 *
7219 * This is primarily intended to used at the sibling level. Some
7220 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7221 * case of POWER7, it can move to lower SMT modes only when higher
7222 * threads are idle. When in lower SMT modes, the threads will
7223 * perform better since they share less core resources. Hence when we
7224 * have idle threads, we want them to be the higher ones.
7225 *
7226 * This packing function is run on idle threads. It checks to see if
7227 * the busiest CPU in this domain (core in the P7 case) has a higher
7228 * CPU number than the packing function is being run on. Here we are
7229 * assuming lower CPU number will be equivalent to lower a SMT thread
7230 * number.
7231 *
e69f6186 7232 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7233 * this CPU. The amount of the imbalance is returned in *imbalance.
7234 *
cd96891d 7235 * @env: The load balancing environment.
532cb4c4 7236 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7237 */
bd939f45 7238static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7239{
7240 int busiest_cpu;
7241
bd939f45 7242 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7243 return 0;
7244
1f621e02
SD
7245 if (env->idle == CPU_NOT_IDLE)
7246 return 0;
7247
532cb4c4
MN
7248 if (!sds->busiest)
7249 return 0;
7250
7251 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7252 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7253 return 0;
7254
bd939f45 7255 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7256 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7257 SCHED_CAPACITY_SCALE);
bd939f45 7258
532cb4c4 7259 return 1;
1e3c88bd
PZ
7260}
7261
7262/**
7263 * fix_small_imbalance - Calculate the minor imbalance that exists
7264 * amongst the groups of a sched_domain, during
7265 * load balancing.
cd96891d 7266 * @env: The load balancing environment.
1e3c88bd 7267 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7268 */
bd939f45
PZ
7269static inline
7270void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7271{
63b2ca30 7272 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7273 unsigned int imbn = 2;
dd5feea1 7274 unsigned long scaled_busy_load_per_task;
56cf515b 7275 struct sg_lb_stats *local, *busiest;
1e3c88bd 7276
56cf515b
JK
7277 local = &sds->local_stat;
7278 busiest = &sds->busiest_stat;
1e3c88bd 7279
56cf515b
JK
7280 if (!local->sum_nr_running)
7281 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7282 else if (busiest->load_per_task > local->load_per_task)
7283 imbn = 1;
dd5feea1 7284
56cf515b 7285 scaled_busy_load_per_task =
ca8ce3d0 7286 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7287 busiest->group_capacity;
56cf515b 7288
3029ede3
VD
7289 if (busiest->avg_load + scaled_busy_load_per_task >=
7290 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7291 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7292 return;
7293 }
7294
7295 /*
7296 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7297 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7298 * moving them.
7299 */
7300
63b2ca30 7301 capa_now += busiest->group_capacity *
56cf515b 7302 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7303 capa_now += local->group_capacity *
56cf515b 7304 min(local->load_per_task, local->avg_load);
ca8ce3d0 7305 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7306
7307 /* Amount of load we'd subtract */
a2cd4260 7308 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7309 capa_move += busiest->group_capacity *
56cf515b 7310 min(busiest->load_per_task,
a2cd4260 7311 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7312 }
1e3c88bd
PZ
7313
7314 /* Amount of load we'd add */
63b2ca30 7315 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7316 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7317 tmp = (busiest->avg_load * busiest->group_capacity) /
7318 local->group_capacity;
56cf515b 7319 } else {
ca8ce3d0 7320 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7321 local->group_capacity;
56cf515b 7322 }
63b2ca30 7323 capa_move += local->group_capacity *
3ae11c90 7324 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7325 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7326
7327 /* Move if we gain throughput */
63b2ca30 7328 if (capa_move > capa_now)
56cf515b 7329 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7330}
7331
7332/**
7333 * calculate_imbalance - Calculate the amount of imbalance present within the
7334 * groups of a given sched_domain during load balance.
bd939f45 7335 * @env: load balance environment
1e3c88bd 7336 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7337 */
bd939f45 7338static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7339{
dd5feea1 7340 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7341 struct sg_lb_stats *local, *busiest;
7342
7343 local = &sds->local_stat;
56cf515b 7344 busiest = &sds->busiest_stat;
dd5feea1 7345
caeb178c 7346 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7347 /*
7348 * In the group_imb case we cannot rely on group-wide averages
7349 * to ensure cpu-load equilibrium, look at wider averages. XXX
7350 */
56cf515b
JK
7351 busiest->load_per_task =
7352 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7353 }
7354
1e3c88bd 7355 /*
885e542c
DE
7356 * Avg load of busiest sg can be less and avg load of local sg can
7357 * be greater than avg load across all sgs of sd because avg load
7358 * factors in sg capacity and sgs with smaller group_type are
7359 * skipped when updating the busiest sg:
1e3c88bd 7360 */
b1885550
VD
7361 if (busiest->avg_load <= sds->avg_load ||
7362 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7363 env->imbalance = 0;
7364 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7365 }
7366
9a5d9ba6
PZ
7367 /*
7368 * If there aren't any idle cpus, avoid creating some.
7369 */
7370 if (busiest->group_type == group_overloaded &&
7371 local->group_type == group_overloaded) {
1be0eb2a 7372 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7373 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7374 load_above_capacity -= busiest->group_capacity;
26656215 7375 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7376 load_above_capacity /= busiest->group_capacity;
7377 } else
ea67821b 7378 load_above_capacity = ~0UL;
dd5feea1
SS
7379 }
7380
7381 /*
7382 * We're trying to get all the cpus to the average_load, so we don't
7383 * want to push ourselves above the average load, nor do we wish to
7384 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7385 * we also don't want to reduce the group load below the group
7386 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7387 */
30ce5dab 7388 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7389
7390 /* How much load to actually move to equalise the imbalance */
56cf515b 7391 env->imbalance = min(
63b2ca30
NP
7392 max_pull * busiest->group_capacity,
7393 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7394 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7395
7396 /*
7397 * if *imbalance is less than the average load per runnable task
25985edc 7398 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7399 * a think about bumping its value to force at least one task to be
7400 * moved
7401 */
56cf515b 7402 if (env->imbalance < busiest->load_per_task)
bd939f45 7403 return fix_small_imbalance(env, sds);
1e3c88bd 7404}
fab47622 7405
1e3c88bd
PZ
7406/******* find_busiest_group() helpers end here *********************/
7407
7408/**
7409 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7410 * if there is an imbalance.
1e3c88bd
PZ
7411 *
7412 * Also calculates the amount of weighted load which should be moved
7413 * to restore balance.
7414 *
cd96891d 7415 * @env: The load balancing environment.
1e3c88bd 7416 *
e69f6186 7417 * Return: - The busiest group if imbalance exists.
1e3c88bd 7418 */
56cf515b 7419static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7420{
56cf515b 7421 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7422 struct sd_lb_stats sds;
7423
147c5fc2 7424 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7425
7426 /*
7427 * Compute the various statistics relavent for load balancing at
7428 * this level.
7429 */
23f0d209 7430 update_sd_lb_stats(env, &sds);
56cf515b
JK
7431 local = &sds.local_stat;
7432 busiest = &sds.busiest_stat;
1e3c88bd 7433
ea67821b 7434 /* ASYM feature bypasses nice load balance check */
1f621e02 7435 if (check_asym_packing(env, &sds))
532cb4c4
MN
7436 return sds.busiest;
7437
cc57aa8f 7438 /* There is no busy sibling group to pull tasks from */
56cf515b 7439 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7440 goto out_balanced;
7441
ca8ce3d0
NP
7442 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7443 / sds.total_capacity;
b0432d8f 7444
866ab43e
PZ
7445 /*
7446 * If the busiest group is imbalanced the below checks don't
30ce5dab 7447 * work because they assume all things are equal, which typically
866ab43e
PZ
7448 * isn't true due to cpus_allowed constraints and the like.
7449 */
caeb178c 7450 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7451 goto force_balance;
7452
cc57aa8f 7453 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7454 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7455 busiest->group_no_capacity)
fab47622
NR
7456 goto force_balance;
7457
cc57aa8f 7458 /*
9c58c79a 7459 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7460 * don't try and pull any tasks.
7461 */
56cf515b 7462 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7463 goto out_balanced;
7464
cc57aa8f
PZ
7465 /*
7466 * Don't pull any tasks if this group is already above the domain
7467 * average load.
7468 */
56cf515b 7469 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7470 goto out_balanced;
7471
bd939f45 7472 if (env->idle == CPU_IDLE) {
aae6d3dd 7473 /*
43f4d666
VG
7474 * This cpu is idle. If the busiest group is not overloaded
7475 * and there is no imbalance between this and busiest group
7476 * wrt idle cpus, it is balanced. The imbalance becomes
7477 * significant if the diff is greater than 1 otherwise we
7478 * might end up to just move the imbalance on another group
aae6d3dd 7479 */
43f4d666
VG
7480 if ((busiest->group_type != group_overloaded) &&
7481 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7482 goto out_balanced;
c186fafe
PZ
7483 } else {
7484 /*
7485 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7486 * imbalance_pct to be conservative.
7487 */
56cf515b
JK
7488 if (100 * busiest->avg_load <=
7489 env->sd->imbalance_pct * local->avg_load)
c186fafe 7490 goto out_balanced;
aae6d3dd 7491 }
1e3c88bd 7492
fab47622 7493force_balance:
1e3c88bd 7494 /* Looks like there is an imbalance. Compute it */
bd939f45 7495 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7496 return sds.busiest;
7497
7498out_balanced:
bd939f45 7499 env->imbalance = 0;
1e3c88bd
PZ
7500 return NULL;
7501}
7502
7503/*
7504 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7505 */
bd939f45 7506static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7507 struct sched_group *group)
1e3c88bd
PZ
7508{
7509 struct rq *busiest = NULL, *rq;
ced549fa 7510 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7511 int i;
7512
6906a408 7513 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7514 unsigned long capacity, wl;
0ec8aa00
PZ
7515 enum fbq_type rt;
7516
7517 rq = cpu_rq(i);
7518 rt = fbq_classify_rq(rq);
1e3c88bd 7519
0ec8aa00
PZ
7520 /*
7521 * We classify groups/runqueues into three groups:
7522 * - regular: there are !numa tasks
7523 * - remote: there are numa tasks that run on the 'wrong' node
7524 * - all: there is no distinction
7525 *
7526 * In order to avoid migrating ideally placed numa tasks,
7527 * ignore those when there's better options.
7528 *
7529 * If we ignore the actual busiest queue to migrate another
7530 * task, the next balance pass can still reduce the busiest
7531 * queue by moving tasks around inside the node.
7532 *
7533 * If we cannot move enough load due to this classification
7534 * the next pass will adjust the group classification and
7535 * allow migration of more tasks.
7536 *
7537 * Both cases only affect the total convergence complexity.
7538 */
7539 if (rt > env->fbq_type)
7540 continue;
7541
ced549fa 7542 capacity = capacity_of(i);
9d5efe05 7543
6e40f5bb 7544 wl = weighted_cpuload(i);
1e3c88bd 7545
6e40f5bb
TG
7546 /*
7547 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7548 * which is not scaled with the cpu capacity.
6e40f5bb 7549 */
ea67821b
VG
7550
7551 if (rq->nr_running == 1 && wl > env->imbalance &&
7552 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7553 continue;
7554
6e40f5bb
TG
7555 /*
7556 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7557 * the weighted_cpuload() scaled with the cpu capacity, so
7558 * that the load can be moved away from the cpu that is
7559 * potentially running at a lower capacity.
95a79b80 7560 *
ced549fa 7561 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7562 * multiplication to rid ourselves of the division works out
ced549fa
NP
7563 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7564 * our previous maximum.
6e40f5bb 7565 */
ced549fa 7566 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7567 busiest_load = wl;
ced549fa 7568 busiest_capacity = capacity;
1e3c88bd
PZ
7569 busiest = rq;
7570 }
7571 }
7572
7573 return busiest;
7574}
7575
7576/*
7577 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7578 * so long as it is large enough.
7579 */
7580#define MAX_PINNED_INTERVAL 512
7581
bd939f45 7582static int need_active_balance(struct lb_env *env)
1af3ed3d 7583{
bd939f45
PZ
7584 struct sched_domain *sd = env->sd;
7585
7586 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7587
7588 /*
7589 * ASYM_PACKING needs to force migrate tasks from busy but
7590 * higher numbered CPUs in order to pack all tasks in the
7591 * lowest numbered CPUs.
7592 */
bd939f45 7593 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7594 return 1;
1af3ed3d
PZ
7595 }
7596
1aaf90a4
VG
7597 /*
7598 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7599 * It's worth migrating the task if the src_cpu's capacity is reduced
7600 * because of other sched_class or IRQs if more capacity stays
7601 * available on dst_cpu.
7602 */
7603 if ((env->idle != CPU_NOT_IDLE) &&
7604 (env->src_rq->cfs.h_nr_running == 1)) {
7605 if ((check_cpu_capacity(env->src_rq, sd)) &&
7606 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7607 return 1;
7608 }
7609
1af3ed3d
PZ
7610 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7611}
7612
969c7921
TH
7613static int active_load_balance_cpu_stop(void *data);
7614
23f0d209
JK
7615static int should_we_balance(struct lb_env *env)
7616{
7617 struct sched_group *sg = env->sd->groups;
7618 struct cpumask *sg_cpus, *sg_mask;
7619 int cpu, balance_cpu = -1;
7620
7621 /*
7622 * In the newly idle case, we will allow all the cpu's
7623 * to do the newly idle load balance.
7624 */
7625 if (env->idle == CPU_NEWLY_IDLE)
7626 return 1;
7627
7628 sg_cpus = sched_group_cpus(sg);
7629 sg_mask = sched_group_mask(sg);
7630 /* Try to find first idle cpu */
7631 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7632 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7633 continue;
7634
7635 balance_cpu = cpu;
7636 break;
7637 }
7638
7639 if (balance_cpu == -1)
7640 balance_cpu = group_balance_cpu(sg);
7641
7642 /*
7643 * First idle cpu or the first cpu(busiest) in this sched group
7644 * is eligible for doing load balancing at this and above domains.
7645 */
b0cff9d8 7646 return balance_cpu == env->dst_cpu;
23f0d209
JK
7647}
7648
1e3c88bd
PZ
7649/*
7650 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7651 * tasks if there is an imbalance.
7652 */
7653static int load_balance(int this_cpu, struct rq *this_rq,
7654 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7655 int *continue_balancing)
1e3c88bd 7656{
88b8dac0 7657 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7658 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7659 struct sched_group *group;
1e3c88bd
PZ
7660 struct rq *busiest;
7661 unsigned long flags;
4ba29684 7662 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7663
8e45cb54
PZ
7664 struct lb_env env = {
7665 .sd = sd,
ddcdf6e7
PZ
7666 .dst_cpu = this_cpu,
7667 .dst_rq = this_rq,
88b8dac0 7668 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7669 .idle = idle,
eb95308e 7670 .loop_break = sched_nr_migrate_break,
b9403130 7671 .cpus = cpus,
0ec8aa00 7672 .fbq_type = all,
163122b7 7673 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7674 };
7675
cfc03118
JK
7676 /*
7677 * For NEWLY_IDLE load_balancing, we don't need to consider
7678 * other cpus in our group
7679 */
e02e60c1 7680 if (idle == CPU_NEWLY_IDLE)
cfc03118 7681 env.dst_grpmask = NULL;
cfc03118 7682
1e3c88bd
PZ
7683 cpumask_copy(cpus, cpu_active_mask);
7684
ae92882e 7685 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
7686
7687redo:
23f0d209
JK
7688 if (!should_we_balance(&env)) {
7689 *continue_balancing = 0;
1e3c88bd 7690 goto out_balanced;
23f0d209 7691 }
1e3c88bd 7692
23f0d209 7693 group = find_busiest_group(&env);
1e3c88bd 7694 if (!group) {
ae92882e 7695 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
7696 goto out_balanced;
7697 }
7698
b9403130 7699 busiest = find_busiest_queue(&env, group);
1e3c88bd 7700 if (!busiest) {
ae92882e 7701 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
7702 goto out_balanced;
7703 }
7704
78feefc5 7705 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7706
ae92882e 7707 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 7708
1aaf90a4
VG
7709 env.src_cpu = busiest->cpu;
7710 env.src_rq = busiest;
7711
1e3c88bd
PZ
7712 ld_moved = 0;
7713 if (busiest->nr_running > 1) {
7714 /*
7715 * Attempt to move tasks. If find_busiest_group has found
7716 * an imbalance but busiest->nr_running <= 1, the group is
7717 * still unbalanced. ld_moved simply stays zero, so it is
7718 * correctly treated as an imbalance.
7719 */
8e45cb54 7720 env.flags |= LBF_ALL_PINNED;
c82513e5 7721 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7722
5d6523eb 7723more_balance:
163122b7 7724 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7725
7726 /*
7727 * cur_ld_moved - load moved in current iteration
7728 * ld_moved - cumulative load moved across iterations
7729 */
163122b7 7730 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7731
7732 /*
163122b7
KT
7733 * We've detached some tasks from busiest_rq. Every
7734 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7735 * unlock busiest->lock, and we are able to be sure
7736 * that nobody can manipulate the tasks in parallel.
7737 * See task_rq_lock() family for the details.
1e3c88bd 7738 */
163122b7
KT
7739
7740 raw_spin_unlock(&busiest->lock);
7741
7742 if (cur_ld_moved) {
7743 attach_tasks(&env);
7744 ld_moved += cur_ld_moved;
7745 }
7746
1e3c88bd 7747 local_irq_restore(flags);
88b8dac0 7748
f1cd0858
JK
7749 if (env.flags & LBF_NEED_BREAK) {
7750 env.flags &= ~LBF_NEED_BREAK;
7751 goto more_balance;
7752 }
7753
88b8dac0
SV
7754 /*
7755 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7756 * us and move them to an alternate dst_cpu in our sched_group
7757 * where they can run. The upper limit on how many times we
7758 * iterate on same src_cpu is dependent on number of cpus in our
7759 * sched_group.
7760 *
7761 * This changes load balance semantics a bit on who can move
7762 * load to a given_cpu. In addition to the given_cpu itself
7763 * (or a ilb_cpu acting on its behalf where given_cpu is
7764 * nohz-idle), we now have balance_cpu in a position to move
7765 * load to given_cpu. In rare situations, this may cause
7766 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7767 * _independently_ and at _same_ time to move some load to
7768 * given_cpu) causing exceess load to be moved to given_cpu.
7769 * This however should not happen so much in practice and
7770 * moreover subsequent load balance cycles should correct the
7771 * excess load moved.
7772 */
6263322c 7773 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7774
7aff2e3a
VD
7775 /* Prevent to re-select dst_cpu via env's cpus */
7776 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7777
78feefc5 7778 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7779 env.dst_cpu = env.new_dst_cpu;
6263322c 7780 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7781 env.loop = 0;
7782 env.loop_break = sched_nr_migrate_break;
e02e60c1 7783
88b8dac0
SV
7784 /*
7785 * Go back to "more_balance" rather than "redo" since we
7786 * need to continue with same src_cpu.
7787 */
7788 goto more_balance;
7789 }
1e3c88bd 7790
6263322c
PZ
7791 /*
7792 * We failed to reach balance because of affinity.
7793 */
7794 if (sd_parent) {
63b2ca30 7795 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7796
afdeee05 7797 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7798 *group_imbalance = 1;
6263322c
PZ
7799 }
7800
1e3c88bd 7801 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7802 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7803 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7804 if (!cpumask_empty(cpus)) {
7805 env.loop = 0;
7806 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7807 goto redo;
bbf18b19 7808 }
afdeee05 7809 goto out_all_pinned;
1e3c88bd
PZ
7810 }
7811 }
7812
7813 if (!ld_moved) {
ae92882e 7814 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
7815 /*
7816 * Increment the failure counter only on periodic balance.
7817 * We do not want newidle balance, which can be very
7818 * frequent, pollute the failure counter causing
7819 * excessive cache_hot migrations and active balances.
7820 */
7821 if (idle != CPU_NEWLY_IDLE)
7822 sd->nr_balance_failed++;
1e3c88bd 7823
bd939f45 7824 if (need_active_balance(&env)) {
1e3c88bd
PZ
7825 raw_spin_lock_irqsave(&busiest->lock, flags);
7826
969c7921
TH
7827 /* don't kick the active_load_balance_cpu_stop,
7828 * if the curr task on busiest cpu can't be
7829 * moved to this_cpu
1e3c88bd
PZ
7830 */
7831 if (!cpumask_test_cpu(this_cpu,
fa17b507 7832 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7833 raw_spin_unlock_irqrestore(&busiest->lock,
7834 flags);
8e45cb54 7835 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7836 goto out_one_pinned;
7837 }
7838
969c7921
TH
7839 /*
7840 * ->active_balance synchronizes accesses to
7841 * ->active_balance_work. Once set, it's cleared
7842 * only after active load balance is finished.
7843 */
1e3c88bd
PZ
7844 if (!busiest->active_balance) {
7845 busiest->active_balance = 1;
7846 busiest->push_cpu = this_cpu;
7847 active_balance = 1;
7848 }
7849 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7850
bd939f45 7851 if (active_balance) {
969c7921
TH
7852 stop_one_cpu_nowait(cpu_of(busiest),
7853 active_load_balance_cpu_stop, busiest,
7854 &busiest->active_balance_work);
bd939f45 7855 }
1e3c88bd 7856
d02c0711 7857 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7858 sd->nr_balance_failed = sd->cache_nice_tries+1;
7859 }
7860 } else
7861 sd->nr_balance_failed = 0;
7862
7863 if (likely(!active_balance)) {
7864 /* We were unbalanced, so reset the balancing interval */
7865 sd->balance_interval = sd->min_interval;
7866 } else {
7867 /*
7868 * If we've begun active balancing, start to back off. This
7869 * case may not be covered by the all_pinned logic if there
7870 * is only 1 task on the busy runqueue (because we don't call
163122b7 7871 * detach_tasks).
1e3c88bd
PZ
7872 */
7873 if (sd->balance_interval < sd->max_interval)
7874 sd->balance_interval *= 2;
7875 }
7876
1e3c88bd
PZ
7877 goto out;
7878
7879out_balanced:
afdeee05
VG
7880 /*
7881 * We reach balance although we may have faced some affinity
7882 * constraints. Clear the imbalance flag if it was set.
7883 */
7884 if (sd_parent) {
7885 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7886
7887 if (*group_imbalance)
7888 *group_imbalance = 0;
7889 }
7890
7891out_all_pinned:
7892 /*
7893 * We reach balance because all tasks are pinned at this level so
7894 * we can't migrate them. Let the imbalance flag set so parent level
7895 * can try to migrate them.
7896 */
ae92882e 7897 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
7898
7899 sd->nr_balance_failed = 0;
7900
7901out_one_pinned:
7902 /* tune up the balancing interval */
8e45cb54 7903 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7904 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7905 (sd->balance_interval < sd->max_interval))
7906 sd->balance_interval *= 2;
7907
46e49b38 7908 ld_moved = 0;
1e3c88bd 7909out:
1e3c88bd
PZ
7910 return ld_moved;
7911}
7912
52a08ef1
JL
7913static inline unsigned long
7914get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7915{
7916 unsigned long interval = sd->balance_interval;
7917
7918 if (cpu_busy)
7919 interval *= sd->busy_factor;
7920
7921 /* scale ms to jiffies */
7922 interval = msecs_to_jiffies(interval);
7923 interval = clamp(interval, 1UL, max_load_balance_interval);
7924
7925 return interval;
7926}
7927
7928static inline void
31851a98 7929update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7930{
7931 unsigned long interval, next;
7932
31851a98
LY
7933 /* used by idle balance, so cpu_busy = 0 */
7934 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7935 next = sd->last_balance + interval;
7936
7937 if (time_after(*next_balance, next))
7938 *next_balance = next;
7939}
7940
1e3c88bd
PZ
7941/*
7942 * idle_balance is called by schedule() if this_cpu is about to become
7943 * idle. Attempts to pull tasks from other CPUs.
7944 */
6e83125c 7945static int idle_balance(struct rq *this_rq)
1e3c88bd 7946{
52a08ef1
JL
7947 unsigned long next_balance = jiffies + HZ;
7948 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7949 struct sched_domain *sd;
7950 int pulled_task = 0;
9bd721c5 7951 u64 curr_cost = 0;
1e3c88bd 7952
6e83125c
PZ
7953 /*
7954 * We must set idle_stamp _before_ calling idle_balance(), such that we
7955 * measure the duration of idle_balance() as idle time.
7956 */
7957 this_rq->idle_stamp = rq_clock(this_rq);
7958
4486edd1
TC
7959 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7960 !this_rq->rd->overload) {
52a08ef1
JL
7961 rcu_read_lock();
7962 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7963 if (sd)
31851a98 7964 update_next_balance(sd, &next_balance);
52a08ef1
JL
7965 rcu_read_unlock();
7966
6e83125c 7967 goto out;
52a08ef1 7968 }
1e3c88bd 7969
f492e12e
PZ
7970 raw_spin_unlock(&this_rq->lock);
7971
48a16753 7972 update_blocked_averages(this_cpu);
dce840a0 7973 rcu_read_lock();
1e3c88bd 7974 for_each_domain(this_cpu, sd) {
23f0d209 7975 int continue_balancing = 1;
9bd721c5 7976 u64 t0, domain_cost;
1e3c88bd
PZ
7977
7978 if (!(sd->flags & SD_LOAD_BALANCE))
7979 continue;
7980
52a08ef1 7981 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7982 update_next_balance(sd, &next_balance);
9bd721c5 7983 break;
52a08ef1 7984 }
9bd721c5 7985
f492e12e 7986 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7987 t0 = sched_clock_cpu(this_cpu);
7988
f492e12e 7989 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7990 sd, CPU_NEWLY_IDLE,
7991 &continue_balancing);
9bd721c5
JL
7992
7993 domain_cost = sched_clock_cpu(this_cpu) - t0;
7994 if (domain_cost > sd->max_newidle_lb_cost)
7995 sd->max_newidle_lb_cost = domain_cost;
7996
7997 curr_cost += domain_cost;
f492e12e 7998 }
1e3c88bd 7999
31851a98 8000 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8001
8002 /*
8003 * Stop searching for tasks to pull if there are
8004 * now runnable tasks on this rq.
8005 */
8006 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8007 break;
1e3c88bd 8008 }
dce840a0 8009 rcu_read_unlock();
f492e12e
PZ
8010
8011 raw_spin_lock(&this_rq->lock);
8012
0e5b5337
JL
8013 if (curr_cost > this_rq->max_idle_balance_cost)
8014 this_rq->max_idle_balance_cost = curr_cost;
8015
e5fc6611 8016 /*
0e5b5337
JL
8017 * While browsing the domains, we released the rq lock, a task could
8018 * have been enqueued in the meantime. Since we're not going idle,
8019 * pretend we pulled a task.
e5fc6611 8020 */
0e5b5337 8021 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8022 pulled_task = 1;
e5fc6611 8023
52a08ef1
JL
8024out:
8025 /* Move the next balance forward */
8026 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8027 this_rq->next_balance = next_balance;
9bd721c5 8028
e4aa358b 8029 /* Is there a task of a high priority class? */
46383648 8030 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8031 pulled_task = -1;
8032
38c6ade2 8033 if (pulled_task)
6e83125c
PZ
8034 this_rq->idle_stamp = 0;
8035
3c4017c1 8036 return pulled_task;
1e3c88bd
PZ
8037}
8038
8039/*
969c7921
TH
8040 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8041 * running tasks off the busiest CPU onto idle CPUs. It requires at
8042 * least 1 task to be running on each physical CPU where possible, and
8043 * avoids physical / logical imbalances.
1e3c88bd 8044 */
969c7921 8045static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8046{
969c7921
TH
8047 struct rq *busiest_rq = data;
8048 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8049 int target_cpu = busiest_rq->push_cpu;
969c7921 8050 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8051 struct sched_domain *sd;
e5673f28 8052 struct task_struct *p = NULL;
969c7921
TH
8053
8054 raw_spin_lock_irq(&busiest_rq->lock);
8055
8056 /* make sure the requested cpu hasn't gone down in the meantime */
8057 if (unlikely(busiest_cpu != smp_processor_id() ||
8058 !busiest_rq->active_balance))
8059 goto out_unlock;
1e3c88bd
PZ
8060
8061 /* Is there any task to move? */
8062 if (busiest_rq->nr_running <= 1)
969c7921 8063 goto out_unlock;
1e3c88bd
PZ
8064
8065 /*
8066 * This condition is "impossible", if it occurs
8067 * we need to fix it. Originally reported by
8068 * Bjorn Helgaas on a 128-cpu setup.
8069 */
8070 BUG_ON(busiest_rq == target_rq);
8071
1e3c88bd 8072 /* Search for an sd spanning us and the target CPU. */
dce840a0 8073 rcu_read_lock();
1e3c88bd
PZ
8074 for_each_domain(target_cpu, sd) {
8075 if ((sd->flags & SD_LOAD_BALANCE) &&
8076 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8077 break;
8078 }
8079
8080 if (likely(sd)) {
8e45cb54
PZ
8081 struct lb_env env = {
8082 .sd = sd,
ddcdf6e7
PZ
8083 .dst_cpu = target_cpu,
8084 .dst_rq = target_rq,
8085 .src_cpu = busiest_rq->cpu,
8086 .src_rq = busiest_rq,
8e45cb54
PZ
8087 .idle = CPU_IDLE,
8088 };
8089
ae92882e 8090 schedstat_inc(sd->alb_count);
1e3c88bd 8091
e5673f28 8092 p = detach_one_task(&env);
d02c0711 8093 if (p) {
ae92882e 8094 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8095 /* Active balancing done, reset the failure counter. */
8096 sd->nr_balance_failed = 0;
8097 } else {
ae92882e 8098 schedstat_inc(sd->alb_failed);
d02c0711 8099 }
1e3c88bd 8100 }
dce840a0 8101 rcu_read_unlock();
969c7921
TH
8102out_unlock:
8103 busiest_rq->active_balance = 0;
e5673f28
KT
8104 raw_spin_unlock(&busiest_rq->lock);
8105
8106 if (p)
8107 attach_one_task(target_rq, p);
8108
8109 local_irq_enable();
8110
969c7921 8111 return 0;
1e3c88bd
PZ
8112}
8113
d987fc7f
MG
8114static inline int on_null_domain(struct rq *rq)
8115{
8116 return unlikely(!rcu_dereference_sched(rq->sd));
8117}
8118
3451d024 8119#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8120/*
8121 * idle load balancing details
83cd4fe2
VP
8122 * - When one of the busy CPUs notice that there may be an idle rebalancing
8123 * needed, they will kick the idle load balancer, which then does idle
8124 * load balancing for all the idle CPUs.
8125 */
1e3c88bd 8126static struct {
83cd4fe2 8127 cpumask_var_t idle_cpus_mask;
0b005cf5 8128 atomic_t nr_cpus;
83cd4fe2
VP
8129 unsigned long next_balance; /* in jiffy units */
8130} nohz ____cacheline_aligned;
1e3c88bd 8131
3dd0337d 8132static inline int find_new_ilb(void)
1e3c88bd 8133{
0b005cf5 8134 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8135
786d6dc7
SS
8136 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8137 return ilb;
8138
8139 return nr_cpu_ids;
1e3c88bd 8140}
1e3c88bd 8141
83cd4fe2
VP
8142/*
8143 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8144 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8145 * CPU (if there is one).
8146 */
0aeeeeba 8147static void nohz_balancer_kick(void)
83cd4fe2
VP
8148{
8149 int ilb_cpu;
8150
8151 nohz.next_balance++;
8152
3dd0337d 8153 ilb_cpu = find_new_ilb();
83cd4fe2 8154
0b005cf5
SS
8155 if (ilb_cpu >= nr_cpu_ids)
8156 return;
83cd4fe2 8157
cd490c5b 8158 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8159 return;
8160 /*
8161 * Use smp_send_reschedule() instead of resched_cpu().
8162 * This way we generate a sched IPI on the target cpu which
8163 * is idle. And the softirq performing nohz idle load balance
8164 * will be run before returning from the IPI.
8165 */
8166 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8167 return;
8168}
8169
20a5c8cc 8170void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8171{
8172 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8173 /*
8174 * Completely isolated CPUs don't ever set, so we must test.
8175 */
8176 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8177 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8178 atomic_dec(&nohz.nr_cpus);
8179 }
71325960
SS
8180 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8181 }
8182}
8183
69e1e811
SS
8184static inline void set_cpu_sd_state_busy(void)
8185{
8186 struct sched_domain *sd;
37dc6b50 8187 int cpu = smp_processor_id();
69e1e811 8188
69e1e811 8189 rcu_read_lock();
0e369d75 8190 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8191
8192 if (!sd || !sd->nohz_idle)
8193 goto unlock;
8194 sd->nohz_idle = 0;
8195
0e369d75 8196 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8197unlock:
69e1e811
SS
8198 rcu_read_unlock();
8199}
8200
8201void set_cpu_sd_state_idle(void)
8202{
8203 struct sched_domain *sd;
37dc6b50 8204 int cpu = smp_processor_id();
69e1e811 8205
69e1e811 8206 rcu_read_lock();
0e369d75 8207 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8208
8209 if (!sd || sd->nohz_idle)
8210 goto unlock;
8211 sd->nohz_idle = 1;
8212
0e369d75 8213 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8214unlock:
69e1e811
SS
8215 rcu_read_unlock();
8216}
8217
1e3c88bd 8218/*
c1cc017c 8219 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8220 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8221 */
c1cc017c 8222void nohz_balance_enter_idle(int cpu)
1e3c88bd 8223{
71325960
SS
8224 /*
8225 * If this cpu is going down, then nothing needs to be done.
8226 */
8227 if (!cpu_active(cpu))
8228 return;
8229
c1cc017c
AS
8230 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8231 return;
1e3c88bd 8232
d987fc7f
MG
8233 /*
8234 * If we're a completely isolated CPU, we don't play.
8235 */
8236 if (on_null_domain(cpu_rq(cpu)))
8237 return;
8238
c1cc017c
AS
8239 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8240 atomic_inc(&nohz.nr_cpus);
8241 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8242}
8243#endif
8244
8245static DEFINE_SPINLOCK(balancing);
8246
49c022e6
PZ
8247/*
8248 * Scale the max load_balance interval with the number of CPUs in the system.
8249 * This trades load-balance latency on larger machines for less cross talk.
8250 */
029632fb 8251void update_max_interval(void)
49c022e6
PZ
8252{
8253 max_load_balance_interval = HZ*num_online_cpus()/10;
8254}
8255
1e3c88bd
PZ
8256/*
8257 * It checks each scheduling domain to see if it is due to be balanced,
8258 * and initiates a balancing operation if so.
8259 *
b9b0853a 8260 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8261 */
f7ed0a89 8262static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8263{
23f0d209 8264 int continue_balancing = 1;
f7ed0a89 8265 int cpu = rq->cpu;
1e3c88bd 8266 unsigned long interval;
04f733b4 8267 struct sched_domain *sd;
1e3c88bd
PZ
8268 /* Earliest time when we have to do rebalance again */
8269 unsigned long next_balance = jiffies + 60*HZ;
8270 int update_next_balance = 0;
f48627e6
JL
8271 int need_serialize, need_decay = 0;
8272 u64 max_cost = 0;
1e3c88bd 8273
48a16753 8274 update_blocked_averages(cpu);
2069dd75 8275
dce840a0 8276 rcu_read_lock();
1e3c88bd 8277 for_each_domain(cpu, sd) {
f48627e6
JL
8278 /*
8279 * Decay the newidle max times here because this is a regular
8280 * visit to all the domains. Decay ~1% per second.
8281 */
8282 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8283 sd->max_newidle_lb_cost =
8284 (sd->max_newidle_lb_cost * 253) / 256;
8285 sd->next_decay_max_lb_cost = jiffies + HZ;
8286 need_decay = 1;
8287 }
8288 max_cost += sd->max_newidle_lb_cost;
8289
1e3c88bd
PZ
8290 if (!(sd->flags & SD_LOAD_BALANCE))
8291 continue;
8292
f48627e6
JL
8293 /*
8294 * Stop the load balance at this level. There is another
8295 * CPU in our sched group which is doing load balancing more
8296 * actively.
8297 */
8298 if (!continue_balancing) {
8299 if (need_decay)
8300 continue;
8301 break;
8302 }
8303
52a08ef1 8304 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8305
8306 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8307 if (need_serialize) {
8308 if (!spin_trylock(&balancing))
8309 goto out;
8310 }
8311
8312 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8313 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8314 /*
6263322c 8315 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8316 * env->dst_cpu, so we can't know our idle
8317 * state even if we migrated tasks. Update it.
1e3c88bd 8318 */
de5eb2dd 8319 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8320 }
8321 sd->last_balance = jiffies;
52a08ef1 8322 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8323 }
8324 if (need_serialize)
8325 spin_unlock(&balancing);
8326out:
8327 if (time_after(next_balance, sd->last_balance + interval)) {
8328 next_balance = sd->last_balance + interval;
8329 update_next_balance = 1;
8330 }
f48627e6
JL
8331 }
8332 if (need_decay) {
1e3c88bd 8333 /*
f48627e6
JL
8334 * Ensure the rq-wide value also decays but keep it at a
8335 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8336 */
f48627e6
JL
8337 rq->max_idle_balance_cost =
8338 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8339 }
dce840a0 8340 rcu_read_unlock();
1e3c88bd
PZ
8341
8342 /*
8343 * next_balance will be updated only when there is a need.
8344 * When the cpu is attached to null domain for ex, it will not be
8345 * updated.
8346 */
c5afb6a8 8347 if (likely(update_next_balance)) {
1e3c88bd 8348 rq->next_balance = next_balance;
c5afb6a8
VG
8349
8350#ifdef CONFIG_NO_HZ_COMMON
8351 /*
8352 * If this CPU has been elected to perform the nohz idle
8353 * balance. Other idle CPUs have already rebalanced with
8354 * nohz_idle_balance() and nohz.next_balance has been
8355 * updated accordingly. This CPU is now running the idle load
8356 * balance for itself and we need to update the
8357 * nohz.next_balance accordingly.
8358 */
8359 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8360 nohz.next_balance = rq->next_balance;
8361#endif
8362 }
1e3c88bd
PZ
8363}
8364
3451d024 8365#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8366/*
3451d024 8367 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8368 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8369 */
208cb16b 8370static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8371{
208cb16b 8372 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8373 struct rq *rq;
8374 int balance_cpu;
c5afb6a8
VG
8375 /* Earliest time when we have to do rebalance again */
8376 unsigned long next_balance = jiffies + 60*HZ;
8377 int update_next_balance = 0;
83cd4fe2 8378
1c792db7
SS
8379 if (idle != CPU_IDLE ||
8380 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8381 goto end;
83cd4fe2
VP
8382
8383 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8384 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8385 continue;
8386
8387 /*
8388 * If this cpu gets work to do, stop the load balancing
8389 * work being done for other cpus. Next load
8390 * balancing owner will pick it up.
8391 */
1c792db7 8392 if (need_resched())
83cd4fe2 8393 break;
83cd4fe2 8394
5ed4f1d9
VG
8395 rq = cpu_rq(balance_cpu);
8396
ed61bbc6
TC
8397 /*
8398 * If time for next balance is due,
8399 * do the balance.
8400 */
8401 if (time_after_eq(jiffies, rq->next_balance)) {
8402 raw_spin_lock_irq(&rq->lock);
8403 update_rq_clock(rq);
cee1afce 8404 cpu_load_update_idle(rq);
ed61bbc6
TC
8405 raw_spin_unlock_irq(&rq->lock);
8406 rebalance_domains(rq, CPU_IDLE);
8407 }
83cd4fe2 8408
c5afb6a8
VG
8409 if (time_after(next_balance, rq->next_balance)) {
8410 next_balance = rq->next_balance;
8411 update_next_balance = 1;
8412 }
83cd4fe2 8413 }
c5afb6a8
VG
8414
8415 /*
8416 * next_balance will be updated only when there is a need.
8417 * When the CPU is attached to null domain for ex, it will not be
8418 * updated.
8419 */
8420 if (likely(update_next_balance))
8421 nohz.next_balance = next_balance;
1c792db7
SS
8422end:
8423 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8424}
8425
8426/*
0b005cf5 8427 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8428 * of an idle cpu in the system.
0b005cf5 8429 * - This rq has more than one task.
1aaf90a4
VG
8430 * - This rq has at least one CFS task and the capacity of the CPU is
8431 * significantly reduced because of RT tasks or IRQs.
8432 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8433 * multiple busy cpu.
0b005cf5
SS
8434 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8435 * domain span are idle.
83cd4fe2 8436 */
1aaf90a4 8437static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8438{
8439 unsigned long now = jiffies;
0e369d75 8440 struct sched_domain_shared *sds;
0b005cf5 8441 struct sched_domain *sd;
4a725627 8442 int nr_busy, cpu = rq->cpu;
1aaf90a4 8443 bool kick = false;
83cd4fe2 8444
4a725627 8445 if (unlikely(rq->idle_balance))
1aaf90a4 8446 return false;
83cd4fe2 8447
1c792db7
SS
8448 /*
8449 * We may be recently in ticked or tickless idle mode. At the first
8450 * busy tick after returning from idle, we will update the busy stats.
8451 */
69e1e811 8452 set_cpu_sd_state_busy();
c1cc017c 8453 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8454
8455 /*
8456 * None are in tickless mode and hence no need for NOHZ idle load
8457 * balancing.
8458 */
8459 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8460 return false;
1c792db7
SS
8461
8462 if (time_before(now, nohz.next_balance))
1aaf90a4 8463 return false;
83cd4fe2 8464
0b005cf5 8465 if (rq->nr_running >= 2)
1aaf90a4 8466 return true;
83cd4fe2 8467
067491b7 8468 rcu_read_lock();
0e369d75
PZ
8469 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8470 if (sds) {
8471 /*
8472 * XXX: write a coherent comment on why we do this.
8473 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8474 */
8475 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8476 if (nr_busy > 1) {
8477 kick = true;
8478 goto unlock;
8479 }
8480
83cd4fe2 8481 }
37dc6b50 8482
1aaf90a4
VG
8483 sd = rcu_dereference(rq->sd);
8484 if (sd) {
8485 if ((rq->cfs.h_nr_running >= 1) &&
8486 check_cpu_capacity(rq, sd)) {
8487 kick = true;
8488 goto unlock;
8489 }
8490 }
37dc6b50 8491
1aaf90a4 8492 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8493 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8494 sched_domain_span(sd)) < cpu)) {
8495 kick = true;
8496 goto unlock;
8497 }
067491b7 8498
1aaf90a4 8499unlock:
067491b7 8500 rcu_read_unlock();
1aaf90a4 8501 return kick;
83cd4fe2
VP
8502}
8503#else
208cb16b 8504static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8505#endif
8506
8507/*
8508 * run_rebalance_domains is triggered when needed from the scheduler tick.
8509 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8510 */
1e3c88bd
PZ
8511static void run_rebalance_domains(struct softirq_action *h)
8512{
208cb16b 8513 struct rq *this_rq = this_rq();
6eb57e0d 8514 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8515 CPU_IDLE : CPU_NOT_IDLE;
8516
1e3c88bd 8517 /*
83cd4fe2 8518 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8519 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8520 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8521 * give the idle cpus a chance to load balance. Else we may
8522 * load balance only within the local sched_domain hierarchy
8523 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8524 */
208cb16b 8525 nohz_idle_balance(this_rq, idle);
d4573c3e 8526 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8527}
8528
1e3c88bd
PZ
8529/*
8530 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8531 */
7caff66f 8532void trigger_load_balance(struct rq *rq)
1e3c88bd 8533{
1e3c88bd 8534 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8535 if (unlikely(on_null_domain(rq)))
8536 return;
8537
8538 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8539 raise_softirq(SCHED_SOFTIRQ);
3451d024 8540#ifdef CONFIG_NO_HZ_COMMON
c726099e 8541 if (nohz_kick_needed(rq))
0aeeeeba 8542 nohz_balancer_kick();
83cd4fe2 8543#endif
1e3c88bd
PZ
8544}
8545
0bcdcf28
CE
8546static void rq_online_fair(struct rq *rq)
8547{
8548 update_sysctl();
0e59bdae
KT
8549
8550 update_runtime_enabled(rq);
0bcdcf28
CE
8551}
8552
8553static void rq_offline_fair(struct rq *rq)
8554{
8555 update_sysctl();
a4c96ae3
PB
8556
8557 /* Ensure any throttled groups are reachable by pick_next_task */
8558 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8559}
8560
55e12e5e 8561#endif /* CONFIG_SMP */
e1d1484f 8562
bf0f6f24
IM
8563/*
8564 * scheduler tick hitting a task of our scheduling class:
8565 */
8f4d37ec 8566static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8567{
8568 struct cfs_rq *cfs_rq;
8569 struct sched_entity *se = &curr->se;
8570
8571 for_each_sched_entity(se) {
8572 cfs_rq = cfs_rq_of(se);
8f4d37ec 8573 entity_tick(cfs_rq, se, queued);
bf0f6f24 8574 }
18bf2805 8575
b52da86e 8576 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8577 task_tick_numa(rq, curr);
bf0f6f24
IM
8578}
8579
8580/*
cd29fe6f
PZ
8581 * called on fork with the child task as argument from the parent's context
8582 * - child not yet on the tasklist
8583 * - preemption disabled
bf0f6f24 8584 */
cd29fe6f 8585static void task_fork_fair(struct task_struct *p)
bf0f6f24 8586{
4fc420c9
DN
8587 struct cfs_rq *cfs_rq;
8588 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8589 struct rq *rq = this_rq();
bf0f6f24 8590
e210bffd 8591 raw_spin_lock(&rq->lock);
861d034e
PZ
8592 update_rq_clock(rq);
8593
4fc420c9
DN
8594 cfs_rq = task_cfs_rq(current);
8595 curr = cfs_rq->curr;
e210bffd
PZ
8596 if (curr) {
8597 update_curr(cfs_rq);
b5d9d734 8598 se->vruntime = curr->vruntime;
e210bffd 8599 }
aeb73b04 8600 place_entity(cfs_rq, se, 1);
4d78e7b6 8601
cd29fe6f 8602 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8603 /*
edcb60a3
IM
8604 * Upon rescheduling, sched_class::put_prev_task() will place
8605 * 'current' within the tree based on its new key value.
8606 */
4d78e7b6 8607 swap(curr->vruntime, se->vruntime);
8875125e 8608 resched_curr(rq);
4d78e7b6 8609 }
bf0f6f24 8610
88ec22d3 8611 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8612 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8613}
8614
cb469845
SR
8615/*
8616 * Priority of the task has changed. Check to see if we preempt
8617 * the current task.
8618 */
da7a735e
PZ
8619static void
8620prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8621{
da0c1e65 8622 if (!task_on_rq_queued(p))
da7a735e
PZ
8623 return;
8624
cb469845
SR
8625 /*
8626 * Reschedule if we are currently running on this runqueue and
8627 * our priority decreased, or if we are not currently running on
8628 * this runqueue and our priority is higher than the current's
8629 */
da7a735e 8630 if (rq->curr == p) {
cb469845 8631 if (p->prio > oldprio)
8875125e 8632 resched_curr(rq);
cb469845 8633 } else
15afe09b 8634 check_preempt_curr(rq, p, 0);
cb469845
SR
8635}
8636
daa59407 8637static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8638{
8639 struct sched_entity *se = &p->se;
da7a735e
PZ
8640
8641 /*
daa59407
BP
8642 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8643 * the dequeue_entity(.flags=0) will already have normalized the
8644 * vruntime.
8645 */
8646 if (p->on_rq)
8647 return true;
8648
8649 /*
8650 * When !on_rq, vruntime of the task has usually NOT been normalized.
8651 * But there are some cases where it has already been normalized:
da7a735e 8652 *
daa59407
BP
8653 * - A forked child which is waiting for being woken up by
8654 * wake_up_new_task().
8655 * - A task which has been woken up by try_to_wake_up() and
8656 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8657 */
daa59407
BP
8658 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8659 return true;
8660
8661 return false;
8662}
8663
8664static void detach_task_cfs_rq(struct task_struct *p)
8665{
8666 struct sched_entity *se = &p->se;
8667 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8668 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8669
8670 if (!vruntime_normalized(p)) {
da7a735e
PZ
8671 /*
8672 * Fix up our vruntime so that the current sleep doesn't
8673 * cause 'unlimited' sleep bonus.
8674 */
8675 place_entity(cfs_rq, se, 0);
8676 se->vruntime -= cfs_rq->min_vruntime;
8677 }
9ee474f5 8678
9d89c257 8679 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8680 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8681 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8682 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8683}
8684
daa59407 8685static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8686{
f36c019c 8687 struct sched_entity *se = &p->se;
daa59407 8688 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8689 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8690
8691#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8692 /*
8693 * Since the real-depth could have been changed (only FAIR
8694 * class maintain depth value), reset depth properly.
8695 */
8696 se->depth = se->parent ? se->parent->depth + 1 : 0;
8697#endif
7855a35a 8698
6efdb105 8699 /* Synchronize task with its cfs_rq */
7c3edd2c 8700 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8701 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8702 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8703
8704 if (!vruntime_normalized(p))
8705 se->vruntime += cfs_rq->min_vruntime;
8706}
6efdb105 8707
daa59407
BP
8708static void switched_from_fair(struct rq *rq, struct task_struct *p)
8709{
8710 detach_task_cfs_rq(p);
8711}
8712
8713static void switched_to_fair(struct rq *rq, struct task_struct *p)
8714{
8715 attach_task_cfs_rq(p);
7855a35a 8716
daa59407 8717 if (task_on_rq_queued(p)) {
7855a35a 8718 /*
daa59407
BP
8719 * We were most likely switched from sched_rt, so
8720 * kick off the schedule if running, otherwise just see
8721 * if we can still preempt the current task.
7855a35a 8722 */
daa59407
BP
8723 if (rq->curr == p)
8724 resched_curr(rq);
8725 else
8726 check_preempt_curr(rq, p, 0);
7855a35a 8727 }
cb469845
SR
8728}
8729
83b699ed
SV
8730/* Account for a task changing its policy or group.
8731 *
8732 * This routine is mostly called to set cfs_rq->curr field when a task
8733 * migrates between groups/classes.
8734 */
8735static void set_curr_task_fair(struct rq *rq)
8736{
8737 struct sched_entity *se = &rq->curr->se;
8738
ec12cb7f
PT
8739 for_each_sched_entity(se) {
8740 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8741
8742 set_next_entity(cfs_rq, se);
8743 /* ensure bandwidth has been allocated on our new cfs_rq */
8744 account_cfs_rq_runtime(cfs_rq, 0);
8745 }
83b699ed
SV
8746}
8747
029632fb
PZ
8748void init_cfs_rq(struct cfs_rq *cfs_rq)
8749{
8750 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8751 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8752#ifndef CONFIG_64BIT
8753 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8754#endif
141965c7 8755#ifdef CONFIG_SMP
9d89c257
YD
8756 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8757 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8758#endif
029632fb
PZ
8759}
8760
810b3817 8761#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8762static void task_set_group_fair(struct task_struct *p)
8763{
8764 struct sched_entity *se = &p->se;
8765
8766 set_task_rq(p, task_cpu(p));
8767 se->depth = se->parent ? se->parent->depth + 1 : 0;
8768}
8769
bc54da21 8770static void task_move_group_fair(struct task_struct *p)
810b3817 8771{
daa59407 8772 detach_task_cfs_rq(p);
b2b5ce02 8773 set_task_rq(p, task_cpu(p));
6efdb105
BP
8774
8775#ifdef CONFIG_SMP
8776 /* Tell se's cfs_rq has been changed -- migrated */
8777 p->se.avg.last_update_time = 0;
8778#endif
daa59407 8779 attach_task_cfs_rq(p);
810b3817 8780}
029632fb 8781
ea86cb4b
VG
8782static void task_change_group_fair(struct task_struct *p, int type)
8783{
8784 switch (type) {
8785 case TASK_SET_GROUP:
8786 task_set_group_fair(p);
8787 break;
8788
8789 case TASK_MOVE_GROUP:
8790 task_move_group_fair(p);
8791 break;
8792 }
8793}
8794
029632fb
PZ
8795void free_fair_sched_group(struct task_group *tg)
8796{
8797 int i;
8798
8799 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8800
8801 for_each_possible_cpu(i) {
8802 if (tg->cfs_rq)
8803 kfree(tg->cfs_rq[i]);
6fe1f348 8804 if (tg->se)
029632fb
PZ
8805 kfree(tg->se[i]);
8806 }
8807
8808 kfree(tg->cfs_rq);
8809 kfree(tg->se);
8810}
8811
8812int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8813{
029632fb 8814 struct sched_entity *se;
b7fa30c9
PZ
8815 struct cfs_rq *cfs_rq;
8816 struct rq *rq;
029632fb
PZ
8817 int i;
8818
8819 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8820 if (!tg->cfs_rq)
8821 goto err;
8822 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8823 if (!tg->se)
8824 goto err;
8825
8826 tg->shares = NICE_0_LOAD;
8827
8828 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8829
8830 for_each_possible_cpu(i) {
b7fa30c9
PZ
8831 rq = cpu_rq(i);
8832
029632fb
PZ
8833 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8834 GFP_KERNEL, cpu_to_node(i));
8835 if (!cfs_rq)
8836 goto err;
8837
8838 se = kzalloc_node(sizeof(struct sched_entity),
8839 GFP_KERNEL, cpu_to_node(i));
8840 if (!se)
8841 goto err_free_rq;
8842
8843 init_cfs_rq(cfs_rq);
8844 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8845 init_entity_runnable_average(se);
029632fb
PZ
8846 }
8847
8848 return 1;
8849
8850err_free_rq:
8851 kfree(cfs_rq);
8852err:
8853 return 0;
8854}
8855
8663e24d
PZ
8856void online_fair_sched_group(struct task_group *tg)
8857{
8858 struct sched_entity *se;
8859 struct rq *rq;
8860 int i;
8861
8862 for_each_possible_cpu(i) {
8863 rq = cpu_rq(i);
8864 se = tg->se[i];
8865
8866 raw_spin_lock_irq(&rq->lock);
8867 post_init_entity_util_avg(se);
55e16d30 8868 sync_throttle(tg, i);
8663e24d
PZ
8869 raw_spin_unlock_irq(&rq->lock);
8870 }
8871}
8872
6fe1f348 8873void unregister_fair_sched_group(struct task_group *tg)
029632fb 8874{
029632fb 8875 unsigned long flags;
6fe1f348
PZ
8876 struct rq *rq;
8877 int cpu;
029632fb 8878
6fe1f348
PZ
8879 for_each_possible_cpu(cpu) {
8880 if (tg->se[cpu])
8881 remove_entity_load_avg(tg->se[cpu]);
029632fb 8882
6fe1f348
PZ
8883 /*
8884 * Only empty task groups can be destroyed; so we can speculatively
8885 * check on_list without danger of it being re-added.
8886 */
8887 if (!tg->cfs_rq[cpu]->on_list)
8888 continue;
8889
8890 rq = cpu_rq(cpu);
8891
8892 raw_spin_lock_irqsave(&rq->lock, flags);
8893 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8894 raw_spin_unlock_irqrestore(&rq->lock, flags);
8895 }
029632fb
PZ
8896}
8897
8898void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8899 struct sched_entity *se, int cpu,
8900 struct sched_entity *parent)
8901{
8902 struct rq *rq = cpu_rq(cpu);
8903
8904 cfs_rq->tg = tg;
8905 cfs_rq->rq = rq;
029632fb
PZ
8906 init_cfs_rq_runtime(cfs_rq);
8907
8908 tg->cfs_rq[cpu] = cfs_rq;
8909 tg->se[cpu] = se;
8910
8911 /* se could be NULL for root_task_group */
8912 if (!se)
8913 return;
8914
fed14d45 8915 if (!parent) {
029632fb 8916 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8917 se->depth = 0;
8918 } else {
029632fb 8919 se->cfs_rq = parent->my_q;
fed14d45
PZ
8920 se->depth = parent->depth + 1;
8921 }
029632fb
PZ
8922
8923 se->my_q = cfs_rq;
0ac9b1c2
PT
8924 /* guarantee group entities always have weight */
8925 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8926 se->parent = parent;
8927}
8928
8929static DEFINE_MUTEX(shares_mutex);
8930
8931int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8932{
8933 int i;
8934 unsigned long flags;
8935
8936 /*
8937 * We can't change the weight of the root cgroup.
8938 */
8939 if (!tg->se[0])
8940 return -EINVAL;
8941
8942 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8943
8944 mutex_lock(&shares_mutex);
8945 if (tg->shares == shares)
8946 goto done;
8947
8948 tg->shares = shares;
8949 for_each_possible_cpu(i) {
8950 struct rq *rq = cpu_rq(i);
8951 struct sched_entity *se;
8952
8953 se = tg->se[i];
8954 /* Propagate contribution to hierarchy */
8955 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8956
8957 /* Possible calls to update_curr() need rq clock */
8958 update_rq_clock(rq);
17bc14b7 8959 for_each_sched_entity(se)
029632fb
PZ
8960 update_cfs_shares(group_cfs_rq(se));
8961 raw_spin_unlock_irqrestore(&rq->lock, flags);
8962 }
8963
8964done:
8965 mutex_unlock(&shares_mutex);
8966 return 0;
8967}
8968#else /* CONFIG_FAIR_GROUP_SCHED */
8969
8970void free_fair_sched_group(struct task_group *tg) { }
8971
8972int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8973{
8974 return 1;
8975}
8976
8663e24d
PZ
8977void online_fair_sched_group(struct task_group *tg) { }
8978
6fe1f348 8979void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8980
8981#endif /* CONFIG_FAIR_GROUP_SCHED */
8982
810b3817 8983
6d686f45 8984static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8985{
8986 struct sched_entity *se = &task->se;
0d721cea
PW
8987 unsigned int rr_interval = 0;
8988
8989 /*
8990 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8991 * idle runqueue:
8992 */
0d721cea 8993 if (rq->cfs.load.weight)
a59f4e07 8994 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8995
8996 return rr_interval;
8997}
8998
bf0f6f24
IM
8999/*
9000 * All the scheduling class methods:
9001 */
029632fb 9002const struct sched_class fair_sched_class = {
5522d5d5 9003 .next = &idle_sched_class,
bf0f6f24
IM
9004 .enqueue_task = enqueue_task_fair,
9005 .dequeue_task = dequeue_task_fair,
9006 .yield_task = yield_task_fair,
d95f4122 9007 .yield_to_task = yield_to_task_fair,
bf0f6f24 9008
2e09bf55 9009 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9010
9011 .pick_next_task = pick_next_task_fair,
9012 .put_prev_task = put_prev_task_fair,
9013
681f3e68 9014#ifdef CONFIG_SMP
4ce72a2c 9015 .select_task_rq = select_task_rq_fair,
0a74bef8 9016 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9017
0bcdcf28
CE
9018 .rq_online = rq_online_fair,
9019 .rq_offline = rq_offline_fair,
88ec22d3 9020
12695578 9021 .task_dead = task_dead_fair,
c5b28038 9022 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9023#endif
bf0f6f24 9024
83b699ed 9025 .set_curr_task = set_curr_task_fair,
bf0f6f24 9026 .task_tick = task_tick_fair,
cd29fe6f 9027 .task_fork = task_fork_fair,
cb469845
SR
9028
9029 .prio_changed = prio_changed_fair,
da7a735e 9030 .switched_from = switched_from_fair,
cb469845 9031 .switched_to = switched_to_fair,
810b3817 9032
0d721cea
PW
9033 .get_rr_interval = get_rr_interval_fair,
9034
6e998916
SG
9035 .update_curr = update_curr_fair,
9036
810b3817 9037#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9038 .task_change_group = task_change_group_fair,
810b3817 9039#endif
bf0f6f24
IM
9040};
9041
9042#ifdef CONFIG_SCHED_DEBUG
029632fb 9043void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9044{
bf0f6f24
IM
9045 struct cfs_rq *cfs_rq;
9046
5973e5b9 9047 rcu_read_lock();
c3b64f1e 9048 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9049 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9050 rcu_read_unlock();
bf0f6f24 9051}
397f2378
SD
9052
9053#ifdef CONFIG_NUMA_BALANCING
9054void show_numa_stats(struct task_struct *p, struct seq_file *m)
9055{
9056 int node;
9057 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9058
9059 for_each_online_node(node) {
9060 if (p->numa_faults) {
9061 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9062 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9063 }
9064 if (p->numa_group) {
9065 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9066 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9067 }
9068 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9069 }
9070}
9071#endif /* CONFIG_NUMA_BALANCING */
9072#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9073
9074__init void init_sched_fair_class(void)
9075{
9076#ifdef CONFIG_SMP
9077 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9078
3451d024 9079#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9080 nohz.next_balance = jiffies;
029632fb 9081 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9082#endif
9083#endif /* SMP */
9084
9085}