]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/fair: Change task_numa_work() storage to static
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
3c93a0c0
QY
278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279{
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
f6783319 291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 292{
5d299eab
PZ
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
f6783319 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 312 /*
5d299eab
PZ
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
67e86250 317 */
5d299eab
PZ
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 326 return true;
5d299eab 327 }
3d4b47b4 328
5d299eab
PZ
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 341 return true;
3d4b47b4 342 }
5d299eab
PZ
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 356 return false;
3d4b47b4
PZ
357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
31bc6aea
VG
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
3d4b47b4
PZ
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
5d299eab
PZ
379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
039ae8bc
VG
384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
b758149c
PZ
388
389/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 390static inline struct cfs_rq *
b758149c
PZ
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
fed14d45 394 return se->cfs_rq;
b758149c 395
fed14d45 396 return NULL;
b758149c
PZ
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
464b7527
PZ
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
fed14d45
PZ
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
464b7527
PZ
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
8f48894f
PZ
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
bf0f6f24 442
b758149c
PZ
443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
bf0f6f24 445
b758149c 446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 447{
b758149c 448 return &task_rq(p)->cfs;
bf0f6f24
IM
449}
450
b758149c
PZ
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
3c93a0c0
QY
465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466{
467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
f6783319 471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 472{
f6783319 473 return true;
3d4b47b4
PZ
474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
5d299eab
PZ
480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
039ae8bc
VG
484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 486
b758149c
PZ
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
464b7527
PZ
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
b758149c
PZ
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
6c16a6dc 499static __always_inline
9dbdb155 500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
1bf08230 506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 507{
1bf08230 508 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 509 if (delta > 0)
1bf08230 510 max_vruntime = vruntime;
02e0431a 511
1bf08230 512 return max_vruntime;
02e0431a
PZ
513}
514
0702e3eb 515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
54fdc581
FC
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
1af5f730
PZ
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
b60205c7 532 struct sched_entity *curr = cfs_rq->curr;
bfb06889 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 534
1af5f730
PZ
535 u64 vruntime = cfs_rq->min_vruntime;
536
b60205c7
PZ
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
1af5f730 543
bfb06889
DB
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 547
b60205c7 548 if (!curr)
1af5f730
PZ
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
1bf08230 554 /* ensure we never gain time by being placed backwards. */
1af5f730 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
1af5f730
PZ
560}
561
bf0f6f24
IM
562/*
563 * Enqueue an entity into the rb-tree:
564 */
0702e3eb 565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
bfb06889 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
bfb06889 570 bool leftmost = true;
bf0f6f24
IM
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
2bd2d6f2 582 if (entity_before(se, entry)) {
bf0f6f24
IM
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
bfb06889 586 leftmost = false;
bf0f6f24
IM
587 }
588 }
589
bf0f6f24 590 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
593}
594
0702e3eb 595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bfb06889 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
598}
599
029632fb 600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 601{
bfb06889 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
608}
609
ac53db59
RR
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
029632fb 621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 622{
bfb06889 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 624
70eee74b
BS
625 if (!last)
626 return NULL;
7eee3e67
IM
627
628 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
629}
630
bf0f6f24
IM
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
acb4a848 635int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 636 void __user *buffer, size_t *lenp,
b2be5e96
PZ
637 loff_t *ppos)
638{
8d65af78 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 640 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
acb4a848
CE
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
653#undef WRT_SYSCTL
654
b2be5e96
PZ
655 return 0;
656}
657#endif
647e7cac 658
a7be37ac 659/*
f9c0b095 660 * delta /= w
a7be37ac 661 */
9dbdb155 662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 663{
f9c0b095 664 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
666
667 return delta;
668}
669
647e7cac
IM
670/*
671 * The idea is to set a period in which each task runs once.
672 *
532b1858 673 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
4d78e7b6
PZ
678static u64 __sched_period(unsigned long nr_running)
679{
8e2b0bf3
BF
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
4d78e7b6
PZ
684}
685
647e7cac
IM
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
f9c0b095 690 * s = p*P[w/rw]
647e7cac 691 */
6d0f0ebd 692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 693{
0a582440 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
6272d68c
LM
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
f9c0b095 702
0a582440 703 if (unlikely(!se->on_rq)) {
3104bf03 704 lw = cfs_rq->load;
0a582440
MG
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
9dbdb155 709 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
710 }
711 return slice;
bf0f6f24
IM
712}
713
647e7cac 714/*
660cc00f 715 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 716 *
f9c0b095 717 * vs = s/w
647e7cac 718 */
f9c0b095 719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 720{
f9c0b095 721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
722}
723
c0796298 724#include "pelt.h"
23127296 725#ifdef CONFIG_SMP
283e2ed3 726
772bd008 727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 728static unsigned long task_h_load(struct task_struct *p);
3b1baa64 729static unsigned long capacity_of(int cpu);
fb13c7ee 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
f207934f
PZ
736 memset(sa, 0, sizeof(*sa));
737
b5a9b340 738 /*
dfcb245e 739 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 740 * they get a chance to stabilize to their real load level.
dfcb245e 741 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
1ea6c46a 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 746
f207934f
PZ
747 se->runnable_weight = se->load.weight;
748
9d89c257 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 750}
7ea241af 751
7dc603c9 752static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 753static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 754
2b8c41da
YD
755/*
756 * With new tasks being created, their initial util_avgs are extrapolated
757 * based on the cfs_rq's current util_avg:
758 *
759 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760 *
761 * However, in many cases, the above util_avg does not give a desired
762 * value. Moreover, the sum of the util_avgs may be divergent, such
763 * as when the series is a harmonic series.
764 *
765 * To solve this problem, we also cap the util_avg of successive tasks to
766 * only 1/2 of the left utilization budget:
767 *
8fe5c5a9 768 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 769 *
8fe5c5a9 770 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 771 *
8fe5c5a9
QP
772 * For example, for a CPU with 1024 of capacity, a simplest series from
773 * the beginning would be like:
2b8c41da
YD
774 *
775 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
776 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777 *
778 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779 * if util_avg > util_avg_cap.
780 */
d0fe0b9c 781void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 782{
d0fe0b9c 783 struct sched_entity *se = &p->se;
2b8c41da
YD
784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 struct sched_avg *sa = &se->avg;
8ec59c0f 786 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 787 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
788
789 if (cap > 0) {
790 if (cfs_rq->avg.util_avg != 0) {
791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
792 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793
794 if (sa->util_avg > cap)
795 sa->util_avg = cap;
796 } else {
797 sa->util_avg = cap;
798 }
2b8c41da 799 }
7dc603c9 800
d0fe0b9c
DE
801 if (p->sched_class != &fair_sched_class) {
802 /*
803 * For !fair tasks do:
804 *
805 update_cfs_rq_load_avg(now, cfs_rq);
806 attach_entity_load_avg(cfs_rq, se, 0);
807 switched_from_fair(rq, p);
808 *
809 * such that the next switched_to_fair() has the
810 * expected state.
811 */
812 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 return;
7dc603c9
PZ
814 }
815
df217913 816 attach_entity_cfs_rq(se);
2b8c41da
YD
817}
818
7dc603c9 819#else /* !CONFIG_SMP */
540247fb 820void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
821{
822}
d0fe0b9c 823void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
824{
825}
3d30544f
PZ
826static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827{
828}
7dc603c9 829#endif /* CONFIG_SMP */
a75cdaa9 830
bf0f6f24 831/*
9dbdb155 832 * Update the current task's runtime statistics.
bf0f6f24 833 */
b7cc0896 834static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 835{
429d43bc 836 struct sched_entity *curr = cfs_rq->curr;
78becc27 837 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 838 u64 delta_exec;
bf0f6f24
IM
839
840 if (unlikely(!curr))
841 return;
842
9dbdb155
PZ
843 delta_exec = now - curr->exec_start;
844 if (unlikely((s64)delta_exec <= 0))
34f28ecd 845 return;
bf0f6f24 846
8ebc91d9 847 curr->exec_start = now;
d842de87 848
9dbdb155
PZ
849 schedstat_set(curr->statistics.exec_max,
850 max(delta_exec, curr->statistics.exec_max));
851
852 curr->sum_exec_runtime += delta_exec;
ae92882e 853 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
854
855 curr->vruntime += calc_delta_fair(delta_exec, curr);
856 update_min_vruntime(cfs_rq);
857
d842de87
SV
858 if (entity_is_task(curr)) {
859 struct task_struct *curtask = task_of(curr);
860
f977bb49 861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 862 cgroup_account_cputime(curtask, delta_exec);
f06febc9 863 account_group_exec_runtime(curtask, delta_exec);
d842de87 864 }
ec12cb7f
PT
865
866 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
867}
868
6e998916
SG
869static void update_curr_fair(struct rq *rq)
870{
871 update_curr(cfs_rq_of(&rq->curr->se));
872}
873
bf0f6f24 874static inline void
5870db5b 875update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 876{
4fa8d299
JP
877 u64 wait_start, prev_wait_start;
878
879 if (!schedstat_enabled())
880 return;
881
882 wait_start = rq_clock(rq_of(cfs_rq));
883 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
884
885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
886 likely(wait_start > prev_wait_start))
887 wait_start -= prev_wait_start;
3ea94de1 888
2ed41a55 889 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
890}
891
4fa8d299 892static inline void
3ea94de1
JP
893update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *p;
cb251765
MG
896 u64 delta;
897
4fa8d299
JP
898 if (!schedstat_enabled())
899 return;
900
901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
902
903 if (entity_is_task(se)) {
904 p = task_of(se);
905 if (task_on_rq_migrating(p)) {
906 /*
907 * Preserve migrating task's wait time so wait_start
908 * time stamp can be adjusted to accumulate wait time
909 * prior to migration.
910 */
2ed41a55 911 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
912 return;
913 }
914 trace_sched_stat_wait(p, delta);
915 }
916
2ed41a55 917 __schedstat_set(se->statistics.wait_max,
4fa8d299 918 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
919 __schedstat_inc(se->statistics.wait_count);
920 __schedstat_add(se->statistics.wait_sum, delta);
921 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 922}
3ea94de1 923
4fa8d299 924static inline void
1a3d027c
JP
925update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927 struct task_struct *tsk = NULL;
4fa8d299
JP
928 u64 sleep_start, block_start;
929
930 if (!schedstat_enabled())
931 return;
932
933 sleep_start = schedstat_val(se->statistics.sleep_start);
934 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
935
936 if (entity_is_task(se))
937 tsk = task_of(se);
938
4fa8d299
JP
939 if (sleep_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
941
942 if ((s64)delta < 0)
943 delta = 0;
944
4fa8d299 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 946 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 947
2ed41a55
PZ
948 __schedstat_set(se->statistics.sleep_start, 0);
949 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
950
951 if (tsk) {
952 account_scheduler_latency(tsk, delta >> 10, 1);
953 trace_sched_stat_sleep(tsk, delta);
954 }
955 }
4fa8d299
JP
956 if (block_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 963 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.block_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 if (tsk->in_iowait) {
2ed41a55
PZ
970 __schedstat_add(se->statistics.iowait_sum, delta);
971 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
972 trace_sched_stat_iowait(tsk, delta);
973 }
974
975 trace_sched_stat_blocked(tsk, delta);
976
977 /*
978 * Blocking time is in units of nanosecs, so shift by
979 * 20 to get a milliseconds-range estimation of the
980 * amount of time that the task spent sleeping:
981 */
982 if (unlikely(prof_on == SLEEP_PROFILING)) {
983 profile_hits(SLEEP_PROFILING,
984 (void *)get_wchan(tsk),
985 delta >> 20);
986 }
987 account_scheduler_latency(tsk, delta >> 10, 0);
988 }
989 }
3ea94de1 990}
3ea94de1 991
bf0f6f24
IM
992/*
993 * Task is being enqueued - update stats:
994 */
cb251765 995static inline void
1a3d027c 996update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 997{
4fa8d299
JP
998 if (!schedstat_enabled())
999 return;
1000
bf0f6f24
IM
1001 /*
1002 * Are we enqueueing a waiting task? (for current tasks
1003 * a dequeue/enqueue event is a NOP)
1004 */
429d43bc 1005 if (se != cfs_rq->curr)
5870db5b 1006 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1007
1008 if (flags & ENQUEUE_WAKEUP)
1009 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1010}
1011
bf0f6f24 1012static inline void
cb251765 1013update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015
1016 if (!schedstat_enabled())
1017 return;
1018
bf0f6f24
IM
1019 /*
1020 * Mark the end of the wait period if dequeueing a
1021 * waiting task:
1022 */
429d43bc 1023 if (se != cfs_rq->curr)
9ef0a961 1024 update_stats_wait_end(cfs_rq, se);
cb251765 1025
4fa8d299
JP
1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 struct task_struct *tsk = task_of(se);
cb251765 1028
4fa8d299 1029 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1030 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1031 rq_clock(rq_of(cfs_rq)));
1032 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1033 __schedstat_set(se->statistics.block_start,
4fa8d299 1034 rq_clock(rq_of(cfs_rq)));
cb251765 1035 }
cb251765
MG
1036}
1037
bf0f6f24
IM
1038/*
1039 * We are picking a new current task - update its stats:
1040 */
1041static inline void
79303e9e 1042update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1043{
1044 /*
1045 * We are starting a new run period:
1046 */
78becc27 1047 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1048}
1049
bf0f6f24
IM
1050/**************************************************
1051 * Scheduling class queueing methods:
1052 */
1053
cbee9f88
PZ
1054#ifdef CONFIG_NUMA_BALANCING
1055/*
598f0ec0
MG
1056 * Approximate time to scan a full NUMA task in ms. The task scan period is
1057 * calculated based on the tasks virtual memory size and
1058 * numa_balancing_scan_size.
cbee9f88 1059 */
598f0ec0
MG
1060unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1062
1063/* Portion of address space to scan in MB */
1064unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1065
4b96a29b
PZ
1066/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068
b5dd77c8 1069struct numa_group {
c45a7795 1070 refcount_t refcount;
b5dd77c8
RR
1071
1072 spinlock_t lock; /* nr_tasks, tasks */
1073 int nr_tasks;
1074 pid_t gid;
1075 int active_nodes;
1076
1077 struct rcu_head rcu;
1078 unsigned long total_faults;
1079 unsigned long max_faults_cpu;
1080 /*
1081 * Faults_cpu is used to decide whether memory should move
1082 * towards the CPU. As a consequence, these stats are weighted
1083 * more by CPU use than by memory faults.
1084 */
1085 unsigned long *faults_cpu;
1086 unsigned long faults[0];
1087};
1088
cb361d8c
JH
1089/*
1090 * For functions that can be called in multiple contexts that permit reading
1091 * ->numa_group (see struct task_struct for locking rules).
1092 */
1093static struct numa_group *deref_task_numa_group(struct task_struct *p)
1094{
1095 return rcu_dereference_check(p->numa_group, p == current ||
1096 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1097}
1098
1099static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1100{
1101 return rcu_dereference_protected(p->numa_group, p == current);
1102}
1103
b5dd77c8
RR
1104static inline unsigned long group_faults_priv(struct numa_group *ng);
1105static inline unsigned long group_faults_shared(struct numa_group *ng);
1106
598f0ec0
MG
1107static unsigned int task_nr_scan_windows(struct task_struct *p)
1108{
1109 unsigned long rss = 0;
1110 unsigned long nr_scan_pages;
1111
1112 /*
1113 * Calculations based on RSS as non-present and empty pages are skipped
1114 * by the PTE scanner and NUMA hinting faults should be trapped based
1115 * on resident pages
1116 */
1117 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1118 rss = get_mm_rss(p->mm);
1119 if (!rss)
1120 rss = nr_scan_pages;
1121
1122 rss = round_up(rss, nr_scan_pages);
1123 return rss / nr_scan_pages;
1124}
1125
1126/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1127#define MAX_SCAN_WINDOW 2560
1128
1129static unsigned int task_scan_min(struct task_struct *p)
1130{
316c1608 1131 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1132 unsigned int scan, floor;
1133 unsigned int windows = 1;
1134
64192658
KT
1135 if (scan_size < MAX_SCAN_WINDOW)
1136 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1137 floor = 1000 / windows;
1138
1139 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1140 return max_t(unsigned int, floor, scan);
1141}
1142
b5dd77c8
RR
1143static unsigned int task_scan_start(struct task_struct *p)
1144{
1145 unsigned long smin = task_scan_min(p);
1146 unsigned long period = smin;
cb361d8c 1147 struct numa_group *ng;
b5dd77c8
RR
1148
1149 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1150 rcu_read_lock();
1151 ng = rcu_dereference(p->numa_group);
1152 if (ng) {
b5dd77c8
RR
1153 unsigned long shared = group_faults_shared(ng);
1154 unsigned long private = group_faults_priv(ng);
1155
c45a7795 1156 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1157 period *= shared + 1;
1158 period /= private + shared + 1;
1159 }
cb361d8c 1160 rcu_read_unlock();
b5dd77c8
RR
1161
1162 return max(smin, period);
1163}
1164
598f0ec0
MG
1165static unsigned int task_scan_max(struct task_struct *p)
1166{
b5dd77c8
RR
1167 unsigned long smin = task_scan_min(p);
1168 unsigned long smax;
cb361d8c 1169 struct numa_group *ng;
598f0ec0
MG
1170
1171 /* Watch for min being lower than max due to floor calculations */
1172 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1173
1174 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1175 ng = deref_curr_numa_group(p);
1176 if (ng) {
b5dd77c8
RR
1177 unsigned long shared = group_faults_shared(ng);
1178 unsigned long private = group_faults_priv(ng);
1179 unsigned long period = smax;
1180
c45a7795 1181 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1182 period *= shared + 1;
1183 period /= private + shared + 1;
1184
1185 smax = max(smax, period);
1186 }
1187
598f0ec0
MG
1188 return max(smin, smax);
1189}
1190
0ec8aa00
PZ
1191static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1192{
98fa15f3 1193 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1194 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1195}
1196
1197static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1198{
98fa15f3 1199 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1200 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1201}
1202
be1e4e76
RR
1203/* Shared or private faults. */
1204#define NR_NUMA_HINT_FAULT_TYPES 2
1205
1206/* Memory and CPU locality */
1207#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1208
1209/* Averaged statistics, and temporary buffers. */
1210#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1211
e29cf08b
MG
1212pid_t task_numa_group_id(struct task_struct *p)
1213{
cb361d8c
JH
1214 struct numa_group *ng;
1215 pid_t gid = 0;
1216
1217 rcu_read_lock();
1218 ng = rcu_dereference(p->numa_group);
1219 if (ng)
1220 gid = ng->gid;
1221 rcu_read_unlock();
1222
1223 return gid;
e29cf08b
MG
1224}
1225
44dba3d5 1226/*
97fb7a0a 1227 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1228 * occupy the first half of the array. The second half of the
1229 * array is for current counters, which are averaged into the
1230 * first set by task_numa_placement.
1231 */
1232static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1233{
44dba3d5 1234 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1235}
1236
1237static inline unsigned long task_faults(struct task_struct *p, int nid)
1238{
44dba3d5 1239 if (!p->numa_faults)
ac8e895b
MG
1240 return 0;
1241
44dba3d5
IM
1242 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1243 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1244}
1245
83e1d2cd
MG
1246static inline unsigned long group_faults(struct task_struct *p, int nid)
1247{
cb361d8c
JH
1248 struct numa_group *ng = deref_task_numa_group(p);
1249
1250 if (!ng)
83e1d2cd
MG
1251 return 0;
1252
cb361d8c
JH
1253 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1254 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1255}
1256
20e07dea
RR
1257static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1258{
44dba3d5
IM
1259 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1261}
1262
b5dd77c8
RR
1263static inline unsigned long group_faults_priv(struct numa_group *ng)
1264{
1265 unsigned long faults = 0;
1266 int node;
1267
1268 for_each_online_node(node) {
1269 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1270 }
1271
1272 return faults;
1273}
1274
1275static inline unsigned long group_faults_shared(struct numa_group *ng)
1276{
1277 unsigned long faults = 0;
1278 int node;
1279
1280 for_each_online_node(node) {
1281 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1282 }
1283
1284 return faults;
1285}
1286
4142c3eb
RR
1287/*
1288 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1289 * considered part of a numa group's pseudo-interleaving set. Migrations
1290 * between these nodes are slowed down, to allow things to settle down.
1291 */
1292#define ACTIVE_NODE_FRACTION 3
1293
1294static bool numa_is_active_node(int nid, struct numa_group *ng)
1295{
1296 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1297}
1298
6c6b1193
RR
1299/* Handle placement on systems where not all nodes are directly connected. */
1300static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1301 int maxdist, bool task)
1302{
1303 unsigned long score = 0;
1304 int node;
1305
1306 /*
1307 * All nodes are directly connected, and the same distance
1308 * from each other. No need for fancy placement algorithms.
1309 */
1310 if (sched_numa_topology_type == NUMA_DIRECT)
1311 return 0;
1312
1313 /*
1314 * This code is called for each node, introducing N^2 complexity,
1315 * which should be ok given the number of nodes rarely exceeds 8.
1316 */
1317 for_each_online_node(node) {
1318 unsigned long faults;
1319 int dist = node_distance(nid, node);
1320
1321 /*
1322 * The furthest away nodes in the system are not interesting
1323 * for placement; nid was already counted.
1324 */
1325 if (dist == sched_max_numa_distance || node == nid)
1326 continue;
1327
1328 /*
1329 * On systems with a backplane NUMA topology, compare groups
1330 * of nodes, and move tasks towards the group with the most
1331 * memory accesses. When comparing two nodes at distance
1332 * "hoplimit", only nodes closer by than "hoplimit" are part
1333 * of each group. Skip other nodes.
1334 */
1335 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1336 dist >= maxdist)
6c6b1193
RR
1337 continue;
1338
1339 /* Add up the faults from nearby nodes. */
1340 if (task)
1341 faults = task_faults(p, node);
1342 else
1343 faults = group_faults(p, node);
1344
1345 /*
1346 * On systems with a glueless mesh NUMA topology, there are
1347 * no fixed "groups of nodes". Instead, nodes that are not
1348 * directly connected bounce traffic through intermediate
1349 * nodes; a numa_group can occupy any set of nodes.
1350 * The further away a node is, the less the faults count.
1351 * This seems to result in good task placement.
1352 */
1353 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1354 faults *= (sched_max_numa_distance - dist);
1355 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1356 }
1357
1358 score += faults;
1359 }
1360
1361 return score;
1362}
1363
83e1d2cd
MG
1364/*
1365 * These return the fraction of accesses done by a particular task, or
1366 * task group, on a particular numa node. The group weight is given a
1367 * larger multiplier, in order to group tasks together that are almost
1368 * evenly spread out between numa nodes.
1369 */
7bd95320
RR
1370static inline unsigned long task_weight(struct task_struct *p, int nid,
1371 int dist)
83e1d2cd 1372{
7bd95320 1373 unsigned long faults, total_faults;
83e1d2cd 1374
44dba3d5 1375 if (!p->numa_faults)
83e1d2cd
MG
1376 return 0;
1377
1378 total_faults = p->total_numa_faults;
1379
1380 if (!total_faults)
1381 return 0;
1382
7bd95320 1383 faults = task_faults(p, nid);
6c6b1193
RR
1384 faults += score_nearby_nodes(p, nid, dist, true);
1385
7bd95320 1386 return 1000 * faults / total_faults;
83e1d2cd
MG
1387}
1388
7bd95320
RR
1389static inline unsigned long group_weight(struct task_struct *p, int nid,
1390 int dist)
83e1d2cd 1391{
cb361d8c 1392 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1393 unsigned long faults, total_faults;
1394
cb361d8c 1395 if (!ng)
7bd95320
RR
1396 return 0;
1397
cb361d8c 1398 total_faults = ng->total_faults;
7bd95320
RR
1399
1400 if (!total_faults)
83e1d2cd
MG
1401 return 0;
1402
7bd95320 1403 faults = group_faults(p, nid);
6c6b1193
RR
1404 faults += score_nearby_nodes(p, nid, dist, false);
1405
7bd95320 1406 return 1000 * faults / total_faults;
83e1d2cd
MG
1407}
1408
10f39042
RR
1409bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1410 int src_nid, int dst_cpu)
1411{
cb361d8c 1412 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1413 int dst_nid = cpu_to_node(dst_cpu);
1414 int last_cpupid, this_cpupid;
1415
1416 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1417 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1418
1419 /*
1420 * Allow first faults or private faults to migrate immediately early in
1421 * the lifetime of a task. The magic number 4 is based on waiting for
1422 * two full passes of the "multi-stage node selection" test that is
1423 * executed below.
1424 */
98fa15f3 1425 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1426 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1427 return true;
10f39042
RR
1428
1429 /*
1430 * Multi-stage node selection is used in conjunction with a periodic
1431 * migration fault to build a temporal task<->page relation. By using
1432 * a two-stage filter we remove short/unlikely relations.
1433 *
1434 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1435 * a task's usage of a particular page (n_p) per total usage of this
1436 * page (n_t) (in a given time-span) to a probability.
1437 *
1438 * Our periodic faults will sample this probability and getting the
1439 * same result twice in a row, given these samples are fully
1440 * independent, is then given by P(n)^2, provided our sample period
1441 * is sufficiently short compared to the usage pattern.
1442 *
1443 * This quadric squishes small probabilities, making it less likely we
1444 * act on an unlikely task<->page relation.
1445 */
10f39042
RR
1446 if (!cpupid_pid_unset(last_cpupid) &&
1447 cpupid_to_nid(last_cpupid) != dst_nid)
1448 return false;
1449
1450 /* Always allow migrate on private faults */
1451 if (cpupid_match_pid(p, last_cpupid))
1452 return true;
1453
1454 /* A shared fault, but p->numa_group has not been set up yet. */
1455 if (!ng)
1456 return true;
1457
1458 /*
4142c3eb
RR
1459 * Destination node is much more heavily used than the source
1460 * node? Allow migration.
10f39042 1461 */
4142c3eb
RR
1462 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1463 ACTIVE_NODE_FRACTION)
10f39042
RR
1464 return true;
1465
1466 /*
4142c3eb
RR
1467 * Distribute memory according to CPU & memory use on each node,
1468 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1469 *
1470 * faults_cpu(dst) 3 faults_cpu(src)
1471 * --------------- * - > ---------------
1472 * faults_mem(dst) 4 faults_mem(src)
10f39042 1473 */
4142c3eb
RR
1474 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1475 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1476}
1477
a3df0679 1478static unsigned long cpu_runnable_load(struct rq *rq);
58d081b5 1479
fb13c7ee 1480/* Cached statistics for all CPUs within a node */
58d081b5
MG
1481struct numa_stats {
1482 unsigned long load;
fb13c7ee
MG
1483
1484 /* Total compute capacity of CPUs on a node */
5ef20ca1 1485 unsigned long compute_capacity;
58d081b5 1486};
e6628d5b 1487
fb13c7ee
MG
1488/*
1489 * XXX borrowed from update_sg_lb_stats
1490 */
1491static void update_numa_stats(struct numa_stats *ns, int nid)
1492{
d90707eb 1493 int cpu;
fb13c7ee
MG
1494
1495 memset(ns, 0, sizeof(*ns));
1496 for_each_cpu(cpu, cpumask_of_node(nid)) {
1497 struct rq *rq = cpu_rq(cpu);
1498
a3df0679 1499 ns->load += cpu_runnable_load(rq);
ced549fa 1500 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1501 }
1502
fb13c7ee
MG
1503}
1504
58d081b5
MG
1505struct task_numa_env {
1506 struct task_struct *p;
e6628d5b 1507
58d081b5
MG
1508 int src_cpu, src_nid;
1509 int dst_cpu, dst_nid;
e6628d5b 1510
58d081b5 1511 struct numa_stats src_stats, dst_stats;
e6628d5b 1512
40ea2b42 1513 int imbalance_pct;
7bd95320 1514 int dist;
fb13c7ee
MG
1515
1516 struct task_struct *best_task;
1517 long best_imp;
58d081b5
MG
1518 int best_cpu;
1519};
1520
fb13c7ee
MG
1521static void task_numa_assign(struct task_numa_env *env,
1522 struct task_struct *p, long imp)
1523{
a4739eca
SD
1524 struct rq *rq = cpu_rq(env->dst_cpu);
1525
1526 /* Bail out if run-queue part of active NUMA balance. */
1527 if (xchg(&rq->numa_migrate_on, 1))
1528 return;
1529
1530 /*
1531 * Clear previous best_cpu/rq numa-migrate flag, since task now
1532 * found a better CPU to move/swap.
1533 */
1534 if (env->best_cpu != -1) {
1535 rq = cpu_rq(env->best_cpu);
1536 WRITE_ONCE(rq->numa_migrate_on, 0);
1537 }
1538
fb13c7ee
MG
1539 if (env->best_task)
1540 put_task_struct(env->best_task);
bac78573
ON
1541 if (p)
1542 get_task_struct(p);
fb13c7ee
MG
1543
1544 env->best_task = p;
1545 env->best_imp = imp;
1546 env->best_cpu = env->dst_cpu;
1547}
1548
28a21745 1549static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1550 struct task_numa_env *env)
1551{
e4991b24
RR
1552 long imb, old_imb;
1553 long orig_src_load, orig_dst_load;
28a21745
RR
1554 long src_capacity, dst_capacity;
1555
1556 /*
1557 * The load is corrected for the CPU capacity available on each node.
1558 *
1559 * src_load dst_load
1560 * ------------ vs ---------
1561 * src_capacity dst_capacity
1562 */
1563 src_capacity = env->src_stats.compute_capacity;
1564 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1565
5f95ba7a 1566 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1567
28a21745 1568 orig_src_load = env->src_stats.load;
e4991b24 1569 orig_dst_load = env->dst_stats.load;
28a21745 1570
5f95ba7a 1571 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1572
1573 /* Would this change make things worse? */
1574 return (imb > old_imb);
e63da036
RR
1575}
1576
6fd98e77
SD
1577/*
1578 * Maximum NUMA importance can be 1998 (2*999);
1579 * SMALLIMP @ 30 would be close to 1998/64.
1580 * Used to deter task migration.
1581 */
1582#define SMALLIMP 30
1583
fb13c7ee
MG
1584/*
1585 * This checks if the overall compute and NUMA accesses of the system would
1586 * be improved if the source tasks was migrated to the target dst_cpu taking
1587 * into account that it might be best if task running on the dst_cpu should
1588 * be exchanged with the source task
1589 */
887c290e 1590static void task_numa_compare(struct task_numa_env *env,
305c1fac 1591 long taskimp, long groupimp, bool maymove)
fb13c7ee 1592{
cb361d8c 1593 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1594 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1595 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1596 struct task_struct *cur;
28a21745 1597 long src_load, dst_load;
7bd95320 1598 int dist = env->dist;
cb361d8c
JH
1599 long moveimp = imp;
1600 long load;
fb13c7ee 1601
a4739eca
SD
1602 if (READ_ONCE(dst_rq->numa_migrate_on))
1603 return;
1604
fb13c7ee 1605 rcu_read_lock();
bac78573
ON
1606 cur = task_rcu_dereference(&dst_rq->curr);
1607 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1608 cur = NULL;
1609
7af68335
PZ
1610 /*
1611 * Because we have preemption enabled we can get migrated around and
1612 * end try selecting ourselves (current == env->p) as a swap candidate.
1613 */
1614 if (cur == env->p)
1615 goto unlock;
1616
305c1fac 1617 if (!cur) {
6fd98e77 1618 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1619 goto assign;
1620 else
1621 goto unlock;
1622 }
1623
fb13c7ee
MG
1624 /*
1625 * "imp" is the fault differential for the source task between the
1626 * source and destination node. Calculate the total differential for
1627 * the source task and potential destination task. The more negative
305c1fac 1628 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1629 * be incurred if the tasks were swapped.
1630 */
305c1fac 1631 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1632 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1633 goto unlock;
fb13c7ee 1634
305c1fac
SD
1635 /*
1636 * If dst and source tasks are in the same NUMA group, or not
1637 * in any group then look only at task weights.
1638 */
cb361d8c
JH
1639 cur_ng = rcu_dereference(cur->numa_group);
1640 if (cur_ng == p_ng) {
305c1fac
SD
1641 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1642 task_weight(cur, env->dst_nid, dist);
887c290e 1643 /*
305c1fac
SD
1644 * Add some hysteresis to prevent swapping the
1645 * tasks within a group over tiny differences.
887c290e 1646 */
cb361d8c 1647 if (cur_ng)
305c1fac
SD
1648 imp -= imp / 16;
1649 } else {
1650 /*
1651 * Compare the group weights. If a task is all by itself
1652 * (not part of a group), use the task weight instead.
1653 */
cb361d8c 1654 if (cur_ng && p_ng)
305c1fac
SD
1655 imp += group_weight(cur, env->src_nid, dist) -
1656 group_weight(cur, env->dst_nid, dist);
1657 else
1658 imp += task_weight(cur, env->src_nid, dist) -
1659 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1660 }
1661
305c1fac 1662 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1663 imp = moveimp;
305c1fac 1664 cur = NULL;
fb13c7ee 1665 goto assign;
305c1fac 1666 }
fb13c7ee 1667
6fd98e77
SD
1668 /*
1669 * If the NUMA importance is less than SMALLIMP,
1670 * task migration might only result in ping pong
1671 * of tasks and also hurt performance due to cache
1672 * misses.
1673 */
1674 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1675 goto unlock;
1676
fb13c7ee
MG
1677 /*
1678 * In the overloaded case, try and keep the load balanced.
1679 */
305c1fac
SD
1680 load = task_h_load(env->p) - task_h_load(cur);
1681 if (!load)
1682 goto assign;
1683
e720fff6
PZ
1684 dst_load = env->dst_stats.load + load;
1685 src_load = env->src_stats.load - load;
fb13c7ee 1686
28a21745 1687 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1688 goto unlock;
1689
305c1fac 1690assign:
ba7e5a27
RR
1691 /*
1692 * One idle CPU per node is evaluated for a task numa move.
1693 * Call select_idle_sibling to maybe find a better one.
1694 */
10e2f1ac
PZ
1695 if (!cur) {
1696 /*
97fb7a0a 1697 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1698 * can be used from IRQ context.
1699 */
1700 local_irq_disable();
772bd008
MR
1701 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1702 env->dst_cpu);
10e2f1ac
PZ
1703 local_irq_enable();
1704 }
ba7e5a27 1705
fb13c7ee
MG
1706 task_numa_assign(env, cur, imp);
1707unlock:
1708 rcu_read_unlock();
1709}
1710
887c290e
RR
1711static void task_numa_find_cpu(struct task_numa_env *env,
1712 long taskimp, long groupimp)
2c8a50aa 1713{
305c1fac
SD
1714 long src_load, dst_load, load;
1715 bool maymove = false;
2c8a50aa
MG
1716 int cpu;
1717
305c1fac
SD
1718 load = task_h_load(env->p);
1719 dst_load = env->dst_stats.load + load;
1720 src_load = env->src_stats.load - load;
1721
1722 /*
1723 * If the improvement from just moving env->p direction is better
1724 * than swapping tasks around, check if a move is possible.
1725 */
1726 maymove = !load_too_imbalanced(src_load, dst_load, env);
1727
2c8a50aa
MG
1728 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1729 /* Skip this CPU if the source task cannot migrate */
3bd37062 1730 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1731 continue;
1732
1733 env->dst_cpu = cpu;
305c1fac 1734 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1735 }
1736}
1737
58d081b5
MG
1738static int task_numa_migrate(struct task_struct *p)
1739{
58d081b5
MG
1740 struct task_numa_env env = {
1741 .p = p,
fb13c7ee 1742
58d081b5 1743 .src_cpu = task_cpu(p),
b32e86b4 1744 .src_nid = task_node(p),
fb13c7ee
MG
1745
1746 .imbalance_pct = 112,
1747
1748 .best_task = NULL,
1749 .best_imp = 0,
4142c3eb 1750 .best_cpu = -1,
58d081b5 1751 };
cb361d8c 1752 unsigned long taskweight, groupweight;
58d081b5 1753 struct sched_domain *sd;
cb361d8c
JH
1754 long taskimp, groupimp;
1755 struct numa_group *ng;
a4739eca 1756 struct rq *best_rq;
7bd95320 1757 int nid, ret, dist;
e6628d5b 1758
58d081b5 1759 /*
fb13c7ee
MG
1760 * Pick the lowest SD_NUMA domain, as that would have the smallest
1761 * imbalance and would be the first to start moving tasks about.
1762 *
1763 * And we want to avoid any moving of tasks about, as that would create
1764 * random movement of tasks -- counter the numa conditions we're trying
1765 * to satisfy here.
58d081b5
MG
1766 */
1767 rcu_read_lock();
fb13c7ee 1768 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1769 if (sd)
1770 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1771 rcu_read_unlock();
1772
46a73e8a
RR
1773 /*
1774 * Cpusets can break the scheduler domain tree into smaller
1775 * balance domains, some of which do not cross NUMA boundaries.
1776 * Tasks that are "trapped" in such domains cannot be migrated
1777 * elsewhere, so there is no point in (re)trying.
1778 */
1779 if (unlikely(!sd)) {
8cd45eee 1780 sched_setnuma(p, task_node(p));
46a73e8a
RR
1781 return -EINVAL;
1782 }
1783
2c8a50aa 1784 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1785 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1786 taskweight = task_weight(p, env.src_nid, dist);
1787 groupweight = group_weight(p, env.src_nid, dist);
1788 update_numa_stats(&env.src_stats, env.src_nid);
1789 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1790 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1791 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1792
a43455a1 1793 /* Try to find a spot on the preferred nid. */
2d4056fa 1794 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1795
9de05d48
RR
1796 /*
1797 * Look at other nodes in these cases:
1798 * - there is no space available on the preferred_nid
1799 * - the task is part of a numa_group that is interleaved across
1800 * multiple NUMA nodes; in order to better consolidate the group,
1801 * we need to check other locations.
1802 */
cb361d8c
JH
1803 ng = deref_curr_numa_group(p);
1804 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1805 for_each_online_node(nid) {
1806 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1807 continue;
58d081b5 1808
7bd95320 1809 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1810 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1811 dist != env.dist) {
1812 taskweight = task_weight(p, env.src_nid, dist);
1813 groupweight = group_weight(p, env.src_nid, dist);
1814 }
7bd95320 1815
83e1d2cd 1816 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1817 taskimp = task_weight(p, nid, dist) - taskweight;
1818 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1819 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1820 continue;
1821
7bd95320 1822 env.dist = dist;
2c8a50aa
MG
1823 env.dst_nid = nid;
1824 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1825 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1826 }
1827 }
1828
68d1b02a
RR
1829 /*
1830 * If the task is part of a workload that spans multiple NUMA nodes,
1831 * and is migrating into one of the workload's active nodes, remember
1832 * this node as the task's preferred numa node, so the workload can
1833 * settle down.
1834 * A task that migrated to a second choice node will be better off
1835 * trying for a better one later. Do not set the preferred node here.
1836 */
cb361d8c 1837 if (ng) {
db015dae
RR
1838 if (env.best_cpu == -1)
1839 nid = env.src_nid;
1840 else
8cd45eee 1841 nid = cpu_to_node(env.best_cpu);
db015dae 1842
8cd45eee
SD
1843 if (nid != p->numa_preferred_nid)
1844 sched_setnuma(p, nid);
db015dae
RR
1845 }
1846
1847 /* No better CPU than the current one was found. */
1848 if (env.best_cpu == -1)
1849 return -EAGAIN;
0ec8aa00 1850
a4739eca 1851 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1852 if (env.best_task == NULL) {
286549dc 1853 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1854 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1855 if (ret != 0)
1856 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1857 return ret;
1858 }
1859
0ad4e3df 1860 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1861 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1862
286549dc
MG
1863 if (ret != 0)
1864 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1865 put_task_struct(env.best_task);
1866 return ret;
e6628d5b
MG
1867}
1868
6b9a7460
MG
1869/* Attempt to migrate a task to a CPU on the preferred node. */
1870static void numa_migrate_preferred(struct task_struct *p)
1871{
5085e2a3
RR
1872 unsigned long interval = HZ;
1873
2739d3ee 1874 /* This task has no NUMA fault statistics yet */
98fa15f3 1875 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1876 return;
1877
2739d3ee 1878 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1879 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1880 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1881
1882 /* Success if task is already running on preferred CPU */
de1b301a 1883 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1884 return;
1885
1886 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1887 task_numa_migrate(p);
6b9a7460
MG
1888}
1889
20e07dea 1890/*
4142c3eb 1891 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1892 * tracking the nodes from which NUMA hinting faults are triggered. This can
1893 * be different from the set of nodes where the workload's memory is currently
1894 * located.
20e07dea 1895 */
4142c3eb 1896static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1897{
1898 unsigned long faults, max_faults = 0;
4142c3eb 1899 int nid, active_nodes = 0;
20e07dea
RR
1900
1901 for_each_online_node(nid) {
1902 faults = group_faults_cpu(numa_group, nid);
1903 if (faults > max_faults)
1904 max_faults = faults;
1905 }
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1909 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1910 active_nodes++;
20e07dea 1911 }
4142c3eb
RR
1912
1913 numa_group->max_faults_cpu = max_faults;
1914 numa_group->active_nodes = active_nodes;
20e07dea
RR
1915}
1916
04bb2f94
RR
1917/*
1918 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1919 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1920 * period will be for the next scan window. If local/(local+remote) ratio is
1921 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1922 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1923 */
1924#define NUMA_PERIOD_SLOTS 10
a22b4b01 1925#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1926
1927/*
1928 * Increase the scan period (slow down scanning) if the majority of
1929 * our memory is already on our local node, or if the majority of
1930 * the page accesses are shared with other processes.
1931 * Otherwise, decrease the scan period.
1932 */
1933static void update_task_scan_period(struct task_struct *p,
1934 unsigned long shared, unsigned long private)
1935{
1936 unsigned int period_slot;
37ec97de 1937 int lr_ratio, ps_ratio;
04bb2f94
RR
1938 int diff;
1939
1940 unsigned long remote = p->numa_faults_locality[0];
1941 unsigned long local = p->numa_faults_locality[1];
1942
1943 /*
1944 * If there were no record hinting faults then either the task is
1945 * completely idle or all activity is areas that are not of interest
074c2381
MG
1946 * to automatic numa balancing. Related to that, if there were failed
1947 * migration then it implies we are migrating too quickly or the local
1948 * node is overloaded. In either case, scan slower
04bb2f94 1949 */
074c2381 1950 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1951 p->numa_scan_period = min(p->numa_scan_period_max,
1952 p->numa_scan_period << 1);
1953
1954 p->mm->numa_next_scan = jiffies +
1955 msecs_to_jiffies(p->numa_scan_period);
1956
1957 return;
1958 }
1959
1960 /*
1961 * Prepare to scale scan period relative to the current period.
1962 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1963 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1964 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1965 */
1966 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1967 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1968 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1969
1970 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1971 /*
1972 * Most memory accesses are local. There is no need to
1973 * do fast NUMA scanning, since memory is already local.
1974 */
1975 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1976 if (!slot)
1977 slot = 1;
1978 diff = slot * period_slot;
1979 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1980 /*
1981 * Most memory accesses are shared with other tasks.
1982 * There is no point in continuing fast NUMA scanning,
1983 * since other tasks may just move the memory elsewhere.
1984 */
1985 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1986 if (!slot)
1987 slot = 1;
1988 diff = slot * period_slot;
1989 } else {
04bb2f94 1990 /*
37ec97de
RR
1991 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1992 * yet they are not on the local NUMA node. Speed up
1993 * NUMA scanning to get the memory moved over.
04bb2f94 1994 */
37ec97de
RR
1995 int ratio = max(lr_ratio, ps_ratio);
1996 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1997 }
1998
1999 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2000 task_scan_min(p), task_scan_max(p));
2001 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2002}
2003
7e2703e6
RR
2004/*
2005 * Get the fraction of time the task has been running since the last
2006 * NUMA placement cycle. The scheduler keeps similar statistics, but
2007 * decays those on a 32ms period, which is orders of magnitude off
2008 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2009 * stats only if the task is so new there are no NUMA statistics yet.
2010 */
2011static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2012{
2013 u64 runtime, delta, now;
2014 /* Use the start of this time slice to avoid calculations. */
2015 now = p->se.exec_start;
2016 runtime = p->se.sum_exec_runtime;
2017
2018 if (p->last_task_numa_placement) {
2019 delta = runtime - p->last_sum_exec_runtime;
2020 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2021
2022 /* Avoid time going backwards, prevent potential divide error: */
2023 if (unlikely((s64)*period < 0))
2024 *period = 0;
7e2703e6 2025 } else {
c7b50216 2026 delta = p->se.avg.load_sum;
9d89c257 2027 *period = LOAD_AVG_MAX;
7e2703e6
RR
2028 }
2029
2030 p->last_sum_exec_runtime = runtime;
2031 p->last_task_numa_placement = now;
2032
2033 return delta;
2034}
2035
54009416
RR
2036/*
2037 * Determine the preferred nid for a task in a numa_group. This needs to
2038 * be done in a way that produces consistent results with group_weight,
2039 * otherwise workloads might not converge.
2040 */
2041static int preferred_group_nid(struct task_struct *p, int nid)
2042{
2043 nodemask_t nodes;
2044 int dist;
2045
2046 /* Direct connections between all NUMA nodes. */
2047 if (sched_numa_topology_type == NUMA_DIRECT)
2048 return nid;
2049
2050 /*
2051 * On a system with glueless mesh NUMA topology, group_weight
2052 * scores nodes according to the number of NUMA hinting faults on
2053 * both the node itself, and on nearby nodes.
2054 */
2055 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2056 unsigned long score, max_score = 0;
2057 int node, max_node = nid;
2058
2059 dist = sched_max_numa_distance;
2060
2061 for_each_online_node(node) {
2062 score = group_weight(p, node, dist);
2063 if (score > max_score) {
2064 max_score = score;
2065 max_node = node;
2066 }
2067 }
2068 return max_node;
2069 }
2070
2071 /*
2072 * Finding the preferred nid in a system with NUMA backplane
2073 * interconnect topology is more involved. The goal is to locate
2074 * tasks from numa_groups near each other in the system, and
2075 * untangle workloads from different sides of the system. This requires
2076 * searching down the hierarchy of node groups, recursively searching
2077 * inside the highest scoring group of nodes. The nodemask tricks
2078 * keep the complexity of the search down.
2079 */
2080 nodes = node_online_map;
2081 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2082 unsigned long max_faults = 0;
81907478 2083 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2084 int a, b;
2085
2086 /* Are there nodes at this distance from each other? */
2087 if (!find_numa_distance(dist))
2088 continue;
2089
2090 for_each_node_mask(a, nodes) {
2091 unsigned long faults = 0;
2092 nodemask_t this_group;
2093 nodes_clear(this_group);
2094
2095 /* Sum group's NUMA faults; includes a==b case. */
2096 for_each_node_mask(b, nodes) {
2097 if (node_distance(a, b) < dist) {
2098 faults += group_faults(p, b);
2099 node_set(b, this_group);
2100 node_clear(b, nodes);
2101 }
2102 }
2103
2104 /* Remember the top group. */
2105 if (faults > max_faults) {
2106 max_faults = faults;
2107 max_group = this_group;
2108 /*
2109 * subtle: at the smallest distance there is
2110 * just one node left in each "group", the
2111 * winner is the preferred nid.
2112 */
2113 nid = a;
2114 }
2115 }
2116 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2117 if (!max_faults)
2118 break;
54009416
RR
2119 nodes = max_group;
2120 }
2121 return nid;
2122}
2123
cbee9f88
PZ
2124static void task_numa_placement(struct task_struct *p)
2125{
98fa15f3 2126 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2127 unsigned long max_faults = 0;
04bb2f94 2128 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2129 unsigned long total_faults;
2130 u64 runtime, period;
7dbd13ed 2131 spinlock_t *group_lock = NULL;
cb361d8c 2132 struct numa_group *ng;
cbee9f88 2133
7e5a2c17
JL
2134 /*
2135 * The p->mm->numa_scan_seq field gets updated without
2136 * exclusive access. Use READ_ONCE() here to ensure
2137 * that the field is read in a single access:
2138 */
316c1608 2139 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2140 if (p->numa_scan_seq == seq)
2141 return;
2142 p->numa_scan_seq = seq;
598f0ec0 2143 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2144
7e2703e6
RR
2145 total_faults = p->numa_faults_locality[0] +
2146 p->numa_faults_locality[1];
2147 runtime = numa_get_avg_runtime(p, &period);
2148
7dbd13ed 2149 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2150 ng = deref_curr_numa_group(p);
2151 if (ng) {
2152 group_lock = &ng->lock;
60e69eed 2153 spin_lock_irq(group_lock);
7dbd13ed
MG
2154 }
2155
688b7585
MG
2156 /* Find the node with the highest number of faults */
2157 for_each_online_node(nid) {
44dba3d5
IM
2158 /* Keep track of the offsets in numa_faults array */
2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2160 unsigned long faults = 0, group_faults = 0;
44dba3d5 2161 int priv;
745d6147 2162
be1e4e76 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2164 long diff, f_diff, f_weight;
8c8a743c 2165
44dba3d5
IM
2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2170
ac8e895b 2171 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 fault_types[priv] += p->numa_faults[membuf_idx];
2174 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2175
7e2703e6
RR
2176 /*
2177 * Normalize the faults_from, so all tasks in a group
2178 * count according to CPU use, instead of by the raw
2179 * number of faults. Tasks with little runtime have
2180 * little over-all impact on throughput, and thus their
2181 * faults are less important.
2182 */
2183 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2185 (total_faults + 1);
44dba3d5
IM
2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2188
44dba3d5
IM
2189 p->numa_faults[mem_idx] += diff;
2190 p->numa_faults[cpu_idx] += f_diff;
2191 faults += p->numa_faults[mem_idx];
83e1d2cd 2192 p->total_numa_faults += diff;
cb361d8c 2193 if (ng) {
44dba3d5
IM
2194 /*
2195 * safe because we can only change our own group
2196 *
2197 * mem_idx represents the offset for a given
2198 * nid and priv in a specific region because it
2199 * is at the beginning of the numa_faults array.
2200 */
cb361d8c
JH
2201 ng->faults[mem_idx] += diff;
2202 ng->faults_cpu[mem_idx] += f_diff;
2203 ng->total_faults += diff;
2204 group_faults += ng->faults[mem_idx];
8c8a743c 2205 }
ac8e895b
MG
2206 }
2207
cb361d8c 2208 if (!ng) {
f03bb676
SD
2209 if (faults > max_faults) {
2210 max_faults = faults;
2211 max_nid = nid;
2212 }
2213 } else if (group_faults > max_faults) {
2214 max_faults = group_faults;
688b7585
MG
2215 max_nid = nid;
2216 }
83e1d2cd
MG
2217 }
2218
cb361d8c
JH
2219 if (ng) {
2220 numa_group_count_active_nodes(ng);
60e69eed 2221 spin_unlock_irq(group_lock);
f03bb676 2222 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2223 }
2224
bb97fc31
RR
2225 if (max_faults) {
2226 /* Set the new preferred node */
2227 if (max_nid != p->numa_preferred_nid)
2228 sched_setnuma(p, max_nid);
3a7053b3 2229 }
30619c89
SD
2230
2231 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2232}
2233
8c8a743c
PZ
2234static inline int get_numa_group(struct numa_group *grp)
2235{
c45a7795 2236 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2237}
2238
2239static inline void put_numa_group(struct numa_group *grp)
2240{
c45a7795 2241 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2242 kfree_rcu(grp, rcu);
2243}
2244
3e6a9418
MG
2245static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2246 int *priv)
8c8a743c
PZ
2247{
2248 struct numa_group *grp, *my_grp;
2249 struct task_struct *tsk;
2250 bool join = false;
2251 int cpu = cpupid_to_cpu(cpupid);
2252 int i;
2253
cb361d8c 2254 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2255 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2256 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2257
2258 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2259 if (!grp)
2260 return;
2261
c45a7795 2262 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2263 grp->active_nodes = 1;
2264 grp->max_faults_cpu = 0;
8c8a743c 2265 spin_lock_init(&grp->lock);
e29cf08b 2266 grp->gid = p->pid;
50ec8a40 2267 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2268 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2269 nr_node_ids;
8c8a743c 2270
be1e4e76 2271 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2272 grp->faults[i] = p->numa_faults[i];
8c8a743c 2273
989348b5 2274 grp->total_faults = p->total_numa_faults;
83e1d2cd 2275
8c8a743c
PZ
2276 grp->nr_tasks++;
2277 rcu_assign_pointer(p->numa_group, grp);
2278 }
2279
2280 rcu_read_lock();
316c1608 2281 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2282
2283 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2284 goto no_join;
8c8a743c
PZ
2285
2286 grp = rcu_dereference(tsk->numa_group);
2287 if (!grp)
3354781a 2288 goto no_join;
8c8a743c 2289
cb361d8c 2290 my_grp = deref_curr_numa_group(p);
8c8a743c 2291 if (grp == my_grp)
3354781a 2292 goto no_join;
8c8a743c
PZ
2293
2294 /*
2295 * Only join the other group if its bigger; if we're the bigger group,
2296 * the other task will join us.
2297 */
2298 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2299 goto no_join;
8c8a743c
PZ
2300
2301 /*
2302 * Tie-break on the grp address.
2303 */
2304 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2305 goto no_join;
8c8a743c 2306
dabe1d99
RR
2307 /* Always join threads in the same process. */
2308 if (tsk->mm == current->mm)
2309 join = true;
2310
2311 /* Simple filter to avoid false positives due to PID collisions */
2312 if (flags & TNF_SHARED)
2313 join = true;
8c8a743c 2314
3e6a9418
MG
2315 /* Update priv based on whether false sharing was detected */
2316 *priv = !join;
2317
dabe1d99 2318 if (join && !get_numa_group(grp))
3354781a 2319 goto no_join;
8c8a743c 2320
8c8a743c
PZ
2321 rcu_read_unlock();
2322
2323 if (!join)
2324 return;
2325
60e69eed
MG
2326 BUG_ON(irqs_disabled());
2327 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2328
be1e4e76 2329 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2330 my_grp->faults[i] -= p->numa_faults[i];
2331 grp->faults[i] += p->numa_faults[i];
8c8a743c 2332 }
989348b5
MG
2333 my_grp->total_faults -= p->total_numa_faults;
2334 grp->total_faults += p->total_numa_faults;
8c8a743c 2335
8c8a743c
PZ
2336 my_grp->nr_tasks--;
2337 grp->nr_tasks++;
2338
2339 spin_unlock(&my_grp->lock);
60e69eed 2340 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2341
2342 rcu_assign_pointer(p->numa_group, grp);
2343
2344 put_numa_group(my_grp);
3354781a
PZ
2345 return;
2346
2347no_join:
2348 rcu_read_unlock();
2349 return;
8c8a743c
PZ
2350}
2351
16d51a59
JH
2352/*
2353 * Get rid of NUMA staticstics associated with a task (either current or dead).
2354 * If @final is set, the task is dead and has reached refcount zero, so we can
2355 * safely free all relevant data structures. Otherwise, there might be
2356 * concurrent reads from places like load balancing and procfs, and we should
2357 * reset the data back to default state without freeing ->numa_faults.
2358 */
2359void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2360{
cb361d8c
JH
2361 /* safe: p either is current or is being freed by current */
2362 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2363 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2364 unsigned long flags;
2365 int i;
8c8a743c 2366
16d51a59
JH
2367 if (!numa_faults)
2368 return;
2369
8c8a743c 2370 if (grp) {
e9dd685c 2371 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2372 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2373 grp->faults[i] -= p->numa_faults[i];
989348b5 2374 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2375
8c8a743c 2376 grp->nr_tasks--;
e9dd685c 2377 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2378 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2379 put_numa_group(grp);
2380 }
2381
16d51a59
JH
2382 if (final) {
2383 p->numa_faults = NULL;
2384 kfree(numa_faults);
2385 } else {
2386 p->total_numa_faults = 0;
2387 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2388 numa_faults[i] = 0;
2389 }
8c8a743c
PZ
2390}
2391
cbee9f88
PZ
2392/*
2393 * Got a PROT_NONE fault for a page on @node.
2394 */
58b46da3 2395void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2396{
2397 struct task_struct *p = current;
6688cc05 2398 bool migrated = flags & TNF_MIGRATED;
58b46da3 2399 int cpu_node = task_node(current);
792568ec 2400 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2401 struct numa_group *ng;
ac8e895b 2402 int priv;
cbee9f88 2403
2a595721 2404 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2405 return;
2406
9ff1d9ff
MG
2407 /* for example, ksmd faulting in a user's mm */
2408 if (!p->mm)
2409 return;
2410
f809ca9a 2411 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2412 if (unlikely(!p->numa_faults)) {
2413 int size = sizeof(*p->numa_faults) *
be1e4e76 2414 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2415
44dba3d5
IM
2416 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2417 if (!p->numa_faults)
f809ca9a 2418 return;
745d6147 2419
83e1d2cd 2420 p->total_numa_faults = 0;
04bb2f94 2421 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2422 }
cbee9f88 2423
8c8a743c
PZ
2424 /*
2425 * First accesses are treated as private, otherwise consider accesses
2426 * to be private if the accessing pid has not changed
2427 */
2428 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2429 priv = 1;
2430 } else {
2431 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2432 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2433 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2434 }
2435
792568ec
RR
2436 /*
2437 * If a workload spans multiple NUMA nodes, a shared fault that
2438 * occurs wholly within the set of nodes that the workload is
2439 * actively using should be counted as local. This allows the
2440 * scan rate to slow down when a workload has settled down.
2441 */
cb361d8c 2442 ng = deref_curr_numa_group(p);
4142c3eb
RR
2443 if (!priv && !local && ng && ng->active_nodes > 1 &&
2444 numa_is_active_node(cpu_node, ng) &&
2445 numa_is_active_node(mem_node, ng))
792568ec
RR
2446 local = 1;
2447
2739d3ee 2448 /*
e1ff516a
YW
2449 * Retry to migrate task to preferred node periodically, in case it
2450 * previously failed, or the scheduler moved us.
2739d3ee 2451 */
b6a60cf3
SD
2452 if (time_after(jiffies, p->numa_migrate_retry)) {
2453 task_numa_placement(p);
6b9a7460 2454 numa_migrate_preferred(p);
b6a60cf3 2455 }
6b9a7460 2456
b32e86b4
IM
2457 if (migrated)
2458 p->numa_pages_migrated += pages;
074c2381
MG
2459 if (flags & TNF_MIGRATE_FAIL)
2460 p->numa_faults_locality[2] += pages;
b32e86b4 2461
44dba3d5
IM
2462 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2463 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2464 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2465}
2466
6e5fb223
PZ
2467static void reset_ptenuma_scan(struct task_struct *p)
2468{
7e5a2c17
JL
2469 /*
2470 * We only did a read acquisition of the mmap sem, so
2471 * p->mm->numa_scan_seq is written to without exclusive access
2472 * and the update is not guaranteed to be atomic. That's not
2473 * much of an issue though, since this is just used for
2474 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2475 * expensive, to avoid any form of compiler optimizations:
2476 */
316c1608 2477 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2478 p->mm->numa_scan_offset = 0;
2479}
2480
cbee9f88
PZ
2481/*
2482 * The expensive part of numa migration is done from task_work context.
2483 * Triggered from task_tick_numa().
2484 */
9434f9f5 2485static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2486{
2487 unsigned long migrate, next_scan, now = jiffies;
2488 struct task_struct *p = current;
2489 struct mm_struct *mm = p->mm;
51170840 2490 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2491 struct vm_area_struct *vma;
9f40604c 2492 unsigned long start, end;
598f0ec0 2493 unsigned long nr_pte_updates = 0;
4620f8c1 2494 long pages, virtpages;
cbee9f88 2495
9148a3a1 2496 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2497
b34920d4 2498 work->next = work;
cbee9f88
PZ
2499 /*
2500 * Who cares about NUMA placement when they're dying.
2501 *
2502 * NOTE: make sure not to dereference p->mm before this check,
2503 * exit_task_work() happens _after_ exit_mm() so we could be called
2504 * without p->mm even though we still had it when we enqueued this
2505 * work.
2506 */
2507 if (p->flags & PF_EXITING)
2508 return;
2509
930aa174 2510 if (!mm->numa_next_scan) {
7e8d16b6
MG
2511 mm->numa_next_scan = now +
2512 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2513 }
2514
cbee9f88
PZ
2515 /*
2516 * Enforce maximal scan/migration frequency..
2517 */
2518 migrate = mm->numa_next_scan;
2519 if (time_before(now, migrate))
2520 return;
2521
598f0ec0
MG
2522 if (p->numa_scan_period == 0) {
2523 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2524 p->numa_scan_period = task_scan_start(p);
598f0ec0 2525 }
cbee9f88 2526
fb003b80 2527 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2528 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2529 return;
2530
19a78d11
PZ
2531 /*
2532 * Delay this task enough that another task of this mm will likely win
2533 * the next time around.
2534 */
2535 p->node_stamp += 2 * TICK_NSEC;
2536
9f40604c
MG
2537 start = mm->numa_scan_offset;
2538 pages = sysctl_numa_balancing_scan_size;
2539 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2540 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2541 if (!pages)
2542 return;
cbee9f88 2543
4620f8c1 2544
8655d549
VB
2545 if (!down_read_trylock(&mm->mmap_sem))
2546 return;
9f40604c 2547 vma = find_vma(mm, start);
6e5fb223
PZ
2548 if (!vma) {
2549 reset_ptenuma_scan(p);
9f40604c 2550 start = 0;
6e5fb223
PZ
2551 vma = mm->mmap;
2552 }
9f40604c 2553 for (; vma; vma = vma->vm_next) {
6b79c57b 2554 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2555 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2556 continue;
6b79c57b 2557 }
6e5fb223 2558
4591ce4f
MG
2559 /*
2560 * Shared library pages mapped by multiple processes are not
2561 * migrated as it is expected they are cache replicated. Avoid
2562 * hinting faults in read-only file-backed mappings or the vdso
2563 * as migrating the pages will be of marginal benefit.
2564 */
2565 if (!vma->vm_mm ||
2566 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2567 continue;
2568
3c67f474
MG
2569 /*
2570 * Skip inaccessible VMAs to avoid any confusion between
2571 * PROT_NONE and NUMA hinting ptes
2572 */
2573 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2574 continue;
4591ce4f 2575
9f40604c
MG
2576 do {
2577 start = max(start, vma->vm_start);
2578 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2579 end = min(end, vma->vm_end);
4620f8c1 2580 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2581
2582 /*
4620f8c1
RR
2583 * Try to scan sysctl_numa_balancing_size worth of
2584 * hpages that have at least one present PTE that
2585 * is not already pte-numa. If the VMA contains
2586 * areas that are unused or already full of prot_numa
2587 * PTEs, scan up to virtpages, to skip through those
2588 * areas faster.
598f0ec0
MG
2589 */
2590 if (nr_pte_updates)
2591 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2592 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2593
9f40604c 2594 start = end;
4620f8c1 2595 if (pages <= 0 || virtpages <= 0)
9f40604c 2596 goto out;
3cf1962c
RR
2597
2598 cond_resched();
9f40604c 2599 } while (end != vma->vm_end);
cbee9f88 2600 }
6e5fb223 2601
9f40604c 2602out:
6e5fb223 2603 /*
c69307d5
PZ
2604 * It is possible to reach the end of the VMA list but the last few
2605 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2606 * would find the !migratable VMA on the next scan but not reset the
2607 * scanner to the start so check it now.
6e5fb223
PZ
2608 */
2609 if (vma)
9f40604c 2610 mm->numa_scan_offset = start;
6e5fb223
PZ
2611 else
2612 reset_ptenuma_scan(p);
2613 up_read(&mm->mmap_sem);
51170840
RR
2614
2615 /*
2616 * Make sure tasks use at least 32x as much time to run other code
2617 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2618 * Usually update_task_scan_period slows down scanning enough; on an
2619 * overloaded system we need to limit overhead on a per task basis.
2620 */
2621 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2622 u64 diff = p->se.sum_exec_runtime - runtime;
2623 p->node_stamp += 32 * diff;
2624 }
cbee9f88
PZ
2625}
2626
d35927a1
VS
2627void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2628{
2629 int mm_users = 0;
2630 struct mm_struct *mm = p->mm;
2631
2632 if (mm) {
2633 mm_users = atomic_read(&mm->mm_users);
2634 if (mm_users == 1) {
2635 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2636 mm->numa_scan_seq = 0;
2637 }
2638 }
2639 p->node_stamp = 0;
2640 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2641 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2642 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2643 p->numa_work.next = &p->numa_work;
2644 p->numa_faults = NULL;
2645 RCU_INIT_POINTER(p->numa_group, NULL);
2646 p->last_task_numa_placement = 0;
2647 p->last_sum_exec_runtime = 0;
2648
b34920d4
VS
2649 init_task_work(&p->numa_work, task_numa_work);
2650
d35927a1
VS
2651 /* New address space, reset the preferred nid */
2652 if (!(clone_flags & CLONE_VM)) {
2653 p->numa_preferred_nid = NUMA_NO_NODE;
2654 return;
2655 }
2656
2657 /*
2658 * New thread, keep existing numa_preferred_nid which should be copied
2659 * already by arch_dup_task_struct but stagger when scans start.
2660 */
2661 if (mm) {
2662 unsigned int delay;
2663
2664 delay = min_t(unsigned int, task_scan_max(current),
2665 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2666 delay += 2 * TICK_NSEC;
2667 p->node_stamp = delay;
2668 }
2669}
2670
cbee9f88
PZ
2671/*
2672 * Drive the periodic memory faults..
2673 */
b1546edc 2674static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2675{
2676 struct callback_head *work = &curr->numa_work;
2677 u64 period, now;
2678
2679 /*
2680 * We don't care about NUMA placement if we don't have memory.
2681 */
2682 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2683 return;
2684
2685 /*
2686 * Using runtime rather than walltime has the dual advantage that
2687 * we (mostly) drive the selection from busy threads and that the
2688 * task needs to have done some actual work before we bother with
2689 * NUMA placement.
2690 */
2691 now = curr->se.sum_exec_runtime;
2692 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2693
25b3e5a3 2694 if (now > curr->node_stamp + period) {
4b96a29b 2695 if (!curr->node_stamp)
b5dd77c8 2696 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2697 curr->node_stamp += period;
cbee9f88 2698
b34920d4 2699 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2700 task_work_add(curr, work, true);
cbee9f88
PZ
2701 }
2702}
3fed382b 2703
3f9672ba
SD
2704static void update_scan_period(struct task_struct *p, int new_cpu)
2705{
2706 int src_nid = cpu_to_node(task_cpu(p));
2707 int dst_nid = cpu_to_node(new_cpu);
2708
05cbdf4f
MG
2709 if (!static_branch_likely(&sched_numa_balancing))
2710 return;
2711
3f9672ba
SD
2712 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2713 return;
2714
05cbdf4f
MG
2715 if (src_nid == dst_nid)
2716 return;
2717
2718 /*
2719 * Allow resets if faults have been trapped before one scan
2720 * has completed. This is most likely due to a new task that
2721 * is pulled cross-node due to wakeups or load balancing.
2722 */
2723 if (p->numa_scan_seq) {
2724 /*
2725 * Avoid scan adjustments if moving to the preferred
2726 * node or if the task was not previously running on
2727 * the preferred node.
2728 */
2729 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2730 (p->numa_preferred_nid != NUMA_NO_NODE &&
2731 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2732 return;
2733 }
2734
2735 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2736}
2737
cbee9f88
PZ
2738#else
2739static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2740{
2741}
0ec8aa00
PZ
2742
2743static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2744{
2745}
2746
2747static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2748{
2749}
3fed382b 2750
3f9672ba
SD
2751static inline void update_scan_period(struct task_struct *p, int new_cpu)
2752{
2753}
2754
cbee9f88
PZ
2755#endif /* CONFIG_NUMA_BALANCING */
2756
30cfdcfc
DA
2757static void
2758account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759{
2760 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2761#ifdef CONFIG_SMP
0ec8aa00
PZ
2762 if (entity_is_task(se)) {
2763 struct rq *rq = rq_of(cfs_rq);
2764
2765 account_numa_enqueue(rq, task_of(se));
2766 list_add(&se->group_node, &rq->cfs_tasks);
2767 }
367456c7 2768#endif
30cfdcfc 2769 cfs_rq->nr_running++;
30cfdcfc
DA
2770}
2771
2772static void
2773account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2774{
2775 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2776#ifdef CONFIG_SMP
0ec8aa00
PZ
2777 if (entity_is_task(se)) {
2778 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2779 list_del_init(&se->group_node);
0ec8aa00 2780 }
bfdb198c 2781#endif
30cfdcfc 2782 cfs_rq->nr_running--;
30cfdcfc
DA
2783}
2784
8d5b9025
PZ
2785/*
2786 * Signed add and clamp on underflow.
2787 *
2788 * Explicitly do a load-store to ensure the intermediate value never hits
2789 * memory. This allows lockless observations without ever seeing the negative
2790 * values.
2791 */
2792#define add_positive(_ptr, _val) do { \
2793 typeof(_ptr) ptr = (_ptr); \
2794 typeof(_val) val = (_val); \
2795 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2796 \
2797 res = var + val; \
2798 \
2799 if (val < 0 && res > var) \
2800 res = 0; \
2801 \
2802 WRITE_ONCE(*ptr, res); \
2803} while (0)
2804
2805/*
2806 * Unsigned subtract and clamp on underflow.
2807 *
2808 * Explicitly do a load-store to ensure the intermediate value never hits
2809 * memory. This allows lockless observations without ever seeing the negative
2810 * values.
2811 */
2812#define sub_positive(_ptr, _val) do { \
2813 typeof(_ptr) ptr = (_ptr); \
2814 typeof(*ptr) val = (_val); \
2815 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2816 res = var - val; \
2817 if (res > var) \
2818 res = 0; \
2819 WRITE_ONCE(*ptr, res); \
2820} while (0)
2821
b5c0ce7b
PB
2822/*
2823 * Remove and clamp on negative, from a local variable.
2824 *
2825 * A variant of sub_positive(), which does not use explicit load-store
2826 * and is thus optimized for local variable updates.
2827 */
2828#define lsub_positive(_ptr, _val) do { \
2829 typeof(_ptr) ptr = (_ptr); \
2830 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2831} while (0)
2832
8d5b9025 2833#ifdef CONFIG_SMP
8d5b9025
PZ
2834static inline void
2835enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2836{
1ea6c46a
PZ
2837 cfs_rq->runnable_weight += se->runnable_weight;
2838
2839 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2840 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2841}
2842
2843static inline void
2844dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2845{
1ea6c46a
PZ
2846 cfs_rq->runnable_weight -= se->runnable_weight;
2847
2848 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2849 sub_positive(&cfs_rq->avg.runnable_load_sum,
2850 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2851}
2852
2853static inline void
2854enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2855{
2856 cfs_rq->avg.load_avg += se->avg.load_avg;
2857 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2858}
2859
2860static inline void
2861dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2862{
2863 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2864 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2865}
2866#else
2867static inline void
2868enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2869static inline void
2870dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2871static inline void
2872enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2873static inline void
2874dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2875#endif
2876
9059393e 2877static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2878 unsigned long weight, unsigned long runnable)
9059393e
VG
2879{
2880 if (se->on_rq) {
2881 /* commit outstanding execution time */
2882 if (cfs_rq->curr == se)
2883 update_curr(cfs_rq);
2884 account_entity_dequeue(cfs_rq, se);
2885 dequeue_runnable_load_avg(cfs_rq, se);
2886 }
2887 dequeue_load_avg(cfs_rq, se);
2888
1ea6c46a 2889 se->runnable_weight = runnable;
9059393e
VG
2890 update_load_set(&se->load, weight);
2891
2892#ifdef CONFIG_SMP
1ea6c46a
PZ
2893 do {
2894 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2895
2896 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2897 se->avg.runnable_load_avg =
2898 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2899 } while (0);
9059393e
VG
2900#endif
2901
2902 enqueue_load_avg(cfs_rq, se);
2903 if (se->on_rq) {
2904 account_entity_enqueue(cfs_rq, se);
2905 enqueue_runnable_load_avg(cfs_rq, se);
2906 }
2907}
2908
2909void reweight_task(struct task_struct *p, int prio)
2910{
2911 struct sched_entity *se = &p->se;
2912 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2913 struct load_weight *load = &se->load;
2914 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2915
1ea6c46a 2916 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2917 load->inv_weight = sched_prio_to_wmult[prio];
2918}
2919
3ff6dcac 2920#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2921#ifdef CONFIG_SMP
cef27403
PZ
2922/*
2923 * All this does is approximate the hierarchical proportion which includes that
2924 * global sum we all love to hate.
2925 *
2926 * That is, the weight of a group entity, is the proportional share of the
2927 * group weight based on the group runqueue weights. That is:
2928 *
2929 * tg->weight * grq->load.weight
2930 * ge->load.weight = ----------------------------- (1)
2931 * \Sum grq->load.weight
2932 *
2933 * Now, because computing that sum is prohibitively expensive to compute (been
2934 * there, done that) we approximate it with this average stuff. The average
2935 * moves slower and therefore the approximation is cheaper and more stable.
2936 *
2937 * So instead of the above, we substitute:
2938 *
2939 * grq->load.weight -> grq->avg.load_avg (2)
2940 *
2941 * which yields the following:
2942 *
2943 * tg->weight * grq->avg.load_avg
2944 * ge->load.weight = ------------------------------ (3)
2945 * tg->load_avg
2946 *
2947 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2948 *
2949 * That is shares_avg, and it is right (given the approximation (2)).
2950 *
2951 * The problem with it is that because the average is slow -- it was designed
2952 * to be exactly that of course -- this leads to transients in boundary
2953 * conditions. In specific, the case where the group was idle and we start the
2954 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2955 * yielding bad latency etc..
2956 *
2957 * Now, in that special case (1) reduces to:
2958 *
2959 * tg->weight * grq->load.weight
17de4ee0 2960 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2961 * grp->load.weight
2962 *
2963 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2964 *
2965 * So what we do is modify our approximation (3) to approach (4) in the (near)
2966 * UP case, like:
2967 *
2968 * ge->load.weight =
2969 *
2970 * tg->weight * grq->load.weight
2971 * --------------------------------------------------- (5)
2972 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2973 *
17de4ee0
PZ
2974 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2975 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2976 *
2977 *
2978 * tg->weight * grq->load.weight
2979 * ge->load.weight = ----------------------------- (6)
2980 * tg_load_avg'
2981 *
2982 * Where:
2983 *
2984 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2985 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2986 *
2987 * And that is shares_weight and is icky. In the (near) UP case it approaches
2988 * (4) while in the normal case it approaches (3). It consistently
2989 * overestimates the ge->load.weight and therefore:
2990 *
2991 * \Sum ge->load.weight >= tg->weight
2992 *
2993 * hence icky!
2994 */
2c8e4dce 2995static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2996{
7c80cfc9
PZ
2997 long tg_weight, tg_shares, load, shares;
2998 struct task_group *tg = cfs_rq->tg;
2999
3000 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3001
3d4b60d3 3002 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3003
ea1dc6fc 3004 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3005
ea1dc6fc
PZ
3006 /* Ensure tg_weight >= load */
3007 tg_weight -= cfs_rq->tg_load_avg_contrib;
3008 tg_weight += load;
3ff6dcac 3009
7c80cfc9 3010 shares = (tg_shares * load);
cf5f0acf
PZ
3011 if (tg_weight)
3012 shares /= tg_weight;
3ff6dcac 3013
b8fd8423
DE
3014 /*
3015 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3016 * of a group with small tg->shares value. It is a floor value which is
3017 * assigned as a minimum load.weight to the sched_entity representing
3018 * the group on a CPU.
3019 *
3020 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3021 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3022 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3023 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3024 * instead of 0.
3025 */
7c80cfc9 3026 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3027}
2c8e4dce
JB
3028
3029/*
17de4ee0
PZ
3030 * This calculates the effective runnable weight for a group entity based on
3031 * the group entity weight calculated above.
3032 *
3033 * Because of the above approximation (2), our group entity weight is
3034 * an load_avg based ratio (3). This means that it includes blocked load and
3035 * does not represent the runnable weight.
3036 *
3037 * Approximate the group entity's runnable weight per ratio from the group
3038 * runqueue:
3039 *
3040 * grq->avg.runnable_load_avg
3041 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3042 * grq->avg.load_avg
3043 *
3044 * However, analogous to above, since the avg numbers are slow, this leads to
3045 * transients in the from-idle case. Instead we use:
3046 *
3047 * ge->runnable_weight = ge->load.weight *
3048 *
3049 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3050 * ----------------------------------------------------- (8)
3051 * max(grq->avg.load_avg, grq->load.weight)
3052 *
3053 * Where these max() serve both to use the 'instant' values to fix the slow
3054 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3055 */
3056static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3057{
17de4ee0
PZ
3058 long runnable, load_avg;
3059
3060 load_avg = max(cfs_rq->avg.load_avg,
3061 scale_load_down(cfs_rq->load.weight));
3062
3063 runnable = max(cfs_rq->avg.runnable_load_avg,
3064 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3065
3066 runnable *= shares;
3067 if (load_avg)
3068 runnable /= load_avg;
17de4ee0 3069
2c8e4dce
JB
3070 return clamp_t(long, runnable, MIN_SHARES, shares);
3071}
387f77cc 3072#endif /* CONFIG_SMP */
ea1dc6fc 3073
82958366
PT
3074static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3075
1ea6c46a
PZ
3076/*
3077 * Recomputes the group entity based on the current state of its group
3078 * runqueue.
3079 */
3080static void update_cfs_group(struct sched_entity *se)
2069dd75 3081{
1ea6c46a
PZ
3082 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3083 long shares, runnable;
2069dd75 3084
1ea6c46a 3085 if (!gcfs_rq)
89ee048f
VG
3086 return;
3087
1ea6c46a 3088 if (throttled_hierarchy(gcfs_rq))
2069dd75 3089 return;
89ee048f 3090
3ff6dcac 3091#ifndef CONFIG_SMP
1ea6c46a 3092 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3093
3094 if (likely(se->load.weight == shares))
3ff6dcac 3095 return;
7c80cfc9 3096#else
2c8e4dce
JB
3097 shares = calc_group_shares(gcfs_rq);
3098 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3099#endif
2069dd75 3100
1ea6c46a 3101 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3102}
89ee048f 3103
2069dd75 3104#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3105static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3106{
3107}
3108#endif /* CONFIG_FAIR_GROUP_SCHED */
3109
ea14b57e 3110static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3111{
43964409
LT
3112 struct rq *rq = rq_of(cfs_rq);
3113
ea14b57e 3114 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3115 /*
3116 * There are a few boundary cases this might miss but it should
3117 * get called often enough that that should (hopefully) not be
9783be2c 3118 * a real problem.
a030d738
VK
3119 *
3120 * It will not get called when we go idle, because the idle
3121 * thread is a different class (!fair), nor will the utilization
3122 * number include things like RT tasks.
3123 *
3124 * As is, the util number is not freq-invariant (we'd have to
3125 * implement arch_scale_freq_capacity() for that).
3126 *
3127 * See cpu_util().
3128 */
ea14b57e 3129 cpufreq_update_util(rq, flags);
a030d738
VK
3130 }
3131}
3132
141965c7 3133#ifdef CONFIG_SMP
c566e8e9 3134#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3135/**
3136 * update_tg_load_avg - update the tg's load avg
3137 * @cfs_rq: the cfs_rq whose avg changed
3138 * @force: update regardless of how small the difference
3139 *
3140 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3141 * However, because tg->load_avg is a global value there are performance
3142 * considerations.
3143 *
3144 * In order to avoid having to look at the other cfs_rq's, we use a
3145 * differential update where we store the last value we propagated. This in
3146 * turn allows skipping updates if the differential is 'small'.
3147 *
815abf5a 3148 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3149 */
9d89c257 3150static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3151{
9d89c257 3152 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3153
aa0b7ae0
WL
3154 /*
3155 * No need to update load_avg for root_task_group as it is not used.
3156 */
3157 if (cfs_rq->tg == &root_task_group)
3158 return;
3159
9d89c257
YD
3160 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3161 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3162 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3163 }
8165e145 3164}
f5f9739d 3165
ad936d86 3166/*
97fb7a0a 3167 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3168 * caller only guarantees p->pi_lock is held; no other assumptions,
3169 * including the state of rq->lock, should be made.
3170 */
3171void set_task_rq_fair(struct sched_entity *se,
3172 struct cfs_rq *prev, struct cfs_rq *next)
3173{
0ccb977f
PZ
3174 u64 p_last_update_time;
3175 u64 n_last_update_time;
3176
ad936d86
BP
3177 if (!sched_feat(ATTACH_AGE_LOAD))
3178 return;
3179
3180 /*
3181 * We are supposed to update the task to "current" time, then its up to
3182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3183 * getting what current time is, so simply throw away the out-of-date
3184 * time. This will result in the wakee task is less decayed, but giving
3185 * the wakee more load sounds not bad.
3186 */
0ccb977f
PZ
3187 if (!(se->avg.last_update_time && prev))
3188 return;
ad936d86
BP
3189
3190#ifndef CONFIG_64BIT
0ccb977f 3191 {
ad936d86
BP
3192 u64 p_last_update_time_copy;
3193 u64 n_last_update_time_copy;
3194
3195 do {
3196 p_last_update_time_copy = prev->load_last_update_time_copy;
3197 n_last_update_time_copy = next->load_last_update_time_copy;
3198
3199 smp_rmb();
3200
3201 p_last_update_time = prev->avg.last_update_time;
3202 n_last_update_time = next->avg.last_update_time;
3203
3204 } while (p_last_update_time != p_last_update_time_copy ||
3205 n_last_update_time != n_last_update_time_copy);
0ccb977f 3206 }
ad936d86 3207#else
0ccb977f
PZ
3208 p_last_update_time = prev->avg.last_update_time;
3209 n_last_update_time = next->avg.last_update_time;
ad936d86 3210#endif
23127296 3211 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3212 se->avg.last_update_time = n_last_update_time;
ad936d86 3213}
09a43ace 3214
0e2d2aaa
PZ
3215
3216/*
3217 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3218 * propagate its contribution. The key to this propagation is the invariant
3219 * that for each group:
3220 *
3221 * ge->avg == grq->avg (1)
3222 *
3223 * _IFF_ we look at the pure running and runnable sums. Because they
3224 * represent the very same entity, just at different points in the hierarchy.
3225 *
a4c3c049
VG
3226 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3227 * sum over (but still wrong, because the group entity and group rq do not have
3228 * their PELT windows aligned).
0e2d2aaa
PZ
3229 *
3230 * However, update_tg_cfs_runnable() is more complex. So we have:
3231 *
3232 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3233 *
3234 * And since, like util, the runnable part should be directly transferable,
3235 * the following would _appear_ to be the straight forward approach:
3236 *
a4c3c049 3237 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3238 *
3239 * And per (1) we have:
3240 *
a4c3c049 3241 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3242 *
3243 * Which gives:
3244 *
3245 * ge->load.weight * grq->avg.load_avg
3246 * ge->avg.load_avg = ----------------------------------- (4)
3247 * grq->load.weight
3248 *
3249 * Except that is wrong!
3250 *
3251 * Because while for entities historical weight is not important and we
3252 * really only care about our future and therefore can consider a pure
3253 * runnable sum, runqueues can NOT do this.
3254 *
3255 * We specifically want runqueues to have a load_avg that includes
3256 * historical weights. Those represent the blocked load, the load we expect
3257 * to (shortly) return to us. This only works by keeping the weights as
3258 * integral part of the sum. We therefore cannot decompose as per (3).
3259 *
a4c3c049
VG
3260 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3261 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3262 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3263 * runnable section of these tasks overlap (or not). If they were to perfectly
3264 * align the rq as a whole would be runnable 2/3 of the time. If however we
3265 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3266 *
a4c3c049 3267 * So we'll have to approximate.. :/
0e2d2aaa 3268 *
a4c3c049 3269 * Given the constraint:
0e2d2aaa 3270 *
a4c3c049 3271 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3272 *
a4c3c049
VG
3273 * We can construct a rule that adds runnable to a rq by assuming minimal
3274 * overlap.
0e2d2aaa 3275 *
a4c3c049 3276 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3277 *
a4c3c049 3278 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3279 *
a4c3c049 3280 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3281 *
0e2d2aaa
PZ
3282 */
3283
09a43ace 3284static inline void
0e2d2aaa 3285update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3286{
09a43ace
VG
3287 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3288
3289 /* Nothing to update */
3290 if (!delta)
3291 return;
3292
a4c3c049
VG
3293 /*
3294 * The relation between sum and avg is:
3295 *
3296 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3297 *
3298 * however, the PELT windows are not aligned between grq and gse.
3299 */
3300
09a43ace
VG
3301 /* Set new sched_entity's utilization */
3302 se->avg.util_avg = gcfs_rq->avg.util_avg;
3303 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3304
3305 /* Update parent cfs_rq utilization */
3306 add_positive(&cfs_rq->avg.util_avg, delta);
3307 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3308}
3309
09a43ace 3310static inline void
0e2d2aaa 3311update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3312{
a4c3c049
VG
3313 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3314 unsigned long runnable_load_avg, load_avg;
3315 u64 runnable_load_sum, load_sum = 0;
3316 s64 delta_sum;
09a43ace 3317
0e2d2aaa
PZ
3318 if (!runnable_sum)
3319 return;
09a43ace 3320
0e2d2aaa 3321 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3322
a4c3c049
VG
3323 if (runnable_sum >= 0) {
3324 /*
3325 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3326 * the CPU is saturated running == runnable.
3327 */
3328 runnable_sum += se->avg.load_sum;
3329 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3330 } else {
3331 /*
3332 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3333 * assuming all tasks are equally runnable.
3334 */
3335 if (scale_load_down(gcfs_rq->load.weight)) {
3336 load_sum = div_s64(gcfs_rq->avg.load_sum,
3337 scale_load_down(gcfs_rq->load.weight));
3338 }
3339
3340 /* But make sure to not inflate se's runnable */
3341 runnable_sum = min(se->avg.load_sum, load_sum);
3342 }
3343
3344 /*
3345 * runnable_sum can't be lower than running_sum
23127296
VG
3346 * Rescale running sum to be in the same range as runnable sum
3347 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3348 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3349 */
23127296 3350 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3351 runnable_sum = max(runnable_sum, running_sum);
3352
0e2d2aaa
PZ
3353 load_sum = (s64)se_weight(se) * runnable_sum;
3354 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3355
a4c3c049
VG
3356 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3357 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3358
a4c3c049
VG
3359 se->avg.load_sum = runnable_sum;
3360 se->avg.load_avg = load_avg;
3361 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3362 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3363
1ea6c46a
PZ
3364 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3365 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3366 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3367 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3368
a4c3c049
VG
3369 se->avg.runnable_load_sum = runnable_sum;
3370 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3371
09a43ace 3372 if (se->on_rq) {
a4c3c049
VG
3373 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3374 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3375 }
3376}
3377
0e2d2aaa 3378static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3379{
0e2d2aaa
PZ
3380 cfs_rq->propagate = 1;
3381 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3382}
3383
3384/* Update task and its cfs_rq load average */
3385static inline int propagate_entity_load_avg(struct sched_entity *se)
3386{
0e2d2aaa 3387 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3388
3389 if (entity_is_task(se))
3390 return 0;
3391
0e2d2aaa
PZ
3392 gcfs_rq = group_cfs_rq(se);
3393 if (!gcfs_rq->propagate)
09a43ace
VG
3394 return 0;
3395
0e2d2aaa
PZ
3396 gcfs_rq->propagate = 0;
3397
09a43ace
VG
3398 cfs_rq = cfs_rq_of(se);
3399
0e2d2aaa 3400 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3401
0e2d2aaa
PZ
3402 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3403 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3404
ba19f51f 3405 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3406 trace_pelt_se_tp(se);
ba19f51f 3407
09a43ace
VG
3408 return 1;
3409}
3410
bc427898
VG
3411/*
3412 * Check if we need to update the load and the utilization of a blocked
3413 * group_entity:
3414 */
3415static inline bool skip_blocked_update(struct sched_entity *se)
3416{
3417 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3418
3419 /*
3420 * If sched_entity still have not zero load or utilization, we have to
3421 * decay it:
3422 */
3423 if (se->avg.load_avg || se->avg.util_avg)
3424 return false;
3425
3426 /*
3427 * If there is a pending propagation, we have to update the load and
3428 * the utilization of the sched_entity:
3429 */
0e2d2aaa 3430 if (gcfs_rq->propagate)
bc427898
VG
3431 return false;
3432
3433 /*
3434 * Otherwise, the load and the utilization of the sched_entity is
3435 * already zero and there is no pending propagation, so it will be a
3436 * waste of time to try to decay it:
3437 */
3438 return true;
3439}
3440
6e83125c 3441#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3442
9d89c257 3443static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3444
3445static inline int propagate_entity_load_avg(struct sched_entity *se)
3446{
3447 return 0;
3448}
3449
0e2d2aaa 3450static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3451
6e83125c 3452#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3453
3d30544f
PZ
3454/**
3455 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3456 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3457 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3458 *
3459 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3460 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3461 * post_init_entity_util_avg().
3462 *
3463 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3464 *
7c3edd2c
PZ
3465 * Returns true if the load decayed or we removed load.
3466 *
3467 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3468 * call update_tg_load_avg() when this function returns true.
3d30544f 3469 */
a2c6c91f 3470static inline int
3a123bbb 3471update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3472{
0e2d2aaa 3473 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3474 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3475 int decayed = 0;
2dac754e 3476
2a2f5d4e
PZ
3477 if (cfs_rq->removed.nr) {
3478 unsigned long r;
9a2dd585 3479 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3480
3481 raw_spin_lock(&cfs_rq->removed.lock);
3482 swap(cfs_rq->removed.util_avg, removed_util);
3483 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3484 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3485 cfs_rq->removed.nr = 0;
3486 raw_spin_unlock(&cfs_rq->removed.lock);
3487
2a2f5d4e 3488 r = removed_load;
89741892 3489 sub_positive(&sa->load_avg, r);
9a2dd585 3490 sub_positive(&sa->load_sum, r * divider);
2dac754e 3491
2a2f5d4e 3492 r = removed_util;
89741892 3493 sub_positive(&sa->util_avg, r);
9a2dd585 3494 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3495
0e2d2aaa 3496 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3497
3498 decayed = 1;
9d89c257 3499 }
36ee28e4 3500
23127296 3501 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3502
9d89c257
YD
3503#ifndef CONFIG_64BIT
3504 smp_wmb();
3505 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3506#endif
36ee28e4 3507
2a2f5d4e 3508 if (decayed)
ea14b57e 3509 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3510
2a2f5d4e 3511 return decayed;
21e96f88
SM
3512}
3513
3d30544f
PZ
3514/**
3515 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3516 * @cfs_rq: cfs_rq to attach to
3517 * @se: sched_entity to attach
882a78a9 3518 * @flags: migration hints
3d30544f
PZ
3519 *
3520 * Must call update_cfs_rq_load_avg() before this, since we rely on
3521 * cfs_rq->avg.last_update_time being current.
3522 */
ea14b57e 3523static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3524{
f207934f
PZ
3525 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3526
3527 /*
3528 * When we attach the @se to the @cfs_rq, we must align the decay
3529 * window because without that, really weird and wonderful things can
3530 * happen.
3531 *
3532 * XXX illustrate
3533 */
a05e8c51 3534 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3535 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3536
3537 /*
3538 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3539 * period_contrib. This isn't strictly correct, but since we're
3540 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3541 * _sum a little.
3542 */
3543 se->avg.util_sum = se->avg.util_avg * divider;
3544
3545 se->avg.load_sum = divider;
3546 if (se_weight(se)) {
3547 se->avg.load_sum =
3548 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3549 }
3550
3551 se->avg.runnable_load_sum = se->avg.load_sum;
3552
8d5b9025 3553 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3554 cfs_rq->avg.util_avg += se->avg.util_avg;
3555 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3556
3557 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3558
ea14b57e 3559 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3560
3561 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3562}
3563
3d30544f
PZ
3564/**
3565 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3566 * @cfs_rq: cfs_rq to detach from
3567 * @se: sched_entity to detach
3568 *
3569 * Must call update_cfs_rq_load_avg() before this, since we rely on
3570 * cfs_rq->avg.last_update_time being current.
3571 */
a05e8c51
BP
3572static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3573{
8d5b9025 3574 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3575 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3576 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3577
3578 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3579
ea14b57e 3580 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3581
3582 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3583}
3584
b382a531
PZ
3585/*
3586 * Optional action to be done while updating the load average
3587 */
3588#define UPDATE_TG 0x1
3589#define SKIP_AGE_LOAD 0x2
3590#define DO_ATTACH 0x4
3591
3592/* Update task and its cfs_rq load average */
3593static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3594{
23127296 3595 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3596 int decayed;
3597
3598 /*
3599 * Track task load average for carrying it to new CPU after migrated, and
3600 * track group sched_entity load average for task_h_load calc in migration
3601 */
3602 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3603 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3604
3605 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3606 decayed |= propagate_entity_load_avg(se);
3607
3608 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3609
ea14b57e
PZ
3610 /*
3611 * DO_ATTACH means we're here from enqueue_entity().
3612 * !last_update_time means we've passed through
3613 * migrate_task_rq_fair() indicating we migrated.
3614 *
3615 * IOW we're enqueueing a task on a new CPU.
3616 */
3617 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3618 update_tg_load_avg(cfs_rq, 0);
3619
3620 } else if (decayed && (flags & UPDATE_TG))
3621 update_tg_load_avg(cfs_rq, 0);
3622}
3623
9d89c257 3624#ifndef CONFIG_64BIT
0905f04e
YD
3625static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3626{
9d89c257 3627 u64 last_update_time_copy;
0905f04e 3628 u64 last_update_time;
9ee474f5 3629
9d89c257
YD
3630 do {
3631 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3632 smp_rmb();
3633 last_update_time = cfs_rq->avg.last_update_time;
3634 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3635
3636 return last_update_time;
3637}
9d89c257 3638#else
0905f04e
YD
3639static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3640{
3641 return cfs_rq->avg.last_update_time;
3642}
9d89c257
YD
3643#endif
3644
104cb16d
MR
3645/*
3646 * Synchronize entity load avg of dequeued entity without locking
3647 * the previous rq.
3648 */
71b47eaf 3649static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3650{
3651 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3652 u64 last_update_time;
3653
3654 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3655 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3656}
3657
0905f04e
YD
3658/*
3659 * Task first catches up with cfs_rq, and then subtract
3660 * itself from the cfs_rq (task must be off the queue now).
3661 */
71b47eaf 3662static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3663{
3664 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3665 unsigned long flags;
0905f04e
YD
3666
3667 /*
7dc603c9
PZ
3668 * tasks cannot exit without having gone through wake_up_new_task() ->
3669 * post_init_entity_util_avg() which will have added things to the
3670 * cfs_rq, so we can remove unconditionally.
0905f04e 3671 */
0905f04e 3672
104cb16d 3673 sync_entity_load_avg(se);
2a2f5d4e
PZ
3674
3675 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3676 ++cfs_rq->removed.nr;
3677 cfs_rq->removed.util_avg += se->avg.util_avg;
3678 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3679 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3680 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3681}
642dbc39 3682
7ea241af
YD
3683static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3684{
1ea6c46a 3685 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3686}
3687
3688static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3689{
3690 return cfs_rq->avg.load_avg;
3691}
3692
46f69fa3 3693static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3694
7f65ea42
PB
3695static inline unsigned long task_util(struct task_struct *p)
3696{
3697 return READ_ONCE(p->se.avg.util_avg);
3698}
3699
3700static inline unsigned long _task_util_est(struct task_struct *p)
3701{
3702 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3703
92a801e5 3704 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3705}
3706
3707static inline unsigned long task_util_est(struct task_struct *p)
3708{
3709 return max(task_util(p), _task_util_est(p));
3710}
3711
3712static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3713 struct task_struct *p)
3714{
3715 unsigned int enqueued;
3716
3717 if (!sched_feat(UTIL_EST))
3718 return;
3719
3720 /* Update root cfs_rq's estimated utilization */
3721 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3722 enqueued += _task_util_est(p);
7f65ea42
PB
3723 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3724}
3725
3726/*
3727 * Check if a (signed) value is within a specified (unsigned) margin,
3728 * based on the observation that:
3729 *
3730 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3731 *
3732 * NOTE: this only works when value + maring < INT_MAX.
3733 */
3734static inline bool within_margin(int value, int margin)
3735{
3736 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3737}
3738
3739static void
3740util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3741{
3742 long last_ewma_diff;
3743 struct util_est ue;
10a35e68 3744 int cpu;
7f65ea42
PB
3745
3746 if (!sched_feat(UTIL_EST))
3747 return;
3748
3482d98b
VG
3749 /* Update root cfs_rq's estimated utilization */
3750 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3751 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3752 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3753
3754 /*
3755 * Skip update of task's estimated utilization when the task has not
3756 * yet completed an activation, e.g. being migrated.
3757 */
3758 if (!task_sleep)
3759 return;
3760
d519329f
PB
3761 /*
3762 * If the PELT values haven't changed since enqueue time,
3763 * skip the util_est update.
3764 */
3765 ue = p->se.avg.util_est;
3766 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3767 return;
3768
7f65ea42
PB
3769 /*
3770 * Skip update of task's estimated utilization when its EWMA is
3771 * already ~1% close to its last activation value.
3772 */
d519329f 3773 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3774 last_ewma_diff = ue.enqueued - ue.ewma;
3775 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3776 return;
3777
10a35e68
VG
3778 /*
3779 * To avoid overestimation of actual task utilization, skip updates if
3780 * we cannot grant there is idle time in this CPU.
3781 */
3782 cpu = cpu_of(rq_of(cfs_rq));
3783 if (task_util(p) > capacity_orig_of(cpu))
3784 return;
3785
7f65ea42
PB
3786 /*
3787 * Update Task's estimated utilization
3788 *
3789 * When *p completes an activation we can consolidate another sample
3790 * of the task size. This is done by storing the current PELT value
3791 * as ue.enqueued and by using this value to update the Exponential
3792 * Weighted Moving Average (EWMA):
3793 *
3794 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3795 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3796 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3797 * = w * ( last_ewma_diff ) + ewma(t-1)
3798 * = w * (last_ewma_diff + ewma(t-1) / w)
3799 *
3800 * Where 'w' is the weight of new samples, which is configured to be
3801 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3802 */
3803 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3804 ue.ewma += last_ewma_diff;
3805 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3806 WRITE_ONCE(p->se.avg.util_est, ue);
3807}
3808
3b1baa64
MR
3809static inline int task_fits_capacity(struct task_struct *p, long capacity)
3810{
3811 return capacity * 1024 > task_util_est(p) * capacity_margin;
3812}
3813
3814static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3815{
3816 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3817 return;
3818
3819 if (!p) {
3820 rq->misfit_task_load = 0;
3821 return;
3822 }
3823
3824 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3825 rq->misfit_task_load = 0;
3826 return;
3827 }
3828
3829 rq->misfit_task_load = task_h_load(p);
3830}
3831
38033c37
PZ
3832#else /* CONFIG_SMP */
3833
d31b1a66
VG
3834#define UPDATE_TG 0x0
3835#define SKIP_AGE_LOAD 0x0
b382a531 3836#define DO_ATTACH 0x0
d31b1a66 3837
88c0616e 3838static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3839{
ea14b57e 3840 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3841}
3842
9d89c257 3843static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3844
a05e8c51 3845static inline void
ea14b57e 3846attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3847static inline void
3848detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3849
46f69fa3 3850static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3851{
3852 return 0;
3853}
3854
7f65ea42
PB
3855static inline void
3856util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3857
3858static inline void
3859util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3860 bool task_sleep) {}
3b1baa64 3861static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3862
38033c37 3863#endif /* CONFIG_SMP */
9d85f21c 3864
ddc97297
PZ
3865static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3866{
3867#ifdef CONFIG_SCHED_DEBUG
3868 s64 d = se->vruntime - cfs_rq->min_vruntime;
3869
3870 if (d < 0)
3871 d = -d;
3872
3873 if (d > 3*sysctl_sched_latency)
ae92882e 3874 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3875#endif
3876}
3877
aeb73b04
PZ
3878static void
3879place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3880{
1af5f730 3881 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3882
2cb8600e
PZ
3883 /*
3884 * The 'current' period is already promised to the current tasks,
3885 * however the extra weight of the new task will slow them down a
3886 * little, place the new task so that it fits in the slot that
3887 * stays open at the end.
3888 */
94dfb5e7 3889 if (initial && sched_feat(START_DEBIT))
f9c0b095 3890 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3891
a2e7a7eb 3892 /* sleeps up to a single latency don't count. */
5ca9880c 3893 if (!initial) {
a2e7a7eb 3894 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3895
a2e7a7eb
MG
3896 /*
3897 * Halve their sleep time's effect, to allow
3898 * for a gentler effect of sleepers:
3899 */
3900 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3901 thresh >>= 1;
51e0304c 3902
a2e7a7eb 3903 vruntime -= thresh;
aeb73b04
PZ
3904 }
3905
b5d9d734 3906 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3907 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3908}
3909
d3d9dc33
PT
3910static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3911
cb251765
MG
3912static inline void check_schedstat_required(void)
3913{
3914#ifdef CONFIG_SCHEDSTATS
3915 if (schedstat_enabled())
3916 return;
3917
3918 /* Force schedstat enabled if a dependent tracepoint is active */
3919 if (trace_sched_stat_wait_enabled() ||
3920 trace_sched_stat_sleep_enabled() ||
3921 trace_sched_stat_iowait_enabled() ||
3922 trace_sched_stat_blocked_enabled() ||
3923 trace_sched_stat_runtime_enabled()) {
eda8dca5 3924 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3925 "stat_blocked and stat_runtime require the "
f67abed5 3926 "kernel parameter schedstats=enable or "
cb251765
MG
3927 "kernel.sched_schedstats=1\n");
3928 }
3929#endif
3930}
3931
b5179ac7
PZ
3932
3933/*
3934 * MIGRATION
3935 *
3936 * dequeue
3937 * update_curr()
3938 * update_min_vruntime()
3939 * vruntime -= min_vruntime
3940 *
3941 * enqueue
3942 * update_curr()
3943 * update_min_vruntime()
3944 * vruntime += min_vruntime
3945 *
3946 * this way the vruntime transition between RQs is done when both
3947 * min_vruntime are up-to-date.
3948 *
3949 * WAKEUP (remote)
3950 *
59efa0ba 3951 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3952 * vruntime -= min_vruntime
3953 *
3954 * enqueue
3955 * update_curr()
3956 * update_min_vruntime()
3957 * vruntime += min_vruntime
3958 *
3959 * this way we don't have the most up-to-date min_vruntime on the originating
3960 * CPU and an up-to-date min_vruntime on the destination CPU.
3961 */
3962
bf0f6f24 3963static void
88ec22d3 3964enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3965{
2f950354
PZ
3966 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3967 bool curr = cfs_rq->curr == se;
3968
88ec22d3 3969 /*
2f950354
PZ
3970 * If we're the current task, we must renormalise before calling
3971 * update_curr().
88ec22d3 3972 */
2f950354 3973 if (renorm && curr)
88ec22d3
PZ
3974 se->vruntime += cfs_rq->min_vruntime;
3975
2f950354
PZ
3976 update_curr(cfs_rq);
3977
bf0f6f24 3978 /*
2f950354
PZ
3979 * Otherwise, renormalise after, such that we're placed at the current
3980 * moment in time, instead of some random moment in the past. Being
3981 * placed in the past could significantly boost this task to the
3982 * fairness detriment of existing tasks.
bf0f6f24 3983 */
2f950354
PZ
3984 if (renorm && !curr)
3985 se->vruntime += cfs_rq->min_vruntime;
3986
89ee048f
VG
3987 /*
3988 * When enqueuing a sched_entity, we must:
3989 * - Update loads to have both entity and cfs_rq synced with now.
3990 * - Add its load to cfs_rq->runnable_avg
3991 * - For group_entity, update its weight to reflect the new share of
3992 * its group cfs_rq
3993 * - Add its new weight to cfs_rq->load.weight
3994 */
b382a531 3995 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3996 update_cfs_group(se);
b5b3e35f 3997 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3998 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3999
1a3d027c 4000 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4001 place_entity(cfs_rq, se, 0);
bf0f6f24 4002
cb251765 4003 check_schedstat_required();
4fa8d299
JP
4004 update_stats_enqueue(cfs_rq, se, flags);
4005 check_spread(cfs_rq, se);
2f950354 4006 if (!curr)
83b699ed 4007 __enqueue_entity(cfs_rq, se);
2069dd75 4008 se->on_rq = 1;
3d4b47b4 4009
d3d9dc33 4010 if (cfs_rq->nr_running == 1) {
3d4b47b4 4011 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4012 check_enqueue_throttle(cfs_rq);
4013 }
bf0f6f24
IM
4014}
4015
2c13c919 4016static void __clear_buddies_last(struct sched_entity *se)
2002c695 4017{
2c13c919
RR
4018 for_each_sched_entity(se) {
4019 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4020 if (cfs_rq->last != se)
2c13c919 4021 break;
f1044799
PZ
4022
4023 cfs_rq->last = NULL;
2c13c919
RR
4024 }
4025}
2002c695 4026
2c13c919
RR
4027static void __clear_buddies_next(struct sched_entity *se)
4028{
4029 for_each_sched_entity(se) {
4030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4031 if (cfs_rq->next != se)
2c13c919 4032 break;
f1044799
PZ
4033
4034 cfs_rq->next = NULL;
2c13c919 4035 }
2002c695
PZ
4036}
4037
ac53db59
RR
4038static void __clear_buddies_skip(struct sched_entity *se)
4039{
4040 for_each_sched_entity(se) {
4041 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4042 if (cfs_rq->skip != se)
ac53db59 4043 break;
f1044799
PZ
4044
4045 cfs_rq->skip = NULL;
ac53db59
RR
4046 }
4047}
4048
a571bbea
PZ
4049static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4050{
2c13c919
RR
4051 if (cfs_rq->last == se)
4052 __clear_buddies_last(se);
4053
4054 if (cfs_rq->next == se)
4055 __clear_buddies_next(se);
ac53db59
RR
4056
4057 if (cfs_rq->skip == se)
4058 __clear_buddies_skip(se);
a571bbea
PZ
4059}
4060
6c16a6dc 4061static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4062
bf0f6f24 4063static void
371fd7e7 4064dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4065{
a2a2d680
DA
4066 /*
4067 * Update run-time statistics of the 'current'.
4068 */
4069 update_curr(cfs_rq);
89ee048f
VG
4070
4071 /*
4072 * When dequeuing a sched_entity, we must:
4073 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4074 * - Subtract its load from the cfs_rq->runnable_avg.
4075 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4076 * - For group entity, update its weight to reflect the new share
4077 * of its group cfs_rq.
4078 */
88c0616e 4079 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4080 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4081
4fa8d299 4082 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4083
2002c695 4084 clear_buddies(cfs_rq, se);
4793241b 4085
83b699ed 4086 if (se != cfs_rq->curr)
30cfdcfc 4087 __dequeue_entity(cfs_rq, se);
17bc14b7 4088 se->on_rq = 0;
30cfdcfc 4089 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4090
4091 /*
b60205c7
PZ
4092 * Normalize after update_curr(); which will also have moved
4093 * min_vruntime if @se is the one holding it back. But before doing
4094 * update_min_vruntime() again, which will discount @se's position and
4095 * can move min_vruntime forward still more.
88ec22d3 4096 */
371fd7e7 4097 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4098 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4099
d8b4986d
PT
4100 /* return excess runtime on last dequeue */
4101 return_cfs_rq_runtime(cfs_rq);
4102
1ea6c46a 4103 update_cfs_group(se);
b60205c7
PZ
4104
4105 /*
4106 * Now advance min_vruntime if @se was the entity holding it back,
4107 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4108 * put back on, and if we advance min_vruntime, we'll be placed back
4109 * further than we started -- ie. we'll be penalized.
4110 */
9845c49c 4111 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4112 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4113}
4114
4115/*
4116 * Preempt the current task with a newly woken task if needed:
4117 */
7c92e54f 4118static void
2e09bf55 4119check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4120{
11697830 4121 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4122 struct sched_entity *se;
4123 s64 delta;
11697830 4124
6d0f0ebd 4125 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4126 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4127 if (delta_exec > ideal_runtime) {
8875125e 4128 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4129 /*
4130 * The current task ran long enough, ensure it doesn't get
4131 * re-elected due to buddy favours.
4132 */
4133 clear_buddies(cfs_rq, curr);
f685ceac
MG
4134 return;
4135 }
4136
4137 /*
4138 * Ensure that a task that missed wakeup preemption by a
4139 * narrow margin doesn't have to wait for a full slice.
4140 * This also mitigates buddy induced latencies under load.
4141 */
f685ceac
MG
4142 if (delta_exec < sysctl_sched_min_granularity)
4143 return;
4144
f4cfb33e
WX
4145 se = __pick_first_entity(cfs_rq);
4146 delta = curr->vruntime - se->vruntime;
f685ceac 4147
f4cfb33e
WX
4148 if (delta < 0)
4149 return;
d7d82944 4150
f4cfb33e 4151 if (delta > ideal_runtime)
8875125e 4152 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4153}
4154
83b699ed 4155static void
8494f412 4156set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4157{
83b699ed
SV
4158 /* 'current' is not kept within the tree. */
4159 if (se->on_rq) {
4160 /*
4161 * Any task has to be enqueued before it get to execute on
4162 * a CPU. So account for the time it spent waiting on the
4163 * runqueue.
4164 */
4fa8d299 4165 update_stats_wait_end(cfs_rq, se);
83b699ed 4166 __dequeue_entity(cfs_rq, se);
88c0616e 4167 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4168 }
4169
79303e9e 4170 update_stats_curr_start(cfs_rq, se);
429d43bc 4171 cfs_rq->curr = se;
4fa8d299 4172
eba1ed4b
IM
4173 /*
4174 * Track our maximum slice length, if the CPU's load is at
4175 * least twice that of our own weight (i.e. dont track it
4176 * when there are only lesser-weight tasks around):
4177 */
f2bedc47
DE
4178 if (schedstat_enabled() &&
4179 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4180 schedstat_set(se->statistics.slice_max,
4181 max((u64)schedstat_val(se->statistics.slice_max),
4182 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4183 }
4fa8d299 4184
4a55b450 4185 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4186}
4187
3f3a4904
PZ
4188static int
4189wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4190
ac53db59
RR
4191/*
4192 * Pick the next process, keeping these things in mind, in this order:
4193 * 1) keep things fair between processes/task groups
4194 * 2) pick the "next" process, since someone really wants that to run
4195 * 3) pick the "last" process, for cache locality
4196 * 4) do not run the "skip" process, if something else is available
4197 */
678d5718
PZ
4198static struct sched_entity *
4199pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4200{
678d5718
PZ
4201 struct sched_entity *left = __pick_first_entity(cfs_rq);
4202 struct sched_entity *se;
4203
4204 /*
4205 * If curr is set we have to see if its left of the leftmost entity
4206 * still in the tree, provided there was anything in the tree at all.
4207 */
4208 if (!left || (curr && entity_before(curr, left)))
4209 left = curr;
4210
4211 se = left; /* ideally we run the leftmost entity */
f4b6755f 4212
ac53db59
RR
4213 /*
4214 * Avoid running the skip buddy, if running something else can
4215 * be done without getting too unfair.
4216 */
4217 if (cfs_rq->skip == se) {
678d5718
PZ
4218 struct sched_entity *second;
4219
4220 if (se == curr) {
4221 second = __pick_first_entity(cfs_rq);
4222 } else {
4223 second = __pick_next_entity(se);
4224 if (!second || (curr && entity_before(curr, second)))
4225 second = curr;
4226 }
4227
ac53db59
RR
4228 if (second && wakeup_preempt_entity(second, left) < 1)
4229 se = second;
4230 }
aa2ac252 4231
f685ceac
MG
4232 /*
4233 * Prefer last buddy, try to return the CPU to a preempted task.
4234 */
4235 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4236 se = cfs_rq->last;
4237
ac53db59
RR
4238 /*
4239 * Someone really wants this to run. If it's not unfair, run it.
4240 */
4241 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4242 se = cfs_rq->next;
4243
f685ceac 4244 clear_buddies(cfs_rq, se);
4793241b
PZ
4245
4246 return se;
aa2ac252
PZ
4247}
4248
678d5718 4249static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4250
ab6cde26 4251static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4252{
4253 /*
4254 * If still on the runqueue then deactivate_task()
4255 * was not called and update_curr() has to be done:
4256 */
4257 if (prev->on_rq)
b7cc0896 4258 update_curr(cfs_rq);
bf0f6f24 4259
d3d9dc33
PT
4260 /* throttle cfs_rqs exceeding runtime */
4261 check_cfs_rq_runtime(cfs_rq);
4262
4fa8d299 4263 check_spread(cfs_rq, prev);
cb251765 4264
30cfdcfc 4265 if (prev->on_rq) {
4fa8d299 4266 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4267 /* Put 'current' back into the tree. */
4268 __enqueue_entity(cfs_rq, prev);
9d85f21c 4269 /* in !on_rq case, update occurred at dequeue */
88c0616e 4270 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4271 }
429d43bc 4272 cfs_rq->curr = NULL;
bf0f6f24
IM
4273}
4274
8f4d37ec
PZ
4275static void
4276entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4277{
bf0f6f24 4278 /*
30cfdcfc 4279 * Update run-time statistics of the 'current'.
bf0f6f24 4280 */
30cfdcfc 4281 update_curr(cfs_rq);
bf0f6f24 4282
9d85f21c
PT
4283 /*
4284 * Ensure that runnable average is periodically updated.
4285 */
88c0616e 4286 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4287 update_cfs_group(curr);
9d85f21c 4288
8f4d37ec
PZ
4289#ifdef CONFIG_SCHED_HRTICK
4290 /*
4291 * queued ticks are scheduled to match the slice, so don't bother
4292 * validating it and just reschedule.
4293 */
983ed7a6 4294 if (queued) {
8875125e 4295 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4296 return;
4297 }
8f4d37ec
PZ
4298 /*
4299 * don't let the period tick interfere with the hrtick preemption
4300 */
4301 if (!sched_feat(DOUBLE_TICK) &&
4302 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4303 return;
4304#endif
4305
2c2efaed 4306 if (cfs_rq->nr_running > 1)
2e09bf55 4307 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4308}
4309
ab84d31e
PT
4310
4311/**************************************************
4312 * CFS bandwidth control machinery
4313 */
4314
4315#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4316
e9666d10 4317#ifdef CONFIG_JUMP_LABEL
c5905afb 4318static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4319
4320static inline bool cfs_bandwidth_used(void)
4321{
c5905afb 4322 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4323}
4324
1ee14e6c 4325void cfs_bandwidth_usage_inc(void)
029632fb 4326{
ce48c146 4327 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4328}
4329
4330void cfs_bandwidth_usage_dec(void)
4331{
ce48c146 4332 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4333}
e9666d10 4334#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4335static bool cfs_bandwidth_used(void)
4336{
4337 return true;
4338}
4339
1ee14e6c
BS
4340void cfs_bandwidth_usage_inc(void) {}
4341void cfs_bandwidth_usage_dec(void) {}
e9666d10 4342#endif /* CONFIG_JUMP_LABEL */
029632fb 4343
ab84d31e
PT
4344/*
4345 * default period for cfs group bandwidth.
4346 * default: 0.1s, units: nanoseconds
4347 */
4348static inline u64 default_cfs_period(void)
4349{
4350 return 100000000ULL;
4351}
ec12cb7f
PT
4352
4353static inline u64 sched_cfs_bandwidth_slice(void)
4354{
4355 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4356}
4357
a9cf55b2
PT
4358/*
4359 * Replenish runtime according to assigned quota and update expiration time.
4360 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4361 * additional synchronization around rq->lock.
4362 *
4363 * requires cfs_b->lock
4364 */
029632fb 4365void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4366{
4367 u64 now;
4368
4369 if (cfs_b->quota == RUNTIME_INF)
4370 return;
4371
4372 now = sched_clock_cpu(smp_processor_id());
4373 cfs_b->runtime = cfs_b->quota;
4374 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4375 cfs_b->expires_seq++;
a9cf55b2
PT
4376}
4377
029632fb
PZ
4378static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4379{
4380 return &tg->cfs_bandwidth;
4381}
4382
f1b17280
PT
4383/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4384static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4385{
4386 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4387 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4388
78becc27 4389 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4390}
4391
85dac906
PT
4392/* returns 0 on failure to allocate runtime */
4393static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4394{
4395 struct task_group *tg = cfs_rq->tg;
4396 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4397 u64 amount = 0, min_amount, expires;
512ac999 4398 int expires_seq;
ec12cb7f
PT
4399
4400 /* note: this is a positive sum as runtime_remaining <= 0 */
4401 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4402
4403 raw_spin_lock(&cfs_b->lock);
4404 if (cfs_b->quota == RUNTIME_INF)
4405 amount = min_amount;
58088ad0 4406 else {
77a4d1a1 4407 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4408
4409 if (cfs_b->runtime > 0) {
4410 amount = min(cfs_b->runtime, min_amount);
4411 cfs_b->runtime -= amount;
4412 cfs_b->idle = 0;
4413 }
ec12cb7f 4414 }
512ac999 4415 expires_seq = cfs_b->expires_seq;
a9cf55b2 4416 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4417 raw_spin_unlock(&cfs_b->lock);
4418
4419 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4420 /*
4421 * we may have advanced our local expiration to account for allowed
4422 * spread between our sched_clock and the one on which runtime was
4423 * issued.
4424 */
512ac999
XP
4425 if (cfs_rq->expires_seq != expires_seq) {
4426 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4427 cfs_rq->runtime_expires = expires;
512ac999 4428 }
85dac906
PT
4429
4430 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4431}
4432
a9cf55b2
PT
4433/*
4434 * Note: This depends on the synchronization provided by sched_clock and the
4435 * fact that rq->clock snapshots this value.
4436 */
4437static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4438{
a9cf55b2 4439 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4440
4441 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4442 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4443 return;
4444
a9cf55b2
PT
4445 if (cfs_rq->runtime_remaining < 0)
4446 return;
4447
4448 /*
4449 * If the local deadline has passed we have to consider the
4450 * possibility that our sched_clock is 'fast' and the global deadline
4451 * has not truly expired.
4452 *
4453 * Fortunately we can check determine whether this the case by checking
512ac999 4454 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4455 */
512ac999 4456 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4457 /* extend local deadline, drift is bounded above by 2 ticks */
4458 cfs_rq->runtime_expires += TICK_NSEC;
4459 } else {
4460 /* global deadline is ahead, expiration has passed */
4461 cfs_rq->runtime_remaining = 0;
4462 }
4463}
4464
9dbdb155 4465static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4466{
4467 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4468 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4469 expire_cfs_rq_runtime(cfs_rq);
4470
4471 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4472 return;
4473
85dac906
PT
4474 /*
4475 * if we're unable to extend our runtime we resched so that the active
4476 * hierarchy can be throttled
4477 */
4478 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4479 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4480}
4481
6c16a6dc 4482static __always_inline
9dbdb155 4483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4484{
56f570e5 4485 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4486 return;
4487
4488 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4489}
4490
85dac906
PT
4491static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4492{
56f570e5 4493 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4494}
4495
64660c86
PT
4496/* check whether cfs_rq, or any parent, is throttled */
4497static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4498{
56f570e5 4499 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4500}
4501
4502/*
4503 * Ensure that neither of the group entities corresponding to src_cpu or
4504 * dest_cpu are members of a throttled hierarchy when performing group
4505 * load-balance operations.
4506 */
4507static inline int throttled_lb_pair(struct task_group *tg,
4508 int src_cpu, int dest_cpu)
4509{
4510 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4511
4512 src_cfs_rq = tg->cfs_rq[src_cpu];
4513 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4514
4515 return throttled_hierarchy(src_cfs_rq) ||
4516 throttled_hierarchy(dest_cfs_rq);
4517}
4518
64660c86
PT
4519static int tg_unthrottle_up(struct task_group *tg, void *data)
4520{
4521 struct rq *rq = data;
4522 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4523
4524 cfs_rq->throttle_count--;
64660c86 4525 if (!cfs_rq->throttle_count) {
f1b17280 4526 /* adjust cfs_rq_clock_task() */
78becc27 4527 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4528 cfs_rq->throttled_clock_task;
31bc6aea
VG
4529
4530 /* Add cfs_rq with already running entity in the list */
4531 if (cfs_rq->nr_running >= 1)
4532 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4533 }
64660c86
PT
4534
4535 return 0;
4536}
4537
4538static int tg_throttle_down(struct task_group *tg, void *data)
4539{
4540 struct rq *rq = data;
4541 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4542
82958366 4543 /* group is entering throttled state, stop time */
31bc6aea 4544 if (!cfs_rq->throttle_count) {
78becc27 4545 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4546 list_del_leaf_cfs_rq(cfs_rq);
4547 }
64660c86
PT
4548 cfs_rq->throttle_count++;
4549
4550 return 0;
4551}
4552
d3d9dc33 4553static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4554{
4555 struct rq *rq = rq_of(cfs_rq);
4556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4557 struct sched_entity *se;
4558 long task_delta, dequeue = 1;
77a4d1a1 4559 bool empty;
85dac906
PT
4560
4561 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4562
f1b17280 4563 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4564 rcu_read_lock();
4565 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4566 rcu_read_unlock();
85dac906
PT
4567
4568 task_delta = cfs_rq->h_nr_running;
4569 for_each_sched_entity(se) {
4570 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4571 /* throttled entity or throttle-on-deactivate */
4572 if (!se->on_rq)
4573 break;
4574
4575 if (dequeue)
4576 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4577 qcfs_rq->h_nr_running -= task_delta;
4578
4579 if (qcfs_rq->load.weight)
4580 dequeue = 0;
4581 }
4582
4583 if (!se)
72465447 4584 sub_nr_running(rq, task_delta);
85dac906
PT
4585
4586 cfs_rq->throttled = 1;
78becc27 4587 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4588 raw_spin_lock(&cfs_b->lock);
d49db342 4589 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4590
c06f04c7
BS
4591 /*
4592 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4593 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4594 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4595 */
baa9be4f
PA
4596 if (cfs_b->distribute_running)
4597 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4598 else
4599 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4600
4601 /*
4602 * If we're the first throttled task, make sure the bandwidth
4603 * timer is running.
4604 */
4605 if (empty)
4606 start_cfs_bandwidth(cfs_b);
4607
85dac906
PT
4608 raw_spin_unlock(&cfs_b->lock);
4609}
4610
029632fb 4611void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4612{
4613 struct rq *rq = rq_of(cfs_rq);
4614 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4615 struct sched_entity *se;
4616 int enqueue = 1;
4617 long task_delta;
4618
22b958d8 4619 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4620
4621 cfs_rq->throttled = 0;
1a55af2e
FW
4622
4623 update_rq_clock(rq);
4624
671fd9da 4625 raw_spin_lock(&cfs_b->lock);
78becc27 4626 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4627 list_del_rcu(&cfs_rq->throttled_list);
4628 raw_spin_unlock(&cfs_b->lock);
4629
64660c86
PT
4630 /* update hierarchical throttle state */
4631 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4632
671fd9da
PT
4633 if (!cfs_rq->load.weight)
4634 return;
4635
4636 task_delta = cfs_rq->h_nr_running;
4637 for_each_sched_entity(se) {
4638 if (se->on_rq)
4639 enqueue = 0;
4640
4641 cfs_rq = cfs_rq_of(se);
4642 if (enqueue)
4643 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4644 cfs_rq->h_nr_running += task_delta;
4645
4646 if (cfs_rq_throttled(cfs_rq))
4647 break;
4648 }
4649
31bc6aea
VG
4650 assert_list_leaf_cfs_rq(rq);
4651
671fd9da 4652 if (!se)
72465447 4653 add_nr_running(rq, task_delta);
671fd9da 4654
97fb7a0a 4655 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4656 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4657 resched_curr(rq);
671fd9da
PT
4658}
4659
4660static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4661 u64 remaining, u64 expires)
4662{
4663 struct cfs_rq *cfs_rq;
c06f04c7
BS
4664 u64 runtime;
4665 u64 starting_runtime = remaining;
671fd9da
PT
4666
4667 rcu_read_lock();
4668 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4669 throttled_list) {
4670 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4671 struct rq_flags rf;
671fd9da 4672
c0ad4aa4 4673 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4674 if (!cfs_rq_throttled(cfs_rq))
4675 goto next;
4676
4677 runtime = -cfs_rq->runtime_remaining + 1;
4678 if (runtime > remaining)
4679 runtime = remaining;
4680 remaining -= runtime;
4681
4682 cfs_rq->runtime_remaining += runtime;
4683 cfs_rq->runtime_expires = expires;
4684
4685 /* we check whether we're throttled above */
4686 if (cfs_rq->runtime_remaining > 0)
4687 unthrottle_cfs_rq(cfs_rq);
4688
4689next:
c0ad4aa4 4690 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4691
4692 if (!remaining)
4693 break;
4694 }
4695 rcu_read_unlock();
4696
c06f04c7 4697 return starting_runtime - remaining;
671fd9da
PT
4698}
4699
58088ad0
PT
4700/*
4701 * Responsible for refilling a task_group's bandwidth and unthrottling its
4702 * cfs_rqs as appropriate. If there has been no activity within the last
4703 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4704 * used to track this state.
4705 */
c0ad4aa4 4706static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4707{
671fd9da 4708 u64 runtime, runtime_expires;
51f2176d 4709 int throttled;
58088ad0 4710
58088ad0
PT
4711 /* no need to continue the timer with no bandwidth constraint */
4712 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4713 goto out_deactivate;
58088ad0 4714
671fd9da 4715 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4716 cfs_b->nr_periods += overrun;
671fd9da 4717
51f2176d
BS
4718 /*
4719 * idle depends on !throttled (for the case of a large deficit), and if
4720 * we're going inactive then everything else can be deferred
4721 */
4722 if (cfs_b->idle && !throttled)
4723 goto out_deactivate;
a9cf55b2
PT
4724
4725 __refill_cfs_bandwidth_runtime(cfs_b);
4726
671fd9da
PT
4727 if (!throttled) {
4728 /* mark as potentially idle for the upcoming period */
4729 cfs_b->idle = 1;
51f2176d 4730 return 0;
671fd9da
PT
4731 }
4732
e8da1b18
NR
4733 /* account preceding periods in which throttling occurred */
4734 cfs_b->nr_throttled += overrun;
4735
671fd9da 4736 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4737
4738 /*
c06f04c7
BS
4739 * This check is repeated as we are holding onto the new bandwidth while
4740 * we unthrottle. This can potentially race with an unthrottled group
4741 * trying to acquire new bandwidth from the global pool. This can result
4742 * in us over-using our runtime if it is all used during this loop, but
4743 * only by limited amounts in that extreme case.
671fd9da 4744 */
baa9be4f 4745 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4746 runtime = cfs_b->runtime;
baa9be4f 4747 cfs_b->distribute_running = 1;
c0ad4aa4 4748 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da
PT
4749 /* we can't nest cfs_b->lock while distributing bandwidth */
4750 runtime = distribute_cfs_runtime(cfs_b, runtime,
4751 runtime_expires);
c0ad4aa4 4752 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4753
baa9be4f 4754 cfs_b->distribute_running = 0;
671fd9da 4755 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4756
b5c0ce7b 4757 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4758 }
58088ad0 4759
671fd9da
PT
4760 /*
4761 * While we are ensured activity in the period following an
4762 * unthrottle, this also covers the case in which the new bandwidth is
4763 * insufficient to cover the existing bandwidth deficit. (Forcing the
4764 * timer to remain active while there are any throttled entities.)
4765 */
4766 cfs_b->idle = 0;
58088ad0 4767
51f2176d
BS
4768 return 0;
4769
4770out_deactivate:
51f2176d 4771 return 1;
58088ad0 4772}
d3d9dc33 4773
d8b4986d
PT
4774/* a cfs_rq won't donate quota below this amount */
4775static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4776/* minimum remaining period time to redistribute slack quota */
4777static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4778/* how long we wait to gather additional slack before distributing */
4779static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4780
db06e78c
BS
4781/*
4782 * Are we near the end of the current quota period?
4783 *
4784 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4785 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4786 * migrate_hrtimers, base is never cleared, so we are fine.
4787 */
d8b4986d
PT
4788static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4789{
4790 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4791 u64 remaining;
4792
4793 /* if the call-back is running a quota refresh is already occurring */
4794 if (hrtimer_callback_running(refresh_timer))
4795 return 1;
4796
4797 /* is a quota refresh about to occur? */
4798 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4799 if (remaining < min_expire)
4800 return 1;
4801
4802 return 0;
4803}
4804
4805static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4806{
4807 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4808
4809 /* if there's a quota refresh soon don't bother with slack */
4810 if (runtime_refresh_within(cfs_b, min_left))
4811 return;
4812
66567fcb 4813 /* don't push forwards an existing deferred unthrottle */
4814 if (cfs_b->slack_started)
4815 return;
4816 cfs_b->slack_started = true;
4817
4cfafd30
PZ
4818 hrtimer_start(&cfs_b->slack_timer,
4819 ns_to_ktime(cfs_bandwidth_slack_period),
4820 HRTIMER_MODE_REL);
d8b4986d
PT
4821}
4822
4823/* we know any runtime found here is valid as update_curr() precedes return */
4824static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4825{
4826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4827 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4828
4829 if (slack_runtime <= 0)
4830 return;
4831
4832 raw_spin_lock(&cfs_b->lock);
4833 if (cfs_b->quota != RUNTIME_INF &&
4834 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4835 cfs_b->runtime += slack_runtime;
4836
4837 /* we are under rq->lock, defer unthrottling using a timer */
4838 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4839 !list_empty(&cfs_b->throttled_cfs_rq))
4840 start_cfs_slack_bandwidth(cfs_b);
4841 }
4842 raw_spin_unlock(&cfs_b->lock);
4843
4844 /* even if it's not valid for return we don't want to try again */
4845 cfs_rq->runtime_remaining -= slack_runtime;
4846}
4847
4848static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4849{
56f570e5
PT
4850 if (!cfs_bandwidth_used())
4851 return;
4852
fccfdc6f 4853 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4854 return;
4855
4856 __return_cfs_rq_runtime(cfs_rq);
4857}
4858
4859/*
4860 * This is done with a timer (instead of inline with bandwidth return) since
4861 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4862 */
4863static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4864{
4865 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4866 unsigned long flags;
d8b4986d
PT
4867 u64 expires;
4868
4869 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4870 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4871 cfs_b->slack_started = false;
baa9be4f 4872 if (cfs_b->distribute_running) {
c0ad4aa4 4873 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4874 return;
4875 }
4876
db06e78c 4877 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4878 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4879 return;
db06e78c 4880 }
d8b4986d 4881
c06f04c7 4882 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4883 runtime = cfs_b->runtime;
c06f04c7 4884
d8b4986d 4885 expires = cfs_b->runtime_expires;
baa9be4f
PA
4886 if (runtime)
4887 cfs_b->distribute_running = 1;
4888
c0ad4aa4 4889 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4890
4891 if (!runtime)
4892 return;
4893
4894 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4895
c0ad4aa4 4896 raw_spin_lock_irqsave(&cfs_b->lock, flags);
d8b4986d 4897 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4898 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4899 cfs_b->distribute_running = 0;
c0ad4aa4 4900 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4901}
4902
d3d9dc33
PT
4903/*
4904 * When a group wakes up we want to make sure that its quota is not already
4905 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4906 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4907 */
4908static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4909{
56f570e5
PT
4910 if (!cfs_bandwidth_used())
4911 return;
4912
d3d9dc33
PT
4913 /* an active group must be handled by the update_curr()->put() path */
4914 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4915 return;
4916
4917 /* ensure the group is not already throttled */
4918 if (cfs_rq_throttled(cfs_rq))
4919 return;
4920
4921 /* update runtime allocation */
4922 account_cfs_rq_runtime(cfs_rq, 0);
4923 if (cfs_rq->runtime_remaining <= 0)
4924 throttle_cfs_rq(cfs_rq);
4925}
4926
55e16d30
PZ
4927static void sync_throttle(struct task_group *tg, int cpu)
4928{
4929 struct cfs_rq *pcfs_rq, *cfs_rq;
4930
4931 if (!cfs_bandwidth_used())
4932 return;
4933
4934 if (!tg->parent)
4935 return;
4936
4937 cfs_rq = tg->cfs_rq[cpu];
4938 pcfs_rq = tg->parent->cfs_rq[cpu];
4939
4940 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4941 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4942}
4943
d3d9dc33 4944/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4945static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4946{
56f570e5 4947 if (!cfs_bandwidth_used())
678d5718 4948 return false;
56f570e5 4949
d3d9dc33 4950 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4951 return false;
d3d9dc33
PT
4952
4953 /*
4954 * it's possible for a throttled entity to be forced into a running
4955 * state (e.g. set_curr_task), in this case we're finished.
4956 */
4957 if (cfs_rq_throttled(cfs_rq))
678d5718 4958 return true;
d3d9dc33
PT
4959
4960 throttle_cfs_rq(cfs_rq);
678d5718 4961 return true;
d3d9dc33 4962}
029632fb 4963
029632fb
PZ
4964static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4965{
4966 struct cfs_bandwidth *cfs_b =
4967 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4968
029632fb
PZ
4969 do_sched_cfs_slack_timer(cfs_b);
4970
4971 return HRTIMER_NORESTART;
4972}
4973
2e8e1922
PA
4974extern const u64 max_cfs_quota_period;
4975
029632fb
PZ
4976static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4977{
4978 struct cfs_bandwidth *cfs_b =
4979 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4980 unsigned long flags;
029632fb
PZ
4981 int overrun;
4982 int idle = 0;
2e8e1922 4983 int count = 0;
029632fb 4984
c0ad4aa4 4985 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4986 for (;;) {
77a4d1a1 4987 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4988 if (!overrun)
4989 break;
4990
2e8e1922
PA
4991 if (++count > 3) {
4992 u64 new, old = ktime_to_ns(cfs_b->period);
4993
4994 new = (old * 147) / 128; /* ~115% */
4995 new = min(new, max_cfs_quota_period);
4996
4997 cfs_b->period = ns_to_ktime(new);
4998
4999 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
5000 cfs_b->quota *= new;
5001 cfs_b->quota = div64_u64(cfs_b->quota, old);
5002
5003 pr_warn_ratelimited(
5004 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
5005 smp_processor_id(),
5006 div_u64(new, NSEC_PER_USEC),
5007 div_u64(cfs_b->quota, NSEC_PER_USEC));
5008
5009 /* reset count so we don't come right back in here */
5010 count = 0;
5011 }
5012
c0ad4aa4 5013 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 5014 }
4cfafd30
PZ
5015 if (idle)
5016 cfs_b->period_active = 0;
c0ad4aa4 5017 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5018
5019 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5020}
5021
5022void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5023{
5024 raw_spin_lock_init(&cfs_b->lock);
5025 cfs_b->runtime = 0;
5026 cfs_b->quota = RUNTIME_INF;
5027 cfs_b->period = ns_to_ktime(default_cfs_period());
5028
5029 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5030 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5031 cfs_b->period_timer.function = sched_cfs_period_timer;
5032 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5033 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 5034 cfs_b->distribute_running = 0;
66567fcb 5035 cfs_b->slack_started = false;
029632fb
PZ
5036}
5037
5038static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5039{
5040 cfs_rq->runtime_enabled = 0;
5041 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5042}
5043
77a4d1a1 5044void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5045{
f1d1be8a
XP
5046 u64 overrun;
5047
4cfafd30 5048 lockdep_assert_held(&cfs_b->lock);
029632fb 5049
f1d1be8a
XP
5050 if (cfs_b->period_active)
5051 return;
5052
5053 cfs_b->period_active = 1;
5054 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5055 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
5056 cfs_b->expires_seq++;
5057 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5058}
5059
5060static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5061{
7f1a169b
TH
5062 /* init_cfs_bandwidth() was not called */
5063 if (!cfs_b->throttled_cfs_rq.next)
5064 return;
5065
029632fb
PZ
5066 hrtimer_cancel(&cfs_b->period_timer);
5067 hrtimer_cancel(&cfs_b->slack_timer);
5068}
5069
502ce005 5070/*
97fb7a0a 5071 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5072 *
5073 * The race is harmless, since modifying bandwidth settings of unhooked group
5074 * bits doesn't do much.
5075 */
5076
5077/* cpu online calback */
0e59bdae
KT
5078static void __maybe_unused update_runtime_enabled(struct rq *rq)
5079{
502ce005 5080 struct task_group *tg;
0e59bdae 5081
502ce005
PZ
5082 lockdep_assert_held(&rq->lock);
5083
5084 rcu_read_lock();
5085 list_for_each_entry_rcu(tg, &task_groups, list) {
5086 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5087 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5088
5089 raw_spin_lock(&cfs_b->lock);
5090 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5091 raw_spin_unlock(&cfs_b->lock);
5092 }
502ce005 5093 rcu_read_unlock();
0e59bdae
KT
5094}
5095
502ce005 5096/* cpu offline callback */
38dc3348 5097static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5098{
502ce005
PZ
5099 struct task_group *tg;
5100
5101 lockdep_assert_held(&rq->lock);
5102
5103 rcu_read_lock();
5104 list_for_each_entry_rcu(tg, &task_groups, list) {
5105 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5106
029632fb
PZ
5107 if (!cfs_rq->runtime_enabled)
5108 continue;
5109
5110 /*
5111 * clock_task is not advancing so we just need to make sure
5112 * there's some valid quota amount
5113 */
51f2176d 5114 cfs_rq->runtime_remaining = 1;
0e59bdae 5115 /*
97fb7a0a 5116 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5117 * in take_cpu_down(), so we prevent new cfs throttling here.
5118 */
5119 cfs_rq->runtime_enabled = 0;
5120
029632fb
PZ
5121 if (cfs_rq_throttled(cfs_rq))
5122 unthrottle_cfs_rq(cfs_rq);
5123 }
502ce005 5124 rcu_read_unlock();
029632fb
PZ
5125}
5126
5127#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5128
5129static inline bool cfs_bandwidth_used(void)
5130{
5131 return false;
5132}
5133
f1b17280
PT
5134static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5135{
78becc27 5136 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5137}
5138
9dbdb155 5139static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5140static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5141static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5142static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5143static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5144
5145static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5146{
5147 return 0;
5148}
64660c86
PT
5149
5150static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5151{
5152 return 0;
5153}
5154
5155static inline int throttled_lb_pair(struct task_group *tg,
5156 int src_cpu, int dest_cpu)
5157{
5158 return 0;
5159}
029632fb
PZ
5160
5161void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5162
5163#ifdef CONFIG_FAIR_GROUP_SCHED
5164static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5165#endif
5166
029632fb
PZ
5167static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5168{
5169 return NULL;
5170}
5171static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5172static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5173static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5174
5175#endif /* CONFIG_CFS_BANDWIDTH */
5176
bf0f6f24
IM
5177/**************************************************
5178 * CFS operations on tasks:
5179 */
5180
8f4d37ec
PZ
5181#ifdef CONFIG_SCHED_HRTICK
5182static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5183{
8f4d37ec
PZ
5184 struct sched_entity *se = &p->se;
5185 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5186
9148a3a1 5187 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5188
8bf46a39 5189 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5190 u64 slice = sched_slice(cfs_rq, se);
5191 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5192 s64 delta = slice - ran;
5193
5194 if (delta < 0) {
5195 if (rq->curr == p)
8875125e 5196 resched_curr(rq);
8f4d37ec
PZ
5197 return;
5198 }
31656519 5199 hrtick_start(rq, delta);
8f4d37ec
PZ
5200 }
5201}
a4c2f00f
PZ
5202
5203/*
5204 * called from enqueue/dequeue and updates the hrtick when the
5205 * current task is from our class and nr_running is low enough
5206 * to matter.
5207 */
5208static void hrtick_update(struct rq *rq)
5209{
5210 struct task_struct *curr = rq->curr;
5211
b39e66ea 5212 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5213 return;
5214
5215 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5216 hrtick_start_fair(rq, curr);
5217}
55e12e5e 5218#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5219static inline void
5220hrtick_start_fair(struct rq *rq, struct task_struct *p)
5221{
5222}
a4c2f00f
PZ
5223
5224static inline void hrtick_update(struct rq *rq)
5225{
5226}
8f4d37ec
PZ
5227#endif
5228
2802bf3c
MR
5229#ifdef CONFIG_SMP
5230static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5231
5232static inline bool cpu_overutilized(int cpu)
5233{
5234 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5235}
5236
5237static inline void update_overutilized_status(struct rq *rq)
5238{
f9f240f9 5239 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5240 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5241 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5242 }
2802bf3c
MR
5243}
5244#else
5245static inline void update_overutilized_status(struct rq *rq) { }
5246#endif
5247
bf0f6f24
IM
5248/*
5249 * The enqueue_task method is called before nr_running is
5250 * increased. Here we update the fair scheduling stats and
5251 * then put the task into the rbtree:
5252 */
ea87bb78 5253static void
371fd7e7 5254enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5255{
5256 struct cfs_rq *cfs_rq;
62fb1851 5257 struct sched_entity *se = &p->se;
bf0f6f24 5258
2539fc82
PB
5259 /*
5260 * The code below (indirectly) updates schedutil which looks at
5261 * the cfs_rq utilization to select a frequency.
5262 * Let's add the task's estimated utilization to the cfs_rq's
5263 * estimated utilization, before we update schedutil.
5264 */
5265 util_est_enqueue(&rq->cfs, p);
5266
8c34ab19
RW
5267 /*
5268 * If in_iowait is set, the code below may not trigger any cpufreq
5269 * utilization updates, so do it here explicitly with the IOWAIT flag
5270 * passed.
5271 */
5272 if (p->in_iowait)
674e7541 5273 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5274
bf0f6f24 5275 for_each_sched_entity(se) {
62fb1851 5276 if (se->on_rq)
bf0f6f24
IM
5277 break;
5278 cfs_rq = cfs_rq_of(se);
88ec22d3 5279 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5280
5281 /*
5282 * end evaluation on encountering a throttled cfs_rq
5283 *
5284 * note: in the case of encountering a throttled cfs_rq we will
5285 * post the final h_nr_running increment below.
e210bffd 5286 */
85dac906
PT
5287 if (cfs_rq_throttled(cfs_rq))
5288 break;
953bfcd1 5289 cfs_rq->h_nr_running++;
85dac906 5290
88ec22d3 5291 flags = ENQUEUE_WAKEUP;
bf0f6f24 5292 }
8f4d37ec 5293
2069dd75 5294 for_each_sched_entity(se) {
0f317143 5295 cfs_rq = cfs_rq_of(se);
953bfcd1 5296 cfs_rq->h_nr_running++;
2069dd75 5297
85dac906
PT
5298 if (cfs_rq_throttled(cfs_rq))
5299 break;
5300
88c0616e 5301 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5302 update_cfs_group(se);
2069dd75
PZ
5303 }
5304
2802bf3c 5305 if (!se) {
72465447 5306 add_nr_running(rq, 1);
2802bf3c
MR
5307 /*
5308 * Since new tasks are assigned an initial util_avg equal to
5309 * half of the spare capacity of their CPU, tiny tasks have the
5310 * ability to cross the overutilized threshold, which will
5311 * result in the load balancer ruining all the task placement
5312 * done by EAS. As a way to mitigate that effect, do not account
5313 * for the first enqueue operation of new tasks during the
5314 * overutilized flag detection.
5315 *
5316 * A better way of solving this problem would be to wait for
5317 * the PELT signals of tasks to converge before taking them
5318 * into account, but that is not straightforward to implement,
5319 * and the following generally works well enough in practice.
5320 */
5321 if (flags & ENQUEUE_WAKEUP)
5322 update_overutilized_status(rq);
5323
5324 }
cd126afe 5325
f6783319
VG
5326 if (cfs_bandwidth_used()) {
5327 /*
5328 * When bandwidth control is enabled; the cfs_rq_throttled()
5329 * breaks in the above iteration can result in incomplete
5330 * leaf list maintenance, resulting in triggering the assertion
5331 * below.
5332 */
5333 for_each_sched_entity(se) {
5334 cfs_rq = cfs_rq_of(se);
5335
5336 if (list_add_leaf_cfs_rq(cfs_rq))
5337 break;
5338 }
5339 }
5340
5d299eab
PZ
5341 assert_list_leaf_cfs_rq(rq);
5342
a4c2f00f 5343 hrtick_update(rq);
bf0f6f24
IM
5344}
5345
2f36825b
VP
5346static void set_next_buddy(struct sched_entity *se);
5347
bf0f6f24
IM
5348/*
5349 * The dequeue_task method is called before nr_running is
5350 * decreased. We remove the task from the rbtree and
5351 * update the fair scheduling stats:
5352 */
371fd7e7 5353static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5354{
5355 struct cfs_rq *cfs_rq;
62fb1851 5356 struct sched_entity *se = &p->se;
2f36825b 5357 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5358
5359 for_each_sched_entity(se) {
5360 cfs_rq = cfs_rq_of(se);
371fd7e7 5361 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5362
5363 /*
5364 * end evaluation on encountering a throttled cfs_rq
5365 *
5366 * note: in the case of encountering a throttled cfs_rq we will
5367 * post the final h_nr_running decrement below.
5368 */
5369 if (cfs_rq_throttled(cfs_rq))
5370 break;
953bfcd1 5371 cfs_rq->h_nr_running--;
2069dd75 5372
bf0f6f24 5373 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5374 if (cfs_rq->load.weight) {
754bd598
KK
5375 /* Avoid re-evaluating load for this entity: */
5376 se = parent_entity(se);
2f36825b
VP
5377 /*
5378 * Bias pick_next to pick a task from this cfs_rq, as
5379 * p is sleeping when it is within its sched_slice.
5380 */
754bd598
KK
5381 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5382 set_next_buddy(se);
bf0f6f24 5383 break;
2f36825b 5384 }
371fd7e7 5385 flags |= DEQUEUE_SLEEP;
bf0f6f24 5386 }
8f4d37ec 5387
2069dd75 5388 for_each_sched_entity(se) {
0f317143 5389 cfs_rq = cfs_rq_of(se);
953bfcd1 5390 cfs_rq->h_nr_running--;
2069dd75 5391
85dac906
PT
5392 if (cfs_rq_throttled(cfs_rq))
5393 break;
5394
88c0616e 5395 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5396 update_cfs_group(se);
2069dd75
PZ
5397 }
5398
cd126afe 5399 if (!se)
72465447 5400 sub_nr_running(rq, 1);
cd126afe 5401
7f65ea42 5402 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5403 hrtick_update(rq);
bf0f6f24
IM
5404}
5405
e7693a36 5406#ifdef CONFIG_SMP
10e2f1ac
PZ
5407
5408/* Working cpumask for: load_balance, load_balance_newidle. */
5409DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5410DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5411
9fd81dd5 5412#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5413
5414static struct {
5415 cpumask_var_t idle_cpus_mask;
5416 atomic_t nr_cpus;
f643ea22 5417 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5418 unsigned long next_balance; /* in jiffy units */
f643ea22 5419 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5420} nohz ____cacheline_aligned;
5421
9fd81dd5 5422#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5423
a3df0679 5424static unsigned long cpu_runnable_load(struct rq *rq)
7ea241af 5425{
c7132dd6 5426 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5427}
5428
ced549fa 5429static unsigned long capacity_of(int cpu)
029632fb 5430{
ced549fa 5431 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5432}
5433
5434static unsigned long cpu_avg_load_per_task(int cpu)
5435{
5436 struct rq *rq = cpu_rq(cpu);
316c1608 5437 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
a3df0679 5438 unsigned long load_avg = cpu_runnable_load(rq);
029632fb
PZ
5439
5440 if (nr_running)
b92486cb 5441 return load_avg / nr_running;
029632fb
PZ
5442
5443 return 0;
5444}
5445
c58d25f3
PZ
5446static void record_wakee(struct task_struct *p)
5447{
5448 /*
5449 * Only decay a single time; tasks that have less then 1 wakeup per
5450 * jiffy will not have built up many flips.
5451 */
5452 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5453 current->wakee_flips >>= 1;
5454 current->wakee_flip_decay_ts = jiffies;
5455 }
5456
5457 if (current->last_wakee != p) {
5458 current->last_wakee = p;
5459 current->wakee_flips++;
5460 }
5461}
5462
63b0e9ed
MG
5463/*
5464 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5465 *
63b0e9ed 5466 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5467 * at a frequency roughly N times higher than one of its wakees.
5468 *
5469 * In order to determine whether we should let the load spread vs consolidating
5470 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5471 * partner, and a factor of lls_size higher frequency in the other.
5472 *
5473 * With both conditions met, we can be relatively sure that the relationship is
5474 * non-monogamous, with partner count exceeding socket size.
5475 *
5476 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5477 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5478 * socket size.
63b0e9ed 5479 */
62470419
MW
5480static int wake_wide(struct task_struct *p)
5481{
63b0e9ed
MG
5482 unsigned int master = current->wakee_flips;
5483 unsigned int slave = p->wakee_flips;
7d9ffa89 5484 int factor = this_cpu_read(sd_llc_size);
62470419 5485
63b0e9ed
MG
5486 if (master < slave)
5487 swap(master, slave);
5488 if (slave < factor || master < slave * factor)
5489 return 0;
5490 return 1;
62470419
MW
5491}
5492
90001d67 5493/*
d153b153
PZ
5494 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5495 * soonest. For the purpose of speed we only consider the waking and previous
5496 * CPU.
90001d67 5497 *
7332dec0
MG
5498 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5499 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5500 *
5501 * wake_affine_weight() - considers the weight to reflect the average
5502 * scheduling latency of the CPUs. This seems to work
5503 * for the overloaded case.
90001d67 5504 */
3b76c4a3 5505static int
89a55f56 5506wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5507{
7332dec0
MG
5508 /*
5509 * If this_cpu is idle, it implies the wakeup is from interrupt
5510 * context. Only allow the move if cache is shared. Otherwise an
5511 * interrupt intensive workload could force all tasks onto one
5512 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5513 *
5514 * If the prev_cpu is idle and cache affine then avoid a migration.
5515 * There is no guarantee that the cache hot data from an interrupt
5516 * is more important than cache hot data on the prev_cpu and from
5517 * a cpufreq perspective, it's better to have higher utilisation
5518 * on one CPU.
7332dec0 5519 */
943d355d
RJ
5520 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5521 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5522
d153b153 5523 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5524 return this_cpu;
90001d67 5525
3b76c4a3 5526 return nr_cpumask_bits;
90001d67
PZ
5527}
5528
3b76c4a3 5529static int
f2cdd9cc
PZ
5530wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5531 int this_cpu, int prev_cpu, int sync)
90001d67 5532{
90001d67
PZ
5533 s64 this_eff_load, prev_eff_load;
5534 unsigned long task_load;
5535
a3df0679 5536 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
90001d67 5537
90001d67
PZ
5538 if (sync) {
5539 unsigned long current_load = task_h_load(current);
5540
f2cdd9cc 5541 if (current_load > this_eff_load)
3b76c4a3 5542 return this_cpu;
90001d67 5543
f2cdd9cc 5544 this_eff_load -= current_load;
90001d67
PZ
5545 }
5546
90001d67
PZ
5547 task_load = task_h_load(p);
5548
f2cdd9cc
PZ
5549 this_eff_load += task_load;
5550 if (sched_feat(WA_BIAS))
5551 this_eff_load *= 100;
5552 this_eff_load *= capacity_of(prev_cpu);
90001d67 5553
a3df0679 5554 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5555 prev_eff_load -= task_load;
5556 if (sched_feat(WA_BIAS))
5557 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5558 prev_eff_load *= capacity_of(this_cpu);
90001d67 5559
082f764a
MG
5560 /*
5561 * If sync, adjust the weight of prev_eff_load such that if
5562 * prev_eff == this_eff that select_idle_sibling() will consider
5563 * stacking the wakee on top of the waker if no other CPU is
5564 * idle.
5565 */
5566 if (sync)
5567 prev_eff_load += 1;
5568
5569 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5570}
5571
772bd008 5572static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5573 int this_cpu, int prev_cpu, int sync)
098fb9db 5574{
3b76c4a3 5575 int target = nr_cpumask_bits;
098fb9db 5576
89a55f56 5577 if (sched_feat(WA_IDLE))
3b76c4a3 5578 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5579
3b76c4a3
MG
5580 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5581 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5582
ae92882e 5583 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5584 if (target == nr_cpumask_bits)
5585 return prev_cpu;
098fb9db 5586
3b76c4a3
MG
5587 schedstat_inc(sd->ttwu_move_affine);
5588 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5589 return target;
098fb9db
IM
5590}
5591
c469933e 5592static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5593
c469933e 5594static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5595{
c469933e 5596 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5597}
5598
aaee1203
PZ
5599/*
5600 * find_idlest_group finds and returns the least busy CPU group within the
5601 * domain.
6fee85cc
BJ
5602 *
5603 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5604 */
5605static struct sched_group *
78e7ed53 5606find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5607 int this_cpu, int sd_flag)
e7693a36 5608{
b3bd3de6 5609 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5610 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5611 unsigned long min_runnable_load = ULONG_MAX;
5612 unsigned long this_runnable_load = ULONG_MAX;
5613 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5614 unsigned long most_spare = 0, this_spare = 0;
6b94780e
VG
5615 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5616 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5617 (sd->imbalance_pct-100) / 100;
e7693a36 5618
aaee1203 5619 do {
6b94780e
VG
5620 unsigned long load, avg_load, runnable_load;
5621 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5622 int local_group;
5623 int i;
e7693a36 5624
aaee1203 5625 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5626 if (!cpumask_intersects(sched_group_span(group),
3bd37062 5627 p->cpus_ptr))
aaee1203
PZ
5628 continue;
5629
5630 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5631 sched_group_span(group));
aaee1203 5632
6a0b19c0
MR
5633 /*
5634 * Tally up the load of all CPUs in the group and find
5635 * the group containing the CPU with most spare capacity.
5636 */
aaee1203 5637 avg_load = 0;
6b94780e 5638 runnable_load = 0;
6a0b19c0 5639 max_spare_cap = 0;
aaee1203 5640
ae4df9d6 5641 for_each_cpu(i, sched_group_span(group)) {
a3df0679 5642 load = cpu_runnable_load(cpu_rq(i));
6b94780e
VG
5643 runnable_load += load;
5644
5645 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5646
c469933e 5647 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5648
5649 if (spare_cap > max_spare_cap)
5650 max_spare_cap = spare_cap;
aaee1203
PZ
5651 }
5652
63b2ca30 5653 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5654 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5655 group->sgc->capacity;
5656 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5657 group->sgc->capacity;
aaee1203
PZ
5658
5659 if (local_group) {
6b94780e
VG
5660 this_runnable_load = runnable_load;
5661 this_avg_load = avg_load;
6a0b19c0
MR
5662 this_spare = max_spare_cap;
5663 } else {
6b94780e
VG
5664 if (min_runnable_load > (runnable_load + imbalance)) {
5665 /*
5666 * The runnable load is significantly smaller
97fb7a0a 5667 * so we can pick this new CPU:
6b94780e
VG
5668 */
5669 min_runnable_load = runnable_load;
5670 min_avg_load = avg_load;
5671 idlest = group;
5672 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5673 (100*min_avg_load > imbalance_scale*avg_load)) {
5674 /*
5675 * The runnable loads are close so take the
97fb7a0a 5676 * blocked load into account through avg_load:
6b94780e
VG
5677 */
5678 min_avg_load = avg_load;
6a0b19c0
MR
5679 idlest = group;
5680 }
5681
5682 if (most_spare < max_spare_cap) {
5683 most_spare = max_spare_cap;
5684 most_spare_sg = group;
5685 }
aaee1203
PZ
5686 }
5687 } while (group = group->next, group != sd->groups);
5688
6a0b19c0
MR
5689 /*
5690 * The cross-over point between using spare capacity or least load
5691 * is too conservative for high utilization tasks on partially
5692 * utilized systems if we require spare_capacity > task_util(p),
5693 * so we allow for some task stuffing by using
5694 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5695 *
5696 * Spare capacity can't be used for fork because the utilization has
5697 * not been set yet, we must first select a rq to compute the initial
5698 * utilization.
6a0b19c0 5699 */
f519a3f1
VG
5700 if (sd_flag & SD_BALANCE_FORK)
5701 goto skip_spare;
5702
6a0b19c0 5703 if (this_spare > task_util(p) / 2 &&
6b94780e 5704 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5705 return NULL;
6b94780e
VG
5706
5707 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5708 return most_spare_sg;
5709
f519a3f1 5710skip_spare:
6b94780e
VG
5711 if (!idlest)
5712 return NULL;
5713
2c833627
MG
5714 /*
5715 * When comparing groups across NUMA domains, it's possible for the
5716 * local domain to be very lightly loaded relative to the remote
5717 * domains but "imbalance" skews the comparison making remote CPUs
5718 * look much more favourable. When considering cross-domain, add
5719 * imbalance to the runnable load on the remote node and consider
5720 * staying local.
5721 */
5722 if ((sd->flags & SD_NUMA) &&
5723 min_runnable_load + imbalance >= this_runnable_load)
5724 return NULL;
5725
6b94780e 5726 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5727 return NULL;
6b94780e
VG
5728
5729 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5730 (100*this_avg_load < imbalance_scale*min_avg_load))
5731 return NULL;
5732
aaee1203
PZ
5733 return idlest;
5734}
5735
5736/*
97fb7a0a 5737 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5738 */
5739static int
18bd1b4b 5740find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5741{
5742 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5743 unsigned int min_exit_latency = UINT_MAX;
5744 u64 latest_idle_timestamp = 0;
5745 int least_loaded_cpu = this_cpu;
5746 int shallowest_idle_cpu = -1;
aaee1203
PZ
5747 int i;
5748
eaecf41f
MR
5749 /* Check if we have any choice: */
5750 if (group->group_weight == 1)
ae4df9d6 5751 return cpumask_first(sched_group_span(group));
eaecf41f 5752
aaee1203 5753 /* Traverse only the allowed CPUs */
3bd37062 5754 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5755 if (available_idle_cpu(i)) {
83a0a96a
NP
5756 struct rq *rq = cpu_rq(i);
5757 struct cpuidle_state *idle = idle_get_state(rq);
5758 if (idle && idle->exit_latency < min_exit_latency) {
5759 /*
5760 * We give priority to a CPU whose idle state
5761 * has the smallest exit latency irrespective
5762 * of any idle timestamp.
5763 */
5764 min_exit_latency = idle->exit_latency;
5765 latest_idle_timestamp = rq->idle_stamp;
5766 shallowest_idle_cpu = i;
5767 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5768 rq->idle_stamp > latest_idle_timestamp) {
5769 /*
5770 * If equal or no active idle state, then
5771 * the most recently idled CPU might have
5772 * a warmer cache.
5773 */
5774 latest_idle_timestamp = rq->idle_stamp;
5775 shallowest_idle_cpu = i;
5776 }
9f96742a 5777 } else if (shallowest_idle_cpu == -1) {
a3df0679 5778 load = cpu_runnable_load(cpu_rq(i));
18cec7e0 5779 if (load < min_load) {
83a0a96a
NP
5780 min_load = load;
5781 least_loaded_cpu = i;
5782 }
e7693a36
GH
5783 }
5784 }
5785
83a0a96a 5786 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5787}
e7693a36 5788
18bd1b4b
BJ
5789static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5790 int cpu, int prev_cpu, int sd_flag)
5791{
93f50f90 5792 int new_cpu = cpu;
18bd1b4b 5793
3bd37062 5794 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5795 return prev_cpu;
5796
c976a862 5797 /*
c469933e
PB
5798 * We need task's util for capacity_spare_without, sync it up to
5799 * prev_cpu's last_update_time.
c976a862
VK
5800 */
5801 if (!(sd_flag & SD_BALANCE_FORK))
5802 sync_entity_load_avg(&p->se);
5803
18bd1b4b
BJ
5804 while (sd) {
5805 struct sched_group *group;
5806 struct sched_domain *tmp;
5807 int weight;
5808
5809 if (!(sd->flags & sd_flag)) {
5810 sd = sd->child;
5811 continue;
5812 }
5813
5814 group = find_idlest_group(sd, p, cpu, sd_flag);
5815 if (!group) {
5816 sd = sd->child;
5817 continue;
5818 }
5819
5820 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5821 if (new_cpu == cpu) {
97fb7a0a 5822 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5823 sd = sd->child;
5824 continue;
5825 }
5826
97fb7a0a 5827 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5828 cpu = new_cpu;
5829 weight = sd->span_weight;
5830 sd = NULL;
5831 for_each_domain(cpu, tmp) {
5832 if (weight <= tmp->span_weight)
5833 break;
5834 if (tmp->flags & sd_flag)
5835 sd = tmp;
5836 }
18bd1b4b
BJ
5837 }
5838
5839 return new_cpu;
5840}
5841
10e2f1ac 5842#ifdef CONFIG_SCHED_SMT
ba2591a5 5843DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5844EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5845
5846static inline void set_idle_cores(int cpu, int val)
5847{
5848 struct sched_domain_shared *sds;
5849
5850 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5851 if (sds)
5852 WRITE_ONCE(sds->has_idle_cores, val);
5853}
5854
5855static inline bool test_idle_cores(int cpu, bool def)
5856{
5857 struct sched_domain_shared *sds;
5858
5859 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5860 if (sds)
5861 return READ_ONCE(sds->has_idle_cores);
5862
5863 return def;
5864}
5865
5866/*
5867 * Scans the local SMT mask to see if the entire core is idle, and records this
5868 * information in sd_llc_shared->has_idle_cores.
5869 *
5870 * Since SMT siblings share all cache levels, inspecting this limited remote
5871 * state should be fairly cheap.
5872 */
1b568f0a 5873void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5874{
5875 int core = cpu_of(rq);
5876 int cpu;
5877
5878 rcu_read_lock();
5879 if (test_idle_cores(core, true))
5880 goto unlock;
5881
5882 for_each_cpu(cpu, cpu_smt_mask(core)) {
5883 if (cpu == core)
5884 continue;
5885
943d355d 5886 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5887 goto unlock;
5888 }
5889
5890 set_idle_cores(core, 1);
5891unlock:
5892 rcu_read_unlock();
5893}
5894
5895/*
5896 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5897 * there are no idle cores left in the system; tracked through
5898 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5899 */
5900static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5901{
5902 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5903 int core, cpu;
10e2f1ac 5904
1b568f0a
PZ
5905 if (!static_branch_likely(&sched_smt_present))
5906 return -1;
5907
10e2f1ac
PZ
5908 if (!test_idle_cores(target, false))
5909 return -1;
5910
3bd37062 5911 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5912
c743f0a5 5913 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5914 bool idle = true;
5915
5916 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5917 __cpumask_clear_cpu(cpu, cpus);
943d355d 5918 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5919 idle = false;
5920 }
5921
5922 if (idle)
5923 return core;
5924 }
5925
5926 /*
5927 * Failed to find an idle core; stop looking for one.
5928 */
5929 set_idle_cores(target, 0);
5930
5931 return -1;
5932}
5933
5934/*
5935 * Scan the local SMT mask for idle CPUs.
5936 */
1b5500d7 5937static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5938{
5939 int cpu;
5940
1b568f0a
PZ
5941 if (!static_branch_likely(&sched_smt_present))
5942 return -1;
5943
10e2f1ac 5944 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5945 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5946 continue;
943d355d 5947 if (available_idle_cpu(cpu))
10e2f1ac
PZ
5948 return cpu;
5949 }
5950
5951 return -1;
5952}
5953
5954#else /* CONFIG_SCHED_SMT */
5955
5956static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5957{
5958 return -1;
5959}
5960
1b5500d7 5961static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5962{
5963 return -1;
5964}
5965
5966#endif /* CONFIG_SCHED_SMT */
5967
5968/*
5969 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5970 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5971 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5972 */
10e2f1ac
PZ
5973static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5974{
9cfb38a7 5975 struct sched_domain *this_sd;
1ad3aaf3 5976 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5977 u64 time, cost;
5978 s64 delta;
1ad3aaf3 5979 int cpu, nr = INT_MAX;
8dc2d993 5980 int this = smp_processor_id();
10e2f1ac 5981
9cfb38a7
WL
5982 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5983 if (!this_sd)
5984 return -1;
5985
10e2f1ac
PZ
5986 /*
5987 * Due to large variance we need a large fuzz factor; hackbench in
5988 * particularly is sensitive here.
5989 */
1ad3aaf3
PZ
5990 avg_idle = this_rq()->avg_idle / 512;
5991 avg_cost = this_sd->avg_scan_cost + 1;
5992
5993 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5994 return -1;
5995
1ad3aaf3
PZ
5996 if (sched_feat(SIS_PROP)) {
5997 u64 span_avg = sd->span_weight * avg_idle;
5998 if (span_avg > 4*avg_cost)
5999 nr = div_u64(span_avg, avg_cost);
6000 else
6001 nr = 4;
6002 }
6003
8dc2d993 6004 time = cpu_clock(this);
10e2f1ac 6005
c743f0a5 6006 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6007 if (!--nr)
6008 return -1;
3bd37062 6009 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 6010 continue;
943d355d 6011 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6012 break;
6013 }
6014
8dc2d993 6015 time = cpu_clock(this) - time;
10e2f1ac
PZ
6016 cost = this_sd->avg_scan_cost;
6017 delta = (s64)(time - cost) / 8;
6018 this_sd->avg_scan_cost += delta;
6019
6020 return cpu;
6021}
6022
6023/*
6024 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6025 */
772bd008 6026static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6027{
99bd5e2f 6028 struct sched_domain *sd;
32e839dd 6029 int i, recent_used_cpu;
a50bde51 6030
943d355d 6031 if (available_idle_cpu(target))
e0a79f52 6032 return target;
99bd5e2f
SS
6033
6034 /*
97fb7a0a 6035 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6036 */
943d355d 6037 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6038 return prev;
a50bde51 6039
97fb7a0a 6040 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6041 recent_used_cpu = p->recent_used_cpu;
6042 if (recent_used_cpu != prev &&
6043 recent_used_cpu != target &&
6044 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6045 available_idle_cpu(recent_used_cpu) &&
3bd37062 6046 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6047 /*
6048 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6049 * candidate for the next wake:
32e839dd
MG
6050 */
6051 p->recent_used_cpu = prev;
6052 return recent_used_cpu;
6053 }
6054
518cd623 6055 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6056 if (!sd)
6057 return target;
772bd008 6058
10e2f1ac
PZ
6059 i = select_idle_core(p, sd, target);
6060 if ((unsigned)i < nr_cpumask_bits)
6061 return i;
37407ea7 6062
10e2f1ac
PZ
6063 i = select_idle_cpu(p, sd, target);
6064 if ((unsigned)i < nr_cpumask_bits)
6065 return i;
6066
1b5500d7 6067 i = select_idle_smt(p, target);
10e2f1ac
PZ
6068 if ((unsigned)i < nr_cpumask_bits)
6069 return i;
970e1789 6070
a50bde51
PZ
6071 return target;
6072}
231678b7 6073
f9be3e59
PB
6074/**
6075 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6076 * @cpu: the CPU to get the utilization of
6077 *
6078 * The unit of the return value must be the one of capacity so we can compare
6079 * the utilization with the capacity of the CPU that is available for CFS task
6080 * (ie cpu_capacity).
231678b7
DE
6081 *
6082 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6083 * recent utilization of currently non-runnable tasks on a CPU. It represents
6084 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6085 * capacity_orig is the cpu_capacity available at the highest frequency
6086 * (arch_scale_freq_capacity()).
6087 * The utilization of a CPU converges towards a sum equal to or less than the
6088 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6089 * the running time on this CPU scaled by capacity_curr.
6090 *
f9be3e59
PB
6091 * The estimated utilization of a CPU is defined to be the maximum between its
6092 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6093 * currently RUNNABLE on that CPU.
6094 * This allows to properly represent the expected utilization of a CPU which
6095 * has just got a big task running since a long sleep period. At the same time
6096 * however it preserves the benefits of the "blocked utilization" in
6097 * describing the potential for other tasks waking up on the same CPU.
6098 *
231678b7
DE
6099 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6100 * higher than capacity_orig because of unfortunate rounding in
6101 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6102 * the average stabilizes with the new running time. We need to check that the
6103 * utilization stays within the range of [0..capacity_orig] and cap it if
6104 * necessary. Without utilization capping, a group could be seen as overloaded
6105 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6106 * available capacity. We allow utilization to overshoot capacity_curr (but not
6107 * capacity_orig) as it useful for predicting the capacity required after task
6108 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6109 *
6110 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6111 */
f9be3e59 6112static inline unsigned long cpu_util(int cpu)
8bb5b00c 6113{
f9be3e59
PB
6114 struct cfs_rq *cfs_rq;
6115 unsigned int util;
6116
6117 cfs_rq = &cpu_rq(cpu)->cfs;
6118 util = READ_ONCE(cfs_rq->avg.util_avg);
6119
6120 if (sched_feat(UTIL_EST))
6121 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6122
f9be3e59 6123 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6124}
a50bde51 6125
104cb16d 6126/*
c469933e
PB
6127 * cpu_util_without: compute cpu utilization without any contributions from *p
6128 * @cpu: the CPU which utilization is requested
6129 * @p: the task which utilization should be discounted
6130 *
6131 * The utilization of a CPU is defined by the utilization of tasks currently
6132 * enqueued on that CPU as well as tasks which are currently sleeping after an
6133 * execution on that CPU.
6134 *
6135 * This method returns the utilization of the specified CPU by discounting the
6136 * utilization of the specified task, whenever the task is currently
6137 * contributing to the CPU utilization.
104cb16d 6138 */
c469933e 6139static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6140{
f9be3e59
PB
6141 struct cfs_rq *cfs_rq;
6142 unsigned int util;
104cb16d
MR
6143
6144 /* Task has no contribution or is new */
f9be3e59 6145 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6146 return cpu_util(cpu);
6147
f9be3e59
PB
6148 cfs_rq = &cpu_rq(cpu)->cfs;
6149 util = READ_ONCE(cfs_rq->avg.util_avg);
6150
c469933e 6151 /* Discount task's util from CPU's util */
b5c0ce7b 6152 lsub_positive(&util, task_util(p));
104cb16d 6153
f9be3e59
PB
6154 /*
6155 * Covered cases:
6156 *
6157 * a) if *p is the only task sleeping on this CPU, then:
6158 * cpu_util (== task_util) > util_est (== 0)
6159 * and thus we return:
c469933e 6160 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6161 *
6162 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6163 * IDLE, then:
6164 * cpu_util >= task_util
6165 * cpu_util > util_est (== 0)
6166 * and thus we discount *p's blocked utilization to return:
c469933e 6167 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6168 *
6169 * c) if other tasks are RUNNABLE on that CPU and
6170 * util_est > cpu_util
6171 * then we use util_est since it returns a more restrictive
6172 * estimation of the spare capacity on that CPU, by just
6173 * considering the expected utilization of tasks already
6174 * runnable on that CPU.
6175 *
6176 * Cases a) and b) are covered by the above code, while case c) is
6177 * covered by the following code when estimated utilization is
6178 * enabled.
6179 */
c469933e
PB
6180 if (sched_feat(UTIL_EST)) {
6181 unsigned int estimated =
6182 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6183
6184 /*
6185 * Despite the following checks we still have a small window
6186 * for a possible race, when an execl's select_task_rq_fair()
6187 * races with LB's detach_task():
6188 *
6189 * detach_task()
6190 * p->on_rq = TASK_ON_RQ_MIGRATING;
6191 * ---------------------------------- A
6192 * deactivate_task() \
6193 * dequeue_task() + RaceTime
6194 * util_est_dequeue() /
6195 * ---------------------------------- B
6196 *
6197 * The additional check on "current == p" it's required to
6198 * properly fix the execl regression and it helps in further
6199 * reducing the chances for the above race.
6200 */
b5c0ce7b
PB
6201 if (unlikely(task_on_rq_queued(p) || current == p))
6202 lsub_positive(&estimated, _task_util_est(p));
6203
c469933e
PB
6204 util = max(util, estimated);
6205 }
f9be3e59
PB
6206
6207 /*
6208 * Utilization (estimated) can exceed the CPU capacity, thus let's
6209 * clamp to the maximum CPU capacity to ensure consistency with
6210 * the cpu_util call.
6211 */
6212 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6213}
6214
3273163c
MR
6215/*
6216 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6217 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6218 *
6219 * In that case WAKE_AFFINE doesn't make sense and we'll let
6220 * BALANCE_WAKE sort things out.
6221 */
6222static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6223{
6224 long min_cap, max_cap;
6225
df054e84
MR
6226 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6227 return 0;
6228
3273163c
MR
6229 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6230 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6231
6232 /* Minimum capacity is close to max, no need to abort wake_affine */
6233 if (max_cap - min_cap < max_cap >> 3)
6234 return 0;
6235
104cb16d
MR
6236 /* Bring task utilization in sync with prev_cpu */
6237 sync_entity_load_avg(&p->se);
6238
3b1baa64 6239 return !task_fits_capacity(p, min_cap);
3273163c
MR
6240}
6241
390031e4
QP
6242/*
6243 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6244 * to @dst_cpu.
6245 */
6246static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6247{
6248 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6249 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6250
6251 /*
6252 * If @p migrates from @cpu to another, remove its contribution. Or,
6253 * if @p migrates from another CPU to @cpu, add its contribution. In
6254 * the other cases, @cpu is not impacted by the migration, so the
6255 * util_avg should already be correct.
6256 */
6257 if (task_cpu(p) == cpu && dst_cpu != cpu)
6258 sub_positive(&util, task_util(p));
6259 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6260 util += task_util(p);
6261
6262 if (sched_feat(UTIL_EST)) {
6263 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6264
6265 /*
6266 * During wake-up, the task isn't enqueued yet and doesn't
6267 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6268 * so just add it (if needed) to "simulate" what will be
6269 * cpu_util() after the task has been enqueued.
6270 */
6271 if (dst_cpu == cpu)
6272 util_est += _task_util_est(p);
6273
6274 util = max(util, util_est);
6275 }
6276
6277 return min(util, capacity_orig_of(cpu));
6278}
6279
6280/*
6281 * compute_energy(): Estimates the energy that would be consumed if @p was
6282 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6283 * landscape of the * CPUs after the task migration, and uses the Energy Model
6284 * to compute what would be the energy if we decided to actually migrate that
6285 * task.
6286 */
6287static long
6288compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6289{
af24bde8
PB
6290 unsigned int max_util, util_cfs, cpu_util, cpu_cap;
6291 unsigned long sum_util, energy = 0;
6292 struct task_struct *tsk;
390031e4
QP
6293 int cpu;
6294
6295 for (; pd; pd = pd->next) {
af24bde8
PB
6296 struct cpumask *pd_mask = perf_domain_span(pd);
6297
6298 /*
6299 * The energy model mandates all the CPUs of a performance
6300 * domain have the same capacity.
6301 */
6302 cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
390031e4 6303 max_util = sum_util = 0;
af24bde8 6304
390031e4
QP
6305 /*
6306 * The capacity state of CPUs of the current rd can be driven by
6307 * CPUs of another rd if they belong to the same performance
6308 * domain. So, account for the utilization of these CPUs too
6309 * by masking pd with cpu_online_mask instead of the rd span.
6310 *
6311 * If an entire performance domain is outside of the current rd,
6312 * it will not appear in its pd list and will not be accounted
6313 * by compute_energy().
6314 */
af24bde8
PB
6315 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6316 util_cfs = cpu_util_next(cpu, p, dst_cpu);
6317
6318 /*
6319 * Busy time computation: utilization clamping is not
6320 * required since the ratio (sum_util / cpu_capacity)
6321 * is already enough to scale the EM reported power
6322 * consumption at the (eventually clamped) cpu_capacity.
6323 */
6324 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6325 ENERGY_UTIL, NULL);
6326
6327 /*
6328 * Performance domain frequency: utilization clamping
6329 * must be considered since it affects the selection
6330 * of the performance domain frequency.
6331 * NOTE: in case RT tasks are running, by default the
6332 * FREQUENCY_UTIL's utilization can be max OPP.
6333 */
6334 tsk = cpu == dst_cpu ? p : NULL;
6335 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6336 FREQUENCY_UTIL, tsk);
6337 max_util = max(max_util, cpu_util);
390031e4
QP
6338 }
6339
6340 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6341 }
6342
6343 return energy;
6344}
6345
732cd75b
QP
6346/*
6347 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6348 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6349 * spare capacity in each performance domain and uses it as a potential
6350 * candidate to execute the task. Then, it uses the Energy Model to figure
6351 * out which of the CPU candidates is the most energy-efficient.
6352 *
6353 * The rationale for this heuristic is as follows. In a performance domain,
6354 * all the most energy efficient CPU candidates (according to the Energy
6355 * Model) are those for which we'll request a low frequency. When there are
6356 * several CPUs for which the frequency request will be the same, we don't
6357 * have enough data to break the tie between them, because the Energy Model
6358 * only includes active power costs. With this model, if we assume that
6359 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6360 * the maximum spare capacity in a performance domain is guaranteed to be among
6361 * the best candidates of the performance domain.
6362 *
6363 * In practice, it could be preferable from an energy standpoint to pack
6364 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6365 * but that could also hurt our chances to go cluster idle, and we have no
6366 * ways to tell with the current Energy Model if this is actually a good
6367 * idea or not. So, find_energy_efficient_cpu() basically favors
6368 * cluster-packing, and spreading inside a cluster. That should at least be
6369 * a good thing for latency, and this is consistent with the idea that most
6370 * of the energy savings of EAS come from the asymmetry of the system, and
6371 * not so much from breaking the tie between identical CPUs. That's also the
6372 * reason why EAS is enabled in the topology code only for systems where
6373 * SD_ASYM_CPUCAPACITY is set.
6374 *
6375 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6376 * they don't have any useful utilization data yet and it's not possible to
6377 * forecast their impact on energy consumption. Consequently, they will be
6378 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6379 * to be energy-inefficient in some use-cases. The alternative would be to
6380 * bias new tasks towards specific types of CPUs first, or to try to infer
6381 * their util_avg from the parent task, but those heuristics could hurt
6382 * other use-cases too. So, until someone finds a better way to solve this,
6383 * let's keep things simple by re-using the existing slow path.
6384 */
6385
6386static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6387{
6388 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6389 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6390 int cpu, best_energy_cpu = prev_cpu;
6391 struct perf_domain *head, *pd;
6392 unsigned long cpu_cap, util;
6393 struct sched_domain *sd;
6394
6395 rcu_read_lock();
6396 pd = rcu_dereference(rd->pd);
6397 if (!pd || READ_ONCE(rd->overutilized))
6398 goto fail;
6399 head = pd;
6400
6401 /*
6402 * Energy-aware wake-up happens on the lowest sched_domain starting
6403 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6404 */
6405 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6406 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6407 sd = sd->parent;
6408 if (!sd)
6409 goto fail;
6410
6411 sync_entity_load_avg(&p->se);
6412 if (!task_util_est(p))
6413 goto unlock;
6414
6415 for (; pd; pd = pd->next) {
6416 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6417 int max_spare_cap_cpu = -1;
6418
6419 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6420 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6421 continue;
6422
6423 /* Skip CPUs that will be overutilized. */
6424 util = cpu_util_next(cpu, p, cpu);
6425 cpu_cap = capacity_of(cpu);
6426 if (cpu_cap * 1024 < util * capacity_margin)
6427 continue;
6428
6429 /* Always use prev_cpu as a candidate. */
6430 if (cpu == prev_cpu) {
6431 prev_energy = compute_energy(p, prev_cpu, head);
6432 best_energy = min(best_energy, prev_energy);
6433 continue;
6434 }
6435
6436 /*
6437 * Find the CPU with the maximum spare capacity in
6438 * the performance domain
6439 */
6440 spare_cap = cpu_cap - util;
6441 if (spare_cap > max_spare_cap) {
6442 max_spare_cap = spare_cap;
6443 max_spare_cap_cpu = cpu;
6444 }
6445 }
6446
6447 /* Evaluate the energy impact of using this CPU. */
6448 if (max_spare_cap_cpu >= 0) {
6449 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6450 if (cur_energy < best_energy) {
6451 best_energy = cur_energy;
6452 best_energy_cpu = max_spare_cap_cpu;
6453 }
6454 }
6455 }
6456unlock:
6457 rcu_read_unlock();
6458
6459 /*
6460 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6461 * least 6% of the energy used by prev_cpu.
6462 */
6463 if (prev_energy == ULONG_MAX)
6464 return best_energy_cpu;
6465
6466 if ((prev_energy - best_energy) > (prev_energy >> 4))
6467 return best_energy_cpu;
6468
6469 return prev_cpu;
6470
6471fail:
6472 rcu_read_unlock();
6473
6474 return -1;
6475}
6476
aaee1203 6477/*
de91b9cb
MR
6478 * select_task_rq_fair: Select target runqueue for the waking task in domains
6479 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6480 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6481 *
97fb7a0a
IM
6482 * Balances load by selecting the idlest CPU in the idlest group, or under
6483 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6484 *
97fb7a0a 6485 * Returns the target CPU number.
aaee1203
PZ
6486 *
6487 * preempt must be disabled.
6488 */
0017d735 6489static int
ac66f547 6490select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6491{
f1d88b44 6492 struct sched_domain *tmp, *sd = NULL;
c88d5910 6493 int cpu = smp_processor_id();
63b0e9ed 6494 int new_cpu = prev_cpu;
99bd5e2f 6495 int want_affine = 0;
24d0c1d6 6496 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6497
c58d25f3
PZ
6498 if (sd_flag & SD_BALANCE_WAKE) {
6499 record_wakee(p);
732cd75b 6500
f8a696f2 6501 if (sched_energy_enabled()) {
732cd75b
QP
6502 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6503 if (new_cpu >= 0)
6504 return new_cpu;
6505 new_cpu = prev_cpu;
6506 }
6507
6508 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6509 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6510 }
aaee1203 6511
dce840a0 6512 rcu_read_lock();
aaee1203 6513 for_each_domain(cpu, tmp) {
e4f42888 6514 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6515 break;
e4f42888 6516
fe3bcfe1 6517 /*
97fb7a0a 6518 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6519 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6520 */
99bd5e2f
SS
6521 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6522 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6523 if (cpu != prev_cpu)
6524 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6525
6526 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6527 break;
f03542a7 6528 }
29cd8bae 6529
f03542a7 6530 if (tmp->flags & sd_flag)
29cd8bae 6531 sd = tmp;
63b0e9ed
MG
6532 else if (!want_affine)
6533 break;
29cd8bae
PZ
6534 }
6535
f1d88b44
VK
6536 if (unlikely(sd)) {
6537 /* Slow path */
18bd1b4b 6538 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6539 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6540 /* Fast path */
6541
6542 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6543
6544 if (want_affine)
6545 current->recent_used_cpu = cpu;
e7693a36 6546 }
dce840a0 6547 rcu_read_unlock();
e7693a36 6548
c88d5910 6549 return new_cpu;
e7693a36 6550}
0a74bef8 6551
144d8487
PZ
6552static void detach_entity_cfs_rq(struct sched_entity *se);
6553
0a74bef8 6554/*
97fb7a0a 6555 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6556 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6557 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6558 */
3f9672ba 6559static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6560{
59efa0ba
PZ
6561 /*
6562 * As blocked tasks retain absolute vruntime the migration needs to
6563 * deal with this by subtracting the old and adding the new
6564 * min_vruntime -- the latter is done by enqueue_entity() when placing
6565 * the task on the new runqueue.
6566 */
6567 if (p->state == TASK_WAKING) {
6568 struct sched_entity *se = &p->se;
6569 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6570 u64 min_vruntime;
6571
6572#ifndef CONFIG_64BIT
6573 u64 min_vruntime_copy;
6574
6575 do {
6576 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6577 smp_rmb();
6578 min_vruntime = cfs_rq->min_vruntime;
6579 } while (min_vruntime != min_vruntime_copy);
6580#else
6581 min_vruntime = cfs_rq->min_vruntime;
6582#endif
6583
6584 se->vruntime -= min_vruntime;
6585 }
6586
144d8487
PZ
6587 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6588 /*
6589 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6590 * rq->lock and can modify state directly.
6591 */
6592 lockdep_assert_held(&task_rq(p)->lock);
6593 detach_entity_cfs_rq(&p->se);
6594
6595 } else {
6596 /*
6597 * We are supposed to update the task to "current" time, then
6598 * its up to date and ready to go to new CPU/cfs_rq. But we
6599 * have difficulty in getting what current time is, so simply
6600 * throw away the out-of-date time. This will result in the
6601 * wakee task is less decayed, but giving the wakee more load
6602 * sounds not bad.
6603 */
6604 remove_entity_load_avg(&p->se);
6605 }
9d89c257
YD
6606
6607 /* Tell new CPU we are migrated */
6608 p->se.avg.last_update_time = 0;
3944a927
BS
6609
6610 /* We have migrated, no longer consider this task hot */
9d89c257 6611 p->se.exec_start = 0;
3f9672ba
SD
6612
6613 update_scan_period(p, new_cpu);
0a74bef8 6614}
12695578
YD
6615
6616static void task_dead_fair(struct task_struct *p)
6617{
6618 remove_entity_load_avg(&p->se);
6619}
e7693a36
GH
6620#endif /* CONFIG_SMP */
6621
a555e9d8 6622static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6623{
6624 unsigned long gran = sysctl_sched_wakeup_granularity;
6625
6626 /*
e52fb7c0
PZ
6627 * Since its curr running now, convert the gran from real-time
6628 * to virtual-time in his units.
13814d42
MG
6629 *
6630 * By using 'se' instead of 'curr' we penalize light tasks, so
6631 * they get preempted easier. That is, if 'se' < 'curr' then
6632 * the resulting gran will be larger, therefore penalizing the
6633 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6634 * be smaller, again penalizing the lighter task.
6635 *
6636 * This is especially important for buddies when the leftmost
6637 * task is higher priority than the buddy.
0bbd3336 6638 */
f4ad9bd2 6639 return calc_delta_fair(gran, se);
0bbd3336
PZ
6640}
6641
464b7527
PZ
6642/*
6643 * Should 'se' preempt 'curr'.
6644 *
6645 * |s1
6646 * |s2
6647 * |s3
6648 * g
6649 * |<--->|c
6650 *
6651 * w(c, s1) = -1
6652 * w(c, s2) = 0
6653 * w(c, s3) = 1
6654 *
6655 */
6656static int
6657wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6658{
6659 s64 gran, vdiff = curr->vruntime - se->vruntime;
6660
6661 if (vdiff <= 0)
6662 return -1;
6663
a555e9d8 6664 gran = wakeup_gran(se);
464b7527
PZ
6665 if (vdiff > gran)
6666 return 1;
6667
6668 return 0;
6669}
6670
02479099
PZ
6671static void set_last_buddy(struct sched_entity *se)
6672{
1da1843f 6673 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6674 return;
6675
c5ae366e
DA
6676 for_each_sched_entity(se) {
6677 if (SCHED_WARN_ON(!se->on_rq))
6678 return;
69c80f3e 6679 cfs_rq_of(se)->last = se;
c5ae366e 6680 }
02479099
PZ
6681}
6682
6683static void set_next_buddy(struct sched_entity *se)
6684{
1da1843f 6685 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6686 return;
6687
c5ae366e
DA
6688 for_each_sched_entity(se) {
6689 if (SCHED_WARN_ON(!se->on_rq))
6690 return;
69c80f3e 6691 cfs_rq_of(se)->next = se;
c5ae366e 6692 }
02479099
PZ
6693}
6694
ac53db59
RR
6695static void set_skip_buddy(struct sched_entity *se)
6696{
69c80f3e
VP
6697 for_each_sched_entity(se)
6698 cfs_rq_of(se)->skip = se;
ac53db59
RR
6699}
6700
bf0f6f24
IM
6701/*
6702 * Preempt the current task with a newly woken task if needed:
6703 */
5a9b86f6 6704static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6705{
6706 struct task_struct *curr = rq->curr;
8651a86c 6707 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6708 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6709 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6710 int next_buddy_marked = 0;
bf0f6f24 6711
4ae7d5ce
IM
6712 if (unlikely(se == pse))
6713 return;
6714
5238cdd3 6715 /*
163122b7 6716 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6717 * unconditionally check_prempt_curr() after an enqueue (which may have
6718 * lead to a throttle). This both saves work and prevents false
6719 * next-buddy nomination below.
6720 */
6721 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6722 return;
6723
2f36825b 6724 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6725 set_next_buddy(pse);
2f36825b
VP
6726 next_buddy_marked = 1;
6727 }
57fdc26d 6728
aec0a514
BR
6729 /*
6730 * We can come here with TIF_NEED_RESCHED already set from new task
6731 * wake up path.
5238cdd3
PT
6732 *
6733 * Note: this also catches the edge-case of curr being in a throttled
6734 * group (e.g. via set_curr_task), since update_curr() (in the
6735 * enqueue of curr) will have resulted in resched being set. This
6736 * prevents us from potentially nominating it as a false LAST_BUDDY
6737 * below.
aec0a514
BR
6738 */
6739 if (test_tsk_need_resched(curr))
6740 return;
6741
a2f5c9ab 6742 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6743 if (unlikely(task_has_idle_policy(curr)) &&
6744 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6745 goto preempt;
6746
91c234b4 6747 /*
a2f5c9ab
DH
6748 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6749 * is driven by the tick):
91c234b4 6750 */
8ed92e51 6751 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6752 return;
bf0f6f24 6753
464b7527 6754 find_matching_se(&se, &pse);
9bbd7374 6755 update_curr(cfs_rq_of(se));
002f128b 6756 BUG_ON(!pse);
2f36825b
VP
6757 if (wakeup_preempt_entity(se, pse) == 1) {
6758 /*
6759 * Bias pick_next to pick the sched entity that is
6760 * triggering this preemption.
6761 */
6762 if (!next_buddy_marked)
6763 set_next_buddy(pse);
3a7e73a2 6764 goto preempt;
2f36825b 6765 }
464b7527 6766
3a7e73a2 6767 return;
a65ac745 6768
3a7e73a2 6769preempt:
8875125e 6770 resched_curr(rq);
3a7e73a2
PZ
6771 /*
6772 * Only set the backward buddy when the current task is still
6773 * on the rq. This can happen when a wakeup gets interleaved
6774 * with schedule on the ->pre_schedule() or idle_balance()
6775 * point, either of which can * drop the rq lock.
6776 *
6777 * Also, during early boot the idle thread is in the fair class,
6778 * for obvious reasons its a bad idea to schedule back to it.
6779 */
6780 if (unlikely(!se->on_rq || curr == rq->idle))
6781 return;
6782
6783 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6784 set_last_buddy(se);
bf0f6f24
IM
6785}
6786
606dba2e 6787static struct task_struct *
d8ac8971 6788pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6789{
6790 struct cfs_rq *cfs_rq = &rq->cfs;
6791 struct sched_entity *se;
678d5718 6792 struct task_struct *p;
37e117c0 6793 int new_tasks;
678d5718 6794
6e83125c 6795again:
678d5718 6796 if (!cfs_rq->nr_running)
38033c37 6797 goto idle;
678d5718 6798
9674f5ca 6799#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6800 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6801 goto simple;
6802
6803 /*
6804 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6805 * likely that a next task is from the same cgroup as the current.
6806 *
6807 * Therefore attempt to avoid putting and setting the entire cgroup
6808 * hierarchy, only change the part that actually changes.
6809 */
6810
6811 do {
6812 struct sched_entity *curr = cfs_rq->curr;
6813
6814 /*
6815 * Since we got here without doing put_prev_entity() we also
6816 * have to consider cfs_rq->curr. If it is still a runnable
6817 * entity, update_curr() will update its vruntime, otherwise
6818 * forget we've ever seen it.
6819 */
54d27365
BS
6820 if (curr) {
6821 if (curr->on_rq)
6822 update_curr(cfs_rq);
6823 else
6824 curr = NULL;
678d5718 6825
54d27365
BS
6826 /*
6827 * This call to check_cfs_rq_runtime() will do the
6828 * throttle and dequeue its entity in the parent(s).
9674f5ca 6829 * Therefore the nr_running test will indeed
54d27365
BS
6830 * be correct.
6831 */
9674f5ca
VK
6832 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6833 cfs_rq = &rq->cfs;
6834
6835 if (!cfs_rq->nr_running)
6836 goto idle;
6837
54d27365 6838 goto simple;
9674f5ca 6839 }
54d27365 6840 }
678d5718
PZ
6841
6842 se = pick_next_entity(cfs_rq, curr);
6843 cfs_rq = group_cfs_rq(se);
6844 } while (cfs_rq);
6845
6846 p = task_of(se);
6847
6848 /*
6849 * Since we haven't yet done put_prev_entity and if the selected task
6850 * is a different task than we started out with, try and touch the
6851 * least amount of cfs_rqs.
6852 */
6853 if (prev != p) {
6854 struct sched_entity *pse = &prev->se;
6855
6856 while (!(cfs_rq = is_same_group(se, pse))) {
6857 int se_depth = se->depth;
6858 int pse_depth = pse->depth;
6859
6860 if (se_depth <= pse_depth) {
6861 put_prev_entity(cfs_rq_of(pse), pse);
6862 pse = parent_entity(pse);
6863 }
6864 if (se_depth >= pse_depth) {
6865 set_next_entity(cfs_rq_of(se), se);
6866 se = parent_entity(se);
6867 }
6868 }
6869
6870 put_prev_entity(cfs_rq, pse);
6871 set_next_entity(cfs_rq, se);
6872 }
6873
93824900 6874 goto done;
678d5718 6875simple:
678d5718 6876#endif
bf0f6f24 6877
3f1d2a31 6878 put_prev_task(rq, prev);
606dba2e 6879
bf0f6f24 6880 do {
678d5718 6881 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6882 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6883 cfs_rq = group_cfs_rq(se);
6884 } while (cfs_rq);
6885
8f4d37ec 6886 p = task_of(se);
678d5718 6887
13a453c2 6888done: __maybe_unused;
93824900
UR
6889#ifdef CONFIG_SMP
6890 /*
6891 * Move the next running task to the front of
6892 * the list, so our cfs_tasks list becomes MRU
6893 * one.
6894 */
6895 list_move(&p->se.group_node, &rq->cfs_tasks);
6896#endif
6897
b39e66ea
MG
6898 if (hrtick_enabled(rq))
6899 hrtick_start_fair(rq, p);
8f4d37ec 6900
3b1baa64
MR
6901 update_misfit_status(p, rq);
6902
8f4d37ec 6903 return p;
38033c37
PZ
6904
6905idle:
3b1baa64 6906 update_misfit_status(NULL, rq);
46f69fa3
MF
6907 new_tasks = idle_balance(rq, rf);
6908
37e117c0
PZ
6909 /*
6910 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6911 * possible for any higher priority task to appear. In that case we
6912 * must re-start the pick_next_entity() loop.
6913 */
e4aa358b 6914 if (new_tasks < 0)
37e117c0
PZ
6915 return RETRY_TASK;
6916
e4aa358b 6917 if (new_tasks > 0)
38033c37 6918 goto again;
38033c37 6919
23127296
VG
6920 /*
6921 * rq is about to be idle, check if we need to update the
6922 * lost_idle_time of clock_pelt
6923 */
6924 update_idle_rq_clock_pelt(rq);
6925
38033c37 6926 return NULL;
bf0f6f24
IM
6927}
6928
6929/*
6930 * Account for a descheduled task:
6931 */
31ee529c 6932static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6933{
6934 struct sched_entity *se = &prev->se;
6935 struct cfs_rq *cfs_rq;
6936
6937 for_each_sched_entity(se) {
6938 cfs_rq = cfs_rq_of(se);
ab6cde26 6939 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6940 }
6941}
6942
ac53db59
RR
6943/*
6944 * sched_yield() is very simple
6945 *
6946 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6947 */
6948static void yield_task_fair(struct rq *rq)
6949{
6950 struct task_struct *curr = rq->curr;
6951 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6952 struct sched_entity *se = &curr->se;
6953
6954 /*
6955 * Are we the only task in the tree?
6956 */
6957 if (unlikely(rq->nr_running == 1))
6958 return;
6959
6960 clear_buddies(cfs_rq, se);
6961
6962 if (curr->policy != SCHED_BATCH) {
6963 update_rq_clock(rq);
6964 /*
6965 * Update run-time statistics of the 'current'.
6966 */
6967 update_curr(cfs_rq);
916671c0
MG
6968 /*
6969 * Tell update_rq_clock() that we've just updated,
6970 * so we don't do microscopic update in schedule()
6971 * and double the fastpath cost.
6972 */
adcc8da8 6973 rq_clock_skip_update(rq);
ac53db59
RR
6974 }
6975
6976 set_skip_buddy(se);
6977}
6978
d95f4122
MG
6979static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6980{
6981 struct sched_entity *se = &p->se;
6982
5238cdd3
PT
6983 /* throttled hierarchies are not runnable */
6984 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6985 return false;
6986
6987 /* Tell the scheduler that we'd really like pse to run next. */
6988 set_next_buddy(se);
6989
d95f4122
MG
6990 yield_task_fair(rq);
6991
6992 return true;
6993}
6994
681f3e68 6995#ifdef CONFIG_SMP
bf0f6f24 6996/**************************************************
e9c84cb8
PZ
6997 * Fair scheduling class load-balancing methods.
6998 *
6999 * BASICS
7000 *
7001 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7002 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7003 * time to each task. This is expressed in the following equation:
7004 *
7005 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7006 *
97fb7a0a 7007 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7008 * W_i,0 is defined as:
7009 *
7010 * W_i,0 = \Sum_j w_i,j (2)
7011 *
97fb7a0a 7012 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7013 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7014 *
7015 * The weight average is an exponential decay average of the instantaneous
7016 * weight:
7017 *
7018 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7019 *
97fb7a0a 7020 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7021 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7022 * can also include other factors [XXX].
7023 *
7024 * To achieve this balance we define a measure of imbalance which follows
7025 * directly from (1):
7026 *
ced549fa 7027 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7028 *
7029 * We them move tasks around to minimize the imbalance. In the continuous
7030 * function space it is obvious this converges, in the discrete case we get
7031 * a few fun cases generally called infeasible weight scenarios.
7032 *
7033 * [XXX expand on:
7034 * - infeasible weights;
7035 * - local vs global optima in the discrete case. ]
7036 *
7037 *
7038 * SCHED DOMAINS
7039 *
7040 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7041 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7042 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7043 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7044 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7045 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7046 * the groups.
7047 *
7048 * This yields:
7049 *
7050 * log_2 n 1 n
7051 * \Sum { --- * --- * 2^i } = O(n) (5)
7052 * i = 0 2^i 2^i
7053 * `- size of each group
97fb7a0a 7054 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7055 * | `- freq
7056 * `- sum over all levels
7057 *
7058 * Coupled with a limit on how many tasks we can migrate every balance pass,
7059 * this makes (5) the runtime complexity of the balancer.
7060 *
7061 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7062 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7063 *
7064 * The adjacency matrix of the resulting graph is given by:
7065 *
97a7142f 7066 * log_2 n
e9c84cb8
PZ
7067 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7068 * k = 0
7069 *
7070 * And you'll find that:
7071 *
7072 * A^(log_2 n)_i,j != 0 for all i,j (7)
7073 *
97fb7a0a 7074 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7075 * The task movement gives a factor of O(m), giving a convergence complexity
7076 * of:
7077 *
7078 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7079 *
7080 *
7081 * WORK CONSERVING
7082 *
7083 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7084 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7085 * tree itself instead of relying on other CPUs to bring it work.
7086 *
7087 * This adds some complexity to both (5) and (8) but it reduces the total idle
7088 * time.
7089 *
7090 * [XXX more?]
7091 *
7092 *
7093 * CGROUPS
7094 *
7095 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7096 *
7097 * s_k,i
7098 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7099 * S_k
7100 *
7101 * Where
7102 *
7103 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7104 *
97fb7a0a 7105 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7106 *
7107 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7108 * property.
7109 *
7110 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7111 * rewrite all of this once again.]
97a7142f 7112 */
bf0f6f24 7113
ed387b78
HS
7114static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7115
0ec8aa00
PZ
7116enum fbq_type { regular, remote, all };
7117
3b1baa64
MR
7118enum group_type {
7119 group_other = 0,
7120 group_misfit_task,
7121 group_imbalanced,
7122 group_overloaded,
7123};
7124
ddcdf6e7 7125#define LBF_ALL_PINNED 0x01
367456c7 7126#define LBF_NEED_BREAK 0x02
6263322c
PZ
7127#define LBF_DST_PINNED 0x04
7128#define LBF_SOME_PINNED 0x08
e022e0d3 7129#define LBF_NOHZ_STATS 0x10
f643ea22 7130#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7131
7132struct lb_env {
7133 struct sched_domain *sd;
7134
ddcdf6e7 7135 struct rq *src_rq;
85c1e7da 7136 int src_cpu;
ddcdf6e7
PZ
7137
7138 int dst_cpu;
7139 struct rq *dst_rq;
7140
88b8dac0
SV
7141 struct cpumask *dst_grpmask;
7142 int new_dst_cpu;
ddcdf6e7 7143 enum cpu_idle_type idle;
bd939f45 7144 long imbalance;
b9403130
MW
7145 /* The set of CPUs under consideration for load-balancing */
7146 struct cpumask *cpus;
7147
ddcdf6e7 7148 unsigned int flags;
367456c7
PZ
7149
7150 unsigned int loop;
7151 unsigned int loop_break;
7152 unsigned int loop_max;
0ec8aa00
PZ
7153
7154 enum fbq_type fbq_type;
cad68e55 7155 enum group_type src_grp_type;
163122b7 7156 struct list_head tasks;
ddcdf6e7
PZ
7157};
7158
029632fb
PZ
7159/*
7160 * Is this task likely cache-hot:
7161 */
5d5e2b1b 7162static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7163{
7164 s64 delta;
7165
e5673f28
KT
7166 lockdep_assert_held(&env->src_rq->lock);
7167
029632fb
PZ
7168 if (p->sched_class != &fair_sched_class)
7169 return 0;
7170
1da1843f 7171 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7172 return 0;
7173
7174 /*
7175 * Buddy candidates are cache hot:
7176 */
5d5e2b1b 7177 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7178 (&p->se == cfs_rq_of(&p->se)->next ||
7179 &p->se == cfs_rq_of(&p->se)->last))
7180 return 1;
7181
7182 if (sysctl_sched_migration_cost == -1)
7183 return 1;
7184 if (sysctl_sched_migration_cost == 0)
7185 return 0;
7186
5d5e2b1b 7187 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7188
7189 return delta < (s64)sysctl_sched_migration_cost;
7190}
7191
3a7053b3 7192#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7193/*
2a1ed24c
SD
7194 * Returns 1, if task migration degrades locality
7195 * Returns 0, if task migration improves locality i.e migration preferred.
7196 * Returns -1, if task migration is not affected by locality.
c1ceac62 7197 */
2a1ed24c 7198static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7199{
b1ad065e 7200 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7201 unsigned long src_weight, dst_weight;
7202 int src_nid, dst_nid, dist;
3a7053b3 7203
2a595721 7204 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7205 return -1;
7206
c3b9bc5b 7207 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7208 return -1;
7a0f3083
MG
7209
7210 src_nid = cpu_to_node(env->src_cpu);
7211 dst_nid = cpu_to_node(env->dst_cpu);
7212
83e1d2cd 7213 if (src_nid == dst_nid)
2a1ed24c 7214 return -1;
7a0f3083 7215
2a1ed24c
SD
7216 /* Migrating away from the preferred node is always bad. */
7217 if (src_nid == p->numa_preferred_nid) {
7218 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7219 return 1;
7220 else
7221 return -1;
7222 }
b1ad065e 7223
c1ceac62
RR
7224 /* Encourage migration to the preferred node. */
7225 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7226 return 0;
b1ad065e 7227
739294fb 7228 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7229 if (env->idle == CPU_IDLE)
739294fb
RR
7230 return -1;
7231
f35678b6 7232 dist = node_distance(src_nid, dst_nid);
c1ceac62 7233 if (numa_group) {
f35678b6
SD
7234 src_weight = group_weight(p, src_nid, dist);
7235 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7236 } else {
f35678b6
SD
7237 src_weight = task_weight(p, src_nid, dist);
7238 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7239 }
7240
f35678b6 7241 return dst_weight < src_weight;
7a0f3083
MG
7242}
7243
3a7053b3 7244#else
2a1ed24c 7245static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7246 struct lb_env *env)
7247{
2a1ed24c 7248 return -1;
7a0f3083 7249}
3a7053b3
MG
7250#endif
7251
1e3c88bd
PZ
7252/*
7253 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7254 */
7255static
8e45cb54 7256int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7257{
2a1ed24c 7258 int tsk_cache_hot;
e5673f28
KT
7259
7260 lockdep_assert_held(&env->src_rq->lock);
7261
1e3c88bd
PZ
7262 /*
7263 * We do not migrate tasks that are:
d3198084 7264 * 1) throttled_lb_pair, or
3bd37062 7265 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7266 * 3) running (obviously), or
7267 * 4) are cache-hot on their current CPU.
1e3c88bd 7268 */
d3198084
JK
7269 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7270 return 0;
7271
3bd37062 7272 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7273 int cpu;
88b8dac0 7274
ae92882e 7275 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7276
6263322c
PZ
7277 env->flags |= LBF_SOME_PINNED;
7278
88b8dac0 7279 /*
97fb7a0a 7280 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7281 * our sched_group. We may want to revisit it if we couldn't
7282 * meet load balance goals by pulling other tasks on src_cpu.
7283 *
65a4433a
JH
7284 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7285 * already computed one in current iteration.
88b8dac0 7286 */
65a4433a 7287 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7288 return 0;
7289
97fb7a0a 7290 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7291 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7292 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7293 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7294 env->new_dst_cpu = cpu;
7295 break;
7296 }
88b8dac0 7297 }
e02e60c1 7298
1e3c88bd
PZ
7299 return 0;
7300 }
88b8dac0
SV
7301
7302 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7303 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7304
ddcdf6e7 7305 if (task_running(env->src_rq, p)) {
ae92882e 7306 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7307 return 0;
7308 }
7309
7310 /*
7311 * Aggressive migration if:
3a7053b3
MG
7312 * 1) destination numa is preferred
7313 * 2) task is cache cold, or
7314 * 3) too many balance attempts have failed.
1e3c88bd 7315 */
2a1ed24c
SD
7316 tsk_cache_hot = migrate_degrades_locality(p, env);
7317 if (tsk_cache_hot == -1)
7318 tsk_cache_hot = task_hot(p, env);
3a7053b3 7319
2a1ed24c 7320 if (tsk_cache_hot <= 0 ||
7a96c231 7321 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7322 if (tsk_cache_hot == 1) {
ae92882e
JP
7323 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7324 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7325 }
1e3c88bd
PZ
7326 return 1;
7327 }
7328
ae92882e 7329 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7330 return 0;
1e3c88bd
PZ
7331}
7332
897c395f 7333/*
163122b7
KT
7334 * detach_task() -- detach the task for the migration specified in env
7335 */
7336static void detach_task(struct task_struct *p, struct lb_env *env)
7337{
7338 lockdep_assert_held(&env->src_rq->lock);
7339
5704ac0a 7340 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7341 set_task_cpu(p, env->dst_cpu);
7342}
7343
897c395f 7344/*
e5673f28 7345 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7346 * part of active balancing operations within "domain".
897c395f 7347 *
e5673f28 7348 * Returns a task if successful and NULL otherwise.
897c395f 7349 */
e5673f28 7350static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7351{
93824900 7352 struct task_struct *p;
897c395f 7353
e5673f28
KT
7354 lockdep_assert_held(&env->src_rq->lock);
7355
93824900
UR
7356 list_for_each_entry_reverse(p,
7357 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7358 if (!can_migrate_task(p, env))
7359 continue;
897c395f 7360
163122b7 7361 detach_task(p, env);
e5673f28 7362
367456c7 7363 /*
e5673f28 7364 * Right now, this is only the second place where
163122b7 7365 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7366 * so we can safely collect stats here rather than
163122b7 7367 * inside detach_tasks().
367456c7 7368 */
ae92882e 7369 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7370 return p;
897c395f 7371 }
e5673f28 7372 return NULL;
897c395f
PZ
7373}
7374
eb95308e
PZ
7375static const unsigned int sched_nr_migrate_break = 32;
7376
5d6523eb 7377/*
a3df0679 7378 * detach_tasks() -- tries to detach up to imbalance runnable load from
163122b7 7379 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7380 *
163122b7 7381 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7382 */
163122b7 7383static int detach_tasks(struct lb_env *env)
1e3c88bd 7384{
5d6523eb
PZ
7385 struct list_head *tasks = &env->src_rq->cfs_tasks;
7386 struct task_struct *p;
367456c7 7387 unsigned long load;
163122b7
KT
7388 int detached = 0;
7389
7390 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7391
bd939f45 7392 if (env->imbalance <= 0)
5d6523eb 7393 return 0;
1e3c88bd 7394
5d6523eb 7395 while (!list_empty(tasks)) {
985d3a4c
YD
7396 /*
7397 * We don't want to steal all, otherwise we may be treated likewise,
7398 * which could at worst lead to a livelock crash.
7399 */
7400 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7401 break;
7402
93824900 7403 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7404
367456c7
PZ
7405 env->loop++;
7406 /* We've more or less seen every task there is, call it quits */
5d6523eb 7407 if (env->loop > env->loop_max)
367456c7 7408 break;
5d6523eb
PZ
7409
7410 /* take a breather every nr_migrate tasks */
367456c7 7411 if (env->loop > env->loop_break) {
eb95308e 7412 env->loop_break += sched_nr_migrate_break;
8e45cb54 7413 env->flags |= LBF_NEED_BREAK;
ee00e66f 7414 break;
a195f004 7415 }
1e3c88bd 7416
d3198084 7417 if (!can_migrate_task(p, env))
367456c7
PZ
7418 goto next;
7419
7420 load = task_h_load(p);
5d6523eb 7421
eb95308e 7422 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7423 goto next;
7424
bd939f45 7425 if ((load / 2) > env->imbalance)
367456c7 7426 goto next;
1e3c88bd 7427
163122b7
KT
7428 detach_task(p, env);
7429 list_add(&p->se.group_node, &env->tasks);
7430
7431 detached++;
bd939f45 7432 env->imbalance -= load;
1e3c88bd
PZ
7433
7434#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7435 /*
7436 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7437 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7438 * the critical section.
7439 */
5d6523eb 7440 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7441 break;
1e3c88bd
PZ
7442#endif
7443
ee00e66f
PZ
7444 /*
7445 * We only want to steal up to the prescribed amount of
a3df0679 7446 * runnable load.
ee00e66f 7447 */
bd939f45 7448 if (env->imbalance <= 0)
ee00e66f 7449 break;
367456c7
PZ
7450
7451 continue;
7452next:
93824900 7453 list_move(&p->se.group_node, tasks);
1e3c88bd 7454 }
5d6523eb 7455
1e3c88bd 7456 /*
163122b7
KT
7457 * Right now, this is one of only two places we collect this stat
7458 * so we can safely collect detach_one_task() stats here rather
7459 * than inside detach_one_task().
1e3c88bd 7460 */
ae92882e 7461 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7462
163122b7
KT
7463 return detached;
7464}
7465
7466/*
7467 * attach_task() -- attach the task detached by detach_task() to its new rq.
7468 */
7469static void attach_task(struct rq *rq, struct task_struct *p)
7470{
7471 lockdep_assert_held(&rq->lock);
7472
7473 BUG_ON(task_rq(p) != rq);
5704ac0a 7474 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7475 check_preempt_curr(rq, p, 0);
7476}
7477
7478/*
7479 * attach_one_task() -- attaches the task returned from detach_one_task() to
7480 * its new rq.
7481 */
7482static void attach_one_task(struct rq *rq, struct task_struct *p)
7483{
8a8c69c3
PZ
7484 struct rq_flags rf;
7485
7486 rq_lock(rq, &rf);
5704ac0a 7487 update_rq_clock(rq);
163122b7 7488 attach_task(rq, p);
8a8c69c3 7489 rq_unlock(rq, &rf);
163122b7
KT
7490}
7491
7492/*
7493 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7494 * new rq.
7495 */
7496static void attach_tasks(struct lb_env *env)
7497{
7498 struct list_head *tasks = &env->tasks;
7499 struct task_struct *p;
8a8c69c3 7500 struct rq_flags rf;
163122b7 7501
8a8c69c3 7502 rq_lock(env->dst_rq, &rf);
5704ac0a 7503 update_rq_clock(env->dst_rq);
163122b7
KT
7504
7505 while (!list_empty(tasks)) {
7506 p = list_first_entry(tasks, struct task_struct, se.group_node);
7507 list_del_init(&p->se.group_node);
1e3c88bd 7508
163122b7
KT
7509 attach_task(env->dst_rq, p);
7510 }
7511
8a8c69c3 7512 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7513}
7514
b0c79224 7515#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7516static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7517{
7518 if (cfs_rq->avg.load_avg)
7519 return true;
7520
7521 if (cfs_rq->avg.util_avg)
7522 return true;
7523
7524 return false;
7525}
7526
91c27493 7527static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7528{
7529 if (READ_ONCE(rq->avg_rt.util_avg))
7530 return true;
7531
3727e0e1
VG
7532 if (READ_ONCE(rq->avg_dl.util_avg))
7533 return true;
7534
11d4afd4 7535#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7536 if (READ_ONCE(rq->avg_irq.util_avg))
7537 return true;
7538#endif
7539
371bf427
VG
7540 return false;
7541}
7542
b0c79224
VS
7543static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7544{
7545 rq->last_blocked_load_update_tick = jiffies;
7546
7547 if (!has_blocked)
7548 rq->has_blocked_load = 0;
7549}
7550#else
7551static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7552static inline bool others_have_blocked(struct rq *rq) { return false; }
7553static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7554#endif
7555
1936c53c
VG
7556#ifdef CONFIG_FAIR_GROUP_SCHED
7557
039ae8bc
VG
7558static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7559{
7560 if (cfs_rq->load.weight)
7561 return false;
7562
7563 if (cfs_rq->avg.load_sum)
7564 return false;
7565
7566 if (cfs_rq->avg.util_sum)
7567 return false;
7568
7569 if (cfs_rq->avg.runnable_load_sum)
7570 return false;
7571
7572 return true;
7573}
7574
48a16753 7575static void update_blocked_averages(int cpu)
9e3081ca 7576{
9e3081ca 7577 struct rq *rq = cpu_rq(cpu);
039ae8bc 7578 struct cfs_rq *cfs_rq, *pos;
12b04875 7579 const struct sched_class *curr_class;
8a8c69c3 7580 struct rq_flags rf;
f643ea22 7581 bool done = true;
9e3081ca 7582
8a8c69c3 7583 rq_lock_irqsave(rq, &rf);
48a16753 7584 update_rq_clock(rq);
9d89c257 7585
9763b67f
PZ
7586 /*
7587 * Iterates the task_group tree in a bottom up fashion, see
7588 * list_add_leaf_cfs_rq() for details.
7589 */
039ae8bc 7590 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7591 struct sched_entity *se;
7592
23127296 7593 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7594 update_tg_load_avg(cfs_rq, 0);
4e516076 7595
bc427898
VG
7596 /* Propagate pending load changes to the parent, if any: */
7597 se = cfs_rq->tg->se[cpu];
7598 if (se && !skip_blocked_update(se))
88c0616e 7599 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7600
039ae8bc
VG
7601 /*
7602 * There can be a lot of idle CPU cgroups. Don't let fully
7603 * decayed cfs_rqs linger on the list.
7604 */
7605 if (cfs_rq_is_decayed(cfs_rq))
7606 list_del_leaf_cfs_rq(cfs_rq);
7607
1936c53c
VG
7608 /* Don't need periodic decay once load/util_avg are null */
7609 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7610 done = false;
9d89c257 7611 }
12b04875
VG
7612
7613 curr_class = rq->curr->sched_class;
23127296
VG
7614 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7615 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7616 update_irq_load_avg(rq, 0);
371bf427 7617 /* Don't need periodic decay once load/util_avg are null */
91c27493 7618 if (others_have_blocked(rq))
371bf427 7619 done = false;
e022e0d3 7620
b0c79224 7621 update_blocked_load_status(rq, !done);
8a8c69c3 7622 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7623}
7624
9763b67f 7625/*
68520796 7626 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7627 * This needs to be done in a top-down fashion because the load of a child
7628 * group is a fraction of its parents load.
7629 */
68520796 7630static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7631{
68520796
VD
7632 struct rq *rq = rq_of(cfs_rq);
7633 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7634 unsigned long now = jiffies;
68520796 7635 unsigned long load;
a35b6466 7636
68520796 7637 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7638 return;
7639
0e9f0245 7640 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7641 for_each_sched_entity(se) {
7642 cfs_rq = cfs_rq_of(se);
0e9f0245 7643 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7644 if (cfs_rq->last_h_load_update == now)
7645 break;
7646 }
a35b6466 7647
68520796 7648 if (!se) {
7ea241af 7649 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7650 cfs_rq->last_h_load_update = now;
7651 }
7652
0e9f0245 7653 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7654 load = cfs_rq->h_load;
7ea241af
YD
7655 load = div64_ul(load * se->avg.load_avg,
7656 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7657 cfs_rq = group_cfs_rq(se);
7658 cfs_rq->h_load = load;
7659 cfs_rq->last_h_load_update = now;
7660 }
9763b67f
PZ
7661}
7662
367456c7 7663static unsigned long task_h_load(struct task_struct *p)
230059de 7664{
367456c7 7665 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7666
68520796 7667 update_cfs_rq_h_load(cfs_rq);
9d89c257 7668 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7669 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7670}
7671#else
48a16753 7672static inline void update_blocked_averages(int cpu)
9e3081ca 7673{
6c1d47c0
VG
7674 struct rq *rq = cpu_rq(cpu);
7675 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7676 const struct sched_class *curr_class;
8a8c69c3 7677 struct rq_flags rf;
6c1d47c0 7678
8a8c69c3 7679 rq_lock_irqsave(rq, &rf);
6c1d47c0 7680 update_rq_clock(rq);
23127296 7681 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7682
7683 curr_class = rq->curr->sched_class;
23127296
VG
7684 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7685 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7686 update_irq_load_avg(rq, 0);
b0c79224 7687 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
8a8c69c3 7688 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7689}
7690
367456c7 7691static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7692{
9d89c257 7693 return p->se.avg.load_avg;
1e3c88bd 7694}
230059de 7695#endif
1e3c88bd 7696
1e3c88bd 7697/********** Helpers for find_busiest_group ************************/
caeb178c 7698
1e3c88bd
PZ
7699/*
7700 * sg_lb_stats - stats of a sched_group required for load_balancing
7701 */
7702struct sg_lb_stats {
7703 unsigned long avg_load; /*Avg load across the CPUs of the group */
7704 unsigned long group_load; /* Total load over the CPUs of the group */
56cf515b 7705 unsigned long load_per_task;
63b2ca30 7706 unsigned long group_capacity;
9e91d61d 7707 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7708 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7709 unsigned int idle_cpus;
7710 unsigned int group_weight;
caeb178c 7711 enum group_type group_type;
ea67821b 7712 int group_no_capacity;
3b1baa64 7713 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7714#ifdef CONFIG_NUMA_BALANCING
7715 unsigned int nr_numa_running;
7716 unsigned int nr_preferred_running;
7717#endif
1e3c88bd
PZ
7718};
7719
56cf515b
JK
7720/*
7721 * sd_lb_stats - Structure to store the statistics of a sched_domain
7722 * during load balancing.
7723 */
7724struct sd_lb_stats {
7725 struct sched_group *busiest; /* Busiest group in this sd */
7726 struct sched_group *local; /* Local group in this sd */
90001d67 7727 unsigned long total_running;
56cf515b 7728 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7729 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7730 unsigned long avg_load; /* Average load across all groups in sd */
7731
56cf515b 7732 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7733 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7734};
7735
147c5fc2
PZ
7736static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7737{
7738 /*
7739 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7740 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7741 * We must however clear busiest_stat::avg_load because
7742 * update_sd_pick_busiest() reads this before assignment.
7743 */
7744 *sds = (struct sd_lb_stats){
7745 .busiest = NULL,
7746 .local = NULL,
90001d67 7747 .total_running = 0UL,
147c5fc2 7748 .total_load = 0UL,
63b2ca30 7749 .total_capacity = 0UL,
147c5fc2
PZ
7750 .busiest_stat = {
7751 .avg_load = 0UL,
caeb178c
RR
7752 .sum_nr_running = 0,
7753 .group_type = group_other,
147c5fc2
PZ
7754 },
7755 };
7756}
7757
287cdaac 7758static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7759{
7760 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7761 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7762 unsigned long used, free;
523e979d 7763 unsigned long irq;
b654f7de 7764
2e62c474 7765 irq = cpu_util_irq(rq);
cadefd3d 7766
523e979d
VG
7767 if (unlikely(irq >= max))
7768 return 1;
aa483808 7769
523e979d
VG
7770 used = READ_ONCE(rq->avg_rt.util_avg);
7771 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7772
523e979d
VG
7773 if (unlikely(used >= max))
7774 return 1;
1e3c88bd 7775
523e979d 7776 free = max - used;
2e62c474
VG
7777
7778 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7779}
7780
ced549fa 7781static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7782{
287cdaac 7783 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7784 struct sched_group *sdg = sd->groups;
7785
8ec59c0f 7786 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7787
ced549fa
NP
7788 if (!capacity)
7789 capacity = 1;
1e3c88bd 7790
ced549fa
NP
7791 cpu_rq(cpu)->cpu_capacity = capacity;
7792 sdg->sgc->capacity = capacity;
bf475ce0 7793 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7794 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7795}
7796
63b2ca30 7797void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7798{
7799 struct sched_domain *child = sd->child;
7800 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7801 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7802 unsigned long interval;
7803
7804 interval = msecs_to_jiffies(sd->balance_interval);
7805 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7806 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7807
7808 if (!child) {
ced549fa 7809 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7810 return;
7811 }
7812
dc7ff76e 7813 capacity = 0;
bf475ce0 7814 min_capacity = ULONG_MAX;
e3d6d0cb 7815 max_capacity = 0;
1e3c88bd 7816
74a5ce20
PZ
7817 if (child->flags & SD_OVERLAP) {
7818 /*
7819 * SD_OVERLAP domains cannot assume that child groups
7820 * span the current group.
7821 */
7822
ae4df9d6 7823 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7824 struct sched_group_capacity *sgc;
9abf24d4 7825 struct rq *rq = cpu_rq(cpu);
863bffc8 7826
9abf24d4 7827 /*
63b2ca30 7828 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7829 * gets here before we've attached the domains to the
7830 * runqueues.
7831 *
ced549fa
NP
7832 * Use capacity_of(), which is set irrespective of domains
7833 * in update_cpu_capacity().
9abf24d4 7834 *
dc7ff76e 7835 * This avoids capacity from being 0 and
9abf24d4 7836 * causing divide-by-zero issues on boot.
9abf24d4
SD
7837 */
7838 if (unlikely(!rq->sd)) {
ced549fa 7839 capacity += capacity_of(cpu);
bf475ce0
MR
7840 } else {
7841 sgc = rq->sd->groups->sgc;
7842 capacity += sgc->capacity;
9abf24d4 7843 }
863bffc8 7844
bf475ce0 7845 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7846 max_capacity = max(capacity, max_capacity);
863bffc8 7847 }
74a5ce20
PZ
7848 } else {
7849 /*
7850 * !SD_OVERLAP domains can assume that child groups
7851 * span the current group.
97a7142f 7852 */
74a5ce20
PZ
7853
7854 group = child->groups;
7855 do {
bf475ce0
MR
7856 struct sched_group_capacity *sgc = group->sgc;
7857
7858 capacity += sgc->capacity;
7859 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7860 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7861 group = group->next;
7862 } while (group != child->groups);
7863 }
1e3c88bd 7864
63b2ca30 7865 sdg->sgc->capacity = capacity;
bf475ce0 7866 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7867 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7868}
7869
9d5efe05 7870/*
ea67821b
VG
7871 * Check whether the capacity of the rq has been noticeably reduced by side
7872 * activity. The imbalance_pct is used for the threshold.
7873 * Return true is the capacity is reduced
9d5efe05
SV
7874 */
7875static inline int
ea67821b 7876check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7877{
ea67821b
VG
7878 return ((rq->cpu_capacity * sd->imbalance_pct) <
7879 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7880}
7881
a0fe2cf0
VS
7882/*
7883 * Check whether a rq has a misfit task and if it looks like we can actually
7884 * help that task: we can migrate the task to a CPU of higher capacity, or
7885 * the task's current CPU is heavily pressured.
7886 */
7887static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7888{
7889 return rq->misfit_task_load &&
7890 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7891 check_cpu_capacity(rq, sd));
7892}
7893
30ce5dab
PZ
7894/*
7895 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7896 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7897 *
97fb7a0a
IM
7898 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7899 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7900 * Something like:
7901 *
2b4d5b25
IM
7902 * { 0 1 2 3 } { 4 5 6 7 }
7903 * * * * *
30ce5dab
PZ
7904 *
7905 * If we were to balance group-wise we'd place two tasks in the first group and
7906 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7907 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7908 *
7909 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7910 * by noticing the lower domain failed to reach balance and had difficulty
7911 * moving tasks due to affinity constraints.
30ce5dab
PZ
7912 *
7913 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7914 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7915 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7916 * to create an effective group imbalance.
7917 *
7918 * This is a somewhat tricky proposition since the next run might not find the
7919 * group imbalance and decide the groups need to be balanced again. A most
7920 * subtle and fragile situation.
7921 */
7922
6263322c 7923static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7924{
63b2ca30 7925 return group->sgc->imbalance;
30ce5dab
PZ
7926}
7927
b37d9316 7928/*
ea67821b
VG
7929 * group_has_capacity returns true if the group has spare capacity that could
7930 * be used by some tasks.
7931 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7932 * smaller than the number of CPUs or if the utilization is lower than the
7933 * available capacity for CFS tasks.
ea67821b
VG
7934 * For the latter, we use a threshold to stabilize the state, to take into
7935 * account the variance of the tasks' load and to return true if the available
7936 * capacity in meaningful for the load balancer.
7937 * As an example, an available capacity of 1% can appear but it doesn't make
7938 * any benefit for the load balance.
b37d9316 7939 */
ea67821b
VG
7940static inline bool
7941group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7942{
ea67821b
VG
7943 if (sgs->sum_nr_running < sgs->group_weight)
7944 return true;
c61037e9 7945
ea67821b 7946 if ((sgs->group_capacity * 100) >
9e91d61d 7947 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7948 return true;
b37d9316 7949
ea67821b
VG
7950 return false;
7951}
7952
7953/*
7954 * group_is_overloaded returns true if the group has more tasks than it can
7955 * handle.
7956 * group_is_overloaded is not equals to !group_has_capacity because a group
7957 * with the exact right number of tasks, has no more spare capacity but is not
7958 * overloaded so both group_has_capacity and group_is_overloaded return
7959 * false.
7960 */
7961static inline bool
7962group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7963{
7964 if (sgs->sum_nr_running <= sgs->group_weight)
7965 return false;
b37d9316 7966
ea67821b 7967 if ((sgs->group_capacity * 100) <
9e91d61d 7968 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7969 return true;
b37d9316 7970
ea67821b 7971 return false;
b37d9316
PZ
7972}
7973
9e0994c0 7974/*
e3d6d0cb 7975 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7976 * per-CPU capacity than sched_group ref.
7977 */
7978static inline bool
e3d6d0cb 7979group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
7980{
7981 return sg->sgc->min_capacity * capacity_margin <
7982 ref->sgc->min_capacity * 1024;
7983}
7984
e3d6d0cb
MR
7985/*
7986 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7987 * per-CPU capacity_orig than sched_group ref.
7988 */
7989static inline bool
7990group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7991{
7992 return sg->sgc->max_capacity * capacity_margin <
7993 ref->sgc->max_capacity * 1024;
7994}
7995
79a89f92
LY
7996static inline enum
7997group_type group_classify(struct sched_group *group,
7998 struct sg_lb_stats *sgs)
caeb178c 7999{
ea67821b 8000 if (sgs->group_no_capacity)
caeb178c
RR
8001 return group_overloaded;
8002
8003 if (sg_imbalanced(group))
8004 return group_imbalanced;
8005
3b1baa64
MR
8006 if (sgs->group_misfit_task_load)
8007 return group_misfit_task;
8008
caeb178c
RR
8009 return group_other;
8010}
8011
63928384 8012static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8013{
8014#ifdef CONFIG_NO_HZ_COMMON
8015 unsigned int cpu = rq->cpu;
8016
f643ea22
VG
8017 if (!rq->has_blocked_load)
8018 return false;
8019
e022e0d3 8020 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8021 return false;
e022e0d3 8022
63928384 8023 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8024 return true;
e022e0d3
PZ
8025
8026 update_blocked_averages(cpu);
f643ea22
VG
8027
8028 return rq->has_blocked_load;
8029#else
8030 return false;
e022e0d3
PZ
8031#endif
8032}
8033
1e3c88bd
PZ
8034/**
8035 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8036 * @env: The load balancing environment.
1e3c88bd 8037 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8038 * @sgs: variable to hold the statistics for this group.
630246a0 8039 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8040 */
bd939f45 8041static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8042 struct sched_group *group,
8043 struct sg_lb_stats *sgs,
8044 int *sg_status)
1e3c88bd 8045{
a426f99c 8046 int i, nr_running;
1e3c88bd 8047
b72ff13c
PZ
8048 memset(sgs, 0, sizeof(*sgs));
8049
ae4df9d6 8050 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8051 struct rq *rq = cpu_rq(i);
8052
63928384 8053 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8054 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8055
a3df0679 8056 sgs->group_load += cpu_runnable_load(rq);
9e91d61d 8057 sgs->group_util += cpu_util(i);
65fdac08 8058 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8059
a426f99c
WL
8060 nr_running = rq->nr_running;
8061 if (nr_running > 1)
630246a0 8062 *sg_status |= SG_OVERLOAD;
4486edd1 8063
2802bf3c
MR
8064 if (cpu_overutilized(i))
8065 *sg_status |= SG_OVERUTILIZED;
4486edd1 8066
0ec8aa00
PZ
8067#ifdef CONFIG_NUMA_BALANCING
8068 sgs->nr_numa_running += rq->nr_numa_running;
8069 sgs->nr_preferred_running += rq->nr_preferred_running;
8070#endif
a426f99c
WL
8071 /*
8072 * No need to call idle_cpu() if nr_running is not 0
8073 */
8074 if (!nr_running && idle_cpu(i))
aae6d3dd 8075 sgs->idle_cpus++;
3b1baa64
MR
8076
8077 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8078 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8079 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8080 *sg_status |= SG_OVERLOAD;
757ffdd7 8081 }
1e3c88bd
PZ
8082 }
8083
63b2ca30
NP
8084 /* Adjust by relative CPU capacity of the group */
8085 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8086 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8087
dd5feea1 8088 if (sgs->sum_nr_running)
af75d1a9 8089 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
1e3c88bd 8090
aae6d3dd 8091 sgs->group_weight = group->group_weight;
b37d9316 8092
ea67821b 8093 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8094 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8095}
8096
532cb4c4
MN
8097/**
8098 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8099 * @env: The load balancing environment.
532cb4c4
MN
8100 * @sds: sched_domain statistics
8101 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8102 * @sgs: sched_group statistics
532cb4c4
MN
8103 *
8104 * Determine if @sg is a busier group than the previously selected
8105 * busiest group.
e69f6186
YB
8106 *
8107 * Return: %true if @sg is a busier group than the previously selected
8108 * busiest group. %false otherwise.
532cb4c4 8109 */
bd939f45 8110static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8111 struct sd_lb_stats *sds,
8112 struct sched_group *sg,
bd939f45 8113 struct sg_lb_stats *sgs)
532cb4c4 8114{
caeb178c 8115 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8116
cad68e55
MR
8117 /*
8118 * Don't try to pull misfit tasks we can't help.
8119 * We can use max_capacity here as reduction in capacity on some
8120 * CPUs in the group should either be possible to resolve
8121 * internally or be covered by avg_load imbalance (eventually).
8122 */
8123 if (sgs->group_type == group_misfit_task &&
8124 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8125 !group_has_capacity(env, &sds->local_stat)))
8126 return false;
8127
caeb178c 8128 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8129 return true;
8130
caeb178c
RR
8131 if (sgs->group_type < busiest->group_type)
8132 return false;
8133
8134 if (sgs->avg_load <= busiest->avg_load)
8135 return false;
8136
9e0994c0
MR
8137 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8138 goto asym_packing;
8139
8140 /*
8141 * Candidate sg has no more than one task per CPU and
8142 * has higher per-CPU capacity. Migrating tasks to less
8143 * capable CPUs may harm throughput. Maximize throughput,
8144 * power/energy consequences are not considered.
8145 */
8146 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8147 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8148 return false;
8149
cad68e55
MR
8150 /*
8151 * If we have more than one misfit sg go with the biggest misfit.
8152 */
8153 if (sgs->group_type == group_misfit_task &&
8154 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8155 return false;
8156
8157asym_packing:
caeb178c
RR
8158 /* This is the busiest node in its class. */
8159 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8160 return true;
8161
97fb7a0a 8162 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8163 if (env->idle == CPU_NOT_IDLE)
8164 return true;
532cb4c4 8165 /*
afe06efd
TC
8166 * ASYM_PACKING needs to move all the work to the highest
8167 * prority CPUs in the group, therefore mark all groups
8168 * of lower priority than ourself as busy.
532cb4c4 8169 */
afe06efd
TC
8170 if (sgs->sum_nr_running &&
8171 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8172 if (!sds->busiest)
8173 return true;
8174
97fb7a0a 8175 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8176 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8177 sg->asym_prefer_cpu))
532cb4c4
MN
8178 return true;
8179 }
8180
8181 return false;
8182}
8183
0ec8aa00
PZ
8184#ifdef CONFIG_NUMA_BALANCING
8185static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8186{
8187 if (sgs->sum_nr_running > sgs->nr_numa_running)
8188 return regular;
8189 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8190 return remote;
8191 return all;
8192}
8193
8194static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8195{
8196 if (rq->nr_running > rq->nr_numa_running)
8197 return regular;
8198 if (rq->nr_running > rq->nr_preferred_running)
8199 return remote;
8200 return all;
8201}
8202#else
8203static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8204{
8205 return all;
8206}
8207
8208static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8209{
8210 return regular;
8211}
8212#endif /* CONFIG_NUMA_BALANCING */
8213
1e3c88bd 8214/**
461819ac 8215 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8216 * @env: The load balancing environment.
1e3c88bd
PZ
8217 * @sds: variable to hold the statistics for this sched_domain.
8218 */
0ec8aa00 8219static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8220{
bd939f45
PZ
8221 struct sched_domain *child = env->sd->child;
8222 struct sched_group *sg = env->sd->groups;
05b40e05 8223 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8224 struct sg_lb_stats tmp_sgs;
dbbad719 8225 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8226 int sg_status = 0;
1e3c88bd 8227
e022e0d3 8228#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8229 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8230 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8231#endif
8232
1e3c88bd 8233 do {
56cf515b 8234 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8235 int local_group;
8236
ae4df9d6 8237 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8238 if (local_group) {
8239 sds->local = sg;
05b40e05 8240 sgs = local;
b72ff13c
PZ
8241
8242 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8243 time_after_eq(jiffies, sg->sgc->next_update))
8244 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8245 }
1e3c88bd 8246
630246a0 8247 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8248
b72ff13c
PZ
8249 if (local_group)
8250 goto next_group;
8251
1e3c88bd
PZ
8252 /*
8253 * In case the child domain prefers tasks go to siblings
ea67821b 8254 * first, lower the sg capacity so that we'll try
75dd321d
NR
8255 * and move all the excess tasks away. We lower the capacity
8256 * of a group only if the local group has the capacity to fit
ea67821b
VG
8257 * these excess tasks. The extra check prevents the case where
8258 * you always pull from the heaviest group when it is already
8259 * under-utilized (possible with a large weight task outweighs
8260 * the tasks on the system).
1e3c88bd 8261 */
b72ff13c 8262 if (prefer_sibling && sds->local &&
05b40e05
SD
8263 group_has_capacity(env, local) &&
8264 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8265 sgs->group_no_capacity = 1;
79a89f92 8266 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8267 }
1e3c88bd 8268
b72ff13c 8269 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8270 sds->busiest = sg;
56cf515b 8271 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8272 }
8273
b72ff13c
PZ
8274next_group:
8275 /* Now, start updating sd_lb_stats */
90001d67 8276 sds->total_running += sgs->sum_nr_running;
b72ff13c 8277 sds->total_load += sgs->group_load;
63b2ca30 8278 sds->total_capacity += sgs->group_capacity;
b72ff13c 8279
532cb4c4 8280 sg = sg->next;
bd939f45 8281 } while (sg != env->sd->groups);
0ec8aa00 8282
f643ea22
VG
8283#ifdef CONFIG_NO_HZ_COMMON
8284 if ((env->flags & LBF_NOHZ_AGAIN) &&
8285 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8286
8287 WRITE_ONCE(nohz.next_blocked,
8288 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8289 }
8290#endif
8291
0ec8aa00
PZ
8292 if (env->sd->flags & SD_NUMA)
8293 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8294
8295 if (!env->sd->parent) {
2802bf3c
MR
8296 struct root_domain *rd = env->dst_rq->rd;
8297
4486edd1 8298 /* update overload indicator if we are at root domain */
2802bf3c
MR
8299 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8300
8301 /* Update over-utilization (tipping point, U >= 0) indicator */
8302 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8303 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8304 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8305 struct root_domain *rd = env->dst_rq->rd;
8306
8307 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8308 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8309 }
532cb4c4
MN
8310}
8311
532cb4c4
MN
8312/**
8313 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8314 * sched domain.
532cb4c4
MN
8315 *
8316 * This is primarily intended to used at the sibling level. Some
8317 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8318 * case of POWER7, it can move to lower SMT modes only when higher
8319 * threads are idle. When in lower SMT modes, the threads will
8320 * perform better since they share less core resources. Hence when we
8321 * have idle threads, we want them to be the higher ones.
8322 *
8323 * This packing function is run on idle threads. It checks to see if
8324 * the busiest CPU in this domain (core in the P7 case) has a higher
8325 * CPU number than the packing function is being run on. Here we are
8326 * assuming lower CPU number will be equivalent to lower a SMT thread
8327 * number.
8328 *
e69f6186 8329 * Return: 1 when packing is required and a task should be moved to
46123355 8330 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8331 *
cd96891d 8332 * @env: The load balancing environment.
532cb4c4 8333 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8334 */
bd939f45 8335static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8336{
8337 int busiest_cpu;
8338
bd939f45 8339 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8340 return 0;
8341
1f621e02
SD
8342 if (env->idle == CPU_NOT_IDLE)
8343 return 0;
8344
532cb4c4
MN
8345 if (!sds->busiest)
8346 return 0;
8347
afe06efd
TC
8348 busiest_cpu = sds->busiest->asym_prefer_cpu;
8349 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8350 return 0;
8351
4ad4e481 8352 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8353
532cb4c4 8354 return 1;
1e3c88bd
PZ
8355}
8356
8357/**
8358 * fix_small_imbalance - Calculate the minor imbalance that exists
8359 * amongst the groups of a sched_domain, during
8360 * load balancing.
cd96891d 8361 * @env: The load balancing environment.
1e3c88bd 8362 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8363 */
bd939f45
PZ
8364static inline
8365void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8366{
63b2ca30 8367 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8368 unsigned int imbn = 2;
dd5feea1 8369 unsigned long scaled_busy_load_per_task;
56cf515b 8370 struct sg_lb_stats *local, *busiest;
1e3c88bd 8371
56cf515b
JK
8372 local = &sds->local_stat;
8373 busiest = &sds->busiest_stat;
1e3c88bd 8374
56cf515b
JK
8375 if (!local->sum_nr_running)
8376 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8377 else if (busiest->load_per_task > local->load_per_task)
8378 imbn = 1;
dd5feea1 8379
56cf515b 8380 scaled_busy_load_per_task =
ca8ce3d0 8381 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8382 busiest->group_capacity;
56cf515b 8383
3029ede3
VD
8384 if (busiest->avg_load + scaled_busy_load_per_task >=
8385 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8386 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8387 return;
8388 }
8389
8390 /*
8391 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8392 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8393 * moving them.
8394 */
8395
63b2ca30 8396 capa_now += busiest->group_capacity *
56cf515b 8397 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8398 capa_now += local->group_capacity *
56cf515b 8399 min(local->load_per_task, local->avg_load);
ca8ce3d0 8400 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8401
8402 /* Amount of load we'd subtract */
a2cd4260 8403 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8404 capa_move += busiest->group_capacity *
56cf515b 8405 min(busiest->load_per_task,
a2cd4260 8406 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8407 }
1e3c88bd
PZ
8408
8409 /* Amount of load we'd add */
63b2ca30 8410 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8411 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8412 tmp = (busiest->avg_load * busiest->group_capacity) /
8413 local->group_capacity;
56cf515b 8414 } else {
ca8ce3d0 8415 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8416 local->group_capacity;
56cf515b 8417 }
63b2ca30 8418 capa_move += local->group_capacity *
3ae11c90 8419 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8420 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8421
8422 /* Move if we gain throughput */
63b2ca30 8423 if (capa_move > capa_now)
56cf515b 8424 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8425}
8426
8427/**
8428 * calculate_imbalance - Calculate the amount of imbalance present within the
8429 * groups of a given sched_domain during load balance.
bd939f45 8430 * @env: load balance environment
1e3c88bd 8431 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8432 */
bd939f45 8433static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8434{
dd5feea1 8435 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8436 struct sg_lb_stats *local, *busiest;
8437
8438 local = &sds->local_stat;
56cf515b 8439 busiest = &sds->busiest_stat;
dd5feea1 8440
caeb178c 8441 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8442 /*
8443 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8444 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8445 */
56cf515b
JK
8446 busiest->load_per_task =
8447 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8448 }
8449
1e3c88bd 8450 /*
885e542c
DE
8451 * Avg load of busiest sg can be less and avg load of local sg can
8452 * be greater than avg load across all sgs of sd because avg load
8453 * factors in sg capacity and sgs with smaller group_type are
8454 * skipped when updating the busiest sg:
1e3c88bd 8455 */
cad68e55
MR
8456 if (busiest->group_type != group_misfit_task &&
8457 (busiest->avg_load <= sds->avg_load ||
8458 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8459 env->imbalance = 0;
8460 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8461 }
8462
9a5d9ba6 8463 /*
97fb7a0a 8464 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8465 */
8466 if (busiest->group_type == group_overloaded &&
8467 local->group_type == group_overloaded) {
1be0eb2a 8468 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8469 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8470 load_above_capacity -= busiest->group_capacity;
26656215 8471 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8472 load_above_capacity /= busiest->group_capacity;
8473 } else
ea67821b 8474 load_above_capacity = ~0UL;
dd5feea1
SS
8475 }
8476
8477 /*
97fb7a0a 8478 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8479 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8480 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8481 * we also don't want to reduce the group load below the group
8482 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8483 */
30ce5dab 8484 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8485
8486 /* How much load to actually move to equalise the imbalance */
56cf515b 8487 env->imbalance = min(
63b2ca30
NP
8488 max_pull * busiest->group_capacity,
8489 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8490 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8491
cad68e55
MR
8492 /* Boost imbalance to allow misfit task to be balanced. */
8493 if (busiest->group_type == group_misfit_task) {
8494 env->imbalance = max_t(long, env->imbalance,
8495 busiest->group_misfit_task_load);
8496 }
8497
1e3c88bd
PZ
8498 /*
8499 * if *imbalance is less than the average load per runnable task
25985edc 8500 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8501 * a think about bumping its value to force at least one task to be
8502 * moved
8503 */
56cf515b 8504 if (env->imbalance < busiest->load_per_task)
bd939f45 8505 return fix_small_imbalance(env, sds);
1e3c88bd 8506}
fab47622 8507
1e3c88bd
PZ
8508/******* find_busiest_group() helpers end here *********************/
8509
8510/**
8511 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8512 * if there is an imbalance.
1e3c88bd 8513 *
a3df0679 8514 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8515 * to restore balance.
8516 *
cd96891d 8517 * @env: The load balancing environment.
1e3c88bd 8518 *
e69f6186 8519 * Return: - The busiest group if imbalance exists.
1e3c88bd 8520 */
56cf515b 8521static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8522{
56cf515b 8523 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8524 struct sd_lb_stats sds;
8525
147c5fc2 8526 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8527
8528 /*
8529 * Compute the various statistics relavent for load balancing at
8530 * this level.
8531 */
23f0d209 8532 update_sd_lb_stats(env, &sds);
2802bf3c 8533
f8a696f2 8534 if (sched_energy_enabled()) {
2802bf3c
MR
8535 struct root_domain *rd = env->dst_rq->rd;
8536
8537 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8538 goto out_balanced;
8539 }
8540
56cf515b
JK
8541 local = &sds.local_stat;
8542 busiest = &sds.busiest_stat;
1e3c88bd 8543
ea67821b 8544 /* ASYM feature bypasses nice load balance check */
1f621e02 8545 if (check_asym_packing(env, &sds))
532cb4c4
MN
8546 return sds.busiest;
8547
cc57aa8f 8548 /* There is no busy sibling group to pull tasks from */
56cf515b 8549 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8550 goto out_balanced;
8551
90001d67 8552 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8553 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8554 / sds.total_capacity;
b0432d8f 8555
866ab43e
PZ
8556 /*
8557 * If the busiest group is imbalanced the below checks don't
30ce5dab 8558 * work because they assume all things are equal, which typically
3bd37062 8559 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8560 */
caeb178c 8561 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8562 goto force_balance;
8563
583ffd99
BJ
8564 /*
8565 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8566 * capacities from resulting in underutilization due to avg_load.
8567 */
8568 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8569 busiest->group_no_capacity)
fab47622
NR
8570 goto force_balance;
8571
cad68e55
MR
8572 /* Misfit tasks should be dealt with regardless of the avg load */
8573 if (busiest->group_type == group_misfit_task)
8574 goto force_balance;
8575
cc57aa8f 8576 /*
9c58c79a 8577 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8578 * don't try and pull any tasks.
8579 */
56cf515b 8580 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8581 goto out_balanced;
8582
cc57aa8f
PZ
8583 /*
8584 * Don't pull any tasks if this group is already above the domain
8585 * average load.
8586 */
56cf515b 8587 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8588 goto out_balanced;
8589
bd939f45 8590 if (env->idle == CPU_IDLE) {
aae6d3dd 8591 /*
97fb7a0a 8592 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8593 * and there is no imbalance between this and busiest group
97fb7a0a 8594 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8595 * significant if the diff is greater than 1 otherwise we
8596 * might end up to just move the imbalance on another group
aae6d3dd 8597 */
43f4d666
VG
8598 if ((busiest->group_type != group_overloaded) &&
8599 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8600 goto out_balanced;
c186fafe
PZ
8601 } else {
8602 /*
8603 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8604 * imbalance_pct to be conservative.
8605 */
56cf515b
JK
8606 if (100 * busiest->avg_load <=
8607 env->sd->imbalance_pct * local->avg_load)
c186fafe 8608 goto out_balanced;
aae6d3dd 8609 }
1e3c88bd 8610
fab47622 8611force_balance:
1e3c88bd 8612 /* Looks like there is an imbalance. Compute it */
cad68e55 8613 env->src_grp_type = busiest->group_type;
bd939f45 8614 calculate_imbalance(env, &sds);
bb3485c8 8615 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8616
8617out_balanced:
bd939f45 8618 env->imbalance = 0;
1e3c88bd
PZ
8619 return NULL;
8620}
8621
8622/*
97fb7a0a 8623 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8624 */
bd939f45 8625static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8626 struct sched_group *group)
1e3c88bd
PZ
8627{
8628 struct rq *busiest = NULL, *rq;
ced549fa 8629 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8630 int i;
8631
ae4df9d6 8632 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
a3df0679 8633 unsigned long capacity, load;
0ec8aa00
PZ
8634 enum fbq_type rt;
8635
8636 rq = cpu_rq(i);
8637 rt = fbq_classify_rq(rq);
1e3c88bd 8638
0ec8aa00
PZ
8639 /*
8640 * We classify groups/runqueues into three groups:
8641 * - regular: there are !numa tasks
8642 * - remote: there are numa tasks that run on the 'wrong' node
8643 * - all: there is no distinction
8644 *
8645 * In order to avoid migrating ideally placed numa tasks,
8646 * ignore those when there's better options.
8647 *
8648 * If we ignore the actual busiest queue to migrate another
8649 * task, the next balance pass can still reduce the busiest
8650 * queue by moving tasks around inside the node.
8651 *
8652 * If we cannot move enough load due to this classification
8653 * the next pass will adjust the group classification and
8654 * allow migration of more tasks.
8655 *
8656 * Both cases only affect the total convergence complexity.
8657 */
8658 if (rt > env->fbq_type)
8659 continue;
8660
cad68e55
MR
8661 /*
8662 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8663 * seek the "biggest" misfit task.
8664 */
8665 if (env->src_grp_type == group_misfit_task) {
8666 if (rq->misfit_task_load > busiest_load) {
8667 busiest_load = rq->misfit_task_load;
8668 busiest = rq;
8669 }
8670
8671 continue;
8672 }
8673
ced549fa 8674 capacity = capacity_of(i);
9d5efe05 8675
4ad3831a
CR
8676 /*
8677 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8678 * eventually lead to active_balancing high->low capacity.
8679 * Higher per-CPU capacity is considered better than balancing
8680 * average load.
8681 */
8682 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8683 capacity_of(env->dst_cpu) < capacity &&
8684 rq->nr_running == 1)
8685 continue;
8686
a3df0679 8687 load = cpu_runnable_load(rq);
1e3c88bd 8688
6e40f5bb 8689 /*
a3df0679 8690 * When comparing with imbalance, use cpu_runnable_load()
97fb7a0a 8691 * which is not scaled with the CPU capacity.
6e40f5bb 8692 */
ea67821b 8693
a3df0679 8694 if (rq->nr_running == 1 && load > env->imbalance &&
ea67821b 8695 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8696 continue;
8697
6e40f5bb 8698 /*
97fb7a0a 8699 * For the load comparisons with the other CPU's, consider
a3df0679 8700 * the cpu_runnable_load() scaled with the CPU capacity, so
97fb7a0a 8701 * that the load can be moved away from the CPU that is
ced549fa 8702 * potentially running at a lower capacity.
95a79b80 8703 *
a3df0679 8704 * Thus we're looking for max(load_i / capacity_i), crosswise
95a79b80 8705 * multiplication to rid ourselves of the division works out
a3df0679 8706 * to: load_i * capacity_j > load_j * capacity_i; where j is
ced549fa 8707 * our previous maximum.
6e40f5bb 8708 */
a3df0679
DE
8709 if (load * busiest_capacity > busiest_load * capacity) {
8710 busiest_load = load;
ced549fa 8711 busiest_capacity = capacity;
1e3c88bd
PZ
8712 busiest = rq;
8713 }
8714 }
8715
8716 return busiest;
8717}
8718
8719/*
8720 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8721 * so long as it is large enough.
8722 */
8723#define MAX_PINNED_INTERVAL 512
8724
46a745d9
VG
8725static inline bool
8726asym_active_balance(struct lb_env *env)
1af3ed3d 8727{
46a745d9
VG
8728 /*
8729 * ASYM_PACKING needs to force migrate tasks from busy but
8730 * lower priority CPUs in order to pack all tasks in the
8731 * highest priority CPUs.
8732 */
8733 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8734 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8735}
bd939f45 8736
46a745d9
VG
8737static inline bool
8738voluntary_active_balance(struct lb_env *env)
8739{
8740 struct sched_domain *sd = env->sd;
532cb4c4 8741
46a745d9
VG
8742 if (asym_active_balance(env))
8743 return 1;
1af3ed3d 8744
1aaf90a4
VG
8745 /*
8746 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8747 * It's worth migrating the task if the src_cpu's capacity is reduced
8748 * because of other sched_class or IRQs if more capacity stays
8749 * available on dst_cpu.
8750 */
8751 if ((env->idle != CPU_NOT_IDLE) &&
8752 (env->src_rq->cfs.h_nr_running == 1)) {
8753 if ((check_cpu_capacity(env->src_rq, sd)) &&
8754 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8755 return 1;
8756 }
8757
cad68e55
MR
8758 if (env->src_grp_type == group_misfit_task)
8759 return 1;
8760
46a745d9
VG
8761 return 0;
8762}
8763
8764static int need_active_balance(struct lb_env *env)
8765{
8766 struct sched_domain *sd = env->sd;
8767
8768 if (voluntary_active_balance(env))
8769 return 1;
8770
1af3ed3d
PZ
8771 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8772}
8773
969c7921
TH
8774static int active_load_balance_cpu_stop(void *data);
8775
23f0d209
JK
8776static int should_we_balance(struct lb_env *env)
8777{
8778 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8779 int cpu, balance_cpu = -1;
8780
024c9d2f
PZ
8781 /*
8782 * Ensure the balancing environment is consistent; can happen
8783 * when the softirq triggers 'during' hotplug.
8784 */
8785 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8786 return 0;
8787
23f0d209 8788 /*
97fb7a0a 8789 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8790 * to do the newly idle load balance.
8791 */
8792 if (env->idle == CPU_NEWLY_IDLE)
8793 return 1;
8794
97fb7a0a 8795 /* Try to find first idle CPU */
e5c14b1f 8796 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8797 if (!idle_cpu(cpu))
23f0d209
JK
8798 continue;
8799
8800 balance_cpu = cpu;
8801 break;
8802 }
8803
8804 if (balance_cpu == -1)
8805 balance_cpu = group_balance_cpu(sg);
8806
8807 /*
97fb7a0a 8808 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8809 * is eligible for doing load balancing at this and above domains.
8810 */
b0cff9d8 8811 return balance_cpu == env->dst_cpu;
23f0d209
JK
8812}
8813
1e3c88bd
PZ
8814/*
8815 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8816 * tasks if there is an imbalance.
8817 */
8818static int load_balance(int this_cpu, struct rq *this_rq,
8819 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8820 int *continue_balancing)
1e3c88bd 8821{
88b8dac0 8822 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8823 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8824 struct sched_group *group;
1e3c88bd 8825 struct rq *busiest;
8a8c69c3 8826 struct rq_flags rf;
4ba29684 8827 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8828
8e45cb54
PZ
8829 struct lb_env env = {
8830 .sd = sd,
ddcdf6e7
PZ
8831 .dst_cpu = this_cpu,
8832 .dst_rq = this_rq,
ae4df9d6 8833 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8834 .idle = idle,
eb95308e 8835 .loop_break = sched_nr_migrate_break,
b9403130 8836 .cpus = cpus,
0ec8aa00 8837 .fbq_type = all,
163122b7 8838 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8839 };
8840
65a4433a 8841 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8842
ae92882e 8843 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8844
8845redo:
23f0d209
JK
8846 if (!should_we_balance(&env)) {
8847 *continue_balancing = 0;
1e3c88bd 8848 goto out_balanced;
23f0d209 8849 }
1e3c88bd 8850
23f0d209 8851 group = find_busiest_group(&env);
1e3c88bd 8852 if (!group) {
ae92882e 8853 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8854 goto out_balanced;
8855 }
8856
b9403130 8857 busiest = find_busiest_queue(&env, group);
1e3c88bd 8858 if (!busiest) {
ae92882e 8859 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8860 goto out_balanced;
8861 }
8862
78feefc5 8863 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8864
ae92882e 8865 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8866
1aaf90a4
VG
8867 env.src_cpu = busiest->cpu;
8868 env.src_rq = busiest;
8869
1e3c88bd
PZ
8870 ld_moved = 0;
8871 if (busiest->nr_running > 1) {
8872 /*
8873 * Attempt to move tasks. If find_busiest_group has found
8874 * an imbalance but busiest->nr_running <= 1, the group is
8875 * still unbalanced. ld_moved simply stays zero, so it is
8876 * correctly treated as an imbalance.
8877 */
8e45cb54 8878 env.flags |= LBF_ALL_PINNED;
c82513e5 8879 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8880
5d6523eb 8881more_balance:
8a8c69c3 8882 rq_lock_irqsave(busiest, &rf);
3bed5e21 8883 update_rq_clock(busiest);
88b8dac0
SV
8884
8885 /*
8886 * cur_ld_moved - load moved in current iteration
8887 * ld_moved - cumulative load moved across iterations
8888 */
163122b7 8889 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8890
8891 /*
163122b7
KT
8892 * We've detached some tasks from busiest_rq. Every
8893 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8894 * unlock busiest->lock, and we are able to be sure
8895 * that nobody can manipulate the tasks in parallel.
8896 * See task_rq_lock() family for the details.
1e3c88bd 8897 */
163122b7 8898
8a8c69c3 8899 rq_unlock(busiest, &rf);
163122b7
KT
8900
8901 if (cur_ld_moved) {
8902 attach_tasks(&env);
8903 ld_moved += cur_ld_moved;
8904 }
8905
8a8c69c3 8906 local_irq_restore(rf.flags);
88b8dac0 8907
f1cd0858
JK
8908 if (env.flags & LBF_NEED_BREAK) {
8909 env.flags &= ~LBF_NEED_BREAK;
8910 goto more_balance;
8911 }
8912
88b8dac0
SV
8913 /*
8914 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8915 * us and move them to an alternate dst_cpu in our sched_group
8916 * where they can run. The upper limit on how many times we
97fb7a0a 8917 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8918 * sched_group.
8919 *
8920 * This changes load balance semantics a bit on who can move
8921 * load to a given_cpu. In addition to the given_cpu itself
8922 * (or a ilb_cpu acting on its behalf where given_cpu is
8923 * nohz-idle), we now have balance_cpu in a position to move
8924 * load to given_cpu. In rare situations, this may cause
8925 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8926 * _independently_ and at _same_ time to move some load to
8927 * given_cpu) causing exceess load to be moved to given_cpu.
8928 * This however should not happen so much in practice and
8929 * moreover subsequent load balance cycles should correct the
8930 * excess load moved.
8931 */
6263322c 8932 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8933
97fb7a0a 8934 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 8935 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 8936
78feefc5 8937 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8938 env.dst_cpu = env.new_dst_cpu;
6263322c 8939 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8940 env.loop = 0;
8941 env.loop_break = sched_nr_migrate_break;
e02e60c1 8942
88b8dac0
SV
8943 /*
8944 * Go back to "more_balance" rather than "redo" since we
8945 * need to continue with same src_cpu.
8946 */
8947 goto more_balance;
8948 }
1e3c88bd 8949
6263322c
PZ
8950 /*
8951 * We failed to reach balance because of affinity.
8952 */
8953 if (sd_parent) {
63b2ca30 8954 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8955
afdeee05 8956 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8957 *group_imbalance = 1;
6263322c
PZ
8958 }
8959
1e3c88bd 8960 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8961 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 8962 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8963 /*
8964 * Attempting to continue load balancing at the current
8965 * sched_domain level only makes sense if there are
8966 * active CPUs remaining as possible busiest CPUs to
8967 * pull load from which are not contained within the
8968 * destination group that is receiving any migrated
8969 * load.
8970 */
8971 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8972 env.loop = 0;
8973 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8974 goto redo;
bbf18b19 8975 }
afdeee05 8976 goto out_all_pinned;
1e3c88bd
PZ
8977 }
8978 }
8979
8980 if (!ld_moved) {
ae92882e 8981 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8982 /*
8983 * Increment the failure counter only on periodic balance.
8984 * We do not want newidle balance, which can be very
8985 * frequent, pollute the failure counter causing
8986 * excessive cache_hot migrations and active balances.
8987 */
8988 if (idle != CPU_NEWLY_IDLE)
8989 sd->nr_balance_failed++;
1e3c88bd 8990
bd939f45 8991 if (need_active_balance(&env)) {
8a8c69c3
PZ
8992 unsigned long flags;
8993
1e3c88bd
PZ
8994 raw_spin_lock_irqsave(&busiest->lock, flags);
8995
97fb7a0a
IM
8996 /*
8997 * Don't kick the active_load_balance_cpu_stop,
8998 * if the curr task on busiest CPU can't be
8999 * moved to this_cpu:
1e3c88bd 9000 */
3bd37062 9001 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9002 raw_spin_unlock_irqrestore(&busiest->lock,
9003 flags);
8e45cb54 9004 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9005 goto out_one_pinned;
9006 }
9007
969c7921
TH
9008 /*
9009 * ->active_balance synchronizes accesses to
9010 * ->active_balance_work. Once set, it's cleared
9011 * only after active load balance is finished.
9012 */
1e3c88bd
PZ
9013 if (!busiest->active_balance) {
9014 busiest->active_balance = 1;
9015 busiest->push_cpu = this_cpu;
9016 active_balance = 1;
9017 }
9018 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9019
bd939f45 9020 if (active_balance) {
969c7921
TH
9021 stop_one_cpu_nowait(cpu_of(busiest),
9022 active_load_balance_cpu_stop, busiest,
9023 &busiest->active_balance_work);
bd939f45 9024 }
1e3c88bd 9025
d02c0711 9026 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9027 sd->nr_balance_failed = sd->cache_nice_tries+1;
9028 }
9029 } else
9030 sd->nr_balance_failed = 0;
9031
46a745d9 9032 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9033 /* We were unbalanced, so reset the balancing interval */
9034 sd->balance_interval = sd->min_interval;
9035 } else {
9036 /*
9037 * If we've begun active balancing, start to back off. This
9038 * case may not be covered by the all_pinned logic if there
9039 * is only 1 task on the busy runqueue (because we don't call
163122b7 9040 * detach_tasks).
1e3c88bd
PZ
9041 */
9042 if (sd->balance_interval < sd->max_interval)
9043 sd->balance_interval *= 2;
9044 }
9045
1e3c88bd
PZ
9046 goto out;
9047
9048out_balanced:
afdeee05
VG
9049 /*
9050 * We reach balance although we may have faced some affinity
9051 * constraints. Clear the imbalance flag if it was set.
9052 */
9053 if (sd_parent) {
9054 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9055
9056 if (*group_imbalance)
9057 *group_imbalance = 0;
9058 }
9059
9060out_all_pinned:
9061 /*
9062 * We reach balance because all tasks are pinned at this level so
9063 * we can't migrate them. Let the imbalance flag set so parent level
9064 * can try to migrate them.
9065 */
ae92882e 9066 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9067
9068 sd->nr_balance_failed = 0;
9069
9070out_one_pinned:
3f130a37
VS
9071 ld_moved = 0;
9072
9073 /*
9074 * idle_balance() disregards balance intervals, so we could repeatedly
9075 * reach this code, which would lead to balance_interval skyrocketting
9076 * in a short amount of time. Skip the balance_interval increase logic
9077 * to avoid that.
9078 */
9079 if (env.idle == CPU_NEWLY_IDLE)
9080 goto out;
9081
1e3c88bd 9082 /* tune up the balancing interval */
47b7aee1
VS
9083 if ((env.flags & LBF_ALL_PINNED &&
9084 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9085 sd->balance_interval < sd->max_interval)
1e3c88bd 9086 sd->balance_interval *= 2;
1e3c88bd 9087out:
1e3c88bd
PZ
9088 return ld_moved;
9089}
9090
52a08ef1
JL
9091static inline unsigned long
9092get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9093{
9094 unsigned long interval = sd->balance_interval;
9095
9096 if (cpu_busy)
9097 interval *= sd->busy_factor;
9098
9099 /* scale ms to jiffies */
9100 interval = msecs_to_jiffies(interval);
9101 interval = clamp(interval, 1UL, max_load_balance_interval);
9102
9103 return interval;
9104}
9105
9106static inline void
31851a98 9107update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9108{
9109 unsigned long interval, next;
9110
31851a98
LY
9111 /* used by idle balance, so cpu_busy = 0 */
9112 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9113 next = sd->last_balance + interval;
9114
9115 if (time_after(*next_balance, next))
9116 *next_balance = next;
9117}
9118
1e3c88bd 9119/*
97fb7a0a 9120 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9121 * running tasks off the busiest CPU onto idle CPUs. It requires at
9122 * least 1 task to be running on each physical CPU where possible, and
9123 * avoids physical / logical imbalances.
1e3c88bd 9124 */
969c7921 9125static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9126{
969c7921
TH
9127 struct rq *busiest_rq = data;
9128 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9129 int target_cpu = busiest_rq->push_cpu;
969c7921 9130 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9131 struct sched_domain *sd;
e5673f28 9132 struct task_struct *p = NULL;
8a8c69c3 9133 struct rq_flags rf;
969c7921 9134
8a8c69c3 9135 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9136 /*
9137 * Between queueing the stop-work and running it is a hole in which
9138 * CPUs can become inactive. We should not move tasks from or to
9139 * inactive CPUs.
9140 */
9141 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9142 goto out_unlock;
969c7921 9143
97fb7a0a 9144 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9145 if (unlikely(busiest_cpu != smp_processor_id() ||
9146 !busiest_rq->active_balance))
9147 goto out_unlock;
1e3c88bd
PZ
9148
9149 /* Is there any task to move? */
9150 if (busiest_rq->nr_running <= 1)
969c7921 9151 goto out_unlock;
1e3c88bd
PZ
9152
9153 /*
9154 * This condition is "impossible", if it occurs
9155 * we need to fix it. Originally reported by
97fb7a0a 9156 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9157 */
9158 BUG_ON(busiest_rq == target_rq);
9159
1e3c88bd 9160 /* Search for an sd spanning us and the target CPU. */
dce840a0 9161 rcu_read_lock();
1e3c88bd
PZ
9162 for_each_domain(target_cpu, sd) {
9163 if ((sd->flags & SD_LOAD_BALANCE) &&
9164 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9165 break;
9166 }
9167
9168 if (likely(sd)) {
8e45cb54
PZ
9169 struct lb_env env = {
9170 .sd = sd,
ddcdf6e7
PZ
9171 .dst_cpu = target_cpu,
9172 .dst_rq = target_rq,
9173 .src_cpu = busiest_rq->cpu,
9174 .src_rq = busiest_rq,
8e45cb54 9175 .idle = CPU_IDLE,
65a4433a
JH
9176 /*
9177 * can_migrate_task() doesn't need to compute new_dst_cpu
9178 * for active balancing. Since we have CPU_IDLE, but no
9179 * @dst_grpmask we need to make that test go away with lying
9180 * about DST_PINNED.
9181 */
9182 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9183 };
9184
ae92882e 9185 schedstat_inc(sd->alb_count);
3bed5e21 9186 update_rq_clock(busiest_rq);
1e3c88bd 9187
e5673f28 9188 p = detach_one_task(&env);
d02c0711 9189 if (p) {
ae92882e 9190 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9191 /* Active balancing done, reset the failure counter. */
9192 sd->nr_balance_failed = 0;
9193 } else {
ae92882e 9194 schedstat_inc(sd->alb_failed);
d02c0711 9195 }
1e3c88bd 9196 }
dce840a0 9197 rcu_read_unlock();
969c7921
TH
9198out_unlock:
9199 busiest_rq->active_balance = 0;
8a8c69c3 9200 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9201
9202 if (p)
9203 attach_one_task(target_rq, p);
9204
9205 local_irq_enable();
9206
969c7921 9207 return 0;
1e3c88bd
PZ
9208}
9209
af3fe03c
PZ
9210static DEFINE_SPINLOCK(balancing);
9211
9212/*
9213 * Scale the max load_balance interval with the number of CPUs in the system.
9214 * This trades load-balance latency on larger machines for less cross talk.
9215 */
9216void update_max_interval(void)
9217{
9218 max_load_balance_interval = HZ*num_online_cpus()/10;
9219}
9220
9221/*
9222 * It checks each scheduling domain to see if it is due to be balanced,
9223 * and initiates a balancing operation if so.
9224 *
9225 * Balancing parameters are set up in init_sched_domains.
9226 */
9227static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9228{
9229 int continue_balancing = 1;
9230 int cpu = rq->cpu;
9231 unsigned long interval;
9232 struct sched_domain *sd;
9233 /* Earliest time when we have to do rebalance again */
9234 unsigned long next_balance = jiffies + 60*HZ;
9235 int update_next_balance = 0;
9236 int need_serialize, need_decay = 0;
9237 u64 max_cost = 0;
9238
9239 rcu_read_lock();
9240 for_each_domain(cpu, sd) {
9241 /*
9242 * Decay the newidle max times here because this is a regular
9243 * visit to all the domains. Decay ~1% per second.
9244 */
9245 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9246 sd->max_newidle_lb_cost =
9247 (sd->max_newidle_lb_cost * 253) / 256;
9248 sd->next_decay_max_lb_cost = jiffies + HZ;
9249 need_decay = 1;
9250 }
9251 max_cost += sd->max_newidle_lb_cost;
9252
9253 if (!(sd->flags & SD_LOAD_BALANCE))
9254 continue;
9255
9256 /*
9257 * Stop the load balance at this level. There is another
9258 * CPU in our sched group which is doing load balancing more
9259 * actively.
9260 */
9261 if (!continue_balancing) {
9262 if (need_decay)
9263 continue;
9264 break;
9265 }
9266
9267 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9268
9269 need_serialize = sd->flags & SD_SERIALIZE;
9270 if (need_serialize) {
9271 if (!spin_trylock(&balancing))
9272 goto out;
9273 }
9274
9275 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9276 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9277 /*
9278 * The LBF_DST_PINNED logic could have changed
9279 * env->dst_cpu, so we can't know our idle
9280 * state even if we migrated tasks. Update it.
9281 */
9282 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9283 }
9284 sd->last_balance = jiffies;
9285 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9286 }
9287 if (need_serialize)
9288 spin_unlock(&balancing);
9289out:
9290 if (time_after(next_balance, sd->last_balance + interval)) {
9291 next_balance = sd->last_balance + interval;
9292 update_next_balance = 1;
9293 }
9294 }
9295 if (need_decay) {
9296 /*
9297 * Ensure the rq-wide value also decays but keep it at a
9298 * reasonable floor to avoid funnies with rq->avg_idle.
9299 */
9300 rq->max_idle_balance_cost =
9301 max((u64)sysctl_sched_migration_cost, max_cost);
9302 }
9303 rcu_read_unlock();
9304
9305 /*
9306 * next_balance will be updated only when there is a need.
9307 * When the cpu is attached to null domain for ex, it will not be
9308 * updated.
9309 */
9310 if (likely(update_next_balance)) {
9311 rq->next_balance = next_balance;
9312
9313#ifdef CONFIG_NO_HZ_COMMON
9314 /*
9315 * If this CPU has been elected to perform the nohz idle
9316 * balance. Other idle CPUs have already rebalanced with
9317 * nohz_idle_balance() and nohz.next_balance has been
9318 * updated accordingly. This CPU is now running the idle load
9319 * balance for itself and we need to update the
9320 * nohz.next_balance accordingly.
9321 */
9322 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9323 nohz.next_balance = rq->next_balance;
9324#endif
9325 }
9326}
9327
d987fc7f
MG
9328static inline int on_null_domain(struct rq *rq)
9329{
9330 return unlikely(!rcu_dereference_sched(rq->sd));
9331}
9332
3451d024 9333#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9334/*
9335 * idle load balancing details
83cd4fe2
VP
9336 * - When one of the busy CPUs notice that there may be an idle rebalancing
9337 * needed, they will kick the idle load balancer, which then does idle
9338 * load balancing for all the idle CPUs.
9b019acb
NP
9339 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9340 * anywhere yet.
83cd4fe2 9341 */
1e3c88bd 9342
3dd0337d 9343static inline int find_new_ilb(void)
1e3c88bd 9344{
9b019acb 9345 int ilb;
1e3c88bd 9346
9b019acb
NP
9347 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9348 housekeeping_cpumask(HK_FLAG_MISC)) {
9349 if (idle_cpu(ilb))
9350 return ilb;
9351 }
786d6dc7
SS
9352
9353 return nr_cpu_ids;
1e3c88bd 9354}
1e3c88bd 9355
83cd4fe2 9356/*
9b019acb
NP
9357 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9358 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9359 */
a4064fb6 9360static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9361{
9362 int ilb_cpu;
9363
9364 nohz.next_balance++;
9365
3dd0337d 9366 ilb_cpu = find_new_ilb();
83cd4fe2 9367
0b005cf5
SS
9368 if (ilb_cpu >= nr_cpu_ids)
9369 return;
83cd4fe2 9370
a4064fb6 9371 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9372 if (flags & NOHZ_KICK_MASK)
1c792db7 9373 return;
4550487a 9374
1c792db7
SS
9375 /*
9376 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9377 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9378 * is idle. And the softirq performing nohz idle load balance
9379 * will be run before returning from the IPI.
9380 */
9381 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9382}
9383
9384/*
9f132742
VS
9385 * Current decision point for kicking the idle load balancer in the presence
9386 * of idle CPUs in the system.
4550487a
PZ
9387 */
9388static void nohz_balancer_kick(struct rq *rq)
9389{
9390 unsigned long now = jiffies;
9391 struct sched_domain_shared *sds;
9392 struct sched_domain *sd;
9393 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9394 unsigned int flags = 0;
4550487a
PZ
9395
9396 if (unlikely(rq->idle_balance))
9397 return;
9398
9399 /*
9400 * We may be recently in ticked or tickless idle mode. At the first
9401 * busy tick after returning from idle, we will update the busy stats.
9402 */
00357f5e 9403 nohz_balance_exit_idle(rq);
4550487a
PZ
9404
9405 /*
9406 * None are in tickless mode and hence no need for NOHZ idle load
9407 * balancing.
9408 */
9409 if (likely(!atomic_read(&nohz.nr_cpus)))
9410 return;
9411
f643ea22
VG
9412 if (READ_ONCE(nohz.has_blocked) &&
9413 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9414 flags = NOHZ_STATS_KICK;
9415
4550487a 9416 if (time_before(now, nohz.next_balance))
a4064fb6 9417 goto out;
4550487a 9418
a0fe2cf0 9419 if (rq->nr_running >= 2) {
a4064fb6 9420 flags = NOHZ_KICK_MASK;
4550487a
PZ
9421 goto out;
9422 }
9423
9424 rcu_read_lock();
4550487a
PZ
9425
9426 sd = rcu_dereference(rq->sd);
9427 if (sd) {
e25a7a94
VS
9428 /*
9429 * If there's a CFS task and the current CPU has reduced
9430 * capacity; kick the ILB to see if there's a better CPU to run
9431 * on.
9432 */
9433 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9434 flags = NOHZ_KICK_MASK;
4550487a
PZ
9435 goto unlock;
9436 }
9437 }
9438
011b27bb 9439 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9440 if (sd) {
b9a7b883
VS
9441 /*
9442 * When ASYM_PACKING; see if there's a more preferred CPU
9443 * currently idle; in which case, kick the ILB to move tasks
9444 * around.
9445 */
7edab78d 9446 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9447 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9448 flags = NOHZ_KICK_MASK;
4550487a
PZ
9449 goto unlock;
9450 }
9451 }
9452 }
b9a7b883 9453
a0fe2cf0
VS
9454 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9455 if (sd) {
9456 /*
9457 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9458 * to run the misfit task on.
9459 */
9460 if (check_misfit_status(rq, sd)) {
9461 flags = NOHZ_KICK_MASK;
9462 goto unlock;
9463 }
b9a7b883
VS
9464
9465 /*
9466 * For asymmetric systems, we do not want to nicely balance
9467 * cache use, instead we want to embrace asymmetry and only
9468 * ensure tasks have enough CPU capacity.
9469 *
9470 * Skip the LLC logic because it's not relevant in that case.
9471 */
9472 goto unlock;
a0fe2cf0
VS
9473 }
9474
b9a7b883
VS
9475 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9476 if (sds) {
e25a7a94 9477 /*
b9a7b883
VS
9478 * If there is an imbalance between LLC domains (IOW we could
9479 * increase the overall cache use), we need some less-loaded LLC
9480 * domain to pull some load. Likewise, we may need to spread
9481 * load within the current LLC domain (e.g. packed SMT cores but
9482 * other CPUs are idle). We can't really know from here how busy
9483 * the others are - so just get a nohz balance going if it looks
9484 * like this LLC domain has tasks we could move.
e25a7a94 9485 */
b9a7b883
VS
9486 nr_busy = atomic_read(&sds->nr_busy_cpus);
9487 if (nr_busy > 1) {
9488 flags = NOHZ_KICK_MASK;
9489 goto unlock;
4550487a
PZ
9490 }
9491 }
9492unlock:
9493 rcu_read_unlock();
9494out:
a4064fb6
PZ
9495 if (flags)
9496 kick_ilb(flags);
83cd4fe2
VP
9497}
9498
00357f5e 9499static void set_cpu_sd_state_busy(int cpu)
71325960 9500{
00357f5e 9501 struct sched_domain *sd;
a22e47a4 9502
00357f5e
PZ
9503 rcu_read_lock();
9504 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9505
00357f5e
PZ
9506 if (!sd || !sd->nohz_idle)
9507 goto unlock;
9508 sd->nohz_idle = 0;
9509
9510 atomic_inc(&sd->shared->nr_busy_cpus);
9511unlock:
9512 rcu_read_unlock();
71325960
SS
9513}
9514
00357f5e
PZ
9515void nohz_balance_exit_idle(struct rq *rq)
9516{
9517 SCHED_WARN_ON(rq != this_rq());
9518
9519 if (likely(!rq->nohz_tick_stopped))
9520 return;
9521
9522 rq->nohz_tick_stopped = 0;
9523 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9524 atomic_dec(&nohz.nr_cpus);
9525
9526 set_cpu_sd_state_busy(rq->cpu);
9527}
9528
9529static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9530{
9531 struct sched_domain *sd;
69e1e811 9532
69e1e811 9533 rcu_read_lock();
0e369d75 9534 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9535
9536 if (!sd || sd->nohz_idle)
9537 goto unlock;
9538 sd->nohz_idle = 1;
9539
0e369d75 9540 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9541unlock:
69e1e811
SS
9542 rcu_read_unlock();
9543}
9544
1e3c88bd 9545/*
97fb7a0a 9546 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9547 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9548 */
c1cc017c 9549void nohz_balance_enter_idle(int cpu)
1e3c88bd 9550{
00357f5e
PZ
9551 struct rq *rq = cpu_rq(cpu);
9552
9553 SCHED_WARN_ON(cpu != smp_processor_id());
9554
97fb7a0a 9555 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9556 if (!cpu_active(cpu))
9557 return;
9558
387bc8b5 9559 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9560 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9561 return;
9562
f643ea22
VG
9563 /*
9564 * Can be set safely without rq->lock held
9565 * If a clear happens, it will have evaluated last additions because
9566 * rq->lock is held during the check and the clear
9567 */
9568 rq->has_blocked_load = 1;
9569
9570 /*
9571 * The tick is still stopped but load could have been added in the
9572 * meantime. We set the nohz.has_blocked flag to trig a check of the
9573 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9574 * of nohz.has_blocked can only happen after checking the new load
9575 */
00357f5e 9576 if (rq->nohz_tick_stopped)
f643ea22 9577 goto out;
1e3c88bd 9578
97fb7a0a 9579 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9580 if (on_null_domain(rq))
d987fc7f
MG
9581 return;
9582
00357f5e
PZ
9583 rq->nohz_tick_stopped = 1;
9584
c1cc017c
AS
9585 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9586 atomic_inc(&nohz.nr_cpus);
00357f5e 9587
f643ea22
VG
9588 /*
9589 * Ensures that if nohz_idle_balance() fails to observe our
9590 * @idle_cpus_mask store, it must observe the @has_blocked
9591 * store.
9592 */
9593 smp_mb__after_atomic();
9594
00357f5e 9595 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9596
9597out:
9598 /*
9599 * Each time a cpu enter idle, we assume that it has blocked load and
9600 * enable the periodic update of the load of idle cpus
9601 */
9602 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9603}
1e3c88bd 9604
1e3c88bd 9605/*
31e77c93
VG
9606 * Internal function that runs load balance for all idle cpus. The load balance
9607 * can be a simple update of blocked load or a complete load balance with
9608 * tasks movement depending of flags.
9609 * The function returns false if the loop has stopped before running
9610 * through all idle CPUs.
1e3c88bd 9611 */
31e77c93
VG
9612static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9613 enum cpu_idle_type idle)
83cd4fe2 9614{
c5afb6a8 9615 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9616 unsigned long now = jiffies;
9617 unsigned long next_balance = now + 60*HZ;
f643ea22 9618 bool has_blocked_load = false;
c5afb6a8 9619 int update_next_balance = 0;
b7031a02 9620 int this_cpu = this_rq->cpu;
b7031a02 9621 int balance_cpu;
31e77c93 9622 int ret = false;
b7031a02 9623 struct rq *rq;
83cd4fe2 9624
b7031a02 9625 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9626
f643ea22
VG
9627 /*
9628 * We assume there will be no idle load after this update and clear
9629 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9630 * set the has_blocked flag and trig another update of idle load.
9631 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9632 * setting the flag, we are sure to not clear the state and not
9633 * check the load of an idle cpu.
9634 */
9635 WRITE_ONCE(nohz.has_blocked, 0);
9636
9637 /*
9638 * Ensures that if we miss the CPU, we must see the has_blocked
9639 * store from nohz_balance_enter_idle().
9640 */
9641 smp_mb();
9642
83cd4fe2 9643 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9644 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9645 continue;
9646
9647 /*
97fb7a0a
IM
9648 * If this CPU gets work to do, stop the load balancing
9649 * work being done for other CPUs. Next load
83cd4fe2
VP
9650 * balancing owner will pick it up.
9651 */
f643ea22
VG
9652 if (need_resched()) {
9653 has_blocked_load = true;
9654 goto abort;
9655 }
83cd4fe2 9656
5ed4f1d9
VG
9657 rq = cpu_rq(balance_cpu);
9658
63928384 9659 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9660
ed61bbc6
TC
9661 /*
9662 * If time for next balance is due,
9663 * do the balance.
9664 */
9665 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9666 struct rq_flags rf;
9667
31e77c93 9668 rq_lock_irqsave(rq, &rf);
ed61bbc6 9669 update_rq_clock(rq);
31e77c93 9670 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9671
b7031a02
PZ
9672 if (flags & NOHZ_BALANCE_KICK)
9673 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9674 }
83cd4fe2 9675
c5afb6a8
VG
9676 if (time_after(next_balance, rq->next_balance)) {
9677 next_balance = rq->next_balance;
9678 update_next_balance = 1;
9679 }
83cd4fe2 9680 }
c5afb6a8 9681
31e77c93
VG
9682 /* Newly idle CPU doesn't need an update */
9683 if (idle != CPU_NEWLY_IDLE) {
9684 update_blocked_averages(this_cpu);
9685 has_blocked_load |= this_rq->has_blocked_load;
9686 }
9687
b7031a02
PZ
9688 if (flags & NOHZ_BALANCE_KICK)
9689 rebalance_domains(this_rq, CPU_IDLE);
9690
f643ea22
VG
9691 WRITE_ONCE(nohz.next_blocked,
9692 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9693
31e77c93
VG
9694 /* The full idle balance loop has been done */
9695 ret = true;
9696
f643ea22
VG
9697abort:
9698 /* There is still blocked load, enable periodic update */
9699 if (has_blocked_load)
9700 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9701
c5afb6a8
VG
9702 /*
9703 * next_balance will be updated only when there is a need.
9704 * When the CPU is attached to null domain for ex, it will not be
9705 * updated.
9706 */
9707 if (likely(update_next_balance))
9708 nohz.next_balance = next_balance;
b7031a02 9709
31e77c93
VG
9710 return ret;
9711}
9712
9713/*
9714 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9715 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9716 */
9717static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9718{
9719 int this_cpu = this_rq->cpu;
9720 unsigned int flags;
9721
9722 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9723 return false;
9724
9725 if (idle != CPU_IDLE) {
9726 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9727 return false;
9728 }
9729
80eb8657 9730 /* could be _relaxed() */
31e77c93
VG
9731 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9732 if (!(flags & NOHZ_KICK_MASK))
9733 return false;
9734
9735 _nohz_idle_balance(this_rq, flags, idle);
9736
b7031a02 9737 return true;
83cd4fe2 9738}
31e77c93
VG
9739
9740static void nohz_newidle_balance(struct rq *this_rq)
9741{
9742 int this_cpu = this_rq->cpu;
9743
9744 /*
9745 * This CPU doesn't want to be disturbed by scheduler
9746 * housekeeping
9747 */
9748 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9749 return;
9750
9751 /* Will wake up very soon. No time for doing anything else*/
9752 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9753 return;
9754
9755 /* Don't need to update blocked load of idle CPUs*/
9756 if (!READ_ONCE(nohz.has_blocked) ||
9757 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9758 return;
9759
9760 raw_spin_unlock(&this_rq->lock);
9761 /*
9762 * This CPU is going to be idle and blocked load of idle CPUs
9763 * need to be updated. Run the ilb locally as it is a good
9764 * candidate for ilb instead of waking up another idle CPU.
9765 * Kick an normal ilb if we failed to do the update.
9766 */
9767 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9768 kick_ilb(NOHZ_STATS_KICK);
9769 raw_spin_lock(&this_rq->lock);
9770}
9771
dd707247
PZ
9772#else /* !CONFIG_NO_HZ_COMMON */
9773static inline void nohz_balancer_kick(struct rq *rq) { }
9774
31e77c93 9775static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9776{
9777 return false;
9778}
31e77c93
VG
9779
9780static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9781#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9782
47ea5412
PZ
9783/*
9784 * idle_balance is called by schedule() if this_cpu is about to become
9785 * idle. Attempts to pull tasks from other CPUs.
9786 */
9787static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9788{
9789 unsigned long next_balance = jiffies + HZ;
9790 int this_cpu = this_rq->cpu;
9791 struct sched_domain *sd;
9792 int pulled_task = 0;
9793 u64 curr_cost = 0;
9794
9795 /*
9796 * We must set idle_stamp _before_ calling idle_balance(), such that we
9797 * measure the duration of idle_balance() as idle time.
9798 */
9799 this_rq->idle_stamp = rq_clock(this_rq);
9800
9801 /*
9802 * Do not pull tasks towards !active CPUs...
9803 */
9804 if (!cpu_active(this_cpu))
9805 return 0;
9806
9807 /*
9808 * This is OK, because current is on_cpu, which avoids it being picked
9809 * for load-balance and preemption/IRQs are still disabled avoiding
9810 * further scheduler activity on it and we're being very careful to
9811 * re-start the picking loop.
9812 */
9813 rq_unpin_lock(this_rq, rf);
9814
9815 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9816 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9817
47ea5412
PZ
9818 rcu_read_lock();
9819 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9820 if (sd)
9821 update_next_balance(sd, &next_balance);
9822 rcu_read_unlock();
9823
31e77c93
VG
9824 nohz_newidle_balance(this_rq);
9825
47ea5412
PZ
9826 goto out;
9827 }
9828
9829 raw_spin_unlock(&this_rq->lock);
9830
9831 update_blocked_averages(this_cpu);
9832 rcu_read_lock();
9833 for_each_domain(this_cpu, sd) {
9834 int continue_balancing = 1;
9835 u64 t0, domain_cost;
9836
9837 if (!(sd->flags & SD_LOAD_BALANCE))
9838 continue;
9839
9840 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9841 update_next_balance(sd, &next_balance);
9842 break;
9843 }
9844
9845 if (sd->flags & SD_BALANCE_NEWIDLE) {
9846 t0 = sched_clock_cpu(this_cpu);
9847
9848 pulled_task = load_balance(this_cpu, this_rq,
9849 sd, CPU_NEWLY_IDLE,
9850 &continue_balancing);
9851
9852 domain_cost = sched_clock_cpu(this_cpu) - t0;
9853 if (domain_cost > sd->max_newidle_lb_cost)
9854 sd->max_newidle_lb_cost = domain_cost;
9855
9856 curr_cost += domain_cost;
9857 }
9858
9859 update_next_balance(sd, &next_balance);
9860
9861 /*
9862 * Stop searching for tasks to pull if there are
9863 * now runnable tasks on this rq.
9864 */
9865 if (pulled_task || this_rq->nr_running > 0)
9866 break;
9867 }
9868 rcu_read_unlock();
9869
9870 raw_spin_lock(&this_rq->lock);
9871
9872 if (curr_cost > this_rq->max_idle_balance_cost)
9873 this_rq->max_idle_balance_cost = curr_cost;
9874
457be908 9875out:
47ea5412
PZ
9876 /*
9877 * While browsing the domains, we released the rq lock, a task could
9878 * have been enqueued in the meantime. Since we're not going idle,
9879 * pretend we pulled a task.
9880 */
9881 if (this_rq->cfs.h_nr_running && !pulled_task)
9882 pulled_task = 1;
9883
47ea5412
PZ
9884 /* Move the next balance forward */
9885 if (time_after(this_rq->next_balance, next_balance))
9886 this_rq->next_balance = next_balance;
9887
9888 /* Is there a task of a high priority class? */
9889 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9890 pulled_task = -1;
9891
9892 if (pulled_task)
9893 this_rq->idle_stamp = 0;
9894
9895 rq_repin_lock(this_rq, rf);
9896
9897 return pulled_task;
9898}
9899
83cd4fe2
VP
9900/*
9901 * run_rebalance_domains is triggered when needed from the scheduler tick.
9902 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9903 */
0766f788 9904static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9905{
208cb16b 9906 struct rq *this_rq = this_rq();
6eb57e0d 9907 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9908 CPU_IDLE : CPU_NOT_IDLE;
9909
1e3c88bd 9910 /*
97fb7a0a
IM
9911 * If this CPU has a pending nohz_balance_kick, then do the
9912 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9913 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9914 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9915 * load balance only within the local sched_domain hierarchy
9916 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9917 */
b7031a02
PZ
9918 if (nohz_idle_balance(this_rq, idle))
9919 return;
9920
9921 /* normal load balance */
9922 update_blocked_averages(this_rq->cpu);
d4573c3e 9923 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9924}
9925
1e3c88bd
PZ
9926/*
9927 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9928 */
7caff66f 9929void trigger_load_balance(struct rq *rq)
1e3c88bd 9930{
1e3c88bd 9931 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9932 if (unlikely(on_null_domain(rq)))
9933 return;
9934
9935 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9936 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9937
9938 nohz_balancer_kick(rq);
1e3c88bd
PZ
9939}
9940
0bcdcf28
CE
9941static void rq_online_fair(struct rq *rq)
9942{
9943 update_sysctl();
0e59bdae
KT
9944
9945 update_runtime_enabled(rq);
0bcdcf28
CE
9946}
9947
9948static void rq_offline_fair(struct rq *rq)
9949{
9950 update_sysctl();
a4c96ae3
PB
9951
9952 /* Ensure any throttled groups are reachable by pick_next_task */
9953 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9954}
9955
55e12e5e 9956#endif /* CONFIG_SMP */
e1d1484f 9957
bf0f6f24 9958/*
d84b3131
FW
9959 * scheduler tick hitting a task of our scheduling class.
9960 *
9961 * NOTE: This function can be called remotely by the tick offload that
9962 * goes along full dynticks. Therefore no local assumption can be made
9963 * and everything must be accessed through the @rq and @curr passed in
9964 * parameters.
bf0f6f24 9965 */
8f4d37ec 9966static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9967{
9968 struct cfs_rq *cfs_rq;
9969 struct sched_entity *se = &curr->se;
9970
9971 for_each_sched_entity(se) {
9972 cfs_rq = cfs_rq_of(se);
8f4d37ec 9973 entity_tick(cfs_rq, se, queued);
bf0f6f24 9974 }
18bf2805 9975
b52da86e 9976 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9977 task_tick_numa(rq, curr);
3b1baa64
MR
9978
9979 update_misfit_status(curr, rq);
2802bf3c 9980 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
9981}
9982
9983/*
cd29fe6f
PZ
9984 * called on fork with the child task as argument from the parent's context
9985 * - child not yet on the tasklist
9986 * - preemption disabled
bf0f6f24 9987 */
cd29fe6f 9988static void task_fork_fair(struct task_struct *p)
bf0f6f24 9989{
4fc420c9
DN
9990 struct cfs_rq *cfs_rq;
9991 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9992 struct rq *rq = this_rq();
8a8c69c3 9993 struct rq_flags rf;
bf0f6f24 9994
8a8c69c3 9995 rq_lock(rq, &rf);
861d034e
PZ
9996 update_rq_clock(rq);
9997
4fc420c9
DN
9998 cfs_rq = task_cfs_rq(current);
9999 curr = cfs_rq->curr;
e210bffd
PZ
10000 if (curr) {
10001 update_curr(cfs_rq);
b5d9d734 10002 se->vruntime = curr->vruntime;
e210bffd 10003 }
aeb73b04 10004 place_entity(cfs_rq, se, 1);
4d78e7b6 10005
cd29fe6f 10006 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10007 /*
edcb60a3
IM
10008 * Upon rescheduling, sched_class::put_prev_task() will place
10009 * 'current' within the tree based on its new key value.
10010 */
4d78e7b6 10011 swap(curr->vruntime, se->vruntime);
8875125e 10012 resched_curr(rq);
4d78e7b6 10013 }
bf0f6f24 10014
88ec22d3 10015 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10016 rq_unlock(rq, &rf);
bf0f6f24
IM
10017}
10018
cb469845
SR
10019/*
10020 * Priority of the task has changed. Check to see if we preempt
10021 * the current task.
10022 */
da7a735e
PZ
10023static void
10024prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10025{
da0c1e65 10026 if (!task_on_rq_queued(p))
da7a735e
PZ
10027 return;
10028
cb469845
SR
10029 /*
10030 * Reschedule if we are currently running on this runqueue and
10031 * our priority decreased, or if we are not currently running on
10032 * this runqueue and our priority is higher than the current's
10033 */
da7a735e 10034 if (rq->curr == p) {
cb469845 10035 if (p->prio > oldprio)
8875125e 10036 resched_curr(rq);
cb469845 10037 } else
15afe09b 10038 check_preempt_curr(rq, p, 0);
cb469845
SR
10039}
10040
daa59407 10041static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10042{
10043 struct sched_entity *se = &p->se;
da7a735e
PZ
10044
10045 /*
daa59407
BP
10046 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10047 * the dequeue_entity(.flags=0) will already have normalized the
10048 * vruntime.
10049 */
10050 if (p->on_rq)
10051 return true;
10052
10053 /*
10054 * When !on_rq, vruntime of the task has usually NOT been normalized.
10055 * But there are some cases where it has already been normalized:
da7a735e 10056 *
daa59407
BP
10057 * - A forked child which is waiting for being woken up by
10058 * wake_up_new_task().
10059 * - A task which has been woken up by try_to_wake_up() and
10060 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10061 */
d0cdb3ce
SM
10062 if (!se->sum_exec_runtime ||
10063 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10064 return true;
10065
10066 return false;
10067}
10068
09a43ace
VG
10069#ifdef CONFIG_FAIR_GROUP_SCHED
10070/*
10071 * Propagate the changes of the sched_entity across the tg tree to make it
10072 * visible to the root
10073 */
10074static void propagate_entity_cfs_rq(struct sched_entity *se)
10075{
10076 struct cfs_rq *cfs_rq;
10077
10078 /* Start to propagate at parent */
10079 se = se->parent;
10080
10081 for_each_sched_entity(se) {
10082 cfs_rq = cfs_rq_of(se);
10083
10084 if (cfs_rq_throttled(cfs_rq))
10085 break;
10086
88c0616e 10087 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10088 }
10089}
10090#else
10091static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10092#endif
10093
df217913 10094static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10095{
daa59407
BP
10096 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10097
9d89c257 10098 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10099 update_load_avg(cfs_rq, se, 0);
a05e8c51 10100 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10101 update_tg_load_avg(cfs_rq, false);
09a43ace 10102 propagate_entity_cfs_rq(se);
da7a735e
PZ
10103}
10104
df217913 10105static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10106{
daa59407 10107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10108
10109#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10110 /*
10111 * Since the real-depth could have been changed (only FAIR
10112 * class maintain depth value), reset depth properly.
10113 */
10114 se->depth = se->parent ? se->parent->depth + 1 : 0;
10115#endif
7855a35a 10116
df217913 10117 /* Synchronize entity with its cfs_rq */
88c0616e 10118 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10119 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10120 update_tg_load_avg(cfs_rq, false);
09a43ace 10121 propagate_entity_cfs_rq(se);
df217913
VG
10122}
10123
10124static void detach_task_cfs_rq(struct task_struct *p)
10125{
10126 struct sched_entity *se = &p->se;
10127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10128
10129 if (!vruntime_normalized(p)) {
10130 /*
10131 * Fix up our vruntime so that the current sleep doesn't
10132 * cause 'unlimited' sleep bonus.
10133 */
10134 place_entity(cfs_rq, se, 0);
10135 se->vruntime -= cfs_rq->min_vruntime;
10136 }
10137
10138 detach_entity_cfs_rq(se);
10139}
10140
10141static void attach_task_cfs_rq(struct task_struct *p)
10142{
10143 struct sched_entity *se = &p->se;
10144 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10145
10146 attach_entity_cfs_rq(se);
daa59407
BP
10147
10148 if (!vruntime_normalized(p))
10149 se->vruntime += cfs_rq->min_vruntime;
10150}
6efdb105 10151
daa59407
BP
10152static void switched_from_fair(struct rq *rq, struct task_struct *p)
10153{
10154 detach_task_cfs_rq(p);
10155}
10156
10157static void switched_to_fair(struct rq *rq, struct task_struct *p)
10158{
10159 attach_task_cfs_rq(p);
7855a35a 10160
daa59407 10161 if (task_on_rq_queued(p)) {
7855a35a 10162 /*
daa59407
BP
10163 * We were most likely switched from sched_rt, so
10164 * kick off the schedule if running, otherwise just see
10165 * if we can still preempt the current task.
7855a35a 10166 */
daa59407
BP
10167 if (rq->curr == p)
10168 resched_curr(rq);
10169 else
10170 check_preempt_curr(rq, p, 0);
7855a35a 10171 }
cb469845
SR
10172}
10173
83b699ed
SV
10174/* Account for a task changing its policy or group.
10175 *
10176 * This routine is mostly called to set cfs_rq->curr field when a task
10177 * migrates between groups/classes.
10178 */
10179static void set_curr_task_fair(struct rq *rq)
10180{
10181 struct sched_entity *se = &rq->curr->se;
10182
ec12cb7f
PT
10183 for_each_sched_entity(se) {
10184 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10185
10186 set_next_entity(cfs_rq, se);
10187 /* ensure bandwidth has been allocated on our new cfs_rq */
10188 account_cfs_rq_runtime(cfs_rq, 0);
10189 }
83b699ed
SV
10190}
10191
029632fb
PZ
10192void init_cfs_rq(struct cfs_rq *cfs_rq)
10193{
bfb06889 10194 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10195 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10196#ifndef CONFIG_64BIT
10197 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10198#endif
141965c7 10199#ifdef CONFIG_SMP
2a2f5d4e 10200 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10201#endif
029632fb
PZ
10202}
10203
810b3817 10204#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10205static void task_set_group_fair(struct task_struct *p)
10206{
10207 struct sched_entity *se = &p->se;
10208
10209 set_task_rq(p, task_cpu(p));
10210 se->depth = se->parent ? se->parent->depth + 1 : 0;
10211}
10212
bc54da21 10213static void task_move_group_fair(struct task_struct *p)
810b3817 10214{
daa59407 10215 detach_task_cfs_rq(p);
b2b5ce02 10216 set_task_rq(p, task_cpu(p));
6efdb105
BP
10217
10218#ifdef CONFIG_SMP
10219 /* Tell se's cfs_rq has been changed -- migrated */
10220 p->se.avg.last_update_time = 0;
10221#endif
daa59407 10222 attach_task_cfs_rq(p);
810b3817 10223}
029632fb 10224
ea86cb4b
VG
10225static void task_change_group_fair(struct task_struct *p, int type)
10226{
10227 switch (type) {
10228 case TASK_SET_GROUP:
10229 task_set_group_fair(p);
10230 break;
10231
10232 case TASK_MOVE_GROUP:
10233 task_move_group_fair(p);
10234 break;
10235 }
10236}
10237
029632fb
PZ
10238void free_fair_sched_group(struct task_group *tg)
10239{
10240 int i;
10241
10242 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10243
10244 for_each_possible_cpu(i) {
10245 if (tg->cfs_rq)
10246 kfree(tg->cfs_rq[i]);
6fe1f348 10247 if (tg->se)
029632fb
PZ
10248 kfree(tg->se[i]);
10249 }
10250
10251 kfree(tg->cfs_rq);
10252 kfree(tg->se);
10253}
10254
10255int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10256{
029632fb 10257 struct sched_entity *se;
b7fa30c9 10258 struct cfs_rq *cfs_rq;
029632fb
PZ
10259 int i;
10260
6396bb22 10261 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10262 if (!tg->cfs_rq)
10263 goto err;
6396bb22 10264 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10265 if (!tg->se)
10266 goto err;
10267
10268 tg->shares = NICE_0_LOAD;
10269
10270 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10271
10272 for_each_possible_cpu(i) {
10273 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10274 GFP_KERNEL, cpu_to_node(i));
10275 if (!cfs_rq)
10276 goto err;
10277
10278 se = kzalloc_node(sizeof(struct sched_entity),
10279 GFP_KERNEL, cpu_to_node(i));
10280 if (!se)
10281 goto err_free_rq;
10282
10283 init_cfs_rq(cfs_rq);
10284 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10285 init_entity_runnable_average(se);
029632fb
PZ
10286 }
10287
10288 return 1;
10289
10290err_free_rq:
10291 kfree(cfs_rq);
10292err:
10293 return 0;
10294}
10295
8663e24d
PZ
10296void online_fair_sched_group(struct task_group *tg)
10297{
10298 struct sched_entity *se;
10299 struct rq *rq;
10300 int i;
10301
10302 for_each_possible_cpu(i) {
10303 rq = cpu_rq(i);
10304 se = tg->se[i];
10305
10306 raw_spin_lock_irq(&rq->lock);
4126bad6 10307 update_rq_clock(rq);
d0326691 10308 attach_entity_cfs_rq(se);
55e16d30 10309 sync_throttle(tg, i);
8663e24d
PZ
10310 raw_spin_unlock_irq(&rq->lock);
10311 }
10312}
10313
6fe1f348 10314void unregister_fair_sched_group(struct task_group *tg)
029632fb 10315{
029632fb 10316 unsigned long flags;
6fe1f348
PZ
10317 struct rq *rq;
10318 int cpu;
029632fb 10319
6fe1f348
PZ
10320 for_each_possible_cpu(cpu) {
10321 if (tg->se[cpu])
10322 remove_entity_load_avg(tg->se[cpu]);
029632fb 10323
6fe1f348
PZ
10324 /*
10325 * Only empty task groups can be destroyed; so we can speculatively
10326 * check on_list without danger of it being re-added.
10327 */
10328 if (!tg->cfs_rq[cpu]->on_list)
10329 continue;
10330
10331 rq = cpu_rq(cpu);
10332
10333 raw_spin_lock_irqsave(&rq->lock, flags);
10334 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10335 raw_spin_unlock_irqrestore(&rq->lock, flags);
10336 }
029632fb
PZ
10337}
10338
10339void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10340 struct sched_entity *se, int cpu,
10341 struct sched_entity *parent)
10342{
10343 struct rq *rq = cpu_rq(cpu);
10344
10345 cfs_rq->tg = tg;
10346 cfs_rq->rq = rq;
029632fb
PZ
10347 init_cfs_rq_runtime(cfs_rq);
10348
10349 tg->cfs_rq[cpu] = cfs_rq;
10350 tg->se[cpu] = se;
10351
10352 /* se could be NULL for root_task_group */
10353 if (!se)
10354 return;
10355
fed14d45 10356 if (!parent) {
029632fb 10357 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10358 se->depth = 0;
10359 } else {
029632fb 10360 se->cfs_rq = parent->my_q;
fed14d45
PZ
10361 se->depth = parent->depth + 1;
10362 }
029632fb
PZ
10363
10364 se->my_q = cfs_rq;
0ac9b1c2
PT
10365 /* guarantee group entities always have weight */
10366 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10367 se->parent = parent;
10368}
10369
10370static DEFINE_MUTEX(shares_mutex);
10371
10372int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10373{
10374 int i;
029632fb
PZ
10375
10376 /*
10377 * We can't change the weight of the root cgroup.
10378 */
10379 if (!tg->se[0])
10380 return -EINVAL;
10381
10382 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10383
10384 mutex_lock(&shares_mutex);
10385 if (tg->shares == shares)
10386 goto done;
10387
10388 tg->shares = shares;
10389 for_each_possible_cpu(i) {
10390 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10391 struct sched_entity *se = tg->se[i];
10392 struct rq_flags rf;
029632fb 10393
029632fb 10394 /* Propagate contribution to hierarchy */
8a8c69c3 10395 rq_lock_irqsave(rq, &rf);
71b1da46 10396 update_rq_clock(rq);
89ee048f 10397 for_each_sched_entity(se) {
88c0616e 10398 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10399 update_cfs_group(se);
89ee048f 10400 }
8a8c69c3 10401 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10402 }
10403
10404done:
10405 mutex_unlock(&shares_mutex);
10406 return 0;
10407}
10408#else /* CONFIG_FAIR_GROUP_SCHED */
10409
10410void free_fair_sched_group(struct task_group *tg) { }
10411
10412int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10413{
10414 return 1;
10415}
10416
8663e24d
PZ
10417void online_fair_sched_group(struct task_group *tg) { }
10418
6fe1f348 10419void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10420
10421#endif /* CONFIG_FAIR_GROUP_SCHED */
10422
810b3817 10423
6d686f45 10424static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10425{
10426 struct sched_entity *se = &task->se;
0d721cea
PW
10427 unsigned int rr_interval = 0;
10428
10429 /*
10430 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10431 * idle runqueue:
10432 */
0d721cea 10433 if (rq->cfs.load.weight)
a59f4e07 10434 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10435
10436 return rr_interval;
10437}
10438
bf0f6f24
IM
10439/*
10440 * All the scheduling class methods:
10441 */
029632fb 10442const struct sched_class fair_sched_class = {
5522d5d5 10443 .next = &idle_sched_class,
bf0f6f24
IM
10444 .enqueue_task = enqueue_task_fair,
10445 .dequeue_task = dequeue_task_fair,
10446 .yield_task = yield_task_fair,
d95f4122 10447 .yield_to_task = yield_to_task_fair,
bf0f6f24 10448
2e09bf55 10449 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10450
10451 .pick_next_task = pick_next_task_fair,
10452 .put_prev_task = put_prev_task_fair,
10453
681f3e68 10454#ifdef CONFIG_SMP
4ce72a2c 10455 .select_task_rq = select_task_rq_fair,
0a74bef8 10456 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10457
0bcdcf28
CE
10458 .rq_online = rq_online_fair,
10459 .rq_offline = rq_offline_fair,
88ec22d3 10460
12695578 10461 .task_dead = task_dead_fair,
c5b28038 10462 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10463#endif
bf0f6f24 10464
83b699ed 10465 .set_curr_task = set_curr_task_fair,
bf0f6f24 10466 .task_tick = task_tick_fair,
cd29fe6f 10467 .task_fork = task_fork_fair,
cb469845
SR
10468
10469 .prio_changed = prio_changed_fair,
da7a735e 10470 .switched_from = switched_from_fair,
cb469845 10471 .switched_to = switched_to_fair,
810b3817 10472
0d721cea
PW
10473 .get_rr_interval = get_rr_interval_fair,
10474
6e998916
SG
10475 .update_curr = update_curr_fair,
10476
810b3817 10477#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10478 .task_change_group = task_change_group_fair,
810b3817 10479#endif
982d9cdc
PB
10480
10481#ifdef CONFIG_UCLAMP_TASK
10482 .uclamp_enabled = 1,
10483#endif
bf0f6f24
IM
10484};
10485
10486#ifdef CONFIG_SCHED_DEBUG
029632fb 10487void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10488{
039ae8bc 10489 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10490
5973e5b9 10491 rcu_read_lock();
039ae8bc 10492 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10493 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10494 rcu_read_unlock();
bf0f6f24 10495}
397f2378
SD
10496
10497#ifdef CONFIG_NUMA_BALANCING
10498void show_numa_stats(struct task_struct *p, struct seq_file *m)
10499{
10500 int node;
10501 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 10502 struct numa_group *ng;
397f2378 10503
cb361d8c
JH
10504 rcu_read_lock();
10505 ng = rcu_dereference(p->numa_group);
397f2378
SD
10506 for_each_online_node(node) {
10507 if (p->numa_faults) {
10508 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10509 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10510 }
cb361d8c
JH
10511 if (ng) {
10512 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10513 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
10514 }
10515 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10516 }
cb361d8c 10517 rcu_read_unlock();
397f2378
SD
10518}
10519#endif /* CONFIG_NUMA_BALANCING */
10520#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10521
10522__init void init_sched_fair_class(void)
10523{
10524#ifdef CONFIG_SMP
10525 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10526
3451d024 10527#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10528 nohz.next_balance = jiffies;
f643ea22 10529 nohz.next_blocked = jiffies;
029632fb 10530 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10531#endif
10532#endif /* SMP */
10533
10534}
3c93a0c0
QY
10535
10536/*
10537 * Helper functions to facilitate extracting info from tracepoints.
10538 */
10539
10540const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10541{
10542#ifdef CONFIG_SMP
10543 return cfs_rq ? &cfs_rq->avg : NULL;
10544#else
10545 return NULL;
10546#endif
10547}
10548EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10549
10550char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10551{
10552 if (!cfs_rq) {
10553 if (str)
10554 strlcpy(str, "(null)", len);
10555 else
10556 return NULL;
10557 }
10558
10559 cfs_rq_tg_path(cfs_rq, str, len);
10560 return str;
10561}
10562EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10563
10564int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10565{
10566 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10567}
10568EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10569
10570const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10571{
10572#ifdef CONFIG_SMP
10573 return rq ? &rq->avg_rt : NULL;
10574#else
10575 return NULL;
10576#endif
10577}
10578EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10579
10580const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10581{
10582#ifdef CONFIG_SMP
10583 return rq ? &rq->avg_dl : NULL;
10584#else
10585 return NULL;
10586#endif
10587}
10588EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10589
10590const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10591{
10592#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10593 return rq ? &rq->avg_irq : NULL;
10594#else
10595 return NULL;
10596#endif
10597}
10598EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10599
10600int sched_trace_rq_cpu(struct rq *rq)
10601{
10602 return rq ? cpu_of(rq) : -1;
10603}
10604EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10605
10606const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10607{
10608#ifdef CONFIG_SMP
10609 return rd ? rd->span : NULL;
10610#else
10611 return NULL;
10612#endif
10613}
10614EXPORT_SYMBOL_GPL(sched_trace_rd_span);